N

N

Optimisation du séquencement de taches avec lissage du
mouvement dans la réalisation de missions autonomes
ou collaboratives d’un humanoide virtuel ou robotique

Francois Keith

» To cite this version:

Frangois Keith. Optimisation du séquencement de taches avec lissage du mouvement dans la réalisation
de missions autonomes ou collaboratives d’'un humanoide virtuel ou robotique. Robotique [cs.RO].
Université Montpellier II - Sciences et Techniques du Languedoc, 2010. Frangais. NNT: . tel-
00798831

HAL Id: tel-00798831
https://theses.hal.science/tel-00798831
Submitted on 10 Mar 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00798831
https://hal.archives-ouvertes.fr

UNIVERSITY MONTPELLIER 2
SCIENCES ET TECHNIQUES DU LANGUEDOC

THESIS

to obtain the title of

PHD OF UNIVERSITY MONTPELLIER?2
Discipline : SYAM — Systemes Automatiques et Microéleciques
Graduate School : I12S — Information, Structures, Systemes

presented by

Francois KEITH

Teams: [|ABORATOIRE D'I| NFORMATIQUE, DE ROBOTIQUE
ET DE MICROELECTRONIQUE DEMONTPELLIER
CNRS-AIST JRL, UMI3218/CRTTSUKUBA, JAPON)

Title:

Optimization of motion overlapping
for task sequencing

Defended December 10, 2010

JURY
Christine CHEVALLEREAU Reviewers
Micheal BEETZ
André CROSNIER Examinators
Pierre-Brice WIEBER
Abderrahmane KHEDDAR Director

Nicolas MANSARD Co-director

Remerciements

Avant tout, je voudrais remercier Abderrahmane Kheddar@blbs Mansard, mes directeur
et co-directeur de these, pour la qualité de I'encadrement jchi bénéficié. J'ai toujours
trouvé une oreille attentive & mes questions, et je les r@mpour tous les conseils, legons et
explications qu’ils m’ont donnés, et pour les discussiond ge ressortais plus motivés que
jamais. Merci a Abderrahmane Kheddar pour m’avoir donnéhbnce d’étudier au Japon
en stage de fin d’études et pour m’avoir proposé de poursaivitbese. Merci a Nicolas
Mansard pour son enthousiasme et sa ténacité contagieiggsr m’avoir appris a “ne
rien lacher”. Plus que tout, je les remercie vivement pouteda confiance qu’ils m’ont
accordée.

Je souhaiterais aussi remercier les membres du jury, pouracepté d’examiner ce tra-
vail : merci a Christine Chevelereau et a Michael Beetz peurd rapports sur le manuscrit
final, et merci a André Crosnier et a Pierre-Brice Wieber peurs retours a mi-thése et en
fin de thése.

Je pense que cette thése n'aurait pas été une aussi bonniers@éans un laboratoire
autre que le JRL, et je réalise la chance que j'ai eue de potrawailler dans une ambiance
aussi motivante et agréable. Pour cela, il me faut remeégatement Kazuhito Yokoi,
Eiichi Yoshida, ainsi que Tokiko Uga, pour son aide plus guéeiguse dans les démarches
du quotidien. Merci a tous les membres du JRL, qui étaierardwudes collegues que des
amis, et dont I'apport aussi bien sur un plan professionoel gersonnel m’a permis de
traverser ces trois années de thése.

Merci a Paul, Amélie et Sovan pour avoir été a I'origine daecéiése, en me poussant
a faire mon stage de fin d’études au Japon. Leur soutien, teurte et leur amitié depuis
I'école jusqu’a ma soutenance m'ont été tres précieux, peuyas dire indispensable, pen-
dant ces trois années et demie.

Merci a Olivier Stasse pour tous ses conseils, qui m’ont ede grandement pro-
gresser pendant ces 3 ans, d’'un point de vue technique coram@aint de vue humain.
Merci a Sylvain Miossec et a Pierre-Brice Wieber pour leypats et leurs explications
sur I'optimisation et I'étude de la continuité, ainsi quaupteur pédagogie et leur commun
soucis du détail.

Merci a Claire pour ses nombreux conseils et anecdotes 8oda thése et I'apres-thése
qui légitimaient toute pause café, ainsi que pour son aidéasuision. Merci a Sébastien
pour son éternelle bonne humeur et pour le réseau. Mercii@idt Jean-Rémy, mes pre-
miers voisins, qui m'ont fait profiter de leur expérience dpan avant de partir (trop vite)
vers d’autres horizons. Merci a Toréa, compagnon de proour, gvoir partageé les mémes
périodes de stress que moi, mais surtout pour nos nombneigesnces communes. Merci a
Anthony, Wael, Mehdi, Karim, Andrei, Nicolas P., AntoineeRe, Francois B. et Benjamin.
Merci a Marie Avril pour le travail remarquable qu’elle a liéé durant son stage.

Du c6té de Toulouse, je souhaiterais remercier Jean-Paottad pour m’avoir accueilli
au LAAS pendant 6 mois, ainsi que toute I'équipe Gepetto. &tiqulier, je remercie le trio
Sovan, Layale, Thomas, mais aussi Séverin, qui a granddaadité mon séjour a Toulouse.
Merci au personnel administratif du LIRMM qui m’a toujoutt® é&’une aide précieuse dans
la gestion des formalités a distance.

Merci a tous ceux qui ont relu mon manuscrit et m’ont aidée ané#orer : Claire, Paul,
Pierre-Brice, Sébastien Lengagne, Sébastien Druon enShlexci a Nicolas pour les nom-
breuses répétitions de la présentation de thése.

Il me faut aussi remercier ceux qui ont rendu mon expatngpiois facile, voire m’en
ont fait profiter. Merci a tous ceux qui m’ont fait découverJapon : mes collegues du JRL
bien sar, mais aussi Diane, Audrey, Francois M., Armand#sOhiaru et Arisumi-san. Merci
aussi a mes amis restés en France qui, malgré la distanceujoiirs gardé le contact et
m’ont accueilli les bras ouverts lors de mes brefs retourgegts. Un énorme merci a ceux
qui ont franchi cette distance pour venir me voir.

Enfin, je souhaite remercier ma famille qui a toujours ét&semée et aimante pendant
toutes les années qui ont précédé ma these, et qui encoreisma’d soutenu, encourage
et attendu pendant ces trois ans. Je ne serais pas allé imeanhs toute I'affection que j'ai
recue, et je dédie ce mémoire a mes fréres, mes parents etanes-gneres.

Contents

1 Problem statement

1.1 Three-stepmethod,
1.1.1 Taskplanning
1.1.2 Scheduling
1.1.3 Executionandreparation

1.2 Adaptationtorobotics.
1.2.1 Generic definitionof arobotictask
122 Planning e
1.23 Scheduling
1.2.4 Executionandreparation

1.3 Binding Planning and Execution
1.3.1 Gap between symbolic and numericaldata
1.3.2 Task-functionapproach
1.3.3 Control-based approach
1.3.4 Influence of the task definition on the sequence cortiposi. . . .

1.4 Reinsertionofthescheduling
1.4.1 Unsuitability of the classic scheduling approaches
1.4.2 Consideredapproach

1.5 Conclusion

2 Continuity of the Stack of Tasks

2.1 Introduction
2.1.1 Definition of the stack oftasks
2.1.2 Event-based discontinuities

2.2 Smooth control while swapping two tasks e
2.2.1 Study of the continuity of the swap in the classm sufcﬂasks
2.2.2 The hierarchy of tasks as a limit of the weighing precasweighting
2.2.3 Linearinterpolation.o
2.2.4 Modeling the insertion/removal at the end of the steck swap . .
2.2.5 Modification of the stack-of-tasks scheme

37
37

38
34
44

46

Contents

2.2.6 From adiscontinuitytoanother a7
2.3 Insertion/Removal at any level ofthestack 49
2.3.1 Weighted pseudo-inverse approach 49
2.3.2 Insertion/removal mechanism 49
2.3.3 lllustrativeexampleo 05
2.3.4 Flawsofthemethod 51
2.4 Solving the stack of tasks using a single minimizatigoathm 52
2.4.1 Cascade ef-weightings 53
2.4.2 “Single task" formulatioddg — & 54
25 Conclusion 55
Task overlapping using optimization 57
3.1 Introduction 57
3.1.1 lllustrativeexample L oo 75
3.1.2 Fromplanningtoexecution 59
3.1.3 Tasksequencing 59
3.2 Sequenceoftasks 60
3.2.1 Definition of a task in atemporalnetwork 60
3.2.2 Timedependencies 61
3.3 Optimization of a given sequence oftasks 62
3.3.1 General problem formulation. 63
3.3.2 Parameters of the optimization 63
3.3.3 Definition of the constraints of the optimizationdesh 66
3.4 Handling Semi-Infinite Constraints 67
3.41 Definition 67
3.4.2 Specificmethods, 68
3.4.3 Defining a constraint handler for Semi-Infinite Coaisis 69
3.4.4 Comparison of the constrainthandlers 73
3.5 Optimizationvia simulation 75
351 Solverused 75
3.5.2 Dialogsolver-simulator 6 7
3.5.3 Simulation 76
3.5.4 Enhancements of the optimizationprocess 77
3.6 DIisSCuUSSION e 79
3.6.1 A posteriorievaluation of the constraints 79
3.6.2 Discontinuity due to discreteevents 80
3.7 Conclusion 80
Simulations and Experimentations 81
4.1 Implementation of the inverse kinematic 81
4.1.1 Presentation of the framework 81
4.1.2 Implementation of the smoothcontrol 83
4.2 AMELIF, a simulator for haptic and dynamicrendering 87

Contents

4.3

4.4

421 Presentation.
4.2.2 Basiclibraries.
4.2.3 Executionandsimulation.,

4.2.4 Demonstrativescenario Lo

Optimizationof atasksequence

4.3.1 Smoothing and optimization
4.3.2 Simulationofcangrasping
Conclusion

5 Adaptive control

5.1

5.2

5.3

5.4

Al
A.2

Adaptive control and task formalism e e
5.1.1 Enrichments and diversification of know how e
5.1.2 Human’s expectation and preference
Preliminary experiment
521 Script
522 Results
Experiments with the HRP-2robot
5.3.1 Defaulttasksequence
5.3.2 Adaptationofthetasks
5.3.3 Simulation
Conclusion

Demonstration of the continuity of the weighted pseudo inerse method

Hypotheses
Proof e

B Dynamic motions using equality and inequality constrains

B.1

B.2

Dynamic inverse using QP-based stack oftasks
B.1.1 Taskfunctionapproach
B.1.2 Inversedynamics
B.1.3 Inequalitiesintheloop
Experiments
B.2.1 Task-setfordynamicinverse
B.22 Results

C Résumé

C1l
C.2
C.3
CA4
C.5

Définitiondu probleme oo
Continuité de lapiledestaches
Superposition des taches par optimisation
Simulations et expérimentations,
Contréle adaptatif

Bibliography

8 Contents

Contributions 153

Introduction

The context of this thesis is humanoid robotics. This typglatform brings new robotic
research areas (bridging to cognitive systems, neurasgjemalking, etc.) but also leads
to reconsider classical robotic fundamentals (such aspign control or reasoning). In-
deed, together with the new possibilities offered, addai@onstraints and problems appear
when tackling anthropomorphism, balance, dynamics, uaderation or physical human-
huma-noid interaction. In addition to these fundaments¢aeches, recent efforts are also
dedicated to identify potential applications.

One of the particularities of humanoid robots is redundaitye capabilities offered by
redundancy can be illustrated by a small example, companwogobots, a single arm and
a bi-manual (e.g. humanoid) moving robot platform, waitgrin a café. To conclude their
meal, two customers order coffees to the robots. Their prssonsists roughly in preparing
the coffees and bringing them to the place where the cuswarerwaiting to be served.
Once the robot has poured the coffees in the cups, it puts&atiem in their respective
saucer, and put each saucer (with the filled cup on it) on thie ptakes carefully the plate
and goes back to the customers.

The realization of this scenario for the single arm robottiaightforward: it has to
prepare one coffee after the other. Optimizing this segeiéincthe sense of the duration of
the mission) consists simply in realizing each task as fapoasible.

The execution of the same sequence by a bi-manual (humarakd) would not be
considered as optimal, since the motion capabilities of &nms robot are not exploited
properly. The first straightforward consideration corssiatusing both arms to prepare the
two coffees. The second one would consist in schedulingaittestin a way to perform these
tasks as best as possible in parallel. The optimized sequdenthe humanoid robot would
be to take one cup in each arm, put them under the coffee ngdillrthem with coffee,
place the two cups on their respective saucers, place theauaers on the tray and take the
platter to the customers.

Finally, the only optimization left consists in realizinget mission as fast as possible,
without spilling the coffees or breaking the cups (e.g. bypatting them strongly on the
saucers). Also, since the customers are human beingsicadditonstraints on motion style
and speed, safety and cognitive behaviors should be coadide

10 Contents

This rather quite simple example illustrates classicgdster achieving a robotic mis-
sion:

1. the planning, that creates a task plan defining the deperegebetween tasks,
2. the scheduling, that defines a time schedule (startingaduhg time) for each task,
3. the execution, that realizes the task plan.

This work focuses on the items (2) and (3), and tries to sdheeftllowing general
problem: “Given a (humanoid) robot and a mission prelimigalecomposed into a task se-
guence, how to optimize the motion that results from taskezeiments and take advantage
of the robot capabilities?”

This thesis proposes tools to solve this problem and is argdras follows:

First, Chapter 1 states the problem with a more technicaliterlogy and relates existing
work in task planning and scheduling in robotics. It presehé task-function formalism (a
tool that will be used all along this thesis) and details hbgan bridge the planning directly
to low level control. More importantly, the frame, the hypesis and the application contexts
of this work are defined.

The Chapter 2 focuses on the stack-of-tasks mechanismetiadties to realize a set
of tasks organized into a hierarchy. In order to realize aisege of tasks, it is necessary
to consider operations such as the insertion and the renabvabkks in the stack. These
elementary operations appear to introduce discontirsuitiehe control output. Ensuring
the smoothness of the control output during this operatisras problem that was merely
addressed in previous works that make use of the stack of.t&skveral methods to correct
the discontinuities are presented and discussed, andtzgosakiproposed.

Then, we propose an optimization-based formalism to reatigk scheduling by allow-
ing task overlapping in Chapter 3. This method aims at findingoptimal execution of
the sequence of tasks using the stack of tasks and provid#steos to the tasks scheduler
(the upper level). This solution not only consists in findihg right timings for inserting
or removing tasks, but also suggests a behavior regulatiogaich task, while ensuring that
the motion verifies the constraints imposed by the sequeéheepbot or the environment.
Advantages and flaws of this method are discussed.

These two chapters are the main novel contributions. Theyten enhanced by two
main experiments involving a HRP-2 humanoid robot.

The first one is described in Chapter 4, together with thestaad frameworks used. It
corresponds to an experimental validation of the methodpgsed to realize a smooth and
optimized motion.

The second one focuses on the flexibility offered by the tzesded approach and pro-
poses to use it to tune an adaptive behavior for the task.intdesed necessary to deal with
uncertainties of the environment and correct the sequemaegiits realization, but it is also

Contents 11

important to personalize robot behavior so as to conformdruexpectations. Therefore, in
Chapter 5, the task tuning is used as an approach to modifydlga mission is realized in
order to satisfy the constraints of the environment or tlefguences of a human operator.
An illustrative example is proposed and detailed.

Finally, a summary of our contribution and a list of futurenk® are proposed in the
concluding chapter.

12

Contents

Chapter 1

Problem statement

Having a robot realize the tasks it has been designed for eactieved by different meth-
ods, depending on the nature of the context, the applicatoiithe complexity of the tasks.
For ad-hoc and complex tasks that can hardly be further deosed, the method usually
adopted is to directly compute the trajectory that will kecked by the robot. For extreme
motions, such trajectories can be computed using an ogtrair-based method, as for the
kicking motions and the throwing motions presented in [68, 6r by copying and adapting
an observed trajectory, as for the “aizu-bandaisan odaritd that has been reproduced by
the HRP-2 humanoid robot based on the performance of a huraad ghaster [70].

For other contexts (industry, more or less structured enwrents, etc.), the approach
generally preferred to realize a complex mission is to dguusa it into three steps: plan-
ning, scheduling and execution of a task sequence.

The goal of this thesis is to use this three-step method t@eea robot mission, and to
use the task as the thread guide between the steps. Thigchaggents the foundations of
the choices made to build our approach.

1.1 Three-step method

The three-step method is not an approach specific to robdtidhis section, we introduce
the general definition of the task planning, the task schiegand the reactive mission exe-
cution, and the classical methods used to realize them.

1.1.1 Task planning

In its general meaning, tagdanning[32] consists in building the appropriate sequence of
tasks to realize a given mission. In other words, it consisthoosing in a given pool of

14 Problem statement

doable tasks (called know-how) the adequate set of taskeralleding them so as to achieve
the given mission. In such planning, the task is defined asrdslthat can be translated
into an action (or a set of actions) to be concretely realiZdt tasks can be sorted in two
categories:

e ThePrimitivetasks (or Operator), that can be executed directly.

e TheNon-primitivetasks (or Method), more complex, that have to be decomposed i
a set of subtasks so as to be executed.

A primitive task is usually defined by a set of preconditionsl @an effect, e.g. using
STRIPS operators [30]. The non-primitive tasks are defined bet of preconditions and a
set of subtasks, that can be either organized accordingaiaidytordered sequence (i.e. all
the dependencies between tasks are defined), or only padidered (i.e. only some of the
dependencies between tasks are defined). The Fig. 1.1 shoywsgample of decomposi-
tion of a mission into a task sequence. The method “Prepéate"tes totally ordered: the
task order between its two subtasks is fixed. On the oppdkigemethod “Place cutlery”
is partially ordered: the order of realization of the thrasks is left free and will only be
decided in the task scheduling phase, or even during theugzady the agent (human or
robot).

Set the table
a >
‘ Pﬂ)are tab Place plate l’lace cEtle; { Place glass | ‘Place napkin

Clean table Put tablecloth Place knife Place fork Place spoon
Legend

Mission —> Task order

Primitive task L Decomposition into subtasks

~ 1 Non primitive task

Figure 1.1: Decomposition of a toy example mission into a task plan.

Different methods can be used to define a task plan. A largerityapf planners work
directly with primitive tasks. They find the appropriate seqce of primitive tasks to realize
a mission, given an initial state and a final state expressedesals, and a database of
primitive tasks.

1.1 Three-step method 15

More powerful, the Hierarchical Task Networks (HTN) —orittemplified version, Sim-
ple Task Networks (STN)— work with non-primitive tasks: yhealize a descending ap-
proach from high level tasks down to low level ones (pringtbasks). Besides, they en-
able considering more constraints on the tasks comparedsic planners. Namely, post-
conditions and conditions on the realization of tasks dtertanto account.

The pros and cons of these methods are compared in [85]. PB&sioers (such as
STRIPS) do not work with time of resources. As a result, soas&d, that cannot be ex-
pressed using only formal logic (typically the maintain aftate or the respect of deadlines)
cannot be formulated with this formalism. As for the HTN pians, the main issue is that
they require an exhaustive definition of the know-how. A momitive task can be decom-
posed into different sets of primitive tasks, and the deieaition of all these combinations
can be daunting. If this phase has been not be realized dgr(eqy. if a task has been
omitted by the designer), the HTN planner will not be abledalize the task plan for the
mission, whereas a common planner would have succeed.

When the mission is detailed enough, i.e. when the goals elielefined and the context
(environment, role of external agents...) is known and dm¢present any uncertainties, it
is possible to produce the sequence of tasks for the entssioni. Otherwise, only part of
the task plan can be built off-line and the remaining parttbdse built on-line according to
the evolution of the mission.

1.1.2 Scheduling

The planning determines a doable task sequence to realizeseom but is only concerned
with the logical links between the tasks. To realize the segas, it is necessary to disam-
biguate it (i.e. to determine an order of realization fortjadly order sub-sequences) and
define the position of each task on a given time line.

1.1.2.1 Definition

In its general meaning, taskheduling2, 3] is the step which comes next to task planning. It
consists in determining the adequate timing for each tasjol) (start time, completion pe-
riod and sometimes safety period) to realize the task seguehile fulfilling the constraints
of availability of the resources and the temporal constsailt often aims at minimizing the
total duration of the mission, but other objectives can &ls@onsidered, such as the mini-
mization of the cost or the respect of the deadlines (estichhy the maximal delay or the
sum of the delays). Multi-objectives optimization probkoan also be envisaged.

Usually, a scheduling problem is approached in two stepsfitst step is a sequencing
phase, and the second step is a scheduling phase (striethkisg) [3]. The purpose of
the sequencing phase is to remove the eventual ambigugieaining after the planning
(typically when the sequence is partially ordered) and nza&leoice on the task ordering.

One could object that the task ordering could be defined usimyg task scheduling.
Yet, the difference between the two steps is that where&sstawedulingmpliesan order

16 Problem statement

between the tasks (“Considering the given schedule, thisstarts before the other one"),
tasks sequencingiposesan order (“This taskas tostart before the other one").

Unlike planning, the scheduling phase takes into accownatailability of the required
resources (such as machines, computer memory, human pewematerials, money...).
Also, in the general meaning, the resources are charaatieby a set of given properties:
for example, they can be either renewable (they are avaikadphin at the end of the task) or
non-renewable (they are consumed by the task); disjun(ivg one task can access it at a
time) or conjunctive (only a limited number of tasks can asaésimultaneously); preemp-
tive (they can be interrupted and reintroduced later) or not

A task is defined by a set of temporal data, as illustrated &teTh 1 and Fig. 1.2. The
task schedule has to fulfill two types of temporal constmilesides the causal dependen-
cies between tasks imposed by the planner (often corresmptalprecedence constraints),
temporal constraints with respect to a specific date in thedude (such as deadline) can be
added.

r; release date (time at which the task is available for proog}si

d; due date (time at which the task has to be realized)

st; startingtime

ft; finishtime

p; processing time (the period of realization of the task)

C; Completion time (C; = st; + p;, if there is no interruption)

Interval of admissibleank

(the set of non forbidden positions for a task in an admissikljuence)

Table 1.1: Temporal data defining a task i.

T .
1 p1 1

Figure 1.2: Basic definition of a task in scheduling.

A scheduling problem is usually formulated using the notati| 5|, introduced in [34],
wherea defines the machine environment (number of machines, phalhot), 5 defines
the properties of the tasks (time of realization, precedepceemption, release and due
dates), and defines the objective of the optimization (minimizationloé tompletion time,
the lateness, the tardiness. . .). For exampfgedC corresponds to the minimization of the
completion time on a single machine subject to precedentstints.

1.1 Three-step method 17

1.1.2.2 Simplification

The complexity of a scheduling problem grows drasticallyhvthe number of tasks consi-
dered for a given plan. A method reducing the complexity diesitling problems consists
in sorting the tasks by specific groups [59]. These groupsedse the number of possible
combinations when organizing the tasks with respect to etdadrs. As depicted on Fig. 1.3,
three types of group of tasks are considered:

e Autonomous Tasks Sets (ATS), that are independent in terseaiiencing, but they
often contain too many tasks to allow a quick sequencing.

e Equal Rank Sets (EQS), that enable a quick sequencing oaties (they are inter-
changeable), but are coupled.

e Overlapped Rank-Intervals Sets (ORIS). Two tasks beloiggsame set if there is a
task in the set (possibly one of them) whose rank includesahie of the two tasks.

Task

L.
>

Rank

Figure 1.3: Simplification of the sequence by division into group of tasks.

1.1.3 Execution and reparation

The execution phase corresponds to the realization of #kesiequence using the computed
parameters. Because of the unexpected problems or evahtmdy occur during the exe-
cution (access to a resource delayed, time of task regnlatmer estimated, difference
between the expected and real environments, failure of @onac.), it is most likely that
the plan will have to be repaired, i.e. adapted in respons#uation changes and execution
results.

The Continuous Planning and Execution Framework (CPER) jé&oses a complex
structure to handle the generation, execution and repaassf plan involving both human

18 Problem statement

and robotic agents. The system is based on a planner mamageontrols constantly the
execution of the mission and repairs it when necessary.

Conservative repairs are realized to correct these faiJure repairs that minimize the
number of changes of the original task plan, so as to ensupatanaity in the plan. In this
purpose, the HTN structure of the task planner is utilizearder to repair at the lowest level
possible. The research of the failed task is realized fromléwvel up to top level: when the
node is found, the planner tries to repair it, and if this g&yruitless, the reparation process
is run on the parent node.

The particularity of this planner is that it distinguishesedt and indirect execution. A
direct execution is an executiocontrolled by the system. This is typically the case with
machines, for which all the information are known (statecgss of the mission...). On the
opposite, anndirect execution is an execution onbbserveddy the system. This qualifies
for example actions realized by human operators, for whaehinformations may not be
directly accessible, imprecise or delayed.

An interesting point to note at this stage is the central oblide task in the three steps:
it can be seen as the guiding thread bridging the task plas tptimal execution.

1.2 Adaptation to robotics

This section presents how some of the techniques preseated bave been adapted and
specified in order to be applied to robotics. Especially,rfle of the task in each of the
steps is highlighted.

1.2.1 Generic definition of a robotic task

In section 1.1.1, we stated thapamitive taskcan be defined as an order directly executable.
We refine this definition by sorting them into two categories:

e Action tasks, that operate on the sensors (i.e. uses thersaesources) but leave the
posture of the robot unchanged (i.e. they do not use the 'sobdegrees-of-freedom
(dof)). Such actions can be: “Take a picture", “Turn on/di€ tmicro”, “Introduce
yourself", “Activate the camera”. ..

e Motion tasks, that operate on the motors and modify the sfédtee robot. This defini-
tion includes position tasks (“Turn your left foot in 45 degs”, “Go to the positiop”,
“Place your gripper at the positigsi') but also actions depending on passive sensors
(such as “Close the gripper until the force sensed exceddsnton™).

The former category concerns any command that definesqaedisplacement of whole
or part of the robot. Such commands also use the sensoryroesoand sensors activities
may even require motion (active perception); which meaasttie two categories of tasks
are not necessarily exclusive. A typical task uses sensuahaatuation resources; it defines

1.2 Adaptation to robotics 19

not only the final state to reach/achieve, but also how to (o ierm of trajectory, speed...).

To put it in a generic way, theggimitive motion taskslefine a control law that can be
written as follows:

Ag=x% (1.1)

whereq is the joint velocity vectork is the desired motion in the corresponding operational
space and\ is the inverse mapping from the joint space to operatiornatsp

Note that the tracking of a trajectory can be directly wrttender this form, in which
case the desired motion is the trajectatyt(= ¢*(¢)) and the transformation matrix is the
identity:

q=q(t) (1.2)

Two other approaches fitting this definition, the task fumcand the control-based approach,
will be introduced later.

From now on, bytask we always mean primitive task (since this will be extenlsiused
in this thesis, which is in fact the task function control gmment), otherwise we make clear
what the task meaning is.

1.2.2 Planning

Some robotic planners are generic and follow the structatesduced earlier (classic plan-
ners and HTN). Based on a database of actions doable by tbe tbby are able to build a
task sequence for a given mission.

For example, Ixtex [31] is a planner based on a Partial Ordeis@l Link system (POCL),
i.e. it can produce partially ordered plans and uses theiptanof least commitment during
the search (it produces plans that are also partially itistaad in order to postpone as late
as possible a choice that is not mandatory). On the other, heandis is a reactive symbolic
planner [48, 73] based on a goal-indexed HTN. At each cychkeus recognizes the envi-
ronment, analyses the situations and defines the actiomaliae. In this purpose, it uses
two databases: a conceptual knowledge database that ieesghe situations, and a skill
knowledge database, that details the operations doableehypbot.

The advantage of these planners is that the resulting tgsiesee still contains the causal
dependency conditions between the tasks, usually definéational logic, which makes eas-
ier eventual plan reparations [46].

Though, when it comes to humanoid robots, the preferendesis given to more specific
planners [50]. Some of them are based on Rapidly-exploriagd@m Trees (RRT) [51],
which are trees whose nodes are configurations (the rootheidg the initial configuration)
and whose edges are the paths doable by the robot linking tteedigurations. At each
iteration, a random configuration is generated and the slosele in the tree is found. Then,

20 Problem statement

a new configuration placed between these two configuratiothseachable from the node is
added to the tree.

Considering that a humanoid robot haswalk from a place to another, without col-
liding with the environment, the generation of the motiomften divided in several steps.
First, a trajectory is computed for a bounding volume caomigj the robot. Next, a feasible
kinematic trajectory of the robot is deduced from it, and ki the walk pattern and the
motion of the upper body. Finally this trajectory is validdtand refined by a dynamical
simulation [92].

Whereas the previous planner considers the objects priestt@ surrounding environ-
ment as obstacles that must be avoided, the contact plaresamied in [24] enables defining
motions where the robot takes advantage of the surroundiwvigogement by leaning on it.
The resulting plan is a sequence of statically stable pestilve robot has to reach: the tasks
can be considered as whole-body configurations organizpceséally.

1.2.3 Scheduling
1.2.3.1 Scheduling of actions

Scheduling problems are mainly applied for scenarios wkiegerobot has to act autono-
mously, namely if it can hardly be remotely controlled by artaun operator. This is typically
the case with satellites [60], that have to realize someanset{correction of trajectory) and
some actions (taking pictures, sending or receiving datan fEarth) during specific time
windows, while managing wisely their resources such asdubhttery.

The handling of coupled tasks [82] is another class of regadheduling problem. A
coupled task is composed of two subtasksndb; separated by an incompressible delay
L; (cf. Fig. 1.4). Realizing tasks during this inactivity pmtienhances the schedule by
removing dead times.

L;

a,—b,>

Figure 1.4: Schematic representation of a coupled task.

This problem has been applied on the control of torpedo [84]acquisition task can be
defined as a coupled task: it sends an echo in the wadem(ait (duringZ;) and receives it
(b;). Additionally, the torpedo has to perform data-procegsasks that analyze the received
echo. The goal of the scheduling is to use the waiting timekoesre data-processing tasks,
or to emit other echoes (on other frequencies). Coupledtaldo appear in problems of
production and stock handling in workstations. In this eafitthe robots act as transporters
that convey materials between the stations and the maclifigdn this context, a coupled
task can be defined as follows; represents the time necessary to bring the material to the

1.2 Adaptation to robotics 21

machine,L; denotes the delay of treatment of the material by the machim#b; the time
necessary to bring the object to another station. The gadleo$cheduling is to reduce the
production time.

1.2.3.2 Scheduling of motion

One could notice that in the examples of scheduling problessgnted below, the schedu-
ling is always realized between action tasks, or betwednraeind motion tasks but never
between motion tasks. This should be interrelated withakethat so far (in this document)
motion tasks correspond either to trajectories to track @oistures to reach, defining hence
a whole-body motion. Besides, the order of motion tasks imlhs fixed in the sequence:
task scheduling is thus limited to reducing the delay betwhe tasks.

This approach is an important limitation to the optimizataf motions, particularly in
the case of redundant robots (such as humanoids) that darersanultaneously different
tasks. At this point, one may easily think on robotic sensmid actuators (degrees of free-
dom) as being the intrinsic resources for a robot to achieg&en mission, and consider
that the tasks should not be applied on the whole body butamlyart of it.

1.2.4 Execution and reparation

The reparation processes usually used in robotics are npexafis and simpler than the
CPFE framework mentioned earlier. Two types of correctamesusually considered: adap-
tations, i.e. on-the-fly modifications of the task sequeand,reparation of the task sequence
(which corresponds to a reconstruction of the task plan).

For example, in order to be reactive and flexible to the vianat of the environment,
the controller of the Rhino robot [4] constantly verifies idigrthe mission than the given
task plan is adequate, and correct it if necessary. Usingraryi of routine plans, it first
computes an appropriate schedule by making assumptiorgea@mtironment, then refines
and eventually corrects this schedule during the executyoverifying these assumptions.
This verification is realized continuously during the extem, and the adequacy (no unne-
cessary tasks in the sequence) and the coherency (no dagfliasks) of the task schedule
are ensured.

More recently, the Ixtex-Exec system [53, 54, 31] proposegethod to realize reactive
planning and execution, and eventually plan repair. Thstesy is layered in three parts:
the planning (Ixtex), the temporal executive (Texec) aredekecution module (Exec). The
temporal executive handles the scheduling, by decidingsthing time of each task and
eventually their stopping time (if the tasks are pre-engtelse there is no control on them)
according to the state of the system (position of the robdteaailable resources). The tem-
poral executive is based on two constraint satisfactiomlpros: the first one is a Simple
Temporal Network (STN) [19], in charge of verifying the detening the scheduling of the
tasks (starting time duration), and the second one bindésljcrand numeric variable.

22 Problem statement

In the frame of humanoid robotics, lots of work have beenizedlto generate reactive
motions for the robots. Especially, the generation and theking of a walk pattern is
one of the main concern. We already mentioned that planmajgctories for humanoid
robots is handled by specific planners. The execution of sugiotion may also need to
be corrected and adapted during the execution, either taneehthe stability of the default
walking motion [90], or to take into account the variatiomsised by the walk to correct the
walk pattern in order to better realize the mission, suclhadgracking of a target [23].

Other works focus on the adaptation of the robot’s motionthéochanges in the envi-
ronment. In [63], the humanoid robot realizes the grasping loall while walking. Using
visual feedback, the robot is able to track the slow dispteargs of the ball and to correct
the position of its gripper accordingly. Similarly, the ligation of collaborative missions
with an external agent, e.g. the manipulation of an objeetdéh-Object-Robot interaction),
requires to correct the adapt the behavior of the robot dawgto the directions taken by the
external agent. In [26], a force-based interaction syssemséd to determine the role and the
actions of the robot (should it act as a slave, a master ordlitcadopt a mixed behavior?).

