
HAL Id: tel-00795247
https://theses.hal.science/tel-00795247

Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear control and visual servoing of autonomous
robots
Alaa Dib

To cite this version:
Alaa Dib. Nonlinear control and visual servoing of autonomous robots. Other. Supélec, 2011. English.
�NNT : 2011SUPL0014�. �tel-00795247�

https://theses.hal.science/tel-00795247
https://hal.archives-ouvertes.fr

To my beloved wife Lama,

and to my precious daughter Laura Anne.

Remerciements

Je souhaite remercier les membres du jury de m’honorer de leur présence lors

de cette soutenance de thèse. Merci à Monsieur Romeo Ortega, Directeur

de recherche au CNRS, qui m’a fait l’honneur de présider le jury. Merci à

Monsieur Nacer M’sirdi, Professeur à LSIS, et à Monsieur Éric Ostertag,

Professeur émérite à ENSPS, qui ont accepté d’être rapporteurs pour cette

thèse. Je les remercie pour leurs remarques et commentaires qui m’ont

permis d’améliorer ce manuscrit de thèse. Je tiens également à remercier

Madame Yasmina Bestaoui, Mâıtre de conférences à l’Université d’Evry, et

Madame Sylvie Naudet, Ingénieure de recherche au CEA, d’avoir bien voulu

participer à mon jury de thèse.

Je remercie mon directeur de thèse Monsieur Patrick Boucher, Chef de

Département Automatique de Supélec, pour son accueil chaleureux. Je le

remercie également pour sa confiance et ses conseils précieux.

J’exprime toute ma gratitude à mon encadrante Madame Houria Siguerdid-

jane, Professeur à Supélec, ses conseils m’ont été d’une aide précieuse tout

au long de cette thèse. Je la remercie pour la liberté qu’elle m’a laissée dans

mes recherches et pour tout le temps qu’elle m’a consacré.

Cette thèse n’aurait pas pu se dérouler dans d’aussi bonnes conditions

sans l’ensemble du personnel du département Automatique. Je remercie

Monsieur Martial Demerlé pour son assistance technique et nos discus-

sions fructueuses quand j’ai commencé à travailler sur le robot. Je remercie

Monsieur Emmanuel Godoy qui était prêt à fournir tout l’équipement dont

j’avais besoin dans ma recherche. Je remercie Monsieur Léon Marquet pour

son aide technique en cas de besoin. Un grand merci à Madame Josiane

Dartron, secrétaire du département Automatique, pour sa gentillesse et sa

disponibilité tout au long de cette thèse.

Je tiens à remercier particulièrement les autres doctorants et stagiaires du

Département Automatique de Supélec pour leur soutien quotidien et tous

les moments partagés durant ces années. Merci à Haitham, Ali, Raluca,

Bogdan, Nam, Christina, Nikola, Rayen, Guillermo, Younane, ainsi qu’à

ceux que j’ai connus plus brièvement.

Merci enfin à mon épouse Lama d’avoir supporté cette thèse et le temps que

j’ai consacré à celle-ci durant ces années. C’est sa présence et son soutien

indéfectible qui m’ont permis d’avancer au quotidien et de finir cette thèse.

Merci infiniment.

Abstract

This thesis focuses on the problem of moving and localizing an autonomous

mobile robot in its local environments. The first part of the manuscript

concerns two basic motion tasks, namely the stabilization and trajectory

tracking. Two control strategies were discussed: the integral sliding mode,

and the method known as ”Immersion and Invariance” for nonlinear con-

trol. The second part focuses on both 2D and 3D visual servoing techniques.

Image moments were chosen as visual features as they provide a more geo-

metric and intuitive meaning than other features, and they are less sensitive

to image noise and other measurement errors. A new approach to visual

servoing based on image is herein proposed. It is based on the generation

of trajectories directly on the image plane (Calculation of the image fea-

tures corresponding to a given Cartesian path). This approach ensures that

the robustness and stability are extended due to the fact that the initial

and desired locations of the camera are close. The trajectories obtained

guarantee that the target remains in the field of view of the camera and

the corresponding movement of the robot is physically feasible. Experimen-

tal tests have been conducted, and satisfactory results have been obtained

from both implementations regarding motion control and visual servoing

strategies. Although developed and tested in the specific context of a uni-

cycle type robot, this work is generic enough to be applied to other types

of vehicles.

Contents

Résumé xi

Introduction 1

1 Modelling 9

1.1 Kinematic Models and Constraints . 9

1.1.1 Differential-drive (Hilare) Mobile Robot 10

1.2 Chained Form . 16

1.3 Dynamic Model . 18

1.3.1 Equations of Motion . 18

1.3.2 Second-order kinematic model 24

2 Trajectory Planning 27

2.1 Path and Timing Law . 27

2.2 Path Planning . 29

2.2.1 Planning via Cubic polynomials 29

2.2.2 Planning via the chained form 30

2.3 Path planning in presence of obstacles 33

2.4 Trajectory Planning . 36

3 Motion Control 39

3.1 Introduction . 39

3.2 Feedback Linearization . 40

3.2.1 Input/output linearization . 40

3.2.2 Dynamic State Feedback Linearization 42

3.3 Integral Sliding Mode . 44

vii

CONTENTS

3.3.1 Review of Integral Sliding Mode 45

3.3.2 Posture Stabilization . 47

3.3.3 Trajectory Tracking . 48

3.3.4 Simulation Results . 49

3.4 Motion Control via Immersion and Invariance based approach 60

3.4.1 Review of Immersion and Invariance based approach 61

3.4.2 Posture Stabilization . 63

3.4.3 Trajectory Tracking . 66

3.4.4 Simulation Results . 69

3.5 Conclusion . 71

4 Visual Servoing 77

4.1 Extraction of Visual Features . 78

4.1.1 Image Segmentation . 78

4.1.2 Image Interpretation . 80

4.2 Camera Modelling and Calibration . 81

4.2.1 Pinhole Camera and Perspective Projection 81

4.2.2 Camera Calibration . 86

4.2.2.1 Implementation of the Calibration 87

4.3 Position-based Visual Servoing . 88

4.4 Image-based Visual Servoing . 92

4.4.1 Image Jacobian of a point . 96

4.4.2 Image Jacobian of a set of points 97

4.4.3 Image Jacobian of image moments 98

4.4.4 Pose estimation algorithm based on the image Jacobian 100

4.5 Trajectory Planning on the Image Plane 101

4.6 Simulations Results . 105

4.7 Conclusion . 113

5 Experimental Results 117

5.1 Wheeled Mobile Robot Koala . 117

5.1.1 Experiments . 118

5.2 Wheeled Mobile Robot Pekee II . 124

5.2.1 Camera Calibration . 125

viii

CONTENTS

5.2.2 Experiments . 126

5.3 Conclusion . 133

Conclusions and Perspectives 137

Perspectives . 138

A Nonholonomic Constraints 141

A.1 Integrability Conditions . 142

A.2 Brockett’s Theorem . 143

A.3 Definition of function atan2 . 144

B Image Moments: Properties and Calculation 145

B.1 Green’s Theorem . 145

B.2 Moments of two dimensional functions 146

B.3 Image moments of a polygon . 148

B.4 Image moments of an ellipse . 149

C Camera Calibration 151

Bibliography 155

ix

Résumé

Introduction

Par robot on entend un système mécanique équipé de capteurs, d’actionneurs et d’un

système de commande permettant d’agir sur les actionneurs en fonction d’une part de

la tâche à accomplir, et d’autre part, des informations données par les capteurs. Ac-

tuellement, de tels systèmes de commande sont bien évidemment des ordinateurs. Un

robot est dit autonome si, moyennant une spécification externe ’de haut niveau’ de la

tâche à accomplir, le robot est capable de la mener à bien sans intervention humaine.

L’utilité de robots autonomes ou même partiellement autonomes est incontestable et les

domaines d’application sont multiples et variés. Les domaines les plus attractifs dans le

futur concernant la robotique de service, la robotique médicale, la robotique environne-

mentale par exemple. Néanmoins, le développement d’un robot autonome pose encore

de nombreux problèmes fondamentaux : le problème de la perception de l’environne-

ment par exemple est naturellement lié au domaine de la vision, le problème du suivi

de trajectoire est lié à la théorie de la commande. Un autre problème fondamental est

celui de la planification de trajectoires.

L’objectif de cette thèse est de concevoir et de mettre en œuvre des lois d’asservis-

sement permettant à un robot mobile d’exécuter une tâche ou de réaliser une mission

donnée. Pour cela, il est nécessaire de déterminer les mouvements de déplacement du

robot par rapport à son environnement local. Les mouvements sont réalisés à l’aide de

la planification de trajectoires, l’évitement d’obstacle, la commande de mouvement, la

localisation, la perception et la navigation. Dans le cadre de ce travail, on s’intéresse

alors à des aspects méthodologiques :

• Une planification réactive de trajectoire afin de trouver une trajectoire sans colli-

sion à partir d’une position initiale donnée à un point cible prédéfini en présence

xi

Résumé

d’obstacles fixes.

• Proposer des stratégies de commande permettant à un robot mobile d’effectuer

une tâche donnée d’une manière indépendante, c’est-à-dire uniquement à partir

des informations fournies en temps réel par des capteurs.

• Une étape très importante de l’autonomie avancée est l’asservissement visuel.

Nous allons donc nous attacher au problème de commande et à la réalisation des

tâches basées sur la vision pour la navigation de robot mobile et l’exécution des

mouvements complexes.

• Effectuer des simulations et des tests expérimentaux sur un robot mobile pour

valider les stratégies proposées.

Organisation du document

Ce document est composé de cinq chapitres.

Au chapitre 1, nous présentons la modélisation du robot mobile de type unicycle,

nous commençons par décrire la position du robot dans l’espace de configuration. La

structure des contraintes découlant de la cinématique de roulement des roues est en-

suite analysés. Il est montré que ces contraintes sont en général non holonomes et par

conséquence réduisent la mobilité locale du robot. Enfin, le modèle dynamique du robot

mobile est présenté à la fin de ce chapitre.

Le chapitre 2 est dédié au problème de planification de trajectoire en présence de

contraintes non holonomes. L’existence de sorties plates est exploitée pour concevoir des

méthodes de planification de trajectoires qui garantissent que les contraintes non holo-

nomes sont satisfaites, et enfin, la planification de trajectoires en présence d’obstacles

est présentée.

Au chapitre 3, nous abordons le problème de stratégies de commande, en référence

aux deux tâches de mouvement de base, à savoir, la stabilisation et le suivi de trajec-

toire. Tout d’abord, nous discutons la linéarisation par retour d’état combiné avec un

contrôleur robuste basé sur les modes glissants intégraux. Ensuite, nous étudions la

méthode d’Immersion et Invariance pour évaluer son degré d’applicabilité et sa per-

formance par rapport à des méthodes plus classiques. Des simulations sont effectuées

pour montrer les performances des deux techniques de commande.

xii

Résumé

Le chapitre 4 traite de l’asservissement visuel. Nous commencons d’abord par

présenter la modélisation du système (caméra + robot), puis nous présentons quelques

algorithmes de base pour le traitement de l’image, visant à extraire de l’information

numérique dénommée primitives d’image (principalement moments de l’image). Ces

paramètres, par rapport aux images d’objets présents dans la scène observée par une

caméra, peuvent être utilisés pour estimer la pose de la caméra par rapport aux objets

et vice versa. À cette fin, les méthodes analytiques d’estimation de pose sont présentées.

Une opération fondamentale pour l’asservissement visuel est le calibrage de la caméra ;

à cette fin, une méthode de calibrage basée sur la mesure d’un certain nombre de cor-

respondances est présentée. Ensuite, les deux approches principales de l’asservissement

visuel sont introduites, à savoir l’asservissement visuel basé sur la position et l’asservis-

sement visuel basé sur l’image. L’utilisation des moments d’image en tant que primitives

visuelles dans les deux approches est également présentée. L’idée novatrice ici, à notre

connaissance au moins, consiste à effectuer l’asservissement visuel 2D en utilisant les

moments d’images comme indices visuels et en planifiant la trajectoire dans le plan

d’image, au lieu de la planifier dans l’espace cartésien du robot comme ce qui est utilisé

de coutume dans la littérature.

Le chapitre 5 est enfin consacré aux résultats expérimentaux sur la commande de

mouvement et les techniques d’asservissement visuel sur deux robots mobiles : KOALA

et PEKEE II, afin d’évaluer la qualité et l’applicabilité de ces techniques. Les tests

expérimentaux ont montré la validité de notre démarche.

Chapitre 1 : Modélisation

Le robot mobile de type unicycle est largement utilisé dans la litterature (Fig. 1).

Ce type de robot est surtout utilisé pour des applications intérieures. Son mécanisme

d’entrâınement a deux moteurs indépendants, chacun d’eux entrâıne une roue du robot.

Son modèle cinématique est

q̇ =

 cos θ 0
sin θ 0

0 1

v = g1(q)v + g2(q)ω (1)

Le vecteur q = [x y θ]T représente la position linéaire et angulaire du robot, le

vecteur v = [v ω]T représente les vitesses linéaires et angulaires et g1, g2 sont les deux

xiii

Résumé

Figure 1: Robot mobile de type unicycle.

champs de vecteurs de commande.

Le modèle cinématique de l’unicycle a les propriétés suivantes :

• L’existence d’une contrainte non holonome :

ẋ sin θ − ẏ cos θ = [sin θ − cos θ 0] q̇ = 0 (2)

• Commandabilité : Afin d’étudier la commandabilité de l’unicycle, nous utilisons

des outils de la théorie de la commande non linéaire [52]. Puisque le système

est ’sans dérive’, la commandabilité peut être vérifiée à l’aide de la condition

d’accessibilité.

rang([g1 g2 [g1,g2]]) = rang(

 cos θ 0 sin θ
sin θ 0 − cos θ

0 1 0

) = 3 = n (3)

où [g1,g2] est le crochet de Lie des deux champs de vecteurs de commande, la

condition (3) implique la commandabilité du système.

• Commandabilité par rapport à une trajectoire : Pour que le robot effectue un

mouvement cartésien souhaité, il est plus commode de générer une trajectoire

d’état correspondante qd(t) = [xd(t) yd(t) θd(t)]
T . Afin que cette trajectoire soit

xiv

Résumé

réalisable, elle doit satisfaire la contrainte non holonome sur le déplacement du

véhicule, en d’autres termes, elle doit satisfaire les équations

ẋd = vd cos θd
ẏd = vd sin θd
θ̇d = ωd

(4)

pour un choix de vd et ωd. Si on définit les erreurs de suivi suivantes

e =

 e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xd − x
yd − y
θd − θ

 (5)

et en utilisant la transformation

v = vd cos e3 − u1 (6)

ω = ωd − u2 (7)

puis en linéarisant et en calculant la matrice de commandabilité du système

linéarisé, on obtient

C =
[
B AB A2B

]
=

 1 0 0 0 −ω2
d vdωd

0 0 −ωd vd 0 0
0 1 0 0 0 0

 (8)

Ce système est commandable, étant donné que vd 6= 0 ou ωd 6= 0.

• Sorties plates : en choisissant le vecteur de sortie (x(t), y(t)), on peut écrire

θ(t) =atan2(ẏ(t), ẋ(t))

v(t) =±
√

(ẋ(t))2 + (ẏ(t))2

ω(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ(t))2 + (ẏ(t))2

(9)

Le vecteur d’état x et le vecteur d’entrées u qui peuvent alors s’exprimer en fonction

de y et de ses dérivées, le système est donc plat.

Reprenons le modèle cinématique (1) de l’unicycle. Avec le changement de coor-

données
z1 = θ

z2 = x cos θ + y sin θ

z3 = x sin θ − y cos θ

(10)

xv

Résumé

et la transformation
v = u2 + z3u1

ω = u1

(11)

on obtient la forme en châıne
ż1 = u1

ż2 = u2

ż3 = z2u1

(12)

Le modèle dynamique est obtenu en utilisant la méthode de Newton-Euler pour

trouver les accélérations des centres de masse. Ici, le robot se compose de trois corps ri-

gides : le corps du robot et deux roues. Cela nous permet d’obtenir le modèle dynamique

du robot


ẋ
ẏ

θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1
mR

1
mR

D
2IR − D

2IR


[
τr
τl

]
(13)

où

m = mr + 2

(
mw +

Iwy
R2

)
I = Ir + 2Iw +

(
mw +

Iwy
R2

)
D2

2

(14)

τr et τl sont les couples appliqués sur les roues droite et gauche respectivement, mr

est la masse du robot, mw est la masse de la roue, Ir est le moment d’inertie du robot

autour de son axe vertical, Iw est le moment d’inertie de la roue autour de son axe

vertical, Iwy est le moment d’inertie de la roue autour de son axe horizontal, R est le

rayon des roues et D est la distance entre leurs centres.

En utilisant la transformation

τ =

[
mR

2
IR
D

mR
2 − IR

D

] [
u1

u2

]
(15)

on obtient le modèle qu’on appelle le modèle cinématique du deuxième ordre
ẋ
ẏ

θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[
u1

u2

]
(16)

xvi

Résumé

Une étape très importante pour l’autonomie du robot mobile est la planification de

trajectoire, qu’on va discuter dans le prochain chapitre.

Chapitre 2 : Planification de trajectoires

Le problème de la planification d’une trajectoire pour un robot mobile peut être divisé

en deux sous-problèmes : trouver un chemin et définir une loi temporelle sur le chemin.

Toutefois, si le robot mobile est soumis à des contraintes non holonomes, le premièr

sous-problème devient plus difficile. En fait, en plus de satisfaire les conditions aux

limites (interpolation des points attribués et continuité du degré désiré) le chemin doit

également satisfaire les contraintes non holonomes.

2.1 Planification de chemin

Les sorties plates de l’unicycle permettent de résoudre le problème de planification plus

efficacement. Prenons le problème de conduire un unicycle à partir d’une configuration

initiale q(si) = qi = [xi yi θi]
T à une configuration finale q(sf) = qf = [xf yf θf]T .

Le problème de la planification de chemin peut être résolu en utilisant les polynômes

cubiques. Un polynôme cubique a 4 coefficients, et par conséquent, peut être utilisé pour

satisfaire à la fois les contraintes de position et de vitesse à la position initiale et finale.

Par interpolation des valeurs initiales xi, yi et des valeurs finales xf , yf des sorties

plates x, y, et en posant si = 0 et sf = 1, on peut utiliser les polynômes cubiques

suivants

x(s) = s3xf − (s− 1)3xi + αxs
2(s− 1) + βx(s− 1)2

y(s) = s3yf − (s− 1)3yi + αys
2(s− 1) + βy(s− 1)2

(17)

avec

αx = k cos θf − 3xf αy = k sin θf − 3yf

βx = k cos θi + 3xi βy = k sin θi + 3yi

Si le système est exprimé sous forme de châıne, dans ce cas, sous l’hypothèse z1,i 6=
z1,f , on a le chemin avec des polynômes cubiques

z1(s) = z1,fs− (s− 1)z1,i

z3(s) = s3z3,f − (s− 1)3z3,i + α3s
2(s− 1) + β3s(s− 1)2

(18)

xvii

Résumé

avec

α3 = z2,f (z1,f − z1,i)− 3z3,f

β3 = z2,i(z1,f − z1,i) + 3z3,i

2.2 Planification de chemin en présence d’obstacles

À cette fin, nous avons appliqué l’algorithme TangentBug [56], que nous avons modifié

pour le rendre plus adéquat à l’exigence de commande.

2.3 Planification de trajectoires

La planification de trajectoire consiste à choisir une loi temporelle s = s(t) pour un

certain chemin q(s), s ∈ [si, sf] en respectant les limitations des actionneurs

|v(t)| ≤ vmax, ∀t

|ω(t)| ≤ ωmax, ∀t
(19)

Il est possible de ralentir la loi temporelle par changement d’échelle uniforme dans le cas

où les vitesses sont inadmissibles. Pour cela, il est commode de réécrire la loi temporelle

par la substitution de t par la variable temporelle normalisée τ = t/T , avec T = tf − ti.
Une fois qu’une trajectoire a été planifiée, une stratégie de commande devrait être

mise en œuvre pour suivre cette trajectoire ou pour réaliser une posture donnée.

Chapitre 3 : Différentes stratégies de commande

Dans le cas des robots mobiles à roues, il est possible de distinguer deux problèmes de

commande (Fig. 2) :

• Stabilisation : le robot doit atteindre asymptotiquement une configuration désirée

qd, à partir d’une configuration initiale q0.

• Suivi de trajectoires : le robot doit suivre asymptotiquement une trajectoire

cartésienne désirée (xd(t), yd(t)), à partir d’une configuration initiale q0 = [x0 y0 θ0]T

qui peut ou pas être sur la trajectoire.

Dans ce chapitre, nous discutons de deux stratégies de commande : une stratégie

basée sur les modes glissants intégraux combinés par linéarisation par retour d’état, et

l’autre est basé sur la méthode d’Immersion et Invariance.

xviii

Résumé

(a) Stabilisation (b) Suivi de trajectoires

Figure 2: Commande de mouvement de l’unicycle

3.1 Linéarisation par bouclage

Considérons le système non-holonome

q̇ = G(q)v

v̇ = u
(20)

où q ∈ Rn et v ∈ Rm, et qui est soumis à n−m contraintes non holonomes.

En choisissant la fonction de sortie

y =


y1

y2
...
ym

 (21)

La linéarisation par bouclage est réalisée par la commande suivante

u = D−1(q)(z− F(q,v)) (22)

où

F(q,v) = ∂
∂q [Oqh(q)G(q)v] G(q)v (23)

D(q) = Oqh(q)G(q) (24)

Dans le cas de l’unicycle, on choisit la fonction de sortie suivante

y = h(q) =

[
x+ L cos θ
y + L sin θ

]
(25)

avec L 6= 0, d’où

D(q) =

[
cos θ −L sin θ
sin θ L cos θ

]
(26)

xix

Résumé

et

F(q) =

[
−vω sin θ − Lω2 cos θ
vω cos θ − Lω2 sin θ

]
(27)

3.2 Commande par mode de glissement intégral

L’avantage de la commande par mode de glissement est sa robustesse vis à vis des

perturbations et des incertitudes structurelles, c.-à-d. la réponse du système est peu

sensible aux variations des paramètres du système et des perturbations externes. Tou-

tefois, pendant la phase d’accrochage (avant que le glissement se produise), le système

n’a pas une telle insensibilité, par conséquent, elle ne peut être assurée à travers la

réponse complète. La robustesse au cours de la phase d’accrochage est normalement

améliorée par commande à gain élevé. Les problèmes de stabilité qui se posent limitent

inévitablement ses applications.

La notion de mode de glissement intégral se concentre sur la robustesse de la com-

mande dans l’espace d’état tout entier. L’ordre de l’équation du mouvement dans ce

type de mode de glissement est égal à la dimension de l’espace d’état. Par conséquent,

la robustesse du système peut être garantie tout au long d’une réponse complète du

système à partir du temps initial.

Pour un système dynamique

ẋ = f(x) +B(x)u (28)

où x ∈ Rn, u ∈ Rm, on suppose qu’il existe une loi de commande u = u0(x), telle que

le système (28) peut être stabilisé :

ẋ∗ = f(x) +B(x)u0 (29)

Le système (28) est normalement sous certaines conditions d’incertitude qui peuvent

être générées par les variations des paramètres, modes non modélisés et perturbations

externes, etc. Donc, le système en réalité peut être donné par

ẋ = f(x) +B(x)u+ h(x, t) = f(x) +B(x)u+B(x)uh uh ∈ Rm (30)

Tout d’abord, on conçoit une loi decommande

u = u0 + u1 (31)

xx

Résumé

où u1 est une commande discontinue permettant de rejeter la perturbation h(x, t).

Ensuite, on conçoit la fonction de commutation s

s = s0(x) + µ (32)

avec s, s0(x), µ ∈ Rm.

La strategie de commande consiste à faire en sorte que la commande équivalente

satisfasse

u1eq = −uh (33)

La condition (33) est satisfaite si on choisit

µ̇ =
∂s0

∂x
(f(x) +B(x)u0)

µ(0) = −s0(x(0))
(34)

La commande par mode de glissement est alors

u1 = −M(x)sign(s) (35)

3.2.1 Stabilisation

Après la linéarisation du système (20), le système en boucle fermée est équivalent à

deux sous-systèmes linéaires de la forme

ẋi = Biizi i = 1, 2 (36)

Et la commande calculée en utilisant la méthode des modes glissants intégraux est

donnée par

zi0 =− kTxi +m0(x)sign(si)

si =cTi xi + µi

µ̇i =− cTi (Biizi0)

µi(0) =− cTi xi(0)

(37)

Le vecteur de gain k peut être déterminé par les méthodes de placement de pôles ou

par optimisiation quadratique, de type Régulateur Linéaire Quadratique (LQR).

xxi

Résumé

3.2.2 Suivi de trajectoires

Étant donné une trajectoire de référence continue

yd(t) = h(qd(t)) (38)

le problème de suivi revient à concevoir une loi de commande pour le système (20) avec

la sortie y(t) = h(q(t)) telles que l’erreur de suivi

e(t) = y(t)− yd(t) (39)

soit bornée et tende asymptotiquement vers zéro. La commande est donc donnée par

zi0 =− kTxi +m0(x)sign(si) + ÿd

si =cTi xi + µi

µ̇i =− cTi (Biizi0)

µi(0) =− cTi xi(0)

(40)

3.3 Immersion et invariance (I&I)

La notion d’invariance joue un rôle fondamental dans la théorie de la commande des

systèmes non linéaires. Les notions de distribution et de variétés invariantes ont permis

d’analyser la stabilité des systèmes non linéaires pour donner lieu au développement

de nouvelles lois de commande, voir par exemple [52]. Un autre concept essentiel est

l’immersion. Il s’agit de transformer le système en un autre système de dimension

potentiellement supérieure, qui conserve les propriétés du premier. Plus précisément,

l’immersion d’un système est une application vers un espace de dimension plus élevée.

Récemment, dans [7], les notions géométriques de variétés invariantes et d’immersion

d’un système ont été exploitées pour fournir un cadre nouveau pour la construction de

lois de commande non linéaires sans avoir recours à la théorie de Lyapunov. Ainsi,

l’approche I&I propose de capturer le comportement désiré du système à commander

à l’aide d’un système cible auxiliaire. Le problème de commande se réduit alors à la

conception d’une loi de commande qui garantisse que le système commandé

ẋ = f (x) + g (x)u , x ∈ Rn, u ∈ Rm (41)

xxii

Résumé

Figure 3: Représentation graphique de l’approche par immersion et invariance.

converge asymptotiquement vers le système cible, avec un point d’équilibre (globale-

ment) asymptotiquement stable et décrit par

ξ̇ = α(ξ), ξ ∈ Rp, p < n (42)

et une application

x = π(ξ) (43)

telle que

f (π(ξ)) + g (π(ξ)) c (π(ξ)) =
∂π

∂ξ
α(ξ) (44)

pour une certaine application c ∈ Rn. Les propriétés de stabilité du système cible

sous la condition (43) impliquent que le point d’équilibre désiré peut-être stabilisé

asymptotiquement, tandis que l’équation différentielle partielle (44) implique que la

variété x − π(ξ) = 0 est invariante vis-à-vis des dynamiques du système étendu (41)-

(42). La convergence vers la variété est assurée par la condition : Toutes les trajectories

du système

ż =
∂φ

∂x
(f(x) + g(x)ψ(x, z)) (45)

ẋ = f(x) + g(x)ψ (x, z) (46)

xxiii

Résumé

sont bornées et satisfont

lim
t→∞

z(t) = 0 (47)

Le cœur du problème consiste donc à trouver une variété qui peut être rendue

invariante et attractive, avec la dynamique interne comme une copie de la dynamique

en boucle fermée désirée, et à concevoir une loi de commande qui oriente l’état du

système suffisamment proche de cette variété.

3.3.1 Stabilisation

Considérons le système sous forme (10), en choisissant la dynamique cible

ΣT :

{
ξ̇1 = −α1ξ1, α1 > 0

ξ̇2 = −α2ξ2, α2 > 0
(48)

et l’application

π(ξ) =

 ξ1

ξ2
b
b+1ξ1ξ2

 , b = α1/α2 (49)

on obtient la loi de commande en utilisant l’équation (44), et en assurant la condition

(45) u1 = λ1x1 + λ2
x3

x2

u2 = −α2x2

(50)

où λ1 = b(γ − α2), λ2 = −γ(b+ 1) et γ > 0.

3.3.2 Suivi de trajectoires

Considérons la dynamique de l’erreur de suivi d’une trajectroire décrite par les équations

(4)  ė1

ė2

ė3

 =

 ωde2

vd sin e3 − ωde1

0

+

 1 −e2

0 e1

0 1

[η1

η2

]
(51)

où
η1 = vd cos e3 − v
η2 = ωd − ω

xxiv

Résumé

en choisissant la dynamique cible

ΣT :
{
ξ̇ = −vd sin atan(rξ) , r > 0 (52)

et l’application

π(ξ) =

 0
ξ

π3(ξ)

 (53)

on obtient la loi de commande en utilisant les équations (44), et en assurant la condition

(45)

η1 (e, z) =− k1e1

η2 (e, z) =
1 + r2e2

2

1 + r2e2
2 + re1

[−γvdµe2 +
r

1 + r2e2
2

(−vd sin(e3) + wde1)− k2γz2]
(54)

où k1, k2, γ > 0, z2 = e3 + atan(re2) et

µ(e2, z2) =
1√

1 + r2e2
2

sin z2

z2
+

re2√
1 + r2e2

2

· 1− cos z2

z2
(55)

La commande de mouvement d’un système robotique dépend des informations four-

nies par les capteurs. Parmi ceux-ci, les capteurs visuels apportent aux robots une plus

grande connaissance de l’environnement dans lequel ils évoluent. Ainsi, il est tout natu-

rel que l’asservissement visuel joue un rôle important dans l’autonomie du robot, point

qui est abordé dans le prochain chapitre.

Chapitre 4 : Asservissement Visuel

Les techniques d’asservissement visuel consistent à utiliser les informations fournies par

une ou plusieurs caméras afin de commander les mouvements d’un système robotique.

Les systèmes de commande basés sur la vision peuvent être divisés en deux catégories :

ceux qui réalisent l’asservissement visuel dans l’espace opérationnel, aussi appelé asser-

vissement visuel basé sur la position (3D), et ceux qui réalisent l’asservissement visuel

dans l’espace image (2D). La principale différence réside dans le fait que les systèmes de

commande de la première catégorie utilisent les mesures visuelles pour reconstruire la

pose relative de l’objet par rapport au robot, ou vice versa, alors que les systèmes de la

deuxième catégorie sont basés sur la comparaison des paramètres de l’image courants

xxv

Résumé

et désirés. Il existe également des méthodes combinant des caractéristiques communes

aux deux catégories, qui peuvent être classées comme asservissement visuel hybride.

