Symétries, courants et holographie des spins élevés

Elisa MEUNIER sous la direction de Xavier BEKAERT

Laboratoire de Mathématiques et Physique Théorique Université François Rabelais de Tours

Soutenance de Thèse 22 novembre 2012

Plan général de l'exposé

- Introduction
- Physique non-relativiste
- Physique relativiste
- Perspectives : holographie relativiste

Bret historique Motivations de l'étude des spins élevés Plan détaillé de l'exposé Modèles étudiés et fils conducteurs

1. Introduction

- Introduction historique
 - Observations expérimentales
 - Développements théoriques
 - Programmes de recherche
- Motivations de l'étude des spins élevés
- Plan détaillé de l'exposé
- Modèles étudiés et fils conducteurs

Motivations de l'étude des spins élevés Plan détaillé de l'exposé Modèles étudiés et fils conducteurs

Introduction historique : observations expérimentales

Aujourd'hui:

- Particules élémentaires :
 - Spin 0 : boson de Brout-Englert-Higgs (probablement découvert au LHC)
 - Spin 1/2 : fermions constituant la matière (leptons et quarks)
 - Spin 1 : bosons médiateurs des interactions : électromagnétique (photon) et nucléaires (faible : bosons Z, W[±] et forte : gluons)

NB : aucune particule élémentaire de spin >1 et donc de spin élevé (s > 2) observée

 Particules composites massives (hadrons): certaines de spin élevé

Bref historique

Motivations de l'étude des spins élevés Plan détaillé de l'exposé Modèles étudiés et fils conducteurs

Introduction historique : développement théorique

Particule libre ↔ Équation d'onde relativiste linéaire

- Spin 0 : équation de d'Alembert / Klein-Gordon
- Spin 1/2 : équation de Weyl / Dirac
- Spin 1 : équation de Maxwell / Proca

Est-ce possible de continuer?

- Spin 3/2 : équation de Rarita-Schwinger
- Spin 2 : équation de Pauli-Fierz

Généralisation par Dirac et Pauli-Fierz pour un spin arbitraire

Bref historique

Motivations de l'étude des spins élevés Plan détaillé de l'exposé Modèles étudiés et fils conducteurs

Introduction historique : programmes de recherche

Wigner:

```
mécanique quantique 

→ théorie des groupes

particules 

→ représentations unitaires

élémentaires 

→ irréductibles (UIR)
```

- Bargmann-Wigner: associer à chaque UIR, une équation relativiste des champs
- Fierz-Pauli : lagrangiens associés
- Fronsdal : théorie de jauge en interaction (obstacles : théorèmes no-go)

généralisation à tous les espaces-temps à symétrie maximale et en dimension quelconque

Motivations de l'étude des spins élevés

- Théorie quantique cohérente incluant la gravité ? [Fradkin]
- Un autre modèle : la théorie des cordes
 - Cas particulier de théorie de spins élevés massifs
 - théorie de jauge de spin élevé = limite de masse nulle de la théorie des cordes ?
- Holographie et correspondance AdS/CFT :

une théorie libre conforme au bord (infinité de courants composites de spin élevé)

duale à

une théorie de jauge de spin élevé dans *AdS* (champs fondamentaux de spin élevé)

Bref historique
Motivations de l'étude des spins élevés
Plan détaillé de l'exposé
Modèles étudiés et fils conducteurs

Plan détaillé de l'exposé

- Introduction
- Physique non-relativiste
 - Symétries de l'équation de Schrödinger
 - Formalisme ambiant et réduction de genre lumière
 - Courants non-relativistes
- Physique relativiste
 - Formalisme ambiant et réduction radiale
 - Courants relativistes
 - Vertex cubiques d'interaction dans AdS
- Perspectives : holographie relativiste
 - Fonction à trois points
 - Comparaison avec les résultats de la théorie conforme
 - Diagramme d'échange

Modèles étudiés et fils conducteurs

Deux modèles étudiés :

- Non relativiste : théorie au bord conforme (gaz de Fermi parfait ou unitaire)
- Relativiste: théorie de jauge de spin élevé dans l'intérieur de l'espace-temps de courbure constante anti de Sitter AdS

Trois fils conducteurs:

- Symétries
- Formalisme ambiant et réduction dimensionnelle
- Courants conservés

2. Physique non-relativiste

Objectif: trouver toutes les symétries et tous les courants de l'équation de Schrödinger libre

