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摘要 

宇宙中的可见物质是由那些基本粒子组成的？这些基本粒子间的相互作用又

有那些特性？一直是人类不断探寻自然界奥秘的过程中试图解决的最基本也是最

关键的问题。 

标准模型告诉我们，宇宙中所有的可见物质都是由夸克和轻子构成的，不同

种类的玻色子（如光子，胶子等）用以传播它们之间不同种类的相互作用。夸克

和轻子被统称为基本粒子。传播相互作用的玻色子被称为规范粒子。通过 Higgs 机

制，Yang-Mils 场中的规范粒子通过吃掉由真空对称性破缺而产生的 Goldstone 粒

子而获得质量。与此同时，规范粒子和基本粒子间的 Yukawa 耦合使得基本粒子也

获得了其在物理真空中的质量（由于对不同基本粒子质量的测量和定义方法不

同，其在物理真空中质量的名称也不同，对于夸克，在不太严格的条件下，其在

物理真空中的质量可以笼统的称为流质量）。基于标准模型，普通的强子（如构

成原子核的质子和中子）都是由夸克组成的，胶子用以传播夸克间的强相互作

用。夸克和胶子又被统称为部份子。体现强相互作用的荷被称为色荷。类比于描

述电磁相互作用的量子电动力学，用以描述强相互作用的理论被称为量子色动力

学（另外，弱相互作用中的荷被称为味荷，早期也存在量子味动力学用以描述弱

相互作用，但后来被并入电弱统一理论中）。 

众所周知，在量子电动力学中，由于涨落而产生的极化，物理真空可被视为

电介质。而在量子色动力学（QCD）中，由于胶子所存在的自相互作用，物理真

空中同时存在着色荷的极化和反极化，在通常条件下，其总体效应使得物理真空

等价于色导体。与电导体内部不存在净电荷向相对应，在可被视为色导体的物理

真空中也不存在自由的色荷。部份子（夸克和胶子）被“囚禁”在强子之中。这一

特性被称为色禁闭或夸克“囚禁”。同时，色禁闭也解释了为何到目前为止，在通

常条件下从未明确观测到自由的部份子。从另一角度，可以做如下推想：当空间

中的色荷距离越来越近，无论是色极化或色反极化都将越来越弱，而在物理真空

中出现自由的部份子。也就是说，不同于电磁相互作用和弱相互作用，强相互作

用是随着部份子间的距离减小而减弱的，而当部份子间的距离增大时强相互作用

会增强。强相互作用的这一特性已在理论上被 QCD 耦合常数对虚度的依赖性的研

究所证实，而且随后的大量实验观测也完全符合并肯定了这一理论结论。不仅如

此，格点量子色动力学（lQCD）进一步预言了在极端高温和/或高重子数密度的条

件下，将发生由普通强子物质相到退禁闭的夸克－胶子－等离子体（QGP）相的

强相互作用相变。而且，基于 lQCD 的计算，在低重子数密度的条件下，退禁闭相
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变还会伴随着手征对称性的恢复，及在生成的 QGP 内，微扰真空会向物理真空回

归，而夸克在强子内的组份质量也会回归到其在物理真空内的流质量。目前，退

禁闭的 QGP 物质被认为存在于大爆炸后约 1



s的早期宇宙，而且现在还存在于中

子星内部。基于上述结论，对 QGP 特性的研究，不仅对掌握强相互作用的性质以

及宇宙中可见物质的质量产生机制起到非常关键的作用，而且还有助于了解早期

宇宙及其演化。因此，对退禁闭相变过程和 QGP 物质特性的研究已成为当前高能

物理领域最重要的前沿课题。 

高能重离子碰撞是在实验室条件下实现退禁闭相变的唯一途径。在碰撞过程

中，首先，两个入射原子核被加速到接近于光速，然后进行碰撞并把它们的绝大

部分能量沉积在碰撞区域，使得碰撞区域内具有超高的能量密度而达到发生退禁

闭相变的条件，从而在碰撞区域内产生自由的夸克和胶子，及 QGP 物质。随着

QGP 系统的膨胀，其内部温度也迅速降低，而使整个体系回到强子相（强子气）

然后形成末态所能观测到的各种粒子。在过去的 30 年中，一系列重离子加速器如

SPS，AGS 和 RHIC 先后被建造，并获得了丰富的实验证据表明 QGP 物质相的存

在。其中具有代表性的有： 

1. SPS 能区， 

a. 奇异粒子产额的增强以及低质量共振态分布的修正，被解释为手征

对称性在退禁闭物质相中的恢复而使得奇异夸克在 QGP 物质中产生阈

值的降低; 

b. 



J /粒子产额的压低，被认为是粲夸克偶素（



cc ）在 QGP 物质里的

色 Debye 屏蔽势的作用下熔解而导致的； 

2. RHIC 能区， 

a. 光子产额的增高，体现了退禁闭的 QGP 物质的热辐射； 

b. 椭圆流对组份夸克数的标度性，揭示了部份子在 QGP 内的热化自由

度； 

c. 高横动量强子谱的压低以及背对背喷注关联的减弱，反映了高横动

量部份子在穿越 QGP 物质时，与 QGP 介质发生强相互作用而引起的能

量损失。 

以上结果充分表明了 QGP 物质的存在，对于当前的研究而言，所面临的问题

便是对其特性进行系统而深入的研究。 

基于此目的，位于欧洲核子研究中心（CERN）目前世界上最大的大型强子对

撞机（LHC）于 2009 年底正式运行，并在 2010 年底首次获取了两体质心能量为



sNN  2.76  



TeV的铅－铅碰撞数据。在 LHC 能区，由于其高出在 RHIC 能区（两
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体质心能为



sNN  200  



GeV的金－金碰撞）约 15－30 倍的两体碰撞质心能和更重

的铅核体系，所形成的 QGP 介质较之 RHIC 能区有更长的存在时间和更大的形成

体积，为全面而深入的探索 QGP 物质的特性提供了独特的条件和有利的保障。

ALICE，作为 LHC 上四大实验之一，专门致力与高能重离子碰撞物理的研究，及

QGP 物质特性的探索。 

在众多反映 QGP 特性的末态探针中，重夸克(粲夸克和美夸克)已其独特的特

性而异常重要。绝大部分的重夸克产生与高能重离子碰撞初期的硬散射过程，由

于其质量效应，它具有较之其它轻部份子更短的形成时间和更硬的碎裂函数。这

一特性导致：一方面，重夸克早与 QGP 物质而形成，并穿越随后形成的 QGP 物

质体系，纪录了 QGP 系统各演化阶段的信息；另一方面，其运动学分布又能很好

的被其末态强子所反映。基于重夸克的优越特性和在超高能的 LHC 能区丰富的重

夸克产额，使得重夸克成为揭示 QGP 物质特性的独特探针。 

首先，重夸克在穿越 QGP 体系时与其内部部份子相互作用而导致的能量损失

体现了强相互作用的特性。根据标准模型的对称性，理论上预言，胶子的辐射能

量损失大于夸克。而较之轻夸克，重夸的胶子辐射会在与其夸克质量相关的锥角

内压低，从而导致重夸克辐射能量损失比轻夸克小，这一效应被称为死角效应。

核修正因子



RAA是反映部份子能量损失的实验观测量。基于重夸克辐射能量损失的

死角效应，重味强子的



RAA因大于轻强子。但这一现象并未在 RHIC 能区上被观测

到。因此，在 LHC 能区对重夸克末态产物



RAA 的测量有利于深入了解部份子在

QGP 介质内的相互作用特性。更进一步，在 LHC 能区由于丰富的重夸克产额，提

供了新的实验观测量，重轻比，即开粲或开美强子的



RAA与轻强子的



RAA之比。在

LHC 能区，轻强子主要源于胶子的碎裂，而粲夸克的质量（



mc 1.5  



MeV ）较之

其能量可以忽略而表现出轻夸克的特性，于此同时质量较大的美夸克（



mb  4.5 



MeV ）仍保持其重夸克的性质。根据以上特性，开粲强子与轻强子之间的重轻比

体现了部份子能量损失对色荷的依赖性，而开美强子与轻强子间的重轻比进一步

反映了部份子能量损失对其质量的依赖关系。根据新近的理论研究，对开美强子

和开粲强子间



RAA之比的测量不仅能直接的反映夸克能量损失对其质量的依赖还可

用以区分描述 QGP 物质的不同理论，是标定 QGP 属性的关键观测量。 

另一方面，相变过程的特性，往往体现于其末态产物的集体行为。因此，重

夸克末态产物的集体流也是实验中非常重要的观测量。在低横动量区间，重夸克

末态产物的集体流揭示了重夸克在 QGP 介质内的热化自由度；在高横动量区间，

这一观测量体现的是重夸克能量损失对穿越路径长度的依赖性。更重要的是,表征
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QGP 介质的关键量，粘滞系数与熵的比值（



 /s）, 可通过结合重夸克的



RAA和集

体流的实验测量结果而得到。 

此外，重夸克的重要性不仅仅体现在重离子碰撞中，在核子－核（pA）和核

子－核子（pp）碰撞中，对重夸克末态产物的测量也蕴涵着丰富的物理。在 pA 碰

撞中，它是了解各种冷核效应（核遮蔽，内禀横动量增宽以及胶子饱和等）的有

利工具；特别是在实验的向前快度区间，它能使对冷核效应的测量达到及小的

Bjorken 分数区间（



x ~104）。在 pp 碰撞中，对重夸克末态产物的测量不仅为 pA

碰撞和重离子碰撞提供了归一化基准，同时，也是检测微扰量子色动力学

（pQCD）的有利工具。在 pQCD 的计算中，重夸克的质量可有效抑制微扰级数的

红外发散，从而提高了 pQCD 对重夸克产生截面预言的准确性，这使通过比较重

夸克末态产物产生截面的实验测量结果和理论预言成为验证 pQCD 理论的重要手

段。 

本工作基于 LHC/ALICE 实验的向前区



子谱仪，通过半



子衰变道分别研究

铅－铅碰撞和质子－质子碰撞中重夸克的产生。在第一章中，将对 QGP 相变和高

能重离子物理做全面的介绍，并讨论已有的典型实验结果以及 LHC 能区优越的实

验条件和 ALICE 实验上已获得的重要结果。对重夸克在核子－核子，核子－核以

及重离子碰撞中的产生机制和对应物理将在第二章中做系统介绍，同时讨论

ALICE 实验上已获得的通过半电子衰变道和强子衰变道对重夸克产物测量的结

果。在正式讨论基于本论文的工作之前，作为工作基础，在第三章和第四章里，

将对 ALICE 探测器特别是向前区



子谱仪和 ALICE 实验数据获取和分析的在线和

离线环境进行介绍。同时将着重讨论在本工作中我们针对重夸克半



子道测量所开

发的数据分析和校正的软件框架。第五章总结了我们在模拟条件下通过单，双



子

道测量重味强子产生截面的可行性研究结果，在研究中，我们成功的重建出了模

拟所输入的重味强子谱。然后，第六章道第九章将对我们数据分析的过程和结果

做着重讨论。第六章，将以质心系能量



s  900  



GeV 的质子－质子碰撞数据为

例，对实验中 ALICE 向前区



子谱仪的性能，实验数据中的背景和对数据的筛选

做全面讨论。在质心系能量



s  7  



TeV的质子－质子碰撞中对向前区重夸衰变





子的产生截面的测量方案及其结果是第七章的主要论述内容。在误差范围内，我

们的测量结果很好的符合了次领头阶的 pQCD 计算的预言，这一结果是首次在此

新能区下对 pQCD 理论预言的重夸克产生截面的检验。此外，在这一章的最后，

我们还讨论了新的背景减除方案和如何对开粲和开美强子衰变



子组份进行分离的

思路。在第八章中，我们首先讨论了铅－铅碰撞数据的基本特性，重点介绍了数

据中心度选择的各种方法；随后，运用第七章中的方法，我们给出了在质心系能



 

 v 

量



s  2.76  



TeV的质子－质子碰撞中向前区重夸克衰变



子的产生截面的测量结

果，此结果也在误差范围内很好的符合了次领头阶 pQCD 的预言，它将作为我们

在此两体碰撞质心能下计算铅－铅碰撞中重夸克衰变



子的和修正因子的归一化基

准；在两体质心能为



sNN  2.76  



TeV的铅－铅碰撞中对重夸克衰变



子核修正因

子的计算方案和结果的讨论是这一章重点内容，最后，我们的结果首次反映出重

夸克在向前区的压低与中心快度区间相似，这一结论的重要性在于它并不符合之

前理论的预言（在向前区由于其部份子密度较之中心区要低，高横动量区间的重

夸克压低效应较之中心区要弱），这为理论研究提供了新的方向，也为深入揭示

部份子在 QGP 介质内的能量损失机制给出了新的线索。第九章是关于遍举



子椭

圆流的测量，在全面介绍和比较了各种集体流的分析方法之后，我们逐一运用这

些方法于数据分析之中，并对它们做出了检验；在误差范围内，不同的分析方法

和参考粒子给出了相同结果，而且符合分析的预期；这一工作为我们进一步测量

重夸克衰变



子的集体流和通过结合核修正因子和集体流的测量结果深入揭示

QGP 特性打下了坚实的基础。论文的最后是对我们以上所有相关工作的总结和展

望。 
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子碰撞，超相对论重离子碰撞，单



子，重夸克产生，核修正因子，椭圆流，微扰
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Résumé
Les collisions d’ions lourds ultra-relativistes ont pour objectif principal l’étude

des propriétés de la matière nucléaire soumise à des conditions extrêmes et de
température de densité d’énergie. Les calculs de la ChromoDynamique Quantique
(QCD) prédisent dans ces conditions une nouvelle phase de la matière dans laque-
lle on assisterait au déconfinement des constituants des hadrons en un plasma de
quarks et gluons (QGP). Les saveurs lourdes (charme et beauté) sont produites
lors de processus durs aux premieres instants de la collision puis traversent le mi-
lieu produit durant la collision. Par conséquent, la mesure des quarkonia et des
saveurs lourdes ouvertes devrait être particulièrement intéressante pour l’étude des
propriétés du système créé aux premiers instants de la collision. On s’attend à ce
que les saveurs lourdes ouvertes présentent des sensibilités à la densité d’énergie
via les mécanismes de perte d’énergie des quarks lourds dans le milieu et que les
quarkonia soient sensibles à la température initiale du système via leur dissociation
par écrantage de couleur. La mesure du flot des saveurs lourdes devrait apporter des
informations concernant le degré de thermalisation des quarks lourds dans le milieu
nucléaire. De plus, l’observable viscosité/entropie pourrait être obtenue en combi-
nant les mesures du facteur de modification nucléaire et de flot. En conséquence,
l’étude de la production des quqrkonia et saveurs lourdes ouvertes est un domaine
de recherche intensément étudié au niveau experimental et théorique.

Les mesures effectuées au SPS et RHIC ont permis de mettre en évidence
plusieurs caractéristiques du milieu produit mais ont aussi laissé plusieurs ques-
tions sans réponse. Avec une énergie par paire de nucléon de 15 fois supérieure à
celle du RHIC, le LHC entré en fonctionnement fin 2009, a ouvert une nouvelle ère
pour l’étude des propriétés du QGP. Un des plus importants aspects de ce domaine
en énergie est l’abondante production de quarks lourds utilisés pour la première fois
comme sonde de haute statistique du milieu. Le LHC délivra les premières collisions
pp à

√
s = 0.9 TeV en octobre 2009 et a atteint l’énergie de

√
s = 7 TeV en mars

2010. Un run pp à
√
s = 2.76 TeV a eu lieu en mars 2011 pendant une durée limitée.

Les runs Pb–Pb à
√
sNN = 2.76 TeV ont eu lieu fin 2010 et 2011.

ALICE (A Large Ion Collider Experiment) est l’expérience dédiée à l’étude
des collisions d’ions lourds au LHC. ALICE enregiste aussi des collisions pp afin
de tester les calculs perturbatifs de QCD dans la région des faibles valeurs de x-
Bjorken et de fournir la référence indispensable pour l’étude des collisions noyau–
noyau et p–noyau. ALICE enregistrera aussi, début 2013, des collisions p–Pb/Pb-p
afin d’étudier les effets nucléaires froids. Les quarkonia et saveurs lourdes ouvertes
sont mesurés dans ALICE suivant leur mode de désintégration (di)-muonique, (di)-
electronique et hadronique. Cette thèse concerne l’étude des saveurs lourdes ouvertes
dans les collisions pp et Pb–Pb avec les muons simples mesurés aux rapidités avant
avec le spectromètre à muons d’ALICE.

Le document est structuré comme suit. Le premier chapitre est une introduction
à la physique des collisions d’ions lourds et du diagramme de phase de la matière
nucléaire. Le deuxième chapitre présente les objectifs de l’étude des saveurs lour-
des ouvertes dans les collisions proton–proton, proton–noyau et noyau–noyau. Un
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intérêt particulier est porté au domaine en énergie du LHC. Le troisième chapitre
est une description du détecteur ALICE et du spectromètre à muons. Le quatrième
chapitre présente les systèmes "online" et "offline". Le cinquième chapitre est un
résumé des performances du spectromètre à muons pour la mesure des saveurs lour-
des ouvertes dans les collisions pp au moyen des muons simples et dimuons. Les
chapitres 6 à 9 concernent l’analyse de données. Le sixième chapitre décrit l’analyse
des premières collisions pp à

√
s = 0.9 TeV collectées avec ALICE. L’objectif princi-

pal était la compréhension de la réponse du détecteur. Ces données ont permis aussi
fixer la stratégie d’analyse des saveurs lourdes ouvertes : sélection des événements,
optimisation des coupures, différentes sources de bruit de fond à soustraire. Le sep-
tième chapitre présente la mesure de la section de production des saveurs lourdes
ouvertes dans les collisions pp à

√
s = 7 TeV. La méthode d’analyse est décrite.

Cela concerne la sélection des collisions et traces reconstruites dans le spectromètre
à muons, la soustraction du bruit de fond (composé principalement de muons issus
de la désintégration de pions et kaons primaires), les corrections, la normalisation et
la détermination des incertitudes systématiques. Les résultats expérimentaux sont
discutés et comparés aux calculs perturbatifs QCD (calculs "Fixed Order Next-to-
Leading Log"). Cela concerne les sections efficaces de production des muons issus de
la désintégration des saveurs lourdes ouvertes aux rapidités avant (2.5 < y < 4) en
fonction de la rapidité et de l’impulsion transverse (pt). Le huitième chapitre aborde
la mesure des muons issus de la désintégration des saveurs lourdes ouvertes dans les
collisions Pb–Pb à

√
sNN = 2.76 TeV collectées en 2010. Les effets de milieu nu-

cléaire sont étudiés à partir du facteur de modification nucléaire RAA. La référence
pp est déterminée à partir de l’analyse des collisions pp à

√
s = 2.76 TeV. Le facteur

de facteur modification nucléaire est étudié en fonction de pt et de la centralité de
la collision. Pour comparaison, les résultats obtenus à partir de la mesure du fac-
teur de modification nucléaire central sur périphérique (RCP) sont aussi présentés.
Le neuvième chapitre commence par une revue des différentes méthodes utilisées
pour la mesure de la composante de flot elliptique. Les méthodes telles que les
cumulants et Lee-Yang Zeroes, permettant de supprimer les effets non-flot, sont dé-
taillées. Des premiers résultats prometteurs concernant la mesure de la composante
de flot elliptique des muons sont discutés. Ils sont obtenus avec différentes méthodes
et présentés en fonction de pt et de la centralité de la collision. Le manuscript se
termine par une conclusion et des perspectives.

mots clés : LHC, expérience ALICE, collisions pp, collisions d’ions lourds
ultra-relativistes, muons, production de saveurs lourdes, facteur de modification
nucléaire, flot elliptique, calculs pQCD.
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Abstract
Ultra-relativistic heavy-ion collisions aim at investigating the properties of

strongly-interacting matter at extreme conditions of temperature and energy den-
sity. According to quantum chromodynamics (QCD) calculations, under such con-
ditions, the formation of a deconfined medium, the Quark-Gluon Plasma (QGP), is
expected. Amongst the most important probes of the properties of the QGP, heavy
quarks are of particular interest since they are expected to be produced in hard
scattering processes during the early stage of the collision and subsequently interact
with the hot and dense medium. Therefore, the measurement of quarkonium states
and open heavy flavours should provide essential information on the properties of
the system formed at the early stage of heavy-ion collisions. Indeed, open heavy
flavours are expected to be sensitive to the energy density through the mechanism
of in-medium energy loss of heavy quarks, while quarkonium production should be
sensitive to the initial temperature of the system through their dissociation due to
color screening. The measurement of the collective flow of heavy flavours provides
additional insights on the possible thermalization of heavy quarks in the medium.
Furthermore, one of the important medium characteristic, viscosity over entropy
(η/s), can be extracted by combining the information from measured nuclear mod-
ification factor (related to in-medium energy loss) and the magnitude of the heavy
quark flow. In this regard, both quarkonium and open heavy flavour production are
a field of intense experimental and theoretical researches.