1.3 Binding Planning and Execution

Previous sections showed how a mission can be decompoged sgquence of tasks, en-
hanced via task scheduling and finally executed by a robdt,. séene of these techniques
—even though functional— can raise an issue, because #resfarm the initial task sequence
in order to define the motion to be executed by the robot. Torwersion weakens the link
between the planning and the execution, making difficultosty impossible the consulta-
tion of the initial task plan during the execution.

In this section, we introduce two methods used to bridgegafs

1.3.1 Gap between symbolic and numerical data

Defining the motion of the robot by an explicit or implicit geatory is realized by convert-
ing the symbolic data used by the planner into numerical.dakas transformation, if not
memorized, loses knowledge in terms of semantic. Whilepbissible to guess what would
be the trajectory associated to a set of tasks, it is most dffécult to determine what tasks
led to a given trajectory (namely when the same trajectonyreault from many dissimilar
tasks). Using computed trajectories without any otherrimftion lacks of robustness to
environment uncertainties and modifications: the origtaak plan is lost, which prevents
any consultation during the execution. In fact, this gapeapp during the transition between
the planning and scheduling phases [85]: whereas the plgmpiiase work with symbolic
data, the scheduling phase works with numerical data, ssgeametrical data, temporal
data (time constraints, task duration) and resources.

This issue is consequent, insomuch that the workshop HY:CA&licated to this sub-
ject, has been recently created. To solve the issue raisételhyap between symbolic and

international Workshop on Hybrid Control of Autonomous ®yss

1.3 Binding Planning and Execution 23

numerical data, a method consists in using the same elemdafihe both the planning and
the execution, making the link between them straightfodvawo approaches have been put
forward in this context: the task-function approach anddbmetrol-law approach, detailed
hereafter.

1.3.2 Task-function approach

The task-function approach presented in [38] offers anaglegay to bind the planning and
the execution of a mission. On the one hand, it defines bothititelevel specification of
the action expressed in formal logic causes (planning)herother hand, it details the low
level formulation allowing to compute the control (exeoufj. Like the operational space
approach [44], it has been introduced to simplify the cdmroblem in robotics.

A task function, notea, is defined by three elements: a veatgra Jacobiad, and a
reference evolution of the task functiéh. Typically, the vectoe corresponds to the error
between a signa and its desired valug': e = s — s*. The Jacobiad binds the error and
the vector of joint parameterg according to the equatiah = ae . The reference behavior
¢* defines the way the error is handled. The control equatlcat rispects the formalism
givenin (1.1), writes as follows:

Jg=¢" (1.3)

Most of the time, such commands control only part of the rpgiting the possibility
to realize other tasks simultaneously when the robot ptessmough redundancy. In this
purpose, tasks are usually organized into a hierarchy,aaadbkks of lower priority do not
perturb the realization of higher priority tasks [83]. Tasi high priority usually aim at
preserving the security of the robot (balance, collisionidance), while motion tasks have
lower priority. Different methods to build such a hierardigve been proposed in the liter-
acy and are detailed in next chapter. The main differenosd®t them is the trade-off they
accept between the strict respect of the hierarchy and stimee properties of the control
law, such as the continuity. A strict hierarchy is realizgdsbacking the tasks one on top of
each other, while a slacked hierarchy is realized by mayuadrging their contributions.

Recent work [73] gathers these two roles for the tasks, atigthe resulting mechanism
to modify and construct reactively the task sequence plaimglthe execution.

1.3.3 Control-based approach

Another approach consists in working directly with contesws. This method is based on
the Motion Description Language (MDL) [11] approach.

In [5, 65], an alternate way to realize the planning and ettecwf a mission is introdu-
ced. This method supposes that the set of possible contvelisaknown and that the tran-
sitions between them are smooth and known. This set can tbenfeemulated as a hybrid

24 Problem statement

automaton where the states are the possible control lawgharedges are the smooth tran-
sition functions between them (called interruption). Ntbtat since it is directly expressed
with control laws, this approach directly fits in the fornsati given in (1.1).

The idea characterizing this approach is that a robot doesew®d to know everything
about the surrounding environment, but only the part it caa (i.e. where it can go or
act), in the same way as a train does not need to considerimmaribads. By adapting the
analysis of the environment surrounding the robot to itssiedies, it is possible to create a
topological map detailing the places that the robot canlreaing the motion defined in the
set of possible control laws. The advantage of this hybpolagical map of the environment
is that it associates both geometric data and the contral. law

Defining a motion comes down to finding the appropriate patherautomaton of reach-
able states, using the environment-based events (e.gppneach of an obstacle) as inter-
ruptions enabling to pass from a control law to another.

Yet, the realization of task overlapping should not be eealiat this level: defining the
interruptions conditioning task overlapping is difficuitspecially in situations where the
interactions between the environment and the robot arédd{such as for a dance motion).

1.3.4 Influence of the task definition on the sequence comptsn

Using these two approaches, we illustrate thatgifaaularity of the planning differs accor-

ding to the chosen task definition. The mission is to pick gedailplaced on a table, and is
decomposed into two motions: placing the gripper arounatject and closing the gripper.
In the considered environment, depicted on Fig. 1.6a, thetroan not directly reach the
object since it is placed behind a large box: the only sotuioto pass over the obstacle
to reach the object. We consider that the best grip positmsen (manually or using an
appropriate method [8]) is the same for the two approaches.

Control-based approach To define the appropriate curve trajectory that passes aheve
first object, we use the same task plan as the one present@8l] iwfith simpler notations).
The graph of possible motions is composed of three contnd (&ig. 1.5):

e (1; attracts the gripper directly toward its desired posture,
e (- passes above the obstacle,

e (3 realizes the grasping.

Three interruptions are considered:

e ¢, triggered when an obstacle is in the way,

e &, triggered when the obstacle has been bypassed,

1.3 Binding Planning and Execution 25

Figure 1.5: A hybrid automaton defining the motion of the arm of the robot.

e &3, triggered when the goal is reached.

Hence, the sequence defining the missiofs, &1), (2, &), (41, &3), 4s. The whole
task sequence contains four primitive tasks (Fig. 1.6b)Xhaeadesulting trajectory is depicted
on Fig. 1.6d.

Task-function approach The task defining the motion of the gripper aims at reducing
the error between its current position and its final positidime classic definition of the
control, ¢ = J*é*, ensures a maximal regulation of the error, and is thus nitéalda.
Indeed, this formalism makes the operational point tragedsraight trajectory, causing in
the present case a collision with the obstacle. A method tdifynthe trajectory consists

in adding intermediary tasks in the sequence that act asarypattractors or way-points.
This method requires a preliminary correction of the tagfusace, which is often specific
to the environment or to the motion considered. For the pizknotion, adding one attractor
e; is enough. As a result, the task sequence contains thredipeinasks (Fig. 1.6¢), and
the final trajectory is depicted on Fig. 1.6e.

This example showed that the decomposition into primitagks realized by the planner
depends on the task definition chosen. We could have chosg¢nesinask of higher priority
that detects and locally avoids collisions. Yet such tas&saaitten in terms of inequalities
that are only very recently being resolved.

In our developed solution, we made the choice to rely on tek tanction approach,
which presents the advantage of keeping the task componénmtrgplicitly control only the
parts (dof) of the robot that are necessary to achieve a gasknor set of tasks. This other
motivation is also that we adopted this formalism to conteal humanoid robot HRP-2, and
it proved to be elegant to handle complex collection of taslch as grasping while walking,
human-robot haptic joint action while walking, etc.

Subsequently, the robotic tasks scheduling phase is naetino the simple reduction
of the delay between the tasks anymore; our aim is to devisgproach that enables task
overlapping.

26 Problem statement

1.4 Reinsertion of the scheduling

The example of the robot waiter given in introduction hightied the main issue raised when
realizing a sequence of tasks sequentially: the motionhestimal, or even jerky. Using
this same example, we illustrate what should be the evaluifahe task sequence during
the planning phase and scheduler phase. The tasks reajizbd fmbot are supposed not to
conflict and are defined as follows (the indexes L (for left) & (for right) indicate which
arm realizes the motion):

eir_r Take the cup.
eor,_r Putthe cup in the coffee machine.
esr_r Fill it with coffee.
eq._r Place the cup on its saucer.
es;,_r Putthe saucer on the tray.

€ Take the tray.

The partially ordered task plan corresponding to this roisss illustrated on Fig. 1.7.
If the task scheduling phase is skipped, a naive task schedulld consist in realizing the
tasks sequentially (Fig. 1.8). Else way, the schedulingselshould take advantage of the
fact that the task sequence is only partially ordered tonuipé it by realizing several tasks
simultaneously. The resulting task schedule is illustrate Fig. 1.9.

Hence, the purpose of the reintroduction of the schedulieygis to enhance the motion,
typically by realizing task overlapping.

1.4.1 Unsuitability of the classic scheduling approaches

Considering that a robot can realize a hierarchy of tasksstiheduling problem writes as
follows: the jobs correspond to the robotic (primitive kasf the sequence and the resources
are the degrees of freedom and the sensors of the robot. yj@aot scheduling cannot be
solved by classical approaches for several reasons:

e The hierarchy of tasks introduces a non-linear dependeetwyden the tasks and the
resources.

e The time of realization of the tasks is variable (and tungble

Graphical methods (such as Dijkstra’s algorithm) are noicetvable either. The hie-
rarchy between the tasks prevents using task functions @éessnaf the graphs. Instead, it
would be better to consider each possible hierarchy of taskedes rather than simply the
tasks, creating a graph whose size grows in a combinatoaglwith the number of tasks
considered. Moreover, it is impossible to plan the motioly aising the graph and without
considering the environment, since depending on the pogiti the robot and the actions to
realize, some conflicts may appear.

1.5 Conclusion 27

1.4.2 Considered approach

The purpose of this work is to smooth a given task sequenceuab as possible under the
constraints related to task and resource dependenciessibedl preferences, and variability
dependencies. The entry of the problem is a doable sequétaesks, where the dependen-
cies between tasks and eventually sensors are set (thensetgiphase has been realized,
together with the task planning). The sequence does noaiconeither coupled tasks nor
preemptive tasks, but both action and motion tasks are d@eresi. Along with the optimiza-
tion of the task schedule, an optimization of the motion &ired.

In the introduction, we mentioned that the last optimizaifon the velocity) is realized
after the scheduling. In practice, it is not possible to eehisuccessively the scheduling
phase and the optimization phase: these two processes euestlized together. In the case
where the scheduling phase is realized first, the final s¢beday present dead times: it is
sub-optimal. This issue is illustrated by Fig. 1.10. Fitsg task scheduling phase removes
the dead times between the tasks, using the given propefttee task, especially its time
of realization. Hence, each task belonging to the critieguence of tasks is necessarily
removed as soon as it is realized. Then, the optimizatiomeftasks finds the adequate
parameterization for each task so as to realize them faStece the time of realization of
each task is reduced, dead times are reintroduced in theopsty optimized sequence.

Similarly, it is not possible to start with the optimizatiphase and then to realize the
scheduling phase either. Due to the task overlapping, thel&neous realization of two
tasks may violate conditions (such as joint velocity limatsstability) that neither of them
violates if the tasks are not overlapped. Besides, we cenidt only the critical sequence
of tasks should be fully optimized, not all the tasks.

1.5 Conclusion

In this chapter, we briefly mentioned existing work in tas&rpling, scheduling as used in
general purpose applications and robotics. Thanks to gkef@action formalism introduced
in robotics, it is possible to adapt the knowledge in schedubf planed task sequence to
robotics. In this thesis, we do not deal with the task plagrand sequencing, which are
rather considered as an input to what we are solving. We &lsose to use the stack-of-
tasks formalism as our basic controller, since it enablexrganize a subset of task into a
hierarchy (defining thus a priority for each of them) and tonpate explicitly the control
law that defines an implicit robot trajectory.

What is needed now is to find the schedule parameters thahartasks timing and
behavior (gain tuning). We first formulated the problem asptimization, with a given
criteria and constraints that will be described later in dickted chapter. After running the
optimization problem we expected that non-smoothnessartakk insertion and removal
from the stack-of-stacks controller prohibits good cogegice performance of the optimi-
zation solver. However, it appears that this problem hagmbeen seriously considered

28 Problem statement

before, even if it is fundamental because task insertionranbval on-the-fly are the basis
for reactivity and task planning or sequencing adjustmeidetal with unexpected situation
and change in the on-line execution. Therefore, we decinlézbk more thoroughly toward
this issue that is presented in the following chapter.

1.5 Conclusion 29

Grasp the object Grasp the object

(b) o (©)

(d) (e)

Figure 1.6: (a) Initial configuration of the environment. (b-c) Task plan for (b) the control-based
approach and (c) the task function-based approach. (d) Schematic representation of the trajectory
obtained with the control-based approach. (e) Schematic representation of the trajectory obtained

with the task-function based approach.

30 Problem statement

Serve two coffees

NN
A T

Prepare two coff

Prepare coffee (righ '.

YAANN

>
l AN
€ G G Cu i Cir Gk Gk Gk Osr

Figure 1.7: Partially ordered task sequence.

Prepare coffee (left)

AN
v \

,
,
,
_ ,
[’
=

elL’FZL*E@LT64L*65:L)F1RFFZR"FSRHFL&R]’FSRha Time
>

Figure 1.8: Naive task scheduling.

Figure 1.9: Optimized task scheduling.

1.5 Conclusion 31

Initial task ‘
| | e > e
sequence el ™1 ez M 4
Schedulin
1
Optimization 61 |-e— 62 63 c 4 < :
Equivalent) e e e e
Schedule 1 2|73 4

Time

Figure 1.10: Partial optimization of the task sequence when realizing successively the scheduling and
the optimization of the task. The scheduling phase removes the dead times between the tasks, then
the optimization phase reduces the time of realization of some tasks. The final sequence, similarly to
the first one, is sub-optimal and presents dead times.

32

Problem statement

Chapter 2

Continuity of the Stack of Tasks

The previous chapter presented the general ideas of thsis thied the main components that
are needed to efficiently program a stack-of-tasks baseatiootontrol. This chapter deals
with the continuity properties of the stack of tasks. Whemtaos tasks of fixed number is
ordered in a given priority and stacked at once, the outcdntigecstack of tasks exhibits a
continuous evolution in the most general case. We consiget af operations that resemble
what is generally performed on a computer data-structaekstthe insertion, the removal
and the swap of tasks, that corresponds to a reordering pfitréty. The influence of these
operations on the continuity on the control is studied i thapter. Different ways to for-
mulate the stack of tasks and their continuity propertieswtealizing these operations are
presented and analyzed.

This chapter has been realized in collaboration with PiBriee Wieber, researcher at
the INRIA, for the sections 2.2 and 2.4.

2.1 Introduction

2.1.1 Definition of the stack of tasks

As mentioned in the previous chapter, a task is defined by tlleEments: a vecter, a Jaco-
bianJ, and a reference evolution of the task functédn Typically, the vectoe corresponds
to the error between a sigrahnd its desired valug: e = s — s*. We recall that:

é=1Jq (2.1)

The reference behavié defines the way the error is handled. For example, the regnlat
of the error can obey an exponential decrease by using

& = —)e, \ € R* (2.2)

34 Continuity of the Stack of Tasks

Finding the control value that gives the best regulationsihgle task corresponds to solving
the following minimization problem:
min ||J¢ — &*[|? (2.3)

gERF
This minimization problem can also be formulated as a legisae solution:
q=J"é¢ + Pz (2.4)

whereJ T is the least squared inversehfandP = I—J*J the projector into the null space
of J. While the termJ*é ensures the regulation of the task, the tdPmis an additional
control that allows to regulate other tasks without modifythis one. Ifz = 0, thenq cor-
responds to the least square solution.

This mechanism defines the stack of tasks. A hierarchy annggt of tasks is realized,
such that each task (except the first one) is performed inuthepace of higher priority ones.
The resolution algorithm, detailed in [42], consists invaad for each task a minimization
problem, that is

min [|J;¢; — &7? (2.5)
4GES;

whereS; correspond to the null space left by the taeks. . ., e;_1:

S, = RF
{ SZ = Si—l N nU”(Ji_l), 1<i<n (26)
Thus, the lower priority tasks do not affect the executiornigher priority ones. The
control law for a taske; is given in [83]

i = Gi—1 + (JiPi—1) " (6] — JiGi—1)
LT[0
2.7
whereP; =1—| : : 2.7)
Ji Ji
For a stack of tasks containingtasks, the sequence starts wiify= 0 and the control
iSq = qn; see [61] for more details.

This method is an idealistic implementation of the staclasks that ensures a continuous
evolution of the control in nominal situations. Additiorteéatments and computations are
needed in particular situations, e.g. kinematic singtiéri(due to infeasible posture) and
algorithmic singularities (due to task incompatibilityin practice, using solely a pseudo-
inverse is risky, and getting closer to singularities calesaessive control values. A simple
2D-robot, composed of a fixed waist, a chest and two arms, laadhias to realize two
incompatible position tasks for each of its arm (cf. Fig.)2i4 used to illustrate this issue.
The evolution of the control and the peaks reached when thet is near the singularities
are represented on Fig. 2.2.

2.1 Introduction 35

Figure 2.1: 2D planar robot simulation of two conflicting tasks.

A classic way to overcome singularities in this context isainer use a damped inverse,
defined byM' = (M + ¢I)*, which limits the numerical value of the inverse matrix [89)].
With a damped pseudo-inverse, the equation (2.7) writes:

& = Gio1 + (JiPi1)'(éf — Jidioq) (2:8)

This method preserves the continuous evolution of the obwinen crossing robot pos-
ture singularities, and achieves well in particulardtgorithmicsingularities [14], i.e. when
the tasks start conflicting.

2.1.2 Event-based discontinuities

Assuming that for each task, the reference behavioét is continuous and the Jacobidn
has constant rank, this formulation leads to a continuoakigen of the control. The stack
of tasks realizes thus a smooth control. Our aim is to ensigeantinuity while realizing
discrete operations such as inserting a new tpsklj, removing a taskgull), or pairwise
task reordering, i.e. pairwise change of priorgyap on-the-fly (i.e. during the execution).

Yet, the insertion and removal of a task are events liablag¢ate a discontinuity. As
an example, the additional control associated to the iiosedf a task, even at the lowest
priority (i.e. at the remaining null space of all the tasksgant in the stack) is likely to cause
a jump in the control output, since the erégrassociated to the task is most likely non null.
For the removal case, ensuring that the error is regulétee-(0) prior to its removal is not
a sufficient condition to ensure thgf_; = q,, due to the term of compensation generated
by higher priority tasks (corresponding to the tefgiy,_1).

Similarly, a swap operation can create a discontinuity, wine tasks swapped are con-
flicting. Considering two tasks; ande,, such that

eof 121 and en{ 125

36 Continuity of the Stack of Tasks

60

40r

20

dq (rad/s)
o

0s 1 15 2
time (s)
Figure 2.2: Evolution of the control using the standard method with the pseudo-inverse (2.7). The

singularity causes discontinuities and arbitrary-large values in the control just before the discontinuity
points.

1 2
two control laws are possibléfj;2) = | 1 | andqgy = | 1 | wherega g is the control
2 2

law corresponding to the stack of tasks whegehas priority ovekeg. Realizing an instan-
taneous swap results in a punctual discontinuity in therobshape.

In the following we first discuss a method which guaranteestintinuity of the desired
controlg with respect to the timeduring these events, especially near singular cases. Three
approaches are envisaged.

The first approach consists in considering thatdhapis the basic operation. Hence,
the pushand pull operations for a given task are made respectively throughggating it
from lowest to higher priority — until reaching its definedqpity rank in the stack —{ush,
or reversely from its actual priority to lowest ongu(l). Therefore, the continuity of the
pushand thepull operations inherits from the continuity properties of theneentaryswap
operation.

The second approach consists in considering tlsatapoperation can translate into a
finite succession gbushandpull operations, assuming that it is possible to push or pull a
task at any priority. Hence, a method to realize the inseréiod removal of a task at any
priority is studied.

The third approach is based on the idea that the stack of kesk& be considered as a
seamless whole rather than by layers.

From now on, byswap we always mean a change of order between two contiguous task
in the stack.

2.2 Smooth control while swapping two tasks 37

2.2 Smooth control while swapping two tasks

In this section, different methods to swap the priority obteonsecutive tasks; ande;
are presented. Especially, the continuity of the resultiogtrol is studied. Each of these
methods realizes operations that do not modify, = S; N null(J;) N null(J;.1). By recur-
sion,S;.s, ..., S, are also unchanged. Hence, only the method to compute twtofthe
taskse; ande;; is affected. The tasks,, . . ., e;_1, having higher priority, are not affected
by the proposedwap Also, the lower priority taske;_ », . . . , e, Still obey (2.8) due to the
invariance of their associated null space.

From now on, we consider that the stack of tasks only contapeir of tasks,, e; on
which aswapoperation is realized. The 2D-robot previously introdusedsed to illustrate
the evolution of the control for each method.

2.2.1 Study of the continuity of the swap in the classic stacif tasks

When the two tasks conflict, the stack of tasks equation basethe damped pseudo-
inverse (2.8) does not achieve a continuous and instantaisg@p This discontinuity is
shown in Fig. 2.3b: the swap, represented by a vertical boneurs at = 1.1s and causes a
discontinuity in the control output. Realizing an instar@aus swap will result in a punctual
discontinuity in the control shape.

A smoothing of the swap is required, and is realized duriedithe interval note¢t!, tZ].

ERI]

dq (rad/s)

. . . .) . . .)
0 0.5 1 15 2 25 1 1.05 11 1.15 12
time (s) time (s)

Figure 2.3: a) Evolution of the control using the damped inverse method (2.8). The singularities are
damped so as to ensure a continuous evolution of the control except at the swap (t=1.1s). b) A closer
view of the same simulation for ¢ € [1.0,1.2].

38 Continuity of the Stack of Tasks

2.2.2 The hierarchy of tasks as a limit of the weighing proces o-
weighting
2.2.2.1 General formulation

In this method, the two tasks are temporarily placed at theedavel and the swap is realized
by modifying the weight of each task. During this period, thi@imization problem writes:

2

: T ST
min 1916 = &1]* + S [1924 — & (2.9)

wherea is the swap coefficient depending on timsuch that

a: [t tE] =)0, 1(

s77s

lim o(t) = 0"
t—tl

li t)=1"
Do)

The control law corresponding to (2.9) is defined by:

G = <H l i 121&1{ E:OD (2.10)

where H = 0 al,

This equation does not define the control law whesquals) (resp.1), since the corres-
ponding value would bg = J7 &} (resp.q = J3 &3). Actually, at the limits, whem reaches
07", the system is equivalent to the classic model where theeiablas higher priority over
e2. Whena reached —, the system is equivalent to the classic model where thedabks
higher priority overe; .

In the case where the tasks are compatible, the control isncmus: during the swap
period, it is a product of continuous functions (the matnxersion is continuous since the
rank is constant), and the continuity at the limits is endufiene proof of the continuity at the
limits is given by [86], and is based on the comparison of tiatgon of two minimization
problems.

Proof Consider the matriceA € R™*" andB € RP*", such that rankB) = p, and the
vectorsa € R™, b € R? andx € R".

In order to simplify the notation, the dependency imill be omitted in the next equations
°The notationlim 2z = a* (respa—) means that: will reach a but will always be strictly superior (resp.
inferior) toa

2.2 Smooth control while swapping two tasks 39

The first minimization problem is a Least Square Estimatélera with constraint, such
as:
min [[Bx — b|?

. 2.11
subject toAx = a ()

The global minimum is noted*. The first order optimality condition at this point can be
noted:

Ax*—a=0
{ BT(Bx* —b)+ ATA =0 (2.12)
where represents the Lagrange multiplier. This system can beenrés:
0 0 A A a
0 -I B rp |=1|Db (2.13)
AT BT 0 x* 0

Then, consider the least square problem without conssraihere one of the equation is
balanced by the coefficiept > 0:
HA pa
(5) ()

The global minimum is noted;, and the first order optimality condition at this point is:

<M§>T[<MI§A>X3_<T>]IO (2.15)

This equation can be written as the following matrix product

2

min
Xp

(2.14)

2T 0 A ry a
0 -IB||r|=|b (2.16)
AT BT 0 X 0

Wheny gets large, the systems (2.13) and (2.16) approach oneaandth a result, the
two minimization problems converge toward the same sohuticgrf x;, = X", ensuring
i [ee)

the continuity ofx at the limits. |

2.2.2.2 Implementation

This method also faces the problem of lack of robustnesssiegular configurations due to
the use of a pseudo-inverse. A naive adaptation for the mauEt. 10) would be to damp the
term relative to the Jacobians, that is:

b)) e

40 Continuity of the Stack of Tasks

but it still leads to a discontinuous evolution of the cohtreen when the two tasks do not
conflict as depicted by Fig. 2.4. This problem appears wheimtierpolation switching term
« becomes negligible compared to the damping téroharacterizing the damped pseudo-
inverse. As a result, the second task is shadowed and theotmntloser to the one where
there is only one task in the stack.

The minimization problem formulation helps explainingstbbservation.

«
2

min [T16 = &1]* + S I12a — &° + dllal’ (2.18)
whered||¢||? is the term qualifying the damped pseudo-inverse. Suppgaert< § < 1,
the minimization problem can be formulated as:

min (BillJ1a — & 117 + Ballal® + 85| T2q — &5]%)
wheref; = I_Taa P2 =10,03 =% (2.19)
hences; > 3y > 3

Intuitively, this corresponds to the control law assoddtea stack containing three tasks:
e1, es ande,, wheree; is the additional task induced by the damping, defined by ahlan
Js equal to the identity and a null error. Hence, the null spaoeaining to realize the task
eq IS empty, preventing its regulation: the stack of tasks astg there was only one task,
causing the discontinuity.

dq (rad/s)

. .)
0.5 1 15 2
time (s)

Figure 2.4: Discontinuous evolution of the control obtained with the a-weighting in a singularity-free
configuration, using the naive damped inverse (method (2.17). The cyan zone represents the swap
period.

Note that a solution to avoid kinematic singularities cetssin realizing the damping on
the error, not on the Jacobians: instead of the real eé)one consider the closest error that

2.2 Smooth control while swapping two tasks 41

can be correctedIffé). Following this, the equation (2.10) becomes:
. 31\ JJie
=|H H 2.2
< l J2 D (l J;Jheé; (2:20)

251

dq (rad/s)

. .)
0.5 1 15 2
time (s)

Figure 2.5: In the case of singularity, the control obtained with the a-weighting correctly damped
(method (2.20) is discontinuous .

2.2.2.3 Handling singularities

When the matriXJ,, J,] presents an algorithmic singularity (i.e. when their isrkrboss:
rank([J1,Jz2]) < rank(J;) + rank(J2)), the method (2.20) exhibits many discontinuities

+
as depicted by Fig. 2.5. These discontinuities are due topbmtion(H l ;1 D H.
2

An ad-hoc solution would be to consider an evolutive dampe@rse, such that the
damping coefficiend depends on the swap coefficient The minimization problem (2.18)
becomes then:

2

: T S ST .
min ||Jl<11—elH2+5!\3201—ezH2+5(Oé)||01H2 (2.21)

This functiond (o)) must fulfil the following properties:

5 :)0,1(—)0, 1(
1

a—0t
lim 0(a) =

a—1~

—

In order to have an idea about the required behaviof(af, we simulated the sys-
tem (2.18) with different values of € [107'°,107!]. This system allows to analyze the

42 Continuity of the Stack of Tasks

behavior aroundv = 0 anda = 1. Fora < 0 (respl < «), the control corresponds to a
hierarchy of tasks where, (respe,) has the priority.

if <0 q=d1+ (J2P1)i (&5 — Jadn)
where ¢, = Jié;

if 0<a<1 q=[BITTy+aITTy+ 01 [BITI Tl e + aIT T Thes)

where 5 =1 — « (2.23)

if 1<a q = G2+ (J1P1)(&] — J1d2)
where ¢, = Jhé;

§=10"% §=10""

§ =102
—

05 1 15 2 =1 05 [05
a a

Figure 2.6: Simulation of the system (2.23)when the matrices J1, J2 and [J1;J2] are not singular,
with different values of 4.

In the singularity-free case (Fig. 2.6), a small valueddinferior to 10~®) is required
in order to ensure the continuity. The discontinuities obsé in Fig. 2.6a at = 0" (and
t = 17) correspond to the case where the damped inverse intesfgtlegshe weighting
process: when < ¢ (or (1 —«a) < 6), the damping acts as a virtual taskthat has priority
over the second task, which is not realized any more. Thesyatts as if there was only
one task in the stack.

6=10"2 §=10"% §=10"1

g

3 5
8

dq (rad/s)
dq (rad/s)
g

g

N

8
8

0
-01
50 //
02 \ '/
-0,
= 05 [1 15 2 -1 05 [05 1
a

05 05
a a

Figure 2.7: Simulation of the system (2.23)when the matrix [J1; J2] is singular, with different values
of ¢.

2.2 Smooth control while swapping two tasks 43

In the singular case (shown on Fig. 2.7), the dampinigtermines the maximum value
reached byj. Besides, it is important to note that near 0™ andt = 1, the smallep is,
the higher the slope will be.

An appropriate functiona has hence to fulfil the following conditions:

1. Whena is close to 0 or 1, the damping valdéx) has to be small, in order to ensure
the continuity in the singularity-free case.

2. Else, the damping factor has to be high enough to limit tdmgrol values.

Using the previous results, it can be assumed that a funthitrequalsi0—!! near the
limits and 10~® elsewhere satisfies these conditions. Yet, since low valfiéscause im-
portant slopes in the control function in the singular casead-hoc functiord(«) is hardly
conceivable. As an example, we consider the following fiomct

(5max - 6min)
b(a) =
whered.in, dmax, ¢ andd are parameters setting the min and max values, the slopéand t
width of the functiond(z). We choose = 0.475, d = 100, dyin = 107" and ., = 1075,
The function shape is shown on Fig. 2.8a. The results oldaane illustrated on Fig. 2.8b
and Fig. 2.8c and invalidate this method: the control oledipresents considerable varia-
tions not applicable on a real robot.

(tanh(d(x — 0.5+ ¢)) —(tanh(d(z — 0.5 —¢)))) + omin ~ (2.24)

f(x)
dq (rad/s)
dq (rad/s)

05 1 15 2 EY -05) 5
a [of

Figure 2.8: a) Evolution of the function é(«) given by (2.24)b-c) Evolution of the control during a swap
using the evolutive damping method b) on two compatible tasks and c) on two incompatible tasks.

2.2.3 Linear interpolation

This method consists in realizing a linear interpolatiorthe two control lawsyj;j2; and

qd[2/1]

q = adzy + (1 — a)dpz (2.25)
whereda g is the control law corresponding to the stack of tasks wigrlas priority
oneg anda is the swap function, which is a smooth function of time.
Although it is obvious that the continuity is ensured, thisthod presents two major
flaws:

44 Continuity of the Stack of Tasks

1. There is no guarantee that the robot motion is feasibiegghe control is obtained by
interpolation.

2. The computation time is increased, since the control bdsetcomputed twice for
these two levels of the stack of tasks. Especially, two ecdraputation of the pseudo
inverse(JP)' are required. It is important to note that even in the casestlek of
tasks containing: tasks, only these two levels must be computed twice, andheot t
whole stack.

The Fig. 2.9 shows that the evolution of the control is camiunms in singular cases.

15F
1t
0.5

——————

dq (rad/s)
<
o

. .)
0 0.5 1 15 2
time (s)

Figure 2.9: Continuous control during a swap using a linear interpolation in a singular case: the
discontinuity observable on Fig. 2.3 has been smoothed.

2.2.4 Modeling the insertion/removal at the end of the staclks a swap

A hierarchy of task is usually ended by a virtual task thatraefia default value in the null
space of all the other tasks. Since the null space left isygragask placed after this virtual
task has no effect on the control: it is virtually inactivensérting a task comes down to
adding it after the virtual task and exchanging their ptjoriThe removal of a task is the
symmetric operation of the insertion: removing smoothlyasktis thus realized with the
same process.

This virtual task appears explicitly when computing thetooldaw using a minimization
process, butis implicit when using the pseudo-inverseagytr. In this latter case, a solution
to realize the smoothing is to explicitly weight the addiiéb term corresponding to the
inserted/removed task by the smoothing coefficiefit in the equation of the control law.

(.In-i—l - (.In +)\Ins(Jn+1Pn)+(é;k1+1 - Jrl-i-l(.hl) (226)

2.2 Smooth control while swapping two tasks 45

Ans(t) is defined by an appropriate smooth function of titrend fulfils the following
conditions:

Alms RY — [0,1]

AI"S(H) =0

A (tF) =0

A(t) =1Vt € [t + At] — At

wheret! andt!" are respectively the insertion and removal time of the taskom/in
the stack, and\t'™* is the insertion delay during which the gaif** grows continuously
betweerD to 1. With the classic control law, the gairi™® is constant and equal o

The slope of the control functio§(¢) during the insertion and the removal of the task
e, is also determined by the gain. The gain defined in (2.27)all® modify the slope via
the coefficientd (Fig. 2.10). The insertion time is then fixedst!"s = Z. However, it is
important to notice that the steeper the slope is, the fs¢ensertion/removal is.

if t <t Nms(t) =0
if th <t <t At Nrs(t) =1 — Leos(d(t - t1))
if ¢+ AtIns <t <P - AtIns) Nns() =1 (2.27)
if 77— Atns < ¢ <P Ams(t) = 4 — 5 cos(d(tF — 1))
if th <t Nms(t) =0
0.9F ', 2
08} t -7

0.71

0.6

ins

0.5

0.4

0.3

0.2f

0.1H

time(s)
Figure 2.10: Aspect of the gain «(t) detailed in Eq. (2.27)for various values of d.