Méthodes : formalisme ambiant et théorème de Noether

- Symétries de l'équation de Schrödinger
- Formalisme ambiant et réduction de genre lumière
- Courants non-relativistes

Symétries : généralités

• Symétrie d'une équation (linéaire) : $\widehat{K}\psi=0$

$$\widehat{K}\widehat{A} = \widehat{B}\widehat{K}$$
 ; $\psi \to \psi' = \widehat{A}\psi$

avec \widehat{A} et \widehat{B} deux opérateurs différentiels linéaires

- si $\widehat{A_1}$ et $\widehat{A_2}$ sont des symétries \Rightarrow le produit $\widehat{A_1}\widehat{A_2}$ est aussi une symétrie de \widehat{K}
- Relation d'équivalence :

$$\widehat{A}_1 pprox \widehat{A}_2 \quad \Longleftrightarrow \quad \widehat{A}_1 = \widehat{A}_2 + \widehat{O}\widehat{K}$$

avec \approx mis pour "égal sur la couche de masse" ou "modulo un terme proportionnel aux équations du mouvement" et la symétrie triviale $\widehat{O}\widehat{K}$ envoie toute solution vers zéro.

Symétries géométriques et cinématiques

Equation de Schrödinger libre (sans potentiel chimique μ) :

$$(2im\,\partial_t + \Delta)\,\,\psi(t,\mathbf{x}) = 0$$

Algèbres des symétries géométriques et cinématiques :

- Galilée : translations spatiales et temporelle, rotations spatiales, boosts galiléens
- Bargmann : extension centrale (= masse) de Galilée
- Schrödinger: Bargmann + dilatation et expansion

Symétries géométriques et cinématiques

Rotations spatiales \hat{M}^{ij} Boosts galiléens \hat{K}^i Translations spatiales \hat{P}^i Translation temporelle \hat{P}_t Galilée Masse \hat{M} Bargmann Dilatation \hat{D} Expansion \hat{C} Schrödinger

Rotations Heisenberg $sl(2, \mathbb{R})$

Symétries de spin élevé

Définition

L'algèbre **maximale** des symétries de l'équation de Schrödinger libre est l'algèbre de **toutes** les symétries inéquivalentes (non triviales) de l'équation de Schrödinger.

Théorème:

L'algèbre de Lie des symétries de l'équation de Schrödinger **libre** est générée algébriquement par **les translations d'espace** \widehat{P} **et les boosts galiléens** \widehat{K} : $Pol(\widehat{K},\widehat{P})$ = algèbre de Weyl = algèbre enveloppante d'Heisenberg $\mathcal{U}(\mathfrak{h}_d)$.

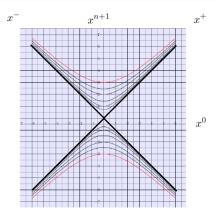
But : rendre manifestes les symétries étudiées

Méthode: formalisme ambiant

Plongement

Les coordonnées du cône de lumière

$$x^{\pm} = \frac{x^0 \pm x^{n+1}}{\sqrt{2}}$$



Le cadre de Bargmann

Les champ scalaires relativiste et non-relativiste :

$$\Psi(\mathbf{x}) = \mathbf{e}^{-im\mathbf{x}^-} \psi(\mathbf{x}^+, \mathbf{x})$$

donc
$$\partial/\partial x^- := \partial_- = -im$$
 et $\partial/\partial x^+ := \partial_t$

Equation de D'Alembert :

$$\Box \Psi(x) = \eta^{\mu\nu} \partial_{\mu} \partial_{\nu} \Psi(x) = 0$$

Algèbre conforme des symétries cinématiques :

- rotations (spatiales et boosts galiléens) $\widetilde{M}^{\mu\nu}$
- ullet translations spatio-temporelles \widetilde{P}^{μ}
- boosts conformes $\widetilde{K^{\mu}}$
- transformation d'échelle \widetilde{D}

Les équations du mouvement :

De l'équation de d'Alembert

$$\Box \Psi(x) \equiv -\partial_0^2 \Psi(x) + \sum_{i=1}^{n+1} \partial_i^2 \Psi(x) = 0$$
$$= -2\partial_- \partial_+ \Psi(x) + \sum_{i=1}^n \partial_i^2 \Psi(x) = 0$$

