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Introduction 

 

The demonstration of seeded XUV lasers, generated by either transient collisional 

excitation in solid target plasmas or optical-field-ionization in gaseous targets has opened new 

prospects for the utilization of high-brightness plasma-based coherent XUV sources for 

various applications. The use of high-order harmonic generation (HHG) pulses as a seed has 

led to a dramatic enhancement of the spatial coherence over those exhibited in amplified 

spontaneous emission (ASE) operation. The degree of temporal coherence is an important 

parameter that also needs to be characterized for applications. The coherence time is linked to 

the spectral width !! of the laser line through "c ~1/!!. As a result the spectral width also 

determines the ultimate minimum pulse duration that can be achieved. The shortest pulse 

duration measured to date for a seeded XUV laser is ~ 1.1 ps in a Ne-like Ti plasma [1].  In 

order to make further progress towards shorter pulse XUV lasers it is important to obtain 

experimental information about the spectral characteristics of these sources. This is a 

challenging measurement because the narrow linewidth of XUV laser lines (typically 

!#/# ~10-5) typically lies beyond the resolution limit of existing spectrometers in this spectral 

range.  

Over the last ~10 years, ASE XUV lasers pumped by collisional excitation of Ni-like and 

Ne-like ions have been generated worldwide in plasmas created both by fast electrical 

discharge, or by various types of high-power lasers. This leads to a variety of XUV laser 

sources with distinct output properties: capillary-discharge, quasi-steady state (QSS), 

transient, or optical-field ionization (OFI) XUV lasers. Although the same pumping 

mechanism, essentially collisional excitation by free electrons, is common to all these XUV 

laser systems, the plasma parameters (electron density Ne, electron temperature Te and ion 

temperature Ti) in the amplification zone are markedly distinct. As a result, the relative 

contributions of the spectral broadening processes (Doppler, collisions) that affect the lasing 

line are also significantly different. 

The motivation of our work is to thus better characterize the spectral properties of existing 

plasma-based XUV lasers.  

In chapter 1, we first introduce XUV laser generation in hot and dense plasmas, and 

compare this source to two other high-brightness XUV sources. We describe in detail the 

collisional excitation pumping and discuss the four different regimes that were demonstrated 
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experimentally: Quasi-Steady State (QSS), Optical Field Ionization (OFI), capillary-discharge 

and transient. We explain how the XUV laser is amplified in the plasma and we recall the 

main features of laser-generated plasmas. Finally we present the main bases of the formalism 

and processes involved in the spectral and coherence properties of the XUV lasers. We 

discuss in detail the different mechanisms involved in the formation of the spectral profile of 

the XUV laser line, including the plasma broadening effects affecting the emitting ion and the 

modification of the profile following amplification. We also discuss the relationship between 

the linewidth and the minimum pulse duration for several types of profile. 

In chapter 2, we present the results of our simulation work on the spectral shape and width 

of the amplified laser line. Our calculations are based on a 1D-radiative transfer code, which 

includes the effect of saturation for a general Voigt-type profile. The profile before 

amplification is taken from detailed calculations performed by colleagues from PIIM 

(University of Aix-Marseille) using the PPP code. We discuss the behaviour of the XUV laser 

spectral profile for different plasma parameter situations and the Fourier-transform limit 

duration that can be reached in each case. 

In chapter 3, we present the instruments that we have used for our experimental work, 

namely a wavefront division interferometer and a high-resolution X-ray Streak camera. We 

describe the method that we used to process the interferograms and to measure the temporal 

coherence and the spectral width of the XUV lasers discussed in chapter 4. 

In chapter 4, we present our experimental results. We have measured the temporal 

coherence of three different types of XUV lasers pumped by collisional excitation, having 

each a specific spectral behaviour due to different plasma conditions in the gain zone. The 

results of these experiments are analysed and discussed separately. The last experiment was 

devoted to a study of the temporal behaviour of a transient XUV laser as a function of the 

pump parameters. At the end of this chapter, we compare all these XUV lasers studied during 

the thesis work, also including the OFI XUV laser which was studied previously with the 

same interferometer.  

The conclusion summarizes the results and gives perspectives for the future.  

1. Y. Wang, M. Berrill, F. Pedaci, M. M. Shakya, S. Gilbertson, Zenghu Chang, E. Granados, 

B. M. Luther, M. A. Larotonda, and J. J. Rocca, “Measurement of 1-ps soft-x-ray laser 

pulses from an injection-seeded plasma amplifier”, PHYSICAL REVIEW A 79, 023810 

(2009).
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1.1 Introduction 

There have been spectacular advances in the field of high-brightness coherent sources in 

the XUV spectral range over the last 10 years. This range covers electromagnetic radiation 

with wavelength typically ranging between 2 nm and 50 nm, as shown in Figure 1-1.  

 

Figure 1-1.  Electromagnetic spectrum in the short wavelength domain. The XUV range is outlined. 

Three main types of techniques were used to generate coherent XUV sources with 

unprecedented characteristics in terms of peak spectral brightness, pulse duration, etc, thus 

opening new fields of applications. In this thesis we have focused on one of them, XUV lasers 

generated from hot and dense plasmas, which will be introduced in detail in this chapter. The 

two other sources that we will briefly introduce are: high-order harmonics generation (HHG) 

from femtoscond laser and XUV free-electron lasers (XUV-FEL) from accelerators. These 

two sources have specific characteristics, which are complementary from plasma-based XUV 

lasers, but they share also some common properties. 

1.1.1 High-order harmonic XUV radiation 

High-order harmonic generation from a high-intensity, femtosecond laser is a phenomenon 

that has both microscopic and macroscopic aspects. The creation of harmonic radiation by 

dipolar interaction between a rare gas and a femtosecond laser pulse is linearly polarized at 

the atomic scale. The quantum models can explain this process and predict the amplitude and 

the phase of the polarization created. During the interaction of an intense infrared laser field  

(I~1014 W/cm") with the gas atoms, there is a partial ionization of the atoms by tunnelling 

processes [1]. The electrons produced by this ionization are accelerated in the laser field, and 

789#
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then they recombine with their parent ion. It is during this recombination that the harmonic 

frequencies of the fundamental pump laser frequency are emitted, up to orders that can be 

very high (~100), thus reaching the XUV spectral range [2]. For reasons of symmetry, only 

odd orders harmonics are generated [3]. The spectrum is thus a comb of odd harmonic lines 

with intensity almost constant over a large range, followed by a rapid decrease [4]. These 

sources deliver a train of ultrashort pulses with duration ~100 attoseconds, a timescale which 

was never reached by any other source. This is an advantage for applications that require high 

temporal resolution to probe phenomena such as very short movement of electrons in atoms 

or molecules. In addition, the harmonic beam has good optical qualities, such as high spatial 

coherence. As we will see, this was used to improve the coherence properties of XUV lasers, 

by using HHG radiation as a seed of plasma amplifiers [5-7]. Seeding of XUV laser plasmas 

with HHG radiation is also a way to increase the energy of HHG pulses, which are currently 

limited to ~1#J in the 30-40 nm range, and down to ~10 nJ below 20 nm [8]. 

 

1.1.2 XUV free-electron lasers 

Synchrotron radiation is emitted when a charged particle is subject to acceleration. This 

effect was used since the 1970s to devolop synchrotron radiation facilities where the source 

covers a spectral range from infrared to X-ray. By the 1990s, the third generation 

synchrotrons began to appear, as the ESRF (European Synchrotron Radiation Facility) in 

Grenoble, or SOLEIL in France. The peak power of the sources of this generation is about 104 

- 105 Watts and pulse duration is of the order of ~100 picoseconds. 

The X-ray Free Electron Lasers (XFELs) represent the fourth generation synchrotrons. 

They produce radiation pulses at intensities several orders of magnitude higher than those of 

the third generation machines. The source principle of this generation is to combine the 

synchrotron radiation with the characteristics of source pumped by laser. The idea is to 

replace the amplifying medium by a relativistic electron beam produced by a particle 

accelerator. Indeed, relativistic electron bunches are injected into an undulator where there is 

a spatially periodic magnetic field. Periodically deflected electrons emit synchrotron radiation 

of short wavelength. The electrons with lower speed absorb emitted photons and are 

accelerated before emitting photons at shorter wavelengths. The beam is then amplified by a 

single pass through undulator structure effect by SASE (Self Amplification of Spontaneous 

Emission). The wavelength of the X-FEL varies continuously with the magnetic field of the 

inverter and the kinetic energy of electrons, resulting at the end in a tunable coherent source. 
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The pulse duration, which depends on the pulse duration of the bunch of particles is very 

short, of the order of 100fs. In addition, the beam has good optical properties: low divergence, 

linear polarization and high spatial coherence. The temporal coherence is however limited.  

The unprecedented, ultra-high peak brightness reached by XFELs opens new possibilities 

of exploration in innovative fields such as Warm Dense Matter [9], of flash-imaging of 

complex molecules. [10]. In the XUV range the first demonstration of free-electron lasing 

was achieved at the FLASH facility in Germany [11]. More recently lasing was extended to 

the soft X-ray range at the LCLS facility in the US [12] A number of facilities are currently 

under contruction or planned in several countries. However, the high cost and limited access 

to such facilities are real limitations to its useness. Thus smaller-scale sources, like plasma-

based XUV lasers, which can be implemented at the laboratory or university scale, even with 

more modest performances, are still worth being developed. 

 

1.2 Pumping schemes for XUV lasers 

The emission of XUV laser relies on on the creation of a population inversion between two 

atomic levels separated by an appropriate energy. Because of this population inversion, 

radiation at the wavelength of the corresponding transition will be amplified by stimulated 

emission of radiation. It was in the early 70s that the first observation of population inversions 

in the XUV domain was reported [13]. Mainly two different pumping schemes were then 

actively investigated: the recombination pumping and the collisional excitation pumping.  

Recombination pumping can be induced by the rapid cooling of a plasma which is initially 

ionized and heated by a relatively short (ps to ns) laser pulse [14, 15]. Recombination 

pumping was also observed in a plasma directly ionized by the electromagnetic laser field 

(Optical Field Ionization: OFI) [16]. Recombination pumping demand less driver laser energy 

than the collisional excitation pumping that will be presented in detail below. It can in 

principle be extended to wavelengths below 1 nm, thus at shorter wavelength than with the 

collisional excitation pumping whose limit is about 3 nm. However until now only modest 

amplification has been achieved with recombination.  

The first unambiguous demonstration of XUV laser emission was reported in 1985 [17], in 

a selenium plasma pumped by a kJ-class laser at Livermore Lab (US). Enormous progress has 

been made since then in terms of wavelengths and output characteristics, through a better 

control of the pumping schemes and of the creation of the amplifying medium. This progress 
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has also benefitted from the spectacular development of the high-power lasers used as a 

pump, especially through the advent of the CPA (Chirped Pulse Amplification) technique in 

the late 80s [18]. As we will explain below, the use of picosecond pulses delivered by high-

power, CPA lasers, has led to a substantial reduction of the pump laser energy required to 

generate XUV lasers, lowering from several kilojoules to a few joules. At the same time the 

repetition rate was significantly increased, typically up to 10Hz instead of a few shots per 

hour. 

As we will see, all the operational XUV laser rely on the same pumping mechanism, 

namely collisional excitation of highly charged ions, but different techniques of plasma 

creation were used. This leads to a variety of XUV laser sources, with different characteristics 

in terms of lasing wavelength, output energy or pulse duration. As mentioned above, 

significant improvements have been achieved recently, especially in terms of spatial 

coherence of the beam, through the amplification of high order harmonics in the gain medium 

of XUV laser [5, 6]. 

Finally XUV laser applications are developed in parallel with progress of sources. First 

encouraging experiments demonstrate the importance of these sources for studies for various 

applications such as dense plasma probing [19, 20], high-resolution microscopy [21], nano-

patterning [22], and in various fields such as warm-dense matter physics [23], physical 

chemistry [24], laboratory astrophysics [25] or condensed matter physics [26]. 

 

1.2.1 Collisional excitation pumping of Ne-like and Ni-like ions 

In this pumping mode, collisions of free electrons with multicharged ions in their ground 

state are the direct cause of population inversions. Indeed, the upper level of the laser 

transition is populated by collisional excitation from the ground state of the lasing ion, while 

the lower level is rapidly depopulated by radiative decay to the ground state, as shown by the 

diagrams presented in Figure 1-2.  

The spontaneous radiative decay of the upper level to the ground state is prohibited by 

selection rule. In order to populate efficiently the upper level of the lasing ions, the average 

energy of the free electrons must be equal to or greater than the energy difference between the 

upper level and the ground state. As a result, the plasma electron temperature must be high, 

namely a few hundreds of electron volts. On the other hand for the collisional excitation to be 

probable, the electron density must be high, typically of few 1020 cm-3. Finally the ion species 
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which are the most appropriate for this pumping scheme are those which have a closed-shell 

configuration in the ground state, in particular neon-like and nickel-like ions. This is because 

they have a high ionization energy. They are thus more difficult to ionize and they can be 

produced in the plasma with a larger abundance.  

Figure 1-2 shows the different transitions on which population inversions can be achieved 

by collisional excitation pumping. These transitions are between excited states with the same 

prinipal quantum number ($n = 0): 3p - 3s for Ne-like ions and 4d - 4p for Ni-like ions. In 

both ions the component with upper state J=0 to lower state  J=1 gives the largest population 

inversion. This is because the largest excitation rate from the ground state level (J=0) is the 

monopole excitation rate [27].  

 

Figure 1-2: Diagram of pumping by collisional excitation. Left) neon like ion, the transition A is the most intense 
among the six possible transitions. Right) nicklellike ion. Transition A is more intense for atoms of high atomic 
number [28]. 

 

Collisional excitation pumping was demonstrated in many elements in the Ni-like and Ne-

like isoelectronic series. The wavelength of the lasing transitions decreases when the atomic 

number of the lasing element increases. Ni-like ions are more favourable than Ne-like ions to 

reach lasing wavelength below 15 nm, because the ratio between the laser transition energy 

and the excitation energy is higher [28].The shortest wavelength at which (weak) lasing was 

observed is # = 3.5 nm in Ni-like gold [29]. 

Collisional excitation pumping in plasmas was achieved in essentially four different 

configurations, and by different techniques illustrated in Figure 1-3. These different 

techniques have led to 4 types of XUV lasers with different output characteristics, referred to 

as: (a) QSS (quasi-steady state), (b) OFI, (c) capillary discharge, (d) transient. We will now 
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introduce each of them and show that the plasma parameters in the gain zone are different in 

each case, which is of particular interest for the study of the spectral behaviour of the lasing 

lines. 

 

 

Figure 1-3. Schematic representation of 4 types of collisional XUV lasers: (a) quasi-steady state XUV laser; (b) 
OFI XUV laser; (c) capillary discharge XUV laser; (d) transient XUV laser 

 

1.2.2 Quasi-steady state pumping 

The generation of collisional excitation pumping XUV lasers in the quasi-steady state 

(QSS) regime requires a pump laser energy of typically a few hundred joules to 1 kilojoule, 

with a pulse duration of the order of 0.5 to 1 ns [30, 31]. It was thus studied in high-energy 

lasers installations. The main pulse is preceded by a low energy prepulse to reduce the effect 

of refraction, which will be discussed below. Since the gain coefficient achieved is relatively 

low, saturation of amplification is reached by operating in a half-cavity configuration, in 

which the XUV beam go through the gain medium twice (see Fig. 1-3 (a)). 

An example of QSS XUV laser operation is currently the PALS XUV laser (Prague, Czech 

Republic), where one of the experiment described in this manuscript was carried out. This is a 

neon-like zinc laser emitting at 21.2 nm. The XUV laser beam produced with half-cavity 

delivers 4 to 10mJ per pulse depending on the delay between the prepulse and the main laser 

pulse [32]. The duration of the XUV pulse is about 150 ps. These features make this laser the 

most energetic XUV laser in the world. It is commonly used as a source for scientific studies 

[33]. 
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In Ne-like Zn XUV laser, the plasma parameters in the gain region are typically [34]: 

Ne~2-5%1020cm-3, kTe~ 150-200eV, kTi~ 200-300eV. 

Despite the fact that the quasi-steady state XUV lasers are currently the most energetic 

coherent XUV sources, the large pump energy required restricts them to large-scale facilities 

with low repetition rate of 1-2 shots per hour. It was thus necessary to develop sources with 

more compact and economical installations as we shall see below. 

 

1.2.3 Optical-Field Ionization pumping 

The interaction of a high-intensity femtosecond laser pulse with noble gas atoms can also 

lead to the generation of a source different from the high order harmonics described in the 

introduction of this chapter: OFI (Optical Field Ionization) XUV laser. The mechanisms of 

creation of population inversions are the same as those used in the QSS XUV lasers, ie 

electron-ion collisions. The femtosecond laser pulse, with few hundred millijoules of energy, 

is focused into a jet of gas, as shown in Fig. 1-3 (b). The intensity of the pump laser should be 

of the order of 1017W/cm ", and its polarization must be circular [35, 36]. Noble gas atoms are 

ionized by the tunnel effect as a result of the intense laser field, which distorts the Coulomb 

potential barrier. The laser intensity controls the highest ionization stage that can be reached. 

Here it is chosen to produce a large abundance of neon-like, nickel like,  or palladium like 

ions. 

The first observation of lasing with the OFI technique was reported by Lemof f et al. [37] 

in Pd-like Xe. The technique was extended to Ni-like Kr  by the group of S. Sebban at LOA 

(Palaiseau) in 2000 [38]. The first spectacular demonstration of seeding with HHG was 

achieved by the same group in 2004 [5]. The optical quality of the beam, in particular its 

spatial coherence, was remarkably improved [39]. 

The typical duration of the XUV laser pulse was estimated as ~5 ps [7]. The output energy 

of the OFI-pumped XUV lasers is relatively low, of the order of 1 #J or less. However recent 

experiments performed in Taiwan have shown that this energy can be  increased by operating 

at a higher gas density with a preformed plasma waveguide [40]. However one of the main 

drawback of OFI-pumped XUV lasers is the limited number of available lasing wavelengths. 

In Ni-like Kr XUV laser, the plasma parameters in the gain region are typically:  

Ne~1018 cm&3[41], kTe~ 450eV [38], kTi~ 6eV[42]. 
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1.2.4 Capillary-discharge pumping 

It was proposed in the 1980s to generate a capillary-discharge XUV laser, where plasma 

creation is based on electric shock. The first demonstration of lasing at 46.9 nm in Ne-like Ar 

was reported by the team of J.J.Rocca at Colorado State University in 1994 [43]. This XUV 

laser source has been then optimized by the same team and it is now a reliable source used for 

many applications [44]. 

To generate this XUV laser emission, a pulse of electric current (duration ~20ns, peak 

intensity ~few kA) ionizes the gas and creates a plasma along a tube of a few millimeters in 

diameter and ~30 centimeters in length, filled with argon gas. The Lorentz forces, which 

result from the interaction of the current with the magnetic field, lead to a strong radial 

compression of the plasma column. As a result the temperature and the electron density 

increase and the plasma is ionized. When the compression is maximum, population inversions 

in Ne-like Ar are produced and XUV laser emission is observed at the output of the plasma 

column (see Fig. 1-3 (c)).  

The gain coefficient is relatively low but saturation of amplification can be reached due to 

the great length of the plasma amplifier. The energy of the XUV pulse can be as high as 1 mJ, 

for a duration of the order of 1 ns. Despite the fact that capillary-discharge XUV lasers are 

available only at the single wavelength of 46.9 nm, and that their pulse duration are relatively 

long, they have a high pulse energy and they can be operated at a high repetition rate of 7 Hz 

[45]. They are thus good candidates for applications such as interference lithography [22]. 

In Ne-like Ar XUV laser, the plasma parameters in the gain region are typically [46]: 

Ne~1.8*1018 cm-3, kTe~ 100eV, kTi~ 100eV. 

 

1.2.5 Transient pumping 

Transient pumping was proposed by Afanasiev and Shlyaptsev in 1989 [47], and has led to 

remarkable progress in the development of XUV lasers. The expansion of this method in 

many laboratories worldwide has been favored because of the parallel development of High-

power CPA lasers.  
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Transient pumping involves using two laser pulses separated by a delay of a few hundred 

picoseconds (see Fig. 1-3 (d)). The first pulse, called "long pulse" with a few hundred 

picoseconds duration, is focussed on a solid target to create plasma with a good degree of 

ionization. The second pulse, called "short pulse" with a duration of a few picoseconds, heats 

the free electrons abruptly, allowing for an efficient pumping of the lasing ions by collisional 

excitation. The heating time of the electrons by the short pulse is much shorter than the 

ionization time of the plasma, so that the electrons reach high temperatures of several hundred 

electron volts, without destroying the lasing ions by further ionization.  

Very high gains of several 10 cm-1 can be achieved with the transient pumping, so that 

saturation of amplification can be reached even with targets only a few millimeters long [48]. 

Because of the short gain lifetime of a few picoseconds, it is necessary to apply a traveling 

wave pumping, ie the energy wavefront of the main short pulse should be tilted by 45° [49].  

Further improvement of the pumping efficiency and reduction of the pump energy was 

obtained by irradiating the preformed plasma with the second picosecond pulse under a small 

grazing angle (typically 15-20°), in the so-called GRazing Incidence Pumping (GRIP) 

geometry [50]. This geometry, which inherently provides traveling wave pumping, increases 

the path length of the pump laser rays in the gain region of the plasma, thereby increasing the 

fraction of the pump energy absorbed in that region. Under grazing incidence, the pump beam 

is refracted in the plasma density gradient, like a usual mirage effect. The density of the 

turning point Ne0, which is also the density at which laser absorption is maximized, is entirely 

defined by the grazing (GRIP) angle ' and by the wavelength #p of the pump laser, following 

the relation: , where Ncp is the critical density corresponding to the pump 

laser wavelength. The GRIP angle is thus chosen so that Ne0 and the electron density of 

maximum gain coincide. 