Despite the work devoted to these studies at SPS and RHIC, several questions
are left open. With a nucleus-nucleus center of mass energy nearly 15 times larger
than the one reached RHIC, the LHC which started operating in November 2009,
provides a new era for studies of interacting matter at high temperature and energy
density. One of the most important aspects of this new energy range is the abundant
production rate of heavy quarks which are used, for the first time, as high statistics
probes of the medium. The LHC delivered the first proton-proton collisions at√
s = 0.9 TeV in October 2009 and reached its current maximum energy of 7 TeV

in March 2010. A short proton–proton run at
√
s = 2.76 TeV, at the same energy

than the Pb–Pb run, was performed in March 2011. The first heavy-ion run (Pb–Pb
collisions at

√
sNN = 2.76 TeV) took place in November 2010 and the second one

end of 2011.
ALICE (A Large Ion Collider Experiment) is the experiment dedicated to the

study of heavy-ion collisions at the LHC. ALICE also takes part in the LHC proton–
proton program which is of great interest for testing perturbative QCD calculations
at unprecedented low Bjorken-x values and for providing the necessary baseline
for nucleus–nucleus and proton–nucleus collisions. ALICE will also collect, in the
beginning of 2013, p–Pb/Pb–p collisions in order to investigate cold nuclear matter
effects. ALICE measures quarkonia and open heavy flavours with (di)-electrons,
(di)-muons and through the hadronic channels. This thesis work is devoted to the
study of open heavy flavours in proton–proton and Pb–Pb collisions via single muons
with the ALICE forward muon spectrometer.

The document is organized as follows. The first chapter consists in a general
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introduction on heavy-ion collisions and QCD phase transitions. Chapter 2 sum-
marizes the motivations for the study of open heavy flavours in nucleon–nucleon,
nucleon–nucleus and nucleus–nucleus collisions. A particular emphasis is placed on
the novelties at the LHC. Chapter 3 gives an overview of the ALICE experiment with
a detailed description of the forward muon spectrometer. Chapter 4 gives a short
summary of the ALICE online and offline systems. Then the analysis framework
(for data and simulations) and in particular the software developed for the study
of open heavy flavours is detailed. Chapter 5 summarizes the performance of the
ALICE muon spectrometer for the study of the production of open heavy flavours
in pp collisions via single muons and dimuons. Chapters 6 to 9 are dedicated to
data analysis. Chapter 6 deals with the analysis of first pp collisions at 900 GeV.
The main aim was the understanding of the response of the apparatus. These data
allowed also to determine the analysis strategy for heavy flavour measurement in
the single muon channel: selection of events, optimization of cuts, understanding
of the background components in data. Chapter 7 presents the measurement of
the production of heavy flavour decay muons in pp collisions at

√
s = 7 TeV. The

analysis strategy is described: event and track selection, background subtraction
(mainly the contribution of muons from primary pion and kaon decays), corrections,
normalization and investigation of the systematic uncertainties. The experimental
results are discussed and compared to perturbative QCD calculations (Fixed Order
Next-to-Leading Log calculations). That concerns the transverse momentum and
rapidity differential production cross sections of muons from heavy flavours decays
at forward rapidity (2.5 < y < 4). Chapter 8 addresses the measurement of heavy
flavour decay muon production in Pb–Pb collisions at

√
sNN = 2.76 TeV collected

in 2010. The analysis strategy is presented. In-medium effects are investigated
by means of the nuclear modification factor (RAA) of muons from heavy flavour
decays. The proton–proton reference is obtained from the measurement of the dif-
ferential production cross section of heavy flavour decay muons at the same center
of mass energy. The nuclear modification factor is studied as a function transverse
momentum (pt) and collision centrality. For comparison, results obtained with the
central-to-peripheral nuclear modification factor RCP are also discussed. Chapter 9
gives an overview of the different methods investigated in ALICE for the study of
the elliptic flow. In particular, the recent methods which allow to remove non-flow
effects like the Q-Cumulants and Lee-Yang Zeroes are detailed. Promising results
concerning the inclusive muon elliptic flow as a function of pt and centrality obtained
with different flow analysis methods are compared. Finally, summary and outlooks
are given.

Keywords: LHC, ALICE experiment, pp collisions, ultra-relativistic heavy-
ion collisions, single muons, heavy flavour production, nuclear modification factor,
elliptic flow, pQCD calculations
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Chapter 1

QCD Phase Transition and Heavy
Ion Collisions

I have always been asked, what is the meaning of my PhD thesis, heavy ion
collisions, and how to use them in real life? Most of time, it is hard to use simple
words to answer these questions, as Stephen Hawking did in his well known report
entitled «A Brief History of Time» [1]. Parts of the answer could become as obscure
as issues in philosophy for persons who do not have background in this field. I
would like to start this thesis with a brief history of elementary particles in the
Universe and their interactions in order to fully answer these questions. In general,
one starts with the origin of mass and the new phase transition generated
by the strong interactions.

1.1 History of Standard Model

In the beginning of the 20th century, the development of the Special Rela-
tivity [2] and Quantum Mechanics [3, 4, 5, 6] not only led to the global third
industrial revolution, but also opened a new era for modern physics.

1.1.1 Quark Model

In 1911, Ernest Rutherford discovered the structure of the atom according to
the well known Rutherford scattering experiment [7]. During the period 1930-1940,
the only known elementary particles were protons, neutrons, electrons, muons, neu-
trinos and pions, the latter transfer the nuclear force between nucleons (protons and
neutrons). In 1947, the Λ particle was found in cosmic rays beyond expectations,
then it follows the discovery of a large number of new particles. Finally, it is worth
mentioning that hadrons were not considered as "fundamental" particles.

During the implementation of the classification schemes of hadrons, the unitary
spin symmetry was found, and triggered the development of the Quark Model [8].
In the Quark Model, the hadrons are composed of the elementary particles, the
quarks and gluons (mesons (baryons) are made of two (three) valence quarks) 1.
Each quark has three different kinds of "color" and the gluon (with 8 kinds of
"color") exchange the strong interaction, due to the color charge between quarks.
Up to now, 6 flavours of quarks (up, down, strange, charm, bottom and top) are

1Also, there are sea quarks and gluons in the hadrons. But they are hidden inside the Dirac sea
under normal conditions. The main properties of hadrons are reflected by their valence quarks.



found in the nature. The author of the model, Gell-Mann, received the Nobel
Prize in 1969, after the 3/2Ω− baryon (predicted by the model) was discovered at
Brookhaven National Laboratory.

1.1.2 Higgs Mechanism

Indeed, the theory of strong interaction was developed before the Quark model.
In 1954, Chen-Ning Yang and Robert Mills developed the Yang-Mills Theory [9]
in order to explain the strong interaction and they extended the gauge theory in
abelian groups, e.g. Quantum ElectroDynamics (QED), to non-abelian groups.
The basic concept of the Yang-Mills theory is that it requires Lagrangian of the gauge
field, which has the global gauge invariance (the additional local gauge invariance).
In order the Lagrangian has both global and local gauge invariances, a new gauge
field should be introduced. This new gauge field describes the interaction of this
system (e.g. the gravitational field is the gauge field used to keep the local Pinkoé
transform invariance of special relativity particles and the electromagnetic field is
the gauge field used to keep the QED local gauge invariance). A non-abelian gauge
field, Yang-Mills Field, should be introduced in order to require that particles
in local compact semi-simple Lie groups (e.g. SU(N ) group for strong interaction)
transform invariance. The non-abelian nature explains that the Yang-Mills field
has the self-interaction, and also includes automatically the isospin. However, as
in all gauge theories, particles in the Yang-Mills field are massless, which means
that the strong interaction has long range effects, which had never been oberved
experimentally.

The Yang-Mills theory allows to obtain the interaction term in the Lagrangian of
the system but it is assumed that particles are massless. Where is the mass coming
from or what is the origin of the mass? This puzzle was partly solved in 1960.

In order to go further, we first introduce a theorem derived from condensed mat-
ter physics,
Goldstone’s Theorem: since a system with Lagrangian has invariance under a
continuous group with n group parameters, Gn, and its Lagrangian in the ground
state is invariance under group Gm (m < n); n−m bosons with vanished rest mass,
energy-momentum and spin, G bosons, will be produced, after spontaneously sym-
metry breaking [10].
The G bosons were discovered in BCS mechanism [11] and elucidated by Jeffrey
Goldstone in 1961. Furthermore, A. Salam and S. Weinberg implemented this the-
orem in quantum field theory in 1962 [12].

In 1964, Peter Higgs introduced the unification of G bosons and gauge field,
which explained the origin of mass of elementary particles. The massless gauge
field has only two horizontal polarization degree of freedom, while the massive field
should have an additional longitudinal polarization degree of freedom, this new
degree of freedom corresponds to the G bosons. The Higgs Mechanism [13],
endows gauge bosons in a gauge theory with mass through absorption of G-bosons
after the symmetry is spontaneously broken.

With the Higgs mechanism, all the gauge theory (including the Yang-Mills the-
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ory) can be massive. In 1967 and 1968, S. Weinberg and A. Salam used it and unified
the Electroweak Model [14, 15]. During 1972-1974, the Standard Model (mod-
ern form [16] of Quantum Chromodynamics) which is the theory describing
electromagnetic, weak and strong interactions is developed.

1.1.3 Standard Model

Figure 1.1: Elementary particles in the Standard Model (left) and the fundamental
interactions between them (right) [17].

In the Standard Model, the elementary fermions are classified in three families of
leptons and three families of quarks, as shown in left side of Fig. 1.1. The i-th family
of left-hand fermions is merged in SU(2) doublets, and the right-hand fermions are
merged in SU(2) singlets. If one uses the Yang-Mills theory and one requires the
Lagrangian invariance under SU(2)⊗U(1), a three-component weak-isospin vector
~Wµ and a weak-isospin scalar Bµ need to be introduced. The first two components
of ~Wµ are charged W±

µ , while W3
µ and Bµ are neutral. They are related to the

intermediate vector boson Zµ and photon Aµ,(
Aµ

Zµ

)
=

(
cos θW − sin θW

sin θW cos θW

)
·
(

Bµ

W3
µ

)
, (1.1)

where θW is the Weinberg angle (angle by which spontaneous symmetry beaking
rotates W0).

After spontaneous symmetry breaking via the Higgs mechanism with the appro-
priate θW angle, W± and Z0 become massive by keeping the photon massless. The
fermions (quarks and leptons) obtain their masses via the Yukawa coupling with
the Higgs scalar field. Parity is conserved for the electromagnetic interaction, while
for the weak interaction, the non-conservation of parity is satisfied automatically.
Photons, W± and Z0 plus gluons, the gauge bosons in the Standard Model, carry
the electromagnetic, weak and strong interactions by exchanging charge, flavour
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and color between the quarks and leptons (right panel of Fig. 1.1). Gluons have the
self-interactions due to the non-abelian nature of QCD.

In 1973, neutral weak currents due to Z0 exchange were discovered at CERN
(European Organization for Nuclear Research 2) [18, 19, 20]. Glashow, Salam,
and Weinberg shared the 1979 Nobel Prize in Physics after these discoveries. In
1983, W± and Z0 were discovered experimentally according to the masses predicted
by the Standard Model. An other model predicts the Higgs particle (neutral scalar
boson). Recently, the ATLAS and CMS collaborations presented a clear evidence for
the production of neutral boson with a measured mass of 125−126 GeV/c2 [21, 22].
This observation is compatible with the production and decay of the standard model
Higgs boson.

The fundamental interactions in microscopic world, introduced by the Yang-Mills
theory, are described by the electro-weak model and QCD (Quantum ChromoDy-
namics). The Standard Model includes all these interactions 3. What an harmony
world! It looks like our story about the origin of mass could end here· · · But all of
the wonderful stories are full with twists and turns. We just played the overture,
the bigger dark clouds are waiting for us· · ·

1.2 Quantum ChromoDynamics

Quantum ChromoDynamics (QCD) is the gauge field theory of
SU(3)⊗SU(2)⊗U(1). It describes the strong interaction between colored quarks
and gluons which constitute the hadrons according to the Standard Model. To
continue our story about the origin of mass, let us start with the introduction on
the general properties of QCD. Then we will find that this story overlaps with an
other story about the phase transition between hadronic matter and a new matter
phase.

1.2.1 QCD Lagrangian

The Lagrangian in QCD is [23],

L =
∑
q

ψq,a(iγ
µ∂µδab − gsγ

µtCabACµ −maδab)ψq,b −
1

4
FAµνF

A,µν . (1.2)

In Eq. (1.2), γµ are Dirac γ-matrices; ψq,b are quark field spinors, where, q and a are
the quark flavour and color indexes, a runs between a = 1→ Nc = 3; ACµ are gluon
fields with C running between C = 1→ N2

c −1 = 8; mq are quark masses generated
via the Higgs mechanism and gs (or αs = gs/4π) is the QCD coupling constant;
mq and gs (or αs) are two fundamental parameters in QCD; tCab are 8 generators of
SU(3) group. The field tensor FAµν is given by,

FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν , (1.3)
2the abbreviation "CERN" is according to its old name in French, Conseil Européen pour

la Recherche Nucléaire.
3There still are questions beyond the Standard Model like quantization of gravitation, dark

matter and dark energy, but they concern grand macro physics.
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where the definition of SU(3) structure constants, fABC , is

[tA, tB] = ifABC · tC . (1.4)

Two useful constants, the color Casimir factors CF and CA, are defined via the color
algebra relations,

tAab · tAbc = δacCF (CF ≡
N2

c − 1

2Nc
=

4

3
),

fACD · fBCD = δABCA (CA ≡ Nc = 3).

(1.5)

CF and CA are associated with the gluon emission from quark and gluon emission
from gluon, respectively.

The last non-abelian term in Eq. (1.3) reflects the gluon self-interactions. It
governs a very important property of QCD, the Asymptotic Freedom.

1.2.2 Asymptotic Freedom

In analogy with QED (Quantum ElectroDynamics), due to the quantum
fluctuations, QCD vacuum is like a polarizable medium. Gluons can create the
virtual quark-antiquark (qq) pairs in vacuum, as the uncharged photons create e−e+

pairs in QED. This screens the color charge in the QCD vacuum can be considered
as a color dielectric (εc

0 > 1) 4 and color diamagnetic (µc
0 < 1) medium according to

the Lorentz invariance,
εc

0 · µc
0 = 1. (1.6)

Also, due to self-interactions of gluons via color charge exchange, the QCD vacuum
becomes a magnetized medium. As a consequence, QCD vacuum behaves as a color
paramagnetic, µc

0 > 1 [24]. With Lorentz invariance condition (Eq. (1.6)), the QCD
vacuum is a color conductor (εc

0 < 1). As there is no net electric charge inside an
electric conductor, free color charge cannot appear in the QCD vacuum. This is
why only hadrons, but not their quark constituents, are found in the nature.

Due to the color anti-screening in QCD vacuum, the interactions between qq

pairs will become stronger while separating. But one can imagine that, when the
distance between them is close to zero (r → 0), the quantities εc

0, µ
c
0 → 1 and the

interaction between qq becomes weak. This leads to the running property of the
QCD coupling. This property is described in the renormalization group equation
under the framework of perturbative QCD (pQCD) [23]:

µ2
R

dαs

dµ2
R

= β(αs) = −
∞∑
n=0

bnα
n+2
s , (1.7)

where, αs is the coupling constant and µR is the QCD renormalization scale. First
terms of the sum in β function (bn, in Eq. (1.7)) can be found in [23]. More details

4By analogy with the dielectric constant ε0 and permeability µ0 in QED, εc0 and µc
0 denote the

color dielectric constant and color permeability in QCD, respectively.
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are given in [25, 26, 27, 28]. A solution of Eq. (1.7) considering only first term of
the sum (b0), under the assumption µ2

R ' Q2 is [29, 30]:

αs(Q
2) =

12π

(33− 2nf) ln(Q2/Λ2
QCD)

, (1.8)

Figure 1.2: QCD running coupling
as a function of Q with ΛQCD ≈
200 MeV [31].

where, Q2 is the virtuality related to the
momentum transfer in a given process, nf is
the number of light flavours with mq � Q

and, ΛQCD is the non-perturbative QCD
scale corresponding to an αs value where
pQCD cannot be used. Eq. (1.8) is con-
firmed by experiments, as shown in Fig. 1.2,
and David J. Gross, H. David Politzer and
Frank Wilczek awarded the 2004 Nobel
Prize in Physics.

Eq. (1.8) reveals that, due to the small
value of Q2 in normal world, the coupling
between quarks and gluons is very large
since they are confined in the hadrons. On
the contrary, for processes with high mo-
mentum transfer, αs becomes small, free
quarks and gluons behave as free particles
in the QCD vacuum: this is the well known
"asymptotic freedom" (or deconfinement).
It is worth pointing out that in processes
with large momentum transfer, where αs is
small, the Chiral Symmetry in the QCD

Lagrangian, Eq. (1.2), will be broken. This aspect points out to the origin of mass,
the starting point of our story!

1.2.3 Chiral Symmetry Restoration

According to the Standard Model, the mass of quarks is generated via Yukawa
coupling with Higgs field and, hadrons are composed by quarks and gluons. In
principle, in the ground state, the mass of a given hadron should correspond to
the one of its valence quarks. For instance, for pion mesons (π± and π0), which
are composed of u and d quarks, the masses are mπ± ≈ 140 MeV/c2 and mπ0 ≈
135 MeV/c2. However the current masses 5 of u and d quarks are only mu =

1.7− 1.3 MeV/c2 and md = 4.1− 5.8 MeV/c2, which are very small relative to the

5The mass of quarks is a very complicate item. The masses of light quarks, here u, d and
s, generated by the Higgs mechanism are named "current" masses; for heavy flavours, c and b,
the corresponding masses are named "running" masses. The "current" or "running" masses are
distinguished by their quark "constituent" mass, which will be introduced later. Also there is the
"bare" mass of quarks, and it gives the relation between the "current" or "running" mass [32].
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mass of pions. Where is the additional mass of pions coming from? To answer this
question, we should go back to the QCD Lagrangian (Eq. (1.2)).

By considering the first two flavours in Eq. (1.2), u and d, and ignoring the
quark mass terms (masses of u and d are small) one obtains:

L =
∑
q=u,d

ψq,a(iγ
µ∂µδab − gsγ

µtCabACµ )ψq,b −
1

4
FAµνF

A,µν . (1.9)

Figure 1.3: Constituent quark masses
with various current masses of different
flavours [32].

Eq. (1.9) is invariant under the Chiral
Transformation,

ψ → eiαγ
5
ψ, (1.10)

where α is the generator of SU(2) group.
This means that, with vanishing masses,
quarks travel with the speed of light, their
helicity (h, the projection of spin along
the motion direction) has two eigenstates
h = ±1/2 corresponding to the right- and
left-hand particles. Also, due to the total
angular momentum conservation, the inter-
actions with gluons will not change the he-
licity of quarks [33]. In this case, particles
with opposite parity must be degenerated
in mass, even the small values of mu and
md break slightly this Chiral Symmetry, e.g. the triplet ρ(770) and a1(1260).
But in the real life, mρ(770) ≈ 755.5 MeV/c2 and ma1(1260) ≈ 1230 MeV/c2 are very
different, the chiral symmetry is strongly broken. The chiral symmetry breaking
indicates that the masses of u and d quarks are not as small as their current masses
in the QCD vacuum, then their speed is far from the speed of light. This leads to
the chirality flip.

Presently, due to the strong coupling between quarks, the QCD vacuum is non-
vanishing, it is defined as the chiral condensation [34],

< ψψ >≡< 0|ψLψR + ψRψL|0 >6= 0, (1.11)

where, ψL/R are the spinors for left- and right-hand particles. Eq. (1.11) denotes
the Chiral Symmetry Spontaneous Breaking in QCD vacuum, and describes
the flip of the chirality as, e.g. a right-hand particle annihilates in vacuum via
ψR, leaving ψL to create a left-hand particle with the same momentum. The left-
and right-handed particle pair plays the same role as the Cooper-pair in the BCS
theory [35]. In analogy with the BCS theory, < ψψ > explains the energy gap
between the physics vacuum and QCD vacuum. This energy gap generates the
additional constituent mass for quarks even with vanishing current masses [36],

M(p2) =
2

3
π2γm

− < ψψ >

(1
2 ln p2

Λ2
QCD

)1−γm
(current quark mass mq → 0), (1.12)
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where, p is the quark momentum in the quark propagator and γm = 12/(11Nc−2nf).
Eq. (1.12) presents a general property: when the quark momentum increases, with
large momentum transfer and αs decreases (Fig. 1.2), the constituent mass in the
quark propagator becomes smaller. Considering the finite quark current mass effect
and the evolution of < ψψ >, the full relation between the quark constituent mass
and its momentum given by the Dyson-Schwinger formalism [37] is shown in Fig. 1.3.

Results in Fig. 1.3 reveal that, 99% of u and d masses and a very large part
of the mass of s are generated by the chiral symmetry spontaneous breaking, and
the chiral symmetry is restored with large momentum transfer. Since the normal
matter in the Universe is constituted by the nucleons (protons, p(udd) and neutrons,
n(uud)) almost all the visible Universe is created by this effect 6.

1.2.4 Ends and New Starts

The origin of mass has been intensively discussed within the framework of the
Standard Model. However, some trivial aspects, like the chiral symmetry sponta-
neous breaking which also affects the Goldstone theorem and generates the so-called
pseudo-Goldstone particles as pions, are not detailed. But this does not affect fol-
lowing conclusion: in the framework of the Standard Model, where the mass of
elementary particles is generated by the Higgs mechanism, additionally, in the non-
perturbative structure of QCD vacuum, the quarks obtain the additional constituent
mass, and it dominates in almost all the visible Universe.

In the framework of QCD (Eq. (1.2)), following properties can be extracted: both
asymptotic freedom and chiral symmetry restoration occur with large momentum
transfer. This indicates that in the high energy regime, QCD should allow to study
the properties of a new phase of matter and reveal the mystery of the Universe just
after the Big Bang!