à l'équation de Schrödinger libre sans potentiel chimique

$$(2im\,\partial_t + \Delta)\,\,\psi(t,\mathbf{x}) = 0$$

Les algèbres :

De l'algèbre conforme $(\mu = (-, +, i))$

$$\begin{split} \widetilde{P}_{\mu} &= -i\partial_{\mu}, \quad \widetilde{M}_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}), \\ \widetilde{K}_{\mu} &= i\left(2x_{\mu}\left(x^{\nu}\partial_{\nu} + \frac{n}{2}\right) - x^{2}\partial_{\mu}\right), \quad \widetilde{D} = i\left(x^{\mu}\partial_{\mu} + \frac{n}{2}\right) \end{split}$$

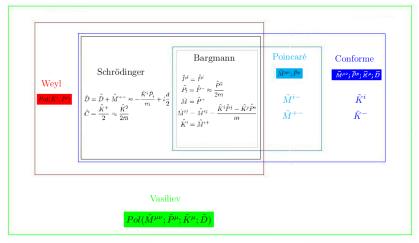
à l'algèbre de Schrödinger

$$\begin{split} & [\widetilde{O},\widetilde{P}^+] = 0 \text{ avec } \widetilde{P}^+ = (\widetilde{P}^0 + \widetilde{P}^{n+1})/\sqrt{2} : \\ & \widehat{M} = \widetilde{P}^+, \quad \widehat{P}_t = \widetilde{P}^-, \quad \widehat{P}^i = \widetilde{P}^i, \quad \widehat{M}^{ij} = \widetilde{M}^{ij}, \\ & \widehat{K}^i = \widetilde{M}^{i+}, \quad \widehat{D} = \widetilde{D} + \widetilde{M}^{+-}, \quad \widehat{C} = \frac{\widetilde{K}^+}{2} . \end{split}$$

Les symétries de spin élevé de l'équation de d'Alembert :

Théorème d'Eastwood (2002)

L'algèbre de Lie maximale des symétries pour l'équation de d'Alembert est générée algébriquement par les vecteurs de Killing conformes : $Pol(\widetilde{M}^{\mu\nu},\widetilde{P}^{\mu},\widetilde{K}^{\mu},\widetilde{D})$ = algèbre de Vasiliev de spin élevé = algèbre enveloppante conforme.



Théorème de Noether

"Si un principe variationnel est laissé invariant par un groupe continu de symétries, alors il existe au moins une quantité physique associée qui est conservée."

 $\delta_\zeta \phi$ est une *symétrie infinitésimale de l'action S=\int \mathcal{L}* si et seulement si

$$\delta_\zeta \mathcal{L} \,=\, \partial_\mu \emph{V}^\mu \quad \Longleftrightarrow \quad \delta_\zeta \emph{S} \,=\, \int \delta_\zeta \mathcal{L} \,=\, {\sf terme} \, {\sf au} \, {\sf bord} \,.$$

Théorème de Noether

Si $\delta_{\zeta}\phi$ est une symétrie infinitésimale de l'action, alors il existe un courant de Noether : $j_N^{\mu}(\zeta) :=$

$$\sum_{k=1} \sum_{l=0}^{k-1} (-1)^l \, \partial_{\nu_{l+1}} ... \partial_{\nu_{k-1}} (\delta_\zeta \phi) \, \partial_{\nu_1} ... \partial_{\nu_l} \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \partial_{\nu_1} ... \partial_{\nu_{k-1}} \phi)} \right) - \ V^\mu$$

qui est conservé lorsque les équations du mouvement sont satisfaites :

$$\partial_{\mu} j_{N}^{\mu} \, pprox \, 0 \, .$$

Courants dans l'espace plat de Minkowski

Courants relativistes :

$$C^{A_1...A_n}(x)$$

Loi de conservation :

$$\partial_{A_1} C^{A_1...A_n}(x) \approx 0$$

Fonction génératrice de courants conservés relativistes :

$$C(x; p) = \sum_{n=0}^{\infty} \frac{1}{n!} C^{A_1...A_n}(x) p_{A_1}...p_{A_n}$$

Loi de conservation :

$$\left(\frac{\partial}{\partial p_A}.\frac{\partial}{\partial x^A}\right)C(x;p)\approx 0$$

