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Introduction

The context of this thesis is humanoid robotics. This type ofplatform brings new robotic
research areas (bridging to cognitive systems, neuroscience, walking, etc.) but also leads
to reconsider classical robotic fundamentals (such as planning, control or reasoning). In-
deed, together with the new possibilities offered, additional constraints and problems appear
when tackling anthropomorphism, balance, dynamics, under-actuation or physical human-
huma-noid interaction. In addition to these fundamental researches, recent efforts are also
dedicated to identify potential applications.

One of the particularities of humanoid robots is redundancy. The capabilities offered by
redundancy can be illustrated by a small example, comparingtwo robots, a single arm and
a bi-manual (e.g. humanoid) moving robot platform, waitering in a café. To conclude their
meal, two customers order coffees to the robots. Their mission consists roughly in preparing
the coffees and bringing them to the place where the customers are waiting to be served.
Once the robot has poured the coffees in the cups, it puts eachof them in their respective
saucer, and put each saucer (with the filled cup on it) on the plate, takes carefully the plate
and goes back to the customers.

The realization of this scenario for the single arm robot is straightforward: it has to
prepare one coffee after the other. Optimizing this sequence (in the sense of the duration of
the mission) consists simply in realizing each task as fast as possible.

The execution of the same sequence by a bi-manual (humanoid)robot would not be
considered as optimal, since the motion capabilities of twoarms robot are not exploited
properly. The first straightforward consideration consists in using both arms to prepare the
two coffees. The second one would consist in scheduling the tasks in a way to perform these
tasks as best as possible in parallel. The optimized sequence for the humanoid robot would
be to take one cup in each arm, put them under the coffee machine, fill them with coffee,
place the two cups on their respective saucers, place the twosaucers on the tray and take the
platter to the customers.

Finally, the only optimization left consists in realizing the mission as fast as possible,
without spilling the coffees or breaking the cups (e.g. by impacting them strongly on the
saucers). Also, since the customers are human beings, additional constraints on motion style
and speed, safety and cognitive behaviors should be considered.
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This rather quite simple example illustrates classical steps for achieving a robotic mis-
sion:

1. the planning, that creates a task plan defining the dependencies between tasks,

2. the scheduling, that defines a time schedule (starting andending time) for each task,

3. the execution, that realizes the task plan.

This work focuses on the items (2) and (3), and tries to solve the following general
problem: “Given a (humanoid) robot and a mission preliminarily decomposed into a task se-
quence, how to optimize the motion that results from task achievements and take advantage
of the robot capabilities?”

This thesis proposes tools to solve this problem and is organized as follows:
First, Chapter 1 states the problem with a more technical terminology and relates existing

work in task planning and scheduling in robotics. It presents the task-function formalism (a
tool that will be used all along this thesis) and details how it can bridge the planning directly
to low level control. More importantly, the frame, the hypothesis and the application contexts
of this work are defined.

The Chapter 2 focuses on the stack-of-tasks mechanism, thatenables to realize a set
of tasks organized into a hierarchy. In order to realize a sequence of tasks, it is necessary
to consider operations such as the insertion and the removalof tasks in the stack. These
elementary operations appear to introduce discontinuities in the control output. Ensuring
the smoothness of the control output during this operationsis a problem that was merely
addressed in previous works that make use of the stack of tasks. Several methods to correct
the discontinuities are presented and discussed, and a solution is proposed.

Then, we propose an optimization-based formalism to realize task scheduling by allow-
ing task overlapping in Chapter 3. This method aims at findingan optimal execution of
the sequence of tasks using the stack of tasks and provides a solution to the tasks scheduler
(the upper level). This solution not only consists in findingthe right timings for inserting
or removing tasks, but also suggests a behavior regulation for each task, while ensuring that
the motion verifies the constraints imposed by the sequence,the robot or the environment.
Advantages and flaws of this method are discussed.

These two chapters are the main novel contributions. They are then enhanced by two
main experiments involving a HRP-2 humanoid robot.

The first one is described in Chapter 4, together with the tools and frameworks used. It
corresponds to an experimental validation of the methods proposed to realize a smooth and
optimized motion.

The second one focuses on the flexibility offered by the task-based approach and pro-
poses to use it to tune an adaptive behavior for the task. It isindeed necessary to deal with
uncertainties of the environment and correct the sequence during its realization, but it is also
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important to personalize robot behavior so as to conform human expectations. Therefore, in
Chapter 5, the task tuning is used as an approach to modify thewaya mission is realized in
order to satisfy the constraints of the environment or the preferences of a human operator.
An illustrative example is proposed and detailed.

Finally, a summary of our contribution and a list of future works are proposed in the
concluding chapter.
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Chapter 1

Problem statement

Having a robot realize the tasks it has been designed for can be achieved by different meth-
ods, depending on the nature of the context, the applicationand the complexity of the tasks.
For ad-hoc and complex tasks that can hardly be further decomposed, the method usually
adopted is to directly compute the trajectory that will be tracked by the robot. For extreme
motions, such trajectories can be computed using an optimization-based method, as for the
kicking motions and the throwing motions presented in [66, 55], or by copying and adapting
an observed trajectory, as for the “aizu-bandaisan odori" dance that has been reproduced by
the HRP-2 humanoid robot based on the performance of a human grand master [70].

For other contexts (industry, more or less structured environments, etc.), the approach
generally preferred to realize a complex mission is to decompose it into three steps: plan-
ning, scheduling and execution of a task sequence.

The goal of this thesis is to use this three-step method to realize a robot mission, and to
use the task as the thread guide between the steps. This chapter presents the foundations of
the choices made to build our approach.

1.1 Three-step method

The three-step method is not an approach specific to robotics. In this section, we introduce
the general definition of the task planning, the task scheduling and the reactive mission exe-
cution, and the classical methods used to realize them.

1.1.1 Task planning

In its general meaning, taskplanning[32] consists in building the appropriate sequence of
tasks to realize a given mission. In other words, it consistsin choosing in a given pool of
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doable tasks (called know-how) the adequate set of tasks andordering them so as to achieve
the given mission. In such planning, the task is defined as a symbol that can be translated
into an action (or a set of actions) to be concretely realized. The tasks can be sorted in two
categories:

• ThePrimitive tasks (or Operator), that can be executed directly.

• TheNon-primitivetasks (or Method), more complex, that have to be decomposed into
a set of subtasks so as to be executed.

A primitive task is usually defined by a set of preconditions and an effect, e.g. using
STRIPS operators [30]. The non-primitive tasks are defined by a set of preconditions and a
set of subtasks, that can be either organized according to a totally ordered sequence (i.e. all
the dependencies between tasks are defined), or only partially ordered (i.e. only some of the
dependencies between tasks are defined). The Fig. 1.1 shows atoy example of decomposi-
tion of a mission into a task sequence. The method “Prepare table" is totally ordered: the
task order between its two subtasks is fixed. On the opposite,the method “Place cutlery"
is partially ordered: the order of realization of the three tasks is left free and will only be
decided in the task scheduling phase, or even during the execution by the agent (human or
robot).

������

�����	�

AB�C�D�E�FD���

����F	B��B

�	�F�B�C�D�E�FD���

���	C�	��D�	�F��D	F���D����

Figure 1.1: Decomposition of a toy example mission into a task plan.

Different methods can be used to define a task plan. A large majority of planners work
directly with primitive tasks. They find the appropriate sequence of primitive tasks to realize
a mission, given an initial state and a final state expressed as literals, and a database of
primitive tasks.
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More powerful, the Hierarchical Task Networks (HTN) –or their simplified version, Sim-
ple Task Networks (STN)– work with non-primitive tasks: they realize a descending ap-
proach from high level tasks down to low level ones (primitive tasks). Besides, they en-
able considering more constraints on the tasks compared to basic planners. Namely, post-
conditions and conditions on the realization of tasks are taken into account.

The pros and cons of these methods are compared in [85]. Basicplanners (such as
STRIPS) do not work with time of resources. As a result, some tasks, that cannot be ex-
pressed using only formal logic (typically the maintain of astate or the respect of deadlines)
cannot be formulated with this formalism. As for the HTN planners, the main issue is that
they require an exhaustive definition of the know-how. A non-primitive task can be decom-
posed into different sets of primitive tasks, and the determination of all these combinations
can be daunting. If this phase has been not be realized correctly (e.g. if a task has been
omitted by the designer), the HTN planner will not be able to realize the task plan for the
mission, whereas a common planner would have succeed.

When the mission is detailed enough, i.e. when the goals are well defined and the context
(environment, role of external agents. . . ) is known and doesnot present any uncertainties, it
is possible to produce the sequence of tasks for the entire mission. Otherwise, only part of
the task plan can be built off-line and the remaining part hasto be built on-line according to
the evolution of the mission.

1.1.2 Scheduling

The planning determines a doable task sequence to realize a mission, but is only concerned
with the logical links between the tasks. To realize the sequence, it is necessary to disam-
biguate it (i.e. to determine an order of realization for partially order sub-sequences) and
define the position of each task on a given time line.

1.1.2.1 Definition

In its general meaning, taskscheduling[2, 3] is the step which comes next to task planning. It
consists in determining the adequate timing for each task (or job) (start time, completion pe-
riod and sometimes safety period) to realize the task sequence while fulfilling the constraints
of availability of the resources and the temporal constraints. It often aims at minimizing the
total duration of the mission, but other objectives can alsobe considered, such as the mini-
mization of the cost or the respect of the deadlines (estimated by the maximal delay or the
sum of the delays). Multi-objectives optimization problems can also be envisaged.

Usually, a scheduling problem is approached in two steps: the first step is a sequencing
phase, and the second step is a scheduling phase (strictly speaking) [3]. The purpose of
the sequencing phase is to remove the eventual ambiguities remaining after the planning
(typically when the sequence is partially ordered) and makea choice on the task ordering.

One could object that the task ordering could be defined usingonly task scheduling.
Yet, the difference between the two steps is that whereas task schedulingimpliesan order
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between the tasks (“Considering the given schedule, this task starts before the other one"),
tasks sequencingimposesan order (“This taskhas tostart before the other one").

Unlike planning, the scheduling phase takes into account the availability of the required
resources (such as machines, computer memory, human power,raw materials, money. . . ).
Also, in the general meaning, the resources are characterized by a set of given properties:
for example, they can be either renewable (they are available again at the end of the task) or
non-renewable (they are consumed by the task); disjunctive(only one task can access it at a
time) or conjunctive (only a limited number of tasks can access it simultaneously); preemp-
tive (they can be interrupted and reintroduced later) or not.

A task is defined by a set of temporal data, as illustrated on Table 1.1 and Fig. 1.2. The
task schedule has to fulfill two types of temporal constraints. Besides the causal dependen-
cies between tasks imposed by the planner (often corresponding to precedence constraints),
temporal constraints with respect to a specific date in the schedule (such as deadline) can be
added.

ri release date (time at which the task is available for processing)
di due date (time at which the task has to be realized)
sti startingtime
fti finish time
pi processing time (the period of realization of the task)
Ci Completion time (Ci = sti + pi, if there is no interruption)

Ri
Interval of admissiblerank
(the set of non forbidden positions for a task in an admissible sequence)

Table 1.1: Temporal data defining a task i.
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Figure 1.2: Basic definition of a task in scheduling.

A scheduling problem is usually formulated using the notationα|β|γ, introduced in [34],
whereα defines the machine environment (number of machines, parallel or not),β defines
the properties of the tasks (time of realization, precedence, preemption, release and due
dates), andγ defines the objective of the optimization (minimization of the completion time,
the lateness, the tardiness. . . ). For example,1|prec|C corresponds to the minimization of the
completion time on a single machine subject to precedence constraints.
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1.1.2.2 Simplification

The complexity of a scheduling problem grows drastically with the number of tasks consi-
dered for a given plan. A method reducing the complexity of scheduling problems consists
in sorting the tasks by specific groups [59]. These groups decrease the number of possible
combinations when organizing the tasks with respect to eachothers. As depicted on Fig. 1.3,
three types of group of tasks are considered:

• Autonomous Tasks Sets (ATS), that are independent in term ofsequencing, but they
often contain too many tasks to allow a quick sequencing.

• Equal Rank Sets (EQS), that enable a quick sequencing of the tasks (they are inter-
changeable), but are coupled.

• Overlapped Rank-Intervals Sets (ORIS). Two tasks belong tothe same set if there is a
task in the set (possibly one of them) whose rank includes therank of the two tasks.

Figure 1.3: Simplification of the sequence by division into group of tasks.

1.1.3 Execution and reparation

The execution phase corresponds to the realization of the task sequence using the computed
parameters. Because of the unexpected problems or events that may occur during the exe-
cution (access to a resource delayed, time of task regulation under estimated, difference
between the expected and real environments, failure of an action. . . ), it is most likely that
the plan will have to be repaired, i.e. adapted in response tosituation changes and execution
results.

The Continuous Planning and Execution Framework (CPEF) [68] proposes a complex
structure to handle the generation, execution and repair oftask plan involving both human
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and robotic agents. The system is based on a planner manager that controls constantly the
execution of the mission and repairs it when necessary.

Conservative repairs are realized to correct these failures, i.e. repairs that minimize the
number of changes of the original task plan, so as to ensure a continuity in the plan. In this
purpose, the HTN structure of the task planner is utilized inorder to repair at the lowest level
possible. The research of the failed task is realized from low level up to top level: when the
node is found, the planner tries to repair it, and if this try is fruitless, the reparation process
is run on the parent node.

The particularity of this planner is that it distinguishes direct and indirect execution. A
direct execution is an executioncontrolledby the system. This is typically the case with
machines, for which all the information are known (state, success of the mission...). On the
opposite, anindirect execution is an execution onlyobservedby the system. This qualifies
for example actions realized by human operators, for which the informations may not be
directly accessible, imprecise or delayed.

An interesting point to note at this stage is the central roleof the task in the three steps:
it can be seen as the guiding thread bridging the task plan to its optimal execution.

1.2 Adaptation to robotics

This section presents how some of the techniques presented below have been adapted and
specified in order to be applied to robotics. Especially, therole of the task in each of the
steps is highlighted.

1.2.1 Generic definition of a robotic task

In section 1.1.1, we stated that aprimitive taskcan be defined as an order directly executable.
We refine this definition by sorting them into two categories:

• Action tasks, that operate on the sensors (i.e. uses the sensors resources) but leave the
posture of the robot unchanged (i.e. they do not use the robot’s degrees-of-freedom
(dof)). Such actions can be: “Take a picture", “Turn on/off the micro", “Introduce
yourself", “Activate the camera". . .

• Motion tasks, that operate on the motors and modify the stateof the robot. This defini-
tion includes position tasks (“Turn your left foot in 45 degrees", “Go to the positionp",
“Place your gripper at the positionp") but also actions depending on passive sensors
(such as “Close the gripper until the force sensed exceedsn Newton").

The former category concerns any command that defines auniquedisplacement of whole
or part of the robot. Such commands also use the sensory resources and sensors activities
may even require motion (active perception); which means that the two categories of tasks
are not necessarily exclusive. A typical task uses sensory and actuation resources; it defines
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not only the final state to reach/achieve, but also how to do it(in term of trajectory, speed. . . ).

To put it in a generic way, theseprimitive motion tasksdefine a control law that can be
written as follows:

Aq̇ = ẋ (1.1)

whereq̇ is the joint velocity vector,̇x is the desired motion in the corresponding operational
space andA is the inverse mapping from the joint space to operational space.

Note that the tracking of a trajectory can be directly written under this form, in which
case the desired motion is the trajectory (ẋ(t) = q̇∗(t)) and the transformation matrix is the
identity:

q̇ = q̇∗(t) (1.2)

Two other approaches fitting this definition, the task function and the control-based approach,
will be introduced later.

From now on, bytask, we always mean primitive task (since this will be extensively used
in this thesis, which is in fact the task function control component), otherwise we make clear
what the task meaning is.

1.2.2 Planning

Some robotic planners are generic and follow the structuresintroduced earlier (classic plan-
ners and HTN). Based on a database of actions doable by the robot, they are able to build a
task sequence for a given mission.

For example, Ixtex [31] is a planner based on a Partial Order Causal Link system (POCL),
i.e. it can produce partially ordered plans and uses the principle of least commitment during
the search (it produces plans that are also partially instantiated in order to postpone as late
as possible a choice that is not mandatory). On the other hand, Icarus is a reactive symbolic
planner [48, 73] based on a goal-indexed HTN. At each cycle, Icarus recognizes the envi-
ronment, analyses the situations and defines the actions to realize. In this purpose, it uses
two databases: a conceptual knowledge database that recognizes the situations, and a skill
knowledge database, that details the operations doable by the robot.

The advantage of these planners is that the resulting task sequence still contains the causal
dependency conditions between the tasks, usually defined byformal logic, which makes eas-
ier eventual plan reparations [46].

Though, when it comes to humanoid robots, the preference is often given to more specific
planners [50]. Some of them are based on Rapidly-exploring Random Trees (RRT) [51],
which are trees whose nodes are configurations (the root nodebeing the initial configuration)
and whose edges are the paths doable by the robot linking these configurations. At each
iteration, a random configuration is generated and the closest node in the tree is found. Then,
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a new configuration placed between these two configurations and reachable from the node is
added to the tree.

Considering that a humanoid robot has towalk from a place to another, without col-
liding with the environment, the generation of the motion isoften divided in several steps.
First, a trajectory is computed for a bounding volume containing the robot. Next, a feasible
kinematic trajectory of the robot is deduced from it, and defines the walk pattern and the
motion of the upper body. Finally this trajectory is validated and refined by a dynamical
simulation [92].

Whereas the previous planner considers the objects presentin the surrounding environ-
ment as obstacles that must be avoided, the contact planner presented in [24] enables defining
motions where the robot takes advantage of the surrounding environment by leaning on it.
The resulting plan is a sequence of statically stable postures the robot has to reach: the tasks
can be considered as whole-body configurations organized sequentially.

1.2.3 Scheduling

1.2.3.1 Scheduling of actions

Scheduling problems are mainly applied for scenarios wherethe robot has to act autono-
mously, namely if it can hardly be remotely controlled by a human operator. This is typically
the case with satellites [60], that have to realize some motions (correction of trajectory) and
some actions (taking pictures, sending or receiving data from Earth) during specific time
windows, while managing wisely their resources such as fuelor battery.

The handling of coupled tasks [82] is another class of regular scheduling problem. A
coupled task is composed of two subtasksai andbi separated by an incompressible delay
Li (cf. Fig. 1.4). Realizing tasks during this inactivity period enhances the schedule by
removing dead times.

� �� �
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Figure 1.4: Schematic representation of a coupled task.

This problem has been applied on the control of torpedo [84].An acquisition task can be
defined as a coupled task: it sends an echo in the water (ai), wait (duringLi) and receives it
(bi). Additionally, the torpedo has to perform data-processing tasks that analyze the received
echo. The goal of the scheduling is to use the waiting time to achieve data-processing tasks,
or to emit other echoes (on other frequencies). Coupled tasks also appear in problems of
production and stock handling in workstations. In this context, the robots act as transporters
that convey materials between the stations and the machines[10]. In this context, a coupled
task can be defined as follows:ai represents the time necessary to bring the material to the
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machine,Li denotes the delay of treatment of the material by the machine, andbi the time
necessary to bring the object to another station. The goal ofthe scheduling is to reduce the
production time.

1.2.3.2 Scheduling of motion

One could notice that in the examples of scheduling problem presented below, the schedu-
ling is always realized between action tasks, or between action and motion tasks but never
between motion tasks. This should be interrelated with the fact that so far (in this document)
motion tasks correspond either to trajectories to track or to postures to reach, defining hence
a whole-body motion. Besides, the order of motion tasks is usually fixed in the sequence:
task scheduling is thus limited to reducing the delay between the tasks.

This approach is an important limitation to the optimization of motions, particularly in
the case of redundant robots (such as humanoids) that can realize simultaneously different
tasks. At this point, one may easily think on robotic sensorsand actuators (degrees of free-
dom) as being the intrinsic resources for a robot to achieve agiven mission, and consider
that the tasks should not be applied on the whole body but onlyon part of it.

1.2.4 Execution and reparation

The reparation processes usually used in robotics are more specific and simpler than the
CPFE framework mentioned earlier. Two types of correctionsare usually considered: adap-
tations, i.e. on-the-fly modifications of the task sequence,and reparation of the task sequence
(which corresponds to a reconstruction of the task plan).

For example, in order to be reactive and flexible to the variations of the environment,
the controller of the Rhino robot [4] constantly verifies during the mission than the given
task plan is adequate, and correct it if necessary. Using a library of routine plans, it first
computes an appropriate schedule by making assumptions on the environment, then refines
and eventually corrects this schedule during the executionby verifying these assumptions.
This verification is realized continuously during the execution, and the adequacy (no unne-
cessary tasks in the sequence) and the coherency (no conflicting tasks) of the task schedule
are ensured.

More recently, the Ixtex-Exec system [53, 54, 31] proposes amethod to realize reactive
planning and execution, and eventually plan repair. This system is layered in three parts:
the planning (Ixtex), the temporal executive (Texec) and the execution module (Exec). The
temporal executive handles the scheduling, by deciding thestarting time of each task and
eventually their stopping time (if the tasks are pre-emptive, else there is no control on them)
according to the state of the system (position of the robot and available resources). The tem-
poral executive is based on two constraint satisfaction problems: the first one is a Simple
Temporal Network (STN) [19], in charge of verifying the determining the scheduling of the
tasks (starting time duration), and the second one binds symbolic and numeric variable.
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In the frame of humanoid robotics, lots of work have been realized to generate reactive
motions for the robots. Especially, the generation and the tracking of a walk pattern is
one of the main concern. We already mentioned that planning trajectories for humanoid
robots is handled by specific planners. The execution of sucha motion may also need to
be corrected and adapted during the execution, either to enhance the stability of the default
walking motion [90], or to take into account the variations caused by the walk to correct the
walk pattern in order to better realize the mission, such as the tracking of a target [23].

Other works focus on the adaptation of the robot’s motions tothe changes in the envi-
ronment. In [63], the humanoid robot realizes the grasping of a ball while walking. Using
visual feedback, the robot is able to track the slow displacements of the ball and to correct
the position of its gripper accordingly. Similarly, the realization of collaborative missions
with an external agent, e.g. the manipulation of an object (Person-Object-Robot interaction),
requires to correct the adapt the behavior of the robot according to the directions taken by the
external agent. In [26], a force-based interaction system is used to determine the role and the
actions of the robot (should it act as a slave, a master or should it adopt a mixed behavior?).

1.3 Binding Planning and Execution

Previous sections showed how a mission can be decomposed into a sequence of tasks, en-
hanced via task scheduling and finally executed by a robot. Yet, some of these techniques
–even though functional– can raise an issue, because they transform the initial task sequence
in order to define the motion to be executed by the robot. This conversion weakens the link
between the planning and the execution, making difficult notto say impossible the consulta-
tion of the initial task plan during the execution.

In this section, we introduce two methods used to bridge thisgap.

1.3.1 Gap between symbolic and numerical data

Defining the motion of the robot by an explicit or implicit trajectory is realized by convert-
ing the symbolic data used by the planner into numerical data. This transformation, if not
memorized, loses knowledge in terms of semantic. While it ispossible to guess what would
be the trajectory associated to a set of tasks, it is most often difficult to determine what tasks
led to a given trajectory (namely when the same trajectory can result from many dissimilar
tasks). Using computed trajectories without any other information lacks of robustness to
environment uncertainties and modifications: the originaltask plan is lost, which prevents
any consultation during the execution. In fact, this gap appears during the transition between
the planning and scheduling phases [85]: whereas the planning phase work with symbolic
data, the scheduling phase works with numerical data, such as geometrical data, temporal
data (time constraints, task duration) and resources.

This issue is consequent, insomuch that the workshop HYCAS1, dedicated to this sub-
ject, has been recently created. To solve the issue raised bythe gap between symbolic and

1International Workshop on Hybrid Control of Autonomous Systems
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numerical data, a method consists in using the same element to define both the planning and
the execution, making the link between them straightforward. Two approaches have been put
forward in this context: the task-function approach and thecontrol-law approach, detailed
hereafter.

1.3.2 Task-function approach

The task-function approach presented in [38] offers an elegant way to bind the planning and
the execution of a mission. On the one hand, it defines both thehigh level specification of
the action expressed in formal logic causes (planning); on the other hand, it details the low
level formulation allowing to compute the control (execution). Like the operational space
approach [44], it has been introduced to simplify the control problem in robotics.

A task function, notede, is defined by three elements: a vectore, a JacobianJ, and a
reference evolution of the task functionė∗. Typically, the vectore corresponds to the error
between a signals and its desired values∗: e = s − s∗. The JacobianJ binds the error and
the vector of joint parametersq, according to the equationJ = ∂e

∂q
. The reference behavior

ė∗ defines the way the error is handled. The control equation, that respects the formalism
given in (1.1), writes as follows:

Jq̇ = ė∗ (1.3)

Most of the time, such commands control only part of the robot, giving the possibility
to realize other tasks simultaneously when the robot presents enough redundancy. In this
purpose, tasks are usually organized into a hierarchy, so that tasks of lower priority do not
perturb the realization of higher priority tasks [83]. Tasks of high priority usually aim at
preserving the security of the robot (balance, collision avoidance), while motion tasks have
lower priority. Different methods to build such a hierarchyhave been proposed in the liter-
acy and are detailed in next chapter. The main difference between them is the trade-off they
accept between the strict respect of the hierarchy and some other properties of the control
law, such as the continuity. A strict hierarchy is realized by stacking the tasks one on top of
each other, while a slacked hierarchy is realized by manually merging their contributions.

Recent work [73] gathers these two roles for the tasks, allowing the resulting mechanism
to modify and construct reactively the task sequence plan during the execution.

1.3.3 Control-based approach

Another approach consists in working directly with controllaws. This method is based on
the Motion Description Language (MDL) [11] approach.

In [5, 65], an alternate way to realize the planning and execution of a mission is introdu-
ced. This method supposes that the set of possible control laws is known and that the tran-
sitions between them are smooth and known. This set can hencebe formulated as a hybrid
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automaton where the states are the possible control laws, and the edges are the smooth tran-
sition functions between them (called interruption). Notethat since it is directly expressed
with control laws, this approach directly fits in the formalism given in (1.1).

The idea characterizing this approach is that a robot does not need to know everything
about the surrounding environment, but only the part it can use (i.e. where it can go or
act), in the same way as a train does not need to consider maritime roads. By adapting the
analysis of the environment surrounding the robot to its specificities, it is possible to create a
topological map detailing the places that the robot can reach using the motion defined in the
set of possible control laws. The advantage of this hybrid topological map of the environment
is that it associates both geometric data and the control laws.

Defining a motion comes down to finding the appropriate path inthe automaton of reach-
able states, using the environment-based events (e.g. the approach of an obstacle) as inter-
ruptions enabling to pass from a control law to another.

Yet, the realization of task overlapping should not be realized at this level: defining the
interruptions conditioning task overlapping is difficult,especially in situations where the
interactions between the environment and the robot are limited (such as for a dance motion).

1.3.4 Influence of the task definition on the sequence composition

Using these two approaches, we illustrate that thegranularityof the planning differs accor-
ding to the chosen task definition. The mission is to pick an object placed on a table, and is
decomposed into two motions: placing the gripper around theobject and closing the gripper.
In the considered environment, depicted on Fig. 1.6a, the robot can not directly reach the
object since it is placed behind a large box: the only solution is to pass over the obstacle
to reach the object. We consider that the best grip position chosen (manually or using an
appropriate method [8]) is the same for the two approaches.

Control-based approach To define the appropriate curve trajectory that passes abovethe
first object, we use the same task plan as the one presented in [65] (with simpler notations).
The graph of possible motions is composed of three control laws (Fig. 1.5):

• q̇1 attracts the gripper directly toward its desired posture,

• q̇2 passes above the obstacle,

• q̇3 realizes the grasping.

Three interruptions are considered:

• ξ1, triggered when an obstacle is in the way,

• ξ2, triggered when the obstacle has been bypassed,
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Figure 1.5: A hybrid automaton defining the motion of the arm of the robot.

• ξ3, triggered when the goal is reached.

Hence, the sequence defining the mission is(q̇1, ξ1), (q̇2, ξ2), (q̇1, ξ3), q̇3. The whole
task sequence contains four primitive tasks (Fig. 1.6b) andthe resulting trajectory is depicted
on Fig. 1.6d.

Task-function approach The task defining the motion of the gripper aims at reducing
the error between its current position and its final position. The classic definition of the
control, q̇ = J+ė∗, ensures a maximal regulation of the error, and is thus not suitable.
Indeed, this formalism makes the operational point travelsa straight trajectory, causing in
the present case a collision with the obstacle. A method to modify the trajectory consists
in adding intermediary tasks in the sequence that act as temporary attractors or way-points.
This method requires a preliminary correction of the task sequence, which is often specific
to the environment or to the motion considered. For the picking motion, adding one attractor
e1 is enough. As a result, the task sequence contains three primitive tasks (Fig. 1.6c), and
the final trajectory is depicted on Fig. 1.6e.

