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Development of PVDF micro and nanostructures for cell culture

studies

Abstract

Tissue engineering aims at repairing damaged tissues and recovering the lost or degraded
biological functions with artificial scaffolds. In order to meet the requirement for more
complex functionality such as peripheral nerve reconstruction, new types of scaffold materials
are needed. In this work, we developed several micro- and nanofabrication techniques to
pattern polyvinylidene fluoride (PVDF), a highly non-reactive, piezoelectric, thermoplastic
fluoropolymer, which can serve as new constituents for advanced tissue engineering. We first
studied the feasibility of PVDF patterning using conventional photolithography, soft
lithography and microcontact printing. The fabricated patterns were systematically
characterized by surface analysis techniques (FTIR, XRD) and used for cell culture studies.
Then, we developed a study on electrospinning of PVDF nanofibers. Our results showed that
the fabricated PVDF nanofibers were compatible with cell-based assays. Finally, we doped
electrospun PVDF nanofibers with magnetic nanoparticles, which should make them
excitable with a remote magnetic field.

Key words: PVDF, microfabrication, nanofibers, cell culture

Résumé

L'ingénierie tissulaire vise a réparer les tissus endommagés et a récupérer les fonctions
biologiques correspondantes. Afin de restaurer un tissu endommagé tel que le systeme
nerveux, la conception et la fabrication de nouveaux types d’échafaudages tissulaires sont
nécessaires. Dans ce travail, nous avons développé plusieurs techniques de microfabrication
pour le polyfluorure de vinylidéne (PVDF), un fluoropolymeére thermoplastique, non réactif et
piézoélectrique, qui peut étre utilisé pour la culture cellulaire et l'ingénierie tissulaire. Nous
avons tout d'abord étudié I'adhésion et la croissance cellulaire sur des substrats en PVDF avec
des motifs micro et nanométriques en utilisant différentes techniques de fabrication telles que
la micro-photolithographie, la lithographie douce, I’impression par microcontact, etc.
L'influence de la micro-structuration sur les activités piézo-électriques du PVDF a été
caractérisée par différentes méthodes d'analyses de surface (FTIR, XRD). Par la suite, nous
avons effectu¢ une étude systématique sur la fabrication de nanofibres de PVDF et leur
compatibilité avec la culture cellulaire. Enfin, nous avons démontré la possibilité de doper ces
nanofibres avec des nanoparticules magnétiques ce qui les rends excitables a distance par un
champ magnétique.

Mots clés: PVDF, micropatterns, nanofibres, culture cellulaire, ingénierie tissulaire
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Outline

Tissue engineering aims at repairing damaged tissues and recovering the lost or
degraded biological functions. The development of tissue engineering is based on cell culture
and tissue formation in biomaterial scaffolds. Therefore, the proposed biomaterial should not
only be non-cytotoxic but also manageable using appropriate processing technologies. Indeed,
the proposed scaffolds should have designed shapes and suitable mechanical stiffness,
wettability, porosity, biodegradability, etc. Ideally, the proposed scaffold should also allow
mimicking of the natural cell microenvironment in order to produce a tissue with the same
biological functions as found in a body. For this purpose, new design rules have to be worked
out and new biomaterials have to be found. From this point of view, micro and
nanofabrication technologies hold high potentials for bio-material processing that can be used

for advanced tissue engineering. The future is promising but much has to be done.

One of the challenges now facing tissue engineering is the need of scaffolds for more
complex functionality such as nerve reconstruction. In the world, several millions of new
patients suffer from central nervous system injuries and those pathologies affect considerably
their life. It is known that nervous system injuries do not heal themselves and that
conventional surgical treatments are also limited in success rate. One solution is to use
artificial scaffolds which are suited for nerve reconstruction. Among many important issues
toward this end, the scaffold material has to be more functional, has to possess biomechanical

stability, should be manageable by processing, and eventually excitable under control.

The purpose of this study is to develop a new approach for scaffold processing that
can be used for neural tissue engineering. We have chosen polyvinylidene fluoride (PVDF), a
highly non-reactive, piezoelectric, thermoplastic fluoropolymer, for this purpose since it can
be actuated both electrically and mechanically. Accordingly, we developed a systematic
investigation on the processing ability of PVDF and their applicability in cell culture and

enhanced outgrowth of neurites.



Outline

This thesis is organized in five chapters:

In chapter 1, we firstly introduce the biological background which is required for this
work. We describe cells and cell interaction with its microenvironment. Then, different
methods including conventional photolithography, soft lithography and microcontact printing,
are overviewed for the fabrication of topographical and biochemical cues which serve as

extracellular matrix for cell culture and tissue engineering.

In chapter 2, we present the fabrication of micropatterns of PVDF. We begin with a
brief description of the physical and chemical characteristics of PVDF. Then, we show the
results obtained by using different microfabrication techniques. To this regard, we
demonstrate that photolithography is not suited for PVDF processing and that conventional
hot embossing does not allow producing clear patterns of PVDF due to the presence of
important quantity of PVDF residuals in the recessed areas. Instead, a capillary assisted hot
embossing is applicable to achieve high quality PVDF micropatterns. Finally, we show the
effects of surface modification of PVDF by using air plasma and reactive ion etch (RIE)
techniques. In particular, we demonstrate that microcontact printing allows creating well-

defined protein patterns on a flat PVDF surface.

In chapter 3, we study the effects of PVDF micropatterns on cell adhesion and
spreading. First, we review different strategies for cell adhesion and growth on PVDF
surfaces. Then, we show that both air plasma and oxygen containing RIE are efficient to
enhance cell adhesion whereas the SF¢ containing RIE is efficient to prevent cell adhesion.
Our results of cell culture on patterned PVDF show that not well-defined fibrous-like cell
clusters are formed on the pattern of conventionally hot embossing but well-defined cell
sheets are formed on the pattern of capillary assisted hot embossing. More interestingly, cells
grow with a good selectively on fibronectin patterns defined by microcontact printing. These
results are highly promising considering the fact that PVDF is natively cytophobic but not

cytotoxic.



Outline

In chapter 4, we present the fabrication of aligned PVDF-TrFE nanofibers by using
electrospinning techniques. To achieve a precise deposition of the fibers, we first evaluate the
applicability of near field electrospinning techniques. It turns out that only large size and flat
PVDF fibers are obtainable because of the difficulty in short distance solvent evaporation.
Then, patterned electrodes are used, showing good results in terms of fiber diameter and
alignment quality. In addition to scanning electron microscopy, X-Ray Diffraction(XRD) and
Fourier Transform Infrared Spectroscopy (FTIR) are both used for characterization, showing
an enhanced piezoelectric crystalline B-phase in produced PVDF nanofibers after annealing
and ice quenching. Finally, we study the neuronal culture on aligned nanofibers and show an

enhanced control of outgrowth of the neurites.

In the last chapter, we describe the inclusion of magnetic nanoparticles in electrospun
PVDF nanofibers. The purpose of this study is to achieve a remote mechanic activation of the
piezoelectric nanofibers with a magnetic field. We first present the fabrication of PVDF-TrFE
nanofibers with embedded Fe;O,4 nanoparticles. The fabricated nanofibers are observed by
scanning electron microscopy as well as XRD and FTIR to show that the inclusion of
magnetic nanoparticles does not affect the crystalline phase of the fibers. Finally, the

fabricated nanofibers are used for cell culture test, showing no cytotoxicity.

In appendix of this manuscript, we present two studies performed or completed during
this work. The first one concerns capillary and template assisted assembly of gold
nanoparticles and the observation of surface plasmon resonance that can be used for high
sensitivity biosensors. The second study concerns the initial stage of a research project on

microfluidic patch clamps, which could not be continued due to several technical difficulties.
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Chapter 1 Introduction

In this chapter, we review the fundamental notions of cells, cellular
microenvironment, and microfabrication techniques for the production of artificial
extracellular matrix. Firstly, we introduce the concept of extracellular matrices and discuss
how they can be fabricated for in vitro cell culture studies, in 2 dimensions as well as in 3
dimensions. Secondly, we introduce the piezoelectric properties of PVDF and the means to
measure it. Then, we present lithography based microfabrication techniques including
photolithography and soft lithography, which will be used in Chapter 2 to define PVDF
patterns. Finally, we describe electrospinning techniques which will be used in Chapter 4 to

produce PVDF nanofibers.
1.1 Cell microenvironment

The cell is the basic unit of life. The inside of eukaryotic cells is organized in several
organelles (Fig. 1.1) which ensure the machinery of the cell and the nucleus which contains
its genetic material. The inside of the cell is separated from the outside by the plasma

membrane which is porous, permitting interactions with cellular environment.
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Figure 1.1 Schematics of a eukaryotic cell. (From [1])

The cytoskeleton provides physical support of the cell. It is composed of a network of
3 filamentous structures: actin microfilaments, intermediate filaments and microtubules (Fig.
1.2). Whereas microtubules and actin microfilaments are common to all type of cells,
intermediate filaments vary with the function of the cell type. The cytoskeleton is useful not
only to support physically cells but it is also involved in major cellular functions: movement

of the cells, division and intracellular trafficking and endocytosis.



Chapter 1 Introduction

Figure 1.2 Confocal image of the eukaryotic cytoskeleton. Actin filaments are stained in red,
microtubules in green and nuclei in blue. (From [2])

Most cells of multicellular organisms are organized in clearly defined tissues in which
cells maintain strong interaction between themselves and the extracellular material. Cells can

attach together through cell-cell junctions or bind to the extracellular materials they secreted.

Cellular functions are regulated by both genetic materials and cellular
microenvironment, including extracellular matrix, soluble factors and cell-cell interaction. As
illustrated on Fig. 1.3, vertebrate cells are organized in two main types of tissues. In
epithelial tissue, cells are organized in sheets attached to the basal lamina (a form of
extracellular matrix) where cells bond together tightly. On the opposite, in connective tissues,
cells are anchored in the extracellular matrix. Accordingly, the cellular microenvironments of
these two tissue types are significantly different. For example, they differ from each other in
both topographical organizations and mechanical properties due to their different cellular

functions.
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Figure 1.3 Schematics of the organization of cells in 2 types of tissues: connective tissue and
epithelial tissue. (From [1])
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1.1.1 Cell Junctions

As shown in Fig 1.4, four types of cell junctions can be distinguished:

a- Anchoring junctions: Anchoring junctions happen between 2 cells or between a cell and

the ECM. Their main role is the structural support as those junctions are linked to the

cytoskeleton of cells. Two families of trans-membrane proteins are responsible of anchoring

junctions.

(A)

Adherent junctions: Cadherins are mainly responsible for cell-cell junctions.
They are homophilic which means they can only bind to the same type of receptor
on the neighboring cell. Classical cadherin binds to actin filaments of the
cytoskeleton, forming adherent junctions. Adherent junctions coordinate the actin
based motility of adjacent cells.

Desmosome junctions:  Cell adhesion proteins such as desmoglein and
desmocollin, a sub-family of cadherins which are also homophilic. However, the
desmosome junctions are different from cytoskeleton anchoring sites since they
are linked to the intermediate filaments of the neighboring cells. Desmosome
junctions give mechanical strength.

Integrins: Integrins link the cytoskeleton of cells (actin filaments) to the ECM
which includes for example fibronectin.

Hemidesmosomes: They are protein complex which attach the keratin of the

cytoskeleton to the ECM [4].
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Figure 1.4 Schematics of the 4 types of junctions. (From [1])

b- Occulting Junctions: Tight junctions (in vertebrates) are the result of particular trans-

membrane proteins that make an impermeable barrier between 2 sheets of epithelial cells.

This kind of junction is often seen when the intracellular transport has to be favored with
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respect to the trans-cellular transport. For example, in the gut lumen it lets the nutrients

passing from the gut lumen to the bloodstream (Fig 1.4b).

c- Channel Forming Junction: Gap junction (in animals) provides a links directly the
cytoplasm of adjacent cells letting ions and small molecules pass freely from cell to cell. Gap
junctions are present in most cells of vertebrate. Each gap-junction is made of 6 trans-
membrane connecting subunits. Gap junctions provides electrical coupling for heart cells and

neurons (electrical synapse).

d- Signal relaying junctions: Electrochemical synapses are signal relaying junctions. Many

types of cell adhesion molecules act in parallel to create a synapse.
1.1.2 The extracellular matrix (ECM)

The extracellular matrix is composed of a mesh of proteins and molecules secreted by
cells [5]. The ECM provides structural support to cells but also act as a local storage for

growth factors (Fig. 1.5). The deposited proteins are mainly as follows

Figure 1.5 Schematic of the macromolecular organization of the ECM. (From [3])

a- Structural fibrous proteins

These proteins, including both collagens and elastins, are secreted by the cells and

auto-assembled into 3D fibrous meshes.

- Collagens are the most abundant protein in the human body (25% of all proteins) and
in most animals. Collagens are the molecules that contribute the most to the ECM

structural support as collagens have a high tensile strength. Collagens are mostly

-10-
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secreted by fibroblasts in the form of procollagen. After 2 transformation,
troprocollagen aggregates in fibrils for most types of collagens (Fig. 1.6). To date 28,
types of collagens have been identified [3, 6].

fe) 0.3 pum {d) 250mm

Figure 1.6 Structure of collagen: (a) SEM picture of human collagen fibrils, (b) AFM picture of a
single fibril showing that its subcomponent are twisted. (From [3])

- Elastins are the main component of elastic fibers. They give the elasticity to the ECM
as many tissues are strong but elastic (e.g.: skin, blood vessels). Elastins are strongly
hydrophobic and are secreted by fibroblasts and muscle cells in the form of
tropoelastin and are assembled into elastic fibers. Elastic fibers are composed of elastin
covered with micro-fibrils serving as scaffolds. Elastic fibers are at least 5 times more
extensible than a rubber band of the same cross-sectional area [1]. Elastins represent 58

to 75% of the dry weight of dog arteries [7] as shown on Fig. 1.7.

(A) | |
1 mm 100 um

Figure 1.7 SEM picture of dog’s aorta after digestion of all ECM components except elastin: (a) low
magnification, (b) high magnification showing individual elastin fibers. (From [1])

-11-
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b- Adhesion proteins

- Fibronectin is a protein that binds to integrins receptor of cells. Fibronectin adhere
also to collagen, fibrin and heparansulfate proteoglycans. Each fibronectin molecule is
composed of 2 polypeptides chains containing each 5-6 domains divided into structural
modules. There are 30 structural modules that can be combined. For example it

contains the RGB structural module (Fig 1.8) that binds specifically to integrins.

H,N

30kDa  40kDa 20kDa 75kDa

35kDa 30kDa z

60kDa
GOOH
HN RGD
Heparin- and Collagen Fibrin- Cell Heparin- Fibrin-
fibrin-binding binding binding  binding binding binding
domain  domain doman  domain site site

fa)

Figure 1.8 Schematics of fibronectin molecule. (From [3])

- Laminins are the main components of basal lamina. In vitro it organizes itself in
network but to be organized as sheet it requires intervention of cells. Laminins are
organized in 3 subunits a-chain (o-chain, B-chain and y-chain) with genetic variants
for each. Combination of those variants makes a total of 15 types of laminins. For
example Laminins 111 is involved in neuron outgrowth. Laminins can bind to other
ECM such as collagens, nidogens, and integrins as they have the required attachment
sites (Fig 1.9).
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(A)

Figure 1.9 Structure of the laminin molecule. (From [1])
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c- Proteoglycans and glycosaminoglycans (GAGs)

Proteoglycans are composed of a core protein molecule with 2 glycosaminoglycans
(GAGs) covalently attached. As proteoglycans are negatively charged, they attract sodium
ions in solution which attract water molecule by osmosis forming an highly hydrated gel that
help the ECM to maintain its hydratation and that help collagen in its structural support role.

The principal proteoglycans are: heparan sulfate, chondroitin sulfate and keratan sulfate.

Hyaluronic acid is a GAGs that is not found as a proteoglycan. It is also extracellular
filler but plays an important role in different processes (embryonic development, healing
process, inflammation, tumor development) as it interacts with the CD44 transmembrane

receptor [3, 5].

1.2 Engineering of microenvironment

Constant progress in microfabrication techniques allows researchers to engineer
microenvironments with smaller and smaller features. Nowadays it is possible to fabricate
substrate on a whole range of scales from the pum scales to access single cells to few
nanometers which is the size of a few DNA base pairs. Moreover, microfluidics which is the
technology to control liquids at the micro-scale and beyond [8-9], is particularly interesting
for biological studies and for bioengineering as most biological process happen in liquid

phase.

This opens the doors to many applications in biomedical engineering and especially for
regenerative medicine. The principle is to use microfabrication techniques to mimic natural
microenvironments in order to foster regeneration of injured tissue as some tissues such as
neural cells do not have the ability to recover their normal functions after an injury. Axons of
neurons in humans can be very long (up to one meter for sciatic nerve axons) [10] and their
function depends of their tight connectivity with other neurons. During morphogenesis,
neurons receive constant chemical and electrical cues that guide the axon growth cone to find
their target which is possible due to the proximity cells at this stage of development. However
if the CNS (Central Nervous System) of an adult is injured and axons are cut, most of the time
it will not be able to regrow because the chemical cues of its target are out of reach. The

neuron in absence of electrical stimulation will degenerate and die. So finding ways to guide
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axons grow and more generally cellular growth is very important and has immediate clinical

application.

1.2.1 Microscale control of biomolecular cues

Cell behavior is partially regulated by a multitude of biomolecular cues present in the
ECM. Those biomolecular cues can be secreted by cells in immediate proximity (autocrine,
juxtacrine and paracrine signaling) or by distant cells (endocrine signaling). Some of these
molecules bound to cells directly, other bound to the extracellular matrix. [11-12]. For many
biomolecules, cell response is modulated by the molecular concentration in the form of
gradients. Gradients can be steep if a cell is exposed to different biomolecular concentrations

or shallow if a cell is exposed to a single concentration.
a- Microfluidic generation of gradients

Microfluidics can be used to generate concentration gradients with size on the order of
biological cells (10-100um) [13-14, 17-18]. Jeon et al. have been the first group to use
microfluidics to generate complex concentration gradient with different concentration profiles
[13-14]. Gradient generation is achieved by sequentially splitting, mixing and merging.
Figure 1.10a shows a general view of the chip. The inlet (on top) is composed of 3 input
connected to 3 solutions of different colors: green dye (left), red dye (right) and a 1:1 mix of
red and green (middle). The output (bottom) is a large channel (900um) where we can see the
gradient of colors from green (left) to red (right) which correspond to a gradient of dye

concentration.

The splitting process can be understood with an electronic analogy between electrical

resistance and fluidic resistance (Fig. 1.10b).

The resistance Ry of the vertical channels is considered negligible compared to the resistance
R, of the horizontal channels because the vertical channels are 20 times longer than horizontal
channels. This approximation can be done because Poiseuille’s law [15] shows that in the

case of laminar flow, fluidic resistance is linearly proportional to the length of the channel.
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V=5

Figure 1.10 Microfluidic gradient generation: (a) overview (From [14]), (b) schematics of the
gradient generation process (From [13]).

The splitting ratio will be influenced by the addition of the fluidic resistances. For each
splitting point of the circuit the relative portion of the flow going to the left (Fier) is calculated
using formulae (1) and the relative portion of the flow going to the right is calculated using

formulae (2) :

{B=%)
g+1
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For example on the point C (Fig. 1.10b), the fluidic resistance is equal on the left and on the
right, thus the splitting ratio will be 1/2 which verifies the Formulae (1) and (2):
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The mixing is realized in the serpentine channels (Fig.1.10a) it is based on the diffusion
mixing principle [16]. When the flow is laminar the 2 flows are separated but the in the
interface between the 2 flows there is an interdiffusion region where the faster diffusing

analyte diffuses into the slower diffusing one (Fig 1.11).

slowly-diffusing
analyte

. quickly-diffusing
analyte

. interdiffusion
region

Figure 1.11 [llustration of the diffusion in microchannels. (From [16])

As the diffusion is proportional to the time the two liquids are in contact, the role of the
serpentine after each T-junction (Fig 1.10a) is to increase this time in order to obtain diffusive
mixing. Finally the liquids are merged together at the bottom of the chip. Dertinger et al. [14]
managed to obtain complex gradient profile (Fig 1.12).

Concentration gradient have been used to study many biological process: basic
cellular function [19-21], cell chemotaxis [27-29] and specially its implications in cancer
treatments [22-26], drug treatments and toxicity studies [30-32] as well as neuronal growth

[33-37].

Some cells such as neurons are sensitive to shear flow and in this case conventional
fluidic gradient generation is not well adapted. In order to solve these problems, an alternative
technique has been developed [38-40] where the fluidic gradient generator is used to adsorb
biomolecules on a surface with a gradient. The fluidic channels are removed and cells can be

cultivated on this substrate.
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0 100 gy

b

Figure 1.12 Surface functionalized (PDMS stamps) with a gradient of protein. (BSA-FITC in green,
BSA-Cy3 in red, the other colors are a mix of different proportions of both). The stamp comprises
micropillars (a) 40 um of diameter, (b) 5 um of diameter. (From [41])

b- Imprinting of protein patterns by microcontact printing

Microcontact printing was initially developed by Whitesides et al. as one of the soft-
lithography techniques. Those techniques are called “soft lithography” as they do not use
photolithography but use a micropatterned elastomer (PDMS: PolyDiMethylSiloxane) to
generate micropatterns [42]. The particular application of microcontact printing was to pattern
surfaces with SAMs (Self-Assembled Monolayers) [43-45] which can be used as mask [46].
Rapidly after, it has been used to pattern proteins [47-48] and mammalian cells [49-51].

Technical aspects of those techniques will be developed more in details in the paragraph 1.5
of this chapter. Briefly, the principle of microcontact printing is the following: a solution is
incubated on a PDMS micropatterned stamp in order to adsorb molecules on the surface of
the stamp. Then the stamp is placed in contact with the surface in order to transfer the patterns

of molecules.

Microcontact printing is now widely used in biology and bioengineering particularly to create
patterns of cell-adhesive ECM proteins (Fibronectin, Laminin). New process use second step
of PEG or PEG-PLL backfilling is used to passivate areas without protein [52-53]. It is also
possible to pattern multiple layer of protein in order to make more complex structures (Fig.

1.13) [54] and to bond covalently protein to the substrate to provide long term adhesion [55].
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50 um

Figure 1.13 Different patterns of proteins imprinted on a surface by multilayer microcontact printing:
(a) 2 different proteins, (b) 16 different proteins imprinted. Adsorption protein has been achieved
through a fluidic network. (¢) 3 different proteins printed simultaneously with a single stamp. (From

[54])

Due to the strong adhesion of the cells on proteins, microimprinted patterns can be
used to deform cell at the single cell level. This new tool is very useful as allows researchers
to study biophysics of cells and the links with cellular functions. Physical constraints are
believed to play important part in critical physiological process such as morphogenesis, cell

division, metastasis of cancer, etc...

Chen et al. [56] used “adhesion islands™ of proteins of different size (Spm-40pm)
surrounded by anti-adhesive polymer. They showed that proliferation of cells increase with
adhesion islands areas and that a decrease of adhesion area triggers cell apoptosis

(programmed cell death).

Theéry et al. [ST7] used patterns of adhesive proteins of different shapes to study
influence of the ECM on the cell division and particularly on the orientation of the mitotic
spindle. Fig. 1.14 shows fluorescent images of the fibronectin patterns (Fig. 1.14a) and
confocal images assembled of different layers with cortactin and ezrin tagged to show
localization of the mitotic spindle. They showed that the shape of the ECM determines mitotic
spindle orientation (Fig. 1.14¢). This method present interests to study morphogenesis [58].
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Figure 1.14 Study of the influence of ECM on the orientation of the mitotic spindle: (a) fibronectin
patterns, (b) confocal fluorescent images (z-stack) with cortactin and ezrin tagged, (¢) measurement of
the mitotic spindle distribution. (From [57])

Recently, Tseng et al. [60] used this method of control of cell shape in addition with a
control of substrate (poly-acrylamide gel) stiffness to control cell microenvironment and to
measure cell contraction levels. They showed that cancer cells are more contracted that

normal cells and that contraction levels varies in function of tumorigenic signals.

Another interesting application of microcontact is the engineering of neuronal
networks. [61-73]. Connectivity of neurons is more important than the neuronal cells alone
and so ability to control neuron patterning and influence its connectivity is of primary interest
[61] as it can have many applications in brain machine interfaces, in regenerative medicine of
the central nervous system and more globally in the understanding of brain by reverse

engineering approaches

Kam et al. [63] used microimprinted Poly-L-lysine conjugated laminin to make neurons ‘rat
hippocampus neurons) adhere and grow on the surface and they showed that the laminin is

responsible of the specific neuronal adhesion and axon outgrowth (Fig. 1.15a).

Wyart et al. [64] used microimprinted patterns of PLL to create neuronal network with
different topologies (Fig 1.15b). They observed by voltage clamp that the physiology of the
neurons is normal and the presence of inhibitory and excitatory synapse which validate this

approach for studying neuronal process and especially synaptic connectivity.
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Figure 1.15 (a) Rat hippocampus neuron cultured on PLL microimprinted pattern after 1 day. The
scale bar is 50 um. (From [63]) (b) Neurons cultured on PLL patterns with different topologies: linear
network, 4x4 matrix and star. (From [64])

1.2.2 Topographical control of cell
Overview of the effects of surface topography

Effects of surface topography on cells in vitro has been observed since 1911 [74] and
contact guidance which is the orientation of cells on grooves and lines has been observed
since 1945 [75-79] however, experimental techniques available at this time could not explain

the biomolecular mechanism behind this phenomenon.

Progress in the semi-conductor industries allowed the researchers in the 1990’s to
fabricate routinely substrate with features on the order of cells (few pm) and to observe the
effects of engineered microstructures on cell behavior [80-85]. Clark et al. [81] showed early
that cells are affected by discontinuities. They cultured BHK (Baby Hamster Kidney) cells on
steps with different height (1, 3, 5, 10, 18um) and they observed alignment of cells on the
edge of the step (Fig. 1.16a) and that higher steps provide higher alignment. They also
observed that probability of crossing the step is the same in both directions (descent or

ascent).
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Figure 1.16 (a-b) BHK Cells cultured on different micropatterned substrates with 10 pm steps. (a)
Cell aligned along the edge of the step. (b) Cell is aligned both on top and bottom surface. (From [81])

Later experiments (Fig 1.17) by Clark et al. [82] on micropatterned grooved substrates (4-24
pum pitch, 0.2-1.9 um depth) confirmed previous results and showed that a decrease of pitch
increase cell alignment (Pitch = groove + ridge).Cells on grooves with 12 um pitch with 2 um
depth (Fig 1.17b) are aligned across several lines whereas cells on grooves with 6 um pitch
with same depth are perfectly aligned (Fig 1.17d). They also found that groove depth is more
important parameter for cell alignment than pitch: On 6 um pitch with 0.3 pm depth (Fig
1.17c¢), cells present no alignment compared to the cells on the same pitch substrate but with 2

um groove depth which are perfectly aligned (Fig 1.17d).

Figure 1.17 (a-b) BHK Cells cultured on different micropatterned substrates: (a) planar substrate, (b)
12pm pitch, 2um deep grooves, (¢) MDCK cells on 6um pitch, 0.3um groove, (d) MDCK cells on
6um pitch, 2um deep grooves. Scales bar are (a) 120um, (b) 54 um, (¢) 60um and (d) 30um. (From
[82])
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Influence of topography on cell alignment has also been demonstrated at the nanoscale:
Teixeira et al. [84] found that cells (Human corneal epithelial cells) are sensitive to
topographies as small as 70 nm patterns in silicon. They confirmed that showed that when
the pitch of the lines is reduced to 400 nm (Fig. 1.18) cells present a higher degree of
alignment than cells on lines with 4000 nm pitch (Fig. 1.19).

