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Résumé

Cette these s’inscrit dans le domaine de la vérification du logiciel. Le but de la vérification
du logiciel est d’assurer qu’une implémentation, un programme, répond aux exigences, satis-
fait sa spécification. Cela est particulierement important pour le logiciel critique, tel que des
systemes de contrdle d’avions, trains ou centrales électriques, ol un mauvais fonctionnement
pendant I’opération aurait des conséquences catastrophiques.

Les exigences du logiciel peuvent concerner la slireté ou le fonctionnement. Les exi-
gences de sireté, tel que 1’absence d’acces a la mémoire en dehors des bornes valides, sont
souvent implicites, dans le sens que toute implémentation est censée étre stire. D’autre part,
les exigences fonctionnelles spécifient ce que le programme est censé faire. La spécifica-
tion d’un programme est souvent exprimée informellement en décrivant en anglais la mission
d’une partie du code source. La vérification du programme se fait alors habituellement par
relecture manuelle, simulation et tests approfondis. Par contre, ces méthodes ne garantissent
pas que tous les possibles cas d’exécution sont capturés.

La preuve déductive de programme est une méthode compléte pour assurer la correction
du programme. Ici, un programme, ainsi que sa spécification formalisée a I’aide d’un langage
logique, est un objet mathématique et ses propriétés désirées sont des théoremes logiques a
prouver formellement. De cette fagon, si le systeme logique sous-jacent est cohérent, on peut
étre completement siir que la propriété prouvée est valide pour le programme en question et
pour n’importe quel cas d’exécution.

La génération de conditions de vérification est une technique censée aider le program-
meur a prouver les propriétés qu’il veut sur son programme. Ici, un outil (VCG) analyse un
programme donné avec sa spécification et produit une formule mathématique, dont la validité
implique la correction du programme vis a vis de sa spécification, ce qui est particulierement
intéressant lorsque les formules générées peuvent €tre prouvées automatiquement a 1’aide de
solveurs SMT.

Cette approche, basée sur des travaux de Hoare et Dijkstra, est bien comprise et prouvée
correcte en théorie. Des outils de vérification déductive ont aujourd’hui acquis une maturité
qui leur permet d’étre appliqués dans un contexte industriel ot un haut niveau d’assurance est
requis. Mais leurs implémentations doivent gérer toute sorte de fonctionnalités des langages
et peuvent donc devenir trés complexes et contenir des erreurs elles mémes — au pire des cas
affirmer qu’un programme est correct alors qu’il ne ’est pas. Il se pose donc la question du
niveau de confiance accordée a ces outils.

Le but de cette these est de répondre a cette question. On développe et certifie, dans le
systeme Coq, un VCG pour des programmes C annotés avec ACSL, le langage logique pour
la spécification de programmes ANSI/ISO C. Notre premiere contribution est la formalisa-
tion d’'un VCG exécutable pour le langage intermédiaire Whycert, un langage impératif avec
boucles, exceptions et fonctions récursives, ainsi que sa preuve de correction par rapport a la
sémantique opérationnelle bloquante a grand pas du langage. Une deuxiéme contribution est
la formalisation du langage logique ACSL et la sémantique des annotations ACSL dans Clight
de Compcert. De la compilation de programmes C annotés vers des programmes Whycert et
sa preuve de préservation de la sémantique combiné avec une axiomatisation en Whycert du
modele mémoire Compcert résulte notre contribution principale : une chaine intégrée certi-
fiée pour la vérification de programmes C, basée sur Compcert. En combinant notre résultat
de correction avec celui de Compcert, on obtient un théoreme en Coq qui met en relation la
validité des I’obligations de preuve générées avec la slireté du code assembleur compilé.



Abstract

This thesis belongs to the domain of software verification. The goal of verifying software
is to ensure that an implementation, a program, satisfies the requirements, the specification.
This is especially important for critical computer programs, such as control systems for air
planes, trains and power plants. Here a malfunctioning occurring during operation would
have catastrophic consequences.

Software requirements can concern safety or functioning. Safety requirements, such as
not accessing memory locations outside valid bounds, are often implicit, in the sense that any
implementation is expected to be safe. On the other hand, functional requirements specify
what the program is supposed to do. The specification of a program is often expressed in-
formally by describing in English or some other natural language the mission of a part of
the program code. Usually program verification is then done by manual code review, simu-
lation and extensive testing. But this does not guarantee that all possible execution cases are
captured.

Deductive program proving is a complete way to ensure soundness of the program. Here
a program along with its specification is a mathematical object and its desired properties are
logical theorems to be formally proved. This way, if the underlying logic system is consistent,
we can be absolutely sure that the proven property holds for the program in any case.

Generation of verification conditions is a technique helping the programmer to prove the
properties he wants about his programs. Here a VCG tool analyses a program and its formal
specification and produces a mathematical formula, whose validity implies the soundness
of the program with respect to its specification. This is particularly interesting when the
generated formulas can be proved automatically by external SMT solvers.

This approach is based on works of Hoare and Dijkstra and is well-understood and shown
correct in theory. Deductive verification tools have nowadays reached a maturity allowing
them to be used in industrial context where a very high level of assurance is required. But im-
plementations of this approach must deal with all kinds of language features and can therefore
become quite complex and contain errors — in the worst case stating that a program correct
even if it is not. This raises the question of the level of confidence granted to these tools
themselves.

The aim of this thesis is to address this question. We develop, in the Coq system, a
certified verification-condition generator (VCG) for ACSL-annotated C programs.

Our first contribution is the formalisation of an executable VCG for the Whycert interme-
diate language, an imperative language with loops, exceptions and recursive functions and its
soundness proof with respect to the blocking big-step operational semantics of the language.
A second contribution is the formalisation of the ACSL logical language and the semantics
of ACSL annotations of Compcert’s Clight. From the compilation of ACSL annotated Clight
programs to Whycert programs and its semantics preservation proof combined with a Whycert
axiomatisation of the Compcert memory model results our main contribution: an integrated
certified tool chain for verification of C programs on top of Compcert. By combining our
soundness result with the soundness of the Compcert compiler we obtain a Coq theorem re-
lating the validity of the generated proof obligations with the safety of the compiled assembly
code.
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Chapter 1

Introduction

This thesis belongs to the domain of software verification. The goal of verifying software is
to ensure that an implementation, a program, satisfies the requirements, the specification. This is
especially important for critical computer programs, such as control systems for air planes, trains
and power plants. Here a malfunctioning occurring during operation would have catastrophic
consequences. There are numerous examples of software failures in the past. The interested
reader may refer to a very comprehensive list composed by Nachum Dershowitz.[]

Software requirements can concern safety or functioning. Safety requirements, such as not
accessing memory locations outside valid bounds, are often implicit, in the sense that any imple-
mentation is expected to be safe. Many high-level programming languages ensure the main safety
requirements by providing to the programmer an abstraction of the machine that disallows unsafe
operations. On the other hand low-level languages, like the C programming language, grant the
programmer the full access to the machine exposing him also to the full risk. Unfortunately the
use of low-level languages can often not be avoided — especially in the implementations of afore-
mentioned control systems. Indeed the C language remains nowadays the language of choice for
developing critical embedded software.