The Fig. 2.11a and the Fig. 2.11b illustrate the evolutiorthef control while inser-
ting and removing two tasks by order of priority. The firstktas inserted at 0.25s and
removed at 1.75s, and the second one is inserted meanwlil@%d, and then removed
at 1.25s. The Fig. 2.11a illustrates the discontinuousugini of the classic control law.
The Fig. 2.11b represents the evolutiorjodbtained with this smooth control law.

46 Continuity of the Stack of Tasks

dq (rad/s)
dq (rad/s)

021 t
0.1r
—01ft
-0.2-
-0.3f
I I I I
0.5 1 15 2

time (s) ’ time (s)

a) b)

-0.2
sl /

I
0.5

/
0 K\‘
A

Figure 2.11: Evolution of ¢ while inserting and removing the tasks by order of priority with a) The
classic control function b) The smooth control function.

2.2.5 Modification of the stack-of-tasks scheme

This section presented different methods to realize a sweapden two consecutive tasks.
The swap of two distant tasks must be brought down to a sequamawaps of tasks with
successive priority. Satisfying this condition does natwee a both continuous and imme-
diate control, especially due to the possible presencegofigthmic singularity. Realizing a
blending operation (2.25) is thus a solution allowing toie\aiscontinuities, but this opera-
tion is not instantaneous. This method introduces two delay insertion delayzt/™* and
a swap delay\t°¥??. The swap between the taskg ande,; can still be instantaneous
(AtSver = () iff the tasksey, . . ., e, are compatible in the null spadg_, i.e. if the tasks
do not conflict; otherwise an interpolation must be realjzsti At is non null.
Considering that an insertion can be assimilated to a swageps and that a task can-
not be part of two swapping processes simultaneously, btigpassible to swap with a task
being inserted or removed. Since some transitions are stantaneous anymore, the task
operation scheme changes from Fig. 2.12 to Fig. 2.13 (fosdke of readability and clarity,
some transitions, that only correspond to a role swap betweande,, are omitted). The
transition period required for the insertion and removah ¢dsk are illustrated by the addi-
tion of statese, (Ins) (resp.ea (Rem)) indicates the insertion (resp. the removal) of tagk
being in process. These states are quit once the insertininga reached the desired value
(1 for the insertion() for the removal).

This method ensures a continuous evolution of the contrtpgudiof the stack of tasks
during discrete events, but limits them to manipulationsveen neighbour tasks. As a con-
sequence, a safe but time consuming method to insert a taskydével of the stack is to
insert it smoothly at the end of the stack using an insertain,@nd then realize a succession
of smooth swaps to put it at the desired priority.

2.2 Smooth control while swapping two tasks 47

W)p()\‘p\‘@op()
el e2

push(e2) [pop() \.rm(e2) rm(el)ipush(el op()

el up(el) / dow e2

ez p(e2) / down(el) €l

Figure 2.12: Automaton of possible operations and reachable states of the classic stack of tasks.

Legend
— >
ﬁjsh(e:NLins:O)
el(Ins) [Jif(Lins<1) | el(Rem)| Dif(Lins>0) N Immediate
Nﬁinsﬂ%)‘op()
el e2 —> Implicite behavior of pull(e1)

ﬁsh(eNLinFO) Tf(Lins=O)
1

ez%lns) [ifiLins<1) e2(??em) [if(Lins>0) el(eR’Zem) | Qif(Lins>0)

w‘sﬂ) Ipop() pop()

el e2
e2 7 el
up(eL) g 112=q21)/ if(Lswap=1)

down(e2)

merge{el, e2}>if(stap<1)

Figure 2.13: Partial automaton of reachable states of the smooth stack of task.

2.2.6 From a discontinuity to another

For a given schedule of events, the modification of the taskerae ensures a continuous
evolution ofg with respect tad. Each of the event operatiguush pull, andswap(correspon-
ding respectively to the insertion, removal or swap of tasks be realized while ensuring
the continuity of the control. Now, we focus on the influenéeanodification in the se-
guence of events on the control function shape. Due to a sthafige of the sequence of
events (such as an event being delayed due to some perturhdltie realization of another

48 Continuity of the Stack of Tasks

operation can be required in order to maintain the contrafithe control with respect to the
timet. As a result, the control shape, that will obey this new sage®f tasks, can accuse
huge differences.

This issue can be highlighted by a simple system with two nmgatible tasks:; and
e, Wheree; has higher priority. We study the behavior of the stack dtsaghen the two
tasks are to be removed almost at the same timey i§ removed first#, < ¢I'), there is
no problem since it is the ideal case where only the task oétqwiority is removed. I,
has to be removed first, then since only the lowest priorgi taan be removed of the stack,
a prior swapping operation betweepande, is required. The effective removal time ef
will thus bet!" + A¢>wep,

To illustrate the discontinuous evolution éfwith respect ta’, we simulate the regula-
tion of two position tasks by the 2D-robot previously intuagd. These two tasks share the
waist joint and are to be removed at the same time. The Fig.[@&dsents the two different
evolutions of the control function depending on the taskoeea first.

Hence, this new stack of tasks scheme is likely to modify ttteedule of the events,
by adding extra delays in the original task plan. This cqoesls to another discontinu-
ity in the function which associates a control shape to argseguence of discrete events
(f : {eventg—(t — q(t))). On the opposite, the original stack of tasks ensures tree in
riance of the sequence of events, yet without guaranteetoginuous control.

0.05¢ 0.05p

0,04} 0,04}
0.03} 0.03}
0.02} 0.02}

0.01r 0.01r

dq (rad/s)
o

dq (rad/s)
o

-0.01f -0.01F

-0.02 -0.02
-0.03 -0.03

-0.04 -0.04

-0.05

; i i -0.05 : ‘
8 85 9 95 10 8 85 9 95 10

time (s) time (s)

a)th < f b) tI > I

Figure 2.14: Evolution of the control ¢ depending on " during the removal phase. In a) no swap
is realized and in b) a swap operation is required. The light zone represents the swap period. The
upper dark zone represents the removal period of the task ey, the lower dark zone represents the
removal period of the task es.

2.3 Insertion/Removal at any level of the stack 49

2.3 Insertion/Removal at any level of the stack

In order to reduce the delay required to place a task at aadepmiority, we define a way
to insert directly a task anywhere in the stack and to remowetask in the stack, while
preventing the low priority tasks to create discontingitie
Using an insertion gain is a solution that only works for thastltask of the stack:
introducing a task at higher priority is likely to cause a nfigdtion of the control cor-
responding to lower priority tasks. The simple case of akstamtaining only one task
ea in which the taskeg is inserted at top priority is relevantttirtr} q(t) = Jiéy, while
]
tlirtr} q(t) = (JaPg)"éy: the continuity ofq is ensured only iEx andeg are not conflic-
B
t—th

ting.

The method proposed is based on the management of the jeiedshy the each task.
While inserting/removing a task of rapk none of the lower priority tasks can use the joints
used by a task of higher priority. A task which has no moretfieft to use is temporarily
removed of the stack.

2.3.1 Weighted pseudo-inverse approach

In order to realize a partial insertion/removal of a taskse a weighted pseudo inverse [22]
defined whenA is full-row-rank by:

AP = WAT(AWAT)!

The matrixW = diag(w) is a diagonal gain matrix modifying the influence of each foin
regarding the other. Thus it is possible to inhibit sometmimas long as there is still one
active. In order to ensure a continuous evolutiorMéf w is chosen to be &' function:
R* — [0, 1]*, wherek is the number of joints.

The control law becomes thus

4 = Qi1+ (Jilz’i—l)#wi@;k — Jidi1), (2.28)

wherew; corresponds to the weight associated to each joint.

2.3.2 Insertion/removal mechanism
Let e; be a task. We define the corresponding sets:

e ¢, the used joints, corresponding to the non-null rows in tleeBn,
e ol the forbidden joints, corresponding to those used by highierity tasks,

af = Upian (2.29)

50 Continuity of the Stack of Tasks

¢ o the booked joints, which are not used by any higher priogisks,
(such as’k < i = af Na? =10),

al = a; N —al (2.30)

The algorithm is as follows: if.? = (), the task must be temporarily removed, else only
the forbidden joints are inhibited. The insertion and real@f a task is done using an inser-
tion gain as defined before. However, in the frame of this wetht is meaningful to define
an insertion gain for any task in the stack, since the distucbs due to lower priority tasks
are avoided by the system of joint reservation. Thus, theriim gain associated to the task
iis noted\/". The partial removal is realized by decreasing the gainciateal to forbidden
joints w;|af’, while maintaining (or eventually increasing) the others.a

2.3.3 lllustrative example

As proved in the Annex A, this method ensures a continuoulsigga of the control output
while inserting or removing tasks at any level of the stactagks. For practical purposes, a
delay is required to realize the preliminary deactivatibtower priority tasks. To illustrate
this method, we consider that the two arms 2D-robot has tiizecthree tasks as depicted
in Fig. 2.15. The tasks considered are:

e ey, a position task of the left hand (cyan),
e e,, a position task for the left elbow and (green) and
e e3, a position task for the right hand (red).

All of them may use the waist joint ang} can use all the joints used leg. e; has higher
priority over bothe, andes, ande, has higher priority ovees. The tasks are inserted in
inverse priority order.

The Fig. 2.16 illustrates the discontinuous behavior ofdtwetrol when using the clas-
sical stack of tasks with insertion gains. The Fig. 2.17axshitne evolution of the control
and Fig. 2.17b represents the evolution of the gains of essitstand of the vectav; char-
acterizing the weighting ofs.

The following interesting events can be observed. Befagdrtbertion ok, (t1=0.5s).e3
is the only task in the stack. Sineg andes both use the waist joint, the task must release
it beforet]. Thus, during a safety delay precedifjges is partially removed, and this causes
a higher solicitation of the other joints of the right arm {gd and cyan in Fig. 2.17a). This
partial removal okj is illustrated in Fig. 2.17b, where only part of the vectoy decreases
to 0, while its insertion gain\; remains equal to 1.

At the insertion ofe; (t{= 1s),e; ande, are already in the stack. Agaies will be only
partially removed, since the right arm is free. Howevergsithe tasle; uses all the joints

2.3 Insertion/Removal at any level of the stack 51

required bye,, the taske, must be temporarily deactivated befefe The deactivation of,
is illustrated in Fig. 2.17b, where the insertion gainis temporarily set t® aroundt!.

25

15

05

-051

Figure 2.15: The 3 position tasks the 2D-robot has to regulate.

dq(rad/s)
s
n o

time(s)

Figure 2.16: Evolution of the control while realizing the three tasks, using the classic control law with
insertion gains. Each blue zone indicates the insertion period of a task (time during which its gain
smoothly increases to 1).

2.3.4 Flaws of the method

This example illustrates that weighted pseudo-invgnsghand pull suffer critical flaws:
while inhibiting some joints for a task, the remaining ones solicited instantly and hence
can reach high values. Besides, locking some joints ineseti®e likelihood of reaching

52 Continuity of the Stack of Tasks

0 J —
e - N
& B [

-1

dq(rad/s)

1
0

-15

L I} L ' L I}
0 0.5 1 15 2 0 0.5 1 15 2
time(s) time(s)

Figure 2.17: a) Evolution of the control using the weighted pseudo- inverse, b) Evolution of the gains.
Each blue zone indicates the insertion period of a task (time during which it is activated and its gain
smoothly increases to 1). Each grey zone indicates the safety delay preceding the removal. The
three first curves represent the evolution of the insertion gain of the three tasks A\, A2, A3. The last
one represents the evolution of the weighting vector wg.

kinematics singularities (the goal can become out of reaghy finally, the deactivation —
even ifitis partial- of some tasks is not conceivable (faraple, the release of an on-going
stability or grasping task is certainly not acceptable).aAgsult, this method, as described
earlier, is generally not applicable on complex systems.

This section also illustrates why direct removal or ingegridf a task at any priority level
causes discontinuities in the control; in our opinion, aprapch allowing such operations
can hardly be conceived. Therefore, usireypappropagation appears to be the more appro-
priate solution, in spite of its cost in the length of the gidion period.

2.4 Solving the stack of tasks using a single minimization
algorithm

This section presents other techniques used to realizerartty of tasks, by formulating
the process as a single integrated minimization probleme ¢dmmon advantage of these
methods is to make the realization of discrete events easiee it can be done numerically.
Yet, the common flaw is that the hierarchy is less strict: gadization of lower priority tasks
can disturb the realization of higher priority ones.

2.4 Solving the stack of tasks using a single minimizatigoathm 53

2.4.1 Cascade ofi-weightings

This method, presented in [20], consists in an applicatioih@«-weighting on the whole
stack. The control results from the solution of the follogvproblem:

. . = e a2, (i—1) < 112,n
tny i (3 (195 & P00+ e 2.31)

Two approaches are relatively similar to this one. The sanmadlation is used in [78],
at the difference that the coefficient are set manually. feghod favours the flexibility of
the control to the respect of a strict hierarchy.

min (Z (19:a — é;*||2ai)> (2.32)

=1
The following formulation is used in [40] to define the infleenof each constraint on
the control by modifying the coefficient matrQy.

mxin (XTQX)
st. Jig=¢& +v (2.33)
where x = [q;71; .- Yn]
and Q=diag[ao;...;am))
We use the definition (2.31) and approximate the solutiongiai small positive value
for a. The swap of two neighbour taskg andey, ; consists in continuously changing their
coefficient froma*~! down toa* and froma* to o*~! respectively.

The minimization problem was solved using the QP solver idexV in the Matlab op-
timization toolbox. The system simulated is the one preskit Section 2.2: two position
tasks are considered for the two armsandes, and the last task defines a default value in
the null space of the two tasks.

The Fig. 2.18 represents the evolution of the control fortiaaks that do not conflict. For
small values oty (Fig. 2.18c), the evolution of the control is close to theextpd behavior:
the control is independent of the priority of the tasks. Hegveas the value af increases,
the hierarchy is not respected any more, and the evolutitreafontrol depends on the order
of the tasks in the stack. This appears in Fig. 2.18b and meaglg in Fig. 2.18a, where the
swap operation becomes visible.

When the two tasks are conflicting, the last task realizesddrmaping and limits the
control values obtained. The smalleiis, the higher the authorized control values near the
singularities will be. Though, i& is too small, the numerical values associated to the lower
priority tasks will be too small to be relevant in the minimiion problem: they are not
considered anymore. In Fig. 2.19c, the discontinuous beh#vat appears after the swap
(t > 1.2s) is due to the fact that the second task is only taken intowatqunctually.

Hence, the choice aof is based on a compromise: if it is too small, the low priorégks
will not be taken into account any more, which causes disgoittes in the evolution of the

54 Continuity of the Stack of Tasks

a)a =0.25 b) o = 0.05 c)a =0.01

0 0 0
o o o
s . .
s s s
7040 05 15 2 7040 05 15 2

1 1 o 4D
time (s) time (s)

:

dq (rad/s)

dq (rad/s)

dq (rad/s)

o s :
)

1
time (s

Figure 2.18: Evolution of the control for two tasks that do not conflict using the a-weighting with
different values of a.

a)a = 0.25 b) a = 0.05
@ E;;;;;;:::r @ @
B — O} = E
= = = =
g g s g

time (s) time (s)

time (s)

Figure 2.19: Evolution of the control for two tasks that conflict using the a-weighting with different
values of a.

control; at the opposite, if it is too high, the hierarchyadks may not be strictly guaranteed.

2.4.2 “Single task" formulation 7§ — £

An elegant approach would consist in solving the entirekstdéitasks with a unique minimi-
zation problem, that is:

min [|7¢ — &|? (2.34)
q
This method would make the add of constraints to the conasibe. Whereas these cons-

traints must be respected for each of theinimization problems of the formulation (2.5),

they need to be considered only once with this approach. , Eheolution to avoid excessive
control values would be to add bounds constraintg on

Yet, finding the adequate matricésand€ is not trivial. Indeed, one could consider the
set

ok

J = : g=|: (2.35)
Jn]-:)n—l .

2.5 Conclusion 55

where the last "task" of the stack is characterized by antiiyedfacobian and by an error
equal to0, and is applied in the null space left by theéasks. Its purpose is to ensure a null
value for the non-controlled axes.

However, this formulation is similar to that of equation3&), which is an incomplete
formulation of the problem (2.7), where the additional erngluced by previous tasks is not
taken into account. This formulation is not satisfying cgitit delays the adaptation of lower
priority tasks to the modifications of configuration indudscdhigher priority tasks.

i = Qo1 + (JiPiq) 7 e (2.36)
Based on this, the set corresponding to (2.7) appears to be:
Jl é1
7= : £— : 2.37
Jn]-:)m—l én - an;—l ()
P, q

whereq; |;c;1,n—1) are estimations of each of tidg. It is important to notice that each texg
must be computed independently from this minimization fgob For example, they may
be computed beforehand using the classic damped control law

Indeed, the current minimization problem prevents usiranégl;c; ;1) While compu-
ting the control associated to priorijy A brute-force solution to this would be to consider
the control value of each layég, . . ., 4, as a parameter of the optimization, but it highlights
the problem of disrespect of the hierarchical structurdnefdtack. In order to illustrate this
issue, let’s consider the optimization problem (2.38). thersake of clarity and without loss
of generality, only two tasks are considered and the lagtuasd to set the control @tis
also omitted.

2
min
q1,92

(2.38)

l .]2(IJ—1 P,) Jz(;’l] [22] B l 2;]

Although this system seems similar to (2.7), it doesrespect the hierarchical structure
of the stack of tasks: the minimization of the second line ayse a modification af;,
which should depend only on the first equation. Thus, usingealfvalue for each of the
dilic;1,n) @ppears to be the only way to prevent interdependenciesbattie levels of the
stack of tasks.

2.5 Conclusion

In this chapter, we investigated several potential sohstio the problem of smooth insertion,
removal or swapping of a given task at any priority in the lstdtappears that it is difficult

56 Continuity of the Stack of Tasks

to perform such operatiorspriori, i.e. through an instant explicit rewriting of the govemin
equations, because this generally always results in diseoyus control output. Smoothing
a posteriori i.e. filtering the control output, is not an option sincerthis no guarantee on
the feasibility of the motion. In the general case, swappip@ir of tasks of any priority can
be translated by a fixed number of task insertions and remmptlarefore, we thought that
solving task removal and insertion at any priority levellwdlve the problem: we explained
why this was not possible.

Our solution consists in realizing insertions and remowglsa succession of smooth
swap operations between adjacent pairs of tasks. Hencesdd a task at a given priority, it
is necessary to insert it the end of the stack and move it tdés&ed priority by realizing a
succession of smooth swaps with the adjacent higher pritask. For a removal, the reverse
process is done. We provided methods to ensure a smoothtiewodd the control during
the discrete events: the swap of priority of adjacent pditasks is realized using a method
based on alinear interpolation and the removal and thetioeef the lowest priority task are
smoothed by the use of an insertion gain. We also preserted approaches and discussed
their pros and cons.

Even if it respect the continuity during discrete events,itiethod proposed presents also
some flaws, namely the delay of realization of the events celgmerforming stack basic op-
erations (insertion/removal) at any priority straightiardly remains an open challenge.

The following chapter will make use of these results to oerthe scheduling of a set
of tasks by using an optimization formulation of the problem

Chapter 3

Task overlapping using optimization

While previous chapter described how the stack-of-taskshar@sm enables the realization
of a given set of tasks, this chapter focuses on achievirtlydmiteduling and task behavioral
tuning by allowingtask overlappindor a given sequence of tasks, i.e. a set of tasks whose
order of insertion and removal are constrained. Overlaptasks consists in adjusting the
overall sequence in the stack of tasks so as to realize tkegamultaneously (when possible)
rather than sequentially, thus producing a smoother meatinohexploiting redundancy.

As a symbol, the task is used to describe the task plan (coemponthe plan reasoning),
and as a task function, it is used to execute this plan (coegaof the low-level control).
This chapter presents an intermediary computation modskried between these two pha-
ses, which realizes task overlapping using an optimizgirocess. Its purpose is to find the
optimal parameters for each task of the task plan, i.e. teethsk schedule and the best way
to realize them, while fulfilling the constraints imposedibby the sequence (task ordering)
and by the environment (intrinsic limitations of the robgenrerally also described as tasks—,
collision avoidance, etc.).

This chapter has been realized in collaboration with Syl\diossec, lecturer at the
PRISME institute, for the section 3.3

3.1 Introduction

3.1.1 lllustrative example

Consider the following mission given to a humanoid roboto"i{@ing that object located on

that table and bring it back to your local position”. This s can be decomposed into a

sequence of tasks achieved sequentially, i.e. one aftethies, represented on Table 3.1.
This plan is sound and certainly safe. However, realizimgtisks one after the other in

58 Task overlapping using optimization

e ¢; “Go to the table™;
e e, “Grasp the specified object”, which can be split into two ogexjuential tasks:

— ey, “Place the gripper around the object" (the exact positiothefgripper can
be the outcome of a grasp planner [8]);

— egp, “Close the gripper” (with the appropriate computed foreesare);

e e3 “Go to your starting point".

Table 3.1: Decomposition of the mission “Go bring that object located on that table and bring it back
to your local position".

an exclusive way results in automated-looking motions thateven be jerky. The purpose
of overlapping tasks is not only to enhance the performafiimeeacy, e.g. in terms of speed
for the same tasks’ behavior, but also to provide smootk#aptransitions in the motions

of the robot and exploit nicely its redundancy capabilities

Two overlays are possible for the previous sequence: thgp@ripositioning task,
can start before the end of the walking taskand the task,;, can start before the end of
e2.. However, the realization of these overlays cannot be ddrn&arily since the tasks are
coupled.

For the first overlap, it is not desirable to have the robatarnearby the table, stop
walking, and, only then, start the positioning motion todvéire object. It would be better
to start the gripper positioning task at some point nearleyténle while the robot is still
walking (which is possible and more smooth-looking). Byeirigg this positioning task
together with the walking task in the stack, the robot willrstmoving its gripper while
walking. If the object is far, the robot will move with a stteed arm, which is certainly bad
and not the optimal way to walk. It is hence better to find tlghtitiming to stack (insert)
the gripper positioning task so that it occurs right befére walking task ends (as a human
would do). Moreover, it is necessary to ensure that the maifdhe arm does not perturb
the walking pattern (e.g. by modifying its balance).

In the second task overlap, a new constraint on the grippetd&e explicitly taken
into account: the gripper should not be completely closedmtteaching the object. This
constraint is satisfied implicitly by enforcing a strong ggdence condition (exclusive task
sequence). The difficulty when realizing task overlappieg bn properly taking into ac-
count such constraints explicitly.

This example highlights some of the difficulties in achigyven efficient task overlap-
ping; it is not a straightforward process. It is necessarmghieck that the obtained sequence
is still valid for each possible overlapping. While the asile realization of two tasks is
very likely to fulfill all the constraints that are inherewtthe robot capabilities and its sur-
rounding environment, their (partly) simultaneous reslan may violate them.

3.1 Introduction 59

3.1.2 From planning to execution

When the environment is entirely or partially structure@strof the robotic missions can be
decomposed into a sequence of primitive actions (or ofarstithat can be executed by the
robot. The building of the sequence is usually realized bymal®lic planner [5]. Starting
from this symbolic sequence, the two following approachrespassible.

3.1.2.1 The trajectory approach

In this approach, a trajectory is computed from the symbaen, then the symbolic data
are converted into numerical data in order to give to the ralaoable command. This loss
of symbolic data, in favor of numeric ones, makes it diffidoliadapt to changes that may
occur in the environment. As a consequence, local or gl@abmputation of the trajectory
may be required; and this can be time consuming [53, 5].

3.1.2.2 The task-based approach

This second approach takes advantage of the fact that th€itathe sense of task func-
tion [79]) is the common component to all the steps, from plaasoning to execution.
In [73], the task is used to define both the high level specifioa of the action expressed in
formal logic causes (planning) and the low level formulatiowing to compute the control
(execution). As a result, the author was able to propose &amésm to reactively modify

and select the task sequence plan during the execution.

For its flexibility, we chose to rely on the task-based method

3.1.3 Task sequencing

The realization of task overlapping requires preliminagatations of the task sequence. It
is indeed necessary to release some timing constraints setljuence (typically, precedence
constraints) by replacing them by other constraints (sscbodlision avoidance, or depen-
dency on the regulation of a task). Verifying the satisfactf these constraints cannot be
done during the symbolic planning, since these constrairgshot written into a symbolic
form (they are numeric).

In order to realize this operation during the planning, tee of hybrid planners, that
considers both numerical and symbolic data, is tempting[3H}, the symbolic planner
is bound to a motion planner, which is in charge of the geameata. Hence, a doable
geometrical path is given, but it cannot be linked back tot#sis definition. In [57], the
planner handles the geometrical data by using flow-tubesh aetion has a fixed duration
and is associated to a function which, given a set of starfiguamrations, returns the set of
all the reachable configurations. This approach is not caibipawith the stack-of-tasks
mechanism, since the considered tasks are independent.

Therefore, we come to the conclusion that the overlappingaibe performed during
the planning phase whether using a symbolic planner or adhptanner. Yet, similarly to

60 Task overlapping using optimization

the planning process, the overlapping has to be done @&f-biefore the execution. Subse-
guently, an intermediate step is added between the creatitre symbolic task plan and

its execution. This step is formulated as an optimizatiactess that takes into account nu-
merical constraints while realizing the task overlappiidne global scheme is illustrated
by Fig. 3.1.

In the following, we discuss how we formulated the optimiaajproblem. Using the def-
inition of a sequence of tasks and considering the stadksis controller, we define how to
formulate the tasks overlapping as an optimization probkemd how solve it. Finally some
open problems together with rooms of possible improvemarisir method are mentioned.

,| Operation |,
Templates '
Mission Tasks Optimized tasks Stack of %\
planning planning sequencing Tasks \ lL ‘

-
Control Loop |

Figure 3.1: From mission planning to execution with the task overlapping module

3.2 Sequence of tasks

A sequence of tasks is a finite set of primitive tasks sortedrder of realization and even-
tually linked to each other. Any pair of tasks can be eithelependent (i.e. they can be
achieved in parallel if possible) or constrained by timestoaints (precedence constraints
or simultaneity constraints) or constrained by more germynditions (e.g. a task must wait
for another one to be achieved before it can start). In tHeviahg, a sequence of tasks is de-
scribed as a classical temporal network scheduling. Fiestdamporal parameters describing
a task are defined; then the temporal dependencies betwsksrat@ specified.

3.2.1 Definition of a task in a temporal network

A task describes an action the robot has to realize. Sinaragwimitive tasks can define a
same action, we consider for the sake of clarity but withoss lof generality that each task
appears only once in the sequence.

The positionof a task in the sequence is defined by the time interval dusinigh it
is maintained in the stack-of-tasks controller. For a git@sk e;, this interval is noted
(] tF]: the task enters in the stack of taskg/aand is removed af". Yet, these instants do
not indicate the achievement level of the tagk:may happen before the task regulation is
completed. Let; be the tolerance on the task regulation completion: a tas@irisidered as

regulated whetlie;(t)|| < ¢;. The regulation time? is the time of the first regulation of the

3.2 Sequence of tasks 61

task, defined by
tR— (mtin lex(®)]| < ei> (3.1)

The task can be split into two phases: a regulation phasigitire time intervalt!, t7],

7771

where the task erratecreasetoward the given valug, and a maintaining phase (or holding
phase), during the time intervil, t/'], where the task errds keptbelowe; (cf. Fig. 3.2).
The error regulation remains active and acts if any pertiobgthat may bring the error to
increase above again) occurs during the time interval, t].

0.7r
0.6

0.5

0.4r

llell

0.3

0.2

2 25 3 35 4 45
time (s)

Figure 3.2: The evolution of the task error defines two phases: the dark one is the regulation phase
[t],t7], the bright one is the maintaining/holding phase [t?,t!"]. Before t=2s, the task is alone in

729 Y 777

the stack, and the evolution of the error follows an exponential decrease. Between t=2s and t=3s, a
higher priority task makes the error of the current task increase and exceed the tolerance ¢; again.
At t=3s, the higher priority task is removed, and the error is regulated again.

3.2.2 Time dependencies

A task sequence starts @tand ends at®™. Both values are finite and the sequence does
not loop. The sequence is characterized by a set of timeraomist binding the schedules of
two taskse; ande;. They are defined as followse; must begin or end onog has begun,
has ended or has been regulated. We use the graphical rejatese given by Fig. 3.3 and
the following notation to describe the sets of pairs of taskande; that undergo these

1Contrary to Allen Logic, that only considers the start and paints of the time interval, here we addition-
ally consider the regulation time.

62 Task overlapping using optimization

dependencies(is the direct predecessor e}):

Srr={(ei,) | th < tjl} (3.2a)
Sri = {(e;, &) | 1] <t} (3.2b)
Srr = {(ei, €;) | th < tjl} (3.20)
Srr={(es &) [t] <t} (3.2d)
Srr={(ei, &) | 1] <t]} (3.2e)

j begins onceé has begun e

ECE

i begins onceé is realized R
i =Yg .
J

j begins onceé has ended
<t € — €

j ends oncé is realized _ R
tstf
J
j ends onceé has ended F
i < i
t=J 61

Figure 3.3: Five time-dependency relations are considered.

A pick-and-place action can be described as follows: oneerdibot has grasped the
object, it has to maintain the force closure on the objecteumioving it, and can release it
(i.e. open the gripper) only after the task of displacemesténded. This sequence contains
only two tasks, the grasping task and the moving task,,, and is characterized by two
time constraintstf < ¢/, andt/, <t!. The Fig. 3.4 illustrates this sequence of tasks.

e, & F
S

Figure 3.4: A task is realized during the maintaining period of another one.

3.3 Optimization of a given sequence of tasks

The purpose of the optimization process is to compute arnteis& schedule by taking ad-
vantage of the robot capabilities to overlap tasks (or egerder them), in order to realize a
smooth-looking motion.

3.3 Optimization of a given sequence of tasks 63

Particularly, we want to use the stack-of-tasks formalismetlize several tasks simulta-
neously rather than executing them sequentially, one tifeother.

Quantifying numerically the task overlay is not possibleheTcriterion chosen for the
optimization process is the reduction of the duration ofuhele sequence. Indeed, this
reduction is done either by operating at the task behavieval (by decreasing the duration
of the critical tasks, in other words tuning gains), or by rapieg at the sequence level (by
realizing tasks overlapping). Other criteria, such as #wkiction of the energy or the jerk
minimization, could be used similarly but they do not neaeigsforce an overlap of tasks.

In the same way as a symbolic planner cannot work with nundata, a numerical
optimization process cannot work with symbols. Hence tBkgare converted into proto-
symbols [38]: their definition is completed with numericalwes, that will be the base of
the optimization. Two characteristics of the tasks are ipatarized: their position in the
sequence and their behavior (i.e. the way the tasks areategil

3.3.1 General problem formulation

The general optimization problem is written as follows:

min e (3.3a)
subject tog = SoTx(q,t) (3.3b)
sedx) <0 (3.3c)
¢(q,q) <0 (3.3d)

ttis the duration of the entire mission.

x is the vector of parameters for the optimization.

q andq are respectively the position and velocity of the systenth bepending upon
time.

sedx) and ¢(q, q) represent respectively the tasks constraints and the cubt-
traints. They are defined in section 3.3.3.

3.3.2 Parameters of the optimization

The vector of parametesscontains both the temporal data (time scheduling) that e¢fie
sequence and the gains that define the way the tasks arede@hzk’s behavior).

Task’s timing Some of the times used to define the sequence can be used ae{Easa
of the optimization: the time of insertian, the time of removat’ and the time of end of
the simulatiornt®™ can be tuned by the optimization process. On the opposkstjrtie of
regulationt” is not explicitly considered since it depends on the evolutf the error of
the task. These timings can either be defined as absoluts iree defined with respect to

64 Task overlapping using optimization

t = 0), or relative times (i.e. defined with respect to anotheetimthe schedule).

Using absolute times comes down to directly use as paragteinsertion time! and
the removal time’ for each task. Since all times are defined with respeet,tmoving a
task forward or backward in the sequence will not have anyeanite neither on the other
tasks nor on the time of end of the simulation: it is therefogeessary to add a propagation
mechanism.

As an illustration, consider two tasks; ande., realized sequentially, as depicted on
Fig. 3.5. We want to reduce the time of end of the entire sitarda’, by modifying only
the timing of the tasks and using the fact that the first tasikccbe started sooner (the lower
constraint ort! is not saturated yet ang can still be decreased). Decreasing otjlyvill
extend the duration of the first task (unnecessarily), witlehanging . In order to decrease
" without violating the schedule constraints, it is necessamove both tasks backward in
the sequence, i.e. to decrease the times’, t2 andtl’.

‘tO tEnd
c | &

‘tOI tEnd]

— Ci C.

‘tOI | tEn:d

Figure 3.5: (Up) Initial task schedule. The first task can be started earlier. (Middle) Only the start
time of the first task is modified: the duration of the simulation does not change. (Down) Propagation
of the lag: the duration of the simulation is reduced.