Figure 1.18 SEM images of cells cultured on patterns with 400 nm pitch 600nm depth. (a) Cell
aligned along nanostructured substrate. (¢) Cross-sectional image of cell patterned substrate. (b)
Filopodia are oriented by topography. (From [84])

Figure 1.19 SEM images of cells cultured on patterns with 4000 nm pitch with 600nm depth. (a) Cell
aligned along microstructured substrate. (b) Lamellipodia were able to adhere to the floor of the
grooves on 2100 nm wide grooves. (From [84])
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When the pitch is reduced to 400 nm, Filipodia are aligned along the patterns (Fig 1.18b) and
lamellipodia do not touch the bottom of the grooves (Fig 1.18c). However when the pitch is
increased, the lamellipodia where able to adhere to the bottom of the grooves and filipodia
where oriented perpendicularly to the patterns as well as along the patterns (Fig. 1.19b).They
also confirmed that pattern depth is more important than the pitch as cells cultured on 150nm

grooves presented the same degree of alignment independently of the pitch.

Experiments have been also conducted on isotropic topographies such as micropillars,
nanopits and nanopots. Craighead et al. [83] observed that cells attach and grow preferably
on the top of the pillars that on the silicon surface. Fig. 1.20 shows astrocytes cultured on 0.5
um micropillars with staining of focal contact in green (with vinculin). We can see that focal
contact points are located on top of the pillars and that the cell membrane does not touch the
silicon surface. They also showed that this effect is independent of the micropillars height and

pitch.

Figure 1.20 (a) SEM picture of 0.5 pm silicon micropillars spaced by 2 um. (b) Primary cortical
astrocytes stained for vinculin (focal contacts) (shown in green) and actin filaments (shown in red).
Scales bar are (a) 20pum, (b) SOum. (From [83])

Pan et al. [86] studied the effects of different height of pillars on cells. Similarly to
Craighead, they observed that cells adhere on the top of the pillar but unless Craighead, Pan
et al , observed that the cell membrane is deformed by the micropillars and that this
deformation increase with micropillars height (Fig. 1.21). We can also see that the cells on 5
um high micropillars are more spread (Fig 1.21¢) and that the cytoskeleton (in red) is
disorganized. Dickinson et al. [88] obtained comparable results but they showed that cell
spreading on micropillars is highly dependent to the cell line as different cell lines have

different cytoskeleton properties.

-23-



Chapter 1 Introduction

In their case they showed that cancerous cells (MG-63 and SaOs-2) presented a deformation
of cytoskeleton and nuclei on micropatterns whereas healthy HOP (Human OsteoProgenitor)

cells were not affected by the micropillars.
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Figure 1.21 BMSCs cells cultured on PLGA micropillars (3 um width, 6 pm spacing) (a) Control
smooth surface. (b) 0.2 pum height micropillars. (¢) 5 pm height micropillars. (From [86])

The 5 um height micropillars interact also with the organelles of the cells and specifically the
cell nucleus. We can see clearly on (Fig. 1.21c¢) that the cell nucleus is elongated and
constrained by the micropillars behind it. To demonstrate this hypothesis they fabricated
special micropillar patterns aiming at changing the cell nucleus shape by constraining it (Fig

1.22).

Figure 1.22 (a-b-¢) BMSCs cells cultured on PLGA micropillars arranged to induce cell nucleus
constraint. (From [86])

Davidson et al. [87] showed that cells are still viable after nucleus deformation caused by the
micropillars. However it is strongly believed that this topographical constraint of the nucleus

impede or slow down some cellular functions such as proliferation.
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Nikkhah et al. [90] used micropillars of different height to cultivate MSCs on
microenvironment of different stiffness. They showed that Human MSCs grown on the more
rigid substrate with shorter micropillars (0.97um) spread normally and present enhanced
ostreogenic markers whereas MSCs on the taller micropillars (12.9um) which have the lowest
stiffness present a rounded shape. More recent studies [91-92] confirmed the major role of

substrate stiffness in the cell differentiation.

{1} L=0.97um

Figure 1.23 The effect of stiffness on MSC morphology and differentiation using PDMS micropillars

of varying heights. Scale bars, 50 pm (bottom left), 30 um (bottom middle), 10 um (bottom right).
(From [89-90])

Neuronal growth on microstructures has been studied extensively as way to influence
neurite outgrowth and localization [93-96]. Craighead et al. [83] showed that neuron soma

adhere preferably on micropillars rather than on bare silicon (Fig. 1.24).

Figure 1.24 An SEM of rat hippocampal neurons cultured for 24 h on silicon micropillars (0.5 pm
silicon micropillars spaced by 2 um) coated with poly-L-lysine (scale bar=20 pm). (From [83])
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Rajnicek et al. [93-94] cultured neurons (embryonic xenopus spinal cord neurons and rat
hippocampal neurons) on microgrooved quartz (14nm-1100nm depth and 1pm-4pm width).
They found that behavior of neural cells is dependant of cell type and groove dimensions.
Xenopus spinal cord neurons exhibited classical topographical guidance by growing parallel
to grooves (Fig 1.25a4, bl). In contrast, rat hippocampal neurons grew perpendicular to
shallow, narrow grooves (Fig 1.25a2) and parallel to deep wide ones. Fig 1.25b2 shows a rat
hippocampal neuron whose soma is on flat quartz and his neurite grow parallel to cell body
and turn abruptly perpendicular when it encounter the 140nm deep and 1um wide grooves.
They also found that microstructure induce neurite outgrowth. Fig 1.25¢ shows xenopus
neurons at the frontier of the micropatterns. Neurite which grew on the microgrooves are

straighter and longer than those which grew on the flat quartz.

320 pm x | 1] m

Figure 1.25 (a) Rat hippocampal neurons (/-2) and Xenopus spinal cord neurons (3-4) cultured on flat
(1-3) and microgrooved (2-4) quartz substrate. (b) (I) Xenopus neuron on microgrooves (1 pm wide
and 14nm deep) (2) Rat hippocampal neuron at the frontier between flat quartz and microgrooves
(lpum wide and 140nm deep). (¢) Xenopus neurons at the frontier between flat quartz and
microgrooves (1) 1 um wide and 320nm deep (2) 1 pm wide and 520nm deep. (From [93])
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Cellular consequences of the microfabricated environments

Several articles and review address extensively this problematic regrouping cell type,
substrates types, features size and their biological effect on cells [97-105]. Based on the
review by Bettinger et al. [97] we choose here to draw a general overview of the biological

parameters that can be affected by surface topography.

Morphology: As we have seen in the last paragraph topography affects particularly cells
morphology. Patterns of lines (micro and nano) induce alignment and elongation of cells
along the edge of the patterns (contact guidance). Stronger response has been observed on
substrate with lower pitch and higher groove depth. Contact guidance has been observed on
many cell types. Micropillars decrease cell spreading compared to flat surface. However this
effect can be balanced by reducing stiffness of the micropillars by using PDMS for example
[89-90].

Attachment and adhesion: Patterns of lines and especially at the nanoscale enhance cell
attachment as it mimic proteins of the ECM such as collagen. Micropillars generally reduce
cell attachment as cells cannot form big focal adhesion points on micropillars. For adhesion,
the nature of the substrate is important (hydrophilic or hydrophobic) as it will determine is

adhesion protein secreted by the cells can attach to the surface.

Proliferation: Micro and naopatterns seems to induce slower proliferation rate than on flat

surfaces.

Migration: Micropatterns and nanopatterns of lines induce a biased migration of cells in the
direction of the lines and increase of migration velocities for many cell types (endothelial
cells , epithelial, osteoblasts, C6 glioma cells). Micropillars seem to have no impact on cell

migration.

Genotypic Alteration: Wojciak-Stothard et al. [99] observed that cells (macrophage)
activity (tyrosine phosphorilation) was stimulated by discontinuities and so cells were more
active in phagocytosis. Chou et al. [100] demonstrated this activation at the genotypic level
by showing that expression of m-RNA for fibronectin is stimulated. Recent studies showed
that fibroblast cultured on nanopits presented an alteration of many genes links to apoptotic

initiation, DNA repair and transcription regulation [101].
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Differentiation: Some groups used topography as a way to induce differentiation. Yim et al.
[102] showed that h(MSCs (Human Mesenchymal stem Cells) can be differentiated in neurons

using nanopits arrays
Link between physical cues and chemical cues

As we have seen before, cells are sensitive to very small topographies (70nm lines)
and chemical cues may have also a topographical component depending on the size of the
adsorbed molecules. It is very common to combine microfabricated topographies cues and
chemical cues [106-107]. Chemical cues tend to desorbate into the culture medium after
some time and the addition of topographical features can make the patterning more stable in
time. Chemical and topographic patterning can be associated to make different effects. For
example, Taylor et al. (Jeon’s group) [108] developed a compartmented microfluidics
platform for neuron culture. One compartment is for soma of neurons (on black on Fig. 1.26a)
and the other one for the axon projection (in yellow). Somal compartment is patterned with
proteins (poly-I-lysine) to make the soma of neuron adhere and microgrooves separate this

compartment from the other one. Axons are guided to grow in the microgrooves.
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Figure 1.26 (a) Overview of the microfluidic chip. (b) Side view. (¢) Fluorescent images to show that
the two compartments are fluidicly isolated. (d) Counts of radioactivity in samples from somal and
axonal compartments after [*>S]methionine was localized to the axonal compartment for over 20 h.
(From [108])
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1.3 3D Scaffolds

As we have seen in the last paragraph microstructure can influence cells on different
aspects. However this influence is limited in height: surface topography will strongly
influence the few cell layer immediately on top of it and have less and less influence when
more cell layer are present. In order to be able to fabricate not only cell sheets (endothelial
tissue) but complex cell structures and one day organs, it is necessary to be able to control
cells in 3 dimensions. It can be achieved with 3D scaffolds. Scaffolds are structures that aim
at mimicking the extracellular matrix (ECM) by providing mechanical support to the cells.
[109-110]. The material of the scaffold as well as the method of fabrication is important for
scaffold functionality. This paragraph aims at giving an overview on the challenges of making
3D scaffold with a particular focus on nanofibers based scaffold as this matter will be

discussed later in this manuscript.
1.3.1 Scaffold Materials

Choice of the material is important as different materials have different mechanical properties

and interactions with cells. Scaffolds can be bioresorbable or not.
a- Natural polymers

Natural polymers present advantages as they are bioresorbable and are recognizable by cells.
However their mechanical strength is limited. Natural polymers are generally soluble in water
they have to be made water insoluble during the scaffold fabrication process. Natural

polymers are constituted of 3 classes of molecules:

Proteins: Proteins used for tissue engineering are generally extracted from bovine or porcine

tissue. Most common used proteins are: Collagen, gelatin, fibrin and silk fibroin.

Polysaccharides: In general polysaccharides lack cell-adhesive sites. They need to be
functionalized to trigger cell adhesion. Principal polysaccharides used are: Hyaluronic acid,

alginate, chondroitin sulfate, chitosan and chitin.

Decellularized-ECM: New protocols allow to remove completely cells from an ECM while

conserving ECM integrity [111]. ECMs from different organs have different properties.
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b- Synthetic Polymers

Prion disease’s outbreaks in year 1990’s shone the light on the danger of natural materials for
implants: it is very difficult to guarantee that the purified extract is totally free form pathogen
agents (e.g.: prions). However synthetic polymers need to be functionalized to promote cell

adhesion. Four main families of polymers are used in tissue engineering:
Non degradable polymers: They have long history of biomedical use: Silicone, PET, PTFE,
PMMA and PVDF.

Poly(a-hydroxyacid)s: PLGA or poly(lactic-co-glycolic acid), polycaprolactone (PCL),
polyglycolide (PGA), polylactic acid (PLA), poly-3-hydroxybutyrate (PHB)

Hydrogels: Hydogels are mostly constituted by water. They are made by cross linking water
soluble polymer chains such as Polyethylene Glycol (PEG), Polyethylene oxide (PEO),
Polyvinyl Alcohol (PVA), Polyacrylic Acid (PAA). Hydrogels can be crosslinked by UV and

their structure is very comparable to those of ECM.

Others: Polyurethanes (PU) are elastomers; they are mechanically resistant but provide

elasticity.
c- Inorgorganic materials :

Hydroxyl apatite (HAp) is the biological form of calcium apatite. It can be found in the body
in bones and teeth and is bioactive. Coral has been used in tissue engineering as its calcium

carbonate is bioactive. Porous material made from corals is optimal for bone regeneration.
d- Composite materials :

Composite materials are made of a combination of organic and inorganic materials. Polymeric

scaffold coated with apatite will be more bioactive and promote cell adhesion.
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1.3.2 Techniques of fabrication

Microfabrication techniques are very adapted to make patterns with high resolution.
However those techniques are not adapted for doing 3D patterning of biomaterials as it
requires a layer by layer fabrication process. On the opposite, solvent evaporation and phase
separation based techniques are very efficient at creating pores and making 3D structures.
However control over the scaffold structure is very limited and control of pore size is
difficult. Between those 2 families of fabrication techniques electrospinning is a very
interesting technique as it creates easily fibrous 3D structures while providing relative control
over the scaffold structure. This paragraph aims at giving a brief overview of the different 3D

fabrication techniques.
a- Membrane creation techniques

Solvent casting/Porogen leaching: Solvent casting consists of dissolving a polymer in a
volatile solvent and casting it on a solution that will provide support to the polymer while the
solvent is evaporating. The structure of the resulting scaffold will depends on several
parameters: concentration of polymer, nature of solvent, casting substrate, casting
temperature, drying process. Porogen agent such sodium chloride, ammonium bicarbonate
and glucose can be introduced to create pores in the resulting scaffold. Injection of high

pressure CO; can also create pores.

Phase separation: The general principle is to dissolve polymer in a solvent and to extract the
solvent by liquid-liquid demixing (phase inversion) or solid-liquid demixing (freeze drying).
Phase inversion use usually 2 non-miscible solvent to create 2 phase solution with a polymer-
rich phase and a polymer-poor phase. In certain conditions (viscosity, density, interfacial
tension and agitation speed) the phases interchange by diffusion. Freeze drying use controlled
temperature and pressure conditions to sublimate solvent. It is a very common technique to
create pore in biomaterials as it offer control over pore size interconnectivity and porous

distribution. It can create materials with 90% porosity such as hydrogels.
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b- Rapid Prototyping techniques

Rapid prototyping techniques are the techniques that allow use computer numerical control
(CNC) machines to fabricate 3D objects. Recent advances on the resolution achievable by
those techniques make them attractive for the fabrication of 3D scaffold [112-115] due to the
control over the structure of the resulting scaffold. Those technique can be subtractive
(micromachining, laser ablation) if the fabrication begin from a bulk material and removes
material or additive (3D printing) if material is deposited through the process. There are 3

families of 3D printing based on the way to bring material to the surface [116].

Molten polymer Deposition: Common 3D printing use extruding of thermoplastics (ABS,
PLA, HDPE) to manufacture objects layer by layer. This process is called Fused Deposition
Modeling (FDM). The polymer is melted and deposited on the surface. This technique is very
cheap and now open source 3D printer (reprap, makerbot) can be build under 1000$ (Fig.
1.27a) [117]. The printing material is very cheap (HDPE 17€/kg) and the conception of the
printer is quite simple and modulable. However the resolution is limited: the minimum feature
size is 500 pm-2 mm and minimum layer thickness is 300 um [118] and some limitations
exist in the shapes achievable due to the displacement of the melted polymer. Fig. 1.27b

shows an example of scaffold that can be fabricated using this technique.

Figure 1.27 (a) Overview of a reprap open source 3D printer. (From [117]) (b) Scaffold fabricated
using fused deposition modeling. (From [111])

-32-



Chapter 1 Introduction

Granular material binding: Selective laser sintering (SLS) and Powder bed / inkjet head 3D
printing, deposit a layer of powder for each layer and bind selectively the powder [118-119].
SLA use laser for this purpose and common powder bed 3d printer use a liquid binding agent
[120]. Fig 1.28 is a schematic of the powder bed 3D printing. This technique has high
resolution object with minimum feature size of 100 pm and minimum layer thickness of ~100
um [122] but the powder residues can be very hard to remove in holes which is a problem for
biocompatibility. Fig 1.28b shows an example of complex geometries that can be printed

using this technique.

a
inkjet print
powder-spreading heads
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Figure 1.28 (a) Schematic of the inkjet head 3D printing. (From [120]) (b) Example of object that can
be printed using this technique. Scale bar is lecm (From [121]) (¢) Hydroxylapatite scaffold. (From
[113])

A wide range of material can be printed using this method and printing materials are
relatively cheap. Leukers et al. [113] used this technique to fabricate 3D ceramic scaffold in

Hydroxylapatite (HAp) for cell culture

Photopolymerisation: it is the technique that has the best theoretical resolution. However, as
in photolithography, it needs special polymers that are UV sensitive and are very expensive.
Inkjet head photopolymer 3D printer deposit photopolymer in the form of microdroplets
which are polymerized by UV [123] this technique has an excellent resolution as each layer is
16 pm thick. Recent progress in stereolithography with the use of 2-photon laser to
polymerize the resist in 3 dimension offer maximum resolution in 3D [124-127]. Very

complex 3 dimensional structures can be achieved as shown on Fig. 1.29.
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Figure 1.29 (a-b) Example of complex 3D structures that can be achieved using 2 photon
stereolithography. (a) (From [124]) (b) (From [127]).

c- Electrospinning

Electrospinning will be presented more in details in paragraph 1.6. The general idea is to
dissolve polymer in a fast evaporating solvent. The polymer solution is placed in a syringe
and high voltage (>10Kv) is applied between the syringe tip and a grounded collector. The
strong electric field ejects the polymer solution and the solvent evaporates during “flight” of
the polymer to the collector. It is possible to produce random nanofibers as well as aligned

nanofibers with controlled diameter (from 100nm).

1.3.3 Nanofibers scaffolds

a- Advantages of electrospinning over other method of scaffold fabrication

Electrospinning is a very versatile method as with relatively limited equipment (a syringe
pusher and a high voltage source), it can make nanofibers with diameter ranging from 3nm to
Sum [128]. This size range is ideal to interact with cells as it ECM is also constituted of
molecules of the same range of size. Nanofibers can be made from different polymers
(natural, synthetic, composite) and can be functionalized which make them ideal candidates
for tissue engineering applications [129-132]. Moreover, by changing the electrospinning
setup it is possible to obtain fibers with very different morphologies that can be used for
different applications. For example co-axial two capillary spinneret (Fig 1.30a) allow
formation of hollow nanofibers (Fig 1.30b) whereas rotating drums allow formation of highly

aligned nanofibers (Fig 1.30d).
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Electrospinning setup modification |Resulting fibers

Co-axial, two capillary spinneret (a)
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Figure 1.30 (a) Co-axial two capillary spinneret setup for producing hollow nanofibers. (b) SEM of
produced hollow nanofibers. (¢) Rotating drum setup for producing highly aligned nanofibers. (d)
SEM of produced aligned nanofibers. (From [129])

Nanofibers scaffold have high surface to volume ratio and can be highly microporous which
favors cell adhesion, proliferation, and differentiation [130]. Hence nanofibers scaffolds are

very good candidate to mimic ECM.

b- Nanofibers composition

Nanofibers can be made from a wide range of polymers [128,130]:

Natural polymers: Collagen, elastin, fibrinogen, silk fibroin, chitosan, dextran, gelatin,
hyaluronic acid. Natural polymer are often more difficult to electrospin end the solvent has to
be chosen in order not to damage structure of biomolecules. Electrospun collagen has been
used extensively as collagen is the main component of ECM. Natural polymers can also be
mixed with synthetic polymers before electrospinning in order to enhance biocompatibility of

the resulting scaffolds.

Synthetic polymers: PLA, PET, PCL, PLLA-CL, PLGA, PLGA-PEG. PLGA is one of the
most used electrospun polymer as PLGA electrospun mats can have a porosity greater than

90% which induce high percentage of cell attachment.

Composite scaffold can be fabricated by sequentially electrospinning different polymer on the
same substrate. For example collagen type I and III can be electrospun sequentially to make

their ratio similar to the one in natural ECM.
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c- Nanofiber scaffold applications for tissue engineering

Nanofibers scaffold have been used for different biomedical applications: drug delivery,
wound dressing, cardiac graft and engineering of many type of tissues: cartilage, ligament,
skeletal, skin, blood vessel, neural. We choose to focus this short review on the neural tissue
engineering and the effects induced by nanofibers on neuron growth and differentiation [133-

134].

Stem cell neural differentiation and alignment: It has been found that culture of stem
cells on nanofibers induce neural differentiation. Yang et al. [135-136] cultured Neural Stem
Cells (NSCs) on Poly-L-Lactic-Acid (PLLA) nanofibers (150-350nm) randomly deposited
and aligned. They showed that randomly aligned nanofibers promote NSCs adhesion and
differentiation and that neurite outgrew in the direction of nanofibers for the aligned
nanofibers scaffold. Xie et al. confirmed those results on Embryonic Stem Cells (ESCs) on
poly(e-caprolactone) (PCL) nanofibers (250nm diameter) [137]. Undifferentiated ESs were
induced to form EBs (Embryonic Bodies) containing neural progenitor cells using retinoic
acid treatment protocol. They demonstrated that Embryonic stem Cells (ESCs) on aligned and
random PCL nanofibers differentiate into neural lineages (neurons, oligodendrocytes, and
astrocytes). On the control experiments (ESCs and EBs in petri dish) neural lineage markers
could not be found which validates specific effect of nanofibers. They also found that aligned
nanofibers enhance differentiation and induce neurite alignment and outgrow in the direction

of nanofibers.

250 um

Figure 1.31 (a-b) Fluorescent images of ESs cells after 14 days of culture on PCL aligned nanofibers
and tagged with Tuj1(for neuron). (From [137])
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Christopherson et al. [138] studied the influence of the diameter of nanofibers on the neural
stem cell differentiation and proliferation. They fabricated randomly distributed
Poly(ethersulfone) (PES) of diameters ranging from 283 nm to 1452 nm. Scaffolds and
control experiments on petri dish and spin coated PES were coated with laminin to promote
neuron adhesion. They tested scaffold in 2 experimental conditions: a differentiation assay
(presence of retinoic acid and fetal bovine serum) and a proliferation assay (in the presence of
FGF-2). They found that for the proliferation assay, as fiber diameter increases, INSCs show
reduced migration, spreading and proliferation. Under the differentiation condition rNSCs
spread and assume glial cell shape and preferentially differentiate into oligodendrocytes,

whereas they elongate and differentiate into neuronal lineage on 749-nm and 1452-nm fibers.

Neurite outgrowth alignment and promotion: Similarly to contact guidance, neurite
guidance has been verified by many groups [139-141] Corey et al. [139] demonstrated that
explanted rat Dorsal Root ganglia (DRG) neurite cultured on PLLA nanofibers (average
diameter= 524nm) oriented along fibers even without protein coatings. They observed an
augmentation of ~25% of neurite growth length on highly aligned nanofibers and that neurite
alignment is directly proportional to the nanofibers alignment. Wang et al. showed that

neurite alignment is also proportional to nanofibers density [140].

Neurite Guidance conduits (NGC’s): The principle of neurite guidance channels is to
guide nerve growth through a conduit. Each end of the conduit is attached to one nerve stump
(Fig. 1.32). Until now NGC used clinically are made in bulk polymers such as Teflon and
their efficiency is very limited. Recently researchers used different means of structuring
nanofibers into NGCs in order to enhance nerve regrowth through nanofiber topographic

guidance [142-146].

NGC
distal \ proximal
nerve stump

-

nerve stumgp

Figure 1.32 Nerve guidance channel. (From [142])
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Panseri et al. [144] fabricated porous NGCs made with randomly electrospun PLGA/PCL
nanofibers (Figure 1.33a-b) and they tested the efficiency of the conduits on rats after sciatic
nerve section (Figure 1.33a-c). The advantage of PLGA/PCL is its degradability so no other

surgery to remove the conduit is needed.

Figure 1.33 (a) Overview of the Nerve guidance conduit. (b) Detailed view of the random electrospun
nanofibers constituting it. (¢) Rat Sciatic nerve section. (d) Sciatic nerve with the neural guidance
conduit. (From [144])

They showed that regeneration of the sciatic nerve after 4 month of implantation was better in

those conduits made from nanofibers than in normal silicone tubes.

Researches are still in progress to fabricate NGC with more complex structures. For example
Zhang et al. [146] used electrospinning of ultrafine fibers on a patterned collector to make
fibrous Polycaprolactone (PCL) and poly-DL-lactide (PDLLA) tube with micropatterns. They
managed to make NGCs with aligned nanofibers in the inner layer and random nanofibers in
the outer layer: the inner layer is for topographical guidance and the outer layer is to improve

mechanical resistance of the NGC.
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1.3.4 Towards Active bioscaffolds

As we have seen along the last chapters, topography and chemical cues can influence
cell functions which can be used for tissue regeneration. However those cues are rather
passive: once the scaffold has been seeded with cells, there is no way to modify its functions.
A scaffold that could be active would open the way to more complex interactions with cells.
An active scaffold could play 2 main roles: Sensor for monitoring the activities of cells during

their development and actuator regulating activity of cells from the exterior.
a- Electro Active scaffolds made from electro active polymers

Neural cells communicate with electric pulse (action potentials) as their membrane has
voltage gated ion channels that are activated by changes in electrical potential difference near
the channel. Neurons that are not stimulated by other neurons degenerates and dies and so,
many researches have been done on the electric stimulation of neuron growth as it mimics
neuron-neuron communication. It is well known that an electric field (1V/cm) applied at the
culture level can effectively enhance and orientate neurite outgrowth [147] Hence many
studies focus on trying to use this effect combined with topographical and chemical guidance
on scaffold [148-151]. The idea is to fabricate a scaffold in a polymer that is electrically
conductive such as polypyrrole (PPy), polythiophene (PT), polyaniline (PANI), poly(3.,4-
ethylenedioxythiophene) (PEDOT) and to apply an electric field to stimulate neurons.

For example, Yow et al. [149] fabricated a collagen-based 3D fiber scaffold containing
Polypyrrole and showed that hMSCs (human MSCs) cultured on these fibers expressed markers
that are characteristic of neural lineage. They also demonstrated that cellular function can be
influenced (early expression of MAP2 and upregulation of synaptophysin) by applying an external

electrical field and that prolonged stimulation of the culture system is detrimental.

Electrical stimulation of conductive polymers has also been used to achieve controlled
drug release [150-151] through different mechanism (gel deswelling, PH change,). One way
to accomplish this is to fabricate a pH-sensitive polymer and use the presence of an electric
current to change the local pH, initiating erosion of the polymer and the release of any drug

contained within the polymer [152].
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b- Potential of piezoelectric scaffolds.

Piezoelectric materials have the ability to generate charges in response to a mechanical
stimulation (direct piezoelectric effect) and reversibly they can be deformed by an electric
stimulation (reverse piezoelectric effect). Due to this properties, piezoelectric materials are
commonly used as sensors (e.g.: echography), actuators (e.g.: inkjet printer head) and can be
used for energy generation (e.g.: lighter igniter). Thus, the incorporation of these properties in

bioscaffolds could be a way to obtain active bioscaffolds.

In addition some biological materials such as collagen, bone or tendon exhibits some
piezoelectric properties. In particular bone regeneration seems to be linked with bone
piezoelectric properties and osteoblast ability to sense this cues to induce bone regeneration
[153]. Thus a piezoelectric scaffold would mimic the natural microenvironment of
osteoblasts. As piezoelectric polymers can induce a transient change in surface charge without
requiring external energy sources or electrodes they could be also use to mimic neural

microenvironment.