1.1 The C language and its semantics

The C programming language was initially developed by Dennis M. Ritchie at Bell Labs
starting from 1969. Only 10 years later its semantics was informally specified and one has to
wait until 1989/1990 for C to become an ANSI/ISO standard. Nevertheless, the C norm is still
ambiguous and leaves a certain degree of freedom to the compiler. For instance the evaluation
order of function arguments is “unspecified”, i.e. code like £ (g (),h()) is completely legal
but the compiler may call g () and h () in any order. More subtle, the semantics of multiple
side-effects between two sequence points is “undefined”, i.e. code like ++i + i++ is illegal
but the compiler doesn’t have to reject it and may interpret it arbitrarily. Moreover the notion of
sequence point is quite complex and disputed.

C programs containing such problematic code should generally ruled out by a static analyser.

But apart from issues coming from the lack of precise semantics, the most important issues
come from the low-level nature of the language itself. Aliasing is such an issue and defines the
situation in which a memory location can be accessed through different symbolic names in the
program. For instance, the following assertion is not generally true:

1. http://www.cs.tau.ac.il/~nachumd/horror.html
2. http://www.open-std.org/jtcl/sc22/wgld/www/docs/n993.htm
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*x=1;

*y=2;

assert (xx + xy == 3);
as it is sufficient that the code was preceded by x= vy; . Harder to find, it is not even generally
true that

*P=5;
assert (xp == 5);

and this code may crash if it was preceded by p= (int=*) &p; .

1.2 Deductive Program verification

Functional requirements specify what the program is supposed to do. The specification of a
program is often expressed informally by describing in English or some other natural language
the mission of a part of the program code.

A way of formalising the specification is through a logical language extending the program-
ming language. Consider the following example of a C function max along with its formal
specification given in the ANSI/ISO C Specification Language (ACSL), its function contract:

/*@ ensures \result >= x && \result >= y;
ensures \result == x || \result == y;
assigns \nothing;
*/
int max (int x, int y) { return (x > vy) ? x : y; }
This is a simple implementation in C of a function returning the largest of two given integer
numbers x and y. The specification of this function is expressed by saying that the result is
larger or equal than both x and y and either equal to x or equal to y. Additionally, it is
specified that the function does not modify any memory location.

Usually program verification is then done by manual code review, simulation and extensive
testing. But this does not guarantee that all possible execution cases are captured. There can be a
rare sequence of external inputs or events the programmer did not think of and therefore does not
test his program with. And being rare, even randomised black-box testing may miss it.

Deductive program proving is a complete way to ensure soundness of the program. Here a
program is a mathematical object and its desired properties are logical theorems to be formally
proved. This way, if the underlying logic system is consistent, we can be absolutely sure that the
proven property holds for the program in any case.

Since Alan Turing showed that the halting problem is undecidable, we know that it is not
possible to automatically prove all properties of a program in the general case. Therefore, we
need techniques to help the programmer to prove the properties he wants about his programs.

Generation of verification conditions is such a technique. Here a VCG tool analyses a program
and its formal specification and produces a mathematical formula, whose validity implies the
soundness of the program with respect to its specification.

For instance, the following formula, given in first-order logic with arithmetic, is a verification
condition for the max function of the previous example:

Va1 Vze 21 > 20 = ((21:21\/2’1222)/\2122’1/\21222)
Nz < z9g = ((22=Z1V22=ZQ)/\ZQ221/\2’2222)

If we can prove this formula logically valid, then we can be sure that the initial C function respects
its specification. This is particularly interesting if the generated formulas can be proved automat-
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ically: Automatic provers systematically explore the state space of logical formulas to return a
“yes/no/don’t know” answer to the satisfiability or validity of logical formulas. When automatic
provers fail to prove a valid verification condition, proof assistants provide a way to complete the
proof. Proof assistants provide a mechanical support for manually proving hard theorems, usually
requiring expert users.

This approach is based on works of Hoare and Dijkstra and is well-understood and shown
correct in theory. Deductive verification tools have nowadays reached a maturity allowing them
to be used in industrial context where a very high level of assurance is required. This is illustrated
by experiments done in the context of avionics by Airbus France [54] and Dassault Aviation [53]].
But implementations of this approach must deal with all kinds of language features like pointer
aliasing as explained above and can therefore become quite complex and contain errors — in the
worst case stating that a program correct even if it is not. This raises the question of the level of
confidence granted to these tools themselves. The aim of this thesis is to address this question.

1.3 Short History, Overview of the State of the Art

Early Works The pioneer implementation of a tool for deductive verification was made in
ESC/modula 3 [23] introducing the notion of function contracts. These works are in turn based
on works for the Simplify theorem prover performed as early as 1981 [48]. The vocabulary of
“contract” comes from the Eiffel [43] language developed in the same period, whose aim was to
perform runtime checking of the requirements given by those contracts.

Verification of Purely Functional Programs At approximately the same period of time there
were a lot of works about proving of purely functional programs inside theorem proving environ-
ments, as in PVS [51]], ACL2 [31]], HOLSS, Isabelle/HOL [49]], HOL4, HOL-light and Coq [152].

Verification of Non Purely Functional Programs in General Purpose Proof Assistants Prob-
ably the first attempt to prove non purely functional programs inside a general purpose proof as-
sistant was the SunRise system in 1995 [29] where a simple imperative language is defined in
HOL, with a formal operational semantics. A set of Hoare-style deduction rules are then shown
valid. A SunRise program can then be specified using HOL assertions and proved in the HOL
environment. What has to be noticed is that the programming language is deeply embedded in
the logical framework, i.e. the abstract syntax of the language is defined as a data type. A pro-
gram is then an object of the logical system one can state properties about. On the other hand the
specifications are not deeply, but shallowly embedded: they are formulas of the framework. As a
consequence proof of a program must be done inside the HOL proof assistant without the help of
any external automatic program prover like Simplify.

Later Norrish formalised the C programming language [50] in HOL including a set of Hoare
style deduction rules allowing to prove properties of C programs inside HOL. The Isabelle/HOL
formalisation used in the L4-verified project [32] was based on this work and allowed to certify a
C implementation of a highly secured OS kernel.

Other works proposed proofs of non purely functional programs on top of general purpose
proof assistants, like Mehta/Nipkow [42] and Schirmer [55]] on top of Isabelle/HOL, Ynot [46, [19]
and CFML [17] on top of Coq, which can deal with “pointer” programs via separation logic, and
also support higher-order functions.

This gives a very high level of confidence about the program’s soundness but theorem provers
are usually not well suited for program proving as they don’t give much assistance for proving
programs and most proofs must be carried out manually. Also, using a theorem prover would
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make us dependent of that particular system, whereas we would like to mix different systems,
playing on each system’s strengths.

Standalone Dedicated Verification Tools A different approach for program verification has
leaded to the implementation of dedicated tools, not based on proof assistants but in the spirit of
ESC/Modula 3.

These approaches provide standalone verification condition generators automatically produ-
cing verification conditions, usually by means of variants of Dijkstra’s weakest precondition cal-
culus. This is the case of ESC/Java [20Q], B [1]] ; the Why platform [26] and its Java [41] and
C [25] 144, 21] front-ends (Jessie) ; and Spec# [4] and VCC [22] which are front-ends to Boo-
gie [3]. The role of these front-ends is to transform input programs, where pointer aliasing is
allowed, into the alias-free intermediate languages, like Why, using a so-called memory model,
which typically encodes the operations on the memory heap by functional updates [40]. Being
independent of any underlying proof assistant, these tools analyse programs where formal spe-
cifications are given in ad-hoc annotation language such as JML [[15}16]] and ACSL [8].