Toutes les méthodes d’asservissement visuel dépendent de la connaissance des pa-

ramètres visuels de l’image (primitives de l’image), ce qui rend l’extraction de l’image

une étape clé pour l’asservissement visuel. Une image contient un très grand nombre

de données représentées sous forme brute (pixels). Une grande partie de ces données ne

comporte pas d’information pertinente. Dans le cadre d’une application en robotique

(notamment en temps réel), il est indispensable de pouvoir identifier les fractions de

l’image qui véhiculent des informations pertinentes en fonction du type de primitives

du modèle que l’on cherche à identifier dans la scène. Il est également nécessaire de

représenter ces informations de façon concise dans la mémoire du système.

À cette fin, deux opérations de base sont nécessaires :

• La segmentation d’images : elle se compose d’un processus de regroupement, par

lequel l’image est divisée en un certain nombre de groupes, appelés segments,

de telle sorte que les composants de chaque groupe soient similaires en ce qui

concerne une ou plusieurs caractéristiques. Typiquement, les segments distincts

de l’image correspondent à des objets distincts de l’environnement, ou parties

d’objets homogènes. Il existe deux approches au problème de la segmentation

d’images :

– segmentation basée sur les régions.

– segmentation basée sur les contours.

• L’interprétation d’images est le processus de calcul des primitives de l’image,

representées par des régions ou par des contours. L’interprétation utilisée dans les

applications d’asservissement visuel exige parfois le calcul des moments d’image.

L’avantage d’utiliser ces moments en asservissement visuel vient du fait qu’ils

fournissent une représentation générique d’un objet quelconque, avec des formes

simples ou complexes, qui peuvent être segmentées en une image. Ils fournissent

également un sens plus géométrique et intuitif que les autres primitives. En outre,

le fait que les moments d’image sont calculés sur toute la région les rend moins

vulnérables au bruit d’image et aux autres erreurs de mesure.

xxvi

Résumé

4.1 Modélisation de la caméra

Le modèle de la caméra est l’ensemble des lois géométriques définissant la façon dont

un point de l’espace à trois dimensions se projette sur un plan à deux dimensions, lors

du processus de saisie d’une image.

Adoptant la représentation en coordonnées homogènes, un point arbitraire p̃b =

[x y z 1]Tb exprimé dans le repère objet se projette sur le plan image en un pixel

p̃I [xI yI 1] grâce à la transformation

λp̃I = KTc
bp̃b (56)

Où Tc
b représente la matrice de transformation homogène entre le repère de l’objet

et le repère de la caméra, K est la matrice de projection perspective et λ est un facteur

d’échelle scalaire.

4.2 Calibrage de la caméra

Une fois le modèle de la caméra choisi, ses paramètres doivent être identifiés. Les valeurs

estimées de ces paramètres pour un appareil photo sont obtenues par calibrage. C’est

une étape nécessaire pour toute application de vision. De nombreuses techniques ont

été développées, et peuvent être classées en deux catégories

• Calibrage basé sur des objets 3D de référence : cette technique utilise

l’observation d’objets 3D de coordonnées connues. Les objets de calibrage (mire)

sont généralement des points répartis sur des plans orthogonaux ou sur un plan

translaté dans la direction de sa normale. Le calcul peut alors être effectué de

façon relativement simple.

• Calibrage automatique : Le mouvement connu de la caméra filmant une scène

statique est utilisé pour poser des contraintes sur les paramètres intrinsèques

prenant en compte la rigidité des objets filmés en utilisant uniquement les infor-

mations de l’image.

4.3 Asservissement visuel basé sur la position (3D)

L’asservissement visuel 3D utilise en entrée de la boucle de commande des informations

tridimensionnelles, à savoir la posture q de la caméra, par rapport à l’objet d’intérêt. La

xxvii

Résumé

Figure 4: Schéma bloc de l’asservissement visuel basé sur la position.

tâche à réaliser s’exprime alors sous la forme d’une situation de référence qd à atteindre.

La commande repose ainsi sur la détermination de la situation q de la caméra, à partir

des informations visuelles extraites de l’image, cette opération est appelée l’estimation

de pose

En choisissant deux points de l’objet cible (xo1, yo1) et (xo2, yo2), leurs coordonnées

dans le repère robot (xr1, yr1) et (xr2, yr2), respectivement, peuvent être obtenues en

utilisant la formule de projection de la camera (56). Ces coordonnées peuvent être

ensuite utilisées pour calculer la position et l’orientation du robot.

À cause du bruit affectant les mesures des coordonnées dans le plan image, les

résultats de cette méthode sont affectés par des erreurs. Pour rendre l’estimation de la

pose plus robuste, un certain nombre de points n > 2 sont considérés et q est calculée en

employant les techniques des moindres carrés. Une fois que q est déterminé en utilisant

des données de l’image, le problème devient un problème de commande de mouvement,

et le schéma bloc de l’asservissement visuel 3D est représenté sur le figure 4.

4.4 Asservissement visuel basé sur l’image (2D)

Les techniques d’asservissement visuel 2D utilisent directement les informations vi-

suelles, notées s, extraites de l’image. La tâche à réaliser est alors spécifiée directement

dans l’image en termes des primitives visuelles de référence sd à atteindre. La loi de

commande consiste alors à commander le mouvement de la caméra de manière à annu-

ler l’erreur entre les informations visuelles courantes s(t) et les primitives désirées sd.

Cette approche permet donc de s’affranchir de l’étape de reconstruction 3D de la cible.

xxviii

Résumé

Figure 5: Schéma bloc de l’asservissement visuel basé sur l’image.

Le choix des informations visuelles et l’obtention de la relation les liant au mouve-

ment de la caméra sont deux aspects fondamentaux de l’asservissement visuel 2D. Cette

relation, obtenue par dérivation des informations visuelles s par rapport à la situation

q de la caméra, est définie par la matrice jacobienne de l’image ou la matrice d’interac-

tion Js. La synthèse de la commande repose sur l’élaboration d’une méthode de calcul

explicite de cette matrice souvent associée à des primitives géométriques simples, telles

que des points, des droites, des cercles, des ellipses, ou encore des moments de l’image.

L’objectif de tous les régimes de commande à base d’images est de minimiser une er-

reur es(t), qui est généralement définie par es(t) = sd(t)−s(t). On a la loi de commande

v = Ĵ+
s Kses (57)

où J+
s est la pseudo-inverse de la matrice Js et K est une matrice difinie-positive. Cette

loi de commande assure que l’erreur es converge vers zéro de façon exponentielle avec

un taux de convergence qui dépend du choix de Ks. Le schéma bloc de commande est

représenté sur la figure 5.

4.4.1 Calcul de la jacobienne de l’image

La matrice jacobienne qui correspond à un point p(X,Y) de l’image :

Js(s, ϕ) =

[1
H−Ho (−Y sinϕ+XY cosϕ) 1 +X2 + T

H−Ho (Y cosϕ+XY sinϕ)
1

H−HoY
2 cosϕ XY + T

H−HoY
2 sinϕ

]
(58)

La matrice jacobienne de l’image d’un ensemble de k points de l’objet p1, · · ·pk peut

être construite en considérant (2k × 1) vecteurs de primitives. Si Jsi(si, ϕ) désigne la

xxix

Résumé

matrice jacobienne correspondant au point pi, alors la matrice jacobienne de l’ensemble

des points sera la matrice d’ordre (2k × 2) :

Js(s, ϕ) =

 Js1(s1, ϕ)
...

Jsk(sk, ϕ)

 (59)

La matrice jacobienne d’un moment d’image d’ordre (i, j) est :

Jmij = [Jvmij Jωmij] (60)

où

Jvmij =
1

Hm
((i+ j + 3)mi,j+1 cosϕ− imi,j sinϕ)

Jωmij = imi−1,j + (i+ j + 3)mi+1,j+

T

Hm
[imi−1,j+1 cosϕ+ (i+ j + 3)mi,j+1 sinϕ]

(61)

4.4.2 Planification de trajectoire dans le plan de l’image

Notre approche pour l’asservissement visuel 2D est basée sur la régulation d’une fonc-

tion d’erreur entre la mesure actuelle et une valeur constante désirée. Il n’est, par

conséquent, pas évident de présenter des contraintes dans les trajectoires réalisées, telles

que l’objet cible reste dans le champ de vue de la caméra, ou pour assurer la conver-

gence de toutes les configurations initiales. En outre, nous avons utilisé l’approche de

Ĵ+
s = J+

s (s(t)) qui nécessite le calcul de J+
s (s(t)) à chaque itération, qui prend du

temps et rend la matrice Js, et donc le système, plus sensible au bruit d’image et aux

erreurs de mesure. D’autre part, il semble utile d’utiliser l’approche Ĵ+
s = J+

s (sd) qui

peut être calculée hors-ligne. Ceci, cependant, implique que la stabilité est assurée dans

un petit voisinage de sd.

Le moyen de contourner ce problème consiste à effectuer une planification de tra-

jectoire sur le plan de l’image, c’est-à-dire, fournir les valeurs désirées des primitives

d’image sd(t) qui correspondent à une trajectoire cartésienne réalisable. Avec ce cou-

plage de la planification de trajectoire dans l’espace image et l’asservissement visuel

à base d’images, les contraintes que l’objet reste dans le champ de la caméra peuvent

être prises en compte au niveau de la planification. En outre, les mesures courantes des

primitives d’image restent toujours proches de leurs valeurs désirées et la robustesse de

l’asservissement visuel à base d’images est assurée le long de la trajectoire.

Un schéma bloc de cette approche est illustré sur la figure 6.

xxx

Résumé

Figure 6: Schéma d’un Asservissement visuel 2D associée à une planification de trajectoire

sur le plan image.

Chapitre 5 : Résultats expérimentaux

Les essais de validation expérimentale ont d’abord été réalisés sur le robot mobile Koala,

qui est un robot à roues de taille moyenne. Il dispose de deux roues motorisées, avec une

vitesse maximale de 0,4 m/s. Il est équipé de 16 capteurs de proximité et de capteurs de

lumière ambiante, ainsi que d’une caméra montée sur une tourelle. Koala est muni d’un

processeur Motorola 68331@22MHz. Une stratégie de commande basée sur les modes

de glissement intégraux combinée avec une linéarisation par retour d’état a été mise

en œuvre sur le Koala. Ce contrôleur a fourni un résultat bien meilleur que celui du

régulateur PID linéaire traditionnel dans le cas de suivi de trajectoires et de rejet de

perturbations.

La caméra fixe du Koala et le manque de qualité de l’image, le rendent peu com-

mode pour mettre en œuvre les techniques d’asservissement visuel. Afin de valider nos

résultats d’asservissement visuel, nous avons utilisé le robot mobile Pekee II. C’est

aussi un robot à roues de taille moyenne, en forme de cylindre conçu pour des applica-

tions intérieures. Il a deux roues motorisées, avec une vitesse maximale de 250 mm/s

et un couple maximal de 3.0Nm. Les positions des roues sont mesurées au moyen de

deux odomètres (255 560 sommets par cycle de roue). Le robot est équipé de 8 cap-

teurs ultrason et un pan-tilt AXIS 214 PTZ caméra qui offre une sortie vidéo avec une

résolution jusqu’à 704x576 avec un débit d’images jusqu’à 30 images par seconde. Une

stratégie de commande fondée sur l’application de la méthodologie de l’Immersion et

xxxi

Résumé

l’Invariance a été appliquée sur le robot pour la stabilisation et le suivi de trajectoires.

Des résultats satisfaisants ont été obtenus pour les deux problèmes de commande. Une

stratégie d’asservissement visuel basé sur la position a été mise en œuvre. Celle-ci a as-

suré un suivi de trajectoire satisfaisant, tant que l’objet cible reste dans le champ de la

caméra, ce qui est assuré par le bon choix des paramètres de la trajectoire de référence.

La différence entre la trajectoire calculée à l’aide de l’estimation de la pose et celle

calculée en utilisant les odomètres est due aux incertitudes de calibrage de la caméra.

Une stratégie d’asservissement visuel basé sur l’mage a été ensuite mise en œuvre en

utilisant les moments d’image comme primitives visuelles, cette stratégie d’asservisse-

ment visuel est combinée avec une planification de trajectoires sur le plan de l’image,

Les expériences ont montré un bon suivi de trajectoires.

Contributions

Les principales contributions de cette thèse portent sur les points qui suivent :

• Une stratégie de commande basée sur les modes de glissement intégraux est ap-

pliquée, avec l’objectif de la stabilisation et le suivi des trajectoires. Cette stratégie

est combinée avec la linéarisation par retour d’état, qui est étendue pour inclure

le modèle cinématique et le modèle dynamique, ou ce qu’on appelle le modèle

cinématique de deuxième ordre. Cette combinaison a conduit à des résultats sa-

tisfaisants en termes de stabilité et de robustesse [29].

• Une stratégie de commande basée sur l’application de l’immersion et l’Inva-

riance est développée, le système en boucle fermée se comporte asymptotique-

ment comme un système cible donné, ce qui rend le réglage des performances du

système plus simple et avec une signification physique. La stabilité du système

est garantie par un choix approprié des systèmes cibles.

• Deux méthodes permettant de conduire le robot mobile vers une position désirée à

l’aide de l’asservissement visuel, l’un basé sur la position (3D), l’autre sur l’image

(2D), ont été étudiées. Les moments d’image ont été utilisés comme primitives

d’image. L’extraction des moments d’image s’est avérée plus robuste vis à vis du

bruit d’image.

xxxii

Résumé

• Une nouvelle approche de l’asservissement visuel qui repose sur l’image est ici

proposée. Elle est basée sur la génération de trajectoires sur le plan de l’image

directement (Calcul des valeurs des primitives d’image correspondantes à une

trajectoire cartésienne donnée). Cette approche garantit que la robustesse et la

stabilité bien connues de l’asservissement 2D ont été étendues en raison du fait

que les emplacements initial et désiré de la caméra sont proches. Les trajectoires

obtenues garantissent que la cible reste dans le champ de vue de la caméra et que

le mouvement du robot correspondant est physiquement réalisable [30].

xxxiii

Introduction

State of the art

The increased use of intelligent robotic systems in current indoor and outdoor appli-

cations is due to the efforts made by researchers and engineers on all fronts. Today,

mobile systems have greater autonomy, and new applications abound, ranging from

factory transport systems, airport transport systems, road/vehicular systems, to mili-

tary applications, automated patrol systems, homeland security surveillance, and rescue

operations.

Mobile robots may be classified by:

• The environment in which they move around:

– Land robots. They are most commonly wheeled, but also include legged

robots with two or more legs (humanoid, or resembling animals or insects)

and robots on tracks.

– Aerial robots are usually referred to as unmanned aerial vehicles (UAVs)

– Underwater robots are usually called autonomous underwater vehicles (AUVs)

• The device they use to move, mainly:

– Wheeled mobile robot (WMR).

– Legged robot : human-like legs (i.e. an android) or animal-like legs.

– Tracks.

We can estimate that the wheeled mobile robots are the bulk of mobile robots (one

may see [20] for their classification and structural properties of their kinematic and

dynamic models). Historically, their study came soon enough, following that of robot

1

Introduction

manipulators in the mid 70s. Their low complexity has made good first subjects of

study interested in robotics for autonomous systems. However, despite their apparent

simplicity (flat mechanisms, linear actuators), these systems have raised a number of

difficult problems. A number of these problems arise from the fact that these systems

are characterized by kinematic constraints that are not integrable and cannot therefore

be eliminated from the model equations, these constraints are the so-called nonholo-

nomic constraints. These constraints typically arise when the system has less controls

than configuration variables. For instance a differential-drive robot has two controls

(linear and angular velocities) while it moves in a 3-dimensional configuration space,

see for instance [73]. As a consequence, any path in the configuration space does not

necessarily correspond to a feasible path for the system. This is basically why the

purely geometric techniques developed in motion planning for holonomic systems do

not apply directly to nonholonomic ones. In fact, as pointed out in an early paper

of Brockett [17], nonholonomic control systems with more degrees of freedom than

controls (underactuated mechanisms), though controllable in their configuration space

([15], [10], [99]), cannot be stabilized by any C1 state feedback control.

The above-mentioned peculiar nature of nonholonomic kinematics in addition to

the growing applications of wheeled mobile robots has attracted interest of researchers.

Many studies in nonholonomic control systems have been carried out in past decades,

e.g., see([58], [86], [16], [103], [4], [25],[33], [34], [96]). In the case of wheeled mobile

robots it is possible to distinguish between two control problems: Stabilization about

a certain robot posture and tracking a given trajectory. From a control viewpoint, the

special nature of nonholonomic kinematics makes the second problem easier than the

first; in fact, this problem is truly nonlinear; linear control is ineffective, even locally,

and innovative design techniques are needed.

Many control strategies have been proposed in the literature to solve both control

problems, most of the control laws are based on the kinematic model of the mobile robot

and are not applicable for systems where forces and torques are considered as the inputs

since these controllers are not differentiable. Discontinuous state feedback controller

is used in [4], [5]. Time-varying controllers have been designed to stabilize mobile

robot in ([85], [32], [54], [55]). Among those, a global exponential set point control is

proposed in [32] and bounded tracking control in [55]. Backstepping based methods

have been considered in several papers ([39]; [54]; [98]) a switched finite-time control

2

Introduction

algorithm has been proposed in [9] and dynamic feedback linearization has been used

for trajectory tracking and posture stabilization in [77]. Stabilization of the dynamic

WMRs has received lesser attention in the literature. A discontinuous controller has

been developed in [6] for the kinematic and dynamic model of the mobile robot using a

polar coordinates system. In [38] a combined kinematic/torque control law is developed

using backstepping and asymptotic stability is guaranteed by Lyapunov theory.

The notion of planning a trajectory for robot manipulators has appeared at the

early sixties, but a real progress in that field had to wait till early eighties when many

works in the fields of robotics and mathematics algorithms were used to develop and

implement a number of algorithms for trajectory planning. One may refer to [61] and

[88] for more details on path and trajectory planning. The easier and more interesting

(from an engineering perspective) task of tracking a given trajectory has received much

attention; in [58], [76], [68], [38] a local viewpoint in the stabilization feedback design has

been taken by using Taylor linearization of the corresponding error model. A dynamic

feedback approach has been proposed in [28]. Tracking control using Lyapunov’s direct

method can be seen in [25], [54].

The adoption of sensors is of crucial importance to achieve high-performance robotic

systems. It is worth classifying sensors into proprioceptive sensors that measure the

internal state of the manipulator, and exteroceptive sensors that provide the robot with

knowledge of the surrounding environment. Exteroceptive sensors include force sensors,

proximity sensors, range sensors and vision sensors. Vision sensors, or more precisely

video cameras, are exteroceptic sensors that provide the richest information. So it is

natural that many studies have examined the coupling of vision and robotics. This area

of research became known as visual servoing since it comes to controlling the movement

of a robot using visual information. Many works are based on the exploitation of visual

data to achieve various objectives such as positioning against an object, monitoring,

seizure, etc.. The first use of vision in closed loop is due to Shirai and Inoue [91] who

described how a vision sensor can increase positioning accuracy. There was talk of visual

feedback. But it is to Park and Hill [47] that we owe the appearance of the term visual

servoing. Visual servoing techniques could be classified into three main classes [51]:

Position Based Visual Servoing (PBVS or 3D), Image Based Visual Servoing (IBVS or

2D) and the Homography Based Visual Servoing (HBVS or 2 1/2 D) (see [31] for the

application of visual servoing techniques on an UAV).

3

Introduction

Position based visual servoing needs a full reconstruction of the target pose with

respect to the camera; it leads to a state estimation problem in the Cartesian frame

[95], [40], and a classical state-space control design [3], [90], [87]. The main drawback of

the PBVS methods is the need of a perfect knowledge of the target geometrical model

as described in [51], hence it is highly sensitive to camera calibration errors. The

second class, known as 2D visual servoing, aims to control the dynamics of features

directly in the image plane. Many extensions to the classical IBVS methods have been

proposed for the control of non-linear dynamic systems, as the robust backstepping

based approach proposed in [44], [108], and optimal control techniques [109]. Image

moments have been widely used in computer vision for a very long time, especially for

pattern recognition applications, see e.g. [50], [82], [70], or in 2D visual servoing of

robotic systems in many articles [12], [22], [23]. A path planning in image plane for an

eye-in-hand robotic system was proposed in [67], and for a mobile robot in [84]. Both

papers used points as visual features.

Context and Objectives

Autonomous robots are robots that can perform desired tasks in unstructured envi-

ronments without continuous human guidance. The development of an autonomous

robot poses many fundamental problems in various fields. For example, the problem of

perception of the environment by the robot (sensors) is related to the field of vision, the

problem of trajectory tracking is related to control theory, and another fundamental

problem is that of trajectory planning. In other words, an autonomous robot must be

able to sense the environment boundary and obstacles, decide how to move from some

point to the other (motion planning), and finally, control its driving mechanism such

that the planned motion is actually executed in reality.

The objective of this thesis is to design and implement the methods that give a

mobile robot the ability to perform a task or achieve a given mission. For this, it

is necessary to determine robot’s movements relative to its local environment. These

movements are performed using the trajectory planning, obstacle avoidance, motion

control, localization, perception and navigation. More precisely, within the scope of

this thesis, we will be interested in the following methodological aspects:

4

Introduction

• Reactive path planning in order to find a collision-free path from a given initial

position to a predefined target point in presence of static obstacles.

• Deriving discontinuous state feedback controllers to address both nonholonomic

robot motion control problems: Stabilization about a certain robot posture and

tracking a given trajectory.

• Proposing strategies to enable a mobile robot to perform a given task indepen-

dently, that is to say solely from information provided in real time by sensors. A

very important step of this advanced autonomy is visual servoing. So we will be

interested in the problem of the control and achievement of visual-based tasks for

the navigation of a mobile robot and the execution and control of basic motions

like going to an object or target following.

• Conducting simulations and experimental tests on a wheeled mobile robot to

establish validity for the proposed strategies.

Thesis Outline

This document is composed of five chapters. In the first chapter, we present the model-

ing of the mobile robot of type differential-drive, we begin by describing robot position

in the configuration space. The structure of the kinematic constraints arising from the

pure rolling of the wheels is then analyzed; it is shown that such constraints are in

general nonholonomic and consequently reduce the local mobility of the robot. The

kinematic model associated with the constraints is introduced to describe the instan-

taneous admissible motions, control properties of this model have been shown, and

conditions are given under which it can be put in chained form. Finally, the dynamic

model of the mobile robot is presented at the end of this chapter.

The second chapter is dedicated to the trajectory planning problem in the presence

of nonholonomic constraints. The existence of flat outputs is exploited to devise trajec-

tory planning methods that guarantee that the nonholonomic constraints are satisfied.

Path planning in presence of obstacle is then discussed, with the goal of generating

smooth collision-free trajectories.

In chapter three, we will discuss the motion control problem for a nonholonomic

mobile robot, with reference to two basic motion tasks, i.e., posture regulation and

5

Introduction

trajectory tracking. First, we will discuss a robust control strategy based on Integral

Sliding Mode controller combined with state feedback linearization. In addition, we will

study the method known as Inversion and Immersion developed by A. Astolfi and R.

Ortega [8] to assess the degree of applicability and performance on nonholonomic robot

systems in relation to more usual methods in nonlinear control theory. Simulations will

be performed to assess the quality of both control techniques.

In chapter four, we address visual servoing for a mobile robot, we begin by presenting

the modelling of the (camera + robot) system, then we present some basic algorithms

for image processing, aimed at extracting numerical information referred to as image

feature parameters (mainly image moments). These parameters, relative to images

of objects present in the scene observed by a camera, can be used to estimate the

pose of the camera with respect to the objects and vice versa. To this end, analytic

pose estimation methods, based on the measurement of a certain number of points are

presented. A fundamental operation concerns the camera calibration; to this end, a

calibration method based on the measurement of a certain number of correspondences

is presented. Then, the two main approaches to visual servoing are introduced, namely

position-based visual servoing and image-based visual servoing. Using the so-called

image moments as image feature parameters in both approaches is also presented.

The novel idea here, as far as we know, is to perform 2D visual servoing using image

moments as visual features, while planning the trajectory in the image plane, instead

of the Cartesian space as usual in the literature. Chapter five is then devoted to

experimental results of motion control and visual servoing techniques on two mobile

robots: Koala and Pekee II in order to assess the quality and applicability of those

techniques. Experimental tests have shown the validity of our approach.

We conclude the document with some final remarks and some perspectives.

Contributions

The main contributions of this thesis are being made on the following points:

• A robust control strategy on the basis of Integral Sliding Mode approach is de-

rived, with the objective of posture regulation and tracking pre-generated tra-

jectories. This controller is combined with state feedback linearization of both

6

Introduction

kinematic and dynamic models. This combination has led to satisfactory results

in terms of stabilization and robustness [29].

• A control strategy based on the application of Immersion and Invariance method-

ology is described. The proposed control strategy guarantees that the closed-loop

system asymptotically behaves like a given target system achieving asymptotic

model matching, which makes the system performance adjustment simpler and

physically meaningful. Stability of the system has been guaranteed by appropri-

ate choice of the target systems.

• Presenting two methods devoted to drive a mobile robot to a desired position

using visual servoing. Both Position-based visual servoing and Image-based visual

servoing have been examined. In Image-based visual servoing, image moments

have been used as image features, the extraction of image moments from the image

proved to be more robust with respect to image noise and varying luminosity .

• A new approach to image-based visual servoing is developed, which is based on

the trajectory generation on the image plane directly (computing image features

values corresponding to a given Cartesian trajectory). This approach guarantees

that the well-known robustness and stability of image-based servoing have been

extended due to the fact that initial and desired camera locations are close to each

other. The obtained trajectories ensure that the target remains in the camera

field of view and that the corresponding robot motion is physically realizable [30].

7

Chapter 1

Modelling

In this chapter we present the modelling of wheeled mobile robots. The kinematic

model of a unicycle is very known, but for the reader’s convenience, we will remind of

the main steps. The structure of the kinematic constraints arising from the pure rolling

of the wheels is first analyzed; it is shown that such constraints are in general nonholo-

nomic and consequently reduce the local mobility of the robot. The kinematic model

associated with the constraints is introduced to describe the instantaneous admissible

motions, and conditions are given under which it can be put in chained form. Finally,

the dynamic model, that relates the admissible motions to the generalized forces acting

on the robot DOFs, is presented at the end of this chapter.

1.1 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each individual

wheel contributes to the robot’s motion and, at the same time, imposes constraints

on it. Wheels are tied together based on robot chassis geometry, and therefore their

constraints combine to form constraints on the overall motion of the robot chassis. But

the forces and constraints of each wheel must be expressed with respect to a clear and

consistent reference frame. In the following, the kinematic model of a wheeled vehicle

of type differential-drive will be analyzed in detail.

9

1. MODELLING

(a) KOALA (b) PEKEE II

Figure 1.1: Examples of Differential-drive mobile robots

1.1.1 Differential-drive (Hilare) Mobile Robot

This type of robot is very popular because of its simplicity of construction and inter-

esting kinematic properties. Figure 1.1 shows two differential-drive mobile robots. A

schematic figure of a Differential-drive mobile robot is shown in Fig. 1.2. This type

of robot is mostly used for indoor applications. Its drive mechanism has two indepen-

dent motors; each of these motors powers one of the robot’s wheels. Thus, the actual

kinematic inputs that drive the robot and affect its speed and direction of motion are

the two wheel speeds. With this in mind, at first glance it seems intuitive to write

the kinematic equations of motion of a differential-drive mobile robot in terms of these

speeds. However, on most commercial mobile robots, there exists a low-level controller

that controls the linear and angular velocity of the robot. Therefore, for application

purposes, it is more convenient to choose the linear and angular velocity of the mobile

robot as the inputs of the kinematic model.

Let’s consider the differential-drive mobile robot shown in Fig. 1.2. We assume

that the robot motion is reasonably slow such that the longitudinal traction and lateral

force exerted on the robot’s tires do not exceed the maximum static friction between

the tires and the floor in the longitudinal and lateral directions. In other words, we

assume that no slip happens between the robot’s tires and the floor during the whole

motion of the robot.

10

1.1 Kinematic Models and Constraints

Figure 1.2: Differential-drive mobile robot.

The first direct result of this assumption is that the velocities of the center of the

robot’s wheels do not have any lateral components. As a consequence, one can assume

that the velocity of point (x, y), the midpoint of the line attaching the center of the

wheels, does not have any lateral component and is parallel to the wheel planes. The

second result of the no-slip assumption is that one can relate the velocity of point (x, y)

to the rotational velocity of the wheels.

Let the coordinates of point p(x, y) define the global position of the robot with

respect to the inertial coordinate system O : {X,Y }. We consider a line that is perpen-

dicular to the wheel axis and goes through the point (x, y) as an orientation reference

for the robot. The angle that this line makes with the positive X axis, θ, represents

the orientation of the robot.

We assume that the point (x, y) on the robot moves with a linear speed of v, while

the robot has an angular velocity of ω. Now, we can use the first direct result of the

no-slip assumption and write the velocity components of the point (x, y) in the inertial

frame as

ẋ = v cos θ

ẏ = v sin θ
(1.1)

11

1. MODELLING

Also, the rate of change of the robot’s orientation is

θ̇ = ω (1.2)

Combining Eqs. (1.1) and (1.2) results in the kinematic equations of motion of the

robot, which can be written in the following matrix form

q̇ =

 cos θ 0
sin θ 0

0 1

v (1.3)

where v = [v ω]T . We note that the differential-drive mobile robot is kinematically

equivalent to a unicycle, which is a vehicle with a single orientable wheel1. We can also

put eq. (1.3) in the form

q̇ = G(q)v = g1(q)v + g2(q)ω (1.4)

where g1 and g2 are the two input vector fields.

The driving and steering velocities v and ω can be expressed as a function of the

actual velocity inputs, i.e., the angular speeds ωr and ωl of the right and left wheel,

respectively:

v =
R(ωr + ωl)

2

ω =
R(ωr − ωl)

D

(1.5)

where R is the radius of the wheels and D is the distance between their centers.

The constraint that the wheel cannot slip in the lateral direction is given in form

(A.3) as (see appendix A)

ẋ sin θ − ẏ cos θ = [sin θ − cos θ 0] q̇ = 0 (1.6)

In this case, holonomy condition (A.8) gives:

∂γ

∂y
sin θ = −∂γ

∂x
cos θ (1.7)

γ cos θ +
∂γ

∂θ
sin θ = 0 (1.8)

1From now on we will refer to the differential-drive (Hilare-type) mobile robot by unicycle

12

1.1 Kinematic Models and Constraints

γ sin θ − ∂γ

∂θ
cos θ = 0 (1.9)

By proper multiplication and addition of (1.8) and (1.9) we get ∂γ/∂θ = 0 and γ = 0.

This confirms that constraint (1.6) is nonholonomic.