Courants dans l'espace plat de Minkowski

Pour un champ scalaire $\Psi(x)$:

$$C(x,p) = \Psi_1(x+ip) \Psi_2(x-ip)$$

Expression explicite des courants relativistes de Berends, Burgers, et van Dam dans l'espace de Minkowski :

$$C_{A_{1}...A_{n}}(x) = (-i)^{n} \sum_{q=0}^{n} (-1)^{q} \binom{n}{q} \partial_{(A_{1}}...\partial_{A_{q}} \Psi_{1}(x) \partial_{A_{q+1}}...\partial_{A_{n})} \Psi_{2}(x)$$

$$= (-i)^{n} \Psi_{1}(x) \overleftrightarrow{\partial_{A_{1}}}...\overleftrightarrow{\partial_{A_{n}}} \Psi_{2}(x)$$

Courants non-relativistes :

$$c_{i_1...i_m}(t,\mathbf{x})$$

Fonction génératrice des courants non-relativistes :

$$c(t, \mathbf{x}; \rho_t, \mathbf{p}) = \psi_1(t - i \rho_t, \mathbf{x} + i \mathbf{p}) \psi_2(t + i \rho_t, \mathbf{x} - i \mathbf{p})$$

Relation entre courants relativistes et non-relativistes :

$$c(t, \mathbf{x}; \rho_t, \mathbf{p}) := C(x^+ = t, x^- = 0, \mathbf{x}; \rho^+ = -\rho_t, \rho^- = 0, \mathbf{p})$$

Courants neutres :
$$\Psi_1 = \Psi^\dagger$$
 ; $\Psi_2 = \Psi$

Expression explicite des courants relativistes :

$$J_{\underbrace{+\dots+}_{r}i_{1}\dots i_{s}}\underbrace{-\dots-}_{q}(x)=(-m)^{q}(-i)^{r+s}\psi^{\dagger}(t,\mathbf{x})\underbrace{\overleftarrow{\partial_{t}}\dots\overleftarrow{\partial_{t}}}_{r}\overleftarrow{\partial_{i_{1}}\dots\overleftarrow{\partial_{i_{s}}}}\psi(t,\mathbf{x})$$

Expression explicite des courants non-relativistes :

$$j_{i_{1}\cdots i_{s}}^{(r)}(t,\mathbf{x})=(-1)^{r}(-i)^{r+s}\psi^{\dagger}(t,\mathbf{x})\underbrace{\overleftarrow{\partial_{t}}_{t}\cdots \overleftarrow{\partial_{t}}}_{r}\underbrace{\overleftarrow{\partial_{i_{1}}}_{t}\cdots \overleftarrow{\partial_{i_{s}}}}_{r}\psi(t,\mathbf{x})$$

Relation entre les deux :

$$J_{\underbrace{+\dots+}_{r}i_{1}\dots i_{s}}\underbrace{-\dots-}_{a}(x)=(-1)^{r+q}m^{q}j_{i_{1}\dots i_{s}}^{(r)}(t,\mathbf{x})$$

Courants chargés : $\Psi_1 = \Psi_2 = \Psi$

Expression explicite des courants relativistes :

$$ar{A} = (\alpha, a) \text{ avec } \alpha = \uparrow \downarrow; \ a = 1, \cdots, N \text{ et } \mathbb{J}/2 = \begin{pmatrix} 0 & \mathbb{1}_{N} \\ -\mathbb{1}_{N} & 0 \end{pmatrix}$$

$$K_{\mu_{1} \dots \mu_{r}}(x) = \frac{1}{2} (-i)^{r} \mathbb{J}_{\bar{A}\bar{B}} \Psi^{\bar{A}}(x) \overleftrightarrow{\partial_{\mu_{1}}} \dots \overleftrightarrow{\partial_{\mu_{r}}} \Psi^{\bar{B}}(x)$$

Expression explicite des courants non-relativistes :

$$\mathcal{K}_{i_1\cdots i_s}^{(r)}(t,\mathbf{x}) = \frac{(-1)^r}{2} (-i)^{r+s} \mathbb{J}_{\bar{A}\bar{B}} \psi^{\bar{A}}(t,\mathbf{x}) \underbrace{\partial_t \cdots \partial_t}_{r} \overleftrightarrow{\partial_{i_1}} \cdots \overleftrightarrow{\partial_{i_s}} \psi^{\bar{B}}(t,\mathbf{x})$$