Most common piezoelectric materials are natural crystals (quartz, Rochelle salt),
artificial crystals (Gallium orthophosphate, Langasite), synthetic ceramics (ZNO, PZT,
Barium titanate). Those materials are not easy to pattern and ceramics have biocompatibility
problems due to the presence of lead and so they are not adapted for making bioscaffolds.
PVDF (PolyVinyliDene Fluoride) is the only synthetic polymer that exhibit strong
piezoelectric properties [146]. PVDF is a thermoplastic which has strong chemical resistance,
is biocompatible and optically transparent. Hence, PVDF is an excellent candidate for making

bioscaffolds with piezoelectric properties.

Until now few studies has been conducted on the subject compared to the number of studies
conducted on conductive polymer. Valentini et al., in the 80’s confirmed the PVDF
biocompatibility and showed that piezoelectric bulk PVDF enhance neurite outgrowth in vivo
and in vitro [154-156]. Later, Gallego et al. proposed new micropatterning methods for PVDF
and showed that cells could be cultured on PVDF micropillars. However they did not study
the specific effects of PVDF piezoelectricity on cells [157-158]. Finally, Xie et al. [134]
cultured cells on aligned PVDF and PVDF-TrFE nanofibers. They demonstrated the potential
of aligned PVDF-TTFE scaffolds in supporting neuronal cell growth and neurite extension for

neural applications.
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In conclusion PVDF has many potential applications but still little is known on its

specific effects on cells and it is why we choose this material as our subject of studies.
1.4 Piezoelectric properties of PYDF and PVDF-TrFE

Many materials exhibit piezoelectricity: natural crystals (quartz, Rochelle salt),
artificial crystals (Gallium orthophosphate, Langasite), synthetic ceramics (ZNO, PZT,
Barium titanate). Biological materials exhibit also some piezoelectric properties: bone,
Tendon, Silk, Wood, Enamel, Dentin, and DNA. PVDF (PolyvVinyliDene Fluoride) is the
only synthetic polymer that exhibit strong piezoelectric properties [159]. PVDF piezoelectric
properties are much more important than the natural crystal with the highest piezoelectric
properties which is quartz (Table 1.1). Piezoelectric properties are less important than those
of ceramics (BaTio3, PZT) because PVDF is maximum 60-70% crystalline which limits the

maximum piezoelectric properties.

Material Piezo constant (pC/N)
BaTiO3 191

Quartz 2.3

PZT-4 289

PVDF -33

Table 1.1 Piezoelectric constants of different materials. (From [155])

Piezoelectric properties of PVDF have been discovered by Kawai et al. [160] in 1969. In
1997 Omote et al. discovered that the Polyvinyl-trifluoroethylene copolymer (PVDF-TrFE)
exhibit enhanced piezoelectric properties [161]. PVDF and its copolymer are semi-
crystalline: They are made of ordered regions of monomer units (crystallites) surrounded by
an amorphous regions. Piezoelectric response is linked with its crystalline phases are only 3
of its phases are piezoelectric. In order to get a piezoelectric response, PVDF needs to have
the proper piezoelectric phase (B-phase) to create dipoles and need also to be poled to
orientate those dipoles. PVDF piezoelectric properties are still not completely understood and
are still an active area of research. This paragraph review what is known on PVDF

piezoelectric properties and the different means of measuring it.
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1.4.1 PVDF crystalline properties

a
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Figure 1.34 (a) Schematic of the non polar a phase and the polar piezoelectric B phase. (From [162])
(b) 3D model of PVDF-TrFE. (From [163])

PVDF has 4 main crystalline phases [204-205]: a, B, ¥ and d which correspond to different

molecule conformations.

Phase I: f-phase piezoelectric

This phase is the main piezoelectric polar phase. The chain conformation is all Trans (TTT)
oriented with Fluor atom on the same side of the polymer chain (Fig. 1.34). This
conformation gives the maximum dipole which generates the piezoelectric properties. B-phase
can be obtained drying films cast from highly polar solvent HexaMethylPhosphorAmide
(HMPA) at temperatures between 60°C and 140°C [164]. B-phase can also be obtained by
drying at 100°C PVDF/DMF (DiMethylFormamide) solution with addition of
Mg(NO3)2,6H20 [165]. Stretching a-phase PVDF produce S-phase due to the asymmetry
generated by the physical stress [165]. PVDF-TrFE exhibit naturally B-phase due to the
asymmetry introduced (Figure 1.34b).

Phase II: a-phase non piezoelectric.
This form is the most common. The chain conformation is trans-gauche trans-gauche

(TG'TG") with no dipole moment. Recrystallization at T below 160°C [165,167]

Phase III: y-phase
This phase has almost the same conformation as the p-phase. Its conformation is (TTTG"

TTTG").cast from DMAc 65° y. casting from DMSO or DMF [165, 168]

Phase IV: 6 phase
This phase has also trans-gauche trans-gauche conformation (TG TG") but C-F bonds are

aligned in one direction resulting in a dipole moment.
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Choice of solvent is important in the determination of the crystalline phase that will appear:
generally the more polar the solvent is, the more polar the crystalline phase will be. Rate of
evaporation seems also to influence phase of the polymer: slow evaporation solvent such as
will results in B-phase whereas fast evaporation solvent will result in a-phase. Intermediate

solvent will result in a mix between both.

Different crystalline phase have different microscopic aspects. Fig. 1.35 shows a SEM picture
of 2 PVDF films from the same solution (10% wgt in DMF/Acetone) and spin-coated with the
same conditions. The film dried at 140°C is optically very transparent. SEM picture (Fig.
1.35b) shows that there is no crystals, the surface is very smooth. It is characteristic of the
amorphous o-phase. In comparison, the film dried at room temperature has a white aspect and
is not optically transparent. At the microscale it presents big spherulites (Fig. 1.35a) which
shows the presence of a crystalline phase. Experiment detailed later shown that this phase is

v-phase.

18aaEd4 18KY ®1.28E 25.8um

Figure 1.35 SEM picture of PVDF film : (a) dried at 30°C: y-phase, (b) dried at 140°C a-phase.

Crystal forms can be transformed by different means generally it involved temperature and/or
electric field as those parameters affect molecules movement and polarity. Most studied

PVDF phase transformations are the following:
a-phase to -phase conversion: stretching (stretched 6 times its size) at 90°C [165]
B-phase to y -phase conversion annealing at 181°C [165]

v-phase to B-phase annealing at 90°C 5h [165]
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Fig 1.36 shows the interconnections between the different phases of PVDF and the different
means of changing one phase into another. This diagram is given as a reference as it comes

from an article of 1982 and new findings have not been added.
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Figure 1.36 Schematic illustrations of the interconnections of the different phases. (From [166, 169])

Fig. 1.37 shows the actual phase transformations we verified experimentally. We found that
the use of acetone in DMF (DMF/Acetone ratio = 4:5 wgt) does not prevent the formation of

v-phase. However we found that the temperature of drying is the most important parameter for

[#]
Annealing 5H @90"C
o %

the formation of y-phase.

Spin coating + dried at Spin coating + dried at
T=60"C ambient temperature
PVDF Solution
{10% wegt in
DMF/Acetone)

Figure 1.37 Schematic illustrations of the interconnections of the different phases found
experimentally.
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1.4.2 PVDF and PVDF-TrFE poling

Figure 1.38 Schematic illustrations of the effect of poling on the dipoles: (a) unpoled, (b) poled.
(From [170])

Poling is necessary to align the dipoles in the same direction. Electric poling consists at
applying a very high voltage to orientate the dipoles along this electric field. Without poling,
the local piezo effect will be annealed at the macroscale (Fig. 1.38). It is possible to do direct
poling of the a-phase without transforming to the y-phase or B-phase, however as the y-phase
is polar and very similar, the field needed to orientate all the dipoles will be less important
that the one needed from the a-phase. Poling of the PVDF-TrFE copolymer is also need for

the same reasons.

Relaxation temperature of the PVDF is 50°C for the a-phase and 90°C for the B-phase [165].
Hence, poling should be conducted at 50°C < Tpling < 90°C in order to allow relaxation of the
a-phase while preventing annealing of the B-phase. Fig 1.39 shows a schematic illustration of

the 2 main techniques available for poling: Corona discharge and in situ poling.

l I\Ghss

slide

Figure 1.39 Schematic illustrations of the apparatus used to realize poling of PVDF and
PVDF-TrFE: (a) corona discharge, (b) in situ poling. (From [171])
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Corona discharge: A high voltage is applied between a tip electrode and the grounded
substrate (~20MV/m'1). The tip electrode is use to make straight electric field lines which
yield better dipole alignment.

In situ poling: Hansen el al. [171] used this technique to realize poling of electrospun PVDF
nanofibers. They applied the high voltage between the 2 electrodes that will serve later as
measurement electrodes. The poling voltage is also (~20MV/m™). To insure electrical
isolation between the 2 electrodes, they coated the device in PDMS and immerged it in a bath

of insulating silicone oil.

Poling time are generally around 5 hours. Poling is realized at T<90°C and at the end, the
high voltage is kept on while the setup is cooling so the crystals will keep their polarity during

cooling down.

1.4.3 Measurement of piezoelectric activity

a- Direct Measurements of piezoelectric constants (d;; meter and PFM):
Piezoelectric constants:

Piezoelectricity is the combined effect of the electrical behavior of the material and stress
applied on it [159]:

D=cFE
S = 5T (Hooke’s law)

where D is the electric charge density displacement, € is permittivity and £ is electric field, S

is strain, s is compliance and 7 is stress. They can be combined
(s} = [s"[{T} + [@'|{E}
(D} = [d{T} + ['] {E)

The second equation is used to describe the direct piezoelectric effect :

_ T
(D} = [d{T} + || {E)
Where {D} is the electric charge density displacement, T is the stress vector, ¢ is the

permittivity matrix and E is the electric field vector. [d] is the matrix for the direct

piezoelectric effect which contains the piezoelectric constants:
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dayy dagp daz 0 0 0O

Explanation of the unusual coefficient notation can be found here [172].

The piezoelectric materials are generally characterized through their ds;. For information the

PVDF piezoelectric constants can be found in Table 1.2.

Piezoelectric _ _ _ _ _

strain (pC/N) d;; =21 d;»=2.3 d;;3=-26 dyg=-27 d;s=-23
Table 1.2 PVDF piezoelectric constants. (From [170])

ds; meter:

ds3 can be measured with a dedicated machine called a ds;; meter (Fig. 1.40) which applies a
known force . As dj3 is measured through the direct piezoelectric effect, an electrical contact
is needed on top and bottom of the sample which make it impossible to use for substrate such

as nanofibers.

=

Figure 1.40 d;3 meter. (From [173])

Piezoresponse Force Microscopy (PFM):

PFM is a special mode of AFM where the tip is used to measure the piezoelectric response of
a substrate. This method can be use even on bare polymers without top electrode as the tip of
AFM serve as the electrode. The only requirement is that the ground of AFM and the back of
the substrate has to be connected. The tip of AFM imposes a voltage and the deformation of
the substrate is measured [174]. Fig 1.41 shows an example of PFM measurement from [175].
The measured phase is the polarity of the ds3; (Fig 1.41¢) while the measured amplitude is the
magnitude of the di;. It is also possible to superpose those measurements with 3D

topographical map of the AFM mode (Fig 1.41a-b).
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Figure 1.41 PFM measurement of micropatterned PVDF-TrFE: (a) phase superposed with
topography, (b) amplitude superposed with topography, (¢) 2D phase and (d) 2D topography. (From
[175])

For ferroelectric materials such as PVDF its polarity can be switched by applying a sequence
of dc bias imposed on top of the ac driving voltage, and the piezoresponse can be measured as

a function of dc bias [175].

b- Measurement of output voltage:

Piezoelectric properties can be evaluated by measuring the open loop voltage.
Hansen et al. [171] used a dc motor to apply a fixed strain (0.05%) during different
durations (0.06, 0.04, and 0.03 s) to aligned PVDF nanofibers. They obtained output
voltages in the range of 15-20 mV. They used a voltage preamplifier to condition the

voltage.

We build a voltage preamplifier based on an instrumentation operational amplifier
(Analog Device AD622 [176]) as it is low-cost and has an input impedance of
15Gohms . The preamplifier runs on batteries in order to remove noise coming from
mains. Fig. 1.42 shows the preamplifier we build and the schematic circuit. The input
(Yellow) is plugged to the electrodes with the nanofiber between and the output (black and
white) is plugged to a digital multimeter plugged to a computer via USB. By default the

amplifier has a unit gain but gain can be set up by changing a single resistor.
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The circuit used is a differential voltage amplifier where the amplifier amplifies the difference

between the 2 input wires.

+Vg
-IN
- - 0
1
Re AD622 & Vour
8 5
n 3 LOAD
(g peTT] + 4 -
mom;‘ - v TO POWER
-Vs
a = SUPPLY

GROUND

Figure 1.42 (a) Electronic circuit with the instrumentation amplifier. (b) Schematic of the
circuit. (From [176])

This method presents some limitations: the substrate needs to be flexible in order to be able to
exert a force and the way the force is applied should be reproducible. Device fabrication take
many steps from casting polymer, patterning, poling etc... This method of measurement can
only give an estimation of the final performance of the device but cannot be used alone as it

does not give feedback of the fabrication steps that can be improved.

c- Indirect measurements of piezoelectric properties

As we have seen before, the piezoelectric properties are strongly linked with crystal
phases of the polymer. Hence by measuring the relative % of crystalline phase we can have an
approximation of the final piezoelectric activities of a device. We used 2 methods that are
very common in material science: FTIR spectroscopy (Fourier Transform InfraRed) and XRD
(X-Ray Diffraction). Other techniques such as DSC (Differential Scanning Calorimetry) and
Raman spectroscopy can be used for the same purposes. This part is not intended as
describing the measurement technique which would be too long. We will give the
discriminant characteristics of the different crystalline phases of PVDF and PVDF-TrFE that
we compiled from multiple sources [164-170,177-183].

Fourier Transform Infrared spectroscopy (FTIR)

FTIR can be used to identify crystalline phases as different phases absorb infrared differently.
For PVDF phase measurements, FTIR is used in ATR (Attenatuated Total reflection Mode).

Infrared light is sent to the sample at different wavelength and the absorbance of the material
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is calculated. Data that can be found in literature usually present FTIR absorbance spectra that
can be converted easily in the other type of spectra (% transmittance). The localization of the
peaks are not changed by the type of spectra used. Fig. 1.43 Shows FTIR spectra of pure
components of PVDF. We put in black the most significant peaks and in red the part of those

peaks that allows fast identification of the crystalline phases.

1210

[v]
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Figure 1.43 FTIR spectra of the pure components of PVDF. Adapted from [177].

PVDEF-TrFE piezoelectric properties come from the B phase of the PVDF and so the peaks
that allow identification of the B phase in PVDF-TrFE are the same as in PVDF (1286-1431
cm™). Fig. 1.44 Shows FTIR spectra of PVDF-TrFE powder. As we can see the  phase is
present because of the peak at 1286 cm™. However the peak at 1431 is less obvious. The
spectra of PVDF-TTFE in any conditions as less peaks than the PVDF because the dominant
phase in this copolymer is the  phase.
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Figure 1.44 FTIR spectra PVDF-TrFE powder.

X-Ray Diffraction (XRD)

X-ray diffraction use an X-ray source that rotate around the sample and measure scattering in
function of the angle. This allows identification of crystalline plans. XRD technique used for
identifying crystal plane in PVDF and PVDF-TrFE crystal phases is called 260 XRD analysis.
Table 1.3 regroups the information on the localizations of the 2 theta peaks of the different
crystal phases of PVDF and PVDF-TrFE. We can see that many crystal planes have 2 theta
peaks located around 20°. Thus, it is not easy to identify properly the different phases. X-ray
diffraction should be used with other techniques such as FTIR.

Alpha Beta Gamma

X-tal plane | 2 theta () x-tal plane | 2 theta (*) x-tal plane | 2 theta ()
100 17.7 110 20.8 020 18.5
020 18.4 200 20.7 002 19.2
021 19.9 020 36.6 110 20.1
111 27.8 101 36.6 101 20.3
200 35.7 221 56.1 022 26.8
002 39 200 36.2
022 57.4 211 38.7

Table 1.3 Crystal planes of PVDF's crystal phases and their corresponding 2 theta peaks. (From [170])

-51-



Chapter 1 Introduction

Fig 1.45 shows XRD diffractograms of the different phases of PVDF.
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Fig. 1.45 XRD diffractograms of the different crystalline phases of PVDF (a) B phase compared to o-
phase. (From [167]) (b) a-phase compared to y-phase. (From [165])

1.5 Microlithography techniques

1.5.1 UV Photolithography

UV photolithography is the most common microfabrication technique. This technique
has been developed by semiconductor industry and now is widely used in research
laboratories. In general, a thin layer of photoresist which is UV-sensitive is spin coated on the
surface a substrate. When exposed to a UV light through a photomask, the expose portion of
the resist becomes insoluble or soluble in the photoresist developer, depending on the tone of
the photoresist (positive photoresist becomes soluble and negative photoresist becomes
insoluble in developer, respectively). After development, the replica of the mask pattern is
transferred into the substrate by different pattern transfer methods. Whereas step-and-repeat
projection photolithography is generally used by semiconductor industry to ensure a high
throughput and a sub-micrometer resolution, contact or proximity photolithography is used in
research laboratories to produce patterns over large surface with a feature size down to 1 um

(Fig. 1.46).
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Figure 1.46 Schematics of the photolithography process with positive and negative tone photoresist.
(From [184])

Faositive Resist

Both controls of the exposure (for a give UV light source) and the development time
(for a given developer composition) are important to achieve a good resist profile.
Theoretically, the profile of the exposure dose and the development can be calculated based
on diffraction theory and molecular reaction dynamics but in most cases the experimental
parameters are determined empirically. In practice, the thickness of the photoresist (e.g.
AZ5214E) for lift-off, doping and etching is about 1.5um, whereas the thickness of the
photoresist (e.g. SU-8) for other applications (MEMS, microfluidics) varies between a few to
a few hundred micrometers. AZ5214E is a particular photoresist which can be used as either
positive or negative resists. When used as positive resist, the well-developed profile of
AZ5214E can be vertical or sloped because of the UV absorption of the photoactive
compounds that limit the light penetrating to the bottom of the patterns (Fig. 1.47b). When
used as negative photoresist, it can result in a undercut resist profile which is favorable to lift-

off.

Vertical Profile

Undercut allows Lift-off of EGJ:] * r:l_q

evaporated or sputtered films:

Sloped Profile I‘_ u'T
‘\\ /".J \ First exposure dose
D =S

Retrograde or
Undercut Profile S

hhk

Figure 1.47 (a) Three types of photoresist profiles. (From [185]) (b) Profile of the AZ5214 resist after
reversal. (From [186])
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a- Fabrication of the photomask

Before all, a mask pattern has to be designed and produced. In our work, the mask
design can be done using commercial software (Tanner EDA) which results in patterns in

different formats.

For masks with only large features (> 20um), printed transparencies can be used
which are convenient and low cost (Fig. 1.48a). They are printed by high resolution laser

printers laser (3600 dpi) on transparent films.

For masks with smaller feature sizes, standard photo-masks have to be prepared. Now,
patterned generated in GDSII format by Tanner EDA is transformed into DXF format with a
freeware (Layout, Caltech) and then loaded in to the computer of a micro-pattern generator
(uPG101, Heidelberg Instruments). This pattern generator allows producing patterns of
feature sizes down to ~1um. It uses a focused laser beam to print the pattern (from a digital
file of the design) on photoresist-coated chromium/soda lime substrate. After exposure and
development, the chromium layer is selectively etched by a chemical solution and the

remaining photoresist is removed with acetone.

Figure 1.48 (a) Transparency mask and optical mask. (b) puPG 101 direct laser writer (Heidelberg
Instruments [187]) installed in the ENS laboratory.

b- Main steps of the photolithography

Cleaning of the substrate: The cleaning process depends of the substrate: Silicon (Si)
is generally already cleaned which needs less care than glass. Glass is hydrophilic and often
contains inorganic particles or organic residues resulted from glass fabrication or transport. A
pre-cleaning step using piranha can then be required prior to classic cleaning. Glass slides are

immersed in piranha solution (H2SO4: H202=3:1) for 30 min in order to remove organic
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residue by oxidation. Afterward, cleaning is done in an ultrasonic bath of acetone and then in

isopropanol.

Surface treatment: In order to enhance the adhesion or the spreading of the resist on
the substrate, an additional surface treatment may be required. Depending on the type of the
substrate and the material to be deposited, the surface of the substrate can be treated by
oxygen plasma (to create OH groups and make the surface hydrophilic) or silanization (to

make the surface hydrophobic).

Surface pre-coating: Omnicoat (Microchem) solution is recommended as a pre-
coating layer for SU8 photoresist, which enhances the adhesion of the resist to the substrate

and allows easy stripping using the SU-8 remover [188].

Spin-coating: Normally, the spin coating of SU-8 photoresist has 2 steps: the first step
allows the photoresist spreading at low rotation speed (500rpm) and low acceleration during
5-10 sec. The second step allows the evaporation of the solvent in the resist at higher rotation
speed (1000 - 4000 rpm) during 30 sec. Photoresist manufacturers usually provides curves of

spin coating speed versus thickness.

Pre-exposure bake: This step is used to further evaporate the solvent of the

photoresist.

Exposure: The right amount of energy has to be delivered to the surface. The
photoresist datasheets provided by the manufacturers describe the exposure dose or energy
per surface unit (mJ/cm?) needed for optimal exposure. The exposure time has to be
calculated after measuring the intensity of the UV source. The distance between the mask and
the photoresist layer is determinant for photolithography quality. Ideally, a perfect contact
without air gap is required to achieve the highest resolution or the smallest feature size. If the
contact is not good, the diffraction effect will blur the edge of the patterns. In order to enhance
contact between the mask and the photoresist, the edge of the spin coated SU-8 photoresist
(which has a larger thickness that the other part) should be removed. As can be understood,
this optional step called edge removal is important for large thickness depositions. The

exposure of photoresist can also be realized without mask by using directly the p PG101.

Post Exposure Bake (SU8): For SU-8 resist, this PEB step is needed for the
crosslinking of the resist [189].
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Reversal bake (AZ5214 negative): This step is critical for the inversion process. It is

use to crosslink exposed part of the resist reversing the tone of the photoresist.

Flood exposure (AZ5214 negative): this step is realized without any mask. The goal

is to make unexposed portion of the photoresist soluble in the developer.

Development: Substrate are immerged in the developer corresponding to the

photoresist used (MIF726 for AZ5214E and SUS developer for SUS)

Hard bake (SUS): This step is optional, it is used to reinforce adherence of SUS with

the substrate.

Process Flow
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Figure 1.49 Process flow of photolithography: (a) with SU8 photoresist (From [189]), (b) with
AZ5214 photoresist (From [186]).

¢) Metal deposition and lift-off

In research laboratories, lift-off is often used to transfer the photolithography-defined patterns
in features of a metallic thin film which can then be used as masks for reactive ion tech or
microelectrodes. A thin film of gold, Ni, Cr, or other types of metals is deposited by electron-
beam or thermal evaporation on the patterned resist layer. Then, the resist is dissolved in
acetone with or without ultrasonic agitation, resulting in metallic features on the surface of the
substrate (Fig. 1.50). Such a process is called lift-off, which is obviously easier with an

undercut resist profile.
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Undercut allows Lift-off of
evaporated or sputterad films:

Figure 1.50 [llustration of metal deposition. (From [186])

1.5.2 Soft lithography

Photolithography and the associated pattern transfer techniques (etching, deposition
etc...) came from the semiconductor industry which generally requires expensive equipment

and may not be fully suitable or sufficient for chemical and biological applications.

As alternative and complement to conventional microfabrication techniques, Xia and
Whitesides [191] proposed a soft lithography which is based on the use of
polydimethylsiloxane (PDMS) mold or stamp. PDMS is an elastomeric material which can be
easily casted on a master pattern and the replicated features can then be used for microcontact
printing or device fabrication. Since then, soft lithography techniques were widely spread in

research laboratories and are now routinely used in different research fields.
a- The PDMS

PDMS is a polymer belonging to the group of organosilicon (Fig. 1.51) [192]. The
pre-polymer PDMS is a liquid, prepared by mixing part A (vinyl groups) and B
(hydrosiloxanes groups+ catalyst) at different ratios. It can then be used for cross-linking at
various temperatures which leads to solidified PDMS layer of different stiffness. The
common ratio used is 10:1 (wt Part A vs Part B). The higher the mixture ratio, the softer the
resulted PDMS layer will be.

{
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) o ‘o ‘o
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CH, (|IH5 ng Cha
Part A Part B ;

Figure 1.51 (a) PDMS crosslinking. (from [193]) (b) A PDMS block. (From [194])

-57-



Chapter 1 Introduction

PDMS has many interest properties for both processing and applications:

- It is mechanically and chemically stable,

- It is transparent over a large spectral range,

- Itis cheap and easy to process,

- It is biocompatible,

- It can be easily bond to glass or silicon,

- Its surface can be modified by silanization,

- It is elastic with an adjustable Young’s module,

- It has a low surface energy.
b- Fabrication of PDMS stamps

PDMS stamps are on the basis of all soft lithography. As shown in Fig. 1.52, the
master patterns (mold) are first made by photolithography on silicon. After deposition of
TMCS (tetramethylchlorosilane) to prevent PDMS sticking on the mold, the liquid PDMS is
poured over the mold and then cured at a typical temperature of 80°C for 30 min. After the

mold release, the solidified PDMS layer can be cut into individual stamps.

Figure 1.52 (a) PDMS stamp fabrication. (From [195]) (b) Schematic of the process view from the
side. (From [196])
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¢- Microcontact printing

A solution of biomolecules is incubated on the surface of the PDMS stamp (inking).
After evaporation, the stamp is brought into contact on the surface of the substrate to be
functionalized (printing) (Fig 1.53). The surface treatment of PDMS by using atmospheric
plasma for example can decrease temporarily the hydrophobicity of PDMS so that it can be

used to enhance the spreading of the solution on the stamp for an improved printing [195].

—
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Figure 1.53 Schematic of microcontact printing. (From [196])

1.6 Electrospinning

The above described methods allow producing micro patterns with defined geometry or
layout, which are required for device fabrication as well as fundamental research. These
methods are essentially lithography. In general, non-lithography methods such as chemical
organization, aluminum anodic oxidation, electrospinning, self-assembling, etc. cannot be
applied to define patterns of arbitrary geometry but they are lower cost and higher throughput
with respect to well-known lithography methods. Electrospinning, in particular, is attractive
for the manufacturing of a large variety of nanofibers. These nanofibers have nanoscale
diameters, high surface-to-volume ratio, and unique physicochemical properties for different
applications. In this study, we were also interested in using the electrospinning method in

order to fabricate nanofibers which can be actuated electrically.
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Electrospinning is an easy method which only needs a syringe pump, a high-voltage power
supply and a collector (Fig. 1.54). During the electrospinning, a polymer solution is injected
at a constant flow rate from the nozzle of the syringe which forms a Taylor cone when the
syringe is positive powered and the collector is negative powered. The collector is electrically
conductive such as silicon wafer, aluminum foil, conductive paper, and other metal structures.
The distance between the two electrodes is in the range of 10~25 cm and the applied electrical
voltage in the range of 0.5-30 kV, depending on the solution property. When the electrical
force is larger than the surface tension, a polymer jet is formed, the solvent is rapidly
evaporated, and dry fibrous mats are fabricated on the collector. In general, nanofibers are
deposited on a solid surface but it can also be suspended in a metal frame or over a large

surface.