Trusted Code Base Up to now the aforementioned standalone tools have never been formally
proved to be sound. In other words proving a program with such a tool means proving it up
to the soundness of the implementation of the tool itself. The implementation needs thus to be
trusted, even if it can become quite complex. We say it does not always respect the “de Bruijn
criterion”, which Freek Wiedijk defines as having the correctness of the system as a whole depends
on the correctness of a very small kernel. If we call the trusted code base (TCB) the part of the
implementation of a tool on which the soundness depends on, then we can say that the standalone
approach has a large TCB whereas the approaches on top of proof assistant have a significantly
smaller one.

For VCC, recent works [14] aim at validating the axiomatisation, that the generated proof ob-
ligations refer to, with respect to an ad-hoc formalisation of a C memory model (CVM). The ori-
ginal axiomatisation contained 900 axioms, some of which where discovered inconsistent, show-
ing the importance of such a work.

To summarise, one can distinguish two main kinds of deductive verification approaches. The
first kind is characterised by the use of a deep embedding of the input programming language in
a general purpose proof assistant, whereas the second kind takes the form of dedicated standalone
tools, offering a higher degree of proof automation but with a larger TCB.

Certifying versus Certified Compilers A formal certification of the correctness of the source
program is even more desirable in presence of technologies permitting to relate this to the correct-
ness of the compiled assembly program.

A famous line of work is the Proof Carrying Code approach (PCC) [47, 2]]. The general idea
is to have executable code accompanied with a certificate which guarantees that this code will not
make any runtime errors (such as invalid memory access) or satisfy particular functional properties
(like respect of safety policies). Such a certificate must be produced by the compiler, thus called a
certifying compiler. Originally this is limited to simple properties that can be established directly
by the compiler, for instance, type and memory safety.

To go beyond simple properties, one should be able to take into account requirements given in
the source by means of code contracts. This was proposed by Barthe et al. [5} 16} [7] for the case of
Java programs annotated using JML, compiled to Java byte code annotated using BML.

A way to go even further is to develop a certified compiler, i.e. a compiler that is proved to
preserve the semantics of the source code during the compilation towards assembly code. This
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therefore guarantees the preservation of any general property from the source code to the assembly
code.

The Verisoft project formalises a subset of C, called C0, and develops both a certified com-
piler and a proof environment on top of Isabelle/HOL [34]. Independently, a certified optimising
compiler for C has been developed and proved in Coq by Leroy, Blazy et al. [35} [12} 36] within
the Compcert projectlﬂ As this compiler covers a sufficiently large part of the C language and
moreover produces a sufficiently efficient executable code, its use is considered for production in
an industrial context.

Towards Certified Verification Tools The Compcert project showed that it is nowadays pos-
sible to develop real-world applicable tools inside a theorem prover. Similarly there are attempts
to develop certified verification tools, such as certified abstract interpreters developed in Coq by
Besson et al. [11]. The Verasco projectE]precisely aims at developing certified static analysis tools
on top of Compcert operational semantics .

The question of trusting formal methods was addressed in work package 5 of the U3CAT
projectlﬂ This thesis was in part in the framework of that project.

1.4 Contributions of this thesis

In this work we develop, in the Coq system, a certified verification condition generator for
ACSL-annotated C programs.

Our first contribution is the formalisation of an executable verification-condition generator for
the Whycert intermediate language, an imperative language with loops, exceptions and recursive
functions and its soundness proof with respect to the blocking big-step operational semantics of
the language (Chapter 3).

Our second contribution is the formalisation of the ACSL logical language and the semantics
of ACSL annotations of Compcert’s Clight (Chapter 4).

From the compilation of ACSL annotated Clight programs to Whycert programs and its se-
mantics preservation proof combined with a Whycert axiomatisation of the Compcert memory
model results our main contribution (Chapter 5): an integrated certified tool chain for verifica-
tion of C programs on top of Compcert. By combining our soundness result with the soundness
of the Compcert compiler we obtain a Coq theorem relating the validity of the generated proof
obligations with the safety of the compiled assembly code.

With respect to the state of the art presented above, our work aims at combining the advantages
of the two families of approaches of deductive verification: we have a standalone verification tool
able to interact with external automated provers which is, at the same time, proved formally correct
with a small TCB.

http://www.verisoft.de
http://compcert.inria.fr
http://verasco.imag.fr
http://frama-c.com/u3cat/wp5.html
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Chapter 2

Preliminaries

2.1 A Short Introduction to the Coq Proof Assistant

Coq is specified in the Coq Reference Manual[56] and introduced in the official Coq
Tutorial[30]] as well as in CogArt book[10]. In this section we introduce some features we use
throughout this development. The main constructs of the Coq language we use in this thesis are
algebraic data types, structurally recursive functions on such types and inductive and co-inductive
predicates.

One of the easiest examples of an algebraic data type is the list:

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A — list A — list A

Such an inductive definition allows defining of structurally recursive functions over the type, e.g.
the function computing the length of a given list.

Fixpoint length A (1 : list A) : nat :=
match 1 with
| nil = 0
| cons h g= 1 + length g
end.

In Coq, predicates can be defined inductively just as data types, except that their sort, i.e. the
type of their type, is Prop instead of Type. See for instance the definition of the predicate
relating any two lists that are permutations of each other:

Inductive Permutation (A : Type) : list A — list A — Prop :=

| perm_nil : Permutation nil nil
| perm_skip : forall (x : A) (1 1’ : list A),

Permutation 1 1’ — Permutation (cons x 1) (cons x 1')
| perm_swap : forall (x y : A) (1 : list A),

Permutation (cons y (cons x 1)) (cons x (cons y 1))
| perm_trans : forall 1 1’ 1’’ : list A,

Permutation 1 1’ — Permutation 1’ 1’/ —

Permutation 1 1’7

The predicate is defined by the least fixed point over these four rules. That is, among all the pre-
dicates that satisfy the four clauses above, there is one smaller than all the others (i.e. contains less
pairs of lists). The existence of this smallest fixed point is guaranteed by the positivity conditions
that are checked by the Coq kernel.

15
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Coq offers the notion of co-induction, which is the dual of induction where least fixed points
are replaced by greatest fixed points. A typical example found in tutorials about co-induction is
the data type of infinite lists, also known as streams. In this thesis we will not use any co-inductive
data types, only co-inductive predicates, to talk about non terminating computations.

We illustrate the definition of co-inductive predicates and proofs by co-inductions on a variant
of the Collatz problem [33]. We define a sequence of natural numbers as follows. Given an
arbitrary starting number x(, we pose

Tpiseven — Tpp1 = Tp,/2

Tpisodd — zp41 =dx,+1

If z,, is 1 the sequence stops.

In the original Collatz problem, the coefficient 5 is replaced by 3 and the still open conjecture
is that for every starting number the sequence is finite.

For coefficient 5 there are infinite sequences, e.g.

13,66, 33, 166,83, 416, 208, 104, 52, 26, 13, . ..

Now we can formalise in Coq the predicate P x that is true when x starts an infinite se-
quence, by a co-inductive definition:

CoInductive P n: Prop :=
| Even: n > 1 - even n —- P (div2 n) - P n
| 0Odd: n > 1 - odd n—P (5*xnt+l) — P n.

In other words, P n holds if either n isevenand P (n/2) holds,or n isoddand P (5xn+1)
holds.

Proving a goal about P typically involves the use of the cofix tactic, which introduces the
current goal as an hypothesis with the given name. However this hypothesis can be used only after
having applied a constructor of the predicate. For example the following proof attempt is rejected
by the Coq type checker (on the Qed command):

Goal P 13.
cofix CO. apply CO.
Qed.