The purpose of using relative times is to implicitly achi¢vis propagation. Each task is
now described by two delays, namely:

1. At!: the delay which occurs between (i) the maximum time of eotrgnd of the
previous tasks, and (ii) the entry time of the task in questio

(jfl‘)eS]’]

At =t — max(max {tjl-}, max {tf}) (3.4)
(j,i)ESFJ

2. AtF: the delay between the entry and the removal times of theitaglestion.

AtF =tF — ! (3.5)

3.3 Optimization of a given sequence of tasks 65

The time duration of the task sequert€&is such that™ = max(t!"). To transform the

equality into aC* constraint, the optimization criteriafi® is computed indirectly, by adding
it to the parameters of the optimization and restraining idding the following constraints:

Ve, tF < =, (3.6)

At the optimal solution=™ will be equal to the maximum termination time of all tasks.

Task behavior In order to modify the way the tasks are regulated, we alsarpaterize
the reference behaviét. The simple attractor presented in (2.8) & —)e, A € RT) intro-
duces a direct dependency betwégeand||e||. The associated control follows a monotonous
exponential decrease that can be penalizing for two reasmnss, it reaches its higher value
at the insertion of the task, whée|| is maximal (fast acceleration), and second, it makes the
task converge slowly (near the objective, the error and ¢timérol are small). The parameter
A only enables to avoid excessive value for the corjrat the insertion, but cannot correct
the slow convergence issue.

A way to correct it is to rather use an adaptive gaia- \(e) that depends on the norm
of the error of the task. We therefore choose the followingtfion:

Ae) = (A" = M) exp (—e]8) + A’ (3.7)

with \! the gain at infinity< the gain at regulation (such as < A\¥) andg the slope at reg-
ulation. The obtained gain gives a non monotonous evolttidime control law (cf. Fig. 3.6).

501 350

B +2F

Adlleld

. . . .))
0 0.2 0.4 0.6 0.8 1 0 100 200 300 400 500 600
llell time (s)

a) b)

Figure 3.6: Typical evolution of a) the gain A(]|e||) and b) the joint velocity ¢ when using an adaptive
gain. The evolution of the joint velocity is not monotonous and shows two inflexion points.

To sum up, the variables of our problem are:
1. the termination time of the entire mission (simulation);

2. the time of entry! and the time of removal” for each task;

66 Task overlapping using optimization

3. the gaing\’, A", 3) describing the execution behavior for each task.

Two sets of variables are thus conceivablexothe one that uses absolute timesa,
or the one that uses relative timeas, g ..

X1,A = [t{v tfa)\{7)\fv 617 ce 7t;[p tf;a)\;[p)\57 5717 tEnd] (38)
x1r = [AH, AT NN B AL AT NN B,) (3.9)

Note that if the task sequence is a chain of exclusive tasksljrectly havex; o = f(x1r).
with f a linear function, and™ = " (At! + Atl)

3.3.3 Definition of the constraints of the optimization probdem
The task sequence must satisfy both the sequencing andabigcrome-constraints enume-

rated hereafter:

Tasks constraints, noted se@k) gather the task sequence conditions (3.2) and the follo-
wing constraints.
For each task;:

Time coherence 0<t! (3.10a)
th < tF (3.10b)

th < g (3.10c)

Termination condition les(t5)]| < e (3.10d)
Gain consistency M < \F (3.10e)

The tasks constraints can be sorted in two categories (tle a2). Some are directly
computable using the vector of parametefthey are even linear when using the absolute set
of parameters). Those linked to the regulation of a taskéeithe termination condition or
the time constraints between tasks) can only be determipadimulationof the execution
(the value found is the value in the ideal case).

Particularly, the evaluation of constraints on time depeng (3.2b) and (3.2d) is not
straightforward, since the timé® is not directly computed” could be approximated by
monitoring the first regulation time of the task, but this hwet is not continuous, and the ex-
act computation by interpolation is a rather fastidioustameé consuming approach. Instead,
a better option is to evaluate the regulation of the task these times. The constraints (3.2b)
and (3.2d) become respectively:

V(i,j) € Srr. les(t))]| < e (3.11a)
(i, j) € Sgp, lle(t))]| < e (3.11b)

3.4 Handling Semi-Infinite Constraints 67

Constraints computed directly usigg Constraints computed by simulation
t; <t (3.2a) tr <t (3.2b)

th <t (3.2¢) th<tr (3.2d)

th <ty (3.2e) les(t?)]] < e (3.10d)

0<t! (3.10a) lei(t)] < e (3.11a)

th < tF (3.10b) les(t))] < e (3.11b)

th < e (3.10c)

M <N (3.10e)

Table 3.2: Two categories of tasks constraints.

Using the relative time parameterization g, the time constraints (3.2a), (3.2c) and
(3.10a) can be replaced by the following constraint on thayde

Vi, 0 < At! (3.12)
And the time constraint (3.10b) can be replaced by

Vi, 0 < At (3.13)

Robot constraints, notedy(q, q) These constraints are mainly due to intrinsic limitations
of the robot:

Joint limits Qmin S q S Qmax (3143)
Ve|OCity ||m|tS Qmin S q S (.Imax (314b)
Collision avoidance 0 <d; (3.14¢)

Qmins 9maxs dminy Gmax are respectively the lower and upper joint limits and thedoand
upper velocity limitsd;; corresponds to the distance constraints between two shjactlj

in the environment. This formulation covers both collis@voidance with the environment
and self-collision avoidance. These constraints must foolthe entire simulationg, g and
d;; are vectors of functions of time. The constraintg),) are indeed semi-infinite. The
next section presents how they have been tackled.

3.4 Handling Semi-Infinite Constraints

3.4.1 Definition
The optimization problem that we formulated has the follogviorm:
min f(x)

subjectto g¢;(x,t) <0 (3.15)
where x e Rt €T (T = [t° t* being an infinite set)

68 Task overlapping using optimization

This problem, noted”[T], is a semi-infinite optimization problem (or SIP) [75]: itin
cludes a finite number of parameters, but has infinitely mamgiraints. The semi-infinite
dimension of the problem is due to the time-dependency: easstrainty must be satisfied
all along the interval of time i.e. all along the motion tr&@ry, V¢. In our case study, this
period is always bounded and is notef ¢7], ((¢].t2) € R?).

vt e [t th], g(x,t) <0 (3.16)

The following section presents briefly some of the classithods used to solve a SIP,
i.e. handle semi-infinite constraints in an optimizatioolgem.

3.4.2 Specific methods

A method usually adopted to handle SIP is to use a discreteap. each constraint is eval-
uated only a finite number of times according to a given ghidt fixes the time interval and
the frequency of the evaluations. Sir@andtf are bounded (each of them can be constant
value or a bounded variable changing during the optimingtt@cess), the discretization of
this interval returns a finite number of grid’s elements.

3.4.2.1 Multiple optimization process

To find the finest grid, an approach based on successive rutne afptimization process
is proposed in [36, 74]: each run considers only a partiad @fito which corresponds
an approximate solutioR;. The sequence of grids converges toward a @ridsuch that

Z-Einoo P[T;] = P[T*]. This method is efficient if the solution of a run can be useeftioance

the convergence properties of the next ones, namely by Usasga new start point.

This approach cannot be applied in our case study, since th@o a priori knowledge
of the constraints that need to be active. The only remaiappyoach would be to consider
a grid of increasing granularity for each ruf (C 7;.,). However, realizing an optimization
with a too large granularity presents the risk to miss thetwhen the constraint is violated.
Hence, the resulting approximate solution will be unuséime grid of smaller granularity,
making this approach inappropriate.

3.4.2.2 Single optimization process

At the opposite, realizing a single optimization procedsagrces the simplicity and the com-
putation time, but may result in a less precise satisfaatiotihe constraints [66]. Using a
relatively high resolution grid, e.g. considering the doaisits at every time step of the simu-
lation, reduces the risks of missing constraints’ violasiobut this also increases drastically
the number of constraints.

Besides, using a time-fixed grid (i.e. a grid whose elememseparated by a constant
delay) is not suitable when the bounds depend on paraméatdrsary during the optimiza-
tion process. Indeed, this results in a variation of the nemalb constraints from an iteration

3.4 Handling Semi-Infinite Constraints 69

to another. Typically, one could consider that the grid ifirdel on the interval of time
[0, 5. Sincet® varies during the optimization process, the number of cairgs will vary.
For example, with a grid that realizes an evaluation evecpisé, the number of evaluation
will decrease from 21 wheti™ = 20s to 6 when® = 5s.

A classical optimization solver (such as CFSQP or IPOPTyireg that the number of
constraints remains the same during the entire optimizgirocess. As a result, using a
time-fixed grid is problematic.

3.4.2.3 Analysis by interval

The purpose of this method is to avoid the problem inheretttéaliscretization approach.
Indeed, choosing a fine grid results in increasing the ogation variables and subsequently
the optimization computation time. More importantly, winadr the discretization grid and
the efficiency of related solver are, there is in theory norgoie that the constraints are
satisfied within a pair of neighboring grid samples. Rathantincreasing the granularity
of the grid or adding a safety margin during the evaluatiothefconstraint (i.e. replacing
g <0byg+e <0,e > 0), interval-analysis based methods work on the intervakd@ihition

of the variables [67, 56]. Evaluating a functign R” — R on a whole interval defines a
set of reachable values such that:

fla, 7)) = {f(@)|x € [z, 7]} (3.17)

Hence, ensuring that the constraints are always satisfraés€down to modifying the inter-
val of definition of the parameters so as to make the violatmartainly tractable.

This approach is appropriate when the expression of thectajy is explicit, e.g. when
trajectory is defined using B-splines [56]. In our case, tagttory is computed implicitly:
it is the result of a numerical integration of the controlagiby the stack of tasks. Thus this
method is not applicable straightforwardly to our problem.

3.4.3 Defining a constraint handler for Semi-Infinite Constaints

The method we adopted is based on a time-fixed grid: the eua@hsaare realized at fixed
time step. Yet, to avoid the issue of the varying number ofst@ints, a post-treatment is
realized so as to always return a constant number of evahgtiegardless of the number of
evaluations realized by the grid.

Once the requirements defined, several methods are préssrdecompared, sorted in
two categories: the first one gathers the evaluations exhtn the whole interval as a single
value while the second one returns a set of values.

3.4.3.1 Requirements

Our solvers requir€?, preferablyC' constraints with respect to the variationsofContinuity
with respect to the modifications of the gain is straightfamv The variations with respect

70 Task overlapping using optimization

to the times of insertiot! and removat!" are particularly important, since they correspond
to discrete events that may introduce strong variationsercontrol computation.

As mentioned earlier, the evaluation of the constraintgadized through a simulation,
at each time step and at each interpolation point. We iryatstd the following methods:

3.4.3.2 Single constraint

Maximum constraint value g¢,,.. Taking the maximum value (signed max distance of the
constraint to 0) is the simplest way to associate a singleevéd a set of constraints of
unknown size. This method has two drawbacks: (i) the maxtfonds onlyC® (the gradient
of the maximum is not continuous, since the maximum can juetwéen two local maxima)
and (ii) only the global maximum can be observed. Hence, mdrike local maxima will
be taken into account, although they may also reflect a ainstviolation. During the
optimization process, the constraint is likely to switchuadily from a maximum to another,
and this switching may influence the convergence properth®fsolver, especially if the
switching occurs for maxima in opposite directions.

Gmax = X, g(x,1) (3.18)

It is necessary to take into account the value of the comsgrat interpolation times in or-
der to avoid discontinuities. This issue can be highlightgidg a single task with a constant
gain and whose insertion is not smoothed. The resultingrabdécreases monotonously:
the maximal value is reached at the insertion of the taskchvimay not happen at a time
aligned with the grid. Thus, if the value of the constraintted interpolation points is not
taken into account, the value considered will be the onergbdet the next step of the grid,
which is inferior to the value reached at the insertion. The B.7 shows the gap between
the two values obtained with and without considering therjplation points. In the former
casegmax = 1, While in the latter case,,., = 0.915.

As a result, when the interpolation points are not taken atoount, the constraint of
maximal velocity has a serrated and periodic evolution wetfpect to the time of insertion
of the task (the period is the span of the grid). The correltteves only obtained when the
time of insertion is aligned with the time of evaluation. THig. 3.8 shows the evolution of
the constraint of maximal velocity for a task whose time gErtion varies. The interpolation
points are not taken into account and the span of the grides fia 5 ms.

Sum of the violation gs., In order to implicitly take into account the multiple corestrt
violations (for a single set of constraints), we proposevedeate the constraints in a single
value, gy, i, defined as follows: if the constraint is always satisfiednttt is the higher value
of ¢g(t), somax(g(t)). Otherwise, it is the area of violation, i.e. the area coddrg the
curvet — max(0, g(t)) (cf. Fig. 3.9). This method is als@’: if the constraint always has
a negative value, it behaves like the previous method. Aiswe this method behaves as a
max operation when the constraint is not violated, it is mandato take into account the
constraint value at interpolation points (for the sameargas

3.4 Handling Semi-Infinite Constraints 71

-
=
o
a

dq
—— max(dq) with interp. pts
— — — max(dq) without interp. pts

o
©
T

dq
— max(dq) with interp. pts
— — — max(dq) without interp. pts|

o
@
T

o
3

o
o
T

0.95F

dq (rad/s)
o
o

dq (rad/s)

o
~
T

o
w
T

0.9 i

o
N
T

o
o

o

. . . n 0.85 i I i i
0 1 2 3 4 5 0.1 0.15 0.2 0.25 0.3
time (s) time (s)

Figure 3.7: a) Evolution of the control for a simple task (with a constant gain), and the associated
constraint g, (with a grid span of 0.2s). The red plain (resp. dashed) curve represents the evolution
of the constraint g,,. With (resp. without) taking into account interpolation points. b) A closer view of
the same simulation for ¢ € [0.1,0.3].

-0.9158

-0.916 -

-0.9162

-0.9164 -

-0.9166 |-

Maximal angular velocity (rad/s)

-0.9168 |-

-0.917

15 20 25
Time of insertion of the task t (ms)

Figure 3.8: Discontinuous evolution of the constraint of maximal velocity with respect to the time of
insertion of the task when the interpolation points are not taken into account. The grid span is fixed
to 5ms.

In the following, the penalty associated to a violation isgied by a user-defined coef-
ficientk, in order to observe the influence it has on the convergeraepties.

| if g(t) <0, max(g(t), gxx(?))
guk(t +0t) = { else aor(D) 1 kot mamc(g(£).) (3.19)

wheredt is the integration step.

3.4.3.3 Evaluation on a family of subintervals

The two previous solutions only considered one observatitime constraint violation for the
entire time interval. Instead of a single evaluation forititerval [t/ t'], a set of time inter-

72 Task overlapping using optimization

e

Figure 3.9: Definition of the area of violation gs . In this case the total value correspond to the sum
of the three red areas.

valsT;...,, such as{tf], tf] C Uien,n Ti could be used, and the constraints could be evaluated
on each interval’; using the maximum or the sum of the constraint violation axdeed
above. Yet, as noticed earlier, defining intervals by fixetes can be a problem (e.g. the
time interval may not be evaluated any more if the simulagaded first). Therefore, we
decided to define the time interval relatively to discreterds.

Constraint by task gmax /e Associating the robot constraint$q, ¢) to the whole simula-
tion can raise an issue: a violated constraint cannot beydiagied to the “responsible” task.
This is even more difficult considering that there is taskriamping, and that several tasks
can realize a same action. For example, if there is a viglaifdhe constraint of maximal
joint velocity for a joint of the left arm, the best conclusipossible is that one of the tasks
involving the left arm (or several of them) has violated tbestraint, but it is impossible to
know which one(s) precisely.

In order to compensate this problem, we consideadditional sets of constrain{q,),
noted¢;(q,q),i € [1...ne|, (with n, the number of tasks in the sequence). Each set
#i(q, q) is computed only when the tagk is in the stack (during the time intervgf, t],
cf. Fig. 3.10). The optimization problem contains thgs-1 sets of semi-infinite constraints:
one per task and one covering the whole sequence, so as totakecount the constraints
when the stack of tasks is empty.

Constraint by set of tasks This approach is similar to the previous one, except that an
evaluation is associated to each ordered combination k$ feble to describe the state of
the stack-of-tasks controller during the simulation. K thumber of tasks is important and
no extra information is given on their respective priorttyis method will be inappropriate
since the number of cases to consider will be combinataaiad, an important part of the
envisaged combinations will not appear during the simaitati

3.4 Handling Semi-Infinite Constraints 73

to te nd
¢
[€, |

: : Cs
.

: 9

L i B,
i ¢1 2 \

Figure 3.10: Assigning an additional set of robot constraints ¢;(q, q) to each task enables to track
more easily the task responsible of the violation of a constraint than using solely a constraint set for
the whole motion. Red zones of e; and e4 represent constraint violations during the task. These
violations appear on the additional set of robot constraints ¢, ¢» and ¢, and make the research of
the responsible task easier. In case of task overlapping, a set of responsible tasks is found.

3.4.4 Comparison of the constraint handlers

3.4.4.1 Comparison of methodg,.. and gs

These two methods are compared using a function that exlsi@i/karal maxima. Lef, be a
third order polynomial functionf,(¢) : t — Z x;t' and F(x) = f fx(t)dt be its primitive.

The criterion is the maximization of the area The consdermlmlzatlon problem has a
semi-infinite form:
max I3 fx(t)dt

sc. vt € [0,1], fx(t) =1 <0 (3:20)

1.25

- =10
12|| ——c(t)=1

1.15

11

1.05 . .

0.95F '

0.9
0

0.2 0.4 0.6 0.8 1

Figure 3.11: Graphic representation of the optimization problem. The criterion is to maximize the
area of the zone under the blue curve. The orange zone represents the forbidden zone.

74 Task overlapping using optimization

The Fig. 3.11 illustrates the optimization problem. Theiioh is the sek* = [1, 0, 0, 0],
that defines a constant functigp. (¢) = 1, such that’(x*) = 1.

The optimization is performed using the SQP solver of Matldlne gradient of the
criterion and the gradient of the constraint are estimayefthite differences.

Constraint type Iterations| Time spent| F'(x) — F(x*)
Gmax 65 22s44| 3.299.107°
95,1 305| 1 min25s00[0.275.107°
9s, L 61 21s03| 8.800.1073
9,1 362 | 1min57s09 0.618.1073
Is.2 119 31s90| 8.682.107°
Sy 163 37s47| 4.075.1073
952 81 23s14| 8.741.107°
9,10 107 24s37| 8.740.1073
9,2 21 24s90| 8.739.107°

Table 3.3: Comparison of convergence results using the methods gn,.x and gs .

Table 3.3 compares the results of the optimization consigetifferent type of cons-
traints. The optimization process stops without findingdpamal solution with the cons-
traint g..x; Which was expected. Unfortunately, the metlgd, does not seem to converge
to the optimal solution neither, whatever is the value ofglaeametef:.. Results of this test
suggest that for small values 6f the approximation found was better than the one found
with ¢g...«, but the convergence towards a solution is too slow to baeaipe on more com-
plex case studies (such as ours).

This is the reason why we finally adoptegd., as the evaluation method in solving our
problem.

3.4.4.2 Comparison of methods using the simpleax and the max by intervals

These two methods are compared using a sequence realizaak@abd forth movement of
an arm, represented by a chain of tasks (Fig. 3.12). In thasnchhe tasks:,,, e;, and
esa (resp. emn, €2, andesy,) have identical definitions of the error and the Jacobiane Th
only constraints considered are the joint velocity bourids {asks are defined so that joint
position bounds hold and collisions are avoided).

As mentioned earlier, using only a single evaluation of treimum constraint on the
whole sequence may cause convergence difficulties. Congideore constraints gives a
more precise overview of the evolution of the control andhe tonstraints, providing a
better result, as shown in Table 3.4.

In the following, the Semi-Infinite Constraints will be haed with the method,,,.. /.: @
set of the considered Semi-Infinite Constraints is assettitt each task and evaluated only

3.5 Optimization via simulation 75

Figure 3.12: Sequence corresponding to a back-and-forth motion.

Constraint type Constraints number Optimization duration iterations| ¢=(s)
Imax 103 1h21min25¢ 45| 34.20
Jmax /e 583 1h38min10s 65| 22.44

Table 3.4: Comparison of optimization convergence during a back-and-forth motion, considering
either a single value for the constraint (gmax) Or @ constraint for each task (gmax /e)-

when the task is active. The resulting constraint corredpdo the maximal value for the
time interval[t!, tf].

1771

3.5 Optimization via simulation

3.5.1 Solver used

The optimization problem considered here is a non-lineastained parametric problem,
with continuous criteria and constraints, whose gradiargsnot provided (formulating the
gradient of the constraints functions with respect to patans appears to be particularly
difficult). Even if the computation of the control law is sntbpthis problem is only due
to the method chosen to handle the semi-infinite constréatsed on thenax operator).

Depending on the properties, the type, and the data avaitdilain optimization problem,
some solvers are more suitable comparing to others. To aelyadew:

e Ipopt [89] and Logo [87] both solve constrained optimization penlis with twice
continuously differentiabled?) criterion and constraints. The gradient must be provi-
ded but the Hessian can be approximated.

e The MATLAB optimization toolbox [15] and CFSGH52] propose Sequential Qua-
dratic Programming (SQP) algorithms. Both assume that fiierion and the cons-
traints are smooth, and may realize an approximation of thdignts if they are not
provided.

e Solvopt [47] handles non-linear non-smooth problems.

Considering that the optimization problem is oR; Solvopt seems to be the only suit-
able solver among the list we described. Yet, despite thenpial derivative discontinuities

2| nterior Point optimizer
3C code for Feasible Sequential Quadratic Programming
4Solver for localoptimization problems

76 Task overlapping using optimization

of some constraints, the solver CFSQP converges towardfysaj solutions that are better
than those found by Solvopt. Since SQP solvers give bettéoipeance when the gradients
of the constraints and the criteria are given, they are apmiated by finite difference, even
if this approximation is time consuming.

Hence, the solver used is CFSQP.

3.5.2 Dialog solver - simulator

At each optimization step, the solver chooses a new set ahpetersx. The corresponding
constraints are then evaluated. As stated in Section 28lBfew of them can be evaluated
directly, since they correspond to a linear function of tikeeter of parameters. In order
to evaluate the other ones (especially the constraintsivelto the robot), it is required
to realize a complete simulation of the task sequence. Asuatrehe chosen value for
the current optimization variable vectaris transmitted by the optimization solver to the
simulation engine, which returns the evaluation of the tanss. The optimization solver
then computes a new step vecigruntil convergence.

3.5.3 Simulation

The computation of the control for a given hierarchy of taiskdetailed in Chapter 2. The
simulation is basically a numerical integration of this atijon, using an explicit Euler in-
tegration method with a fixed step. The entry and exit timesaith task! andt! are
continuous variables that are not aligned with the grid. sehiestants correspond to dis-
crete events that create a modification in the control. Afignhese instants to the next time
step will create discontinuities in the control evolutioittwespect to events. To solve this
problem, the contentious time is added as an integration point during the time interval
t,t + dt], splitting it into the two smaller on€s, ¢,] and[t,, t + dt].

Initialization
[t tf ot tE 59 = conput eTi mes (x)
59 = max (t])
t=0
while (¢ < max(t= ¢t5%)) do
q(t) = SoT(q(t), 1)
ot =findTi meSt ep(t, ot)
gj(x,t) = conput eConst r ai nt s(¢, 6t')
(t,q(t+ot")) =i ntegrate(t,ot’,q(t),q(t))
end
Algorithm 1: Tasks sequencing simulation.

The algorithm 1 describes the simulation. The functionsluse:

e conput eTi mes computes the absolute times using the relative times.

3.5 Optimization via simulation 77

e SOoT computes the control induced by the tasks execution.
e conmput eConst r ai nt s evaluates the constraints.

e findTi meSt ep computes the required time step for the Euler integrationor a
smaller one if needed, due to the need of splitting this watian two.

e i nt egr at e updates the simulated objects or processes.

3.5.4 Enhancements of the optimization process

To reduce the time taken by the optimization process, thdal@mving methods were used:

3.5.4.1 Scaling

The problem includes constraints that are not homogendiouss, angles, velocities, distan-
ces...) and do not work on the same scale. As a result, theptduane the same influence
during the optimization process. In order to reduce theakestifferences, a normalization
based on the value of the constraints obtained by the exectite initial set of parameters
X, IS realized. The effects of this scaling operation is stddioe the four next sequences:

1. A sequence containing only one task;

2. A sequence where a task has to be realized during the nméamgtgeriod of another
(cf. Fig. 3.13a);

3. Asequence realizing simultaneously three conflictingtpming tasks (cf. Fig. 3.13b).
ey defines the position of the heag}, the position of the left armgr the position of
the right arm. The three tasks share the waist joint. Thetipasof each task with
respect to the other ones is fixed arbitrarily;

4. The back-and-forth motion illustrated on Fig. 3.12.

(@) (b)

Figure 3.13: a. Sequence where one task has to be achieved during the maintaining period [¢t7, t!']
of another one (left). b. Sequence where three tasks are realized simultaneously (right).

The results are shown on Table 3.5. For each sequence, amzgiton is run only on
the timing (the gains of each task are fixed) and another oneisn both the timing and

78 Task overlapping using optimization

gains of each task. To compare the results, the first elenoersidered is the result of the
optimization (namely the time of end of the entire simulati§”), and the second is the
number of iterations, i.e. the convergence speed. For ggtians realized only on the
timing of the tasks, the result is generally the same (ondyfturth sequence is a little less
optimal), but it is obtained in fewer iterations. For optaaiions realized on both the timing
and the gain of the tasks, the solution found is better, uhtimber of iterations realized is
bigger. Hence, generally, the optimization process cayageeither faster or towards a better
solution when using the scaling operation.

Sequence Gains Scaling| Optimization| Number of | ¢(s)
number duration| iterations

1 Fixed off 4 min37s 30 43
on 2min34s 17 43

1 Optimized off 5min02s 39 9.76
on 5min 23s 42 9.76

2 Fixed off 10 min46 s 54| 36.31
on 10 min09 s 44 | 36.31

2 Optimized off 15min39s 43| 22.23
on 14 min 27 s 44| 18.73

3 Fixed off 17 min 38 s 71| 14.03
on 16 min 48 s 61| 14.03

3 Optimized off | 1h 04 min56 s 23| 102.67
on| 1h54min25¢g 79| 32.44

4 Fixed off | 1h 02 min 46 s 49| 77.00
on 56 min 09 s 43| 77.05

4 Optimized off | 1h06 min43 s 33| 33.73
on| 1h38minl10§g 65| 22.44

Table 3.5: Comparison of optimization final state with and without scaling the constraints.

3.5.4.2 Group of tasks

The complexity of an optimization on the entire sequencesks increases more than lin-
early with the number of tasks, thus it is beneficial to sjbié tvhole sequence into smaller
ones. This cut can not be realized everywhere: due to thehp@sserlay between tasks, it
is only possible to split a sequence in two if a task of onesedpience can never be realized
at the same time than a task of the other sub-sequence.

The sequence represented on Fig. 3.14 is composed of tlnaesyrealized sequentially.
Each of these groups contains two tasks realized simulteshgaue to the time constraints.

The Table 3.6 shows the results obtained while realizingogiténization on the entire
task sequence and while realizing three separate runs brgeaup. The comparison is now
first realized on the result of the optimization, and secondh@ computation time, since

3.6 Discussion 79

..

Figure 3.14: A sequence split into three groups.

Optimization duration Number of iterationsg ¢ (s)

Group 1 20min47s 75| 15.90
Group 2 24min51s 105| 12.69
Group 3 22min58s 70| 18.08
Total 1h08min36s /| 46.67
Full sequence 2h24min2ls 59| 49.42

Table 3.6: Comparison between an optimization realized on an entire sequence and three optimiza-
tions run on the corresponding subsequences.

the number of iterations cannot be used to compare the twersgs Even if the whole
duration of the sequence has been reduced, the most natgiri@viement is the diminution
in computation time. Indeed, since the number of tasks irséggience is reduced, the time
taken by the evaluation of the gradient by finite differerxcalso reduced.

3.6 Discussion

This formulation of the optimization problem raises two m@&sues, both related to the
continuity of the task sequence, and are worth to be noted:

3.6.1 A posteriori evaluation of the constraints

The first issue is that the mechanisms of insertion and rehoovsadepend on the time: the
condition of regulation of a task is evaluatagosteriori In other words, the task may be
removed too soon (nothing proves that a task had been regu#tt”), causing a distortion
of the whole task sequence (it is the case of the pick-ance@aquence, when the picking
task is not achieved correctly). This kind of incoherentesttie may be requested by the
solver, e.g. during the line search, and the criterion aedtmnstraints computed may not be
meaningful.

In order to remove a task, two conditions (at least) must bsfea: (i) the task has been
regulated{ > t%), and (ii) the removal time has been reached or exceeded:{). These
two conditions are not similar: (i) expresses the fact thatremoval time of a task is inde-
pendent of its regulation time, and (ii) recalls that a taséusdd not necessarily be removed
as soon as the task is regulated, and may be maintained itatiie s

80 Task overlapping using optimization

3.6.2 Discontinuity due to discrete events

The second issue is due to the discrete events. Ensuringttiiwaity of a task sequence
with respect to the time for a given set of parameters doable at low cost: the continuity
of the control is ensured by using a damped inverse in cask-adriditioning, while the
continuity during discrete events can be ensured by usmgdequate smoothing operation,
as shown in previous chapter.

Yet, as shown in section 2.2.6, this does not ensures thénodgtwith respect to the
optimization parameters. To sum ufy, : t — (fx(t) = q(t)) is continuous for a givens,
while f : x — (fx : t = q(t)) is not. Indeed, the smoothing operation is likely to create a
discontinuity of the control with respect to these eventsp&hding on whether a smoothing
operation has to be realized or not, the shape of the cominohtay accuse strong differ-
ences (cf. Fig. 2.14).

The safest way to ensure that these events will not createliaogntinuity is to impose
the order of the events. Imposing only the priority betwessks is not enough, since it is
the order of events that makes a swap of priority of tasksireduand this order is condi-
tioned by the position of the tasks. This approach is safetdaurestrictive: for compatible
tasks, the swap is instantaneous (no smoothing operati@yisred), hence whatever the
respective positions of each task, the control law will rent@ntinuous. As a result, deter-
mining which sequence of task give the smaller ending timele sequence is a problem
that cannot be done directly using the proposed optimiagitroblem.

3.7 Conclusion

In this chapter we presented a method to perform task oyarigy formulating it as an
optimization problem. Task overlapping aims at reducing dlration of a sequence and
smoothing the robot motion, by finding the best timing anchgdor each task. The opti-
mization is solved using Sequential Quadratic Programralggrithm, and the handling of
the semi-infinite constraints (inherent to simulationsadepng upon time) has been defined.
The flaws of this method have been mentioned: first, the caresggomputation time of the
optimization process prevents the use of this method intiea, and second, this method
optimizes the sequence while respecting the initial ordevents, although reordering them
can lead to a better solution. There are rooms of investigatihat will be discussed in the
thesis concluding section.

Next chapter presents the tools used to realize the optilmiza&specially the simulation
engine used to simulate the environment for a given set @ipaters and compute the cons-
traints. It completes the results of this chapter by stuglyire effects of the smoothing of
the control law on the optimization process, and presenexparimental application of this
method on the humanoid robot HRP-2.

Chapter 4

Simulations and Experimentations

The previous chapter closes our theoretical contributioimsthis chapter, we gather the
simulation and experimentations that have been achievddryer scale scenarios in order
to assess and validate the theoretical results. We alsibttietéechnical parts of the software
developments.

First, we describe briefly the simulation tools used, nantledyinverse kinematic fra-
mework (StackOfTasks) and the dynamic simulator (AMELHAd detail the contributions
realized in both of them in the frame of this thesis. Then, wels the influence of the
control law smoothing on the convergence properties of fitenization that leads to task
overlapping process. Finally, a real scenario is experietewith the HRP-2 humanoid
robot. We took an existing scenario (take a can from a fridlgef) was previously addressed
in a classical sequencing way and enhanced it using our peaipmethod.

4.1 Implementation of the inverse kinematic

The control framework used to implement the stack-of-tas&shanism described in Chap-
ter 2 is related in [64]. In the following, it is named SoT asaanonym for StackOfTasks, so
as to make a distinction between the software framework la@dhteoretical stack-of-tasks
mechanism.

4.1.1 Presentation of the framework

The software is organized by entities and signals, sinyilarthe mechanism of boxes and
links in Simulink [17]. Each output signal is parameteritgda set of dependencies —input
signals— that must be known or preliminarily computed ineorid compute the value of the
output signal at each time step. The SoT is structured asianted-graph. Thanks to this
structure it is possible to update only the necessary sghal are induced from a request

82 Simulations and Experimentations

of a given (other) signal (i.e. those on which the requestgaas depends on) instead of
updating the entire system, thus reducing the computateh c

Each “task” entity defines a signal errerthat corresponds to the difference between a
signals and its desired valug* (see Fig. 4.1). This error is used to compute the desired
behavioré*, but can also be used by other entities, for example to coerpetvalue of the
adaptive gain\(e).

The Fig. 4.1 is a simplified representation of the entitiesegponding to a task and an
adaptive gain. Both of them are defined by a set of methods aed @f input and output
signals. The dependencies between the entities corresptmellinks between these signals.
An output signal can be linked to several input signals, bubaut signal can only be linked
to one output signal. For example, the “task” entity defirmesnputes and shares with the
other entities the task erreras an output signal; it can then be used as an input signakby th
“AdaptiveGain” entity.

S o—>t Task >—e]
S e&—>rcomputefJacobian >—@ e
AMe) €

lcomputeError >

AdaptiveGain
» > Me)

computeGain

Figure 4.1: Simplified representation of the SoT: two entities, a task and an adaptive gain, communi-
cate via the system of input and output signals, plugged together.