System (1.3) displays a number of structural control properties (see [18], [27], [20])

A. Controllability at a point

The local linearization of eq. (1.3) at any point qe is

˙̄q =

 cos θe 0
sin θe 0

0 1

v = G(qe)v q̄ = q− qe (1.10)

The rank of the controllability matrix of system (1.10) is two, which means that

the local linearized system is not controllable. In order to study the controllability

of the unicycle, we use tools from nonlinear control theory [52]. Since the system is

driftless (i.e., no motion takes place under zero input), a more systematic approach is

to take advantage of the controllability conditions for nonlinear driftless systems. In

particular, controllability may be verified using the accessibility rank condition.

dim ∆A = n (1.11)

where ∆A is the accessibility distribution associated with system (1.4), i.e., the involu-

tive closure of distribution ∆ = span {g1,g2}
It is easy to check that the accessibility rank condition is satisfied globally (at any

qe), since

dim ∆A = rank([g1 g2 [g1,g2]]) = rank(

 cos θ 0 sin θ
sin θ 0 − cos θ

0 1 0

) = 3 = n (1.12)

with [g1,g2] being Lie bracket of the two input vector fields, and since the system is

driftless , condition (1.12) implies its controllability.

Controllability can also be shown constructively, i.e., by providing an explicit se-

quence of maneuvers bringing the robot from any start configuration (x0, y0, θ0) to any

desired goal configuration (xd, yd, θd). Since the unicycle can rotate on itself, this task

13

1. MODELLING

is simply achieved by an initial rotation on (x0, y0) until the unicycle is oriented toward

(xd, yd), followed by a translation to the goal position, and by a final rotation on (xd, yd)

so as to align θ with θd.

However, as for the stabilizability to a point, system (1.3) has less control inputs

than generalized coordinates, so it fails to meet Brockett’s necessary condition for

smooth stabilizability of a driftless regular systems (i.e., such that the input vector

fields are well defined and linearly independent at qe), which requires a number of

inputs equal to the number of states (see Appendix A.2).

B. Controllability about a trajectory

In order for the robot to perform a given desired cartesian motion, it is more convenient

to generate a corresponding state trajectory qd(t) = [xd(t), yd(t), θd(t)]
T . In order for

this trajectory to be feasible, it must satisfy the nonholonomic constraint on the vehicle

motion or, in other words, it must satisfy the equations

ẋd = vd cos θd
ẏd = vd sin θd
θ̇d = ωd

(1.13)

for some choice of reference inputs vd and ωd.

It is possible to compute the error vector by comparing the desired state qd(t) =

[xd(t), yd(t), θd(t)]
T with the current measured state q(t) = [x(t), y(t), θ(t)]T . However,

a simpler analysis can be conducted by defining the state tracking error through a

rotation matrix as [57], [74].

e =

 e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xd − x
yd − y
θd − θ

 (1.14)

By differentiating e with respect to time, and using (1.3) and (1.13), one easily finds

ė1 = vd cos e3 − v + e2ω

ė2 = vd sin e3 − e1ω

ė3 = ωd − ω

(1.15)

Using the input transformation

14

1.1 Kinematic Models and Constraints

v = vd cos e3 − u1 (1.16)

ω = ωd − u2 (1.17)

which is clearly invertible, the following expression is obtained for the tracking error

dynamics

ė =

 0 ωd 0
−ωd 0 0

0 0 0

 e +

 0
sin e3

0

 · vd +

 1 −e2

0 e1

0 1

[u1

u2

]
(1.18)

Let’s consider local linearization of system (1.18) about the reference trajectory, on

which clearly e = 0.

ė =

 0 ωd 0
−ωd 0 vd

0 0 0

 e +

 1 0
0 0
0 1

[u1

u2

]
(1.19)

When vd and ωd are constant, the above linear system becomes time-invariant and

controllable, since matrix

C =
[
B AB A2B

]
=

 1 0 0 0 −ω2
d vdωd

0 0 −ωd vd 0 0
0 1 0 0 0 0

 (1.20)

has rank 3 provided that either vd or ωd are nonzero. Therefore, we conclude that

kinematic system (1.3) can be locally stabilized by linear feedback about trajectories

which consist of linear or circular paths, executed with constant velocity [27].

C. Flat Outputs

The flatness property is very essential to solve the trajectory planning problem more

efficiently. A nonlinear dynamic system ẋ = f(x) +G(x)u is differentially flat if there

exists a set of outputs y, called flat outputs, such that the state x and the control

inputs u can be expressed algebraically as a function of y and its time derivatives up

to a certain order

x = x(y, ẏ, ÿ, · · · ,y(r))

u = u(y, ẏ, ÿ, · · · ,y(r))

15

1. MODELLING

As a consequence, once an output trajectory is assigned for y, the associated tra-

jectory of the state x and history of control inputs u are uniquely determined.

In the case of unicycle, let’s refer to kinematic model (1.3). Its first two equations

imply that, given a Cartesian path (x(t), y(t)), the associated state trajectory is q(t) =

[x(t) y(t) θ(t)]T where

θ(t) = atan2(ẏ(t), ẋ(t)) + kπ k = 0, 1. (1.21)

where atan2 is a two aruments function (See A.3 for the definition of atan2).

The two possible choices for k account for the fact that the same Cartesian path

may be followed moving forward (k = 0) or backward (k = 1). If the initial orientation

of the robot is assigned, only one of the choices for k is correct. The geometric inputs

that drive the robot along the Cartesian path are easily obtained from (1.3),(1.21) as

v(t) = ±
√

(ẋ(t))2 + (ẏ(t))2 (1.22)

ω(t) = ẋ(t)ÿ(t)−ẍ(t)ẏ(t)
(ẋ(t))2+(ẏ(t))2

(1.23)

where the choice of the sign of v(t) depends on the type of motion (forward or back-

ward).

1.2 Chained Form

The possibility of transforming kinematic model (1.3) of a mobile robot in a canoni-

cal form is of great interest for solving planning and control problems with efficient,

systematic procedures. The most useful canonical structure is the chained form.

A (2, n) chained form is a two-input driftless system

ż = γ1(z)u1 + γ2(z)u2

whose equations are expressed as

ż1 = u1

ż2 = u2

ż3 = z2u1

...

żn = zn−1u1

(1.24)

16

1.2 Chained Form

Using the following notation for a ‘repeated’ Lie bracket

adkfg(x) =
[
f, adk−1

f g
]

(x)

ad0
fg(x) = g(x)

adfg(x) = [f, g] (x)

one has for system (1.24)

γ1 =



1
0
z2

z3
...

zn−1


, γ2 =



0
1
0
0
...
0


⇒ adkγ1γ2 =


0
...

(−1)k

...
0

 (1.25)

where (−1)k is the (k + 2)th component. This implies that the system is controllable,

because the accessibility distribution

∆A = span
{
γ1, γ2, adγ1γ2, · · · , adn−1

γ1 γ2

}
has dimension n. And we have that the degree of nonholonomy is κ = n− 1.

As mentioned in [71] and[59], many nonlinear mechanical systems can be trans-

formed via coordinates change and feedback into chained form. We are interested in

transforming a generic two-input driftless system

q̇ = g1(q)u1 + g2(q)u2 (1.26)

in chained form (1.24). Necessary and sufficient conditions have been given in [71] for

the conversion of a two-input system like (1.26) into chained form by means of a change

of coordinates and an invertible input transformation:

z = T (q) u = B(q)v (1.27)

Let’s consider kinematic model (1.4) of the unicycle. With the change of coordinates

z1 = θ

z2 = x cos θ + y sin θ

z3 = x sin θ − y cos θ

(1.28)

17

1. MODELLING

and the input transformation
v = u2 + z3u1

ω = u1

(1.29)

which is clearly invertible, we obtain the (2,3) chained form (see [72] for details)

ż1 = u1

ż2 = u2

ż3 = z2u1

(1.30)

We note that, while z1 is the orientation θ, coordinates z2 and z3 represent the position

of the robot in the moving body coordinate system P {Xr, Yr}. This transformation

is defined everywhere in the configuration space, with the exception of points where

cos θ = 0. The equivalence between the two models is then subject to the condition

θ 6= ±kπ/2, with k = 1, 2, . . .

It is easy to prove that the flat outputs of a (2, n) chained form are z1 and zn, from

which it is possible to compute all the other state variables as well as the associated

control inputs. For example, in the case of the (2, 3) chained form (1.30) we can write

z2 =
ż3

ż1

u1 = ż1

u2 =
ż1z̈3 − z̈1ż3

ż2
1

In the next section we will discuss the dynamic model of the unicycle which is less

frequent in literature.

1.3 Dynamic Model

The aim of this section is the derivation of a dynamical state-space model of wheeled

mobile robot describing the dynamical relations between the configuration coordinates

and the torques generated by the motors. We will consider that the robot is moving

with small velocities which will allow us to neglect friction and Coriolis effects.

1.3.1 Equations of Motion

To find the equations of motion, we will use the Newton-Euler method in finding the

accelerations of the centers of mass for all bodies. Here, the robot as a dynamic system

18

1.3 Dynamic Model

consists of three rigid bodies: the robot body and two wheels. For this purpose we will

use the body coordinate system to express the inertial accelerations of the three bodies

[36].

Let us assume that the inertial acceleration of the origin of the body coordinate

system is

a0 =

 ẍr
ÿr
0


R

(1.31)

and angular velocity and acceleration of the body coordinate system are

ω =

 0
0

θ̇


R

, α =

 0
0

θ̈


R

(1.32)

Let’s denote by c = [c 0 0]TR the distance between the center of mass of the robot’s

body and the origin of the robot’s body frame. The inertial acceleration of the center

of mass of the robot body expressed in the body coordinate system is

ar = a0 +α× c− ω2c arx
ary
0


R

=

 ẍr − cθ̇2

ÿr + cθ̈
0


R

(1.33)

Let’s denote by dr = [0 − D/2 0]TR the distance between the center of mass of

the robot’s right wheel and the origin of the robot’s body frame, then the inertial

acceleration of the center of mass of the robot right wheel expressed in the body frame

is
awr = a0 +α× dr − ω2dr awrx

awry
0


R

=

 ẍr + D
2 θ̈

ÿr + D
2 θ̇

2

0


R

(1.34)

and the same for the left wheel

awl = a0 +α× dl − ω2dl awlx
awly

0


R

=

 ẍr − D
2 θ̈

ÿr − D
2 θ̇

2

0


R

(1.35)

19

1. MODELLING

Figure 1.3: Free body diagram

(a) Accelerations (b) Forces

Figure 1.4: Accelerations and forces diagram

From Fig. 1.3 and Fig. 1.4, one can write the external force and the inertia force

balance in the Xr direction

Fr + Fl = mwawrx +mwawlx +mrarx

= mw

(
ẍr +

D

2
θ̈

)
+mw

(
ẍr −

D

2
θ̈

)
+mr

(
ẍr − cθ̇2

)
= (mr + 2mw)ẍr −mrcθ̇

2

(1.36)

20

1.3 Dynamic Model

(a) Accelerations (b) Forces

Figure 1.5: Accelerations and forces diagram for the right wheel

The inertia force balance in the Yr direction is given by

Nr +Nl = mwawry +mwawly +mrary

= mw

(
ÿr +

D

2
θ̇2

)
+mw

(
ÿr −

D

2
θ̇2

)
+mr

(
ÿr + cθ̈

)
= (mr + 2mw)ÿr +mrcθ̈

(1.37)

The external moment and the inertia moment balance in the Zr direction is

(Fr − Fl)
D

2
= (Ir + 2Iw) θ̈ +mwawrx

D

2
−mwawlx

D

2
+mraryc

= (Ir + 2Iw) θ̈ +mw

(
ẍr +

D

2
θ̈

)
D

2
−mw

(
ẍr −

D

2
θ̈

)
D

2

+mrc(ÿr + cθ̈)

=

(
Ir + 2Iw +mw

D2

2

)
θ̈ +mrc(ÿr + cθ̈)

(1.38)

By observing Fig. 1.5a and Fig. 1.5b, one can write the external moment and the

inertia moment balance in the Yr direction

−FrR+ τr = Iwyαw

= Iwy
1

R

(
ẍr +

D

2
θ̈

)
(1.39)

21

1. MODELLING

This results in the following for the traction force, Fr , on the right wheel

Fr =
1

R

(
τr −

Iwy
R

(
ẍr +

D

2
θ̈

))
(1.40)

A similar result for the traction force of the left wheel, Fl , can be achieved

Fl =
1

R

(
τl −

Iwy
R

(
ẍr −

D

2
θ̈

))
(1.41)

where τr and τl are the right and the left wheel’s driving torque, respectively. Since

these torques are the input to the system, we shall write the equations of motion in

terms of these torques. This goal is achieved by substituting Eqs. (1.40) and (1.41)

into Eqs. (1.36), (1.37), and (1.38). The resulting dynamic equations of motion are

(
mr + 2mw +

2Iwy
R2

)
ẍr −mrcθ̇

2 =
1

R
(τr + τl)

(mr + 2mw) ÿr +mrcθ̈ = Nr +Nl(
Ir + 2Iw +mw

D2

2
+ Iwy

D2

2R2
+mrc

2

)
θ̈ +mrcÿr =

D

2R
(τr − τl)

(1.42)

The lateral tire force Nr+Nl can be determined by finding a kinematic relation that

allow as to compute the lateral acceleration ÿr. The nonholonomic constraint defined

in Eq. (1.6) can be used for determining the lateral acceleration component ÿr. The

nonholonomic constraint is repeated here.

ẏr = −ẋ sin θ + ẏ cos θ = 0 (1.43)

ẏr is zero due to the no-slip condition, ÿr could be nonzero under certain conditions.

The lateral acceleration can be found by differentiating Eq. (1.43)

ÿr = −ẍ sin θ + ÿ cos θ − θ̇ (ẋ cos θ + ẏ sin θ)

= −ẍ sin θ + ÿ cos θ − θ̇ẋr
(1.44)

Equation (1.43) implies that

ẏ = ẋ tan θ (1.45)

Differentiating the above equation results in

ÿ = ẍ tan θ + ẋθ̇(1 + tan2 θ) (1.46)

22

1.3 Dynamic Model

Substituting this into Eq. (1.44) yields

ÿr = θ̇
(
ẋ(1 + tan2 θ) cos θ − ẋr

)
(1.47)

However, we have ẋ = ẋr cos θ − ẏr sin θ and ẏr = 0. Using these relations with the

above equation shows that the lateral acceleration component of the robot becomes

ÿr = 0 (1.48)

Equation (1.48) allows us to neglect the second dynamic equation and simplify the

third dynamic equation in (1.42). Finally, the dynamic equations of motion for the

robot reduce to the following(
mr + 2mw +

2Iwy
R2

)
v̇ −mrcω

2 =
1

R
(τr + τl)(

Ir + 2Iw +mw
D2

2
+ Iwy

D2

2R2
+mrc

2

)
ω̇ =

D

2R
(τr − τl)

(1.49)

where v = ẋr and ω = θ̇

Let us now define the generalized state variable

qg =


q1

q2

q3

q4

q5

 =


x
y
θ
v
ω

 (1.50)

The complete system (kinematic + dynamic) becomes

q̇g =


q4 cos q3

q4 sin q3

q5

mrcq
2
5/m

0

+


0 0
0 0
0 0
1
mR

1
mR

D
2IR − D

2IR


[
τr
τl

]
(1.51)

where

m = mr + 2

(
mw +

Iwy
R2

)
I = Ir + 2Iw +

(
mw +

Iwy
R2

)
D2

2
+mrc

2

(1.52)

In what follows we will consider that the robot center of gravity is situated on the

wheels axis, in this case we have c = 0.

23

1. MODELLING

1.3.2 Second-order kinematic model

The dynamical model of a nonholonomic system is expressed as (see [19] for details)

M(q)q̈ + f(q, q̇) = B(q)τ + A(q)λ

AT (q)q̇ = 0
(1.53)

where M(q) is a positive definite symetric inertia matrix, AT (q) is the matrix associ-

ated with nonholonmic constraints, λ is a vector of Lagrange multipliers and B(q)τ is

the set of generalized forces applied to the system. As shown in [19] it can be written

in state space form as

q̇ = G(q)v

J(q)v̇ + m(q,v) = GT (q)B(q)τ
(1.54)

where v ∈ Rm is the vector of pseudo-velocities, G(q) is a matrix whose columns are a

basis for the null space of AT (q), so that AT (q)G(q) = 0 and we have

J(q) = GT (q)M(q)G(q)

m(q,v) = GT (q)M(q)Ġ(q) + GT (q)f(q, q̇)
(1.55)

Under the assumption that det(GT (q)B(q)) 6= 0, it is possible to perform a partial

linearization via feedback on (1.54) by letting

τ =
(
GT (q)B(q)

)−1
(J(q)u + m(q, q̇)) (1.56)

where u ∈ Rm is the pesudo-acceleration vector. The resulting system is then

q̇ = G(q)v

v̇ = u
(1.57)

By defining the state qg = [qT vT]T , system (1.57) can be expressed as

q̇g =

[
G(qg)v

0

]
+

[
0
I

]
u (1.58)

which is known as the second-order kinematic model of the constrained mechanical

system.

The following two properties of the system (1.58) have been established in [18]

• Nonholonomic system (1.58) is controllable.

24

1.3 Dynamic Model

• The equilibrium point x∗ = 0 of the nonholonomic system (1.58) can be made

Lagrange stable, but can not be made asymptotically stable by a smooth state

feedback.

In the case of mobile robot of type unicycle, the dynamical model (1.51) takes the

form  m 0 0
0 m 0
0 0 I

 ẍ
ÿ

θ̈

 =

 1
R cos θ 1

R cos θ
1
R sin θ 1

R sin θ
D
2R − D

2R

[τr
τl

]
+

 sin θ
− cos θ

0

 (−mvω)(1.59)

[
sin θ − cos θ 0

]  ẋ
ẏ

θ̇

 = 0 (1.60)

In that case we have

f(q, q̇) = 0, M(q) =

 m 0 0
0 m 0
0 0 I


B(q) =

 1
R cos θ 1

R cos θ
1
R sin θ 1

R sin θ
D
2R − D

2R

 , G(q) =

 cos θ 0
sin θ 0

0 1


and we have

[GT (q)B(q)]−1 =

[
R
2

R
D

R
2 −R

D

]
J(q) =

[
m 0
0 I

]
GT (q)M(q)Ġ(q) = 0

m(q,v) = 0

By using the input transformation

τ =
(
GT (q)B(q)

)−1
J(q)u =

[
mR

2
IR
D

mR
2 − IR

D

] [
u1

u2

]
(1.61)

the second-order kinematic model is obtained as
ẋ
ẏ

θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[
u1

u2

]
(1.62)

25

1. MODELLING

Summarizing, in nonholonomic mechanical systems -such as wheeled mobile robots-

it is possible to cancel the dynamic effects via nonlinear state feedback, provided that

the dynamic parameters are exactly known and the complete state of the system is

measured.

Under these assumptions, the control problem can be directly addressed by choosing

v in such a way that the kinematic model

q̇ = G(q)v

behaves as desired. From v, it is possible to derive the actual control inputs at the

generalized force level through (1.61). Since u = v̇, then v must be differentiable with

respect to time.

26

Chapter 2

Trajectory Planning

The problem of planning a trajectory for a mobile robot can be divided into two sub-

problems: finding a path and defining a timing law on the path. However, if the

mobile robot is subject to nonholonomic constraints, the first of these two subproblems

becomes more difficult. In fact, in addition to meeting the boundary conditions (in-

terpolation of the assigned points and continuity of the desired degree) the path must

also satisfy the nonholonomic constraints at all points.

2.1 Path and Timing Law

Assume that one wants to plan a trajectory q(t), for t ∈ [ti, tf], that drives a mobile

robot from an initial configuration q(ti) = qi to a final configuration q(tf) = qf in

the absence of obstacles. The trajectory q(t) can be broken down into a geometric

path q(s), with dq(s)/ds 6= 0 for any value of s, and a timing law s = s(t), with the

parameter s varying between s(ti) = si and s(tf) = sf in a monotonic fashion, i.e.,

with ṡ(t) ≥ 0, for t ∈ [ti, tf]. A possible choice for s is the arc length along the path;

in this case, it would be si = 0 and sf = L, where L is the length of the path.

The above space-time separation implies that

q̇ =
dq

dt
=
dq

ds
ṡ

The generalized velocity vector is then obtained as the product of the vector dq
ds , which

is directed as the tangent to the path in configuration space, by the scalar ṡ, that

varies its modulus. Note that the vector
[
dx
ds

dy
ds

]T
∈ R2 is directed as the tangent to

27

2. TRAJECTORY PLANNING

the Cartesian path, and has unit norm if s is the cartesian arc length. Nonholonomic

constraints of form (A.4) can then be rewritten as

A(q)q̇ = A(q)
dq

ds
ṡ = 0

If ṡ(t) > 0, for t ∈ [ti, tf], one has

A(q)
dq

ds
= 0 (2.1)

This condition, that must be verified at all points by the tangent vector on the con-

figuration space path, characterizes the notion of geometric path admissibility induced

by kinematic constraint (A.4) that actually affects generalized velocities.

Geometrically admissible paths can be explicitly defined as the solutions of the

nonlinear system
dq

ds
= G(q)ũ (2.2)

where ũ is a vector of geometric inputs that are related to the velocity inputs u by

the relationship u(t) = ũ(s) · s(t). Once the geometric inputs ũ(s) are assigned for

s ∈ [si, sf], the path of the robot in configuration space is uniquely determined. The

choice of a timing law s = s(t), for t ∈ [ti, tf], will then identify a particular trajectory

along this path.

In the case of a mobile robot with unicycle-like kinematics, constraint (1.6) gives

the following condition for geometric admissibility of the path[
sin θ − cos θ 0

] dq
ds

=
dx

ds
sin θ − dy

ds
cos θ = 0

This condition implies that the tangent to the Cartesian path must be aligned with the

robot sagittal axis. Geometrically admissible paths for the unicycle are the solutions

of the system

dx

ds
= ṽ cos θ

dy

ds
= ṽ sin θ

dθ

ds
= ω̃

(2.3)

where ṽ, ω̃ are related to v, ω by

v(t) = ṽ(s)ṡ(t)

ω(t) = ω̃(s)ṡ(t)
(2.4)

28

2.2 Path Planning

2.2 Path Planning

The property of flat outputs of the unicycle allows to solve the planning problem effi-

ciently. In fact, one may use any interpolation scheme to plan the path of y such as to

satisfy the appropriate boundary conditions. The evolution of the other configuration

variables, together with the associated control inputs, can then be computed alge-

braically from y(s). The resulting configuration space path will automatically satisfy

nonholonomic constraints (2.1).

Let’s consider the problem of planning a path that drives a unicycle from an initial

configuration q(si) = qi = [xi yi θi]
T to a final configuration q(sf) = qf = [xf yf θf]T .

2.2.1 Planning via Cubic polynomials

The problem of path planning can be solved using cubic polynomials which have two

desired features. First, they are paths of minimal curvature. And second, they are

easy to generate online. A cubic polynomial has 4 coefficients, and hence may be used

to satisfy both position and velocity constraints at the initial and final positions. By

interpolating the initial values xi, yi and the final values xf , yf of the flat outputs x, y,

and letting si = 0 and sf = 1, one may use the following cubic polynomials

x(s) = s3xf − (s− 1)3xi + αxs
2(s− 1) + βx(s− 1)2

y(s) = s3yf − (s− 1)3yi + αys
2(s− 1) + βy(s− 1)2

(2.5)

These polynomials satisfy the boundary conditions on x, y. The orientation at each

point being related to dx
ds , dy

ds by

θ(s) = atan2(
dy

ds
(s),

dx

ds
(s)) + kπ k = 0, 1. (2.6)

In order to determine the constants αx, αy, βx and βy it is necessary to impose the

additional boundary conditions

dx

ds
(0) = ki cos θi

dx

ds
(1) = kf cos θf

dy

ds
(0) = ki sin θi

dy

ds
(1) = kf sin θf

where ki 6= 0, kf 6= 0 are free parameters that must however have the same sign. This

condition is necessary to guarantee that the unicycle arrives in qf with the same kind

of motion (forward or backward) with which it leaves qi.

29

2. TRAJECTORY PLANNING

(a) k=2 (b) k=2

Figure 2.1: Two parking maneuvers planned via cubic Cartesian polynomials

For example, by letting ki = kf = k > 0, one obtains

αx = k cos θf − 3xf αy = k sin θf − 3yf

βx = k cos θi + 3xi βy = k sin θi + 3yi

Figures (2.1), (2.2) and (2.3) show the paths produced by the planner that uses

cubic polynomials for solving different maneuver problems with different values of k.

2.2.2 Planning via the chained form

In order to plan a path for the system in chained form, it is first necessary to compute

the initial and final values zi and zf that correspond to qi and qf , by using the change

of coordinates (1.28). It is then sufficient to interpolate the initial and final values of z1

and z3 (the flat outputs) with the appropriate boundary conditions on the remaining

variable z2 = dz3
ds /

dz1
ds .

Let’s adopt the same cubic polynomial approach, under the assumption z1,i 6= z1,f ,

we have the path

z1(s) = z1,fs− (s− 1)z1,i

z3(s) = s3z3,f − (s− 1)3z3,i + α3s
2(s− 1) + β3s(s− 1)2

(2.7)

with s ∈ [0, 1]. The constants α3 and β3 can be determined by imposing the boundary

conditions on z2:

30

2.2 Path Planning

(a) k=2 (b) k=5

Figure 2.2: Planning a parallel parking maneuver via cubic Cartesian polynomials

(a) k=2 (b) k=5

Figure 2.3: Planning a pure reorientation maneuver via cubic Cartesian polynomials

31

2. TRAJECTORY PLANNING

(a) (b)

Figure 2.4: Two parking maneuvers planned via the chained form

z2,i =
dz3
ds (0)
dz1
ds (0)

z2,f =
dz3
ds (1)
dz1
ds (1)

from which

α3 = z2,f (z1,f − z1,i)− 3z3,f

β3 = z2,i(z1,f − z1,i) + 3z3,i

It is obvious that we have a singularity when z1,i = z1,f , i.e., when θi = θf . One

way to avoid this case, is by introducing a via point qv = [xv yv θv]
T such that θv 6= θi,

and solve the original planning problem using two consecutive paths, the first from qi

to qv and the second from qv to qf . Another possibility is to let z1,f = z1,i + 2π; this

corresponds to the same final configuration of the unicycle, but the robot will reach its

destination while performing a complete rotation of orientation along the path.

Once the path has been planned for the chained form, the path q(s) in the original

coordinates and the associated geometric inputs u(s) are reconstructed by inverting

the change of coordinates (1.28) and of inputs (1.29), respectively.

The paths produced by this planner for solving different maneuver problems are

shown in Figs. 2.4, 2.5.

32

2.3 Path planning in presence of obstacles

(a) using via point (b) θf = θf − 2π

Figure 2.5: Planning parallel parking maneuvers via the chained form

2.3 Path planning in presence of obstacles

A complete path planning algorithm should guarantee that the robot reach its target,

which makes obstacle avoidance an important issue for the navigation of autonomous

mobile robots. In practice, an autonomous robot cannot base its motion planning

on complete ’a priori’ knowledge of the environment. The robot must rather use its

sensors to perceive the environment and plan accordingly. In other words, the robot

must incorporate new information gained during plan execution. As time goes on, the

environment changes and the robot’s sensors gather new information.

Obstacle avoidance adds a second level of difficulty. At this level we should take

into account both the constraints due to the obstacles (i.e., dealing with the configura-

tion parameters of the system) and the nonholonomic constraints linking the parameter

derivatives. It appears necessary to combine geometric techniques addressing the obsta-

cle avoidance together with control theory techniques addressing the special structure

of the nonholonomic motions.

The Bug algorithms, termed Bug1 and Bug2 [66], provide a way to overcome

unexpected obstacles in the robot motion from a start point qstart, to a goal point qgoal.

The goal of the algorithms is to generate a collision free path from the qstart to qgoal

with the underlying principle based on driving around the detected obstacles. These

33

2. TRAJECTORY PLANNING

Figure 2.6: Obstacle avoidance with Bug 2 algorithm.

algorithms consist of two reactive modes of motion, termed behaviors, and transition

conditions for switching between them. The two behaviors are moving directly toward

the target and following an obstacle boundary. When the robot hits an obstacle it

switches from moving toward the target to boundary following. It leaves the obstacle

boundary when a leaving condition, which ensures that the distance to the target

decreases, holds.

Fig. 2.6 represents the path generated by Bug 2 for two obstacles.

The Bug approach minimizes the computational burden on the robot while still

guaranteeing global convergence to the target. However, the Bug algorithms do not

make the best use of the available sensory data to produce short paths. These algo-

rithms use mainly contact sensors. To mend this, a modification to this algorithm

termed TangentBug was proposed in [56]. TangentBug exploits range data. It con-

structs a local tangent graph, or LTG (introduced in [65]), and uses it to produce paths

which often resemble the shortest path to the goal (see [56] for details).

The steps of the TangentBug algorithm are:

• Move towards qgoal along the locally optimal direction on the current LTG sub-

graph, until one of the following events occurs:

– qgoal is reached. Stop.

34

2.3 Path planning in presence of obstacles

Figure 2.7: Obstacle avoidance with TangentBug algorithm using sensors of range R

– A local minimum of d(x,qgoal) is detected. Go to step 2.

• Choose a boundary following direction. Move around the boundary using the

LTG while recording dfollowed(qgoal), the minimal distance along the followed

obstacle’s boundary to qgoal and dreach(qgoal), the minimal distance within the

visible environment to qgoal, until one of the following occurs:

– qgoal is reached. Stop.

– The leaving condition dreach(qgoal) < dfollowed(qgoal) holds. Go to Step 1.

– The robot completes a loop around the obstacle. qgoal is unreachable. Stop.

Fig. 2.7 represents the path generated by TangantBug for two obstacles.

The problem of this algorithm is that the robot moves suddenly when it switches

between the two behaviors (moving toward the target and following an obstacle bound-

ary). This sudden change in path is not desirable for some trajectory tracking con-

trol schemes, which require a smooth path with continuous speed and curvature and

bounded accelerations.

To overcome this shortcoming, we modified the algorithm in such a way that avoids

such abrupt transitions. To this end, cubic polynomials (2.5) are generated to connect

the robot and the target in approach-target behavior, and the robot and the obstacle

in approach-obstacle behavior. Constants αx, αy, βx and βy are adjusted in such a way

as to guarantee continuous velocity and curvature, as shown in Fig. 2.8.

35

2. TRAJECTORY PLANNING

(a) (b)

Figure 2.8: Modified TangentBug algorithm for path planning: (a) cubic polynomial

is generated to connect the robot’s current position and an LTG node C1; (b) a cubic

polynomial is generated to connect the current position and the target qgoal.

2.4 Trajectory Planning

Trajectory planning process consists of choosing a timing law s = s(t) for a certain path

q(s), s ∈ [si, sf]. However, actuator limitations should be respected. For example, in

the case of differential-drive unicycle the wheel angular speeds ωr and ωl are subject

to bounds of the form

|ωr(t)| ≤ ωrmax, ∀t

|ωl(t)| ≤ ωlmax, ∀t

Through Eq. (1.5), these bounds can be mapped to constraints on v and ω.

|v(t)| ≤ vmax, ∀t

|ω(t)| ≤ ωmax, ∀t
(2.8)

So it is necessary to verify whether the velocities along the planned trajectory are

admissible. However, it is possible to slow down the timing law via uniform scaling in

the case where velocities are inadmissible. To this end, it is convenient to rewrite the

timing law by replacing t with the normalized time variable τ = t/T , with T = tf − ti.