1.3 Quark Gluon Plasma

In Sec. 1.2.2, we learnt that, with larger momentum exchange or small distance
between partons the strong interaction becomes weaker, and free partons are present
in the vacuum. The increase of the momentum exchange or the decrease of the dis-
tance between partons is equivalent to heat or compress the normal hadronic matter.
This indicates that, by continuing to heat or compress, a transition between nor-
mal hadronic matter and a new matter phase composed of free quarks and gluons
with weak interactions between them is expected. In analogy to the electromag-
netic plasma, which is composed of separated ions and electrons gas, this new
matter phase is named: Quark-Gluon-Plasma (QGP). In addition to the onset

6In the prospect of Precision Cosmology, the so-called dark energy and dark matter con-
tribute at ∼ 72% and ∼ 24% of the whole energy density in the Universe, respectively. The rest
∼ 4% of the visible part of the Universe is created by the Standard Model particles. In the context
of this thesis, we only focus on the part of the Universe described by the Standard Model.
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of deconfinement, the chiral symmetry should be restored 7.

1.3.1 Lattice QCD Predictions

Due to long distance particle correlations during the QCD phase transition
(phase transition between hadronic matter and QGP), the perturbative calculations
fail in describing such process. Also, the chiral symmetry comes from the non-
perturbative property of the QCD vacuum. In order to get rid of these problems,
lattice calculations, Lattice QCD (lQCD) [38], were implemented to solve the
QCD equations from first principle calculations.

In lQCD, the QCD Lagrangian is introduced on discrete Euclidean space-time
lattices. The quarks are located on the lattice vertices, and gluons travel along
the lines between the vertices to exchange the strong force. It uses the Feynman
path integral to deal with the parton propagator, while the system temperature
is treated by the statistical mechanics. The physics results could be estimated
by extrapolating the calculations with different lattice sizes to the continuum case
(infinitesimal lattice size).

Despite lQCD calculations still have problems to treat the finite baryon chemical
potential (in case of µB > 0), several results have already been obtained under this
framework for what concerns the prediction of the QCD phase transition at high
temperature. This has been done by decreasing the size of space-time lattice and
using realistic values of light quark masses.

The left panel of Fig. 1.4 shows the energy density ε/T 4 vs. temperature T
for 2 light plus 1 heavier (strange) quarks with µB = 0, as calculated from recent
lQCD calculations with physical dynamic quark masses [39]. The main uncertainty
comes from the quark flavour number. By assuming the QGP is an equilibrated
ideal gas, the contribution from heavy quarks (c, b and t) is suppressed by the
Boltzmann factor exp(−mc,b,t/T ), the case of 2 + 1 flavours seems to be close to
the real mass spectrum. There is a large "jump" in energy density around a critical
temperature Tc ' 173 MeV [40]. The sharp increase of the energy density indicates
a phase transition from the hadronic matter to the deconfined QGP. This can be
easily understood assuming, 2-flavour (u and d) scenario and µB = 0. In this case,
before the phase transition there is the a priori equilibrated pion gas satisfying
Stefan-Boltzmann statistics, the energy density is proportional to the number of
degree of freedom ndof = 3 (for π± and π0 triplet) of the system. When the QCD
phase transition occurs, the number of degree of freedom of the system rises to
ndof = ng+7/8(nq+nq) = 37 [41] (the factor 7/8 accounts for the differences between

7This is easy to understand when we continue to heat the hadronic matter. If the QGP is
present, quarks are highly excited and get large momentum during their propagation. According to
Eq. (1.12) their constituent mass decreases and the chiral symmetry is restored. But if we continue
to compress the hadronic matter, it is a little bit complicated. In this direction, under some
conditions, the chiral condensation, Eq. (1.11), would decrease and chiral symmetry restoration
occurs in QGP; in some cases, the QGP could be created while the chiral symmetry restoration is
absent. We will present some predictions concerning this "high density" QGP (also named Quark
Matter). Since this is not directly related to the topic of this thesis, we will not mention the
details of the chiral symmetry restoration conditions in the "high density" QGP.
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Figure 1.4: Left: energy density, ε/T 4, versus temperature, T , with 2 light and 1

heavier (strange) quarks [39]. Right: chiral condensation, < ΨΨ > (Eq. (1.11)), and
quark free energy function, L(fq), (Eq. (1.13)) with their associated susceptibilities,
χΨΨ and χL, as a function of temperature, T/Tc [34]. All the results are obtained
with µB = 0.

the Bose-Einstein, for gluons, and Fermi-Dirac, for quarks, statistics). The energy
density εSB/T

4 in QGP from Stefan-Boltzmann predictions with Tc = 173 MeV is
compared with the lQCD results, and is higher than that from lQCD calculations
at a temperature close to Tc. This indicates that at T ∼ Tc, interactions between
partons are still present in the QGP and it cannot be treated as an ideal gas.

An other hint for a QCD phase transition is shown in the right plot of
Fig. 1.4 [34]. The quark free energy function is

L ∝ exp(−fq/T ), (1.13)

where fq is the quark free energy. It increases sharply from a small value to a finite
number around Tc. This reflects the energy variation of an isolated colored source
from confinement (divergence) to deconfinement (given value). Also, the chiral con-
densate < ΨΨ > is restored around the same value of Tc. Both the susceptibilities 8

χΨΨ and χL, which reflect how strong are the thermodynamical observable fluc-
tuations, are maximum around Tc. This illustrates that the deconfinement phase
transition is always associated with the chiral phase transition at µB = 0. The chi-
ral condensate < ΨΨ > could be treated as an order parameter for the QCD phase
transition.

1.3.2 QCD Phase Diagram

At a temperature around Tc, with µB = 0, the susceptibilities exhibit a clear
maximum but do not diverge. A similar trend is evidenced for the order parameters,
L and < ΨΨ > (Fig. 1.4, right panel). Instead of a first order phase transition, the

8The definition of susceptibility for an observable m is χm =< m2 > − < m >2.
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lQCD predicts the QGP formation as a crossover at µB = 0. Since lQCD calculations
have problems to deal with µB > 0, the Bag Model [42], which describes the
QCD phase transition with a finite value of µB, is used and suggests a first order
phase transition for all values of µB [43]. By combining the results from lQDC
and Bag Model, a Critical End Point (CEP), which ends the phase bound of
first order transition with a crossover behaviour, appears in the (T, µB) plane. This
representation is the so-called QCD Phase Diagram.

Figure 1.5: Schematic view of the QCD Phase Diagram

Fig. 1.5 shows the QCD Phase Diagram. In the region µB & 992 MeV, corre-
sponding to the normal nuclear matter, by increasing its temperature (heating), the
nuclear matter will change into the hadronic gas phase, which is mainly composed
of pions, excited protons and neutrons. When the temperature is still increasing,
quarks and gluons will exit from hadrons and form the QGP. When the value of
µB decreases, the first order phase transition from hadron gas to QGP becomes the
crossover. The phase matter transition is rapid and continuous at the CEP. In the
QGP, the chiral condensate is also restored and < ΨΨ >∼ 0.

An other way to achieve the strong interaction phase transition in the QCD phase
diagram is the compression of nuclear matter (by increasing µB). With different
temperatures, the phase transition could not always meet the crossover region, and
the chiral condensation < ΨΨ > would not always be restored. This shows that the
QCD phase structure is more complicated. More details can be found in [44].

It is worth noticing that the QCD phase diagram is displayed in the plane (T/Tc,
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µB/Tc). Some attempts to determine Tc are presented in [45].

1.4 Heavy Ion Collisions

The QCD phase diagram (Fig. 1.5) allows to extract the main properties of the
QCD phase transition. In particular, the lines along the T axis at µB = 0, in this
QCD phase diagram, describe the evolution of the early Universe after the Big Bang.

1.4.1 Trace Back to the Big Bang

Figure 1.6: Picture presenting the evolutiion of the Universe.

Under the prospect of the Big Bang Model [46], after the electro-weak transition,
which happened at t ∼ 10−11 s after the Big Bang, the Universe was filled with free
quarks and gluons. Then, the temperature went down during the expansion. At
t ' 10−4 s after the Big Bang, the temperature reached the critical temperature Tc

and the transition between deconfinement phase and hadronic phase occurs. Today’s
Universe was created after a lengthy evolution from the hadronic phase in the early
Universe (Fig. 1.6). The thermodynamical and hydrodynamical properties of the
deconfinement matter before the phase transition, such as the initial conditions,
influenced this evolution. In the Mechanical Concept, one could say that the
present Universe was determined in t . 10−4 s, after the Big Bang where free
quarks and gluons governed the Universe.

A systematic study of the evolution of the deconfinement phase is mandatory
not only for understanding the properties of the strong interaction and the dynamic
mass generating mechanism via chiral symmetry spontaneous breaking, but also for
tracing back the Universe just after the Big Bang!

Then, a question arises: under the normal nuclear matter conditions, how to
create or where to find the deconfinement matter phase with t > Tc ' 200 GeV
(O(1012 Kelvin))? Ultra-Relativistic Heavy Ion Collisions have been pro-
posed as the factory of QGP production in laboratory. These collisions deposit
a sufficiently huge energy density in the colliding region to create the "Big Bang
matter", QGP, which filled the whole Universe a few microseconds after the Big
Bang [47, 48, 49]. The observables measured in the final stage of the collisions carry
the information from each step of the collision, as the microwave background gives
the information from early Universe. Ultra-relativistic collisions allow to trace back
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the Universe after the Big Bang and to answer some questions which cannot be ad-
dressed by any conceivable astronomical observables with telescopes and satellites.
I am proud to say that, this is the topic of my PhD thesis!

1.4.2 Collision System Evolution

Figure 1.7: Schematic view of an Heavy Ion Collision [34]

Before to focus on the extraordinary heavy ion collision experiments, two ques-
tions should be ascertained:

• is the QGP formed during the collisions?

• if it is the case, how to extract its properties via final observables?

In order to address these open issues, it is very important to understand the evolution
of the system.

As shown in Fig. 1.7, the whole evolution of heavy ion collisions can be classified
into four periods. First, we discuss the characterization of a collision.

1.4.2.1 Collision Geometry
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Figure 1.8: Geometry of the collision in a two-dimension (left panel) and three-
dimension plane (right panel).

Figure 1.9: Characterization of a colli-
sion by using the charged particle mul-
tiplicity [50].

If one considers an heavy ion collision,
as shown in Fig. 1.8, the Impact Param-
eter ~b is a vector starting from the center
of one nucleus and pointing to the center
of an other nucleus. The plane which con-
tains the impact parameter and the beam
direction (z-axis in the laboratory coordi-
nate system) is defined as the Reaction
Plane of the collision as shown in the
right plot of Fig. 1.8. The angle between
the reaction plane and x-axis defines the
reaction plane angle ΨR. In the x-y plane,
ΨR is the azimuth of the reaction plane.
The directions parallel and perpendicular
to the reaction plane are defined as the
in-plane and out-of-plane directions, re-
spectively.

Collisions are classified into different
centrality classes according to the length
of impact parameter: |~b| = 0 defines the
most central collisions (two nuclei collide
head-on); when |~b| ' RA + RB (RA and

RB are the radii of two incoming nuclei), the collisions are peripheral (two nucleus
rub shoulders). Since |~b| can not measured directly, collisions are classified according
to their degree of centrality by using observables which are expected to exhibit a
strong correlation with |~b|. Amongst these observables, one can mention the charged
particle multiplicity.
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As shown in Fig. 1.9, the charged particle multiplicity distribution (dσ/dNch)
is used to define centrality classes by binning the distribution according to the
fraction of the total integral. In a given centrality class, < Npart > is defined as the
mean number of participating nucleons, and < Ncoll > is used to express the mean
number of binary nucleon-nucleon collisions. Both < Npart > and < Ncoll > are two
important quantities to characterize a collision, as well as the reaction plane angle
ΨR.

Additionally, in the most central collisions (|~b| ' 0), the overlap region of the
two nuclei (named as almond, as shown in red in Fig. 1.9) is symmetric. When |~b|
increases, the collisions become more and more peripheral, and the almond becomes
more and more asymmetric. The initial conditions affect the evolution of the system
as it will be discussed hereafter. The changing of the almond with collision centrality
classes effects the initial conditions of collisions and drives the evolution of the
created medium in the collisions, as we are going to mention.

1.4.2.2 Initial Stage of Collisions

In the initial stage of the collisions, Fig. 1.7 (a), the two nucleus are accelerated
with ultra-relativistic velocities, and become as two "pancakes" due to the Lorentz
contraction as a factor γ = E/m (E is the beam energy per nucleon and m is
the mass of nucleon). At such energies, the nucleons inside the nuclei are highly
excited. In this case, not only the valence quarks but also the sea quarks and gluons
become visible. The Parton Distribution Functions (PDFs) in the nucleus,
which govern the initial conditions of the evolution of the system, are modified by
the Nuclear Initial State Effects (or Cold Nuclear Effects). Presently, there
are two mainstream models used to describe the initial conditions.

Figure 1.10: CGC Evolution

The Glauber Model [51] considers
nuclei-nuclei (A–A) collisions as the su-
perpostion of binary nucleon-nucleon col-
lisions weighted by the binary inelas-
tic scattering cross section, σinel

NN . With
the inputs from the nucleon distribu-
tion in the given nuclei and |~b|, it re-
turns the probability of binary collisions
as a function of the position (x, y) in-
side the overlapping region, and also
< Npart > and < Ncoll > calculated
via the "Glauber Monte-Carlo" (GMC)
approach [52]. Cold nuclear effects
are mainly described by shadowing/anti-
shadowing [53, 54, 55] and intrinsic trans-
verse momentum (kt) broadening [56] in
PDFs of the nucleons.

An other model intensively used, is the Color Glass Condensate (CGC)
theory [57]. Without going into details, the CGC treats the system at the parton
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level, directly. In the small Bjorken-x region, gluon bremsstrahlung is dominant in
QCD and follows a DGLAP evolution [58, 59, 60]. The gluon density is described
as,

αps lnm(1/x) lnn(Q2). (1.14)

One clearly sees that at large Q2 and small Bjorken-x values, the gluon density
increases very sharply, according to Eq. (1.14). In a finite nucleus volume, the low
Bjorken-x gluons will merge together and their density will saturate according to the
BFKL evolution [61, 62, 63], as shown in Fig. 1.10. The gluon saturation modifies
the PDFs in the high energy nucleus and also leads to parton shadowing. Some
Monte-Carlo approaches are used to implement the CGC model, as the so-called
MC-KLN [64] and rcBK [65]. As compared to the Glauber based initial conditions,
the CGC model gives smaller scale and larger initial state fluctuations.

1.4.2.3 Fireball

Under initial conditions just discussed, the two nuclei collide. The evolution of
the collision is summarized in Fig. 1.7 (b). Hard processes with large momentum
transfer, Q � 1 GeV, occur during parton scattering at the very beginning of the
collisions at τ ≈ 1/Q. Then, the spectators escape form the interaction region and
the participants deposit their energy in the fireball. This leads to a rapid increase
of the entropy which could lead to thermalization (Fig. 1.7 (b)). At high energy
density, the created fireball behaves as a Quark Gluon Plasma (QGP) 9. After that,
the temperature of the fireball goes down due to the rapid expansion of the system.
When the critical temperature Tc is reached, a transition from QGP to hadronic
phase is observed (Fig. 1.7 (c)). Quarks and gluons are again confined into hadrons
(Fig. 1.7 (c)). Then, at the Chemical Freeze-Out the chemical composition of
the system is frozen.

In the theoretical side, the QGP medium is characterized by the physical quan-
tities as:

• opacity N , number of scatterings by the particle in a medium thickness L;

• Debye mass mD, related to the typical momentum exchange with the medium;

• transport coefficient q̂, the energy transferring per unit length in medium;

as well as its temperature T , gluon density dNg/dy (or energy density ε) and vis-
cosity η etc. In the experimental side, all the physical quantities of the medium can
be extracted via the final state observables (to be mentioned in Sec. 1.4.3). If the
system energy is sufficiently important, the interactions between hadrons could also
form a thermal equilibrium state until the Thermal Freeze-Out appears due to
the decrease of the temperature.

9Fig. 1.5 shows that the chiral symmetry is always restored at small µB values reached in
the QGP. In ultra-relativistic heavy ion collisions, the participants are confined in the interaction
region. As displayed in Fig. 1.5, the µB values reached in our energy range of interest (SPS, RHIC,
LHC) satisfy the conditions for chiral symmetry restoration.
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Finally, the kinematic distributions are fixed: this is the Kinetic Freeze-Out.
At this moment the fireball desintegrates and hadrons escape from them. Then,
the resonances and highly excited states decay to stable particles that can be mea-
sured (Fig. 1.7 (d)).

1.4.3 Final State Observables

The fireball created during the collision produces Hot Nuclear Effects 10 at
the partonic level. Since hard and soft partons are generated in different stages of
the collision with different mechanisms and do not have the same energy, they suffer
different hot nuclear effects. The whole picture of the fireball evolution could be
reverted by combining the information of the final state observables from both soft
and hard partons.

1.4.3.1 Global Observables and Collective Flow

Soft partons, which evolve as the fireball, are very sensitive to the initial con-
ditions (thermodynamical and hydrodynamical properties) and to the fluctuations
in the fireball. Their overall behaviour is reflected into the final state global ob-
servables, such as final state particle distributions, correlations and event-by-event
fluctuations.

Amongst them, the collective flow components which describe the correlations
between Particles Of Interest (POI) in the final state of the collisions, are very
important global observables.

In the final state, the flow can be both parallel and perpendicular to the beam
direction and is called longitudinal flow and transverse flow, respectively. The origin
of the flow could due to different reasons: initial conditions of the collisions and/or
pressure gradient in the created fireball, etc.. In general, the longitudinal flow is
mainly affected by the expansion of the fireball along the beam direction and is
governed by the variation of the fireball energy density as function of the rapid-
ity [66]. The transverse flow is of particular interest. It is proposed to probe the
hydrodynamical properties and the Equation of State (EOS) of the medium [67].

If one considers a non-central collision as shown in Fig. 1.8, after the collision,
the created fireball is anisotropic, the invariant cross section of final state particles
can be written in terms of a Fourier expansion relative to the reaction plane:

E
d3σ

d3~p
=

d2σ

2πptdptdy
[1 +

∞∑
n=1

2vn cosn(φ−ΨR)], (1.15)

where ~p, pt, y and φ are the 3-momentum, transverse momentum, rapidity and az-
imuth of the particles. Note that the sine terms vanish since the fireball is symmetric

10Normally, hot nuclear effects refer to the ones due to the QGP medium. Anyhow, the hadronic
gas also affects the final state observables. Since the interactions in hadronic gas are much smaller
than that in QGP, the effects from hadronic gas are always smaller as compared to those from
QGP.
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with respect to the reaction plane. The Fourier coefficient of n-th order given by

vn =< cosn(φ−ΨR) >, (1.16)

corresponds to the n-th order flow component.
The first order coefficient, v1, is the directed flow and is related to the overall

shift of the particle distribution in the transverse plane.
A non vanishing value of v2, the elliptic flow component, indicates a larger

pressure gradient (with respect to the outside vacuum) in the in-plane direction than
in the out-of-plane direction. This initial pressure gradient anisotropy explains the
anisotropic azimuthal distribution of final state particles. Hence, more particles are
pushed and emitted from the in-plane direction than from the out-of-plane direction.
Several quantities, like the temperature and viscosity of QGP, can be extracted
by measuring v2 of soft particles in the low pt region. In the high pt region, v2

reflects the pass length dependence of hard probe energy loss (see Sec. 1.4.3.2).
v3, the triangular flow, is affected by the asymmetry of the colliding system or
the fluctuations of the system. The rectangular flow, v4, is mostly observed in
the rapidity window close to the center of mass. Finally, the squeeze-out effect,
quantified by v2, characterizes a preferred emission of particles in the out-of-plane
direction.

1.4.3.2 Hard Probes

Figure 1.11: Hard partons as a tomog-
raphy of QCD medium.

Hard partons are created in the early
time of the collision and carry large
energy. They will loss their energy
through their propagation in the QGP
medium via interactions with soft par-
tons in the medium [68]. This is the so-
called quenching effect. The energy loss,
∆E, depends on the temperature, cou-
pling strength and thickness (L) of pass
length of the medium. The hard process
of their production can be predicted in
the pQCD framework. Hard partons are
valuable tools for the tomography of the
QGP, as shown in Fig. 1.11. From the
theoretical side, quenching effects are es-
timated by using two approaches: one is
based on pQCD calculations by assuming
weak coupling (small αs) between partons
in the QGP medium and the other one is
based on the super string theory, and can

deal with large αs, where the perturbative expansion is not valid.
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In perturbative calculations, the in-medium energy loss is classified into colli-
sional and radiative terms,

∆E = ∆Ecol + ∆Erad. (1.17)

The collisional energy loss [69, 70, 71, 72] which is due to elastic scattering, drives
the linear dependence between ∆Ecol and L, and the logarithmic ∆Ecol dependence
on initial parton energy. The medium induced gluon radiation is responsible for the
radiative energy loss of hard partons [73, 74, 75, 76, 77]. In this case, ∆Erad shows
a the typical L2 dependence, the relation between ∆Erad and parton initial energy
is more complicated than that of the collisional energy loss because of the LPM
(Landau-Pomeranchuk-Migdal) effect [78]. Some phenomenological approaches as
BDMPS/ASW [79], AMY [80, 81], DGLV [82] and HT [83, 84] are developed to
connect these pQCD calculations of hard parton energy loss with experimental ob-
servables. The differences between these models mainly come from the treatment of
the relationship between relevant QCD scales and space-time profile of the medium.

The calculations of the parton energy loss in a strong coupling QCD system
are derived from the string theory, which describes in a 5-dimensional Anti de
Sitter (AdS) space times, a 5-dimensional sphere (AdS5 × S5). The 4-dimensional
boundary of this space is equivalent to aConformal Field Theory (CFT), e.g. the
SU(4) strong coupled Super Symmetric Yang-Mills (SYM) gauge theory with duality
of supergravity in a curved space-time. By virtue of this duality, the analytical
gravity calculations can holographically map out to non-perturbative QCD. Hence
this dual theory is named as AdS/CFT [85]. Within this framework, the parton
energy loss is calculated with the medium temperature equal to the black hole
Hawking temperature [86, 87, 88].