Thanks to the GRIP geometry, the pump energy required to generate transient XUV lasers 

was further reduced compared to normal incidence pumping. As a result, GRIP transient 

XUV lasers were generated using Ti-Sa CPA laser drivers, instead of Nd-glass lasers, leading 

to a significant increase in the repetition rate, up to 10 Hz [51]. New developments of this 

pumping scheme, involving the optimization of the irradiation geometry [52] or the use of 

prepulses [53], have been achieved worldwide over the last ~5 years. They have led to stable 

and well characterized saturated XUV lasers being now operational at various wavelengths 

ranging from 32.6 nm (Ne-like Ti [54]) to 8.8 nm (Ni-like La [55]), with less than 10-J of 
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pump laser energy. The duration of gain lifetime as well as that of the XUV laser pulse are 

significantly shorter than what is obtained in the QSS regime, namely a few picoseconds. This 

aspect will be investigated and discussed in chapter 4. The output energy of transient XUV 

lasers is or the order of a few #J. 

The transient collisional pumping offers several advantages: it can generate XUV sources 

with a pump energy of only a few joules, which allows for compact installations called "table-

top", making them good candidate for XUV applications. Several XUV lasers facilities are 

available or under construction in the world. One of the most advanced among them is the 

installation LASERIX University Paris Sud (France), which is based on a laser driver which 

delivers pulse 500ps-2J to 1ps-2J at a repetition rate of 10 Hz. 

Seeding transient XUV laser amplifiers with high-order harmonic radiation was 

demonstrated in 2006 by the group Prof. Rocca at CSU in Ne-like Ti plasma at 32.6 nm [56], 

and more recently in Ni-like Ag ((= 13.9 nm) and Ni-like Cd (( = 13.2 nm) [6]. The optical 

quality of the amplified harmonic beam was observed to be substantially improved [57]. 

Finally, during this thesis we have been involved in the characterization of the temporal 

coherence and spectral width of a seeded transient XUV laser emitted at 18.9 nm in Ni-like 

Mo. The results will be presented and discussed in chapter 4. 

In Ni-like Mo XUV laser, the plasma parameters in the gain region are typically: 

Ne~1020cm-3 [58-60], kTe~ 250-500eV [58, 61, 62], kTi~ 47eV[58]. 

"

1.3 Amplification of XUV lasers in plasmas 

In a conventional laser, the active (inverted) medium is placed in a resonant mirror cavity 

in which radiation will oscillate and intensity will grow. This solution is not applicable to 

XUV lasers for mainly two reasons: (i) highly reflective mirrors at normal incidence are not 

available in the XUV spectral domain; (ii) the lifetime of population inversions is of the same 

order of, or even shorter than the transit time of the photons in a single pass. Thus XUV lasers 

are usually operated in single-pass, Amplification of Spontaneous Emission (ASE) mode. In 

this ASE mode, spontaneous emission at the lasing wavelength induces stimulated emission, 

which is preferably amplified (in both directions) along the length of the active medium. In 

order to maximize the extraction of energy a large gain-length product is required, possibly 

reaching saturation of amplification (g.L ~ 15-20).  
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Hence in order to generate a saturated XUV laser, both the gain coefficient and the 

amplifying length must be large enough, so that the gain-length product is of the order of 15 

or larger. In laser-produced plasmas, we will see that the refraction of the XUV radiation in 

the strong density gradient can prevent an efficient propagation and amplification. We will 

first recall the main temporal and spatial features of laser-produced plasmas. 

1.3.1 Structure of laser-generated plasmas 

When a high-power laser beam interacts with a solid target, a plasma can be created if the 

laser intensity is greater than approximately 108W/cm ". In this case the first free electrons are 

created by multiphoton absorption from the first moments of interaction (less than a few 

picoseconds). They are then accelerated by the electric field of the laser wave and collide with 

the electrons of the atoms linked to the target. These create new electrons and leads to the 

formation of the plasma that expands rapidly in the opposite direction of propagation of the 

laser beam. In reaction to the relaxation effect of the plasma a shock wave takes birth 

propagating towards the interior of the target (the principle of rocket effect). Plasma is 

macroscopically characterized by two important parameters, temperature and density, which 

evolve rapidly in both time and space.  

 

Figure 1-4: Structure of a plasma created by a nanosecond laser pulse. The laser wave is reflected at the critical 
surface. Te is the electron temperature, Ne is the electron density, and Nc is the critical density [63]. 

Figure 1-4 shows a schematic evolution of the electron temperature and density as a 

function of the distance to the target surface, at a given time during the laser pulse irradiation. 

The laser beam penetrates from the right and is absorbed and reflected at the critical density. 

Critical density is an important quantity for the laser-plasma interaction. The critical density is 

due to the fact that the free electrons which are accelerated by the laser field come into 

collective oscillation at a particular frequency $pe that resonates with the oscillation frequency 
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$ of the laser field. This plasma frequency $pe is obtained from the dispersion equation of the 

electromagnetic wave and is given by the following expression: 

   (1-1) 

where Ne denotes the electron density of the plasma, e is the electron charge, me is the 

electron mass, and )0 the vacuum permittivity. 

For the laser with frequency *, the refractive index of the plasma depends on the electron 

density through the relation: 

   (1-2) 

The critical density corresponds to the density at which the free electrons oscillate at the 

frequency of the laser, when the refractive index becomes zero, and the incident laser wave is 

strongly absorbed and reflected. The critical density can be expressed as follows:"

        (1-3) 

where ( is the wavelength of the incident laser."

For the Ti:Sa pump laser (( = 0.8 #m) used to generate GRIP transient XUV lasers, the 

critical density is thus of Nc = 1.56%1021 cm-3. 

The subcritical region (Ne < Nc), commonly called corona, is a region characterized by low 

density and high temperature (typically of the order of few 100 eV to keV). In this zone, the 

energy of the laser pulse is absorbed by two main processes: inverse bremsstrahlung (IB) 

absorption [64, 65], and resonant absorption, which occurs at the critical density. The former 

process is collisional absorption. The electrons oscillate in the laser field, making random 

collisions with ions, and absorbing photons in this process. The same process will occur with 

the wave after reflection at the critical surface. The IB absorption coefficient is inversely 

proportional to the electron temperature and increases with the intensity of the laser pulse. It 

is therefore necessary that the laser intensity is a compromise in order to create plasma hot 

enough while having a high absorption coefficient, its value at around 1014 W / cm". 

Finally a portion of the laser energy deposited into the absorption zone is used for heating 

the electrons in the corona, where the temperature remains virtually constant, while the other 

part of the energy is transferred by conduction to the remainder of the plasma. In the 
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conduction zone, or overcritical region (Ne>Nc), the energy transferred to the target by 

thermal conduction and by electronic radiative transfer contributes to further ablate the target 

and to maintain the flow of plasma (ablation front). The expansion of the heated plasma 

created by reaction force tends to compress the material upstream of the front ablation (zone 

under shock). 

As we have explained above, the population inversions created by collisional excitation 

pumping require a high electron density (~1020 cm-3) and a high electron temperature (few 

100 eV). They are thus created in the corona, just below the critical density, at the time when 

the temperature of the plasma is maximum, ie ~ the peak of the pump laser pulse. In the 

region below Nc there are strong electron density gradients, which affect the propagation and 

the amplification of the XUV radiation in the direction perpendicular to the gradient direction 

(ie parallel to the target surface), as we will see in the paragraph below. 

 

1.3.2 Refraction of XUV laser beam 

As the laser-produced plasma expands from the target surface into vacuum where the 

interaction takes place, the density of the plasma decreases very rapidly. In particular the 

gradient of electron density is very steep in the region close to the critical density Nc and then 

relaxes at larger distance from the target surface. Because of this density gradient, to which 

corresponds a variation of the plasma refractive index, the XUV beam propagating along the 

plasma in the direction parallel to the target surface undergoes refraction, as shown in Figure 

1-5. If this effect is too strong, the beam can be bent away from the amplification zone, 

reducing the effective amplification length of the beam [66]. 
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Figure 1-5: Refraction and propagation of a laser beam in a high density gradient XUV plasma. 

 

Using equation (1-2) which assumes that the free electrons of the plasma have the 

dominant contribution, the refractive index n of the plasma is written: 

           (1-4) 

where Ne(x, y, z) is the distribution of the electron density, and Nc is the critical density 

defined in (1-3). 

Taking into account the fact that the critical density is greater than the electron density by 

several orders of magnitude, equation (1-4) can be rewritten as follows: 

   (1-5) 

The change in the refractive index causes a slight deflection of the XUV beam, so the path 

of beam propagating in a medium of index variable is described by the following Eikonal 

equation: 

                  (1-6) 

where  is the differential displacement along the beam trajectory and 

r represents the given position of the beam.  

In the first QSS XUV lasers, refraction was a severe limitation that prevented to reach 

saturation. This problem was then addressed by using a low energy prepulse before the main 

heating pulse that helped to smooth the density gradient in the gain zone [31]. However 

refraction of the XUV laser cannot be eliminated completely and this leads to a small 

deflection of 2-10 milliradians of the beam at the output of the amplifying plasma.  

"

1.3.3 Amplification in the small-signal gain regime 

In this part we will recall the main equations that are used to calculate the intensity of 

the XUV laser beam at the output of the amplifying plasma of length L. Here we assume that 

the XUV laser is operated in the so-called small-signal gain regime, ie well below saturation. 
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This means that the population inversion is not affected in a significant way by stimulated 

emission from the upper level. 

This calculation is valid for an elementary volume dV of cylindrical length dl of 

homogeneous and stationary plasma, that is to say for which the variations in the density and 

temperature are considered negligible. In particular, we neglect the effects of refraction 

mentioned above. In the volume dV the plasma is characterized by its emissivity j(+) and the 

gain coefficient g(+), which correspond to a transition between two atomic levels with 

populations of upper and lower level N2 and N1 respectively. The equation of radiative 

transfer can be written: 

   (1-7) 

where  is the radiation intensity in W.cm-2. 

The emissivity j (+) is the spectral energy density radiated by spontaneous emission per 

unit volume and per unit time and is given by: 

     (1-8) 

where A21(+) is the Einstein coefficient which represent the probability of spontaneous 

emission in the frequency interval [+, ++d+]. It is written as the product of the total probability 

of spontaneous emission A21 between two levels and the normalized function of spontaneous 

emission spectral profile ,(+): 

     (1-9)
   

 

with  satisfies: 

                                             
                               (1-10)

   
 

The gain g(+) due to the difference of the population of the two levels is positive when N2> 

N1 (population inversion). For radiation with a frequency in the range [+, ++d+] it is expressed 

by: 

  (1-11) 

where g1 and g2 are the statistical weights of levels 1 and 2. 
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In equation (1-7), integrating along a length L of plasma, we obtain the analytical 

expression of the intensity : 

        (1-12) 

The quantities  and  depend on the profile of the line. We assume that the profile 

is the same for the two quantities. On the other hand, since the spectral width of the 

considered transition is very small compared to the frequency of the radiation, we can replace 

+ by the central frequency +0, which gives: 

                                                 

          (1-13) 

where j0 and g0 are respectively the emissivity and the gain at the centre of the line. 

Equation (1-10) is then written: 

  
   (1-14) 

The spectrometers used to observe the XUV laser lines does not have sufficient resolution 

to resolve spectral profile of the line, thus what is measured is the spectrally integrated 

intensity 

           
              (1-15) 

For a gain-length product typically greater than 3, and a Gaussian profile of the line, G. J. 

Linford [67] proposed an analytical expression that describes the behaviour of the integrated 

intensity as a function of the length of the amplifying medium 

   (1-16) 

where !+ is the spectral full-width at half maximum.  

According to equations (1-12) and (1-16) the intensity grows exponentially as a function of 

the gain-length product. But the intensity does not increase indefinitely with the length, and 

from a certain value it enters a saturation regime. 

 



Chapter 1: XUV lasers generated in hot dense plasmas 

" MU"

 

 

 

1.3.4 Amplification in the saturation regime 

Saturation can be considered as the maximum of energy stored in the population inversion 

that can be extracted from the medium by stimulated emission. In other words, when 

stimulated transitions between the upper and lower become significant, it tends to decrease 

the laser gain which goes to zero. In the saturation regime the intensity stops growing 

exponentially and enters a linear phase as a function of the length. The amplified radiation is 

intense enough to significantly reduce the population of the upper level of the laser transition 

N2, which has no time to recover by collisional excitation pumping. The saturation intensity 

Isat is defined as the intensity for which the gain is reduced by half. It is expressed as: 

                                                          

                                              (1-17) 

Where  is the XUV laser photon energy, - is the recovery time of the gain, which 

depends only on the rate of depopulation of the upper level of the transition, and  is the 

cross section for stimulated emission, which is independent on populations. 

                                    
, with               (1-18) 

When populations reach equilibrium very quickly (steady-state), we can write for the 

saturated gain: 

                                                     

                                         (1-19) 

In the strongly saturated regime, where the gain , we can write from (1-14): 

                                                                                              (1-20) 

 

1.4 Coherence of XUV lasers 

Lasers beams are generally characterized by their optical properties such as their 

divergence, their wavefront or their coherence. The study of these points requires to define the 

spatio-temporal variation of the phase and amplitude of the electromagnetic field from one 
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point to another. In the present thesis we will focus more specifically on the temporal 

coherence properties of XUV lasers.  

In the electromagnetic field as being constituted by superposing in time and space of 

elementary fields, coherence is defined as the correlation between these elementary fields at 

different points separated in time and in space.  

 

Figure 1-6: Observation of interference fringes with Young slits 

Take the well-known Young’s slits experiment represented in Figure 1-6. In the plane of 

observation P2, the intensity is not the sum of the intensity transmitted by each slit, but is 

inferred from the interference fringes which are formed in according to the coherence of the 

source S. Indeed in the case of Young’s slits, the two secondary beams from the slits F1 and 

F2 have different amplitudes and phases arriving at the point P because they do not travel the 

same distance (F1P . F2P). Therefore the fringes formed in P can be brilliant (Ip max) or dark 

(Ip minimum). The path difference between the two beams can be expressed as a function of 

the wavelength # by the following expressions: 

                                                         Ip maximum 

                                              Ip minimum                          (1-21) 

where IP is the intensity at point P and n is an integer. 

The visibility (or contrast) of the interference fringes, measured experimentally is defined 

by: 

                                     
                                            (1-22) 
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where Imax and Imin are the maximum and minimum intensity in interference fringes. V then 

determines the degree of coherence of the source and varies between 0 (incoherent radiation) 

and 1 (full coherence). 

To study more deeply the concept of coherence and show the relationship between 

visibility V of the observed fringes and the degree of coherence of the source, it is necessary 

to use a formal description of the correlation fields for example dealing with the Young’s slits 

experiment using a complex representation of the fields. 

In general, the (complex) quasi-monochromatic electromagnetic field is given by 

                                                                          (1-23) 

where  is a complex amplitude slowly variable and * is the angular frequency of the 

wave. The intensity of a quasi-monochromatic source is then given by: 

                                                                                               (1-24) 

where )0 is the permittivity of free space. 

For the Young slit case (Figure 1-6), the total field amplitude at the point P is given by: 

 

                  (1-25) 

With  and , and are respectively the transit times and distances between P 

and the points F1 and F2. 

The intensity at P is given by: 

                                                                            (1-26) 

where E* is the complex conjugate of E. 

Because of the fluctuations of the intensity of the emitting source, mainly caused by the 

random processes of spontaneous emission, it is necessary to take an average over the 

observation time [68] 

                                                                 (1-27) 
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Using expressions (1-25) and (1-26), and considering that the fields are stationary, we can 

write: 

                                                                       (1-28) 

with  

We define the complex coherence function: : 

                                                                        (1-29) 

After normalization, we also define the complex degree of coherence  : 

                                             
                  (1-30) 

The visibility or contrast of the fringes can then be expressed as: 

                                          
                  (1-31) 

To summarize, the coherence function  characterizes the degree of correlation in 

F1 and F2 fields at - time later. The relation (1-31) between V and  makes it possible to 

directly infere the degree of coherence from the knowledge of the fringe visibility, and vice 

versa.  

We distinguish two types of coherence: temporal (or longitudinal) coherence and spatial 

(or transverse) coherence. As illustrated in Figure 1-7, the temporal coherence concerns the 

correlation of the fields at a given point at two different times separated by a time -. The 

spatial coherence concerns the correlation of the fields, at the same time, between two points 

F1 and F2 transversely positioned as in the Young’s slits experiment. 
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Figure 1-7: Propagation of the wave front of an electromagnetic wave passing through the two points F1 and F2 
at the same time t. 

1.4.1 Temporal coherence 

Figure 1-7 illustrates the propagation of the wave front of an electromagnetic wave passing 

through the point F1 at two different times, respectively, t and t+-. Temporal coherence is 

defined as the correlation between the amplitude of the field at time t and t+-. 

In this case, the coherence function  is given by: 

                                      (1-32) 

The degree of coherence is then: 

                                        
                                      (1-33) 

This quantity can be measured using an interferometer, but requires that the source is 

monochromatic for the superposition of waves gives rise to an interference phenomenon. In 

particular, we will highlight the characteristic time , called coherence time, which is the 

maximum delay allowed between two wavefronts so that they can produce interference. The 

longitudinal coherence length is then . 

The theorem of Wiener-Khinchin [69], states that the Fourier transform of the coherence 

function , corresponds to the power spectral density of the radiation . It reads: 

                                               
                (1-34) 
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The temporal coherence is thus directly related to the spectral width of the radiation. If we 

are able to measure experimentally the coherence time, it allows to deduce the spectral width 

!! of the source given by: 

                                                   
                                        (1-35) 

where % is a numerical factor, which depends on the actual spectral profile &(!). 

The Wiener-Khintchin theorem as well as relations (1-22) and (1-23) are the core of the 

interferometric measurements that will be described in chapter 4. As we will see, XUV lasers 

are characterized by a very good temporal coherence, with a coherence length of the order of 

several 100#m to 1 mm. Correspondingly, the spectral width is extremely narrow, with a 

typical bandwidth !!/! ~10-5. 

 

1.4.2 Spatial coherence 

As already mentioned above, spatial (or transverse) coherence is defined as the correlation 

between fields at two different points at the same time, such as two spatially separated F1 and 

F2 shown in Figure 1-7. 

Back to the Young’s slits experiment and using (1-29), we can define the coherence 

function as follows: 

                                                                               (1-36) 

A high spatial coherence therefore results in a high degree of correlation between the 

amplitudes of the fields at the same time. This then results in a high fringe visibility. In the 

case of an incoherent source observed at a great distance, the spatial coherence function can 

be calculated by the Van Cittert-Zernicke theorem [70]. 

Two parameters strongly influence the spatial coherence of a beam: the first is the 

transverse size of the source (which may vary from one shot to another, especially in the case 

of XUV lasers); the second is the angle wherein the beam is seen for a given position. The 

spatial coherence length lcs of a Gaussian beam can be approximated by the expression [34]: 

                                                            
                                                 (1-37) 

where a is the transverse dimension of the source, and L is the distance between the source 

and the measuring position. 
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The spatial coherence of XUV laser beams has been measured by several groups, for all 

the different types of collisional XUV lasers described in this chapter (see section 1-2). 

Except for the capillary-discharge XUV laser for which the spatial coherence was reported to 

be almost complete for the longest plasma lengths [71], the beams of the other types of 

collisional XUV lasers (OFI, QSS, transient) exhibit a limited spatial coherence. Typically the 

coherence length is of ~100#m at a distance of 1 meter from the source [72-74]. "

Several methods were proposed to improve the spatial coherence of XUV laser beams. 

Until now, the most promising one is the injection of coherent high-order harmonic radiation. 

 

 

1.4.3 Improved spatial coherence by amplification of harmonics 

The technique of seeding the XUV laser plasma with a coherent high-order harmonic pulse 

is directly analogous to the concept of "oscillator-amplifier". The harmonic pulse acts as the 

oscillator, and it is injected and amplified in the amplifier plasma column. 

Following the limited success of the first attempt at the Rutherford Laboratory in 1995 

[76], the first experimental demonstration of strong seeding amplification was achieved at 

LOA in 2004 [5]. The 25th harmonic of a femtosecond Ti-Sa laser pulse was focused at the 

entrance plane of an OFI-pumped Kr plasma. A strong amplification of the harmonic signal 

was observed at the wavelength of the Ni-like Kr 4d-4p line (# = 32.8 nm). The amplified 

HHG beam exhibit a smoother spatial intensity distribution and the spatial coherence is 

observed to be significantly improved [39]. 

In 2006, the technique of seeding with HHG radiation was extended to a transient pumping 

XUV laser by Rocca and coll. [57]. The 25th harmonic of a Ti:Sa laser pulse was again used, 

but seeded in a Ne-like Ti plasma pumped in the transient regime. Amplification of the 

harmonic pulse was observed at 32.6 nm, the wavelength of the 3p-3d J=0-1 lasing line in Ne-

like Ti. More recently seeding was also obtained at shorter wavelength by the same group in 

Ni-like Mo, Ag [76]. The spatial coherence of the seeded amplified beam for both 

wavelengths was observed to be almost complete. Finally the shortest wavelength at which 

seeding with HHG radiation has been achieved until now is 13.2 nm (4d-4p J=0-1, Ni-like 

Cd) [6].  

1.5 Spectral properties of XUV laser 
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In the last section of this chapter we will discuss the main physical processes involved in 

the spectral properties of the XUV laser lines.  

We first recall the main broadening processes that contribute to the intrinsic (ie. optically-

thin) line. Then we will briefly recall how the line is narrowed through amplification.  

The intrinsic line profile of the XUV laser line (or of any spectral line) is controlled by 

different hydrodynamic parameters that characterize the plasma (Te, Ti, Ne ...). As we will 

see below, both homogeneous broadening (collisional) and inhomogeneous (Doppler) 

broadenings can contribute to the profile, leading in general to the so-called Voigt profile 

V(!), given by the convolution of both effects:  

                                                                    
(1-38)

                
 

 

1.5.1 Homogeneous broadening 

A number of processes can cause homogeneous broadening of the spectral line profile, as 

the radiative decay (spontaneous emission) or the effect of elastic or inelastic electron 

collisions. The effect of electron collisions is usually described in the impact approximation, 

where the duration of the collision is short compared the transition lifetime. 

In this case, the spectral profile of the line of interest is the same for all emitting ions and it 

can be found that it leads to a Lorentz function type [77]: 

                             

                  (1-39) 

Where  is the center frequency of the line and  is the full-width at half maximum.  

In general the linewidth !!H is expressed in terms of the sum of the rates of radiative and 

collisional decay of the upper level i and lower level j of the transition: 

                                                                                       
(1-40) 

where the sum over k includes all levels connected to levels i and j by radiative or 

collisional deexcitation. 
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1.5.2 Inhomogeneous broadening 

The inhomogeneous broadening of the spectral profile of the emission line is due to the 

existence of emitting ions at different center frequencies, caused by Doppler or Stark effects. 