The description of the operations that are required to @dasignal is a good way
to illustrate the mechanism of the SoT. For example, the t@pdathe desired behavior
é&* = e)\(e) is decomposed into the set of following actions:

Updateé* = e)(e)
— Updatee
— Updates
— Updates*
— ExecutecomputeError
— Update)(e)
— Updatee (which does nothing this time, since it is already updated)
— ExecutecomputeGain

This framework is implemented in C++, but the manipulatidrthe entities can be
achieved using a scripting interface. This interface atldkae user to load the libraries that

4.1 Implementation of the inverse kinematic 83

define the entities, to create and destroy instances of #regees, to plug or unplug signals
and to manually access their parameter values (read ane) wAt CORBA server is also
provided to wrap the script commands and communicate wélsémsors and the robot we
are using for the experiments.

4.1.2 Implementation of the smooth control

The control law described in Chapter 2 is implemented witheéSoT framework. We briefly
address hereafter its implementation, along with the a#ilbich on a real-size example.

4.1.2.1 Characteristics

As a reminder, the characteristics and rules of the smoattr@ldaw are as follows:

e The control law is computed with the damped-inverse apprpaesented in (2.8), so
as to be robust to singularities:

G =qio1+ (JiPi) (& — Jiciq)

e Atask can only be inserted and removed at the end of the stackprocess is realized
using an insertion gain’"* (2.26):

(.In—i—l - (.In +)\Ins(']n-l-an)T(é;.g_l - Jn-i-l(.ln)

e The swap of priority between two tasks is made only througttessive swaps be-
tween two adjacent tasks (in the SoT). It can be instantanédie two tasks do
not conflict (i.e. gajs) = ds|a]), either way it is necessary to smooth the swap by
realizing a linear interpolation between the two controlda g andqga; (2.25):

g =adamp + (1 —a)dam

In practice, we realize at most one discrete operation lkyaad by time step (e.g. a task
cannot be swapped twice during the same time step). As a,resaNing a task from the
top to the end of a stack containindasks (including the task moved) lagts-1) time steps.

The functiona used to realize the smoothing grows continuously betweenlGand is

defined by:

alt) = % - %cos (d(t —t1)) (4.1)

This function is only defined on the intervf,, ¢t} + Z]. t! corresponds to the start of

the smoothing period, andis a user-defined value that fixes the duration of the tramsiti
At =T,
d

84 Simulations and Experimentations

4.1.2.2 Example

The following example compares the evolution of the claseitrol law and the smoothed
control law for a sequence of tasks realized on the HRP-2trolvothis sequence, three
positioning tasks are inserted and removed by order oftinse(the first task inserted is the
first removed). The three tasks considered and their ragpdichings are:

| Task Description Timing |
eL “Move the left gripper” [0.0s, 2.0s
eRr “Move the right gripper” [0.5s, 2.55]
eq “Open the right gripper” [1.0s, 3.0s]

The tasksy, andegr are coupled (they share the waist joint), but the t@&agsks perfectly
decoupled from the two of them (i.e. there is no dof in common)

The Fig. 4.2 represents the evolution of the control witresabothing. The evolution of
the control is smooth (thanks to the damped inverse), exatepach insertion or removal,
that creates a discontinuity in the control. The Fig. 4.3espnts the evolution of the control
when each task is inserted and removed smoothly. Yellovsaegaesent the insertion period
of the three tasks. Since each task is inserted at the ene stalck, this insertion process
starts immediately, and the duration of this process is #meesfor the three tasks (0.8s).
Similarly, the removal process of the task starts as soon as the order is given {at3.0s),
since it is the only task in the stack at that moment (henceat the end of the stack).

At the opposite, the removal processes of the tagkander, cannot start immediately.
First, they have to be moved to the end of the stack. For tlkeel@sthis process is decom-
posed into two steps: first, a swap between the tagkandeg, and second, a swap between
ec ander,. The first swap cannot be realized instantaneously, sircevh positioning tasks
are conflicting: a linear interpolation has to be realizedrduthe period [2.0s, 2.08s] (rep-
resented by the green area). At the opposite, the second befayeerer andeg, can be
realized instantaneously.

It is important to notice that because of the smoothing mees, the actual removal time
of each task is more or less delayed. The removal of thedgsis delayed of 0.08s (the
minimal delay possible, conditioned kY, the removal of the tasdq, is delayed of 0.0805s
(the additional five milliseconds correspond to the instaabus swap witkg, that lasts
one time step) and the removal of the tagkis delayed of 0.165s, because of the swapping
processes.

4.1.2.3 Issues of the smoothing process

This additional delay taken by the transition process caotme critical when there are too
many tasks in the stack. For example, the delay taken toaepiee task of highest priority
by a new one (not yet inserted in the stack), is in the worst eagial ta2nAt, wheren is
the number of tasks currently in the stack of tasks. Indeest, the top-priority task must
be put at the end of the stack, which cogts- 1) swap operations, then it can be smoothly

4.1 Implementation of the inverse kinematic 85

0.3

0.2

0.1

-0.1f

-0.2}

dq (rad/s)

-0.3| >

-0.4|

0.5 1 15 2 2.5 3
time (s)

>

eL eG
eR eL eG
>

Time

Decreasing priority
@
o

Figure 4.2: Evolution of the classic control law (without the smoothing process). The upper graph
represents the evolution of the control law ¢. The lower graph represents the state of the task during
the simulation.

removed, and only then the new task can be inserted and piatieeltop of the stack, which
also costgn — 1) swap operations.

As a result, smoothing the control law may cost a loss of rgact Nevertheless, in
some configurations, the user will prefer to have importamiations in the control rather
than spending too much time to ensure that it is smooth. Bhise case when the humanoid
robot HRP-2 has to track a posture-based trajectory cordgawtehe contact planner [24].

86 Simulations and Experimentations

dq (rad/s)

-0.5
-0.6
-0.7 | |
-0.8 1 | 1 \ | 1
0 0.5 1 1.5 2 2.5 3
time (s)
% A
g
S
&
20 / Ce Cr
‘7
S / C | Cc €
o
(] h \
sy Cu N CL Cs |\
>
Time

| Instantaneous swap 4 Smoothed swap

Figure 4.3: Evolution of the smooth control law. The upper graph represents the evolution of the
control law §. Yellow areas represent insertion periods. Red areas represent removal periods. The
green area represents the interval of time during which the swap between er and ey, is realized. The
dotted lines represent the times where a swap is requested. The lower graph represents the state of
the task during the simulation.

To maintain the equilibrium of the robot, a stabilizer thah®de considered as a high priority
task, is used. Yet, this stabilizer —conceived to closedbe bf the preview control walking
approach of the humanoid robot— should not be activated wheenobot leaned on objects

4.2 AMELIF, a simulator for haptic and dynamic rendering 87

of the environment with the upper body (i.e. when additiac@itacts occur on the body
of the robot). As a result, during the entire simulation ofaayclic motion, the stabilizing

task is continuously switched ‘on’ and ‘off’ and ‘on’ againc@rding to the posture of the
robot and its contact configuration with the environmentisT&typically a case where the
reactivity is preferred to the smoothness of the trajectory

The second issue, already mentioned, is the continuity eftthjectory. Indeed, the
control law is now guaranteed to be continuous with respethe time variable, whatever
the insertion and removal times are. However, when corigigléhe trajectory of the robot
as a function of the insertion time, we have, mathematicgibaking:

F:thF = (qg:t—qt) (4.2)

with ¢F = (¢ ¢ .. ¢] t5") € R?" the finite set of insertion and removal times. For each
set of continuous parameters, a different trajectory (asndiruousC' function of time) is
obtained. Then, it might happen than the mappmg not continuous. In particular, when
the insertion time of two tasks swaps, passing fridmc tjf. to t§ < tf, then the trajectory
mapping.F is discontinuous. This is due to the additional delay memibabove: when
th < t§, the taske; is delayed due to the insertion of the taskwhile, suddenly, when
ti < tf,itis the taske; that is delayed.

This second issue appeared to be problematic in the optimizprocess (i.e. to the
solver). To our best knowledge, it does not call into questlee on-line controller. This
problem will be discussed again later in this chapter.

4.2 AMELIF, a simulator for haptic and dynamic render-
ing

The SoT framework allows a user to compute the control lawesmonding to the regulation
of a given set of tasks organized into a hierarchy for a givarfiguration of the robot and
the environment. In order to perform dynamic simulatiortsoducing the robot, the SoT
has been integrated to the dynamic framework AMELIF.

This section is a brief overview of the structure of the AMELframework. Its basic
components are detailed, and a demonstrative simulatjgresented.

4.2.1 Presentation

AMELIF [27, 26] is an integrative framework that proposesAfl for the representation
and simulation of virtual scenes including articulated ibed It was devised to realize in-
teractive scenario studies with haptic feedback while liag an interface enabling fast
and general prototyping of humanoids (avatars or robot8)ERIF is entirely developed in

C++ and has been successfully tested under the Linux anddwmdperating systems. The
architecture of the framework is based on a core librarynupbich different modules are

88 Simulations and Experimentations

built with minimal dependencies among them, hence allowingophyte user to utilize only
the libraries s/he is interested in while requiring a minikreowledge of the interfaces.

In the following, the core components are briefly introdyae my main contributions
are indicated by a star (*).

4.2.2 Basic libraries

The core library provides the generic tools liable to be used by many modules:

e Mathematical tools: optimized implementation of small tees and matrices (3D),
matrix abstract layer for external matrix libraries (susivAL*! and EigeR);

e Communication and manipulation tools: containers, casabservers (listeners and
publishers), XML parsers.

e Multi-threading: thread handling, memory sharing systéansmulti-threaded con-
texts, chronometer.

e Basic external device handler: keyboard and mouse handlers

The state module provides the interfaces of the components that describetaavien-
vironment. The simulated objects are articulated and tivains are linked by joints of
different types (revolute, prismatic or spherical). Eachwated object is defined by its
physical (mass, inertia, deformable or not) and geomefpicgerties (shape, color, rigid or
deformable) and its position in the environment (positi@lpcity, acceleration). A specific
XML parser enables to build the environment starting fronX8L file. Each of the classes
is provided with a default implementation that can be inleerand adapted.

It is the main module for the simulation of a virtual enviroant: most of the information
pass through the bodies and the other modules use it to reaoldify the state of each object.

The collision detection module* enables to detect and display the collisions between the
objects of the simulated environment and compute the distaatween them. For this mod-
ule, an abstract interface is provided so as to wrap exteatigdion query libraries. For now,
the default external library used is PQP (Proximity Quergikage [49]), and the integration
of the STP-BV library (Sphere Torus Patches Bounding Volsifii§) is ongoing. STP-BV
creates convex bounding volumes around objects, thusiagghat the evolution of the dis-
tance between the bounding volumes is continuous. ThesmwiB are accessible either by
direct query on the collision detection module or by a systéwbservers.

A system of groups allows the user to limit the collision @éten on specific parts of the
environment. Hence, objects known to never collide (e.tnay are too far from each others)

LVNL is the numerics library contained in the collection of €4ibraries VXL http:// public.
ki tware. conf vxl /doc/ devel opnent / books/ cor e/ book_6. ht m
2A C++ template library for linear algebte t p: / / ei gen. t uxfami |l y. or g/

4.2 AMELIF, a simulator for haptic and dynamic rendering 89

can be distributed in separated groups, so as to avoid ssadesputations. Also, a group
can contain only one articulated object, in which case issoaiated to the detection of its
self-collisions. Flags define the set of possible querieBigon detection, interpenetration,
distance...) and can be associated to a specific group cofdzadies.

The dynamics module* proposes an interface and a default implementation tozesali
physical simulation of a virtual scene composed from okjaat articulated bodies. The in-
ternal structure of this module reproduces the structutikeoénvironment and completes the
definition of the articulated objects with specific informoats. Besides, the dynamic module
is defined as a listener of the collision module, and is itagitiblisher of interactions, that
are collisions augmented by the corresponding interaéticoes.

The default implementation is based on the two-steps mgiregented in [13, 12]:

1. Computation of the free dynamic (without contacts), takés into account the gravity
force field and the external forces (such as those due tochiapgiractions), with the
Featherstone algorithm [29]:

tree = A(q) "' (T(q) — b (q,4) — g(q)) (4.3)

2. Computation of the contact and impact forces, using caimétbased methods so as to
avoid interpenetration of objects< f. | a. > 0 and computation of the additional
acceleration:

de = A(q) ' IIE, (4.4)

The computed acceleration is then integrated with a nurlenethod (e.g. simple Euler
integration), and the state of each object of the state neddulpdated.

The control module* wraps the SoT framework. It enables defining any object in AME
as an entity and using its attributes as signals in the SaWewaork. For example, once a
multi-articulated object is defined as an entity, its positivelocity and acceleration are
computed by AMELIF (they are output signals) while the cohis computed by the stack
of tasks and read by AMELIF (as an input signal).

When running a kinematic simulation, the control is dingaiked as the velocity of
the system. In a dynamic simulation, the control can be demed either directly as the
torque given to the joints or as a way to define the desiredipaosiln the former case, the
control (aka the torqu€) is taken into account in the dynamic computation by addireg t
acceleration.

g=A"'T (4.5)
In the latter case, the control is used to define the desirstigpoqg* (the desired velocity is
null ¢* = 0). Finally, the corresponding acceleration is computedgiai PD-controller.

4=A""(K)(q" —q) + K,(0-q)) (4.6)

The communication with the SoT framework is realized disegta the script mecha-
nism.

90 Simulations and Experimentations

The display module is based on the well established OpenGL graphics librarypmod
vides additional tools to display the graphical scene. Aipaar tool is the class called
“Fixture”, that can be attached to objects in order to dig@etra information such as con-
tacts (forces, friction cones, normal) or bounding voluniesides, it is possible to use it to
wrap the display routines, which can be of use with the Hadphcary (HL) of OpenHaptics,
that adds haptics to OpenGL rendered geometry (the connpuiait the force rendered is
directly done by the library). This module is not mandatance one could limit its use of
AMELIF to the algorithmic part, and use AMELIF only via thertmole.

4.2.3 Execution and simulation

Using these libraries, it is now possible to create and sateld robotic mission or tasks in a
virtual environment.

Main Programs define the simulation. They are also built as dynamic lilesexcept that
they do not define an API (hence they can not be used by othiarils). These applications
respect the same 3-steps structure:

1. An initialization phase, during which the environmentreated: definition of the
simulated universe, definition of the collision groupsgesébn of the bodies that are
dynamically simulated...Also, a warming-up phase can ladized, to prepare the
dynamical simulation.

2. The main loop, called repeatedly. The time given as antiofilne method is the time
spent since the previous call of the function.

3. Atermination phase that realizes the destruction of kments created and ends the
application.

Core application Two displayers are available to realize tweecutionof the main pro-
grams: the first one only contains the minimal set to disphaytaal environment: a console
and a simple viewer based on OpenGL, while the second onesedban wxWidget and
provides a more user friendly interface: it enables the dyodoad and execution of main
programs.

The Fig. 4.4 summarizes the relationship between the diftanodules described above.

4.2.4 Demonstrative scenario

In order to demonstrate the capabilities of the frameworkgather the different work real-
ized in the team, a demonstrative scenario has been desagdathplemented.

4.2 AMELIF, a simulator for haptic and dynamic rendering 91

SoT framework Display

Core application
A

Y
Core library

Collision detection

.in Programs

Application components
[P Modules
| Client code

Dynamics
|

| Executable
A—B Module A relies on the interfaces of module B
A~ B Some interfaces of A rely on the interfaces of B

Figure 4.4: Modules composing the core of the AMELIF framework and their dependencies.

4.2.4.1 Additional libraries used

The following scenario integrates the work realized in twioeo libraries developed using
the AMELIF formalism: a posture generator and a haptic dehi@ndler.

Posture Generation Configuring manually the posture of a virtual avatar can hreléor-
some for the user, especially when constraints such aslagquih, joint limits and position
constraints (e.g. contacts with the environment) for soodids have to be taken into ac-
count. Hence, this module relies on a posture generatodl@san optimization process,
that researches a posture respecting the user-definedaintsstvhile being as close as pos-
sible to the reference posture given. Details on this peggenerator can be found in [9].

Haptic interaction In the proposed scenario, haptic interaction occurs duegcolla-

borative manipulation of an object by a human operator anataal human avatar. It is
based on the idea that the role of each partner is not limitedstatic role of slave or mas-
ter, but switches continuously between a leader role and@wer role. In this purpose, a
homotopy-based model has been designed to state the radelopartner [28]. Depending

92 Simulations and Experimentations

on the intentions expressed by the human operator via tleeifgjoes the human operator
apply forces on the object or is he passive?) and the contrai the avatar (is the avatar
near an auto-collision or a singularity?), the avatar coesphith the trajectory implied by
the user or takes the lead and tracks the trajectory it hapetad based on its planner. The
collision avoidance constraint used for the homotopy isam the distance between the
elbow and the chest.

4.2.4.2 Resulting simulation

The resulting simulation is split into two phases.

First, the user defines the reference position (here it spords to the half sitting posture
givenin Fig. 4.5a) and places the contact points he waniavdgr to fulfill (the two feet are
on the ground and the right hand is holding the object). Onheeaiser launches the program,
a posture satisfying these conditions is processed dummttialization phase of the main
program. It then switches to the main loop in an idle mode,alwivs the user to check the
results. The posture found is represented on Fig. 4.5b amdspmnds to the initial posture
of the human avatar for the dynamic simulation.

When the user decides to switch to the dynamic and haptidation mode (by pressing
a key on the keyboard), the human avatar then focuses on tbetdhg. 4.5c. The user
can then start manipulating the object collaborativehhtiite avatar Using, by means of an
haptic probe such as the PHANTOM Orfnor a the PHANTOM Premium 1% (Fig. 4.5d).

4.3 Optimization of a task sequence

In this section, we focus on the work realized in Chapter 3ask bverlapping, and present
the integrative experiments with a fully integrated scemaNamely, the optimizer inside

the AMELIF simulator, using the SoT and the smooth contral feesented before. We first
present quickly some experiments on simple sequenceslidatsthe use of the smoothing
inside the optimizer, and highlight the limitations due tome issues we mentioned pre-
viously, especially the discontinuities due to the modtfaain the order of discrete events.
Then, we present a complete experiment on a full-size seguemd its application to the

real HRP-2 robot.

4.3.1 Smoothing and optimization

The used optimizer (CFSQP) gives better results when therieriand the constraints are
continuous. Therefore, the smooth control law should eoédhne convergence of the op-
timization. Typically, the constraint on the joint veloCif,i, < q < (uax IS SMoothed.
However, we have also seen that because of the discretesgtr@tsmoothing process may
introduce discontinuities in the evolution of the trajegtbased constraints with respect to
the variations of the set of parametears

The purpose of the following tests is to analyze the effeétthe smoothing on the
optimization process. In this frame, five tasks sequeneesarsidered:

4.3 Optimization of a task sequence 93

C d

Figure 4.5: First, the human avatar is positioned so as to fit the initial contact conditions (a - b). Then
the user can realize a collaborative manipulation of an object with the avatar (c - d).

1. A sequence containing only one task.

2. A sequence with two decoupled tasksande,.

3. A sequence with two decoupled tagksande,, such ast, t1'] C [t ¢1]

4. A sequence with two coupled tasksandes.

5. A sequence with two coupled tasksande, such astl, tI] C [t ¢]

The constraints considered for the optimization probleethe task constraints (time
coherence, termination condition, gain consistency) aeddint velocity limits (which are

94 Simulations and Experimentations

the only constraints we considered for the robot).

The smoothing is characterized by the paraméteior low values ofd, the process is
slow but the derivative of the contraj, presents small variations; for high valuesipthe
swap is fast buij presents large variations. In the following experimenif$eient values of
d are tested. Immediate transitions (without smoothinghated “Immediate”. The Fig. 4.6
represents the evolution of the control and the transiteniop for several values af.

d =10,0t = 0.31s d = 45,0t =0.07s

0.25 0.25
0.2 0.2

0.15

dq (rad/s)
dq (rad/s)

0.1

0.05

. . . . | | .
0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3
time (s) time (s)

d =100, 6t = 0.03s Immediate swapjt = Os

0.25 0.251

0.2 0.2

dq (rad/s)
dq (rad/s)

. . . . i | .
0 05 1 15 2 25 3 0 0.5 1 15 2 25 3
time (s) time (s)

Figure 4.6: Evolution of the control during the insertion and removal of a single task (realized on one
dof) for several values of the parameter d. The yellow area represents the insertion period. The red
area represents the removal period.

First, we analyze the cases where the semi-infinite conssran the joint velocity do not
play a role, i.e. when only the timing is modified.

For simulations where the tasks are decoupled (Table 4nt(dand Table 4.2(down)),
the smoothing has only a light influence on the number oftitena realized. This can be
explained by the fact that in this case, the delays addeddogrttoothing process are constant
(one at the insertion and one at the removal for each taskdsivap) and do not play a role
in the optimization. As a result, the optimization procesl/docuses on the minimization

4.3 Optimization of a task sequence

95

Optimization| Smoothing| Number of iF
of the gain | (value of d)| iterations

Immediate 39| 3.457

Yes 100 50 | 3.469

45 37| 3.474

10 33| 3.536

Immediate 24| 4.354

NO 100 24| 4.372

45 24| 4.391

10 22| 4,513

Table 4.1: Results of the optimization for the sequence 1 (one task).

Optimization| Smoothing| Number of iF
of the gain | (value of d)| iterations

Immediate 246 | 3.733

Yes 100 169| 3.814

45 75| 4.382

10 53| 3.965

Immediate 37| 12.186

NoO 100 38| 12.204

45 37]12.223

10 37| 12.345

Table 4.2: Results of the optimization for the sequence 2 (two tasks not coupled, temporally indepen-

dent).

Optimization| Smoothing| Number of oF
of the gain | (value of d)| iterations

Immediate 198 | 3.815

Yes 100 244 | 3.796

45 201| 3.864

10 42| 3.965

Immediate 41| 12.186

No 100 42| 12.204

45 46 | 12.224

10 37| 12.345

Table 4.3: Results of the optimization for the sequence 3 (two tasks not coupled, temporally depen-

dent).

of the time of realization of the task(s), and starts the taisk the longest duration as soon

as possible.

Yet, when the tasks are coupled, the convergence of the ggos@listurbed by the dis-

96 Simulations and Experimentations
Optimization| Smoothing| Number of iF
of the gain | (value of d)| iterations
Immediate 214 | 3.273
Yes 100 251 | 3.204
45 196 | 3.196
10 435| 3.171
Immediate 38| 12.070
No 100 44 | 12.147
45 62| 12.111
10 45| 12.247

Table 4.4: Results of the optimization for the sequence 4 (two tasks coupled, temporally indepen-
dent).

Optimization| Smoothing| Number of oF
of the gain | (value of d)| iterations

Immediate 95| 3.296

Yes 100 90| 3.294

45 78| 3.352

10 152 | 3.358

Immediate 51 12.832

NoO 100 49| 13.177

45 40 | 13.350

10 35| 14.580

Table 4.5: Results of the optimization for the sequence 5 (two tasks coupled and temporally depen-
dent).

continuities with respect to the events. Indeed, in the egpee 4, where the order of these
events is left free, the smoothing process makes the oggtroiz process converge slower
than if the swap was instantaneous. At the opposite, in thereence 5, where the order of
these events is fixed, the swap enhances the convergenoenpentes of the optimization
(cf. Table 4.5(down)). Besides, the effect of the smootlsngot monotonous with the vari-
ation ofd: itis not possible to state if the slowness of convergendaetly linked with the
value ofd.

Now, we focus on the cases where the gains are optimized:etheisfinite constraint
on the velocity is activated during the optimization.

For simulations where the tasks are not decoupled, smapthencontrol law enhances
the convergence properties of the algorithm (cf. Tableup)l&nd Table 4.2(up)). This re-
sult corresponds to the behavior expected: the solver waeker with smooth constraints.
Yet, when the tasks are coupled, the smoothing may not bentaty@ous anymore (cf. Ta-
bles 4.4(up), 4.5(up)). In order to know if this problem isedio the discontinuities with
respect to the timing of the tasks, a sixth sequence has lee¢imed with stronger cons-

4.3 Optimization of a task sequence 97

traints on the time schedule: the time constraints are phwt | C [t! + 4,tF" — 4]. The
purpose of this limitation is to prevent the optimizatiom@ess from producing a schedule
where the swap would appear. The results are illustrateéble®.6. As expected, when the
optimization is only realized on the timing, the smoothimggess has no influence. Though,
when the gains are considered, the number of iterationdheaame level between the case
with and without smoothing process (except foe45), with an advantage for the immedi-

ate swap.

Aside from this analysis of the influence of the smoothings itmportant to note the
important difference between the case where the sequemtain® coupled tasks and the
temporal constraints are given (Table 4.5) and the caseanthey are left free (Table 4.4).

Since working with coupled tasks is unavoidable —at leashenframe of this work—,
this example shows the importance of the sequencing phaaeing the determination of
the task sequence up to the scheduling phase (i.e. to thaipation process) substantially
penalizes the optimization process.

Optimization| Smoothing| Number of iF
of the gain | (value ofd) | iterations

Immediate 96 | 10.328

Yes 100 103| 10.129

45 168 | 10.137

10 101 | 10.754

Immediate 28 | 21.312

NoO 100 28 | 21.330

45 28 | 21.349

10 28 | 21.471

Table 4.6: Results of the optimization for the sequence 6 (two tasks coupled and temporally depen-
dent with important time margin).

4.3.2 Simulation of can grasping

The following scenario introduces a robot taking a can owt dfdge, and has been tested
on the real humanoid robot HRP-2. This mission is decompasea task sequence, and

optimized by realizing task overlapping.

4.3.2.1 Description of the task sequence

The mission is decomposed as a sequence of tasks, illustnatéig. 4.7. The corresponding
tasks are:

98 Simulations and Experimentations

Tasks of the right arm Tasks of the left arm

eo Open the gripper, es Open the gripper,

e; Move the gripper to the fridge’s handle, e Move the gripper in the fridge area,
e, Close the gripper, er Move the gripper to the can,

ez Open the fridge, es Close the gripper,

ey, Close the fridge e9 Lift the can,

e;o Remove the can out of the fridge,

eo _L> R F
e >
e1 _I—> ’ |_> 63 > 64 l
Ze : e. Le. £ Co > e1o—|1F=

Figure 4.7: Sequence describing the HRP-2 taking the can in the fridge.

The taskeg is an intermediary task introduced as a way point, in ordenture a lateral
approach of the arm towards the can. The associated toleantask regulatior; is large
so as to avoid a null velocity of the arm at the regulation efttsk.

This is a complex mission that can not be split into smallguusaces. Indeed, the se-
guence is centered on the fridge: the can-grasping part mioesake sense if the fridge
is closed and similarly, it is not possible to close the fadghile the left arm is still in it.
Instead of adding explicit timing conditions between thek&ato ensure that this will never
occur (such agl < tI' andtf < tI), we choose to consider as limiting constraint the
collision between the left arm and the door, in order to altask overlapping.

The constraints considered for this problem are thus segugand robotic constraints
(joint position and velocity limits), and collision avoidee with the fridge. As a safety
measure, we reduce the joint velocity limits to 25% of thermal value.

4.3.2.2 Simulation: results of the optimization

The optimization of the task sequence has for parameterpdbigion of each task in the
schedule (i.e. the entry time¢ and the removal time’) and the behavior of each task,
define by their gain function. The sequence found is desdgrdreFig. 4.8. Each task is
described by two periods: the dark one is the regulatiorogét], t/!], the bright one is the
maintain periodtZ?, tI'].

The two overlaps between the tasks of the left and the rightappear clearly. First,
the left arm starts moving before the fridge is open and tlas at the can pose even if the
fridge is not completely open. Second, the right arm stdasieg the fridge before the left

arm has completely left the fridge area. The whole task sszpiasts 47s. Without these

4.3 Optimization of a task sequence 99

o L (FRIDGE)

e1 OPEN

ez | |

es e —

(S 1

es]

6 I

e7]

es | |

€9 N

€10 - *cime(s)
0 10 20 30 40 50

Figure 4.8: Results of the optimization of the sequence of task: when the task is added in the stack,
its error is first regulated (this is the dark part (red or dark blue) of the block). From tZ, the error is
nearly null and the task is kept in the stack (light part (yellow or cyan) of the block) until ¢

two overlaps, the robot would have moved to the cay) Only after the fridge was fully
opened ¢3) and it would have closed the fridge4) only after the can was completely taken
out (e10). As a result, the total mission would have taken at least 71s

4.3.2.3 Experiment on the real robot

The task sequence is experimented on the upper body of theZHRPnanoid robot; its
properties and design characteristics are thoroughlyritbestin [41]. The HRP-2 is a 42-
degrees-of-freedom humanoid robot built by Kawada Indesifa Japanese company). In
this scenario, only the described tasks are used to comipaitgontrol law. In other words,
no additional care is taken for enforcing the constrainthsas joint limits: their respect
—or violation— is only function of the tasks of the sequertear. the tasks that require haptic
interaction (i.e. opening and closing the fridge) the faeasor of the robot is used to close
the loop and compensate for position uncertainties.

The robot manages to grasp the can without colliding with albgtacle and without
reaching joint limits, while fulfilling the remaining robiot constraints on velocity limits
during its motions. The obtained execution is plotted on Bi@®. Thanks to the opti-
mized gain, the convergence of the error of the tasks thatinree@ good precision (grasp-
ing the fridge handle and the can) is achieved as quicklylasadl by joint velocity lim-
its. Snapshots of the execution are given in Fig. 4.10, wthéefull video is available

100 Simulations and Experimentations

onhttp://staff.aist.go.jp/francois.keith/video.htnl .

N
1

Approach
= Grasp

Open fridge
= Close fridge

. ~—— I]
20 25 30 35 40 45 50

Error
Left Hand
=Y

Z

P o
(63}
I
o
BN
a1

= Approach can
Grasp can

= Lift can
Approach final
= final
| | | | e | L |

20 25 30 35 40 45 50

Error
Right Hand
-

o

o
)]
=Y
o
=
(¢}

o 1

() = OpenL
% —gloseIF;
2 — Open

® 05 ——CloseR
o

0 5 10 15 20 25 30 35 40 45 50
Time(sec)

Figure 4.9: Experiment on HRP-2: errors diminish when optimized task scheduling is applied: (top)
right arm tasks (middle) left arm tasks (bottom) gripper tasks. The concurrency between the tasks is
clearly visible.

4.4 Conclusion

This chapter described the two frameworks used to implemmahassess the theoretical de-
velopment of our work. Particularly, the implementationtloeé smooth control law in the
inverse kinematic framework SoT and the creation of thedaridetween the SoT and the
dynamic simulator AMELIF have been detailed. More impottigrthis chapter highlighted
the pros (smooth control) and cons (additional delays)®&thoothing process, and introdu-
ces the compromise the user has to make between the smaottiies control law and the
reactivity of the system unless computations can be madterfiasthe control loop (which is
not the case for the moment). As a result, depending on theepies of the task sequence
considered, the smoothing process can favor the convergenperties of the optimizer, or
in the contrary penalize them. Note that smoothing generadluces a delay (phase filter).

In the next chapter, we see another facet of the task funatibich enables the adaptation
of a default behavior, typically returned by the optimimatprocess to fulfill another goal:
human preferences in human-robot collocated space anxistesgce.

4.4 Conclusion 101

Figure 4.10: Snapshots from HRP-2 grasping a can in the fridge.

102 Simulations and Experimentations

Chapter 5

Adaptive control

The optimization process detailed in Chapter 3 refines adelskdule where everything is
predictable since depending only on the motions of the rabdton an idealistic represen-
tation of the environment and its potential changes. Intpracit is most likely that the
robot needs to adapt its planned schedule and subsequenhmiot response to situation
changes and execution results. The task function approgatesign, offers such flexibility
in the execution because the trajectory is implicitly gatesl from the interaction between
the sensory error and the desired motion. In other wordyltfextives of the tasks are con-
tinuously adapted to fit the variations of the environmerttll, Such adaptations are valid
within some bounds and locality constraints; the task flonatloes not deal with important
variations. Evenif local, light variations may necessitan adjustment of the scheduled plan
that can be done by simple propagation unless the variagi@isnportant and subsequently,
necessitate a rescheduling. This kind of adaptation madifie goal of the tasks: i.e. the
“what” (should be done?).

Rather, this chapter focuses on another type of adaptatibich consists in achieving
and pursuing the same goal, but in a different way. This cagegf modification is about
the “how” (should it be done?). The idea presented in thiptdras rather an extension of
the stack-of-task formalism to the possibility to persareathe motion of the robot by using
an appropriate parameterization of the gain and the timirgoh task.

As an example, the task sequence introduced in the previmaser is altered so as to
take the presence of a human operator into account and t® admpnan-like behavior in a
collaborative scenario.

This whole chapter has been realized in collaboration widritAVRIL, student at the
ENSC (Ecole Nationale Supérieure de Cognitique) of Borgeau

104 Adaptive control

5.1 Adaptive control and task formalism

Consider a pick-and-place motion of, e.g., a glass. The Wwaydbot plan for the grasping
posture, the closure, and the manipulation motion conaimlgrdepends on the type/shape
of the glass in question: a crystal glass should be manigailzdrefully (by gently grasping
it and avoiding impacts when putting it down), whereas atmagass can be manipulated
faster and with less care (i.e. more tolerance on the impadensity). Even though these
two actions are defined with the same objective, the way theyealized varies with such
different considerations. Similarly, a user may specifgstoaints that will affect the result-
ing motion: for example the constraints “act as fast as pessi“‘act as a human would do”
or “use the minimum amount of energy” certainly results iiffieddent motions or even impose
different constraints.