Polymer Solution

——mentenay

T p—
Taylor Eone I—
Collector

10 mum

Figure 1.54 (a) Typical set-up for electrospinning. (b) Nanofibers jetting out from the Taylor cone by
high velocity CCD. (¢) An optical image of the large area nanofiber mats. (From [197])

Nanofibers are important for fundamental research and a number of applications.
Although the process of the electrospinning is simple, a few important parameters have to be

adjusted to control the quality of the deposition.

On one hand, the property of the polymer solution including viscosity, concentration,
polymer molecular weight, solvent, surface tension, charge, and temperature have to be
controlled. The solution viscosity should be high enough to keep the fiber structure against
breaking by the strong electrical field and to avoid the formation of beads. However, a too

high viscosity will prevent the jet formation or result in too large fiber diameters. The
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viscosity of the solution is related to the concentration of the solution and the molecular
weight of the polymer. In a diluted solution, the polymers are separated each other and
homogenous distributed in the solution without interaction. Only beads or beads included
fibers can be obtained. In a semi concentrated solution (contact concentration), fibers can be
correctly obtained. In a highly concentrated solution (entanglement concentration), large
diameter fibers can be produced. The molecular weight of the polymer affects the solution
viscosity so the fiber diameter. Polymer solutions of large molecular weight but a relatively
low concentration could be suited for electrospinning. Otherwise, if the polymer’s molecular
weight is too small, no fiber can be produced even with quite high concentration. To choose a
good solvent, the dissolved ability and the boiling point should be considered. It is necessary
that the solvent can evaporate completely when the fibers reach the collector, otherwise, the
fibers will be connected together. Therefore, it is better to use the solvent with low boiling
point. However, too low boiling point solvent will evaporate quickly and result in easy
aggregation of the polymer at the tip of the nozzle, which inhibits the feeding of the polymer
solution out of the syringe. In general, the water is used for the hydrophilic solvent and
CHCIs, CH,Cl,, DMF, THF, ethanol and other organic or the mixture of the solvent are
chosen for the hydrophobic polymer. Besides the above consideration, the solvent may affect
the structure of the fibers. For example, smooth polystyrene fibers with several hundreds of
nanometer diameter could be obtained with the concentration of 12.5% in DMF. Using the
mixture solvent of DMF and THF will easily produce the fibers with many pores, which has
been used for the treatment of contaminants and other molecular absorption. In addition, the
surface tension, composition and charge of the solution can also affect the fiber structures.
Salts and some charged surfactant are generally added into the solution to eliminate the beads
on the fiber, which is attributed to the increased charge of the solution by the additive regents.
However, it was stated that additive of salts to increase conductivity as well caused the
increase of mass flow rate that resulted in thicker fibers formation, since the conductivity
needs to be controlled at a proper regime of 10°~10"® (Qm™) in order for the jet to maintain a
stable stream status. The average diameter of the electrospun nanofibers are normally in the
order of several hundred nanometers. When materials with large size exist in the solution,
some novel structures could be obtained such as the necklace structure by doping the SiO,
microsphere in the PVA solution. The surface tension of the solution ensures that the sphere

was encapsulated inside the fibers.
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On the other hand, the operation parameters including voltage, distance, flow rate, the
structure and design of the nozzle and collectors have to be optimized. Only after attainment
of a threshold voltage, fiber formation occurs, which induces the necessary charges on the
solution along with electric field and initiates the electrospinning process. Above the critical
value, the voltage may affect the Taylor cone, fiber diameter, fiber quantity and so on. For
example, there is a greater probability of beads formation at a too high voltage. The distance
between the tip and the collector has to be optimized to give the fibers sufficient time to dry
before reaching the collector. Otherwise, flat fibers can be produced if the distance is not
sufficiently large and a too large distance requires a much high electric voltage. The flow rate
of the polymer from the syringe is also an important parameter. A lower feed rate is more
desirable as the solvent will get enough time for evaporation. High flow rates result in beaded
fibers due to unavailability of proper drying time prior to reaching the collector. The form, the
size and the movement of the collector are all important parameters for the fiber distribution.
Since the electrospun process is mainly driven by the electrical field, and fibers would
preferentially deposit to the conductive part of the collector. Thus the fiber deposition can be
manipulated by regulating the distribution of the electrical field, which could be realized by
the design of collectors with different types. To produce the patterned, alignment or more
complex structure fibers, researched have come up with sophisticated design of the collector
and use such as rotating drum. When the drum rotates at high speed (1000-4000 rpm) it

creates a linear velocity vector that drags the fibers on the drum with alignment.

Electrospinning of polymers offers unique opportunities for the preparation of nearly
every soluble or melt polymer. Composites can be prepared simply by addition of a composite
component to the electrospinning solution. Thereby, composite fibers, functional fiber, and
fibers with complex structure can be prepared by electrospinning of polymers with additional
compounds. Up to date, many natural polymers have been reported by electrospinning to
produce the nanofibers, including cellulose, alginate, gelatin, chitin, hyaluronic acid, collagen,
chitosan and silk. Because most of these polymers are biocompatible and water soluble, and
some of them are the important component existed in the organism, the resulted nanofibers
have been widely used for the biosensor, cell culture, proliferation and other applications.
However, these materials often lack the desired physical mechanical properties or are difficult
to electrospin on their own. In comparison with the natural polymer, the synthetic polymer
has good chemical stability and mechanical performance. And the structure and property

could be changed via organic synthesis according to the requirement. The popular polymer for
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the electrospinning includes PVA, PVA, PVP, PCL, PVDF, PEO, PEI and PUA. In order to
obtain good property both of the biocompatible and mechanical, development of hybrid
materials consisting of a blend of synthetic and natural materials were usually prepared. Apart
from the polymer, some organic molecules have been encapsulated into the nanofiber for the

application of sensors and organic electronic study.

1.7 Research objectives of this work

Tissue engineering aims at repairing damaged tissues and recovering the
corresponding biological functions. In order to restore the damaged tissue of higher functions
such neural systems, design and manufacturing of new types of cell culture platform are
needed. In this work, we developed several micro-fabrication techniques for polyvinylidene
fluoride (PVDF), a highly non-reactive, piezoelectric, thermoplastic fluoropolymer, which can
be used for cell culture and tissue engineering. We first studied the cell adhesion and growth
on PVDF substrates patterned using different fabrication techniques, including micro-
photolithography, soft lithography, microcontact printing. The influence of micro-patterning
on PVDF piezoelectric activities were characterized using different surface analysis methods
(FTIR, XRD). Then, we developed a systematic study on the fabrication of PVDF nanofibers
and their compatibility to cell culture investigations. Finally, we show the feasibility of
doping the electrospun PVDF nanofibers with magnetic nanoparticles which makes the

nanofibers excitable with a remote magnetic field.
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In this chapter, we first review the state of the art of PVDF and PVDF-TrFE micro-
processing and then we review the physical properties of PDVF. In a third part, we present the
results obtained in this work using both conventional and nonconventional lithography
techniques. Afterward, we evaluate the performance of each of these techniques in terms of
pattern resolution and reproducibility. Finally, we discuss the surface modification of PVDF.

The results of cell culture on PVDF patterns will be shown in the next chapter.

2.1 Introduction

Fluoropolymers are an active subject of research in bioengineering due to their
biocompatibility and very physical and chemical resistance. However this resistance makes
their patterning more difficult than conventional polymers. Different techniques have been
used to pattern fluoropolymers. Some polymers such as PTFE (PolyTetraFluoroEthylene) and
Teflon can be vapor deposited by graft-polymerization and ion beam deposition [1-3]. Leclair
et al. [1] and Goess! et al. [2] used a combination of photolithography and plasma deposition
to produce patterns of fluoropolymers. First, photolithography was used to define the patterns
on glass. Then, plasma was used to deposit PTFE from C4Fg gas. Finally lift-off was realized
to remove the fluoropolymer deposited on the photoresist. Wang et al. used ion-beam

sputtering on a Teflon target to deposit film with the same structural properties as Teflon [3].

PVDF however cannot be sputtered and the most common method to deposit PVDF is
the spin-coating of a solution of PVDF dissolved in a polar solvent (DMF, DMAc, DMSO).
Different strategies have been developed to pattern PVDF.

Lee et al. [4] and Bormashenko et al. [5] used laser micromachining to pattern PVDF.
Lee et al. used femtosecond laser to realize ablation of a layer of PVDF sandwiched between
2 Ni/Cu electrodes. The laser induced cracking and peeling of PVDF/NiCu (Fig 2.1) due to
the thermally induced mechanical stress resulting in a poor resolution. Laser ablation of

PVDEF is also limited by the H, emission as a byproduct of ablation.
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&
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Figure 2.1 SEM micrographs showing the morphological changes of NiCu layers and PVDF film as a
function of laser fluence. (From [4])

Bormashenko et al. [5] managed to deform PVDF using a CO, laser beam to produce

spherical and pseudo micro-lens that operate in the infrared bands as a proof of principle.

Techniques from classical micro-fabrication have been used also: Narayanan et al. [6]
defined pattern of resist on a PVDF film sandwiched between aluminum electrodes and used
an aluminum etching solution to remove part of the film that are not protected by the
photoresist. Sharma et al. [7] used O, dry etching to pattern PVDF-TrFE. Due to the high
physical resistance of the PVDF-TrFE, the etch rate was relatively slow (150nm/min)

compare to the etching rate of the photoresist (100nm/min).

Chang et al. [8-9] used shear force to pattern PVDF-TrFE with high crystallinity on
aluminum micropatterns. The PVDf-TrFE is spin-coated to form a thin film (300nm) on the
aluminum micropatterns. Then, after heating above the melting temperature and cooling to
140°C the shear process is realized by applying a PDMS flat stamp on the top of the patterns
with a pressure of 10° Pa and applying a force of 1N laterally. The maximum lateral velocity

was Imm/h and so it took 1h to pattern a Imm square area (Fig. 2.2).

In opposite of the technique evoked above which need special equipment and are low

throughput some groups applied the soft lithography to pattern PVDF and PVDF-TrFE.

Park et al. [10] used a temperature controlled capillary micro-molding technique to
make patterns of semi-crystalline PVDF. A droplet of PVDF solution was injected at the entry
of the PDMS channels (Fig 2.3a) and after the solution has reached the outlet the temperature
was adjusted to control the evaporation rate of solvent through PDMS. This process produced
rapidly micro-patterns with no PVDF remaining between lines but its use is limited to patterns

where the channels are connected.
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Figure 2.2 (a) Schematic diagram of the apparatus used to produce the static shear for patterning the
PVDF-TrFE. (From [9]) (b) Schematic diagram of the micropatterning process of a thin PVDF-TrFE
film by selective shear and detachment. (From [8])

Other groups [11-13] used successfully nanoimprint lithography (NIL) technique [16-
17] to pattern PVDF and PVDF-TrFE. Thermal nanoimprinting is a simple process, yet it is
able to create nanostructures as small as 5 nm. It uses a patterned mold to press against a
polymer film heated above its glass transition temperature and thus transfers the pattern from
the imprinting mold to the imprinted film. The other advantage of this technique is the
possibility to influence crystallization of the PVDF to increase the ratio of the piezoelectric 3-

phase. NIL has been used previously to order phase separated domains of a copolymer [18].

Liu et al. [13] used thermal nanoimprint to imprint 2 dimension patterns (squares) and
one dimension patterns (lines) of PVDF-TrFE as small as 139 nm by applying pressure
(300psi) and heat (130°C-150°C) with a nanoimprint press. The imprinting time is very short
3min. The PVDF-TrFE is diluted (0.5-10%) in solvent (MEK) and spin-coated at 3000 rpm
for 60s which makes PVDF-TrFE film of ~190nm. The imprinting mold is made of 200nm
photoresist on silicon. The resulting imprinted patterns have a thickness of 200nm with 80-
90nm remaining (Fig 2.3¢) between the patterns. The imprinted patterns present a very good
piezoelectric response without further annealing or poling. Zhang et al. [11] obtained similar
results but using a much higher imprinting pressure (1800 psi) and longer imprinting duration
(2h). Hu et al. [12] used the same technique to imprint patterns of PVDF with controlled

crystallization of the non-piezoelectric a-phase. When the imprinting mold depth (100nm) is
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inferior to the PVDF film (300nm) lamellae are formed across the sample (Fig 2.3b) but when
the mold depth is superior to the PVDF film thickness (60nm) there is a confinement of the

polymer and the lamellae are not formed.

NIL techniques are very interesting as they are high resolution and high throughput
but the height and width of the patterns is limited and PVDF remains between features.

Gallego et al. [14-15] used soft lithography based technique to imprint continuous and
discontinuous PVDF microstructures (Fig 2.4) from Sum to 25pum width (pillars, lines, criss-
crossed lines) with a very good aspect ratio (height 5-10um). They used a PDMS stamp as an
imprinting mold to imprint embossed features on the PVDF film (10% PVDF dissolved in
DMF, 3000 rpm Iminute). They applied relatively small pressure (32psi) compared to
previous nanoimprint experiments (300psi-1800psi) [11-13] and low temperature (90°C for
Sminutes). For discontinuous pattern they spin-coated the PVDF solution on the PDMS stamp
and removed the PVDF on the top of the stamp (Fig 2.4) leaving only PVDF in the recessed
areas of the stamp. Finally the remaining PVDF inside the microstructures is transferred onto

a glass slide.
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Figure 2.3 (a) Schematic of the capillary driven micromolding process controlled by temperature.
(From [10]) (b-¢) Micropatterning of PVDF and PVDF-TrFE using NIL (b) AFM phase images of the
PVDF crystallized in the nanotrenches of the print mold, showing the morphology at the topmost part
of the film. (From [12]) (¢) AFM topography images of 190 nm PVDF-TrFE film patterned with a
200nm depth mold. Insert shows the cross-section SEM picture of this sample. (From [13])
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Figure 2.4 Fabrication flows for: (a) imprinted; (b) stamped continuous; (¢) stamped discrete; and (d)
freestanding microstructures. SEM micrographs show representative 1.5:1 aspect ratio pillar patterns
fabricated using each of the techniques. (From [15])

2.2 Physical and chemical properties of PVDF

Polyvinylidene fluoride (PVDF) is thermoplastic and highly non-reactive polymer. It
commonly used in the chemical, semiconductor, medical and defense industries. In biology,
PVDF membranes are widely used for western blots for immobilization of proteins, due to its

non-specific affinity for amino acids. PVDF is produced by the polymerization of vinylidene

difluoride.
TR
5
H F n

Figure 2.5 Chemical structure of PVDF (From [24]).

PVDF has a glass transition temperature (T,) of about —35 °C and is typically 50-60%
crystalline. Depending on the chain conformations, PVDF shows different properties. When
mechanically stretched, the molecular chains of PVDF can be oriented and then poled under
tension. The poled PVDF is a ferroelectric polymer, exhibiting efficient piezoelectric and

pyroelectric properties [25-46].

-85-



Chapter 2 Micropatterning of PVDF

Copolymers of PVDF such as P(VDF-TriFluoroEthylene) (PVDF-TrFE) and P(VDF-
TetraFluoroEthylene) (PVDF-TFE) are also used in piezoelectric and electrostrictive
applications. While the copolymers' unit structures are less polar than that of pure PVDF, the
copolymers typically have a much higher crystallinity which may result in a larger

piezoelectric response [47-55].
2.3 PVDF patterning

2.3.1. Spin coating

Spinning coating is commonly used in microfabrication, which allows depositing a
thin layer of resist on a substrate with a thickness in the range of a few nanometers to a few
hundreds of micrometers. Typically, a drop of the resist dissolved in a solvent is deposited on
a substrate which can be then spread to cover the whole surface of the substrate by spinning.
During the spinning, the solvent will be partially evaporated, resulting in a homogenous thin
film coated on the substrate. The remaining solvent will be further evaporated by heating or

used during the following patterning steps.

PVDF can be dissolved with a 5-10% concentration in polar solvents, such as listed in
Table 2.1. Other solvent such as acetone or Methyl Ethyl Ketone (MEK) can also be used to
dissolve PVDF at high temperature but it may re-crystallizes upon cooling [20]. To produce
PVDF thin films by spin coating, PVDF is often dissolved in a mixture of 2 solvent: one with
a slow rate of evaporation (DMF, DMAc or DMSO) which solutes the polymer and another
one with a fast rate of evaporation (acetone) which will evaporate during the spin-coating. We
used 10% PVDF dissolved in a mixture of DMF and acetone (4:5wgt). Here, DMF has been
chosen as the main solvent because it causes less swelling of PDMS [10, 21], which is needed

during the patterning process.

Prior to spin coating, the glass substrate is plasma treated during 3 minutes to improve
its wettability and help the solvent to spread evenly on the surface. The spin coating is
performed in 2 steps: firstly a low speed (500 rpm) spinning for 10 sec. and then a high speed
(1000 — 4000 rpm) spinning for 30 sec. Figure 2.6 shows the film thickness as a function of
the speed of high speed spinning.
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Solvent Boiling Point °C Flash Point °C
Dimethyl Formamide (DMF) 153 67
Dimethyl Acetamide (DMAc) 166 70
Tetramethyl Urea 177 65
Dimethyl Sulfoxide (DMSO) 189 35
Triethyl Phosphate 215 116
N-Methyl-2-Pyrrolidone 202 95
Table 2.1 PVDF solvents. (From [19])
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Figure 2.6 Film thickness of PVDF versus spin coating speed.

After spin coating, the main solvent will be evaporated. We found that this
evaporation step is critical for the thickness homogeneity of the formed PVDF film. If the
solvent evaporates slowly (<60°C), large PVDF crystals could be formed, showing a large
film thickness inhomogeneity (Fig 2.7 a). Otherwise, if the solvent is evaporated fast (110
°C), the formed PVDF crystals are not visible and the film thickness became rather
homogenous (Fig 2.7b). Such a difference in the thickness homogeneity of the film could be
visualized by eye: The flat PVDF layer is perfectly transparent whereas the rough PVDF layer

is opaque.

Spin Coating Speed (rpm)
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Figure 2.7 SEM pictures of PVDF layer. (a) Crystals are formed due to slow evaporation. (b) Fast
evaporation leads to a very homogenous layer.

2.3.2 Reactive Ion Etching (RIE)

Reactive ion etch is commonly used to transfer a resist pattern into the substrate or
other material deposited on the resist. In our work, we evaluated the etching performance of
different reactive gases, i.e., O,, SF¢, CHF; or their mixture for PVDF thin films. During RIE,
the chemical bonds can be broken so that the unprotected part of the film can be removed or
modified. PVDF has a carbon backbone linked with single C-C bonds (Table 2.2) which can
be easily broken. However, the use of fluoride gas compounds (SF¢, CHF3) may be more
interesting to reach a high degree of the etching anisotropy. Indeed, we found that O, etching
(35 sccm, 100w, 190 mTorr) is highly efficient, which showed an etched thickness of 3.2 um
in 7 min (Fig. 2.8). We noticed however that after 4 min, the surface of the etched part

became rough and the residual parts are very difficult to remove.

The etch speed of PVDF with fluorine-based RIE is significantly slower than that of
0,. For example, SF¢ etching (SFg 10 sccm, 60 w, 10mTorr) can only etch 1.1 um for 11
min. (Fig 2.9). CHF; etching (20 sccm, 30w, 30 mTorr) with 2 sccm O, allows to remove
PVDF at a lower rate (<100 nm/min). Here, O, is used with CHF3 to act as a scavenger gas to
absorb F* atoms that have reacted with the surface and thus increasing F concentration on the
surface. These low etch speeds can be explained by the grafting of F on the C backbone
instead of the breaking of the C=C and C=C bonds which have a much higher bond energy
than the C-F bond.
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Bond Bond Energies (kj/mol)
C=0 1079
Cc=C 835
C=0 799
C=C 602
C=S 573
C-F 495
H-C 411
C-O 358
C-C 346
S-F 284
C-S 272

Table 2.2 Bond energy of bonds in PVDF (from [22]).
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Fig. 2.8 Etched thickness of PVDF versus etching time using O, plasma.
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Figure 2.9 Etched thickness of PVDF versus etching time using SF¢ plasma

Two types of RIE masks were used to define PVDF patterns on a substrate. The first
one consisted of a lithographically defined resist pattern using conventional photoresist SUS.
SUS8 (SU8 3010) was spin coated (4000 rpm = 9.2 um) on top of the PVDF layer. After UV
exposition and development, we obtained good SUS8 patterns (Fig. 2.10). After RIE, the
photoresist patterns should be removed to obtain the PVDF patterns. SU8 is generally
removed in a SU8 remover solution. However, we found that this solution did also dissolve
PVDF. Also, SUS could be etched by RIE with an etching speed (7min/2.6pm) comparable to
that for PVDF, making this process unsuited for our purpose. The use of other types of
photoresists such as AZ5214 could not solve this problem either because of the process
compatibility. In fact, acetone which is generally used to remove AZ5214 can also dissolve

PVDF.

Figure 2.10 Microphotographs of SU8 patterns on a PVDF film (scale bar 30 pm).
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The second type of etch mask is a shadow mask of PDMS made by soft lithography.
To evaluate the feasibility of this approach, we brought a PDMS square directly into contact
with the PVDF layer. After RIE and the shadow mask removal, we found that the edge of the
patterns was not well defined due probably to the problems of contact: a small gap may leave
between the PDMS mask and the PVDF layer which prohibits a good pattern edge definition
(Fig. 2.11).

1AKY H4.88

Figure 2.11 SEM image of the boundary zone between etched and non-etched PVDF. The dashed line
is the approximate boundary between (A) etched zone and (B) non etched zone.

2.3.3 Soft lithography methods

We used soft lithography techniques to pattern it. The goal was to make large scale
patterns easily in a reproducible way. We used a soft lithography technique called hot
embossing or micro-imprinting: Patterns are transferred from a mold onto a thermoplastic
polymer by heating this polymer above its glass transition temperature (Tg). When heated, the
polymer is softened which can then be molded into the mold structured with the help of a

pressure applied between the mold and the substrate.
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The molds were realized by PDMS soft lithography: A master of resist on silicon
substrate is prepared by photolithography. After the surface treatment of the master with
TMCS (TriMethyl ChloroSilane) which facilitates the release of the master after molding,
liquid PDMS (10:1) is poured over the master and cured in an oven overnight (80°C). By
changing the type of photoresist used for the master, we could control the thickness of the
patterns (1-50 um). In this work, we fabricated master patterns of lines and pillars of different

size and spacing in the range between 5 um and 100 pm.

Two hot embossing techniques have been tested to pattern PVDF on glass: The first
one was based on wetting of a PVDF solution on the surface of PDMS mold and then
transferring the PVDF layer onto the glass slide; the second one is based on direct embossing
of a PVDF solution deposited on a glass slide. Previously, Gallego et al. [14-15] have already
shown the feasibility of patterning a PVDF thin film by using the wetting based technique. In
their work, the PVDF solution is directly spin coated on the PDMS mold (1000 — 3000 rpm).
Immediately after spin-coating, the PVDF film on the outside of the patterns is removed using
a pre-heated glass (200°C) and applying slight pressure (<30 kPa) for few seconds and
repeating the process until the only remaining PVDF is inside the recessed parts of the
patterns. Finally the patterns are transferred onto the gold coated slide by applying pressure
(200-310 kPa) and heat (180-200 °C) for 10 seconds. Following their work, we tried to obtain
the similar patterns on a glass slide but did not reach satisfactory results. In fact, we found
that with their proposed process it is very difficult to achieve the gold as PVDF solution tends
to form a continuous film on top of the PDMS stamp. There seems no clear separation
between the recessed parts and the top layer (Fig. 2.12) and the whole PVDF layer can be
easily removed by the pre-heated stamped glass slide.
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Figure 2.12 PVDF layer spin-coated on the PDMS stamp (scale bar 100 um).
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We managed to overcome this difficulty by decreasing PVDF concentration from 10%
to 5%. Now, PVDF only remains in the recessed parts of the stamp (Fig. 2.13) and we
obtained the patterned PVDF features on the glass after the pattern transfer (Fig. 2.14).
However, the resulted PVDF patterns are not perfect, due probably to the adhesion between

the PVDF features and the PDMS stamps.

As can be understood, the critical phase of this method is the removal of PVDF on the
non-recessed area by stamping with the preheated glass: if it not stamped enough, PVDF will
remain on top and the pattern transfer will not be good. Otherwise, if it is over stamped,
PVDF in the recessed area can also be removed so that the transferred pattern will not be
perfect. Anyway, this method is very dependent of the operator ability and so it should not be

applicable in a reproducible manner.

Figure 2.13 5% PVDF spin coated on PDMS stamp after the pre-heated glass stamping process to
remove PVDF outside of the recessed areas.(scale bar 100 um).

Figure 2.14 (a-b) PVDF patterns transferred on the glass slide (scale bar 100 pm).
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The second hot embossing technique is more conventional one using a hot press (Fig.
2.15). Prior to spin-coating of PVDF, a glass slide was treated by O, plasma (3 min). A PVDF
solution of 10% wgt in DMF/Acetone (4:5 wgt) was then spin coated. Different parameters
have been evaluated: Mold type (silicon or PDMS), mold pattern depth, PVDF film thickness,
PVDF with or without solvent, heating temperature and time, applied pressure, cooling time,

etc..

Figure 2.15 Hydraulic press with a pair of hot plates used in this work.

Previously, Liu et al. [13] developed a nanoimprint process with P(VDF-TrFE)
copolymer and resist mold made in photoresist on silicon. After spin-coating and evaporation
of the solvent (30 min 80°C), a nanoimprinter (Nanorex NX-B100) was used to apply high
pressure between the mold and the polymer layer (300 psi) while heating (3 min 130-135°C).
After cooling to room temperature, the mold was released. This imprinting process is
reproducible but it allows only making continuous imprinted patterns as there is always
polymer remaining under the imprinted features. For example, when they used a 190nm thick
film with a mold with 200 nm depth the resulting imprinted patterns is 200 nm high and the

residual layer is around 70-90 nm underneath the imprinted patterns.

Following their work, we tried to pattern PVDF instead of P(VDF-TrFE) copolymer.
After spin-coating on a glass slide (2000-3000 rpm for 1 min.), the sample is heated at 70°C

for 1h in order to evaporate completely the solvent. The mold was made of photoresist
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(AZ5214 ~1.5um) on a silicon substrate and treated with TMCS to avoid adhesion between
PVDF and the mold. Then, the mold and the PVDF sample were heated at 140°C and a
pressure of 150 Psi for 5 min. After cooling upon to the room temperature, the mold is
released from the substrate. We obtained imprinted patterns (Fig. 2.16) which are consistent

with the mold.

188um

Figure 2.16 SEM images of a PVDF layer obtained after solvent evaporation and patterning with a
silicon-mold using a hot press.

We also tried to use a PDMS mold instead of a silicon mold: PDMS is elastic so that is
allows a more homogenous distribution of the imprinting force. The PDMS molds were
prepared by soft lithography with a photoresist pattern made in AZ5214 resist (AZ5214
~1.5um depth) and bonded to glass slides after plasma treatment. After spin coating and
solvent evaporation, the mold and the PVDF sample were heated to 165°C and a pressure of
150 psi was applied for 5 min. Here, we used a higher temperature to soften the PVDF which
is still below the PVDF melting temperature (171°C) [23-24]. After cooling down to the room
temperature and the mold release, we obtained imprinted patterns of PVDF as shown in Fig.
2.17. As expected, the imprinted patterns showed the replicated features of the mold (100 um
line-and-spacing and ~lum depth) but we can clearly see the residual layer of the PVDF
between each two lines as well as the rounded line edges due to the embossing induced

deformation of the PDMS mold.
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Figure 2.17 SEM images of a PVDF layer patterned by hot embossing with a PDMS mold at 165 °C
for 5 min.