This example showed that the decomposition into primitive tasks realized by the planner
depends on the task definition chosen. We could have chosen another task of higher priority
that detects and locally avoids collisions. Yet such tasks are written in terms of inequalities
that are only very recently being resolved.

In our developed solution, we made the choice to rely on the task function approach,
which presents the advantage of keeping the task component and implicitly control only the
parts (dof) of the robot that are necessary to achieve a giventask or set of tasks. This other
motivation is also that we adopted this formalism to controlour humanoid robot HRP-2, and
it proved to be elegant to handle complex collection of taskssuch as grasping while walking,
human-robot haptic joint action while walking, etc.

Subsequently, the robotic tasks scheduling phase is not limited to the simple reduction
of the delay between the tasks anymore; our aim is to devise anapproach that enables task
overlapping.
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1.4 Reinsertion of the scheduling

The example of the robot waiter given in introduction highlighted the main issue raised when
realizing a sequence of tasks sequentially: the motion is suboptimal, or even jerky. Using
this same example, we illustrate what should be the evolution of the task sequence during
the planning phase and scheduler phase. The tasks realized by the robot are supposed not to
conflict and are defined as follows (the indexes L (for left) and R (for right) indicate which
arm realizes the motion):

e1L−R Take the cup.
e2L−R Put the cup in the coffee machine.
e3L−R Fill it with coffee.
e4L−R Place the cup on its saucer.
e5L−R Put the saucer on the tray.

e6 Take the tray.

The partially ordered task plan corresponding to this mission is illustrated on Fig. 1.7.
If the task scheduling phase is skipped, a naive task schedule would consist in realizing the
tasks sequentially (Fig. 1.8). Else way, the scheduling phase should take advantage of the
fact that the task sequence is only partially ordered to optimize it by realizing several tasks
simultaneously. The resulting task schedule is illustrated on Fig. 1.9.

Hence, the purpose of the reintroduction of the scheduling step is to enhance the motion,
typically by realizing task overlapping.

1.4.1 Unsuitability of the classic scheduling approaches

Considering that a robot can realize a hierarchy of tasks, the scheduling problem writes as
follows: the jobs correspond to the robotic (primitive) tasks of the sequence and the resources
are the degrees of freedom and the sensors of the robot. This type of scheduling cannot be
solved by classical approaches for several reasons:

• The hierarchy of tasks introduces a non-linear dependency between the tasks and the
resources.

• The time of realization of the tasks is variable (and tunable).

Graphical methods (such as Dijkstra’s algorithm) are not conceivable either. The hie-
rarchy between the tasks prevents using task functions as nodes of the graphs. Instead, it
would be better to consider each possible hierarchy of tasksas nodes rather than simply the
tasks, creating a graph whose size grows in a combinatorial way with the number of tasks
considered. Moreover, it is impossible to plan the motion only using the graph and without
considering the environment, since depending on the position of the robot and the actions to
realize, some conflicts may appear.
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1.4.2 Considered approach

The purpose of this work is to smooth a given task sequence as much as possible under the
constraints related to task and resource dependencies, behavioral preferences, and variability
dependencies. The entry of the problem is a doable sequence of tasks, where the dependen-
cies between tasks and eventually sensors are set (the sequencing phase has been realized,
together with the task planning). The sequence does not contain neither coupled tasks nor
preemptive tasks, but both action and motion tasks are considered. Along with the optimiza-
tion of the task schedule, an optimization of the motion is realized.

In the introduction, we mentioned that the last optimization (on the velocity) is realized
after the scheduling. In practice, it is not possible to achieve successively the scheduling
phase and the optimization phase: these two processes must be realized together. In the case
where the scheduling phase is realized first, the final schedule may present dead times: it is
sub-optimal. This issue is illustrated by Fig. 1.10. First,the task scheduling phase removes
the dead times between the tasks, using the given propertiesof the task, especially its time
of realization. Hence, each task belonging to the critical sequence of tasks is necessarily
removed as soon as it is realized. Then, the optimization of the tasks finds the adequate
parameterization for each task so as to realize them faster.Since the time of realization of
each task is reduced, dead times are reintroduced in the previously optimized sequence.

Similarly, it is not possible to start with the optimizationphase and then to realize the
scheduling phase either. Due to the task overlapping, the simultaneous realization of two
tasks may violate conditions (such as joint velocity limitsor stability) that neither of them
violates if the tasks are not overlapped. Besides, we consider that only the critical sequence
of tasks should be fully optimized, not all the tasks.

1.5 Conclusion

In this chapter, we briefly mentioned existing work in task planning, scheduling as used in
general purpose applications and robotics. Thanks to the task function formalism introduced
in robotics, it is possible to adapt the knowledge in scheduling of planed task sequence to
robotics. In this thesis, we do not deal with the task planning and sequencing, which are
rather considered as an input to what we are solving. We also choose to use the stack-of-
tasks formalism as our basic controller, since it enables toorganize a subset of task into a
hierarchy (defining thus a priority for each of them) and to compute explicitly the control
law that defines an implicit robot trajectory.

What is needed now is to find the schedule parameters that are the tasks timing and
behavior (gain tuning). We first formulated the problem as anoptimization, with a given
criteria and constraints that will be described later in a dedicated chapter. After running the
optimization problem we expected that non-smoothness in the task insertion and removal
from the stack-of-stacks controller prohibits good convergence performance of the optimi-
zation solver. However, it appears that this problem has never been seriously considered
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before, even if it is fundamental because task insertion andremoval on-the-fly are the basis
for reactivity and task planning or sequencing adjustment to deal with unexpected situation
and change in the on-line execution. Therefore, we decided to look more thoroughly toward
this issue that is presented in the following chapter.
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(a)

(b) (c)

(d) (e)

Figure 1.6: (a) Initial configuration of the environment. (b-c) Task plan for (b) the control-based
approach and (c) the task function-based approach. (d) Schematic representation of the trajectory
obtained with the control-based approach. (e) Schematic representation of the trajectory obtained
with the task-function based approach.
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Figure 1.7: Partially ordered task sequence.
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Figure 1.8: Naive task scheduling.
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Figure 1.9: Optimized task scheduling.
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Figure 1.10: Partial optimization of the task sequence when realizing successively the scheduling and
the optimization of the task. The scheduling phase removes the dead times between the tasks, then
the optimization phase reduces the time of realization of some tasks. The final sequence, similarly to
the first one, is sub-optimal and presents dead times.
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Chapter 2

Continuity of the Stack of Tasks

The previous chapter presented the general ideas of this thesis and the main components that
are needed to efficiently program a stack-of-tasks based robotic control. This chapter deals
with the continuity properties of the stack of tasks. When a set of tasks of fixed number is
ordered in a given priority and stacked at once, the outcome of the stack of tasks exhibits a
continuous evolution in the most general case. We consider aset of operations that resemble
what is generally performed on a computer data-structure stack: the insertion, the removal
and the swap of tasks, that corresponds to a reordering of thepriority. The influence of these
operations on the continuity on the control is studied in this chapter. Different ways to for-
mulate the stack of tasks and their continuity properties when realizing these operations are
presented and analyzed.

This chapter has been realized in collaboration with Pierre-Brice Wieber, researcher at
the INRIA, for the sections 2.2 and 2.4.

2.1 Introduction

2.1.1 Definition of the stack of tasks

As mentioned in the previous chapter, a task is defined by three elements: a vectore, a Jaco-
bianJ, and a reference evolution of the task functionė∗. Typically, the vectore corresponds
to the error between a signals and its desired values∗: e = s − s∗. We recall that:

ė = Jq̇ (2.1)

The reference behaviorė∗ defines the way the error is handled. For example, the regulation
of the error can obey an exponential decrease by using

ė∗ = −λe, λ ∈ R
+ (2.2)
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Finding the control value that gives the best regulation of asingle task corresponds to solving
the following minimization problem:

min
q̇∈Rk

‖Jq̇ − ė∗‖2 (2.3)

This minimization problem can also be formulated as a least square solution:

q̇ = J+ė∗ + Pz (2.4)

whereJ+ is the least squared inverse ofJ, andP = I−J+J the projector into the null space
of J. While the termJ+ė ensures the regulation of the task, the termPz is an additional
control that allows to regulate other tasks without modifying this one. Ifz = 0, thenq̇ cor-
responds to the least square solution.

This mechanism defines the stack of tasks. A hierarchy among the set of tasks is realized,
such that each task (except the first one) is performed in the null space of higher priority ones.
The resolution algorithm, detailed in [42], consists in solving for each task a minimization
problem, that is

min
q̇i∈Si

‖Jiq̇i − ė∗
i ‖

2 (2.5)

whereSi correspond to the null space left by the taskse1, . . . , ei−1:
{

S1 = R
k

Si = Si−1 ∩ null(Ji−1), 1 < i ≤ n
(2.6)

Thus, the lower priority tasks do not affect the execution ofhigher priority ones. The
control law for a taskei is given in [83]

q̇i = q̇i−1 + (JiPi−1)+(ė∗
i − Jiq̇i−1)

wherePi = I −









J1

...
Ji









+ 







J1

...
Ji









(2.7)

For a stack of tasks containingn tasks, the sequence starts withq̇0 = 0 and the control
is q̇ = q̇n; see [61] for more details.

This method is an idealistic implementation of the stack of tasks that ensures a continuous
evolution of the control in nominal situations. Additionaltreatments and computations are
needed in particular situations, e.g. kinematic singularities (due to infeasible posture) and
algorithmic singularities (due to task incompatibility).In practice, using solely a pseudo-
inverse is risky, and getting closer to singularities causes excessive control values. A simple
2D-robot, composed of a fixed waist, a chest and two arms, and that has to realize two
incompatible position tasks for each of its arm (cf. Fig. 2.1), is used to illustrate this issue.
The evolution of the control and the peaks reached when the robot is near the singularities
are represented on Fig. 2.2.
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Figure 2.1: 2D planar robot simulation of two conflicting tasks.

A classic way to overcome singularities in this context is torather use a damped inverse,
defined byM† = (M + δI)+, which limits the numerical value of the inverse matrix [69,21].
With a damped pseudo-inverse, the equation (2.7) writes:

q̇i = q̇i−1 + (JiPi−1)†(ė∗
i − Jiq̇i−1) (2.8)

This method preserves the continuous evolution of the control when crossing robot pos-
ture singularities, and achieves well in particular foralgorithmicsingularities [14], i.e. when
the tasks start conflicting.

2.1.2 Event-based discontinuities

Assuming that for each taskei, the reference behaviourė∗
i is continuous and the JacobianJi

has constant rank, this formulation leads to a continuous evolution of the control. The stack
of tasks realizes thus a smooth control. Our aim is to ensure the continuity while realizing
discrete operations such as inserting a new task (push), removing a task (pull), or pairwise
task reordering, i.e. pairwise change of priority (swap) on-the-fly (i.e. during the execution).

Yet, the insertion and removal of a task are events liable to create a discontinuity. As
an example, the additional control associated to the insertion of a task, even at the lowest
priority (i.e. at the remaining null space of all the tasks present in the stack) is likely to cause
a jump in the control output, since the errorėn associated to the task is most likely non null.
For the removal case, ensuring that the error is regulated (ėn = 0) prior to its removal is not
a sufficient condition to ensure thatq̇n−1 = q̇n, due to the term of compensation generated
by higher priority tasks (corresponding to the termJnq̇n−1).

Similarly, a swap operation can create a discontinuity, when the tasks swapped are con-
flicting. Considering two taskse1 ande2, such that

(e1)

{

x = 1
y = 1

and (e2)

{

x = 2
z = 2

,
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Figure 2.2: Evolution of the control using the standard method with the pseudo-inverse (2.7). The
singularity causes discontinuities and arbitrary-large values in the control just before the discontinuity
points.

two control laws are possible:̇q[1|2] =







1
1
2





 andq̇[2|1] =







2
1
2





 whereq̇[A|B] is the control

law corresponding to the stack of tasks whereeA has priority overeB. Realizing an instan-
taneous swap results in a punctual discontinuity in the control shape.

In the following we first discuss a method which guarantees the continuity of the desired
controlq̇ with respect to the timet during these events, especially near singular cases. Three
approaches are envisaged.

The first approach consists in considering that theswapis the basic operation. Hence,
the pushandpull operations for a given task are made respectively through propagating it
from lowest to higher priority – until reaching its defined priority rank in the stack – (push),
or reversely from its actual priority to lowest one (pull). Therefore, the continuity of the
pushand thepull operations inherits from the continuity properties of the elementaryswap
operation.

The second approach consists in considering that aswapoperation can translate into a
finite succession ofpushandpull operations, assuming that it is possible to push or pull a
task at any priority. Hence, a method to realize the insertion and removal of a task at any
priority is studied.

The third approach is based on the idea that the stack of taskshas to be considered as a
seamless whole rather than by layers.

From now on, byswap, we always mean a change of order between two contiguous tasks
in the stack.
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2.2 Smooth control while swapping two tasks

In this section, different methods to swap the priority of two consecutive tasksei andei+1

are presented. Especially, the continuity of the resultingcontrol is studied. Each of these
methods realizes operations that do not modifySi+2 = Si ∩ null(Ji) ∩ null(Ji+1). By recur-
sion,Si+3, . . . , Sn are also unchanged. Hence, only the method to compute the control of the
tasksei andei+1 is affected. The taskse1, . . . , ei−1, having higher priority, are not affected
by the proposedswap. Also, the lower priority tasksei+2, . . . , en still obey (2.8) due to the
invariance of their associated null space.

From now on, we consider that the stack of tasks only containsa pair of taskse1, e2 on
which aswapoperation is realized. The 2D-robot previously introducedis used to illustrate
the evolution of the control for each method.

2.2.1 Study of the continuity of the swap in the classic stackof tasks

When the two tasks conflict, the stack of tasks equation basedon the damped pseudo-
inverse (2.8) does not achieve a continuous and instantaneous swap. This discontinuity is
shown in Fig. 2.3b: the swap, represented by a vertical line,occurs att = 1.1s and causes a
discontinuity in the control output. Realizing an instantaneous swap will result in a punctual
discontinuity in the control shape.

A smoothing of the swap is required, and is realized during the time interval noted[tI
s, tE

s ].
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Figure 2.3: a) Evolution of the control using the damped inverse method (2.8). The singularities are
damped so as to ensure a continuous evolution of the control except at the swap (t=1.1s). b) A closer
view of the same simulation for t ∈ [1.0, 1.2].
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2.2.2 The hierarchy of tasks as a limit of the weighing process: α-
weighting

2.2.2.1 General formulation

In this method, the two tasks are temporarily placed at the same level and the swap is realized
by modifying the weight of each task. During this period, theminimization problem writes:

min
q̇

1 − α

2
‖J1q̇ − ė∗

1‖2 +
α

2
‖J2q̇ − ė∗

2‖2 (2.9)

whereα is the swap coefficient depending on time1, such that2:



















α : [tI
s, tE

s ] →)0, 1(
lim
t→tI

s

α(t) = 0+

lim
t→tE

s

α(t) = 1−

The control law corresponding to (2.9) is defined by:

q̇ =

(

H

[

J1

J2

])+ (

H

[

ė∗
1

ė∗
2

])

where H =

[

(1 − α)I1 0
0 αI2

] (2.10)

This equation does not define the control law whenα equals0 (resp.1), since the corres-
ponding value would bėq = J+

1 ė∗
1 (resp.q̇ = J+

2 ė∗
2). Actually, at the limits, whenα reaches

0+, the system is equivalent to the classic model where the taske1 has higher priority over
e2. Whenα reaches1−, the system is equivalent to the classic model where the taske2 has
higher priority overe1.

In the case where the tasks are compatible, the control is continuous: during the swap
period, it is a product of continuous functions (the matrix inversion is continuous since the
rank is constant), and the continuity at the limits is ensured. The proof of the continuity at the
limits is given by [86], and is based on the comparison of the solution of two minimization
problems.

Proof Consider the matricesA ∈ R
m×n andB ∈ R

p×n, such that rank(B) = p, and the
vectorsa ∈ R

m, b ∈ R
p andx ∈ R

n.

1In order to simplify the notation, the dependency int will be omitted in the next equations
2The notationlim x = a+ (respa−) means thatx will reacha but will always be strictly superior (resp.

inferior) to a
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The first minimization problem is a Least Square Estimate problem with constraint, such
as:

min
x

‖Bx − b‖2

subject toAx = a
(2.11)

The global minimum is notedx∗. The first order optimality condition at this point can be
noted:

{

Ax∗ − a = 0

BT(Bx∗ − b) + ATλ = 0
(2.12)

whereλ represents the Lagrange multiplier. This system can be written as:







0 0 A

0 −I B

AT BT 0













λ

r1

x∗





 =







a

b

0





 (2.13)

Then, consider the least square problem without constraints where one of the equation is
balanced by the coefficientµ > 0:

min
xµ

∥

∥

∥

∥

∥

(

µA

B

)

xµ −

(

µa

b

)∥

∥

∥

∥

∥

2

(2.14)

The global minimum is notedx∗
µ and the first order optimality condition at this point is:

(

µA

B

)T [(

µA

B

)

x∗
µ −

(

µa

b

)]

= 0 (2.15)

This equation can be written as the following matrix product:







−µ−2I 0 A

0 −I B

AT BT 0













r1

r2

x∗
µ





 =







a

b

0





 (2.16)

Whenµ gets large, the systems (2.13) and (2.16) approach one another. As a result, the
two minimization problems converge toward the same solution: lim

µ→+∞
x∗

µ = x∗, ensuring

the continuity ofx at the limits.

2.2.2.2 Implementation

This method also faces the problem of lack of robustness nearsingular configurations due to
the use of a pseudo-inverse. A naive adaptation for the equation (2.10) would be to damp the
term relative to the Jacobians, that is:

q̇ =

(

H

[

J1

J2

])† (

H

[

ė∗
1

ė∗
2

])

(2.17)
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but it still leads to a discontinuous evolution of the control even when the two tasks do not
conflict as depicted by Fig. 2.4. This problem appears when the interpolation switching term
α becomes negligible compared to the damping termδ characterizing the damped pseudo-
inverse. As a result, the second task is shadowed and the control is closer to the one where
there is only one task in the stack.

The minimization problem formulation helps explaining this observation.

min
q̇

1 − α

2
‖J1q̇ − ė∗

1‖2 +
α

2
‖J2q̇ − ė∗

2‖2 + δ‖q̇‖2 (2.18)

whereδ‖q̇‖2 is the term qualifying the damped pseudo-inverse. Suppose thatα ≪ δ ≪ 1,
the minimization problem can be formulated as:

min
q̇

(β1‖J1q̇ − ė∗
1‖2 + β2‖q̇‖2 + β3‖J2q̇ − ė∗

2‖2)

whereβ1 = 1−α
2

, β2 = δ, β3 = α
2

henceβ1 ≫ β2 ≫ β3

(2.19)

Intuitively, this corresponds to the control law associated to a stack containing three tasks:
e1, eδ ande2, whereeδ is the additional task induced by the damping, defined by a Jacobian
Jδ equal to the identity and a null error. Hence, the null space remaining to realize the task
e2 is empty, preventing its regulation: the stack of tasks actsas if there was only one task,
causing the discontinuity.
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Figure 2.4: Discontinuous evolution of the control obtained with the α-weighting in a singularity-free
configuration, using the naive damped inverse (method (2.17)). The cyan zone represents the swap
period.

Note that a solution to avoid kinematic singularities consists in realizing the damping on
the error, not on the Jacobians: instead of the real error (ė), we consider the closest error that
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can be corrected (JJ†ė). Following this, the equation (2.10) becomes:

q̇ =

(

H

[

J1

J2

])+ (

H

[

J1J
†
1ė∗

1

J2J
†
2ė∗

2

])

(2.20)
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Figure 2.5: In the case of singularity, the control obtained with the α-weighting correctly damped
(method (2.20)) is discontinuous .

2.2.2.3 Handling singularities

When the matrix[J1, J2] presents an algorithmic singularity (i.e. when their is a rank loss:
rank([J1, J2]) < rank(J1) + rank(J2)), the method (2.20) exhibits many discontinuities

as depicted by Fig. 2.5. These discontinuities are due to theoperation

(

H

[

J1

J2

])+

H.

An ad-hoc solution would be to consider an evolutive damped inverse, such that the
damping coefficientδ depends on the swap coefficientα. The minimization problem (2.18)
becomes then:

min
q̇

1 − α

2
‖J1q̇ − ė∗

1‖2 +
α

2
‖J2q̇ − ė∗

2‖2 + δ(α)‖q̇‖2 (2.21)

This functionδ(α) must fulfil the following properties:















δ :)0, 1(→)0, 1(
lim

α→0+
δ(α) = α

lim
α→1−

δ(α) = 1 − α

(2.22)

In order to have an idea about the required behavior ofδ(α), we simulated the sys-
tem (2.18) with different values ofδ ∈ [10−15, 10−1]. This system allows to analyze the
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behavior aroundα = 0 andα = 1. For α ≤ 0 (resp1 ≤ α), the control corresponds to a
hierarchy of tasks wheree1 (respe2) has the priority.































































if α ≤ 0 q̇ = q̇1 + (J2P1)†(ė∗
2 − J2q̇1)

where q̇1 = J
†
1ė∗

1

if 0 < α < 1 q̇ = [βJT
1 J1 + αJT

2 J2 + δI]−1[βJT
1 J1J

†
1ė∗

1 + αJT
2 J2J

†
2ė∗

2]
where β = 1 − α

if 1 ≤ α q̇ = q̇2 + (J1P1)†(ė∗
1 − J1q̇2)

where q̇2 = J
†
2ė∗

2

(2.23)
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Figure 2.6: Simulation of the system (2.23)when the matrices J1, J2 and [J1; J2] are not singular,
with different values of δ.

In the singularity-free case (Fig. 2.6), a small value ofδ (inferior to 10−8) is required
in order to ensure the continuity. The discontinuities observed in Fig. 2.6a att = 0+ (and
t = 1−) correspond to the case where the damped inverse interfereswith the weighting
process: whenα ≪ δ (or (1−α) ≪ δ), the damping acts as a virtual taskeδ that has priority
over the second task, which is not realized any more. The system acts as if there was only
one task in the stack.
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Figure 2.7: Simulation of the system (2.23)when the matrix [J1; J2] is singular, with different values
of δ.



2.2 Smooth control while swapping two tasks 43

In the singular case (shown on Fig. 2.7), the dampingδ determines the maximum value
reached bẏq. Besides, it is important to note that neart = 0+ andt = 1−, the smallerδ is,
the higher the slope will be.

An appropriate functionδ has hence to fulfil the following conditions:

1. Whenα is close to 0 or 1, the damping valueδ(α) has to be small, in order to ensure
the continuity in the singularity-free case.

2. Else, the damping factor has to be high enough to limit the control values.

Using the previous results, it can be assumed that a functionthat equals10−11 near the
limits and10−8 elsewhere satisfies these conditions. Yet, since low valuesof δ cause im-
portant slopes in the control function in the singular case,an ad-hoc functionδ(α) is hardly
conceivable. As an example, we consider the following function:

δ(x) =
(δmax − δmin)

2
(tanh(d(x − 0.5 + c)) −(tanh(d(x − 0.5 − c)))) + δmin (2.24)

whereδmin, δmax, c andd are parameters setting the min and max values, the slope and the
width of the functionδ(x). We choosec = 0.475, d = 100, δmin = 10−11 andδmax = 10−8.
The function shape is shown on Fig. 2.8a. The results obtained are illustrated on Fig. 2.8b
and Fig. 2.8c and invalidate this method: the control obtained presents considerable varia-
tions not applicable on a real robot.
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Figure 2.8: a) Evolution of the function δ(α) given by (2.24)b-c) Evolution of the control during a swap
using the evolutive damping method b) on two compatible tasks and c) on two incompatible tasks.

2.2.3 Linear interpolation

This method consists in realizing a linear interpolation ofthe two control lawsq̇[1|2] and
q̇[2|1]

q̇ = αq̇[2|1] + (1 − α)q̇[1|2] (2.25)

whereq̇[A|B] is the control law corresponding to the stack of tasks whereeA has priority
on eB andα is the swap function, which is a smooth function of time.

Although it is obvious that the continuity is ensured, this method presents two major
flaws:
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1. There is no guarantee that the robot motion is feasible, since the control is obtained by
interpolation.

2. The computation time is increased, since the control has to be computed twice for
these two levels of the stack of tasks. Especially, two extracomputation of the pseudo
inverse(JP)† are required. It is important to note that even in the case of astack of
tasks containingn tasks, only these two levels must be computed twice, and not the
whole stack.

The Fig. 2.9 shows that the evolution of the control is continuous in singular cases.
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Figure 2.9: Continuous control during a swap using a linear interpolation in a singular case: the
discontinuity observable on Fig. 2.3 has been smoothed.

2.2.4 Modeling the insertion/removal at the end of the stackas a swap

A hierarchy of task is usually ended by a virtual task that defines a default value in the null
space of all the other tasks. Since the null space left is empty, a task placed after this virtual
task has no effect on the control: it is virtually inactive. Inserting a task comes down to
adding it after the virtual task and exchanging their priority. The removal of a task is the
symmetric operation of the insertion: removing smoothly a task is thus realized with the
same process.

This virtual task appears explicitly when computing the control law using a minimization
process, but is implicit when using the pseudo-inverse approach. In this latter case, a solution
to realize the smoothing is to explicitly weight the additional term corresponding to the
inserted/removed task by the smoothing coefficientλIns in the equation of the control law.

q̇n+1 = q̇n + λIns(Jn+1Pn)+(ė∗
n+1 − Jn+1q̇n) (2.26)
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λIns(t) is defined by an appropriate smooth function of timet and fulfils the following
conditions:



















λIns : R+ → [0, 1]
λIns(tI

n) = 0
λIns(tF

n ) = 0
λIns(t) = 1, ∀t ∈ [tI

n + ∆tIns, tF
n − ∆tIns]

wheretI
n andtF

n are respectively the insertion and removal time of the tasken from/in
the stack, and∆tIns is the insertion delay during which the gainλIns grows continuously
between0 to 1. With the classic control law, the gainλIns is constant and equal to1.

The slope of the control functioṅq(t) during the insertion and the removal of the task
en is also determined by the gain. The gain defined in (2.27) allows to modify the slope via
the coefficientd (Fig. 2.10). The insertion time is then fixed:∆tIns = π

d
. However, it is

important to notice that the steeper the slope is, the fasterthe insertion/removal is.































if t ≤ tI , λIns(t) = 0
if tI ≤ t ≤ tI + ∆tIns, λIns(t) = 1

2
− 1

2
cos(d(t − tI))

if tI + ∆tIns ≤ t ≤ tF − ∆tIns, λIns(t) = 1
if tF − ∆tIns ≤ t ≤ tF , λIns(t) = 1

2
− 1

2
cos(d(tF − t))

if tF ≤ t, λIns(t) = 0

(2.27)
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Figure 2.10: Aspect of the gain α(t) detailed in Eq. (2.27)for various values of d.

The Fig. 2.11a and the Fig. 2.11b illustrate the evolution ofthe control while inser-
ting and removing two tasks by order of priority. The first task is inserted at 0.25s and
removed at 1.75s, and the second one is inserted meanwhile at0.75s, and then removed
at 1.25s. The Fig. 2.11a illustrates the discontinuous evolution of the classic control law.
The Fig. 2.11b represents the evolution ofq̇ obtained with this smooth control law.
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Figure 2.11: Evolution of q̇ while inserting and removing the tasks by order of priority with a) The
classic control function b) The smooth control function.

2.2.5 Modification of the stack-of-tasks scheme

This section presented different methods to realize a swap between two consecutive tasks.
The swap of two distant tasks must be brought down to a sequence of swaps of tasks with
successive priority. Satisfying this condition does not ensure a both continuous and imme-
diate control, especially due to the possible presence of algorithmic singularity. Realizing a
blending operation (2.25) is thus a solution allowing to avoid discontinuities, but this opera-
tion is not instantaneous. This method introduces two delays: an insertion delay∆tIns and
a swap delay∆tSwap. The swap between the tasksek andek+1 can still be instantaneous
(∆tSwap = 0) iff the tasksek, . . . , en are compatible in the null spacePk−1, i.e. if the tasks
do not conflict; otherwise an interpolation must be realized, and∆tSwap is non null.

Considering that an insertion can be assimilated to a swap process and that a task can-
not be part of two swapping processes simultaneously, it is not possible to swap with a task
being inserted or removed. Since some transitions are not instantaneous anymore, the task
operation scheme changes from Fig. 2.12 to Fig. 2.13 (for thesake of readability and clarity,
some transitions, that only correspond to a role swap between e1 ande2, are omitted). The
transition period required for the insertion and removal ofa task are illustrated by the addi-
tion of states.eA(Ins) (resp.eA(Rem)) indicates the insertion (resp. the removal) of taskeA

being in process. These states are quit once the insertion gain has reached the desired value
(1 for the insertion,0 for the removal).