Instead one have to construct an infinite proof tree by exposing the cycle:

Ltac even := apply Even; [auto with arith|auto with arith|simpl].
Ltac odd := apply 0dd; [auto with arith|auto with arith|simpl].
Goal P 13.
cofix CO.
odd. even. odd. even. odd. even. even. even. even. even.
apply CO.
Qed.

or, more simply:

Goal P 13.
cofix CO. repeat ((even;[]) || (odd;[]); auto).
Qed.
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2.1.1 Notations

In order to improve the visual aspect of our development, we make use of several notations.
Notations make Coq definitions more readable which is particularly important in case of specific-
ations as they need to be agreed on and thus belong to the trusted code base.

In order to conveniently deal with partial functions, i.e. functions returning a value of type
option A, we define a notation for the error monad.

Notation "’'let?’ x := el 'in’ e2" :=
(match el with None = None | Some x = e2 end).

Notations for Inference Rules

A class of notations particularly involved in making specifications more readable are our nota-
tions for inference rules. It is clear that when defining type systems or operational semantics by an
inductive or co-inductive type then this can be seen as inference system the rules are given by the
constructors. To make this even clearer we just need to write the conclusions of the rules under a

line. For instance the permutation relation over lists of the Coq standard library can be rewritten
as follows:

Inductive Permutation A: list A — list A — Prop :=
| perm_nil:

|
perm_skip x 1 1’

Permutation 1 1’

| perm_swap x y 1

Permutation (y::x::1) (x::y::1)
| perm_trans 1 1’ 177
Permutation 1 1’ - Permutation 1’7 1’7

Permutation 1 1’7’

For co-inductive definitions we also provide a double-line notation.
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CoInductive P : nat — Prop :=
| Even n:

| Odd n:
P (5% (2*n+1)+1)

P (2%n+1)

These notations are defined as any other Coq notation:

Notation "x -/ y" = (x =2 V).
Notation "x -————————————- y" = (x = y).
Notation "'g’ —-—————————————- y" = (y).

In order to support horizontal lines of variable lengths we just add one of such declaration per
length between 5 and 100.

Thanks to these notations the rules given in this thesis are directly copied from the Coq devel-
opment.

Scopes

The same notation can have different meanings according to the current interpretation scope.
For instance, the + infix symbol denotes integer addition in the Z_scope and real addition in
the R_scope.

Scopes can be opened and closed globally using Open Scope and Close Scope. To
change scope within sub-expressions, these can be suffixed with a scope delimiter using the % syn-
tax.

Open Scope positive_scope.
Definition pl := 1.

Definition p2 := pl + pl.

Open Scope Z_scope.

Definition z1 := 1.

Definition z2 := z1 + Zpos pl.
Check z1 < z2 A (pl < p2)%positive.

2.1.2 Coq Sections

Coq sections help defining parametric definitions. Just like modules, sections group variable
declarations and type, constant and function definitions together. But on closing section, every
Coq variable declared inside a section becomes a formal parameter to every definition relying on
that variable. Consider the following example:
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Section S.
Variable n : nat.
Definition f m := n + m.
Definition g m m + m.
Definition h := 5.
Definition i := g 6.
Check f: nat — nat.
Check g: nat — nat.
Check (h,i) : nat * nat.

End S.

Check f: nat — nat — nat.

Check g: nat — nat.

Check (h,i) : (nat — nat) =* nat.

ol

Inside the section S, the functions £ and g have the same type nat —-> nat and the constants
h and i have simply type nat . On closing the section, all the definitions are generalised with
respect to the variable n, so £ requires it as an additional parameter.

2.1.3 Coercions

In Coq integers are defined as the following inductive type

‘ Inductive Z := Z0 : Z | Zpos : positive — Z | Zneg : positive — Z.

In a development that works extensively with both, positive and Z, it could be convenient to
consider positive asub type of Z such that one can write a positive where a Z would
be expected. This is possible in Coq by declaring a coercion.

| Coercion Zpos: positive — Z.

That is, whenever a Z is expected and a positive is found, Coq automatically inserts the
constructor Zpos.

Continuing the example of [Section 2.1.1|we can now write

| Check zl < p2.

The shorthand syntax :> is available to directly declare constructors of a new inductive type
as coercions. With that we could have defined Z as

‘ Inductive 7z := 70 : Z | Zpos :> positive =+ Z | Zneg : positive — Z.

2.1.4 Dependent Types

Coq’s underlying formal language is a functional programming language with a powerful type
system. For instance we can define vector n the type of lists of length n.

Inductive vector (A : Type) : nat — Type :=
| Vnil : wvector A O
| Vcons : A — (forall n : nat, vector A n — vector A (1 + n)).

Such a definition guarantees that a list of type vector 5 always has exactly 5 elements.
This simplifies the definition of function accessing such a vector, for instance the function return-
ing the first element.
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Definition vhd A n (v: vector A (1 + n)) :=
match v with
| Vcons x n x0 = x
end.

Notice that the definition does not need to handle the case where there is no first element, as this
situation is excluded by typing.

2.1.5 The Program Environment

The definition of the previous example is especially simple because Coq’s type checker can
automatically infer the type of the expression and the absurd branch of the case expression. This
is not always possible, as it may be necessary to prove that a given case is absurd or that two
types are equivalent. The Program environment aims at automatically inserting these proofs.
Consider the following examples, which are automatically completed:

Program Fixpoint 1hd {A} (1: list A) (_ : List.length 1 # 0) :=
match 1 with
[ 1 ="
| h::g=nh
end.
Program Fixpoint mk_vector {A} n (l: list A) (_ : List.length 1 = n)

vector A n :=
match 1 with

| [] = Vnil

| h::g= Vcons h (mk_vector (pred n) g _)
end.

In the first example, the ! marked case is absurd as it contradicts the hypothesis that the length
of the list is not zero. In the following the return type is not trivial. In each case Program
automatically inserts a cast to the desired return type.

2.1.6 Extraction to OCaml Programs

The Coq extraction mechanism [39] [38]] creates executable OCaml or Haskell implementa-
tions from Coq definitions. This is a mostly syntactic translation, as Coq definitions are lambda
terms as usual in functional programming languages. However non computational contents and
unsupported typing features are removed by the extraction. For instance this is the extracted code
for the above examples:

let 1hd = function
| Nil -> assert false (* absurd case %)
| Cons (h, g) -> h

type 'a vector =
| Vnil
| Vcons of "a * nat * 'a vector

let rec mk_vector n = function
| Nil —-> Vnil
| Cons (h, g) —> Vcons (h, (pred n), (mk_vector (pred n) qg))
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Notice that the hypotheses about the length of the lists have been removed. Similarly the type
definition of vector does not depend on its length. In general it is therefore not safe to call
Cog-extracted functions by hand-written OCaml code.

2.2 Compcert

In this thesis we consider the Coq formalisation of C provided by the Compcert project. This
formalisation addresses some of the issues explained in the introduction.

In particular Compcert formalises two front-end languages: Clight, a normalised version of C
with side-effect free expressions, and CompcertC, aiming to allow ambiguous expressions and to
formalise the notion of sequence point. In this work we refer to the former. Many aspects of C are
shared between the front-end languages so the following considerations are true for both of them.