Hard partons will fragment into hadron jets at the surface of the QGP medium.
Some hadrons in the jets could still interact with the hadron gas subsequently and
further modify their distributions. The final state observables from hard partons,
jets and leading particles, which take the largest energy/momentum fraction, are
called hard probes. They allow to study in particular the medium modified frag-
mentation function, suppression of high pt particles and back-to-back correlations.

1.4.4 Heavy Ion Facilities

The development of heavy-ion accelerators began at the Berkeley Bevalac (USA)
in 1975 and latter at Saturne (Saclay, France). After that, several experiments were
operated at various facilities:

1987− 1994 : heavy-ion collisions were studied at the AGS (Alternating Gradient
Synchrotron) of BNL (Brookhaven National Laboratory) at

√
sNN <

14.2 GeV;

1986− 2003 : heavy ion collisions were studied at the CERN/SPS (Super Proton Syn-
chrotron) at

√
sNN ∼ 19 GeV;
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1994− 2003 : seven experiments have been operated at the SPS (Pb nuclei were accelerated
up to

√
sNN ∼ 17 GeV);

2000− now : RHIC (Relativistic Heavy Ion Collider) entered in service at the BNL
and delivered Au–Au collisions up to

√
sNN = 200 GeV. Four experiments:

PHENIX, STAR, BRAHMS, PHOBOS are operated at this facility;

2009−now : CERN/LHC (Large Hadron Collider) entered in service in 2009 and
delivered Pb–Pb collisions at

√
sNN = 2.76 TeV in 2010 (nearly 14 times larger

than that reached at RHIC), opening a new era for studying the properties of
strongly interacting matter under extreme thermodynamical conditions!

There also are running heavy-ion programs at lower energies: the SIS facility
(SchwerIonen Synchrotron) located at GSI (Gesellschaft für Forschung
SchwerIonen) accelerates heavy ions at a maximum energy of about 2 AGeV.
A new project, the CBM experiment (Compressed Baryonic Matter) at
GSI/FAIR (Facility for Antiproton and Ion Research) is presently in prepara-
tion. One can also mention theNICA experiment in development at Dubna facility.
These experiments are dedicated to the study of the QCD phase transition at high
µB and low T . The complementary results between different experiments operated
at different energies could help to scan the CEP in the QCD phase diagram and
clarify the whole picture of the QCD phase transition.

1.5 Evidence of the Quark Gluon Plasma

Abundant evidences of QGP have been obtained with heavy ion experiments at
SPS and RHIC. A new era for the systematic study of the properties of the QGP,
the understanding of the mass origin and the investigation of the early Universe is
opened. The mysteries of the nature are being unveiled.

1.5.1 SPS: First evidences

The various experiments operated at the SPS collected O–O, S–S, In–In and Pb–
Pb collisions in a wide energy range from 40 AGeV to 158 AGeV. Proton–proton
and p–A collisions were also measured in this energy range, in order to provide the
baseline for the study of nuclei-nuclei collisions. Many observables are in favour
of the QGP formation in heavy ion collisions. In the following, we focus on two
observables: J/Ψ production and strangeness production.

1.5.1.1 J/Ψ Anomalous Suppression

The anomalous suppression of J/Ψ production with respect to the Drell-Yan
dimuon yield when considering the normal nuclear absorption, was measured in
NA38, NA50 and NA60 experiments with different collision systems at the SPS [89].
The measured J/Ψ yield normalized to the expected yield by assuming the suppres-
sion source only comes from ordinary nuclear absorption in different systems is
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shown in Fig. 1.12. In order to compare the suppression patterns in different col-
liding systems, the results are shown as a function of the energy density reached in
each collision system at the local thermal equilibration time, estimated within the
Bjorken scenario [47] as,

ε =
1

S⊥τ

dE

dy
|y=0, (1.18)

where S⊥ is the size of almond region in transverse plane and τ is the system life-
time. The sudden decrease of the ratio in ε & 2.5 GeV/fm3 (Fig. 1.12) is clearly in
disagreement with the predictions from hadronic models [90]. This trend strongly
supports that the QGP is formed in this region [91].

Figure 1.12: Ratio between measured
J/Ψ yield and expected yield as a func-
tion of energy density ε, by assuming the
suppression source only comes from or-
dinary nuclear absorption [92].

As predicted in [93], similarly to the
electromagnetic plasma, in the QGP,
where the color charges are liberated, the
charge potential between two partons is
expected to be screened at a distance be-
yond the Debye length λD. Hadrons with
radii r > λD, as cc and bb bound states,
are expected not to be bound in the QGP.
This effect explains that the quark pairs
lose their correlations and flow with in-
dependent trajectories. In Fig. 1.12, the
non-anomalous J/Ψ suppression at small
ε indicates that the deconfinement was
not formed with such low energy densi-
ties; at ε ' 2.5 GeV/fm3, the increase of
the anomalous suppression with ε illus-
trates that the J/Ψ bound state is melt
in the present QGP medium due to the
color charge screening, and the screening
length λD increases with the energy den-
sity of the QGP since more and more free
color charges appear.

1.5.1.2 Hyperon Enhancement

As mentioned in Sec. 1.2.3, the deconfinement phase transition is always associ-
ated with the chiral symmetry restoration. In the QGP, the threshold production of
a ss pair is reduced from it mass constituent mcont

ss ' 600 MeV/c2 to it current/bare
mass mbare

ss ' 300 MeV/c2 (Fig. 1.3), which is half of the energy required to pro-
duce the ss pair in hadronic interactions. This leads to an increase of the yield of
(multi-)strange baryons (hyperons) in the deconfinement medium, as compared to
that in the hadronic matter [94].

The results in Fig. 1.13 show that the hyperon production increases in Pb–
Pb collisions, in comparison to that in p–Be and p–Pb collisions, where the QGP
is not expected to be produced. This enhancement is a direct evidence for the
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Figure 1.13: Hyperon production in Pb–Pb collisions normalized to the ratio from
p–Be collisions as a function of centrality (expressed by < Nwound >), measured in
the NA57 experiment at the SPS [95].

chiral symmetry restoration, and illustrates that a deconfined medium is created
at SPS energies. The increase of the enhancement, with the strangeness content,
ε(Λ) < ε(Ξ) < ε(Ω) 11, confirms this picture.

1.5.2 RHIC: Strong Coupled QGP?

The anomalous J/Ψ suppression and hyperon enhancement discovered at SPS
could be an evidence of the QGP formation. At RHIC energies, in Au–Au collisions
at a center of mass energy of

√
sNN = 200 GeV, which is more than 10 times larger

than that at SPS energies, the produced collisions are well above the threshold of
the deconfinement phase transition. On one hand, the QGP at RHIC energies has
a longer life-time, its properties could be better reflected in the collective behaviour
of the global observables; on the other hand, the production cross section of hard
probes increases significantly, letting them become experimentally accessible.

1.5.2.1 Hard Probe Quenching

As mentioned in section 1.4.3.2, due to quenching, hard partons, which have
large initial energy, lose their energy in the QGP medium before they fragment into
hadron jets. This leads to a decrease of the particle yields in the high pt region
in the final stage of the collision, with respect to the situation where there is no

11Here ε expresses the enhancement of the strangeness particles
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quenching at parton level. Experimentally, this effect is measured via the nuclear
modification factor,

RAA(pt) =
1

< Ncoll >

dσAA/dpt

dσpp/dpt
, (1.19)

which is the ratio between the particle production cross section normalized to the
binary nucleon-nucleon collisions via < Ncoll > in A–A collisions and the production
cross section for the corresponding particles in pp collisions where the QGP is not
formed. The measured RAA of π0 in Au–Au collisions at

√
sNN = 200 GeV by the

PHENIX experiment at RHIC is shown in Fig. 1.15, left panel [96]. One can observe
that, there is a strong suppression of high pt π

0 (pt & 4 GeV/c) in central collisions
(0− 10%) with respect to pp collisions. This phenomenon indicates that the QGP
medium was formed in central collisions and hard partons are quenched inside it,
while in the peripheral collisions (80 − 92%) the suppression is small (peripheral
collisions can be considered as a superposition of pp collisions).

Figure 1.14: Jet Quenching

During hard processes, hard partons are
always produced in back-to-back pairs. If
there is no quenching, as in pp and d–
Au collisions, the produced hard parton
pairs could fragment into two back-to-back
hadron jets. In this case, if we choose one of
the leading particles in one of these two jets
as the trigger particle and build the corre-
lated azimuthal distribution for other par-
ticles according to this particle (dN/d∆φ),
there could be two back-to-back peaks in
this distribution, as shown in Fig. 1.15
(right panel), in the case of pp and d–Au
collisions. The nearside peak is composed
from the associated particles of this trigger
particle in the same jet and the way-side
peak comes from the particles in the corre-
sponding opposite jet. But with quenching
effect, as shown in Fig. 1.14, if a hard par-
ton pair is created near the surface of the

QGP medium, one of them would just cross the medium surface and with almost
no energy loss will fragment into a jet similarly as in pp collisions, while another
parton could pass almost the whole medium region and suffer the quenching inside
the medium. In this case, the nearside peak in the two particle correlated azimuthal
distribution does not change too much, as compared to pp collisions, but the away-
side peak could become wider due to multi-scatterings of the opposite parton or it
could disappear because the opposite parton losses all its energy in the medium.
This phenomenon is shown in Fig. 1.15 (right panel) for Au–Au collisions, and com-
pared with pp and d–Au collisions. One can see that the two particle azimuthal
correlations disappear at away-side, in central Au–Au collisions (0− 20%).
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Figure 1.15: Left: RAA(pt) of π0 in central (0 − 10%) and peripheral (80 − 92%)
Au–Au collisions at

√
sNN = 200 GeV measured by the PHENIX experiment [96],

the shaded hands represent the systematic uncertainties on normalization. Right:
two particle azimuthal distributions in pp, d–Au and Au–Au collisions measured by
the STAR experiment [97].

1.5.2.2 Fragile Probes?

If we look into more details to the results presented in Fig. 1.15, we can notice
that, in the 0 − 10% central collisions, π0 are strongly suppressed by a factor of
about 5 in pt & 4 GeV/c (RAA ' 0.2). Even in the 20% most central collisions,
the disappearance of back-to-back correlations indicates that almost all of opposite
partons have lost all their energy and are absorbed in the medium. Both effects
illustrate that the quenching strength or the interactions in the QGP medium are
very strong. In this case, it is difficult for hard partons to escape from the central
region of the QGP medium, due to strong quenching effects. Therefore, only partons
emitted near the surface of the medium can survive, as predicted in Ref. [98]. This
is the so-called "surface emission".

One way to check the surface emission mechanism is to study probes with differ-
ent colors. As predicted in [82], the coupling of gluons is stronger than that of light
quarks in QGP medium. If the hard probes are sensitive to the medium properties,
the suppression factor of gluon jets would be larger than that of quark jets. On
the opposite side, if the suppression is controlled by the surface emission, its color
dependence will be lost. At RHIC energies, the gluon jet contribution to protons is
significantly larger than to pions, as predicted in [105] and also measured in [101].
Fig. 1.16 shows the ratios of p/π+ and p/π− in central (0 − 12%) and peripheral
(60 − 80%) Au–Au collisions at

√
sNN = 200 GeV compared with the results in

d–Au collisions at the same binary center of mass energy. The measurements were
performed in the STAR experiment at RHIC. One can notice that, all ratios become
identical, in pt & 6 GeV/c, and higher than the model predictions [103, 104]. This
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Figure 1.16: p/π+ and p/π− ratios in d–Au [99, 100] and Au–Au [101] collisions
measured by the STAR experiment at RHIC. The dotted-dashed line is the ratio
(p + p)/(π+ + π−) measured in e−–e+ collisions [102]. The model calculations in
central Au–Au collisions [103, 104] are shown in dotted and dashed lines.

indicates that the suppression is not sensitive to the color of the probes. One pos-
sible explanation is that the suppression of high pt particles is governed by surface
emission due to the strong coupling inside the QGP medium, and the hard probes
become fragile because they can not carry information of the QGP medium.

1.5.2.3 Elliptic Flow and Quark-Gluon Plasma

Even if is well known that the QGP was created at RHIC, a lot of work remains
to be done in order to understand its properties. Please take easy! We should
not forget an other powerful tool: the flow, as emphasized in Sec. 1.4.3.1. In the
low pt region, different components of flow can be observed due to the collective
behaviour of all the particles from the fireball. They are sensitive to the initial
conditions, hydrodynamics and degree of freedom inside the fireball. Amongst all
flow measurements at RHIC, an interesting result which is worth to be introduced
(Fig. 1.17), is v2 from different hadron species scaled by the number of quark con-
stituents (nQ) of hadrons as a function of pt scaled by nQ, in Au–Au collisions at√
sNN = 200 GeV [106]. It can be observed that v2 of all these hadrons fall into the

universal nQ scaling in the region pt/nQ > 0.6 GeV/c. This implies that, in the
intermediate pt region, the final hadrons are formed by coalescence of their quark
constituents when the partonic phase hadronizes. Once more, this provides the
evidence of deconfinement in the early stage of the collisions at RHIC energies.
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Figure 1.17: Elliptic flow of different
hadrons scaled by the number of quark
constituents of hadrons. The lower
panel shows the ratios between data
and a Polynomial fit [106].

Also, the flow measurement allows to
extract one of the key parameters, the ra-
tio of shear viscosity to entropy η/s which
is used to determine the damping rate of
QGP. In AdS/CFT [86], this parameter
is η/s ≥ 1/4π. This relation is true in
any thermal field theory according to the
Heisenberg uncertainty principle. Since
η/s ∼ τmftε, where τmft is the typical mean
free time of a quasiparticle and ε is the av-
erage energy per particle, η/s should be
much larger than 1/4π in a weakly cou-
pled system because the mean free time
τmft is larger (e.g. for water under normal
conditions η/s ' 380 · 1/4π). On the con-
trary, if the value of η/s is close to 1/4π,
the coupling in the system should be more
stronger.

The charged hadron elliptic flow as a
function of centrality (Fig. 1.18), measured
in Au–Au collisions at

√
sNN = 200 GeV

at RHIC is compared with hybrid calculations which describe the QGP via the
relativistic viscous fluid dynamics and implement microscopic Boltzmann cascade
for the late hadronic re-scatterings [107]. These calculations use both the Glauber
model and CGC theory to describe the initial conditions. The comparison with
data, gives the range for the ratio of shear viscosity to entropy in 1 < 4π(η/s) < 2.5

and the temperature of QGP in Tc < T . 2Tc at RHIC [108]. The value of η/s
extracted from the flow measurement is very close to 1/4π and this indicates that
the coupling inside the QGP medium at RHIC is very strong.

Finally, by combining results from hard probes and flow, a picture of strong
coupled QGP (sQGP) is coming out at RHIC energies. This picture is against
the prime expectations for the QGP: according to the asymptotic freedom, the
interactions between partons should be weak in the deconfinement phase, and the
QGP could behave as the ideal gas. But at RHIC, the results seem to indicate that
the medium is a quark and gluon soup instead of an ideal gas. Is this the essential
attribute of the QGP, or just the tip of the iceberg· · ·

1.5.3 LHC: Opportunities and Challenges

The first heavy ion run at the LHC took place end of 2010. With a center of mass
energy

√
sNN = 2.76 TeV, which has never been reached before, the LHC brings a

revolution in high energy heavy ion physics.
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Figure 1.18: Comparison of the integrated charged hadron elliptic flow as a function
of centrality measured in the PHENIX experiment [109] and STAR experiment [110]
with VISHNU calculations using Participant Plane (PP) averaged [108].

1.5.3.1 Bulk Properties

The measurement of the charged particle pseudo-rapidity density dNch/dη,
which constrains the mechanisms of particle production is used to estimate the initial
energy density. This is the first step in the characterisation of the system produced
at the LHC. The interplay between hard parton-parton scattering processes and soft
processes is also reflected by the energy and system size dependence of dNch/dη.
The red filled dot in Fig. 1.19 (left panel) is the charged particle pseudo-rapidity
density per participant, dNch/dη/0.5 < Npart >, measured in Pb–Pb collisions at√
sNN = 2.76 TeV in ALICE [112]. It shows an increase of dNch/dη by a factor 2.2

at the LHC, as compared to that in Au–Au collisions at
√
sNN = 200 GeV at RHIC.

This indicates that the initial energy density is significantly higher at the LHC than
that at the RHIC.

Experimentally, in the final stage of the collisions, the expansion time and the
spatial extent of the fireball at hadron decoupling are accessible with intensity
interferometry measurements via the Hanbury-Brown-Twiss (HBT) analysis ap-
proach [116, 117]. The hadron decoupling time τf as a function of dNch/dη in
various energies is shown in Fig. 1.19 (right panel). The red filled dot measured
with ALICE data has been obtained with two-pion Bose-Einstein correlations [113].
The comparison with the results at lower energies show that the largest hadron de-
coupling time is measured at the LHC. For pions, it exceeds 10 fm/c which is 40%

larger than at RHIC. This indicates that the lifetime of the QGP is larger at the
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facility SPS RHIC LHC

system Pb–Pb Au–Au Pb–Pb
√
sNN (GeV) 17 200 2760

dNch/dy|y=0 500 850 1600∗

τ0
QGP (fm/c) 1 0.2 0.1

TQGP/Tc 1.1 1.9 3.0− 4.2

ε (GeV/fm3) 3 5 15− 60

τQGP (fm/c) ≤ 2 2− 4 ≥ 10

τf (fm/c) ∼ 10 20− 30 ∼ 10∗

Vf (fm3) ∼ 103 ∼ 104 ∼ 105

µB (MeV) 250 20 1

Table 1.1: Global properties of the medium created at SPS, RHIC and LHC ener-
gies [111]. From up to bottom, the following quantities are presented: center of mass
energy per nucleon pair, charged particle density at mid-rapidity, equilibration time
of QGP, ratio of QGP temperature to critical temperature, energy density, QGP
life-time, life-time and volume of the system at freeze-out, and baryonic chemical
potential

Figure 1.19: Left: charged particle pseudo-rapidity density per participant in cen-
tral nucleus-nucleus and non-single diffractive pp (pp) collisions as a function of√
sNN [112]. Right: decoupling time from ALICE (red filled dot) compared to the

one obtained for central Au–Au and Pb–Pb collisions at lower energies at the AGS,
SPS and RHIC [113].

LHC than at the RHIC.
Tab. 1.1 12 summarizes the main global properties from SPS, RHIC and LHC. All

12At LHC energies, the parameters with ∗ are from the newest measurements, others are obtained
via model predictions in Pb–Pb collisions at

√
sNN = 5.5 TeV.
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Figure 1.20: v2(pt) from multi-particle
methods in Pb–Pb collisions at

√
sNN =

2.76 TeV measured in ALICE [114], and
compared with the results from the STAR
experiment in different centrality classes.

Figure 1.21: Charged particle RAA as a
function of pt up to 100 GeV/c in Pb–Pb
collisions at

√
sNN = 2.76 TeV measured

in the CMS experiment. The results are
compared with the RAA of π0 predicted
by WHDG calculations [115].

the numbers show that the LHC produces the closest conditions of the early Universe
after the Big Bang and offers the opportunities to study the deconfinement matter!

1.5.3.2 Strong Coupled or Perturbative?

Following the train of thought that was used for discussing the results at RHIC,
one should use hard probes and global observables to study the properties of the
QGP created at the LHC.

The elliptic flow measured in Pb–Pb collisions at
√
sNN = 2.76 TeV in ALICE

is presented in Fig. 1.20 [114] and compared with the measurements in Au–Au
collisions at

√
sNN = 200 GeV made by the STAR Collaboration at RHIC. This

figure shows that v2(pt) at the LHC is similar to the one measured at RHIC. If
one refers to the discussion in Sec. 1.5.2.3, one expects no obvious change for η/s
from RHIC to the LHC with a zero order estimate. In other words, even if the
conditions are better for the creation of the QGP at the LHC, the properties of
the created deconfined medium are almost the same than at RHIC, they support a
strong coupled liquid (sQGP). This outcome has been predicted two years ago [118],
but you will find that the situation is not so straightforward immediately.

With a sQGP, the perturbative description would fail at LHC energies. But is
it like this? Let us look at Fig. 1.21, which shows the charged particle RAA(pt)

measured at CMS up to pt = 100 GeV/c. This observable tends to increase as pt

increases in the region pt & 10 GeV/c. According to perturbative calculations [76],
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with an opacity expansion of the medium, the parton energy loss is,

< ∆E >∝ lnE. (1.20)

In pp collisions, where there is no energy loss mechanism, the high pt particle spec-
trum can be described as

dN

dpt
∝ 1

pnt
; (1.21)

then, in A–A collisions, the energy loss can lead to an overall shift for the high pt

particle spectrum of < ∆E > and we get,

RAA(pt) ∝ (1− < ∆E >

pt
)n, (1.22)

where < ∆E > /pt ∼ ln pt/pt, according to Eq. (1.20). By fitting the pp data, we
get the power law n in Eq. (1.21). Then, by using Eq. (1.22), the increase trend
of RAA in the high pt region can be estimated with pQCD calculations, as done in
Ref. [115]. It works very well with n + 1 ∼ 5 at the LHC. Does this means that
pQCD works at the LHC or is there still a sQGP?