Relation entre les deux :

$$K_{\underbrace{+...+}_{i_1...i_s}}^{i_1...i_s}(x) = (-1)^r e^{-2imx^-} K_{i_1...i_s}^{(r)}(t,\mathbf{x})$$

Exemples de rang 0

Courant neutre

$$J = j^{(0)} = \psi^{\dagger}(t, \mathbf{x})\psi(t, \mathbf{x}) = n$$

- Courant chargé

$$K(x^{-}=0) = k^{(0)} = \frac{1}{2} \psi^{A}(t, \mathbf{x}) \, \mathbb{J}_{AB} \, \psi^{B}(t, \mathbf{x}) = k$$

→ nombre de paires de Cooper

Exemple de rang 1

Courants neutres

$$\begin{cases} J^{+} &= mj^{(0)} = m\psi^{\dagger}(t,\mathbf{x})\psi(t,\mathbf{x}) = mn = \rho \\ J^{-} &= j^{(1)} = \frac{i}{2}\psi^{\dagger}(t,\mathbf{x}) \overleftarrow{\partial_{t}}\psi(t,\mathbf{x}) \approx \epsilon - \frac{1}{4m}\Delta n \\ J_{i} &= j_{i}^{(0)} = -\frac{i}{2}\psi^{\dagger}(t,\mathbf{x}) \overleftarrow{\partial_{i}}\psi(t,\mathbf{x}) = j_{i} \end{cases}$$

avec ρ la densité de masse,

 $\epsilon = \frac{1}{2m} \partial_i \psi^{\dagger} \partial^i \psi$ la densité d'énergie,

et j_i la densité de moments.

Loi de conservation :

$$\partial_t \rho + \partial_i j^i \approx 0$$

ormalisme ambiant et réduction radiale ourants relativistes ertex cubiques d'interaction dans *AdS*

3. Physique relativiste

Objectif: Calculer des vertex cubiques d'interaction dans AdS

Méthodes : formalisme ambiant et méthode de Noether

- Formalisme ambiant et réduction radiale
- Courants conservés
- Vertex cubiques d'interaction dans AdS

Formalisme ambiant: justification physique

Espace-temps de (anti) de Sitter :

- (A)dS: solution la plus symétrique des équations d'Einstein avec constante cosmologique Λ ≠ 0 et dans le vide (c'est-à-dire sans matière): T_{uν} = 0
- dS: prototype des géométries apparaissant dans le cadre de l'inflation cosmique
- correspondance holographique : AdS/CFT

Formalisme ambiant : plongement

Plongement

$$\mathcal{M}_n \subset \mathbb{R}^D$$

avec
$$D = n + 1$$

Coordonnées

$$(\rho, X^{\mu}) \subset X^{A}$$

Formalisme ambiant : Espace-temps de courbure constante

Signature *euclidienne* de la métrique ambiante :

Métrique :

$$ds_{\mathbb{R}^{n+1}}^2 = \sum_{i=1}^{n+1} (dX^i)^2$$

• Quadrique :

$$X^2 = R^2$$

 \hookrightarrow Hypersphère \mathbb{S}^n

Formalisme ambiant : Espace-temps de courbure constante

Signature Iorentzienne:

Métrique :

$$ds_{\mathbb{R}^{n,1}}^2 = -(dX^0)^2 + \sum_{i=1}^n (dX^i)^2$$

Deux quadriques :

$$X^2 = -(X^0)^2 + \sum_{i=1}^n (X^i)^2 = \pm R^2$$

- ▶ hyperboloïde à une nappe : de Sitter dS_n
- ▶ hyperboloïde à deux nappes : 2 copies de $\mathbb{H}_n = EAdS_n$

Formalisme ambiant : Espace-temps de courbure constante

Signature conforme:

Métrique :

$$ds_{\mathbb{R}^{n-1,2}}^2 = -(dX^0)^2 - (dX^1)^2 + \sum_{i=2}^{n} (dX^i)^2$$

• Quadrique :

$$X^{2} = -(X^{0})^{2} - (X^{1})^{2} + \sum_{i=2}^{n} (X^{i})^{2} = -R^{2}$$

 \hookrightarrow anti de Sitter AdS_n

Formalisme ambiant : réduction radiale

Projection sur l'espace tangent :

$$\mathcal{P}_A^B = \delta_A^B - \frac{X_A X^B}{X^2}$$

Champ scalaire

$$\phi(\mathbf{X}^{\mu}) = \Phi(\mathbf{X}^{\mathbf{A}})|_{\mathbf{X}^2 = \pm \mathbf{R}^2}$$