In the following, we present some of the advantages gainesiibly kind of adaptation;
namely, the diversification of the behavior for a given knloaw enabling a better human-
robot interaction and cohabitation.

5.1.1 Enrichments and diversification of know-how

In computer graphics, this distinction between the actoatiédverb) and the way to realize
it (called adver) [76] is used to enlarge the set of possible actions doablarbgpvatar
(its know-how) at low cost, by defining how to realize the kmosctions in a different way.
Similarly, adaptingthe tasks contained in the know-how of a robot is an easy wactease
its capacities, cheaper than the definition of new tasks.

Another method used in computer graphics to improve thefgaissible actions doable
by an avatar is to realize a blending between these actidngg. This is what is realized
during the swap of two incompatible tasks. Yet, this methasito be applied with extra care,
since the blending of tasks may not fulfill some constraiatel as stability, auto-collision
avoidance, etc.). The blending of two position tasks, onengethe right arm behind the
waist and the other one before it, highlights this problem.

5.1.2 Human’s expectation and preference

When a human operator and a robot share the same spacecessagy that the robot adapts
its behavior and plans —provided by the automated planmerdoven mission— according to
human expectations and preferences.

Such considerations are particularly useful to achieviabolative tasks (where the hu-
man operator has an active role) and can even improve therperhce of the human-robot
teaming [80]. The robot must be able to adapt its motion abogrto the physical attitude
of the human but also based on the human expression (stréssvnice, fatigue, etc.).

Note that there are two kinds of adjustments that are exgdicien a robot when acting
in a collocated space with a human: (i) general rules of rblkebavior that can be seen both

5.1 Adaptive control and task formalism 105

as constraints and as robotic ‘manners’ and ‘know-how’ & phesence of a human user,
and (ii) robot tuning to human preferences, that are acdun@n long-term observations
and consists in the robot ability to personalize.

As an example of the general considerations due to the ‘mahaed ‘know-how’ of
the robot, the task plan and task function controller mustgrate additional constraints so
that the trajectory generated for the robot fulfills not otilg classical constraints but also
human expectations. For example, the visibility criteribh the robot should not surprise
the human operator by appearing suddenly from behind amadksind should adopt a path
visible by the human operator. This assessment was refinadtoyly on the influence of the
trajectory followed by the robot on the feelings of a humaaragpor [18]. In this experiment,
the robot acted as a helper for the human subject: the rolomygan object to a human
user sitting on a chair. The robot was programmed to takereifit trajectories: it started in
front of the user and then followed either a straight trajgc{frontal approach) or a curve
trajectory (approach by the left or right side). The mainutesf this study is that the frontal
approach makes the human user uncomfortable, or even skeratening.

The task function approach has many benefits but also sonitatimns, namely when
trajectories are generated implicitly from the error betwa target and a robot control point,
the resulting trajectory in the operational is likely a gtliae. One way to take into account
the previously cited expectation is to add way-point tasles ¢asks that deviate the robot
from its initial trajectory, whose regulation is not manolg).

In our previous example, the robot can come from right or. |&fhis choice can be
induced by the task or the environment configuration, butayralso be imposed by the
human user preferences. Some users would prefer the rolooirie from the left, other
from the right. For a set of tasks where different orderirggd! to the same results, the
preference can be given to the user taste. The robot can thisradditional knowledge
(human preference), which is acquired from observationateractions. This thesis does
not deal with these aspects for the moment.

In the same way that an appropriate parameterization ofrtiesstand the gain functions
can lead to an optimized realization of a task sequence érséimse of the duration of the
mission), we believe that the personalization of a giverusage of tasks can be realized at
the task level by adapting these same parameters. As aimatios of this idea, we propose
to adapt a given sequence of tasks realized autonomoushelapbot in order to take into
account a human operator. To have an idea of the natural ioeleypected from the robot,
a preliminary study is realized between two human subjédts idea actually suggests that
the task approach components in planning, scheduling aacuégn can be kept even in
situations where the robot evolves in collocated space diréct interaction with a human
operator and subsequently definitely constitutes a powerfuponent by which a cognitive
robotic architecture can build.

106 Adaptive control

5.2 Preliminary experiment

Imagine a person (customer) leaving a shop with two heavg,bage in each hand. The
shop is not equipped with automatic doors. Another perganglhop bellboy), standing near
the exit door, notices that the customer is coming and ogenddor for him. If he has well
timed the door opening motion, the client will pass the dogheawut having to slow down.
Otherwise, in the case the bellboy was slow and delayed tbeajening motion, the client
will slow down or even stop, waiting for the door to be opernedda out. In the case the door
opens too early, it is very likely that the client accelesates natural walking motion, so as
not to abuse of the bellboy’s time and kindness.

Between the two persons, there was no direct communicatierbellboy estimated the
adequate timing considering the trajectory of the custoamer adapted his task behavior
accordingly.

We aim at showing that a similar issue can be programmed hkgédpe stack-of-task
formalism. We took a simpler case study, which is howeveebas the same idea: the first
step is the observation of invariants and possible paramat®n of the task-case study; the
second phase consists in integrating this knowledge toanira method.

5.2.1 Script

The studied scenario implies two persons that will cooridirtheir actions for a given sce-
nario. The first person (thelient) wants to take an object placed in a cupboard, and the
second one (theellboy) has to open a cupboard so that the client can take the objecthe
purpose of observation, two human operators execute tarsaso. This preliminary exper-
iment aims at determining what can be considered as a naiinalvior for the bellboy (role
played later by the robot) and at finding on which criteriakibboy schedules the cupboard
opening motion (i.e. the timing and behavior).

5.2.1.1 Experimental setup

During the entire experiment, the bellboy stands next tactigboard and has the handle of
the cupboard within reach of his right hand. We did not imparsgconstraint on the posture
(including body position/orientation) the bellboy shotiddke; we only explained what the
task goal was and made few white trials so that the bellbogstdake most comfortable
posture to open the cupboard. Nevertheless, he has to efgkeatupboard’s handle with
his right hand. Besides, once the cupboard handle is gragpetellboy is not allowed to
release it before the end of the task; i.e. not before thecolgeaken out from the cupboard.

The initial position of the client is chosen among three paestarting points, all placed
at four meters of the cupboard. The client is asked to wallatdvthe cupboard with three
different subjective velocities (slowly, normally, or glaly) during the experiment. At the
beginning of each simulation, the bellboy sees the initaion of the client, but is unaware
of the velocity by which he is asked to perform the task. Thee Bil represents the initial
experimental setup.

5.2 Preliminary experiment 107

The study was run with 19 subjects (15 men, 4 women), eacheatf filayed both roles
(client and bellboy). In the first set of experiments, themialways started in front of the
cupboard (the only starting point considered wWas and adopted one of the three velocities:
the instruction on what velocity to choose was written on alsboard handed to the client
in the back of the bellboy (who was hence not aware of it). Bndbcond set of experiment
(12 subjects), two more starting points were consideredrderoto see whether a lateral
approach modifies the behavior of the bellboy. For this comdition, we run 9 experiments
(each of the three velocities was tested for each of the staéng points). Furthermore,
some particular configurations were added, during whiclo#tevior of one of the subjects
was imposed, in order to observe the reaction of the pariiey are detailed later.

Camera

MiniBird

Bellboy Client

Figure 5.1: Experimental setup (initial position): the client starts far away from the cupboard while
the bellboy is at a given posture of her/his choice and make sure that the cupboard’s handle is within
reach at a comfortable motion and grabbing posture. An accelerometer is placed on the head of the

client.

5.2.1.2 Measures of the motions

Considering the motion of each subject (the bellboy doeswalk —feet are at a fixed
position—, while the client walks), two different types oéasure were considered:

Measure of the client motion The client’s body motion is tracked by a visual tracking
system, which determines his position in space. The camagriladced on the cupboard when
the client starts fron$; or S3. When he starts frorfi,, this configuration is not suitable, since
the bellboy occludes the view; the camera has to be movecetaght of the cupboard. To

make the tracking easier, the client wears a rectangulariate placed on the chest (size:

108 Adaptive control

5

4t !

SZ
[]
SS

3 L
E 2
x

1 L

0 Il O ¢

¢
-1 " " " " "
=3 -2 -1 0 1 2 3
y (m)

Figure 5.2: The environment of simulation. The three blue points Sy, S2 and Ss correspond to the
starting points of the client. The gray point represents the position of the bellboy. The green diamonds
represent the two possible positions for the camera. The orange and gray rectangles represent the
cupboard and the table respectively.

45cmx 31cm) to be recognized and visually tracked. To confirm tattory obtained by
the tracking system, an accelerometer, that records tleeiation with a high accuracy, is
placed on the head of the client. It is linked to a computer By2ameters-long cable (the
computer was placed at midway so as not to limit the motiomefdient).

Measure of the bellboy motion Considering that the bellboy moves mainly his right arm,
only the motion of his wrist is recorded. Two Ascension miniB* (electromagnetic sensor
of position in space) are attached around his right wrisd, thie position considered is the
median of the two positions captured.

5.2.1.3 Questionnaire

At the end of the experiments, a simple questionnaire wangiv the subjects:

1. Were you bothered by the sensors (miniBird for the bellbogelerometers and tracker
for the client) ?

2. When playing the role of the client, did you feel the needdapt your behavior to the
one of the bellboy?

Ihttp://ww. ascensi on-tech. cont real ti me/ RTri ni Bl RD500_800. php

5.2 Preliminary experiment 109

5.2.2 Results

On the 137 experiments realized, 101 were usable. The pahcauses of failure during the
data analysis were tracking errors (the tracker lost thgestil8 cases), unusable miniBird
results (the task schedule was not definable, 7 cases), arshhie tracking results (the
trajectory of the subject was wrong, 6 cases).

The Fig. 5.2 represents the trajectories estimated by sualiracking system for a same
subject coming from the three possible starting points. Hige5.3 illustrates the evolution
of the distance between the client and the cupboard and tredspf the client along the
axis client/cupboard. The data of the tracking system ape@ be sufficient and precise
enough to define the dependencies between the motions efdlgibjects. The acceleration
was subsequently not needed to correct the visual tracking.

Distance (m)
Velocity (m/s)

_3 1 1 1 1 1 1 J
0 0.5 1 15 2 2.5 3 3.5

t(s)

Figure 5.3: Evolution of the distance between the client and the cupboard and the velocity of the
client projected on the client—cupboard axis.

In this section, we first detail the invariants in the motidoserved for the bellboys, we
then explain how they adapted their motion to the behavidie(ént velocities and initial
start) of the client. In the following, bgistance we always mean distance between the
client and the cupboard. Also, bselocity, we always mean the absolute velocity of the
client projected on the client—cupboard axis.

5.2.2.1 Invariant in the bellboy motion

The typical evolution of the position of the hand of the belilis illustrated on Fig. 5.4. The
frame, centered on the minibird, is the one used on Fig. i@z taxis is oriented toward

110 Adaptive control

the client, they axis is oriented towards the cupboard, andfais is oriented towards the
ground. The three stable phases along:theis, that indicates the height of the hand, enable
determining each step of the motion. In the initial state[Qs, 3.2s]), the hand is along the
body, then, during the cupboard manipulation, it is attddaethe handle of the cupboard
(t €[3.5s, 6.4s]), and in the final state, it is along the body aga> 6.8s). The transition
periods can be decomposed based on the back-and-forthmaotidiceable on the andy
axes: at = 3.2s, the bellboy starts moving his hand toward the handle oftipdoard, then
he grasps it arountd= 3.5s (the height is stable but the hand still moves) and starioge
the cupboard at = 4.0s. The closure of the fridge follows a reversed evolutior. at6s,
the bellboys closes the cupboard, then releases the handie @ 4s and finally goes to its
final position at = 6.8s.

- - =X
o6 = 7 R D
[/
\ /
0.5 \) : ‘\ I’
/’ \ !
0.4* N /
—_ N
£
N 0.3r
>
3
0.2 ! : =
TN T——— T
\ .
g / \
01r : ! ! |
/ \ .
' / \
or ! \ \
- L J N
-0.1 I I 1 I - I I J
2 3 4 5 6 7 8 9 10
time(s)

Figure 5.4: Evolution of the position of the hand in the frame of the miniBird. Each vertical line
represents a change of trajectory that can be associated to an event. At ¢ = 3.2s, the hand goes to
the handle; at t = 3.5s, the handle is grasped; at ¢t = 4.0s, the cupboard is opened; at ¢t = 6.0s, the
cupboard is closed; at t = 6.4s, the handle is released; at ¢t = 6.8s, the hand goes to its final position.

One invariant observed in the behavior of the bellboys isribae of them paused during
the opening or the closing of the cupboard. A possible bemdelassically programmed in
robotics) would have been to first go for the handle and grataiit steadily for the client to
come closer and then open the cupboard.

5.2.2.2 Adaptation of the bellboy behavior in function of tke client motion

Two types of behaviors were observed:

5.2 Preliminary experiment 111

Dependency in the client’s trajectory Most of the bellboys adapted their behavior in
function of the trajectory of the client. Especially, theytyer of the action of the bellboy
is determined by a couple of elements: the distance betwezglient and the cupboard
and his walking velocity. We not¢’ the distance and! the velocity of the client when the
bellboy starts moving (at’). By expressing this distance as a function of the veloaisy,
depicted in Fig. 5.5, three different behaviors can bemljstished:

3.5

25F

15F

Distance Human/Target (m)

0.5

0 0.5 1 15 2 25
Average human velocity (m/s)

Figure 5.5: Distance between the client and the cupboard target d’ when the bellboy starts his
sequence, with respect to the velocity v? .

e When the client walks too fast{ >1.4m/s), the bellboy starts moving his arm as soon
as possible (the distance is inferior to 4 meters due to thetion time of the client).
Besides, the bellboy has to speed up in order not to be late.

e When he has a slow speed (8.4} <1.0m/s) or a regular speed (X! <1.4m/s),
the bellboy adapts its starting time accordingly: the faite client goes, the sooner
the bellboy begins its motion. However, the bellboy keepsnopg the cupboard at the
same speed.

e Finally, for an excessively slow motion, the action of thdllim®y is triggered by the
distance of the operator toward the cupboard, regardlegsofelocity (found to be
around 0.75m).

Dependency in time One of the bellboys adopted a particular attitude: s/heestaat
the same time as the client, but achieved the motion regadiEthe client’s trajectory.

112 Adaptive control

This behavior can be considered as correct, since the destified he was not perturbed
by this attitude. Besides, opening the cupboard sooner wategenalize the environment:
Maintaining a cupboard wide open a long time does not poseestylem, whereas doing
the same thing with a fridge or an oven would cause a loss afjgnalso, it does not require
any extra effort to maintain the cupboard open, because thero mechanical door-closer.

5.2.2.3 Study of singular cases

Some particular configurations were arbitrarily insertadrty the sessions. In each of these,
only the subject concerned by the singular behavior waseaxofathe change in the original
plan.

Zigzag trajectory of the client For every test of this kind, the bellboy still adapted his
starting time depending on the velocity of the client, butskemed to realize his motion
faster, enabling him to start later than in the average dasenhen the client is closer).

Pause during client’'s walk In this configuration, the client was asked to stop walking
during the opening phase of the cupboard (after the bellkenyesl moving and before he
finished the opening of the cupboard). For a pause lastisghes 1s (2 cases), the bellboys
did not modify their motions; else way (5 cases), he also @éduBesides, when this pause
occurred before the bellboy had grasped the handle, sedetiaém started lowering their
arms.

Simultaneous start In this case, the bellboy had to start simultaneously withdhent.
Whereas the client kept the same behavior, the bellboy slawsvn his motion so as to
compensate the early start and finish opening the cupbadaid la

5.2.2.4 Answers to questionnaire

Most of the time, the clients did not feel the need to adapt thetion to the bellboy’s one.
Two of them explained that during the experiment in whiclytwalked quickly, the bellboy
was not fast enough. Also, the accelerometer disturbed fvtloeosubjects, especially the
fragile-looking cable, that make them watch their motiorasaot to break it.

5.3 Experiments with the HRP-2 robot

Using these results, we implemented this behavior on thetrobhe purpose is to modify
a task sequence already implemented so that it seems clogeatas likely expected by

a human user of the robot. In the following, we detail the difmotion and the method

used to integrate the presence of the human subject, \aligetn and finally run some new
experiments.

5.3 Experiments with the HRP-2 robot 113

5.3.1 Default task sequence

To play the role of the bellboy, the robot has to open and dleseupboard. The correspon-
ding task sequence, represented on Fig. 5.6, is split ivensasks:

e1a Lift the right gripper (way-point task)

e; Move the right gripper to the cupboard handle
e; Close the gripper

ez Open the cupboard door with the right arm

es Close the cupboard door

es Open the gripper

eg Move the arm back to its initial position

The taske;, is a way-point task ensuring that the gripper approacheigzdraally the
handle, and not from below, which would result in a colliswith the support of the handle.

€1a—> C — () > 65 — Cs

e, e

Figure 5.6: Task sequence of the fridge opening.

The observations made in the previous section lead to theniolg conclusions:

1. Only the tasks inducing arm motion are dependent on thavii@hof the client, the
gripper tasks€s andes) are realized in constant time.

2. There is no dead time between the tasks: each task is renaveediately after
regulation. In other words, the maintaining period is z&€){(the regulation time”
is equal to the removal timg". The opening tasks is the only exception, because it
must be maintained long enough to allow the client to takedtiject in the cupboard.

In order to make the robot react to the actions of the clienisian task is added at high
priority. This task acts both as a command (it sets the mosdf the head) and as a sensor
(it determines the position of the client).

5.3.2 Adaptation of the tasks

The characteristics of the given default task sequencerayek Especially, for each task
e;, the theoretical times of insertiof, regulationt’ and removat!” are known. Thus, the
time takenAt,, by the robot to open the cupboard starting from its initiadipon is:

Atop = (t1, — 1) + (0] — 1) + (B — 1) + (0 — 1) (5.1)

In order to take the trajectory of the client into accountisihecessary to adapt the
behavior (i.e. the gains) and consequently the timing ohé¢ask. However, the objectives

114 Adaptive control

of the tasks remain unchanged. The two approaches congitbeaelapt the sequence to the
presence of the human agent are those observed during theregpts between two human
subjects:

Minimal adaptation Inthis configuration, the robot starts opening the cupbaarsbon as
the human operator starts walking and realizes normallgléfi@ult sequence, regardless of
the client motion. The only adaptation of the task sequemntied start time of the closure of
the cupboare,. This experiment can be interpreted as a qualitative exyaari: its purpose
is to see the interest of the adaptive approach.

Smooth adaptation In this scenario, the robot adapts both the timing and theviehof
the tasks in function of the behavior of the human operatsrinflicated by the preliminary
results, two adaptations are required:

First, the starting time of the sequence must be determimédriction of the client’s
approach. To this purpose, the relation between the distérend the velocity; observed
during the experiment between human agents (illustrate&ign5.5) is simplified as an
affine function:

d'(v}) = Atoyvi + dy

dy is the distance separating the client and the cupboard wistops {, =0.75m).
v} is the client velocity when the bellboy starts acting.

As a result, the robot has to start as soon as:
d(t) < d'(un(1))
d(t) is the distance at the time t, ang(¢) is the client velocity at the time t.

The maximal velocityy ... the client can reach without forcing the robot to adapt its

reference behavior is: J J
I max — W0

= —-—— _2

’Uh7max Atop (5)

dmax IS the initial distance between separating the client aecttipboardd,,., = 4m).
As depicted in Fig. 5.7, three possible behaviors are ergect
e When the human walks too fast/(> v ,....), the robot has to start immediately.

e When he has a slow speed (€.47 <1.0m/s) or a regular speed (£Q! <1.4m/s),
the start distance is determined &) = At,,vi + do

e Finally, for an excessively slow motion, the robot startssing when the human is at
the distancel, of the cupboard.

5.3 Experiments with the HRP-2 robot 115

35

Distance client/target (m)

o
o

0 015 1 115 é 2.‘5
Median client velocity (m/s)
Figure 5.7: A simplified relation between the velocity and the distance. At,, =2.5s.

The second adaptation aims at making the robot react to ekasfgspeed of the client.
It consists in adapting the gain function as follows:
t
Anle) = Ae)) 5.9

Up,

If the client keeps walking at the velocity, during the whole motion, then the robot
will follow its default behavior. However, if this velocitis above the limit velocityy ...
the robot will be late. In this case, the default behaviomedrbe realized as such, and has
to be accelerated. To solve this problem, the equation {&/3)dified in order to consider
the reference velocity;, bounded to the interval [0y} ..] rather than the actual velocity
at the insertion).. The purpose of this limitation is to force an increase ofghin (i.e. an
acceleration of the motion) when the client has an excessiaeity.

M(e) = A(e)“’;? (5.4)

The equation (5.4) introduces a direct dependency in thecitglof the client. This
produces sudden changes of attitude, especially when i@ stops walking. To smooth
this behavior, we consider the median velocity of the cloaming the previous steps. This
method slows down the reactions of the robot, which allovesrtibot not to stop its motion
for too brief stops of the human operator.

In practice, we choose = 100 for time steps of 5 milliseconds. The median was hence
computed considering the values obtained for half a sedandjuring the interval of time
)t — 0.5,t]. As a result, the client has to stay still for 0.5 second ferribbot to completely
stop.

ot (5.5)

116 Adaptive control

5.3.3 Simulation

The reference trajectory corresponds to the optimal matiained using the method propo-
sed in Chapter 3, considering joint velocity limits at 75%twdir normal value. The purpose
of this limitation is to keep a breathing space to realizégiasiotions (if the client walks too
fast), while obtaining a motion fast enough to enable thedmunobot interaction in normal
case.

Though, as depicted on Fig. 5.8, the whole opening moticskéte; to e3) lasts 4.62
seconds. Considering that a human walking at regular spmed<the four-meters distance
between the starting point and the cupboard in less thanahdscgit is not possible for the
robot to realize the entire opening subsequence in times,Tdnly the tasles, realized in
1.2s, was considered during the experiments and, as a saésatyure, the gains where de-
creased in order to realize this motion in 2 seconds. Tha&limobnfiguration of the robot
changes accordingly: the robot starts with the grippesalyeon the handle.

ela _]

C1 I
S]
Cs I
4
Cs I
Co N
time (sl
0 2 4 6 8

Figure 5.8: Reference behavior of the robot. Dark area corresponds to regulation period; light areas
correspond to maintaining periods. The light blue zone represents an incompressible delay.

Considering that the robot opens the cupboard in 2s, thetotien walk at most at
Uilz,max =1.625m/s without requiring an adaptation of the robot (aditg to the eq. (5.2)).
The Fig. 5.9 represents the evolution of the norm of the cbhdrv in function of the ve-
locity of the client, for constant velocities varying beevel and 5m/s. Two behaviors are
noticeable: for a velocity inferior to; .., only the timing of the task changes while the
behavior remains untouched. At the opposite, for a velaiperior tov] ..., the sequence
is started as soon as possible (as soon as the robot hastoodettse situation), and the
motion is accelerated.

Using this reference parameterization, the two adaptivihoas are tested on four tra-
jectories. The first adaptive methatl;;, corresponds to the minimal adaptation, the second
one, M,, corresponds to the smooth adaptation. In three of the agatigns tested, the

5.3

Experiments with the HRP-2 robot

117

(lda@®ll

5m/s
am/s
3m/s
= = =2m/s
= = =1.625m/s
im/s

time (s)

Figure 5.9: Evolution of the norm of the control law ||¢|| with respect to the time for several values
of vj. The red curve represents the evolution of ||¢|| for the limit velocity (v}, ... = 1.625m/s): the
motion realized is the default one and it is started at ¢ = 0. When the velocity of the client is inferior
to this limit, the motion realized by the robot is the same, but it starts later (cf. the pink curve, for
v} = 1m/s). When his velocity is superior to the limit, the default motion cannot be realized as such:
it has to be accelerated, which appears as a compression of the curve on the graph. The evolution
of the maximal value of the norm is estimated by the orange dotted line. For ¢t < 1.4s, it is inversely
proportional to the velocity, otherwise it is constant.

client walks at constant velocity, which can be slow (1nrsgdium (2m/s) or high (3m/s).

In the fourth case, the client walks at the maximal velocity625m/s), pauses, waits one
second and starts again. In the following tests, we analygesticcess of the mission de-

pending on the method chosen and the velocity of the cliemigsion is successful if the
robot managed to open the cupboard before the client is atmainlistance of the robot. In
this case, the negative delay represents the advance theybkhs relatively to the client.
Otherwise, a positive value indicates the delay betweebeliboy and the client.

Client t d(t! tt d(tr delay
Method velocity | (seconds (met(erl) (seconds (meierl) (seconds Success
Slow 3.130 -1.290| Yes
Casual 0.750 0.335| No
Mi | Fast 0.010 4 2011 0750 0.875| No
Stop 1.563 -1.040| Yes
Slow 1.290 2.714 3.290| 0.760 -0.010| Yes
v Casual 0.025 3.959 1.665| 0.750 0.035| No
2 Fast 0.020 3.953 1.170| 0.750 0.080| No
Stop 0.030 3.958 2.985| 0.781 -0.020| Yes

Table 5.1: Results of the adaptation of the gain using the two proposed methods.

118 Adaptive control

The Table 5.1 gathers the results of each simulation. In lihe sase, both methods
succeed in satisfying the constraint. This result was ptablie, since the behavior adopted
by both of them is the default one. The only difference betwd® two methods is the
timing: M, starts the sequence immediately, whilg starts as soon as the limit distance
is reached. Similarly, when the human stops, both methodk.withe method\/; works
since the default behavior works, even without the add#ialelay due to the pause of the
client. Using the adaptive methdd,, the robot also pauses (cf. Fig. 5.10b), and succeeds in
finishing in time.

Yet, for both methods, the deadline constraint imposed eylient is violated when the
client walked faster than the maximal authorized veloditythis case, the time dependent
method introduces delays up to 0.87 seconds, which is qupeitant. The delay presented
in the second method is smaller (less that 0.1 second), lvembelieve it may not be noticed
by the client during the experiments.

5.4 Conclusion

This chapter highlights two main important issues:

First, in the provision of extending this work to human-rolmeraction or cohabitation,
it is important to investigate whether what the tools andhods presented in previous chap-
ter are still viable or not. The good news is that the task tioncand the stack-of-task can
be maintained as a component of the architecture, but tblegdsiling must consider other
constraints. Some parameters can even be set not from timizgiton process, but from
another database of robotic ‘know-how’ and ‘manners’ asd &#lom human preference that
can be observed by the robot or given through interactiastr{istions from the human).

Second, these human expectations and preferences whémeobffam observation can
be heavy to monitor. We conducted a pilot simple task-casgystio try finding the way
human expectations can be programmed on the robot. Thesdedrack a similar scenario
occurring between two humans, process the data seekingvemant and try to find schedu-
ling criterion and relationships. It appears that such gr@gch can be demanding in time
but can provide interesting knowledge that can be intedrayeallowing the behavior of the
task to be adaptable in function of the sensory observatMmshowed in our example how
this can be made, but still, although the methodology isrclesaextension to more general
cases is certainly questionable.

Experiments on the HRP-2 are ongoing to assess real usamisop

This chapter ends our contributions. The following chaptercludes this thesis by sum-
ming up the work presented together with some perspectives.

5.4 Conclusion 119

0.81
0.6

0.4r

TR

dq (rad/s)

-1)
0 0.5 1 15 2 25 3 35 4

time (s)

0.8

0.6

dq (rad/s)

-1)
0 0.5 1 15 2 25 3 35 4
time (s)

Figure 5.10: Evolution of the control when the client stop walking. The black curve represents the
velocity of the target vy,. In a), the pause lasts 0.4s; the robot does not stop its motion, but slows
down. In b), the pause lasts 1s and the robot stops and restart its motion smoothly.

120 Adaptive control

Conclusion and Perspectives

There is a considerable amount of work and methods in rabaticmission and motion
planning. However, it appears that a general agreed apgpre&estructure a robotic mission
into three steps. The first step is the task planning, whicoiigoses the mission into a
sequence of tasks. It appears more plausible, for sevevadureasons, that these tasks
are predefined or learned and selected from a databasehilegdhie capabilities of the
robotic agent. The second step is a merge between the tas&rsmig per se and the task
scheduling: while the sequencing determines the order ichwtihe tasks are realized, the
scheduling associates a timing for each of them, accoufingll the physical constraints
of the robot. The third step is the robotic execution of thek tsequence.

This approach is adapted to robotics, but also to more geplaraning/scheduling pro-
blems that are encountered in wider applications. Yet, lootics and particularly in huma-
noid robotics, the scheduling phase is usually skippedalme classical schedulers are not
conceived to handle the case where the motion is defined nohéybut by a combination
of several tasks organized into a hierarchy.

In this thesis, we proposed to really see the scheduling esnibsing stage between
planning and execution, bridging thus the gap between sy(ti® plan) and numeric (the
execution). This bridge comes naturally when consideitegtask-function formalism. We
then proposed a method to optimize not only the schedulinglso the behavior of task
sequences on the basis of a task-function based contrallies alassical task planner. This
optimization takes in input only symbols (the order of thgusence), but outputs the whole
necessary numerical parameters to specify the contrallegunting for the physical cons-
traint of the execution. Moreover, we have shown that it Brepossible to define the task
behavior in this step to take into account user preferer@psmizing a task sequence is not
limited to the acceleration of the entire motion while keepihe proposed ordered sequence
from the planner: it is first necessary to operate on the tagkence and take advantage of
the redundancy of the robot to realize smooth task overldEnvpossible. The originality
of our proposed method lies in maintaining the task compbimethhe entire reasoning, and
using it as a bridge between planning, scheduling and execut

122 Adaptive control

Contributions

The main advantage of high redundant robots (such as huchestmots) is their capacity to
realize several tasks simultaneously. Among the existiathods enabling task overlapping,
we chose to rely on the stack-of-tasks mechanism, so asittlystiespect the priorities
between the tasks. For a given set of tasks organized inerarbhy, classical multi-function
task execution based on the stack of tasks ensures a camiauolution of the control, even
in singular cases.

However, discontinuities in the control law are noted whisgiette operations peculiar to
a stack —in the computer science sense— are made. Namskyaperations are the insertion,
removal and the swap of priority between tasks. These alshgtges in the control output
can be problematic (not to say dangerous). Consequentlgefileed methods to ensure a
smooth evolution of the control during these events. Theathiog processes restrict the
sphere of operation of the events: a task can only be remogeddnd inserted at the end
of the stack, and the swap should only be realized betweehbeiing tasks and requires
a smoothing operation if the tasks conflict. As a result, aatmevolution of the control
law can be ensured in any situation. Yet, the delay introduethe smoothing processes
(namely the swap propagation process) is a compromise amdaegtrawback that one must
account for.

The second main contribution is the definition of an optiriaaformulation for the
problem of task sequence overlapping. This phase takes plkteveen the planning of the
task sequence and its execution, and gathers the schephlasg and the improvement of
the task behavior. Both the timing and the gains are optichizeorder to improve the ini-
tial task sequence while fulfilling the constraints impobgdoth the sequence, the intrinsic
robot limitations, and the environment. We provided a catgimplementation of the pro-
posed approach that serve both an advanced interactivéastm(AMELIF) and a robot
architecture. The optimization process is based on a dgbgr/simulator: the constraints
cannot be computed directly, and can only be evaluated bylatmg the task sequence for
each set of parameters given by the solver. Therefore, @telsimulator is an important
component of the optimization process. Similarly, it is mspible to estimate the gradient of
the constraints, which are rather evaluated by finite difiee.

This method was exemplified on a real scenario with the HRBRramoid robot. Some
temporal constraints, preventing task overlapping weskaced by collision-avoidance cons-
traints. This shows that a proper definition of the constsais important. Then the task
sequence has been optimized using the proposed methodchabhesd the timing of each
task, by suppressing the dead times (i.e. removing the tskson as regulated), but also
accelerated the resulting motion (again, at the task lewedjder to meet the joint velocity
limits that were imposed.

Yet, this method faces two issues liable to prevent the sdieen finding the optimal
solution. The first one is tha posteriorievaluation of the constraints: each set of param-
eters is directly played by the simulator, without any veafion of the coherency of the
resulting motion. The resulting constraints may hence lafcghysical sense and jeopar-

5.4 Conclusion 123

dize the optimization process. The second one is due to #wewmlinuity of the evolution

of the constraints. Indeed, the chosen solver, CFSQP, iseomd to work with continuous
and derivable criterion and constraints. Yet, the smoagthinthe control law may penalize
the optimization process, because of the discontinuitiestd modifications in the order of
events.

Finally, we introduced a new perspective in the usage ofable-function approach, con-
sisting in personalizing (to a human user) a task sequerceadapting it to the constraints
of the situation, typically the requirements of a human afmer This property is exemplified
by an example on the HRP-2, where the robot motion was modeladapt or rather adjust
and auto-tune on the basis of natural behavior observedeomuiman user.

Perspectives

In the short term, the possible enhancements of this workiarely functional. The straight-
forward ones would consist in extending the current optatian problem, by considering
different type of tasks (such as tasks that maintain a staiegla whole period, or percep-
tion tasks), simple modification of the definition of the tiwferealization and the associate
constraint — or different types of behavior. Also, the infloe of way-point tasks could be
part of the optimization process. These tasks are used v@at@efrom a straight line some
trajectories of operational points by locally attractihgm. By considering the tolerance on
the task regulation as a parameter, the trajectory follolethe operational point can be
controlled.