From (2.4), we have

36

2.4 Trajectory Planning

v(t) = ṽ(s)
ds

dτ

dτ

dt
= ṽ(s)

ds

dτ

1

T

ω(t) = ω̃(s)
ds

dτ

dτ

dt
= ω̃(s)

ds

dτ

1

T

(2.9)

and therefore is sufficient to increase T (i.e., the duration of the trajectory) to

reduce uniformly v and ω, so as to stay within the given bounds.

It is also possible to plan directly a trajectory without separating the geometric

path from the timing law. To this end, all the techniques presented before can be

used with the time variable t directly in place of the path parameter s. A drawback

of this approach is that the duration tf − ti of the trajectory is fixed, and uniform

scaling cannot be used to satisfy bounds on the velocity inputs. In fact, an increase

(or decrease) of tf − ti would modify the geometric path associated with the planned

trajectory.

Once the timing law of x(t) and y(t) have been determined, timing laws of θ, v and

ω are then derived using kinematic equations (1.3)

θ(t) = atan2(ẏ(t), ẋ(t))

v(t) =
√

(ẋ(t))2 + (ẏ(t))2

ω(t) =
ẋ(t) · ÿ(t)− ẍ(t) · ẏ(t)

(ẋ(t))2 + (ẏ(t))2

(2.10)

A possible choice of s is s(t) = 0.5 tanh(σ(t−T/2))+0.5, with σ > 0. This function

has small initial and final velocities, which is very suitable for practical applications.

37

Chapter 3

Motion Control

3.1 Introduction

From the theoretical point of view, the control of nonholonomic systems presents in-

teresting aspects. First of all, the control problem is a nonlinear one since a local

linearization of the system is not controllable. Moreover, controllability in the nonlin-

ear setting — which is strictly related to the nonholonomic nature of the system— does

not imply stabilizability by smooth time-invariant feedback [17].

In this chapter, a unicycle-like vehicle is considered, although some of the presented

control schemes may be extended to other kinds of mobile robots. Two basic control

problems, illustrated in Fig. 3.1, will be considered [92]:

• Posture stabilization: the robot must asymptotically reach a given posture, i.e.,

a desired configuration qd, starting from an initial one q0.

• Trajectory tracking : the robot must asymptotically track a desired Cartesian

trajectory (xd(t), yd(t)), starting from an initial configuration q0 = [x0 y0 θ0]T

that may or may not be ‘matched’ with the trajectory.

We will discuss Integral Sliding Mode controller combined with feedback lineariza-

tion. In addition, we will study the method known as Inversion and Immersion de-

veloped by A. Astolfi and R. Ortega [8] to assess the degree of applicability and per-

formance on a system of nonholonomic robot in relation to more usual methods in

nonlinear control theory. Simulations will be performed to assess the validity and qual-

ity of both control techniques.

39

3. MOTION CONTROL

(a) Posture stabilization (b) Trajectory tracking

Figure 3.1: Control problems for a unicycle

3.2 Feedback Linearization

3.2.1 Input/output linearization

Let’s consider the nonholonomic system described in section 1.3.2

q̇ = G(q)v

v̇ = u
(3.1)

where q ∈ Rn and v ∈ Rm, and this system is subject to n − m nonholonomic con-

straints. As shown in [19], for a nonholonomic system with n degrees of freedom and

m actuators, there exists an output vector function y = h(q) and a static state feed-

back control u(q,v) such that the closed loop is stable, and the output y = h(q)

asymptotically converges to zero. This can be achieved by feedback linearization.

We start by choosing the output function

y =


y1

y2
...
ym

 (3.2)

which depends on the configuration state variable q only, but not on the state v,

such that the largest linearizable subsystem is obtained by differentiating this output

function as follows

ẏ = Oqh(q)q̇

= Oqh(q)G(q)v
(3.3)

40

3.2 Feedback Linearization

Figure 3.2: Unicycle mobile robot.

By differentiating again, one may write

ÿ = F(q,v) + D(q)u (3.4)

where

F(q,v) = ∂
∂q [Oqh(q)G(q)v] G(q)v (3.5)

D(q) = Oqh(q)G(q) (3.6)

By choosing h(q) in such a way that the matrix D(q) is nonsingular for all q, then

linearization is achieved by the following feedback control

u = D−1(q)(z− F(q,v)) (3.7)

where z ∈ Rm is the new external control input. And the resulting system is

ÿ = z (3.8)

In the case of unicycle (1.62), input-output linearizability is guaranteed through

this choice of output function

y = h(q) =

[
x+ L cos θ
y + L sin θ

]
(3.9)

41

3. MOTION CONTROL

with L 6= 0. They represent the Cartesian coordinates of a point B located along the

sagittal axis of the unicycle at a distance |L| from the wheels axis (see Fig. 3.2). This

choice of function h results in the following expressions of D and F

D(q) =

[
cos θ −L sin θ
sin θ L cos θ

]
(3.10)

F(q) =

[
−vω sin θ − Lω2 cos θ
vω cos θ − Lω2 sin θ

]
(3.11)

It is easy to verify that matrix D(q) is nonsingular for all q given that L 6= 0.

Remark 1 Friction forces that have not been taken into account in the modelling step,

in addition to measurement errors, parameter uncertainties and other unmodeled dy-

namics appear in (3.7) as a vector F
′
(t) ∈ R2×1 as follows

u = D−1(q)(z− F(q, v) + F
′
(t)) (3.12)

which can be considered as input disturbances. Denoting the disturbances as a vector

function zh(t) ∈ R2×1, a real applied input is represented as follows

za = z + zh(t) (3.13)

The choice of the output equations means that the controlled point is not situated

on the wheel’s axis. Sometimes it may be necessary to control the midpoint of the

wheel’s axis, in this case we resort to dynamic state feedback linearization.

3.2.2 Dynamic State Feedback Linearization

With reference to a generic driftless nonlinear system

q̇ = G(q)v q ∈ Rn, v ∈ Rm (3.14)

Let us recall that the problem consists in finding, if possible, a feedback compensator

of the form [26]

ξ̇ = a(q, ξ) + b(q, ξ)u

v = c(q, ξ) + d(q, ξ)u
(3.15)

with state ξ and input u, such that the closed-loop system (3.14) and (3.15) is equiva-

lent, under a state transformation, to a linear system.

42

3.2 Feedback Linearization

Now let’s consider the second-order kinematic model described in section 1.3.2
ẋ
ẏ

θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[
u1

u2

]
(3.16)

where u1 and u2 are connected with torques generated by wheels through input transfor-

mation (1.61), and we define the linearizing output vector as η = [x y]T . Differentiating

η with respect to time yields

η̇ =

[
ẋ
ẏ

]
=

[
cos θ 0
sin θ 0

] [
v
ω

]
(3.17)

We notice that the input u = [u1 u2]T does not appear in this first order differentiation,

second differentiation yields

η̈ =

[
ẍ
ÿ

]
=

[
u1 cos θ − vω sin θ
u1 sin θ + vω cos θ

]
(3.18)

showing that only u1 affects η̈, while the second input u2 cannot be recovered from this

second order differential information. To proceed, we need to add an integrator (whose

state is denoted by ξ) on the first input u1

ξ = u1

ξ̇ = a
(3.19)

Differentiating further, we obtain

x(3) = u̇1 cos θ − 2u1ω sin θ − vu2 sin θ − vω2 cos θ

y(3) = u̇1 sin θ + 2u1ω cos θ + vu2 cos θ − vω2 sin θ
(3.20)

Let’s define the new input vector

z =

[
z1

z2

]
=

[
x(3)

y(3)

]
(3.21)

Equation (3.20) can be put in the form[
µ1

µ2

]
=

[
cos θ −v sin θ
sin θ v cos θ

] [
u̇1

u2

]
= H(v, θ)

[
a
u2

]
(3.22)

where
µ1 = z1 + 2u1ω sin θ + vω2 cos θ

µ2 = z2 − 2u1ω cos θ + vω2 sin θ
(3.23)

43

3. MOTION CONTROL

Figure 3.3: System linearization by dynamic state feedback

and the matrix H(v, θ) is non singular provided that v 6= 0. Under this assumption,

we can write [
a
u2

]
=

[
cos θ −v sin θ
sin θ v cos θ

]−1 [
µ1

µ2

]
(3.24)

Then the resulting dynamic compensator is

a = µ1 cos θ + µ2 sin θ

u2 =
1

v
(−µ1 sin θ + µ2 cos θ)

(3.25)

substituting (3.23) in (3.25) yields

a = u̇1 = z1 cos θ + z2 sin θ + vω2

u2 =
1

v
(−z1 sin θ + z2 cos θ − 2u1ω)

(3.26)

The complete linearizing dynamic feedback block diagram is presented in Fig. (3.3).

Remark 2 Here the controlled output is the midpoint of the wheels’ axis. This, how-

ever, comes at the cost that the dynamic compensator (3.26) is not defined when v = 0.

Now, we will consider a robust control strategy based on the method of Integral

Sliding Mode.

3.3 Integral Sliding Mode

Sliding mode control has been applied to the trajectory control of robot manipulators

[94], [106], and is receiving increasing attention from researches on control of nonholo-

nomic systems with uncertainties. For example, Bloch and Drakunov proposed a sliding

44

3.3 Integral Sliding Mode

mode control law for the stabilization problem [13], and extended their work to track-

ing problem [14]. In [43] a sliding mode control was used to guarantee exact tracking

of trajectories made by navigation functions. In [105] a sliding mode control law is

proposed for asymptotically stabilizing the mobile robot to a desired trajectory, where

robot posture was represented using polar coordinates. The benefits of the sliding mode

command which makes it very important is its robustness with regard to disturbances

and structural uncertainties, i. e. the system response depends on the gradient of the

sliding surface and remains insensitive to variations of system parameters and external

disturbances. However, during the reaching phase (before Sliding Mode occurs), the

system has no such insensitivity property; therefore, insensitivity cannot be ensured

throughout an entire response. The robustness during the reaching phase is normally

improved by high-gain feedback control. Stability problems that arise inevitably limit

the application of such high-gain feedback control schemes.

On the other hand, the concept of Integral Sliding Mode concentrates on the ro-

bustness of the motion in the whole state space. The order of the motion equation

in this type of Sliding Mode is equal to the dimension of the state space. Therefore,

the robustness of the system can be guaranteed throughout an entire response of the

system starting from the initial time instance.

For the sake of completeness, in the next section we briefly present the major result

of Integral Sliding mode technique presented in [101].

3.3.1 Review of Integral Sliding Mode

For a given dynamic system represented by the following state space equation

ẋ = f(x) +B(x)u (3.27)

where x ∈ Rn, u ∈ Rm, we suppose that there exists a feedback control law u = u0(x),

such that system (3.27) can be stabilized in a desired way (e.g. its state trajectory

follows a reference trajectory with a given accuracy). We denote this ideal closed loop

system as

ẋ∗ = f(x) +B(x)u0 (3.28)

where x∗ denotes the state trajectory of the ideal system under control u0. However,

systems like (3.27) are normally operating under some uncertainty conditions that may

45

3. MOTION CONTROL

be generated by parameter variations, unmodeled dynamics and external disturbances

etc. Under this consideration a real control system may be summarized with

ẋ = f(x) +B(x)u+ hd(x, t) (3.29)

in which function hd(x, t) represents the whole perturbation described above and we

assume that it is bounded and fulfills the uncertainty matching condition (see Remark

1), in other words

hd(x, t) = B(x)uh uh ∈ Rm (3.30)

For system (3.27), firstly, we design a control like

u = u0 + u1 (3.31)

where u0 is the ideal control defined in (3.28) and u1 is designed to be discontinuous

for rejecting the perturbation term hd(x, t). Secondly, we design the switching function

s as

s = s0(x) + µ (3.32)

with s, s0(x), µ ∈ Rm.

This switching function consists of two parts; the first part s0(x) may be designed

as the linear combination of the system states (similar to the conventional Sliding Mode

design); and, the second part µ induces the integral term and will be determined below.

To derive the Sliding Mode equation, the time derivative of s on the system trajec-

tories should be made equal to zero; the differential equation ṡ = 0 should be solved

with respect to the control input and the solution ueq, referred to as the Equivalent

Control should be substituted into the motion equation for u [102].

The control philosophy is to design an integral feedback such that the Equivalent

Control is

u1eq = −uh (3.33)

Condition (3.33) holds if

µ̇ =
∂s0

∂x
(f(x) +B(x)u0)

µ(0) = −s0(x(0))
(3.34)

46

3.3 Integral Sliding Mode

Figure 3.4: Block diagram of controller based on Integral Sliding Mode and feedback

linearization to achieve posture stabilization

where µ(0) is determined based on the requirement s(0) = 0 (Sliding Mode occurs

starting from the initial time) . The motion equation of the system in Sliding Mode

will be the ideal system (3.28).

The Sliding Mode can be enforced using the control

u1 = −M(x)sign(s) (3.35)

where M(x) is a positive definite diagonal matrix, under the condition that the matrix
∂s0
∂x B(x) is positive definite and the elements of matrix M(x) are large enough.

3.3.2 Posture Stabilization

After feedback linearizing system (3.1), the closed-loop system is equivalent to two

linear subsystems of the form

ẋi = Biizi i = 1, 2 (3.36)

where xi ∈ Rni , zi ∈ R and Bii are known matrices. These systems are subject

to external disturbances, modelling uncertainties (Feedback linearization requires a

47

3. MOTION CONTROL

precise knowledge of system parameters) and unmodelled dynamics (motors dynamics

and friction forces). Under the assumption that these disturbances fulfill the matching

condition, we can write

ẋi = Bii (zi + hdi(x, t)) (3.37)

where hi(x, t) is a non-linear perturbation with known upper bound

hdi(x, t) ≤ |hd0| ∀t ≥ t0 (3.38)

By applying the algorithm of the previous section, we need to design a control zi as

stated in equation (3.31): zi = zi0 + zi1, where zi0 is predetermined such that system

xi = Biizi0 follows a given trajectory with satisfactory accuracy. For example, zi0, may

be obtained through linear feedback control, like zi0 = −kTxi,k ∈ Rni×1 in which gain

vector k can be determined by Pole Placement or Linear Quadratic Regulator (LQR)

methods.

We continue by designing the sliding surface

si = cTi xi + µi (3.39)

µ̇i = −cTi (Biizi0) (3.40)

µi(0) = −cTi xi(0) (3.41)

in that case the motion equation of the Sliding Mode coincides with that of the ideal

system xi = Biizi0, without perturbation. Furthermore, since s(0) = cTi x + µ(0) = 0,

Sliding Mode will occur from the initial time t = 0. The second part of the control i.e.

µi1 can be designed as following

zi1 = m0(x)sign(si) (3.42)

where m0(x) ≥ |h0|.
The overall control block diagram is shown in Fig. 3.4.

3.3.3 Trajectory Tracking

Given a smooth bounded reference trajectory

yd(t) = h(qd(t)) (3.43)

48

3.3 Integral Sliding Mode

which is generated by a trajectory generator which satisfies nonholonomic constraints

(1.6), then the tracking control problem is to design a feedback control law for system

(3.1) with output equation y(t) = h(q(t)) such that the tracking error

e(t) = y(t)− yd(t) (3.44)

is bounded and asymptotically tends to zero. By differentiating (3.44) twice, one may

write using (3.8)

ë = ÿ− ÿd

= z− ÿd + hd(e, t)
(3.45)

As in the previous section, we design a control z = z0 + z1. For the first part z0 we

consider the PID controller

z0 = −(kp +
ki
p

+ kdp)I2 + ÿd (3.46)

where p denotes the Laplace transform variable, while z1 is designed as in previous

section to counteract the perturbations h(e, t) with respect to initial conditions.

3.3.4 Simulation Results

we have performed computer simulations using SIMULINK in order to show the perfor-

mance and robustness of the proposed controller for both control problems of a wheeled

mobile robot which is subjected to parametric and nonparametric uncertainties. The

values of WMR parameters are depicted in Table 3.1 and are chosen to match with a

real world mobile robot (KOALA Fig. 1.1a).

A. Posture stabilization

We start by applying a linear controller z = −kTy to the undisturbed linearized system.

At t = 0, the initial posture of the robot is (x(0), y(0), θ(0)) = (3.0m, 2.0m,−πrad)

which corresponds to output value (y1(0), y2(0)) = (2.9m, 2.0m). k is derived using

LQR technique, thus [k1 k2]T = [1.0 1.73]T . Fig. 3.5 shows stabilization of the system

without disturbances about the origin using linear feedback controller, while Fig. 3.6

shows the evolution of θ and linear and angular velocities of the robot. We observe that

49

3. MOTION CONTROL

Parameter Description Value

D Distance between two wheels 0.3m

R Driving wheels radius 0.044m

L Distance of point B from robot’s center of gravity P 0.1m

mr The mass of the robot without the driving wheels and the

rotors of the DC motors

3.4kg

mw The mass of each driving wheel plus the rotor of its motor 0.2kg

Ir The moment of inertia of the robot without the driving

wheels about a vertical axis through P

1kgm2

Iw The moment of inertia of each wheel about its diameter 0.00002kgm2

Iwy The moment of inertia of each wheel about its axis 0.0001kgm2

Table 3.1: Model parameters of wheeled mobile robot and their attributed values for the

simulations

the LQR controller ensures a good and fast response (within actuators limitations1.)

and it succeeds in driving the point B of the robot to the origin.

A less satisfactory response is obtained by introducing uncertainties to the dynamic

parameters like mass and inertia2 of the robot up to 60% of their original values. The

controller, however, succeeds in driving the robot to the origin as shown in Fig. 3.7.

Adding external disturbances to the input in the form of random signals results in

an unstable behavior of the closed-loop system, and the controller does not drive the

robot to its destination as shown in Fig. 3.8.

Now we add the Sliding Mode based controller without the integral effect, and we

use as parameters: cT = [1.0 1.0] and m0 = 5. Figs. 3.9 shows a better response than

that of the LQR controller.

Now we add the Integral Sliding Mode based controller described in Section 3.3.1,

and we use as parameters: cT = [0.2 1] and m0 = 5. Figs. 3.10 through 3.13 show

a much better response than that of the LQR controller alone or that of traditional

Sliding Mode controller in presence of parametric uncertainties, and the system response

is similar to that of the LQR controller without parametric uncertainties.

1We considered here that |v|max = 1 and |ω|max = 1
2The kinematic parameters like D and R are geometric and easy to measure, they are reasonably

considered to be certain.

50

3.3 Integral Sliding Mode

(a) Trajectory (b) Time Responses

Figure 3.5: Stabilization of undisturbed robot system using linear controller

(a) Robot’s Orientation (b) Velocities

Figure 3.6: Robot’s orientation and linear and angular velocities

51

3. MOTION CONTROL

(a) Trajectory (b) Time Responses

Figure 3.7: Stabilization of robot system using linear controller in presence of parametric

uncertainties.

(a) Trajectory (b) Time Responses

Figure 3.8: Stabilization of robot system using linear controller in presence of external

disturbances.

52

3.3 Integral Sliding Mode

(a) Trajectory (b) Time Responses

Figure 3.9: Stabilization of robot system using traditional Sliding Mode controller in

presence of external disturbances.

(a) Trajectory (b) Time Responses

Figure 3.10: Stabilization of robot system using linear controller plus Integral Sliding

Mode controller in presence of parametric uncertainties.

53

3. MOTION CONTROL

(a) Robot’s Orientation (b) Velocities

Figure 3.11: Robot’s orientation and linear and angular velocities

(a) Trajectory (b) Time Responses

Figure 3.12: Stabilization of robot system using linear controller plus Integral Sliding

Mode controller in presence of external disturbances.

54

3.3 Integral Sliding Mode

(a) Robot’s Orientation (b) Velocities

Figure 3.13: Robot’s orientation and linear and angular velocities

We then apply external disturbances to the system with Integral Sliding Mode

controller. Fig. 3.12 shows that the system response is more similar to that of the LQR

controller in the absence of external disturbances, and Fig. 3.13b shows that linear and

angular velocities are within accepted limits.

B. Trajectory Tracking

We start by applying the linear controller (3.46) to the undisturbed linearized system in

order to track a trajectory generated using a cubic polynomials as (discussed in chapter

2) to perform a parallel parking maneuver from point (0,0) to point (0,4). The initial

position of the robot is (y1(0), y1(0)) = (0m, 0.1m). We chose kp = 9.17,ki = 0.72 and

kd = −10.59. Figs. 3.14 through 3.16 show a good tracking, and inputs values are

within physical limits.

Adding external disturbances to the input in the form of random signals in addition

to parameters uncertainties results in a poor tracking as we can see in Fig. 3.17.

Now we add the Integral Sliding Mode based controller described in Section 3.3.1,

and we use as parameters: cT = [0.2 1] and m0 = 5. Figs. 3.18 through 3.20 show a

much better response than that of the PID controller alone in presence of parametric

55

3. MOTION CONTROL

(a) Trajectory (b) Time Responses

Figure 3.14: Trajectory tracking of robot system using PID controller in the absence of

disturbances.

(a) Robot’s Orientation (b) Velocities

Figure 3.15: Robot’s orientation and linear and angular velocities

56

3.3 Integral Sliding Mode

(a) Right and Left Torques (b) Tracking errors

Figure 3.16: Applied torques and tracking errors.

(a) Trajectory (b) Time Responses

Figure 3.17: Trajectory tracking of robot system using PID controller in the presence of

disturbances.

57

3. MOTION CONTROL

(a) Trajectory (b) Time Responses

Figure 3.18: Trajectory tracking of robot system using PID controller plus Integral

Sliding Mode controller in presence of external disturbances and parametric uncertainties.

uncertainties and external disturbances, and the system response is similar to that of

the PID controller without parametric uncertainties and even better.

Table 3.2 summarizes the simulation results. Basically, the performance of Integral

Sliding Mode controller is very simillar to that of a linear controller in absence of

disturbances.

Control Method Response Time Precision Disturbance Rejection

Linear Controller Good Good Low

Integral Sliding Mode Good Good High

Table 3.2: Comparison of performance between linear controller and Integral Sliding

Mode controller

Remark 3 This first approach to motion control is based on the output error rather

than state error. Note that the orientation, whose evolution is governed by the equation

θ̇ =
u2 cos θ − u1 sin θ

L
(3.47)

is not controlled. In fact, this control scheme does not use the orientation error. In

the case where the application requires to control the orientation, a nonlinear control

58

3.3 Integral Sliding Mode

(a) Robot’s Orientation (b) Velocities

Figure 3.19: Robot’s orientation and linear and angular velocities

(a) Right and Left Torques (b) Tracking errors

Figure 3.20: Applied torques and tracking errors.

59

3. MOTION CONTROL

is needed. For this purpose, we will investigate the general method of nonlinear control

called Immersion and Invariance.

3.4 Motion Control via Immersion and Invariance based

approach

The concept of invariance has been widely used in control theory. The development

of linear and nonlinear geometric control theory has shown that invariant subspaces,

and their nonlinear counterpart, invariant distributions, play a fundamental role in the

solution of many design problems (see [75], [52]). The notions of invariant distributions

and (slow, fast) invariant manifolds have been crucial for the analysis and design prob-

lems of linear and nonlinear systems. More precisely, the theory of the center manifold

has been instrumental in the design of stabilising control laws for systems with non-

controllable linear approximation, see, e.g., [2], whereas the concept of zero dynamics

and the strongly related notion of zeroing manifold have been exploited in several local

and global stabilisation methods, including passivity-based control [78], backstepping

[60] and forwarding [89].

Another, as important, concept has been that of an immersion. Its basic idea is to

transform the system under consideration into a system with pre-specified properties.

In more details, a system immersion is a mapping of the initial state from the original

state-space to another state-space so as to preserve the input-output map, and is a

mapping to a higher dimensional space. For example, the classical problem of immersion

of a generic nonlinear system into a linear and controllable system by means of static

or dynamic state feedback has been extensively studied, see [52], [75].

The method of Immersion and Invariance (I&I) for stabilization of nonlinear systems

was originated in [7], and was further developed in a series of publications that have

been recently summarized in [8]. In the I&I approach the desired behavior of the

system to be controlled is captured by the choice of a target dynamical system. The

control objective is to find a controller which guarantees that the closed-loop system

asymptotically behaves like the target system achieving asymptotic model matching.

This is formalized by finding a manifold in state-space that can be rendered invariant

and attractive, with internal dynamics a copy of the desired closed-loop dynamics, and

designing a control law that steers the state of the system toward the manifold.

60

3.4 Motion Control via Immersion and Invariance based approach

Our purpose is to investigate a control strategy based on the I&I methodology in

order to solve both nonholonomic navigation problems: stabilization about a desired

posture and tracking a reference trajectory. We start by introducing the main result of

the Immersion and Invariance.

3.4.1 Review of Immersion and Invariance based approach

In this section we briefly present the major result of Immersion and Invariance in the

following theorem [8].

Theorem 1 Consider the system

ẋ = f (x) + g (x)u (3.48)

with state x ∈ Rn and control u ∈ Rm with an equilibrium point x∗ ∈ Rn to be stabilized.

Let p < n and assume we can find mappings

a : Rp → Rp

π : Rp → Rn

c : Rn → Rm

φ : Rn → Rn−p

ψ : Rn×(n−p) → Rm

such that the following hold

• (H1)(Target System) The system

ξ̇ = α(ξ) (3.49)

with state ξ ∈ Rp, has an asymptotically stable equilibrium at ξ∗ ∈ Rp and x∗ =

π(ξ∗)

• (H2)(Immersion condition) For all ξ ∈ Rp

f (π(ξ)) + g (π(ξ)) c (π(ξ)) =
∂π

∂ξ
α(ξ) (3.50)

61

3. MOTION CONTROL

• (H3)(Implicit manifold) The set identity

{x ∈ Rn | φ(x) = 0} = {x ∈ Rn | x = π(ξ) for some ξ ∈ Rp} (3.51)

holds.

• (H4)(Manifold attractivity and trajectory boundedness) All trajectories of the sys-

tem

ż =
∂φ

∂x
(f(x) + g(x)ψ(x, z)) (3.52)

ẋ = f(x) + g(x)ψ (x, z) (3.53)

where z = φ(x), are bounded and satisfy

lim
t→∞

z(t) = 0 (3.54)

Then, x∗ is an asymptotically stable equilibrium of the closed loop system

ẋ = f (x) + g (x)ψ (x, φ(x)) (3.55)

In fact, if conditions H1 to H4 hold, then any trajectory x(t) of closed-loop system

(3.55) is the image through the mapping π(∆) of a trajectory ξ(t) of target system

(3.49), as illustrated in Fig. 3.21.

In standard applications of I&I, the target system is a priori defined, hence condition

(H1) is automatically satisfied. Given the target system, equation (3.50) of condition

(H2) defines a set of partial differential equations (PDEs) in the unknown function

π(.), where c(.) is a free parameter. However, in [1] a procedure was proposed to

obviate the solution of the PDEs for a class of underactuated mechanical systems and

was demonstrated for the cart–pendulum system. More specifically, it was proposed to

leave α as a free parameter and view PDEs (3.50) as algebric equations relating α with

π (and its partial derivatives). Then suitable expressions for α were selected so that

the desired stability properties for the target dynamics were ensured.

62

3.4 Motion Control via Immersion and Invariance based approach

Figure 3.21: Graphical illustration of the mapping between the trajectories of the system

to be controlled and the target system for p = 2 and n = 3.

3.4.2 Posture Stabilization

Let’s consider the kinematic model in chained forms

Σ :


ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

(3.56)

The key idea is to immerse a two dimensional system which describes a desired

dynamics, into three dimensional one (3.56). Thus, we define the target dynamics as:

ΣT :

{
ξ̇1 = −α1ξ1

ξ̇2 = −α2ξ2
(3.57)

where α1, α2 > 0.

A possible choice of the mapping π is:

π(ξ) =

 ξ1

ξ2

π3(ξ1, ξ2)

 (3.58)

By applying the immersion condition (H2) we obtain:

c1 (π(ξ)) = −α1ξ1 (3.59)

c2 (π(ξ)) = −α2ξ2 (3.60)

ξ2 · c1 (π(ξ)) = −α1
∂π3

∂ξ1
· ξ1 − α2

∂π3

∂ξ2
· ξ2 (3.61)

63

3. MOTION CONTROL

from (3.59) and (3.61) we get:

−α1ξ1ξ2 = −α1
∂π3

∂ξ1
· ξ1 − α2

∂π3

∂ξ2
· ξ2 (3.62)

The solution of equation (3.62) is

π3(ξ1, ξ2) =
b

b+ 1
ξ1ξ2 + β1(ξ1ξ

−b
2) (3.63)

where b = α1/α2, and β1(.) is an arbitrary differentiable function.

Now, we need to verify the remaining conditions of Theorem 1. It is straightforward

to define the manifold of (H3) via the function:

φ(x) , x3 − π3(x1, x2) (3.64)

In order to satisfy (H4) and render the manifold attractive, we examine the distance

of the system trajectories to the manifold, defined as z , φ(x) and called the off-the-

manifold coordinate, with its dynamics given as

ż =ẋ3 − π̇3 (x1, x2)

=x2 · ψ1(x, z)− ∂π3

∂x1
· ψ1(x, z)− ∂π3

∂x2
· ψ2(x, z)

=

(
1

b+ 1
x2 − x−b2 β

′
1

(
x1x

−b
2

))
· ψ1(x, z)

−
(

b

b+ 1
x1 − bx1x

−b−1
2 β

′
1

(
x1x

−b
2

))
ψ2(x, z)

(3.65)

We observe that the control
ψ1 =

−
(
α1
b+1x1x2 − α1x1x

−b
2 β

′
1

(
x1x

−b
2

))
− γ(x3 − π3)(

1
b+1x2 − x−b2 β

′
1

(
x1x

−b
2

))
ψ2 = −α2x2

(3.66)

fixes the off-the-manifold dynamics to ż = −γz, hence selecting γ > 0 drives z to zero

exponentially with a rate of convergence γ.

One interesting choice of β1 is β1 ≡ 0, in this case we have x∗ = π(ξ∗) = (0, 0, 0),

and the corresponding controller takes the formu1 = λ1x1 + λ2
x3

x2

u2 = −α2x2

(3.67)

64

3.4 Motion Control via Immersion and Invariance based approach

where λ1 = b(γ − α2) and λ2 = −γ(b+ 1).

Remark 4 Discontinuous control law (3.67) obtained using the method of Immersion

and Invariance is similar to the controller described in ([4] and [5]) for nonholonomic

systems in chained forms, the difference is the choice of u2 = −α2x2 instead of u1 =

−α1x1 as in Astolfi’s controller. This choice has been made for practical reasons.

The closed-loop system is then

Σ :


ẋ1 = λ1x1 + λ2

x3
x2

ẋ2 = −α2x2

ẋ3 = λ1x1x2 + λ2x3

(3.68)

Lemma 1 The system of ordinary differential equations (3.68), with initial condition

[x1(0) x2(0) x3(0)]T such that

x2(0) 6= 0 (3.69)

has a unique and well defined solution for all t ≥ 0.