We observed however that the feature of the samples patterned without solvent
evaporation were much better than that with solvent evaporation. A more quantitative study
has then been developed by using PDMS molds with different line width (5 - 50 pm) and
depth (1 - 3 um). Spin-coating is replaced by dropping a droplet of the PVDF solution on the
surface of the glass slide. The PDMS mold is brought into contact with the substrate and the
ensemble is placed inside the hot press. The press is heated to 135°C and slight pressure is
applied (~50 psi) for 15-20 min. Here, we used a longer imprinting time in order to remove
completely the residual solvent in PVDF film prior to unmolding (The resulted PVDF
structure can be swelled if any residual solvent remains). After cooling down to the room
temperature, the pressure is released and the mold is removed. Figure 2.18 shows SEM
picture of two patterned PVDF structures with well-defined feature edges, illustrating a high
quality replication with the PDMS mold. Here, the thickness of the pattern is ~2.4 pm which
is consistent with the 3 um depth of the PDMS mold. Clearly, there is no continuous film
underneath of imprinted features but only a small area of residual PVDF between adjacent

lines which can be removed by RIE.
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Figure 2.18 SEM images of PVDF layer patterned by hot embossing without solvent evaporation with
a PDMS mold at 135°C.

Atomic Force Microscopy (AFM) has been used to characterize precisely the remaining
PVDF between patterns (Fig.2.19-2.20). Clearly, 5 sec etching is sufficient to remove all the
residual PVDF between the patterned features. It seems also that the surface the PVDF
features become smoother after RIE. As discussed below, the PVDF surface modification
induced by RIE may not be desired so that we choose to find another solution to remove the

residual feature of PVDF.

We assumed that the success of the patterning was due to the capillary migration of the PVDF
solution inside the channels of the mold, enhanced by the solvent evaporation. To verify this
theory we used PDMS molds with larger depth (50 um) to increase the capillary force and
treated PDMS molds with an O, plasma for 3-5 min. The other parameters were kept the same
as before except that silicon was now used as substrate because it is easier to see by optical
microscopy the PVDF residuals. Figure 2.21 displays an imprinted pattern (50 pm line width
and 100 pm spacing), showing no PVDF residuals.
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Figure 2.20 Surface topography measured by AFM: (a) Without RIE (b) After RIE for 5 s.

In general, the imprinted features of PVDF adhere better to the glass surface than the
non-imprinted part and connections between the patterned area and non-patterned counter-
part are sufficiently small which can be easily broken. Thus we can peel off the non-imprinted
part of PVDF, leaving desired patterns on the substrate. Using this technique, we were able to

produce pillar and line arrays of different sizes and spacing (Fig 2.22).
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Figure 2.21 (a-d) Microphotograph of PVDF micropatterns on a silicon substrate realized by hot
embossing (scale bars 50pm).
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Figure 2.22 (a-c¢) Microphotograph of PVDF micropatterns on a silicon substrate realized by hot
embossing (scale bars S0pm).
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2.4 Surface modification of PVDF

A biomaterial should be non-toxic and provide good conditions for cell adhesion and
proliferation. This is often achieved by surface modification of the biomaterial such as
grafting of adhesion proteins on the surface. Adhesion of proteins on a surface relies on the

surface charge and surface wetting properties.

PVDF is natively hydrophobic (contact angle >80°) due to the inclusion of fluoride
atoms. In order to change its wetting properties, we studied two methods: RIE and plasma
treatment. To measure the contact angle, we used a custom-made goniometer composed of an
SUB microscope, a pipette to deliver 3ul water droplets, and a light source on the back (Fig.
2.23). The support underneath the sample is black in order to make the droplet black by
reflection and thus to increase the contrast between the white background and the black

droplet which is necessary to measure accurately the contact angle.

Figure 2.23 Optical setup for contact angle measurement.

RIE is used to remove materials by breaking atomic bonds and circulating ways the
volatile byproducts. Physically, the surface of the material can be attacked, which may result
in a rough surface morphology, depending on the type of the gas and the etch parameter (bias,
power, pressure, etc.). With the increase of the surface roughness, the material wetting
property can be changed. Chemically, the atomic bonds at the material surface can be broken

and new bonds can be formed which modify the surface energy and its interaction with fluids.
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Air plasma used in plasma cleaner operates at low power radiofrequencies (~15 mW)
to generate plasma composed of nitrogen (80%) and oxygen (20%). Oxygen is the more

reactive specie in this plasma, it will oxidize materials.

We used the same set of RIE parameters (gas volume, work pressure and RF power)
of that used in micro-patterning, except the reaction time. As shown in Figure 2.24, the
fluorine based treatments (CHF3-O, and SFg) allowed increasing the contact angle of the
PVDF surface, whereas the SF¢ gas can even make the PVDF surface super-hydrophobic
(contact angle >150°) after Smin RIE (Fig. 2.25). This super-hydrophobic effect can be
explained by the replacement of H atoms by F atoms from SFs due to the fact that the C-F
bond is stronger than C-H bonds. However, this cannot be the only explanation as Teflon
which is similar to PVDF but with hydrogen atoms replaced by fluorine is not super-
hydrophobic and has a contact angle of 110°. Figure 2.26 shows SEM pictures of PVDF

surface before and after RIE, providing a microscopic view of the surface roughness induced

by SF plasma.
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Figure 2.24 Variation of the measured contact angle as a function of etching time for different
reaction gases.
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Figure 2.25 Contact angle of a water droplet on PVDF surfaces.(a) After 3 min in oxygen contain
plasma.(b) Native surface.(¢) After 6 min RIE with SFegas.

106614 10KY K3

Figure 2.26 SEM pictures of PVDF surfaces. (a) Before RIE. (b) After RIE with SF¢ gas.

The wetting properties of SFgmodified PVDF surface can remain for a long time, which

suggest that the RIE treated surfaces are irreversible (Fig 2.27).
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Figure 2.27 Evolution of the contact angle on SF6 etched PVDF over 10 days.

The RIE modification of PVDF surfaces using CHF3-O, gas mixture or CHF; along
results also in an increased contact angle (100° and 110° after 8 min RIE, respectively). This

can be explained by both effects of fluorination and oxidization.

RIE with Ojis efficient to make PVDF more hydrophilic: the contact angle has been
decreased from 82.4 ° to 68.40° after 1 min etching (Fig. 2.24). However, further etching has
no significant effect to the decrease of the contact angle. The wetting properties of

O,modified PVDF surface can also remain for a long time, as showing in Fig 2.27.

Finally, the plasma treatment is very efficient to increase the wettability of the PVDF
surface as it brings the contact angle from 82.4 ° to 55.15° in 3 min (Fig. 2.25). A further
treatment decreases however slightly the wettability (contact angle >60°). This can be
explained by the fact that a long plasma treatment may affect the stability of the elements of
bulk PVDF which can then been liberated to compete with the surface OH groups. Figure
2.28-2.29 shows the measured contact angle as a function of time, indicting a slow variation

of the treated material surfaces.
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Figure 2.28 Evolution of the contact angle on O, etched PVDF over 10 days.
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Figure 2.29 Evolution of the contact angle on SF6 etched PVDF over 10 days.
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In conclusion, our study indicates that the wetting property of the PVDF surface can
be directed into two directions: it can be made to be more hydrophilic by oxygen containing
plasma treatment or RIE with oxygen gas (contact angle <55°) or more hydrophobic by RIE
with SF¢ or CHF; gas (contact angle >90°). It can even become super-hydrophobic (contact
angle >150°) by RIE with SF¢ for 5 min. the RIE modified PVDF surfaces are stable in time
as for more than 10 days, whereas the plasma treated PVDF surface degraded slowly by time

(contact angle augmented of 10° in 10 days) which should also suited for cell culture studies.
2.5 Microcontact printing of protein on PVDF

Microcontact printing has been used to pattern proteins (fibronectin) on spin-coated
PVDF layer. Firstly, the PVDF solution is spin-coated on glass slides and solvent is
evaporated during 2 h (cells are very sensitive to solvents so that we have to ensure that all
solvent has been evaporated). A mold of SU-8 photoresist on silicon was fabricated by
photolithography (Fig. 2.30a) with patterns of lines of different width. Then, after
silanization (TMCS) to ensure unmolding, PDMS was poured over the silicon mask and cured
overnight (80°C). After unmolding we obtain the PDMS stamp (Fig. 2.30b). Immediately
before beginning of the microcontact printing process, PDMS stamps are treated with air
plasma for 30 seconds to increase wettability of their surface hence improving the adsorption
of the protein solution. Then, a droplet of fibronectin (Sigma Aldrich) is dropped on the
PDMS stamp and left for incubation during 30 min. Afterward, the liquid is removed by
aspiration and the PDMS stamp with proteins is placed on the surface of a flat PVDF layer.
After slightly pressing the PDMS stamp, the stamp is left for 5 min to let proteins adsorb on
the PVDF surface. Finally, the stamp is removed. The patterned PVDF samples have to be

kept in PBS solution in order to avoid protein degradation.
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Figure 2.30 (a) SEM picture of the photoresist mold (b) Microphotography of the corresponding
PDMS stamp. (Scale bars are 100um)

As fibronectin is not fluorescent by itself we used fluorescent fibrinogen (fibrinogen-FITC) in
order to assess the microcontact printing process. We can see that the pattern of protein has

been perfectly imprinted on PVDF even with the smallest lines of 30 um (Fig 2.31).

Figure 2.31 Microphotographs of Fibrinogen-FITC imprinted patterns on PVDF. (Scale bar is 30um)
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2.6 Conclusion

We developed different patterning techniques for thin layer PVDF micro-processing.
Our results showed that it is rather difficult to apply conventional thin layer hot embossing to
achieve a clear pattern definition without residual in the recessed area. Alternatively, capillary
assisted hot embossing could be used to obtain a better microstructure patterning of PVDF.
As results, we obtained 10 pm to 100 pm line-and-space gratings of 2 um height and 100
pitch pillars of 7 um height. Spectroscopic characterizations (XRD, FTIR) of the samples
showed that PVDF after the hot embossing still have a y phase which can be converted to
piezoelectric B phase by poling. In addition, we have studied the wetting property of the
PVDF thin films treated by plasma and RIE techniques. Our results showed that the PVDF
surface could be tuned from hydrophobic to hydrophilic by oxygen plasma or oxygen
containing RIE. However, the SF6 containing RIE turned the PVDF surface into super-
hydrophobic. Finally, we applied micro-contact printing to define cytophilic areas on a flat

PVDF surface. Interesting results on cell culture will be discussed in the next chapter.
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In this chapter, we present the results of cell culture on a variety of PVDF patterns.
Firstly, the results of cell culture on flat surface of PVDF with and without surface
modification are discussed in comparison to that of conventional substrates (glass,
polystyrene Petri dish). Secondly, the results of cell culture on topographic patterns of PVDF
are shown. Effects of patterning residuals, surface coating and plasma treatment are studied in
order to provide a more clear assessment. Finally, the results of fibronectin micro-contact

printing on a flat PVDF surface are presented. .
3.1 Background and motivation

A biomaterial is defined as a material which interacts with biological systems.
Natively, fluoropolymers such as PTFE, PCTFE, FEP, and PVDF do not interact with cells
because of their high degree of hydrophobicity. Consequently, the most of fluoropolymers are
used in applications where no cell should be attached on (e.g., PTFE vein grafts [1-2]). In
contrast, hydrogels (e.g., PEG, alginate, chitosan) interact strongly with cells as they are
mostly water containing so that they are widely studied as artificial extracellular matrix
(ECM) [3]. Indeed, hydrogels are often used in applications in such as wound healing
applications or 3D scaffolding.

PVDF is hydrophobic and not favorable to cell adhesion. With the help of adhesion
molecules such as fibronectin, however, cell adhesion can be improved on the surface of
PVDF [4-5]. Klee et al. [4] used graft polymerization and chemical vapor deposition (CVD)
polymerization to bond permanently fibronectin to PVDEF. Ribeiro et al. [5] studied the
influence of the surface charge of PVDF at different crystalline phases (beta poled, beta
unpoled, alpha; etc.) on the adsorption of fibronectin and the adhesion and proliferation of
cells. As topographic features also influence the cell adhesion [6], the effect of cell adhesion
has also been used with patterned PVDF surfaces. Lensen et al. [7] observed that although
cells did not adhere on a PFPE film they could adhere on a patterned PFPE surface where
cells were subjected to contact guidance in the same way as on conventional biomaterials [8-
9]. Finally, Gallego et al. [10] showed similar effects with PVDF. In this work, we developed
a more systematic study on cell-PVDF interaction by using PVDF micropatterns fabricated by

different methods as discussed in Chapter 2.

-115-



Chapter 3 Cells on patterned PVDF

3.2 Cell culture protocol and culture on flat surfaces

3.2.1 Cell culture protocol

NIH 3T3 cells (fibroblasts) were cultured in an incubator at 37°C with 5 % CO2 in
Dulbecco’s-modified Eagle’s medium (DMEM, Sigma, France) supplemented with 10 % FBS
(Bioscience, Japan), 1 %L-glutamine, 1% Penicillin/Streptomycin (P/S) (Invitrogen, France)
until confluence. To maintain cells in the exponential growth phase (~1°-10°cells mL™), they
were diluted at a ratio of 1:5-1:10 every 2 days. After dissociation in a 0.25 % Trypsin-EDTA
(Invitrogen, France) solution and centrifugation, cells were re-suspended at a density of 1 -
10°cellsmL™". Before cell seeding, samples were sterilized under UV exposure or immersed in

ethanol 70%.
3.2.2 Cell culture on flat surfaces with surface modification

In general, cells adhere more easily to surfaces with higher surface energy
(hydrophilic) but the most commonly used surfaces for cell culture are glass slides (naturally
hydrophilic) and polystyrene petri dishes (naturally hydrophobic). To make the polystyrene
suited for cell culture, the surfaces of the polystyrene culture Petri dishes are modified by the
manufacturer to improve cell adhesion. In order to have a close comparison of the cell
adhesion performance between different substrates, we observed the morphology of NIH 3T3
cells after 2 hours culture on glass slides, polystyrene Petri dish (nunclon surface), and native
and surface modified PVDF (the surface modification of PVDF has already been detailed in
chapter 2).

On glass (without protein coating), most of NIH 3T3 cells after 2 hours of culture
begin to spread on the culture surface (Fig 3.1 a) and they adopt an elongated morphology
(Fig 3.1 b). Some cells are not attached, showing a sphere-shaped morphology (Fig 3.1c). On
the surface of a culture Petri dish, more cells are attached, showing a very elongated
morphology (Fig 3.1d). Clearly, NIH 3T3 cells cultured on the surface of the polystyrene

Petri dish behavior more likely as fibroblasts due to a strong cell-material interaction.
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S
60 pm

Figure 3.1(a) Microphotograph of NIH 3T3 cells cultured on a glass slide after 2 h. (b) An enlarged
view of a cell adhered to the surface. (¢) An enlarged view of a cell not attached on the surface. (d)
Microphotograph of NIH 3T3 cells cultured on the surface of a Petri dish after 2 h. (e) An enlarged
view of a cell which adheres to the surface. Scale bar is 50 um.

On a flat surface of PVDF, cells are not attached after 2 hours of culture (Fig. 3.2a).
This result was expected as the surface of PVDF is hydrophobic which is not favorable for
cell adhesion. The plasma treatment was very efficient to increase the surface energy of
PVDF so that cells adhered and spread very well after 2 hours of culture (Fig. 3.2b). Indeed,
cells showed a typical morphology of fibroblasts, which is similar to that cultured on the
surface of a culture Petri dish (Fig. 3.1d). On the surface of PVDF modified by O, etching
(Fig 3.2c), only half of the cells are attached. On the surface of PVDF modified by SFg
etching, no cell is attached, which was expected for the cell culture on a super-hydrophobic

surface (Fig. 3.2d). These results are in consistent with the observation shown in chapter 2.
3.3 Cell culture on patterned surfaces with topographic features

3.3.1 Cell culture on conventionally patterned surface

Cell culture on patterned substrates has been extensively studied using different
materials and fabrication techniques. In order to compare the results obtained with PVDF
patterns, we first show cells cultured on patterned SUS resists on a glass substrate, with the

same geometric parameters (lines 15-100 um).
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Figure 3.2 Microphotographs of NIH 3T3 cells cultured on a flat surface of PVDF after 2 h. (a)
Without surface modification. (b) After plasma treatment. (¢) After reactive ion etch with O, gas. (d)
After reactive ion etch with SF¢ gas (scale bar = 50 um). Insets are microphotographs of water droplets
on the corresponding substrates.

SUS is a biocompatible photoresist commonly used in bio-MEMS. It is a chemically
amplified epoxy based negative resist which was originally developed for the fabrication of
advanced semiconductor devices. However, this resist has several attributes which make it
suitable for micromachining applications. Because of the highly cross-linked matrix, SUS8 is
both thermally and chemically stable after development, making it well suited for many
applications. For cell based assays, SU8 must be baked at 150° for more than 72 hours before
cell seeding [1], which leads to evaporation of residual solvent so that the material toxicity

can be reduced.

We first coated SU8 3005 on a glass slide at a speed of 3000 rpm for 30 s to achieve a
thickness of approximately 10 pm. The resist was then soft-baked on a 65 °C hot plate for 5
min and on a 95 °C hot plate for 25 min. Afterward, SU-8 was exposed using 365 nm UV at
13 mW. After a post-exposure bake on a 65 °C hot plate for 5 min and on a 95 °C hot plate
for 10 min, the resist was developed for 10 min at room temperature and rinsed with

isopropanol. Finally, the SU8 patterns were hard baked at 150 °C for 72 h. When cells are
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cultured on SU8 micropatterns, they attach on glass as well as on SUS8 lines. After 48 hours,

there are as many cells on the top of the lines as between lines (Fig. 3.3 c-e).

, f ) ¥ ,‘ 1 b ||m. . L' A 1 i \g '..I.'.Im 1
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Figure 3.3 Microphotographs of cells cultured on SU8 micropatterns: (a-b) after 24h, (c-f) after 48h.
Focus is made on patterns for c-e and on the glass for d-f.

3.3.2 Cell culture on PVDF patterned surfaces

We discussed in chapter 2, PVDF could be patterned by different techniques and the
surface of the patterned PVDF could be also modified by the different methods.
Consequently, the morphology as well as the physicochemical properties of the resulted

patterns could be different.

Figure 3.4 shows the cell culture results obtained with PVDF patterns without
residuals in the recession areas. As can be seen, after 1 day culture cells could be attached on
glass between PVDF lines (Fig. 3.4 a-b). At this stage, the cell density is still low and the cell
alignment cannot be clearly observed. After 48 h, cell density comes sufficiently high to all

recession areas (Fig. 3.4 c-f). However, no cell is attached on the top of the PVDF features.
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Cell alignment can now be clearly seen, which is even more pronounced when the distance

between the two lines is small (100pum).

Immediately, we can have several important remarks. Firstly, PVDF is not toxic since
cells can fairly grew along the edge of PVDF features and the cellular distribution after 2 days
of culture could still be homogenous (Fig. 3.4f). Secondly, without surface modification cells
cannot adhere on PVDF since there is no single cell observed on the PVDF surface.
Consequently, a PVDF pattern on glass can have an extremely high adhesion contrast of cells.
Thirdly, the PVDF patterns are stable in time, which is necessary for long term culture

studies.

The above observations also let us suggest the following cell alignment kinetics: At
the beginning cells are evenly seeded on a PVDF patterned surface, they only adhered on the
area of exposed glass substrate but did not show a clear alignment. With the increase of the
cell density by growth, cells near the edge of the PVDF features became aligned (Fig 3.4a).
Consequently, other cells in contact with these aligned cells will also be aligned. The increase

of the cell seeding density would shorten the time required to reach the cell confluence.

As already discussed in chapter 2, it was not easy to achieve a perfect PVDF
patterning with some of the techniques. One of the common feature defects is the remaining
residuals of PVDF in the recessed area between PVDF lines. These residuals have clearly
effects on cell patterning. In fact, the residual features of PVDF have the same effects to
prohibit cell adhesion, although their morphologies are less well defined. Figure 3.5a shows a
microphotograph of cells cultured on such a pattern after 2 hours of culture. Clearly, cells are
all immobilized clear to the edge of the PVDF patterns and they were forced to elongate in the
area of where the PVDF has been completely removed. This effect could not be changed with
the increase of the incubation time. Indeed, cell adhesion area did not increase with due to
limited space of exposed glass and with the increase of the incubation time cells trend to

aggregate in the area of exposed glass but not extend to the PVDF area.
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Figure 3.4 Mlcrophotographs of cells cultured on
between lines: (a-b) after 24 h, (c-f) after 48 h.

Figure 3.5 (a) Microphotograph of cells cultured on PVDF micropatterns after 2 h. (b) SEM picture of
the PVDF pattern before cell culture.
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Figure 3.6 shows the results obtained with a PVDF pattern with square holes after 24
hours of culture. Clearly, cell clusters were formed in the recessed areas. Some clusters could
even be formed between two squares but their roots were still in the recessed areas. Moreover,
the morphology of the PVDF pattern measured by AFM shows the existence of residuals in
the recessed square areas (Figure 3.6b), which explains the attachment of the single cell to
the four corners of a square (Figure 3.6¢). Here, the main body of the cell might be in

suspension above the residual feature of PVDF, due to high selectivity of cell adhesion.

Figure 3.6 (a) Microphotograph of cells cultured on PVDF micropatterns after 24 h. (b) AFM
topographic image of a single square before cell seeding. (¢) Detail of a cell inside a square.

When cells are placed on PVDF line patterns of much reduced spacing, cells are
strongly elongated but it seems difficult to achieve a homogenous distribution. Figure 3.7a
and 3.7b show microphotographs of cells patterned on 20 um line-and-spacing arrays. As can
be seen, cell clusters could also be found due to aggregation but others died. Figure 3.7cand
3.7d show microphotographs of cells patterned on 50 pum line-and-spacing arrays. Now,
continuous cell stripes could be formed which looked like fibrous bundles. Here, the cell-cell
adhesion force might be more important than that between cell and substrate, due probably to

the narrow spacing and the residual PVDF between two lines.
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Figure 3.7 Microphotographs of cells cultured on PVDF micropatterns after 24 h: (a-b) 20 pm lines
spaced by 20 pm, (¢-d) 50pum spaced by 50 pm.

3.3.3 Effects of protein coating

The above results were obtained with PVDF patterns without protein coating. The
same experiments have been done with PVDF patterns after fibronectin coating. A droplet of
fibronectin solution is incubated on each sample during 15 min before cell seeding. Then, the
remaining solution is aspired with a tissue and samples are kept in a sterile hood for 15 min.
to let the fibronectin dry and be adsorbed on the PVDF surface. After cell seeding and
incubation in a cell culture medium, cell images are taken to show the adhesion and

proliferation of cells on the PVDF patterns.

Figure 3.8 shows microphotographs of cells cultured on PVDF line and square
structures. After 2h incubation, cells patterned on PVDF line structures could be attached on
the surface of the recessed area as well as on the top surface of PVDF pattern area (Fig. 3.8a).
After 24 h incubation, the cell number increased in both areas but they all aligned in the

direction of the micropatterns (Fig. 3.8a). On squares, the material selectivity of the cell
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adhesion can be clearly seen. After 2 h incubation, cells all remained outside the PVDF
features (Fig. 3.8¢). After 24h incubation, the cell number also increased but they were still
mainly localized outside the square feature of PVDF, showing a clear effect of contact

guidance (Fig. 3.8d).

These observations confirm that fibronectin is well adsorbed on the surface of PVDF
which enhances the cell adhesion as well as the cell spreading. In such a way, the
hydrophobicity of the PVDF can be much reduced. The observed adhesion selectivity on
micro-square patterns is due probably the size effect, i.e., when the square size is comparable

to that of the cell, the cell preferentially stays at the lower level of the pattern.

60 pm 60 um

Figure 3.8 Microphotographs of cells cultured on PVDF micropatterns after 24 h: (a-b) 20 pm lines
spaced by 20 pm, (e-d) 50 um spaced by 50 um.
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3.3.4 Effects of plasma treatment

The PVDF patterns were treated in a plasma chamber for 3 min. before cell seeding.
After 2h incubation, many cells could be attached to the sample surface, including both
patterned and non-patterned areas (Fig. 3.9a). As discussed in chapter 2, the plasma treatment
tunes the PVDF surface into hydrophilic so that cells could easily attached on. Compared to
the micropatterns coated with fibronectin (Fig. 3.8a), the cell attachment seems to be easier
on the plasma treated PVDF surface, showing a similar cell morphology of that cultured on
the surface of a culture Petri dish. After 24 h incubation, some small cellular networks were
formed on the PVDF patterned areas whereas cells reached a confluent stage in the non-
pattern area (Fig. 3.8b). Obviously, the cell alignment was now less efficient comparing to
that one the fibronectin coated PVDF pattern. On the sample coated with fibronectin, the
effect of cell-surface interaction is more important than that of cell-cell coupling so that the
cell growth was guided by the surface topography, showing the observed cell alignment. On
the sample treated by plasma, the effect of cell-surface interaction is less important comparing
to the cell-cell coupling so that cells can more easily form random cellular networks, showing

no alignment effect.

Figure 3.9 Microphotographs of cell cultured on plasma treated PVDF micropatterns: (a) after 2 h, (b-
¢) after 24 h.
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3.4. Cell cultured on flat PVDF surfaces with protein patterns

Protein patterns can be also easily produced on PVDF flat surface. PDMS stamps with
periodic line arrays of different line width and spacing have been used to define fibronectin
patterns on the thin layers of PVDF coated on glass slides according to the protocol described
in chapter 2. After protein patterning, NIH 3T3 cells were cultured and both phase contrast

and immunofluorescence images were taken for the performance assessment.

Figure 3.10 shows phase contrast images of cells cultured for 48 h on a flat surface of
PVDF patterned with fibronectin by micro-contact printing. Without going into details,
several observations can be made. Firstly, cells form cell stripes defined by the fibronectin or
the PDMS stamp. Apart from some irregularity, the most of cells remain in the patterned area
due to strong cell-surface interaction. Secondly, no dead cell can be found. Since after seeding
cells are evenly distributed on the surface of the substrate, the absence of dead cell on the
surface means that cells migrated from the bare PVDF are to the protein coated areas. Third,

the cells immobilized in the cell stripe areas are aligned due to the contact guidance effect.

Figure 3.10 (a-d) Microphotographs of cells cultured for 48 h on a PVDF substrate with protein
(fibronectin) stripes defined by micro-contact printing.
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Cell immunostaining has been done according to the protocol of Annex 3. We were
mostly interested in imaging of actin filaments and cell nuclei. Actin filaments were tagged
using fluorescent-dye attached phalloidin (protocol in annex 3) whereas nuclei were tagged

using DAPIL.