This method ensures a continuous evolution of the control output of the stack of tasks
during discrete events, but limits them to manipulations between neighbour tasks. As a con-
sequence, a safe but time consuming method to insert a task atany level of the stack is to
insert it smoothly at the end of the stack using an insertion gain, and then realize a succession
of smooth swaps to put it at the desired priority.
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Figure 2.12: Automaton of possible operations and reachable states of the classic stack of tasks.
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Figure 2.13: Partial automaton of reachable states of the smooth stack of task.

2.2.6 From a discontinuity to another

For a given schedule of events, the modification of the tasks scheme ensures a continuous
evolution ofq̇ with respect tot. Each of the event operationpush, pull, andswap(correspon-
ding respectively to the insertion, removal or swap of tasks) can be realized while ensuring
the continuity of the control. Now, we focus on the influence of a modification in the se-
quence of events on the control function shape. Due to a smallchange of the sequence of
events (such as an event being delayed due to some perturbation), the realization of another
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operation can be required in order to maintain the continuity of the control with respect to the
time t. As a result, the control shape, that will obey this new sequence of tasks, can accuse
huge differences.

This issue can be highlighted by a simple system with two incompatible taskse1 and
e2, wheree1 has higher priority. We study the behavior of the stack of tasks when the two
tasks are to be removed almost at the same time. Ife2 is removed first (tF

2 < tF
1 ), there is

no problem since it is the ideal case where only the task of lower priority is removed. Ife1

has to be removed first, then since only the lowest priority task can be removed of the stack,
a prior swapping operation betweene1 ande2 is required. The effective removal time ofe1

will thus betF
1 + ∆tSwap.

To illustrate the discontinuous evolution ofq̇ with respect totF
2 , we simulate the regula-

tion of two position tasks by the 2D-robot previously introduced. These two tasks share the
waist joint and are to be removed at the same time. The Fig. 2.14 presents the two different
evolutions of the control function depending on the task removed first.

Hence, this new stack of tasks scheme is likely to modify the schedule of the events,
by adding extra delays in the original task plan. This corresponds to another discontinu-
ity in the function which associates a control shape to a given sequence of discrete events
(f : {events}→(t → q̇(t))). On the opposite, the original stack of tasks ensures the inva-
riance of the sequence of events, yet without guaranteeing acontinuous control.
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Figure 2.14: Evolution of the control q̇ depending on tF
2 during the removal phase. In a) no swap

is realized and in b) a swap operation is required. The light zone represents the swap period. The
upper dark zone represents the removal period of the task e1, the lower dark zone represents the
removal period of the task e2.
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2.3 Insertion/Removal at any level of the stack

In order to reduce the delay required to place a task at a desired priority, we define a way
to insert directly a task anywhere in the stack and to remove any task in the stack, while
preventing the low priority tasks to create discontinuities.

Using an insertion gain is a solution that only works for the last task of the stack:
introducing a task at higher priority is likely to cause a modification of the control cor-
responding to lower priority tasks. The simple case of a stack containing only one task
eA in which the taskeB is inserted at top priority is relevant:lim

t<tI
B

t→tI
B

q̇(t) = J+
Aė∗

A, while

lim
t>tI

B

t→tI
B

q̇(t) = (JAPB)+ė∗
A: the continuity ofq̇ is ensured only ifeA andeB are not conflic-

ting.

The method proposed is based on the management of the joints used by the each task.
While inserting/removing a task of rankp, none of the lower priority tasks can use the joints
used by a task of higher priority. A task which has no more joints left to use is temporarily
removed of the stack.

2.3.1 Weighted pseudo-inverse approach

In order to realize a partial insertion/removal of a task, weuse a weighted pseudo inverse [22]
defined whenA is full-row-rank by:

A#w = WAT(AWAT)−1

The matrixW = diag(w) is a diagonal gain matrix modifying the influence of each joint
regarding the other. Thus it is possible to inhibit some joints, as long as there is still one
active. In order to ensure a continuous evolution ofW, w is chosen to be aC1 function:
R

+ → [0, 1]k, wherek is the number of joints.
The control law becomes thus

q̇i = q̇i−1 + (JiPi−1)#wi(ė∗
i − Jiq̇i−1), (2.28)

wherewi corresponds to the weight associated to each joint.

2.3.2 Insertion/removal mechanism

Let ei be a task. We define the corresponding sets:

• ai the used joints, corresponding to the non-null rows in the Jacobian,

• aF
i the forbidden joints, corresponding to those used by higherpriority tasks,

aF
i = ∪k<iak (2.29)
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• aB
i the booked joints, which are not used by any higher priority tasks,

(such as∀k < i ⇒ aF
k ∩ aB

i = ∅),

aB
i = ai ∩ ¬aF

i (2.30)

The algorithm is as follows: ifaB
i = ∅, the task must be temporarily removed, else only

the forbidden joints are inhibited. The insertion and removal of a task is done using an inser-
tion gain as defined before. However, in the frame of this method, it is meaningful to define
an insertion gain for any task in the stack, since the disturbances due to lower priority tasks
are avoided by the system of joint reservation. Thus, the insertion gain associated to the task
i is notedλIns

i . The partial removal is realized by decreasing the gain associated to forbidden
jointswi|a

F
i , while maintaining (or eventually increasing) the others at 1.

2.3.3 Illustrative example

As proved in the Annex A, this method ensures a continuous evolution of the control output
while inserting or removing tasks at any level of the stack oftasks. For practical purposes, a
delay is required to realize the preliminary deactivation of lower priority tasks. To illustrate
this method, we consider that the two arms 2D-robot has to realize three tasks as depicted
in Fig. 2.15. The tasks considered are:

• e1, a position task of the left hand (cyan),

• e2, a position task for the left elbow and (green) and

• e3, a position task for the right hand (red).

All of them may use the waist joint ande1 can use all the joints used bye2. e1 has higher
priority over bothe2 ande3, ande2 has higher priority overe3. The tasks are inserted in
inverse priority order.

The Fig. 2.16 illustrates the discontinuous behavior of thecontrol when using the clas-
sical stack of tasks with insertion gains. The Fig. 2.17a shows the evolution of the control
and Fig. 2.17b represents the evolution of the gains of each tasks and of the vectorw3 char-
acterizing the weighting ofe3.

The following interesting events can be observed. Before the insertion ofe2 (tI
2= 0.5s),e3

is the only task in the stack. Sincee2 ande3 both use the waist joint, the taske3 must release
it beforetI

2. Thus, during a safety delay precedingtI
2, e3 is partially removed, and this causes

a higher solicitation of the other joints of the right arm (inred and cyan in Fig. 2.17a). This
partial removal ofe3 is illustrated in Fig. 2.17b, where only part of the vectorw3 decreases
to 0, while its insertion gainλ3 remains equal to 1.

At the insertion ofe1 (tI
1= 1s),e1 ande2 are already in the stack. Again,e3 will be only

partially removed, since the right arm is free. However, since the taske1 uses all the joints
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required bye2, the taske2 must be temporarily deactivated beforetI
1. The deactivation ofe2

is illustrated in Fig. 2.17b, where the insertion gainλ2 is temporarily set to0 aroundtI
1.
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Figure 2.15: The 3 position tasks the 2D-robot has to regulate.

0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

time(s)

dq
(r

ad
/s

)

Figure 2.16: Evolution of the control while realizing the three tasks, using the classic control law with
insertion gains. Each blue zone indicates the insertion period of a task (time during which its gain
smoothly increases to 1).

2.3.4 Flaws of the method

This example illustrates that weighted pseudo-inversepushand pull suffer critical flaws:
while inhibiting some joints for a task, the remaining ones are solicited instantly and hence
can reach high values. Besides, locking some joints increases the likelihood of reaching
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Figure 2.17: a) Evolution of the control using the weighted pseudo- inverse, b) Evolution of the gains.
Each blue zone indicates the insertion period of a task (time during which it is activated and its gain
smoothly increases to 1). Each grey zone indicates the safety delay preceding the removal. The
three first curves represent the evolution of the insertion gain of the three tasks λ1, λ2, λ3. The last
one represents the evolution of the weighting vector w3.

kinematics singularities (the goal can become out of reach). And finally, the deactivation –
even if it is partial– of some tasks is not conceivable (for example, the release of an on-going
stability or grasping task is certainly not acceptable). Asa result, this method, as described
earlier, is generally not applicable on complex systems.

This section also illustrates why direct removal or insertion of a task at any priority level
causes discontinuities in the control; in our opinion, an approach allowing such operations
can hardly be conceived. Therefore, using aswappropagation appears to be the more appro-
priate solution, in spite of its cost in the length of the transition period.

2.4 Solving the stack of tasks using a single minimization
algorithm

This section presents other techniques used to realize a hierarchy of tasks, by formulating
the process as a single integrated minimization problem. The common advantage of these
methods is to make the realization of discrete events easier, since it can be done numerically.
Yet, the common flaw is that the hierarchy is less strict: the realization of lower priority tasks
can disturb the realization of higher priority ones.
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2.4.1 Cascade ofα-weightings

This method, presented in [20], consists in an application of the α-weighting on the whole
stack. The control results from the solution of the following problem:

lim
α→0

min
q̇

(

n
∑

i=1

(

‖Jiq̇ − ė∗
i ‖2α(i−1)

)

+ ‖q̇‖2αn

)

(2.31)

Two approaches are relatively similar to this one. The same formulation is used in [78],
at the difference that the coefficient are set manually. Thismethod favours the flexibility of
the control to the respect of a strict hierarchy.

min
q̇

(

n
∑

i=1

(

‖Jiq̇ − ė∗
i ‖

2αi

)

)

(2.32)

The following formulation is used in [40] to define the influence of each constraint on
the control by modifying the coefficient matrixQ.

min
x

(

xT Qx
)

st. Jiq̇ = ė∗
i + γi

where x = [q̇; γ1; . . . ; γn]
and Q = diag([α0; . . . ; αn])

(2.33)

We use the definition (2.31) and approximate the solution using a small positive value
for α. The swap of two neighbour tasksek andek+1 consists in continuously changing their
coefficient fromαk−1 down toαk and fromαk to αk−1 respectively.

The minimization problem was solved using the QP solver provided in the Matlab op-
timization toolbox. The system simulated is the one presented in Section 2.2: two position
tasks are considered for the two armse1 ande2, and the last task defines a default value in
the null space of the two tasks.

The Fig. 2.18 represents the evolution of the control for twotasks that do not conflict. For
small values ofα (Fig. 2.18c), the evolution of the control is close to the expected behavior:
the control is independent of the priority of the tasks. However, as the value ofα increases,
the hierarchy is not respected any more, and the evolution ofthe control depends on the order
of the tasks in the stack. This appears in Fig. 2.18b and more clearly in Fig. 2.18a, where the
swap operation becomes visible.

When the two tasks are conflicting, the last task realizes thedamping and limits the
control values obtained. The smallerα is, the higher the authorized control values near the
singularities will be. Though, ifα is too small, the numerical values associated to the lower
priority tasks will be too small to be relevant in the minimization problem: they are not
considered anymore. In Fig. 2.19c, the discontinuous behavior that appears after the swap
(t > 1.2s) is due to the fact that the second task is only taken into account punctually.

Hence, the choice ofα is based on a compromise: if it is too small, the low priority tasks
will not be taken into account any more, which causes discontinuities in the evolution of the
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a) α = 0.25 b) α = 0.05 c) α = 0.01
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Figure 2.18: Evolution of the control for two tasks that do not conflict using the α-weighting with
different values of α.

a) α = 0.25 b) α = 0.05 c) α = 0.01

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

time (s)

dq
 (

ra
d/

s)

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

time (s)

dq
 (

ra
d/

s)

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

time (s)
dq

 (
ra

d/
s)

Figure 2.19: Evolution of the control for two tasks that conflict using the α-weighting with different
values of α.

control; at the opposite, if it is too high, the hierarchy of tasks may not be strictly guaranteed.

2.4.2 “Single task" formulation J q̇ − E

An elegant approach would consist in solving the entire stack of tasks with a unique minimi-
zation problem, that is:

min
q̇

‖J q̇ − E‖2 (2.34)

This method would make the add of constraints to the control easier. Whereas these cons-
traints must be respected for each of then minimization problems of the formulation (2.5),
they need to be considered only once with this approach. Then, a solution to avoid excessive
control values would be to add bounds constraints onq̇.

Yet, finding the adequate matricesJ andE is not trivial. Indeed, one could consider the
set

J =













J1

...
JnPn−1

Pn













E =













ė∗
1
...

ė∗
n

0













(2.35)
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where the last "task" of the stack is characterized by an identity Jacobian and by an error
equal to0, and is applied in the null space left by then tasks. Its purpose is to ensure a null
value for the non-controlled axes.

However, this formulation is similar to that of equation (2.36), which is an incomplete
formulation of the problem (2.7), where the additional error induced by previous tasks is not
taken into account. This formulation is not satisfying, since it delays the adaptation of lower
priority tasks to the modifications of configuration inducedby higher priority tasks.

q̇i = q̇i−1 + (JiPi−1)+ė∗
i (2.36)

Based on this, the set corresponding to (2.7) appears to be:

J =













J1

...
JnPn−1

Pn













E =













ė1

...
ėn − Jnq̇∗

n−1

q̇













(2.37)

whereq̇∗
i |i∈[1,n−1] are estimations of each of theq̇i. It is important to notice that each terṁq∗

i

must be computed independently from this minimization problem. For example, they may
be computed beforehand using the classic damped control law.

Indeed, the current minimization problem prevents using each q̇i|i∈[1,j−1] while compu-
ting the control associated to priorityj. A brute-force solution to this would be to consider
the control value of each layerq̇1, . . . , q̇n as a parameter of the optimization, but it highlights
the problem of disrespect of the hierarchical structure of the stack. In order to illustrate this
issue, let’s consider the optimization problem (2.38). Forthe sake of clarity and without loss
of generality, only two tasks are considered and the last task used to set the control at0 is
also omitted.

min
q̇1,q̇2

∥

∥

∥

∥

∥

[

J1 0
J2(I − P1) J2P1

] [

q̇1

q̇2

]

−

[

ė∗
1

ė∗
2

]∥

∥

∥

∥

∥

2

(2.38)

Although this system seems similar to (2.7), it doesnot respect the hierarchical structure
of the stack of tasks: the minimization of the second line maycause a modification oḟq1,
which should depend only on the first equation. Thus, using a fixed value for each of the
q̇i|i∈[1,n] appears to be the only way to prevent interdependencies between the levels of the
stack of tasks.

2.5 Conclusion

In this chapter, we investigated several potential solutions to the problem of smooth insertion,
removal or swapping of a given task at any priority in the stack. It appears that it is difficult
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to perform such operationsa priori, i.e. through an instant explicit rewriting of the governing
equations, because this generally always results in discontinuous control output. Smoothing
a posteriori, i.e. filtering the control output, is not an option since there is no guarantee on
the feasibility of the motion. In the general case, swappinga pair of tasks of any priority can
be translated by a fixed number of task insertions and removals, therefore, we thought that
solving task removal and insertion at any priority level will solve the problem: we explained
why this was not possible.

Our solution consists in realizing insertions and removalsby a succession of smooth
swap operations between adjacent pairs of tasks. Hence, to insert a task at a given priority, it
is necessary to insert it the end of the stack and move it to thedesired priority by realizing a
succession of smooth swaps with the adjacent higher priority task. For a removal, the reverse
process is done. We provided methods to ensure a smooth evolution of the control during
the discrete events: the swap of priority of adjacent pairs of tasks is realized using a method
based on a linear interpolation and the removal and the insertion of the lowest priority task are
smoothed by the use of an insertion gain. We also presented other approaches and discussed
their pros and cons.

Even if it respect the continuity during discrete events, the method proposed presents also
some flaws, namely the delay of realization of the events. Hence, performing stack basic op-
erations (insertion/removal) at any priority straightforwardly remains an open challenge.

The following chapter will make use of these results to optimize the scheduling of a set
of tasks by using an optimization formulation of the problem.



Chapter 3

Task overlapping using optimization

While previous chapter described how the stack-of-tasks mechanism enables the realization
of a given set of tasks, this chapter focuses on achieving both scheduling and task behavioral
tuning by allowingtask overlappingfor a given sequence of tasks, i.e. a set of tasks whose
order of insertion and removal are constrained. Overlapping tasks consists in adjusting the
overall sequence in the stack of tasks so as to realize the tasks simultaneously (when possible)
rather than sequentially, thus producing a smoother motionand exploiting redundancy.

As a symbol, the task is used to describe the task plan (component of the plan reasoning),
and as a task function, it is used to execute this plan (component of the low-level control).
This chapter presents an intermediary computation module inserted between these two pha-
ses, which realizes task overlapping using an optimizationprocess. Its purpose is to find the
optimal parameters for each task of the task plan, i.e. the best task schedule and the best way
to realize them, while fulfilling the constraints imposed both by the sequence (task ordering)
and by the environment (intrinsic limitations of the robot –generally also described as tasks–,
collision avoidance, etc.).

This chapter has been realized in collaboration with Sylvain Miossec, lecturer at the
PRISME institute, for the section 3.3

3.1 Introduction

3.1.1 Illustrative example

Consider the following mission given to a humanoid robot: “Go bring that object located on
that table and bring it back to your local position". This mission can be decomposed into a
sequence of tasks achieved sequentially, i.e. one after theother, represented on Table 3.1.

This plan is sound and certainly safe. However, realizing the tasks one after the other in
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• e1 “Go to the table";

• e2 “Grasp the specified object", which can be split into two other sequential tasks:

– e2a “Place the gripper around the object" (the exact position ofthe gripper can
be the outcome of a grasp planner [8]);

– e2b “Close the gripper" (with the appropriate computed force closure);

• e3 “Go to your starting point".

Table 3.1: Decomposition of the mission “Go bring that object located on that table and bring it back
to your local position".

an exclusive way results in automated-looking motions thatcan even be jerky. The purpose
of overlapping tasks is not only to enhance the performance efficiency, e.g. in terms of speed
for the same tasks’ behavior, but also to provide smooth-looking transitions in the motions
of the robot and exploit nicely its redundancy capabilities.

Two overlays are possible for the previous sequence: the gripper positioning taske2a

can start before the end of the walking taske1 and the taske2b can start before the end of
e2a. However, the realization of these overlays cannot be done arbitrarily since the tasks are
coupled.

For the first overlap, it is not desirable to have the robot arrive nearby the table, stop
walking, and, only then, start the positioning motion toward the object. It would be better
to start the gripper positioning task at some point nearby the table while the robot is still
walking (which is possible and more smooth-looking). By inserting this positioning task
together with the walking task in the stack, the robot will start moving its gripper while
walking. If the object is far, the robot will move with a stretched arm, which is certainly bad
and not the optimal way to walk. It is hence better to find the right timing to stack (insert)
the gripper positioning task so that it occurs right before the walking task ends (as a human
would do). Moreover, it is necessary to ensure that the motion of the arm does not perturb
the walking pattern (e.g. by modifying its balance).

In the second task overlap, a new constraint on the gripper has to be explicitly taken
into account: the gripper should not be completely closed when reaching the object. This
constraint is satisfied implicitly by enforcing a strong precedence condition (exclusive task
sequence). The difficulty when realizing task overlapping lies on properly taking into ac-
count such constraints explicitly.

This example highlights some of the difficulties in achieving an efficient task overlap-
ping; it is not a straightforward process. It is necessary tocheck that the obtained sequence
is still valid for each possible overlapping. While the exclusive realization of two tasks is
very likely to fulfill all the constraints that are inherent to the robot capabilities and its sur-
rounding environment, their (partly) simultaneous realization may violate them.
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3.1.2 From planning to execution

When the environment is entirely or partially structured, most of the robotic missions can be
decomposed into a sequence of primitive actions (or operations) that can be executed by the
robot. The building of the sequence is usually realized by a symbolic planner [5]. Starting
from this symbolic sequence, the two following approaches are possible.

3.1.2.1 The trajectory approach

In this approach, a trajectory is computed from the symbolicplan, then the symbolic data
are converted into numerical data in order to give to the robot a doable command. This loss
of symbolic data, in favor of numeric ones, makes it difficultto adapt to changes that may
occur in the environment. As a consequence, local or global re-computation of the trajectory
may be required; and this can be time consuming [53, 5].

3.1.2.2 The task-based approach

This second approach takes advantage of the fact that the task (in the sense of task func-
tion [79]) is the common component to all the steps, from planreasoning to execution.
In [73], the task is used to define both the high level specifications of the action expressed in
formal logic causes (planning) and the low level formulation allowing to compute the control
(execution). As a result, the author was able to propose a mechanism to reactively modify
and select the task sequence plan during the execution.

For its flexibility, we chose to rely on the task-based method.

3.1.3 Task sequencing

The realization of task overlapping requires preliminary adaptations of the task sequence. It
is indeed necessary to release some timing constraints of the sequence (typically, precedence
constraints) by replacing them by other constraints (such as collision avoidance, or depen-
dency on the regulation of a task). Verifying the satisfaction of these constraints cannot be
done during the symbolic planning, since these constraintsare not written into a symbolic
form (they are numeric).

In order to realize this operation during the planning, the use of hybrid planners, that
considers both numerical and symbolic data, is tempting. In[35], the symbolic planner
is bound to a motion planner, which is in charge of the geometric data. Hence, a doable
geometrical path is given, but it cannot be linked back to thetasks definition. In [57], the
planner handles the geometrical data by using flow-tubes: each action has a fixed duration
and is associated to a function which, given a set of start configurations, returns the set of
all the reachable configurations. This approach is not compatible with the stack-of-tasks
mechanism, since the considered tasks are independent.

Therefore, we come to the conclusion that the overlapping cannot be performed during
the planning phase whether using a symbolic planner or a hybrid planner. Yet, similarly to
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the planning process, the overlapping has to be done off-line, before the execution. Subse-
quently, an intermediate step is added between the creationof the symbolic task plan and
its execution. This step is formulated as an optimization process that takes into account nu-
merical constraints while realizing the task overlapping.The global scheme is illustrated
by Fig. 3.1.

In the following, we discuss how we formulated the optimization problem. Using the def-
inition of a sequence of tasks and considering the stack-of-tasks controller, we define how to
formulate the tasks overlapping as an optimization problem, and how solve it. Finally some
open problems together with rooms of possible improvementsof our method are mentioned.

Figure 3.1: From mission planning to execution with the task overlapping module

3.2 Sequence of tasks

A sequence of tasks is a finite set of primitive tasks sorted byorder of realization and even-
tually linked to each other. Any pair of tasks can be either independent (i.e. they can be
achieved in parallel if possible) or constrained by time constraints (precedence constraints
or simultaneity constraints) or constrained by more generic conditions (e.g. a task must wait
for another one to be achieved before it can start). In the following, a sequence of tasks is de-
scribed as a classical temporal network scheduling. First the temporal parameters describing
a task are defined; then the temporal dependencies between tasks are specified.

3.2.1 Definition of a task in a temporal network

A task describes an action the robot has to realize. Since several primitive tasks can define a
same action, we consider for the sake of clarity but without loss of generality that each task
appears only once in the sequence.

The positionof a task in the sequence is defined by the time interval duringwhich it
is maintained in the stack-of-tasks controller. For a giventask ei, this interval is noted
[tI

i , tF
i ]: the task enters in the stack of tasks attI

i and is removed attF
i . Yet, these instants do

not indicate the achievement level of the task:tF
i may happen before the task regulation is

completed. Letǫi be the tolerance on the task regulation completion: a task isconsidered as
regulated when‖ei(t)‖ ≤ ǫi. The regulation timetR

i is the time of the first regulation of the
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task, defined by

tR
i =

(

min
t

‖ei(t)‖ < ǫi

)

(3.1)

The task can be split into two phases: a regulation phase, during the time interval[tI
i , tR

i ],
where the task errordecreasestoward the given valueǫi, and a maintaining phase (or holding
phase), during the time interval[tR

i , tF
i ], where the task erroris keptbelowǫi (cf. Fig. 3.2).

The error regulation remains active and acts if any perturbation (that may bring the error to
increase aboveǫi again) occurs during the time interval[tI

i , tF
i ].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

||e
||

Figure 3.2: The evolution of the task error defines two phases: the dark one is the regulation phase
[tI

i , tR
i ], the bright one is the maintaining/holding phase [tR

i , tF
i ]. Before t=2s, the task is alone in

the stack, and the evolution of the error follows an exponential decrease. Between t=2s and t=3s, a
higher priority task makes the error of the current task increase and exceed the tolerance ǫi again.
At t=3s, the higher priority task is removed, and the error is regulated again.

3.2.2 Time dependencies

A task sequence starts att0 and ends attEnd. Both values are finite and the sequence does
not loop. The sequence is characterized by a set of time constraints binding the schedules of
two tasksei andej. They are defined as follows1: ei must begin or end onceej has begun,
has ended or has been regulated. We use the graphical representation given by Fig. 3.3 and
the following notation to describe the sets of pairs of tasksei and ej that undergo these

1Contrary to Allen Logic, that only considers the start and end points of the time interval, here we addition-
ally consider the regulation timetR.
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dependencies (ei is the direct predecessor ofej):

SI,I = {(ei, ej) | tI
i ≤ tI

j} (3.2a)

SR,I = {(ei, ej) | tR
i ≤ tI

j} (3.2b)

SF,I = {(ei, ej) | tF
i ≤ tI

j} (3.2c)

SR,F = {(ei, ej) | tR
i ≤ tF

j } (3.2d)

SF,F = {(ei, ej) | tF
i ≤ tF

j } (3.2e)

j begins oncei has begun
tI
i ≤ tI

j

j begins oncei is realized
tR
i ≤ tI

j

j begins oncei has ended
tF
i ≤ tI

j

j ends oncei is realized
tR
i ≤ tF

j

j ends oncei has ended
tF
i ≤ tF

j

Figure 3.3: Five time-dependency relations are considered.

A pick-and-place action can be described as follows: once the robot has grasped the
object, it has to maintain the force closure on the object while moving it, and can release it
(i.e. open the gripper) only after the task of displacement has ended. This sequence contains
only two tasks, the grasping taskeg and the moving taskem, and is characterized by two
time constraints:tR

g ≤ tI
m andtF

m ≤ tF
g . The Fig. 3.4 illustrates this sequence of tasks.

��

��

��

Figure 3.4: A task is realized during the maintaining period of another one.

3.3 Optimization of a given sequence of tasks

The purpose of the optimization process is to compute a better task schedule by taking ad-
vantage of the robot capabilities to overlap tasks (or even reorder them), in order to realize a
smooth-looking motion.
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Particularly, we want to use the stack-of-tasks formalism to realize several tasks simulta-
neously rather than executing them sequentially, one afterthe other.

Quantifying numerically the task overlay is not possible. The criterion chosen for the
optimization process is the reduction of the duration of thewhole sequence. Indeed, this
reduction is done either by operating at the task behaviorallevel (by decreasing the duration
of the critical tasks, in other words tuning gains), or by operating at the sequence level (by
realizing tasks overlapping). Other criteria, such as the reduction of the energy or the jerk
minimization, could be used similarly but they do not necessarily force an overlap of tasks.

In the same way as a symbolic planner cannot work with numericdata, a numerical
optimization process cannot work with symbols. Hence the tasks are converted into proto-
symbols [38]: their definition is completed with numerical values, that will be the base of
the optimization. Two characteristics of the tasks are parameterized: their position in the
sequence and their behavior (i.e. the way the tasks are regulated).

3.3.1 General problem formulation

The general optimization problem is written as follows:

min
x

tEnd (3.3a)

subject toq̇ = SoTx(q, t) (3.3b)

seq(x) ≤ 0 (3.3c)

φ(q, q̇) ≤ 0 (3.3d)

• tEnd is the duration of the entire mission.

• x is the vector of parameters for the optimization.

• q andq̇ are respectively the position and velocity of the system, both depending upon
time.

• seq(x) and φ(q, q̇) represent respectively the tasks constraints and the robotcons-
traints. They are defined in section 3.3.3.

3.3.2 Parameters of the optimization

The vector of parametersx contains both the temporal data (time scheduling) that define the
sequence and the gains that define the way the tasks are realized (task’s behavior).

Task’s timing Some of the times used to define the sequence can be used as parameters
of the optimization: the time of insertiontI , the time of removaltF and the time of end of
the simulationtEnd can be tuned by the optimization process. On the opposite, the time of
regulationtR is not explicitly considered since it depends on the evolution of the error of
the task. These timings can either be defined as absolute times (i.e. defined with respect to
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t0 = 0), or relative times (i.e. defined with respect to another time in the schedule).

Using absolute times comes down to directly use as parameters the insertion timetI and
the removal timetF for each task. Since all times are defined with respect tot0, moving a
task forward or backward in the sequence will not have any influence neither on the other
tasks nor on the time of end of the simulation: it is thereforenecessary to add a propagation
mechanism.