It is too early to conclude about the properties of the QGP created at the LHC.
The biggest QCD factory in the world, the LHC, continues to create deconfined
matter. Our protagonists: the heavy quarks, are going to appear on the scene. In
the next chapter, we shall see that heavy quarks are powerful tools to answer the
opened questions from RHIC and LHC.
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Chapter 2

Heavy Flavours: a Promising
QGP Tomography

The heavy flavour (HF, charm (c) and beauty (b)) saga began in 1974, with
the experimental discovery of J/Ψ (cc bound state) [119, 120]. Soon after, open
charm baryons Λ+

c and open charm mesons D0± were measured in 1975 [121] and
1976 [122, 123], respectively. In parallel to the charm story, the elementary particle
picture was enriched by Υ (bb bound state) discovered in 1977 [124], and the first
observations of open beauty baryons Λb and mesons B0± were presented in 1981 [125]
and 1983 [126], respectively.

Due to their heavy masses, heavy flavours are not only promising probes for the
QGP medium but also powerful tools to test the QCD framework. Additionally, at
LHC energies, the Drell-Yan signal is expected to be negligible. Instead of measuring
the Drell-Yan process, the measurement of open heavy flavour production is the most
natural normalization for charmonia and bottomonia at the LHC.

In order to illustrate the motivations for heavy flavour measurements, we begin
with the heavy flavour production in nucleon-nucleon collisions.

2.1 Open Heavy Flavour Hadronic Production

In nucleon-nucleon collisions, heavy quarks are produced by pairs via hard scat-
terings, with virtuality threshold Q ∼ 2mQ (∼ 3 GeV for charm and ∼ 9.5 GeV
for beauty). According to the asymptotic freedom (Sec. 1.2.2), the QCD running
coupling αs is small in heavy flavour production and allows to use pQCD predictions.

2.1.1 Factorization Theorem

Experimentally, heavy flavours are measured in the hadronic channel (HQ) or
via their decay leptons in the final state, as illustrated in Fig. 2.1. Heavy quark
hadronic production can be calculated, in nucleon-nucleon collisions, in the pQCD
framework according to the factorization theorem [127],

dσNN→HQX

dpt
(
√
sNN,mQ, µ

2
F, µ

2
R) =

∑
i,j=q,q,g

fi(x1, µ
2
F)⊗ fj(x2, µ

2
F)⊗

dσ̂ij→Q(Q){n}

dp̂t
(αs(µ

2
R), µ2

R, µ
2
F,mQ, x1x2sNN)⊗DHQ

Q (z),

(2.1)

with corrections of the order of O(ΛQCD/max(mQ, pt)) which are suppressed with
heavy flavour masses and/or with large pt.



Figure 2.1: Examples of Feynman diagrams: D+D− production in pp collisions via
gg→ cc (left panel) and D+ → K

0
µνµ (right panel).

In Eq. (2.1), the sum runs over all subprocesses for open heavy flavour hadron
production. Each term corresponds to a given process in HQ production (see exam-
ple in Fig. 2.1, left panel).

1. In the initial stage of nucleon-nucleon collisions, two partons (i and j) are
extracted from each nucleon with momentum fractions xi/j according to the
probabilities given by the parton distribution functions fi/j(xi/j , µ2

F), where
i/j reflects the species of partons (q, q or g) and µF is the factorization scale.
As for the renormalization factor µR, µF is an unphysical parameter in QCD,
which is introduced to describe the QCD higher order corrections due to gluon
radiation. Parton Distribution Functions (PDFs) evolve with Q2 up to µ2

F

through DGLAP equations [58].

2. Then, heavy flavours are produced during hard scatterings between the two
extracted partons with virtuality Q ∼ x1x2sNN. At this step, where mQ >

ΛQCD, the elementary partonic cross section dσ̂ij→Q(Q){n}/dp̂t (where p̂t is
quark transverse momentum) up to a given perturbative order n, is related to
the interactions at high Q2 and can be computed by pQCD in terms of αks (k
evolves up to the perturbative order n).

3. After a heavy quark is formed, it will interact with other partons and fragment
into an open heavy flavour hadron. DHQ

Q (z) is the heavy quark fragmentation
function which represents the probability for the scattered heavy quark to
materialize as an hadron HQ with momentum fraction z = pHQ/pQ.

The whole procedure of open heavy flavour hadronic production (Fig. 2.1, left
panel) is characterized by three quantities: fi/j(x, µF) PDFs, partonic cross section
dσ̂ij→Q(Q){n}/dp̂t and fragmentation function D

HQ

Q (z), corresponding to the three
steps just discussed. To get the final results, one should calculate their convolutions
in Eq. (2.1). Due to the large mass of heavy quarks, each of these three steps for
open heavy flavour hadron production has its special properties that are different
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from those for light flavours. All these properties make the heavy flavour observables
in the final state more interesting than that from light flavours, even in nucleon-
nucleon collisions. Before to apply the convolution calculations in Eq. (2.1), one
should study into detail each step to understand which relevant information can be
obtained via heavy flavour final state observables.

2.1.2 Bjorken-x in PDFs via Heavy Flavours

The parton distribution functions are measured in deep inelastic scatterings as
ep → eX. Once the initial conditions of the nucleon structure are experimentally
determined at a given Q, PDFs can be predicted by pQCD via the DGLAP evolu-
tion [60]. At present, the most widely used PDFs are the CTEQ PDFs sets [128].

It is interesting to constrain PDFs in the low Bjorken-x range in nucleon-nucleon
collisions to test the pQCD calculations. Furthermore, measuring the nuclear modi-
fied PDFs (nPDFs) down to low Bjorken-x values is very important for understand-
ing the whole picture of cold nuclear effects, as mentioned in Sec. 1.4.2.2. One of
the advantages of heavy flavours is that they allow to access small Bjorken-x range
in (n)PDFs, in particular with high center-of-mass collision energy and/or large
(pseudo)-rapidity.

We start with a simple case: QQ production through the leading order gluon-
gluon fusion gg→ QQ in nucleon-nucleon collisions. By ignoring the parton intrinsic
transverse momentum in the nucleons, the four-momenta of the two incoming gluons
can be written as (x1, 0, 0, x1)

√
sNN/2 and (x2, 0, 0,−x2)

√
sNN/2 and we get

M2
QQ

= x1x2sNN, (2.2)

yQQ =
1

2
ln
E + pz

E − pz
=

1

2
ln
x1

x2
, (2.3)

with virtuality at QQ production threshold. Then the Bjorken-x values of these two
initial gluons are

x1 =
MQQ√
sNN

exp(+yQQ), x2 =
MQQ√
sNN

exp(−yQQ). (2.4)

These results, Eq. (2.4), will not change in symmetric nucleus-nucleus collisions.
According to Eq. (2.4), at LHC energies, in pp collisions at

√
sNN = 7 TeV, one can

access Bjorken-x values down to x ∼ 4 · 10−4 for charm quarks in the mid-rapidity
region.

Tab. 2.1 shows the accessible Bjorken-x range corresponding to cc and bb pro-
duction at threshold in the mid-rapidity region (y = 0) at different energies, as
calculated from Eq. (2.4). The Bjorken-x regime relevant for charm production at
the LHC O(10−4) is about two and three orders of magnitude lower than that at
RHIC and SPS, respectively. To get a clear comparison of the accessible Bjorken-
x region for heavy flavours at RHIC and LHC, the parton distribution functions
xf(x,Q2) in proton from CTEQ 4L [131] are shown in Fig. 2.2 (left panel) with
the corresponding achieved Bjorken x range, at Q2 = 5 GeV2 corresponding to cc
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Figure 2.2: Left: parton distribution functions in proton from CTEQ 4L with Q2 =

5 GeV2 [41]. Right: Bjorken-x as a function ofM2 for particle production in nucleon-
nucleon collisions at the SPS, RICH and LHC. The lines correspond to constant
rapidity at corresponding energies [129].

Figure 2.3: Accessible Bjorken-x range for heavy flavours in Pb–Pb collisions at√
sNN = 5.5 TeV (left) and in pp collisions at

√
s = 14 TeV (right) in the rapidity

range that can be measured with ALICE at the LHC [130].

production at threshold. It sorts out that, due to the higher beam energies delivered
at the LHC than at the RHIC, heavy quarks allow to probe the low Bjorken-x region
dominated by gluons at the LHC.

It is worth mentioning that as the rapidity increases, one will be able to in-
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machine SPS RHIC LHC LHC LHC LHC
system Pb–Pb Au–Au Pb–Pb Pb–Pb pp pp√
sNN (TeV) 0.017 0.2 2.76 5.5 7 14

charm ' 10−1 ' 10−2 ' 8 · 10−4 ' 4 · 10−4 ' 4 · 10−4 ' 2 · 10−4

beauty - - ' 4 · 10−3 ' 2 · 10−3 ' 1 · 10−3 ' 6 · 10−4

Table 2.1: The accessible Bjorken-x values with cc and bb production at threshold
at mid-rapidity (y = 0) and different energies.

vestigate unprecedented low Bjorken-x values, as shown in Fig. 2.2 (right panel).
Fig. 2.3 shows the regions in the (x1, x2) plane covered by charm and beauty in the
ALICE acceptance, in Pb–Pb collisions at

√
sNN = 5.5 TeV (left panel) and in pp

collisions at
√
s = 14 TeV (right panel). In this figure, the points with constant

invariant mass lie on hyperbola x1 · x2 = m2
QQ
/sNN (straight lines in logarithmic

scale) and the points with constant rapidity lie on straight lines x1 = x2 exp(+yQQ).
In the acceptance of the ALICE forward MUON spectrometer, −4 < η < −2.5, the
accessible Bjorken-x range will be down to O(10−6), which is lower by two orders
of magnitude than that can be accessed in the ALICE Central Barrel acceptance,
as depicted in Fig. 2.3. The measurement of heavy flavours in the forward rapidity
region at the LHC offers unique opportunity to measure PDFs down to extremely
low Bjorken-x values which have not been achieved in the past.

Figure 2.4: Enhancement factor R(pt,∆y) for charm quarks (dashed lines) and D
(D0, D+) mesons (solide lines), with mc = 1.2 GeV/c2, Q2 = 4m2

T (left panel) and
mc = 1.3 GeV/c2, Q2 = m2

T (right panel) [132].

At LHC energies, heavy quarks are preferentially produced in the initial fusion of
gluons (gg→ QQ) rather than in the interactions qq→ QQ [133]. In the Bjorken-x
range, which is achieved by heavy flavours at the LHC, the density of gluons is close
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to saturation in the available phase space, leading to gluon recombination gg → g

as described in the CGC picture. This effect is taken into account in the non-linear
term in DGLAP evolution [134]:

∂fg(x,Q2)/∂ lnQ2 = [DGLAP,O(fg)]−O(fg). (2.5)

Eq. (2.5) allows a higher gluon density at small Q2, and implies modified gluon
distribution function for heavy flavour production even in nucleon-nucleon collisions.
This also indicates a possible enhancement of heavy quark pairs in the low pt region
at the LHC [135], as shown in Fig. 2.4 in the case of charm quarks.

2.1.3 Partonic Cross Section

The partonic cross section of heavy quark production is validated by pQCD cal-
culations for virtuality equal to heavy quark mass. This will bring tight constraints
on the phase space. In some cases, one will need to implement a resummation tech-
nique for the calculation of both the inclusive and differential partonic production
cross section of heavy flavours.

2.1.3.1 Inclusive Cross Section

In the calculations of the inclusive partonic cross section for heavy flavours,
the remnant long-distance dynamics in hard scattering functions can become large
when the phase space near partonic threshold is dominated by pQCD higher order
corrections [136, 137]. This effect always implies that each order of αs is accompanied
by logarithmic terms as a coefficient ∼ (αs ln τ)n (τ is an arbitrary order parameter)
when the perturbative series end up. A general way to treat this problem is to
use the Fix Order (FO, with a given power n) cross section to different orders
of logarithmic terms which include the long-distance dynamics correction with the
general resummation form [138]. For any order of n, the resummed inclusive partonic
cross section can be expressed as [139]:

σ̂ij→Q(Q)(αs(µ
2), µ2,mQ, ŝ) =

αs(µ
2)

m2
Q

∞∑
n=0

(4παs(µ
2))n

n∑
k=0

f ijnk(ξ) lnk
µ2

m2
Q

(2.6)

by assuming µR = µF = µ, where ξ = ŝ/4m2
Q − 1 with ŝ = xixjsNN as defined in

Eq. (2.1), f ijnk(ξ) are series of dimensionless scaling functions and depend only on ξ,
and the order parameter τ = µ2/m2

Q.
In Eq. (2.6), n = 0 gives the Leading Order (LO) cross section with O(αs)

or the Born term and n = 1 (O(α2
s )) corresponds to the Next-to-Leading Order

(NLO) cross section. With a given fixed order n and using k = n one obtains
the Leading Logarithm (LL) terms. The Next-to-Leading Logarithm (NLL)
terms are obtained by adding to the LL terms the k = n − 1 terms. A recent
calculation of the total cross section to Next-to-Next-to-Next Leading Order (N2LO)
and Next-to-Next-to-Next Leading Logarithm (N2LL) has been presented in [138].
However they can be applied only near the partonic threshold. As charm and beauty
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production at LHC energies is well above the threshold, it will not be affected by
long-distance dynamics effects and resummation calculations can be used.

2.1.3.2 Differential Cross Section

Gluon emission should be treated with soft and collinear limits in the calculation
of the differential cross section. As it will be discussed in the following, due to their
large masses, heavy quarks are treated differently as compared to light quarks. For
the light quarks, soft gluon emission is considered in the factorization and evolution
of PDFs. The hard scale given by the heavy quark mass acts as a cutoff on collinear
singularities even with p̂t → 0. Therefore, the introduction of the renormalization
scale µR is no longer needed in case of heavy quarks. Also, the gluon emission
from heavy quarks contributes as a power expansion in the strong coupling constant
αs ln p̂t/mQ in the cross section, which is evaluated as a renormalization scale near
the heavy quark mass. This term is not dangerous at low and intermediate p̂t. Due
to the presence of heavy quark mass mQ, the perturbative expansion in terms of αs

can be done. But with large values of p̂t, ln p̂t/mQ can bias the pQCD calculations
of the cross section.

In this case, with NLO calculations 1, the differential cross section which can be
schematically written as

dσ̂

dp̂t
= α2

s [α0 + s(
mQ

p̂t
)] + α3

s [α1 ln
p̂t

mQ
+ β0 + s(

mQ

p̂t
)] +O(α4

s ln2 p̂t

mQ
), (2.7)

is not reliable at high p̂t. In Eq. (2.7), αi and βi (i = 0 and/or 1) depend ŝ (on center
of mass energy), p̂t, µR and µF. s(mQ/p̂t) stands for the terms suppressed by powers
of mQ/p̂t in the large p̂t limit and/or vanishing value of mQ. One approach was
adopted in order to deal with these logarithmic enhanced terms. They are estimated
with the first neglected LL terms O(α4

s ln2 p̂t/mQ) in Eq. (2.7) by choosing µR and
µF of the order of p̂t [140]. However, this method gives large uncertainties at very
large value of p̂t.

An improved way is to consider the correlations from the resumed LL and NLL
terms via the fragmentation function formalism which was used for light quarks [141],

dσ̂

dp̂t
= α2

s

∞∑
l=0

alα
l
s lnl

p̂t

mQ
+ α3

s

∞∑
k=0

bkα
k
s lnk

p̂t

mQ
+O(α4

sα
m
s lnm

p̂t

mQ
). (2.8)

As for αi and βi in Eq. (2.7), the coefficients al and bk depend on ŝ, p̂t, µR and µF.
The drawback of this method is that, with the massless formalism, all contributions
from s(mQ/p̂t) terms are excluded in Eq. (2.8).

The FO calculations (Eq. (2.7)) introduce large uncertainties for high p̂t and
resummation formalism up to NLL. Eq. (2.8) does not include the contributions
from s(mQ/p̂t) terms. Then, a reasonable consideration is to match the FO and

1In Eq. (2.6), the inclusive partonic cross section of heavy quark production starts at LO with
O(αs), and the NLO term corresponds to O(α2

s ). But for differential cross section calculation, the
LO starts with O(α2

s ) and NLO up to O(α3
s ).
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NLL calculations together as the so-called FONLL (Fixed-Order Next-to-Leading
Logarithm) formalism [142],

FONLL = FO + (NLL− FOM0)×G(mQ, p̂t), (2.9)

where, the function G(mQ, p̂t) is used to correct the effect from s(mQ/p̂t) terms, its
limit is

lim
mQ/p̂t→0

G(mQ, p̂t) = 1, (2.10)

and FOM0 is the massless limit of FO calculations in Eq. (2.7),

FOM0 = α2
s · α0 + α3

s [α1 ln
p̂t

mQ
+ β0]. (2.11)

By subtracting the fixed terms already present in FO calculations from the NLL
formalism (Eq. (2.8)), the term (NLL − FOM0) in Eq. (2.11) is an approximation
of the contributions from only the logarithmic mass terms in Eq. (2.8), and avoid
double counting. To choose the appropriate formalism of series al and bk we take,
a0 = α0, a1 = α1 and b0 = β0. Then, Eq. (2.7) and Eq. (2.8) can be matched in
FONLL formalism (Eq. (2.9)) as,

dσ̂

dp̂t
=α2

s [a0 + s(
mQ

p̂t
)] + α3

s [a1 ln
p̂t

mQ
+ b0 + s(

mQ

p̂t
)]

+(α2
s

∞∑
l=2

alα
l
s lnl

p̂t

mQ
+ α3

s

∞∑
k=1

bkα
k
s lnk

p̂t

mQ
)×G(mQ, p̂t)

+O(α4
sα

m
s lnm

p̂t

mQ
) +O(α4

s · s(
mQ

p̂t
)).

(2.12)

This approach overcomes the logarithm enhancement in FO calculations and also
corrects the contributions from s(mQ/p̂t) terms in NLL resummation. It is one
of epidemic theory on heavy flavour production cross section estimate. Also, the
resummation formalism guarantees the accuracy of pQCD predictions for heavy
flavour production cross sections. The measurement of heavy flavour observables in
nucleon-nucleon collisions will allow to test the pQCD framework.

2.1.4 Hard Fragmentation

The fragmentation which treats the desintegration of quarks and gluons into
hadrons, is a non-perturbative process in QCD. For light quarks, the QCD fac-
torization theorem [143, 144] allows to factorize these non-perturbative effects into
universal fragmentation functions (FF) together with the partonic cross section,∫

dz

z

dσ̂ij→k

dph
t

(
ph

t

z
, µ)Dh

k(z, µ), (2.13)

where, i, j and k are the light partons, ph
t = z · p̂t is the transverse momentum

of light hadrons h, the artificial factorization scale µ is a non-physical quantity of
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both partonic cross sections and fragmentation functions. The process of fragmen-
tation is different for heavy quarks. Due to their large masses that act as a cutoff
for the collinear singularities which appear in higher orders in perturbative calcula-
tions, the perturbative calculations of heavy quark production and non-perturbative
fragmentation functions are separated, as in Eq. (2.1).

The average value of the fragmentation fraction z of heavy quarks in Eq. (2.1),
is estimated as [145, 146]:

< z >' 1− ΛH

mQ
. (2.14)

Since the heavy quark massmQ is much larger than the hadronic scale ΛH, Eq. (2.14)
indicates that the non-perturbative fragmentation function for heavy quarks should
be very hard. This behaviour is derived from various phenomenological models
of the non-perturbative heavy quark fragmentation functions as: Kartvelishvili-
Likhoded-Petrov [147], Bowler [148], Peterson-Schlatter-Schmitt-Zerwas [149] and
Collins-Spiller [150].

Figure 2.5: Upper plots: Distributions of different fragmentation functions for heavy
quarks; middle plots: pt distributions of open heavy flavour hadrons according to
the corresponding fragmentation functions shown in the upper plots and compar-
isons with the pt distribution of mother quark which is obtained from HvQMNR
predictions [151] for beauty quarks; lower plots: ratios of different hadron pt distri-
butions to the result obtained with the Peterson fragmentation function. Each case
is shown with < z >= 0.9 (left), 0.8 (middle) and 0.666 (right) [152]. Note that in
the figures < z > is expressed as < x > in the plots.

Upper plots of Fig. 2.5 display the open heavy flavour hadron distributions with
different test fragmentation functions of heavy quarks, with different values of < z >

mentioned on the figures. The corresponding pt distributions at hadron level with
different test fragmentation functions are shown in middle plots of Fig. 2.5. The
results are compared to the pt distribution of the mother quark, obtained from the
HvQMNR predictions for beauty quark [151]. The lower plots in Fig. 2.5 show the
ratios of different hadron pt distributions to the result obtained with the Peterson
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fragmentation function. Two important features can be extracted from this figure:

1. with < z >= 0.8 and < z >= 0.9 which are the typical values for charm and
beauty, respectively, the pt distributions at hadron level are very similar with
those at quark level whatever test fragmentation functions are used. This is
due to the fact that fragmentation functions of heavy flavours are very hard
(large < z > values) and that the pt distributions at quark level can be very
well described by the measured pt distributions at hadron level;

2. with different test fragmentation functions and different < z > values, the pt

distributions at hadron level are very close to each other even for < z >=

0.666. Due to the large quark mass, the measured pt distributions of open
heavy flavour hadrons are insensitive to the detailed shape of D(z) which is
controlled by non-perturbative effects.

2.1.5 Comparison with Data

Due to the large heavy quark masses and harder fragmentation functions, even
with the non-perturbative fragmentation process, the measurement of open heavy
flavour hadrons in the final stage of the collision can reflect the properties of their
mother heavy quarks and also serve as an important test of pQCD calculations.
From the experimental side, the measurement of heavy flavour observables in pp
collisions is mandatory as a baseline for the interpretation of results concerning
heavy flavour production in nucleon-nucleus and nucleus-nucleus collisions to test the
so-called cold and hot nuclear effects, respectively. In particular, the comparison of
heavy flavour production in nucleon-nucleon collisions and nucleus-nucleus collisions
allows to evidence and study the properties of QGP.