Figure 3.11 and 3.12 show phase contract and immunofluorescence images of cells
cultured on protein line patterns defined by microcontact printing. Figure 3.11a and b show
respectively a phase contrast image and a merged image (phase contrast super-imposed with
nuclei image tagged with DAPI in blue). Figure 3.11c and d show respectively a phase
contrast image and an immunofluorescence image of actin filaments tagged with phalloidin
(green) and nuclei tagged with DAPI (blue). Here, the immunofluorescence image of the cell
nuclei shows that the imaged cells are not on a single focal plan (some of blue dots are out of
focus), suggesting that the cell stripes are formed in multiple layers. A more detailed
observation (Figure 3.13d) revealed that the actin filaments are all aligned in the same
direction of the cell stripes or the protein patterns underneath. More detailed investigations
will be needed a more clear assessment of the stripe morphology which is out of the scope of

the present study.
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50 um

Figure 3.11 Cells cultured on protein stripes patterned by microcontact printing: (a) Bright field
image (b) Superposition of bright field and fluorescent microphotograph with cell nucleus tagged with
DAPI (blue). (¢) Bright field image. (d) Fluorescent image with actin tagged with phalloidin (green)
and nucleus tagged with DAPI (blue).
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Figure 3.12 Cells cultured on protein stripes patterned by microcontact printing: (a-b) bright field
images, (c-d) fluorescence images with actin tagged with phalloidin (green) and nucleus tagged with
DAPI (blue).
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3.5. Conclusion

PVDF micropatterns or protein patterned flat PVDF surfaces can be used to
demonstrate the high selectivity and high stability of cell adhesion. With surface modification,
cells preferentially adhere in the non-patterned area (glass) between PVDF lines. When
spacing between two PVDF lines is sufficiently large (in the order of 100pum), well-defined
cell stripes can be formed, showing also a cell alignment effect along cell lines. With the
decrease of the spacing between two PVDF lines, the quality of the cell stripe decreases but
the edge effect persists. Moreover, the pattern residuals of PVDF largely influence the cell
adhesion and spreading. Homogenous surface coating of fibronectin makes cells attachable on
PDVF due to increased cell-substrate interaction. Accordingly, cells can be more
homogeneously adhered on both PVDF patterned and non-patterned area, where topography
induced effects become dominant. Homogenous surface treatment by plasma exposure makes
the PVDF hydrophilic so that cells can also be easily attached. However, the pattern
topography has less important effect on the cell adhesion because of relative week cell-
substrate interaction comparing to the cell-cell coupling. Microcontact printing defined
protein patterns on a flat PVDF surface are remarkably efficient to guide cell adhesion and
spreading. Well-defined cell stripes can be obtained, showing clearly cell alignment as well as
multiple layer cell aggregates. Comparing to other types of materials currently used in cell
patterning, PVDF is certainly interesting because of its high selectivity and high stability in
cell adhesion. Unlike PEG, PVDF does not swell when polymerized and it can be easily
processed. PVDF is not cytotoxic so that no special treatment is needed prior to cell culture.
Finally, PVDF is transparent which makes it compatible with conventional cell culture and

imaging techniques.
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In this chapter, we discuss the fabrication of PVDF and PVDF-TrFE nanofibers by
electrospinning techniques. The interest of these nanofibers relies on the easy and low cost
fabrication, conserved piezoelectric crystalline phase of the polymer and possible application
of the fibers as new scaffolds for advanced tissue engineering. Actually, there are a huge
number of investigations on electrospinning techniques for the production of functional
nanofibers [1-12] but few have been done with PVDF or PVDF-TrFE. Intuitively, PVDF and
PVDF-TrFE are thermoplastic and piezoelectric materials, so that once made in aligned
nanofibers, they might be used for enhanced and directed growth of cardiac or neural cells
due to the charge effects. More interestingly, if one can mechanically actuate nanofibers, the
resulted piezoelectric effects will affect the charge distribution or the cell response. Reversely,
the electric or mechanic activity of the cells might be monitored. Therefore, we aimed at

production of aligned nanofibers and demonstration of their cell-culture compatibility.
4.1 Electrospinning of aligned nanofibers with precise localization

Electrospinning is a chaotic process by nature as it relies as breaking the surface
tension of a liquid with a strong electric field and the traveling of the liquid at high speed to
the collector. At the end of the Taylor cone the ejected liquid forms a single liquid jet. After
this zone there is a zone of rapid acceleration of the liquid (Fig 4.1) where the solvent

evaporates while the nanofibers are formed.
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Figure 4.1 Schematic (a) and photograph (b) of electrospinning of nanofibers. (From [13-14])
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In general, the jet at the end of the Taylor cone splits in a multitude of nanofibers that
are randomly deposited on the collector but aligned fibers can be obtained by controlling the
flying trajectory of jet. Since the electrospinning is based on the manipulation of the liquid jet
using electrical field and the fibers are preferentially deposited on the conductive part of the
collector, it is relatively easy to control the fiber deposition by regulating the distribution of

the electrical field on the collector.

Thus, the general approach to obtain the aligned fibers is to use a rotating drum [15-
25].When the drum rotates with a speed high enough to generate a linear velocity in the range
between 2 m/s and 186 m/s, aligned fibers can be deposed on the surface of the drum. When
the velocity of the drum is too low, only random fibers can be obtained. Otherwise when the
velocity of the drum is too high, most the fibers are dispersed in air. Other drum-like
collectors such as conductive disks, rings, or drums with wound wires can also be used to
produce aligned fibers [26]. Another approach is to use flat electrodes with narrow splits
defined by mechanic cutting or lithography patterning [27-33]. Localization of nanofibers
(within a 5Smm spot) has been obtained by replacing the needle by a silicon tip [34] and
reducing the collector-tip distance to 1cm. However precise localization of nanofibers within

a single nanofibers resolution can only be obtained by Near Field ElectroSpinning (NFES).
4.1.1 Near Field Electrospinning

Near field electrospinning (NFES) can be used to produce aligned nanofibers with
precise localization. Initially, this technique has been proposed by Sun et al. [35] to achieve
single PEO (Poly Ethylene Oxide) nanofiber deposition following predefined pattern (Fig.
4.2-4.4).

A tungsten tip (25um) is dipped in the PEO solution and placed above the collector
(500pm-3mm) and high voltage is applied (0.6-1.6 kV). The tip is displaced over the collector

to create the patterns.

Chang et al. [36] used this technique to achieve single nanofiber deposition made of

PVDF which should be useful for piezoelectric energy generation.

In the present study, we evaluated the performance of this technique using the same

fabrication protocol. First, 18 wt% PVDF was dissolved in a mixture of DMF/Acetone
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(6g/4g). Then, 3 wt% Zonyl@UR (Dupont) was added in the solution. Here, Zonyl@UR is a

fluorosurfactant which can lower the surface tension of the solution.

A
— Probe Tip
High
Voltage
- —Polymer
| Solution |8
h Liquid Jet

Figure 4.2 (A) Schematic of near field electrospinning process. (B) SEM picture of the tungsten tip.
(Scale bar 10 um) (C) Optical image of the solution droplet on the tip. (Scale bar 20 pm) (D) Tip with
the Taylor cone during electrospinning. (Scale bar 25 um) (E) Same picture when most of the
solution on the tip has been electrospun (From [35]). (Scale bar 25 um)
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Figure 4.3 Schematic of near field electrospinning. (From [36])
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Figure 4.4 Single PEO (Poly Ethylene Oxide) nanofiber deposition achieved by near field
electrospinning. (From [35])

Our experimental set-up is as follows: A dispensing robot (Fisnar 1&J 7100) was used
for the movement control of a very thin acupuncture needle close to the surface of a grounded
substrate (Fig. 4.5). The needle itself is connected to a high voltage power supply (Heinzinger
TNC 30000) (Fig 4.Sb) and the electrospinning process is monitored with a digital
microscope (Dino-Lite AM4013MT).

High Voltage Generator

L + GND

Figure 4.5 Experimental setup used in this work for near field electrospinning.
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The collector is made of gold electrodes patterned on a Kapton thin film (Dupont
Kapton HN) which is an electrical insulator, flexible and compatible with the
microfabrication processes. The gold electrodes with a 1 mm gap were fabricated on Kapton
by sputtering using a shadow mask. They were connected to the power supply after wire
bonding with conductive epoxy. To ensure the flatness of the electrodes, Kapton was

reversibly attached on a glass substrate.

During the electrospinning, a droplet of the polymer solution is deposited on the
needle and a high voltage is applied progressively. To avoid the spark due to air break by the
high electric field, the voltage should be increased step by step. When the droplet is dragged
down by the electric field, the Taylor cone appears. In general, the applied voltage is around
1.5 kV with an electrode to collector distance of 1 mm. As soon as the Taylor cone is formed,
the needle should be moved rapidly in order to drag the fiber in a straight line across the
electrodes (Fig. 4.6). Due to its strong hydrophobicity, a white solid shell trends to be formed
outside the PVDF droplet which makes it difficult to form PVDF nanofibers by this method.
We then used a solution of 18% wt PEO (PolyEthylene Oxide) to test the same process.

Nevertheless, we managed to get a single PVDF nanofiber between the electrodes.

Figure 4.7 shows SEM images of the fabricated single PVDF nanofiber which has a
diameter of ~5 pum. Obviously, this diameter is much larger than that produced by
conventional electrospinning (<1 pum) but it is consistent with what has been produced by
Chang et al. [37]. Moreover, the deposited nanofiber showed a flat morphology, indicating
that during NFES the solvent was not fully evaporated from the PVDF solution when the fiber
is formed on the surface of the substrate. Accordingly, a later evaluation of the solvent
resulted in a flat morphology of the fiber. Neither this flat morphology nor the large fiber
diameter is desired for our application purposes, we then renounced this method and turned

on more conventional approaches using patterned electrodes.
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Figure 4.6 Photographs to illustrate the near field electrospinning process
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Figure 4.7 (a-b) SEM Images of a single PVDF nanofiber deposited between 2 gold electrodes on
Kapton.
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4.1.2 Aligned nanofibers on patterned electrodes

Conventional methods of electrospinning for producing aligned nanofibers are based
on the use of rotating drums [15-25], disks [38-45] or metal frames assisted by electric field
[27-32] or magnetic field [46-48]. Whereas the rotating drums are used to deposit nanofibers
on rigid substrates, the metal frames are used to deposit suspended nanofibers. In both cases,
an additional step is required to transfer the nanofibers to the final substrates. In our work, we
deposited the requested nanofibers on a final substrate by using a pair of patterned electrodes.
We were interested in this method mainly because the patterned electrodes could be used not
only for the control of nanofiber alignment but also for the electric or piezoelectric
characterization of the deposited nanofibers. Two grounded electrodes were patterned on an
insulating substrate. When they are used as collector, an electrostatic force is generated which
pulls the nanofibers to be deposited cross the electrodes. Initially, Li ef al. demonstrated this

method by using quartz and polystyrene substrates.
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Figure 4.8 (A) Schematic illustration of the setup for electrospinning that we used to generate
uniaxially aligned nanofibers. The collector contained two pieces of conductive silicon stripes
separated by a gap. (B) Calculated electric field strength vectors in the region between the needle and
the collector. The arrows denote the direction of the electrostatic field lines. (From [27])

In order to test the feasibility of cell culture on piezoelectric nanofibers, we performed

in this work the same study with other types of substrates.
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PVDF (Sigma-Aldrich) or PVDF-TrFE (70/30) (Piezotech) were dissolved in DMF
with a concentration of 18 % (w/w). Gold electrodes have been fabricated on a substrate with
different electric resistances (Table 4.1) including glass, Kapton and quartz using standard

photolithography with different electrode configurations.

Material Resistivity (2 m)
Quartz 7.5x10"

Glass 10x10"° to 10x10™
Kapton 1.5x101°

Air 1.3x10" to 3.3x10*°

Table 4.1 Resistivity of different substrates, comparing to that of air.

We used a syringe pump (Longer pump TSC2-60) to provide a continuous flow of the
polymer solution (1ml/h). The positive terminal of the high voltage power supply (Heinzinger
LNC 30000) is connected to the needle of the syringe and the negative terminal is connected
to the two electrodes of the connector. The gap between the needle and the grounded

electrodes is about 5 cm and the applied voltage is fixed at 8 kV.

Figure 4.9 Experimental setup of electrospinning used in this work.
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We first tested the feasibility of nanofiber deposition with 4 electrodes: two pairs of
opposite electrodes are grounded alternatively to produce crisscrossed nanofibers patterns.
When the solution arrives steadily at the end of the syringe needle, high voltage is applied for
a short time (40 sec).Figure 4.10 shows the microphotograph pictures of deposited nanofibers
using a metallic frame (a), a glass substrate (b), a Kapton thin film (c), and a quartz plate (d).
As can be expected, the alignment of the nanofibers is better on a substrate with a higher
resistivity. However, the nanofibers produced on Kapton which has the highest resistivity (1.5
x 10"Q m) shows a lower alignment rate compared to the nanofibers on quartz (7.5%10"7),
indicating that the resistivity of the substrate is not the only parameter to influence the
alignment performance. In fact, the poor alignment of the nanofibers on Kapton can be
attributed to the antistatic effect of the material which may perturb the electric field
distribution between electrodes. Note that the glass substrate does not support a good

alignment of the fibers.

Figure 4.10 Microphotograph of electrospun nanofibers using 2 electrodes for alignment and different
isolating material between those electrodes: (a) air, (b) quartz, (¢) Kapton, (d) glass.
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Nevertheless, by using a pair of tapered electrodes with a smaller gap (1mm) aligned
nanofibers could still be obtained on a glass substrate, as shown in Fig. 4.11. The high
magnification pictures of the gap area between the two electrodes shows that the most of
nanofibers in the center part of the electrode are uniaxally aligned but the nanofibers

deposited on the edge area of the electrodes followed the electric field lines which are curved.

Figure 4.11 Microphotograph of PVDF-TrFE aligned between a pair of triangle shaped electrodes. (a)
Observation using bright field. (b) Observation using dark field. (c-d) High magnification
observations showing that nanofibers follows perfectly electric field lines.
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In order to overcome this undesired effect, we then designed a pair of two rectangular
electrodes with the same gap. The results are shown in Fig. 4.12. Now the area of well-
aligned nanofibers can be sufficient large (Imm x Smm). Thus, we achieved the deposition of

uniaxally aligned PVDF-TrFE nanofibers on conventional glass substrates.

Figure 4.12 Microphotograph of PVDF-TrFE aligned between a pair of normal electrodes. (a)
Observation using bright field. (b) Observation using dark field. (c-d) High magnification
observations showing that nanofibers follows perfectly electric field lines.

By changing the electrode layout; we can control the deposition patterns of the
nanofibers. After the optimization, we can now deposit the crisscrossed nanofibers based on
the 4 electrodes configuration (Fig 4.13b). Since such types of electrodes can be easily

produced on different substrates, this method should be easy and flexible for applications.
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4.2 Characterization of nanofibers

Obviously, the density of the aligned nanofibers is electrospinning time dependent:
Longer the electrospinning time, higher the nanofiber density. Moreover, the quality of the
produced nanofibers might also be electrospinning time dependent. This can be seen by
observation of PVDF-TrFE nanofibers obtained by 20 sec and 30 sec. electrospinning on
glass (Fig.4.14). In the following, we compared their diameter, morphology and density in

order to have a clear assessment,

Figure 4.13 Microphotograph of crisscrossed PVDF-TrFE nanofibers obtained by using 2
pairs of electrodes grounded consecutively.
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Figure 4.14 Microphotographs of aligned PVDF-TrFE nanofibers between electrodes with
different electrospinning time: (a-b) 20 s, (¢-d) 30 s.

4.2.1 Fiber alignment quantification

To characterize the performance of the fiber alignment, we adopted a method
proposed by Lee et al. [1] and Wang et al. [49]. Samples were analyzed using SEM (Hitachi
S-800). For each samples 3 SEM pictures were taken at the same magnification (600X,
150pm x 200 um window). A line is drawn perpendicularly to the fibers direction. The angle
(9) between the fibers and this reference line were measured (Fig 4.15), which provides the

absolute deviation value (ADV) of the measured angles from 90°.
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Figure 4.15 SEM picture of aligned PVDF-TrFE nanofibers for degree calculation of the fiber
alignment.

For each picture 50 ADV measurement are made on 3 samples, giving a histogram of ADV
distribution as shown in Fig. 4.16. Accordingly, we calculated the averaged absolute

deviation (AAD) for each picture using:

The percentage of alignments is then given by:

(907 = AAD)

CHaliEnmens = — w LM}
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Figure 4.16 (a) SEM of aligned PVDF-TrFE nanofibers. (b) Diagram of alignment degrees.

4.2.2 Nanofibers morphology and diameter

The averaged diameter of the fibers was determined based on SEM pictures at the
highest magnification. Based an analysis of 8 pictures on different samples, we deduced an

averaged diameter of the fibers of 350 nm.

Figure 4.17 SEM image of PVDF-TrFE nanofibers for determination of the fibers diameters.
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4.3 X-Ray diffraction measurements.

An X-Ray Diffractometer (Rigaku UltraX 18HF) has been used to determinate the
crystal phase of the PVDF-TrFE nanofibers before and after annealing in order to characterize
their piezoelectric properties. Annealing was performed at 135°C for 48 h, followed by ice
quenching to fix crystalline phases of the polymer. As shown in Fig. 4.18, this annealing and
quenching process is sufficiently efficient to enhance the crystalline phase of the nanofibers,
where the peak at 19.75° is a characteristic of the piezoelectric B phase of the polymer. This

result is significant to confirm the piezoelectric activity of the aligned PVDF-TrFE

nanofibers.
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Figure 4.18 X-ray diffraction spectra of PVDf-TrFE nanofibers before (black) and after
annealing (red).
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4.4 Neuron culture

Neurons were isolated from E16 rat embryos. They were then cultured in an incubator
at 37°C with 5 % CO2 in Dulbecco’s-modified Eagle’s medium (DMEM, Sigma, France)
supplemented with 10 % FBS (Bioscience, France), 1 %L-glutamine, 1%
Penicillin/Streptomycin (P/S) (Invitrogen, France).

Figure 4.19 shows phase contrast images of neurons after culture for 5 days on
randomly deposited nanofibers with (a,b) or without (c,d) plasma treatment. As can be clearly
seen, neurons cultured on nanofibers attached better on those with plasma treatment but they
are not healthy on those without plasma treatment. In the former case, neural networks were
well formed. In the latter case, their somas are not attached on the nanofibers and

accordingly, their neuritis (axons or dendrites) are not well developed.

Figure 4.19 Neurons cultured on random electrospun PVDf-TrFE nanofibers with (a-b) and without
(c-d) plasma treatment.
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On aligned nanofibers, however, the influence of the surface treatment appears to be
less important since neurons are attached and neural networks are clearly formed on both
samples with (Fig. 4.20) or without (Fig. 4.21) plasma treatment. In addition, the outgrowth
of neurites was remarkably influenced by the alignment of the nanofibers as the most of the

dendrites follow the alignment direction of the fibers.

Figure 4.20 Neurons cultured on aligned PVDf-TrFE nanofibers after plasma treatment. The blue
arrows indicate the nanofibers direction.

Figures 4.22 and 4.23 show more specifically the effect of aligned nanofibers on
neurites orientation. Noticeably, even if the soma of a neuron is not polarized parallel to the
nanofibers underneath, their neurites are guided by the aligned fibers (Fig. 4.22b). Moreover,
the aligned nanofibers supported a better outgrowth of neurites and a better network

formation compared to the one cultured on random nanofibers.
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Figure 4.21 Neurons cultured on aligned PVDf-TrFE nanofibers without plasma treatment. The blue
arrows indicate the nanofibers direction.

Figure 4.22 Neurons cultured on aligned PVDF-TrFE nanofibers without plasma treatment. (a) Focus
is made on the nanofibers. (b) Focus is made on the neurons. (¢) Detail of the neurons.
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Figure 4.23 Neurons cultured on aligned PVDf-TrFE nanofibers after plasma treatment. (a) Focus is
made on the nanofibers (b) Focus is made on the neurons.

4.5 Conclusion

We have developed a reliable fabrication technology to produce aligned PVDF-TrFE
nanofibers on patterned electrodes. These fibers showed a conserved piezoelectric crystalline
phase and a high degree of alignment (>90%). The fabricated nanofibers could then be tested
for neuron culture with and without plasma surface treatment. As expected, the neurons
cultured on aligned and plasma treated nanofibers showed an enhanced outgrowth of neurites

comparing on that on random nanofibers or aligned fibers without plasma treatment.
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In this chapter, we study the feasibility of nanofiber inclusion of magnetic
nanoparticles for remote activation. Fe;O4 magnetic nanoparticles have been used for
inclusion into PVDF-TrFE nanofibers. Our results show that the incorporated nanoparticles
are homogenously dispersed in to the fibers and that the piezoelectric crystalline phase of
PVDF-TrFE nanofibers remains after the nanoparticles inclusion. We also investigated the
cell culture compatibility of nanoparticles doped fibers, showing the request bio-

compatibility.

5.1 Introduction

PVDF and PVDF-TrFE are both piezoelectric [1-13], ferroelectric [14-23] and
pyroelectric [24-31] materials. As shown in previous chapters, they can be shaped in different
forms by using lithography techniques. They can also be used for electrospinning of
nanofibers. In addition, surface treatments can be used to modify the physicochemical
properties of the surfaces of the polymers. PVDF and PVDF-TrFE have been blended with
other polymers in order to give new properties. For example the blend PVDF/PMMA is used
to give better mechanical properties to PVDF as it decreases surface roughness and increase
hydrophilicity [37-37]. However the piezoelectric and ferroelectric properties of PVDF will
be reduced by this blend [38-39].

Doping of functional materials in PVDF and PVDF-TrFE follow the same principle as
the PVDF blend but the goal is to incorporate only a few portion of a new component into
PVDF to enhance its properties, in the form of ceramics, chemicals and nanoparticles. PVDF
is also often doped with nano-sized ceramic in nanocomposite to enhance its dielectric
properties [40-47], for use as electrolyte. Chemical doping has been used to enhance
piezoelectric [48-49] and conductive [S0-51] properties of PVDF. Nanoparticles doping has
been used for a wide range of applications. Nanoparticles are generally integrated in the
PVDF solution which is electrospun to make nanofibers. We can quote as examples Si02
nanoparticles doping to make PVDF electrospun membranes superhydrophobic [52], Silver
nanoparticles doping to make antibacterial membranes [53] and nanofibers doped with nickel
nanoparticles for the production of hydrogen [S4]. Some studies used nanoparticles doping to
provoke crystalline phase change in order to enhance piezoelectric properties of the resulting
nanofibers [55-59]. Magnetic nanoparticles have been incorporated in PVDF and PVDF-TrFE

only in forms of nanocomposite for dielectric purposes [60-64].
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One of the possibilities is doping super-paramagnetic nanoparticles such as Fe;Os in
PVDF-TrFE. When a crystalline phase of the polymer is turned on, it should be possible to
use a magnetic field to bend the aligned and suspended nanofibers so that piezoelectric

responses of the fibers should be measurable.

Historically, iron oxides coated with a polymer (dextran) have been used since 1960’s
to treat iron anemias [65]. Due to their large sizes, these particles were only paramagnetic
(weakly sensitive to magnetic fields). Chemists then used the affinity of iron oxide with
dextran to make iron oxide nanoparticles in order to enhance the efficiency of the anemia
treatment (dextran magnetite). These nanoparticles are now super-paramagnetic (SPM) as
they are highly sensitive to magnetic fields. Ogushi [66] discovered that due to their super-
paramagnetic properties, polymer-coated iron oxide nanoparticles can be used as a magnetic
resonance imaging (MRI) contrast agent. Indeed, the super-paramagnetic iron oxide
nanoparticles (SPION) have been used for this purpose until recently. They were thought to
be safe as SPION can be degraded very fast by macrophages but the bio-toxicity of SPION is
still a debating subject [67-69].

The extremely small size (10 — 100 nm) of SPIONs coupled with the possibility to
manipulate them remotely by applying an external magnetic field gradient makes SPION very
promising for nano-medicine and biomedical applications [70-75]. Indeed, the possibility to
adapt their size to their target (e.g. genes 2 nm) and the possibility to functionalize their
surface with a wide range of molecules open the way to targeted drug delivery [76-78].
Principal biomedical applications of SPIONs are: cell sorting and separation [79-80], drug
delivery [81-90] and hyperthermia based cancer treatments [91-96]. For example, magnetic
nanoparticles have also been used for doping of nanofibers which could then be used for a
controlled movement of neurons in culture [97] and for remote control of ion channels and
neurons [98]. It has also been demonstrated that magnetic nanoparticles can induce osteo-
regeneration or release growth factors. For this purpose, they can be used in design and

fabrication of scaffolds in tissue engineering [99-103].
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5.2 Fabrication of PVDF-TrFE nanofibers

5.2.1 Synthesis of Fe;O4 Nanoparticles

We used the protocol developed by Liu J. in our ENS laboratory [104] which allows
easy synthesizing of Fe;Os magnetic nanoparticles. Iron (II) and iron (III) were co-
precipitated in alkaline solution. In atypical experimental procedure, 2.7 g of FeCl; and 1.39 g
of FeSO4 powder were added into 100 mL of water and mixed until homogeneous under N,
protection. Then the solution was heated to 80°C, followed by adding 12 mL of 25% (w/w)
NH3-H20 quickly with strong magnetic stirring. The solution color changed from orange to
black, leading to a black precipitate. After 5 min stirring, 2 mL of oleic acid was added until
the magnetic nanoparticles aggregated together. To remove the excess oleic acid, the
aggregate was rinsed several times with ethanol under an external magnetic field. The
nanoparticles were dried under a vacuum pump for usage. Nanoparticles produced using this

process have a size of 15 nm.
5.2.2 Preparation of PVDF-TrFE/Fe;O4 solution

18% (w/w) PVDF-TrFE solution was prepared by dissolving 0.9 g of PDVF-TrFE
powder (Piezotech, France) in 5g of DMF (Sigma-Aldrich, France). After mixing the solution
overnight at 70°C, 25 mg of Fe,0; nanoparticles were incorporated. Solution was then heated
at 70°C to reduce its viscosity and improve the nanoparticles incorporation, followed by

mixing with a vortex agitator for 10 rounds of 30 sec.
5.2.3 Electrospinning of Fe,O3; nanoparticles containing FVDF-TrFE nanofibers

Electrospinning was carried out using the standard far field electrospinning method:
Solution was loaded into a 1 ml syringe; the needle of the syringe is connected to a high
voltage generator (positive terminal); a glass slide is used as collector with a grounded
crocodile clip. The distance between the needle and the collector is 5 cm for an applied
voltage of 10 kV. The syringe pump was set up to deliver the solution at a rate of 1ml/h. The
same setup was used to produce random nanofibers of PVDF-TrFE with or without magnetic

particles.

Figure 5.1 shows images of magnetic particle containing PVDF-TrFE nanofibers.

Overall, we observe rather general nanofiber morphology with no beading but some
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aggregates due to the presence of magnetic nanoparticles (a). The higher resolution images
show that the inclusion of the magnetic nanoparticles into the fibers is efficient (b, d). Some

fibers trend to break into short segment (c) but no deformation is observed.

Figure 5.1 SEM images of electrospun PVDF-TrFE nanofibers containing Fe;O, nanoparticles.

The average size of Fe;O4 nanoparticles we used is about 15 nm which makes it
difficult to observe them clearly by SEM. However, when compared with PVDF-TrFE
nanofibers without magnetic particle inclusion, the doping induced morphologic change of the
fibers can be clearly seen (Fig. 5.2). Indeed, that the surface of PVDF-TrFE fibers without
NPs is smoother than those with NPs. In contrast, some of the NPs containing nanofibers

tread to break into short segments, as mentioned above (Fig 5.2a).
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Figure 5.2 SEM images of electrospun PVDF-TrFE nanofibers with (a) or without (b) doping of
Fe;O4 nanoparticles.

The mean diameter of the nanofibers was determined by using 8 SEM images at high
magnification (>10k) and 7 measurements were performed for each of the images. Data were
then analyzed using share-soft ImageJ and Origin 8, resulting in a mean diameter of 288 nm,

which is comparable to that obtained by electrospinning of PVDF-TrFE nanofibers without

magnetic particle containing (Fig 5.3).

Distribution

Diameter (nm)

Figure 5.3 Diameter distribution of electrospun PVDf-TrFE /Fe304 nanofibers.
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5.2.4 Annealing of the nanofibers

In order to reinforce their piezoelectric activity of the nanofibers, all fibers were
annealed at 130°C 96 hours After annealing, the fibers were quenched in ice water to obtain

the desired crystalline phases of the processed materials.