As an illustration, consider two tasks,e1 ande2, realized sequentially, as depicted on
Fig. 3.5. We want to reduce the time of end of the entire simulation tF , by modifying only
the timing of the tasks and using the fact that the first task could be started sooner (the lower
constraint ontI

1 is not saturated yet andtI
1 can still be decreased). Decreasing onlytI

1 will
extend the duration of the first task (unnecessarily), without changingtF . In order to decrease
tF without violating the schedule constraints, it is necessary to move both tasks backward in
the sequence, i.e. to decrease the timestI

1, tF
1 , tI

2 andtF
2 .
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Figure 3.5: (Up) Initial task schedule. The first task can be started earlier. (Middle) Only the start
time of the first task is modified: the duration of the simulation does not change. (Down) Propagation
of the lag: the duration of the simulation is reduced.

The purpose of using relative times is to implicitly achievethis propagation. Each task is
now described by two delays, namely:

1. ∆tI : the delay which occurs between (i) the maximum time of entryor end of the
previous tasks, and (ii) the entry time of the task in question.

∆tI = tI
i − max

(

max
(j,i)∈SI,I

{tI
j}, max

(j,i)∈SF,I

{tF
j }

)

(3.4)

2. ∆tF : the delay between the entry and the removal times of the taskin question.

∆tF
i = tF

i − tI
i (3.5)
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The time duration of the task sequencetEnd is such thattEnd = max
i

(tF
i ). To transform the

equality into aC1 constraint, the optimization criteriontEnd is computed indirectly, by adding
it to the parameters of the optimization and restraining it by adding the following constraints:

∀ei, tF
i ≤ tEnd. (3.6)

At the optimal solution,tEnd will be equal to the maximum termination time of all tasks.

Task behavior In order to modify the way the tasks are regulated, we also parameterize
the reference behaviorė∗. The simple attractor presented in (2.2) (ė∗ = −λe, λ ∈ R

+) intro-
duces a direct dependency betweenq̇ and‖e‖. The associated control follows a monotonous
exponential decrease that can be penalizing for two reasons. First, it reaches its higher value
at the insertion of the task, when‖e‖ is maximal (fast acceleration), and second, it makes the
task converge slowly (near the objective, the error and the control are small). The parameter
λ only enables to avoid excessive value for the controlq̇ at the insertion, but cannot correct
the slow convergence issue.

A way to correct it is to rather use an adaptive gainλ = λ(e) that depends on the norm
of the error of the task. We therefore choose the following function:

λ(e) = (λF − λI) exp (−‖e‖β) + λI (3.7)

with λI the gain at infinity,≤ the gain at regulation (such asλI ≤ λF ) andβ the slope at reg-
ulation. The obtained gain gives a non monotonous evolutionto the control law (cf. Fig. 3.6).
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Figure 3.6: Typical evolution of a) the gain λ(‖e‖) and b) the joint velocity q̇ when using an adaptive
gain. The evolution of the joint velocity is not monotonous and shows two inflexion points.

To sum up, the variables of our problem are:

1. the termination time of the entire mission (simulation);

2. the time of entrytI and the time of removaltF for each task;
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3. the gains(λI , λF , β) describing the execution behavior for each task.

Two sets of variables are thus conceivable forx: the one that uses absolute times,x1,A,
or the one that uses relative times,x1,R.

x1,A = [tI
1, tF

1 , λI
1, λF

1 , β1, . . . , tI
n, tF

n , λI
n, λF

n , βn, tEnd] (3.8)

x1,R = [∆tI
1, ∆tF

1 , λI
1, λF

1 , β1, . . . , ∆tI
n, ∆tF

n , λI
n, λF

n , βn, tEnd] (3.9)

Note that if the task sequence is a chain of exclusive tasks, we directly havex1,A = f(x1,R),
with f a linear function, andtEnd =

∑

i
(∆tI

i + ∆tF
i )

3.3.3 Definition of the constraints of the optimization problem

The task sequence must satisfy both the sequencing and the robotic time-constraints enume-
rated hereafter:

Tasks constraints, noted seq(x) gather the task sequence conditions (3.2) and the follo-
wing constraints.
For each taskei:

Time coherence 0 ≤ tI
i (3.10a)

tI
i < tF

i (3.10b)

tF
i ≤ tEnd (3.10c)

Termination condition ‖ei(t
F
i )‖ < ǫi (3.10d)

Gain consistency λI
i ≤ λF

i (3.10e)

The tasks constraints can be sorted in two categories (cf. Table 3.2). Some are directly
computable using the vector of parametersx (they are even linear when using the absolute set
of parameters). Those linked to the regulation of a task (either the termination condition or
the time constraints between tasks) can only be determined by a simulationof the execution
(the value found is the value in the ideal case).

Particularly, the evaluation of constraints on time dependency (3.2b) and (3.2d) is not
straightforward, since the timetR is not directly computed.tR could be approximated by
monitoring the first regulation time of the task, but this method is not continuous, and the ex-
act computation by interpolation is a rather fastidious andtime consuming approach. Instead,
a better option is to evaluate the regulation of the taskei at these times. The constraints (3.2b)
and (3.2d) become respectively:

∀(i, j) ∈ SR,I , ‖ei(t
I
j )‖ ≤ ǫi (3.11a)

∀(i, j) ∈ SR,F , ‖ei(t
F
j )‖ ≤ ǫi (3.11b)
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Constraints computed directly usingx Constraints computed by simulation
tI
i ≤ tI

j (3.2a) tR
i ≤ tI

j (3.2b)
tF
i ≤ tI

j (3.2c) tR
i ≤ tF

j (3.2d)
tI
i ≤ tF

j (3.2e) ‖ei(t
R
i )‖ ≤ ǫi (3.10d)

0 ≤ tI
i (3.10a) ‖ei(t

I
j )‖ ≤ ǫi (3.11a)

tI
i < tF

i (3.10b) ‖ei(t
F
j )‖ ≤ ǫi (3.11b)

tF
i ≤ tEnd (3.10c)

λI
i ≤ λF

i (3.10e)

Table 3.2: Two categories of tasks constraints.

Using the relative time parameterizationx1,R, the time constraints (3.2a), (3.2c) and
(3.10a) can be replaced by the following constraint on the delay:

∀i, 0 ≤ ∆tI
i (3.12)

And the time constraint (3.10b) can be replaced by

∀i, 0 < ∆tF
i (3.13)

Robot constraints, notedφ(q, q̇) These constraints are mainly due to intrinsic limitations
of the robot:

Joint limits qmin ≤ q ≤ qmax (3.14a)

Velocity limits q̇min ≤ q̇ ≤ q̇max (3.14b)

Collision avoidance 0 ≤ dij (3.14c)

qmin, qmax, q̇min, q̇max are respectively the lower and upper joint limits and the lower and
upper velocity limits.dij corresponds to the distance constraints between two objects i andj

in the environment. This formulation covers both collisions avoidance with the environment
and self-collision avoidance. These constraints must holdfor the entire simulation:q, q̇ and
dij are vectors of functions of time. The constraintsφ(q, q̇) are indeed semi-infinite. The
next section presents how they have been tackled.

3.4 Handling Semi-Infinite Constraints

3.4.1 Definition

The optimization problem that we formulated has the following form:

min
x

f(x)

subject to gj(x, t) ≤ 0
where x ∈ R

n, t ∈ T (T = [t0, tEnd] being an infinite set)
(3.15)
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This problem, notedP [T ], is a semi-infinite optimization problem (or SIP) [75]: it in-
cludes a finite number of parameters, but has infinitely many constraints. The semi-infinite
dimension of the problem is due to the time-dependency: eachconstraintg must be satisfied
all along the interval of time i.e. all along the motion trajectory, ∀t. In our case study, this
period is always bounded and is noted[tI

g, tE
g ], ((tI

g, tE
g ) ∈ R

2).

∀t ∈ [tI
g, tE

g ], g(x, t) ≤ 0 (3.16)

The following section presents briefly some of the classic methods used to solve a SIP,
i.e. handle semi-infinite constraints in an optimization problem.

3.4.2 Specific methods

A method usually adopted to handle SIP is to use a discrete approach: each constraint is eval-
uated only a finite number of times according to a given grid, that fixes the time interval and
the frequency of the evaluations. SincetI

g andtE
g are bounded (each of them can be constant

value or a bounded variable changing during the optimization process), the discretization of
this interval returns a finite number of grid’s elements.

3.4.2.1 Multiple optimization process

To find the finest grid, an approach based on successive runs ofthe optimization process
is proposed in [36, 74]: each run considers only a partial grid Ti to which corresponds
an approximate solutioñxi. The sequence of grids converges toward a gridT ∗ such that
lim

i→+∞
P [Ti] = P [T ∗]. This method is efficient if the solution of a run can be used toenhance

the convergence properties of the next ones, namely by usingit as a new start point.
This approach cannot be applied in our case study, since there is no a priori knowledge

of the constraints that need to be active. The only remainingapproach would be to consider
a grid of increasing granularity for each run (Ti ⊂ Ti+1). However, realizing an optimization
with a too large granularity presents the risk to miss the time when the constraint is violated.
Hence, the resulting approximate solution will be unusablefor a grid of smaller granularity,
making this approach inappropriate.

3.4.2.2 Single optimization process

At the opposite, realizing a single optimization process enhances the simplicity and the com-
putation time, but may result in a less precise satisfactionof the constraints [66]. Using a
relatively high resolution grid, e.g. considering the constraints at every time step of the simu-
lation, reduces the risks of missing constraints’ violations, but this also increases drastically
the number of constraints.

Besides, using a time-fixed grid (i.e. a grid whose elements are separated by a constant
delay) is not suitable when the bounds depend on parameters that vary during the optimiza-
tion process. Indeed, this results in a variation of the number of constraints from an iteration
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to another. Typically, one could consider that the grid is defined on the interval of time
[0, tEnd]. SincetEnd varies during the optimization process, the number of constraints will vary.
For example, with a grid that realizes an evaluation every second, the number of evaluation
will decrease from 21 whentEnd = 20s to 6 whentEnd = 5s.

A classical optimization solver (such as CFSQP or IPOPT) requires that the number of
constraints remains the same during the entire optimization process. As a result, using a
time-fixed grid is problematic.

3.4.2.3 Analysis by interval

The purpose of this method is to avoid the problem inherent tothe discretization approach.
Indeed, choosing a fine grid results in increasing the optimization variables and subsequently
the optimization computation time. More importantly, whatever the discretization grid and
the efficiency of related solver are, there is in theory no guarantee that the constraints are
satisfied within a pair of neighboring grid samples. Rather than increasing the granularity
of the grid or adding a safety margin during the evaluation ofthe constraint (i.e. replacing
g ≤ 0 by g+ǫ ≤ 0, ǫ > 0), interval-analysis based methods work on the interval of definition
of the variables [67, 56]. Evaluating a functionf : Rn → R

m on a whole interval defines a
set of reachable values such that:

f([x, x]) = {f(x)|x ∈ [x, x]} (3.17)

Hence, ensuring that the constraints are always satisfied comes down to modifying the inter-
val of definition of the parameters so as to make the violations certainly tractable.

This approach is appropriate when the expression of the trajectory is explicit, e.g. when
trajectory is defined using B-splines [56]. In our case, the trajectory is computed implicitly:
it is the result of a numerical integration of the control given by the stack of tasks. Thus this
method is not applicable straightforwardly to our problem.

3.4.3 Defining a constraint handler for Semi-Infinite Constraints

The method we adopted is based on a time-fixed grid: the evaluations are realized at fixed
time step. Yet, to avoid the issue of the varying number of constraints, a post-treatment is
realized so as to always return a constant number of evaluations, regardless of the number of
evaluations realized by the grid.

Once the requirements defined, several methods are presented and compared, sorted in
two categories: the first one gathers the evaluations realized on the whole interval as a single
value while the second one returns a set of values.

3.4.3.1 Requirements

Our solvers requireC0, preferablyC1 constraints with respect to the variation ofx. Continuity
with respect to the modifications of the gain is straightforward. The variations with respect
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to the times of insertiontI and removaltF are particularly important, since they correspond
to discrete events that may introduce strong variations in the control computation.

As mentioned earlier, the evaluation of the constraints is realized through a simulation,
at each time step and at each interpolation point. We investigated the following methods:

3.4.3.2 Single constraint

Maximum constraint value gmax Taking the maximum value (signed max distance of the
constraint to 0) is the simplest way to associate a single value to a set of constraints of
unknown size. This method has two drawbacks: (i) the max function is onlyC0 (the gradient
of the maximum is not continuous, since the maximum can jump between two local maxima)
and (ii) only the global maximum can be observed. Hence, noneof the local maxima will
be taken into account, although they may also reflect a constraint violation. During the
optimization process, the constraint is likely to switch abruptly from a maximum to another,
and this switching may influence the convergence property ofthe solver, especially if the
switching occurs for maxima in opposite directions.

gmax = max
t∈[tI

g ,tE
g ]

g(x, t) (3.18)

It is necessary to take into account the value of the constraints at interpolation times in or-
der to avoid discontinuities. This issue can be highlightedusing a single task with a constant
gain and whose insertion is not smoothed. The resulting control decreases monotonously:
the maximal value is reached at the insertion of the task, which may not happen at a time
aligned with the grid. Thus, if the value of the constraint atthe interpolation points is not
taken into account, the value considered will be the one observed at the next step of the grid,
which is inferior to the value reached at the insertion. The Fig. 3.7 shows the gap between
the two values obtained with and without considering the interpolation points. In the former
case,gmax = 1, while in the latter casegmax = 0.915.

As a result, when the interpolation points are not taken intoaccount, the constraint of
maximal velocity has a serrated and periodic evolution withrespect to the time of insertion
of the task (the period is the span of the grid). The correct value is only obtained when the
time of insertion is aligned with the time of evaluation. TheFig. 3.8 shows the evolution of
the constraint of maximal velocity for a task whose time of insertion varies. The interpolation
points are not taken into account and the span of the grid is fixed to 5 ms.

Sum of the violation gΣ,k In order to implicitly take into account the multiple constraint
violations (for a single set of constraints), we propose to evaluate the constraints in a single
value,gΣ,k, defined as follows: if the constraint is always satisfied, then it is the higher value
of g(t), so max(g(t)). Otherwise, it is the area of violation, i.e. the area covered by the
curvet → max(0, g(t)) (cf. Fig. 3.9). This method is alsoC0: if the constraint always has
a negative value, it behaves like the previous method. Also,since this method behaves as a
max operation when the constraint is not violated, it is mandatory to take into account the
constraint value at interpolation points (for the same reason).
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Figure 3.7: a) Evolution of the control for a simple task (with a constant gain), and the associated
constraint gmax (with a grid span of 0.2s). The red plain (resp. dashed) curve represents the evolution
of the constraint gmax with (resp. without) taking into account interpolation points. b) A closer view of
the same simulation for t ∈ [0.1, 0.3].
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Figure 3.8: Discontinuous evolution of the constraint of maximal velocity with respect to the time of
insertion of the task when the interpolation points are not taken into account. The grid span is fixed
to 5ms.

In the following, the penalty associated to a violation is weighted by a user-defined coef-
ficient k, in order to observe the influence it has on the convergence properties.

gΣ,k(t + δt) =

{

if g(t) < 0, max(g(t), gΣ,k(t))
else, gΣ,k(t) + kδt max(g(t), 0)

(3.19)

whereδt is the integration step.

3.4.3.3 Evaluation on a family of subintervals

The two previous solutions only considered one observationof the constraint violation for the
entire time interval. Instead of a single evaluation for theinterval[tI

g, tE
g ], a set of time inter-
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Figure 3.9: Definition of the area of violation gΣ,k. In this case the total value correspond to the sum
of the three red areas.

valsT1···n such as[tI
g, tE

g ] ⊆
⋃

i∈[1,n] Ti could be used, and the constraints could be evaluated
on each intervalTi using the maximum or the sum of the constraint violation as described
above. Yet, as noticed earlier, defining intervals by fixed times can be a problem (e.g. the
time interval may not be evaluated any more if the simulationended first). Therefore, we
decided to define the time interval relatively to discrete events.

Constraint by task gmax /e Associating the robot constraintsφ(q, q̇) to the whole simula-
tion can raise an issue: a violated constraint cannot be easily linked to the “responsible” task.
This is even more difficult considering that there is task overlapping, and that several tasks
can realize a same action. For example, if there is a violation of the constraint of maximal
joint velocity for a joint of the left arm, the best conclusion possible is that one of the tasks
involving the left arm (or several of them) has violated the constraint, but it is impossible to
know which one(s) precisely.

In order to compensate this problem, we considerne additional sets of constraintφ(q, q̇),
notedφi(q, q̇), i ∈ [1 . . . ne ], (with ne the number of tasks in the sequence). Each set
φi(q, q̇) is computed only when the taskei is in the stack (during the time interval[tI

i , tF
i ],

cf. Fig. 3.10). The optimization problem contains thusne +1 sets of semi-infinite constraints:
one per task and one covering the whole sequence, so as to takeinto account the constraints
when the stack of tasks is empty.

Constraint by set of tasks This approach is similar to the previous one, except that an
evaluation is associated to each ordered combination of tasks liable to describe the state of
the stack-of-tasks controller during the simulation. If the number of tasks is important and
no extra information is given on their respective priority,this method will be inappropriate
since the number of cases to consider will be combinatorial,and an important part of the
envisaged combinations will not appear during the simulation.
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Figure 3.10: Assigning an additional set of robot constraints φi(q, q̇) to each task enables to track
more easily the task responsible of the violation of a constraint than using solely a constraint set for
the whole motion. Red zones of e1 and e4 represent constraint violations during the task. These
violations appear on the additional set of robot constraints φ1, φ2 and φ4 and make the research of
the responsible task easier. In case of task overlapping, a set of responsible tasks is found.

3.4.4 Comparison of the constraint handlers

3.4.4.1 Comparison of methodsgmax and gΣ,k

These two methods are compared using a function that exhibits several maxima. Letfx be a

third order polynomial function,fx(t) : t →
3
∑

i=0
xit

i andF (x) =
1
∫

0
fx(t)dt be its primitive.

The criterion is the maximization of the area. The considered optimization problem has a
semi-infinite form:

max
ai

∫ 1
0 fx(t)dt

sc. ∀t ∈ [0, 1], fx(t) − 1 ≤ 0
(3.20)
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Figure 3.11: Graphic representation of the optimization problem. The criterion is to maximize the
area of the zone under the blue curve. The orange zone represents the forbidden zone.
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The Fig. 3.11 illustrates the optimization problem. The solution is the setx∗ = [1, 0, 0, 0],
that defines a constant functionfx∗(t) = 1, such thatF (x∗) = 1.

The optimization is performed using the SQP solver of Matlab. The gradient of the
criterion and the gradient of the constraint are estimated by finite differences.

Constraint type Iterations Time spent F (x̃) − F (x∗)
gmax 65 22 s 44 3.299.10−3

gΣ, 1

4δt
305 1 min 25 s 00 0.275.10−3

gΣ, 1

2δt
61 21 s 03 8.800.10−3

gΣ, 1

δt
362 1 min 57 s 09 0.618.10−3

gΣ, 2

δt
119 31 s 90 8.682.10−3

gΣ, 4

δt
163 37 s 47 4.075.10−3

gΣ, 5

δt
81 23 s 14 8.741.10−3

gΣ, 10

δt
107 24 s 37 8.740.10−3

gΣ, 50

δt
21 24 s 90 8.739.10−3

Table 3.3: Comparison of convergence results using the methods gmax and gΣ,k.

Table 3.3 compares the results of the optimization considering different type of cons-
traints. The optimization process stops without finding theoptimal solution with the cons-
traint gmax; which was expected. Unfortunately, the methodgΣ,k does not seem to converge
to the optimal solution neither, whatever is the value of theparameterk. Results of this test
suggest that for small values ofk, the approximation found was better than the one found
with gmax, but the convergence towards a solution is too slow to be applicable on more com-
plex case studies (such as ours).

This is the reason why we finally adoptedgmax as the evaluation method in solving our
problem.

3.4.4.2 Comparison of methods using the simplemax and the max by intervals

These two methods are compared using a sequence realizing a back and forth movement of
an arm, represented by a chain of tasks (Fig. 3.12). In this chain, the taskse1a, e2a and
e3a (resp. e1b, e2b ande3b) have identical definitions of the error and the Jacobian. The
only constraints considered are the joint velocity bounds (the tasks are defined so that joint
position bounds hold and collisions are avoided).

As mentioned earlier, using only a single evaluation of the maximum constraint on the
whole sequence may cause convergence difficulties. Considering more constraints gives a
more precise overview of the evolution of the control and of the constraints, providing a
better result, as shown in Table 3.4.

In the following, the Semi-Infinite Constraints will be handled with the methodgmax /e : a
set of the considered Semi-Infinite Constraints is associated to each task and evaluated only
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Figure 3.12: Sequence corresponding to a back-and-forth motion.

Constraint type Constraints number Optimization duration iterations tEnd(s)
gmax 103 1 h 21 min 25 s 45 34.20

gmax /e 583 1 h 38 min 10 s 65 22.44

Table 3.4: Comparison of optimization convergence during a back-and-forth motion, considering
either a single value for the constraint (gmax) or a constraint for each task (gmax /e ).

when the task is active. The resulting constraint corresponds to the maximal value for the
time interval[tI

i , tF
i ].

3.5 Optimization via simulation

3.5.1 Solver used

The optimization problem considered here is a non-linear constrained parametric problem,
with continuous criteria and constraints, whose gradientsare not provided (formulating the
gradient of the constraints functions with respect to parameters appears to be particularly
difficult). Even if the computation of the control law is smooth, this problem is onlyC0 due
to the method chosen to handle the semi-infinite constraints(based on themax operator).

Depending on the properties, the type, and the data available of an optimization problem,
some solvers are more suitable comparing to others. To only cite a few:

• Ipopt2 [89] and Loqo [87] both solve constrained optimization problems with twice
continuously differentiable (C2) criterion and constraints. The gradient must be provi-
ded but the Hessian can be approximated.

• The MATLAB optimization toolbox [15] and CFSQP3 [52] propose Sequential Qua-
dratic Programming (SQP) algorithms. Both assume that the criterion and the cons-
traints are smooth, and may realize an approximation of the gradients if they are not
provided.

• Solvopt4 [47] handles non-linear non-smooth problems.

Considering that the optimization problem is onlyC0, Solvopt seems to be the only suit-
able solver among the list we described. Yet, despite the potential derivative discontinuities

2InteriorPoint optimizer
3C code for Feasible Sequential Quadratic Programming
4Solver for localoptimization problems



76 Task overlapping using optimization

of some constraints, the solver CFSQP converges towards satisfying solutions that are better
than those found by Solvopt. Since SQP solvers give better performance when the gradients
of the constraints and the criteria are given, they are approximated by finite difference, even
if this approximation is time consuming.

Hence, the solver used is CFSQP.

3.5.2 Dialog solver - simulator

At each optimization step, the solver chooses a new set of parametersx. The corresponding
constraints are then evaluated. As stated in Section 3.3.3,only few of them can be evaluated
directly, since they correspond to a linear function of the vector of parametersx. In order
to evaluate the other ones (especially the constraints relative to the robot), it is required
to realize a complete simulation of the task sequence. As a result, the chosen value for
the current optimization variable vectorx is transmitted by the optimization solver to the
simulation engine, which returns the evaluation of the constraints. The optimization solver
then computes a new step vectorx, until convergence.

3.5.3 Simulation

The computation of the control for a given hierarchy of tasksis detailed in Chapter 2. The
simulation is basically a numerical integration of this equation, using an explicit Euler in-
tegration method with a fixed step. The entry and exit times ofeach tasktI

i and tF
i are

continuous variables that are not aligned with the grid. These instants correspond to dis-
crete events that create a modification in the control. Aligning these instants to the next time
step will create discontinuities in the control evolution with respect to events. To solve this
problem, the contentious timeta is added as an integration point during the time interval
[t, t + δt], splitting it into the two smaller ones[t, ta] and[ta, t + δt].

Initialization
[tI

1, tF
1 , . . . , tI

n, tF
n , tEnd] = computeTimes (x)

tEnd
Sim = max

i

(

tF
i

)

t = 0
while (t ≤ max(tEnd, tEnd

Sim)) do
q̇(t) = SoT(q(t), t)
δt′ = findTimeStep(t, δt)
gj(x, t) = computeConstraints(t, δt′)
(t, q(t + δt′)) = integrate(t, δt′, q(t), q̇(t))

end
Algorithm 1: Tasks sequencing simulation.

The algorithm 1 describes the simulation. The functions used are:

• computeTimes computes the absolute times using the relative times.
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• SoT computes the control induced by the tasks execution.

• computeConstraints evaluates the constraints.

• findTimeStep computes the required time step for the Euler integration:δt, or a
smaller one if needed, due to the need of splitting this interval in two.

• integrate updates the simulated objects or processes.

3.5.4 Enhancements of the optimization process

To reduce the time taken by the optimization process, the twofollowing methods were used:

3.5.4.1 Scaling

The problem includes constraints that are not homogeneous (times, angles, velocities, distan-
ces. . . ) and do not work on the same scale. As a result, they do not have the same influence
during the optimization process. In order to reduce these scale differences, a normalization
based on the value of the constraints obtained by the execution the initial set of parameters
x0 is realized. The effects of this scaling operation is studied for the four next sequences:

1. A sequence containing only one task;

2. A sequence where a task has to be realized during the maintaining period of another
(cf. Fig. 3.13a);

3. A sequence realizing simultaneously three conflicting positioning tasks (cf. Fig. 3.13b).
eH defines the position of the head,eL the position of the left arm,eR the position of
the right arm. The three tasks share the waist joint. The position of each task with
respect to the other ones is fixed arbitrarily;

4. The back-and-forth motion illustrated on Fig. 3.12.
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Figure 3.13: a. Sequence where one task has to be achieved during the maintaining period [tR, tF ]
of another one (left). b. Sequence where three tasks are realized simultaneously (right).

The results are shown on Table 3.5. For each sequence, an optimization is run only on
the timing (the gains of each task are fixed) and another one isrun on both the timing and
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gains of each task. To compare the results, the first element considered is the result of the
optimization (namely the time of end of the entire simulation tEnd), and the second is the
number of iterations, i.e. the convergence speed. For optimizations realized only on the
timing of the tasks, the result is generally the same (only the fourth sequence is a little less
optimal), but it is obtained in fewer iterations. For optimizations realized on both the timing
and the gain of the tasks, the solution found is better, but the number of iterations realized is
bigger. Hence, generally, the optimization process converges either faster or towards a better
solution when using the scaling operation.

Sequence Gains Scaling Optimization Number of tEnd(s)
number duration iterations

1 Fixed off 4 min 37 s 30 43
on 2 min 34 s 17 43

1 Optimized off 5 min 02 s 39 9.76
on 5 min 23 s 42 9.76

2 Fixed off 10 min 46 s 54 36.31
on 10 min 09 s 44 36.31

2 Optimized off 15 min 39 s 43 22.23
on 14 min 27 s 44 18.73

3 Fixed off 17 min 38 s 71 14.03
on 16 min 48 s 61 14.03

3 Optimized off 1 h 04 min 56 s 23 102.67
on 1 h 54 min 25 s 79 32.44

4 Fixed off 1 h 02 min 46 s 49 77.00
on 56 min 09 s 43 77.05

4 Optimized off 1 h 06 min 43 s 33 33.73
on 1 h 38 min 10 s 65 22.44

Table 3.5: Comparison of optimization final state with and without scaling the constraints.

3.5.4.2 Group of tasks

The complexity of an optimization on the entire sequence of tasks increases more than lin-
early with the number of tasks, thus it is beneficial to split the whole sequence into smaller
ones. This cut can not be realized everywhere: due to the possible overlay between tasks, it
is only possible to split a sequence in two if a task of one sub-sequence can never be realized
at the same time than a task of the other sub-sequence.

The sequence represented on Fig. 3.14 is composed of three groups realized sequentially.
Each of these groups contains two tasks realized simultaneously, due to the time constraints.

The Table 3.6 shows the results obtained while realizing theoptimization on the entire
task sequence and while realizing three separate runs on each group. The comparison is now
first realized on the result of the optimization, and second on the computation time, since
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Figure 3.14: A sequence split into three groups.

Optimization duration Number of iterations tEnd (s)
Group 1 20 min 47 s 75 15.90
Group 2 24 min 51 s 105 12.69
Group 3 22 min 58 s 70 18.08

Total 1 h 08 min 36 s / 46.67
Full sequence 2 h 24 min 21 s 59 49.42

Table 3.6: Comparison between an optimization realized on an entire sequence and three optimiza-
tions run on the corresponding subsequences.

the number of iterations cannot be used to compare the two systems. Even if the whole
duration of the sequence has been reduced, the most notable improvement is the diminution
in computation time. Indeed, since the number of tasks in thesequence is reduced, the time
taken by the evaluation of the gradient by finite difference is also reduced.