The Stark effect is the perturbation of the emitter energy levels due to the average microfield 

from the neighboring ions. This effect is negligible in the case of collisional XUV lasers 

because it becomes significant only at very high density (typically greater than 1021 cm-3). 

 The Doppler effect is due to the thermal motion of the ions that changes their apparent 

emission frequency in the laboratory frame. If the velocity distribution is Maxwellian, this 

leads to a Gaussian spectral profile given by the following equation: 

                                      

    (1-41) 

The FWHM Doppler width !!D is given by: 

                                                 
                             (1-42) 

where m is the mass of the ion emitter and k is the Boltzmann constant. It is the plasma ion 

temperature Ti that determines the width !!D. Numerically !!D can be written as follows: 

                                                
                   (1-43) 

where Ti is expressed in eV, and m in atomic mass unit (amu). 

 

1.5.3 Effect of amplification and saturation on the spectral profile 

The intrinsic profile of the lasing line is then modified while radiation propagates along the 

plasma and is amplified. At the output of the lasing medium the XUV laser line is narrowed, 

as illustrated in Figure 1-8. The relation between the amplified and the intrinsic linewidths is 

in general complex, but can be evaluated in a simple case, below saturation, using the solution 

of the 1D-radiative transfer equation described in section 1.3. This aspect will be discussed in 

more details in chapter 2, where we will present the results of numerical simulations that we 

have performed, taking into account saturation effects. 
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Figure.1-8: Narrowing of the XUV laser spectral profile in the plasma amplifier 

The FWHM spectral width !!ASE of the amplified line is defined as: 

                                                                         
(1-44) 

By replacing the intensity I(!) by its expression (1-12) and assuming a large (but non-

saturated) gain-length G0L, we find: 

                                                      
                        (1-45) 

Where  denotes the FWHM width of the intrinsic (spontaneous emission) line. So, 

below saturation the XUV laser line is narrowed by a factor that is inversely proportional to 

the square root of the gain-length product. When amplification enters the saturation regime 

the evolution of the spectral profile is modified in a way that depends on the nature of the 

intrinsic profile (i.e homogeneous, inhomogeneous or a combination of both). This aspect will 

be discussed in more detail in chapter 2, and illustrated by detailed numerical simulations 

based on a radiative transfer model developed in [77]. 

 

1.5.4 Relationship between linewidth and minimum pulse duration 

In section 1.4 we have recalled that, following the Wiener-Khintchin theorem, the spectral 

profile of a source is linked to its autocorrelation function by a Fourier-transform, so that the 

coherence time and the frequency spectral width are Fourier transform pairs (see equations (1-

34) and (1-35) above).  

plasma 

"Amplification 

 Intrinsic spectral profile         Amplified spectral profile 
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For a fully coherent pulse ('11=1), the spectral evolution of the field amplitude is given by 

the Fourier transform of the field amplitude in the spectral domain. Hence the FWHM 

duration of such a pulse is the minimum that can be reached, it is called the Fourier-transform 

limit "FL. The Fourier-transform limit "FL and the spectral linewidth !! are thus inversely 

related. The exact relationship depends on the shape of the spectral profile (or of the temporal 

profile). Here we derive this relation in two simple, usual cases: 

 

 

 

 

a)、Exponential temporal pulse profile 

Assuming an electromagnetic field with an amplitude varying in time as: 

  t<0  E(t) = 0 

  t(0             (1-46) 

The intensity of this field is then: 

                                          
(1-47) 

The FWHM temporal duration of the pulse intensity is thus -/2. 

The field amplitude in the spectral domain is the Fourier transform of the amplitude in the 

time domain: 

                                                
(1-48) 

From [1-28] we thus find: 

                                      

                                      

(1-49) 

The corresponding intensity in the frequency domain is then: 
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  (1-50) 

The spectral intensity profile is a Lorentzian with a FWHM width )$ given by: 

                                                
                                       (1-51) 

 

b)、Gaussian temporal pulse profile 

We now assume that the temporal profile of the field amplitude is Gaussian, with a FWHM 

2": 

                                                
        (1-52) 

The corresponding field intensity can be written as 

                                                (1-53) 

where the FWHM duration of the intensity pulse is . 

 In the spectral domain the field amplitude is  

                                             
(1-54) 

                                                            
(1-55) 

where the FWHM spectral width is 4*(ln2)/ -. 

The corresponding field intensity is  

                  
            (1-56) 

The spectral intensity profile is a Gaussian with a FWHM width )$ given by: 

                                               
                                              (1-57) 

The results above are summarized in Table 1. 
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 Exponential/Lorentzian Gaussian/Gaussian 

E(t) - 2- 

I(t)=|E(t)|2 -/2  

E(*)=FT[E(t)] 2(log2)/ - 4(log2)/ - 

I(*)= |E(*)|2 2(log2)/ -  

Table 1-1. Temporal and spectral widths (FWHM) of the pulse for two types of temporal profiles 

 

In our experiments we measure the characteristics of the intensity pulse, not the amplitude. 

We can thus express the relationship between the Fourier-limit pulse duration "FL and the 

spectral linewidth )! as follows: 

 

Exponential/ Lorentzian: 

   

                                       or 
                                         

(1-58) 

Gaussian/Gaussian: 

                                                    
   

                                   or 
                                        

(1-59) 

The relations (1-58) and (1-59) will be used in chapter 2 and 4 when discussing the 

shortest duration that could be reached for XUV lasers. 
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2.1 Introduction 

In this chapter we will present numerical simulations that we have performed to investigate 

the behaviour of the spectral profile of the XUV laser line while it is amplified and saturation 

is reached. Our simulations are based on a 1D-radiative transfer code, developed by O. 

Guilbaud, which was described in his thesis [1]. This code calculates the spectral distribution 

of intensity of the amplified radiation, taking the intrinsic linewidth as an input data. We have 

used the results of calculations of intrinsic profile made by D. Benredjem (LAC, Orsay) and 

A. Calisti (PIIM, Marseille), using the PPP code. This code calculates the intrinsic line profile 

of the considered transition for given values of plasma density and temperatures (ionic and 

electronic). 

The main purpose of this chapter is to illustrate the different spectral behaviours that can 

apply to XUV laser lines, when the local plasma conditions in the gain zone are varied. The 

calculations were done for the Ni-like Mo 4p-4d line at 18.9 nm, but the qualitative behaviour 

discussed below would also apply for other elements and wavelengths. 

The second purpose of the study is to investigate how the shape of the XUV laser line is 

modified while it is amplified. We will see that our simulations predict that the shape of the 

amplified line tends to a Gaussian shape, even though the intrinsic profile is Lorentzian. 

Finally we have used the results of our simulations to evaluate the best conditions that 

would be necessary to achieve a Fourier-limit duration below 1 ps. 

 

2.2 Calculated intrinsic line profile 

The PPP line shape code [2] was developed by A. Calisti and collaborators in the PIIM 

laboratory. It is a multi- electron radiator line broadening code that calculates theoretical 

spectral line profiles for a general emitter in plasma, using data for atomic energy levels and 

radial matrix elements generated by atomic structure programs. The line profile calculations 

are done in the framework of the standard theory or if necessary including the effects of ionic 

perturber dynamics by using the Fluctuation Frequency Model [3]. However for the 

calculations presented below it has been checked that the Stark effect associated with the ion 

microfield has a negligible contribution to the line profile.  

The PPP code was used to calculate the intrinsic spectral profile of the 4d-4p J 0-1 line in 

Ni-like Mo over an extended range of plasma temperature and density. This range was chosen 

to cover the wide variety of plasma conditions over which population inversions by 
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collisional excitation pumping can be achieved in Ni-like Mo [4]. In particular two different 

ionic temperatures were chosen as being representative of two different pumping regimes: 

- kTi = 20 eV is representative of the transient pumping regime presented in Chapter 1. In 

this regime the heating of free electrons is very rapid (few picoseconds) and does not allow a 

significant collisional equilibriation with the cold ions. As a result the ionic temperature is 

much lower than the electron temperature at the time when collisional excitation pumping 

occurs (~at the peak of electron temperature). 

- kTi = 200 eV is representative of the quasi-steady state (QSS) pumping regime, also 

presented in Chapter 1. In this case, the timescale for heating the free electrons by the pump 

laser is longer (few 100 ps), allowing ions to reach a higher temperature at the time when 

collisional pumping is achieved.  

For these two ionic temperatures, the electron density was varied between 5%1019
 and 

8%1020 cm-3, whereas the electron temperature was varied between 200 and 700 eV. 

Figure 2-1 shows the overall linewidth (i.e. including both homogeneous and 

inhomogeneous broadening contributions) calculated from the PPP code simulations over the 

above parameter range. The FWHM linewidth was inferred from the calculated line profile by 

first fitting it with a Voigt function. The linewidth is plotted as a function of the electron 

density Ne. For the two considered ionic temperatures Ti, only the results corresponding to 

the lowest (200 eV) and highest (700 eV) electron temperatures Te are shown. Finally the 

Doppler contribution for each ionic temperature is shown by the horizontal broken-line 

curves. 

Several general remarks can be made from the results of Figure 2-1: 

- The calculated intrinsic linewidth varies from 7 to 65 mÅ over the investigated range, thus 

illustrating the high potential of varying the local plasma parameters to enlarge the bandwidth 

of the XUV laser line. 

- The relative contribution of the Doppler broadening to the overall linewidth strongly 

depends on the plasma parameters, but also on the pumping regime (or Ti). The Doppler 

contribution becomes dominant only at low Ne (~1019 cm-3). On the other hand this 

contribution becomes very small at high Ne (~8.1020 cm-3) and low Ti (20 eV). When 

increasing the electron density the intrinsic profile will thus gradually evolve from a (mostly) 

inhomogeneous profile to a (mostly) homogeneous profile. 
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We have thus used the results of figure 1 to investigate the behaviour of the amplified spectral 

profile in these different cases. 

In order to extract the homogeneous component \#H from the calculated overall linewidth 
\#tot for a given Doppler component \#D we have used the following formula [5], which 
gives a good approximation for a Voigt profile: 

  
                                                             (2.5) 

with \# = \!.c/!2 

 

 

Figure 2-1. Overall intrinsic spectral width calculated with the PPP code as a function of Ne, Te and Ti for the 
4d-4p (J = 0 -1) line in Ni-like Mo. The Doppler width is also shown for the two considered ionic temperatures. 

 

2.3 Calculations of amplified line profile 

The intrinsic linewidths calculated above were fed into a 1D-radiative transfer code, which 

calculates the frequency-resolved intensity of the lasing line, as a function of the amplification 

length. The code was developed by O. Guilbaud (LPGP, Orsay) several years ago [1], 

following the model discussed by Koch [6] and described in chapter 1.  

In this model, the spectral intensity I(!, z) of the lasing line at the position z along the 

amplifying plasma column is calculated from the 1D-radiative transfer equation: 
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"""""""""""""""""" """"""""""""""(2.6) 

In this equation J0 and g0 are the emissivity and small-signal gain coefficient evaluated at 

line center. Isat is the spectral saturation intensity, ie the saturation intensity per frequency 

unit.  is the Doppler Gaussian profile, with width !!D;  is the homogeneous 

Lorentzian profile, with width !!H. Finally V(!0) is the Voigt profile evaluated at line center. 

The analytic expressions for these quantities are as follows: 

                                         (2.7) 

""""""""""""""""""""""""""""""""                       (2.8) 

################################                        (2.9) 

The model used for our calculations implies that the plasma parameters are constant in 

time and space, and that the amplification is unidirectional.  

In the numerical code, reduced quantities were defined as follows: 

 

, 

With these new variables, equation (2.6) can be re-written as: 

""""""""""""""""""""" """"""""""""""]M^LU_"

The typical value of the saturation intensity (integrated over the spectral profile) is 1010 

W*cm-2 [7]. Considering that the typical value for the spectral width is )!~1011-1012Hz, the 

saturation spectral intensity Isat is 10-1 W*cm-2*Hz-1. 

 

The input data are: 
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- the plasma length L 

- the small-signal gain coefficient at line center g0, here taken at 70 cm-1 

- the reduced emissivity, Jn=J0/Isat, typical value is 10-6 cm-1. 

- the FWHM Doppler width !!D is taken from the results of Figure 1, for the considered 

set of plasma parameters. 

- the FWHM homogeneous width !!H was inferred from the overall linewidth, using 

equation (2.5) 

The output data are: 

- the reduced spectral intensity   In at the output of the plasma of length L; 

-the FWHM spectral width of the amplified line at the output of the plasma of length L 

By varying the plasma length L we are thus able to investigate the evolution of the spectral 

width and of the intensity of the XUV laser line when it is amplified and saturation is reached. 

 

Plasma Parameters 
Minimum 

value 

Maximum 

value 

Electron density (1020cm-3) 0.1 8 

Electron temperature (eV) 200 700 

Ion temperature (eV) 20 200 

Table 2-1. plasma parameters range investigated in the simulation 

 

The line transfer code was run over the plasma parameter range discussed in table 2-1. The 

results are shown in Figures 2-2 to 2-5 where the overall amplified linewidth is plotted as a 

function of the plasma amplifier length. up to 7 mm. As it was done for the intrinsic line 

calculations, the FWHM linewitdh of the calculated amplified spectral profile was inferred by 

first fitting the calculated profile to a Voigt function Va(!), with width !!Va (where the 

subscript ‘a’ states for amplified, to discriminate from the intrinsic Voigt profile involved in 

equation (2.6)).  

This Voigt function implies a Gaussian contribution, with width !!GV, and a Lorentzian 

contribution, with width !!LV. The values of !!GV and !!LV are also plotted in the graphs of 
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Figures 2-2 to 2-5. Finally, since the amplified profiles were observed to be dominated by the 

Gaussian contribution, especially for the largest plasma lengths, a Gaussian fit was also 

performed, and the corresponding width !!Ga is also plotted in the graphs. 

Figures 2-2 and 2-3 correspond to the low Ti case (20 eV) and to Te equals to 200 eV and 

700 eV respectively. These conditions are relevant to the transient pumping. 

Figure 2-4 and 2-5 correspond to the high Ti case (200 eV) and the same Te values as 

above. These conditions are relevant to the QSS pumping. 

For each figure, each graph corresponds to a different density Ne, as explained in the 

corresponding captions. 

 

Several general remarks can be made from Figures 2-2 to 2-5: 

- In all cases the FWHM linewidth is strongly narrowed in the first 2 mm of amplification, 

with a reduction of a typically factor 4. 

- For plasma length above ~2 mm where the saturation is reached, the linewidth continues 

to decrease, but much slowly, except for the lower Ne case (1019cm-3). 

- For the lower Ne case (1019cm-3), where the Doppler broadening was noted to be 

dominant (see figure 2-1), the linewidth decreases to a minimum (typically 1/4 of the intrinsic 

linewidth) and then rebroadens at saturation. 

- For plasma length above ~2 mm, ie when the laser starts to saturate, the profile of the 

amplified line can be accurately fitted by a Gaussian function, whatever the intrinsic profile 

is. This can be seen in each graph by noting that the Lorentzian component !!LV of the Voigt 

fit goes to zero, while the Gaussian component !!GV of the same Voigt fit approaches the 

value of the width !!Ga of the pure Gaussian fit.  
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1) Ti=20 eV, Te=200eV, Ne ~1019cm-3-8%1020cm-3 

"

"

Figure 2-2:  Calculated amplified FWHM linewidth as a function of the amplifier length. Plasma parameters: 
Ti=20eV, Te=200eV and Ne from left to right and up to low: 0.1, 2, 4, 8 * 1020 cm-3. Voigt= !!Va, Voigt-gauss= 
!!GV; Voigt-Lorentz=!!LV; gauss=!!Ga. See text for definitions of these quantities. 
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2) Ti=20 eV, Te=700eV, Ne ~1019cm-3-8%1020cm-3 

"

"

Figure 2-3:  Same as figure 2, but Te = 700 eV. 

"

"

"

"

"
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3) Ti=200 eV, Te=200eV, Ne ~1019cm-3--8%1020cm-3 

"

"

Figure 2-4:  Same as figure 2, but Ti=200 eV. 

"

"

"

"

"

"
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4) Ti=200 eV, Te=700eV, Ne ~1019cm-3--8%1020cm-3 

"

"

Figure 2-5:  Same as figure 2, but Ti=200 eV and Te= 700eV. 
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2.4 Fourier-transform limit duration 

The results presented above can also be used to evaluate the shortest Fourier-transform 

limit duration "FL that could be reached while exploring our plasma parameter range.  

We compare three different situations, where the intrinsic profile is  

- Mixed; 

- Extremely homogeneous; 

- Extremely inhomogeneous  

In all cases we show the results of the radiative transfer calculation in terms of amplified 

intensity, linewidth and spectral profile as a function of plasma length (Figures 2-6 to 2-11 

below).  

Finally we calculate in each case the Fourier-transform limit duration using the formula (1-

58) derived in chapter 1 for a Gaussian spectral profile: 

   (2.7) 
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2.4.1  Mixed profile 

Plasma parameters: Ti=200eV, Te=700eV, Ne = 4%1020 cm-3,  

Intrinsic linewidth:  

inhomogeneous component !(D = 21 mÅ, homogeneous component !(H = 22 mÅ 

 

Figure 2-6: case (a) Mixed case (see text). Detail of the evolution the amplified line profile for increasing plasma 
length (see inset). 

 

 

Figure 2-7: case (a) Mixed case (see text). From left to right and up to low: intrinsic profile, “relative” spectrally 
integrated intensity versus length, amplified profile, amplified linewidth versus length. In the amplified profile 

versus length (left lower), the black, blue and red lines stand for calculated results and the Lorentz, Gauss fitting 
with same FWHM separately. 

`.1/=$/"0/%&Ha./8"2=8=0"31/%0=.&"a./"'bR"88c"" " "DE#H#<A@#63"
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2.4.2  Extremely inhomogeneous profile 

Plasma parameters: Ti=200eV, Te=700eV, Ne = 0.1%1020 cm-3,  

Intrinsic linewidth:   

inhomogeneous component !(D = 21 mÅ,  homogeneous component !(H = 0.5 mÅ 

 

Figure 2-8: same as figure 6, but case (b) extremely inhomogeneous case (see text ) 

 

 

Figure 2-9: same as figure 7, but case (b) extremely inhomogeneous case (see text) 

Fourier transform limit duration for L=7 mm:   "FL = 380 fs 
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2.4.1  Extremely homogeneous profile 

Plasma parameters: Ti=20eV, Te=200eV, Ne = 8%1020 cm-3; 

Intrinsic linewidth:  

 inhomogeneous component !(D = 6.7 mÅ, homogeneous component !(H = 57 mÅ 

"

Figure 2-10: same as figure 6, but case (c) extremely homogeneous case (see text ) 

 

"

Figure 2-11: same as figure 6, but case (c) extremely homogeneous case (see text ) 

 

Fourier transform limit duration for L=7 mm:  "DE#H#450 fs 
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The results of the simulation are summarized in table 2-2. 

Ion 
Temperature 

(eV ) 

Electron 
Temperature 

(eV) 

Electron 
Density  

(1020 cm-3) 

Calculated 
spectral width 

(mÅ) 

Calculated Fourier 
Limit Pulse 
duration (fs) 

200 700 4 8.11 650 

200 700 0.1 15.13 380 

20 200 8 11.51 450 

Table 2-2. summary of calculated results for 3 cases 

 

2.5 Conclusion 

In this chapter we have used a 1D-radiative transfer code, as well as the results of detailed 

intrinsic line profile calculations provided by the PPP code, to investigate in more detail the 

behaviour of the spectral profile Ni-like Mo 4d-4p J=0-1 line when it is amplified. We have 

shown that depending on the local plasma parameters in the gain zone, the intrinsic profile 

strongly changes both in width and in nature (homogeneous/inhomogeneous). Only at very 

low density the Doppler component is dominant in the overall intrinsic profile. As a result, 

saturation rebroadening is observed only in this case, whereas in all other cases the linewidth 

narrows continuously, even after the saturation is reached. 

One of the questions that we wanted to address with these calculations was how the shape 

of the amplified profile was modified. We have shown that even in cases where the initial 

intrinsic profile is Lorentzian (ie homogeneous), the amplified profile rapidly tends to a 

Gaussian shape. 

Using this result we have calculated the Fourier-transform limit duration that would be 

reached in three different cases, corresponding to a strongly homogeneous, strongly 

inhomogeneous, or mixed intrinsic profile. In all cases we find that the Fourier-transform 

limit duration is below 1 ps. The shortest duration of 380 fs is obtained in the strongly 

inhomogeneous case, thanks to saturation rebroadening. This result would tend to suggest that 

low density, high ionic temperature would be more favourable to reach shorter XUV laser 

duration.  

However, a recent study performed by the Marseille group shows that the ionic 

correlations cannot be ignored in these plasma conditions [8]. The detailed discussion of this 

effect is beyond the scope of this thesis work, but we point out that one of the main 
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consequence of ionic correlations will be the homogeneization of the amplified profile, thus 

preventing any saturation rebroadening. 
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3.1 Introduction 

In chapter 4 we will describe the experimental results that we have obtained during this 

thesis regarding the characterization of the temporal coherence and spectral width of several 

collisional XUV lasers, as well as of the duration of the Ni-like Mo transient XUV laser. Here 

in this chapter we will present the two instruments that we have used to obtain these results: a 

wavefront division interferometer and a high-resolution X-ray Streak camera. The method 

used to process the data and to extract the physical quantities from the interferograms will be 

also discussed in detail. 

First we will recall the typical orders of magnitude of the quantities that we want to 

measure and the different existing instruments available for this purpose. 

3.1.1 Temporal coherence and spectral width 

As explained in Chapter 1, the temporal coherence and the spectral width of the XUV laser 

sources that we are interested are Fourier transform pairs. This follows from the Wiener-

Khintchine theorem, stating that the Fourier transform of the autocorrelation function of the 

signal (here electromagnetic field amplitude) is the power spectrum of the signal. 