Several semantic elements are more precise in Compcert than in generic C. Currently Comp-
cert fixes the word size to 32-bits and arithmetic operations are all defined modulo this word size.
Also the order of the fields in a structure is fixed and fields aligned using alignment bits. The
function computing the offset for a given field is thus completely defined.

On the other hand, more importantly, the Compcert memory model formalises some of the
abstract aspects of the C memory. First, the Compcert memory model defines memory states
as collections of blocks, where each block is associated an array of atomic bytes. Compared
with a more hardware-like view of memory as a single, big array of bytes, this allows capturing
the fact that blocks of memory resulting from different allocations are necessarily separate and
the corresponding pointers incomparable. Also, a byte is formalised as being either a real 8-bit
integer or a portion of a pointer. This captures the fact that bit-level access to portions of machine
integers and floats is possible, whereas pointers should be atomic and their representation opaque.

To summarise the Compcert memory model is a perfect base to abstractly reason about
memory operations in program proofs.

2.3 The ACSL Specification Language

ACSL is specified in the reference manual [8]. It can express a wide range of functional
properties: from low-level properties, e.g. about the validity of some given pointer, to high-level
properties, e.g. that a given list is sorted. shows an example of an annotated program
for sorting a given array.

The specification employs the user-defined predicates Swap, Sorted and Permut . These
logical predicates refer to one, respectively two, memory states, which must be noted as explicit
parameters in their definitions. Swap specifies that in a given array pointed by a the elements
at positions 1 and Jj are swapped between the memory states L1 and L2 (lines 2 and 3) and
that all the remaining positions are unchanged (lines 4 and 5). The predicate Sorted states that
at memory state L in a given array pointed by a the sequence of elements between positions
1 and h is sorted. Notice that as this predicate refers to only one memory state, this is implicit
in the dereferences a[i] and a[j],i.e. a[i] is here equivalent to \at (a[i],L) . This
is different within code annotations where dereferences always refer to the memory state at the
current program point (e.g. line 47). In code annotations \at expressions can refer to previous,
labelled memory states (e.g. line 75). Permut is defined inductively, similar to the Coq predicate
shown above, except that it is over an array in two memory states.

The specification of the program is organised around function contracts which relate the pre-
state with the post-state of the function. For instance, the pre-condition of the function swap
expresses that the given array t must be valid at least for the positions i and j. Its post-
condition specifies that the memory locations may be modified at these positions (line 28). This



22 CHAPTER 2. PRELIMINARIES

/%@ predlcate Swap{Ll,L2} (int *a, integer i, integer j) =
@ \at (a[i],L1l) == \at(al[j],L2) &&
@ \at (a[j],L1) == \at(al[i],L2) &&
@ \forall 1nteger k; k !'=1 && k != 3
Q@ => \at (a[k],Ll) == \at(a[k],L2);
@x/

/+Q@ predicate Sorted{L} (int *a, integer 1, integer h) =
@ \forall integer i,j; 1 <= i <= j < h ==> al[i] <= alj] ;
@x/

/*@ inductive Permut{Ll,L2} (int xa, integer 1, integer h) {

@ case Permut_refl{L}:

@ \forall int xa, integer 1, h; Permut{L,L}(a, 1, h) ;

@ case Permut_sym{Ll,L2}:

@ \forall int +a, integer 1, h;

@ Permut{L1l,L2}(a, 1, h) ==> Permut{L2,L1l}(a, 1, h) ;

@ case Permut_trans{Ll,L2,L3}:

@ \forall int +a, integer 1, h;

@ Permut{L1l,L2}(a, 1, h) && Permut{L2,L3}(a, 1, h) ==>

@ Permut {L1,L3}(a, 1, h) ;

@ case Permut_swap{Ll,L2}:

@ \forall int xa, integer 1, h, i, 7J;

@ 1 <=1 <=h & 1 <= j <= h && Swap{Ll,L2} (a, i, 3J) ==>

@ Permut{L1l,L2}(a, 1, h) ;

@

@

Figure 2.1: Example of an ACSL user-defined predicates

so called assigns-clause has an exclusive semantics, i.e. all the memory locations not mentioned
are ensured to remain untouched. The resulting memory at the array positions in question is
specified with the Swap predicate. The other function min_sort has a specification with
named behaviours: sorted and permutation. These names are referred to in the loop
invariants which specify the behaviour of loops and to allow inductive reasoning when proving
the specifications.

The Frama-C platform provides parsing, type-checking and AST creation of ACSL annotated
C source files. Its plug-in architecture allows the definition and dynamic loading of OCaml written
analysers of such annotated programs. Currently two plug-ins, the Jessie plug-in[45] and the
Wwp plug—in allow verifying a program with respect to its specification by generating proof
obligations and sending them to external provers. With the Jessie plug-in all the generated proof
obligations are proved automatically.

1. http://frama—-c.com/wp.html
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/*@ requires \valid(t+i) && \valid(t+]j);
@ assigns t[i],t[3];
@ ensures Swap{0ld,Here} (t,1,3);
@x/
void swap(int t[], int i, int j) {
int tmp = t[i];
tli] = tl3];
t[3] = tmp;
}
/+@ requires \valid range (t,0,n-1);
@ behavior sorted:
@ ensures Sorted(t,0,n);
@ behavior permutation:
@ ensures Permut {Old, Here} (t,0,n-1);
@x/
void min_sort (int t[], int n) {
int i,73;
int mi,nv;
if (n <= 0) return;

/*@ loop invariant 0 <= i < nj;
@ for sorted:
@ loop invariant
@ Sorted(t,0,1) &&
Q (\forall integer k1, k2 ;
@ 0 <=kl < i <= k2 < n ==> t[kl] <= t[k2]) ;
@ for permutation:
@ loop invariant Permut{Pre,Here} (t,0,n-1);
@ loop variant n-i;

@x/
for (i=0; i<n-1; i++) {
// look for minimum value among t[i..n-1]
mv = t[i]; mi = i;
/+*@ loop invariant i < j && i <= mi < n;
for sorted:
loop invariant
mv == t[mi] &&
(\forall integer k; i <= k < j ==> t[k]
for permutation:
loop invariant
Permut {Pre,Here} (t,0,n-1);
loop variant n-j;
/
for (j=i+l; J < n; J++) {
if (£[3] < mv) |
mi=jJ; mv=t[]];

® ® ® ® ® ® ® @® @
*

swap (t,i,mi);
//@ assert Permut{L,Here} (t,0,n-1);

>= mv) ;

Figure 2.2: Example of an ACSL annotated C program







Chapter 3

Whycert: A Certified Verification
Condition Generator

The purpose of this chapter is to develop a certified VC generator able to produce VCs for mul-
tiple provers. We implement and prove sound, in the Coq proof assistant, a VC generator inspired
by the former Why tool, called Whycert. To make it usable with arbitrary theorem provers as
back-ends, we make it generic with respect to a logical context, containing arbitrary abstract data
types and axiomatisations. Such a generic aspect is suitable to formalise memory models needed
to design front-ends for mainstream programming language, as it is done for C by VCC above
Boogie or Frama-C/Jessie above Why. The input programs of our VC generator are imperative
programs written in a core language which operates on mutable variables of types declared in the
logical context. The output logic formulas are built upon the same logical context. This certified
Coq implementation is crafted so it can be extracted into a standalone executable as explained in
Section 2.1.6)

[Section 3.T]informally describes the core programming language and shows an example.