3.6 Discussion

This formulation of the optimization problem raises two main issues, both related to the
continuity of the task sequence, and are worth to be noted:

3.6.1 A posteriori evaluation of the constraints

The first issue is that the mechanisms of insertion and removal only depend on the time: the
condition of regulation of a task is evaluateda posteriori. In other words, the task may be
removed too soon (nothing proves that a task had been regulated attF

i ), causing a distortion
of the whole task sequence (it is the case of the pick-and-place sequence, when the picking
task is not achieved correctly). This kind of incoherent schedule may be requested by the
solver, e.g. during the line search, and the criterion and the constraints computed may not be
meaningful.

In order to remove a task, two conditions (at least) must be satisfied: (i) the task has been
regulated (t ≥ tR), and (ii) the removal time has been reached or exceeded (t ≥ tF ). These
two conditions are not similar: (i) expresses the fact that the removal time of a task is inde-
pendent of its regulation time, and (ii) recalls that a task should not necessarily be removed
as soon as the task is regulated, and may be maintained in the stack.
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3.6.2 Discontinuity due to discrete events

The second issue is due to the discrete events. Ensuring the continuity of a task sequence
with respect to the time for a given set of parametersx is doable at low cost: the continuity
of the control is ensured by using a damped inverse in case of ill-conditioning, while the
continuity during discrete events can be ensured by using the adequate smoothing operation,
as shown in previous chapter.

Yet, as shown in section 2.2.6, this does not ensures the continuity with respect to the
optimization parameters. To sum up,fx : t → (fx(t) = q̇(t)) is continuous for a givenx,
while f : x → (fx : t → q̇(t)) is not. Indeed, the smoothing operation is likely to create a
discontinuity of the control with respect to these events. Depending on whether a smoothing
operation has to be realized or not, the shape of the control law may accuse strong differ-
ences (cf. Fig. 2.14).

The safest way to ensure that these events will not create anydiscontinuity is to impose
the order of the events. Imposing only the priority between tasks is not enough, since it is
the order of events that makes a swap of priority of tasks required, and this order is condi-
tioned by the position of the tasks. This approach is safe, but too restrictive: for compatible
tasks, the swap is instantaneous (no smoothing operation isrequired), hence whatever the
respective positions of each task, the control law will remain continuous. As a result, deter-
mining which sequence of task give the smaller ending time for the sequence is a problem
that cannot be done directly using the proposed optimization problem.

3.7 Conclusion

In this chapter we presented a method to perform task overlapping by formulating it as an
optimization problem. Task overlapping aims at reducing the duration of a sequence and
smoothing the robot motion, by finding the best timing and gains for each task. The opti-
mization is solved using Sequential Quadratic Programmingalgorithm, and the handling of
the semi-infinite constraints (inherent to simulations depending upon time) has been defined.
The flaws of this method have been mentioned: first, the consequent computation time of the
optimization process prevents the use of this method in real-time, and second, this method
optimizes the sequence while respecting the initial order of events, although reordering them
can lead to a better solution. There are rooms of investigations that will be discussed in the
thesis concluding section.

Next chapter presents the tools used to realize the optimization, especially the simulation
engine used to simulate the environment for a given set of parameters and compute the cons-
traints. It completes the results of this chapter by studying the effects of the smoothing of
the control law on the optimization process, and presents anexperimental application of this
method on the humanoid robot HRP-2.



Chapter 4

Simulations and Experimentations

The previous chapter closes our theoretical contributions. In this chapter, we gather the
simulation and experimentations that have been achieved for larger scale scenarios in order
to assess and validate the theoretical results. We also detail the technical parts of the software
developments.

First, we describe briefly the simulation tools used, namelythe inverse kinematic fra-
mework (StackOfTasks) and the dynamic simulator (AMELIF),and detail the contributions
realized in both of them in the frame of this thesis. Then, we study the influence of the
control law smoothing on the convergence properties of the optimization that leads to task
overlapping process. Finally, a real scenario is experimented with the HRP-2 humanoid
robot. We took an existing scenario (take a can from a fridge)that was previously addressed
in a classical sequencing way and enhanced it using our proposed method.

4.1 Implementation of the inverse kinematic

The control framework used to implement the stack-of-tasksmechanism described in Chap-
ter 2 is related in [64]. In the following, it is named SoT as anacronym for StackOfTasks, so
as to make a distinction between the software framework and the theoretical stack-of-tasks
mechanism.

4.1.1 Presentation of the framework

The software is organized by entities and signals, similarly to the mechanism of boxes and
links in Simulink [17]. Each output signal is parameterizedby a set of dependencies –input
signals– that must be known or preliminarily computed in order to compute the value of the
output signal at each time step. The SoT is structured as an oriented-graph. Thanks to this
structure it is possible to update only the necessary signals that are induced from a request
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of a given (other) signal (i.e. those on which the requested signal depends on) instead of
updating the entire system, thus reducing the computation cost.

Each “task” entity defines a signal errore that corresponds to the difference between a
signals and its desired values∗ (see Fig. 4.1). This error is used to compute the desired
behaviorė∗, but can also be used by other entities, for example to compute the value of the
adaptive gainλ(e).

The Fig. 4.1 is a simplified representation of the entities corresponding to a task and an
adaptive gain. Both of them are defined by a set of methods and aset of input and output
signals. The dependencies between the entities correspondto the links between these signals.
An output signal can be linked to several input signals, but an input signal can only be linked
to one output signal. For example, the “task” entity defines,computes and shares with the
other entities the task errore as an output signal; it can then be used as an input signal by the
“AdaptiveGain” entity.
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Figure 4.1: Simplified representation of the SoT: two entities, a task and an adaptive gain, communi-
cate via the system of input and output signals, plugged together.

The description of the operations that are required to update a signal is a good way
to illustrate the mechanism of the SoT. For example, the update of the desired behavior
ė∗ = eλ(e) is decomposed into the set of following actions:

Updateė∗ = eλ(e)
→ Updatee

→ Updates

→ Updates∗

→ ExecutecomputeError
→ Updateλ(e)

→ Updatee (which does nothing this time, since it is already updated)
→ ExecutecomputeGain

This framework is implemented in C++, but the manipulation of the entities can be
achieved using a scripting interface. This interface allows the user to load the libraries that
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define the entities, to create and destroy instances of theseentities, to plug or unplug signals
and to manually access their parameter values (read and write). A CORBA server is also
provided to wrap the script commands and communicate with the sensors and the robot we
are using for the experiments.

4.1.2 Implementation of the smooth control

The control law described in Chapter 2 is implemented withinthe SoT framework. We briefly
address hereafter its implementation, along with the validation on a real-size example.

4.1.2.1 Characteristics

As a reminder, the characteristics and rules of the smooth control law are as follows:

• The control law is computed with the damped-inverse approach presented in (2.8), so
as to be robust to singularities:

q̇i = q̇i−1 + (JiPi−1)†(ė∗
i − Jiq̇i−1)

• A task can only be inserted and removed at the end of the stack.This process is realized
using an insertion gainλIns (2.26):

q̇n+1 = q̇n + λIns(Jn+1Pn)†(ė∗
n+1 − Jn+1q̇n)

• The swap of priority between two tasks is made only through successive swaps be-
tween two adjacent tasks (in the SoT). It can be instantaneous if the two tasks do
not conflict (i.e. q̇[A|B] = q̇[B|A]), either way it is necessary to smooth the swap by
realizing a linear interpolation between the two control laws q̇[A|B] andq̇[B|A] (2.25):

q̇ = αq̇[A|B] + (1 − α)q̇[A|B]

In practice, we realize at most one discrete operation by task and by time step (e.g. a task
cannot be swapped twice during the same time step). As a result, moving a task from the
top to the end of a stack containingn tasks (including the task moved) lasts(n−1) time steps.

The functionα used to realize the smoothing grows continuously between 0 to 1 and is
defined by:

α(t) =
1

2
−

1

2
cos

(

d(t − tI
α)
)

(4.1)

This function is only defined on the interval[tI
α, tI

α + π
d
]. tI

α corresponds to the start of
the smoothing period, andd is a user-defined value that fixes the duration of the transition
∆t = π

d
.
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4.1.2.2 Example

The following example compares the evolution of the classiccontrol law and the smoothed
control law for a sequence of tasks realized on the HRP-2 robot. In this sequence, three
positioning tasks are inserted and removed by order of insertion (the first task inserted is the
first removed). The three tasks considered and their respective timings are:

Task Description Timing

eL “Move the left gripper” [0.0s, 2.0s]
eR “Move the right gripper” [0.5s, 2.5s]
eG “Open the right gripper” [1.0s, 3.0s]

The taskseL andeR are coupled (they share the waist joint), but the taskeG is perfectly
decoupled from the two of them (i.e. there is no dof in common).

The Fig. 4.2 represents the evolution of the control withoutsmoothing. The evolution of
the control is smooth (thanks to the damped inverse), exceptat each insertion or removal,
that creates a discontinuity in the control. The Fig. 4.3 represents the evolution of the control
when each task is inserted and removed smoothly. Yellow areas represent the insertion period
of the three tasks. Since each task is inserted at the end of the stack, this insertion process
starts immediately, and the duration of this process is the same for the three tasks (0.8s).
Similarly, the removal process of the taskeG starts as soon as the order is given (attF

G=3.0s),
since it is the only task in the stack at that moment (hence it is at the end of the stack).

At the opposite, the removal processes of the taskseR andeL cannot start immediately.
First, they have to be moved to the end of the stack. For the task eG, this process is decom-
posed into two steps: first, a swap between the taskseG andeR, and second, a swap between
eG andeL. The first swap cannot be realized instantaneously, since the two positioning tasks
are conflicting: a linear interpolation has to be realized during the period [2.0s, 2.08s] (rep-
resented by the green area). At the opposite, the second swap, betweeneR andeG, can be
realized instantaneously.

It is important to notice that because of the smoothing processes, the actual removal time
of each task is more or less delayed. The removal of the taskeG is delayed of 0.08s (the
minimal delay possible, conditioned byd), the removal of the taskeL is delayed of 0.0805s
(the additional five milliseconds correspond to the instantaneous swap witheG, that lasts
one time step) and the removal of the taskeR is delayed of 0.165s, because of the swapping
processes.

4.1.2.3 Issues of the smoothing process

This additional delay taken by the transition process can become critical when there are too
many tasks in the stack. For example, the delay taken to replace the task of highest priority
by a new one (not yet inserted in the stack), is in the worst case equal to2n∆t, wheren is
the number of tasks currently in the stack of tasks. Indeed, first, the top-priority task must
be put at the end of the stack, which costs(n − 1) swap operations, then it can be smoothly
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Figure 4.2: Evolution of the classic control law (without the smoothing process). The upper graph
represents the evolution of the control law q̇. The lower graph represents the state of the task during
the simulation.

removed, and only then the new task can be inserted and placedto the top of the stack, which
also costs(n − 1) swap operations.

As a result, smoothing the control law may cost a loss of reactivity. Nevertheless, in
some configurations, the user will prefer to have important variations in the control rather
than spending too much time to ensure that it is smooth. This is the case when the humanoid
robot HRP-2 has to track a posture-based trajectory computed by the contact planner [24].
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Figure 4.3: Evolution of the smooth control law. The upper graph represents the evolution of the
control law q̇. Yellow areas represent insertion periods. Red areas represent removal periods. The
green area represents the interval of time during which the swap between eR and eL is realized. The
dotted lines represent the times where a swap is requested. The lower graph represents the state of
the task during the simulation.

To maintain the equilibrium of the robot, a stabilizer that can be considered as a high priority
task, is used. Yet, this stabilizer –conceived to close the loop of the preview control walking
approach of the humanoid robot– should not be activated whenthe robot leaned on objects
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of the environment with the upper body (i.e. when additionalcontacts occur on the body
of the robot). As a result, during the entire simulation of anacyclic motion, the stabilizing
task is continuously switched ‘on’ and ‘off’ and ‘on’ again according to the posture of the
robot and its contact configuration with the environment. This is typically a case where the
reactivity is preferred to the smoothness of the trajectory.

The second issue, already mentioned, is the continuity of the trajectory. Indeed, the
control law is now guaranteed to be continuous with respect to the time variable, whatever
the insertion and removal times are. However, when considering the trajectory of the robot
as a function of the insertion time, we have, mathematicallyspeaking:

F : tI,F → (q : t → q(t)) (4.2)

with tI,F = (tI
1, tF

1 , · · · , tI
n, tF

n ) ∈ R2n the finite set of insertion and removal times. For each
set of continuous parameters, a different trajectory (as a continuousC1 function of time) is
obtained. Then, it might happen than the mappingF is not continuous. In particular, when
the insertion time of two tasks swaps, passing fromtI

i < tI
j to tI

j < tI
i , then the trajectory

mappingF is discontinuous. This is due to the additional delay mentioned above: when
tI
i < tI

j , the taskej is delayed due to the insertion of the taski, while, suddenly, when
tI
j < tI

i , it is the taskei that is delayed.
This second issue appeared to be problematic in the optimization process (i.e. to the

solver). To our best knowledge, it does not call into question the on-line controller. This
problem will be discussed again later in this chapter.

4.2 AMELIF, a simulator for haptic and dynamic render-
ing

The SoT framework allows a user to compute the control law corresponding to the regulation
of a given set of tasks organized into a hierarchy for a given configuration of the robot and
the environment. In order to perform dynamic simulations introducing the robot, the SoT
has been integrated to the dynamic framework AMELIF.

This section is a brief overview of the structure of the AMELIF framework. Its basic
components are detailed, and a demonstrative simulation ispresented.

4.2.1 Presentation

AMELIF [27, 26] is an integrative framework that proposes anAPI for the representation
and simulation of virtual scenes including articulated bodies. It was devised to realize in-
teractive scenario studies with haptic feedback while providing an interface enabling fast
and general prototyping of humanoids (avatars or robots). AMELIF is entirely developed in
C++ and has been successfully tested under the Linux and Windows operating systems. The
architecture of the framework is based on a core library, upon which different modules are
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built with minimal dependencies among them, hence allowinga neophyte user to utilize only
the libraries s/he is interested in while requiring a minimal knowledge of the interfaces.

In the following, the core components are briefly introduced, and my main contributions
are indicated by a star (*).

4.2.2 Basic libraries

The core library provides the generic tools liable to be used by many modules:

• Mathematical tools: optimized implementation of small vectors and matrices (3D),
matrix abstract layer for external matrix libraries (such as VNL1 and Eigen2);

• Communication and manipulation tools: containers, console, observers (listeners and
publishers), XML parsers.

• Multi-threading: thread handling, memory sharing systemsfor multi-threaded con-
texts, chronometer.

• Basic external device handler: keyboard and mouse handlers.

The state module provides the interfaces of the components that describe a virtual en-
vironment. The simulated objects are articulated and theirlimbs are linked by joints of
different types (revolute, prismatic or spherical). Each simulated object is defined by its
physical (mass, inertia, deformable or not) and geometrical properties (shape, color, rigid or
deformable) and its position in the environment (position,velocity, acceleration). A specific
XML parser enables to build the environment starting from anXML file. Each of the classes
is provided with a default implementation that can be inherited and adapted.

It is the main module for the simulation of a virtual environment: most of the information
pass through the bodies and the other modules use it to read ormodify the state of each object.

The collision detection module* enables to detect and display the collisions between the
objects of the simulated environment and compute the distance between them. For this mod-
ule, an abstract interface is provided so as to wrap externalcollision query libraries. For now,
the default external library used is PQP (Proximity Query Package [49]), and the integration
of the STP-BV library (Sphere Torus Patches Bounding Volumes [7]) is ongoing. STP-BV
creates convex bounding volumes around objects, thus ensuring that the evolution of the dis-
tance between the bounding volumes is continuous. The collisions are accessible either by
direct query on the collision detection module or by a systemof observers.

A system of groups allows the user to limit the collision detection on specific parts of the
environment. Hence, objects known to never collide (e.g. ifthey are too far from each others)

1VNL is the numerics library contained in the collection of C++ libraries VXL http://public.
kitware.com/vxl/doc/development/books/core/book_6.html

2A C++ template library for linear algebrahttp://eigen.tuxfamily.org/
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can be distributed in separated groups, so as to avoid useless computations. Also, a group
can contain only one articulated object, in which case it is associated to the detection of its
self-collisions. Flags define the set of possible queries (collision detection, interpenetration,
distance. . . ) and can be associated to a specific group or pairof bodies.

The dynamics module* proposes an interface and a default implementation to realize a
physical simulation of a virtual scene composed from objects and articulated bodies. The in-
ternal structure of this module reproduces the structure ofthe environment and completes the
definition of the articulated objects with specific informations. Besides, the dynamic module
is defined as a listener of the collision module, and is itselfa publisher of interactions, that
are collisions augmented by the corresponding interactionforces.

The default implementation is based on the two-steps methodpresented in [13, 12]:

1. Computation of the free dynamic (without contacts), thattakes into account the gravity
force field and the external forces (such as those due to haptic interactions), with the
Featherstone algorithm [29]:

q̈free = A(q)−1 (Γ(q) − b (q, q̇) − g(q)) (4.3)

2. Computation of the contact and impact forces, using constraint-based methods so as to
avoid interpenetration of objects0 ≤ fc ⊥ ac ≥ 0 and computation of the additional
acceleration:

q̈c = A(q)−1JT
c fc (4.4)

The computed acceleration is then integrated with a numerical method (e.g. simple Euler
integration), and the state of each object of the state module is updated.

The control module* wraps the SoT framework. It enables defining any object in AMELIF
as an entity and using its attributes as signals in the SoT framework. For example, once a
multi-articulated object is defined as an entity, its position, velocity and acceleration are
computed by AMELIF (they are output signals) while the control is computed by the stack
of tasks and read by AMELIF (as an input signal).

When running a kinematic simulation, the control is directly used as the velocity of
the system. In a dynamic simulation, the control can be considered either directly as the
torque given to the joints or as a way to define the desired position. In the former case, the
control (aka the torqueΓ) is taken into account in the dynamic computation by adding the
acceleration.

q̈ = A−1Γ (4.5)

In the latter case, the control is used to define the desired positionq∗ (the desired velocity is
null q̇∗ = 0). Finally, the corresponding acceleration is computed using a PD-controller.

q̈ = A−1 (Kp(q∗ − q) + Kv(0 − q̇)) (4.6)

The communication with the SoT framework is realized directly via the script mecha-
nism.
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The display module is based on the well established OpenGL graphics library andpro-
vides additional tools to display the graphical scene. A particular tool is the class called
“Fixture”, that can be attached to objects in order to display extra information such as con-
tacts (forces, friction cones, normal) or bounding volumes. Besides, it is possible to use it to
wrap the display routines, which can be of use with the HapticLibrary (HL) of OpenHaptics,
that adds haptics to OpenGL rendered geometry (the computation of the force rendered is
directly done by the library). This module is not mandatory since one could limit its use of
AMELIF to the algorithmic part, and use AMELIF only via the console.

4.2.3 Execution and simulation

Using these libraries, it is now possible to create and simulate a robotic mission or tasks in a
virtual environment.

Main Programs define the simulation. They are also built as dynamic libraries except that
they do not define an API (hence they can not be used by other libraries). These applications
respect the same 3-steps structure:

1. An initialization phase, during which the environment iscreated: definition of the
simulated universe, definition of the collision groups, selection of the bodies that are
dynamically simulated. . . Also, a warming-up phase can be realized, to prepare the
dynamical simulation.

2. The main loop, called repeatedly. The time given as an input of the method is the time
spent since the previous call of the function.

3. A termination phase that realizes the destruction of the elements created and ends the
application.

Core application Two displayers are available to realize theexecutionof the main pro-
grams: the first one only contains the minimal set to display avirtual environment: a console
and a simple viewer based on OpenGL, while the second one is based on wxWidget and
provides a more user friendly interface: it enables the dynamic load and execution of main
programs.

The Fig. 4.4 summarizes the relationship between the different modules described above.

4.2.4 Demonstrative scenario

In order to demonstrate the capabilities of the framework and gather the different work real-
ized in the team, a demonstrative scenario has been designedand implemented.
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Figure 4.4: Modules composing the core of the AMELIF framework and their dependencies.

4.2.4.1 Additional libraries used

The following scenario integrates the work realized in two other libraries developed using
the AMELIF formalism: a posture generator and a haptic device handler.

Posture Generation Configuring manually the posture of a virtual avatar can be burden-
some for the user, especially when constraints such as equilibrium, joint limits and position
constraints (e.g. contacts with the environment) for some bodies have to be taken into ac-
count. Hence, this module relies on a posture generator based on an optimization process,
that researches a posture respecting the user-defined constraints while being as close as pos-
sible to the reference posture given. Details on this posture generator can be found in [9].

Haptic interaction In the proposed scenario, haptic interaction occurs duringthe colla-
borative manipulation of an object by a human operator and a virtual human avatar. It is
based on the idea that the role of each partner is not limited to a static role of slave or mas-
ter, but switches continuously between a leader role and a follower role. In this purpose, a
homotopy-based model has been designed to state the role of each partner [28]. Depending
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on the intentions expressed by the human operator via the object (does the human operator
apply forces on the object or is he passive?) and the constraints of the avatar (is the avatar
near an auto-collision or a singularity?), the avatar complies with the trajectory implied by
the user or takes the lead and tracks the trajectory it has computed based on its planner. The
collision avoidance constraint used for the homotopy is based on the distance between the
elbow and the chest.

4.2.4.2 Resulting simulation

The resulting simulation is split into two phases.
First, the user defines the reference position (here it corresponds to the half sitting posture

given in Fig. 4.5a) and places the contact points he wants theavatar to fulfill (the two feet are
on the ground and the right hand is holding the object). Once the user launches the program,
a posture satisfying these conditions is processed during the initialization phase of the main
program. It then switches to the main loop in an idle mode, andallows the user to check the
results. The posture found is represented on Fig. 4.5b and corresponds to the initial posture
of the human avatar for the dynamic simulation.

When the user decides to switch to the dynamic and haptic simulation mode (by pressing
a key on the keyboard), the human avatar then focuses on the object Fig. 4.5c. The user
can then start manipulating the object collaboratively with the avatar Using, by means of an
haptic probe such as the PHANTOM OmniR© or a the PHANTOM Premium 1.5R© (Fig. 4.5d).

4.3 Optimization of a task sequence

In this section, we focus on the work realized in Chapter 3 on task overlapping, and present
the integrative experiments with a fully integrated scenario. Namely, the optimizer inside
the AMELIF simulator, using the SoT and the smooth control law presented before. We first
present quickly some experiments on simple sequences, to validate the use of the smoothing
inside the optimizer, and highlight the limitations due to some issues we mentioned pre-
viously, especially the discontinuities due to the modification in the order of discrete events.
Then, we present a complete experiment on a full-size sequence, and its application to the
real HRP-2 robot.

4.3.1 Smoothing and optimization

The used optimizer (CFSQP) gives better results when the criteria and the constraints are
continuous. Therefore, the smooth control law should enhance the convergence of the op-
timization. Typically, the constraint on the joint velocity q̇min ≤ q̇ ≤ q̇max is smoothed.
However, we have also seen that because of the discrete events, the smoothing process may
introduce discontinuities in the evolution of the trajectory-based constraints with respect to
the variations of the set of parametersx.

The purpose of the following tests is to analyze the effects of the smoothing on the
optimization process. In this frame, five tasks sequences are considered:
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a b

c d

Figure 4.5: First, the human avatar is positioned so as to fit the initial contact conditions (a - b). Then
the user can realize a collaborative manipulation of an object with the avatar (c - d).

1. A sequence containing only one task.

2. A sequence with two decoupled taskse1 ande2.

3. A sequence with two decoupled taskse1 ande2, such as[tI
2, tF

2 ] ⊆ [tI
1, tF

1 ]

4. A sequence with two coupled taskse1 ande2.

5. A sequence with two coupled taskse1 ande2, such as[tI
2, tF

2 ] ⊆ [tI
1, tF

1 ]

The constraints considered for the optimization problem are the task constraints (time
coherence, termination condition, gain consistency) and the joint velocity limits (which are
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the only constraints we considered for the robot).

The smoothing is characterized by the parameterd: for low values ofd, the process is
slow but the derivative of the control,̈q, presents small variations; for high values ofd, the
swap is fast buẗq presents large variations. In the following experiments, different values of
d are tested. Immediate transitions (without smoothing) arenoted “Immediate”. The Fig. 4.6
represents the evolution of the control and the transition period for several values ofd.

d = 10, δt = 0.31s d = 45, δt = 0.07s
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Figure 4.6: Evolution of the control during the insertion and removal of a single task (realized on one
dof) for several values of the parameter d. The yellow area represents the insertion period. The red
area represents the removal period.

First, we analyze the cases where the semi-infinite constraints on the joint velocity do not
play a role, i.e. when only the timing is modified.

For simulations where the tasks are decoupled (Table 4.1(down) and Table 4.2(down)),
the smoothing has only a light influence on the number of iterations realized. This can be
explained by the fact that in this case, the delays added by the smoothing process are constant
(one at the insertion and one at the removal for each task, butno swap) and do not play a role
in the optimization. As a result, the optimization process only focuses on the minimization
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Optimization Smoothing Number of
tF

of the gain (value of d) iterations

Yes

Immediate 39 3.457
100 50 3.469
45 37 3.474
10 33 3.536

No

Immediate 24 4.354
100 24 4.372
45 24 4.391
10 22 4.513

Table 4.1: Results of the optimization for the sequence 1 (one task).

Optimization Smoothing Number of
tF

of the gain (value of d) iterations

Yes

Immediate 246 3.733
100 169 3.814
45 75 4.382
10 53 3.965

No

Immediate 37 12.186
100 38 12.204
45 37 12.223
10 37 12.345

Table 4.2: Results of the optimization for the sequence 2 (two tasks not coupled, temporally indepen-
dent).

Optimization Smoothing Number of
tF

of the gain (value of d) iterations

Yes

Immediate 198 3.815
100 244 3.796
45 201 3.864
10 42 3.965

No

Immediate 41 12.186
100 42 12.204
45 46 12.224
10 37 12.345

Table 4.3: Results of the optimization for the sequence 3 (two tasks not coupled, temporally depen-
dent).

of the time of realization of the task(s), and starts the taskwith the longest duration as soon
as possible.

Yet, when the tasks are coupled, the convergence of the process is disturbed by the dis-
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Optimization Smoothing Number of
tF

of the gain (value of d) iterations

Yes

Immediate 214 3.273
100 251 3.204
45 196 3.196
10 435 3.171

No

Immediate 38 12.070
100 44 12.147
45 62 12.111
10 45 12.247

Table 4.4: Results of the optimization for the sequence 4 (two tasks coupled, temporally indepen-
dent).

Optimization Smoothing Number of
tF

of the gain (value of d) iterations

Yes

Immediate 95 3.296
100 90 3.294
45 78 3.352
10 152 3.358

No

Immediate 51 12.832
100 49 13.177
45 40 13.350
10 35 14.580

Table 4.5: Results of the optimization for the sequence 5 (two tasks coupled and temporally depen-
dent).

continuities with respect to the events. Indeed, in the experience 4, where the order of these
events is left free, the smoothing process makes the optimization process converge slower
than if the swap was instantaneous. At the opposite, in the experience 5, where the order of
these events is fixed, the swap enhances the convergence performances of the optimization
(cf. Table 4.5(down)). Besides, the effect of the smoothingis not monotonous with the vari-
ation ofd: it is not possible to state if the slowness of convergence isdirectly linked with the
value ofd.

Now, we focus on the cases where the gains are optimized: the semi-infinite constraint
on the velocity is activated during the optimization.

For simulations where the tasks are not decoupled, smoothing the control law enhances
the convergence properties of the algorithm (cf. Table 4.1(up) and Table 4.2(up)). This re-
sult corresponds to the behavior expected: the solver worksbetter with smooth constraints.
Yet, when the tasks are coupled, the smoothing may not be advantageous anymore (cf. Ta-
bles 4.4(up), 4.5(up)). In order to know if this problem is due to the discontinuities with
respect to the timing of the tasks, a sixth sequence has been realized with stronger cons-
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traints on the time schedule: the time constraints are now[tI
2, tF

2 ] ⊆ [tI
1 + 4, tF

1 − 4]. The
purpose of this limitation is to prevent the optimization process from producing a schedule
where the swap would appear. The results are illustrated on Table 4.6. As expected, when the
optimization is only realized on the timing, the smoothing process has no influence. Though,
when the gains are considered, the number of iterations is atthe same level between the case
with and without smoothing process (except ford =45), with an advantage for the immedi-
ate swap.

Aside from this analysis of the influence of the smoothing, itis important to note the
important difference between the case where the sequence contains coupled tasks and the
temporal constraints are given (Table 4.5) and the case where they are left free (Table 4.4).