Here we are interested in characterizing both the temporal coherence and the spectral width 

of XUV lasers. However the direct measurement of this spectral linewidth is out of the reach 

of existing grating spectrometers. As we will see, the linewidth of XUV lasers is extremely 

narrow, with a typical bandwidth of !#/# ~1-4%10-5 or less. The first direct measurement of 

an XUV laser linewidth was reported by Koch et al. in 1994 [1], using a unique grazing 

incidence grating, flat-field spectrometer [2] specifically designed to reach a resolution as 

high as !#/# ~3%10-5 over a restricted spectral range. This led to the measurement of a 10 mÅ 

linewidth for the 20.6nm line (3p-3s J=2-1) in Ne-like Se, very close to the resolution limit of 

the spectrometer. As we will see in chapter 4, some of the XUV laser lines that we have 

investigated were narrower than that, thus requiring an alternative method of measurement. 

The other method consists in measuring the temporal coherence length, by varying the path 

difference in an interferometric setup. This was first achieved at the Livermore laboratory by 

a french-US collaboration, using an amplitude-division interferometer in a Michelson 

configuration [3]. The temporal coherence of the transient Ni-like Pd line (4d-4p J=0-1) line 

at 14.68 nm was measured and the corresponding spectral bandwidth was inferred as 

!#/#~2.3%10-5.  
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In amplitude-division interferometers, the contrast of the interference fringes obtained 

depends little on the spatial coherence of the radiation and the ratio between the coefficient of 

the reflection and transmission of the beam splitter. The advantage of this kind of 

interferometers is that if the configuration of the interferometer is chosen, a path difference 

between the two beams can be introduced without changing the superposition of the two 

interfering beams, especially their transverse position. However the accuracy of the 

measurement is limited by the quality of the multilayer beam splitter used. Although 

significant progress has been made in the fabrication of these optical elements in the recent 

years, these devices have several drawbacks that limit their performance level and affect the 

quality of the results obtained. Firstly, the coefficients of reflection and transmission achieved 

are relatively low (typically below 20% at 14 nm), leading to energy losses. Second they are 

difficult to manufacture, relatively fragile, and the cost is also very high. Finally, the use of 

multi-layer systems implies that the instrument is monochromatic which means that to 

investigate sources of different wavelengths one has to change all the interfering mirrors. This 

is why an alternative method was developed by the LIXAM X-ray laser group at the same 

period, based on a wavefront-division interferometer. This instrument was used for the work 

described in the thesis. It uses superpolished grazing incidence mirrors in a Fresnel 

configuration, and will be described in detail below. 

 

3.1.2 Pulse duration 

  As recalled in chapter 1, the achievement of transient pumping with ultrashort CPA lasers 

has led to a new generation of XUV lasers delivering much shorter pulse duration than the 

ones previously obtained in the quasi-steady state regime. The first measurement of the 

duration of a transient XUV laser was achieved by the LIXAM X-ray laser group at the 

Rutherford Laboratory (UK) [4]. A pulse duration of 2 ps was reported for the transient Ni-

like Ag laser (4d-4p J=0-1) at 13.9nm. This measurement used a fast X-ray Streak camera 

developed by Axis-Photonique Inc., and it was also used to obtain the results described in this 

thesis. The principle of operation and characteristics of this instrument will be described 

below. 

Ultrafast X-ray streak cameras are currently the only instruments capable of measuring -in a 

single-shot- the temporal history of an X-ray pulse on a picosecond timescale. Other methods 

based on light-field streaking were developed for the attosecond harmonic pulses [5], and 

more recently extended to the femtosecond regime [6], but it seems difficult to apply them to 
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picosecond XUV lasers. The picosecond timescale involved would require radiation with 

centimetric wavelength.  

 

3.2 Wavefront-division interferometer for temporal coherence measurement 

3.2.1 Description of the interferometer: 

The wavefront-division interferometer we used was specifically designed and built by D. 

Joyeux and collaborators for the purpose of measuring the temporal coherence of XUV lasers. 

This interferometer is similar to a usual Fresnel bi-mirror interferometer [7], except that  the 

mirrors have been replaced by dihedrons, as shown in Figure 3-1. The parts of these 

dihedrons are made from superpolished silica planar blocks [8]. The dihedron mirrors are 

slightly tilted towards each other, so that after reflection on the dihedrons under 6° grazing 

incidence, the XUV laser beam is split into two branches that slightly converge towards each 

other. Interference fringes are formed in the overlapping area. A flat mirror is inserted 

between the dihedrons and the CCD to redirect and adjust the XUV laser beam towards the 

CCD camera detector. The CCD is located at 100-150 cm away from the bi-mirror and is 

tilted at an angle of 35 degrees relative to the propagation axis to stretch the image in the 

direction across the fringes and improve the spatial resolution. A precision translation stage 

vertically displaces one of the dihedron mirrors relative to the other inducing a controlled 

optical path difference between the two interfering beams. This introduces a controlled phase 

shift on one of the interference field and this leads to a reduction in the interference fringe 

visibility. 

 

"

Figure 3-1: Principle of the bi-dihedron interferometerl. ' is the angle of inclination between the surfaces of the 
mirrors and z the vertical translation of the moblie  dihedron. 
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In order to measure the temporal coherence of the radiation strictly, it is necessary that the 

path difference variation does not introduce any change in the superposition of secondary 

beams. Otherwise it will be impossible to determine whether the decrease in the fringe 

contrast is due to the finite temporal coherence or to the finite spatial coherence or to the 

limited size of the incident beams. This is why dihedrons were used rather than simple flat 

mirrors to ensure that the conditions of spatial coherence are kept constant while changing the 

path difference. Figure 3-2 shows graphically the difference in propagation of the XUV beam 

after reflection by either a bi-mirror or a bi-dihedron interferometer. The beam is parallel to 

the edge between the two mirrors with an incidence angle *. One of the mirrors is vertically 

shifted by z. In the usual Fresnel configuration (Figure 3-2-a), this vertical translation of one 

mirror introduces a transverse offset between the two secondary beams. In contrast with a bi-

dihedron (Figure 3-2-b) the two secondary beams are recombined perfectly after reflection. 

#O;P#####

#

"

OQP######

""""""""""""  

Figure 3-2: Propagation of the incident beam in presence of a path difference z: (a) Fresnel bi-mirror. (b) Bi-
dihedron. In (a) the secondary beams undergo a transverse offset, while in (b) their superposition is always 
maintained. 

In Table 3-1 we summarize the characteristics of our bi-dihedron interferometer. The small 

grazing incidence of the beam (* =6°) allows to provide a good reflectivity of XUV radiation. 

To facilitate the detection of the fringes, a mirror is placed between the dihedron and the 

d"
d"

Z"

(vertical"0/%&H2%0=.&_"

_"

superposition 
preserved 

Z"

(vertical translation) 

R#
R#

transverse 
offset 
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detector to return the reflected beam along an axis closer to the horizontal as shown in Figure 

3-3. The detector used to record the fringes XUV is a back-tinned CCD camera (Andor 

Technology, 1024x1024 pixels) of 13 microns pixel size. The camera was set about 1.5 m far 

from the interferometers and tilted by 35 ° to the entrance axis (Figure 3-3-top view) to 

enlarge the size of the fringe at the detector plane, and thus improve the resolution. The 

alignment of the interferometer is performed using a Helium-Neon laser beam. 

 

Lo Length of the dihedron  

La Width of the dihedron  

' Angel between the two mirrors   

0 Angle of the incident beem   

) Angle between the two beams reflected by the bi-dihedral  

1 Angle of inclination of the camera 35 °  35°  

i fringe seen by the camera  

z vertical translation of dihedral mobile  Arbitrary 

l Path difference between the two beams  

 

Table 3-1: Characteristics of the interferometer bi-dihedron. 
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"

Figure 3-3: side (top) and top (bottom) view of the interferometer (from [9]). 

As we have already mentioned, the path difference is introduced between the arms of the 

interferometer by translating one of the two dihedrons vertically using a high accuracy stepper 

motor. The corresponding path-difference l is given by the relationship , where z 

is the vertical translation of the mobile dihedron. This creates a delay  between the 

interfering beams. 

The relative angle + between the two beams after reflection on the dihedons can be 

calculated as follows: 
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Figure 3-4. Schematic diagram showing the reflected angle 

Considering two mirrors P1 and P2, tilt to each other with an angle of ', d1 and d2 are 

their normal lines respectively, as shown in figure 3-4(a). 

According to the law of reflection, the incident light line, the reflected light line, and the 

normal line are in the same plane. The beam line is reflected by both mirrors. In order to make 

it clear, the two reflected beams are represented in figures 3-4(b), (c) and (d).  

In figure 3-4(b), (AO) is the incident beam line from point A. (OB) and (OC) are the 

reflected beams on O by mirrors P1 and P2 respectively. B and C are chosen as we have 

OB=OC=OA. M and N are the cross points of d1 with [AB] and d2 with [AC] respectively. 1 

is the angle between the two reflected beams (OB) and (OC).  

It’s easy to know that , , and M, N are the mid-point of [AB] and 

[AC], The angles .  

 

The following calculations to fine the relationship of 1 with 0 and ' are based on figure 3-

4(b). 

The incident angles are :  .  
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 In , the angle between the two normal lines . 

 And  

                                            . 

      So  

 

      In , it is clear that 

 

   In ,  E is the mid-point of [BC], then  

                

  since AO = OB. 

      When 0 and ! are very small, at the first order: ,  

       So   

         

        And for same reason: 

         

 That is to say that, if the incident angle is and the two mirrors tilt with an angle !, 

and both 0 and ! are small enough, it concludes that the angle 1 between the two reflected 

beams is about 2.0.!. 

As we use dihedrons instead of flat mirrors, there is a second reflection with the same 

incident and tilted angles, and the final angle between the reflected beams .     
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3.2.2 Acquisition and processing of the experimental data 

The measurement of the temporal coherence consists in acquiring a set of single-shot 

interferograms while increasing the path difference between the two arms of the 

interferometer. In order to account for possible shot-to-shot fluctuations, a minimum of three 

(possibly) identical shots are performed for each path difference position. The information on 

the temporal coherence and the spectral shape of the source can not be fully determined by 

performing scanning for the positive values. It should ensure that the absolute position of the 

path difference is perfectly known. The zero path difference of the system, i.e. when the two 

dihedrons are exactly at the same height, was determined prior to the experiment with an 

accuracy of ~1 µm, using an optical source. As we shall see, it must be determined to better 

than 100 (, where ( is the wavelength of the laser XUV. This was done by looking for 

interference fringes with a broadband light of limited temporal coherence. In our case we used 

infrared femtosecond laser pulse. Note that in some cases where the zero was accidentlly lost, 

the scan was extended to negative path differences to ensure that the zero path difference 

could be determined from the overall visibility curve. Figure 3-5 shows two examples of 

interferograms obtained in the present work. In the overlaping region, the two coherent beams 

lead to interference fringes. On each side of the fringe area, one can see the beams reflected 

by each dihedron. Finally the black zones above and below the reflected beams is the 

background zone. This zone is also important because the background has to be carefully 

subtracted from the signal before the visibility of the fringes can be measured. 

Each detected interferogram is numerically processed in order to determine the map of 

local fringe visibility V(z) across the interference area. We have used a Matlab software, 

previously developed by O. Guilbaud in his thesis. We will now describe the successive steps 

of the interferogram processing. 
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Figure 3-5: two examples of interferogram 

 

Figure 3-6 shows a copy of the analysis window of the software used to process the 

experimental interferograms. The left image is the raw experimental data. The white squares 

show the two regions of interest for the numerical processing: the fringe area and the 

background area. The background level averaged over this area is subtracted from the signal 

in the fringe area. The top-right image in Fig. 3-6 ("Region of interest") is the selected 

interference area (background corrected) over which the fringe visibility will be measured. 

This is achieved by performing numerically a Fast-Fourier-Transfom (FFT) processing of the 

signal over the zone of interest by using a small sliding window. The size of this sliding 

window is a user-defined parameter of the software, and it is chosen to include ~3 fringe 

maxima. Each FFT of the signal in the window yields a local 2D spatial frequency spectrum, 

as the one shown in Fig. 3-6 (top center image). In this image the two secondary peaks that 

appear on each side of the zero-order central peak correspond to the fringe modulation 

frequency. The local fringe visibility is then given by V=2. A1/A0, where A1 (resp. A0) is the 

amplitude of the secondary peak (resp. central peak). The FFT is applied to the full zone of 

interest by sliding the window horizontally and vertically. This yields the 2D visibility map 

corresponding to the region of interest, as shown in the right-down image. 

 

 

 

 

 

L^S88"
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Figure 3-6 analysis window of the software used to process the experimental interferograms. The units of the 
size are all in pix, and 1pix =13um 
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One can see that the measured visibility is not uniform over the region of interest. The 

software also indicates the maximum visibility in this region, as well as the average value and 

the standard deviation. The relevant value that is used in our analysis is the maximum 

visibility. The reason is as follows: 

The visibility of the fringes depends not only on the coherence of the two interfering 

beams, but also on their balance of intensity. This is expressed by the relation (already 

discussed in section 1.4 of chapter 1):  

 

where R=I1/I2 and I1, I2 are the intensities of the two interfering beams. 2(-) is the complex 

degree of coherence defined in equations 1-32 and 1-33. If we assume that the same 

coherence conditions exist over the small beam section sampled by the interferometer, then 

the variations of visibility are only due to variations of the intensity ratio R across the zone 

where the interfering beams overlap. The relevant visibility is thus the maximum one, 

corresponding to R = 1. This aspect was already discussed by O. Guilbaud in his thesis [9]. 

The standard deviation of the measured visibility (typically 20%) was found be consistent 

with the observed variation of R. In the interferograms that we have processed, the non-

uniformity of the interfering beams can lead to a local ratio of ~5, which would lead to a 

visibility reduced by ~25%. 

Each interferogram processed with the technique described above yields the fringe 

visibility achieved for the corresponding conditions, in particular the path difference. As 

mentioned above, the complete measurement involves a scan of the path difference over an 

appropriate range. It is also essential to have several measurements for each path difference to 

account for inevitable shot-to-shot fluctuations. The measured visibility are then plotted as 

shown in Figure 3-7 (left). The error bars are the standard deviation of the measured visibility 

values for a given path difference. The longitudinal (temporal) coherence length is defined as 

the path difference at which the visibility has decreased by 1/e of its maximum.  

The visibility data are then fitted with an appropriate analytical function (here a sum of 2 

Gaussian functions), which is chosen to maximize the fitting coefficient (,-square). Using the 

Wiener-Khintchine theorem discussed in section 1.4, the Fourier-transform of the fitted 

visibility curve yields the spectral profile of the lasing line and its spectral width, as shown in 

Figure 3-7(right). 
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Figure 3-7:  Example of a visibility curve (left) obtained from the processing of the acquired interferograms with 
fitting curve and corresponding Fourier transform showing the spectral profile (right).  

 

3.3 High-resolution X-ray streak camera 

3.3.1 Description of the camera 

In a streak camera, a photocathode is used to generate electron bunches with temporal 

structures identical to that of the incident light pulses. The electrons are accelerated, then 

transversally deflected by a rising electric field and finally detected on a phosphor screen. 

Several phenomena limit the resolution of the instrument, among which the spread of the 

initial moment of the electrons released from the photocathode, which leads to a significant 

temporal broadening. The streak camera that we have used was manufactured by Axis-

Photonique Inc. and belongs to the LULI-Palaiseau laboratory. It was equipped with a KBr 

photocathode (Luxel). 

The Axis Photonique streak camera can be operated in two different regimes according to 

the type of acceleration: (1) acceleration by a grid or (2) acceleration by a slit. In the grid 

mode, the electronic optics images the 2-D image of the photocathode plane. This mode 

allows an application of slits of different widths. The resolution is then controlled by its width 

(within the resolution limits of the camera), because the best resolution with the slit is given 

by the time corresponding to the width of the slit image on the output screen. In the present 

work we have used the camera in the slit mode. In this case a virtual 150-#m wide slit placed 

on the photocathode plane is imaged. Hence it is not necessary to use any additional slit and 

the resolution remains always constant at its maximal value. However, the dynamic sensitivity 

is slightly reduced.  
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Figure 3-8. Up: schematic drawing of the Axis Photonique streak camera [10]. Down:sketch of the streak camera 
triggering system. 

The sweeping ramp of the streak camera was synchronized with the XUV laser pulse using 

a switch triggered with a 0.1 mJ Ti:sapphire laser pulse (see Figure 3-8), yielding a shot-to-

shot jitter of less than 10 ps. Finally a delay box was used to control the delay between the 

sweep of the ramp and the arrival of the XUV laser.  

The specifications of the Axis Photonique streak camera are the following [11]: 

Magnification in the spatial direction:   1.7 

Magnification in the temporal direction:  0.4 

Resolution on the output:    4.8 ± 0.4 ps/mm 

Temporal resolution:     ~700 fs in the 1-2keV range 

       <500 fs at 260 nm (UV) 

The temporal resolution had been previously measured in the UV range and in the keV 

range, but was never measured in the XUV range. Using high-order harmonic radiation of 
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duration ~30 fs generated at the LASERIX facility, we have measured in-situ the temporal 

duration of the camera at #~20 nm. We find that the temporal resolution is lower than 

expected, Tr ~ 2.0±0.18 ps (see Figure 3-9). 

 

       "

Figure 3-9. The temporal resolution of the Streak camera was measured using a femtosecond high-order 
harmonic pulse. Left: time-resolved signal. Right Lineout versus time, after correction from distortion. The 
temporal resolution is measured at 2.0±0.18 ps. 

 

Finally the sweep speed of the streak camera was checked in-situ by generating a double-

pulse XUV laser, with a known temporal separation. This was achieved by inserting a glass 

wedge (BK7, thickness 12.9 mm, corresponding to 23.2 ps delay) in half of the beam section 

of the short pump pulse. This resulted in half of the line focus being irradiated at a later time 

and in the generation of two successive XUV laser pulses, as shown in figure 3-10. The 

measurement of the peak-to-peak separation between the two pulses shown in the plot (figure 

3-10, right) yields a temporal scale, or sweep speed, of 0.305 ps/pixel. This value is consistent 

with the calibration indicated in the technical report of the camera. 

"

       "

Figure 3-10. A double pulse XUV laser was generated to calibrate the sweep speed of the streak camera. Left: 
time-resolved image. Right: lineout versus time, after correction from distortion. The temporal separation 
between the pulses is 23.2 ps. 
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3.3.2 Acquisition and processing of the data 

For the experiment described in chapter 4, the XUV laser beam was reflected by a 

spherical multilayer mirror which formed the magnified (M = 6), time-integrated image of the 

output plane of the source (near-field image). Using a translatable flat multilayer mirror, this 

image could be formed either onto a CCD camera (time-integrated mode) or onto the entrance 

slit of the streak camera (time-resolved mode). Aluminium filters with variable thickness (0.3 

- 2#m) were used to attenuate the XUV laser signal. Finer adjustment of the signal level was 

obtained by adjusting the size of the XUV laser beam spot at the photocathode slit with a 

slight translation of the imaging mirror. The size of the spot was increased until it was 

observed that space-charge broadening, due to a too intense signal, had no appreciable effect 

on the temporal measurements.  

Figure 3-11 shows a typical example of time-resolved image. The curved shape of the 

time-resolved signal is due to instrumental distortion [12] and needs to be corrected 

numerically before quantitative analysis of the pulse duration. A plot of the corrected image 

along the temporal axis is then performed, from which the FWHM temporal width Tm is 

measured. The measured value Tm is then deconvolved from the finite temporal resolution Tr 

to yield the actual duration TXUV of the Ni-like Mo laser, assuming a quadratic relation: 

. 

 

 
Figure 3-11. Example of tie-resolved image obtained. The curvature of the signal is due to instrumental 
distortion and is numerically corrected before quantitative analysis. 
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4.1 Introduction 

In this chapter we present the experimental results obtained during my thesis concerning 

the measurement of temporal coherence and corresponding spectral width of several types of 

collisional XUV lasers, all operated in the saturation regime. The experiments were carried 

out at three different laboratories, which allowed us to have access to 3 types of XUV lasers 

and to carry out a unique comparison of their spectral properties, using the same 

interferometer described in chapter 3. 

In section 4.2 we present the results of the experiment performed at CSU (USA), where the 

temporal coherence and spectral width of a transient XUV laser operated in seeded mode was 

investigated in detail. The experiment discussed in section 4.3 was also carried out at CSU but 

was devoted to the Ne-like Ar XUV laser pumped by an electrical discharge in a capillary. 

For each of these two experiments the results are presented in the form of the corresponding 

scientific paper, which was published in Optics Express and Physical Review A, respectively. 

In section 4.4 we present the most recent experiment, which was carried out at the PALS 

facility (Czech Republic) in March 2012. In this experiment we have investigated the Ne-like 

Zn XUV laser pumped in the quasi-steady state regime.  

Finally in section 4.5 we describe the results of a complementary experiment, performed at 

the LASERIX facility, which was focused on the investigation of the temporal properties of a 

transient XUV laser. The results are presented in the form of the corresponding scientific 

paper, published recently in Applied Physics Letters.  

In section 4.6 we summarize the results obtained and discuss the comparison between the 

different types of investigated XUV lasers in terms of temporal coherence, spectral width and 

capability to amplify ultrashort (femtosecond) pulses. 
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4.2 Transient XUV laser in seeded and ASE modes 

4.2.1  Introduction 

The experiment described in the scientific paper contained in this section was carried out at 

the Colorado State University (CSU) in July 2009, before I started my thesis. I have been 

deeply involved in the processing, analysis and interpretation of the different series of 

interferogram data that were obtained there. 

The main purpose of the experiment was to investigate the behaviour of the temporal 

coherence and corresponding spectral width when the Ni-like Mo transient XUV laser was 

operated in the seeded mode, using a high-harmonic pulse as a seed. Until now this group is 

the only one worldwide that has achieved seeding of transient XUV laser .The collaboration 

with the group of J Rocca at CSU, then, was a unique opportunity to perform our study. 

In the seeded mode the length of the plasma amplifier was varied between 2 mm and 4 mm 

to investigate the narrowing of the line with amplification. For the longest length a 

measurement was performed in the ASE mode (i.e. without seeding). 

The main difficulty encountered in analysing the results obtained from the processing of 

the interferograms (the method was described in chapter 3) was to determine the best fit of the 

visibility curves. As can be seen from Fig. 2 in the Optics Express paper included in this 

section, the shape of the visibility curve, which was found to best fit the experimental data, 

changes when changing the plasma length, or between seeded and ASE mode. The reason for 

this is not understood until now, and is not accounted for by our modelling simulations 

described in chapter 2. 