Moreover, let

Λ =

[
λ1 λ2

λ1 λ2 + α2

]
(3.70)

and

Ψ(t) = eΛt (3.71)

Then the unique solution of the system of o.d.e.(3.68) with initial condition x(0) satis-

fying condition (3.69) is

x2(t) = x2(0)e(−α2t) (3.72)[
x1(t)

x3(t)

]
= Γ(t)Ψ(t)x̃(0) (3.73)

where

x̃(0) =

[
x1(0)
x3(0)
x2(0)

]

Γ(t) =

[
1 0

0 x2(t)

] (3.74)

Proof 1 (see [4])

For the component x2, the proof is trivial. Regarding the remaining components of

the state vector, we note that if x2 6= 0 it is possible to apply the state transformation[
p1

p3

]
=

[
x1

x3/x2

]
(3.75)

65

3. MOTION CONTROL

yielding [
ṗ1

ṗ3

]
= Λ

[
p1

p3

]
(3.76)

System (3.76), with initial conditions (3.74), admits the closed integral[
x1(t)

x3(t)

]
= Ψ(t)x̃(0) (3.77)

Hence, the claim directly follows, applying the inverse state transformation �.

The main result of Lemma 1 is that discontinous control law (3.67) is well defined and

bounded, for all t ≥ 0, along the trajectories of closed-loop system (3.68) with initial

condition [x1(0) x2(0) x3(0)]T such that x2(0) 6= 0, if and only if the matrix Λ has all

eigenvalues with negative real part. which corresponds to choosing α2 < γ.

Remark 5 The choice of function β1 enables us to derive a class of controllers for

system (3.56). However, the target equilibrium manifold will depend on the function

β1, and/or the initial conditions of x1 and x2.

3.4.3 Trajectory Tracking

As we have seen in chapter 1, in order for a trajectory to be feasible, it must satisfy

the nonholonomic constraint on the vehicle motion or, in other words, it must satisfy

the equations

ẋd = vd cos θd
ẏd = vd sin θd
θ̇d = ωd

(3.78)

for some choice of reference inputs vd and ωd. In the following we will assume that

• (a1) vd and ωd are continuous and bounded;

• (a2) there exists ε such that vd(t) ≥ ε > 0 ∀t ≥ 0.

By comparing the desired state qd = [xd(t) yd(t) θd(t)]
T with the current measured

state q = [x(t) y(t) θ(t)]T , it is possible to compute an error vector that can be fed to

66

3.4 Motion Control via Immersion and Invariance based approach

the controller. However, rather than using directly the difference between qd and q, it

is convenient to define the tracking error as

e =

 e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xd − x
yd − y
θd − θ

 (3.79)

And the error dynamics are [58] ė1

ė2

ė3

 =

 ωde2

vd sin e3 − ωde1

0

+

 1 −e2

0 e1

0 1

[η1

η2

]
(3.80)

with
η1 = vd cos e3 − v
η2 = ωd − ω

In what follows, we will only consider the local tracking problem, in this case we

have small initial tracking errors (e1(0), e2(0), e3(0)). Let’s define the following target

dynamics

ΣT :
{
ξ̇ = α(ξ) (3.81)

where α(.) is a scalar function to be defined.

A possible choice of the mapping π is the form:

π(ξ) =

 0
ξ

π3(ξ)

 (3.82)

By applying immersion condition (H2), we thus obtain

ωdξ + c1 (π(ξ))− ξc2 (π(ξ)) = 0 (3.83)

vd sinπ3(ξ) = α(ξ) (3.84)

c2 (π(ξ)) = ∂π3
∂ξ α(ξ) (3.85)

Choose then π3(ξ) = −β2(ξ) such that the following conditions hold

• (c1) β2 : R→]− π, π[, β2 ∈ C∞.

• (c2) β2(0) = 0, xβ2(x) > 0 ∀x 6= 0.

• (c3) β
′
2 is bounded.

67

3. MOTION CONTROL

Using equation (3.84) yields the corresponding target dynamics

ξ̇ = −vd sinβ2(ξ) (3.86)

We note that, under conditions (c1) and (c2) and assumptions (a1) and (a2), −vdξ sinβ2(ξ) <

0 ∀ξ 6= 0, which means that ξ∗ = 0 is a stable equilibrium of system (3.86), and we

have e∗ = π(ξ∗) = 0.

An implicit definition of the manifold φ(e) = 0 is obtained by selecting

φ(e) =

[
φ1

φ2

]
,

[
e1

e3 − π3(e2)

]
(3.87)

In order to satisfy condition (H4), let’s consider the candidate Lyapunov function

V (e1, e2, z2) =
1

2
(z2

1 + e2
2) +

1

2γ
z2

2 (3.88)

with z1 = e1, z2 = e3 − π3(ξ)|ξ=e2 and γ > 0. As can be directly verified, V is positive

definitive and radially unbounded. Taking the derivative of V along trajectories of

system (3.80)

V̇ (e1, e2, z2) =e1(ωde2 + ψ1(e, z)− e2ψ2(e, z))

+ e2(vd sin(z2 − β2(e2))− wde1 + e1ψ2(e, z))

+
1

γ
z(ψ2(e, z) + β

′
2(vd sin(e3)− wde1 + e1ψ2(e, z)))

(3.89)

Noting that

sin(z2 − β2(e2)) = − sin(β2(e2)) + z2µ(e2, z2) (3.90)

where

µ(e2, z2) = cos(β2(e2))
sin z2

z2
+ sin(β2(e2)) · 1− cos z2

z2
(3.91)

is defined for z2 ∈ R. It follows that

V̇ (e1, e2, z2) =e1ψ1 − vde2 sin(β2(e2))

+
1

γ
z2[(1 + β

′
2(e2)e1)ψ2 + γvdµe2 + β

′
2(e2)(vd sin(e3)− wde1)]

(3.92)

By choosing

ψ1 (e, z2) =− k1e1

ψ2 (e, z2) =
1

1 + β
′
2(e2)e1

[−γvdµe2 + β
′
2(e2)(−vd sin(e3) + wde1)− k2γz2]

(3.93)

68

3.4 Motion Control via Immersion and Invariance based approach

with k1, k2 > 0, we have

V̇ (e, z2) = −k1e
2
1 − vde2 sin(β2(e2))− k2z

2
2

≤ −k1e
2
1 − εe2 sin(β2(e2))− k2z

2
2 ≤ 0

(3.94)

Let’s define the set

Ω(β
′
2) =

{
(e1, e2, z2) ∈ R3 :

∥∥∥β′
2

∥∥∥
∞
· |e1| < 1

}
Also, let M be a set given by

M =
{

(e1, e2, z2) ∈ R3 : V (e, z) < c∗,∀t ≥ 0
}

where c∗ is the largest constant c such that

{
(e1, e2, z2) ∈ R3 : V (e, z) < c

}
⊂ Ω(β2

′)

For any initial condition (e1(0), e2(0), z2(0)) ∈M , it follows from (3.94) that (e1(t),

e2(t), z2(t)) remains in M , and therefore ψ2 is well defined on t ∈ [0,∞[. It follows

also from (3.94) that z1 = e1, e2 and z2 are bounded and converge to zero, and since

e3 = z2−β2(e2), we conclude that e3 is bounded. Then it follows from Theorem 1 that

e∗ = 0 is an asymptotically stable equilibrium of the closed loop system �.

A possible choice of β2(ξ) is β2(ξ) = atan(rξ) with r > 0, we note that it satisfies

conditions (c1) to (c3). In this case, using (3.93) yields the corresponding control law

η1 (e, z) =− k1e1

η2 (e, z) =
1 + r2e2

2

1 + r2e2
2 + re1

(−γvdµe2 +
r

1 + r2e2
2

(−vd sin(e3) + wde1)− k2γz2)
(3.95)

with z2 = e3 + atan(re2).

3.4.4 Simulation Results

In order to verify the performance of the proposed control laws we first carried out

numerical simulations for both control problems

69

3. MOTION CONTROL

Figure 3.22: Stabilization of robot system using I&I controller for (x0, y0, θ0) =

(−1,−1, π/4).

A. Posture Stabilization

In this case, the desired posture is the origin (xd, yd, θd) = (0, 0, 0). At t = 0 sec, the

initial position of the robot is (x(0), y(0), θ(0)) = (−3,−3, π/4). We applied controller

(3.67) and control gains are tuned in order to achieve fast convergence towards the

desired manifold and to satisfy limitations on linear and angular velocities, and in our

simulations they are set to k = 1,λ1 = 1.4 and λ2 = −5. As we can observe from Figs.

3.22 through 3.25 the controller ensures the stabilization of the mobile robot.

B. Trajectory Tracking

The tracking performance of this control strategy is verified in the tracking of the refer-

ence trajectory that consists of successive straight line segments and arc line segments

which may represent the ouput of a typical path planner [61]. Controller parameters

are set to k1 = 0.8, k2 = 0.8 and γ = 1. Reference and actual trajectories of the robot

are depicted in Fig. 3.26. Tracking on X-Axis, Y-axis and robot’s orientation are shown

in Fig. 3.27, while tracking errors are shown in Fig. 3.28. Clearly the mobile robot

70

3.5 Conclusion

Figure 3.23: Stabilization of robot system using I&I controller for (x0, y0, θ0) =

(−1,−1, π/4): Time responses.

is able to track almost perfectly the reference trajectory and the inputs remain within

acceptable limits (Fig. 3.29).

3.5 Conclusion

In this chapter, we have discussed the motion control problem for a nonholonomic

mobile robot, with reference to two basic motion tasks, i.e., posture regulation and

trajectory tracking. Two control approaches have been presented: First, state feed-

back Linearization is extended to include both kinematic and dynamic models, or what

is called second-order kinematic model. A controller is derived, on the basis of the

Integral Sliding Mode approach with the objective of posture regulation and tracking

pre-generated trajectories. This combination has led to satisfactory results in terms

of stabilization and robustness in presence of parameters uncertainties, unmodeled dy-

namics and unknown bounded disturbances. Second, a control strategy based on the

application of Immersion and Invariance methodology is described. The proposed

control strategy guarantees that the closed-loop system asymptotically behaves like a

71

3. MOTION CONTROL

Figure 3.24: Stabilization of robot system using I&I controller for (x0, y0, θ0) =

(−1,−1, π/4): Robot’s Orientation.

Figure 3.25: Stabilization of robot system using I&I controller for (x0, y0, θ0) =

(−1,−1, π/4): Linear and angular velocities.

72

3.5 Conclusion

Figure 3.26: Trajectory tracking of robot system using I&I controller.

Figure 3.27: Trajectory tracking of robot system using I&I controller: Tracking on x, y

and θ

73

3. MOTION CONTROL

Figure 3.28: Trajectory tracking of robot system using I&I controller: Tracking errors

Figure 3.29: Trajectory tracking of robot system using I&I controller: Velocities

74

3.5 Conclusion

given target system achieving asymptotic model matching, which makes the system

performance adjustment simpler and physically meaningful. Stability of the system

has been guaranteed by appropriate choice of the target systems. Simulations have

been conducted which established the quality of both control strategies.

75

Chapter 4

Visual Servoing

Visual servoing is a technique which consists of controlling the movements of a robotic

system using visual information, from one or more cameras (or more generally a vision

sensor) embedded within the system, or outside the system in some cases.

A key characteristic of visual servoing, compared to motion and force control, is that

the controlled variables are not directly measured by the sensor, but are obtained from

the measured quantities through complex elaborations, based on algorithms of image

processing and computational vision. A camera provides a two-dimensional matrix of

values of light intensity. From this matrix, the so-called image feature parameters are

to be extracted in real time. The geometric relationships between one or more two-

dimensional views of a scene and the corresponding 3D space are the basis of techniques

of pose estimation of the robot with respect to the surrounding objects. In this regard,

of fundamental importance is the operation of camera calibration, which is necessary

for calculating the intrinsic parameters, relating the quantities measured in the image

plane to those referred to the camera frame, and the extrinsic parameters, relating the

latter to quantities defined in a frame attached to the robot.

The vision-based control schemes can be divided into two categories, namely, those

that realize visual servoing in operational space, also termed position-based visual ser-

voing (3D), and those that realize visual servoing in the image space, also known as

image-based visual servoing (2D). The main difference lies in the fact that the schemes

of the first category use visual measurements to reconstruct the relative pose of the

object with respect to the robot, or vice versa, while the schemes of the second cate-

gory are based on the comparison of the feature parameters of the image of the object

77

4. VISUAL SERVOING

between the current and the desired pose. There are also schemes combining charac-

teristics common to both categories, that can be classified as hybrid visual servoing.

In visual servoing literature, visual system has been classified depending on the

number of cameras involved to: mono-vision (one camera) and stereo vision (two or

more cameras). Mono-vision system is classified depending on the camera’s location

to: eye-to-hand, where the camera is mounted in a fixed location, and the mobile

configuration, and eye-in-hand, with the camera attached to the robot. Our approach

to visual servoing is based upon a single eye-in-hand camera.

All visual servoing schemes depend on the actual knowledge of image feature pa-

rameters, which makes the extraction of image features a key step to visual servoing.

4.1 Extraction of Visual Features

The task of a camera as a vision sensor is to measure the intensity of the light emitted

or reflected by an object. To this end, a photosensitive element, termed pixel (or

photosite), is employed, which is capable of transforming light energy into electric

energy. Different types of sensors are available depending on the physical principle

exploited to realize the energy transformation. The most widely used devices are CCD

and CMOS sensors based on the photoelectric effect of semiconductors.

An image contains a large amount of data represented as pixels. Much of this

data does not contain relevant information. As part of visual servoing, it is essential

to identify the portions of the image that carry information relevant to the type of

image features that we seek to identify in the scene. It is also necessary to represent

this information concisely in system memory. To this end, two basic operations are

required: image segmentation and image interpretation [92].

4.1.1 Image Segmentation

Segmentation consists of a grouping process, by which the image is divided into a certain

number of groups, referred to as segments, so that the components of each group are

similar with respect to one or more characteristics. Typically, distinct segments of the

image correspond to distinct objects of the environment, or homogeneous object parts.

There are two approaches to the problem of image segmentation:

78

4.1 Extraction of Visual Features

(a) (b)

Figure 4.1: Gray-level image and corresponding gray-level histogram on the right

1. Region-based segmentation whose objective is that of grouping sets of pixels shar-

ing common features into two-dimensional connected areas, with the implicit as-

sumption that the resulting regions correspond to real-world surfaces or objects.

In many applications of practical interest a thresholding approach is adopted

and a light intensity scale composed of only two values (0 and 1) is considered.

This operation is referred to as binary segmentation or image binarization, and

corresponds to separating one or more objects present in the image from the back-

ground by comparing the gray level of each pixel with a threshold l. A crucial

factor for the success of binary segmentation is the choice of the threshold. A

widely adopted method for selecting the threshold is based on the gray-level his-

togram, under the assumption that it contains clearly distinguishable minimum

and maximum values, corresponding to the gray levels of the objects and of the

background (see Fig. 4.1). This method of segmentation is fast but requires a

large memory storage.

2. Boundary-based segmentation is aimed at identifying the pixels corresponding to

object contours and isolating them from the rest of the image. The boundary of an

object, once extracted, can be used to define the position and shape of the object

itself. In the case of simple and well-defined shapes, boundary detection becomes

straightforward and segmentation reduces to the sole edge detection. Several edge

detection techniques exist. Most of them require the calculation of the gradient

or of the Laplacian of the image [42]. This method requires less memory storage

79

4. VISUAL SERVOING

since boundaries contain a reduced number of pixels, but is relatively slow since

it requires more complex computing.

4.1.2 Image Interpretation

Image interpretation is the process of calculating the image feature parameters from the

segments, whether they are represented in terms of boundaries or in terms of regions.

The feature parameters used in visual servoing applications sometimes require the

computation of the so-called moments. Image moments and various types of moment-

based invariants play very important role in object recognition and shape analysis

[50], [41], [70]. These parameters are defined on a region R of the image and can be

used to characterize the position, orientation and shape of the two-dimensional object

corresponding to the region itself. The (i,j)th order geometric moment of a region R

on a grey-level image I(X,Y) is defined as

mi,j =

∫∫
R

I(X,Y)XiY jdXdY (4.1)

In the case of a digital image, equation (4.1) becomes

mi,j =
∑

X,Y ∈R
I(X,Y)XiY j (4.2)

where I(X,Y) is the gray level of an individual pixel.

In the case of binary images, by assuming the light intensity equal to one for all the

points of region R, and equal to zero for all the points not belonging to R, the following

simplified definition of moment is obtained

mi,j =
∑

X,Y ∈R
XiY j (4.3)

From this definition we see that moment m0,0 coincides with the area of the region,

computed in terms of the total number of pixels of region R.

The quantities

Xg =
m1,0

m0,0
, Yg =

m0,1

m0,0
(4.4)

define the coordinates of the so-called centroid of the region. These coordinates can be

used to detect uniquely the position of region R on the image plane. Many kinds of

80

4.2 Camera Modelling and Calibration

image-based invariants have been studied in the literature and can be used to deduce

more parameters of the region such as shape and orientation (see Appendix B.2).

The advantage of using image moments in visual servoing comes from the fact that

they provide a generic representation of any object, with simple or complex shapes,

that can be segmented in an image. They also provide a more geometric and intuitive

meaning than other features [23]. Moreover, the fact that image moments are computed

on the whole region makes them less vulnerable to image noise and other measurement

errors. This, however, comes with a heavy cost of computational complexity, since

direct calculation of discrete moments by (4.3) is time consuming.

Fortunately, this problem has been the subject of many studies in the field of com-

puter vision and image processing, a large amount of effort has been spent in the past

to develop more effective algorithms, e.g., see [107], [24], [63]. Particular attention has

been paid to binary images because of their importance in practical pattern recogni-

tions. Since any binary object is fully determined by its boundary, various boundary-

based methods of moments calculation have been developed. Among these are a group

of methods that are based on Green theorem, which evaluates the double integral over

the object by means of single integration along the object boundary [64],[53],[81]. There

are also methods that are based on polygonal approximation of the object boundary.

Object moments are then calculated via the corner points [62], [93].

4.2 Camera Modelling and Calibration

We mean by camera model, the set of geometric laws defining how, during the process

of capturing an image, a point in the three dimensional space is projected on a two-

dimensional plane. A model is characterized by a number of parameters that allow

us to calculate the coordinates in pixels of a point projection on the image, using its

Cartesian coordinates in 3D space. Depending on the desired accuracy, several models

have been proposed taking into account more or less faithfully, the way the light beam

moves to form the image [37], [104], [46].

4.2.1 Pinhole Camera and Perspective Projection

The pinhole camera model shown in Fig. 4.2 consists of a plane F at a fixed distance f

in front of an image plane I. An ideal pinhole C is found in the plane F. The plane F is

81

4. VISUAL SERVOING

Figure 4.2: The pinhole camera model.

called the focal plane, and the image plane is also called the retinal plane. We assume

that an enclosure is provided so that only light coming through the pinhole can reach

the image plane. The rays of light reflected (or emitted) by an object pass through

the pinhole and form an inverted image of that object on the image plane. Each point

in the object, its corresponding image point and the pinhole constitute a straight line.

This kind of projection from 3D space to plane is called perspective projection.

The point C is called the optical center, and the distance between the optical center

and the image plane f is called the focal length. The line going through the optical

center C and perpendicular to the image plane I is called the optical axis. Experiences

have shown that such a simple system can accurately model the geometry and optics

of most of the modern video cameras [104].

For computational ease, let’s consider an inverted virtual image plane positioned

before the lens, in correspondence of the plane zc = f of the camera frame. The

projection of a point in space on an image depends, on one hand, on its location

relative to the camera and on the other hand on the physical characteristics of the

camera. Let’s start by defining the following coordinate systems (Fig. 4.3).

• Base frame or world frame Ob {X,Y, Z} where the 3D points of the object being

82

4.2 Camera Modelling and Calibration

Figure 4.3: Frontal perspective transformation.

filmed are expressed.

• Camera frame Oc {Xc, Yc, Zc}, where the origin is at the optical center and the

Zc-axis coincides the optical axis of the camera.

• Image frame OI {XI , YI} for the image plane is defined such that the origin is at

the point c (intersection of the optical axis with image plane) and that the axes

are determined by the camera scanning and sampling system.

Let pb = [x y z]Tb be an arbitrary point of the object expressed in the base frame.

It is expressed in the camera frame as pc[xc yc zc]
T . By adopting the homogeneous

representation of coordinates we have the relationship

p̃c =


xc
yc
zc
1

 = Tc
bp̃b = Tc

b


x
y
z
1

 (4.5)

where Tc
b ∈ R4×4 is the homogeneous transformation matrix from base frame to camera

frame. Tc
b is composed of rotation matrix Rc

b ∈ R3×3 and a translation vector tcb ∈ R3×1.

Tc
b =

[
Rc
b tcb

0 1

]
(4.6)

Rc
b and tcb are called the extrinsic parameters, and Tc

b is the matrix of extrinsic param-

eters.

83

4. VISUAL SERVOING

Figure 4.4: Passing from metric image coordinates to pixels image coordinates.

Due to the refraction phenomenon, the point in the camera frame is transformed

into a point in the virtual image plane via the perspective transformation, i.e.,

xI =
fxc
zc

yI =
fyc
zc

(4.7)

A visual information is typically elaborated by a digital processor, and thus the

measurement principle is to transform the light intensity pI(xI , yI) of each point in

the image plane into a number. It is clear that a spatial sampling is needed since an

infinite number of points in the image plane exist, as well as a temporal sampling since

the image can change during time. The CCD or CMOS sensors play the role of spatial

samplers, while the shutter in front of the lens plays the role of the temporal sampler.

The spatial sampling unit is the pixel, and thus the coordinates pI(xI , yI) of a point

in the image plane are to be expressed in pixels, i.e., sI(uI , vI). Due to the photosite

finite dimensions, the pixel coordinates of the point are related to the coordinates in

metric units through two scale factors Ku and Kv

uI = KuxI + u0

vI = KvyI + v0

(4.8)

84

4.2 Camera Modelling and Calibration

where u0 and v0 are the offsets which take into account the position of the origin of the

pixel coordinate system with respect to the optical axis (see Fig. 4.4).

From (4.7) and (4.8) we get

uI =
αuxc
zc

+ u0

vI =
αvxc
zc

+ v0

(4.9)

where αu = fKu and αv = fKv. Equations (4.9) can be put in matrix form using

homogeneous representation

λs̃I = λ

 uI
vI
1

 = K


xc
yc
zc
1

 (4.10)

where

K =

 αu 0 u0

0 αv v0

0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

 = ΩΠ (4.11)

is the matrix of intrinsic parameters (αx, αy, u0, v0) and λ = zc > 0 (The object is

always in front of the camera). Using (4.5) yields

λs̃I = KTc
bp̃b = Wp̃b

=

 w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34



x
y
z
1



=

 αu 0 u0 0
0 αv v0 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



x
y
z
1


(4.12)

The Matrix Tc
b can be written as

Tc
b =


r1 tx
r2 ty
r3 tz
0 1

 (4.13)

where ri = [ri1 ri2 ri3] for i = 1, 2, 3. Matrix W can then be written in a more

compact form

W =

 αur1 + u0r3 αutx + u0tz
αvr2 + v0r3 αvty + v0tz

r3 tz

 (4.14)

85

4. VISUAL SERVOING

In practice, the axes of the pixel image frame {UI , VI} are not perpendicular. To

model this effect, the angle δ between the vectors uI and vI , is introduced in the

previous equations. A new image frame u
′
I , v

′
I is then defined and the transformation

between the two frames is
u

′
I = uI cos δ + vI sin δ

v
′
I = vI

(4.15)

and by defining

u
′
0 = u0 sin δ + v0 cos δ

v
′
0 = v0

(4.16)

then the matrix of intrinsic parameters becomes

K =

 α γ u
′
0 0

0 β v
′
0 0

0 0 1 1

 (4.17)

where α = αu, β = αv/ sin δ and γ = αu cot δ. The new global camera model is

W =

 αr1 + γr2 + u
′
0r3 αtx + u

′
0tz

βr2 + v
′
0r3 βty + v

′
0tz

r3 tz

 (4.18)

4.2.2 Camera Calibration

Once a type of model has been chosen, its parameters must be identified. The estimated

values of these parameters for a camera is performed by calibration. It is a necessary

step for any vision-oriented application. Many techniques have been developed. They

can be classified into two categories:

• Calibration using calibration patterns: This technique uses the observation

of 3D objects with known coordinates. Calibration objects (calibration patterns)

are generally distributed points on orthogonal planes or on a plane translated in

the direction of its normal. The calculation can be done in a relatively simple

way, e.g., see [100], [83], [48], [11], [110].

• Automatic Calibration: The known movement of the camera that is filming a

static scenery is used to add constraints on the intrinsic parameters, taking into

account the rigidity of objects filmed using only image information [35], [45].

86

4.2 Camera Modelling and Calibration

4.2.2.1 Implementation of the Calibration

From the equation of global model (4.12), we obtain

uI =
w11x+ w12y + w13z + w14

w31x+ w32y + w33z + w34

vI =
w21x+ w22y + w23z + w24

w31x+ w32y + w33z + w34

(4.19)

These equations are linear in the coefficients wij . Therefore, we need at least 12 equa-

tions of this kind to determine the 12 coefficients W. In other words, we must know at

least six points in the reference object and their respective projections on image. For

n known points we obtain 2n equations of the form

w11xi + w12yi + w13zi + w14 − uiw31xi − uiw32yi − uiw33zi = uiw34

w21xi + w22yi + w23zi + w24 − viw31xi − viw32yi − viw33zi = viw34

(4.20)

This system of equations can be put in matrix form


...

xi yi zi 1 0 0 0 0 −uixi −uiyi −uizi
0 0 0 0 xi yi zi 1 −vixi −viyi −vizi

...





w11

w12

w13

w14

w21

w22

w23

w24

w31

w32

w33



=


...

uiw34

viw34
...



which we can write in a more compact form

Axw = u (4.21)

where xw is the unkown variable that needs to be identified.

Solving this equation gives us the values of wij . And using wij we can identify the

intrinsic parameters through equations

u0 = wT
1 w3

v0 = wT
2 w3

αu = ‖w1 ×w3‖

αv = ‖w2 ×w3‖

(4.22)

87

4. VISUAL SERVOING

Figure 4.5: Position-based visual servoing (3D).

and the extrinsic parameters

r3 = w3

r1 =
1

αu
(w1 − u0 ·w3)

r2 =
1

αv
(w2 − v0 ·w3)

tx =
1

αu
(w14 − u0 · w34)

ty =
1

αv
(w24 − v0 · w34)

tz = w34

(4.23)

where wi = [wi1 wi2 wi3] for i = 1, 2, 3. So the problem of calibration is practically a

problem of finding W.

In order to calibrate the cameras, we adopted an algorithm based on Zhang’s method

[110], see Appendix C for more details.

4.3 Position-based Visual Servoing

Position-based visual servoing uses as an input of its control loop the three-dimensional

information, namely the position and orientation of the robot relative to the object of

interest. The task ahead is then expressed as a baseline to reach a desired posture

88

4.3 Position-based Visual Servoing

Figure 4.6: Robot and camera frames.

qd = [xd yd θd], or to track a trajectory qd(t) = [xd(t) yd(t) θd(t)]. The control is

thus based on the pose estimation, which is the determination of q of the robot based

on visual information extracted from the image, and the camera in that case plays the

role of a position sensor (Fig. 4.5).

Let’s consider a pinhole camera mounted on a turret of height H, situated on the

sagittal axis of the unicycle at a distance T from the wheels axis. Camera position

relative to the robot is fixed, and it is capable of performing a rotation around its Yc

axis with an angle ϕ that can be measured using embedded sensor (Fig. 4.6).

Let p̃b = [xo yo Ho 1]Tb a point of the observed object (pattern) expressed

in the world frame using homogeneous representation, its projection in the image is

p̃I = [uI vI 1]T . Then, as we have seen, the relation λp̃I = KTc
bp̃b holds. We assume

that the camera has been calibrated to obtain the intrinsic parameters matrix K, then

the pose estimation problem is consists in finding Tc
b. Equations (4.23) can be used,

but since the robot is restricted to move in a horizontal plane we have four DOF of the

camera instead of six, and since the camera rotation angle ϕ is known, we are left with

three unknowns to be found (x, y and θ).

The relation between the point coordinates in world frame and its coordinates in

camera frame is:

p̃c = Tc
bp̃b = Tc

rT
r
bp̃b (4.24)

89

4. VISUAL SERVOING

By careful examination of Fig. 4.6 we can write

Tb
r =

[
Rz(θ) obr

0 1

]
=


cos θ − sin θ 0 x
sin θ cos θ 0 y

0 0 1 0
0 0 0 1

 (4.25)

Hence

Tr
b = (Tb

r)
−1 =


cos θ sin θ 0 −x cos θ − y sin θ
− sin θ cos θ 0 x sin θ − y cos θ

0 0 1 0
0 0 0 1

 (4.26)

Also we have

Tr
c =

[
Rz(ϕ)Rx(−π

2)Ry(
π
2) orc

0 1

]
=


sinϕ 0 cosϕ T
− cosϕ 0 sinϕ 0

0 −1 0 H
0 0 0 1

 (4.27)

Hence

Tc
r = (Tr

c)
−1 =


sinϕ − cosϕ 0 −T sinϕ

0 0 −1 H
cosϕ sinϕ 0 −T cosϕ

0 0 0 1

 (4.28)

Using (4.10) and (4.24) yields

p̃r = Tr
cp̃c = Tr

czcK
−1p̃I = Tr

bp̃b


sinϕ 0 cosϕ T
− cosϕ 0 sinϕ 0

0 −1 0 H
0 0 0 1




zc
αx

(uI − u0)
zc
αy

(vI − v0)

zc
1



=


cos θ sin θ 0 −x cos θ − y sin θ
− sin θ cos θ 0 x sin θ − y cos θ

0 0 1 0
0 0 0 1



xo
yo
Ho

1


(4.29)

The third line of this matrix equality yields

− zc
αy

(vI − v0) +H = Ho (4.30)

zc =
αy(H −Ho)

vI − v0
(4.31)

90

4.3 Position-based Visual Servoing

Remark 6 In order for this approach to be applicable, we must choose object points

which have heights Ho that are different from the camera height H. The greater the

value of |H −Ho|, the less the pose estimation is affected by measurements errors.

However, if the object is on a vertical plane, then this shortcoming can be be

overcome by considering two points of the objects pb1 = [xo yo Ho1]Tb and pb2 =

[xo yo Ho2]Tb , with Ho1 6= Ho2. Their projections in the image are sI1 = [uI1 vI1] and

sI2 = [uI2 vI2] respectively. By assuming that the camera is sufficiently far from the

object to consider that all the object’s points have the same depth zc, (4.30) yields

zc = −αy(Ho1 −Ho2)

vI1 − vI2
(4.32)

which is independent of H.