Since working with coupled tasks is unavoidable –at least inthe frame of this work–,
this example shows the importance of the sequencing phase: leaving the determination of
the task sequence up to the scheduling phase (i.e. to the optimization process) substantially
penalizes the optimization process.

Optimization Smoothing Number of
tF

of the gain (value ofd) iterations

Yes

Immediate 96 10.328
100 103 10.129
45 168 10.137
10 101 10.754

No

Immediate 28 21.312
100 28 21.330
45 28 21.349
10 28 21.471

Table 4.6: Results of the optimization for the sequence 6 (two tasks coupled and temporally depen-
dent with important time margin).

4.3.2 Simulation of can grasping

The following scenario introduces a robot taking a can out ofa fridge, and has been tested
on the real humanoid robot HRP-2. This mission is decomposedas a task sequence, and
optimized by realizing task overlapping.

4.3.2.1 Description of the task sequence

The mission is decomposed as a sequence of tasks, illustrated on Fig. 4.7. The corresponding
tasks are:
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Tasks of the right arm Tasks of the left arm

e0 Open the gripper, e5 Open the gripper,
e1 Move the gripper to the fridge’s handle, e6 Move the gripper in the fridge area,
e2 Close the gripper, e7 Move the gripper to the can,
e3 Open the fridge, e8 Close the gripper,
e4 Close the fridge e9 Lift the can,

e10 Remove the can out of the fridge,

Figure 4.7: Sequence describing the HRP-2 taking the can in the fridge.

The taske6 is an intermediary task introduced as a way point, in order toensure a lateral
approach of the arm towards the can. The associated tolerance on task regulationǫ6 is large
so as to avoid a null velocity of the arm at the regulation of the task.

This is a complex mission that can not be split into smaller sequences. Indeed, the se-
quence is centered on the fridge: the can-grasping part doesnot make sense if the fridge
is closed and similarly, it is not possible to close the fridge while the left arm is still in it.
Instead of adding explicit timing conditions between the tasks to ensure that this will never
occur (such astR

3 ≤ tF
7 and tR

10 ≤ tF
4 ), we choose to consider as limiting constraint the

collision between the left arm and the door, in order to allowtask overlapping.
The constraints considered for this problem are thus sequencing and robotic constraints

(joint position and velocity limits), and collision avoidance with the fridge. As a safety
measure, we reduce the joint velocity limits to 25% of their normal value.

4.3.2.2 Simulation: results of the optimization

The optimization of the task sequence has for parameters theposition of each task in the
schedule (i.e. the entry timetI and the removal timetF ) and the behavior of each task,
define by their gain function. The sequence found is described on Fig. 4.8. Each task is
described by two periods: the dark one is the regulation period [tI

i , tR
i ], the bright one is the

maintain period[tR
i , tF

i ].
The two overlaps between the tasks of the left and the right arm appear clearly. First,

the left arm starts moving before the fridge is open and then aims at the can pose even if the
fridge is not completely open. Second, the right arm starts closing the fridge before the left
arm has completely left the fridge area. The whole task sequence lasts 47s. Without these
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Figure 4.8: Results of the optimization of the sequence of task: when the task is added in the stack,
its error is first regulated (this is the dark part (red or dark blue) of the block). From tR

i , the error is
nearly null and the task is kept in the stack (light part (yellow or cyan) of the block) until tF

i .

two overlaps, the robot would have moved to the can (e7) only after the fridge was fully
opened (e3) and it would have closed the fridge (e4) only after the can was completely taken
out (e10). As a result, the total mission would have taken at least 71s.

4.3.2.3 Experiment on the real robot

The task sequence is experimented on the upper body of the HRP-2 humanoid robot; its
properties and design characteristics are thoroughly described in [41]. The HRP-2 is a 42-
degrees-of-freedom humanoid robot built by Kawada Industries (a Japanese company). In
this scenario, only the described tasks are used to compute the control law. In other words,
no additional care is taken for enforcing the constraints such as joint limits: their respect
–or violation– is only function of the tasks of the sequence.For the tasks that require haptic
interaction (i.e. opening and closing the fridge) the forcesensor of the robot is used to close
the loop and compensate for position uncertainties.

The robot manages to grasp the can without colliding with anyobstacle and without
reaching joint limits, while fulfilling the remaining robotic constraints on velocity limits
during its motions. The obtained execution is plotted on Fig. 4.9. Thanks to the opti-
mized gain, the convergence of the error of the tasks that require a good precision (grasp-
ing the fridge handle and the can) is achieved as quickly as allowed by joint velocity lim-
its. Snapshots of the execution are given in Fig. 4.10, whilethe full video is available
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onhttp://staff.aist.go.jp/francois.keith/video.html.
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Figure 4.9: Experiment on HRP-2: errors diminish when optimized task scheduling is applied: (top)
right arm tasks (middle) left arm tasks (bottom) gripper tasks. The concurrency between the tasks is
clearly visible.

4.4 Conclusion

This chapter described the two frameworks used to implementand assess the theoretical de-
velopment of our work. Particularly, the implementation ofthe smooth control law in the
inverse kinematic framework SoT and the creation of the bridge between the SoT and the
dynamic simulator AMELIF have been detailed. More importantly, this chapter highlighted
the pros (smooth control) and cons (additional delays) of the smoothing process, and introdu-
ces the compromise the user has to make between the smoothness of the control law and the
reactivity of the system unless computations can be made faster in the control loop (which is
not the case for the moment). As a result, depending on the properties of the task sequence
considered, the smoothing process can favor the convergence properties of the optimizer, or
in the contrary penalize them. Note that smoothing generally induces a delay (phase filter).

In the next chapter, we see another facet of the task function, which enables the adaptation
of a default behavior, typically returned by the optimization process to fulfill another goal:
human preferences in human-robot collocated space and co-existence.
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Figure 4.10: Snapshots from HRP-2 grasping a can in the fridge.
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Chapter 5

Adaptive control

The optimization process detailed in Chapter 3 refines a taskschedule where everything is
predictable since depending only on the motions of the robotand on an idealistic represen-
tation of the environment and its potential changes. In practice, it is most likely that the
robot needs to adapt its planned schedule and subsequent motions in response to situation
changes and execution results. The task function approach,by design, offers such flexibility
in the execution because the trajectory is implicitly generated from the interaction between
the sensory error and the desired motion. In other words, theobjectives of the tasks are con-
tinuously adapted to fit the variations of the environment. Still, such adaptations are valid
within some bounds and locality constraints; the task function does not deal with important
variations. Even if local, light variations may necessitate an adjustment of the scheduled plan
that can be done by simple propagation unless the variationsare important and subsequently,
necessitate a rescheduling. This kind of adaptation modifies the goal of the tasks: i.e. the
“what” (should be done?).

Rather, this chapter focuses on another type of adaptation,which consists in achieving
and pursuing the same goal, but in a different way. This category of modification is about
the “how” (should it be done?). The idea presented in this chapter is rather an extension of
the stack-of-task formalism to the possibility to personalize the motion of the robot by using
an appropriate parameterization of the gain and the timing of each task.

As an example, the task sequence introduced in the previous chapter is altered so as to
take the presence of a human operator into account and to adopt a human-like behavior in a
collaborative scenario.

This whole chapter has been realized in collaboration with Marie AVRIL, student at the
ENSC (École Nationale Supérieure de Cognitique) of Bordeaux.
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5.1 Adaptive control and task formalism

Consider a pick-and-place motion of, e.g., a glass. The way the robot plan for the grasping
posture, the closure, and the manipulation motion considerably depends on the type/shape
of the glass in question: a crystal glass should be manipulated carefully (by gently grasping
it and avoiding impacts when putting it down), whereas a plastic glass can be manipulated
faster and with less care (i.e. more tolerance on the impact’s intensity). Even though these
two actions are defined with the same objective, the way they are realized varies with such
different considerations. Similarly, a user may specify constraints that will affect the result-
ing motion: for example the constraints “act as fast as possible”, “act as a human would do”
or “use the minimum amount of energy” certainly results in different motions or even impose
different constraints.

In the following, we present some of the advantages gained bysuch kind of adaptation;
namely, the diversification of the behavior for a given know-how enabling a better human-
robot interaction and cohabitation.

5.1.1 Enrichments and diversification of know-how

In computer graphics, this distinction between the action (calledverb) and the way to realize
it (called adverb) [76] is used to enlarge the set of possible actions doable byan avatar
(its know-how) at low cost, by defining how to realize the known actions in a different way.
Similarly,adaptingthe tasks contained in the know-how of a robot is an easy way toincrease
its capacities, cheaper than the definition of new tasks.

Another method used in computer graphics to improve the set of possible actions doable
by an avatar is to realize a blending between these actions [91, 72]. This is what is realized
during the swap of two incompatible tasks. Yet, this method has to be applied with extra care,
since the blending of tasks may not fulfill some constraints (such as stability, auto-collision
avoidance, etc.). The blending of two position tasks, one setting the right arm behind the
waist and the other one before it, highlights this problem.

5.1.2 Human’s expectation and preference

When a human operator and a robot share the same space, it is necessary that the robot adapts
its behavior and plans –provided by the automated planner for a given mission– according to
human expectations and preferences.

Such considerations are particularly useful to achieve collaborative tasks (where the hu-
man operator has an active role) and can even improve the performance of the human-robot
teaming [80]. The robot must be able to adapt its motion according to the physical attitude
of the human but also based on the human expression (stress inthe voice, fatigue, etc.).

Note that there are two kinds of adjustments that are expected from a robot when acting
in a collocated space with a human: (i) general rules of robotbehavior that can be seen both
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as constraints and as robotic ‘manners’ and ‘know-how’ in the presence of a human user,
and (ii) robot tuning to human preferences, that are acquired from long-term observations
and consists in the robot ability to personalize.

As an example of the general considerations due to the ‘manners’ and ‘know-how’ of
the robot, the task plan and task function controller must integrate additional constraints so
that the trajectory generated for the robot fulfills not onlythe classical constraints but also
human expectations. For example, the visibility criterion[1]: the robot should not surprise
the human operator by appearing suddenly from behind an obstacle and should adopt a path
visible by the human operator. This assessment was refined bya study on the influence of the
trajectory followed by the robot on the feelings of a human operator [18]. In this experiment,
the robot acted as a helper for the human subject: the robot brings an object to a human
user sitting on a chair. The robot was programmed to take different trajectories: it started in
front of the user and then followed either a straight trajectory (frontal approach) or a curve
trajectory (approach by the left or right side). The main result of this study is that the frontal
approach makes the human user uncomfortable, or even seems threatening.

The task function approach has many benefits but also some limitations, namely when
trajectories are generated implicitly from the error between a target and a robot control point,
the resulting trajectory in the operational is likely a strait line. One way to take into account
the previously cited expectation is to add way-point tasks (i.e. tasks that deviate the robot
from its initial trajectory, whose regulation is not mandatory).

In our previous example, the robot can come from right or left. This choice can be
induced by the task or the environment configuration, but it may also be imposed by the
human user preferences. Some users would prefer the robot tocome from the left, other
from the right. For a set of tasks where different orderings lead to the same results, the
preference can be given to the user taste. The robot can storethis additional knowledge
(human preference), which is acquired from observations orinteractions. This thesis does
not deal with these aspects for the moment.

In the same way that an appropriate parameterization of the times and the gain functions
can lead to an optimized realization of a task sequence (in the sense of the duration of the
mission), we believe that the personalization of a given sequence of tasks can be realized at
the task level by adapting these same parameters. As an illustration of this idea, we propose
to adapt a given sequence of tasks realized autonomously by the robot in order to take into
account a human operator. To have an idea of the natural behavior expected from the robot,
a preliminary study is realized between two human subjects.This idea actually suggests that
the task approach components in planning, scheduling and execution can be kept even in
situations where the robot evolves in collocated space or indirect interaction with a human
operator and subsequently definitely constitutes a powerful component by which a cognitive
robotic architecture can build.
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5.2 Preliminary experiment

Imagine a person (customer) leaving a shop with two heavy bags, one in each hand. The
shop is not equipped with automatic doors. Another person (the shop bellboy), standing near
the exit door, notices that the customer is coming and opens the door for him. If he has well
timed the door opening motion, the client will pass the door without having to slow down.
Otherwise, in the case the bellboy was slow and delayed the door opening motion, the client
will slow down or even stop, waiting for the door to be opened to go out. In the case the door
opens too early, it is very likely that the client accelerates his natural walking motion, so as
not to abuse of the bellboy’s time and kindness.

Between the two persons, there was no direct communication:the bellboy estimated the
adequate timing considering the trajectory of the customerand adapted his task behavior
accordingly.

We aim at showing that a similar issue can be programmed keeping the stack-of-task
formalism. We took a simpler case study, which is however based on the same idea: the first
step is the observation of invariants and possible parameterization of the task-case study; the
second phase consists in integrating this knowledge to our control method.

5.2.1 Script

The studied scenario implies two persons that will coordinate their actions for a given sce-
nario. The first person (theclient) wants to take an object placed in a cupboard, and the
second one (thebellboy) has to open a cupboard so that the client can take the object.For the
purpose of observation, two human operators execute this scenario. This preliminary exper-
iment aims at determining what can be considered as a naturalbehavior for the bellboy (role
played later by the robot) and at finding on which criteria thebellboy schedules the cupboard
opening motion (i.e. the timing and behavior).

5.2.1.1 Experimental setup

During the entire experiment, the bellboy stands next to thecupboard and has the handle of
the cupboard within reach of his right hand. We did not imposeany constraint on the posture
(including body position/orientation) the bellboy shouldtake; we only explained what the
task goal was and made few white trials so that the bellboy takes the most comfortable
posture to open the cupboard. Nevertheless, he has to operate the cupboard’s handle with
his right hand. Besides, once the cupboard handle is grasped, the bellboy is not allowed to
release it before the end of the task; i.e. not before the object is taken out from the cupboard.

The initial position of the client is chosen among three possible starting points, all placed
at four meters of the cupboard. The client is asked to walk toward the cupboard with three
different subjective velocities (slowly, normally, or quickly) during the experiment. At the
beginning of each simulation, the bellboy sees the initial position of the client, but is unaware
of the velocity by which he is asked to perform the task. The Fig. 5.1 represents the initial
experimental setup.
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The study was run with 19 subjects (15 men, 4 women), each of them played both roles
(client and bellboy). In the first set of experiments, the client always started in front of the
cupboard (the only starting point considered wasS1), and adopted one of the three velocities:
the instruction on what velocity to choose was written on a small board handed to the client
in the back of the bellboy (who was hence not aware of it). In the second set of experiment
(12 subjects), two more starting points were considered in order to see whether a lateral
approach modifies the behavior of the bellboy. For this configuration, we run 9 experiments
(each of the three velocities was tested for each of the threestarting points). Furthermore,
some particular configurations were added, during which thebehavior of one of the subjects
was imposed, in order to observe the reaction of the partner.They are detailed later.

Figure 5.1: Experimental setup (initial position): the client starts far away from the cupboard while
the bellboy is at a given posture of her/his choice and make sure that the cupboard’s handle is within
reach at a comfortable motion and grabbing posture. An accelerometer is placed on the head of the
client.

5.2.1.2 Measures of the motions

Considering the motion of each subject (the bellboy does notwalk –feet are at a fixed
position–, while the client walks), two different types of measure were considered:

Measure of the client motion The client’s body motion is tracked by a visual tracking
system, which determines his position in space. The camera is placed on the cupboard when
the client starts fromS1 orS3. When he starts fromS2, this configuration is not suitable, since
the bellboy occludes the view; the camera has to be moved to the right of the cupboard. To
make the tracking easier, the client wears a rectangular blue plate placed on the chest (size:
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Figure 5.2: The environment of simulation. The three blue points S1, S2 and S3 correspond to the
starting points of the client. The gray point represents the position of the bellboy. The green diamonds
represent the two possible positions for the camera. The orange and gray rectangles represent the
cupboard and the table respectively.

45cm× 31cm) to be recognized and visually tracked. To confirm the trajectory obtained by
the tracking system, an accelerometer, that records the acceleration with a high accuracy, is
placed on the head of the client. It is linked to a computer by a4.2-meters-long cable (the
computer was placed at midway so as not to limit the motion of the client).

Measure of the bellboy motion Considering that the bellboy moves mainly his right arm,
only the motion of his wrist is recorded. Two Ascension miniBirds1 (electromagnetic sensor
of position in space) are attached around his right wrist, and the position considered is the
median of the two positions captured.

5.2.1.3 Questionnaire

At the end of the experiments, a simple questionnaire was given to the subjects:

1. Were you bothered by the sensors (miniBird for the bellboy, accelerometers and tracker
for the client) ?

2. When playing the role of the client, did you feel the need toadapt your behavior to the
one of the bellboy?

1http://www.ascension-tech.com/realtime/RTminiBIRD500_800.php
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5.2.2 Results

On the 137 experiments realized, 101 were usable. The principal causes of failure during the
data analysis were tracking errors (the tracker lost the subject, 8 cases), unusable miniBird
results (the task schedule was not definable, 7 cases), and unusable tracking results (the
trajectory of the subject was wrong, 6 cases).

The Fig. 5.2 represents the trajectories estimated by the visual tracking system for a same
subject coming from the three possible starting points. TheFig. 5.3 illustrates the evolution
of the distance between the client and the cupboard and the speed of the client along the
axis client/cupboard. The data of the tracking system appeared to be sufficient and precise
enough to define the dependencies between the motions of the two subjects. The acceleration
was subsequently not needed to correct the visual tracking.
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Figure 5.3: Evolution of the distance between the client and the cupboard and the velocity of the
client projected on the client–cupboard axis.

In this section, we first detail the invariants in the motion observed for the bellboys, we
then explain how they adapted their motion to the behavior (different velocities and initial
start) of the client. In the following, bydistance, we always mean distance between the
client and the cupboard. Also, byvelocity, we always mean the absolute velocity of the
client projected on the client–cupboard axis.

5.2.2.1 Invariant in the bellboy motion

The typical evolution of the position of the hand of the bellboy is illustrated on Fig. 5.4. The
frame, centered on the minibird, is the one used on Fig. 5.2: the x axis is oriented toward
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the client, they axis is oriented towards the cupboard, and thez axis is oriented towards the
ground. The three stable phases along thez axis, that indicates the height of the hand, enable
determining each step of the motion. In the initial state (t ∈[0s, 3.2s]), the hand is along the
body, then, during the cupboard manipulation, it is attached to the handle of the cupboard
(t ∈[3.5s, 6.4s]), and in the final state, it is along the body again (t ≥ 6.8s). The transition
periods can be decomposed based on the back-and-forth motions noticeable on thex andy

axes: att = 3.2s, the bellboy starts moving his hand toward the handle of thecupboard, then
he grasps it aroundt = 3.5s (the height is stable but the hand still moves) and start opening
the cupboard att = 4.0s. The closure of the fridge follows a reversed evolution: att = 6s,
the bellboys closes the cupboard, then releases the handle at t = 6.4s and finally goes to its
final position att = 6.8s.
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Figure 5.4: Evolution of the position of the hand in the frame of the miniBird. Each vertical line
represents a change of trajectory that can be associated to an event. At t = 3.2s, the hand goes to
the handle; at t = 3.5s, the handle is grasped; at t = 4.0s, the cupboard is opened; at t = 6.0s, the
cupboard is closed; at t = 6.4s, the handle is released; at t = 6.8s, the hand goes to its final position.

One invariant observed in the behavior of the bellboys is that none of them paused during
the opening or the closing of the cupboard. A possible behavior (classically programmed in
robotics) would have been to first go for the handle and grab it, wait steadily for the client to
come closer and then open the cupboard.

5.2.2.2 Adaptation of the bellboy behavior in function of the client motion

Two types of behaviors were observed:
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Dependency in the client’s trajectory Most of the bellboys adapted their behavior in
function of the trajectory of the client. Especially, the trigger of the action of the bellboy
is determined by a couple of elements: the distance between the client and the cupboard
and his walking velocity. We notedI the distance andvI

h the velocity of the client when the
bellboy starts moving (attI ). By expressing this distance as a function of the velocity,as
depicted in Fig. 5.5, three different behaviors can be distinguished:
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Figure 5.5: Distance between the client and the cupboard target dI when the bellboy starts his
sequence, with respect to the velocity vI

h.

• When the client walks too fast (vI
h ≥1.4m/s), the bellboy starts moving his arm as soon

as possible (the distance is inferior to 4 meters due to the reaction time of the client).
Besides, the bellboy has to speed up in order not to be late.

• When he has a slow speed (0.4≤ vI
h ≤1.0m/s) or a regular speed (1.0≤ vI

h ≤1.4m/s),
the bellboy adapts its starting time accordingly: the faster the client goes, the sooner
the bellboy begins its motion. However, the bellboy keeps opening the cupboard at the
same speed.

• Finally, for an excessively slow motion, the action of the bellboy is triggered by the
distance of the operator toward the cupboard, regardless ofthe velocity (found to be
around 0.75m).

Dependency in time One of the bellboys adopted a particular attitude: s/he started at
the same time as the client, but achieved the motion regardless of the client’s trajectory.



112 Adaptive control

This behavior can be considered as correct, since the clientcertified he was not perturbed
by this attitude. Besides, opening the cupboard sooner doesnot penalize the environment:
Maintaining a cupboard wide open a long time does not pose anyproblem, whereas doing
the same thing with a fridge or an oven would cause a loss of energy. Also, it does not require
any extra effort to maintain the cupboard open, because there is no mechanical door-closer.

5.2.2.3 Study of singular cases

Some particular configurations were arbitrarily inserted during the sessions. In each of these,
only the subject concerned by the singular behavior was aware of the change in the original
plan.

Zigzag trajectory of the client For every test of this kind, the bellboy still adapted his
starting time depending on the velocity of the client, but heseemed to realize his motion
faster, enabling him to start later than in the average case (i.e. when the client is closer).

Pause during client’s walk In this configuration, the client was asked to stop walking
during the opening phase of the cupboard (after the bellboy started moving and before he
finished the opening of the cupboard). For a pause lasting less than 1s (2 cases), the bellboys
did not modify their motions; else way (5 cases), he also paused. Besides, when this pause
occurred before the bellboy had grasped the handle, severalof them started lowering their
arms.

Simultaneous start In this case, the bellboy had to start simultaneously with the client.
Whereas the client kept the same behavior, the bellboy slowed down his motion so as to
compensate the early start and finish opening the cupboard later.

5.2.2.4 Answers to questionnaire

Most of the time, the clients did not feel the need to adapt their motion to the bellboy’s one.
Two of them explained that during the experiment in which they walked quickly, the bellboy
was not fast enough. Also, the accelerometer disturbed two of the subjects, especially the
fragile-looking cable, that make them watch their motion soas not to break it.

5.3 Experiments with the HRP-2 robot

Using these results, we implemented this behavior on the robot. The purpose is to modify
a task sequence already implemented so that it seems close towhat is likely expected by
a human user of the robot. In the following, we detail the default motion and the method
used to integrate the presence of the human subject, validate them and finally run some new
experiments.
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5.3.1 Default task sequence

To play the role of the bellboy, the robot has to open and closethe cupboard. The correspon-
ding task sequence, represented on Fig. 5.6, is split into seven tasks:

e1a Lift the right gripper (way-point task)
e1 Move the right gripper to the cupboard handle
e2 Close the gripper
e3 Open the cupboard door with the right arm
e4 Close the cupboard door
e5 Open the gripper
e6 Move the arm back to its initial position

The taske1a is a way-point task ensuring that the gripper approaches horizontally the
handle, and not from below, which would result in a collisionwith the support of the handle.

��
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Figure 5.6: Task sequence of the fridge opening.

The observations made in the previous section lead to the following conclusions:

1. Only the tasks inducing arm motion are dependent on the behavior of the client, the
gripper tasks (e2 ande5) are realized in constant time.

2. There is no dead time between the tasks: each task is removed immediately after
regulation. In other words, the maintaining period is zero (0s): the regulation timetR

is equal to the removal timetF . The opening taske3 is the only exception, because it
must be maintained long enough to allow the client to take theobject in the cupboard.

In order to make the robot react to the actions of the client, avision task is added at high
priority. This task acts both as a command (it sets the position of the head) and as a sensor
(it determines the position of the client).

5.3.2 Adaptation of the tasks

The characteristics of the given default task sequence are known. Especially, for each task
ei, the theoretical times of insertiontI

i , regulationtR
i and removaltF

i are known. Thus, the
time taken∆top by the robot to open the cupboard starting from its initial position is:

∆top = (tF
1a − tI

1a) + (tF
1 − tI

1) + (tF
2 − tI

2) + (tR
1 − tI

1) (5.1)

In order to take the trajectory of the client into account, itis necessary to adapt the
behavior (i.e. the gains) and consequently the timing of each task. However, the objectives
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of the tasks remain unchanged. The two approaches considered to adapt the sequence to the
presence of the human agent are those observed during the experiments between two human
subjects:

Minimal adaptation In this configuration, the robot starts opening the cupboardas soon as
the human operator starts walking and realizes normally thedefault sequence, regardless of
the client motion. The only adaptation of the task sequence is the start time of the closure of
the cupboarde4. This experiment can be interpreted as a qualitative experiment: its purpose
is to see the interest of the adaptive approach.

Smooth adaptation In this scenario, the robot adapts both the timing and the behavior of
the tasks in function of the behavior of the human operator. As indicated by the preliminary
results, two adaptations are required:

First, the starting time of the sequence must be determined in function of the client’s
approach. To this purpose, the relation between the distancedI and the velocityvI

h observed
during the experiment between human agents (illustrated onFig. 5.5) is simplified as an
affine function:

dI(vI
h) = ∆topvI

h + d0

d0 is the distance separating the client and the cupboard when he stops (d0 =0.75m).
vI

h is the client velocity when the bellboy starts acting.

As a result, the robot has to start as soon as:

d(t) ≤ dI(vh(t))

d(t) is the distance at the time t, andvh(t) is the client velocity at the time t.

The maximal velocityvI
h,max the client can reach without forcing the robot to adapt its

reference behavior is:

vI
h,max =

dmax − d0

∆top
(5.2)

dmax is the initial distance between separating the client and the cupboard (dmax = 4m).

As depicted in Fig. 5.7, three possible behaviors are expected:

• When the human walks too fast (vI
h ≥ vI

h,max), the robot has to start immediately.

• When he has a slow speed (0.4≤ vI
h ≤1.0m/s) or a regular speed (1.0≤ vI

h ≤1.4m/s),
the start distance is determined byd(t) = ∆topvI

h + d0

• Finally, for an excessively slow motion, the robot starts moving when the human is at
the distanced0 of the cupboard.
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Figure 5.7: A simplified relation between the velocity and the distance. ∆top =2.5s.

The second adaptation aims at making the robot react to changes of speed of the client.
It consists in adapting the gain function as follows:

λh(e) = λ(e)
vh(t)

vI
h

(5.3)

If the client keeps walking at the velocityvI
h during the whole motion, then the robot

will follow its default behavior. However, if this velocityis above the limit velocityvI
h,max,

the robot will be late. In this case, the default behavior cannot be realized as such, and has
to be accelerated. To solve this problem, the equation (5.3)is modified in order to consider
the reference velocitỹvI

h, bounded to the interval [0,vI
h,max] rather than the actual velocity

at the insertionvI
h. The purpose of this limitation is to force an increase of thegain (i.e. an

acceleration of the motion) when the client has an excessivevelocity.

λh(e) = λ(e)
vh(t)

ṽI
h

(5.4)

The equation (5.4) introduces a direct dependency in the velocity of the client. This
produces sudden changes of attitude, especially when the client stops walking. To smooth
this behavior, we consider the median velocity of the clientduring the previousn steps. This
method slows down the reactions of the robot, which allows the robot not to stop its motion
for too brief stops of the human operator.

In practice, we choosen = 100 for time steps of 5 milliseconds. The median was hence
computed considering the values obtained for half a second,i.e. during the interval of time
)t − 0.5, t]. As a result, the client has to stay still for 0.5 second for the robot to completely
stop.

λh =
1

n

∑

i=0..n−1

vh(t − ndt)

ṽI
h

(5.5)
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5.3.3 Simulation

The reference trajectory corresponds to the optimal motionobtained using the method propo-
sed in Chapter 3, considering joint velocity limits at 75% oftheir normal value. The purpose
of this limitation is to keep a breathing space to realize faster motions (if the client walks too
fast), while obtaining a motion fast enough to enable the human-robot interaction in normal
case.

Though, as depicted on Fig. 5.8, the whole opening motion (taskse1 to e3) lasts 4.62
seconds. Considering that a human walking at regular speed covers the four-meters distance
between the starting point and the cupboard in less than 4 seconds, it is not possible for the
robot to realize the entire opening subsequence in time. Thus, only the taske3, realized in
1.2s, was considered during the experiments and, as a safetymeasure, the gains where de-
creased in order to realize this motion in 2 seconds. The initial configuration of the robot
changes accordingly: the robot starts with the gripper already on the handle.

�
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B D E F
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Figure 5.8: Reference behavior of the robot. Dark area corresponds to regulation period; light areas
correspond to maintaining periods. The light blue zone represents an incompressible delay.