At the medium term, it would be necessary to reformulate onmete part of the op-
timization problem. Typically, it is necessary to enhartoe ¢convergence properties of the
optimization problem and reduce the computational timehefdptimization, especially in
order to handle more complex sequences, for which the estimaf the gradient by finite
difference is too time consuming.

The sequences optimized in this thesis were realized ongperyart of a static hu-
manoid robot. Realizing tasks overlapping while walkinguiees the add of constraints
such as the stability criteria and the motor constraintsgsehformulation is similar to the
robot constraints already considered. Though, consigeha example of a grasping task
that should start before the end of the walk, one can figurethigse constraints may not
be sufficient to express the correct behavior: a robot wglkiith its arms stretched may
satisfy the constraints on the motion, but is not naturals Hlatural-looking condition may
be formulated by the minimization of the torques during thele motion, together with the
minimization of the time spent. In other words, multiple @ifjve optimization problems
should be considered.

For the long term, some improvements are also possible snapiiimization process.
The first one intervenes upstream and consists in adaptingetpuencing phase in order to

124 Adaptive control

handle priorities between tasks. The second one consigitsking it to the surrounding
context by binding the task function approach to the codtaal approach.

Enabling task overlapping makes critical the choice of tepective priority of a set of
tasks, because this hierarchy between the tasks definesriputed motion: a bad choice
can lead to sub-optimal motions, or worse, cause the fadfitiee given plan. In this thesis,
when the sequence was only partially ordered, the sequgptiase was realized together
with the scheduling phase. Hence, in the same way as the ¢chskisle implies an order
between the tasks rather than deciding it, it implies a hibgabetween the tasks, by associ-
ating to the first inserted task the higher priority, and ® ldst one the lower priority. This
approach is not appropriate (in the frame of the optimizgtiespecially when the control
law is smoothed. To prevent the discontinuities due to thegsoi the order of the events and
ensure the convergence of the optimization process, thgljcsolution adopted consisted
in deciding once and for all of the task order (together whtirt priority). Instead, it would
be best to reintroduce the task sequencing phase and talekterorder to take account of
the priorities between the tasks. This comes down to addiegtvap operation to the set
of basic operations considered during the sequencing ffaseow there is only the task
insertion and the task removal).

During the optimization of the can grasping mission, themsaihancement of the sche-
dule was made possible by replacing the temporal consgraoriditioning the motions of
the arms by collision-avoidance constraints. This examsptevs that a way to enable the
optimization consists in finding the temporal constraihts ttan be relaxed and replacing
them by other constraints (e.g. depending on the envirofmBefining manually this re-
placement may be burdensome, and it would best to find thes@rggs automatically. Yet,
this approach —consisting in defining the task sequence negpect to events rather than
exclusively by a schedule—, is the approach realized bydh&al-law method mentioned in
the first chapter. Indeed, it is based on a graph of contrad Jlavihose edges correspond to
smoothtransitions between them. Defining such a graph is now plessiith task-function
approach, ensured to be smooth thanks to the method defiried. é%s a result, binding the
task-function and the control-law approaches may be a g@aydt@venable the optimization
process.

Appendix A

Demonstration of the continuity of the
weighted pseudo inverse method

Since the insertion and the removal of a task are very sirm&ghanisms, we will only detail
the proof of the continuity during the removal of a task.

Consider a stack of tasks containingasks ¢; has priority one;, ;). We prove that,
regardless of the priority of the task remowggl,c(1...), the control lawg; associated to any
taske; ;c1..n) IN the stack is continuous.

To this purpose, we prove by recurrence the following prajms
(P;): Vpell---n],q;is continuous

where e, is the task removed
and G = (JiPi) " (A& — Jiqio1))

A.1 Hypotheses

H A.1.1 When a task; is fully removed at?, its insertion gain at!" is O:

lim A™(t) =0

t—tl
‘H A.1.2 When a task is partially removed &t, then

limg - wi(t)[,r — 0
hmt_nf Wl(t) F — 1

o

126 Demonstration of the continuity of the weighted pseudelise method

A.2 Proof

To simplify the notations, we consider that the level of &t&sconstant. In other words,
considering the stack of tasks containinde., the removal ok; will result in the stack of
task0|e, notede,. We distinguish different cases:

The taske; has priority upon ep: @ < p

Since the task, has no influence on higher priority taskg,is continuousi?;) is true.

The task removed is the taske;: i = p
Using#[A.1.1], we have

lim ¢;(f) =0and lim ai(t) =0

t—tf'— t—t!
(3 1

The function is continuous: the propositigR;) is verified.

The task e, has priority upon e;: i > p
We supposéP;_,) verified. Thus, the continuity ofé; — J;d;_1) is straightforward. We
study the continuity of J;P;_;)#™ix[ne,

Again, 3 cases are considered:
1. (Pi1):a; = aP: the task does not need to be removed
2. (Pia):a;NaP = 0: the task must be completely removed
3. (Pi3):a;Nal” #0: the task must be removed partially
The task e; remains untouched: a; = a?

AInsis a continuous functionw; = diag[1...1] andW; = L.

(JiP;_1)"™i = (J;P;_1)"

Yet
i PR B
JP,, =J|1-
Ji1 Ji1
i PR N B
=Ji—J;
Ji1 Ji1

JiPi_1 = J;, SinCGVj <1,a;MN a; = 0

A.2 Proof 127

Thus

lim (JiPi_l)#wi - JF(JIJF)_I

t—tl

For the same reason, we have:

lim (JiPi_q)™™ = JF(3,J5) 7!

t—th T

(P;1) is verified.

The taske; is removed: a; N aP = ()

ConsideringH[A.1.1], we have:

lim A™(t) =0 = lim \"™(t)

t—tit t—tf
Thus
lim ¢;(¢t) =0= lim ¢;(¢
t—tit ql() t—tl ql()

When the task is completely removeg,is continuous at!.

(P;.2) is verified.

The taske; is partially removed: a; Nal” # ()

(BP0 = Wi(JiPi 1) (JiPia Wi(JiPy)T) ™!
= WiPL,JT (3P, W,PT JT)~!

i

Yet
3] N
PiaW; =|1- : : W;
Jic1 Jic1
J1 Jq1
=W; — : W;
Jic1 Jic1

UsingH[A.1.2]

128 Demonstration of the continuity of the weighted pseudelise method

Likewise
lim WiPl,[t] = lim Wi
t—tl t—tl
Thus
lim (J;Pi_1)*™[t] = lim W I (J;W,I5) 1]

F— F—
t—t,] t—t!

Whent — t§+

- Jl - + - Jl -
Pi_1W; =W, — o1 o1 W;
Jp-i-l Jp—i—l
L Jl . L Jl -

Using#[A.1.2], we have:
P; 1 W; =W;PL, =W,

1

(JiPi_l)#wi = WIJF(JIWIJF)_I

lim (JiPi_l)#Wi = lim (Ji]-:)i—l)#WiL

t—tl t—th T

(P;3) is verified.

Conclusion

The propositior(P;) is verified in the case where the removed taskas priority upore;.

General conclusion

As a conclusion, whatever the priority of the task removedhe control law associated to
the other tasks in the stack is continuous at the time of rell'rtﬁv

Hence,q is continuous orR.

Appendix B

Dynamic motions using equality and
Inequality constraints

The work presented in this appendix is a shortening of thepa]. It introduces the work
realized by Layale Saab, from the LAAS (Laboratoire d’Arsa\et d’Architecture des Sys-
teme) at Toulouse, on which | collaborate.

The objective of this work is to propose a solution to gereefall-dynamic motions for
the humanoid robot, accounting for various kind of constsasuch as dynamic balance or
joint limits. In a first time, a unification of task-based cattschemes was proposed, in in-
verse kinematics or inverse dynamics. Based of this unidicathe hierarchy of tasks based
on a cascade of quadratic programs that was developed in f&#iBverse kinematics only,
is applied for inverse dynamics. We applied this solutiogénerate in simulation whole-
body motions for a humanoid robot in unilateral contact it ground, while ensuring the
dynamic balance on a not horizontal surface.

The classical formulations for the stack-of-task compaotet are based on pseudo inver-
sions (as done all over this thesis) [58, 83, 43]. Howevas & well-recognized fact that,
beyond this computationnal formulation, the inverse-kiaéic formulation can be written
as a quadratic problem where the goal is to find a norm-mir@minder linear equality and
inequality constraints in configuration space. It was rédgegmroposed [42] a specific way
to consider such quadratic problems that enables to find proaimate solution based on
successive prioritization even when inequality constsdiorbid an exact solution.

Whole-body motion is naturally concerned with dynamics emtact forces. A dynami-
cal formulation is necessary and task dynamics writes aatiequalities whose unknowns
are the generalized torques. Several approaches considetization techniques within a
dynamic formulation. This is particularly the case for therks by Khatib and colleagues
[81, 71, 45]. Recently, various techniques have been dpedlfor taking into account ex-

130 Dynamic motions using equality and inequality constsai

actly unilateral constraints due for instance to joint tsrar multiple contacts: [62] proposed
an original scheme to compute a generic control law from ehibic set of both unilat-
eral constraints and bilateral tasks and [16] solves dyoamdl static quadratic problems for
multi-contact.

The work presented below exploits the quadratic nature efijmamic formulation in-
cluding unilateral contact constraints in order to take iatcount equality and inequality
constraints in a way similar to the one proposed at kinenhati in [42].

B.1 Dynamic inverse using QP-based stack of tasks

B.1.1 Task function approach

A task is defined by the task spaegthe reference to be applied in this task spatceand by
G, the differential link between the task space and the rotwizaors:

&+ p=Gu (B.1)

where . is the drift of the task. The referen@é is in the tangent space @ and the
differential link G maps the elements of the tangent subspace of the robot catfayuto
the tangent space ta

This is the same equation as in Chapter 2, but using specifations to make the link
with the dynamics. In inverse kinematics, the control inpus simply the robot joint ve-
locity u = ¢. The differential link is the task Jacobi&k = J. In that case, the driff is
null.

The differential linkG gives the direct link between the actuatoand the feedback:
from a given robot motionG gives the reaction in the task space. To compute a specific
robot controlu that performs the referenég, any numerical inverse @& can be used. The
generic control law is then

u=G%& + p) +Pu, (B.2)

where.” is a matrix-inverse operatdP, is the projection andai, is any secondary objective
to be considered without disturbing the main objective.

Once more, this is the same equation as in the thesis. Famkithes inverse, the matrix
inverse operator is most of the time the pseudo inverse [6,T3% control law is then:

qG=J"e¢" +Pqy (B.3)

The template equation (B.2) can be similarly used to comimaeontrol lawu, accoun-
ting for the secondary task:

& — J2q" = JoPq, (B.4)

The differential link is the projected Jacobiéh= J,P, and the drift isu = —J>q4*. The
same inversion can then be directly applied to obtain thekst&tasks recurrence equation.

B.1 Dynamic inverse using QP-based stack of tasks 131

B.1.2 Inverse dynamics

In dynamics, the input of the system is the robot motor tosque= 7. The state of the
robot is the paifq,), and the task space comprehends both the position and tyel®be
referenceé*, homogeneous to an acceleration, is denétgdontrarily to the kinematic case,
the map to the control input can not be built directly, butlgained from two stages: first
the dynamic equation of the system, typically:

Ag+b=rT1 (B.5)

whereA is the generalized inertia matrix abds the dynamical drift. The acceleratigins
linked to the task space by the task Jacobian:

Jig+Jg=2¢8 (B.6)
Multiplying (B.5) by JA~1, the differential link betweem andé is obtained:
6 +Jq+JA Tb=JA 1 (B.7)

This corresponds to the template (B.2) with= JA ! andp = J¢g + JA~'b.

The dynamic-inverse control law is then directly obtaingdrivertingG. To fit with the
dynamic of the system, it has been proposed [44] to use thghtezl pseudo inverse, with
A as weights of the right-hand side [22]:

= (JA YA @ +Jq+IJA'b) + P1y (B.8)

As in the kinematic cas& represents the redundancy of the system with respect to the
taske. 7o can be used to perform a second tagksimilarly as before.

B.1.3 Inequalities in the loop

We have seen that both kinematics- and dynamics-basedepnsldan be put under a same
shape (B.2). Now, since this common shape can be solved asgagcade of quadratic
programs accounting for both equalities and inequalid@$, [this means that the cascade of
QP can be also applied in dynamics. Since quadratic solverstde to handle indifferently
equalities and inequalities, it is then possible to havé loméqualities and equalities in the
task definition. The reference part is then rewritten:

er<e<é (B.9)

with &* = &" in the case of equalities, add = —co or &" = 400 to handle single-bounded
constraints. When considering a single task, the inverdo?) corresponds to the optimal
solution of the problem:

min [|Gu — & — p (B.10)

It is straightforward to introduce inequality constraiimtto a quadratic program. However,
this would introduce also a de-facto hierarchy betweenrtegualities part and the equalities.

132 Dynamic motions using equality and inequality constsai

It was then proposed [42, 37] to rely on slack variables. Tihadgatic program for both
equalities and inequalities is then written:

min [Jw]|?
u,w

! . (B.11)
st. €<Gu—pt+w<eé

with & = &" for the equality parts of the task. The effect of the slackakse is to relax the
parts of the task that are not feasible, and therefore itresghat the task is fulfilled at the
best (in the sense of the norm of the rest).

When the first task is solved, it was proposed [42] to use thienapslack denoted* to
introduce a secondary task in the hierarchy. After resotudif the first quadratic program, a
secondary task is solved by

min ||w,||?
u,ws

st. & <Gu—p+uw<é& (B.12)
&5 < Gau — py +wy < &,

In this secondary program, the first slackis not variable anymore. Indeed, the first task
has now priority, and should be solved at least as accuratefjone by the first program.
On the other hand, the second task has no priority upon the firthe two tasks are not
compatible, the second task will be relaxed, and then lesgately executed, due to its slack
variable. Similarly, the second slack can be used to intteduthird task, and iteratively,
any number of tasks.

Based on the generic writing (B.2), the cascade of QP abavéeapplied directly for
both kinematics and dynamics.

B.2 EXxperiments

B.2.1 Task-set for dynamic inverse

The first experiments already realized are simply basederetjulation of the posture under
constraint of permanent contact. The first task is then BHgithe regulation of the posture
of the robot. The task space is equal to the actuated-joattesand the desired acceleration
in this space is a proportional derivative to a given refeegmosition at null velocity:

4" = —Ar(a—q") — Apq (B.13)

In that case, the Jacobidnis simply the selection matri® that separates the actuated links
from the free-floating non-actuated degrees of freedom.

The second tasky,, ensures an immediate balance control, by preventing th&acbn
points to take off the ground. The task space is the spacedbtbes normal to the contact,
and the task is to prevent them to reach 0O:

fi=8.J7T(STr —b) <e (B.14)

B.2 Experiments 133

where f, are the normal components of the contact forfesS, is the selection matrix
of the corresponding lines of the contact Jacohklan The right-hand side parameteis
user defined, to ensure a security margin: if chosen closettee@obot can perform more
dynamic movements, but that are less robust in case of pattan. We have used= 10N
in the experiments.

It is possible to show that this last constraint is equivelerthe well-known ZMP cons-
traint [88, 39] when all the contact points are planar andzonital.

B.2.2 Results

The experiments have been performed in simulation usingyhamic simulator AMELIF.
The control law has been integrated in the control framev@oX&, using the dedicated in-
equalities solver developed for inverse kinematics [25 Mfproduced a well known ex-
periment of physiology: the subject is asked to follow anlzory reference with the legs.
When the oscillations frequency or amplitude increasereheired acceleration increases,
until the natural contact constraint is saturated. An oppasscillation then naturally ap-
pears on the chest to counteract the oscillation of the fegbpreserve the constraint. When
put on a force sensor, the subject ZMP was shown to presamatiah at the maximum of
the amplitude.

The robot is put on one leg. An oscillatory acceleration \&gihas a reference, that re-
quires the whole body to remain static, except for one jditite support leg. The amplitude
of the acceleration is then increased until saturation efsilpport constraint. The experi-
ment is summed up on Fig. B.1 and Fig. B.2. The robot configanait the maximum of the
oscillation is shown on Fig. B.1. The robot is bended on its lgith the hip roll axis mo-
ving. The balance-constraint saturation comes both frab#nding (the center of mass of
the robot is far from the support polygon), and from the am@ion required to inverse the
velocity and come back to the rest position. The Fig. B.2agithe normal forces at the four
corners of the foot during the motion. The minimal accepdbtce is set to 10N. Around
iteration 1000, the force corresponding to the front rigithe foot comes to saturation. This
correspond to the time of maximal acceleration. The FigbBji®es the acceleration of the
hip joint (roll) and chest joint (yaw). The chest joint is téiged not to move. However, when
the contact constraint comes to saturation, this part ofdkk becomes infeasible. There-
fore, the chest is used to compensate for the motion of theahigh prevent the foot to move
off the ground. when the acceleration of the hip decreabes;dntact constraint leaves the
saturation area, and the chest comes back to a 0 acceleration

134 Dynamic motions using equality and inequality constsai

Figure B.1: Position of the robot at iteration 1000, when the maximal acceleration is reached. The
red strikes correspond to the forces applies by the ground on the robot. The front forces are smaller,
with the front-right force nearly null.

50 ..

0.5

Values

05 -

-250

L L L L
0 500 1000 1500 2000 2500 -1 L L L L
Iterations 0 500 1000 1500 2000 2500

(@) (b)

Figure B.2: (a) Normal forces to the ground during the motion. (b) Acceleration of the hip roll joint
(red) and chest yaw joint (blue) during the motion.

Appendix C

Résumé

C.1 Définition du probleme

Parmi les différentes méthodes permettant a un robot deeéahe mission, la plus générale
consiste a décomposer la mission en trois étapes : plamoficatrdonnancement et exécu-
tion. Le but de cette thése est d'utiliser cette décompmosin considérant la tache comme
fil conducteur entre les trois étapes.

Approche en trois étapes

La décomposition d’'une mission en trois étapes n’est pasnéibode spécifique a la robo-
tique, on y distingue :

e La phase de planification qui, a partir d’'un ensemble de coemgés, construit un
plan de taches symboliques et précise I'ordre logique ddgeta Ce plan peut étre
partiellement ordonné (une partie seulement des dépeesl@mire taches est défini)
Ou au contraire totalement ordonné.

e La phase d’ordonnancement, dont le réle est de définir legrde chaque tache. Ce
timing doit respecter I'ordre entre les taches et prendreoempte la disponibilité des
ressources qu’elles utilisent. En général, on peuty disgndeux phases : la phase de
séquencement, dont le réle est d’enlever les ambiguitéantedans le plan de taches
en fixant I'ordre des taches, et la phase d’ordonnancemgmbf@ement parler), qui
détermine le timing des taches.

e La phase d’exécution, qui consiste a réaliser le plan deetiatt a s’adapter voire a
réparer le plan de taches en cas de changements ou de prsiganrapport au plan
de taches d’origine.

136 Résumé

Adaptation a la robotique

En robotique, la tdche peut étre définie comme un ordre éimeatt exécutable par le robot,
en opérant sur les moteurs et/ou les capteurs. On distiegué@dhes liées aux actions, qui
utilisent les capteurs du robot mais ne modifient pas sa pgsiaes taches de mouvements,
qui agissent sur les moteurs et modifient la posture du rdbotitilisant cette définition de
la tache, il est possible d’utiliser les méthodes classgieeplanification, d’ordonnancement
et d’exécution ou de définir d’autres algorithmes spécifigiéa robotique qui seront plus
efficaces.

Lier la planification a I'exécution

Pour exécuter un plan de taches, il est nécessaire de passithées symboliques fournies
par la planification a des données numériques. La perte desyoboles cause une perte
de connaissances, qui peut diminuer la robustesse du ptamgaort aux incertitudes de
'environnement. Afin de limiter cette perte d’'informat&mune méthode consiste a travailler
sur le méme élément de la planification a I'exécution. Dedxtgms sont envisagées :

e L'utilisation de la fonction de tache permet a la fois de défies données haut niveau
en utilisant la logique formelle (planification) mais audss données bas niveau per-
mettant de calculer la commande (exécution). Ces tachesatdirectement I'espace
de travail du robot a I'espace de la tache, et ne définissemtcammande que sur
une partie du robot. Il est alors possible de réaliser plusitiches simultanément en
tirant profit de la redondance du robot, et de les organidensme hiérarchie, en les
classant par ordre de priorité.

e L'approche basée commande consiste a définir un graphessomduds sont I'ensemble
des commandes réalisables par le robot, et dont les arcsesdioinctions de transi-
tion entre elles. Cette méthode permet de créer une cadotyique de la mission :
en fonction de I'environnement, une partie seulement dplgast accessible. Cette
approche est cependant moins adaptée a la superposititacties.

Réintroduction de la phase d’ordonnancement

La réalisation séquentielle des taches d’'un plan de tachelpement ordonné peut con-
duire & un mouvement saccadé et sous optimal. Le but de keréion de la phase d’'ordonnancement
est de profiter de la redondance du robot pour réaliser pitsstéches simultanément.
Les approches classiques d’ordonnancement ne sont plpgeadadans la mesure ou
d’une part la hiérarchie entre les taches introduit une idgece non linéaire entre les taches
et les ressources (qui sont les degrés de liberté du robeseatapteurs) et d’autre part le
temps de réalisation des taches devient variables.
L'approche considérée consiste a introduire une phasdidigation entre les phases
de planification et d’exécution. A partir d’'un plan de taclmmdé, elle tend a améliorer le
mouvement du robot en opérant a la fois sur le timing et Iss#ale réalisation des taches.

C.2 Continuité de la pile des taches 137

C.2 Continuité de la pile des taches

Introduction

Une tache est définie par trois éléments : une erreur a régakejacobienne liant I'espace de
la tache a I'espace articulaire du robot et un comportemenéfitrence. Comme une tache
ne définit une commande que sur une partie du robot, il esiljjeste réaliser plusieurs
taches simultanément. En les organisant selon une hiéailast possible d’empécher que
les taches de plus faible priorité ne modifient la command@ée par les taches de plus forte
priorité. Pour cela, chaque tache est réalisé dans I'espaldaissé par les taches de plus
forte priorité. Cette méthode permet de définir une commaodénue, sauf a I'approche
des configurations singulieres, ou la commande peut ateedes valeurs excessives a cause
de l'inversion de la jacobienne. La solution classique ®iasa introduire un coefficient
d’amortissement dans les équations afin de limiter ces rsaleu

Ainsi, pour une hiérarchie de taches fixée, la commande egince. La réalisation
d’'une séquence de taches nécessite de réaliser des opgrisoretes sur la pile, telles
gue l'insertion, le retrait ou I'échange de priorité enteux tdches. Ces événements sont
susceptibles de créer des discontinuités dans la commanaie.approches sont proposées
pour lisser ces discontinuités. La premiére consiste adbtiser toutes les opérations comme
des suites d’échanges de priorité entre taches voisinesed@nde, a I'inverse, consiste a
tout formaliser comme des insertions ou retraits de tachesrgporte quel niveau dans la
pile. Enfin, la derniere méthode consiste a considérer ¢adaltaches comme un tout plutét
gue par niveaux.

Lissage du contrdle durant 'échange de deux taches

On considere que I'échange de taches n’est réalisé qutcties voisines. Pendant I'échan-
ge, le comportement des autres taches n’est pas perturbéaclees de plus forte priorité
ne sont pas affectées (par définition), et 'espace nul adesade plus faible priorité reste
constant. Siles deux tadches sont compatibles dans I'espcalors la hiérarchie entre les
taches n’a aucune influence et I'’échange peut étre ins&antainverse, s'il y a conflit,
alors la commande va présenter une discontinuité a l'ihgtar’échange : une phase de
lissage est donc nécessaire.

Une premiére méthode consiste a considérer la pile de tawhene une limite de la
pondération entre les taches. Les deux taches sont placéegrae niveau et la priorité
entre les deux taches et déterminée par leurs poids refspéaisque la contribution d’'une
tache est négligeable par rapport a l'autre, le systémejastadent a une hiérarchie classique
entre les taches. Cette méthode permet de réaliser un échantinu, mais uniquement si
le facteur d’'amortissement n’est pas pris en compte. En,dfietroduction d’'un facteur
d’amortissement dans les équations introduit une discoité aux limites, i.e. lors des
transitions avec la pile de taches classique. Cette appnoelst de ce fait pas continue au
voisinage des singularités.

Une autre méthode consiste a calculer deux fois la commaude [e cas ou la tache 1

138 Résumé

est prioritaire sur la tache 2 et inversement) puis a évdtsueommande finale en réalisant
une interpolation linéaire de ces deux commandes. Elleptésieux défauts. D’une part,
la commande calculée ne peut pas étre écrite sous la formepdilbleme d’optimisation,
et de ce fait il n’est pas garanti que le mouvement soit féesal’autre part, la commande
doit étre calculée deux fois (mais uniquement pour ces dewaunx et ce, quel que soit le
nombre de taches dans la pile). Malgré ces défauts, cetteodeest la seule qui assure une
commande continue.

La hiérarchie de taches est usuellement terminée par uhe thfinissant le compor-
tement par défaut pour I'ensemble des articulations. TtAdee de plus faible priorité est
donc réalisée dans un espace nul, et n’est pas donc pasmpaeaete. Ainsi, il est possible
de considérer l'insertion et le retrait d’'une tdche commetcimange de priorité avec cette
derniere tache.

La modélisation des événements discrets par des échangesiiteé entre taches mod-
ifie le schéma de la pile de taches : afin d’assurer la conéirdetla commande, il est
nécessaire de décomposer toute action discréte en unessiocce’'échanges de priorité
entre taches voisines. Cette méthode assure donc la civétiteula commande pour une
séquence de taches donnée, mais introduit dans le méme desfetences lors de la réal-
isation d’événements discrets, qui peuvent étre pénaisabe plus, elle présente des dis-
continuités par rapport a I'ordre des événements : en effet, modification dans I'ordre
des événements peut nécessiter I'ajout de phases de |Egagjémentaires pour assurer la
continuité de la commande par rapport au temps. De ce fadrtam@ande associée a cette
nouvelle séquence de taches peut présenter des diffégaoegpport a celle de la séquence
de départ.

Insertion/retrait de taches a n'importe quel niveau de la ple

Cette seconde méthode consiste a considérer l'inserti@retrait de tiche comme événe-
ments de base, afin de limiter le temps nécessaire pour plaeetache a priorité donné.
Le probléme des discontinuités dues au changement d’espaest résolu en empéchant
les taches de faible priorité d’utiliser les articulatiaiga utilisées par les taches de forte
priorité. Pour cela, on utilise une pseudo-inverse poredaria place d'une pseudo inverse
amortie, ce qui permet de contrdler I'influence de chacurgeatgculations, a condition
gu’au moins une articulation soit toujours active.

Le mécanisme d’insertion et de retrait est le suivant : lokaue opération sur une tache
est réalisée, toute tache de priorité moindre ne peutertitige les articulations qui ne sont
utilisées par aucune des taches de plus forte priorité.us@$des articulations peuvent étre
utilisées, alors la tache est réalisée normalement. S2seuit une partie de ces articulations
est disponible, alors la tache n’est réalisée qu'avec ©#dle Enfin, si aucune articulation
n’est disponible, la tache est temporairement désactivée.

Cette méthode ne peut pas étre appliqguée sur des systempkexesnpour plusieurs
raisons : d'une part, priver une tache revient a limiter sspeee de travail, ce qui augmente
les risques de singularité et peut aussi augmenter la batith des articulations libres, et
d’autre part, la désactivation, méme partielle, de ceemiaiches peut ne pas étre souhaitable.

C.3 Superposition des taches par optimisation 139

Calcul de la commande avec un unique probléme de minimisatio

Calculer la commande a I'aide d’un seul probleme de minitiiagprésente I'avantage de
faciliter la réalisation d’événements discrets, mais a plésavantage une relache au niveau
de la hiérarchie entre les taches. Deux méthodes sont étudié

Une premiére méthode consiste a définir la priorité de cteades taches par son poids,
pour 'ensemble des taches (et non seulement deux tachesepnécédemment). Lincon-
vénient de cette méthode est numérique et concerne le capiaids des taches. S'il est trop
petit, alors les taches peuvent ne plus étre prises en coo®tpii crée des discontinuités
dans la commande. A l'inverse, s'il est trop grand, alorsiéadrchie entre les taches n’est
plus respectée.

Une seconde méthode consiste a formuler le probleme comrasdaution d’'une tache
unique. Cette méthode permettrait d’ajouter plus facil@ntes contraintes sur la com-
mande, mais la détermination de cette tache unique esildiffenit elle relache la hiérarchie
entre les taches, soit elle retarde I'adaptation des tatdetus faible priorité aux modifica-
tions liées aux taches de plus forte priorité.

Conclusion

Ce chapitre traite du probléme des discontinuités liéeséalésation d’événements discrets.
La méthode proposée consiste a formaliser tous ces évéresmrs la forme d’une suite
d’échanges de priorités entre taches voisines. Cette gelest réalisé grace a une interpo-
lation linéaire entre les deux commandes possibles, etdulle assure la continuité de la
commande, elle présente aussi comme inconvénient le detaadisation des événements.

C.3 Superposition des taches par optimisation

Ce chapitre définit comme paramétrer a la fois le timing ebl@portement des taches en
superposant des taches, c’est-a-dire en réalisant lesst&ohultanément plutot que séquen-
ciellement, de fagcon a produire un mouvement plus fluide.

Introduction

A partir du plan symbolique, il est possible de définir ungettoire implicite a l'aide la
fonction de taches. Il est aussi possible de définir de fagptiogte la trajectoire que doit
suivre le robot, mais cette méthode rend difficile I'adaptatde la séquence durant son
exécution. Afin de pouvoir superposer les taches, il estssaie de modifier la séquence
initiale en remplacant certaines contraintes temporgldgsd’autres contraintes liées a la
réalisation d’'une tache ou a I'environnement. Ces cortgaine peuvent pas étre mises sous
forme symbolique, donc cette opération ne peut pas étre gitmant la phase de planifica-
tion. De plus, il est nécessaire de vérifier avant I'exécutjae la séquence est réalisable.
On introduit donc entre les phases de planification et det@c une phase d’optimisation
qui réalise la superposition des taches tout en vérifiarddagaintes.

140 Résumé

Séquence de taches

Une séquence de taches est un ensemble fini de taches clpaséedre de réalisation et
lies les unes aux autres. On considere qu’une tache napparune seule fois dans la
séquence, et on lui associe trois variables temporellederaps d’insertion et un temps de
retrait de la pile, tout deux contrélables, ainsi que le teg@régulation de la tache, au bout
duquel lanorme de I'erreur de la tache est inférieure a uleeiveonnée. Ce troisiéme temps
n'est pas controlé, car c’est une conséquence de la réatisid la séquence de taches. Ces
temps permettent d’évaluer les contraintes temporellésieg par la séquence de taches et
les contraintes de régulation : chaque tache doit étre éégqauant d’étre retirée de la pile.

Optimisation d’'une séquence de taches

Le but de la phase d’optimisation est d’améliorer le planabdes en tirant profit de la re-
dondance du robot afin de réaliser un mouvement fluide. Corneseimpossible d’évaluer
numériquement la superposition des taches, on minimisepéatze le temps de fin de la
séquence, ce qui permet de réduire les temps morts et de fagperposition des taches.

Les parametres de I'optimisation sont les taches, qui ssitldnnées symboliques. Afin
de pouvoir réaliser une optimisation numérique, il est sgaie de les convertir en proto-
symboles, en leur associant des données numériques. lagmparametres de I'optimisation
sont les parametres temporels (temps d’entrée et de sertéepile) et le comportement de
référence (défini par un gain adaptatif) de chaque tache.

Les contraintes du probléme regroupent les contraintepdegties liées a la séquence
(ordre entre les taches et régulation des taches) et lesagues liées a I'environnement
(limites physiques du robot, évitement des collisions. Une partie seulement de ces con-
traintes peuvent étre directement calculées a partir dievede parametres, les autres ne
peuvent étre déterminées que par une simulation de la ségjdertaches.

Gestion des contraintes semi-infinies

Le probleme a optimiser est un probléme semi-infini, c’edira qu’il a un nombre fini de
parametres, mais un nombre infini de contraintes. Ce caeasééni-infini est d0 au temps,
dans la mesure ou les contraintes doivent étre vérifiees atmment de la simulation.

Les méthodes classiques de gestion des contraintes simesnpcomme l'analyse par
intervalles ou Il'utilisation d’une séquence de problemegiimisation, ne peuvent pas étre
appliguées a notre probleme. La méthode que nous utilisirtsasée sur une I'évaluation
discréte des contraintes : les contraintes sont évaluéetedvalles de temps fixe, mais
aussi lors de la réalisation d’événement discret. Afin diauae évolution continue des
contraintes et un nombre constant de contraintes duraptirticsation, on considere que
la valeur d’'une contrainte semi-infinie correspond a la wal@aximale obtenue lors de
I'exécution de la séquence. De plus, de fagon a plus facilémedier la violation d’'une
contrainte a la tache responsable et a améliorier la coemeegde I'algorithme, un jeu de
contraintes semi-infinie est associé a chacune des tadcheestévalué que lorsque cette

C.4 Simulations et expérimentations 141

tache est active.

Optimisation via simulation

Le probleme a optimiser est continu et sa dérivée est capaumorceaux. Le solveur util-
isé est CFSQP, qui, bien que prévu pour résoudre des probldenelass€’, retourne pour
notre probleme de meilleurs résultats que SolvOpt, un solgei résout des problémes ni
linéaires ou continus. La plupart des contraintes ne peyaétre calculées directement de
facon analytique : la seule facon de les évaluer est de eéaliee simulation de la séquence
de taches. Il y a de fait un dialogue permanent entre le splyeuchoisit le vecteur de
parametres et le simulateur qui évalue les contrainteggpondantes. Deux méthodes sont
proposées pour améliorer le processus d’optimisation :mise a I'échelle des contraintes
et la décomposition de la séquence en plus petites séquedépendantes.