Homogénéité

$$\Phi(\lambda X) = \lambda^h \Phi(X)$$

• Dérivée covariante : ∇ dans $AdS \longleftrightarrow \mathcal{D}$ dans l'espace ambiant

$$\mathcal{D} = \mathcal{P} \circ \partial \circ \mathcal{P}$$

Formalisme ambiant : Harmoniques sphériques

Restriction sur la sphère \mathbb{S}^n de polynômes harmoniques et homogènes (de degré I) sur \mathbb{R}^D :

$$\square_{\mathbb{R}^D}(r^IY_I) = \Delta_{\mathbb{R}^D}(r^IY_I) = 0 \quad \leftrightarrow \quad \left[\Delta_{\mathbb{S}^n} + \frac{1}{R^2}I(I+n-1)\right]Y_I = 0$$

$$\Rightarrow \Delta_{\mathbb{S}^n} Y_I = -\frac{1}{R^2} I(I + n - 1) Y_I$$

Formalisme ambiant : Champs scalaires dans $(A)dS_n$

Restriction sur $(A)dS_n$ de polynômes harmoniques et homogènes (de degré h) sur \mathbb{R}^D :

$$\square_{\mathbb{R}^D} \Phi = 0 \quad \longleftrightarrow \quad \left[\nabla^2_{(A)dS_n} \mp \frac{1}{R^2} \left(\left(\frac{n-1}{2} \right)^2 \pm m^2 \right) \right] \phi = 0$$

Expression du degré d'homogénéité h :

$$h_{dS_n} = \frac{1-n}{2} + im$$
 ; $h_{AdS_n} = \frac{1-n}{2} - m$

Dictionnaire en physique relativiste

Objet	Espace ambiant \mathbb{R}_0^D	Espace courbe $(A)dS_n$
Coordonnées	X ^A	${\sf X}^\mu$
Scalaire	Φ(X)	$\phi(x)$
Conjugué	$\Phi^{\dagger}(X)$	$\phi^*(x)$
Vecteur	$T_A(X)$	$t_{\mu}(x)$
Tenseur	$T_{A_1A_r}(X)$	$t_{\mu_1\mu_r}(x)$
Métrique	$ extit{G}_{AB}\sim\eta_{AB}$	$g_{\mu u}$
Dérivée covariante	$\mathcal{D}_{\mathcal{A}}$	$ abla_{\mu}$
D'Alembertien courbe	$\mathcal{D}_D^2 = G^{AB} \mathcal{D}_A \mathcal{D}_B$	$ abla_n^2 = g^{\mu u} abla_\mu abla_ u$
D'Alembertien ambiant	$\Box_{D} = \eta^{AB} \partial_{A} \partial_{B}$	$\nabla^2_{(A)dS_n} \mp \frac{h(h+n-1)}{R^2}$

Courants dans l'espace plat de Minkowski

Courants:

$$j^{\mu_1...\mu_r}(x)$$

Loi de conservation :

$$\partial_{\mu_1} j^{\mu_1 \dots \mu_r}(x) \approx 0$$

Fonction génératrice de courants conservés :

$$j(x,p) = \sum_{r=0}^{\infty} \frac{1}{r!} j^{\mu_1...\mu_r}(x) p_{\mu_1}...p_{\mu_r}$$

Loi de conservation :

$$\left(\frac{\partial}{\partial p_{\mu}}.\frac{\partial}{\partial x^{\mu}}\right)j(x,p)\approx 0$$

Courants dans l'espace plat de Minkowski

Pour un champ de Klein-Gordon $\phi(x)$:

$$j(x,p) = \phi^*(x + ip) \phi(x - ip) = |\phi(x - ip)|^2$$

Expression explicite des courants de Berends, Burgers, et van Dam dans l'espace plat :

$$j_{\mu_{1}...\mu_{r}}(x) = (-i)^{r} \sum_{s=0}^{r} (-1)^{s} {r \choose s} \partial_{(\mu_{1}}...\partial_{\mu_{s}}\phi^{*}(x) \partial_{\mu_{s+1}}...\partial_{\mu_{r})}\phi(x)$$

$$= (-i)^{r} \phi^{*}(x) \overleftrightarrow{\partial_{\mu_{1}}...} \overleftrightarrow{\partial_{\mu_{r}}}\phi(x)$$