Considering that the robot opens the cupboard in 2s, the client can walk at most at
vI

h,max =1.625m/s without requiring an adaptation of the robot (according to the eq. (5.2)).
The Fig. 5.9 represents the evolution of the norm of the control law in function of the ve-
locity of the client, for constant velocities varying between 1 and 5m/s. Two behaviors are
noticeable: for a velocity inferior tovI

h,max, only the timing of the task changes while the
behavior remains untouched. At the opposite, for a velocitysuperior tovI

h,max, the sequence
is started as soon as possible (as soon as the robot has understood the situation), and the
motion is accelerated.

Using this reference parameterization, the two adaptive methods are tested on four tra-
jectories. The first adaptive method,M1, corresponds to the minimal adaptation, the second
one,M2, corresponds to the smooth adaptation. In three of the configurations tested, the
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Figure 5.9: Evolution of the norm of the control law ‖q‖ with respect to the time for several values
of vI

h. The red curve represents the evolution of ‖q‖ for the limit velocity (vI
h,max = 1.625m/s): the

motion realized is the default one and it is started at t = 0. When the velocity of the client is inferior
to this limit, the motion realized by the robot is the same, but it starts later (cf. the pink curve, for
vI

h = 1m/s). When his velocity is superior to the limit, the default motion cannot be realized as such:
it has to be accelerated, which appears as a compression of the curve on the graph. The evolution
of the maximal value of the norm is estimated by the orange dotted line. For t < 1.4s, it is inversely
proportional to the velocity, otherwise it is constant.

client walks at constant velocity, which can be slow (1m/s),medium (2m/s) or high (3m/s).
In the fourth case, the client walks at the maximal velocity (1.625m/s), pauses, waits one
second and starts again. In the following tests, we analyze the success of the mission de-
pending on the method chosen and the velocity of the client. Amission is successful if the
robot managed to open the cupboard before the client is at minimal distance of the robot. In
this case, the negative delay represents the advance the bellboy has relatively to the client.
Otherwise, a positive value indicates the delay between thebellboy and the client.

Method
Client tI d(tI) tF d(tF ) delay

Success
velocity (seconds) (meters) (seconds) (meters) (seconds)

M1

Slow

0.010 4 2.01

3.130 -1.290 Yes
Casual 0.750 0.335 No
Fast 0.750 0.875 No
Stop 1.563 -1.040 Yes

M2

Slow 1.290 2.714 3.290 0.760 -0.010 Yes
Casual 0.025 3.959 1.665 0.750 0.035 No
Fast 0.020 3.953 1.170 0.750 0.080 No
Stop 0.030 3.958 2.985 0.781 -0.020 Yes

Table 5.1: Results of the adaptation of the gain using the two proposed methods.
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The Table 5.1 gathers the results of each simulation. In the slow case, both methods
succeed in satisfying the constraint. This result was predictable, since the behavior adopted
by both of them is the default one. The only difference between the two methods is the
timing: M1 starts the sequence immediately, whileM2 starts as soon as the limit distance
is reached. Similarly, when the human stops, both methods work. The methodM1 works
since the default behavior works, even without the additional delay due to the pause of the
client. Using the adaptive methodM2, the robot also pauses (cf. Fig. 5.10b), and succeeds in
finishing in time.

Yet, for both methods, the deadline constraint imposed by the client is violated when the
client walked faster than the maximal authorized velocity.In this case, the time dependent
method introduces delays up to 0.87 seconds, which is quite important. The delay presented
in the second method is smaller (less that 0.1 second), hencewe believe it may not be noticed
by the client during the experiments.

5.4 Conclusion

This chapter highlights two main important issues:
First, in the provision of extending this work to human-robot interaction or cohabitation,

it is important to investigate whether what the tools and methods presented in previous chap-
ter are still viable or not. The good news is that the task function and the stack-of-task can
be maintained as a component of the architecture, but their scheduling must consider other
constraints. Some parameters can even be set not from the optimization process, but from
another database of robotic ‘know-how’ and ‘manners’ and also from human preference that
can be observed by the robot or given through interaction (instructions from the human).

Second, these human expectations and preferences when obtained from observation can
be heavy to monitor. We conducted a pilot simple task-case study to try finding the way
human expectations can be programmed on the robot. The idea is to track a similar scenario
occurring between two humans, process the data seeking for invariant and try to find schedu-
ling criterion and relationships. It appears that such an approach can be demanding in time
but can provide interesting knowledge that can be integrated by allowing the behavior of the
task to be adaptable in function of the sensory observation.We showed in our example how
this can be made, but still, although the methodology is clear, its extension to more general
cases is certainly questionable.

Experiments on the HRP-2 are ongoing to assess real user’s opinion.

This chapter ends our contributions. The following chapterconcludes this thesis by sum-
ming up the work presented together with some perspectives.
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Figure 5.10: Evolution of the control when the client stop walking. The black curve represents the
velocity of the target vh. In a), the pause lasts 0.4s; the robot does not stop its motion, but slows
down. In b), the pause lasts 1s and the robot stops and restart its motion smoothly.



120 Adaptive control



Conclusion and Perspectives

There is a considerable amount of work and methods in robotics on mission and motion
planning. However, it appears that a general agreed approach is to structure a robotic mission
into three steps. The first step is the task planning, which decomposes the mission into a
sequence of tasks. It appears more plausible, for several obvious reasons, that these tasks
are predefined or learned and selected from a database describing the capabilities of the
robotic agent. The second step is a merge between the task sequencing per se and the task
scheduling: while the sequencing determines the order in which the tasks are realized, the
scheduling associates a timing for each of them, accountingfor all the physical constraints
of the robot. The third step is the robotic execution of the task sequence.

This approach is adapted to robotics, but also to more general planning/scheduling pro-
blems that are encountered in wider applications. Yet, in robotics and particularly in huma-
noid robotics, the scheduling phase is usually skipped, because classical schedulers are not
conceived to handle the case where the motion is defined not byone, but by a combination
of several tasks organized into a hierarchy.

In this thesis, we proposed to really see the scheduling as the missing stage between
planning and execution, bridging thus the gap between symbol (the plan) and numeric (the
execution). This bridge comes naturally when considering the task-function formalism. We
then proposed a method to optimize not only the scheduling but also the behavior of task
sequences on the basis of a task-function based controller and a classical task planner. This
optimization takes in input only symbols (the order of the sequence), but outputs the whole
necessary numerical parameters to specify the controller,accounting for the physical cons-
traint of the execution. Moreover, we have shown that it is even possible to define the task
behavior in this step to take into account user preferences.Optimizing a task sequence is not
limited to the acceleration of the entire motion while keeping the proposed ordered sequence
from the planner: it is first necessary to operate on the task sequence and take advantage of
the redundancy of the robot to realize smooth task overlaps when possible. The originality
of our proposed method lies in maintaining the task component in the entire reasoning, and
using it as a bridge between planning, scheduling and execution.



122 Adaptive control

Contributions

The main advantage of high redundant robots (such as humanoid robots) is their capacity to
realize several tasks simultaneously. Among the existing methods enabling task overlapping,
we chose to rely on the stack-of-tasks mechanism, so as to strictly respect the priorities
between the tasks. For a given set of tasks organized into a hierarchy, classical multi-function
task execution based on the stack of tasks ensures a continuous evolution of the control, even
in singular cases.

However, discontinuities in the control law are noted when discrete operations peculiar to
a stack –in the computer science sense– are made. Namely, these operations are the insertion,
removal and the swap of priority between tasks. These abruptchanges in the control output
can be problematic (not to say dangerous). Consequently, wedefined methods to ensure a
smooth evolution of the control during these events. The smoothing processes restrict the
sphere of operation of the events: a task can only be removed from and inserted at the end
of the stack, and the swap should only be realized between neighboring tasks and requires
a smoothing operation if the tasks conflict. As a result, a smooth evolution of the control
law can be ensured in any situation. Yet, the delay introduced by the smoothing processes
(namely the swap propagation process) is a compromise and even a drawback that one must
account for.

The second main contribution is the definition of an optimization formulation for the
problem of task sequence overlapping. This phase takes place between the planning of the
task sequence and its execution, and gathers the schedulingphase and the improvement of
the task behavior. Both the timing and the gains are optimized in order to improve the ini-
tial task sequence while fulfilling the constraints imposedby both the sequence, the intrinsic
robot limitations, and the environment. We provided a complete implementation of the pro-
posed approach that serve both an advanced interactive simulator (AMELIF) and a robot
architecture. The optimization process is based on a dialogsolver/simulator: the constraints
cannot be computed directly, and can only be evaluated by simulating the task sequence for
each set of parameters given by the solver. Therefore, a reliable simulator is an important
component of the optimization process. Similarly, it is impossible to estimate the gradient of
the constraints, which are rather evaluated by finite difference.

This method was exemplified on a real scenario with the HRP-2 humanoid robot. Some
temporal constraints, preventing task overlapping were replaced by collision-avoidance cons-
traints. This shows that a proper definition of the constraints is important. Then the task
sequence has been optimized using the proposed method: it enhanced the timing of each
task, by suppressing the dead times (i.e. removing the tasksas soon as regulated), but also
accelerated the resulting motion (again, at the task level)in order to meet the joint velocity
limits that were imposed.

Yet, this method faces two issues liable to prevent the solver from finding the optimal
solution. The first one is thea posteriorievaluation of the constraints: each set of param-
eters is directly played by the simulator, without any verification of the coherency of the
resulting motion. The resulting constraints may hence lackof physical sense and jeopar-
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dize the optimization process. The second one is due to the discontinuity of the evolution
of the constraints. Indeed, the chosen solver, CFSQP, is conceived to work with continuous
and derivable criterion and constraints. Yet, the smoothing of the control law may penalize
the optimization process, because of the discontinuities due to modifications in the order of
events.

Finally, we introduced a new perspective in the usage of the task-function approach, con-
sisting in personalizing (to a human user) a task sequence, i.e. adapting it to the constraints
of the situation, typically the requirements of a human operator. This property is exemplified
by an example on the HRP-2, where the robot motion was modeledto adapt or rather adjust
and auto-tune on the basis of natural behavior observed on the human user.

Perspectives

In the short term, the possible enhancements of this work aremainly functional. The straight-
forward ones would consist in extending the current optimization problem, by considering
different type of tasks (such as tasks that maintain a state during a whole period, or percep-
tion tasks), simple modification of the definition of the timeof realization and the associate
constraint – or different types of behavior. Also, the influence of way-point tasks could be
part of the optimization process. These tasks are used to ‘deviate’ from a straight line some
trajectories of operational points by locally attracting them. By considering the tolerance on
the task regulation as a parameter, the trajectory followedby the operational point can be
controlled.

At the medium term, it would be necessary to reformulate or complete part of the op-
timization problem. Typically, it is necessary to enhance the convergence properties of the
optimization problem and reduce the computational time of the optimization, especially in
order to handle more complex sequences, for which the estimation of the gradient by finite
difference is too time consuming.

The sequences optimized in this thesis were realized on the upper part of a static hu-
manoid robot. Realizing tasks overlapping while walking requires the add of constraints
such as the stability criteria and the motor constraints, whose formulation is similar to the
robot constraints already considered. Though, considering the example of a grasping task
that should start before the end of the walk, one can figure that these constraints may not
be sufficient to express the correct behavior: a robot walking with its arms stretched may
satisfy the constraints on the motion, but is not natural. This natural-looking condition may
be formulated by the minimization of the torques during the whole motion, together with the
minimization of the time spent. In other words, multiple objective optimization problems
should be considered.

For the long term, some improvements are also possible in this optimization process.
The first one intervenes upstream and consists in adapting the sequencing phase in order to
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handle priorities between tasks. The second one consists inlinking it to the surrounding
context by binding the task function approach to the control-law approach.

Enabling task overlapping makes critical the choice of the respective priority of a set of
tasks, because this hierarchy between the tasks defines the computed motion: a bad choice
can lead to sub-optimal motions, or worse, cause the failureof the given plan. In this thesis,
when the sequence was only partially ordered, the sequencing phase was realized together
with the scheduling phase. Hence, in the same way as the task schedule implies an order
between the tasks rather than deciding it, it implies a hierarchy between the tasks, by associ-
ating to the first inserted task the higher priority, and to the last one the lower priority. This
approach is not appropriate (in the frame of the optimization), especially when the control
law is smoothed. To prevent the discontinuities due to the swap of the order of the events and
ensure the convergence of the optimization process, the (rough) solution adopted consisted
in deciding once and for all of the task order (together with their priority). Instead, it would
be best to reintroduce the task sequencing phase and to extend it in order to take account of
the priorities between the tasks. This comes down to adding the swap operation to the set
of basic operations considered during the sequencing phase(for now there is only the task
insertion and the task removal).

During the optimization of the can grasping mission, the main enhancement of the sche-
dule was made possible by replacing the temporal constraints conditioning the motions of
the arms by collision-avoidance constraints. This exampleshows that a way to enable the
optimization consists in finding the temporal constraints that can be relaxed and replacing
them by other constraints (e.g. depending on the environment). Defining manually this re-
placement may be burdensome, and it would best to find these openings automatically. Yet,
this approach –consisting in defining the task sequence withrespect to events rather than
exclusively by a schedule–, is the approach realized by the control-law method mentioned in
the first chapter. Indeed, it is based on a graph of control laws, whose edges correspond to
smoothtransitions between them. Defining such a graph is now possible with task-function
approach, ensured to be smooth thanks to the method defined earlier. As a result, binding the
task-function and the control-law approaches may be a good way to enable the optimization
process.



Appendix A

Demonstration of the continuity of the
weighted pseudo inverse method

Since the insertion and the removal of a task are very similarmechanisms, we will only detail
the proof of the continuity during the removal of a task.

Consider a stack of tasks containingn tasks (ei has priority onei+1). We prove that,
regardless of the priority of the task removedep,p∈[1···n], the control lawq̇i associated to any
taskei,i∈[1···n] in the stack is continuous.

To this purpose, we prove by recurrence the following proposition:

(Pi) : ∀p ∈ [1 · · · n], q̇i is continuous
where ep is the task removed,
and q̇i = (JiPi−1)#wi(λIns

i (ė∗
i − Jiq̇i−1))

A.1 Hypotheses

H A.1.1 When a taskei is fully removed attF
i , its insertion gain attF

i is 0:

lim
t→tF −

i

λIns
i (t) = 0

H A.1.2 When a task is partially removed att−, then

{

limt→t− wi(t)|aF
i

→ 0

limt→t− wi(t)|¬aF
i

→ 1
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A.2 Proof

To simplify the notations, we consider that the level of a task is constant. In other words,
considering the stack of tasks containinge1|e2, the removal ofe1 will result in the stack of
task0|e2 notede2. We distinguish different cases:

The taskei has priority upon ep: i < p

Since the taskep has no influence on higher priority tasks,q̇i is continuous:(Pi) is true.

The task removed is the taskei: i = p

UsingH[A.1.1], we have

lim
t→tF −

i

q̇i(t) = 0 and lim
t→tF +

i

q̇i(t) = 0

The function is continuous: the proposition(Pi) is verified.

The taskep has priority upon ei: i > p

We suppose(Pi−1) verified. Thus, the continuity of(ė∗
i − Jiq̇i−1) is straightforward. We

study the continuity of(JiPi−1)#wiλIns
i .

Again, 3 cases are considered:
1. (Pi,1) : ai = aB

i : the task does not need to be removed
2. (Pi,2) : ai ∩ aB

i = ∅: the task must be completely removed
3. (Pi,3) : ai ∩ aF

i 6= ∅: the task must be removed partially

The taskei remains untouched:ai = aB
i

λIns
i is a continuous function,wi = diag[1 . . .1] andWi = I.

(JiPi−1)#wi = (JiPi−1)#I

Yet
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A.2 Proof 127

Thus
(JiPi−1)#wi = (Ji)

#Wi

= (Ji)
#I

= JT
i (JiJ

T
i )−1

lim
t→tF −

i

(JiPi−1)#wi = JT
i (JiJ

T
i )−1

For the same reason, we have:

lim
t→tF +

i

(JiPi−1)#wi = JT
i (JiJ

T
i )−1

(Pi,1) is verified.

The taskei is removed: ai ∩ aB
i = ∅

ConsideringH[A.1.1], we have:

lim
t→tF +

1

λIns
i (t) = 0 = lim

t→tF −

1

λIns
i (t)

Thus
lim

t→tF +

1

q̇i(t) = 0 = lim
t→tF −

1

q̇i(t)

When the task is completely removed,q̇i is continuous attF
i .

(Pi,2) is verified.

The taskei is partially removed: ai ∩ aF
i 6= ∅

(JiPi−1)#wi = Wi(JiPi−1)T (JiPi−1Wi(JiPi)
T )−1

= WiP
T
i−1JT

i (JiPi−1WiP
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i−1JT

i )−1
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Likewise
lim

t→tF −

1

WiP
T
i−1[t] = lim

t→tF −

i

Wi[t]

Thus
lim
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(JiPi−1)#wi [t] = lim
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i (JiWiJ

T
i )−1[t]

Whent → tF +
p
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UsingH[A.1.2], we have:

Pi−1Wi = WiP
T
i−1 = Wi

(JiPi−1)#wi = WiJ
T
i (JiWiJ

T
i )−1

lim
t→tF −

i

(JiPi−1)#wi = lim
t→tF +

i

(JiPi−1)#wi

(Pi,3) is verified.

Conclusion

The proposition(Pi) is verified in the case where the removed taskep has priority uponei.

General conclusion

As a conclusion, whatever the priority of the task removed is, the control law associated to
the other tasks in the stack is continuous at the time of removal tF

p .

Hence,q̇ is continuous onR.



Appendix B

Dynamic motions using equality and
inequality constraints

The work presented in this appendix is a shortening of the paper [77]. It introduces the work
realized by Layale Saab, from the LAAS (Laboratoire d’Analyse et d’Architecture des Sys-
tème) at Toulouse, on which I collaborate.

The objective of this work is to propose a solution to generate full-dynamic motions for
the humanoid robot, accounting for various kind of constraints such as dynamic balance or
joint limits. In a first time, a unification of task-based control schemes was proposed, in in-
verse kinematics or inverse dynamics. Based of this unification, the hierarchy of tasks based
on a cascade of quadratic programs that was developed in LAASfor inverse kinematics only,
is applied for inverse dynamics. We applied this solution togenerate in simulation whole-
body motions for a humanoid robot in unilateral contact withthe ground, while ensuring the
dynamic balance on a not horizontal surface.

The classical formulations for the stack-of-task computations are based on pseudo inver-
sions (as done all over this thesis) [58, 83, 43]. However, itis a well-recognized fact that,
beyond this computationnal formulation, the inverse-kinematic formulation can be written
as a quadratic problem where the goal is to find a norm-minimizer under linear equality and
inequality constraints in configuration space. It was recently proposed [42] a specific way
to consider such quadratic problems that enables to find an approximate solution based on
successive prioritization even when inequality constraints forbid an exact solution.

Whole-body motion is naturally concerned with dynamics andcontact forces. A dynami-
cal formulation is necessary and task dynamics writes as linear equalities whose unknowns
are the generalized torques. Several approaches consider prioritization techniques within a
dynamic formulation. This is particularly the case for the works by Khatib and colleagues
[81, 71, 45]. Recently, various techniques have been developed for taking into account ex-
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actly unilateral constraints due for instance to joint limits or multiple contacts: [62] proposed
an original scheme to compute a generic control law from a hierarchic set of both unilat-
eral constraints and bilateral tasks and [16] solves dynamic and static quadratic problems for
multi-contact.

The work presented below exploits the quadratic nature of the dynamic formulation in-
cluding unilateral contact constraints in order to take into account equality and inequality
constraints in a way similar to the one proposed at kinematiclevel in [42].

B.1 Dynamic inverse using QP-based stack of tasks

B.1.1 Task function approach

A task is defined by the task spacee, the reference to be applied in this task spaceė∗, and by
G, the differential link between the task space and the robot actuators:

ė + µ = Gu (B.1)

whereµ is the drift of the task. The referencėe∗ is in the tangent space toe, and the
differential link G maps the elements of the tangent subspace of the robot configuration to
the tangent space toe.

This is the same equation as in Chapter 2, but using specific notations to make the link
with the dynamics. In inverse kinematics, the control inputu is simply the robot joint ve-
locity u = q̇. The differential link is the task JacobianG = J. In that case, the driftµ is
null.

The differential linkG gives the direct link between the actuatoru and the feedbacke:
from a given robot motion,G gives the reaction in the task space. To compute a specific
robot controlu that performs the referenceė∗, any numerical inverse ofG can be used. The
generic control law is then

u = G#(ė∗ + µ) + Pu2 (B.2)

where.# is a matrix-inverse operator,P is the projection andu2 is any secondary objective
to be considered without disturbing the main objective.

Once more, this is the same equation as in the thesis. For kinematics inverse, the matrix
inverse operator is most of the time the pseudo inverse [6, 33]. The control law is then:

q̇∗ = J+ė∗ + Pq̇2 (B.3)

The template equation (B.2) can be similarly used to computethe control lawu2 accoun-
ting for the secondary task:

ė2 − J2q̇∗ = J2Pq̇2 (B.4)

The differential link is the projected JacobianG = J2P, and the drift isµ = −J2q̇∗. The
same inversion can then be directly applied to obtain the stack-of-tasks recurrence equation.
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B.1.2 Inverse dynamics

In dynamics, the input of the system is the robot motor torques u = τ . The state of the
robot is the pair(q, q̇), and the task space comprehends both the position and velocity. The
referencėe∗, homogeneous to an acceleration, is denotedë. Contrarily to the kinematic case,
the map to the control input can not be built directly, but is obtained from two stages: first
the dynamic equation of the system, typically:

Aq̈ + b = τ (B.5)

whereA is the generalized inertia matrix andb is the dynamical drift. The acceleration̈q is
linked to the task space by the task Jacobian:

Jq̈ + J̇q̇ = ë (B.6)

Multiplying (B.5) by JA−1, the differential link betweenτ andë is obtained:

ë + J̇q̇ + JA−1b = JA−1τ (B.7)

This corresponds to the template (B.2) withG = JA−1 andµ = J̇q̇ + JA−1b.
The dynamic-inverse control law is then directly obtained by invertingG. To fit with the

dynamic of the system, it has been proposed [44] to use the weighted pseudo inverse, with
A as weights of the right-hand side [22]:

τ ∗ = (JA−1)#A(ë + J̇q̇ + JA−1b) + Pτ 2 (B.8)

As in the kinematic case,P represents the redundancy of the system with respect to the
taske. τ 2 can be used to perform a second taske2, similarly as before.

B.1.3 Inequalities in the loop

We have seen that both kinematics- and dynamics-based problems can be put under a same
shape (B.2). Now, since this common shape can be solved usinga cascade of quadratic
programs accounting for both equalities and inequalities [42], this means that the cascade of
QP can be also applied in dynamics. Since quadratic solvers are able to handle indifferently
equalities and inequalities, it is then possible to have both inequalities and equalities in the
task definition. The reference part is then rewritten:

ė∗ ≤ ė ≤ ė
∗

(B.9)

with ė∗ = ė
∗

in the case of equalities, andė∗ = −∞ or ė
∗

= +∞ to handle single-bounded
constraints. When considering a single task, the inversion(B.2) corresponds to the optimal
solution of the problem:

min
u

‖Gu − ė∗ − µ‖2 (B.10)

It is straightforward to introduce inequality constraintsinto a quadratic program. However,
this would introduce also a de-facto hierarchy between the inequalities part and the equalities.
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It was then proposed [42, 37] to rely on slack variables. The quadratic program for both
equalities and inequalities is then written:

min
u,w

‖w‖2

s.t. ė∗ ≤ Gu − µ + w ≤ ė
∗ (B.11)

with ė∗ = ė
∗

for the equality parts of the task. The effect of the slack variable is to relax the
parts of the task that are not feasible, and therefore it ensures that the task is fulfilled at the
best (in the sense of the norm of the rest).

When the first task is solved, it was proposed [42] to use the optimal slack denotedw∗ to
introduce a secondary task in the hierarchy. After resolution of the first quadratic program, a
secondary task is solved by

min
u,w2

||w2||
2

s.t. ė∗ ≤ Gu − µ + w∗ ≤ ė
∗

ė∗
2 ≤ G2u − µ2 + w2 ≤ ė

∗
2

(B.12)

In this secondary program, the first slackw∗ is not variable anymore. Indeed, the first task
has now priority, and should be solved at least as accuratelyas done by the first program.
On the other hand, the second task has no priority upon the first. If the two tasks are not
compatible, the second task will be relaxed, and then less accurately executed, due to its slack
variable. Similarly, the second slack can be used to introduce a third task, and iteratively,
any number of tasks.

Based on the generic writing (B.2), the cascade of QP above can be applied directly for
both kinematics and dynamics.

B.2 Experiments

B.2.1 Task-set for dynamic inverse

The first experiments already realized are simply based on the regulation of the posture under
constraint of permanent contact. The first task is then basically the regulation of the posture
of the robot. The task space is equal to the actuated-joint space, and the desired acceleration
in this space is a proportional derivative to a given reference position at null velocity:

q̈∗ = −λP (q − q∗) − λDq̇ (B.13)

In that case, the JacobianJ is simply the selection matrixS that separates the actuated links
from the free-floating non-actuated degrees of freedom.

The second taskebal ensures an immediate balance control, by preventing the contact
points to take off the ground. The task space is the space of the forces normal to the contact,
and the task is to prevent them to reach 0:

f⊥ = S⊥Jc
#T (ST τ − b) ≤ ǫ (B.14)
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wheref⊥ are the normal components of the contact forcesfc, S⊥ is the selection matrix
of the corresponding lines of the contact JacobianJc. The right-hand side parameterǫ is
user defined, to ensure a security margin: if chosen close to 0, the robot can perform more
dynamic movements, but that are less robust in case of perturbation. We have usedǫ = 10N

in the experiments.
It is possible to show that this last constraint is equivalent to the well-known ZMP cons-

traint [88, 39] when all the contact points are planar and horizontal.

B.2.2 Results

The experiments have been performed in simulation using thedynamic simulator AMELIF.
The control law has been integrated in the control frameworkSoT, using the dedicated in-
equalities solver developed for inverse kinematics [25]. We reproduced a well known ex-
periment of physiology: the subject is asked to follow an oscillatory reference with the legs.
When the oscillations frequency or amplitude increase, therequired acceleration increases,
until the natural contact constraint is saturated. An opposite oscillation then naturally ap-
pears on the chest to counteract the oscillation of the legs,and preserve the constraint. When
put on a force sensor, the subject ZMP was shown to present saturation at the maximum of
the amplitude.

The robot is put on one leg. An oscillatory acceleration is given has a reference, that re-
quires the whole body to remain static, except for one joint of the support leg. The amplitude
of the acceleration is then increased until saturation of the support constraint. The experi-
ment is summed up on Fig. B.1 and Fig. B.2. The robot configuration at the maximum of the
oscillation is shown on Fig. B.1. The robot is bended on its left, with the hip roll axis mo-
ving. The balance-constraint saturation comes both from the bending (the center of mass of
the robot is far from the support polygon), and from the acceleration required to inverse the
velocity and come back to the rest position. The Fig. B.2a gives the normal forces at the four
corners of the foot during the motion. The minimal acceptable force is set to 10N. Around
iteration 1000, the force corresponding to the front right of the foot comes to saturation. This
correspond to the time of maximal acceleration. The Fig. B.2b gives the acceleration of the
hip joint (roll) and chest joint (yaw). The chest joint is required not to move. However, when
the contact constraint comes to saturation, this part of thetask becomes infeasible. There-
fore, the chest is used to compensate for the motion of the hip, and prevent the foot to move
off the ground. when the acceleration of the hip decreases, the contact constraint leaves the
saturation area, and the chest comes back to a 0 acceleration.
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Figure B.1: Position of the robot at iteration 1000, when the maximal acceleration is reached. The
red strikes correspond to the forces applies by the ground on the robot. The front forces are smaller,
with the front-right force nearly null.
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Figure B.2: (a) Normal forces to the ground during the motion. (b) Acceleration of the hip roll joint
(red) and chest yaw joint (blue) during the motion.



Appendix C

Résumé

C.1 Définition du problème

Parmi les différentes méthodes permettant à un robot de réaliser une mission, la plus générale
consiste à décomposer la mission en trois étapes : planification, ordonnancement et exécu-
tion. Le but de cette thèse est d’utiliser cette décomposition en considérant la tâche comme
fil conducteur entre les trois étapes.

Approche en trois étapes

La décomposition d’une mission en trois étapes n’est pas uneméthode spécifique à la robo-
tique, on y distingue :

• La phase de planification qui, à partir d’un ensemble de compétences, construit un
plan de tâches symboliques et précise l’ordre logique des tâches. Ce plan peut être
partiellement ordonné (une partie seulement des dépendances entre tâches est défini)
ou au contraire totalement ordonné.