From equations (4.29) and (4.31), we finally obtain the target position in the robot

frame  xr
yr
zr

 =


αy(H−Ho)
vI−v0

(
uI−u0
αx

sinϕ+ cosϕ
)

+ T

αy(H−Ho)
vI−v0

(
−uI−u0

αx
cosϕ+ sinϕ

)
Ho

 (4.33)

Equation (4.33) can be used to determine the relative position of the target in the

robot frame, but to determine the orientation θ, at least two points from the object are

required. The position of the target object in the robot frame is transformed into the

world frame using (4.25) as follows[
xo
yo

]
=

[
x+ xr cos θ − yr sin θ
y + xr sin θ + yr cos θ

]
(4.34)

So by choosing two points from the target object (xo1, yo1) and (xo2, yo2), their

coordinates in the robot frame, (xr1, yr1) and (xr2, yr2) respectively, can be obtained

by (4.33). This leads to the following equation:


xo1
yo1
xo2
yo2

 =


1 0 xr1 −yr1
0 1 yr1 xr1
1 0 xr2 −yr2
0 1 yr2 xr2




x
y
Cθ
Sθ

 = Hq̄ (4.35)

where Cθ = cos θ and Sθ = sin θ. When det(H) = (xr1−xr2)2 +(yr1−yr2)2 6= 0 (which

is always true except in the trivial case when the two points are identical), equation

(4.35) can be used to obtain x, y and θ.

91

4. VISUAL SERVOING

Figure 4.7: Block diagram of position-based visual servoing.

Now because of the noise affecting the measurements of the coordinates in the image

plane, the results of this method are affected by errors. To make the pose estimation

more robust, a number of points n > 2 are considered and q̄ is computed using least-

squares techniques. This, however, does not guarantee that the resulting Cθ and Sθ are

valid (cos) and (sin) values, so the following values are used instead

cos θ = Cθ√
C2
θ+S2

θ

(4.36)

sin θ = Sθ√
C2
θ+S2

θ

(4.37)

Once q has been determined using image data, the problem becomes a pure motion

control problem discussed in chapter 3, and control block diagram is shown in Fig. 4.7.

Remark 7 The camera’s rotation angle ϕ is independent of the control loop and its

value is known at any given time, it can be used to guarantee that the observed object

stays in the field of view at all times.

4.4 Image-based Visual Servoing

Image-based visual servoing (2D) techniques directly use the visual information, de-

noted s, extracted from the image. The task ahead then is specified directly in the

image in terms of the desired visual feature sd to achieve. The control law is then to

control the camera movement so as to cancel the error between the current visual in-

formation s(t) and sd the desired pattern (see Fig. 4.8). This approach doesn’t require

the 3D reconstruction of the target.

92

4.4 Image-based Visual Servoing

b

Figure 4.8: Image-based visual servoing (2D).

Usually, s is composed of the image coordinates of several points belonging to the

considered object (Target). However, other image features can be considered like image

moments as we will see. As for sd, it is obtained either during an off-line learning step

(where the robot is moved at its desired position with respect to the target object and

the corresponding image is acquired), or by computing the projection in the image of a

3D model of the target for the desired camera pose (which necessitates a perfect camera

calibration and a perfect knowledge of the 3D target model).

Let’s define the image feature vector s(m(t), a). The vector m(t) is a set of image

measurements (e.g., the image coordinates of interest points, or the parameters of a

set of image moments). These image measurements are used to compute a vector of k

visual features. a is a set of parameters that represent potential additional knowledge

about the system (e.g., coarse camera intrinsic parameters or three-dimensional model

of objects). For example, if the image features are points, then we have

s = [uI1 vI1 uI2 vI2 · · ·uIk vIk]
T (4.38)

where (uIi vIi) i = 1 · · · k are pixel coordinates of these points. The vector sd contains

the desired values of the features. If the camera is in motion with respect to the

object (or the other way around), the feature vector s is, in general, time-varying. The

93

4. VISUAL SERVOING

velocity vector of the camera is the same as the robot velocity vector v = [v ω]Tr . The

relationship between ṡ and v is given by

ṡ = Js(s,T
c
b)v (4.39)

where Js is a (2k × 2) matrix termed Image Jacobian1. This equation is linear but Js

depends, in general, on the current value of the feature vector s and on the relative

pose of the object with respect to the camera T cb .

The aim of all image-based control schemes is to minimize an error es(t), which is

typically defined by

es = sd − s (4.40)

Using (4.39) and (4.40) we immediately obtain the relationship between the camera

velocity and the time variation of the error

ės = −Jev (4.41)

where Je = Js.

Considering v as the input to the robot system, we want to ensure an exponential

decoupled decrease of the error

ės = −Kses (4.42)

Therefore, if Ks is a positive definite matrix, system (4.42) is asymptotically stable and

es tends to zero with exponential convergence and the rate of convergence depends on

the eigenvalues of matrix Ks.

Using 4.41 and 4.42, we obtain

v = Ĵ+
s Kses (4.43)

where Ĵ+
s ∈ R(2×k) is an estimation of the Moore-Penrose pseudo-inverse of Js, that is

[80], J+
s = (JTs Js)

−1JTs , given that Js is of full rank 2.

A sufficient condition to ensure the global asymptotic stability of the system is (see

[49])

Ĵ+
s Js(s(t)) > 0 ∀t (4.44)

In the literature, three different choices for J+
s have been considered [21]:

1The term Interaction Matrix is also used interchangeably with Image Jacobian in the visual

servoing literature.

94

4.4 Image-based Visual Servoing

Figure 4.9: Block diagram of image-based visual servoing.

• Ĵ+
s = Ĵ+

s (t). In that case, the image Jacobian is numerically estimated during

the camera motion without taking into account the analytical form of the Im-

age Jacobian. This approach seems to be very interesting if any camera and

robot models are available. However, it is impossible in that case to demonstrate

whether condition (4.44) is ensured. Furthermore, initial coarse estimation of the

image Jacobian may lead to unstable results, especially at the beginning of the

servoing, and some visual features may get out of the camera field of view.

• Ĵ+
s = J+

s (sd). In this last case, Ĵ+
s is constant and determined during an off-

line step using the desired value of the visual features. Condition (4.44) is now

ensured only in a neighborhood of the desired position, and a decoupled behavior

will be achieved only in a smaller neighborhood. The performed trajectory in the

image may be unpredictable, and some visual features may get out of the camera

field of view during the servoing, especially if the initial camera position is far

away from its desired one.

• Ĵ+
s = J+

s (s(t)). The image Jacobian is now updated at each iteration of the

control law using the current measurement of the visual features s(t). In this case

we have Ĵ+
s Js(s(t)) = I,∀t, which satisfies condition (4.44) and implies a perfect

decoupled system. Each image point is constrained to reach its desired position

following a straight line. However, this may result in an inadequate robot motion.

In our approach we will use the choice Ĵ+
s = J+

s (s(t)) as shown in Fig. 4.9. To this

end, we need to find the analytical form of the Image Jacobian for different kinds of

95

4. VISUAL SERVOING

image features.

4.4.1 Image Jacobian of a point

Let pb = [xo yo Ho]
T
b a point of the observed object (pattern) expressed in the world

frame, its projection in the image is pI = [uI vI]
T . In the following, to simplify nota-

tion, normalized coordinates (X,Y) will be used in place of pixel coordinates (uI , vI)

to define the feature vector.

X =
1

αx
(uI − u0)

Y =
1

αy
(vI − v0)

(4.45)

And the vector of image features is thus s = [X Y]T .

Since only pixel coordinates can be directly measured, the normalized coordinates

should be computed from pixel coordinates using (4.45), provided that the intrinsic

parameters of the camera are known.

Let pc = [xc yc zc]
T
c be the vector of coordinates of the point pb expressed in the

camera frame, and using (4.10) and (4.45) yields

s(pc) =

[
X
Y

]
=

[
xc/zc
yc/zc

]
(4.46)

Computing the time derivative of (4.46) yields

ṡ =
∂s(pc)

∂pc
ṗc (4.47)

by using (4.46), we have

∂s(pc)

∂pc
=

1

zc

[
1 0 −X
0 1 −Y

]
(4.48)

And using homogeneous representation we have

p̃c = Tc
rT

r
bp̃b

=


sin(θ + ϕ) − cos(θ + ϕ) 0 −x sin(θ + ϕ) + y cos(θ + ϕ)− T sin(ϕ)

0 0 −1 H
cos(θ + ϕ) sin(θ + ϕ) 0 −x cos(θ + ϕ)− y sin(θ + ϕ)− T cos(ϕ)

0 0 0 1



x0

y0

H0

1


(4.49)

96

4.4 Image-based Visual Servoing

By computing the time derivative of (4.49) and using the kinematic model (1.3) of

the mobile robot, we obtain

ṗc =

 ẋc
ẏc
żc

 =

 − sinϕ zc + T cosϕ
0 0

− cosϕ −xc − T sinϕ

[v
ω

]
(4.50)

By substituting (4.48) and (4.50) in (4.47), we obtain the image Jacobian matrix

of a point

Js(s, ϕ) =

[1
zc

(− sinϕ+X cosϕ) 1 +X2 + T
zc

(cosϕ+X sinϕ)
1
zc
Y cosϕ XY + T

zc
Y sinϕ

]
(4.51)

From (4.31), we can write zc as a function of Y

zc =
H −Ho

Y
(4.52)

Substituting in (4.53) yields

Js(s, ϕ) =

[1
H−Ho (−Y sinϕ+XY cosϕ) 1 +X2 + T

H−Ho (Y cosϕ+XY sinϕ)
1

H−HoY
2 cosϕ XY + T

H−HoY
2 sinϕ

]
(4.53)

Remark 8 In the case where the camera is parallel to the sagittal axis of the mobile

robot and facing objects in front of the robot (ϕ = 0), the Image Jacobian becomes

Js(s) =

[
XY
H−Ho 1 +X2 + T

H−HoY
1

H−HoY
2 XY

]
(4.54)

4.4.2 Image Jacobian of a set of points

The image Jacobian matrix of a set of k points of the object p1, · · ·pk can be built by

considering the (2k × 1) feature vector (4.38). If Jsi(si, ϕ) denotes the image Jacobian

matrix corresponding to point pi, then the image Jacobian matrix of the set of points

will be the (2k × 2) matrix

Js(s, ϕ) =

 Js1(s1, ϕ)
...

Jsk(sk, ϕ)

 (4.55)

97

4. VISUAL SERVOING

Figure 4.10: Time variation of contour C(t).

4.4.3 Image Jacobian of image moments

The objective here is to find the analytic form of the image Jacobian that links the

derivative of an image moment mi,j of an observed object in the image, with the vector

v = [v ω]T . In other words we will obtain a linear link that can be expressed under

the form

ṁi,j = Jmijv (4.56)

Let O be the observed object and i(t) the image acquired by the camera at time

t. We denote by R(t) the part of i(t) where the object projects, and C(t) the contour

of R(t). We will consider here that either binary images are acquired or a spatial

segmentation algorithm, providing binary images, is first performed on the acquired

images. In that case, the moments mi,j of O in the image are defined by [23]

mi,j(t) =

∫∫
R(t)

f(X,Y)dXdY (4.57)

where f(X,Y) = XiY j .

In (4.57), the only part that is a function of time is R(t). The time variation of

mij can thus be obtained from the variation of C(t). More precisely, we have (see Fig.

4.10)

ṁi,j(t) =

∮
C(t)

f(X,Y)ẋT · ndl (4.58)

where ẋ is the velocity of contour point x = [X Y]T , n is the unitary vector normal

to C(t) at point x, and dl is an infinitesimal element of contour C(t). If the following

conditions are satisfied (which is the case in practice):

98

4.4 Image-based Visual Servoing

1. C(t) is continuous by parts.

2. vector f(X,Y) · ẋT is tangent to R(t) and continuously differentiable.

then using Green’s theorem (Appendix B.1) yields∮
C(t)

f(X,Y)ẋT · ndl =

∫∫
R(t)

div [f(X,Y)ẋ] dXdY (4.59)

By developing (4.59) and substituting the result in (4.58), we finally obtain

ṁi,j(t) =

∫∫
R(t)

[
∂f

∂X
Ẋ +

∂f

∂Y
Ẏ + f(X,Y)(

∂Ẋ

∂X
+
∂Ẏ

∂Y
)

]
dXdY (4.60)

Now using the expression of image Jacobian matrix of a point given in (4.51), we

obtain the derivatives of point’s coordinates (X,Y) in the image as functions of (v, ω)

Ẋ =

[
1

H −Ho
(−Y sinϕ+XY cosϕ)

]
v +

[
1 +X2 +

T

H −Ho
(Y cosϕ+XY sinϕ)

]
ω

Ẏ =

[
1

H −Ho
Y 2 cosϕ

]
v +

[
XY +

T

H −Ho
Y 2 sinϕ

]
ω

(4.61)

Hence
∂Ẋ

∂X
=

[
Y

H −Ho
cosϕ

]
v +

[
2X +

T

H −Ho
Y sinϕ

]
ω

∂Ẏ

∂Y
=

[
2Y

H −Ho
cosϕ

]
v +

[
X +

2T

H −Ho
Y sinϕ

]
ω

(4.62)

And we have
f(X,Y) = XiY j

∂f

∂X
(X,Y) = iXi−1Y j

∂f

∂Y
(X,Y) = jXiY j−1

(4.63)

Now we consider the object planar and situated on a vertical plane, in this case we

can simplify the integration by replacing H −Ho with Hm = H −Hg, where Hg is the

height of the center of gravity of the object, and we assume that the object is chosen

such that Hm 6= 0 (see Remark 6). By substituting (4.61), (4.62) and (4.63) in (4.60),

we obtain after development

ṁi,j = Jmij

[
v
ω

]
= [Jvmij Jωmij]

[
v
ω

]
(4.64)

99

4. VISUAL SERVOING

where

Jvmij =
1

Hm
((i+ j + 3)mi,j+1 cosϕ− imi,j sinϕ)

Jωmij = imi−1,j + (i+ j + 3)mi+1,j+

T

Hm
[imi−1,j+1 cosϕ+ (i+ j + 3)mi,j+1 sinϕ]

(4.65)

4.4.4 Pose estimation algorithm based on the image Jacobian

The Image Jacobian matrix can be used in pose estimation, i.e. computing q =

[x y θ]T . As we have seen, the relation between the derivative of the image fea-

ture vector s = [X Y]T and the robot’s velocities vector v is ṡ = Jsv. By using the

kinematic model of the mobile robot q̇ = G(q)v, we obtain

ṡ = Js(s)G+(q)q̇ = As(s,q)q̇ (4.66)

where G+(q) = (GTG)−1GT is the pseudo-inverse of matrix G(q).

Equation (4.66) is the starting point of a numerical integration algorithm for the

computation of q. Let q̂ denote the current estimate of vector q and let

ŝ = s(q̂) (4.67)

be the corresponding vector of image feature parameters computed from the pose spec-

ified by q̂; the objective of this algorithm is the minimization of the error

es = s− ŝ (4.68)

Notice that, for the purpose of numerical integration, vector s is constant while the

current estimate ŝ depends on the current integration time. Therefore, computing the

time derivative of (4.68) yields

ės = − ˙̂s = −As(ŝ, q̂) ˙̂q (4.69)

Assumming that the matrix A+
s (ŝ, q̂) = (AT

s As)
−1AT

s is nonsingular, the choice

˙̂q = A+
s (ŝ, q̂)Kses (4.70)

leads to the equivalent linear system

ės + Kses = 0 (4.71)

100

4.5 Trajectory Planning on the Image Plane

Figure 4.11: Pose estimation algorithm based on the image Jacobian.

Therefore, if Ks is a positive definite matrix (usually diagonal), the system (4.71) is

asymptotically stable and the error tends to zero with a convergence rate that depends

on the eigenvalues of matrix Ks. The convergence to zero of error es ensures the

asymptotic convergence of the estimate q̂ toward the actual value q.

The block scheme of the pose estimation algorithm is shown in Fig. 4.11, where s(·)
denotes the function computing the feature vector of the ’virtual’ image corresponding

to the current estimate q̂ of the pose. This algorithm can be used as an alternative

to the analytic methods for pose estimation illustrated in Section 4.3. Obviously, the

convergence properties depend on the choice of the image feature parameters and on

the initial value of estimate q̂(0), which may produce instability problems related to

the singularities of matrix As.

Notice that the pose estimation methods based on Jacobian are as efficient, in terms

of accuracy, speed of convergence and computational load, as the initial estimate q̂(0)

is close to the true value q. Therefore, these methods are mainly adopted for real-

time ’visual tracking’ applications, where the estimate on an image taken at time t is

computed assuming as initial value the estimate computed on the image taken at time

t− T , T being the sampling time of the image.

4.5 Trajectory Planning on the Image Plane

Our approach for image-based visual servoing is based on the regulation to zero of an

error function computed from the current measurement and a constant desired one. It

101

4. VISUAL SERVOING

Figure 4.12: Block diagram of IBVS coupled with trajectory planning in the image plane.

is, therefore, not trivial to introduce any constraint in the realized trajectories such

as the target object remains in the camera field of view, or to ensure the convergence

of all the initial configurations. Moreover, we have used the approach Ĵ+
s = J+

s (s(t))

that requires the calculation of J+
s (s(t)) at each iteration, which is time consuming

and makes the matrix Js, and hence the system, more vulnerable to image noise and

measurements errors. On the other hand, it seems useful to use the approach Ĵ+
s =

J+
s (sd) which can be calculated off-line. This, however, implies that the stability is

ensured in a small neighborhood of sd.

One way to go around this problem is to perform a trajectory planning on the image

plane, i.e. to provide desired image features values sd(t) that corresponds to a feasible

Cartesian trajectory. In other words, we will make the desired features acting as if

the target object is observed by a ’virtual’ mobile robot that moves from the initial

position to its final destination following a desired path, as those described in chapter 2

for example, and our objective is to follow that robot. By this coupling of path planning

in image space and image-based control, constraints such that the object remains in

the camera field of view can be taken into account at the planning level. Furthermore,

current measurements always remain close to their desired value and robustness of the

image-based servoing is ensured along the whole trajectory.

As we have seen in section 4.4, the aim of image-based control scheme is to minimize

the error

es(t) = sd(t)− s(t) (4.72)

102

4.5 Trajectory Planning on the Image Plane

Figure 4.13: Polygon projection on the image plane.

Its derivative is then given by

ės = Js(sd(t))vd − Js(s(t))v

≈ Js(sd(t))(vd − v)
(4.73)

where vd is the velocity vector of the ’virtual’ mobile robot. Using (4.42) the control

law is then

v = vd + J+
s (sd(t))Kses (4.74)

The values of J+
s are calculated off-line along the trajectory using sd values, which

may be obtained during an off-line learning step (where the robot is moved at its desired

position with respect to the target object and the corresponding image is acquired).

This method, however, depends on position estimation using encoders informations

(which may be unavailable or unreliable, and this is the reason why we resort to visual

servoing in the first place), also, this method requires that the target object remains

fixed throughout the learning phase. For these reasons, we propose to calculate the

desired image features value by computing the projection in the image of a 3D model

of the target for the desired camera pose. These values are then stored in the memory

in a lookup table ready to be used when needed. Firstly, this approach requires no

learning phase to be performed before the actual servoing phase, and secondly, target

object movement can be easily incorporated into our equations.

When points are used as visual features, then the desired points locations are ob-

tained by simple 3D projection using equation (4.12). Obtaining the desired visual

103

4. VISUAL SERVOING

features, however, becomes more difficult when image moments are used as visual fea-

tures. To perform a trajectory planning in the image plane using image moments we

will consider two special cases:

• The target object is a planar polygon. Let (xo1, yo1, Ho1),(xo2, yo2, Ho2) · · · (xok,

yok, Hok) denote the vertices of the polygon expressed in world frame. Under

the hypothesis that the distortion in the camera is very small, the projection

of this polygon in the image is another polygon whose vertices (X1, Y1),(X2, Y2)

· · · (Xk, Yk) are the projections of the original polygon vertices on the image plane

(normalized coordinates are used here) using equation (4.12) (see Fig. 4.13). The

relationship between image moments of the polygon and its vertices can be then

derived using Green’s Theorem (see Appendix B.3). For example, the four first

image moments are given by

m0,0 =
1

2

k∑
i=1

(XiYi+1 −Xi+1Yi)

m1,0 =
1

6

k∑
i=1

(Xi +Xi+1) (XiYi+1 −Xi+1Yi)

m0,1 =
1

6

k∑
i=1

(Yi + Yi+1) (XiYi+1 −Xi+1Yi)

m1,1 =
1

24

k∑
i=1

[
X2
i Yi+1 (2Yi + Yi+1)−X2

i+1Yi (Yi + 2Yi+1) + 2XiXi+1

(
Y 2
i+1 − Y 2

i

)]
(4.75)

with (Xk+1, Yk+1) = (X0, Y0). Higher order moments can be derived in a similar

manner (see Appendix B.3).

• The target object is a planar ellipse. In this case, image projection is also an

ellipse whose antipodal points on its major axis and minor axis denoted (Xa, Ya),

(X−a, Y−a), (Xb, Yb) and (X−b, Y−b) are the projections of their counterparts of

the original object using equation (4.12). These four points can be then used to

calculate the ellipse’s major diameter 2a, its minor diameter 2b, the angle between

its major axis and horizon δ and its center (Xg, Yg) (see Fig. 4.14).

The relationship between image moments of the ellipse and its elements can be

104

4.6 Simulations Results

Figure 4.14: Usual representation of an ellipse.

then derived (see Appendix B.4):

m0,0 = πab

m1,0 = Xgm0,0

m0,1 = Ygm0,0

m1,1 = XgYgm0,0 +
π

8
ab(a2 − b2) sin 2δ

(4.76)

4.6 Simulations Results

Position-based Visual Servoing

In the simulations we consider the normalized image coordinates; which are camera

independent. Image features considered are four points (could be for example ver-

tices of a polygon or centers of circles), their coordinates in world frame are po1 =

(4m, 0.68m, 0.2m), po2 = (4m, 1.32m, 0.2m), pw3 = (4m, 1.32m, 1.0m) and pw4 =

(4m, 0.68m, 1.0m). An analytical pose estimation (described in section 4.3) is used

to determine the robot’s position based on the image features for camera’s height of

H = 0.4m. To complete the control loop we used a nonlinear controller based on the I&I

methodology described in section 3.4.3, to track a Cartesian trajectory that is designed

using cubic polynomials that ensures that the target object remains in the camera’s

field of views, which is considered here to be Width = −1 · · · 1, Height = −1 · · · 11.

1Keeping in mind that we are using normalized coordinates for simulation purposes

105

4. VISUAL SERVOING

(a) Trajectory (b) Time Responses

Figure 4.15: Position-based visual servoing of robot system in tracking a trajectory

planned via cubic Cartesian polynomials for a parking maneuver.

(a) Velocities (b) Image

Figure 4.16: Position-based visual servoing of robot system in tracking a trajectory

planned via cubic Cartesian polynomials for a parking maneuver.

106

4.6 Simulations Results

(a) Trajectory (b) Time Responses

Figure 4.17: Position-based visual servoing of robot system in tracking a trajectory

planned via cubic Cartesian polynomials for a parking maneuver in the presence of cali-

bration error.

Simulations have been performed in Simulink with a fixed step of 50ms. Fig. 4.15

shows the tracking of a trajectory planned via cubic polynomials between the initial

posture (pose) (x0, y0, θ0) = (0, 0, 0) and the final posture (xf , yf , θf) = (3m, 1m,π/6).

As we can see, the actual trajectory of the robot coincides with the reference trajectory.

Fig. 4.16a shows the linear and angular velocities of the mobile robot (which are the

outputs of the controller); they remain within accepted limits1). Fig. 4.16b represents

the projection of the four points in the image plane, where their initial locations are

marked with (o), and their final locations are marked with (+).

Remark 9 In the previous simulations, we assumed that the camera is perfectly cali-

brated, i.e. intrinsic parameters used in camera projection are identical to those used

in pose estimation. Adding an error of about 5% to intrinsic parameters αx and αy

will result in a ’drift’ from the refernce trajectory as shown in Fig. 4.17. This problem

is the main drawback of position-based visual servoing.

1|v|max = 1 and |ω|max = 1

107

4. VISUAL SERVOING

(a) Trajectory (b) Velocities

Figure 4.18: Image-based visual servoing using fixed reference image features.

Image-based Visual Servoing

We start by using the same four points given above as target configuration. Ini-

tial robot posture is (x0, y0, θ0) = (0, 1, 0), and desired image features are calcu-

lated as the projection of these points on the image plane when the robot is at the

desired pose (xf , yf , θf) = (2.0m, 1.0m, 0.0rad). In this case the four points corre-

spond to (Xd1, Yd1) = (0.3200,−0.1075),(Xd2, Yd2) = (−0.3200,−0.1075),(Xd3, Yd3) =

(−0.3200, 0.7425) and (Xd4, Yd4) = (0.3200, 0.7425)1. These values are used to estimate

Image Jacobian (4.53) instead of the real-time values of image features.

Fig. 4.18 shows that the robot reaches its final destination and the controller outputs

(v and ω) are within limits. Fig. 4.19 shows the evolution of the image features in the

image plane: the four point locations on the image converge toward the desired locations

marked by (x). This convergence, however, is not guaranteed for all initial postures,

because it is possible that the system converges to a local minimum, as we can see for

example in Fig. 4.20, where initial posture is chosen as (x0, y0, θ0) = (0, 0, 0).

Now instead of the fixed reference we plan a reference trajectory of image features on

the image plane as described in section 4.5. Initial posture is (x0, y0, θ0) = (0, 0, 0) while

final posture is (xf , yf , θf) = (3, 1, 0). Fig. 4.21a shows a perfect trajectory tracking

1Normalized coordinates are used as usual

108

4.6 Simulations Results

Figure 4.19: Points locations seen from the camera; initial positions (o), final positions

(+).

109

4. VISUAL SERVOING

Figure 4.20: Points locations seen from the camera; initial positions (o), final positions

(+) and desired positions (x).

110

4.6 Simulations Results

(a) Trajectory (b) Velocities

Figure 4.21: Image-based visual servoing using planned reference trajectory in image

plane.

Figure 4.22: Points locations seen from the camera; initial positions (o), final positions

(+) and desired positions (x).

111

4. VISUAL SERVOING

Figure 4.23: Target object used for visual servoing using image moments.

in the plane (x, y), while Fig. 4.22 shows trajectory tracking in the image plane. This

result is obtained regardless of initial position provided that planned trajectories respect

velocities limits and guarantee that the target object remains in the camera’s field of

view.

Now we will use basic image moments mi,j as image features, for this purpose let’s

consider the coplanar polygon shown in Fig. 4.23 as target object. We consider that

this object is situated on a vertical plane parallel to (y, z) plane and corresponds to

x = 4, its vertices’ coordinates in the world frame are given in Table 4.1.

Point (xo, yo, Ho) Point (xo, yo, Ho) Point (xo, yo, Ho)

p1 (4.0, 0.9, 0.325) p2 (4.0, 1.1, 0.325) p3 (4.0, 1.1, 0.42)

p4 (4.0, 1.075, 0.42) p5 (4.0, 1.075, 0.445) p6 (4.0, 1.03, 0.445)

p7 (4.0, 1.03, 0.42) p8 (4.0, 0.965, 0.42) p9 (4.0, 0.965, 0.465)

p10 (4.0, 0.92, 0.465) p11 (4.0, 0.92, 0.42) p12 (4.0, 0.9, 0.42)

Table 4.1: Target object vertices in world frame.

We plan a trajectory in the image plane using equations (4.75), this trajectory

corresponds to a Cartesian trajectory planned via cubic polynomials. Initial posture is

chosen as (x0, y0, θ0) = (0, 0, 0), while final posture is (xf , yf , θf) = (3, 1, 0). Fig. 4.24a

shows the trajectory in the (x, y) plane, while Fig. 4.25 shows the evolution of image

moment values which follow almost perfectly their reference values.

112

4.7 Conclusion

(a) Trajectory (b) Velocities

Figure 4.24: Image-based visual servoing using image moments.

4.7 Conclusion

In this chapter we have addressed visual servoing techniques, where two main ap-

proaches are introduced, namely position-based visual servoing and image-based visual

servoing. Position-based visual servoing is sensitive to camera calibration errors. In

fact the presence of uncertainties on calibration parameters, both intrinsic and extrin-

sic, produces errors on the estimate of operational space variables that may be seen

as an external disturbance acting on the feedback path of the control loop, where dis-

turbance rejection capability is low. Moreover, in PBVS the object geometry must be

known because it is necessary for pose estimation.

On the other hand, in Image-based visual servoing the quantities used for the com-

putation of the control action are directly defined in the image plane and measured in

pixel units. This implies that the uncertainty affecting calibration parameters can be

seen as a disturbance acting on the forward path of the control loop, where disturbance

rejection capability is high. IBVS does not require, in principle, knowledge of the object

geometry. However, the knowledge of object geometry and perfect camera calibration

becomes very important when planning a trajectory in the image plane, which requires

the calculation of the projection of object points on the image. This can be mended

by the calculation of these projections through a learning phase, where the robot is

113

4. VISUAL SERVOING

Figure 4.25: Evolution of the image moments of the robot Pekee II using Image-based

visual servoing.

114

4.7 Conclusion

moved along the desired trajectory while measuring and storing the image features val-

ues (points or image moments). Nevertheless, this new approach eliminates the need

for a learning step and target object movement can be easily taken into account.

115

Chapter 5

Experimental Results

The experimental validation tests have been first performed on the mobile robot Koala,

the ability to apply the command directly on its wheels’ motors makes it ideal for

control strategy that takes into account a dynamical model, like the Integral sliding

mode control strategy discussed in Section 3.3. However, its fixed camera and bad

image quality makes it not very suitable for testing visual servoing techniques. In order

to validate our results of visual servoing we resorted to use the wheeled mobile robot

Pekee II. In what follows we will briefly present the robots’ characteristics and the

experiments that have been performed on each of them.

5.1 Wheeled Mobile Robot Koala

Koala is a mid-size wheeled mobile robot, it rides on 6 wheels for indoor operations.

It has two differentially driven motorized wheels (the middle wheel of each side), with

maximum speed 0.4 m/s, the wheels have a radius of 45mm and are mounted on an

axle 30 cm long. The chassis of the robot measures 30x30x20 cm (l/w/h) and its

total weight is 3.6 kg (4kg with battery). Each motor is equipped with an incremental

encoder counting 5850 pulses/turn. The robot is equipped with 16 Infra-red proximity

and ambient light sensors in addition to a camera mounted on a turret. Koala is

provided for control purposes with a Motorola 68331@22MHz processor.

In order to control the robot, commands can be sent from a remote PC via serial port

(RS232), and the robot responds either by performing an action (like turning the wheels

for example), or by sending back data (e.g. encoders readings). DC motors can be

117

5. EXPERIMENTAL RESULTS

controlled directly by adjusting the duty cycle of the applied PWM signal of each motor,

or indirectly via embedded PID position and speed controllers. Image acquisition from

the camera is done via a graphic card (Blackboard) connected to the PC. Control and

visual servoing algorithms are implemented using C++ language. Image processing

and segmentation are performed using a special library called MIRAGE developed by

Supelec1. The complete control architecture schematic of the robot Koala is shown in

Fig. 5.1.