[tion 3.2]formalises our notion of generic logical contexts. [Section 3.3|formalises our core language
and defines its operational semantics. [Section 3.4| defines the weakest precondition computation

WP and proves its soundness. [Section 3.5|aims at the extraction of an executable plug-in for the
Why3 platform. We introduce a variant wp of the calculus which produces concrete formulas
instead of Coq ones.

A significant part of this chapter has been published at the VSTTE conference in 2012 [2§]].
The main increments are a more general notion of logical contexts and the Why3 back-end.

3.1 Informal Description of the core programming language

Our core language follows most of the design choices of the input language of Why and we use
the Why3 concrete syntax for the examples and explications in this chapter. Indeed we reduce to
an even more basic set of constructs, nevertheless remaining expressive enough to encode higher-
level sequential algorithms. We follow an ML-style syntax; in particular there is no distinction
between expressions and instructions. Following again the Why design, our core language con-
tains an exception mechanism, providing powerful control flow structures. As we will see these
can be handled by weakest pre-condition calculus without major difficulty. As a difference to the
Why programming language, we allow only global references: Local references and references
as function parameters are not supported, excluding thus any form of aliasing by construction,
whereas Why excludes aliasing by typing. For instance, in the following Why program the call to
f is rejected:

25
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type array
function select array int : int
function store array int int : array
axiom select_eq: forall a :array, 1 x :int. select (store a i x) i = x
axiom select_neq : forall a :array, i j x: int. i # j —
select (store a i x) j = select a j

predicate sorted array int

axiom sorted_def: forall a : array,n:int. sorted a n <«
forall i j:int. 0 < 1 && 1 < Jj && j < n — select a i < select a j

predicate swap array array int int

axiom swap_def: forall a b :array, i1 j : int. swap a b i j &
select a 1 = select b j && select a j = select b 1 &&
forall k : int. k # 1 && k # j — select a k = select b k

predicate permut array array int
axiom permut_refl: forall a : array, n:int. permut a a n
axiom permut_sym: forall a b: array, n:int. permut a b n — permut b a n
axiom permut_trans:
forall a b c:array, n:int. permut a b n && permut b ¢ n — permut a c n
axiom permut_swap : forall a b : array, n i J : int. 0 < 1 && 1 < n &&
0 < jé&& J < n && swap a b i j = permut a b n

Figure 3.1: Logical context for sorting

let f(x:int ref, y:int ref) = ...
let g(z:int ref) = £ (z, 2z)

A program in this language is defined by a logical context and a finite set of function defin-
itions, which can be mutually recursive. A logical context provides a fixed set of abstract types,
logical symbols, global references and exceptions that may be used in the program.

The core programming language of Whycert contains a language of logical terms, which will
also be the output of the WP calculus. The following concrete syntax illustrates Whycert logic
terms and predicates.

t = s logical symbol
| tl t2 term application
| let v =t in t local binding
| forall v:T, t quantification
| v local name
| Ir dereference
| at !r 1 dereference at label
| tes t]t — t connectives

These logic expressions always have an associated type and we will call predicates the logic
terms that have a propositional type and also proposition if the term doesn’t contain dereferences.

Only the conjunction and implication connectives are built-in, as they are the only ones needed
for the WP calculus. Other connectives may be included as logical symbols which can have higher
order types and are applied in a curried way.
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Terms may refer to a mutable state associating a value to every global reference. The syntax
! r allows dereference r. Additionally terms may refer to previous states by means of their label.
Logic terms are used inside program expressions whose concrete syntax is self explanatory:

e u= t term
| e; e sequence
| let v = e in e local binding
| £(t,...,t) function or parameter call
| if t then e else e conditional branching
| r© :=t assignment of a reference
| 'L: e labelled expression
| assert {t}; e local assertion
| raise (ex t) exception throwing
| try e with ex v — e exception catching
| loop invariant {t} e infinite loop

The only particularity are the infinite loops which have an associated invariant. The only way
to exit them is by using exceptions.
A definition of a function follows the structure

| let £(x1:T1) ... (xn:Tn) : T ={p } e { q}

where the predicates p and g are the pre- and the post-condition. In the post-condition, the
reserved name result is locally bound and denotes the result of the function of type T and
label ol1d is bound to denote the pre-state. Note that exceptions are not supposed to escape
function bodies. We could easily support such a feature by adding a family of post-conditions
indexed by exceptions as in Why [24].

Example 1 presents, in Why3 concrete syntax, an appropriate axiomatisation for spe-
cifying a program sorting an array. An abstract type array is introduced to model arrays of
integers indexed by integers. It is axiomatised with the well-known theory of arrays. We also
define predicates sorted t i meaning that t[0],. .., t[i — 1] is an increasing sequence, and
permut tl t2 meaning that t1 is a permutation of ta. The latter is axiomatised: it is an
equivalence relation that contains all transpositions swap of two elements.

All the constants in the example like select, store, butalso 0, 1, + and <, are logical
symbols belonging to the appropriate logical context as formalised below.

Fig. 3.2| shows a program that sorts the global array t by the classical selection sort al-
gorithm. Note the use of the exception Break to exit from the infinite loops. Note also the use of
labels in annotations, allowing to specify assertions, loop invariants and post-conditions that link
up various states of execution.

3.2 Logical Contexts

Our background logic is multi-sorted. Models for specifying programs can be defined by
declaring types, constant, function and predicate symbols, and axioms. In Coq this is formalised
using section variables which all the following definitions depend on.

3.2.1 Logical Signatures

A logical signature is composed of a set utype of sort names introduced by the user, a set
sym of constant, function and predicate symbols, a set ref of global reference names and a set



28 CHAPTER 3. A CERTIFIED VC GENERATOR
val t ref array
let swap (i:int) (Jj:int) unit =
{ true }
let tmp = (select !t i int) in
t := store !t i1 (select !t j); t := store 't J tmp; ()
{ swap !t (old !t) i J }
val mi ref int
val mv ref int
val i ref int
val j ref int
exception Break
let selection_sort (n:int) unit =
{n>11}
i = 0;
"Pre:
try loop
invariant { 0 < !1i && !'i1 < n && sorted !t !i && permut !t (at !t 'Pre) n
&& forall k1 k2 int. 0 < k1 && k1 < !'i && !'i < k2 && k2 < n —
select !t k1 < select 't k2 }
if !i > n-1 then raise Break else ();
(+# look for minimum value among t[i..n-1] %)
mv := select 't 'i; mi := !'i; J := !i+1;
try loop
invariant { !i < !J && !'1 < !mi && !mi < n && !mv = select !t !mi &&
forall k:int. !i < k && k < !jJ — select !t k > !mv }
if !3 > n then raise Break else ();
if select 't !jJ < 'mv then (mi := !j ; mv := select !t !j; ()) else ();
Joi= 13+ 1
end with Break — () end;
"Lab: begin
swap !i !mi;
assert { permut !t (at 't ’Lab) n };
i :=1!1 + 1 end
end with Break — () end
{ sorted 't n && permut !t (old 't) n }

Figure 3.2: Selection sort in our core language

exn of exception names. We require every symbol, exception and reference to have an associated

type.
Variable utype Type.
Inductive type :=
| Tuser utype — type
| Tarrow type — type — type
| Tprop.
Variable sym : type — Type.
Variables ref exn: type — Type.

That is, the types are completed with built-in types for propositions and functions. We will
use the following notation for function types:
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Inductive utype := Tarray | Tint | Tunit.

Notation type := (type utype).