2.1.5.1 Tevatron

The Fermilab Tevatron is a proton-antiproton collider (1 km radius supercon-
ducting synchrotron). The two beams collide at two interaction points, where the
CDF and DØ detectors are located.

One of the first measurements of b quark production cross section in hadronic
collisions was done in the UA1 collaboration (at SPS) in pp collisions at

√
s =

630 GeV [153, 154]. The results show an agreement with NLO pQCD predictions
including all the mass effects [155, 140] within a 40% rather large theoretical uncer-
tainty.

After that, the CDF collaboration at the Tevatron performed a measurement of
the b-quark production cross section in the run 0 (pp collisions at

√
s = 1.8 TeV)

via the exclusive decay channel B± → J/ΨK± [156] but the results are larger than
the NLO predictions by a factor ∼ 6. The disagreement between data and model
calculations, in constract to what was observed at

√
s = 630 GeV, was attributed to

the different Bjorken-x range at these two beam energies and to the uncertainties
on PDFs. In 2002, the CDF Collaboration published the results for the exclusive
B+ meson production cross section with the run I data sample (same beam energy
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as in the run 0) and found that the ratio between data and central value of NLO
predictions was 2.9 ± 0.5. At this time, the theoretical predictions were updated
with new sets of input PDFs (MRST [157] and CTEQ 5M [158]) and were increased
by almost a factor of 2.

The disagreement between data and NLO predictions for b-quark production
cross section has been also presented in the DØ collaboration at the Tevatron which
published their first results in 1995 [159]. The data have been re-analysed in 2000

(correction of B→ J/Ψ family) and the results from DØ are still significantly higher
than the updated NLO predictions [160].

Figure 2.6: pt-differential cross section of
open b-hadron production [161] measured
by CDF run II at Tevatron. Results are
compared with FONLL predictions [162].

This disagreement between data
and theory at Tevatron energies trig-
gered improvements in both exper-
imental and theoretical side. In
1998, the FONLL calculations men-
tioned in Sec. 2.1.3.2 were developed.
Soon after, the CDF collaboration
measured the inclusive B-meson pro-
duction cross section by correcting
the B → J/Ψ cross section with
Monte Carlo simulations (CDF run
II data for pp collisions at

√
s =

1.96 TeV). The results are presented
in Fig. 2.6 [161] and compared with
FONLL predictions [162]. After al-
most 10 years of improvements on
the experimental and theoretical side,
the b-hadron production cross section
shown in Fig. 2.6 lies well within the
theoretical uncertainty band and is fi-
nally in very good agreement with the
FONLL predictions.

However, charm productiom is still not well reproduced by the calculations as
shown in Fig. 2.7 [163]. This figure displays the open charm hadrons, D0, D∗+, D+

and D+
s pt-differential production cross sections reconstructed via the corresponding

hadronic decay channels:

D0 → K−π+

D∗+ → D0π+

D+ → K−π+π+

D+
s → φπ+

and measured in CDF run II data. The comparison with FONLL predictions [164]
(shaded bands in Fig. 2.7), indicates that the data are systematically higher than
the theoretical calculations.
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Figure 2.7: Differential cross section measurements for D-mesons in |y| < 1 as a
function of pt with CDF II detector at the Tevatron (circles) [163]. The solid curves
are the FONLL predictions [164], with the uncertainties indicated by the shaded
bands. The dashed curve shown for D∗+ cross section is the theoretical prediction
from Ref. [165] and the dotted lines indicate the corresponding uncertainty.

2.1.5.2 RHIC

Due to a lower center of mass energy (pp collisions at
√
s = 130 or 200 GeV)

with respect to the Tevatron, the production cross sections of heavy flavours at
RHIC are smaller than measured at Tevatron. The heavy flavour measurements
at RHIC mainly focus on charm production, which is done by detecting D-mesons
either through their semi-leptonic decays or via their hadronic channels. That offers
a good chance to investigate the mentioned problem of pQCD predictions for charm
quark production at the Tevatron in this "low" energy range.

Among many heavy flavour measurements at RHIC, Fig. 2.8 (left panel) shows
the invariant differential cross section of electrons from heavy flavour decays mea-
sured by PHENIX in pp collisions at

√
s = 200 GeV [166] at mid-rapidity. Two in-

dependent analysis methods, "cocktail" method [169] and "converter" method [170],
are used in the low and high pt region, respectively. The lower panel presents the
ratio between data and FONLL predictions (red points) with the systematic uncer-
tainties displayed by yellow bands [167]. The upper and lower curves are the two
limits of the theoretical uncertainties. One clearly sees that, the data points are
located at the upper limit of the FONLL predictions within uncertainties, and the
difference between data and theory in this measurement is around one σ, which is
consistent with the results at the Tevatron (Fig. 2.7) 2.

Recently, in 2011, the STAR collaboration at RHIC published the newest non-
photonic electron measurement in pp collisions at

√
s = 200 GeV with data from

2In Fig. 2.7, only the open charm contributions are considered, while in Fig. 2.8 (left panel)
the non-photonic electrons include both charm and bottom components. But according to FONLL
predicitons [167], the total production cross section of non-photonic electrons is dominated by the
charm component.
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Figure 2.8: Left: (a) invariant differential cross sections of electrons from heavy
flavour decays measured by PHENIX in pp collisions at

√
s = 200 GeV [166]. The

curves are FONLL calculations [167]; (b) ratio of data and FONLL calculations,
upper (lower) curve shows the theoretical upper (lower) limit of the FONLL calcu-
lations. Right: invariant cross section of (e+ + e−)/2 from beauty (upper-left) and
charm meson (upper-right) decays measured by the STAR collaboration in pp colli-
sions at

√
s = 200 GeV, together with the ratio of the corresponding measurements

to FONLL predictions for beauty (lower-left) and charm electrons (lower-right) [168].

Run2005 and Run2008, where charm and beauty components have been unrav-
eled [168]. The results are shown in Fig. 2.8 (right panel), together with the ratios of
corresponding measurements to FONLL predictions [167]. The total non-photonic
electron production is consistent with the measurements from the PHENIX Collab-
oration (Fig. 2.8 left [166]), and the charm and beauty components are separated
via the differences in their respective azimuthal distributions with respect to the
corresponding charged hadrons by using the method described in [171]. In these
newest results, not only the data points for beauty component but also the ones
for charm component are inside the uncertainty bands of the FONLL predictions.
It is the first time that a so good agreement between data and theory predictions
of heavy flavours production for both beauty and charm is achieved! There also
exists measurements of muons from heavy flavour decays in the forward rapidity re-
gion from the PHENIX collaboration. The results are underestimated by the model
calculations.

Now, can we say that large part of the contradictions in heavy flavour hadronic
production between data and theory are solved? Of course, the answer is "NO"!
First, all the experimental results listed above have still large uncertainties as well
as the ones concerning the theoretical predictions. Moreover, the forward rapidity
needs a particular interest. Also, the theoretical predictions need to be validated at
higher energies. In particular, it has been already debated whether charm quarks
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are heavy enough to be reliablely treated by the pQCD framework at higher ener-
gies [172]. All of these aspects illustrate the need and importance to measure the
heavy flavour production at LHC energies!

2.2 Heavy Flavour Production in A–A Collisions

Figure 2.9: Collision geometry in the
transverse plane.

Heavy quarks are important probes of
the hot and dense matter formed in heavy
ion collisions. Due to their large masses,
their dominant production mechanism is
restricted to parton-parton hard scatter-
ings collisions in the early stage of A–A
collisions. Also, due to the large virtu-
ality threshold (Q ∼ 2mQ, as mentioned
in Sec. 2.1) for heavy quark pair produc-
tion in hard scatterings, heavy flavours
are produced in the early stage of nucleus-
nucleus collisions (formation time for cc

pair production is τ ∼ 1/Q ' 0.08 fm/c).
As a consequence, they are created be-
fore the QGP formation. Then, they pass
through the fireball, and suffer the full
evolution of the system. After that, they
are expected to fragment into hadrons at
the phase bound of the QGP medium be-
cause of their hard fragmentation func-

tions. Open heavy flavour hadrons are expected to be sensitive to the energy den-
sity of the system through the mechanism of in-medium energy loss of heavy quarks.
Also, if the initial temperature of the medium is high enough, there is a probability
to produce heavy flavours inside the it. Heavy flavours created by this kind of ther-
mal mechanism are very sensitive to the initial temperature of the system. This is
an other promising way to extract the initial conditions of the fireball via their final
state observables. When the temperature of system goes down due to the fireball
expansion, the heavy flavour production gets frozen. Thus, heavy flavours created
via hard processes in the early stage of the collisions give a very clean tomography
of the QGP medium.

To illustrate how to extract the medium information via the final state observ-
ables from heavy flavours, we first introduce the pure binary scaling for extrapolating
the heavy flavour production from nucleon-nucleon collisions to nucleus-nucleus col-
lisions without any nuclear effect. Then we introduce the nuclear effects step by
step to see how they affect the final observables related to heavy flavours.
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2.2.1 Binary Scaling of Heavy Flavour Production in A–A Colli-
sions

Ultra-relativistic heavy ion collisions can be treated as a superposition of inde-
pendent nucleon-nucleon collisions [173]. In the absence of nuclear effects, the open
heavy flavour differential yield in the final state of nucleus-nucleus interactions can
be obtained by scaling the yield in nucleon-nucleon collisions with the number of
binary collisions < Ncoll > as,

d2NHF
AA

dptdy
=< Ncoll > ×

d2NHF
NN

dptdy
. (2.15)

As defined in Sec. 1.4.2.1, < Ncoll > depends on the centrality class which can
be described by the collisional impact parameter ~b. Considering the two incoming
nucleus A and B (as shown in Fig. 2.9) with NA and NB the corresponding numbers
of nucleons, the maximum number of binary nucleon-nucleon collisions during the
interactions between these two nucleus could be achieved when each nucleon in the
nuclei A collides with all of nucleons in nuclei B. This leads to:

m = NA ·NB. (2.16)

Using P(n,~b) to determine the probability of having n binary nucleon-nucleon col-
lisions in a given nucleus-nucleus event with impact parameter ~b, < Ncoll > is given
by the mean value of n

< Ncoll > (~b) =
m∑
n=0

nP(n,~b). (2.17)

According to the Binomial Theorem, P(n,~b) can be written as

P(n,~b) = Cmn p
n(~b)[1− p(~b)]m−n, (2.18)

where p(~b) is the probability to have one binary collision. To obtain the expression
of p(~b), one should consider the following steps: (i) get two nucleons in nuclei A and
B at position (~sA/B, zA/B) with the probability density ρA/B(~sA/B, zA/B); (ii) define
t(~s) as the probability density for having a binary collision between two nucleons
when one baryon is located at a distance ~s relative to an other baryon. With the
inelastic nucleon-nucleon collision cross section σinel

NN , the binary collision probability
is given by t(~s) · σinel

NN ; (iii) with a given ~b, the probability p(~b) to have one binary
collision between nuclei A and B (Eq. (2.18)) is

p(~b) =

∫
d~sAdzAρA(~sA, zA)d~sBdzBρB(~sB, zB)t(~sA + ~sB −~b) · σinel

NN . (2.19)

The nuclear density function ρ(~s, z) can be described by the Woods-Saxon pro-
file [174],

ρ(~s, z) = ρ0
1 + ω · (s/R)2

1 + exp[(s−R)/z]
, (2.20)
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where, s = |~s|, ρ0 is a normalization factor, ω is the allowed center non-regularity
for a given nuclei and R is the nucleus radius. For a Pb nucleus (we measure Pb–
Pb collisions at the LHC), the Woods-Saxon parameters in Eq. (2.20) are [175]:
ρ0 = 0.16 fm−3, ω = 0 and R = 6.624 fm.

As treated in the Glauber model [176], t(~s) is usually a δ function (the collision
geometry is shown in Fig. 2.9) and Eq. (2.19) can be written as

p(~b) = σinel
NN ·

∫
d~s · TA(~s)TB(~s−~b) ≡ σinel

NN · TAB(~b). (2.21)

In Eq. (2.21), TAB is the so-called thickness function or nuclear overlap function and
is given by:

TAB ≡
∫

d~s · TA(~s)TB(~s−~b), (2.22)

where Ti(~s) is the thickness function of a nucleus i (i = A,B),

Ti(~s) =

∫
dzi · ρ(~si, zi). (2.23)

By combining Eq. (2.17), (2.18) and (2.21), one can get

< Ncoll > (~b) = m · σinel
NN · TAB(~b). (2.24)

Finally with Eq. (2.24) and Eq. (2.15) one can obtain the yield of open heavy flavours
in the final stage of the collision, if there is no nuclear effect.

Fig. 2.10 shows the charm production cross section per nucleon-nucleon collision
at mid-rapidity as a function of the number of binary collisions Ncoll (denoted as
Nbin in this figure) measured at RHIC [177]. This result illustrates that, with
nuclear effects, the integrated production cross section of charm quarks still follows
the binary scaling,∫

dptdy
d2NHF

AA

dptdy
= m · σinel

NN · TAB(~b)×
∫

dptdy
d2NHF

NN

dptdy
, (2.25)

at RHIC energies. The nuclear effects modify the shape of heavy flavour distribu-
tions and do not affect the normalization. It also confirms that, at RHIC energies,
the dominant mechanism of heavy flavour production in A–A collisions is hard scat-
terings in the initial stage of the collisions.

An other important information is to get the number of hard processes (e.g. the
processes for heavy flavour production) per triggered event in nucleus-nucleus colli-
sions,

Nhard
AB =

σhard
AB

σinel
AB

≡ R · σhard
NN , (2.26)

where σinel
AB and σhard

AB are the inelastic and hard cross section in nucleus-nucleus
collisions, σhard

NN is the measured cross section in nucleon-nucleon collisions for hard
processes. R is defined as the scaling factor between σhard

NN and Nhard
AB and it depends

on the collision centrality. To obtain the scaling factor R which is very important
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Figure 2.10: Charm production cross sec-
tion per nucleon-nucleon collision at mid-
rapidity as a function of Nbin (or Ncoll)
measured at RHIC in Au–Au collisions
at
√
sNN = 200 GeV [177].

Figure 2.11: Yield of hard process in Pb–
Pb collisions relative to the cross section
in nucleon-nucleon collisions, as a func-
tion of the impact parameter cut b <

bc [41].

for the evaluation of the systematic uncertainty on the normalization of the heavy
flavour production cross section in A–A collisions, we should first determine σinel

AB

and σhard
AB . The differential inelastic cross section in nucleus-nucleus collisions is

given by the probability that at least one binary collision occurs at a given impact
parameter ~b,

dσinel
AB

d~b
=

m∑
n=1

P(n,~b) = 1− [1− σinel
NN · TAB(~b)]m. (2.27)

Therefore, from Eq. (2.27), the total inelastic cross section corresponding to the
collision of nuclei A and B is

σinel
AB (~bc) =

∫ ~bc

0
d~b · {1− [1− σinel

NN · TAB(~b)]m}. (2.28)

Using σhard
NN instead of σinel

NN in Eq. (2.28), one gets the total cross section of hard
processes as,

σhard
AB (~bc) =

∫ ~bc

0
d~b · {1− [1− σhard

NN · TAB(~b)]m}

=

∫ ~bc

0
d~b · {1− [1−m · σhard

NN · TAB(~b) +O((σhard
NN · TAB(~b))2)]}

'
∫ ~bc

0
d~b ·m · σhard

NN · TAB(~b),

(2.29)

where the approximation of small σhard
NN has been considered as the last calculation

step. By using Eq. (2.28) and (2.29) into the definition of the scaling factor R
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(Eq. (2.26)), one can deduce that

R(~bc) =

∫~bc
0 d~b ·m · TAB(~b)∫~bc

0 d~b · {1− [1− σinel
NN · TAB(~b)]m}

, (2.30)

is a function of ~bc. Fig. 2.11 shows R(~bc) in Pb–Pb collisions. As an example,
one can find that for the 5% most central Pb–Pb collisions, Nhard

AB is obtained by
multiplying the elementary cross section by 26.6 mb−1.

2.2.2 Cold Nuclear Effects

Figure 2.12: Illustration of a smoothly
matched RA

i function.

Bound nucleons (protons, p, and neu-
trons, n) in nucleus have different proper-
ties from the free ones due to the interac-
tions and correlations inside the nucleus.
In particular, in heavy ion collisions, final
state observables are affected by the initial
state nuclear effects (the so-called cold nu-
clear effects, as mentioned in Sec. 1.4.2.2)
because they modify the initial collision
conditions. Many mechanisms are intro-
duced to describe these effects. First ex-
perimental evidence for cold nuclear ef-
fects has been discussed in 1982 [178]. It
is believed that, different mechanisms will
drive different cold nuclear effects in dif-
ferent Bjorken-x regions, and they are of-
ten grouped into the experimental ratios

of PDFs of nucleons in nucleus (Nuclear PDFs, nPDFs) fA
i (x,Q2) and PDFs in

free nucleons fN
i (x,Q2),

RA
i (x,Q2) =

fA
i (x,Q2)

fN
i (x,Q2)

, (2.31)

where i is the parton specie index (valence quark, sea quark or gluon). Fig. 2.12
shows a typical shape of RA

i (x,Q2). According to this shape, the whole Bjorken-x
region is separated into different regions with following cold nuclear effects:

• shadowing, x . 0.1, RA
i (x,Q2) < 1,;

• anti-shadowing, 0.1 . x . 0.3, RA
i (x,Q2) > 1;

• EMC effect [179], 0.3 . x . 0.7, a depletion in RA
i (x,Q2);

• Fermi motion [180], an excess towards x→ 1 and beyond.

There were two kinds of earlier studies for the nPDFs description based on a global
DGLAP fits to the data: one is EKS98 set [181, 182] and the other one is HKM
set [183].
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In EKS98, the parton distributions in the bound protons, inside the nucleus,
are defined through the modifications of the corresponding distributions in the free
protons via RA

i , as presented in Eq. (2.31). As for free nucleons, for isocalar nuclei
the parton distributions of bound neutrons are obtained through isospin symmetry,

f
n/A
u(u) = f

p/A

d(d)
and f

n/A

d(d)
= f

p/A
u(u), (2.32)

and this is a good approximation for all kinds of nuclei. To simplify the determi-
nation of input nuclear effects for valence quarks, RA

V(x,Q2), and for sea quarks,
RA

S (x,Q2), one assumes:

RA
V(x,Q2

0) ≈RA
u/V(x,Q2

0) ≈ RA
d/V(x,Q2

0)

RA
S (x,Q2

0) ≈RA
u/S(x,Q2

0) ≈ RA
d/S

(x,Q2
0) ≈ RA

s/S(x,Q2
0).

(2.33)

These ratios are calculated at Q2 = Q2
0 = m2

c ' 2.25 GeV2 as initial condi-
tions of DGLAP evolution. Thus, only three independent initial ratios, RA

V(x,Q2
0),

RA
S (x,Q2

0) and the nuclear modifications for gluons RA
G(x,Q2

0) should be determined
at Q2 = Q2

0. These three initial ratios are determined in different Bjorken-x regions
up to higher scales Q2 > Q2

0 via the LO DGLAP evolution. As shown in [181],
RA
i (x,Q2) from EKS98 parametrization can be used together with any LO set of

free proton PDFs like GRVLO [184] and CTEQ4L [185]. But the best overall fit for
the determination of the input initial ratio in EKS98 has so far been done iteratively
in such a way that the scale evolved distributions are consistent with data.

Differently from the ESK98 set, in the HKM analysis, nPDFs are defined as the
average distributions of each flavour i in a nucleus:

fA
i (x,Q2) = (Z/A)f

p/A
i (x,Q2) + (1− Z/A)f

n/A
i (x,Q2), (2.34)

and evolved with the initial condition,

fA
i (x,Q2

0) = ωi(x,A,Z)fN
i (x,Q2

0), (2.35)

at Q2 = Q2
0 = 1 GeV2 with the average PDFs in free nucleons,

fN
i (x,Q2) = (Z/A)fp

i (x,Q2) + (1− Z/A)fn
i (x,Q2), (2.36)

and the initial nuclear modification,

ωi(x,A,Z) = 1 + (1− 1

A1/3
)
ai(A,Z) + bix+ cix

2

(1− x)ni
, (2.37)

where ai(A,Z), bi, ci and ni are the parameters used for the global fit. An im-
provement of the HKM method is that, relative to the EKS98 set, the extraction of
the initial nuclear modification ωi(x,A,Z) at Q2 = Q2

0 is done by implementing a
χ2 minimization procedure. But the drawback of HKM is that, shadowing effects
are underestimated because the initial conditions are obtained from a fit to the DIS
(deep inelastic scattering) data.
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The updated version of EKS98 is the so-called EPS08 [54]. It uses d–Au data
measured at RHIC for the initial condition determination and uses a minimum χ2 fit
procedure. The NLO DGLAP evolution is included in the EPS09 [55] analysis (as
well in the updated version of HKM set with DGLAP evolution up to NLO named
HKN07 [186] analysis). The comparisons of the average valence and sea quark, and
gluon modification for Pb nucleus, RPb

V , RPb
S and RPb

G , at different values of Q2 for
both LO and NLO nPDFs are shown in Fig. 2.13 and Fig. 2.14, respectively. The
results are from [55]. According to these results, there are less shadowing effects
in the HKM (or HKN07) sets than that in EKS98 (or EPS08/09) sets in the small
Bjorken-x region, in particular for gluons. Also, one can observe that the EMC
effect is not observed clearly with HKN07, with both the LO and NLO DGLAP
evolutions.