The shape of the analytical function used to fit the data does not influence the 

measurement of the coherence time "C, which is defined as the path difference delay at which 

the visibility is reduced by 1/e of its maximum. However this affects the value of the 

corresponding linewidth, which is inferred using the Wiener-Khintchin theorem. As we have 

explained in chapter 1 (see section 1.4.1), the numerical coefficient, which relates the 

linewidth to the coherence time, depends on the shape of the coherence function '11("), or of 

the visibility curve. In our case the determination of the shape of the visibility curve is not 

accurate enough to fully rely on the different shapes observed. Hence we have used a different 

method to infer the coherence time and the spectral linewidth from the experimental data. 

This method is described in the "Principles of Optics" textbook by Born & Wolf and relies on 

the quadratic mean of the quantities: 
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                          (4.1) 

                                                             (4.2) 

where V(-) is the visibility measured as a function of path difference -, G(+) is the line 

profile, defined as the Fourier-transform of V(-) and . The factor 4 in the 

definition of !!q assumes that the spectral profile is symmetrical. The subscript ‘q’ is used to 

distinguish from the usual definitions of "c (1/e of maximum visibility) and )! (FWHM).  

The relationship between these usual quantities "c and )! and their quadratic means "cq and 

)!q can be easily calculated in the exponential/Lorentzian and Gaussian/Gaussian cases, as 

we will show now: 

 

Exponential visibility/Lorentzian spectrum: 

 

 

 

 

Using (4.1), we find:                                    (4.3) 

Using (4.2), we find:   
        

            (4.4) 
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Gaussian visibility/ Gaussian spectrum: 

 

 

 

 

Using (4.1), we find:                           (4.5) 

Using (4.2), we find:                           (4.6) 

 

By comparing the quadratic linewidth !!q expressions (4.4) and (4.6), one can see a given 

value of "c (measured at Vmax/e in the visibility curve) will lead to the same (quadratic) 

spectral width )!q for the two types of profile. Hence the quadratic definition is less sensitive 

to the particular shape of the analytical function used to fit the experimental data. 
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4.2.2  Experimental results 

 

 

Scientific paper published in Optics Express 19 (13) 2011, 12087 

#

 
 

 



T emporal coherence and spectral linewidth of an 
injection-seeded transient collisional soft x-ray 

laser 

L . M . M eng,

1,* D . A lessi,2 O . Guilbaud,

3 Y . Wang,

2 M . Ber r ill,2 B .M . Luther ,

2 S. R . 
Domingue,

2 D . H . Martz,

2 D . Joyeux,

4 S. De Rossi,

4 J. J. Rocca,

2 and A . K lisnick1 
!"#$%&'()*+',-.&'/01#&'23456784*9':;748<#=>'!!&'?!@.-'%78;A&'B7;3C6'

D0#B'/63*67'EF7'G2H'#C463C6';3>'I6CJ3FKFLA&'/FKF7;>F'#*;*6'23456784*A&'BF7*'/FKK438&'/%&'2#M'
,N:O:&'()*+'D!.&'/01#&'23456784*9':;748<#=>'!!&'?!@.-'%78;A&'B7;3C6'
@N/B"%&'"38*4vwv"fÓQrvkswg<O7;>=;*6'#CJFFK&'?!!DP':;K;486;=&'B7;3C6'

*limin.meng@u-psud.fr 

Abstract: The temporal coherence of an injection-seeded transient 18.9 nm 

molybdenum soft x-ray laser was measured using a wavefront division 

interferometer and compared to model simulations. The seeded laser is 

found to have a coherence time similar to that of the unseeded amplifier, 

~1ps, but a significantly larger degree of temporal coherence. The measured 

coherence time for the unseeded amplifier is only a small fraction of the 

pulsewidth, while in the case of the seeded laser it approaches full temporal 

coherence. The measurements confirm that the bandwidth of the solid target 

amplifiers is significantly wider than that of soft x-ray lasers that use 

gaseous targets, an advantage for the development of sub-picosecond soft x-

ray lasers. 

©2011 Optical Society of America 

O C IS codes: (140.7240) UV, XUV, and X-ray lasers; (300.6300) Spectroscopy, fourier 

transforms; (300.6560) Spectroscopy, x-ray. 
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The demonstration of injection-seeded soft X-ray lasers (SXRL), generated by either transient 

collisional excitation in solid target plasmas [1] or optical-field-ionization in gaseous targets 

[2], has opened new prospects for the utilization of high-brightness plasma-based coherent 

soft x-ray sources for various applications. The use of high-order harmonic (HH) pulses as a 

seed has led to a dramatic enhancement of the spatial coherence [3,4] over those exhibited in 

amplified spontaneous emission (ASE) operation. The degree of temporal coherence is an 

important parameter that also needs to be characterized for applications. The coherence time, 

nkpmgf"vq"vjg"urgevtcn"ykfvj"Äち"qh"vjg"ncugt"nkpg"vjtqwij"kc \31Äち."cnuq"fgvgtokpgu"vjg"wnvkocvg"
minimum pulse duration that can be achieved. The shortest pulse duration measured to date 

for a seeded SXRL is ~1.1 ps in a Ne-like Ti plasma [5]. In order to make further progress 

towards sub-picosecond pulse soft x-ray lasers [5,6] it is important to obtain experimental 

information about the spectral characteristics of these sources. This is a challenging 

ogcuwtgogpv"dgecwug"vjg"pcttqy"nkpgykfvj"qh"UZTN"nkpgu"*v{rkecnn{"Äそ1そ"\32/5
) typically lies 

beyond the resolution limit of existing spectrometers in this spectral range. 

In this paper we report the first measurement of the temporal coherence and spectral width 

of a transient solid-target SXRL injection-seeded by HH pulses. Measurements for a seeded 

18.9 nm Ni-like Mo amplifier were compared to results for the ASE mode of operation and 

model simulations. It is shown that the injection-seeded and ASE lasers have a similar 

linewidth, but that the degree of temporal coherence of the seeded laser is significantly larger, 

approaching full temporal coherence. The narrow linewidth was resolved using a wavefront-

division interferometer specifically designed to measure temporal coherence [7] from which 

the spectral linewidth is inferred. Such interferometer was previously used to investigate other 

types of SXRLs, including a 32.8 nm injection-seeded optical-field-ionization (OFI) SXRL in 

c"Zg"icu"ogfkwo"fgxgnqrgf"cv"Ncdqtcvqktg"fÓQrvkswg"Crrnkswfig"*Htcpeg+"]8,9]. The transient 

amplifiers created by irradiation of solid targets [10] studied here are measured to have 

significantly larger linewidths that support the generation of shorter pulse durations. 
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Fig. 1. (a) Experimental set up used to measure the temporal coherence of an 18.9 nm 

molybdenum plasma amplifier. Interferograms of the ASE (b) and seeded (c) 18.9 nm laser 
beam with a zero path difference between the arms of the interferometer. A 300 nm thick 

aluminum filter was used. In the ASE case (b) the beam is composed of several juxtaposed 

speckle structures. Two of them are apparent (orange white zones) in the fringe area. In the 

seeded case (c) one single spot is apparent, corresponding to the amplified seed beam. 

The experiment was carried out at Colorado State University (CSU) using a 18.9 nm 

SXRL amplifier in the transient regime generated by irradiation of a solid molybdenum slab 

target at grazing incidence [11, 12_" ykvj" rwnugu" htqo" cp" そ" ?" :22" po" Vkvcpkwo<Ucrrjktg"
(Ti:Sa) laser. A sequence of two 210 ps FWHM duration pulses with energies of 45 mJ and 

420 mJ are focused onto a 30 µm wide by 4 mm long line at normal incidence to the target 

producing a plasma with a large fraction of the ions in the Ni-like state. At a delay of 500 ps, 

a 3.3 ps FWHM duration heating pulse of 1J energy impinges onto the plasma at a grazing 

incidence angle of 23 degrees in an overlapping line focus, resulting in transient population 

inversion at 18.9nm. This laser amplifier was seeded with the 43rd harmonic of a 

femtosecond pulse from a Ti:Sa laser as described in [3] yielding a highly collimated, almost 

fully spatially coherent beam. The duration of the Ti:Sa pulses used to generate the high 

harmonic seed in this experiment was ~100fs. The output characteristics of the seeded laser 

are similar to that described in [3]. The SXRL beam was directed toward a variable path-

difference interferometer which was set at a distance of 3 m from the source (Fig. 1(a)). A far-

field monitor, consisting of a 45 degrees multilayer mirror and an XUV CCD camera could be 

inserted in the X-ray laser beamline (see Fig. 1(a)) to allow verification of the beam alignment 

before each series of measurements. The interferometer consists of a pair of dihedrons slightly 

tilted towards each other and irradiated under 6 degrees grazing incidence [7]. Interference 

fringes, which are formed in the overlapping region, are detected with a XUV CCD camera. 

The CCD chip is inclined to a 35 degrees incidence angle in order to increase the apparent 

fringe spacing to ~5 pixels/fringe. A variable path difference between the two interfering 

#145253 - $15.00 USD Received 15 Apr 2011; revised 25 May 2011; accepted 25 May 2011; published 7 Jun 2011

(C) 2011 OSA 20 June 2011 / Vol. 19,  No. 13 / OPTICS EXPRESS  12089



beamlets is introduced by translating one of the two dihedrons vertically. Using a dihedron 

instead of a flat mirror ensures that the loss of fringe visibility when the path difference is 

increased is solely due to the finite temporal coherence, not to a geometrical change in the 

beam overlap, which depends also of the finite spatial coherence of the source. The tilt angle 

between the interfering mirrors is 1.6 mrad, leading to an interference field of 1 mm in the 

plane normal to the beam, or 1.8 mm in the CCD detector plane. 

 

Fig. 2. (a) Visibility as a function of the path difference measured in the injection-seeded mode 
for the plasma amplifier lengths of 2 mm (a), 3 mm (b) and 4 mm (c). (d) Visibility data 

corresponding to the 4 mm ASE amplifier. The solid-line curves show the best analytical fit of 
the experimental data. Different types of analytical functions were used: (a) sum of two 

Gaussians; (b) sum of Gaussian and decreasing exponential; (c) decreasing exponential; (d) 

sum of two Gaussians 

Series of interferograms with increasing path difference were acquired for different X-ray 

laser amplifier lengths. Figure 1 (b, c) shows two typical interferograms of the 18.9 nm laser 

obtained in the ASE mode and injection seeded mode respectively. In the ASE case, the beam 

is composed of randomly distributed speckles [13] which are apparent in the image. In the 

injection seeded case, the highly-collimated amplified HH beamlet is centered on the 

interference region [10]. Each interferogram was processed numerically to infer the fringe 

visibility for a given path difference. After background subtraction, a Fourier-transform with 

a sliding window [8] was applied to the full interference zone, yielding a map of visibility. 

The visibility was found to vary by about 20% across the zone of interest in the ASE case. 

This variation can be attributed to the non-uniformity of the X-ray laser beam [14] which can 

be seen in the images shown in Fig. 1. When the two non-uniform beamlets overlap, the 

visibility of the fringes is maximum only at those positions where the intensities in the two 

interferometer arms are equal and it is lower elsewhere. Hence the maximum visibility in the 

interference field was considered as the relevant value for a given interferogram. For the 

injection seeded case, the visibility was measured in a restricted zone containing the amplified 
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HH beamlet, excluding the ASE zone. In this restricted zone the variation of visibility is 

smaller than in the ASE case, namely less than 10%. 

Figure 2 (a-c) shows the measured visibility curves obtained from the path difference 

scans for three different injection seeded Mo amplifier lengths. Figure 2(d) shows the 

measured visibility curve corresponding to the 18.9 nm laser amplifier (L = 4 mm) operated 

in the ASE mode. Each data point is the average of the visibility measured over 5 to 10 laser 

shots, and the error bar represents the standard deviation, mainly due to shot-to-shot 

fluctuation. In each graph, the solid-line curve shows the best analytical fit of the 

gzrgtkogpvcn"fcvc0"Vq"kphgt"vjg"eqjgtgpeg"vkog"kC and the corresponding frequency linewidth 

Äち"htqo"qwt"ogcuwtgogpvu"yg"wugf"vjg"fghkpkvkqpu"ikxgp"kp"]15], assuming that the spectral 

profile is symmetrical with respect to the central frequency p : 
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where V(t) is the visibility as a function of the path difference (given by the analytical fit), 

I*ち+ is the spectral power density and p  is the average central frequency of the line. I*ち+ is 

given by the Fourier-transform of V(t). The above definitions, which are based on the 

quadratic mean of the quantities, are less sensitive to the shape of the visibility curve (i.e. to 

the chosen fit for the experimental data) than the usual definitions used previously [9, 14, 16]. 

Hence it can be judged as more appropriate in cases like ours where the shape of the visibility 

curve is difficult to determine accurately. 
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Fig. 3. Measured and computed linewidth (as defined in Eq. (1) of the injection-seeded and 

ASE 18.9 nm molybdenum SXRLs for different plasma lengths (see color online). 

The variation of the linewidth of the seeded and ASE lasers as a function of amplifier 

length was simulated using the combination of a 2-dimensional hydrodynamic/atomic physics 

code and a 3-dimensional ray propagation code developed at CSU. The ray propagation tracks 

the amplification for each frequency component as the individual rays propagate taking into 

account refraction and gain saturation [10]. While this code does not allow the full self-

consistent treatment of Maxwell-Bloch codes [17], it does include temporal broadening due to 

bandwidth narrowing and has the advantage of including a more detailed atomic model. The 

code was previously shown to satisfactorily predict the physical behavior as well as the pulse 

duration and energy of injection-seeded transient soft x-ray lasers in agreement with 

experiments [3,5]. The evolution of the plasma parameters was computed by the 
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hydrodynamic code and fed into the ray propagation code. The ray propagation calculation is 

fully resolved in space, angle, frequency, and time. Figure 3 displays the values of the 

measured and simulated quadratic linewidth of the injection-seeded and ASE lasers for 

different plasma lengths obtained using the expression defined in (1). It can be observed that 

smaller spectral linewidth (2.2 ! 10
11

 Hz) corresponding to the larger temporal coherence 

time, (1.0 ± 0.2) ps is obtained for the longest plasma length of 4 mm, as expected from 

amplified radiation in the absence of saturation rebroadening. However, since most of the line 

narrowing due to amplification occurs in the first 2 mm of the plasma column, the measured 

variations as a function of plasma length are small and mostly within the error bars. It is also 

observed that the linewidth of the ASE X-ray laser, 1.95 ! 10
11

 Hz, is slightly smaller 

(although again within the error bars) than the injection-seeded laser linewidth corresponding 

to the same amplifier length, as already observed for the 32.8 nm OFI SXRL in a recent 

experiment [9]. Such a behavior is consistent with the numerical simulations, and reflects the 

fact that the linewidth of the ASE and seeded lasers are dominated by the bandwidth of the 

amplifier, that is in turn dependent of the plasma conditions. There is no line rebroadening 

after saturation. The measured longitudinal coherence time for the longer seeded columns 

lengths of 3 and 4 mm are 0.8 ps and 1.0 ps respectively. These values are similar to the 

measured pulse duration of 1.13 ± 0.47 ps for a seeded solid target Ne-like Ti laser [5], that 

our model computations predict to be close to the pulse duration of the seeded Ni-like Mo 

laser, 1.3-1.5 ps. In contrast, the measured temporal coherence time is much shorter than the 

4-6 ps duration computed for the ASE Ni-like Mo laser, that in turn resembles the measured 

~5ps pulse durations of other similar transient collisional grazing incidence ASE lasers that 

were accurately predicted using the same model [18]. Therefore, it is concluded that while the 

injection-seeded and ASE lasers are measured to have very similar linewidths, the seeded 

laser has a significantly higher degree of temporal coherence that approaches full temporal 

coherence. The coherent time of the injection-seeded Ni-like Mo laser is also several times 

shorter than the transform limited pulsewidth of 4.7 ps reported for the 32.9 nm OFI laser [8], 

corroborating the high potential of injection-seeded transient collisional solid target amplifiers 

for the development of table-top SXRLs of shorter pulse duration. 
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4.2.3  Summary 

In this experiment, we measured the temporal coherence length of the Mo laser in 4 

conditions: one is in ASE mode and plasma length 4mm, the others are in seeded mode and 

plasma length are 2 mm, 3 mm, and 4 mm separately. In table 4-2-1 we summarize all the 

measured values for the (quadratic) coherence length and spectral line width: 

 

Mode 
Plasma length 

l (mm) 

Coherent length 

Lcq (#m) 

Coherent time 

"cq (ps) 

Line width 

)#q (mÅ ) 

Spectral width 

!+q (1011 Hz) 

seeded 2 246±15 0.82±0.05 3.0±0.6 2.52±0.50 

seeded 3 249±49 0.83±0.16 3.4±0.4 2.86±0.34 

seeded 4 300±46 1±0.15 2.6±0.4 2.20±0.30 

ASE 4 320±150 1.1±0.5 2.4±0.2 1.97±0.13 

 

Table 4-2-1 Summary of measured values (all the values are defined by quadratic mean) 

 

Several additional features were noted when analysing the series of interferograms: 

(1) The signal level in the seeded beam, for the same plasma length, is larger than in the 

ASE beam (see Figs 1 (b) and (c) in the preceding paper, generally 360 photons/pix for 

seeded beam vs 80 photons/pix for ASE beam).  

(2) The maximum visibility in the seeded beam (typically 0.8) is slightly larger than in the 

ASE beam (typically 0.75) (see Figs 2 (c) and (d) in the preceding paper)  

Both these features are related to the fact that the seeded beam is more coherent and more 

collimated than the ASE beam. 

The two following features are related to the inevitable superposition, in the interferograms 

obtained in the seeded mode, of a central collimated seeded beam surrounded by a less intense 

and broader ASE beam (see Fig. 1 (c) in the preceding paper): 

 (3) When the path difference is large, we found that the visibility at the edge of the beam 

(ie in the ASE part of the beam) is slightly higher than in the centre (ie in the seeded part of 

the beam) (0.38 compare to 0.3). This observation is consistent with our measurement of the 

temporal coherence: as shown in Table 4-2-1 the temporal coherence length of the ASE beam 
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is slightly larger than the seeded one (although as noted in the paper, the difference lies within 

the error bar). 

 (4) In the seeded mode, for the shortest plasma length of 2 mm, the signal level in the 

central part corresponding to the seeded beam is very low. As a result in this case the 

contribution of the ASE beam to the measured signal could be significant. Since we have seen 

above that the temporal coherence of the ASE beam is larger than the seeded one, this could 

lead to a small overestimation of the coherence length of the seeded beam, and a 

corresponding underestimation of the spectral width. This could explain the apparent 

inconsistency of our results, where the measured spectral width for the 2 mm plasma is 

smaller than the one for the 3 mm plasma (see Fig. 3 in the preceding paper). 

 

The main conclusions of the experiment are the following: 

- The seeded mode does not affect the amplified linewidth of the XUV laser significantly 

although, as already observed previously in OFI-pumped lasers and in agreement with 

simulations results, the linewidth of the seeded pulse is slightly larger than the ASE one; 

- Our results suggest that the temporal coherence of the beam is significantly increased by 

seeding, mainly because the duration of the seeded pulse is closer to the coherence time. This 

conclusion is inferred from the measurement of pulse duration achieved in similar conditions 

at a different lasing wavelength (32.6 nm in Ne-like Ti) and from the predictions of numerical 

simulations. A simultaneous measurement of the pulse duration and the coherence time of the 

same seeded XUV laser would be useful to confirm our statement. 

- Finally we note that the apparent change in the shape of the visibilty curve when varying 

the plasma length, or when operating in ASE mode, is not yet understood and is not accounted 

for by our radiative transfer calculations. One possible explanation could be related to the fact 

that the XUV laser pulse is neither fully coherent, nor incoherent, but partially coherent, in a 

regime where the formalism used (in particular the Fourier-Khintchine theorem) could fail. 

Further investigations are needed beyond the present work. 
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4.3 Capillary discharge XUV laser 

4.3.1  Introduction 

The experiment described in the scientific paper contained in this section was again carried 

out at the Colorado State University (CSU). It was implemented in December 2009 as a 

follow-up of the experiment presented in the previous section. The series of measurements 

have been performed by the CSU PhD student L Urbanski throughout 2010, in close (remote) 

collaboration with our group. In particular I was responsible for the processing of all data and 

then took an active part in the analysis and interpretation of the results. 

The main purpose of the experiment was to investigate the behaviour of the temporal 

coherence and corresponding spectral width of the capillary discharge XUV laser, emitted at 

46.9 nm (Ne-like Ar, 3p-3s J=0-1), when reaching the saturation regime. As explained in 

chapter 1, this laser differs from the other collisional excitation XUV lasers by several 

aspects, notably the plasma parameters in the gain zone: the electron density is relatively low 

(~2. 1018 cm-3) while the ionic temperature is of the same order of magnitude as the electron 

temperature (~100eV). As a result, the homogeneous collisional contribution to the 

broadening of the lasing line is much smaller than the inhomogeneous Doppler one: 5.4 % 

1010 Hz and 7.3 % 1011 respectively, as predicted from calculations performed at CSU.  

The capillary discharge XUV laser is thus the best suited, among the different types of 

collisional XUV lasers, to investigate the possible effect of saturation rebroadening, which is 

indeed predicted by theory when the inhomogeneous broadening is dominant. This effect was 

discussed in chapter 2 where the behaviour of the spectral linewidth as a function of the 

amplification length was investigated with radiative transfer numerical simulations. In the 

case of an extremely inhomogeneous profile (see section 2.4.2), the calculated spectral width 

was predicted to narrow down to a minimum, and then rebroaden to about 3/4 of the intrinsic 

width while amplified in the saturation regime. 