Inductive sym : type — Type :=

| SYMselect: sym (Tarray —--> Tint —--> Tint)

| SYMstore: sym (Tarray —--> Tint --> Tint —--> Tint)
| SYMsorted: sym (Tarray —--> Tint --> Tprop)

| SYMswap: sym (Tarray —--> Tarray ——-> Tint --> Tint --> Tprop
| SYMpermut: sym (Tarray ——-> Tarray ——> Tprop)

| SYMeqg ty: sym (ty ——> ty —-—> Tprop)

| SYMconst_unit: sym Tunit

| SYMconst_int: Z — sym Tint

| SYMlt: sym (Tint --> Tint --> Tprop)

| SYMplus: sym (Tint --> Tint --> Tint)

| SYMopp: sym (Tint --> Tint)

Figure 3.3: A formal declaration of a logical signature for sorting

‘ Infix "--—>" := Tarrow.

Example 2 The logical signature of example |I| can be given by the definitions in |Figure 3.3|"
Notice that in addition to the required abstract symbols, we also need to declare some standard

types and symbols as they are not built-ins of our language.

Note that the axioms of| do not belong to the logical signature as needed to define
the program. They are listed here to illustrate the symbols which are completely abstract to our
WP calculus. They will be needed only by the provers to reason about the symbols when proving
the verification conditions generated by the calculus.

3.2.2 Dependently Typed De-Bruijn Indices

A design choice in our formalisation is to define terms and expressions such that they are well
typed by construction. This simplifies the definition of the semantics and the weakest precondition
calculus on such expressions, as we don’t need to handle malformed constructions at those points.
To begin we need to ensure that occurrences of variables actually correspond to bound variables
in their current scopes and that they are used with the correct type. Here we use so-called depend-
ently typed de Bruijn indices following the preliminary approach of Herms [27]] as documented in
Chlipala [18].

Dependent indices are like regular de-Bruijn indices, in that HIO refers to the innermost
bound variable, HIS HIO to the second innermost bound variable, etc. Additionally they carry
information about their typing environment and about the type of the variable they represent. We
use indices of type 1idx A E to represent variables of type A under a typing environment
E, that is the list of the types of the bound variables. The type of the innermost bound variable
is stored at the first position in the typing environment, the type of the second innermost bound
variable at the second position, etc. In Coq we can formalise this constraint using a parametrised
annotated inductive type. The following polymorphic definition constrains the type of the first
index to match the first element in the type list and recursively for the other elements.

1. Note that these definitions, as well as the ones shown in and are purely for illustrative purposes;
the real example is processed by the Why3 front end as described in
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Variable S : Type.

Inductive lidx A : list S — Type :=

| HIO E : 1lidx A (A :: E)

| HIS B E : lidx A E — lidx A (B :: E).
Dependent indices, specialised with S:=type, are thus placeholders within terms but they can
also be used to reference elements within heterogeneous lists, polymorphically defined as:

Variable T : S — Type.

Inductive hlist : list S — Type :=

| Hnil : hlist []

| Hcons A E : T A — hlist E — hlist (A :: E).

In such a heterogeneous list each element may have a different type. The type hlist E of het-
erogeneous lists then depends on the list of types E of their elements. Thanks to the constraints on
the type parameters, if anindex i : lidx A E references an element within a heterogeneous
list 1 : hlist E, we are sure to find an element of type A at i -th position of 1. This allows
us to define the function accslidx : lidx A E — hlist E — T A which given an
index and an hlist returns the element in the list pointed by the index. In Coq, thanks to the
Program environment its definition is straightforward.

Program Fixpoint accslidx A E (i:1lidx A E) (l:hlist E) : T A :=
match 1 with
| Hnil = !
| Hcons _ _ h g=
match i with
| HIO _ = n"h
| HIS _ _ 11 = accslidx il g
end
end.

We will use these heterogeneous lists to give semantics to our languages. Precisely, het-
erogeneous lists, specialised with T:=dentype, are the representation of evaluation environ-
ments which associate a value to each variable in the current typing environment. The function
accslidx is then used in the semantics rule for variable access.

Example 3 The heterogeneous list 1 definedas [ 5; true; pred ] hastype
hlist (S:=Type) (T:=id) [Z; bool; nat — nat].
The De-Bruijn indices
HIO : lidx (S:=Type) Z [Z; bool; nat — nat]
and
HIS (HIS HIO) : lidx (nat — nat) [Z; bool; nat — nat],
are well-typed and can be used to access their valuesin 1, e.g. accslidx HIO 1 = 5 : 7Z

and accslidx (HIS (HIS HIO)) 1 = pred : nat — nat.

3.2.3 Terms and Propositions

The formal syntax of logic terms is given in Terms depend on the parameters I,
E and A, denoting respectively the highest index of a valid label, the typing environment and
the type of the value they denote, which is Tprop in case of propositional terms. Variables are
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Inductive builtin : type — Type :=

| Band : builtin (Tprop --> Tprop —--> Tprop)

| Bimply : builtin (Tprop —--> Tprop —-—-> Tprop)
| Bfalse : builtin Tprop.

Definition var := lidx (S:=type).
Variable 1L : nat.

Inductive term E : type — Type :=

| Tsym A : sym A — term E A

| Tbuiltin A : builtin A — term E A

| Tvar A : var A E — term E A

| Tderef A : ref A — term E A

| Tapp A Al: term E (Al --> A) — term E Al — term E A
| Tlet A Al : term E A1l — term (Al::E) A — term E A

| Tforall Al : term (Al::E) Tprop — term E Tprop

| Tat A : label — ref A — term E A

Notation prop E := (term E Tprop).

Figure 3.4: Inductive definitions of logic terms

represented by our dependent indices 1idx A E. The constructor Tlet expresses let-blocks
at the term level. As usual with de Bruijn indices, no variable name is given and the body of the
block is typed in a typing environment that is enriched by the type of the term to be remembered.
Similarly Tforall binds a new de Bruijn variable but generalising it instead of assigning a
value to it. The symbol application is formalised in a curryfied style.

3.2.4 Logical Contexts, Semantics

The semantics of our generic language depends on an interpretation given to types and sym-
bols. From such an interpretation, any term or proposition can be given a value, in a given evalu-
ation environment for variables and given state for references.

Given a logical signature, an interpretation consists of a function denutype of type
utype — Type assigning a semantics to the user types, and a function densym assign-
ing a semantics to the introduced function and predicate symbols. Given denutype we define
dentype to interpret all the types.

Fixpoint dentype ty : Type :=
match ty with
| Tuser uty = denutype uty
| tyl ——> ty2 = dentype tyl — dentype ty2
| Tprop = Prop
end.

The semantics of a term of type term I E A is defined under an evaluation environment
G of type env E, a state S of type state and a history of previous states SS of type
states L. As described above, env E is a heterogeneous list with one element for each
entry of the typing environment E. state is a mapping from references ref A to values of
type dentype A and states L isavector of size L of state, whose nth element denotes
the state memorised at the nth enclosing label. As a special case a term of type term 0 E A
cannot refer to any previous labels.
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Variable densym : Vty, sym ty — dentype ty.

Definition denbuiltin ty (c: builtin ty) : dentype ty :=
match c with
| Bandd = and
| Bimply = impl
| Bfalse = False
end.