Figure 2.13: Comparison of the average valence quark, sea quark, and gluon mod-
ifications at Q2 = 1.69 GeV2 (∼ m2

c) for a Pb nucleus, from LO global DGLAP
analyses: EKS98, nDS [187], HKN07, EPS08 and EPS09LO.

As shown in Fig. 2.15 (left panel), at different energies, the final state heavy
flavour observables probe different regions of Bjorken-x. In particular, at the LHC,
the data could constrain the deep shadowing region due to the very small value of
Bjorken-x that can be accessed. The hard probes (like heavy flavours) at RHIC
and LHC will provide very important constraints on the nPDFs where the DGLAP
evolution is expected to be applicable. The expected gluon saturation limits for
proton and Pb nucleus estimated in [189] are shown in Fig. 2.15, left panel. With
the presented limits, the chances of measuring the effects of non-linearities in the
evolution through open charm production in p–A (the same in A–A) collisions at
RHIC would seem marginal; however at the LHC, the systematic measurements of
the staturation effects in nuclear gluon distributions through open heavy flavours
could be possible. Fig. 2.15 (right panel) shows RA

G as a function of Bjorken-x at
Q2 = (2m2

c) ' 5 GeV2 (corresponding to the threshold of cc production) obtained
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Figure 2.14: Same as Fig. 2.13, but for the comparison of NLO global DGLAP
analyses: HKN07, nDS and EPS09 NLO at Q2 = 1.69 GeV2 (upper panel) and
100 GeV2 (lower panel).

from different models. The bands represent the ranges of Bjorken-x for cc production
with |y| < 0.5 at RHIC (

√
s = 200 GeV) and LHC (

√
s = 5.5 TeV).

The gluon saturation has been also studied in the CGC framework. In this
approach, open charm is expected to obey a Npart (

√
Npart) scaling in A–A (or

p–A) collisions instead of the Ncoll scaling at energies higher than the RHIC ones,
or reached at forward rapidity at RHIC [190], where smaller Bjorken-x are probed
by charm and the saturation scale is expected to exceed the mass of charm quark.
In this case, the mechanism of heavy quark production should be similar to that
of light partons: heavy partons at small Bjorken-x are not independent, and the
factorization theorem cannot be applied. In addition, the CGC also suggests that,
the open charm meson spectrum should be much harder than that predicted by
collinear factorization calculation at high energy. This is due to the fact that the
intrinsic transverse momentum kt becomes of the order of Qs (Qs � ΛQCD) which
rather larger than ΛQCD.

Additionally, cold nuclear effects not only modify the PDFs of free nucleons but
also lead to a broadening of the intrinsic transverse momentum kt for partons, the
kt Broadening Effect [191], due to the Brownian motion of the partons inside the
nucleus. For heavy quarks, as argued in [192], the kt broadening effect could play
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Figure 2.15: Left: Average values of x and Q2 of the DIS data from NMC (triangles)
and E665 (diamonds), and of x2 andM2 of Drell-Yan (DY) dilepton data (squares).
The heavy quark mass scales are shown by the horizontal dashed lines. Right:
Ratios of gluon distribution functions from different models at Q2 = 5 GeV2. These
two figures are extracted from [188].

an important role in the angular dependence of gluon emission.

2.2.3 Hot Nuclear Effects

As discussed in Sec. 1.4.3.2, heavy flavours created in the early stage of nucleus-
nucleus collisions via hard scatterings will pass through the QCD medium formed in
these collisions and loss their energy due to the interactions between partons inside
the medium. It was predicted that, the dominant in-medium energy loss mecha-
nism for heavy flavours is gluon radiation or "gluonbremstrahlung". Recently,
the results of heavy flavour measurements at RHIC along with model predictions
have opened new possibilities to investigate other interaction mechanisms such as
collisional energy loss, in-medium fragmentation and collective motion due to ther-
malization of heavy quarks.

In this section, we will discuss different in-medium interaction mechanisms of
heavy flavours based on the observables measured at RHIC. We will finish with the
new heavy flavour observables that can be investigated at LHC energies.

2.2.3.1 Radiative Energy Loss

Dead Cone Effect Due to the mass effect, the radiation energy loss of heavy
quarks is different from that of light quarks in the nuclear medium. One of the
differences is the suppression due to gluon bremsstrahlung from massive quarks at
small angle [193],

θ0 = mQ/E, (2.38)
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where mQ and E are the mass and initial energy of heavy quarks. This is the
so-called Dead Cone Effect. Dokshitzer and Kharzeev proposed that due to the
dead cone effect reducing the medium induced gluon radiation, the suppression of
leading open heavy flavour hadron production rates is reduced and gluon radiating
spectrum by massive quarks dPHQ can be obtained by using the radiative spectrum
of massless quarks dPLQ times a suppression factor F (kt,mQ, E), related to the
transverse momentum of gluon (kt), mass and energy of heavy quarks. This factor
is named dead cone factor [194],

dPHQ = dPLQ · F (kt,mQ, E) = dPLQ · (1 +
θ2

0

θ2
)−2 = dPLQ · (

k2
t

k2
t + x2m2

Q

). (2.39)

where ω is the energy of the radiated gluon, θ = kt/ω is the radiative angle of the
gluon relative to the motion direction of the heavy quark and x = ω/E is the energy
fraction taken by the radiated gluon.

Figure 2.16: Medium modified fractional
energy loss versus Debye mass µ in zeroth
order opacity with Ter-Mikayelian Effect
for up, charm and bottom quarks [195].

The simple factorization formal-
ism, Eq. (2.39), was confirmed in [196]
by expanding the gluon radiative
spectrum of heavy quarks using the
BDMPS model [79] via both sin-
gle hard scattering and multiple soft
scattering approximations under the
medium absence limit. A complete
understanding of the medium induced
gluon radiative behaviour of heavy
quarks requires detailed calculations
of in-medium effects. Fig. 2.16 [195]
shows the comparison of the medium
modified fractional energy loss as a
function of Debye mass µ in ze-
roth order opacity by considering
the in-medium Ter-Mikayelian Ef-
fect [197] for heavy flavours between
up, charm and bottom quarks, by

choosing the mass of charm and beauty as mc = 1.5 GeV/c2 and mb = 4.5 GeV/c2,
respectively. The medium effects are introduced via the Debye mass µ, the vacuum
corresponds to µ = 0 and the increase of µ value denotes that medium effects be-
come more and more important. One can observe in this figure that, the radiative
energy loss of light quarks and charm quarks is more sensitive to the medium effects
than that of beauty quarks.

An interesting question is: what is the mass dependence of heavy quark radiative
energy loss in the QCD medium? Also, is Eq. (2.39) still valid when considering
medium effects? We studied these issues some years ago [198] with the radiative
gluon spectrum of massless quarks from GLV opacity expansion calculations [76]
with the dead cone factor F (kt,mQ, E) as given by Eq. (2.39) and dPDG

HQ = dPGLV
LQ ·
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F (kt,mQ, E). Finally, we compare the numerical results of dPDC
HQ with the radiative

gluon spectrum of charm quarks obtained also under the GLV opacity expansion
framework [199]. Our results show that, the factorization formalism (Eq. (2.39))
is still valid for charm quarks to describe the in-medium radiative energy loss at
both RHIC and LHC energies. Furthermore, we extended the comparison to beauty
quarks [200] and found that the deviations between the radiative gluon spectrum
of massless quarks from factorization formalism and that from pQCD calculations
increase with the quark mass. The differences between these two approaches are
about 40% in the region of beauty quark mass (4.2 GeV/c2 < mb < 4.8 GeV/c2).
This clearly illustrates that the study of quark mass dependence of heavy quark
in-medium energy loss is very important and interesting from the experimental side
(more detailed discussion about this issue will be presented in Sec. 2.3.1).

Figure 2.17: Nuclear modification
factor RAA of non-photonic elec-
tron measured in d–Au and Au–
Au collisions at

√
sNN = 200 GeV

with the STAR detector. Ex-
tracted from Ref. [201].

Figure 2.18: Nuclear modification factor and el-
liptic flow of non-photonic electrons measured in
Au–Au collisions at

√
sNN = 200 GeV with the

PHENIX detector. The data are compared to pre-
dictions from different Langevin based models (see
text). Extracted from [202].

Comparisons with data There are two independent sets of calculations for heavy
quarks in-medium radiative energy loss, one is based on BDMPS framework [79] and
the other one relies on the DGLV opacity expansion framework [195], as just men-
tioned. Both approaches predicted the dead cone effect of heavy flavour radiative
energy loss and shown consistent results. For the comparison of these predictions
with data, one should also consider cold nuclear effects in A–A collisions on the
experimental final state observables. Different inputs of initial state conditions (dis-
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cussed in Sec. 1.4.2.2 and Sec. 2.2.2) will introduce uncertainties in the theoretical
predictions.

Fig. 2.17 (a) shows the nuclear modification factor RAA of non-photonic electrons
measured in d–Au collisions at

√
sNN = 200 GeV with the STAR detector. Since

the initial state energy density is not sufficient to create the deconfinement medium
in the final state of d–Au collisions, the measured RAA mainly reflects cold nuclear
effects for the Au nucleus. A RAA value of unit, in pt > 2 GeV/c, means that, cold
nuclear effects for high pt non-photonic electron spectrum are very small. There-
fore, the deviations between the high pt non-photonic electron spectrum in Au–Au
collisions and that in pp collisions, as shown in Fig. 2.17 (b) and Fig. 2.17 (c), are
mainly due to hot nuclear effects from the QCD medium.

The comparisons of the non-photonic electron RAA from STAR data and that
from different theoretical predictions are presented in Fig. 2.17 (d). In this plot,
the lines labeled as "Armesto et al" and "DVGL-R" refer to the predictions of the
non-photonic electron RAA considering that the heavy flavour in-medium radiative
energy loss at RHIC energies is based on BDMPS calculations and DGLV opacity
expansion calculations, respectively. Both charm and beauty components of non-
photonic electrons are considered in these two predictions. One observes that these
predictions overestimate the RAA of non-photonic electrons. A possible explanation
is that, in addition to the radiative energy loss mechanism, other mechanisms could
lead to in-medium energy loss of heavy flavours.

2.2.3.2 Collisional Energy Loss

Since the radiative energy loss mechanism cannot explain the high pt non-
photonic electron suppression in Au–Au collisions at RHIC, as shown in Fig. 2.17 (d),
the in-medium collisional energy loss mechanism of heavy flavours has been consid-
ered. The first study was presented in [203]: it was found that, with a set of medium
parameters relevant to RHIC energies, the transport coefficients q̂ 3 for radiative and
collisional energy of the heavy flavours are comparable. Therefore, the collisional
energy loss of heavy flavours cannot be neglected in the study for the in-medium
quenching of heavy flavours. In fact, due the large masses of heavy flavours, the
measured pt region at RHIC energies does not cover high pt values. In this case, one
cannot argue that the radiative energy loss mechanism dominates over the elastic
collisional one for the heavy flavours. This is similar to the energy loss of electrons
in QED: the ionization energy loss is the dominant effect with low electron energy,
while photon bremsstrahlung mainly contributes in the higher energy region; at
intermediate energy, both phenomena are comparable.

DGLV Approach Calculations of heavy flavour in-medium energy loss by con-
sidering both radiative and collisional contributions under the DGLV framework are
developed in [82]. The results from these predictions are labeled as "DVGL-R+EL"
in Fig. 2.17 (d). The comparison with data shows that the heavy flavour in-medium

3The definition of q̂ is the average squared transverse momentum transferred to the parton.
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energy loss is still underestimated, even with the additional collisional mechanism.
What is interesting to notice is that, the model predictions are in better agreement
with data if only the contribution from charm component in the total non-photonic
electron spectrum is considered, as shown by the line labeled as "DVGL-R+EL,
charm only" in Fig. 2.17 (d). This behavior suggested that the relative contribu-
tion of charm and beauty components used in the model calculations was incorrect.
As shown in Fig. 2.16, charm quarks are expected to loss more energy than that
of beauty quarks in the QCD medium. The predictions of the RAA for total non-
photonic electron are sensitive to the input fractions of the input charm and bottom
components. However, recent measurements by the PHENIX collaboration [204]
suggest that the fraction of charm and beauty components is comparable to what
was used in the BDMPS and DGLV calculations (see also Fig. 2.8). Finally, the dis-
agreements between data and different predictions suggest that other mechanisms
of heavy flavours in-medium energy should be considered.

Figure 2.19: RAA of non-photonic electron
measured in Au–Au collisions at

√
sNN =

200 GeV with the PHENIX experiment.
The data are compared with the predictions
of the collisional dissociation model. Ex-
tracted from [202].

Thermal Scattering A Langevin
based model which aims at describing
the elastic scatterings between heavy
flavours and QCD medium has been
developed [205]. The interactions in
the Langevin model are exclusively
elastic collisions and it is a good ap-
proximation for quarks which are not
ultra-relativistic in the center of mass
frame of the collisions. In this model,
heavy flavours are placed in a ther-
mal medium and it is asumed that in-
medium interactions of heavy flavours
can be described by uncorrelated mo-
mentum kicks. The diffusion coeffi-
cient D ∝ 1/T is introduced to de-
scribe the elastic 2→ 2 scattering pro-
cesses qHQ → qHQ and gHQ → gHQ.
The thermalization of heavy flavours
in the QCD medium is predicted in
this approach, hence the collective motion of heavy flavours (like the heavy flavour
elliptic flow as we shall discuss in Sec. 2.2.3.4) can also be derived in this model. As
for the collisional dissociation mechanism, this model can also explain qualitatively
the large suppression of non-photonic electrons at RHIC, as shown in Fig. 2.18 (a).
But the drawback of this model is that, it fails to simultaneously describe both the
measured RAA and v2 with a single value of the diffusion coefficient (Fig. 2.18 (b)).

An other Langevin based model [206], also predicts strong suppression for non-
photonic electron measured in Au–Au collisions at RHIC, by evaluating heavy
flavour rescattering in the expanding fireball via resonance excitation of D and B-

58



like states in the medium above the critial temperature. The introduction of the
mediated resonances in the QGP leads to a substantial reduction of the equilibration
time scales, making this model as a promising approach for an explanation of the
large energy loss and elliptic flow of heavy flavours, as shown in Fig. 2.18.

Collisional Dissociation As suggested in [207], the collisional dissociation of
heavy quarkonia in the QCD medium might be a possible explanation for J/Ψ sup-
presion in heavy ion collisions. Under this assumption, the pQCD dynamics of open
charm and beauty production is investigated by extending the GLV approach to
qq states, and to derive the medium induced dissociation probability for D and B
mesons traveling through the QCD medium [208]. This mechanism predicts that
heavy flavours fragment inside the nuclear matter and open heavy flavours are fur-
ther suppressed by collisional dissociation inside the QGP.

This QGP induced dissociation mechanism shows a large B hadron suppression
which can be comparable to or larger than that of D hadrons in pt . 10 GeV/c.
This is due to the significantly smaller formation time for open beauty with respect
to that for open charm: the fragmentation and/or dissociation process occur at a
much faster rate for B-hadrons and explain the strong suppression. This is not
predicted by other models. In this case, the collisional dissociation model gives
larger suppression for the total non-photonic electron production and agrees with
data better, as shown in Fig. 2.19.

2.2.3.3 Other Energy Loss Mechanisms

Many other mechanisms were developed to describe the heavy flavour in-medium
energy loss. In the following, we mention the ones which agree with the data mea-
surements at RHIC energies.

• In [209], one assumes a modification of open charm hadron chemical composi-
tion in the most central heavy ion collisions, in particular, an enhancement of
the Λc production. This leads to a RAA of non-photonic electrons smaller than
one, due to a smaller semi-leptonic decay branching ratio of charm baryons
compared to charm mesons, and also a softer spectrum of the electrons from
charm baryons;

• In [210], the pQCD running coupling constant in collisional energy loss calcu-
lations is considered and the Debye mass is changed in a hard thermal loop
calculation. However, the radiative energy loss is not included in this model;

• In [211], the authors predicted an universal bound for the energy of a parton
escaping strongly coupled matter in N = 4 SUSY Yang-Mills theory under
the AdS/CFT framework, with some assumptions about the evolution of gauge
field in heavy ion collisions.
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Figure 2.20: Prompt electron distribu-
tion measured in the 10% most central
Au–Au collisions at

√
sNN = 130 AGeV

with the PHENIX detector [212].

Figure 2.21: Theory comparison of
non-photonic electron, v2, versus pt

in Au–Au collisions at
√
sNN =

200 GeV [202] measured with the
PHENIX detector [202], see the text
for more details.

2.2.3.4 Collective Flow

The motivation for the measurement of the heavy flavour collective flow was
triggered by the studies shown in Fig. 2.20 [212]. The invariant multiplicity distri-
bution as a function of pt for non-photonic electrons, measured in central Au–Au
collisions at

√
sNN = 130 AGeV in the PHENIX Collaboration, is compared with

the combined beauty and charm components from two opposite scenarii: the pQCD
based PYTHIA and thermal hydrodynamical models. Both models show a good
agreement with the data. The agreement between data and PYTHIA indicates that
the factorization theorem (Eq. (2.1)) can be applied for heavy flavour production,
and hence that heavy flavours have large mean free path in the QCD medium. On
the other hand, data are well reproduced by the thermal hydrodynamical model,
suggesting that a local equilibrium of heavy flavours with zero mean free path in
the medium is achieved. As mentioned in this publication, the measurement of the
non-photonic electron in the high pt region with much higher statistics could help
to differentiate these two scenarii. The measurement of non-zero flow for heavy
flavours would be an important test of these models.

From the theoretical side, the parton covariant transport theory [213] was used
to estimate the collective flow of heavy flavours. This model treats the evolution
of the parton phase density with the 2 → 2 elastic and inelastic scatterings and
the finite mean free path (λ) of heavy flavours is interpolated between cases of free
streaming (λ → ∞) and ideal hydrodynamics (λ → 0). In this case, it can predict
the collective flow for heavy flavours in both low pt and high pt regions, since the
assumptions of vanishing mean free path and local thermal equilibrium are no longer
satisfied in the high pt region.
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To compare the theoretical predictions with experimental observables, the
hadronization process should be considered. Two main mechanisms are used to
take into account the hadronization of heavy flavours: the fragmentation process
and the coalescence (recombination) process. As discussed in Sec. 2.1.4, in the
fragmentation picture, the hadrons obtain momenta from their mother partons via
pH

t = z · pQ
t . Since the fragmentation functions D(z) of heavy flavours are very

hard, z → 1 (see Fig. 2.5). In this picture the collective flow at hadron level is
essentially the same as at quark level [214]. The independent fragmentation picture
is expected to prevail in the high pt region [215]. The coalescence scenario, which
can be implemented in the low pt region, treat the constituent momentum fraction
z as [216]:

zi =
mi

mα +mβ
(for mesons), zi =

mi

mα +mβ +mγ
(for baryons), (2.40)

where mi is the effective mass of constituent quark and the indices α, β and γ refer
to the quarks inside the hadrons. According to Eq. (2.40), the collective flow vn for
open heavy flavours can be calculated as,

vM
n (pt) '

∑
i=α,β

vn,i(zipt) and vB
n (pt) '

∑
i=α,β,γ

vn,i(zipt) (2.41)

for mesons and baryons, respectively.
The elliptic flow v2 of non-photonic electrons measured in Au–Au collisions at√

sNN = 200 GeV with PHENIX is compared to model predictions in Fig. 2.21.
The lines labeled as "Greco et al." come from the predictions of the model pre-
sented in [217]. This is an improved version of the coalescence model [216]. In these
calculations, open heavy flavour hadrons are formed from heavy quark coalescence
with thermal light flavours which also carry the collective expansion characteristics.
This is a more realistic scenario than the fragmentation based calculations presented
in [214]. The lines with the additional labels "c flow" and "no c flow" corresponding
to sets of non-vanishing and vanishing values of charm flow in Eq. (2.41), respec-
tively. Within this scenario, the predictions with charm flow are in better agreement
with the data than that without charm flow. This indicates the thermalization of
charm quarks in the QCD medium. The lines labeled as "Zhang et al." are the
predictions from the hybrid model [218], using the HIJING Monte-Carlo genera-
tor [219] as an initial condition followed by a parton cascade and finally treating the
hadronization with parton coalescence model. The results are presented with the
parton scattering cross section σp = 3 mb and 10 mb, respectively.

Additionally, the predictions in [206], already discussed in Fig. 2.18 (b),
are also presented in Fig. 2.21. As mentioned in Sec. 2.2.3.2, this model de-
scribes simultaneously the large energy loss and elliptic flow of non-photonic elec-
trons with the diffusion coefficient D(2πT ) ∼ 4 − 6 [220]. This coefficient,
as obtained from pQCD calculations with three light flavours, is related to η

(shear viscosity), ε (energy density) and p (pressure of the medium) through
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Figure 2.22: Production cross sections as
a function of the center-of-mass energy for
Pb–Pb collisions [221].

D ∼ 6 · η

ε+ p
, (2.42)

with

ε+ p = Ts+ µBnB ≈ Ts, (2.43)

This is valid in the baryon free region
(with the vanishing value of baryon
chemical potential µB and baryon den-
sity nB). The key parameter is the
shear viscosity over entropy density
(mentioned in Sec. 1.5.2.3) and is esti-
mated as η/s ∼ (1.33−2)/4π at RHIC
energies according to the measured
RAA and v2 of non-photonic electrons.
This value is close to the KKS limit
η/s ≥ 1/4π [86] and is consistent with
the estimates from other observables
at RHIC (like the flow of charged hadrons, fluctuations ect., and see [202] for more
details). This is an additional evidence for the strongly coupled QGP at RHIC.