The experimental investigation of this effect was done by measuring the temporal 

coherence of the capillary discharge XUV laser for several lengths, possibly both beyond and 

at saturation. In practice, however, it was not possible to obtain data for plasma shorter than 

17 cm because the output signal was too weak. The same capillary tube was used and was 

progressively cut to a shorter length after the series of acquisition for a given length was 

completed.  
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The results shown in the following paper involve the processing of a very large number of 

interferograms, hence leading to a good statistical accuracy. More precisely the data plotted in 

Figure 4b of the paper correspond to an average over five series of measurements (ie from one 

capillary tube). In each series, the measurement of the temporal coherence was made for 7 

different plasma lengths. For each plasma length, the path difference between the interfering 

beams was scanned over negative and positive range, with 17 different positions. For each 

path difference position, five successive interferograms were acquired to account for shot-to-

shot fluctuations. In summary a total of ~3000 interferograms were processed and used to 

assess the spectral behaviour at saturation of the capillary-discharge XUV laser. 
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4.3.2  Experimental results 

"
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Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence
on amplification beyond gain saturation
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We report the measurement of the linewidth and temporal coherence of a λ = 46.9 nm neon-like argon capillary

discharge soft-x-ray laser and its variation with plasma column length. A wave-front-division interferometer was

used to resolve the 3p 1S0–3s 1P1 laser line, resulting in measured relative linewidths of "λ/λ = (3–4) × 10−5.

The measurements do not observe saturation rebroadening when this clearly dominantly Doppler-broadened

inhomogeneous line is amplified beyond the intensity corresponding to gain saturation. Model simulations

indicate this is the result of a comparatively small collisional broadening that sufficiently homogenizes the line

profile to practically eliminate inhomogeneous saturation rebroadening. Collisional redistribution is computed to

play only a very minor role in homogenizing the line profile.

DOI: 10.1103/PhysRevA.85.033837 PACS number(s): 42.55.Vc

I. INTRODUCTION

Capillary discharge soft-x-ray lasers, first demonstrated

in 1994 [1], remain to date as the highest average power

tabletop source of coherent soft-x-ray radiation [2,3]. The

capillary discharge Ne-like Ar laser operating at λ = 46.9 nm

is also the tabletop soft-x-ray laser most broadly utilized in

applications. It has been used in interferometric studies of

high-density plasmas [4], high-resolution microscopy [5,6],

holographic imaging [7], nanoscale patterning and machining

[8,9], material ablation [10,11], single-photon ionization mass

spectrometry studies of nanoclusters [12], the measurement

of optical constants of materials [13], and other applications.

This practical tabletop laser has been widely characterized.

The gain [1,14–16], output pulse energy [2,3,16,17], pulse

duration [1,2,16,17], beam divergence [1,2,15–17], and wave-

front characteristics [18] have been measured. The spatial

coherence of the beam has also been measured to increase as a

function of plasma column length [19], reaching essentially

full spatial coherence in capillary discharges 36 cm in

length [20]. However, the spectral linewidth and the temporal

coherence, which are important parameters in applications

such as interferometry and large area nanopatterning, remained

to be characterized.

Besides the practical interest in knowing the temporal

coherence of capillary discharge lasers for applications, the

measurement of the linewidth behavior as a function of plasma

column length is also of significant interest for fundamental

reasons [21,22]. This is so because this laser medium offers

the opportunity to study the gain saturation behavior of a

highly inhomogeneous line. In soft-x-ray laser amplifiers

created by laser irradiation of solid targets the amplified

laser lines have not been observed to significantly rebroaden

as their intensity increases beyond the saturation intensity

[21,22]. This observed lack of inhomogeneous saturation

rebroadening was attributed by Koch et al. to homogeneous

*marconi@engr.colostate.edu

lifetime broadening resulting from electron collisions with the

radiating ions, and to collisional redistribution effects that can

be expected to effectively homogenize the Doppler component

[21]. The latter is the result of velocity-changing collisions that

transfer populations among the different velocity groups of the

radiating ions such that a single velocity is no longer associated

with each radiator (collisional redistribution). The capillary

discharge plasma amplifiers differ from those laser-pumped

solid-target collisional soft-x-ray lasers in that the electron

density is typically up to two orders of magnitude lower, while

the ion temperature exceeds the electron temperature. The

Doppler broadening contribution clearly dominates the Voigt

line profile and the collisional component that homogenizes

the line profile is much less significant. This highly inhomoge-

neous line profile could be expected to lead to the observation

of saturation rebroadening of the line not observed in previous

studies of line amplification in soft-x-ray plasma amplifiers

[21,22]. The relatively low electron density and moderate

ion temperature that characterizes the capillary discharge

plasma amplifiers also gives origin to a small linewidth

that is further narrowed in the amplification process. This

results in a very narrow laser line that is difficult to measure

because its width is below the resolution of most existing

spectrometers at this wavelength. Several measurements of

the linewidth of different types of laser-pumped soft-x-ray

lasers have been reported [22–27]. These measurements

were conducted using either a custom-made spectrometer

of extremely high resolution [22], or different types of

interferometers [23–27].

In this paper we report measurements of the linewidth and

temporal coherence of a capillary discharge neon-like argon

soft-x-ray laser, and compare the results to model simulations.

The variation of the linewidth as a function of amplifier plasma

column length was measured for plasma lengths between 18

and 36 cm. The measurements were conducted using a wave-

front-division interferometer specifically designed to measure

the temporal coherence of soft-x-ray sources [27]. The line

profile was inferred from the measurements of the fringe

visibility as a function of path difference in the interferometer.

033837-11050-2947/2012/85(3)/033837(6) ©2012 American Physical Society
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FIG. 1. (Color online) Schematic representation of the experimental set up. The output of the table top soft x ray (SXR) capillary laser is

aligned with the axis of the bimirror interferometer using two multilayer mirrors that also contribute to filter off-band plasma radiation. The

wave-front-division interferometer produces two beams that interfere onto a CCD. The inset shows the doughnut shape of the far-field profile

of the laser beam recorded using a CCD. The size of the detector did not allow the recording of the entire beam.

This interferometer was previously used to investigate other

types of collisional soft-x-ray lasers, including a 32.8-nm

injection-seeded optical-field-ionization soft-x-ray laser in a

Xe gas medium [23] and injection-seeded and self-seeded

transient collisional soft-x-ray lasers in the 18.9-nm line of

Ni-like Mo in plasmas created by laser irradiation of solid

targets [26].

II. EXPERIMENTAL METHOD

The experimental setup used in the linewidth measurements

is shown in Fig. 1. The capillary discharge laser beam is

reflected by two 45◦ incidence-angle Sc-Si multilayer mirrors

that are used to steer the beam for alignment with the

interferometer axis. Due to its limited reflective bandwidth,

the set of multilayer mirrors serves as a band-pass filter

that eliminates the unwanted background caused by off-band

plasma emission. The wave-front-division interferometer is

based in a pair of dihedrons slightly tilted towards each other

and irradiated at 6◦ grazing incidence (Fig. 1) [27]. This

setup splits the incoming beam into two branches that are

made to interfere onto the surface of a back-thinned CCD

detector. The CCD is located at 50 cm from the bimirror

and is tilted at an angle of 35◦ relative to the propagation

axis to improve the spatial resolution. A precision translation

stage vertically displaces one of the bimirrors relative to the

other inducing a controlled optical path difference between the

two interfering beams. The change in optical path difference

introduces a controlled phase shift between the two beams

which in turn modifies the contrast of the interference fringes.

A more detailed description of the instrument can be found in

Ref. [27].

Figure 2(a) shows a typical capillary discharge laser

interferogram obtained with the optical path difference set

to zero. The overlap of the reflections from the bimirror

creates a rectangular interference region of ∼1.5 × 14 mm2

dimension at the detector. The relative alignment of the two

beams determines the orientation and density of the fringes

observed. A cross section of the interferogram in Fig. 2(b)

shows a visibility of 80%, indicating a high degree of spatial

coherence. The measurements were conducted for discharges

in a 3.2-mm-diameter capillary channel filled with a pressure

of 440 mTorr of argon excited by a 21-kA peak amplitude

current pulse with a 10%–90% rise time of 44 ns. This current

pulse amplitude, the maximum that can be obtained in this

setup for a 36-cm-long capillary, is smaller than that of some

of the previously reported capillary lasers [2,3] but matches

that of the most compact capillary discharge lasers [17]. It was

selected to allow us to maintain the current pulse amplitude,

and hence the plasma conditions, practically constant as the

capillary length was increased from 18 to 36 cm to study the

gain-saturation linewidth behavior. At the discharge conditions

of this experiment the far-field laser beam pattern was recorded

to be characterized by a doughnut shape (inset in Fig. 1) with

a peak-to-peak divergence of 3.8 mrad (FWHM divergence of

4.4 mrad), resulting from refraction of the amplified beam in

the radial density gradient of the cylindrical plasma column.

It is possible to use the refraction angle measured from the

far-field pattern to estimate the maximum electron density

[28,29], in this case ∼1.8 × 1018 cm−3.
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FIG. 2. (Color online) (a) Typical interferogram corresponding

to the zero-path-length difference in the interferometer. The interfer-

ogram corresponds to a capillary discharge plasma column 21 cm in

length. (b) Line representation of the interferogram computed from

the region within the box in (a).

The spatial coherence of the beam was measured to decrease
with decreasing plasma length of the neon-like Ar capillary
discharge laser [20]. At the location of our interferometer,
5 m from the capillary exit, the spatial coherence radius can be
estimated from these measurements to be of the order of 1 and
4 mm for the 18- and 36-cm-long capillaries, respectively. For
the measurements described in this paper, this means that the
maximum visibility at the zero path difference is not constant,
but monotonically decreases when the plasma length is varied
from 36 to 18 cm. Nevertheless it should be understood that
the dihedron reflector interferometer design assures that the
same two regions of the beam interfere as the path-length
difference is changed [27]. This makes the measured loss of
visibility independent of the variation of the spatial coherence
for different capillary lengths, and solely dependent on the
temporal coherence.

III. MEASUREMENTS, SIMULATIONS, AND DISCUSSION

Figure 3 shows the measured variation of the fringe visi-
bility as a function of optical path difference for a 36-cm-long
capillary discharge plasma column. Each value results from av-
eraging the visibility measured for five laser shots. The figure

FIG. 3. (Color online) Visibilities as a function of optical path

difference for a capillary discharge plasma column 36 cm in length.

The insets are interferograms that illustrate the deterioration of the

fringe visibility with increased path difference due to finite temporal

coherence. The line is a Gaussian fit to the data.

also shows raw interferograms corresponding to different path
differences, along with a Gaussian fit to the data that yields a
temporal coherence length Lc defined as the e−1 visibility point
in the Gaussian profile of Lc = 690 µm. The corresponding
linewidth is of 16.6 mÅ, or !λ/λ = 3.5 × 10−5.

Figure 4(a) shows the measured variation of the laser output
intensity, and Fig. 4(b) shows the corresponding measured
variation of the laser line bandwidth as a function of capillary
plasma column length. This graph shows measurements that
span plasma columns lengths that are shorter and longer than
the saturation length, that are observed to occur at Ls ∼ 24 cm.
Figures 4(a) and 4(b) also compare the data to the result
of a model simulation that computes the line propagation
along the amplifier axis taking into account gain saturation
and refraction losses. The model simulates the amplification
of the laser line by solving the frequency-dependent inten-
sity and population equations accounting for Doppler and
collisional broadening, gain saturation, beam refraction, and
collisional redistribution. The line transport is computed by
breaking the different ion velocities into subgroups, solving
the population equation including stimulated emission for
each velocity subgroup, and using the natural line shape
with collisional broadening to obtain the frequency-dependent
gain profile for each subgroup. The subgroups are summed
to obtain the total frequency-dependent line shape, which is
used to solve the frequency-dependent intensity equation. In
turn, the total frequency-dependent intensity is used to calcu-
late the stimulated emission rate for each population subgroup.
The resulting system of equations are coupled together into a
combined solution. Refraction losses are estimated according
to Ref. [29] from the doughnut-shaped far-field beam profile
shown in the inset in Fig. 1. Collisional redistribution of
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FIG. 4. (Color online) (a) Measured laser output intensity as a

function of capillary discharge plasma column length. Gain saturation

is observed to occur for a plasma column length of ∼24 cm.

(b) Measured laser linewidth as a function of discharge plasma

column length. Five independent measurements of the linewidth were

averaged for each capillary length. The error bars were selected to

include all measurements. The lines are the results of simulations

for the plasma conditions discussed in the text, assuming ion

temperatures of 100, 87, and 70 eV from top to bottom, respectively.

The computations take into consideration collisional redistribution.

(c) The lines show the computed variation of the linewidth neglecting

(full line) and including (dashed lines) collisional redistribution.

The denser dashed line was computed using the ion-ion collision

time of Lee and More and the other using a collision time

determined by a molecular dynamics computation [32]. The plasma

parameters are those described in the text and the ion temperature

is 87 eV.

the population subgroups is accounted for in a way similar
to that described by Koch et al. [21] by considering that
ion-ion collisions change the ion velocities in the direction
of the laser beam, and using the ion-ion collision time to
obtain the redistribution rate. This results in an additional term
that couples the equations governing the different population
subgroups.

The simulation results shown in Fig. 4 correspond to a
plasma with an electron density of 1.8 × 1018 cm−3 derived
from the beam divergence measured from the far-field beam
refraction pattern, to ion temperatures of 70, 87, and 100 eV,
and to the electron temperatures that produce the best fit in
each case. The corresponding electron temperatures required
to obtain the best fit of the experimental data do not change
significantly, ranging from 87.4 to 92.6 eV. The value of the
electron temperature required to fit the data also depends on
the fraction of neon-like ions, that for the fit in Fig. 4 was
assumed to be 0.75. For different fractions of neon-like ions
ranging from 0.8 to 0.6 the electron temperature corresponding
to the best fit varies from 88.5 to 98.1 eV. For the plasma
conditions used to obtain the fits in Fig. 4 the Doppler and
Lorentzian contributions to the line profile are computed to
be 7.3 × 1011 and 5.4 × 1010 Hz, respectively. Most of the
line narrowing due to amplification is computed to take place
at plasma column lengths shorter than 18 cm, the minimum
length at which the laser beam intensity was sufficiently
high to allow for reliable interferometry measurements. The
line does not significantly rebroaden after gain saturation is
reached, contrary to the case of a purely inhomogeneously
broadened line. The simulations predict only a small amount
of rebroadening, that mostly falls within the error bars of
the measurements. Instead the line maintains a value of
!λ/λ ∼ 3.5 × 10−5. Collisional redistribution, which was
previously considered by Koch et al. [21,22] and Pert [30] to
affect the amplification dynamics of laser-pumped collisional
soft-x-ray lasers created by irradiation of solid targets [21,22]
is computed to play only a very small role in the saturation
behavior of the capillary discharge laser. This is illustrated
in Fig. 4(c) that shows small differences between fits to the
data that include or neglect the effect of velocity-changing
ion-ion collisions. The fits were performed with collisional re-
distribution rates corresponding to either the ion-ion collision
time from Lee and Moore [31] (19 ps) or from a molecular
dynamics computation performed specifically for the argon
ions of interest (27 ps) [32]. The absence of observable
rebroadening after gain saturation, caused by homogenization
of the line profile by collisional broadening, takes place in spite
of the fact that capillary discharge lasers operate in a regime in
which Doppler broadening greatly dominates the line profile.
Since the capillary discharge plasmas have up to two orders
of magnitude lower plasma density than those corresponding
to laser-pumped collisional soft-x-ray lasers that use solid
targets [22,24–27], and a higher ion temperatures than that
characteristic of optical-field-ionization soft-x-ray lasers [33],
it is difficult to find among the current soft-x-ray lasers plasma
conditions in which the inhomogeneous component is more
dominant. This suggests that the observation of saturation
rebroadening in soft-x-ray plasma amplifiers would be an
unusual event.
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IV. CONCLUSIONS

In conclusion, we have conducted measurements of the

linewidth and temporal coherence of a capillary discharge

soft-x-ray laser, and have studied its variation as a function

of amplifier length. While the line profile in this discharge

amplifier is clearly dominated by Doppler broadening, the

relatively small collisional broadening component is still

sufficiently large to homogenize the line to the point at which

no rebroadening was measured to take place as the line

intensity continued to increase beyond gain saturation. The

narrow relative linewidth of this laser, !λ/λ = (3–4) × 10−5,

corresponds to a coherence time of ∼2 ps that is much shorter

than the pulse duration of 1.2–1.8 ns [2,3,17]. The degree of

temporal coherence of the capillary discharge 46.9-nm laser

is thus significantly lower than those previously measured

in two other types of collisional soft-x-ray lasers (SXRLs),

namely the 32.8-nm optical-field-ionization SXRL in a Xe

gas medium [23], and the 13.9-nm and 18.9-nm transient

collisional soft-x-ray lasers in Ag and Mo plasmas created

by laser irradiation of solid targets [25,26]. The difference

arises from the fact that while these laser-pumped systems are

transient gain systems in which the laser pulse duration of a

few picoseconds is relatively close to full temporal coherence,

the capillary discharge laser is essentially a quasi-cw laser

in which the laser pulse duration is more than two orders

of magnitude longer than both the upper-laser-level lifetime

and the laser pulse of the transient lasers. Nevertheless, the

Lc ∼ 700 µm (e−1) temporal coherence length measured for

this capillary discharge SXRL is either similar or in some

cases even larger than that of other collisional soft-x-ray

lasers [24–26], which facilitates applications requiring high

temporal coherence, such as interferometry [4] and large-area

Talbot nanopatterning [34].

ACKNOWLEDGMENTS

We acknowledge fruitful discussion with A. Calisti (PIIM,
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4.3.3  Summary 

As explained in the preceding paper, the original goal of the experiment to demonstrate 

saturation rebroadening of a Doppler-dominated XUV laser line has not been reached. Since 

the effect predicted by the numerical simulations is quite small it could have been masked by 

the relatively limited accuracy of our measurement.  

Table 4-3-1 summarizes the measured values of temporal coherence (1/e) and linewidth 

(FWHM) for the different plasma lengths. 

 

Plasma length 

l(mm) 

Coherent length 

Lc (#m) 

Coherent time 

"c (ps) 

Spectral width 

!+ (1011 Hz) 

Line width 

)# (mÅ ) 

18 ~557.6 1.86 2.38 17.4 

21 653.4 2.18 2.03 14.9 

24 651.6 2.17 2.03 14.9 

27 688.4 2.29 1.92 14.1 

30 657.9 2.19 2.01 14.7 

33 718.2 2.39 1.84 13.5 

36 795.3 2.65 1.67 12.2 

 

Table 4-3-1 Summary of measured values 

 

The main conclusions of the experiments are the following: 

- The longitudinal coherence length of the capillary-discharge XUV laser is significantly 

large, typically ~700#m. This feature is clearly an asset for the application to imaging or 

nanopatterning developed at CSU with this source. Temporal coherence is in particular 

important for interferometric lithography (see e.g. refs 8 and 34 in the preceding paper). 

- The coherence time of the capillary-discharge XUV laser is of 2.3 ps. This is much 

smaller than the pulse duration of ~2 ns measured for this laser by the CSU group. The 

capillary-discharge laser is thus much less temporally coherent than the transient XUV laser 

investigated in section 4.2. 
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- Much shorter pulses, in the picosecond range, could thus be obtained by seeding the 

capillary-discharge plasma with a femtosecond, HHG pulse. This would require an accurate 

synchronization (within 1 ns) between the electrical discharge system and the Ti-Sa pump 

laser used to generate the harmonic pulse. 
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4.4 Quasi-steady state XUV laser 

4.4.1  Introduction 

The experiment described in this section was carried out at the Prague Asterix Laser 

System (PALS, Czech Republic) in March 2012. The 3-week experimental campaign was 

performed in the frame of the Laserlab-Europe [13] transnational access to infrastructures. It 

involves collaborations with Institute of Physics (M. Kozlova), LOA (F. Tissandier et al.) and 

LPGP (O. Guilbaud). The main purpose of our experiment was to investigate the behaviour of 

the temporal coherence and corresponding spectral width of the QSS XUV laser, emitted at 

21.2 nm (Ne-like Zn, ). The specificities of this pumping 

regime were described in chapter 1 (see section 1.2.2).  

4.4.2  Experimental set-up 

The experimental arrangement for the XUV laser generation is shown in Figure 4-4-1. The 

XUV laser amplifier is generated by irradiating a 3-cm-long target, which consists of an 

optically-polished zinc slab with a surface flatness of about 5 µm or better. The pump-laser 

sequence consists of a prepulse (2J, 300ps), followed after 10 (±0.5) ns by the main driving 

pulse (420J, 300ps). To achieve an efficient extraction of the population inversion, the XUV 

laser is operated in a double-pass, using a half-cavity mirror. The mirror is positioned at 8.5 

mm from the plasma. Upon activating the half-cavity mirror, the XUV laser output from a 3-

cm plasma is boosted typically 11 times, compared to single-pass [1].  

 

Figure 4-4-1. Schematic representation of the experimental setup for the generation of the QSS Zn XUV laser at 
PALS (from [1]). 

The spatial coherence of the Zn XUV laser beam was investigated by the PALS group, 

using a Fresnel wavefront interferometer [1]. The inferferometer was positioned at a distance 

of 3 meters from the source. Figure 4-4-2 shows the maximum fringe visibility measured by 
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the authors from the interferometric images, as a function of the pump laser energy. One can 

see that the visibility increases with the pump energy, while the maximum visibility is ~0.5. 

On the other hand, the data that were collected for several days exhibit a notable scatter, 

which was observed to occur especially on a day-to-day basis. According to the authors, "the 

origin of this scatter, which is in stark contrast to the reproducibility of the x-ray laser output 

intensity, is not clear; it may however be at least partially attributed to the rising edge shape of 

the pump laser, which was observed to vary during this particular series of shots [1]. As we 

will see, this day-to-day variation of the spatial coherence of the XUV laser beam was also a 

major concern during our experiment. 

"

Figure 4-4-2. Visibility of the interferometric fringes generated by the half-cavity Zn laser, as a function of the 
pump laser energy. From Ref. [1] 

#

For our interferometric measurement of the temporal coherence, we need that the fringe 

visibility at zero path-difference be larger than 0.5. It was thus decided to implement the 

interferometer at a distance of 5 meters from the source. At this distance, the spatial 

coherence length was expected to be of the same order of magnitude as the size of the 

overlapping region of the 2 interfering beams, that is about 900#m. 

Figure 4-4-3 shows the experimental set-up used in the first part of the experiment. As we 

will see the visibility of the fringes at zero path-difference was found lower than expected. In 

the second part of the experiment, the path of the XUV laser beam to the interferometer was 

increased (see Figure 4-4-4) to reach a total distance of ~7 m. However as we will see this did 

not lead to a significant increase of the fringe visibility. 
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"

Figure 4-4-3. Experimental setup showing the XUV laser chamber and the bi-mirror interferometer positioned at 
5.29 m from the source. 