Courants dans l'espace ambiant

Fonction génératrice :

$$J(X,P) \,=\, \Phi^\dagger(X+iP)\Phi(X-iP)$$

Loi de conservation

$$\left(\frac{\partial}{\partial X}.\frac{\partial}{\partial P}\right)J(X,P)\approx 0$$

Degré d'homogénéité

$$h_{(A)dS_n}^{\dagger} = 1 - \frac{D}{2} - \sqrt{\mp 1}m \text{ donc } h + h^{\dagger} = 2 - D$$

$$\left(X^A \frac{\partial}{\partial X^A} + P_A \frac{\partial}{\partial P_A} + D - 2\right) J(X, P) = 0$$

Expression explicite :

$$J_{A_1...A_r}(X) = (-i)^r \Phi^{\dagger}(X) \overleftrightarrow{\partial_{A_1}} ... \overleftrightarrow{\partial_{A_r}} \Phi(X)$$

Dérivée covariantes dans l'espace-temps (A)dS

Expression du représentant ambiant \mathcal{D} des dérivées covariantes de $AdS \mathcal{D}$ en fonction des dérivées usuelles ∂ :

$$(P.\partial)^{m} = \sum_{r=0}^{[m/2]} c_{m}^{r} \left(\frac{P^{2}}{X^{2}}\right)^{r} (P.D)^{m-2r}$$

Formule de récurrence des coefficients :

$$c_{m+1}^r = c_m^r + m(h-m+1)c_{m-1}^{r-1}$$

Dérivées covariantes dans l'espace-temps (A)dS

Fonction génératrice des coefficients :

$$c(x, y; h - r) = \sum_{n=0}^{\infty} \sum_{m=0}^{[n/2]} \frac{1}{n!} c_n^m (h - r) x^{n-2m} y^m$$
$$= (1 + y)^{\frac{h-r}{2}} \exp\left(\frac{x}{\sqrt{y}} \arctan \sqrt{y}\right)$$

Expression explicite des coefficients pour ϕ (r = 0: $c_n^m =$

$$\begin{split} & \sum_{i_{n-2m}=0}^{m} \sum_{i_{n-2m-1}=0}^{i_{n-2m}} ... \sum_{i_{1}=0}^{i_{2}} \frac{1}{(m-i_{n-2m})!} \left(\frac{h}{2}\right) \left(\frac{h}{2}-1\right) ... \left(\frac{h}{2}-m+i_{n-2m}+1\right) \\ & \times \frac{n!}{(n-2m)!} \frac{(-1)^{i_{n-2m}}}{(2\,i_{1}\,+\,1)\,\left(2\,(i_{2}-i_{1})+1\right) ... \left(2\,(i_{n-2m}-i_{n-2m-1})\,+\,1\right)} \end{split}$$

Dérivée covariantes dans l'espace-temps (A)dS

Par exemple, les premiers coefficients :

$$c_0^0 = 1,$$
 $c_1^0 = 1,$
 $c_2^0 = 1,$
 $c_3^1 = h,$
 $c_3^1 = 3h - 2,$
...

et les premières dérivées :

$$\begin{array}{ccc} \partial_{A}\Phi & \longleftrightarrow & \nabla_{\mu}\,\phi \\ \\ \partial_{A}\,\partial_{B}\Phi & \longleftrightarrow & \nabla_{(\mu}\,\nabla_{\nu)}\phi \,\pm\, \frac{h}{R^{2}}\,g_{\mu\nu}\,\phi \\ \\ \partial_{A}\,\partial_{B}\partial_{C}\Phi & \longleftrightarrow & \nabla_{(\mu}\,\nabla_{\nu}\nabla_{\rho)}\,\phi \,\pm\, \frac{3h-2}{R^{2}}\,g_{(\mu\nu}\,\nabla_{\rho)}\phi \end{array}$$