5.3 Characterization of the piezoelectric property of the fibers

5.3.1 XRD measurements

We used X-ray diffractometer (Rigaku ultraX 18) to characterize the crystalline phases
of Fe,O3 nanoparticles containing PVDF-TrFE nanofibers. It is known that PVDF-TrFE has 3
major crystalline phases, i.e. a, B and y phases, in which the § phase should have the highest
piezoelectric activity. Without going into detail, we compared the results of nanofibers
obtained using different parameters, i.e., random and aligned nanofibers with or without

annealing (Fig. 5.4).

Figure 5.4 shows a comparison of the XRD spectra of the nanofibers with and without
annealing. In both cases, the XRD peak is centered on 20°, indicating a piezoelectric [ phase

of PVDF-TrFE nanofibers. As expected, the amplitude of the XRD peak much increased after

annealing due to the enhancement of the crystalline 3 phase.
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Figure 5.4 XRD diffraction spectra: before (black) and after (red) annealing.
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5.3.2 FTIR measurements

The fabricated PVDF-TrFE nanofibers have also been studied using Fourier
transmission infrared (FTIR) spectroscopy. Figure 5.5 shows the measured FTIR spectra of
pure (a) and magnetic particle doped (b) PVDF-TrFE nanofibers. Clearly, the characteristic
peak of the piezoelectric crystalline phase of PVDF centered at 1285 cm™ appears in both
spectra, suggesting that the inclusion of Fe;O4 particles did not disturb the piezoelectric

crystalline phase of PVDF.
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Figure 5.5 FTIR spectra of pure (a) and magnetic particle doped (b) PVDF-TrFE nanofibers.

5.4 Magnetic properties

In order to demonstrate that the fabricated nanofibers have magnetic properties we
used a simple method : nanofibers were peeled off slightly from the surface with a razor
blade in order to form a suspended fiber bundle (Fig. 5.6a). A small magnet is approached
from the nanofiber bundle and we can see clearly the movement of the nanofiber bundle

following the magnetic field (Fig. 5.6b).
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Figure 5.6 Macroscopic magnetic activation of PVDF-TrFE /Fe;0, nanofibers. (a) Without magnetic
field (b) With magnetic field generated by a small magnet (Scale bar is 1mm).

5.5 Cell Culture

In order to test biocompatibility of PVDF-TrFE /Fe 304 nanofibers, cells (3T3) were
cultured using the protocol described in chapter 3. For this experiment no coating or surface
modification was realized before to cell seeding in order to asses intrinsic properties of the
nanofibers. In addition the sterilization of substrate was realized using 70% alcohol has UV

sterilization could modify nanofibers surface properties. Cells were seeded at normal density

(0.3 x 10° cells/cm™).

We can see that after 1 hour (Fig 5.7a-b), cells begins to attach as they would o on normal
uncoated cell culture substrate (e.g.; glass slide). After 12 hours (Fig 5.7¢c-d), cells are no
longer visible on top of nanofibers (Fig 5.7¢). A zoom shows that in fact cells spread and
integrate inside the nanofiber layers (Fig 5.7d). This type of behavior is generally a good sign
of biocompatibility.
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Figure 5.7 Cells (3T3) cultured on a membrane of PVDF-TrFE /Fe;0y : (a-b) After 1 hour. (c-d) After
12 hours (d) Zoomed area from (c¢) to show cells inside the nanofibers .

After 36hours cells are still alive and spreading in the nanofibers mat (Fig 5.8¢) and the layer

of cells become more visible which mean that the cell density increased.
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Figure 5.8 Cells (3T3) cultured a membrane of PVDF-TrFE /Fe;0, after 36 hours.

5.6 Conclusion

We studied the feasibility of nanofiber inclusion of magnetic nanoparticles for remote
activation with a magnetic field. Fe;O4 magnetic nanoparticles have been used for inclusion
into PVDF-TrFE nanofibers. Under optimal conditions, the incorporated nanoparticles are
homogenously dispersed in to the fibers but the piezoelectric crystalline phase of PVDF-TrFE
nanofibers remained unchanged after inclusion. The results of a preliminary cell culture
showed a good biocompatibility of nanoparticles doped fibers. In addition, the macroscopic
response of the fiber to a magnetic field could be confirmed. Further investigations are needed
to demonstrate the expected activation of cells induced by piezoelectric effects of the fibers a

under alternative magnetic field.
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The main objective of this thesis was to fabricate PVDF micropatterns and

nanofibers and to study their usefulness in tissue engineering.

PVDF is a highly non-reactive, piezoelectric, and thermoplastic fluoro-polymer.
Intrinsically, PVDF is neither cytophilic nor cytotoxic but its piezoelectric characteristic is
interesting for advanced applications in cell biology and tissue engineering such as
piezoelectric sensing and actuation of cellular activities. Previously, only a few of preliminary
investigations have been done on the micro-processing ability of PVDF and their
biocompatibility. Therefore, we proposed to apply different microfabrication techniques,
including micro-photolithography, soft-lithography, micro-contact printing, electrospinning
and a variety of surface treatments, to the realization of topographic features of PVDF as well
as the physicochemical properties of their surfaces. The fabricated PVDF structures were
systematically evaluated by spectroscopic characterization and cell culture tests, thereby

providing preliminary assessments as clear as possible.

Firstly, we studied several patterning techniques for the easy fabrication of PVDF
microstructures. It turns out, however, that the conventional photolithography techniques are

not applicable to PVDF due to the process incompatibility such as solvent not selectivity.

PVDF is a thermoplastic polymer with a relative low glass transition temperature so
that hot embossing can be easily applied to deform a thin layer for PVDF deposited on a glass
substrate. However, it is difficult to achieve a clear pattern without residual in the recessed
area. Although some interesting effects could be observed such as growth confinement and
edge dominated contact guidance, cell culture on such patterns did not allow clear
assessments. In fact, due to repulsion of both patterned lines and not well-defined residual

features fibroblasts trended to assembly in 3-D like fibrous structures.

Capillary assisted hot embossing was then used to achieve a better microstructure
patterning of PVDF. Now, a PVDF solution is deposited on ta PDMS mold and partially
evaporated after spinning. After covering with a flat substrate, the liquid PVDF penetrates

into the recessed part of the PDMS mold. Due to capillary force enhanced by heating, PVDF
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microstructures could be formed nicely without noticeable residuals in the contact area of
PDMS-substrate. As results, we obtained 10 um to 100 pm line-and-space gratings of 2 um
height and 100 pitch pillars of 7 um height. Spectroscopic characterizations (XRD, FTIR) of
the samples showed that PVDF after the hot embossing still have a y phase which can be
converted to piezoelectric B phase by poling. Now, fibroblasts cultured of on these nicely
patterned PVDF were spread in the trenches to form well defined 2D cell sheets between

lines.

We have also used micro-contact printing to define cytophilic areas a flat PVDF
surface. Our results showed that a fibronectin patterned surface was excellent for cell growth
with high pattern selectivity: No cells adhere outside of the printed area defined by
fibronectin. As PVDF commonly used in western-blot works for all types of proteins, our

method should be applicable to many other types of proteins.

More generally, the wetting property of PVDF can be tuned from hydrophobic to
hydrophilic by oxygen plasma or oxygen containing RIE techniques. Our results showed that
the treated PVDF surfaces were stable in time and suited for cell culture. However, the SFg
containing RIE turned the PVDF surface into super-hydrophobic, which is also stable in time.
Moreover, neither oxygen plasma nor RIE surface treatment does modify the crystalline phase
of PVDF, which is important to preserve the piezoelectric and ferroelectric properties of the

material.

In this work, we also worked on the fabrication PVDF based nanofibers. PVDF-TrFE
copolymer was chosen because of its native piezoelectric 3 phase. We were particularly
interested in cell interaction with aligned piezoelectric nanofibers. In order to obtain PVDF-
TrFE nanofibers with precise positioning which are required for later electric wiring using
patterned electrodes, we first used the near field electrospinning but could not achieve our
objective. In fact, only flat fibers with large dimensions could be obtained which were less
defined comparing to those produced by standard microfabrication techniques. Then, we used
electric-field assisted far field electrospinning to produce aligned PVDF-TrFE nanofibers
between two electrodes. As results, we obtained nanofibers of a typical diameter of about 350
nm and a typical alignment ratio larger that 90%. By using a four electrodes configuration,
we also fabricated crisscrossed nanofiber patterns. The results of surface characterization
(XRD, FTIR) showed that these nanofibers still have the piezoelectric § phase but it could be
enhanced by annealing and ice quenching. Neuronal cell culture on aligned PVDF-TrFE
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nanofibers showed a clear enhancement of neurites outgrowth compared to those cultured on

random nanofiber mats.

Finally, we embedded magnetic nanoparticles made in Fe,O; in electrospun PVDEF-
TrFE nanofibers to test the feasibility of magnetic activation of piezoelectric nanofibers. If
successful, this activation should be measured by either optical imaging or electric
monitoring. The scanning electron microscopic observation confirmed that the magnetic
nanoparticles have been successfully integrated into the polymer blend and that the produced
nanofibers have the same dimension (350 nm) as normal PVDF-TrFE nanofibers. The surface
characterization showed that the incorporation of magnetic nanoparticles into the polymer
does not modify significantly the crystalline piezoelectric  phase. By using a macroscopic
magnet, we also confirmed the possibility of remote manipulation of the fibers with a
magnetic field. Preliminary culture tests showed the expected cell adhesion and spreading but

the magnetic field induced piezoelectric activation of cell activities is still to be investigated.

Up to date, piezoelectric properties of PVDF should impact on the neuronal
outgrowth but this has not been properly demonstrated. The possibility of using a magnetic
field to mechanically activate the magnetic nanoparticles containing fibers should allow
modulating the surface charges, thereby providing a way to address this interesting question.
Further studies can be directed to the coupling between magnetic activation and surface

charge effect at tissue levels.

As conclusion, PVDF and PVDF based copolymers are promising for biological and
biomedical applications. These materials can be easily processed to obtain either well-defined
micropatterns or nanofibers, which can then be used for cell culture study and tissue
engineering. The wetting properties of the PVDF surfaces can be turned from hydrophobic to
hydrophilic or super-hydrophobic. In particular, microcontact printing of PVDF allows
defining cytophilic zone on a flat cytophobic surface with a very high selectivity. Taking into
account the fact that PVDF is now under intensive investigation for piezoelectric sensors and
actuators, we believe that PVDF based biomedical devices could be developed for many

important applications.
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1. Introduction

Manoparticles are now widely used in chemical and biochemical
processing such as biological imaging, cell capture, solid phase syn-
theses, etc. [1-2]. Besides, they can be manipulated by different
physical and chemical means such as optical tweezers, magnetic,
electric or dielectric forces as well as micro llows [4-6]. Moreover,
naneparticles can be used in colloid lithography where particles
are closely packed to form meno-layer of periedic structure on a
substrate which can be then transferred by elching, lift-off and
other technigues [78], In some cases, the assembled particles can
be used as active medium for such as electromagnetic wave Lailor-
ing [9,10]. One of the remaining main challenges in the develop-
ment of devices thar utilize micro- and nanoparticles is particle
organization and integration on surfaces. Indeed, some of the most
interesting electronic, optical or biological properties only appear
in well-ordered particle arrays. Sell-assembly is an intriguing
method Lo order large numbers of small particles on large surfaces
efficiently. In order to obtain arbitrary parterns, nanoparticles can
first be sell assembled on a lithography defined template and then
be ransferred onto a suhstrate, Such a printing straregy has heen
recently proven to be efficient to produce patterns of gold nanopar-
ticles with a single particle resolution [11]. In this work, we show

= Correspending author ar keole Normale Supérieure, CNRS-EMS-UPMO UMER
8640, 24 rue Lhomoend, 75231 Panis, France.
E-mgil address: yeng.chen@ens.fr (Y, Chen),

0167-9317/% - see fronl matter @ 2010 Elsevier B.V. All rights reserved.
doi: 10,1016/ mee.20110.1 1.053

that this technique can also be applied to obtain high density nano-
particles arrays in a controllable way. We used capillary assisted
assembly to create well controlled arrangements of particles [12],

When a drop of particle solution is dried slowly on a flat surface,
the particles aggregate at the rim of the dreplet because of the
combination of convective flows that appears upon evaporation
and attractive capillary forces that arises between particles when
the water film thickness is in the dimension of the particle diame-
ter. On a patterned surface, it is possible to direct the assembly of
particles by inducing a geometrical confinement into holes or close
to the edge of a pattern, By correlating the particle and hole sizes,
localized immobilization of single particles can be achieved. With a
template of high density hole arrays, we were able o fill homoge-
neously the template with gold nanoparticles and then to print
them on the surface of a substrate. In order 1o understand the de-
tail ef the filling mechanism and to evaluate the performance of
such a method, a systematic investigation has been developed hy
using a template of holes of different sizes and periods,

2. Experimental

The template for particle assembling used in this work was
obtained by casting polydimethylsiloxane (PDMS) on patterned sil-
icon masters using the methods and materials reported previously
[13,14]. Silicon molds were fabricated by eleciron beam lithogra-
phy and reactive ion etching technigues. Prior to their use, trichlo-
romethylsiloxane {TMCS) was evaporated on the surface of the
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molds for facilitating the mold separation. Then, palterns were
transferred into PDMS by casting, resulting in arrays of holes of
diameters ranging from 90 to 160 nm and period ranging between
140 and 320 nm, whereas the depth of holes was kept the same
(0.2 pm). In order to control the wettability of the colloidal suspen-
sion and to facilitare capillary assembly {30° < 8 < G0°), we added
an aqueous 0.1 wt.% emulsion of Triton X-45 {Fluka) mixed with
a 10mM aqueous solution of sodiumdodecylsulphonate {Fluka)
in the colloidal selution {water).

Guided NP assembling
Penenenen
NF printing
0. 0.0.0.

Template release
o EEE.
2 0 & &

. 3
Reactive 1on etch

Fig. 1. Schematic fabrication flow chart of thermal micro-contact printing hased
pattern transfer.

.
() (b)

The printing technigque applicable to the nanoparticle transfer is
shown in Fig. 1. We used a thin layer {~50 nm; of pelymethyl-
methacrylate {PMMA) spin-toated on a glass plate as substrale
for particle transfer. The transfer was then achieved by micro-con-
tact printing at 120 °C with a pressure of ~ 10 kg for 20 min. Such a
thermal transfer makes the PMMA layer soft enough for the gold
nanoparticle adhesion but hard enough for their immobilization
after cooling down Lo (he room lemperature.

Teillustrate the application petential, the patterned high density
gold particles were used for hio-sensing. A simple apparatus has
been used o measure absorption spectra of the gold particles sub-
merged in a bio-solution with or without drying. For the measure-
ments without drying, a droplet of biomolecule solution is
contained in the reservoir on the Ltop of the nanoparticle arrays. Then,
the chip was placed on an inverted microscope and illuminated with
a collimated white light beam coming from the Lop side. An optical

i
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Fig. 4. Template hole flling rate as a function of hale size for 80 nm diameter
paricles.

Fig. 2. Oprical images of nanoparticles assemibled with templares of the same hele diameter (80 nm) but different spacing: (a) 120 nm, (b) 80 nm and (c) 50 nm, showing

dillerent assembling situations [ pattern size! 0.2 = 0.2 mm®),

(a) (b)

Fig. 3. SEM images of 80 nm gold nanoparticles before (a) and after (b} transter from a PDMS stamp to a glass slide,
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in air with and without adsorption of hexadecanethiols, and (¢} in PBS solution, BSA and BSA after PBS washing.

fiber on the bottom is linked to a spectrometer {ocean optics
LISBE2000) which records the ahsorption spectrum of the system.
Similarly, the remaining biomolecules on gold particles after drying
could also be detected by absorption measurements.

3. Results and discussion

Several processing parameters affect the quality of the particle
assembly: the diameter of holes in the PDMS template (D), the
diameter of nanoparticles {d}, the contact angle of the colloidal
solution over the PDMS template (#°), the speed {v} and the tem-
perature {T) of the moving stage in capillary assisted particle
assembly {CAPA).

1t was found that the nanoparticles trapping efficiency increases
with the remplate hole diamerter as well as the contact angle of the
colloidal selution. We alse found a strong dependency between the
hole diameter and the contact angle, Indeed both the diameter of
the structure and their period influences the surface roughness
and thus the wettability of the surface. As demonstrated in previ-
ous works [12,15], we found an optimum of the efficiency of the
capillary assisted assembly method between 30° and 60°.

Fig. 2 shows microphotographs of three typical cases of nano-
particle assembling with templates of the same hole diameter
(80 nm) but different spacing ranging from 50 to 120nm. To
understand the observed phenomena, the well-known Wenzel
equation can be used, i.e, con & =1 cosd, where ¢ is the contact
angle of the material {FDMS), r is the surface rugosity, and o, the
contact angle of parterned surface. Ar a given surfactant | Triton
X100-SDS) concentration {20% v/v), the higher the hole density or
the smaller the hole spacing, the smaller the conlact angle, When
the contact angle is too high {low hele density or low surfactant
concentration), the capillary force might be not efficient to bring
particles enter into the holes { Fig. 2a}. Otherwise, when the contact
angle is too small {low hole density), the “stick-slip” patterns can
he produced {Fig. 2c) and unspecific deposition occurs. For the
intermediate hole density (Fig. 2b], the contact angle is 46° with
a surfactant concentration of 20% {vjv] and a filling rate of 99%
could be reached. Similar arguments could also be developed to
interpret the results obtained with the same hole density but dil-
ferent values of surfactant concentrations {not shown here).

Fig. 3 shows scanning electron micrographs | SEM ) of the assem-
bled 80 nm diameter gold particles in holes of diameter 100 nm
before {a) and after { b) transfer onto the surface of a glass substrate
with a 50 nm thick PMMA layer, A slight penetration of the gold
particles inte the thin layer PMMA could be noticed. As expected,
all holes are filled with particles and all assembled particles could
be transferred. The PMMA thin layer can be replaced by other types
of thin layer. In particular, the transfer can also be done with the
help of a water droplet [16].

In general, if the particle concentration of the solution is suffi-
ciently high, it is possible 1o il all template holes. In practice,
the filling probability decreases with the hole size of the template.
These experimental data obrained in this work are firted with a
parabolic curve, as shown in Fig. 4. This can be understood by con-
siclering the fact rhat the probability of filling a hole of diameter [}
with a particle size d is proportional to {D—d)*, On the other hand,
il the hole size of the template is loo large, the particle location
would not be accurate. Therefore, the optimized condition would
be 100 mm for 80 mm particles.

The fabrication of high density gold nanoparticle arrays is inter-
esting for the fabrication of surface plasmon based bio-sensors. To
reduce the signal to noise ratio of the derection, it is important to in-
crease the number of particles per unit area in the weak coupling
limit. All data were obtained by using 80 nm particles with 8 nm
inter-particle distance, Optical spectra were recorded for the detec-
tion of sucrose, bovine serum albuimin (BSA), phosphate-bulffered
saline (PBS) and hexadecanethiols of different concentrations, Plas-
mon resonance peaks could be identified with the centre-wave-
length depending on the sample solution. Increasing the refractive
index of the solution or the biomolecule concentration leads (o a
red shift of the resonance peak. Fig. 5 shows the absorption spectra
of the 80 nm gold particle arrays in air, water and sucrose 20%, 40%
and 60% (a}, in air with and wirhout hexadecanethiols coating (b),
and in PBS and 0.1 wis BSA incubated in PES for 100 min before
and after PES washing (). A red shift of 1.75 nm induced by small
molecule {2 nm) coating could be determined. From our data, we ob-
tained device sensitivity { A4} An) of G0=92 nm/RIL{ Refractive Index
Unit},

4. Conclusion

We successfully demonstrated the feasibility of patrerning high
density gold nanoparticles on a glass surface and using them as high
sensitivity hio-sensors, thus extending the application capability of
capillary assisted particle assembly method. Because it is low cost
and high throughput and can be potential applied at a large range
of particle materials, this method also holds potential for other appli-
cations in optics, and electronics or sensing applications in biclogy.
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Introduction

The classic patch clamp technique is considered as the most sensitive technique to
study membrane ionic channels within single channel sensitivity. In addition, this technique is
used to study neuronal network behaviour with high precision of the measured neuron. We
want to study in which extend we can implement this technique in microfluidics to study
neurons at different scales: cell and network levels with microfluidic patch clamp on cells and
ionic channel level with microfluidic patch clamp on bilayers.

Background

b
Phospholipid

( Phosphatidylchwoline)

Hydrophilic head

r Hydropbobic tail

Figure 0.1 (a) Cell membrane(from [1]).(b) Cell membrane Phospholipid. From [2].
Cell membrane and Ion Channels

The cell membrane is composed of a thin lipid bilayer (~5nm) of phospholipids:
Phosphatidylcholine. The hydrophobic tails are all oriented towards inside of the membrane
and the hydrophilic head (polar) are oriented outside making an impermeable barrier between
the inside and the outside of the cell. This barrier is impermeable because water molecules
cannot cross directly the hydrophobic layer. Transmembrane proteins are specialized in the
transport of ions and water soluble organic molecules between inside and outside of the cell.
Those proteins are called ions channels.

Figure 0.2 Gramicidin A Ionic Channel. From [3].
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The gating of an ion channel is its way of opening and closing.
We can order ion channels by their gating type or by the ions they let passing through.

Concerning the gating type there is 3 main categories:

e Voltage gated channels

e Ligand gated channels

e Other gating (Inward-rectifier potassium channel, calcium-activated potassium
channels, light gated channels, etc...)

Concerning the ions species there is :

e Chloride channels
e Potassium channels
e Sodium channels

e (Calcium channels

e Proton channels

Ionic channels are very important for the physiology of the cell and ionic channels
malfunctions due to genetic mutations lead to many diseases [4] such as muscles disorders
(e.g.: Hyperkalemic periodic paralysis, myotonia, ...), neuronal disorders (e.g., epilepsy,
migraine,...),some kidney disorders, cystic fibrosis, heart diseases.

Ionic channels are also responsible of electric signal propagation along nerves including
neuronal action potential.

The Patch clamp technique

The Patch clamp technique has been invented in by Neher and sakmann in 1976 [5]. They
have been awarded with the Nobel price in medicine in 1991.

A very thin glass pipette (1-2um aperture) filled with electrolyte and connected to an
electrode is placed near the cell. Then a small aspiration is realised in order to make a
gigaohm seal between the membrane and the pipette opening.
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Cell Membrane “’ . Na' channel

Figure 0.3 Principle of the patch clamp technique (from [6])
This technique allow to measure the activity to of single ion channels

The problem of this technique is its lack of automation : the experimenter needs to be well
trained to realised a patch clamp efficiently and in one day he cannot realize more than 10 or
20 patch clamp which is a lock for high throughput screening of drugs targeting ion channels.

It is very interesting to implement this technique in microfluidic in order to get the benefits
from automation, miniaturization and integration of other component into the device.

1. Patch-Clamp on cells

At the cell and network level the goal is to design a microfluidic device capable of
handling cells and performing automated patch clamp on it. At the ionic channel scale the
goal is to perform patch clamp on bilayer membrane or artifical cells in order

1.1 Overview of actual microfluidic patch clamp
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Figure 1.1 Comparison between (a) “classic” patch clamp based on glass micropipette. (b)
Planar patch clamp (c) Lateral patch clamp From [7].

There are 2 main families of microfluidic patch clamp:

Planar patch clamp (figure 1.1 b): Cells are aspirated through a small aperture (1-2um) in a
membrane. The membrane can be in glass (figure 1.2) patterned with microfabrication
techniques. This technique is interesting because it uses classical microfabrication techniques
and can be used on glass which is the ideal material for patch clamp: it is an electric isolator
and has a small surface roughness which make the cells attach more easily.

Figure 1.2 Whole Cell Planar patch clamp on an aperture etched in glass (from [8])

Some channels can also be made in glass in order to manipulate cells, to bring them on the
patch sites (figure 1.3) and to avoid membrane fragments to block patch apertures.
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Figure 1.3 The CytoPatchTM chip. (A). Cross section. A cell is trapped by suction applied to
the large port 1 of the device. Subsequent suction on the central port 2 forms a seal, and
currents are recorded through port 2. (B). Scanning electron microscope (SEM) image of the
device from above. From [9].

Some groups [10] realised patch clamp aperture in PDMS. The advantage is that it is easier to
fabricate and disposable but the success rate of the patch clamp is less good than with glass.
The other advantage of planar patch clamp is that it is easy to integrate with microeletrode
arrays to realise multiple recordings.

30 pm

Figure 1.4 PDMS Patch-Clamp aperture (a) side view of a sliced partition (b) SEM picture of
a molded aperture .From [10].

Lateral Patch clamp (figure 1.1 c¢): Cells pass through a main channel and are trapped by
smaller channels (2-3um) perpendicular to the main one. This kind of device is entirely made
in PDMS. The advantage are multiple : It is easy to fabricate and disposable; The measure can
be multiplexed in order to record many patch clamp experiment in the same time; it is
possible to monitor optically the patch clamp process and we can incorporate classical
microfluidic elements such as mixer, gradients etc... in order to build a complete lab-on-chip
device. The main disadvantage is that the PDMS is not ideal for making gigaseals because of
the surface roughness.
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microscope
objective —»

Figure 1.5 Side trapped patch-clamp array on a microfluidic platform. (A) Cell trapping is
achieved by applying negative pressure to recording capillaries, which open into a main
chamber containing cells in suspension. Patch clamp recordings are obtained by placing AgCl
electrodes in each of the capillaries, as well as in the main chamber. The device is bonded to a
glass coverslip for optical monitoring. (B) Scanning electron micrograph of three recording
capillary orifices as seen from the main chamber. (C) Darkfield optical microscope image of
cells trapped at three capillary orifices. From [7].

We choose to study how to implement the lateral patch clamp because of its simplicity and
the possibility to use classical inverted microscope to monitor in real time progression of the
patch clamp as well as checking viability of the cell culture.

1.2 Work of the first year
1.2.1 Chip fabrication

In order to do a prototype of the device before doing an optical mask, a prototype as been
designed using existing masks. The layout is the following:

O O
Q1O | O

@ ()

OO
O O

Figure 1.6 Layout of the cell patch clamp chip V1.0

€ 5-10um
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The device is constituted of 2 layers of channels: one layer is the main channel which is
100um wide and will receive the cells in the buffer solution. The other layer of channels is for
trapping cells by aspiration and doing the patch clamp.

We used the following process

® & © © @

51 W ater
1- 525214+ 2- Photolithograpber 3- RIE Etching 4 51 spincoat 5- Photolithograpler
spincoat
fi- PDIVIS Iolding 1- Acces holes
punching

Figure 1.7 Process of device fabrication

For the first layer (patch channels) a photolithography is realised with AZ5214 to obtain lum
layer. We use this layer as a protection for RIE etching in order to reach a thickness of Sum.
The second layer is realised in SU8 2050 to get a channel thickness of 20um. After surface
treatment avoid PDMS to stick to the mold (TMCS 3°),PDMS (5:1) is casted. We used 5:1
mixing ratio in order to avoid possible collapse of smallest channels. After baking overnight,
the device 1s unmolded and access holes are punched. The device is bonded on a glass slide.

|

Figure 1.8 Picture of the device
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1.2.2 Results

The setup is the following:

ell Solution

WASTE

JE

wd . 0 O

M,

Figure 1.9 Experimental setup

The cells suspension (K562-RPMI 1640 with 10% serum) is injected in the device with a
syringe pump (Harvard apparatus) with the lowest flow possible (luL/h). The outlet is
connected to a waste collector. A syringe is connected to the patch channel in order to realise
cell aspiration by applying negative pressure. We can also push on the syringe to release cells
from the aspiration site. The whole process is monitored in real time with an Olympus
inverted microscope.
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Figure 1.10 Aspiration of cells with the patch channel.