5.1.1 Experiments

In this section, we will report the experimental results of Koala in tracking an eight

shape reference trajectory defined by

xd(t) = xdmax sin(2π
t

T
) + xd0

yd(t) = ydmax sin(2π
t

2T
) + yd0

(5.1)

for t ∈ [0, 2T]. We choose xdmax = 2m, ydmax = 2m, (xd0, yd0) = (1, 0) and T = 40s.

From which we obtain using (2.10)

θd(0) = 0.4636rad

vd(0) = 0.3512m/s

ωd(0) = 0rad/s

vdmax = 0.3512m/s

ωdmax = 0.4580rad/s

We apply feedback linearization discussed in section 3.2.1, we let q(0) = (0m, 0m, 0rad),

i.e., starting with an initial state error with respect to the assigned trajectory qd(0) =

(1.0m, 0.0m, 0.4636rad). Data acquisition and control implementation are performed

at a sampling period Ts = 0.05s.

In the first set of experiments, a PID controller is applied with kp = 9.17,ki = 0.72

and kd = 10.59. As we can see from Figs. 5.2 and 5.3, relatively high tracking errors

(up to 10.0 cm) are observed on x, y and 0.5rad on θ. These tracking errors are

resulting from unmodeled dynamics (motors dynamics and unmodeled friction forces)

and measurements errors. In addition, there is a large transient error resulting from

the initial posture being different from the desired trajectory starting point.

1Metz Campus

118

5.1 Wheeled Mobile Robot Koala

Figure 5.1: System architecture schematic of the robot Koala.

119

5. EXPERIMENTAL RESULTS

Figure 5.2: Asymptotic trajectory tracking using linear PID controller to track an eight

shape trajectory on the (x, y) plane.

120

5.1 Wheeled Mobile Robot Koala

(a) Trajectory on x,y and θ (b) Tracking Errors

Figure 5.3: Asymptotic trajectory tracking using PID controller.

(a) Linear and angular velocities (b) Applied torques

Figure 5.4: Asymptotic trajectory tracking using PID controller.

121

5. EXPERIMENTAL RESULTS

Figure 5.5: Asymptotic trajectory tracking using Integral Sliding Mode controller of an

eight shape trajectory on the (x, y) plane.

In the second set of experiments, we add Integral Sliding Mode controller as de-

scribed in Section 3.3.3. As we can see from Figs. 5.5 and 5.6, the tracking of the

reference trajectory is quite accurate. Residual errors (1 cm Maximum) are mainly due

to quantization and discretization of velocity commands.

Another experiment was conducted to track trajectories generated using cubic poly-

nomials between two points in presence of obstacles. The modified TangentBug al-

gorithm described in Section 2.3 is used to avoid obstacles that are detected using

Infra-red sensors. Fig. 5.8 shows the implementation of this algorithm in presence of a

cylindrical object on the path between the start point and the target point. As we can

see, a smooth path is generated when the obstacle is detected.

122

5.1 Wheeled Mobile Robot Koala

(a) Trajectory on x,y and θ (b) Tracking Errors

Figure 5.6: Asymptotic trajectory tracking using Integral Sliding Mode controller.

(a) Linear and angular velocities (b) Applied torques

Figure 5.7: Asymptotic trajectory tracking using Integral Sliding Mode controller.

123

5. EXPERIMENTAL RESULTS

Figure 5.8: Trajectory tracking in presence of obstacles.

5.2 Wheeled Mobile Robot Pekee II

Pekee II from Wany Robotics1, is a mid-size, cylinder-shaped wheeled mobile robot

designed for indoor applications. It has two differentially driven wheels whose diameter

is 72mm placed on the diameter of the robot. The cylindrical chassis of the robot has

a diameter of 387mm, height 176mm (245mm with the camera) and its total weight is

approximately 8.0 kg. The two 12V DC motors of Pekee II are equipped with a gear

box, allowing to get a maximum speed of 250mm/s with the maximum torque of 3.0Nm.

The positions of the wheels are measured using two odometers (255560 tops per wheel

cycle). The robot is equipped with 8 ultra sonic sensors in addition to a pan-tilt Axis

214 PTZ camera which provides a video output with a resolution up 704x576 with a

frame rate up to 30fps. Pekee II is provided for control purposes with an embedded

PC that runs under Microsoft Windows XP.

In order to control the robot, commands can be sent from a remote PC via WiFi

802.11 connection, and the robot responds either by performing an action (e.g. mov-

ing forward or turning around), or by sending back data (e.g. odometers’ readings or

1http://www.wanyrobotics.com/.

124

5.2 Wheeled Mobile Robot Pekee II

Figure 5.9: System architecture schematic of the robot Pekee II.

camera streaming). Communications between the robot and the remote PC is achieved

by a standard TCP/IP protocol, this protocol allows for a server/multiple clients plat-

form, which makes multiple robots coordination possible in the future. Control and

visual servoing algorithms are implemented using C# language. Image processing and

segmentation are performed using AForge1 framework. Fig. 5.9 shows the complete

control architecture schematic of the robot Pekee II.

5.2.1 Camera Calibration

The method of Zhang presented in appendix C was used to calibrate the camera with

an image resolution of 640× 480. The pattern used is a plane on which was printed a

checkboard pattern of 8 by 8 squares. The items selected are the corners of each square.

Each image of the plane provides for 49 points. Sixteen images used are shown in Figure

5.10. They show the model under different directions and at different distances from

the optical center as illustrated in Fig. 5.11. The aim is to calculate a set of parameters

for points distributed in a fairly large area around the camera as this will be the case

for objects observed in an indoor environment.

1C# framework designed for developers and researchers in the fields of Computer Vision and

Artificial Intelligence, downloadable from http://code.google.com/p/aforge/.

125

5. EXPERIMENTAL RESULTS

Figure 5.10: Calibration pattern taken from different directions and at different distances

from the camera.

Intrinsic parameter values of robot Pekee II’s camera obtained by calibration are

listed in Table 5.1.

Parameter Value Uncertainty

αx 747.18 ±20.52(2.75%)

αy 749.17 ±18.47(2.47%)

u0 311.32 ±10.5(3.37%)

v0 234.54 ±8.55(3.65%)

δ 90.0 ±0.0(0.0%)

Table 5.1: Intrinsic parameter values of robot Pekee II’s camera obtained by calibration.

5.2.2 Experiments

Experiments have been conducted on the wheeled mobile robot Pekee II in order to

validate theoretical and simulation results of chapters 3 and 4.

126

5.2 Wheeled Mobile Robot Pekee II

Figure 5.11: Camera’s position and orientation relative to the pattern.

A. Posture Stabilization using I&I controller

In this case, the desired posture is the origin (xd, yd, θd) = (0, 0, 0). At t = 0 sec, the

initial position of the robot is (x(0), y(0), θ(0)) = (−1.98,−3.0, π/2). We implemented

the controller (3.67) and the control gains are tuned in order to achieve fast convergence

toward the desired manifold and to satisfy limitations on linear and angular velocities.

In our simulations they are set to k = 0.8, λ1 = 1.2 and λ2 = −4.3.

Fig. 5.12 shows the robot’s trajectory in the (x, y) plane, while Fig.5.13 shows

robot’s orientation and linear and angular velocities. As we can observe the controller

ensures the stabilization of the Pekee II, and the robot reaches its desired posture with

practically no static errors.

B. Trajectory tracking using I&I controller

The tracking performance of the I&I control strategy is verified in the tracking of

the reference trajectory that consists of successive straight line segments and arc line

segments which may represent the output of a typical path planner. Reference and

actual trajectories of the robot are depicted in Fig. 5.14, while tracking errors are

127

5. EXPERIMENTAL RESULTS

Figure 5.12: Stabilization of Pekee II using I&I controller for (x0, y0, θ0) =

(−1.98,−3.0, π/2).

(a) Orientation (b) Linear and angular velocities

Figure 5.13: Stabilization of Pekee II using I&I controller for (x0, y0, θ0) =

(−1.98,−3.0, π/2).

128

5.2 Wheeled Mobile Robot Pekee II

Figure 5.14: Trajectory tracking of robot Pekee II using I&I controller.

shown in Fig. 5.15a. Clearly the mobile robot is able to track the reference trajectory.

Residual errors are mainly due to quantization and discretization of velocity commands.

C. Position-based visual servoing

The target under consideration consists of four colored marks on the vertices of a

stationary planar square (Fig. 5.16). This object is situated on a vertical plane parallel

to (y, z) plane and corresponds to x = 3m, its vertice coordinates in world frame are

given in Table 5.2.

Point Color Coordinates in world frame

p1 Red (3.0m,-0.08m,0.15m)

p2 Green (3.0m,0.08m,0.15m)

p3 Blue (3.0m,0.08m,0.20m)

p4 Black (3.0m,-0.08m,0.20m)

Table 5.2: Target object vertices in world frame.

A standard computer vision segmentation algorithm extracts the marks from the

129

5. EXPERIMENTAL RESULTS

(a) Tracking errors (b) Linear and angular velocities

Figure 5.15: Trajectory tracking of robot Pekee II using I&I controller.

background and computes the central moment of each mark. The central moments

are transformed into unit-norm spherical image plane representation using the camera

calibration matrix. The initial posture is chosen as (x0, y0, θ0) = (0,−0.4m, 0), and

the desired posture is (x0, y0, θ0) = (2.4m, 0, 0). The trajectory is then generated using

cubic polynomials.

Fig. 5.17 shows the robot’s trajectory in the Cartesian space, while Fig. 5.18 shows

the evolution of the image features in the image plane. By observing the tracking

errors in both Cartesian space and image plane shown in Fig. 5.19 we note that the

Figure 5.16: Target pattern used in Position-based visual servoing.

130

5.2 Wheeled Mobile Robot Pekee II

Figure 5.17: Trajectory on the plane (x, y) of the robot Pekee II using Position-based

visual servoing.

position-based visual servoing control strategy ensures a good trajectory tracking, as

long as the target object (all four circles) remains in the camera field of view, which is

ensured by carefully choosing reference trajectory parameters.

Remark 10 It is worth noting that x and y values shown in Fig. 5.17 were not ob-

tained using odometers readings, but by pose estimation using image features shown in

Fig. 5.18. In reality there exists a small difference between both as a direct result of

camera calibration uncertainties and image noise.

D. Image-based visual servoing

In the experiments we used the same pattern (Fig. 4.23) used in simulations with its

vertices coordinates in world frame given in Table 5.3.

We plan a trajectory in the image plane using equations (4.75), this trajectory

corresponds to a Cartesian trajectory planned via cubic polynomials. Initial posture

is chosen as (x0, y0, θ0) = (0,−0.80, 0), while final posture is (xf , yf , θf) = (2.5, 0, 0).

131

5. EXPERIMENTAL RESULTS

Figure 5.18: Evolution of the image features in pixels in the image plane of the robot

Pekee II using Position-based visual servoing.

(a) Tracking errors on (x, y) (b) Tracking errors in the image

Figure 5.19: Trajectory errors of the robot Pekee II using Position-based visual servoing.

132

5.3 Conclusion

Point (xo, yo, Ho) Point (xo, yo, Ho) Point (xo, yo, Ho)

p1 (3.0, 0.1, 0.325) p2 (3.0, -0.1, 0.325) p3 (3.0, -0.1, 0.42)

p4 (3.0, -0.075, 0.42) p5 (3.0, -0.075, 0.445) p6 (3.0, -0.03, 0.445)

p7 (3.0, -0.03, 0.42) p8 (3.0, 0.35, 0.42) p9 (3.0, 0.35, 0.465)

p10 (3.0, 0.12, 0.465) p11 (3.0, 0.12, 0.42) p12 (3.0, 0.3, 0.42)

Table 5.3: Target object vertices in world frame.

These values of image moments are then stored within memory and used in the control

loop as shown in Fig. 4.12 in Section 4.5.

Fig. 5.20 shows the trajectory in the (x, y) plane, while Figs. 5.22 and 5.23 show

the evolution of image moment values and their reference values. We note that our

strategy in Image-based visual sevoing ensures a good trajectory tracking throughout

the whole trajectory.

5.3 Conclusion

In this chapter, experiments have been conducted on two wheeled mobile robots: Koala

and Pekee II. An Integral Sliding Mode based control strategy combined with state feed-

back linearization has been implemented on Koala, this controller provided far better

results than a traditional PID controller in trajectory tracking and disturbances rejec-

tion. A reactive path planning algorithm was implemented to take advantage of the

Infra-red sensors in order to detect static obstacles and provide a smooth collision-

free path. A control strategy based on the application of Immersion and Invariance

methodology has been implemented on the mobile robot Pekee II to address both sta-

bilization and trajectory tracking. Satisfactory results have been obtained for both

control problems. Position-based visual servoing strategy has been implemented, this

control strategy ensured a good trajectory tracking, as long as the target object remains

in the camera field of view, which is guaranteed by carefully choosing reference trajec-

tory parameters, the difference between the trajectory calculated using pose estimation

and the one calculated using odometers is due to camera calibration uncertainties.

Image-based visual servoing strategy is then implemented using image moments as

visual features, this visual servoing strategy is combined with trajectory tracking on

133

5. EXPERIMENTAL RESULTS

Figure 5.20: Trajectory on the plane (x, y) of the robot Pekee II using Image-based visual

servoing.

(a) Trajectory on x,y and θ (b) Linear and angular velocities

Figure 5.21: Evolution of the image moments of the robot Pekee II using Image-based

visual servoing.

134

5.3 Conclusion

(a) m00 (b) m11

Figure 5.22: Evolution of the image moments of the robot Pekee II using Image-based

visual servoing.

(a) m10 (b) m01

Figure 5.23: Evolution of the image moments of the robot Pekee II using Image-based

visual servoing.

135

5. EXPERIMENTAL RESULTS

the image plane, experiments showed a good trajectory tracking throughout the whole

trajectory.

136

Conclusions and Perspectives

In this work, we discussed the motion control problem and visual servoing of a non-

holonomic wheeled mobile robot. First, we presented kinematic and dynamic models

of the robot in addition to their control properties. We discussed then the trajectory

planning problem in the presence of nonholonomic constraints. The existence of flat

outputs, is then exploited to implement trajectory planning methods that guarantee

that the nonholonomic constraints are satisfied. Path planning in the presence of static

obstacles is then discussed, a modified TangentBug algorithm was implemented in order

to generate smooth collision-free trajectories.

Next, we discussed the motion control problem for a nonholonomic mobile robot,

with reference to two basic motion tasks, i.e., posture regulation and trajectory tracking.

Two control approaches have been described: First, state feedback Linearization is

extended to include both kinematic and dynamic models, or the so called second-order

kinematic model. A control strategy is applied, on the basis of the Integral Sliding

Mode approach with the objective of posture regulation and tracking pre-generated

trajectories. This combination has led to satisfactory results in terms of stabilization

and robustness. Second, a control strategy based on the application of Immersion

and Invariance methodology is described. This method was used to derive a class of

controllers for both control problems. The proposed control strategy guarantees that

the closed-loop system asymptotically behaves like a given target system achieving

asymptotic model matching, which makes the system performance adjustment simpler

and physically meaningful. Stability of the system has been guaranteed by appropriate

choice of the target systems. Simulations have been conducted which established the

quality of both control strategies.

We then addressed visual servoing techniques, where two main approaches are in-

troduced, namely position-based visual servoing and image-based visual servoing. The

137

Conclusions and Perspectives

use of the so-called image moments as image feature parameters in both approaches is

also presented. A new approach to image-based visual servoing is developed, which is

based on the trajectory generation in the image plane directly (computing image fea-

tures values corresponding to a given Cartesian trajectory by computing the projection

in the image of a 3D model of the target for the desired camera pose). This approach

guarantees that the robustness and stability of image-based servoing have been ex-

tended due to the fact that initial and desired camera locations are close to each other.

The obtained trajectories ensure that the target remains in the camera field of view

and that the corresponding robot motion is physically realizable. This method doesn’t

require a learning step, which has the drawback to depend on position estimation using

encoders informations (which may be unavailable or unreliable), and to it requires that

the target object remains fixed throughout this phase. In our method however, target

object movement can be easily incorporated into our equations.

Finally, we conducted experiments to validate our results of motion control and

visual servoing techniques on two mobile robots: Koala and Pekee II. Technical as-

pects of both implementations have been briefly presented. Satisfactory results have

been obtained from both implementations regarding motion control and visual servoing

strategies.

Perspectives

Future work should explore other possibilities and routes in which this thesis’s work

could head to. Main future work additions could be:

• Implementation of other control algorithms: We have implemented two

control strategies for both navigation problems, one based on the Integral Sliding

mode, and the other on the Immersion and Invariance. Adaptive control strategies

could be investigated for example, in order to solve the stabilization and tracking

control of nonholonomic systems in presence of parametric and nonparametric

uncertainties.

• Further experimental testing considering more complex environments:

Experiments were conducted but within limited sized and simple environments,

always considering static objects. Future testing should include larger and more

138

Conclusions and Perspectives

complex environments, possibly with inclusion of moving objects. Also, experi-

mental testing should be incorporated earlier in the development process.

• Identification of more than one target object per captured image: The

target object recognition using computer vision was implemented with the re-

striction on the number of objects that can be identified in a captured image.

Future work should consider the identification of multiple target objects within

a captured image.

• Considering dynamic environments: In path planning, we have considered

static environments whose contents remain fixed for the whole duration of nav-

igation. Future path planning should consider dynamic environments. The de-

velopment of autonomous exploration strategies, should provide solutions to the

problems of sustainable change in the environment. Regarding the changes to the

environment, it is useful to treat them as a problem of obstacle avoidance. In

this approach, it would probably be interesting to perform an estimation of the

speed of the obstacles.

• Considering the problem of coordinating multiple robots: We have con-

sidered in our implementation a single robot. The WiFi functionality of robot

Pekee II gives the possibility of controlling multiple robots using a coordinating

program running on the same remote computer.

139

Appendix A

Nonholonomic Constraints

Wheels are by far the most common mechanism to achieve locomotion in mobile robots.

Any wheeled vehicle is subject to kinematic constraints that reduce in general its local

mobility, while leaving intact the possibility of reaching arbitrary configurations by

appropriate manoeuvers. For example, any driver knows by experience that, while it is

impossible to move instantaneously a car in the direction orthogonal to its heading, it

is still possible to park it arbitrarily, at least in the absence of obstacles. It is therefore

important to analyze in details the structure of these constraints.

Let’s consider a mechanical system whose configuration q ∈ C is described by a

vector of generalized coordinates, and assume that the configuration space C (i.e., the

space of all possible robot configurations) coincides with Rn. The motion of the system

that is represented by the evolution of q over time may be subject to constraints

that can be classified under various criteria. For example, they may be expressed as

equalities or inequalities (respectively, bilateral or unilateral constraints), and they may

depend explicitly on time or not (rheonomic or scleronomic constraints). Only bilateral

scleronomic constraints will be considered. Constraints that can be put in the form

hi(q) = 0 i = 1, 2 · · · k < n (A.1)

are called holonomic (or integrable), where functions hi : C 7−→ R are of class C∞(smooth)

and independent. The effect of holonomic constraints is to reduce the space of acces-

sible configurations to a subset of C with dimension n − k. A mechanical system for

which all the constraints can be expressed in form (A.1) is called holonomic.

141

A. NONHOLONOMIC CONSTRAINTS

Constraints that involve generalized coordinates and velocities

ai(q, q̇) = 0 i = 1, 2 · · · k < n (A.2)

are called kinematic. They constrain the instantaneous admissible motion of the me-

chanical system by reducing the set of generalized velocities that can be attained at

each configuration. Kinematic constraints are generally expressed in Pfaffian form, i.e.,

they are linear in the generalized velocities:

aTi (q)q̇ = 0 i = 1, 2 · · · k < n (A.3)

or, in matrix form

AT (q)q̇ = 0 (A.4)

Clearly, the existence of k holonomic constraints (A.1) implies an equal number of

kinematic constraints:

dhi
dt

=
∂hi
∂q

q̇ = 0 i = 1, 2 · · · k < n (A.5)

However, the inverse is not true in general. A system of kinematic constraints in

form (A.3) may or may not be integrable to form (A.1). In the negative case, the

kinematic constraints are said to be nonholonomic (or nonintegrable). A mechanical

system that is subject to at least one such constraint is called nonholonomic.

A.1 Integrability Conditions

In the presence of Pfaffian kinematic constraints, integrability conditions can be used

to decide whether the system is holonomic or nonholonomic.

Consider first the case of a single Pfaffian constraint:

aTi (q)q̇ =
n∑
j=1

aj(q)q̇j (A.6)

For this constraint to be integrable, there must exist a scalar function h(q) and an

integrating factor γ(q) 6= 0 such that the following condition holds:

γ(q)aj(q) =
∂h(q)

∂qj
j = 1, 2 · · ·n (A.7)

142

A.2 Brockett’s Theorem

The converse is also true: if there exists an integrating factor γ(q) 6= 0 such that

γ(q)a(q) is the gradient of a scalar function h(q), constraint (A.6) is integrable. By

using Schwarz theorem on the symmetry of second derivatives, integrability condition

(A.7) may be replaced by the following system of partial differential equations:

∂γak
∂qj

=
∂γaj
∂qk

j, k = 1, 2 · · ·n, j 6= 0 (A.8)

Condition (A.8) implies that a Pfaffian constraint with constant coefficients aj is

always holonomic.

A.2 Brockett’s Theorem

Theorem 2 Let x = f(x, u) be given with f(x0, 0) = 0 and f(., .) continuously dif-

ferentiable in a neighborhood of (x, 0). A necessary condition for the existence of a

continuously differentiable control law which makes (x0, 0) asymptotically stable is that:

1. the linearized system should have no uncontrollable modes associated with eigen-

values whose real part is positive.

2. there exists a neighborhood N of (xo, 0) such that for each ξ ∈ N there exists a

control uξ(.) defined on [0,∞) such that this control steers the solution of ẋ =

f(x, uξ) from x = ξ at t = 0 to x = x0 at t→∞.

3. the mapping γ : A× Rm → Rn defined by

γ : (x, u) 7−→ f(x, u)

should be onto an open set containing 0.

Proof 2 (see [17])

If the control system is of the form

ẋ =
m∑
1

gi(x)ui, x(t) ∈ N ⊂ Rn

with vectors gi(x) being linearly independent at x0 then condition (3) implies that there

exists a solution to the stabilization problem if and only if m = n. In this case we

must have as many control parameters as we have dimensions of x.

143

A. NONHOLONOMIC CONSTRAINTS

A.3 Definition of function atan2

atan2 is a two argument function defined as follows

atan2(y, x) =



arctan(yx) x > 0
π + arctan(yx) y ≥ 0, x < 0
−π + arctan(yx) y < 0, x < 0

π
2 y > 0, x = 0
−π

2 y < 0, x = 0
undefined y = 0, x = 0

(A.9)

144

Appendix B

Image Moments: Properties and

Calculation

B.1 Green’s Theorem

Let C be a positively oriented, piecewise smooth, simple closed curve in the plane R2,

and let R be the region bounded by C. If N and M are functions of (x, y) defined on

an open region containing D and have continuous partial derivatives there, then [97]∮
C

(N dx+M dy) =

∫∫
R

(
∂M

∂x
− ∂N

∂y

)
dx dy (B.1)

Considering only two-dimensional vector fields, Green’s theorem is equivalent to the

following two-dimensional version of the divergence theorem∫∫
R

(∇ · F) dA =

∮
C

F · n̂ ds, (B.2)

where n̂ is the outward-pointing unit normal vector on the boundary.

To see this, consider the unit normal in the right side of the equation. Since dr =

(dx, dy) is a vector pointing tangential along a curve, and the curve C is the positively-

oriented (i.e. counterclockwise) curve along the boundary, an outward normal would

be a vector which points 90◦ to the right, which would be (dy,−dx). The length of this

vector is
√
dx2 + dy2 = ds. So n̂ ds = (dy,−dx).

Now let the components of F = (P,Q). Then the right hand side becomes∫
C

F · n̂ ds =

∫
C

(Pdy −Qdx) (B.3)

145

B. IMAGE MOMENTS: PROPERTIES AND CALCULATION

which by Green’s theorem becomes∫
C

(−Qdx+ Pdy) =

∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫∫
D

(∇ · F) dA (B.4)

B.2 Moments of two dimensional functions

For a 2-D continuous function f(x, y), the moment of order (i, j) is defined as [42]

mi,j =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xiyjdxdy (B.5)

for i, j = 0, 1, 2........... A uniqueness theorem (see [79]) states that if f(x, y) is

piecewise continuous and has nonzero values only in a finite part of the plane (x, y),

moments of all orders exist, and moments mi,j are uniquely determined by f(x, y),

Conversely mi,j uniquely determine f(x, y).

The central moments are defined as

µi,j =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)(x− xg)i(y − yg)jdxdy (B.6)

where

xg =
m1,0

m0,0
, yg =

m0,1

m0,0

If f(x, y) is a digital image, then equation (B.6) becomes

µi,j =
∑
x

∑
y

f(x, y)(x− xg)i(y − yg)j (B.7)

By developing (B.7) we obtain the central moments of order up to 3 as functions of

basic moments
µ0,0 = m0,0

µ1,0 = 0

µ0,1 = 0

µ1,1 = m1,1 − xgm0,1 = m1,1 − ygm1,0

µ2,0 = m2,0 − xgm1,0

µ0,2 = m0,2 − xgm0,1

µ2,1 = m2,1 − 2xgm1,1 − ygm2,0 + 2x2
gm0,1

µ1,2 = m1,2 − 2ygm1,1 − xgm0,2 + 2y2
gm1,0

(B.8)

146

B.2 Moments of two dimensional functions

Figure B.1: Region of a binary image and some feature parameters.

In the case of binary images, by assuming the light intensity equal to one for all the

points of region R, and equal to zero for all the points not belonging to R, the following

simplified definition of moment is obtained

mi,j =
∑

X,Y ∈R
XiY j (B.9)

In this case, moments have physical meanings (Fig. B.1). For example m0,0 rep-

resents the area of the region and (xg, yg) represents the centroid of the region. Using

mechanical analogy, it is easy to recognize that the central moments of second order

µ2,0 and µ0,2 have the meaning of inertia moments with respect to axes X and Y

respectively, while µ1,1 is an inertia product, and the matrix

I =

[
µ2,0 µ1,1

µ1,1 µ0,2

]
has the meaning of inertia tensor relative to the center of mass [92]. The eigenvalues

of matrix I define the principal moments of inertia, termed principal moments of the

region and the corresponding eigenvectors define the principal axes of inertia, termed

principal axes of the region. If region R is asymmetric, the principal moments of I are

different and it is possible to characterize the orientation of R in terms of the angle δ

between the principal axis corresponding to the maximum moment and axis X. This

147

B. IMAGE MOMENTS: PROPERTIES AND CALCULATION

angle can be computed with the equation

δ =
1

2
arctan

(
2µ1,1

µ2,0 − µ0,2

)
(B.10)

B.3 Image moments of a polygon

Let’s consider a non-self-intersecting (simple) coplanar polygon P with k vertices (x1, y1),

(x2, y2) · · · (xk, yk), and let’s define polygon edges in terms of a parameter t that ranges

from zero to one. The evolutions of x, y along the edge between the two vertices (xi, yi),

(xi+1, yi+1) are given by
Ex = xi + (xi+1 − xi)t

Ey = yi + (yi+1 − yi)t
(B.11)

The differentials dx and dy are then given by

dx = (xi+1 − xi)dt

dy = (yi+1 − yi)dt
(B.12)

Let’s consider the moment m0,0 of the polygon which is given by

m0,0 =

∫∫
P

dxdy (B.13)

Using Green’s formula (B.1), and by choosing M = −y/2 and N = x/2 we obtain∫∫
P

dxdy =

∮
C

(−1

2
ydx+

1

2
xdy) (B.14)

Evaluating the line integral along the edge of the polygon from (xi, yi) to (xi+1, yi+1),

we have

Ii =

∫ 1

0
(−Eydx+ Exdy)dt (B.15)

Substituting (B.11) and (B.12) in (B.15), and after simple development, we obtain

Ii =
1

2
(xiyi+1 − xi+1yi) (B.16)

And m0,0 is then given by

m0,0 =
1

2

k∑
i=1

(xiyi+1 − xi+1yi) (B.17)

with (xk+1, yk+1) = (x0, y0).

148

B.4 Image moments of an ellipse

Similarly, we can obtain higher order image moments

m1,0 =
1

6

k∑
i=1

(xi + xi+1) (xiyi+1 − xi+1yi)

m0,1 =
1

6

k∑
i=1

(yi + yi+1) (xiyi+1 − xi+1yi)

m2,0 =
1

12

k∑
i=1

(x3
i + x2

ixi+1 + xix
2
i+1 + x3

i+1)(yi+1 − yi)

m0,2 =
1

12

k∑
i=1

(y3
i + y2

i yi+1 + yiy
2
i+1 + y3

i+1)(xi+1 − xi)

m1,1 =
1

24

k∑
i=1

[
x2
i yi+1 (2yi + yi+1)− x2

i+1yi (yi + 2yi+1) + 2xixi+1

(
y2
i+1 − y2

i

)]
m2,1 =

1

60

k∑
i=1

(yi+1 − yi)(4x3
i yi + x3

i yi+1 + x3
i+1yi + 4x3

i+1yi+1

+ 2xix
2
i+1yi + 3x2

ixi+1yi + 3xix
2
i+1yi+1 + 2x2

ixi+1yi+1)

m1,2 =
1

60

k∑
i=1

(xi+1 − xi)(4xiy3
i + xi+1y

3
i + xiy

3
i+1 + 4xi+1y

3
i+1

+ 2xiyiy
2
i+1 + 3xiy

2
i yi+1 + 3xi+1yiy

2
i+1 + 2xi+1y

2
i yi+1)

(B.18)

B.4 Image moments of an ellipse

In that case image projection is also an ellipse E whose antipodal points on its major

axis and minor axis are denoted (Xa, Ya), (X−a, Y−a), (Xb, Yb) and (X−b, Y−b). Its

elements are given as functions of the coordinates of these four points as follows

2a =
√

(Xa −X−a)2 + (Ya − Y−a)2

2b =
√

(Xb −X−b)2 + (Yb − Y−b)2

xg =
1

2
(Xa +X−a)

yg =
1

2
(Ya + Y−a)

δ = atan2(Ya − Y−a, Xa −X−a)

(B.19)

where 2a, 2b are the major and minor diameters of the ellipse respectively, (xg, yg) is

its center and δ is the angle between the major axis of the ellipse and the x-axis.