Courants dans l'espace-temps (A)dS

Forme explicite des courants conservés dans l'espace-temps (A)dS

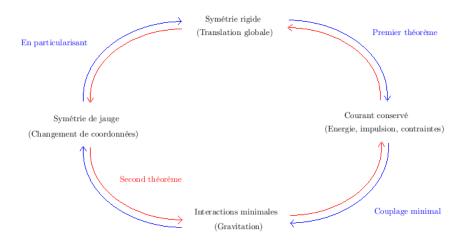
$$\begin{array}{lcl} p^{\mu_1}...p^{\mu_r}j_{\mu_1...\mu_r} & = & (-i)^r\sum_{s=0}^r\sum_{i=0}^{[s/2]}\sum_{j=0}^{[(r-s)/2]}(-1)^s\binom{r}{s}c_s^ic_{r-s}^j\times\\ & & \times\left(\frac{p^2}{\pm R^2}\right)^{i+j}(p.\nabla)^{s-2i}\phi^*(p.\nabla)^{r-s-2j}\phi \end{array}$$

Courants dans l'espace-temps (A)dS

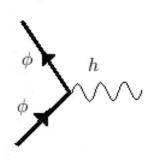
Par exemple, les premiers courants :

$$\begin{aligned}
j^{\mathbf{s}}_{\mu} &= i \phi^* \overleftarrow{\nabla}_{\mu} \phi \\
j^{\mathbf{s}}_{\mu\nu} &= -\phi^* \overleftarrow{\nabla}_{\mu} \overleftarrow{\nabla}_{\nu} \phi \pm \frac{1-n}{R^2} g_{\mu\nu} \phi^* \phi \\
j^{\mathbf{s}}_{\mu\nu\rho} &= -i \phi^* \overleftarrow{\nabla}_{\mu} \overleftarrow{\nabla}_{\nu} \overleftarrow{\nabla}_{\rho} \phi \pm i \frac{1-3n}{R^2} g_{(\mu\nu} \phi^* \overleftarrow{\nabla}_{\rho)} \phi \\
j^{\mathbf{s}}_{\mu\nu\rho\sigma} &= \phi^* \overleftarrow{\nabla}_{\mu} \overleftarrow{\nabla}_{\nu} \overleftarrow{\nabla}_{\rho} \overleftarrow{\nabla}_{\sigma} \phi \pm 2 \frac{1+3n}{R^2} g_{(\mu\nu} \phi^* \overleftarrow{\nabla}_{\rho} \overleftarrow{\nabla}_{\sigma)} \phi \\
&+ 3 \frac{n^2 - 1}{R^4} g_{(\mu\nu} g_{\rho\sigma)} \phi^* \phi \\
&\vdots
\end{aligned}$$

Méthode de Noether



Vertex cubiques d'interaction dans AdS



$$S_1[\Phi, H] = \sum_{r \geqslant 0} \frac{1}{r!} \int_{\mathbb{R}_0^D} d^D X H_{A_1...A_r}(X) J^{A_1...A_r}(X)$$

On peut le réécrire en utilisant la quantification de Weyl.

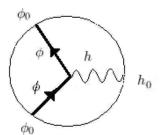
4. Perspectives : Holographie relativiste

Objectif futur : réaliser un test de la correspondance holographique à l'ordre quartique en dimension arbitraire

- Fonction à trois points
- Comparaison avec les résultats de la théorie conforme
- Diagramme d'échange

Fonction à trois points

Calcul de la fonction à trois points à partir du vertex cubique et des propagateurs de Witten



Comparaison avec les résultats de la théorie conforme

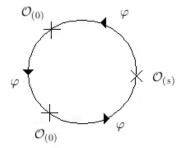
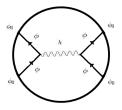


Diagramme de Feynman à une boucle de la théorie conforme libre

Diagramme d'échange

Calcul de la fonction à quatre points pour quatre champs scalaires :



Décomposition du propagateur "intérieur-intérieur" (pour tout spin) en deux propagateurs "intérieur-bord"

Objectif futur : réaliser un test de la correspondance holographique à l'ordre quartique en dimension arbitraire

Bibliographie

- [1] X. Bekaert and E. Meunier, "Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions," JHEP **1011** (2010) 116 [arXiv:1007.4384 [hep-th]].
- [2] X. Bekaert, E. Meunier and S. Moroz, "Symmetries and currents of the ideal and unitary Fermi gases," JHEP 1202 (2012) 113 [arXiv:1111.3656 [hep-th]].
- [3] X. Bekaert, E. Meunier and S. Moroz, "Towards a gravity dual of the unitary Fermi gas," Phys. Rev. D **85** (2012) 106001 [arXiv:1111.1082 [hep-th]].