AR L et SR A SRR AR

Figure 1.11 Aspiration of a single cell with the patch channel
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We managed to “trap” single cells at the opening of the patch channel (Fig. 1.11). When the
cell suspension flow is very low it is easy to target visually the cell we want and to trap it by
applying negative pressure and then, release it by applying positive pressure. We can also
apply positive pressure in order to avoid unwanted cells to be trapped.

1.2.3 Evaluation and Improvements

This prototype validates the design of lateral patch clamp. The next step is to incorporate
electrodes in order to get an accurate evaluation of the design in terms of patch clamp
performance (% of successful patch clamp/nb of test).

The Ag/AgCl electrodes have been designed and fabricated (cf. Project 2) but the missing
point was the bonding between electrode passivation layer (SU8) and PDMS of the channels.
This blocking point can be passed by replacing SU8 passivation layer by PhotoPDMS (cf.
process in annex) or SiO2 or Spin On Glass.

The next version of the design will incorporate smaller size patch channels (2um).

Figure 1.12 Layout of the patch clamp device V1.1
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Figure 1.13 Layout of the patch clamp device V1.1

After the validation of this design and the incorporation of electrodes, we will design channels
to manipulate cells in the channel in order choose precisely the moment when we want the
cell to be aspirated by the patch channel and in order to avoid fragment of cells to collapse the
patch channels. We will also study different channel geometries and incorporate other
microfluidic component components.

In a longer term we will try to use this device on growing neurons. The challenge will be to be
able to sustain neuron growth until they are able to emit action potentials and without creating
flows that kill neurons.

1.3 Conclusion

We managed to realise the first steps before being able to do a real lateral patch clamp. This
technique seems to be promising and from our knowledge has never been used for analysing
neuronal growth in real time.
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2. Patch clamp on Bilayer Lipid Membranes (BLM)

After discussions with Prof. Loic Auvray we decided first to realise membrane
formation in “macro” environment with commercial apparatus by using the conventional
“painting” technique (Figure 2.1a). The membrane formation is not so complicated but only
when all the equipment is well set up and the good parameters found. We choose also to
make this experiment in macro in order to have a way to compare performance and sensitivity
of the microfluidic device we intend to design.

(A) Conventional methods
(a) Painting method (b) Folding method Tlp-dlp method
lipid soln glass
pipette
# g ll‘ Hllwsnl]l .;,
) 1' UL L&\j‘-s_‘
Teflo :
¢ : several 10
¢: ~2 pum
(B) Microfabricated devices (C) Supported bilayers
d) Micro aperture (e) Microchannel () Tethered (g) Mixed (h) Gel-cushioned
membrane bilayer bilayer
/ A [ [m o
"\‘ \M'l ) 11} NN
(= -
|Ipld soln. porous support

Figure 2.1 Conventional and microfabricated methods for preparing lipid bilayers. From [11].

The more conventional techniques for BLM formation are the painting method (Figure 2.1 a)
and the folding method (Figure 2.1 b). The painting method is easier to realise but BLMs
formed by this technique contains solvent that make the BLM thickness decrease during
experiment. The folding method is solventless because all the solvent is evaporated before
contacting the two monolayers. We choose to use first the painting technique to learn how to
make BLMs and characterise them.

2.1 Formation of a Bilayer Lipid Membrane using the “painting” technique

We bought a bilayer chamber (Warner instruments BCH-22A) and a Teflon cuvette with a
250um aperture (Figure 2.2).
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Figure 2.2 Bilayer Chamber and cuvette

Patch clamp
amplifier I
( -
Powerlah 43P
m ‘"“"-.
T Head Stage
(150hm)
%
/
AglipCl
Electrodes Faraday Cage

Figure 2.3 Setup of the Bilayer station

The Bilayer chamber and cuvette are in a faraday cage to avoid electromagnetic noise. The 2
Ag/AgCl electrodes are connected to the head stage of the patch clamp amplifier (Biologic
BLM-120) which is interfaced to a computer through an analogic to digital converter
(ADInstrument Powerlab 4SP). The 2 Ag/AgCl electrodes are made from pure silver wire
dipped into sodium hypochlorite NaClO (from household bleach : chlorox 2%) for few
minutes in order to generate a thick layer of AgClL.

2.1.1 Process of Bilayer formation.

We followed the process made by Abdelghani Oukhaled (Université Evry) in his PhD thesis
[12]:
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Figure 2.4 Process of Bilayer formation with the Mueller and Rodin technique. From [12].

First the cuvette is well cleaned (acetone, isopropanol) and dried under azote flow. The
measurement apparatus is turned on at the time in order make it stable but input is not enable
in order to avoid overload.

Then, we “precoat” the aperture with a small droplet of lipid solution (DPhPC 0.025%,
Avanti Polar) and wait 30minutes for the solvent to evaporate. This step is essential for
stability of the bilayer.

We place the electrodes connected to the measurement apparatus to the 2 partitions and we fill
the 2 partitions with KCI solution (1M). The input is turned on it should “overload” that
means that too much current is flowing between the two electrodes and so that there is no
bilayer yet.

A pipette is loaded and unloaded with a small volume of lipids in order to put the smallest
amount of lipids inside. An air bubble is formed in the chamber near the aperture and should
pass on the aperture in order to form the bilayer.

If the bilayer is well formed the current is blocked, there no more overload and the current
flowing between electrodes should be of the order of few pA (figure 2.4).
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1000 -

-1000 -

Figure 2.5 Recording of the current blockage when the bilayer is formed

We can monitor bilayers’s thickness in real time by measuring its capacitance. The
capacitance will increase with time because of the solvent evaporation. We can measure

capacitance directly on the patch clamp amplifier.

50 —
45— - T
Ty .‘
2 a0 :
U [ ]
35_—_;
20 1 1 1

100 200 300 400
t(s)

= —

Figure 2.6 Evolution of capacitance of a Bilayer in time. From [12]

It means that the membrane become thinner. At the beginning the capacitance is 34pF, it
correspond to a 9.2 nm thick bilayer. After 400 seconds it reach 45pF which correspond to a
6.8nm thick bilayer. At the maximum the capacitance can be around 85pF.
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We can also apply a differential potential in order to realise an electroconstriction of the
bilayer and so to make it thinner.

2.1.2 Incorporation of nanopores (alpha-hemolysin)

The solution of alpha—hemolysin (sigma Aldrich) is prepared with a concentration of 0.1mg
of alpha-hemolysin for each ml of HEPES buffer.

This solution is stored in the freezer (-20°C) and should be bring at room temperature just
prior to experiment to avoid protein denaturation.

Figure 2.7 Structure of the Alpha —Hemolysin nanopore. From [13].

When the bilayer is thin enough (45pF-85pF/7-5nm) 10ul of alpha-hemolysin solution is
injected into one of the partition of the chamber. A potential is applied between the two
electrodes (100mV) the negative electrode should be the one in the partition with alpha-
hemolysin. It is important to wait until the bilayer is very thin otherwise the ionic channels
cannot incorporate into the membrane.
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Figure 2.8 Recording of the current after incorporation of alpha-hemolysin (unit pA)

We observe some plateau corresponding to different number of nanopore in the membrane.
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Figure 2.9 Curve representing the current in function of the number of alpha-hemolysin
nanopore inserted in the membrane. From [12]

2.2 Overview of BLM formation microfluidic channels

The main technique of bilayer formation in microfluidics is the formation of a bilayer through
a micro-aperture in silicon or glass.

There is few publications on formation of bilayers in microchannels. We wanted to study
what can be the simplest system to form bilayers in microchannels.

Funakoshi et al. in 2006 demonstrated that it is possible to form bilayer in microfluidics by
contacting 2 monolayers of lipids.

a 100 mM KCI

SYNNGE pump

[ KN

channel depth; 0.5 mm

Figure 2.10 Formation of bilayer in microchannels by contacting 2 monolayer. From [14]

Their design is very interesting because it is very simple: a cross channel and 3 syringe pump.
The device is made in PMMA in order to avoid solvent leakage because PDMS permeability
to solvents. Two monolayers of KCI are put in contact at the intersection with lipids. At each
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interface KCl/lipid there is a monolayer of lipid and when the 2 monolayer are contacted it
make a stable bilayer

Malmstadt et al. [15] have an interesting approach : they use PDMS but instead of trying to
avoid solvent leakage, they use PDMS solvent permeability to form solventless bilayer which
increase reproducibility and sensitivity of measurements.

.
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Figure 2.11 (a) Layout of the device (b) Principle of solvent extraction.From [15].

The device is constituted of a simple T channel, two inputs, two electrodes and valves to
isolate each part of the device. A droplet of lipids is sent in water to the middle of the 2
electrodes, the valves are closed and the solvent begin to evaporate (figure 2.11b).After few
minutes all the solvent is evaporated and the bilayer still isolate the two electrodes.

2.3 Design a microfluidic bilayer formation device
2.3.1 BLM V1.0

We choose first to try to redo the experiment made by Funakoshi et al. [14] to have a very
easy bilayer formation device.
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Fabrication of the channels:

500 um |

Ay

500 um

Figure 2.12 Layout of the BLM Chip V1.0

Results

Lipics KCI

Figure 2.13 Attempts to form a bilayer from contacting monolayers of lipids
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Conclusion

It was too difficult to control precisely the formation of the bilayer because the interface
between lipids and KCl is very unstable. In addition the main benefits of doing microfluidics
is reduction of volume of solutions and so reduction of the cost of operation but this design
uses ImL of high concentrated lipid solution which is very expensive.

For the next version of the device we will change the design for a more stable one.

2.3.2 Fabrication of the Ag/AgCl electrodes:

i D
.

(a) (b)

Figure 2.14 Layout of the Ag/AgCl electrodes (a) and of the dielectric layer (b).

We choose to make Silver-Silver Chloride electrodes because it is the most common electrode
used in electrophysiologys, it is easy to make and regenerate. Ag/AgCl electrode has also small
impedance which makes them suitable for measuring small current.

We need also a dielectric (b) which let the solution contact only the area where there is silver
chloride.

Fabrication of the electrodes

Glass slide is cleaned and patterned with reversible photoresist (AZ5214). After exposure and
development of the photoresist, silver is deposited by e-beam and the resist remaining is lift-
off in acetone overnight.
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Figure 2.15 Picture of the Ag electrodes

Test of different dielectric layers

SU-8 (2050) photoresist is spin coat on the electrode and the photolithography is realised.
After development it let appear silver only for contact pads and the active area of the
electrodes.

Figure 2.16 SU-8 Passivation layer on Ag electrode

A droplet of NaClO is put on the silver of the active areas for 5 minutes. We can see clearly
the AgCl formed on those areas.

The wires are stuck to the contact pads with conductive glue and the device is put in plasma
cleaner for bonding with fluidic channels.

-216-



Appendix B Microfluidic patch clamp

Result

The SU8 photoresist does not bond with PDMS and so the device is leaking.

In order to solve this problem we developed the same process by replacing SU8 by
photosensitive PDMS (c.f. process in annex).

Figure 2.17 Test of the photoPDMS

The bonding is better but only if we use a different formulation of PDMS between passivation
layer and channels (for example the photoPDMS is 5:1 and the channels are 10:1).

The best solution would be a deposition of Si02 but the equipment we have in the lab cannot
allow us to deposit the lum layer of SiO2. An alternative can be a spin coating of spin-on-
glass polymer followed by high temperature backing but it require a high temperature
furnace..

Characterisation of the electrodes

A small current (5nA) is passed thought the electrodes to see when the potential drift occurs.
The potential of the electrodes remained 0 for at least 24h the KCl solution evaporated before
we could find any change of potential. It means the Ag/AgCl we made are stable in time.
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2.3.3 BLM V2.0

For the second version of the device we choose to test the design from Malmstadt et al. [15].

Figure 2.18 Layout of the BLM Chip Channels V2.0

G

Figure 2.19 Layout of the BLM Chip electrodes V2.0

L-

Figure 2.20 Layout of the BLM Chip V2.0
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The device is constituted by three layers : A layer of electrodes(figure 2.20 blue part), a
passivation layer (figure 2.20 black parts), a layer of fluidic channel (figure 2.18 red
channels) and a layer of valves fig 2.18 green channels).

Before to realise this device, we had to find the good process of valve fabrication.
Fabrication of valves

Quake’s research group at Stanford University has been the first group to use elastomeric
properties of PDMS to realize pneumatically actuated valves [16, 17].

They use a cross channel architecture composed of two levels: an actuation channel that will
contain air to apply pressure on the fluidic layer to close it (figure 2.21 ¢) and a fluidic layer
where the liquid flows. There is two main configuration : the push-down configuration
(figure 2.21 a) where the actuation layer is on the top of the fluidic layer and the push-up
(figure 2.21 b) where the fluidic layer is on the top of the actuation layer.

| l | ’
bt = i

(Ghamms, slile

(E1]

Actuation channel

Figure 2.21 Pneumatically actuated valves (a) Push down configuration (b) Push-up
configuration (¢) Push-up valve activated. From [17].

The principle of fabrication is a 2 step soft lithography: the membrane layer is spin coated in
order to get a thin layer and the other layer is molded. The two layer are bonded together by
plasma and baked overnight before unmolding (figure 2.22).
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Figure 2.22.Principle of multilayer soft lithography. From [16].

The key of the success for the bonding between the two layers of PDMS is the difference of
PDMS formulation between the two layers: one layer is in PDMS 5A:1B (for push-down
configuration the actuation layer) and the other in PDMS 10:1 (for the push-down
configuration the fluidic layer). In the 10A:1B PDMS there is excess of vinyl groups that will
diffuse at the bonding interface to the other layer (5A:1B) where there is excess of Si-H
groups. The result is an excellent bonding between the two layers.

We choose to use the push-down configuration as it is less sensitive in terms of membrane
thickness and easier to realise. We followed the process 1 based on photolithography
parameters and valve fabrication process of M. Lounaci [17].

The key of the success for valves fabrication is to get round fluidic channels to make it close
completely. This is done by baking photoresist after its vitreous transition temperature in
order to make it “reflow” and get round features. We get this by using AZ9260 photoresist
and baking it at 140°C for 5 minutes.
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Figure 2.23 Design of the valve
Results

Those pictures are made with an inverted microscope.

b

Figure 2.24 Overview of device (a) opened (b) closed without water in the main channel
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a b

Figure 2.25 Valve operation (a) opened (b) closed

a b

Figure 2.26 Valve operation (a) opened (b) closed

We flow water in the fluidic channel with a syringe. The valve is operated with air pressure.
When we inject air to the actuation layer, the fluidic channel on the bottom is deformed the
valve is closed.

The valve is opening and closing well and there is no more flow in the fluidic channel. It
means that the membrane is thin enough to be deformed by the air flow (around 2 P.S.I).

2.4 Conclusion

The process of valves is working well and integrated with BLM V2.0 it should lead to a
functional device. We had problems to equilibrate pressure in the BLM V1.0 design of
channels. This will be solved by the integration of valves that will isolate Bilayer formation
zone.
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Appendix C Protocols

Protocol 1: Immunostaining

Immunostaining Disease Biophysics Group

Immunostaining: Actin and Nuclei

This protocol is for the fluorescent labeling of Actin, DNA/nuclei, and another protein (triple
stain) in cells. This is written with the assumption that cells are plated onto glass coverslips that
are suitable for high-NA optical microscopy (No. 1-2 glass coverslips, which can be spin coated
with PDMS). It also assumes that cells are kept in either 35 mm petri dishes or wells of a 6-well
plate. In order to see the labeled cells, you will need an Epifluorescent or laser confocal
microscope with the appropriate filters for the selected fluorophores. In our laboratory, DAPI is
visualized with the ‘A’ Filter cube set from Leica, Alexa 488 with the 'GFP’ filter cube, and
tetramethyl rhodamine with the 'N3’ filter cube.

The basic principle is that you use chemicals that specifically bind to a desired cellular
component. For the Actin and DNA stains, these chemicals are either auto-fluorescent or
chemically modified to have an attached fluorophore. For the protein, you use an antibody that
binds to the protein of interest- this is called a primary antibody. You then incubate the cells
with a secondary antibody that is directed against the primary antibody, and this secondary
antibody has a fluorphore attached to it.

DAPI is a fluorescent molecule that, when bound to DNA and excited with UV light, fluoresces a
blue color. Phalledin is a toxin that is derived from the 'death cap’ toadstool Amanita phalloides-
it is a chemical that binds specifically to actin filaments. In this case, the toxin has been
chemically modified with a fluorophore called 'Alexa488’, which is excited by blue light and
fluoresces green. It is similar to Fluorescein (commonly called ‘FITC'), but is more stable to
degradation. For this protocol, the secondary antibody has a tetramethlyrhodamine fluorophore
aftached to it. Every time a fluorophore is exposed to excitatory light, it is degraded and fades
the longer it is exposed. As these fluorophores respond to light in the visible spectrum, it is
advised that you keep them in the dark as much as possible to prevent degradation. When
doing microscopy, it is advised that you keep your exposure times short and at low intensity.

This protocol involves direct handling of coverslips with fine-tipped forceps. The fine tipped
forces can transfer all of the strength of your hand to a2 1 mm?® area on a 17 pm-thick piece of
glass. If you are careful breakages should be rare. However they do occur. If you crack or
break a coverslip during this procedure, you can still continue to stain the cells on the remaining
glass provided that it is large enough to mount (see final step in the protocol).

This method of labeling requires that you kill the cells by briefly crosslinking them with a highly
reactive aldehyde, which is toxic to both the cells and the scientist. Note that these toxins can

target reproductive organs, and can be more toxic to females. Please exercise caution when
handling aldehyde solutions, and strictly follow the safety measures outlined in this protocol.

Nicholas Geisse Version 1.0 1 7/26/2006
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Sample Image of a cell stained with this protocol:
Left: DIC image of a triangular patterned cell. Right: Same cell, stained for the Nucleus
(DAPI, blue), actin (phalloidin, green), and a-actinin (monoclonal a-actinin, red
secondary).

Reagents
Fixative:
4% Paraformadehyde + TX-100 in PBS (Stock solution)

Preparation:

Take one 10 mL ampule of 16% PFA (Electron Microscopy sciences
#15710) and dilute with 30 mL of PBS. Final diluted stock solution should
be in a glass receptacle, and protected from light. Do all of your PFA work
with gloves, lab coat, and eye protection in the chemical hood. All
materials that come in contact with PFA are toxic and are NOT to be
rinsed or disposed of in either the biological or regular waste. Store
unused fixative in a chemical refrigerator, protected from light.

When you are ready to stain, for each coverslip that you intend to fix, take
2 mL of PFA stock solution (4% in PBS) and place into a 15 mL centrifuge
tube. Label the tube, wrap it in foil, and label it again. The label should
include the word "TOXIC'. For each 2 mL of PFA that you have isolated,
add 1 pL of Triton-X 100. The TX-100 will gel, so add it dropwise to the
solution and gently agitate the tube after addition. Since you are adding
such a small volume of TX-100, it would be a good idea to remove 10-20
mL from the large TX-100 bottle and use that as your source of TX-100, to
prevent contamination of the stock bottle.

Nicholas Geisse Version 1.0 2 7126/2006
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Stains:
DAPL DNA staining reagent
4' B-diamidino-2-phenylindole, dihydrochloride (molecular probes, product
#D1306) is shipped as a 10 mg solid in a small brown bottle. It does not
dissolve well in PBS. Dissolve the entire 10 mg solid in 2.0 mL of dH-0O.
Store in freezer, protected from light (shelf life — minimum & months).
Before use, remove from freezer and allow to thaw while the bottle is held
upright. | recommend aliquoting this to prevent freeze-thaw.

Phalfoidin: actin Binding agent

Use AlexaFluor 488 Phalloidin, shipped as a 300 U solid (Molecular
Probes/Invitrogen #A123-79). Make stock by dissolving 300 U solid with
1.5 mL Methanol (| use HPLC grade MeQOH for this). Store in freezer.

Primary Antibody. Various

Secondary Antibody: Depends on Primary used.

Absorbance
Fluorescence emissiol
Absarption
Fluorescence emission
Flucrescence excitation
Fluprescence emissi

300 350 400 450 500 550 80D 350 400 450 500 550 B00 650 450 500 S50 600 650 70O
Wavelength (nm) Wavalength (nm) Wavelengih (nm)
Expitation-Ermission Excrtation-Emission Excitation-Emission
Spectrum for DAP! Speactum for Alaxa 488 Spectrum for

Tetramethyirhad aming

Preservative:
SlowFade Light anti-fade kit {(Molecular Probes/Invitrogen #57461). NOTE: we
have 2 types of kils in our fab, one with DAP/ included, cne without. Use ONLY
the one without DAPI. The kits that contain DAP! are clearly labeled as such.
There are 3 bottles in the kit. Use ‘Component A antifade reagent in glycerol
buffer’, the mid-sized dropper bottle.

Other materials:

Fine-tipped forceps, PBS, Glass slides, pipettes, eppendorf tubes, slide box.

Nicholas Geisse Version 1.0 3 7126/2006
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PROTOCOL

Fix your cells

i

Place your PFA aliquot and PBS into a warm water bath (37°C), let them get to
temperature.

2. Once the solutions are warmed, remove your cells from the incubator and
transfer them to the chemical hood. Rise the cells 3X in warm PBS.

3. After your 3" PBS wash, aspirate the PBS and replace with 2 mL of 4% PFA
solution per coverslip. Your cells must sit in the fixative for no longer than 15
minutes. Note, when using different antibodies this is a variable you can play
around with.

Wash 1

1. After the fixation period, aspirate PFA solution and dispose appropriately.

2. Immediately add 3-4 mL of PBS to the coverslips, and swirl gently to rinse. Let
stand for 5-10 min.

3. Aspirate PBS and repeat step #2.

4. Repeat step #3, leaving the coverslips in PBS. Note, at this point you can leave
your coverslips in PBS at 4°C for several days, although it is advisable to stain as
soonh as possible.

Stain

Nofe: Once you add a fluorescent stain, you should protect your coverslips from light.

i

Prepare your staining agent by mixing 1 L of your DAPI stock and 1 uL of your
phalloidin stock with 198 pL of PBS for each of your coverslips. Mix well and
protect from light.

To this mixture, add an appropriate amount of your antibody. For monoclonal
anti-sarcomeric a-actinin (clone EA-53 from sigma), monoclonal anti-vinculin
(HVIN-1 from sigma), polyclonal anti-Connexin-43 (#C-6319 from Sigma), 1 pL
into the mixture from step 1 per coverslip works well.

Take a large Petri dish and place 200 L drops of the staining agent on its
surface. There should be one 200 L drop per coverslip that you are staining.
Remove the glass coverslips from the final PBS wash solution. Do not aspirate
the PBS- use fine-tip forceps to gently remove the coverslips from the wells.
Dry the coverslip. This is done by carefully holding the coverslip perpendicular to
the lab bench. Once a bead of liquid builds up at the bottom of the coverslip,
press the edge of the coverslip against a Kim Wipe to wick away the excess
moisture. The goal is NOT to completely dry the coverslip- simply remove
excess PBS from the glass surface.

Once dry, place the coverslip face down on the 200 pL drop of fixative solution
(similar to the manual PDMS coating procedure for coverslips).

Nicholas Geisse Version 1.0 4 7/26/2006
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7. Cover with aluminum foil. Incubate at room temperature for 1-2 hours.
Wash 2

1. During the incubation, rinse the receptacle that the coverslips came in with PBS.

2. Add 3-4 mL of PBS to the receptacle.

3. After the incubation period, move coverslips into the PBS and swirl gently to
rinse. NOTE: if you are having problems with background staining, | suggest you
let the coverslips sit in the PBS for 5-10 minutes before washing again.

4. Aspirate PBS and repeat step #3.

5. Repeat step #4, leaving the coverslips in PBS.

Secondary Stain

1. Foreach coverslip, prepare 200 yL of a secondary stain.
2. The secondary stain should be composed of 199 pL PBS and 1 pL of the
secondary antibody
a. If you used a monoclonal primary antibody, use an anti-mouse secondary
antibody
i. | use Goat-anti-mouse |gG (H+L) Tetramethylrhodamine (Invitrogen
Product # T2762). Note that you can use whichever fluorophore
you want, as long as you have the correct filter cube and that it
does not have the same excitation/emission characteristics of DAPI
or Alexa-488.
b. If you used a rabbit polyclonal primary antibody, use an anti-rabbit
secondary antibody
i. | use Goat-anti-rabbit IgG (H+L) Tetramethylrhodamine (Invitrogen
Product # T2769). Note that you can use whichever fluorophore
you want, as long as you have the correct filter cube and that it
does not have the same excitation/emission characteristics of DAPI
or Alexa-488.
3. incubate the secondary antibody for 1-2 hours at room temperature.

Wash 3

-

During the incubation, rinse the receptacle that the coverslips came in with PBS.

2. Add 3-4 mL of PBS to the receptacle.

3. After the 1 hour incubation period, move coverslips into the PBS and swirl gently
to rinse. NOTE: if you are having problems with hbackground staining, | suggest
you let the coverslips sit in the PBS for 5-10 minutes before washing again.

4. Aspirate PBS and repeat step #3.

5. Repeat step #4, leaving the coverslips in PBS.

Mount

Nicholas Geisse Version 1.0 5 7/26/2006
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1. Prepare one glass slide for each coverslip. Label the glass slide. If your slide is
dusty, blow dry with compressed air or clean with 70% ethanol and dry.

2. Using the small dropper bottle in the preservative solution kit, drop one SMALL
drop onto the center of your glass slide.

3. Remove the rinsed coverslip from the PBS and dry, using the same technique
outlined in step 4 of the staining procedure. Use the fine-point forceps.

4. Drop the coverslip face down onto the preservative drop. | recommend that you
first hold the coverslip at a 45° angle (cell side down) against the coverslip, and
touch the edge of the drop with the edge of the coverslip. Then release the
coverslip and allow it to fall onto the preservative. Gently place a kimwipe over
the coverslip and gently press it against the glass slide. Small amounts of
preservative will get squeezed out along the coverslip edges, which will be
absorbed by the wipe.

5. Examine the preservative for bubbles. If there are large bubbles, you will most
likely be able to eliminate them by gently squeezing the coverslip with your
forceps. If there are several bubbles, slide the coverslip off of the glass slide and
try again.

6. Once you are satisfied with the coverslip and preservative, gently remove excess
preservative from the exposed coverslip and glass slide.

7. Paint around the edges of the coverslip with nail polish. | recommend using a
clear nail polish or nail hardener. Let dry.

8. Once dry, your coverslips are ready for microscopy. If you do not have
immediate access to the microscope, store in a slide box or a dark box, in the
freezer. Slides will keep for several months but deteriorate over time.

End protocol.

Nicholas Geisse Version 1.0 6 7/26/2006
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Protocol 2: Fabrication of photosensitive PDMS

1- Make 10 : 1 PDMS

2- Dissolve Benzophenone (3% in weight compared to the weight of PDMS) in m-Xylene. Quantity of
m-Xylene has to be enough to dissolve completely Benzophenone crystals.

3- Mix Benzophenone with PDMS for 15 minutes

4- Spincoat of the photoPDMS

5- Exposure: This photoPDMS is positive : UV will react with Benzophenone creating radicals which
will prevent exposed photoPDMS from curing. | try different time exposure from 10 seconds to 10
minutes. The optimum appeared to be 5 minutes. The gap between the mask and the sample should
small. In order to do this you can pile 2 glass slide on each side of the sample and put the sample on
it.

6- Post exposure bake : 110°C for 40 seconds (this step is critical if PEB is too long everything will be
cured)

7- Let the sample cool down few seconds

8- Reveal in Toluene (Be careful Toluene is very volatile and bad for else always work under the
solvent hood!) for few seconds (10~30).

9-Rinse under water
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