• La phase d’ordonnancement, dont le rôle est de définir le timing de chaque tâche. Ce
timing doit respecter l’ordre entre les tâches et prendre encompte la disponibilité des
ressources qu’elles utilisent. En général, on peut y distinguer deux phases : la phase de
séquencement, dont le rôle est d’enlever les ambiguïtés restant dans le plan de tâches
en fixant l’ordre des tâches, et la phase d’ordonnancement (àproprement parler), qui
détermine le timing des tâches.

• La phase d’exécution, qui consiste à réaliser le plan de tâches, et à s’adapter voire à
réparer le plan de tâches en cas de changements ou de problèmes par rapport au plan
de tâches d’origine.
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Adaptation à la robotique

En robotique, la tâche peut être définie comme un ordre directement exécutable par le robot,
en opérant sur les moteurs et/ou les capteurs. On distingue les tâches liées aux actions, qui
utilisent les capteurs du robot mais ne modifient pas sa posture, des tâches de mouvements,
qui agissent sur les moteurs et modifient la posture du robot.En utilisant cette définition de
la tâche, il est possible d’utiliser les méthodes classiques de planification, d’ordonnancement
et d’exécution ou de définir d’autres algorithmes spécifiques à la robotique qui seront plus
efficaces.

Lier la planification à l’exécution

Pour exécuter un plan de tâches, il est nécessaire de passer des données symboliques fournies
par la planification à des données numériques. La perte des ces symboles cause une perte
de connaissances, qui peut diminuer la robustesse du plan par rapport aux incertitudes de
l’environnement. Afin de limiter cette perte d’informations, une méthode consiste à travailler
sur le même élément de la planification à l’exécution. Deux solutions sont envisagées :

• L’utilisation de la fonction de tâche permet à la fois de définir des données haut niveau
en utilisant la logique formelle (planification) mais aussides données bas niveau per-
mettant de calculer la commande (exécution). Ces tâches relient directement l’espace
de travail du robot à l’espace de la tâche, et ne définissent une commande que sur
une partie du robot. Il est alors possible de réaliser plusieurs tâches simultanément en
tirant profit de la redondance du robot, et de les organiser selon une hiérarchie, en les
classant par ordre de priorité.

• L’approche basée commande consiste à définir un graphe dont les nœuds sont l’ensemble
des commandes réalisables par le robot, et dont les arcs sontles fonctions de transi-
tion entre elles. Cette méthode permet de créer une carte topologique de la mission :
en fonction de l’environnement, une partie seulement du graphe est accessible. Cette
approche est cependant moins adaptée à la superposition destâches.

Réintroduction de la phase d’ordonnancement

La réalisation séquentielle des tâches d’un plan de tâches partiellement ordonné peut con-
duire à un mouvement saccadé et sous optimal. Le but de la réinsertion de la phase d’ordonnancement
est de profiter de la redondance du robot pour réaliser plusieurs tâches simultanément.

Les approches classiques d’ordonnancement ne sont plus adaptées, dans la mesure où
d’une part la hiérarchie entre les tâches introduit une dépendance non linéaire entre les tâches
et les ressources (qui sont les degrés de liberté du robot et ses capteurs) et d’autre part le
temps de réalisation des tâches devient variables.

L’approche considérée consiste à introduire une phase d’optimisation entre les phases
de planification et d’exécution. A partir d’un plan de tâche donné, elle tend à améliorer le
mouvement du robot en opérant à la fois sur le timing et la vitesse de réalisation des tâches.
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C.2 Continuité de la pile des tâches

Introduction

Une tâche est définie par trois éléments : une erreur à réguler, une jacobienne liant l’espace de
la tâche à l’espace articulaire du robot et un comportement de référence. Comme une tâche
ne définit une commande que sur une partie du robot, il est possible de réaliser plusieurs
tâches simultanément. En les organisant selon une hiérarchie, il est possible d’empêcher que
les tâches de plus faible priorité ne modifient la commande donnée par les tâches de plus forte
priorité. Pour cela, chaque tâche est réalisé dans l’espacenul laissé par les tâches de plus
forte priorité. Cette méthode permet de définir une commandecontinue, sauf à l’approche
des configurations singulières, où la commande peut atteindre des valeurs excessives à cause
de l’inversion de la jacobienne. La solution classique consiste à introduire un coefficient
d’amortissement dans les équations afin de limiter ces valeurs.

Ainsi, pour une hiérarchie de tâches fixée, la commande est continue. La réalisation
d’une séquence de tâches nécessite de réaliser des opérations discrètes sur la pile, telles
que l’insertion, le retrait ou l’échange de priorité entre deux tâches. Ces événements sont
susceptibles de créer des discontinuités dans la commande.Trois approches sont proposées
pour lisser ces discontinuités. La première consiste à formaliser toutes les opérations comme
des suites d’échanges de priorité entre tâches voisines. Laseconde, à l’inverse, consiste à
tout formaliser comme des insertions ou retraits de tâches àn’importe quel niveau dans la
pile. Enfin, la dernière méthode consiste à considérer la pile de tâches comme un tout plutôt
que par niveaux.

Lissage du contrôle durant l’échange de deux tâches

On considère que l’échange de tâches n’est réalisé qu’entretâches voisines. Pendant l’échan-
ge, le comportement des autres tâches n’est pas perturbé : les tâches de plus forte priorité
ne sont pas affectées (par définition), et l’espace nul des tâches de plus faible priorité reste
constant. Si les deux tâches sont compatibles dans l’espacenul, alors la hiérarchie entre les
tâches n’a aucune influence et l’échange peut être instantané. A l’inverse, s’il y a conflit,
alors la commande va présenter une discontinuité à l’instant de l’échange : une phase de
lissage est donc nécessaire.

Une première méthode consiste à considérer la pile de tâche comme une limite de la
pondération entre les tâches. Les deux tâches sont placées au même niveau et la priorité
entre les deux tâches et déterminée par leurs poids respectifs. Lorsque la contribution d’une
tâche est négligeable par rapport à l’autre, le système est équivalent à une hiérarchie classique
entre les tâches. Cette méthode permet de réaliser un échange continu, mais uniquement si
le facteur d’amortissement n’est pas pris en compte. En effet, l’introduction d’un facteur
d’amortissement dans les équations introduit une discontinuité aux limites, i.e. lors des
transitions avec la pile de tâches classique. Cette approche n’est de ce fait pas continue au
voisinage des singularités.

Une autre méthode consiste à calculer deux fois la commande (pour le cas où la tâche 1



138 Résumé

est prioritaire sur la tâche 2 et inversement) puis à évaluerla commande finale en réalisant
une interpolation linéaire de ces deux commandes. Elle présente deux défauts. D’une part,
la commande calculée ne peut pas être écrite sous la forme d’un problème d’optimisation,
et de ce fait il n’est pas garanti que le mouvement soit faisable. D’autre part, la commande
doit être calculée deux fois (mais uniquement pour ces deux niveaux et ce, quel que soit le
nombre de tâches dans la pile). Malgré ces défauts, cette méthode est la seule qui assure une
commande continue.

La hiérarchie de tâches est usuellement terminée par une tâche définissant le compor-
tement par défaut pour l’ensemble des articulations. Toutetâche de plus faible priorité est
donc réalisée dans un espace nul, et n’est pas donc pas prise en compte. Ainsi, il est possible
de considérer l’insertion et le retrait d’une tâche comme unéchange de priorité avec cette
dernière tâche.

La modélisation des événements discrets par des échanges depriorité entre tâches mod-
ifie le schéma de la pile de tâches : afin d’assurer la continuité de la commande, il est
nécessaire de décomposer toute action discrète en une succession d’échanges de priorité
entre tâches voisines. Cette méthode assure donc la continuité de la commande pour une
séquence de tâches donnée, mais introduit dans le même tempsdes latences lors de la réal-
isation d’événements discrets, qui peuvent être pénalisantes. De plus, elle présente des dis-
continuités par rapport à l’ordre des événements : en effet,une modification dans l’ordre
des événements peut nécessiter l’ajout de phases de lissagesupplémentaires pour assurer la
continuité de la commande par rapport au temps. De ce fait la commande associée à cette
nouvelle séquence de tâches peut présenter des différencespar rapport à celle de la séquence
de départ.

Insertion/retrait de tâches à n’importe quel niveau de la pile

Cette seconde méthode consiste à considérer l’insertion etle retrait de tâche comme événe-
ments de base, afin de limiter le temps nécessaire pour placerune tâche à priorité donné.
Le problème des discontinuités dues au changement d’espacenul est résolu en empêchant
les tâches de faible priorité d’utiliser les articulationsdéjà utilisées par les tâches de forte
priorité. Pour cela, on utilise une pseudo-inverse pondérée à la place d’une pseudo inverse
amortie, ce qui permet de contrôler l’influence de chacune des articulations, à condition
qu’au moins une articulation soit toujours active.

Le mécanisme d’insertion et de retrait est le suivant : lorsqu’une opération sur une tâche
est réalisée, toute tâche de priorité moindre ne peut utiliser que les articulations qui ne sont
utilisées par aucune des tâches de plus forte priorité. Si toutes les articulations peuvent être
utilisées, alors la tâche est réalisée normalement. Si seulement une partie de ces articulations
est disponible, alors la tâche n’est réalisée qu’avec celles-là. Enfin, si aucune articulation
n’est disponible, la tâche est temporairement désactivée.

Cette méthode ne peut pas être appliquée sur des systèmes complexes pour plusieurs
raisons : d’une part, priver une tâche revient à limiter son espace de travail, ce qui augmente
les risques de singularité et peut aussi augmenter la contribution des articulations libres, et
d’autre part, la désactivation, même partielle, de certaines tâches peut ne pas être souhaitable.
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Calcul de la commande avec un unique problème de minimisation

Calculer la commande à l’aide d’un seul problème de minimisation présente l’avantage de
faciliter la réalisation d’événements discrets, mais a pour désavantage une relâche au niveau
de la hiérarchie entre les tâches. Deux méthodes sont étudiées :

Une première méthode consiste à définir la priorité de chacune des tâches par son poids,
pour l’ensemble des tâches (et non seulement deux tâches comme précédemment). L’incon-
vénient de cette méthode est numérique et concerne le choix du poids des tâches. S’il est trop
petit, alors les tâches peuvent ne plus être prises en compte, ce qui crée des discontinuités
dans la commande. A l’inverse, s’il est trop grand, alors la hiérarchie entre les tâches n’est
plus respectée.

Une seconde méthode consiste à formuler le problème comme larésolution d’une tâche
unique. Cette méthode permettrait d’ajouter plus facilement des contraintes sur la com-
mande, mais la détermination de cette tâche unique est difficile : soit elle relâche la hiérarchie
entre les tâches, soit elle retarde l’adaptation des tâchesde plus faible priorité aux modifica-
tions liées aux tâches de plus forte priorité.

Conclusion

Ce chapitre traite du problème des discontinuités liées à laréalisation d’événements discrets.
La méthode proposée consiste à formaliser tous ces événements sous la forme d’une suite
d’échanges de priorités entre tâches voisines. Cette échange est réalisé grâce à une interpo-
lation linéaire entre les deux commandes possibles, et bienqu’elle assure la continuité de la
commande, elle présente aussi comme inconvénient le délai de réalisation des événements.

C.3 Superposition des tâches par optimisation

Ce chapitre définit comme paramétrer à la fois le timing et le comportement des tâches en
superposant des tâches, c’est-à-dire en réalisant les tâches simultanément plutôt que séquen-
ciellement, de façon à produire un mouvement plus fluide.

Introduction

A partir du plan symbolique, il est possible de définir une trajectoire implicite à l’aide la
fonction de tâches. Il est aussi possible de définir de façon explicite la trajectoire que doit
suivre le robot, mais cette méthode rend difficile l’adaptation de la séquence durant son
exécution. Afin de pouvoir superposer les tâches, il est nécessaire de modifier la séquence
initiale en remplaçant certaines contraintes temporellespar d’autres contraintes liées à la
réalisation d’une tâche ou à l’environnement. Ces contraintes ne peuvent pas être mises sous
forme symbolique, donc cette opération ne peut pas être gérée durant la phase de planifica-
tion. De plus, il est nécessaire de vérifier avant l’exécution que la séquence est réalisable.
On introduit donc entre les phases de planification et d’exécution une phase d’optimisation
qui réalise la superposition des tâches tout en vérifiant lescontraintes.
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Séquence de tâches

Une séquence de tâches est un ensemble fini de tâches classéespar ordre de réalisation et
liées les unes aux autres. On considère qu’une tâche n’apparait qu’une seule fois dans la
séquence, et on lui associe trois variables temporelles : untemps d’insertion et un temps de
retrait de la pile, tout deux contrôlables, ainsi que le temps de régulation de la tâche, au bout
duquel la norme de l’erreur de la tâche est inférieure à une valeur donnée. Ce troisième temps
n’est pas contrôlé, car c’est une conséquence de la réalisation de la séquence de tâches. Ces
temps permettent d’évaluer les contraintes temporelles définies par la séquence de tâches et
les contraintes de régulation : chaque tâche doit être régulée avant d’être retirée de la pile.

Optimisation d’une séquence de tâches

Le but de la phase d’optimisation est d’améliorer le plan de tâches en tirant profit de la re-
dondance du robot afin de réaliser un mouvement fluide. Comme il est impossible d’évaluer
numériquement la superposition des tâches, on minimise à laplace le temps de fin de la
séquence, ce qui permet de réduire les temps morts et de forcer la superposition des tâches.

Les paramètres de l’optimisation sont les tâches, qui sont des données symboliques. Afin
de pouvoir réaliser une optimisation numérique, il est nécessaire de les convertir en proto-
symboles, en leur associant des données numériques. Ainsi,les paramètres de l’optimisation
sont les paramètres temporels (temps d’entrée et de sortie de la pile) et le comportement de
référence (défini par un gain adaptatif) de chaque tâche.

Les contraintes du problème regroupent les contraintes temporelles liées à la séquence
(ordre entre les tâches et régulation des tâches) et les contraintes liées à l’environnement
(limites physiques du robot, évitement des collisions. . . ). Une partie seulement de ces con-
traintes peuvent être directement calculées à partir du vecteur de paramètres, les autres ne
peuvent être déterminées que par une simulation de la séquence de tâches.

Gestion des contraintes semi-infinies

Le problème à optimiser est un problème semi-infini, c’est-à-dire qu’il a un nombre fini de
paramètres, mais un nombre infini de contraintes. Ce caractère semi-infini est dû au temps,
dans la mesure où les contraintes doivent être vérifiées à tout moment de la simulation.

Les méthodes classiques de gestion des contraintes semi-infinies, comme l’analyse par
intervalles ou l’utilisation d’une séquence de problèmes d’optimisation, ne peuvent pas être
appliquées à notre problème. La méthode que nous utilisons est basée sur une l’évaluation
discrète des contraintes : les contraintes sont évaluées à intervalles de temps fixe, mais
aussi lors de la réalisation d’événement discret. Afin d’avoir une évolution continue des
contraintes et un nombre constant de contraintes durant l’optimisation, on considère que
la valeur d’une contrainte semi-infinie correspond à la valeur maximale obtenue lors de
l’exécution de la séquence. De plus, de façon à plus facilement relier la violation d’une
contrainte à la tâche responsable et à améliorier la convergence de l’algorithme, un jeu de
contraintes semi-infinie est associé à chacune des tâches, et n’est évalué que lorsque cette
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tâche est active.

Optimisation via simulation

Le problème à optimiser est continu et sa dérivée est continue par morceaux. Le solveur util-
isé est CFSQP, qui, bien que prévu pour résoudre des problèmes de classeC1, retourne pour
notre problème de meilleurs résultats que SolvOpt, un solveur qui résout des problèmes ni
linéaires ou continus. La plupart des contraintes ne peuvent pas être calculées directement de
façon analytique : la seule façon de les évaluer est de réaliser une simulation de la séquence
de tâches. Il y a de fait un dialogue permanent entre le solveur qui choisit le vecteur de
paramètres et le simulateur qui évalue les contraintes correspondantes. Deux méthodes sont
proposées pour améliorer le processus d’optimisation : unemise à l’échelle des contraintes
et la décomposition de la séquence en plus petites séquencesindépendantes.

Discussion

La formulation de ce problème d’optimisation présente deuxproblèmes liés à la continuité
de la séquence de tâche. Le premier problème est l’évaluation a posterioride la contrainte de
régulation : l’insertion et le retrait des tâches n’est déterminé que par le timing, ce qui peut
conduire à des incohérences dans la séquence de tâches si lestâches ne sont pas régulées
avant d’être retirées et donner des valeurs de contraintes incohérantes. Le second problème
est lié à la discontinuité de la commande par rapport à l’ordre des événements. Une solution
sûre mais trop restrictive serait de fixer l’ordre des événements (c’est-à-dire de travailler avec
un plan de tâches totalement ordonné). De ce fait, il n’est pas possible de déterminer quelle
séquence de tâche a le petit temps de réalisation avec cet algorithme.

C.4 Simulations et expérimentations

Implémentation de la cinématique inverse

Le calcul de la commande pour une hiérarchie de tâches donnéeest réalisé par un framework
qui se base sur un mécanisme d’entités et de signaux similaire àu mécanisme de simulink.
Chaque entité est définie par un ensemble de dépendances (signaux d’entrées) et de méth-
odes permettant de calculer les signaux de sortie. Grâce à cette structure de graphe orientée,
il est possible de limiter les calculs réalisés au strict minimum. La commande continue
basée sur l’échange de priorité entre tâches voisines est implémentée et testée dans ce fra-
mework, et le problème du délai additionnel est illustré. Enpratique, ce délai peut causer un
manque de réactivité de la part du robot, auquel un utilisateur pourra préférer une disconti-
nuité ponctuelle.
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AMELIF, outil pour la simulation dynamique avec rendu hapti que

Le logiciel AMELIF réalise la simulation dynamique d’avatars articulés virtuels avec retour
haptique, et a été conçu de façon à permettre un prototypage rapide. Il est composé d’un cœur
qui propose un ensemble d’outils génériques (multi-threading, outils mathématiques) autour
duquel s’articule différentes librairies qui regroupent les algorithmes par thème : définition
de l’environnement et des robots, calcul des collisions, dela dynamique, de la commande et
affichage de l’environnement. A partir de ces librairies, ilest possible de définir et de simuler
dynamiquement le mouvement d’un robot dans un environnement virtuel. Un scénario illus-
tratif est proposé, dans lesquels d’autres librairies plusspécifiques ont été utilisées : une
librairie de gestion de l’haptique et une liée à la génération de posture.

Optimisation d’une séquence de tâches

Cette partie détaille les différents tests d’optimisationde séquence de tâches réalisés. Dans
un premier temps, l’influence du lissage sur le processus d’optimisation est testé. Ces ex-
périences montrent que le lissage n’a d’influence que lorsque les tâches sont couplées : le
processus d’optimisation est pénalisé par les discontinuités par rapport à l’ordre des événe-
ments. Au delà de l’influence du lissage, ces expérience montrent l’importance de la phase de
séquencement : laisser la détermination de l’ordre des événements à la phase d’ordonnance-
ment (c’est-à-dire à la phase d’optimisation) pénalise le processus d’optimisation.

L’algorithme d’optimisation est ensuite testé sur un scénario existant dans laquelle le
robot HRP-2 saisit une boisson à l’intérieur d’un frigo. Afinde permettre la superposition
des tâches, certaines contraintes temporelles sont remplacées par des contraintes d’évitement
de collisions. La séquence obtenue est plus rapide que la séquence de tâche initiale, et est
jouée sur le robot HRP-2 réel.

C.5 Contrôle adaptatif

Le processus d’optimisation qui a été défini permet d’améliorer une séquence dans laquelle
le robot est le seul agent. En pratique, il est probable que lerobot ait à adapter son compor-
tement aux imprévus de l’exécution. L’avantage de la fonction de tâche est d’être flexible
en travaillant directement sur les informations données par les capteurs, ce qui permet par
exemple de corriger l’objectif de la tâche en ligne. Dans ce chapitre, l’adaptation recherchée
concerne la manière de réaliser la tâche (le “comment”) plutôt que le but (le “quoi”) : le
mouvement du robot est personnalisé en utilisant les timings et les gains adéquats.

Contrôle adaptatif et formalisme de tâche

Distinguer le but de la tâche de la façon dont elle est réalisée permet de définir différentes
façons de réaliser une même tâche. Cette distinction présente l’avantage d’agrandir le spectre
des actions réalisables par un robot à peu de frais, mais est aussi nécessaire, car elle facilite
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l’adaptation du comportement du robot aux préférences et aux attentes de l’utilisateur hu-
main.

De la même façon qu’une séquence peut être optimisée en déterminant le jeu de paramè-
tres optimal, nous pensons que la personnalisation d’une séquence de tâches peut aussi se
faire au niveau de la tâche. Nous illustrons cette idée par lapersonnalisation d’une tâche
collaborative entre un humain et un robot.

Expérience préliminaire

Dans cette expérience, une tâche collaborative est réalisée entre deux acteurs, un client et un
portier (rôle du robot). Le client doit saisir un objet placédans une armoire située à distance
et le portier doit l’aider en ouvrant cette armoire à temps, c’est-à-dire de façon à ce que le
client n’ait pas à modifier son allure et puisse prendre l’objet au vol. Cette adaptation se fait
sans communication directe entre les deux acteurs. Le but del’expérience est de montrer
qu’il est possible de définir un mouvement adaptatif à l’aidedu formalisme de tâche.

Dans un premier temps, cette expérience est réalisée entre deux sujets humains, afin
de définir les caractéristiques du mouvement à réaliser par le robot. Pour l’ensemble des
participants, le mouvement réalisé par le portier est continu (il ne fait pas de pauses entre
les étapes). Deux comportements ont été observés. La plupart des participants a adapté son
mouvement en fonction de la position et de la vitesse du client : lorsque le client approche
à vitesse réduite ou normale, le portier réalise son mouvement "par défaut" (c’est-à-dire à
une vitesse fixée de son choix), et ne modifie que son timing. Par contre, si le client est trop
rapide, alors le portier est obligé d’accélérer aussi son mouvement pour être dans les temps.
L’autre comportement observé consistait à ne pas adapter lavitesse de réalisation de la tâche
mais à démarrer le mouvement au plus tôt (en même temps que le client) de façon à être dans
les temps.

Expérience sur le robot HRP-2

Le mouvement par défaut est obtenu par optimisation de la séquence de tâches, et permet de
connaitre le timing théorique de chacune des tâches ainsi que la durée totale de la séquence
de tâche. Les deux comportements observés chez un portier humain ont été implémentés et
testés : l’adaptation par rapport au temps consiste simplement à démarrer en même temps
que l’humain et à réaliser le mouvement par défaut, tandis que l’adaptation par rapport au
mouvement du client nécessite de modifier le timing et la vitesse de réalisation des tâches en
fonction de la vitesse du client. Le timing des tâches est adapté en conséquence, et dans le
second cas, on introduit une dépendance entre la fonction degain et la vitesse moyenne du
client sur les pas précédents.

En simulation, on observe que l’adaptation minimale est moins performante que l’adapta-
tion par rapport au mouvement : bien que la conclusion globale (succès ou échec de la
simulation) soit la même dans les deux cas, le timing est meilleur dans le second cas, dans la
mesure où le retard du robot par rapport à l’humain est moindre.
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Conclusion

Dans cette thèse, nous proposons de réintroduire la phase d’ordonnancement entre les phases
de planification et d’exécution, comblant ainsi l’écart entre les données symboliques (planifi-
cation) et les données numériques (exécution). Afin de réduire cet écart, on utilise la fonction
de tâche comme fil conducteur durant les trois phases de planification, ordonnancement et
exécution.

Contributions

La première contribution est la définition d’une méthode permettant d’assurer la continuité
de la pile de tâches lors de la réalisation d’événements discrets. Cette méthode consiste à
formaliser tous les événements discrets comme des suites d’échanges de priorité entre tâches
voisines. Le principal défaut de cette méthode est le délai lié au processus de lissage.

La seconde contribution est la formulation d’un problème d’optimisation permettant de
réaliser la superposition des tâches. A partir d’un plan de tâches donné par la planification,
le processus d’optimisation règle le timing et la vitesse deréalisation de chaque tâche de
façon à améliorer le plan de tâches initial tout en respectant les contraintes physiques (liées à
l’environnement) et temporelles (liées à la séquence de tâche). Ce processus d’optimisation
est testé sur une séquence de tâches réalisées par la HRP-2. Il présente toutefois deux faib-
lesses : l’estimationa posteriorides contraintes et les discontinuités par rapport aux événe-
ments discrets.

Enfin, nous avons proposé d’utiliser la fonction de tâche pour personnaliser une séquence
de tâches, c’est-à-dire l’adapter aux contraintes de l’environnement, typiquement les préfé-
rences d’un utilisateur humain. Un exemple a été réalisé surle robot HRP-2

Perspectives

Ce travail peut être prolongé de plusieurs façons :

• A court terme, il est possible d’étendre le problème d’optimisation en considérant
d’autres types de tâches (tâches de perception, points de passage...).

• A moyen terme, il serait nécessaire de reformuler partiellement ou totalement le pro-
blème d’optimisation, de façon à améliorer les temps de calculs, mais aussi à gérer des
tâches plus complexes, telles que la marche du robot.

• Enfin, à long terme, deux prolongations sont envisageables :en définissant en amont
une méthode de séquencement des tâches qui précéderait la méthode d’ordonnance-
ment, et en tirant parti de l’environnement, de façon similaire à l’approche basée di-
rectement sur la commande.
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T ITRE : Optimisation de séquence de tâches avec lissage du mouvement dans la réalisation de
missions autonomes ou collaboratives d’un humanoïde virtuel ou robotique

RÉSUMÉ : La réalisation d’une mission robotique se décompose usuellement en trois étapes : la
planification, i.e. le choix des taches à réaliser, le séquencement, i.e. la détermination du timing et
de l’ordre de réalisation des tâches, et finalement l’exécution du plan de tâches. Pour les systèmes
redondants tels que les robots humanoïdes, la tâche (dans lesens de fonction de tâche) détermine une
commande sur une partie du robot, permettant ainsi la réalisation simultanée de plusieurs tâches à
l’aide d’un formalisme de pile de tâches. Cependant, les mécanismes d’ordonnancement classiques
ne gèrent pas les cas où le mouvement est déterminé par un ensemble de tâches hiérarchisé : pour ces
robots, la phase d’ordonnancement est éludée et l’exécution se base directement sur la plan de tâches
donné par le planificateur. Le but de cette thèse est de réintroduire cette phase d’ordonnancement,
tout en maintenant le rôle central de la tâche. Dans un premier temps, la continuité de la commande
fournie par la pile de tâches est étudiée. En particulier, nous mettons en évidence les discontinuités
accompagnant la réalisation d’événements discrets (à savoir l’insertion, le retrait et l’échange de
priorité de tâches), puis proposons et comparons plusieursméthodes de lissage. Ensuite, nous présen-
tons une méthode permettant d’optimiser une séquence de tâches donnée en modifiant le timing et
la paramétrisation des tâches, tout en respectant les contraintes liées à l’environnement. Enfin, une
nouvelle utilisation de la flexibilité de la fonction de tâche consistant à adapter une séquence de
tâches aux préférences d’un utilisateur humain est illustrée. Ces résultats sont illustrés sur un robot
humanoïde.

M OTS-CLEFS : Robotique, Optimisation, Ordonnancement, Superpositionde tâches, Personnalisa-
tion de tâches.

T ITLE : Optimization of motion overlapping for task sequencing

ABSTRACT : A general agreed approach on mission and motion planning consists in splitting it into
three steps: decomposing the mission into a sequence of tasks (task planning), determining the order
of realization and the timing of the tasks (task scheduling)and finally executing the task sequence.
This approach maintains the task component in the entire reasoning, using it as a bridge between
planning, scheduling and execution. In the sense of task function, a task defines a control law on part
of the robot. Hence, for highly redundant systems such as humanoid robots, it is possible to realize
several tasks simultaneously using a stack-of-tasks formalism. Though, classical schedulers do not
handle the case where the motion is specified not by one, but bya combination of tasks organized into
a hierarchy. As a result, the scheduling phase is usually skipped. This thesis aims at reintroducing the
scheduling phase, while maintaining the central role of thetask. First, the stack-of-tasks formalism is
recalled and the continuity of the control law is studied. Particularly, we show that discreet operations
(insertion, removal and swap of priority between tasks) create discontinuities in the control. We
then present and discuss smoothing methods. Second, we present a task-overlapping based method
to optimize not only the scheduling but also the behavior of the tasks of a given sequence, while
accounting for the physical constraints of the execution. Finally, we introduce a new perspective in
the usage of the task-function approach to personalize a task sequence and take into account user
preferences. These results are experimented on the humanoid robot platform HRP-2.

K EYWORDS : Robotic, Optimization, Scheduling, Task overlapping, Task personalization.
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