149

B. IMAGE MOMENTS: PROPERTIES AND CALCULATION

The evolutions of x, y along the ellipse are given by

Ex = xg + a cos t cos δ − b sin t sin δ

Ey = yg + a cos t sin δ + b sin t cos δ
(B.20)

where t is a parametric variable that varies between 0 and 2π. The differentials dx and

dy are then given by

dx = (−a sin t cos δ − b cos t sin δ)dt

dy = (−a sin t sin δ + b cos t cos δ)dt
(B.21)

Let’s consider the moment m0,0 of the ellipse which is given by

m0,0 =

∫∫
E

dxdy (B.22)

Using Green’s formula (B.1), and by choosing M = x we obtain∫∫
E

dxdy =

∮
C

xdy

=

∫ 2π

0
(a cos t cos δ − b sin t sin δ)(−a sin t sin δ + b cos t cos δ)dt

= πab

(B.23)

Similarly, we can obtain higher order image moments of an ellipse

m1,0 = πabxg

m0,1 = πabyg

m1,1 =
π

8
ab
(
8xgyg +

(
a2 − b2

)
sin 2δ

)
m2,0 =

π

8
ab
(
8x2

g + a2 + b2 +
(
a2 − b2

)
cos 2δ]

)
m0,2 =

π

8
ab
(
8y2
g + a2 + b2 −

(
a2 − b2

)
cos 2δ]

)
m2,1 =

π

8
ab
((

8x2
g + a2 + b2

)
yg +

(
a2 − b2

)
(yg cos 2δ + 2xg sin 2δ)

)
m1,2 =

π

8
ab
((

8y2
g + a2 + b2

)
xg −

(
a2 − b2

)
(xg cos 2δ − 2yg sin 2δ)

)

(B.24)

150

Appendix C

Camera Calibration

For the calibration of the camera, we adopted an algorithm based on Zhang’s method

[110]. This technique only requires the camera to observe a planar pattern shown at a

few (at least two) different orientations. In the camera’s model used we consider the

intrinsic parameters and the extrinsic parameters.

This method proposes an analytic solution to solve these parameters and then create

the best approximation using a minimization method. An example of calibration plane

with a chessboard pattern is shown in Fig. C.1.

The relationship between a 3D point p̃b = [x y z 1]Tb in base frame and its image

projection s̃I = [uI vI 1]T in pixels is given by

λs̃I = K[Rc
b tcb]p̃b (C.1)

Without loss of generality, we assume the model plane is on z = 0 of the base

coordinate system. From (C.1), we have

λ

 uI
vI
1

 = K
[

r1 r2 r3 tcb
] 

x
y
0
1


= K

[
r1 r2 tcb

]  x
y
1


(C.2)

By abuse of notation, we still use p̃b to denote a point on the model plane, but

p̃ = [x y 1]T since z is always equal to 0. Therefore, a model point p̃b and its image

151

C. CAMERA CALIBRATION

Figure C.1: Example of calibration plane.

s̃I are related by a homography H:

λs̃I = Hp̃b (C.3)

where H = K[r1 r2 tcb] is a 3× 3 matrix defined up to a scale factor. Given an image

of the model plane, an homography can be estimated (see [110]). Let’s denote it by

H = [h1 h2 h3]. From (C.3), we have

[h1 h2 h3] = ρK[r1 r2 tcb] (C.4)

where ρ is an arbitrary scalar. Using the knowledge that r1 and r2 are orthonormal,

we have

hT1 K−TK−1h2 = 0 (C.5)

hT1 K−TK−1h1 = hT2 K−TK−1h2 (C.6)

where we used the abbreviation K−T = (K−1)T . These are the two basic constraints on

the intrinsic parameters, given one homography. Because a homography has 8 degrees

of freedom and there are 6 extrinsic parameters (3 for rotation and 3 for translation),

we can only obtain 2 constraints on the intrinsic parameters.

152

Now let’s define B

B = K−TK−1 ≡

 b11 b12 b13

b12 b22 b23

b13 b23 b33



=


1
α2 − γ

α2β
u0γ−u0β
α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(u0γ−u0β)

α2β2 − v0
β2

u0γ−u0β
α2β

−γ(u0γ−u0β)
α2β2 − v0

β2
(u0γ−u0β)2

α2β2 + v0
β2 + 1


(C.7)

Since B is symmetric, we can define the 6D vector

b =
[
b11 b12 b22 b13 b23 b33

]T
(C.8)

If we denote hi = [hi1 hi2 hi3] the ith colomn of matrix H then we have

hTi Bhj = vTijb (C.9)

with

vij =



hi1hj1
hi1hj2 + hi2hj1

hi2hj2
hi3hj1 + hi1hj3
hi3hj2 + hi2hj3

hi3hj3

 (C.10)

Therefore, the two fundamental constraints (C.5) and (C.6) from a given homography,

can be rewritten as two homogeneous equations in b[
vT12

(v11 − v22)T

]
b = 0 (C.11)

If n images of the model plane are observed, by stacking n such equations as (C.11)

we have

Vb = 0 (C.12)

where V is a 2n × 6 matrix. If n ≥ 3, we will have in general a unique solution b

defined up to a scale factor. Once b is estimated, we can compute all camera intrinsic

153

C. CAMERA CALIBRATION

matrix K using (C.7), or more specifically

v0 = (b12b13 − b11b23)/(b11b22 − b212)

ρ = b33 −
(
b213 + v0(b12b13 − b11b23)

)
/b11

α =
√
ρ/b11

β =
√
ρb11/((b11b22 − b212)

γ = −b12α
2β/ρ

u0 = γv0/β − b13α
2/ρ

(C.13)

Once camera matrix K is recovered, we can recover the camera motion using (C.4)

as follows

r1 =
K−1h1

‖K−1h1‖

r2 =
K−1h2

‖K−1h2‖
r3 = r1 × r2

tcb =
1

2

(
1

‖K−1h1‖
+

1

‖K−1h1‖

)
K−1h3

(C.14)

Generally, because of noise in data, the so-computed matrix R = [r1 r2 r3] does

not in general satisfy the properties of a rotation matrix. This can be refined through

maximum likelihood inference. We are given n images of a model plane and there

are m points on the model plane. We assume that the image points are corrupted by

independent and identically distributed noise. The maximum likelihood estimate can

be obtained by minimizing the following functional

n∑
i=1

m∑
j=1

‖mij − m̂(K,Rc
bi, t

c
bi,Mj)‖ (C.15)

where m̂(K,Rc
bi, t

c
bi,Mj) is the projection of point Mj in image i, according to

equation (C.3). A rotation Rc
b is parameterized by a vector of 3 parameters, denoted

by r, which is parallel to the rotation axis and whose magnitude is equal to the ro-

tation angle. R and r are related by the Rodrigues formula [37]. Minimizing (C.15)

is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt

Algorithm (see [69]). It requires an initial guess of K; {Rc
bi; t

c
bi|i = 1 · · ·n} which can

be obtained using (C.14).

154

Bibliography

[1] J.Á. Acosta, R. Ortega, A. Astolfi, and I. Sarras. A constructive solution for

stabilization via immersion and invariance: The cart and pendulum system. Au-

tomatica, 44(9):2352–2357, 2008. 62

[2] D. Aeyels. Stabilization of a class of nonlinear systems by a smooth feedback

control. Systems & Control Letters, 5(5):289–294, 1985. 60

[3] O. Amidi, T. Kanade, R. Miller, O. Amidi, T. Kanade, and R. Miller. Vision-

based autonomous helicopter research at carnegie mellon robotics institute 1991-

1997. 1998. 4

[4] A. Astolfi. Exponential stabilization of a car-like vehicle. In Proceedings of IEEE

International Conference on Robotics and Automation. IEEE, 1995. 2, 65

[5] A. Astolfi. Discontinuous control of nonholonomic systems. Systems & Control

Letters, 27(1):37–45, 1996. 2, 65

[6] A. Astolfi. Exponential stabilization of a wheeled mobile robot via discontinuous

control. Journal of Dynamic Systems, Measurement, and Control, 121:121–126,

1999. 3

[7] A. Astolfi and R. Ortega. Immersion and invariance- A new tool for stabilization

and adaptive control of nonlinear systems. IEEE Transactions on Automatic

Control, 48(4):590–606, 2003. xxii, 60

[8] A. Astolfi, D. Karagiannis, and R. Ortega. Nonlinear and adaptive control with

applications. Springer Verlag, 2008. 6, 39, 60, 61

155

BIBLIOGRAPHY

[9] R.N. Banavar and V. Sankaranarayanan. Switched finite time control of a class

of underactuated systems. Springer, 2006. 3

[10] J. Barraquand and J.C. Latombe. On nonholonomic mobile robots and optimal

maneuvering. In Proceedings of IEEE International Symposium on Intelligent

Control, pages 340–347. IEEE, 1989. 2

[11] J. Batista, H. Araujo, and A.T. de Almeida. Iterative multistep explicit cam-

era calibration. IEEE Transactions on Robotics and Automation, 15(5):897–917,

1999. 86

[12] Z. Bien, W. Jang, and J. Park. Characterization and use of feature jacobian ma-

trix for visual servoing. Visual Serving: Real Time Control of Robot Manipulators

Based on Visual Sensory Feedback, page 317, 1993. 4

[13] A. Bloch and S. Drakunov. Stabilization of a nonholonomic system via sliding

modes. In Proceedings of the 33rd IEEE Conference on Decision and Control,

volume 3, pages 2961–2963, 1994. 45

[14] A. Bloch and S. Drakunov. Tracking in nonholonomic dynamic systems via sliding

modes. In Proceedings of the 34th IEEE Conference on Decision and Control,

volume 3, pages 2103–2106. IEEE, 1995. 45

[15] AM Bloch and NH McClamroch. Control of mechanical systems with classical

nonholonomic constraints. In Proceedings of the 28th IEEE Conference on Deci-

sion and Control, pages 201–205. IEEE, 1989. 2

[16] A.M. Bloch, M. Reyhanoglu, and N.H. McClamroch. Control and stabilization

of nonholonomic dynamic systems. IEEE Transactions on Automatic Control, 37

(11):1746–1757, 1992. 2

[17] R.W. Brockett. Asymptotic stability and feedback stabilization, 1983. 2, 39, 143

[18] G. Campion, B. d’Andrea Novel, and G. Bastin. Controllability and state Feed-

back stabilizability of non holonomic mechanical systems. Advanced robot control,

pages 106–124, 1991. 13, 24

156

BIBLIOGRAPHY

[19] G. Campion, B. d’Andrea Novel, and G. Bastin. Modelling and state feedback

control of nonholonomic mechanical systems. In Proceedings of the 30th IEEE

Conference on Decision and Control, volume 2, pages 1184–1189, 1991. 24, 40

[20] G. Campion, G. Bastin, and B. Dandrea-Novel. Structural properties and clas-

sification of kinematic and dynamic models of wheeled mobile robots. IEEE

Transactions on Robotics and Automation, 12(1):47–62, 1996. 1, 13

[21] F. Chaumette. Potential problems of stability and convergence in image-based

and position-based visual servoing. The confluence of vision and control, pages

66–78, 1998. 94

[22] F. Chaumette. A first step toward visual servoing using image moments. In

Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,

volume 1, pages 378–383. IEEE, 2002. 4

[23] F. Chaumette. Image moments: a general and useful set of features for visual

servoing. Robotics, IEEE Transactions on, 20(4):713–723, 2004. 4, 81, 98

[24] K.L. Chung. Computing horizontal/vertical convex shape’s moments on recon-

figurable meshes. Pattern Recognition, 29(10):1713–1717, 1996. 81

[25] B. D’andréa-novel, G. Campion, and G. Bastin. Control of wheeled mobile robots

not satisfying ideal velocity constraints: A singular perturbation approach. In-

ternational Journal of Robust and Nonlinear Control, 5:243–267, 1995. 2, 3

[26] A. De Luca and M.D. Di Benedetto. Control of nonholonomic systems via dy-

namic compensation. Kybernetika, 29(6):593–608, 1993. 42

[27] A. De Luca, G. Oriolo, and M. Vendittelli. Control of wheeled mobile robots: An

experimental overview. Ramsete, pages 181–226, 2001. 13, 15

[28] C.C. De Wit, G. Bastin, and B. Siciliano. Theory of robot control. Springer-Verlag

New York, Inc. Secaucus, NJ, USA, 1996. 3

[29] A. Dib and H. Siguerdidjane. Experimental results of integral sliding mode con-

troller for a nonholonomic mobile robot. In 8th International Conference in Con-

trol, Automation and Robotics, Netherlands, 2011. xxxii, 7

157

BIBLIOGRAPHY

[30] A. Dib and H. Siguerdidjane. Visual servoing for a wheeled mobile robot using im-

age moments: Experimental results. In Proceedings of the IASTED International

Conference on Intelligent Systems and Control, Cambridge, UK, pages 190–197,

2011. xxxiii, 7

[31] A. Dib, N. Zaidi, and H. Siguerdidjane. Robust control and visual servoing of an

UAV. In Proceedings of 17th IFAC World Congress, volume 17, pages 5730–5735,

2008. 3

[32] WE Dixon, ZP Jiang, and DM Dawson. Global exponential setpoint control of

wheeled mobile robots: a Lyapunov approach* 1. Automatica, 36(11):1741–1746,

2000. 2

[33] W. Dong and W. Huo. Tracking control of wheeled mobile robots with unknown

dynamics. In Proceedings of IEEE International Conference on Robotics and

Automation, volume 4, pages 2645–2650, 1999. 2

[34] W. Dong and WL Xu. Adaptive tracking control of uncertain nonholonomic

dynamic system. IEEE Transactions on Automatic Control, 46(3):450–454, 2001.

2

[35] F. Du and M. Brady. Self-calibration of the intrinsic parameters of cameras

for active vision systems. In Computer Vision and Pattern Recognition, 1993.

Proceedings CVPR’93., 1993 IEEE Computer Society Conference on, pages 477–

482. IEEE, 1993. 86

[36] F. Fahimi. Autonomous robots: modeling, path planning, and control. Springer

Verlag, 2008. 19

[37] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. the

MIT Press, 1993. 81, 154

[38] R. Fierro and FL Lewis. Control of a nonholonomic mobile robot: backstep-

ping kinematics into dynamics. In Proceedings of the 34th IEEE Conference on

Decision and Control, volume 4, pages 3805–3810. IEEE, 1995. 3

[39] R. Fierro and FL Lewis. Control of a nonholomic mobile robot: Backstepping

kinematics into dynamics. Journal of Robotic Systems, 14(3):149–163, 1997. 2

158

BIBLIOGRAPHY

[40] T. Fitzgibbons and E. Nebot. Application of vision in simultaneous localization

& mapping. Intelligent autonomous systems 7, page 92, 2002. 4

[41] J. Flusser and T. Suk. Pattern recognition by affine moment invariants. Pattern

recognition, 26(1):167–174, 1993. 80

[42] R.C. Gonzalez and R.E. Woods. Digital image processing. Prentice Hall Upper

Saddle River, NJ, 2002. 79, 146

[43] J. Guldner and VI Utkin. Stabilization of non-holonomic mobile robots using

Lyapunov functions for navigation and sliding mode control. In Proceedings of

the 33rd IEEE Conference on Decision and Control, volume 3, pages 2967–2972.

IEEE, 1994. 45

[44] T. Hamel and R. Mahony. Visual servoing of an under-actuated dynamic rigid-

body system: an image-based approach. Robotics and Automation, IEEE Trans-

actions on, 18(2):187–198, 2002. 4

[45] R. Hartley. Self-calibration from multiple views with a rotating camera. Computer

Vision—ECCV’94, pages 471–478, 1994. 86

[46] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cam-

bridge Univ Pr, 2003. 81

[47] J. Hill and W. T. Park. Real time control of a robot with a mobile camera. In 9th

International Symposium on Industrial Robot, page 233–246, Washington, DC,

mar 1979. 3

[48] R. Horaud and O. Monga. Vision par ordinateur: outils fondamentaux. Hermes,

1995. 86

[49] K. Hosoda and M. Asada. Versatile visual servoing without knowledge of true

jacobian. In Proceedings of the IEEE/RSJ/GI International Conference on In-

telligent Robots and Systems, volume 1, pages 186–193. IEEE, 1994. 94

[50] M.K. Hu. Visual pattern recognition by moment invariants. Information Theory,

IRE Transactions on, 8(2):179–187, 1962. 4, 80

159

BIBLIOGRAPHY

[51] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control.

IEEE transactions on robotics and automation, 12(5):651–670, 1996. 3, 4

[52] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 3rd edition, 1995. xiv,

xxii, 13, 60

[53] XY Jiang and H. Bunke. Simple and fast computation of moments. Pattern

Recognition, 24(8):801–806, 1991. 81

[54] Z.P. Jiang and H. Nijmeijer. Tracking control of mobile robots: a case study in

backstepping. Automatica, 33(7):1393–1399, 1997. 2, 3

[55] Z.P. Jiang, E. Lefeber, and H. Nijmeijer. Saturated stabilization and tracking of

a nonholonomic mobile robot. Systems and Control Letters, 42(5):327–332, 2001.

2

[56] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally convergent

navigation algorithm for mobile robots. In Proceedings of IEEE International

Conference on Robotics and Automation, volume 1, pages 429–435. IEEE, 1996.

xviii, 34

[57] Y. Kanayama, A. Nilipour, and CA Lelm. A locomotion control method for

autonomous vehicles. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1315–1317. IEEE, 1988. 14

[58] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi. A stable tracking control

scheme for an autonomous mobile robot. proc. of IEEE Int. Conf. on Robotics

and Automation. Proceedings of IEEE International Conference on Robotics and

Automation, pages 384–389, 1990. 2, 3, 67

[59] I. Kolmanovsky and NH McClamroch. Developments in nonholonomic control

problems. IEEE Control Systems Magazine, 15(6):20–36, 1995. 17

[60] M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic. Nonlinear and adaptive con-

trol design. John Wiley & Sons New York, 1995. 60

[61] J.C. Latombe. Robot motion planning. Springer Verlag, 1990. 3, 70

160

BIBLIOGRAPHY

[62] J.G. Leu. Computing a shape’s moments from its boundary. Pattern Recognition,

24(10):949–957, 1991. 81

[63] B.C. Li. A new computation of geometric moments. Pattern Recognition, 26(1):

109–113, 1993. 81

[64] B.C. Li and J. Shen. Fast computation of moment invariants. Pattern Recognition,

24(8):807–813, 1991. 81

[65] Y.H. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots

among polygonal and curved obstacles. The International journal of robotics

research, 11(4):376, 1992. 34

[66] V.J. Lumelsky and A.A. Stepanov. Path-planning strategies for a point mobile

automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,

2(1):403–430, 1987. 33

[67] Y. Mezouar and F. Chaumette. Path planning for robust image-based control.

IEEE Transactions on Robotics and Automation, 18(4):534–549, 2002. 4

[68] A. Micaelli, C. Samson, and Institut national de recherche en informatique et

en automatique (France). Trajectory Tracking for Unicycle-type and Two-steering

Wheels Mobile Robots. Citeseer, 1993. 3

[69] J. More. The Levenberg-Marquardt algorithm: implementation and theory. Nu-

merical analysis, pages 105–116, 1978. 154

[70] R. Mukundan and KR Ramakrishnan. Moment functions in image analysis:

theory and applications. World Scientific Pub Co Inc, 1998. 4, 80

[71] R.M. Murray. Control of nonholonomic systems using chained form. Dynamic and

control of mechanical systems. The falling cat and related problems, 1:219–245,

1991. 17

[72] R.M. Murray and S.S. Sastry. Steering nonholonomic systems in chained form. In

Proceedings of the 30th IEEE Conference on Decision and Control, pages 1121–

1126, 1991. 18

161

BIBLIOGRAPHY

[73] J.I. Neimark and N.A. Fufaev. Dynamics of nonholonomic systems. Amer Math-

ematical Society, 1972. 2

[74] W.L. Nelson and I.J. Cox. Local path control for an autonomous vehicle. In

Proceedings of the IEEE International Conference on Robotics and Automation,

pages 1504–1510. IEEE, 1988. 14

[75] H. Nijmeijer and A.J. van der Schaft. Nonlinear dynamical control systems.

Springer, 1990. ISBN 038797234X. 60

[76] W. Oelen and J. Van Amerongen. Robust tracking control of two-degrees-of-

freedom mobile robots. Control Engineering Practice, 2(2):333–340, 1994. 3

[77] G. Oriolo, A. De Luca, and M. Vendittelli. WMR control via dynamic feed-

back linearization: design, implementation, and experimental validation. IEEE

Transactions on Control Systems Technology, 10(6):835–852, 2002. 3

[78] R. Ortega, A. Loria, P.J. Nicklasson, and H. Sira-Ramirez. Passivity-based control

of Euler-Lagrange systems, volume 388. Springer Berlin, 1998. 60

[79] A. Papoulis, S.U. Pillai, and S. Unnikrishna. Probability, random variables, and

stochastic processes. McGraw-Hill New York, 1991. 146

[80] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of

the Cambridge philosophical society, volume 51, pages 406–413. Cambridge Univ

Press, 1955. 94

[81] W. Philips. A new fast algorithm for moment computation. Pattern Recognition,

26(11):1619–1621, 1993. 81

[82] R.J. Prokop and A.P. Reeves. A survey of moment-based techniques for un-

occluded object representation and recognition. CVGIP: Graphical Models and

Image Processing, 54(5):438–460, 1992. 4

[83] P. Puget and T. Skordas. Calibrating a mobile camera. Image and vision com-

puting, 8(4):341–348, 1990. 86

[84] R.S. Rao, V. Kumar, and C.J. Taylor. Planning and control of mobile robots in

image space from overhead cameras. pages 2185–2190, 2005. 4

162

BIBLIOGRAPHY

[85] C. Samson. Control of chained systems application to path following and time-

varying point-stabilization of mobile robots. IEEE Transactions on Automatic

Control, 40(1):64–77, 1995. 2

[86] C. Samson, K. Ait-Abderrahim, and V. Iria. Feedback control of a nonholonomic

wheeled cart in cartesian space. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 1136–1141, 1991. 2

[87] S. Saripalli, J.F. Montgomery, and G.S. Sukhatme. Vision-based autonomous

landing of an unmanned aerial vehicle. In Robotics and Automation, 2002. Pro-

ceedings. ICRA’02. IEEE International Conference on, volume 3, pages 2799–

2804. IEEE, 2002. 4

[88] J.T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. Handbook

of theoretical computer science, pages 391–430, 1990. 3

[89] R. Sepulchre, M. Janković, and P.V. Kokotović. Constructive nonlinear control,

volume 9. Springer New York, 1997. 60

[90] O. Shakernia, Y. Ma, T.J. Koo, and S. Sastry. Landing an unmanned air vehicle:

vision based motion estimation and nonlinear control. Asian Journal of Control,

1(3):128–145, 1999. 4

[91] Y. Shirai and H. Inoue. Guiding a robot by visual feedback in assembling tasks.

Pattern Recognition, 5:99–108, 1973. 3

[92] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: modelling, planning

and control. Springer Verlag, 2008. 39, 78, 147

[93] M.H. Singer. A general approach to moment calculation for polygons and line

segments. Pattern Recognition, 26(7):1019–1028, 1993. 81

[94] J.J. Slotine and SS Sastry. Tracking control of non-linear systems using slid-

ing surfaces, with application to robot manipulators†. International Journal of

Control, 38(2):465–492, 1983. 44

[95] S. Soatto and P. Perona. Structure-independent visual motion control on the

essential manifold. In In Proceedings of the IFAC Symposium on Robot Control

(SYROCO. Citeseer, 1994. 4

163

BIBLIOGRAPHY

[96] OJ Sordalen and O. Egeland. Exponential stabilization of nonholonomic chained

systems. IEEE Transactions on Automatic Control, 40(1):35–49, 1995. 2

[97] J. Stewart. Calculus. Pacific Grove, CA: Brooks/Cole, 2nd edition, 1991. 145

[98] H.G. Tanner and K.J. Kyriakopoulos. Discontinuous backstepping for stabiliza-

tion of nonholonomic mobile robots. In Proceedings of IEEE International Con-

ference on Robotics and Automation, volume 4, pages 3948–3953. Citeseer, 2002.

2

[99] P. Tournassoud. Motion planning for a mobile robot with a kinematic constraint.

Geometry and Robotics, pages 150–171, 1989. 2

[100] R. Tsai. A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of

robotics and Automation, 3(4):323–344, 1987. 86

[101] V. Utkin and J. Shi. Integral sliding mode in systems operating under uncertainty

conditions. In Proceedings of the 35th IEEE on Decision and Control, volume 4,

pages 4591–4596. IEEE, 1996. 45

[102] V.I. Utkin. Sliding modes in control and optimization, volume 3. Springer-Verlag

Berlin, 1992. 46

[103] G. Walsh, D. Tilbury, S. Sastry, R. Murray, and J.P. Laumond. Stabilization of

trajectories for systems with nonholonomic constraints. IEEE Transactions on

Automatic Control, 39(1):216–222, 1994. 2

[104] G. Xu and Z. Zhang. Epipolar geometry in stereo, motion, and object recognition:

a unified approach. Springer, 1996. 81, 82

[105] J.M. Yang and J.H. Kim. Sliding mode control for trajectory tracking of nonholo-

nomic wheeled mobile robots. IEEE Transactions on Robotics and Automation,

15(3):578–587, 1999. 45

[106] KS Yeung and YP Chen. A new controller design for manipulators using the

theory of variable structure systems. IEEE Transactions on Automatic Control,

33(2):200–206, 1988. 44

164

BIBLIOGRAPHY

[107] MF Zakaria, LJ Vroomen, PJA Zsombor-Murray, and J. Van Kessel. Fast al-

gorithm for the computation of moment invariants. Pattern Recognition, 20(6):

639–643, 1987. 81

[108] E. Zergeroglu, DM Dawson, MS De Queiroz, and S. Nagarkatti. Robust visual-

servo control of robot manipulators in the presence of uncertainty. In Proceedings

of the 38th IEEE Conference on Decision and Control, volume 4, pages 4137–

4142. IEEE, 1999. 4

[109] H. Zhang and J.P. Ostrowski. Visual servoing with dynamics: Control of an

unmanned blimp. In Robotics and Automation, 1999. Proceedings. 1999 IEEE

International Conference on, volume 1, pages 618–623. IEEE, 2002. 4

[110] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. 86, 88,

151, 152

165

Abstract: This thesis focuses on the problem of moving and localizing an autonomous

mobile robot in its local environments. It is structured into two parts. The first part of the

manuscript concerns two basic motion tasks, namely the stabilization and trajectory tracking.

Two control strategies were discussed: the integral sliding mode, and the method known as

”Immersion and Invariance” for nonlinear control. The second part focuses on both 2D and 3D

visual servoing techniques. Image moments were chosen as visual features as they provide a

more geometric and intuitive meaning than other features and they are less sensitive to image

noise and other measurement errors. A new approach to visual servoing based on image is herein

proposed. It is based on the generation of trajectories directly on the image plane (Calculation

of the image features corresponding to a given Cartesian path). This approach ensures that

the robustness and stability are extended due to the fact that the initial and desired locations

of the camera are close. The trajectories obtained guarantee that the target remains in the

field of view of the camera and the corresponding movement of the robot is physically feasible.

Experimental tests have been conducted, and satisfactory results have been obtained from both

implementations regarding motion control and visual servoing strategies. Although developed

and tested in the specific context of a unicycle type robot, this work is generic enough to be

applied to other types of vehicles.

Résumé: Dans ce travail de thèse, on s’intéresse au problème de déplacement et de la

localisation d’un robot mobile autonome dans son environnement local. Il est structuré en deux

partie. La première partie du manuscrit porte sur les deux tâches de mouvement de base, c’est-

à-dire : la stabilisation et le suivi de trajectoire. Deux stratégies de commande ont été traitées:

le mode de glissement intégral et la méthode dite ”Immersion et Invariance”. La deuxième partie

porte sur l’asservissement visuel, les deux techniques 2D et 3D d’asservissement visuel ont été

appliquées. Les moments d’image ont été choisis comme indices visuels car ils sont moins sen-

sibles au bruit d’image et autres erreurs de mesure. Une nouvelle approche de l’asservissement

visuel qui repose sur l’image est ici proposée. Elle est basée sur la génération de trajectoires

sur le plan de l’image directement (calcul des valeurs des primitives d’image correspondantes

à une trajectoire cartésienne donnée). Cette approche garantit que la robustesse et la stabilité

bien connues de l’asservissement 2D ont été étendues en raison du fait que les emplacements

initial et désiré de la caméra sont proches. Les trajectoires obtenues garantissent aussi que la

cible reste dans le champ de vue de la caméra et que le mouvement du robot correspondant est

physiquement réalisable. Des tests expérimentaux ont été effectués et des résultats satisfaisants

ont été obtenus à partir des implémentations des stratégiesde commande et d’asservissement

visuel. Bien qu’ils soient développés et expérimentés dans le cadre spécifique d’un robot de type

unicycle, ces travaux sont assez génériques pour être appliqués sur d’autres types de véhicules.

	Résumé
	Introduction
	1 Modelling
	1.1 Kinematic Models and Constraints
	1.1.1 Differential-drive (Hilare) Mobile Robot

	1.2 Chained Form
	1.3 Dynamic Model
	1.3.1 Equations of Motion
	1.3.2 Second-order kinematic model

	2 Trajectory Planning
	2.1 Path and Timing Law
	2.2 Path Planning
	2.2.1 Planning via Cubic polynomials
	2.2.2 Planning via the chained form

	2.3 Path planning in presence of obstacles
	2.4 Trajectory Planning

	3 Motion Control
	3.1 Introduction
	3.2 Feedback Linearization
	3.2.1 Input/output linearization
	3.2.2 Dynamic State Feedback Linearization

	3.3 Integral Sliding Mode
	3.3.1 Review of Integral Sliding Mode
	3.3.2 Posture Stabilization
	3.3.3 Trajectory Tracking
	3.3.4 Simulation Results

	3.4 Motion Control via Immersion and Invariance based approach
	3.4.1 Review of Immersion and Invariance based approach
	3.4.2 Posture Stabilization
	3.4.3 Trajectory Tracking
	3.4.4 Simulation Results

	3.5 Conclusion

	4 Visual Servoing
	4.1 Extraction of Visual Features
	4.1.1 Image Segmentation
	4.1.2 Image Interpretation

	4.2 Camera Modelling and Calibration
	4.2.1 Pinhole Camera and Perspective Projection
	4.2.2 Camera Calibration
	4.2.2.1 Implementation of the Calibration

	4.3 Position-based Visual Servoing
	4.4 Image-based Visual Servoing
	4.4.1 Image Jacobian of a point
	4.4.2 Image Jacobian of a set of points
	4.4.3 Image Jacobian of image moments
	4.4.4 Pose estimation algorithm based on the image Jacobian

	4.5 Trajectory Planning on the Image Plane
	4.6 Simulations Results
	4.7 Conclusion

	5 Experimental Results
	5.1 Wheeled Mobile Robot Koala
	5.1.1 Experiments

	5.2 Wheeled Mobile Robot Pekee II
	5.2.1 Camera Calibration
	5.2.2 Experiments

	5.3 Conclusion

	Conclusions and Perspectives
	Perspectives

	A Nonholonomic Constraints
	A.1 Integrability Conditions
	A.2 Brockett's Theorem
	A.3 Definition of function atan2

	B Image Moments: Properties and Calculation
	B.1 Green's Theorem
	B.2 Moments of two dimensional functions
	B.3 Image moments of a polygon
	B.4 Image moments of an ellipse

	C Camera Calibration
	Bibliography