Discussion

La formulation de ce probléme d’optimisation présente dawmblémes liés a la continuité
de la séquence de tache. Le premier probléme est I'évahumposterioride la contrainte de
régulation : I'insertion et le retrait des taches n’est déteé que par le timing, ce qui peut
conduire a des incohérences dans la séquence de tacheséasihes ne sont pas régulées
avant d’étre retirées et donner des valeurs de contraimtefiérantes. Le second probléme
est lié a la discontinuité de la commande par rapport a lddis événements. Une solution
sOre mais trop restrictive serait de fixer I'ordre des évérgm(c’est-a-dire de travailler avec
un plan de taches totalement ordonné). De ce fait, il n'esfoasible de déterminer quelle
séquence de tache a le petit temps de réalisation avec oetlaige.

C.4 Simulations et expérimentations

Implémentation de la cinématique inverse

Le calcul de la commande pour une hiérarchie de taches deshéalisé par un framework
gui se base sur un mécanisme d’entités et de signaux sindaimécanisme de simulink.
Chaque entité est définie par un ensemble de dépendancesufsig'entrées) et de méth-
odes permettant de calculer les signaux de sortie. Gradteastricture de graphe orientée,
il est possible de limiter les calculs réalisés au strictimum. La commande continue
basée sur I'échange de priorité entre taches voisines pinmentée et testée dans ce fra-
mework, et le probléeme du délai additionnel est illustré peatique, ce délai peut causer un
mangue de réactivité de la part du robot, auquel un utilisgieurra préférer une disconti-
nuité ponctuelle.

142 Résumé

AMELIF, outil pour la simulation dynamique avec rendu hapti que

Le logiciel AMELIF réalise la simulation dynamique d’avegarticulés virtuels avec retour
haptique, et a été congu de fagon a permettre un prototyppgker Il est composé d’un coeur
qui propose un ensemble d’outils génériques (multi-thregautils mathématiques) autour
duquel s’articule différentes librairies qui regroupeszg hlgorithmes par theme : définition
de 'environnement et des robots, calcul des collisionsadlynamique, de la commande et
affichage de I'environnement. A partir de ces librairiessil possible de définir et de simuler
dynamiquement le mouvement d’un robot dans un environnewirgnel. Un scénario illus-
tratif est proposé, dans lesquels d’autres librairies ppecifiques ont été utilisées : une
librairie de gestion de I'haptique et une liée a la génénadie posture.

Optimisation d’'une séquence de taches

Cette partie détaille les différents tests d’optimisati@séquence de taches réalisés. Dans
un premier temps, l'influence du lissage sur le processygtidiisation est testé. Ces ex-
périences montrent que le lissage n'a d’'influence que lersegitaches sont couplées : le
processus d’optimisation est pénalisé par les discomégyiar rapport a I'ordre des événe-
ments. Au dela de l'influence du lissage, ces expérienceneraniimportance de la phase de
séquencement : laisser la détermination de I'ordre deseévénts a la phase d’ordonnance-
ment (c’est-a-dire a la phase d’optimisation) pénalisete@ssus d’optimisation.

L'algorithme d’optimisation est ensuite testé sur un sgénexistant dans laquelle le
robot HRP-2 saisit une boisson a l'intérieur d'un frigo. Afle permettre la superposition
des taches, certaines contraintes temporelles sont reégsl@ar des contraintes d’évitement
de collisions. La séquence obtenue est plus rapide que leeség de tache initiale, et est
jouée sur le robot HRP-2 réel.

C.5 Contrble adaptatif

Le processus d’optimisation qui a été défini permet d’amétiane séquence dans laquelle
le robot est le seul agent. En pratique, il est probable queblet ait a adapter son compor-
tement aux imprévus de I'exécution. L'avantage de la famcte tache est d’étre flexible
en travaillant directement sur les informations donnéedgsacapteurs, ce qui permet par
exemple de corriger I'objectif de la tadche en ligne. Danshagpire, 'adaptation recherchée
concerne la maniére de réaliser la tache (le “comment”plgte le but (le “quoi”) : le
mouvement du robot est personnalisé en utilisant les tisngdes gains adéquats.

ContrOle adaptatif et formalisme de tache

Distinguer le but de la tdche de la fagon dont elle est réalEmet de définir différentes
facons de réaliser une méme tache. Cette distinction peésavantage d’agrandir le spectre
des actions réalisables par un robot a peu de frais, maisigstraécessaire, car elle facilite

C.5 Controle adaptatif 143

'adaptation du comportement du robot aux préférences xetittentes de I'utilisateur hu-
main.

De la méme fagon qu’une séquence peut étre optimisée emuiéder le jeu de parame-
tres optimal, nous pensons que la personnalisation d’upeesée de taches peut aussi se
faire au niveau de la tdche. Nous illustrons cette idée ppetaonnalisation d’une tache
collaborative entre un humain et un robot.

Expérience préliminaire

Dans cette expérience, une tache collaborative est réaittée deux acteurs, un client et un
portier (réle du robot). Le client doit saisir un objet plata@s une armoire située a distance
et le portier doit I'aider en ouvrant cette armoire a tempsstea-dire de fagcon a ce que le
client n’ait pas a modifier son allure et puisse prendre gbhj vol. Cette adaptation se fait
sans communication directe entre les deux acteurs. Le bigxjerience est de montrer
gu'il est possible de définir un mouvement adaptatif a I'alddormalisme de tache.

Dans un premier temps, cette expérience est réalisée egsestljets humains, afin
de définir les caractéristiques du mouvement a réaliserepeotdot. Pour I'ensemble des
participants, le mouvement réalisé par le portier est oontil ne fait pas de pauses entre
les étapes). Deux comportements ont été observés. La ptligmparticipants a adapté son
mouvement en fonction de la position et de la vitesse duftcliéarsque le client approche
a vitesse réduite ou normale, le portier réalise son moumehpar défaut" (c’est-a-dire a
une vitesse fixée de son choix), et ne modifie que son timingcdtdre, si le client est trop
rapide, alors le portier est obligé d’accélérer aussi sonvament pour étre dans les temps.
L'autre comportement observé consistait a ne pas adaptgetse de réalisation de la tache
mais a démarrer le mouvement au plus tot (en méme temps glien de facon a étre dans
les temps.

Expérience sur le robot HRP-2

Le mouvement par défaut est obtenu par optimisation de laeseg de taches, et permet de
connaitre le timing théorique de chacune des taches aiediegdurée totale de la séquence
de tache. Les deux comportements observés chez un pontieiimont été implémentés et
testés : I'adaptation par rapport au temps consiste singiemdémarrer en méme temps
gue I’humain et a réaliser le mouvement par défaut, tandesl'qdaptation par rapport au
mouvement du client nécessite de modifier le timing et |ssgtade réalisation des taches en
fonction de la vitesse du client. Le timing des taches egpt&den conséquence, et dans le
second cas, on introduit une dépendance entre la fonctigaideet la vitesse moyenne du
client sur les pas précédents.

En simulation, on observe que I'adaptation minimale estmperformante que I'adapta-
tion par rapport au mouvement : bien que la conclusion goislicces ou échec de la
simulation) soit la méme dans les deux cas, le timing est@ueitians le second cas, dans la
mesure ou le retard du robot par rapport a ’lhumain est meindr

144 Résumé

Conclusion

Dans cette these, nous proposons de réintroduire la phaiskodhancement entre les phases
de planification et d’exécution, comblant ainsi I'écartretés données symboliques (planifi-
cation) et les données numériques (exécution). Afin de rédet écart, on utilise la fonction
de tache comme fil conducteur durant les trois phases ddip&ian, ordonnancement et
exécution.

Contributions

La premiere contribution est la définition d’'une méthodenpettant d’assurer la continuité
de la pile de taches lors de la réalisation d’événementsaltscCette méthode consiste a
formaliser tous les événements discrets comme des suielsatiges de priorité entre taches
voisines. Le principal défaut de cette méthode est le délaid processus de lissage.

La seconde contribution est la formulation d’un problémaptimisation permettant de
réaliser la superposition des taches. A partir d'un plaradbeds donné par la planification,
le processus d’optimisation régle le timing et la vitesseadisation de chaque tache de
facon a améliorer le plan de taches initial tout en respétarcontraintes physiques (liées a
'environnement) et temporelles (liées a la séquence deja€e processus d’optimisation
est testé sur une séquence de taches réalisées par la HRitéaehte toutefois deux faib-
lesses : I'estimatioa posteriorides contraintes et les discontinuités par rapport aux événe
ments discrets.

Enfin, nous avons proposé d'utiliser la fonction de tache petsonnaliser une séquence
de taches, c’est-a-dire 'adapter aux contraintes de ifenmement, typiquement les préfe-
rences d’un utilisateur humain. Un exemple a été réaliséesmbot HRP-2

Perspectives

Ce travail peut étre prolongé de plusieurs facons :

e A court terme, il est possible d’étendre le probléeme d’opation en considérant
d’autres types de taches (taches de perception, pointssdags..).

e A moyen terme, il serait nécessaire de reformuler partiediet ou totalement le pro-
bleme d’optimisation, de fagon a améliorer les temps dautglmais aussi a gérer des
taches plus complexes, telles que la marche du robot.

e Enfin, & long terme, deux prolongations sont envisageat#esdéfinissant en amont
une méthode de séquencement des taches qui précéderathlzdmé’ordonnance-
ment, et en tirant parti de I'environnement, de facon sim&la I'approche basée di-
rectement sur la commande.

Bibliography

[1]

[2]

[3]

[4]

R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Ctia. Task planning for
human-robot interaction. 180c-EUSAI '05: Proceedings of the 2005 joint conference
on Smart objects and ambient intelligenpages 81-85, New York, NY, USA, 2005.
ACM.

K. R. Baker. Introduction to sequencing and schedulingphn Wiley & Sons, New-
York, 1974.

K. R. Baker and D. TrietschPrinciples of Sequencing and Scheduliigley Publish-
ing, 2009.

M. Beetz, T. Arbuckle, T. Belker, A. B. Cremers, D. Schuiz. Bennewitz, W. Burgard,
D. Hahnel, D. Fox, and H. Grosskreutz. Integrated plandbasatrol of autonomous
robots in human environmentlEEE Intelligent System46(5):56—-65, 2001.

[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, and E. filas. Symboling planning and

control of robot motion. IEEE Robotics & Automation Magazin&4:61—70, March
2007.

[6] A. Ben-Israel and T. Greville.Generalized inverses: theory and applicatiorSMS

[7]

[8]

[9]

Books in Mathematics. Springer, 2nd edition, 2003.

M. Benallegue, A. Escande, S. Miossec, and A. Kheddast E4 proximity queries
using support mapping of sphere-torus-patches boundilgnes. INICRA'09: Pro-

ceedings of the 2009 IEEE international conference on Robahd Automatiojpages
3429-3434, Piscataway, NJ, USA, 2009. IEEE Press.

D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and difider. Grasp planning
in complex scenes. IEEEE-RAS International Conference on Humanoid Robots (Hu-
manoids07)December 2007.

K. Bouyarmane and A. Kheddar. Static multi-contact iseeprolem for multiple hu-
manoid robots and manipulated objectsIBEE-RAS Int. Conf. on Humanoid Robots
(Humanoids) Decembre 2010.

146 Bibliography

[10] N. Brauner, G. Finke, V. Lehoux-Lebacque, C. Potts, anwhitehead. Scheduling
of coupled tasks and one-machine no-wait robotic celemputers and Operations
Research36(2):301-307, 20009.

[11] R.W. Brockett. On the computer control of movementlBE&E Int. Conf. on Robotics
and Automation (ICRA)1988.

[12] J.-R. Chardonnet, F. Keith, A. Kheddar, K. Yokoi, andkerrot. Interactive dynamic
simulator for humanoid with haptic feedbadROMANSY2008.

[13] J.-R. Chardonnet, S. Miossec, A. Kheddar, H. ArisumiHitukawa, F. Pierrot, and
K. Yokoi. Dynamic simulator for humanoids using constraiased method with static
friction. In IEEE International Conference on Robotics and BiomimdiRS3BIO '06)
pages 1366 — 1371, December 2006.

[14] S. Chiaverini. Singularity-robust task-priority nedancy resolution for real-time kine-
matic control of robot manipulator$EEE Trans. on Robotics and Automation (ITRA)
13(3):398-410, June 1997.

[15] T. Coleman, M. A. Branch, and A. Grac®ptimization Toolbox For Use with MATLAB
User’'s Guide Version 2 The MathWorks, Incht t p: / / www. mat hwor ks. com
access/ hel pdesk_r 13/ hel p/ pdf _doc/ optinf opti mtb. pdf, Septem-
bre 2003.

[16] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle. Bgmic balance control of
humanoids for multiple grasps and non coplanar frictiooatacts. Humanoids2007.

[17] J. B. Dabney and T. L. HarmanMastering SIMULINK Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997.

[18] K. Dautenhahn, M. Walters, S. Woods, K. L. Koay, C. L. [dalv, E. A. Sisbot,
R. Alami, and T. Siméon. How may | serve you? A robot compardpproaching
a seated person in a helping context.Pimceeding of the 1st ACM SIGCHI/SIGART
conference on Humanrobot interaction (HRdpges 172-179. ACM Press, 2006.

[19] R. Dechter, I. Meiri, and J. Pearl. Temporal constragtivorks.Artificial Intelligence
49(1-3):61-95, 1991.

[20] W. Decré, R. Smits, H. Bruyninckx, and J. De SchutterteBding iTaSC to support
inequality constraints and non-instantaneous task spatdn. INIEEE Int. Conf. on
Robotics and Automation (ICRA)ages 1875-1882, Piscataway, USA, May 2009.

[21] A.Deo and I. Walker. Robot subtask performance witlysiarity robustness using op-
timal damped least squares.IEEE Int. Conf. on Robotics and Automation (ICRA’92)
pages 434-441, Nice, France, May 1992.

Bibliography 147

[22] K. Doty, C. Melchiorri, and C. Bonivento. A theory of geralized inverses applied to
robotics.Int. J. Robotics Researcth2(1):1-19, December 1993.

[23] C. Dune, A. Herdt, O. Stasse, P.-B. Wieber, K. Yokoi, &doshida. Visual servoing
of dynamic walking motion by ignoring the sway motion. IBEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROSgtober 2010.

[24] A. Escande and A. Kheddar. Contact planning for acymlation with task constraints
and experiment on hrp-2 humanoid. IBEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROSpages 416-417, Piscataway, NJ, USA, 2009. IEEE Press.

[25] A. Escande, N. Mansard, and P-B. Wieber. Fast resalubiohierarchized inverse
kinematics with inequality constraints. IREE Int. Conf. on Robotics and Automation
(ICRA'10), Anchorage, USA, Mai 2010.

[26] P. Evrard.Contr6le d’humanoides pour réaliser des taches haptigunesoepération
avec un opérateur humain (thesis in englistdhD thesis, Université Montpellier I,
December 2009.

[27] P. Evrard, F. Keith, J.-R. Chardonnet, and A. Kheddeantework for haptic interaction
with virtual avatars. INEEE International Symposium on Robot and Human Interactiv
Communication (RO-MANRO00S8.

[28] P. Evrard and A. Kheddar. Homotopy-based controlleptoysical human-robot inter-
action. InlEEE International Symposium on Robot and Human Interaciemmuni-
cation (RO-MAN)volume 18, pages 1-6, October 2009.

[29] R. Featherstone. Robot dynamics: Equations and dfgos. InlEEE Int. Conf.
Robotics and Automatigpages 826—834, 2000.

[30] R. E. Fikes, P. E. Hart, and N. J. Nilssohearning and executing generalized robot
plans Morgan Kaufmann Publishers Inc., San Francisco, CA, US831

[31] M. Gallien, F. Ingrand, and S. Lemai-Chenevier. Robatans planning and execu-
tion control for autonomous exploration rovers. ldth International Conference on
Automated Planning & Scheduling Worksh@p05.

[32] M. Ghallab, D. Nau, and P. TraverscAutomated Planning: Theory and Practice
Morgan Kauffmann Publishers, 2004.

[33] G. Golub and C. Van LoanMatrix computations John Hopkins University Press,
1996.

[34] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.G. Rioy Kan. Optimization
and approximation in deterministic sequencing and sclgtuA survey. Annals of
Discrete Mathematic$:287 — 326, 1979.

148 Bibliography

[35] J. Guitton and J.-L. Fargues. Taking into account gadmeonstraints for task-
oriented motion planningWorkshop on Bridging the Gap Between Task and Motion
Planning of International Conference on Automated Plagrand Scheduling (ICAPS)
19:26-33, 2009.

[36] R. Hettich. An implementation of a discretization madhfor semi-infinite program-
ming. Math. Program, 34(3):354-361, April 1986.

[37] A. Hofmann, M. Popovic, and H. Herr. Exploiting angul@omentum to enhance
bipedal center-of-mass control. WEEE Int. Conf. on Robotics and Automation
(ICRA'09), 2009.

[38] T. Inamura, H. Tanie, and Y. Nakamura. Proto-symboledi@yment and manipulation
in the geometry of stochastic model for motion generatich r@cognition. Proceed-
ings of the Annual Conference of the Institute of Systemafr@aand Information
Engineers48:53-56, September 2004.

[39] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. HagK. Yokoi, and H. Hirukawa.
Biped walking pattern generation by using preview contfaero-moment point. In
IEEE Int. Conf. on Robotics and Automation (ICRA'0Bages 1620-1626, Taipei,
Taiwan, September 2003.

[40] F. Kanehiro, W. Suleiman, K. Miura, M. Morisawa, and Eosfiida. Feasible pattern
generation method for humanoid robots.IHEE-RAS Int. Conf. on Humanoid Robots
(Humanoids)volume 9, pages 542-548, December 2009.

[41] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawa&g M. Hirata, K. Akachi,
and T. Isozumi. Humanoid robot HRP-2. In 2, edilor|EEE/RSJ Int. Conf. on Robots
and Intelligent Systempages 1083-1090, 2004.

[42] O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, Eshmla, and J.-P. Laumond.
Prioritizing linear equality and inequality systems: apgifion to local motion planning
for redundant robots. [HEEE Int. Conf. on Robotics and Automation (ICRpxges
724-729, Kobe, Japan, May 2009. IEEE Press.

[43] O. Khatib. Real-time obstacle avoidance for maniputatand mobile robots.Int.
Journal of Robotics Research(1):90-98, Spring 1986.

[44] O. Khatib. A unified approach for motion and force cohtrbrobot manipulators: The
operational space formulatiomternational Journal of Robotics Reseay@{1):43-53,
February 1987.

[45] O. Khatib, L. Sentis, and J. Park. A unified frameworkwdrole-body humanoid robot
control with multiple constraints and contacts Haropean Robotics Symposiypages
303-312, 2008.

Bibliography 149

[46] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Teahjmgic-based reactive mis-
sion and motion plannindEEE Trans. on Robotics (ITRO32009.

[47] A. Kuntsevich and F. Kappel. Solvopt: The Solver for Local Nonlinear Op-
timization Problems Institute for Mathematics Karl-Franzens University of
Graz, htt p: //ww. kf uni graz. ac. at/i maww/ kunt sevi ch/ sol vopt/
ps/ manual . pdf , June 1997.

[48] P. Langley and D. Choi. A unified cognitive architectdog physical agents. In
AAAI'06: proceedings of the 21st national conference oirifisidl intelligence pages
1469-1474. AAAI Press, 2006.

[49] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Faskimity queries with
swept sphere volumes. Technical report, Department of Qdenscience University
of North Carolina, 1999.

[50] J.-P. Laumond. Kineo cam: a success story of motionmienalgorithmsRobotics &
Automation Magazine, IEEE.3(2):90-93, 2006.

[51] S. M. LaValle. Rapidly-exploring random trees: A newlfor path planning. Techni-
cal Report 98-11, Dept. of Computer Science, lowa Stateessity, 1998.

[52] C. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide faF&P version 2.5: A C
code for solving (large scale) constrained nonlinear (max) optimization problems,
generating iterates satisfying all inequality constmintechnical report, Institute for
Systems Research TR-94-16r1, 1997.

[53] S. Lemai-Chenevier. IXTET-EXEC: planning, plan repair and execution control
with time and resource managemermhD thesis, Institut National Polytechnique de
Toulouse, June 2004.

[54] S. Lemai-Chenevier and F. Ingrand. Interleaving terapplanning and execution in
robotics domains. IAAAI'04: Proceedings of the 19th national conference orifilsetl
intelligence pages 617-622. AAAI Press, 2004.

[55] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida. e&dion of dynamic mo-
tions under continuous constraints: Efficient computatismg B-splines and taylor
polynomials. INEEE/RSJ International Conference on Intelligent Robois 8ystems
(IROS) 2010.

[56] S. Lengagne, N. Ramdani, and P. Fraisse. A new methogeioerating safe motions
for humanoid robots. IHEEE-RAS Internationnal conference on Humanoid ropots
pages 105-110, 2008.

[57] H. X. Li and B. C. Williams. Generative planning for hytirsystems based on flow
tubes. International Conference on Automated Planning and Schmegl{ICAPS)
18:206-213, September 2008.

150 Bibliography

[58] A. Liégeois. Automatic supervisory control of the cguifration and behavior of multi-
body mechanismsIlEEE Trans. on Systems, Man and Cybernetit{d42):868—-871,
December 1977.

[59] P. Lopez, M.-L. Levy, and B. Pradin. Characterisatigrdecomposition in scheduling.
Comput. Ind.36(1-2):113-116, 1998.

[60] C. Mancel and P. Lopez. Complex optimization problemspace systems. limt.
Conf. on Automated Planning and Scheduling (ICARSlume 13, Italy, March (26)
2003.

[61] N. Mansard and F. Chaumette. Task sequencing for sdrasad controllEEE Trans.
on Robotics23(1):60-72, February 2007.

[62] N.Mansard and O. Khatib. Continuous control law fronilateral constraints. IfEEE
Int. Conf. on Robotics and Automation, ICRA'Qfages 3359-3364, Las Passadenas,
USA, May 2008.

[63] N. Mansard, O. Stasse, F. Chaumette, and K. Yokoi. Wigwaided grasping while
walking on a humanoid robot. IhEEE Int. Conf. on Robotics and Automation
(ICRA'07), pages 3041-3047, Roma, Italia, April 2007.

[64] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A viésgeneralized inverted
kinematics implementation for collaborative working huroal robots: The stack of
tasks. International Conference on Advanced Robotics (ICAR)119):1-6, June
2009.

[65] P. Martin and M. Egerstedt. Motion description langeidaased topological maps for
robot navigationCommunications in Information and Syste®):171-184, 2008.

[66] S. Miossec, K. Yokoi, and A. Kheddar. Development of &ware for motion op-
timization of robots - application to the kick motion of theRR-2 robot. InIEEE
International Conference on Robotics and Biomimetixscember 2006.

[67] R. E. Moore.Interval Analysis Prentice-Hall, 1966.

[68] Karen L. Myers. CPEF : A continuous planning and exemuframework.Al Maga-
zing 20(4):63—-69, 1999.

[69] Y. Nakamura and H. Hanafusa. Inverse kinematics samstivith singularity robustness
for robot manipulator controllrans. ASME Journal of Dynamic System, Measures and
Control, 108:163-171, September 1986.

[70] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Mawa, and K. Ikeuchi. Task
model of lower body motion for a biped humanoid robot to ird@tauman dances. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (JRZDS5.

Bibliography 151

[71] J. Park. Control Strategies for Robots in ContacPhD thesis, Stanford University,
California, USA, March 2006.

[72] Sang Il Park, Hyun Joon Shin, Tae Hoon Kim, and Sung Yohigp.SOn-line motion
blending for real-time locomotion generatioBomput. Animat. Virtual World<sL5(3-
4):125-138, 2004.

[73] R. Philippsen, N. Nejati, and L. Sentis. Bridging thepdsetween semantic planning
and continuous control for mobile manipulation using a grapsed world represen-
tation. 1st InternationalWorkshop on Hybrid Control of Autonom@&ystems (Hycas)
July 2009.

[74] R. Reemtsen. Semi-Infinite Programming: Discret@atnethods, SIP. 1998.

[75] R. Reemtsen and J.-J. RAijckman8emi-Infinite ProgrammingKluwer Academic,
1998.

[76] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and advaviultidimensional
motion interpolation]EEE Computer Graphics and Applicatiqris3:32—40, 1998.

[77] L. Saab, N. Mansard, F. Keith, J-Y. Fourquet, and P. 8ieGeneration of dynamic
motion for anthropomorphic systems under prioritized digguand inequality cons-
traints. InSubmitted to the IEEE Int. Conf. on Robotics and AutomatiGRA'11)
Shangai, China, Mai 2011.

[78] J. Salini, S. Barthélemy, and P. Bidaud. LQP-basedrotiat design for humanoid
whole-body motion Advances in Robot Kinematic%177-184, 2010.

[79] C. Samson, M. Le Borgne, and B. Espi&obot Control: the Task Function Approach
Clarendon Press, Oxford, United Kingdom, 1991.

[80] M. Scheutz, P. Schermerhorn, and J. Kramer. The uthityffect expression in natural
language interactions in joint human-robot tasks HRI '06: Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot interactpages 226—-233, New
York, NY, USA, 2006. ACM.

[81] L. Sentis and O. Khatib. Control of free-floating humahmbots through task priori-
tization. InIEEE Int. Conf. on Robotics and Automation (ICRA'O%9ges 1718-1723,
Barcelona, Spain, April 2005.

[82] R. D. Shapiro. Scheduling coupled taskdNaval Research Logistics Quarterly
27:489&AS-498, 1980.

[83] B. Siciliano and J-J. Slotine. A general framework foamaging multiple tasks in
highly redundant robotic systems. IBEE Int. Conf. on Advanced Robotics (ICAR)
volume 2, pages 1211 — 1216, Pisa, Italy, June 1991.

152 Bibliography

[84] G. Simonin, R. Giroudeau, and J.-C. Konig. 2-cover dedin for a coupled-tasks
scheduling probleminternational Conference on Theoretical and Mathematkealn-
dations of Computer Science : Extended matching problera fmupled-tasks sche-
duling problem, ORLANDO, Floridgune 2009.

[85] D. E. Smith, J. Frank, and A. K. Jénsson. Bridging the gapveen planning and
schedulingKnowledge Engineering Revietb(1):47-83, 2000.

[86] C. Van Loan. On the method of weighting for equality doamed least squares pro-
blems. Technical report, Cornell University, Ithaca, NYGA, march 1984.

[87] R. J. Vanderbei. Logo user’s manual - version 4.05. 2000

[88] M. VukobratovE and D. Jurict. Contribution to the synthesis of biped galEEE
Trans Biomed Eng16(1):1-6, January 1969.

[89] A. Wachter and L. T. Biegler. On the implementation ofiaterior-point filter line-
search algorithm for large-scale nonlinear programmMgthematical Programming
106:25-57, March 2006.

[90] P.-B. Wieber and C. Chevallereau. Online adaptatioretdrence trajectories for the
control of walking systemsRobotics and Autonomous SysteB¥7):559-566, 2006.

[91] A. Witkin and Z. Popowt. Motion warping. Computer Graphics (Proc. SIGGRAPH
'95):105-108, 1995.

[92] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumdddmanoid motion planning
for dynamic tasks. Iin International Conference on Intelligent Robotics angt8gns
pages 1-6. IEEE, 2005.

Contributions

[93] J.-R. Chardonnet, F. Keith, A. Kheddar, K. Yokoi, andPterrot. Interactive dynamic
simulator for humanoid with haptic feedbadROMANSY2008.

[94] J.-R. Chardonnet, F. Keith, S. Miossec, A. Kheddar, BnRBierrot. Simulation dy-
namique interactive pour corps poly-articul8&me Journées Nationales de la Robo-
tigue Humanoide (JNRH3, May (13-14) 2008.

[95] P. Evrard, F. Keith, J.-R. Chardonnet, and A. Kheddaantework for haptic inter-
action with virtual avatars. IhEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN)008.

[96] F. Keith, P. Evrard, J.-R. Chardonnet, S. Miossec, ani#eddar. Haptic interaction
with virtual avatars. IfProceedings of the EuroHaptigsages 630-639, Madrid, June
(9-13) 2008.

[97] F. Keith, N. Mansard, and A. Kheddar. Task-formalisnsdxh method: optimization
and adaptation of a tasks scheduB&th Annual Conference of the Robotics Society
of Japan (RSJ)28, September (22-24) 2010.

[98] F. Keith, N. Mansard, S. Miossec, and A. Kheddar. Frostite mission schedule
to continuous implicit trajectory using optimal time wangi Proceedings of Inter-
national Conference on Automated Planning and Schedul®gRS) 19:366 — 369,
September 2009.

[99] F. Keith, N. Mansard, S. Miossec, and A. Kheddar. Opdation de séquence de
taches avec lissage des mouvemed#é&ne Journées Nationales de la Robotique Hu-
manoide (JNRH}4, mai 2009.

[100] F. Keith, N. Mansard, S. Miossec, and A. Kheddar. Opation of tasks warping
and scheduling for smooth sequencing of robotic actionsEEE/RSJ International
Conference on Intelligent Robots and Systems (IR@$)ber 2009.

[101] F. Keith, N. Mansard, S. Miossec, and A. Kheddar. Oped time-warping tasks
scheduling for smooth sequencingth International Symposium on Robot Control
(Syroco) pages 265-270, September 2009.

154 Contributions

[102] F. Keith, P.-B. Wieber, N. Mansard, and A. Kheddar. Ases of the discontinuities in
the task priority scheme when switching priorities.sibmitted to ICRA 2012011.

[103] L. Saab, N. Mansard, F. Keith, J.-Y. Fourquet, and Rie8es. Generation of dy-
namic motion for anthropomorphic systems under prioritizquality and inequality
constraints. Irsubmitted to ICRA 2012011.

Contributions 155

TITRE : Optimisation de séquence de taches avec lissage du mouvernéans la réalisation de
missions autonomes ou collaboratives d’'un humanoide virel ou robotique

RESUME : La réalisation d’une mission robotique se décompose wsuelt en trois étapes : la
planification, i.e. le choix des taches a réaliser, le sécpraent, i.e. la détermination du timing et
de l'ordre de réalisation des taches, et finalement I'exécuwdu plan de taches. Pour les systemes
redondants tels que les robots humanoides, la tadche (dssisdale fonction de tache) détermine une
commande sur une partie du robot, permettant ainsi la afialis simultanée de plusieurs taches a
I'aide d’'un formalisme de pile de taches. Cependant, lesamémes d’ordonnancement classiques
ne gérent pas les cas ou le mouvement est déterminé par untdasie taches hiérarchisé : pour ces
robots, la phase d’'ordonnancement est éludée et I'exécsidnase directement sur la plan de taches
donné par le planificateur. Le but de cette thése est de gduite cette phase d’ordonnancement,
tout en maintenant le réle central de la tache. Dans un prasrigps, la continuité de la commande
fournie par la pile de taches est étudiée. En particuliausmoettons en évidence les discontinuités
accompagnant la réalisation d’événements discrets (drdameertion, le retrait et I'échange de
priorité de taches), puis proposons et comparons plusmétisodes de lissage. Ensuite, nous présen-
tons une méthode permettant d’'optimiser une séquence kest@lonnée en modifiant le timing et
la paramétrisation des taches, tout en respectant lesagues liées a I'environnement. Enfin, une
nouvelle utilisation de la flexibilité de la fonction de t&cbonsistant a adapter une séquence de
taches aux préférences d’'un utilisateur humain est iestCes résultats sont illustrés sur un robot
humanoide.

M OTS-CLEFS : Robotique, Optimisation, Ordonnancement, Superposi®tiches, Personnalisa-
tion de taches.

TITLE : Optimization of motion overlapping for task sequencing

ABSTRACT : A general agreed approach on mission and motion planningjstenn splitting it into
three steps: decomposing the mission into a sequence of (task planning), determining the order
of realization and the timing of the tasks (task scheduleng) finally executing the task sequence.
This approach maintains the task component in the entigondéag, using it as a bridge between
planning, scheduling and execution. In the sense of tagitifum a task defines a control law on part
of the robot. Hence, for highly redundant systems such asahoid robots, it is possible to realize
several tasks simultaneously using a stack-of-tasks fi@ma Though, classical schedulers do not
handle the case where the motion is specified not by one, latbynbination of tasks organized into
a hierarchy. As a result, the scheduling phase is usualbpski. This thesis aims at reintroducing the
scheduling phase, while maintaining the central role otdis&. First, the stack-of-tasks formalism is
recalled and the continuity of the control law is studieditiealarly, we show that discreet operations
(insertion, removal and swap of priority between tasksptraliscontinuities in the control. We
then present and discuss smoothing methods. Second, venpeetask-overlapping based method
to optimize not only the scheduling but also the behaviorhef tasks of a given sequence, while
accounting for the physical constraints of the executionally, we introduce a new perspective in
the usage of the task-function approach to personalizekastguence and take into account user
preferences. These results are experimented on the huirahait platform HRP-2.

KEYWORDS : Robotic, Optimization, Scheduling, Task overlapping,KTpsrsonalization.

DiscIPLINE : Génie Informatique, Automatique et Traitement du Signal

Laboratoire d’Informatique, de Robotique et de Microélectque de Montpellier
UMR 5506 CNRS/Université de Montpellier 2
161 rue Ada - 34392 Montpellier Cedex 5 - FRANCE