"

Figure 4-4-4. Same as Fig. 4-4-3 but the distance between source and interferometer is increased to 7 meters. 

"

A footprint monitor, consisting of a translatable 45° multilayer mirror and a CCD, was 

used to check the stability of the XUV laser beam pointing and intensity on a day-to-day 

basis. An aluminium filter (thickness 2#m for D=5m and 1.2#m for D=7m) was used to 

attenuate the signal level at the CCD recording the interferograms. As explained in chapter 3, 

the CCD is set at an angle of 35° relative to the incident rays, in order to increase the apparent 

fringe spacing. However, due to a slight misalignment of the dihedrons that happened during 
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the shipping of the equipment, the fringes appeared to be much more tilted than in previous 

experiments. To allow a more significant stretching of the fringes through anamorphose, the 

CCD camera was thus rotated by 90°. In this case the image (see Figure 4-4-5 below) is 

stretched in the vertical direction, that is in the direction of the fringe spacing, instead of the 

horizontal direction. 

"

4.4.3  Experimental results 

Figure 4-4-5 shows an example of obtained interferogram in the first configuration 

(distance source-interferometer: 5 m) for a zero path-difference between the interfering 

beams. The fringe spacing is 6 pixels and the overlapping zone is 650#m. The measured 

fringe visibility is reasonably uniform over the interference area, but it is lower than expected: 

~ 0.36. 

 

Figure 4-4-5. Portion of an interferogram showing the interference fringes formed by the Zn XUV laser 

 

A first series of measurements was carried out with this configuration. The path difference 

was varied positively and negatively up to ~ 200#m around the zero path-difference position. 

Figure 4-4-6 shows the measured visibility as a function of path difference (in microns). The 

measurement data were obtained within 3 successive days (represented with 3 different colors 

in Fig. 4-4-6). The visibility data were then fitted with a Gaussian function shown in Figure 4-

4-6.  

From this fit a temporal coherence length (at 1/e) Ltc of 212 ±9  !m was inferred. 

A second series of measurements was carried out in the second configuration, ie with a 

distance source-interferometer of 7 meters. To avoid possible fluctuations of the spatial 

coherence of the XUV laser beam on a day-to-day basis (as mentioned above), all the data 

shots were acquired in the same day. The measured visibility data are shown in Figure 4-4-7. 

As can be seen the visibility is not improved by increasing the distance to the source, a result 
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which is not understood. As in the previous configuration the visibility data exhibit a 

Gaussian shape.  

The Gaussian fit yields a temporal coherence length (at 1/e) Ltc of 310 ±12!m.  

This value differs from the previous one by more than the error bar, but can still be 

considered as consistent, taking into account the relatively low statistics in each series, and 

the problem of day-to-day reproducibility of the source. 

 

Figure 4-4-6. Series 1: Visibility measured as a function of path difference. Experimental data taken on 3 
successive days and gaussian fit (blue). 

 

Figure 4-4-7:  Series 2: Same as Fig. 4-4-8 but distance from source to interferometer is 7 m (instead of 5 m). 
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To calculate the corresponding FWHM spectral linewidth !! we use the formula discussed 

in chapters 1 and 2: 

 (gaussian shape) and   

The measured quantities can also be used to infer the Fourier-transform limit duration "FL 

that would be reached for a coherent pulse having this spectral bandwidth. We use the 

formula corresponding to a Gaussian spectral profile: 

 

The results are summarized in Table 4-4-1. 

Data series Lc (#m) $+  (1011 Hz) $( (mÅ) -FL(ps) 

Series 1 212 ±9 7.5±0,3 11.2±0,5 0.59 ±0.02 

Series 2 310 ±12 5.1± 0,2 7.7±0,3 0.86 ±0.03 

Table 4-4-1:  Measured coherence length (1/e) for the two series of measurements shown in Figs 4-6 and 4-7 and 
corresponding spectral width (FWHM) and Fourier-transform limit duration. 

 

The spectral width of the 21.2 nm laser line is thus measured as 11.2 mÅ in series 1 and 

7.7 mÅ in series 2.  

This corresponds to Fourier-transform limit durations that are both below 1 picosecond, in 

contrast with all XUV lasers investigated until now.  

"
4.4.4  Comparison with numerical simulations 

Calculations of the intrinsic linewidth of the Zn XUV laser were performed by A. Calisti 

and colleagues from PIIM, using the PPP code already mentioned in chapter 2. Since the 

plasma parameters in the gain zone are not known accurately, upper and lower bounds of the 

plasma density and temperatures were considered [14]: 

Ne ~ 2-5.1020 cm-3, kTe ~ 200-300 eV; kTi ~ 150-200 eV 

The results of the calculations are summarized in Table 4-4-2, which shows the 

homogeneous component and the overall intrinsic linewidth (FWHM). 
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Plasma condition 
Overall  
!#tot  (mÅ) 

Homogeneous 
!#h (mÅ) 

Doppler 
!#D (mÅ) 

Ne=2%1020cm-3 30.5 11.8 23.8 Te=200eV 

Ti=150eV Ne=5%1020cm-3 39.1 24.3 24 

Ne=2%1020cm-3 33.4 11.0 27.4 Te=300eV 

Ti=200eV Ne=5%1020cm-3 40.9 22.1 27.7 

Table 4.4-2:  Instrinsic spectral width calculated with the PPP code for the plasma parameters typical for the Zn 
XUV laser 

 

As already described in chapter 2, the homogeneous component was inferred from the 

overall linewidth !#tot and the Doppler component !#D using the formula: 

 

One can see that the relative contribution of the homogeneous (collisional) broadening 

varies significantly with the electron density. For the largest density (Ne= 5*1020 cm-3) the 

homogeneous and inhomogeneous (Doppler) contributions are similar. For the smaller density 

(Ne = 2*1020 cm-3) the Doppler component is more than twice as large. 

The calculated intrinsic linewidths for the 4 different plasma conditions above were then 

fed in the 1D-radiative transfer code described in chapter 2 to calculate the amplified 

linewidth. 

The input parameters were as follows: 

- small-signal gain g0: 7 cm-1  

- reduced emissivity jr=j0/Isat: varied between 10-7 cm-1 and 10-5 cm-1, 

where j0 is the emissivity.  

Figures 4-4-8 to 4-4-11 show the evolution of the amplified linewidth as a function of the 

gain-length product G*L for the 4 different plasma conditions. In each case, three different 

values for the reduced emissivity are shown (expressed as JL = log(jr) = -7, -6 or -5). 
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Figure 4-4-8: Amplified linewidth as a function of plasma length: kTe = 200 eV, kTi = 150 eV;  Ne=2%1020cm-3; 
!#D =23.8 mÅ, !#h =11.8 mÅ; !#tot = 30.5 mÅ  

 

Figure 4-4-9:  Same as Fig. 4-4-8, but kTe = 200 eV, kTi = 150 eV;  Ne=5%1020cm-3; !#D =24 mÅ, !#h =24.3 
mÅ; !#tot = 39.1 mÅ  
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Figure 4-4-10:  Same as Fig. 4-4-8, but  Ne=2%1020cm-3; !#D =27.4 mÅ, !#h =11 mÅ; !#tot = 33.4 mÅ 

 

Figure 4-4-11: Same as Fig. 4-4-8, but kTe = 300 eV, kTi = 200 eV;  Ne=5%1020cm-3; !#D =27.7 mÅ, !#h =22.1 
mÅ; !#tot = 40.9 mÅ.  
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Finally the values of the linewidth calculated at saturation are summarized in Table 4-4-3. 

Amplified linewidth (mÅ) 

for different J0/Isat Plasma condition 

Intrinsic 

Linewidth 

(mÅ) 10-7 10-6 10-5 

Ne=2%1020cm-3 30.5 7. 4 8.0 8.8 5$bMUU$W"

5=bLPU$W" Ne=5%1020cm-3 39.1 8.3 8.8 9.4 

Ne=2%1020cm-3 33.4 8.7 9.6 10.6 5$bNUU$W"

5=bMUU$W" Ne=5%1020cm-3 40.9 9.0 9.6 10.3 

Table 4-4-3:  Amplified spectral width of the Zn laser calculated with the radiative transfer code 

 

The calculated values of !# shown in Table 4-4-3 account very well for our measurements 

of 7.7 mÅ and 11.2 mÅ. The range over which the calculated values vary suggests that the 

difference between our two measurements might be due to slightly different plasma 

conditions in the gain zone. 
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4.4.5  Summary 

We have measured the temporal coherence and spectral width of Ne-like Zn XUV lasers 

pumped in the quasi-steady state regime. The measured values, which have been summarized 

in Table 4-4-1, are in good agreement with the results of our radiative transfer calculations, 

within the considered plasma parameter range. 

Our experimental results should however still be considered as preliminary, owing to the 

small number of useful shots available during the experimental campaign. In particular the 

two series of measurements lead to values that are consistent but differ by more than the 

estimated error bar.  

The accuracy of our measurement has been limited by several points, which should be 

improved for a future new experiment (currently in discussion): 

(1) The limited spatial coherence of the beam led to a low visibility at zero path difference. 

The spatial coherence of the beam at the interferometer could be improved by inserting spatial 

filtering in the XUV laser beam path. Since the number of photons in the Zn laser pulse is 

very high, the measurement would not suffer from the corresponding loss of photons. 

(2) The spatial coherence fluctuates especially on a day-to-day basis. A shot-to-shot 

monitor of the spatial coherence should be implemented. This could be done by inserting a 

diffraction edge or wire in the part of the XUV laser beam that is not used by the interfering 

mirrors. 

 

Finally the main conclusion of the experiment is that we have measured for the first time a 

spectral bandwidth compatible with amplified pulse duration shorter than 1 picosecond. The 

Fourier-transform limit duration inferred from our measurements is between 0.6 and 0.9 ps. 

The QSS-pumped Zn XUV laser is thus of particular interest for the generation of seeded 

XUV lasers with duration in the femtosecond range. The implementation of a HHG source in 

the XUV laser chamber is already considered at PALS. A 1 Joule-class, Ti-Sa laser is now 

available in the PALS building. This laser is used for different studies such as laser-

acceleration of electrons. The main challenge that is now being addressed by the PALS laser 

team is the accurate synchronization of this Ti-Sa laser with the high-energy iodine pump 

laser. 



Chapter 4: Experimental study of the spectral and temporal properties of XUV lasers 

" LLS"

4.4.6  Annex 

"

The following paper corresponds to an oral presentation that I gave at the 13
rd

 

International Conference on X-ray Lasers. held in Paris in June 2012. The paper was 

submitted for publication in the Proceedings of the Conference.  
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Abstract. We report recent experimental progress in the characterization of the temporal coherence and related 
spectral linewidth of plasma-based soft X-ray lasers (SXRL). New measurements were carried out with two 
types of SXRLs pumped in the quasi-steady state (QSS) regime, in a capillary-discharge plasma and in a laser-
produced plasma. We describe the main results obtained from both experiments and compare them to dedicated 
numerical simulations. We discuss the results in the context of the possibility to achieve XUV lasers with pulse 
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4.5 Temporal behaviour of GRIP transient XUV laser 

4.5.1  Introduction 

The experiment described in the scientific paper contained in this section was carried out at 

the LASERIX facility hosted at ENSTA-Palaiseau, in December 2010 and April 2011. It 

involved  collaboration between our group and the groups of S. Bastiani at LULI (Palaiseau) 

and O. Guilbaud at LPGP/LASERIX. The Axis-Photonique X-ray Streak camera used for the 

study was provided by LULI.  

A dedicated triggering beamline was implemented at LASERIX for the experiment. The 

schematic set-up is shown in Figure 4-5-1. 

"

Figure 4-5-1.  sketch of the streak camera triggering beamline 

A small part of the infrared laser beam (E ~100#J) is focused in an optical fiber and 

transmitted to the entrance of an optoelectronic integrator, the "switch Gonthier ". The 

(electric) output signal of the switch is then sent to the input of the Streak ramp voltage 

generator, which controls the sweeping of the photoelectrons produced at the photocathode by 

the photoelectrons. The synchronization was adjusted with a delay box. 

The first experimental campaign in 2010 was devoted to a study of the temporal duration 

of the Ni-like Mo transient XUV laser over a wide range of pumping conditions. It is 

interesting to note that such a parameter-scan study, requiring hundreds of laser shots, was not 

possible when XUV lasers were generated with Nd:glass pump lasers, at a repetition rate of 1 

or 2 shots per hour. On the other hand transient pumping is the only one among the different 

types of collisional excitation XUV lasers that offers possibilities to vary (to a certain extent) 

the output beam characteristics through the variation of the pumping parameters. This 

possibility could be interesting for certain applications. In the experiment presented in this 

section we have investigated the effect of two parameters on the XUV laser pulse duration: 

the duration of the short pump pulse, and the GRIP angle. 
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One of the main difficulty of using the ultrafast X-ray camera is to adjust the signal level 

incident on the photocathode within the small operating range, ie above the detection 

threshold and below the saturation, which leads to space-charge broadening effects. The 

dynamic range of the camera (ie the ratio between these two limits) is rather low: typically a 

factor 4. As explained in the following paper the signal level was carefully maintained below 

the saturation level by adjusting the focusing of the near-field image at the photocathode 

plane.  

The fact that saturation was not affecting our measurements was also checked a posterior 

while analysing the data. For all shots, the measured pulse duration was plotted as a function 

of the peak intensity of the XUV laser pulse in the image, as shown in Figure 4-5-2. One can 

see that all the measured signal intensities lie within the dynamic range of 4 and that there is 

not systematic increase of the duration for larger intensity, which would happen if space-

charge broadening was affecting the measurement. 

 

Figure 4-5-2.  Compilation of measured pulse duration versus peak signal intensity 

 

The second experimental campaign in 2011 was initially devoted to repeat the same 

measurements but while operating the streak camera in the accumulated mode, rather than 

single-shot mode. By allowing to operate the Streak camera at a low single-shot signal level, 

the accumulated mode leads an increased dynamical range. However due to several technical 

problems this experiment was not successful. As mentioned in chapter 3, we used this 

opportunity to carry out an accurate determination of the temporal resolution of the Streak 

camera using femtosecond high-order harmonic pulses, which were also available at 
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LASERIX. It was the first time that the resolution of the LULI Streak camera was directly 

measured in the XUV range. The measured temporal resolution of Tr of 2.0±0.18 ps is about 2 

times larger than what was considered until now, following the specifications from the 

manufacturer. 
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4.5.2  Experimental results 

"
 
"

 
 
"
"

Scientific paper published in Appl. Phys. Lett. 101, 141125 (2012) 



Chapter 4: Experimental study of the spectral and temporal properties of XUV lasers 

" LMS"

 

"



Temporal characterization of a picosecond extreme ultraviolet laser pumped
in grazing incidence

L. Meng,1 A.-C. Bourgaux,2 S. Bastiani-Ceccotti,2 O. Guilbaud,3,4 M. Pittman,3

S. Kazamias,3,4 K. Cassou,3,4 S. Daboussi,3,4 D. Ros,3,4 and A. Klisnick1
1ISMO, Bât. 350, CNRS, Universit!e Paris-Sud, 91405 Orsay, France
2LULI, !Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau Cedex, France
3LASERIX, Universit!e Paris-Sud 11, 91405 Orsay, France
4LPGP, CNRS, Universit!e Paris-Sud, 91405 Orsay, France

(Received 5 July 2012; accepted 24 September 2012; published online 5 October 2012)

We report an experimental study of the temporal duration of a transient pumping extreme ultraviolet

(XUV) laser emitted at 18.9 nm, using an ultrafast x-ray streak camera. We have investigated the

shot-to-shot reproducibility of the pulse duration, as well as its behaviour as a function of several

pumping parameters. Our results show that the pulse duration increases slowly with the pump pulse

duration, in agreement with previous observations performed in a different geometry. The angle of

the pump laser relative to the target surface also affects the XUV laser duration in a measurable way.

VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757878]

Plasma-based extreme ultraviolet (XUV) lasers, pumped

in the transient collisional excitation (TCE) regime1 by pico-

second, chirped-pulse amplification (CPA) pump lasers, pro-

vide a useful tool for fundamental studies in many different

areas. Recent demonstrations include interferometric diag-

nostics of dense plasmas,2 single-shot holography of nano-

structures,3 high-resolution microscopy of masks for extreme

ultraviolet lithography,4 and XUV irradiation of clusters.5

For most of these applications, an accurate knowledge of the

XUV pulse duration is essential.

Several measurements of the pulse duration of TCE XUV

lasers have been previously conducted by different groups.

All these works used an ultra-fast x-ray streak camera to

achieve picosecond temporal resolution.6,7 The first demon-

stration of a picosecond XUV laser was reported for a Ni-like

Ag laser8,9 at 13.9 nm. A systematic study of the role of the

duration of the pump laser was then carried out by Dunn10 for

a Ni-like Pd laser at 14.7 nm. In these works, pumping of the

XUV laser was achieved by irradiating a preformed plasma

with a CPA picosecond pulse at near-normal incidence. More

recently, a significant improvement of the efficiency of TCE

pumping has been obtained by irradiating the plasma under a

grazing incidence angle of !10"–20", leading to a generation

of so-called grazing incidence angle pumping (GRIP) XUV

lasers.11–14 The GRIP geometry, which was first described

and demonstrated in,11 allows to select the electron density at

which the pump laser is absorbed and the gain zone is created.

Ni-like Ag and Cd lasers pumped in the GRIP geometry were

demonstrated by the Colorado State University (USA) group,

and a pulse duration of typically 5 ps was measured for both

elements, with a fixed GRIP angle of 23" and a pump duration

of 6.7 ps.15 Finally, a significantly shorter pulse duration of

1.13 ps was reported by the same group for a Ne-like Ti laser

(k¼ 32.6 nm) pumped under 23" GRIP angle, and injection-

seeded with a high-order harmonic (HH) pulse. This is

actually the shortest pulse demonstrated to date for a plasma-

based XUV laser.

In this paper, we explore further the temporal behaviour

of GRIP systems, by investigating the effect of the pump

pulse duration, and of the grazing incidence angle on the

measured pulse duration of the XUV laser. Both these pa-

rameters have a direct influence on the spatial temporal

behaviour of the plasma in the gain region and hence can

potentially provide a method to control or vary the duration

of the XUV laser pulse. Our work focus on the transient Ni-

like Mo XUV laser (4d 1S0! 4p 1P1 transition at¼ 18.9 nm),

which was recently implemented at the LASERIX user facil-

ity (Palaiseau, France) and optimized for several applica-

tions.16 Our works aims at characterizing the temporal

duration of the delivered XUV pulse, as well as its shot-to-

shot reproducibility and sensitivity to the experimental

pumping conditions. We present the results of our measure-

ments and we discuss them together with previously meas-

ured data available from the literature.

The Mo XUV laser was generated by irradiating a 4mm

long molybdenum slab target with a sequence of infrared

(IR) laser pulses delivered by a Ti:Sa laser. First, a long

(uncompressed) 500 ps pulse was focused onto the target at

normal incidence by a combination of spherical and cylindri-

cal lenses to form a 4mm$ 70 lm line focus, with typical

intensity 5$ 1011W/cm2. After an optimized delay (590 ps

in our experiment), a short (compressed) picosecond pulse

was focused to a 4mm$ 50 lm line focus using an off-axis

spherical mirror and irradiated the preformed plasma with

intensities ranging from 0.6 to 12$ 1014W/cm2. The XUV

laser beam amplified along the plasma column was reflected

by a spherical multilayer mirror which formed the magnified

(M¼ 6), time-integrated image of the output plane of the

source (near-field image). Using a translatable flat multilayer

mirror, this image could be formed either onto a CCD cam-

era or onto the entrance slit of the streak camera (Axis Pho-

tonique) equipped with a KBr photocathode (Luxel).

A temporal resolution Tr of 2.06 0.18 ps was deter-

mined in-situ by measuring the duration of a HH femtosec-

ond pulse, while the sweep speed was calibrated by

generating a double-pulse XUV laser.17 Aluminium filters

with variable thickness (0.3–2 lm) were used to attenuate

the XUV laser signal. Finer adjustment of the signal level

0003-6951/2012/101(14)/141125/3/$30.00 VC 2012 American Institute of Physics101, 141125-1
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was obtained by adjusting the size of the XUV laser beam

spot at the photocathode slit with a slight translation of the

imaging mirror. The size of the spot was increased until we

observed that space charge broadening had no appreciable

effect on the temporal measurements.

Figure 1 shows a typical example of time-resolved

image. The curved shape of the signal, which is due to

instrumental distortion,18 was corrected before quantitative

analysis of the pulse duration. The right part of Fig. 1 shows

a lineout of the corrected image along the temporal axis. The

FWHM duration Tm measured from such a plot was then

deconvolved from the finite temporal resolution Tr to yield

the actual duration TXUV of the Ni-like Mo laser, assuming a

quadratic relation: T2
XUV¼T2

m"T2
r.

The measurement of the Ni-like Mo laser pulse duration

was carried out over a broad range of pumping conditions.

The grazing angle of the short pump pulse relative to the tar-

get surface was varied from 17# to 23#, by adjusting the inci-

dence angle at the focussing spherical mirror. This variation

of the GRIP angle induced a variation of up to 40% in the

length of the line focus (4.2mm–6.3mm) and a correspond-

ing decrease of the pump intensity. The grazing angle also

controls the speed of the travelling-wave irradiation.14 In the

explored range, however, the speed was always very close to

the speed of light (1.06 to 1.09c). Finally, the duration of the

short pump pulse beam was varied between 0.75 ps and 10

ps (FWHM) by adjusting the distance between the compres-

sor gratings. Since the energy was kept constant, the increase

of the pulse duration led to a corresponding decrease of the

pump intensity. For each pumping condition, three to five

successive measurements were performed to assess the shot-

to-shot reproducibility of the XUV laser pulse. The results of

this study are summarized in Figs. 2(a)–2(c), which show the

measured XUV laser duration as a function of the pump laser

duration for three different GRIP angles. Each data point cor-

responds to the average over individual measurements and

the error bar stands for their standard deviation. One can see

that for all pumping conditions the duration of the XUV laser

pulse does not vary from shot-to-shot by more than60.8 ps.

Also shown in Figs. 2(a) and 2(c) are data measured by

other authors for the same GRIP angle. At 17# (Fig. 2(a)),

the duration of 1.76 1 ps measured by Booth et al. in Ref.