Fixpoint evalterm L E A (t:term E A) (G:env E) (SS: states L) (S: state)
: dentype A :=
match t with
| Tsym _ s = densym s
Tbuiltin A a = denbuiltin a

Tvar _ v = accsvar v G

Tderef A r = S A r

Tapp _ _ tl t2 = (evalterm tl G SS S) (evalterm t2 G SS S)
Tlet _ _ tl t2 = (evalterm t2 (evalterm tl G SS S::G) SS 3)

|
|
|
|
|
| Tforall _ p = forall x, evalterm p (x::G) SS S
| Tat A1 r = Vnth 1 SS A r

end.

Notation valid := (evalterm (A:=Tprop)).

Figure 3.5: Denotational semantics of terms and propositions

The semantics of terms defined by structural recursion is shown in Note that
evalterm is a total function: the semantics is defined for every term as correct typing is ensured
by construction.

The programs formalised in the next section will assume a given logical signature and the
verification conditions generated from such a program will be logical propositions concerning the
types and symbols of that logical signature. Recall that our goal is to prove these formulas with the
aid of automatic SMT provers so it is of crucial importance that the semantics these provers give to
the formulas is the same as in our Coq formalisation. Except the dereferences which will be output
as universally quantified variables, our logical language is very basic, so every reasonable prover
should agree on its semantics — provided that they agree on the interpretation of the symbols.

Many symbols can remain abstract to the provers. This means that a prover doesn’t make
any assumption about the interpretation of such a symbol. E.g. in the example this is the case
for select, store, sorted, etc. To allow provers reasoning about abstract symbols, the
user can specify axioms in the form of propositions in our logical language which will be sent to
the provers along with the verification conditions. In Coq these logical terms can be evaluated
to values of type Prop and proving these Coq propositions correct using tactics corresponds to
validating the axiomatisation. Indeed the interpretation given by the Coq functions dentype
and densym can be seen as a model for the axiomatisation. If a prover, or a combination of
several provers, succeeds in proving the verification conditions about the abstract symbols using
only information from the axiomatisation, i.e. for any interpretation of the abstract symbols, then
we are sure the conditions are valid also for the particular interpretation given in Coq.

Some symbols however can not be treated as abstract symbols. Either because they correspond
to higher order connectives of the logic of the prover, like disjunction or negation, or because they
belong to some built-in theory for which the prover is optimised, like integer or real arithmetic. In
these cases, it is up to the user to make sure that the semantics the provers give to these symbols
is the same as in our Coq formalisation.
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Definition denutype ty :=
match ty with
| Tarray = Z2 — Z

| Tint = 2
| Tunit = unit
end.
Notation dentype := (dentype denutype).
Definition densym ty (s: sym ty) : dentype ty :=

match s in sym ty return dentype ty with
| SYMselect = fun a i, a i
| SYMstore = fun a i x, fun i’, if i == i’ then x else a i’
| SYMsorted = fun a n, Vi j, 0 <=1 - 1 <=3 = 7 <n— ai«<=aj
| SYMswap = fun a b i j, ai=b JA a j=Dbi
A forall k, k <> i =+ k <> Jj = ak=D>bk
| SYMpermut = fun al a2 z, Permutation al a2 (Zabs_nat z)
| SYMconst_unit = tt
| SYMeqg ty = eq
| SYMconst_int x = x
| SYMlt = Zl1lt
| SYMplus = Zplus
| SYMopp = Zopp
end.

Figure 3.6: The interpretation of the logical symbols for sorting

Example 4 A possible interpretation of the logical types and symbols for the sorting example is
shown in[Figure 3.6] Note that starting from SYMeq, all the symbols make use of definitions from
the Coq standard library: all these symbols will correspond to built-in symbols for the provers as
well, whereas the first five stay non interpreted.

The axioms can then be proved in Cogq, thus proving the axiomatisation consistent.

Recall that such an interpretation and proof of consistency is not needed for the WP calculus:
when a program is proved with the WP calculus, it is proved with respect to any model of the
axiomatisation.

3.3 The Core Programming Language

3.3.1 Formal Syntax of Expressions

Like terms of the logic, expressions of programs are formalised by an inductive type
expr L E A depending on the parameters A, E and L, denoting respectively the evaluation
type, the typing environment and the highest index of a valid label, as shown in Notice
that variables and labels are left implicit in the inductive definition thanks to De-Bruijn represent-
ation.

Additionally expressions depend on the parameter F, the list of signatures of the functions
a sub-expression can refer to. Unlike L,E and A this parameter does not change within sub-
expressions, so we can say F is a parameter of the program. A signature is a pair of the return
type of the function and the list of the function’s parameters. A function identifier, as used in
function calls, of type 1idx (signature A P) F is an index pointing to an element with
the signature signature A P within a heterogeneous list of functions with types F. Such
heterogeneous lists of type hlist (func F) F are precisely the representation of a program
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Variable par : list type — type — Type.

Record signatureT := signature {
fu_return: type;
fu_params: list type }.

Variable F : list signatureT.
Definition fidx sig := lidx sig F.

Inductive expr L E A : Type :=

| Eterm (t:term L E A): expr L E A

| Eseq Al (el:expr L E Al) (e2:expr L E A): expr L E A

| Elet Al (el:expr L E Al) (e2:expr L (Al::E) A): expr L E A

| Eassign (r:ref A) (t: term L E A): expr L E A

| Eassert (p:prop L E) (e: expr L E A): expr L E A

| Eraise Al (ex: exn Al) (t: term L E Al): expr L E A

| Eif (p: prop L E) (el e2: expr L E A): expr L E A

| Eloop Al (inv: prop L E) (e:expr L E Al): expr L E A

| Etry Aex (el:expr L E A) (ex: exn Aex) (e2:expr L (Aex::E) A): expr L E A
| Elab (e: expr (succ L) E A): expr L E A

| Ecall P (f: lidx (signature A P) F) (ps: termlist 0 E P): expr L E A
| Ecallpar P (pa: par P A) (ps: termlist O E P): expr L E A.

Record contract P A := { pre : prop 0 P; post : prop 1 (A::P) }.
Record func sig := {

fun_contract :> contract sig. (fu_params) sig. (fu_return);

body : expr 1 sig. (fu_params) sig. (fu_return) }.
Definition prog := hlist func F.

Variable pg : prog.

Coercion accsfunc sig (fi: fidx sig) : func sig :=
(accslidx fi pg).

Figure 3.7: Inductive definition of expressions

prog F. Notice that in the definition of programs the parameter F appears twice: once as para-
meter of hlist, to define the signatures of the functions in the program, and once as parameter
of func to constrain expressions in function bodies to refer only to functions with a signature
appearing in F . This way we ensure the well-formedness of the graph structure of programs: it is
impossible to refer to an unexisting function.

A function definition func F (signature A P) consists of a body of type
expr F 1 E A and a contract, i.e. a pre-condition of typeprop 0 P and a post-condition
prop 1 (A::P) . In the pre-condition no labels may appear, hence its type has the parameter
0. In the post-condition we allow referring to the pre-state of a function call: in the syntax this
corresponds to using the label old. The post-condition may additionally refer to the result of the
function, hence its type environment is enriched by A.

A last parameter of programs is par, the set of program parameter names. Like functions,
program parameters can be called with a list of arguments, but their implementations are abstract:
the only available information about a program parameter is its specification, that is its functional
contract and its effects, i.e. the set of potentially modified references.
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Notation rset := (set (sigT ref)).

Record parspec P A := {
par_contract :> contract P A;
par_effects: rset

}.

Variable get_parspec :> VP A, par P A — parspec P A.

Like with abstract symbols, the interpretation of program parameters is given