19 in a Ni-like Mo laser pumped with a 0.25 ps pump pulse

appears somewhat shorter than what could be extrapolated

from our measurements. At 23# (Fig. 2(c)), our data agree

well with the measurements reported by Larrotonda et al. in

Ref. 15 in Ni-like Ag and Cd for the longest pump pulses,

but they seem to disagree for the shortest pump pulses where

we measure shorter durations ($3 ps in our case, instead of

$5 ps in Ref. 15).

For the three investigated GRIP angles, the XUV pulse

durations measured in our experiment increase slowly with

the duration of the short pump pulse. While the duration of

short pump pulse is increased by 13 times, the duration of

the XUV pulse increases only by a factor of 2–3. Such a

behaviour was already observed by Dunn and collaborators

in a similar study performed with a transient 14.7 nm Ni-like

Pd XUV laser pumped in near-normal incidence geometry,10

as can be seen in Figure 2(d). Their observation was found in

good agreement with numerical simulations performed in the

same group,20 where the duration of the XUV laser pulse

was found to follow closely the variation of the plasma elec-

tron temperature. In our experiment, the shortest duration, of

FIG. 1. Left: example of time-resolved XUV laser signal recorded by the

Streak camera, Right: Lineout versus time, after correction from distortion

and integration over the vertical size of the pulse.

FIG. 2. Measured duration (FWHM) of

the Ni-like Mo laser as a function of the

short pump pulse duration, for different

values of the GRIP angle: (a) 17#; (b)

20#; (c) 23#. Also shown are data meas-

ured by other authors, for a GRIP angle

of 17# (Booth et al.
19) and 23# (Larro-

tonda et al.
15); (d) Compilation of the

results of (a)–(c), together with measure-

ments from Ref. 10 in a Pd laser pumped

in near-normal incidence geometry. The

data measured for different pumping

angles exhibit a similar linear increasing

trend with the pump pulse duration.
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2.86 0.6 ps, is obtained for a pump pulse duration of 750 fs

and a GRIP angle of 20!.

By comparing the increasing trend of the XUV pulse du-

ration versus the short pump pulse in Figs. 2(a)–2(c), it can

be seen that the GRIP angle has also a small effect: the slope

of growth appears to be steeper for the larger GRIP angle,

and shorter durations are measured. This could be explained

by a more effective thermal conduction cooling towards the

colder overdense plasma when the GRIP angle, hence the

electron density in the gain zone, are larger. However, this

will require to be confirmed by dedicated numerical hydro-

simulations that include the description grazing incidence

irradiation, which is beyond the present work.

More generally, we note that the different measurement

data compiled in Figure 2(d) are relatively more scattered

when the duration of the pump laser is short, i.e., when the

duration of the XUV laser is the shortest. Although the

observed discrepancies might be real, they also could at least

partially result from other spurious effects, like the saturation

of the streak camera at high signal level, or the detuning of

the travelling wave irradiation from the speed of light.20

Both these effects would lead to an apparent broadening of

the measured pulse, and they would proportionally affect

more the shortest pulse durations.

In conclusion, we have investigated the effect of the du-

ration and the GRIP angle of the short pump pulse on the du-

ration of the Mo XUV lasers. Our results show that the XUV

laser duration increase slowly with the pump pulse duration.

For the shortest pump pulse, the duration of the XUV laser

pulse reaches slightly shorter values when GRIP angle is

larger, within the explored range.

This work was partially supported by the SFINX/

LASERLAB project from the EC 7th Framework Pro-

gramme under Grant Agreement No. 228334. The authors

wish to gratefully acknowledge the technical support of J.

Albrecht and E. Veuillot at LULI, J. Demailly at LASERIX,

and C. Le Bris at ISMO.

1S. Kazamias, K. Cassou, D. Ros, F. Pl!e, G. Jamelot, A. Klisnick, O.

Lundh, F. Lindau, A. Persson, C. G. Wahlstr€om, S. de Rossi, D. Joyeux,

B. Zielbauer, D. Ursescu, and T. K€uhl, Phys. Rev. A. 77, 033812 (2008).

2J. Filevich, J. J. Rocca, M. C. Marconi, R. F. Smith, J. Dunn, R. Keenan,

J. R. Hunter, S. J. Moon, J. Nilsen, A. Ng, and V. N. Shlyaptsev, Appl.

Opt. 43, 3938 (2004).
3H. T. Kim, I. J. Kim, C. M. Kim, T. M. Jeong, T. J. Yu, S. K. Lee, J. H.

Sung, J. W. Yoon, H. Yun, S. C. Jeon, I. W. Choi, and J. Lee, Appl. Phys.

Lett. 98, 121105 (2011).
4F. Brizuela, Y. Wang, C. A. Brewer, F. Pedaci, W. Chao, E. H. Anderson,

Y. Liu, K. A. Goldberg, P. Naulleau, P. Wachulak, M. C. Marconi, D. T.

Attwood, J. J. Rocca, and C. S. Menoni, Opt. Lett. 34, 271 (2009).
5S. Namba, N. Hasegawa, M. Kishimoto, M. Nishikino, K. Takiyama, and

T. Kawachi, Phys. Rev. A 84, 053202 (2011).
6M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, Appl. Phys. Lett. 56,

1948 (1990).
7J. Feng, K. Engelhorn, B. I. Cho, H. J. Lee, M. Greaves, C. P. Weber, R.

W. Falcone, H. A. Padmore, and P. A. Heimann, Appl. Phys. Lett. 96,

134102 (2010).
8A. Klisnick, J. Kuba, D. Ros, R. Smith, G. Jamelot, C. Chenais-Popovics,

R. Keenan, S. J. Topping, C. L. S. Lewis, F. Strati, G. J. Tallents, D.

Neely, R. Clarke, J. Collier, A. G. MacPhee, F. Bortolotto, P. V. Nickles,

and K. A. Janulewicz, Phys. Rev. A 65, 033810 (2002).
9Y. Abou-Ali, G. J. Tallents, M. Edwards, R. E. King, G. J. Pert, S. J.

Pestehe, F. Strati, R. Keenan, C. S. Lewis, S. Topping, O. Guilbaud, A.

Klisnick, D. Ros, R. Clarke, D. Neely, M. Notley, and A. Demir, Opt.

Commun. 215, 397 (2003).
10J. Dunn, R. F. Smith, R. Shepherd, R. Booth, J. Nilsen, J. R. Hunter, and

V. N. Shlyaptsev, Proc. SPIE 5197, 51 (2003).
11R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N.

Shlyaptsev, Phys. Rev. Lett. 94, 103901 (2005).
12B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C.

Marconi, J. J. Rocca, and V. Shlyaptsev, Opt. Lett. 30, 165 (2005).
13Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, J. J.

Rocca, and V. N. Shlyaptsev, Phys. Rev. A 72, 053807 (2005).
14J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, M. Berrill, and D.

Alessi, Opt. Lett. 30, 2581 (2005).
15M. A. Larotonda, Y. Wang, M. Berrill, B. M. Luther, and J. J. Rocca, Opt.

Lett. 31, 3043 (2006).
16D. Ros, K. Cassou, B. Cros, S. Daboussi, J. Demailly, O. Guilbaud, S.

Kazamias, J.-C. Lagron, G. Maynard, O. Neveu, M. Pittman, B. Zielba-

uer, D. Zimmer, T. Kuhl, S. Lacombe, E. Porcel, M.-A. du Penhoat, P.

Zeitoun, and G. Mourou, Nucl. Instrum. Methods Phys. Res. A 653, 76

(2011).
17L. Meng, A.-C. Bourgaux, S. Bastiani-Ceccotti, O. Guilbaud, M. Pittman,

S. Kazamias, K. Cassou, S. Daboussi, D. Ros, and A. Klisnick, Proc. SPIE

8140, 81401A (2011).
18C. Bont!e, M. Harmand, F. Dorchiesa, S. Magnan, V. Pitre, J.-C. Kieffer,

P. Audebert, and J.-P. Geindre, Rev. Sci. Instrum. 78, 043503 (2007).
19N. Booth, M. H. Edwards, Z. Zhai, G. J. Tallents, T. Dzelzainis, C. L. S.

Lewis, A. Behjat, Q. Dong, S. J. Wang, D. Neely, P. Foster, and M. Stree-

ter, Eur. Phys. J. Spec. Top. 175, 153 (2009).
20V. N. Shlyaptsev, J. Dunn, S. Moon, R. Smith, R. Keenan, J. Nilsen, K. B.

Fournier, J. Kuba, A. L. Osterheld, J. J. G. Rocca, B. M. Luther, Y. Wang,

and M. C. Marconi, Proc SPIE 5197, 221 (2003).

141125-3 Meng et al. Appl. Phys. Lett. 101, 141125 (2012)

Downloaded 05 Oct 2012 to 129.175.97.14. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



Chapter 4: Experimental study of the spectral and temporal properties of XUV lasers 

" LNM"



Chapter 4: Experimental study of the spectral and temporal properties of XUV lasers 

" LNN"

4.5.3  Summary 

Our experimental study shows that the pulse duration of a transient XUV laser varies 

slowly with the pump pulse duration, leading to a limited range of variation of ~3ps to 6 ps in 

the investigated domain. The pulse duration has a good shot-to-shot reproducibility.  

The observed effect of the GRIP angle on the XUV laser pulse duration is less clear. Our 

measurements suggest that the increase of the pulse duration with the pump laser duration is 

slightly steeper when the GRIP angle is increased (see Fig 2 in the preceding paper). Larger 

GRIP angles are predicted to lead to a higher electron density in the gain zone, i.e. the gain 

zone is shifted towards the (cold) target surface. This could lead to a more efficient plasma 

cooling after the pump laser pulse and hence to a shortening of the gain lifetime. This effect 

would be proportionally more significant when the pulse duration is short and thus lead to the 

observed steepening of the slope. Further investigation, as well as numerical simulations 

would be required to confirm this trend. 
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4.6 Summary and conclusions of the experimental study 

During my Ph.D thesis work, I have investigated three types of collisional XUV lasers: (1) 

transient Ni-like Mo XUV laser in seeded and ASE modes, (2) capillary-discharge Ne-like Ar 

XUV laser and (3) quasi-steady state Ne-like Zn XUV laser (ASE mode). The Optical Field 

Ionization (OFI) XUV laser is not discussed in the present work, but it is very interesting to 

include it in our comparison.  

Table 4-6-1 summarizes the parameters of these different XUV lasers, including those 

investigated during my thesis. Among the four types of existing collisional XUV lasers, 

which are now operated at saturation in laboratories, we can summarize the following features 

concerning in particular their spectral properties: 

(1) Transient and OFI pumping leads to short pulse XUV lasers in the few picosecond 

range. Both lasers were already operated in the seeded mode, using HHG radiation as a seed. 

In both cases the heating of plasma free electrons by the laser is too short to allow a 

significant transfer of kinetic energy to the heavy ions before lasing occurs. As a result the 

ionic temperature is significantly lower than the electron temperature. Because in OFI XUV 

lasers both ionic temperature and electron density are low, their spectral width is the smallest 

among the four types of collisional XUV lasers. As a result the Fourier-transform limit pulse 

duration is the largest, "FL ~ 5 ps.  

(2) Transient XUV lasers operate at higher Ne and Ti than OFI XUV lasers. As a result 

their linewidth is ~2 to 3 times larger. The Fourier-transform limit duration is found to be of 

~2 ps. We note that compared to the other pumping regimes, the transient pumping offers a 

broad range of parameters that can be used to vary the plasma parameters in the gain zone. 

For example the GRIP angle could be used to vary the electron density and thus to enlarge the 

linewidth (i.e. reduce "FL). A first attempt to investigate this effect was carried out at 

LASERIX during my thesis but, due to technical problems on the stability of the XUV laser, 

the results were inconclusive and were not included in the present manuscript. 

(3) At LASERIX we have investigated the duration of the transient Ni-like Mo XUV laser 

operated in ASE. The shortest duration measured is 2.8 ps, very close to the coherence time. 

We have shown that longer pulse duration can be obtained by increasing the duration of the 

main pump pulse. The relationship is linear but the slope is relatively small, of the order of 

0.25. 
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(4) Quasi-steady state pumping leads to XUV lasers that operate on a longer timescale: 

~150 ps for the Ne-like Zn laser and ~2 ns for the capillary-discharge laser. In both cases the 

ion temperature is closer or even equal to the electron temperature. As a result the Doppler 

broadening has a significant contribution to the intrinsic line profile. In particular the Doppler 

broadening dominates the profile of the capillary-discharge XUV laser, since the electron 

density is low and the collisional broadening is small. However saturation rebroadening 

remains weak and it could not be observed in our experiment. The Fourier-transform limit 

duration is similar to the transient pumping case, of the order of 2 ps. However this duration is 

much smaller than the duration of the ASE XUV laser, so that seeding of this type of laser 

would lead to a dramatic shortening of the output pulse. 

(5) The QSS Ne-like Zn XUV laser operates at both high Ne and high Ti. As a result this 

laser exhibit the largest bandwidth among the existing collisional XUV lasers. Although our 

measurements should still be considered as preliminary, they indicate that duration 

significantly below 1 ps should be reached in the seeded mode. 

(6) One can see in Table 4-6-1 that collisional XUV lasers are characterized by a 

remarkably large temporal coherence length, between 200 um and 1.6 mm. This feature is 

related to their extremely narrow bandwidth. Although this feature currently limits the 

duration to the picosecond range, it can be of interest for several applications requiring high 

temporal coherence, such as interferometric lithography, or coherent diffraction imaging.  
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Type of XUV laser 

Optical-field 
ionization pumping, 
gas target  
[3, 9, 16-18] 

Transient pumping, 
solid target  
[5, 19-21] 

Quasi-steady state 
pumping,  
capillary 

discharge [23-26] 

Quasi-steady 
state pumping, 
solid target  
[1, 14, 27] 

Element Ni-like Kr Ni-like Mo Ne-like Ar Ne-like Zn 
Wavelength (nm) 32.8 18.9 46.9 21.2 

Plasma length 6 mm 4 mm  36 cm 3 cm * 2 

Pumping 
configuration 

CPA Ti:Sa laser  

600mJ/35fs 

Krypton 30 mTorr 

CPA Ti:Sa laser  

prepulses (normal 
incidence): 45 
mJ/210 ps + 420 
mJ/210ps (delay 
1.5 ns) 

main pulse (GRIP 
23°): 1 J/3.3 ps 
(delay 500 ps)  

electrical pulse 
with a 10%–90% 
rise time of 44 ns, 

21-kA peak 
amplitude 

Argon 440 mTorr 

Iodine laser 

prepulse 2J/300ps 
+ main pulse 
420J/300ps 
(delay 10 ns) 

double-pass with 
half-cavity 

Repetition rate 10 Hz 5 Hz  7 Hz 2 shots/hour 

Output energy 0.7 uJ 
1 #J (ASE); ~75 nJ 

(seeded) 
up to 1 mJ up to10 mJ 

Ne [cm-3] ~ 1018 ~1-3*1020 ~2*1018 2-5*1020 
Te [eV] 450 250-500 ~100 150-200 
Ti [eV] 6 ~ 50 ~ 100 200-300 

Calc. homogeneous 
!#H (mÅ) 

5 9.5 4 11-24 

Calc. inhomog.!#D 
(mÅ) 

7 14.3 53.5 24-27 

Lc (um) 1500-1650 
240-300 (seeded); 

~320 (ASE)* 
~690 210-300 

"c (ps) 5.1-5.5 
0.8-1.0(seeded);  

~1.1(ASE)* 
~2.3 0.7-1 

!# (mÅ) 2.7-3.2 
2.6-3.4 (seeded); 

2.4(ASE)* 
~16.6 7.7-11.2 

!! (1011 Hz) 0.75-0.89 
2.2-2.9 (seeded); 

2(ASE)* 
~2.3 5.1-7.5 

!(/(  (10-5) 0.82-0.98 
1.4-1.8 (Seeded); 

1.3(ASE)* 
3-4 3.6-5.3 

"FL(ps) 4.9-5.9 
1.5-2.0 (seeded); 

2.2(ASE) 
~2 0.6-0.9 

actual "XUVL(ps) ~5 ps 2.8 ps (ASE) [22] 1.2-1.8 ns ~150 ps 
 

Table 4-6-1. Typical parameters of collisional excited XUV laser. The data (experiment and simulation) which 
were obtained during this thesis are indicated in blue. The value with “*” stands for the quadratic definition 
results. 
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Conclusion 

 

In this thesis we have investigated the spectral and temporal properties of three types of 

plasma-based XUV lasers pumped by collisional excitation in different regimes. Our goal was 

to characterize the temporal coherence and corresponding spectral width as well as to 

investigate the behaviour in the saturation regime. This behaviour is strongly related to the 

nature of the intrinsic line profile: homogeneous, inhomogeneous or a combination of both. 

The other motivation of our work was to compare the capabilities of the different XUV lasers 

in supporting amplification of femtosecond pulses, by enlarging the bandwidth. The shortest 

duration (Fourier-transform limit) that can be reached by the laser pulse is related to its 

spectral width. 

In chapter 2 I have presented numerical simulations using a radiative transfer code to 

calculate the spectral profile and width of the amplified laser line. I have shown that the 

nature of the XUV laser line profile strongly depends on the values of the local plasma 

parameters in the gain zone, which are very different in the three types of XUV lasers that we 

have investigated. Saturation rebroadening is observed only when the inhomogeneous 

broadening dominates the intrinsic profile. Such conditions correspond to a low electron 

density (~1019 cm-3) and a high ionic temperature (200 eV). Such conditions are similar to the 

ones encountered in capillary-discharge XUV lasers. However saturation rebroadening was 

not observed in our experiment described in chapter 4. Recent calculations performed by the 

PIIM group (A.Calisti et al.) suggest that ionic correlations could play a significant role in 

homogenizing the spectral profiles of XUV laser lines, thus preventing any saturation 

rebroadening to occur. The other important result obtained from our simulations is that, 

whatever the shape of the intrinsic profile (Lorentzian or Gaussian), the shape of the 

amplified profile is Gaussian. 

In chapter 4 I have presented the results of my experimental work. Using the same 

wavefront-division interferometer we have measured the temporal coherence of three 

different collisional XUV lasers: transient pumping in Ni-like Mo in seeded and ASE modes, 

capillary discharge pumping in Ne-like Ar and quasi-steady state pumping in Ne-like Zn. 

These XUV lasers operate in different pumping regimes and differ by the plasma parameters 

in the gain zone. As expected they exhibit slightly different spectral properties, thereby 
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demonstrating the capability of our interferometer to reach very high spectral resolution, 

which would not be possible with existing spectrometers. 

In all cases the coherence time is of the order of 1 picosecond, corresponding to a 

coherence length ranging between 200#m and 1.6 mm. Such a large temporal coherence 

length is interesting for several applications such as interferometric lithography, or coherent 

diffraction imaging. For the capillary-discharge XUV laser the coherence time is much 

shorter than the duration of gain (several nanoseconds). Hence seeding this XUV laser with a 

femtosecond HHG pulse would lead to a dramatic reduction of the output pulse. 

Gain narrowing was observed for two of these XUV laser systems without any 

rebroadening when the amplification enters the saturation regime, even for the capillary 

discharge XUV laser. For this Doppler-dominated XUV laser, moderate saturation 

rebroadening was predicted by numerical simulations. This disagreement could be because 

our measurement is not sufficiently accurate to detect this effect, or saturation rebroadening is 

canceled by homogenization of the profile by plasma effects, such as ionic correlations. 

For the transient pumping Mo XUV laser we have compared the temporal coherence of the 

pulse generated either in the ASE mode, or in the seeded mode. We have shown that the 

coherence time is barely changed in the seeding mode. However based on previous studies of 

the pulse duration we conclude that the temporal coherence of the seeded pulse is 

significantly enhanced. 

The duration of the Mo XUV laser, operated in the ASE mode, was investigated at 

LASERIX using a high-resolution X-ray Streak camera. Our study shows that the duration of 

the XUV laser can be varied within a limited range by varying the duration of the main pump 

pulse. Further experiments and simulations should be made to clarify the effect of the 

incidence angle (GRIP) of the main pulse. 

The largest spectral bandwidth, corresponding to the shortest Fourier-transform limit 

duration, was measured on the QSS-pumped Ne-like Zn laser generated at PALS. Our 

measurement indicates for the first time that durations below 1 ps could be reached by 

seeding this XUV laser with a femtosecond HHG pulse. An accurate measurement of the 

temporal coherence requires a large number of identical laser shots, which is more difficult to 

achieve at PALS (Prague Asterix Laser System), due to the low repetition rate of 2 

shots/hour. A better control of the spatial coherence of the XUV laser beam, on a shot-to-shot 

and day-to-day basis, should be implemented in a future experiment. 
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Although the work presented in this thesis contributes to a better knowledge of the spectral 

characteristics of existing collisional XUV lasers, there are still several aspects that will 

require further investigation. We have shown in chapter 4 that the numerical simulations 

account reasonably well for the measured values of spectral width, as well as for the gain 

narrowing behaviour. However in our method the spectral width is not measured directly, but 

is inferred from a Fourier-transform of the measured visibility curve. This is done by fitting 

the experimental data with several usual analytical functions and by selecting the one with the 

best fitting coefficient. Although the two QSS-pumped lasers exhibit clear Gaussian visibility 

curves, the fitting curves for the transient-pumped XUV laser could not be defined with a very 

good reliability. And they did not exhibit a Gaussian shape. This result seems in contradiction 

with our simulation study discussed in chapter 2, where we have shown that the profile of the 

amplified pulse should always be Gaussian. We suspect that this discrepancy is related to the 

duration of the XUV laser pulse compared to the coherence time. 

We found that the capillary discharge XUV laser and the Ne like Zn laser both have a long 

pulse duration compared to the coherence time. In this case the interferogram is integrated 

over a large number of coherence times; so it is statistically stable. In contrast the transient 

Ni-like Mo XUV laser has a pulse duration comparable to the coherence time. So the detected 

signal in the interferogram is integrated only over few (less than 5) coherence times; it is not 

statistically stable. This could lead to a visibility that is not Gaussian because the number of 

data is not large enough to give a statistical measurement. The way this will affect the 

measurement of the spectral profile and the width should be investigated in the near future, 

but beyond the frame of this thesis. 

 