2.3 Heavy Flavours Physics at the LHC

As already mentioned, heavy flavours are very promising probes for the study of
the properties of the QCD medium formed in the high energy heavy ion collisions.
Moreover the measurement in pp and p–A collisions will allow to test pQCD calcu-
lations and nuclear modified PDFs, respectively. At LHC energies, heavy flavours
are produced with high rate. This allows to investigate new powerful observables
for the tomography of the QCD medium.

2.3.1 Novel Aspects of Heavy Flavours at the LHC

There are many novel aspects for heavy flavour physics at the LHC. Due to the
large production rates of heavy flavours at LHC energies, as shown in Fig. 2.22, the
final state heavy flavour observables are measured with high statistics. Also, the
measurements can be extended to the high pt region. This gives the unique chance
to separate the open charm and open beauty components and restrict the large
uncertainty on the pQCD predictions of the heavy quark productions (as an example
shown in Fig. 2.23 the results from HvQMNR predictions [151, 152]) 4. What is
more, the new observables are accessible such as the double ratio between the nuclear
modification factor of open heavy flavours RD(B)

AA and that of light hadrons Rh
AA, the

4A detail illustration of the uncertainties on pQCD predictions of the heavy quark productions
will be given in Sec. 7.5.1.
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Figure 2.23: The pt-differential production cross section (dσ/dpt) for charm hadron
(top left) and bueaty hadron (top left) in pp collisions at

√
s = 14 TeV obtained

from MNR predictions [151]. The correspoding botton plots show the components
of the uncertainty from quark mass (mQ), parton density parametrisation (PDF),
fragmentation parameter and the perturbative uncertainty from scale variations on
the results [152].

so-called Heavy-to-Light Ratios,

RD(B)/h(pt) =
R

D(B)
AA (pt)

Rh
AA(pt)

. (2.44)

The latter allows to test the color charge and mass dependence of parton in-medium
energy loss, as proposed in Ref. [222]. In the region pt & 10 GeV/c, since the mass
of charm quarks mc ' 1.2 GeV/c2 is negligible with respect to their momentum,
charm quarks behave as light quarks; but the beauty quarks with mb ' 4.8 GeV/c2,
still keep their massive behavior. However, since light hadron yields are dominated
by gluon parents, the heavy-to-light ratio of D mesons is a sensitive probe of the
color charge dependence of parton energy loss. In contrast, due to the larger b
quark mass, the medium modification of B mesons in the same kinematical regime
provides a sensitive test of the mass dependence of parton energy loss.

As discussed in [203] (see Sec. 2.2.3.2), the gluon radiation dominates the heavy
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Figure 2.24: Heavy-to-light ratios for D mesons (upper plots) and B mesons (lower
plots) with a realistic heavy quark mass (plots on the right) and for a case study in
which the quark mass dependence of parton energy loss is neglected (plots on the
left). Extracted from Ref. [222].

quark in-medium energy loss. According to BDMPS calculations with infinite path
length limit, L → ∞, the mean parton in-medium radiative energy loss can be
expressed as [223],

< ∆E >∝ αsCR < q̂ > L2, (2.45)

where CR is the color Casimir factor, which is CF = 4/3 for quarks and CA = 3

for gluons (see Eq. (1.5)). Thus, the mean energy loss of gluons is larger than
that of quarks by a factor of CA/CF = 9/4. Fig. 2.24 shows the predictions of the
heavy-to-light ratio for D and B mesons in the 10% most central Pb–Pb collisions
at
√
sNN = 5.5 TeV at the LHC by considering the radiative energy loss under the

BDMPS framework. One clearly sees that the heavy-to-light ratio of open charm
hadrons does not depend on the mass of charm quark in pt & 10 GeV/c. The ratio
reflects the color charge dependence of the parton energy loss in the high pt region.
Its measurement should allow to test the ratio of the color Casimir factor for quarks
and for gluons. On the other hand, the strong mass dependence of the heavy-to-light
ratio for B-hadrons, shown in lower plots of Fig. 2.24, signs the additional mass effect
on the parton in-medium energy loss. In this case, the double retio between the RAA

of D-hadrons to that of B-hadrons, Rc
AA(pt)/R

b
AA versus pt, allows to isolate the

64



information of the mass dependence of the quark in-medium energy loss, which is a
quite important and interesting issue, as mentioned in Sec. 2.2.3.1.

Figure 2.25: Predictions of Rc
AA(pt)/R

b
AA versus pt at LHC energies from fully

weakly coupled pQCD calculations and strongly coupled AdS/CFT energy loss mod-
els [115].

Furthermore, as mentioned in Sec. 1.5.3.2, one of the challenges at the LHC is
to determine if the QGP created at these energies is a strongly coupled medium or a
weakly coupled one, in other words, if the QGP at LHC is an ideal gas or a perfect
liquid. As proposed in [115], the measurement of the double ratio Rc

AA(pt)/R
b
AA(pt)

in the high pt region will provide valuable evidence of dominant energy loss mech-
anism in the QCD medium. Fig. 2.25 shows the predictions of Rc

AA(pt)/R
b
AA(pt)

from pQCD based calculations and from AdS/CFT based calculations. These two
models give a different pt behaviour of this double ratio, in particular in the high pt

range. The pQCD calculations predict a rapid rise to unit when pt increases because
the mass of both charm and beauty is negligible with sufficiently large energy and
the pQCD predictions become insensitive to the mass of the parent parton. On the
other hand, AdS/CFT drag results suggest a nearly pt independent ratio signifi-
cantly below the unit at approximately the ratio of the quark masses, mc/mb. The
measurement of the D-to-B double ratio should allow either to validate pQCD cal-
culations (weakly coupled QGP) or AdS/CFT predictions (strongly coupled QGP).

An other aspect of heavy flavour physics, which is worth to mention, is that, as
mentioned in Sec. 2.2.2, according to the CGC predictions [190], due to the gluon
saturation in the initial state of the collisions, in the forward rapidity region at
the RHIC or at the LHC, the Ncoll scaling of the heavy flavour production in A–A
collisions, Fig. 2.10, is no longer valid (left plot of Fig. 2.26). The open charm is
expected to follow a Npart (

√
Npart) scaling in A–A(or p–A) collisions, as shown
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Figure 2.26: Ncoll (Npart) dependence of the charmed meson yield at mid-rapidity,
η = 0, and at forward rapidity, η = 2, in d–Au (Au–Au) collisions [190].

in right plot of Fig. 2.26. Checking the violation of the Ncoll scaling for integrated
heavy flavour production cross section at LHC energies, in particular at forward
region, should allow to get information on the gluon saturation in the initial state of
the collision and to understand the magnitude of the collective flow, which is very
sensitive to the initial conditions of the collisions.

2.3.2 Heavy Flavour Measurements with ALICE at the LHC

Figure 2.27: Schematic representation of D0 → K−π+ decay with track impact
parameter d0 and pointing angle θpointing [41].

ALICE is the detector dedicated to the physics of heavy ion collisions at the LHC.
The ALICE experiment measures heavy flavour production at mid-rapidity through
the semi-electronic decay channel and in a more direct way through D mesons, and
at forward rapidity through the semi-muonic decay channel. The measurements are
presently performed both in pp and Pb–Pb collisions. This thesis concerns the heavy
flavour measurements via the semi-muonic decay channel. Hereafter, is a summary
of the results obtained in the mid-rapidity region.
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2.3.2.1 Reconstruction of D Mesons

Figure 2.28: Invariant-mass spectrum of D0 (left) and D+ (centre) candidates, and
invariant-mass difference, ∆m = m(Kππ) −m(Kπ), for D∗+ candidates (right) in
pp collisions at

√
s = 2.76 TeV measured with ALICE [224].

Figure 2.29: Upper: pt-differential cross section for prompt D0, D+, and D∗+ mesons
in pp collisions at

√
s = 2.76 TeV [224] compared with the scaling of the ALICE

measurement at
√
s = 7 TeV [225]. Bottom: ratio of the

√
s = 2.76 TeV cross section

and the
√
s = 7 TeV measurement scaling. Results are obtained with ALICE.
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D mesons are measured in the ALICE Central Barrel via the reconstruction of
their hadronic decay channels. As an example, a schematic view of D0 → K−π+

decay, is presented in Fig. 2.27. The reconstruction is based on a set of cuts on
the impact parameter dK/π

0 between two opposite sign tracks for K and π. Then,
the condition for the D0 to point back to the primary vertex is applied by imposing
a cut on the angle (pointing angle θpointing) defined by the momentum vector of
D0 candidate and the line connecting the primary and secondary vertex. Finally,
the D0 signals are extracted by fitting the invariant mass distribution of K−π+

combinations, with the optimised set of cuts. With the similar strategy, the D+ (D−)
and D∗+ (D∗−) mesons are reconstructed via D+ → K−π+π+ and D∗+ → D0π+

channels, respectively. Fig. 2.28 shows the invariant-mass spectrum of D0 +D
0 (left)

and D+ + D− (centre) candidates, and invariant-mass difference, for D∗+ + D∗−

candidates (right) in pp collisions at
√
s = 2.76 TeV measured with ALICE [224].

The clear visible in each plot gives the clear D-meson signals. The corresponding pt-
differential production of D-mesons in pt up to 12 GeV/c are shown in Fig. 2.29 [224]
according to the strategy just discussed. Recently, ALICE published the additional
measurement of the production cross section of Ds meson in pp collisions at

√
s =

7 TeV, via the cascade decay process D+
s → φπ+, φ→ K−K+, more details can be

found in [226].

Figure 2.30: Left: average D0, D+ and D∗+ mesons RAA in the 0− 7.5% centrality
class [227] and charged hadron and pion RAA in the 0 − 10% centrality class [228,
229]. Right: v2 of D0, D+ and D∗+ mesons in centrality 30 − 50% [230] compared
to charged hadron v2 [231]. Results are measured in Pb–Pb collisions at

√
sNN =

2.76 TeV with ALICE.

In Pb–Pb collisions, the D-meson signals can be extracted by applying the same
strategy as the one used in pp collisions. The left plot of Fig. 2.30 shows the
pt-differential RAA averaged over D0, D+ and D∗+ mesons in Pb–Pb collisions at√
sNN = 2.76 TeV measured with ALICE [227]. The result is compared with RAA of

light charged hadrons and pions [228, 229]. The comparison shows that, the RAA of
D-mesons is slightly larger than the one of charged particles and π±, RD

AA > Rh±
AA,
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in pt . 10 GeV/c. This result indicates the in-medium energy loss of charm quarks
is smaller than that of the light partons in this pt region, which is consistent with
the discussion about the dead cone effect of heavy quark energy loss in Sec. 2.2.3.1.
The right plot of Fig. 2.30 is the comparison between the v2 of D0, D+ and D∗+

mesons [230] and that of light hadrons [231] measured in Pb–Pb collisions at
√
sNN =

2.76 TeV with ALICE. In this plot, a non-zero v2 of D-mesons is measured and this
value is comparable with that of light hadrons.

2.3.2.2 Non-Photonic Electron Measurement

Figure 2.31: Inclusive electron yield per minimum bias pp collision as function
of pt at

√
s = 7 TeV in comparison with background electron cocktails for the

TPC-TOF/TPC-TRD-TOF analysis (left) and for the TPC-EMCal analysis (right).
Lower panels show the ratio of the inclusive electron yield to the background electron
cocktail. Results are measured in pp collisions at

√
s = 7 TeV with ALICE [232].

The strategy for measuring the non-photonic electron production cross sections
is based on the cocktail technique, as shown in Fig. 2.31. The background elec-
tron cocktails for the TPC-TOF/TPC-TRD-TOF analysis and for the TPC-EMCal
analysis are shown in the left and right plots of Fig. 2.31, respectively [232] 5. In
the lower panels of Fig. 2.31, the deviations between the unit and the ratios of the
inclusive electron yield to the background electron cocktail indicate the contribution

5The TPC, TRD, TOF and EMcal are detectors located in ALICE central barrel. The descrip-
tion of the ALICE detectors will be given in Chap. 3.
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Figure 2.32: (a) pt-differential invariant cross sections of electrons from beauty and
from charm hadron decays. The solid (dashed) lines indicate the FONLL predic-
tions [233] (uncertainties). Ratios of the data and the FONLL calculations are shown
in (b) and (c) for electrons from beauty and charm hadron decays, respectively. (d)
Measured ratio of electrons from beauty and charm hadron decays with error boxes
depicting the total uncertainty. Results are measured in pp collisions at

√
s = 7 TeV

with ALICE [234]. 70



from the heavy flavour elections. In this case, the non-photonic electron spectrum is
obtained by subtracting the cocktail sources from the inclusive electron spectrum.
Furthermore, the beauty component in the non-photonic electron spectrum, which
is very important for the calculation of the heavy-to-light ratio and D-to-B ratio as
mentioned in Sec. 2.3.1, can be measured based on the displacement of the decay
vertex from the collision vertex.

With the discussed strategy, Fig. 2.32 shows the pt-differential invariant cross
sections of electrons from beauty and from charm hadron decays in pp collisions
at
√
s = 7 TeV measured with ALICE [234]. And we can clearly see that, both

the production cross section of electrons from charm decays and that of electrons
from beauty decays are well in agreement with the FONLL predictions [233] with
in uncertainties.

Figure 2.33: pt-differential RAA (left) and v2 (right) of electrons from heavy flavour
decays in Pb–Pb collisions at

√
sNN = 2.76 TeV measured with ALICE [235]. The

results are compared with corresponding ones from PHENIX measurements [202].

The pt-differentialRAA and v2 of electrons from heavy flavour decays measured in
Pb–Pb collisions at

√
sNN = 2.76 with ALICE is shown in the left and right plots of

Fig. 2.33, respectively [235]. The corresponding measurements from PHENIX [202]
are also presented. We can find that, the magnitude of RAA and v2 of the heavy
flavour electrons are comparable at these two energies. And the measurements with
ALICE will give richer information of the heavy flavour production in heavy-ion
collisions, due to the higher pt reached at the LHC energies.

2.3.2.3 Discussion

The published and preliminary results of RAA and v2 of D mesons and non-
photonic electrons measured in (semi-)central Pb–Pb collisions at

√
sNN = 2.76 TeV

as well as their production cross sections measured in pp collisions at
√
s = 7 TeV
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or 2.76 TeV performed the high precision of heavy flavour measurements via the
hadronic decay and semi-electronic decay channels with ALICE, thanks for the high
track momentum and position resolution and the high efficiency for hadron and
electron identification in the ALICE Central Barrel. All of the results were discussed
gave a deep understanding of the properties of the deconfinement matter at the LHC
energies. They also provided an important test of the pQCD calculations in this
new energy domain.

But there is an important aspect which is worth to be mentioned. All the above
excellent results are obtained in the mid-rapidity region. Based on rigorous scientific
spirit, there will be no final conclusion presented until the researches are extended
to the forward region. As emphasized, initial conditions are different in the mid-
rapidity and forward regions. Also, the longitudinal expansion of the QCD medium
will introduce new properties of the final state observables measured in the forward
region. In the following, we are going to present the heavy flavour measurements in
the forward region with the ALICEMUON spectrometer, and discuss the advantages
in both detection and physics aspects.
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Part II

ALICE Experiment





Chapter 3

Experimental Apparatus

ALICE (A Large Ion Collider Experiment) is the heavy-ion detector at the CERN
LHC, which is designed to address the physics of strongly interacting matter (the
quark-gluon plasma) at extreme values of energy density and temperature in nucleus-
nucleus collisions. It allows a comprehensive study of hadrons, electrons, muons,
and photons produced in the heavy-ion collisions (e.g. Pb–Pb), up to the highest
multiplicities anticipated at the LHC. The physics programme also includes collisions
with lighter ions and at lower energy, in order to vary energy density and interaction
volume, as well as dedicated proton-nucleus and proton-proton runs.

First conceptual ideas for a heavy-ion detector at the LHC were formulated in
a workshop, at the end of 1990 [236]. The experiment was approved in 1997, and
the expected detector performance based on detailed simulations, are summarized
in the Physics Performance Report [221, 133]. Presently, the ALICE collaboration
is composed of 1200 members from 132 institute in 36 countries.

3.1 ALICE Setup

As all experiments dedicated to heavy-ion physics, ALICE is addressing a broad
range of observables which were typically covered at previous accelerators (AGS,
SPS, RHIC) by several specialized experiments The schematic layout of ALICE is
shown in Fig. 3.1 The apparatus is made of three parts.

Central Barrel Detectors The central part covers the pseudo-rapidity range
−0.9 < η < 0.9 (polar angles 45

o
< θ < 135

o). It is embedded in the large
L3 solenoid magnet [238]. From the inside out, the Central Barrel contains
the Inner Tracking System (ITS) made of six planes of high resolution
silicon pixel (SPD), drift (SDD) and strip (SSD) detectors, the cylindrical
Time-Projection Chamber (TPC), the Transition Radiation Detec-
tor (TRD), the Time-Of-Flight (TOF), the High Momentum Particle
Identification Detector (HMPID) based on Ring Imaging Cherenkov
technique and two electromagnetic calorimeters: the PHOton Spectrome-
ter (PHOS) and the ElectroMagnetic CALorimeter (EMCal). All de-
tectors except HMPID, PHOS, and EMCal cover the full azimuth. They allow
for primary vertex reconstruction, charged particles tracking over a momen-
tum range from ∼ 10 MeV/c to ∼ 100 GeV/c and Particle Identification
(PID) for charged hadrons, electrons and photons.

Global Detectors Several smaller detectors, the Zero Degree Calorimeter
(ZDC), the Photon Multiplicity Detector (PMD), the Forward Multi-



Figure 3.1: ALICE schematic layout.
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Detector Acceptance (η, φ) Position (m) Dimension (m2) Channels

ITS layer 1,2 (SPD) ±2, ±1.4 0.039, 0.076 0.21 9.8 M
ITS layer 3,4 (SDD) ±0.9, ±0.9 0.150, 0.239 1.31 133 000

ITS layer 5,6 (SSD) ±0.97, ±0.97 0.380, 0.430 5.0 2.6 M

TPC
±0.9 at r = 2.8 m

0.848, 2.466
readout 32.5 m2

557 568±1.5 at r = 1.4 m Vol. 90 m3

TRD ±0.84 2.90, 3.68 716 1.2 M
TOF ±0.9 3.78 141 157 248

HMPID ±0.9, 1.2
o
< φ < 58.8

o
5.0 11 161 280

PHOS ±0.12, 220
o
< φ < 320

o
4.6 8.6 17 920

EMCal ±0.7, 80
o
< φ < 187

o
4.36 44 12 672

ACORDE ±1.3, −60
o
< φ < 60

o
8.5 43 120

Muon spectrometer

Tracking station 1

−2.5 < η < −4

−5.36 4.7

1.08 M

Tracking station 2 −6.86 7.9

Tracking station 3 −9.83 14.4

Tracking station 4 −12.92 26.5

Tracking station 5 −14.22 41.8

Trigger station 1 −16.12 64.6
21 000

Trigger station 2 −17.12 73.1

ZDC:ZN |η| < 8.8 ±116 2× 0.0049 10

ZDC:ZP 6.5 < |η| < 7.5 ±116 2× 0.027 10

ZDC:ZEM
4.8 < η < 5.7

7.25 2× 0.027 10−16
o
< φ < 16

o and
164

o
< φ < 169

o

PMD 2.3 < η < 3.7 3.64 2.59 2 221 184

FMD disc 1 3.62 < η < 5.03 inner: 3.2

0.266 51 200

FMD disc 2 1.7 < η < 3.68 inner: 3.2

FMD disc 3 −3.4 < η < −1.7

outer: 0.752

inner: −0.628

outer: −0.752

V0A 2.8 < η < 5.1 3.4 0.548 32

V0C −1.7 < η < −3.7 −0.897 0.315 32

T0A 4.61 < η < 4.92 3.75 0.0038 12

T0C −3.28 < η < −2.97 0.727 0.0038 12

Table 3.1: Summary of the ALICE detector subsystems. Extracted from [237].
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plicity Detector (FMD) as well as the T0 and V0 detectors are located at
forward and backward pseudo-rapidity regions. They are used for global event
characterization (like centrality determination, multiplicity measurement, and
event plane reconstruction in heavy-ion collisions) and triggering purposes.

Muon Spectrometer The ALICE forward muon arm is primarily designed to
heavy-quark resonances (J/Ψ and Υ families) with a mass resolution sufficient
to separate all sub-states as well as to measure open heavy flavour semi-muonic
decays. In addition, the detector allows to investigate the production of weak
interaction probes (W± and Z0) and low mass resonances (ρ, ω and φ). It
is located at small angles (2o

< θ < 9
o , −4 < η < −2.5) in order to pro-

vide a good acceptance down to zero transverse momentum and a manageable
background from hadron decays. It consists of a composite absorber, a beam
shield, a large dipole magnet with a 3 Tm field integral placed outside the L3
magnet, and ten planes of very thin, high-granularity, cathode strip tracking
stations. A second muon filter at the end of the spectrometer and four planes
of Resistive Plate Chambers (RCP) are used for muon identification and
triggering. The analysis which is presented in this thesis is based on the AL-
ICE forward muon spectrometer. A more detailed description of the detector
layout and of its tracking and trigger algorithms is given in Sec. 3.4

The apparatus is completed by an array of scintillators, ALICE COsmic Ray
DEtector (ACORDE), on top of the L3 magnet, used to trigger on cosmic rays.
Tab. 3.1 summarizes the acceptance and location of the various detection elements.

ALICE has been optimized in order to cope a with charged particle density of
about dN/dη = 4000, anticipated in central Pb–Pb collisions at the moment of its
design, but tested with simulations up to twice that amount. The tracking was made
particularly safe and robust by using mostly three dimensional hits information with
many points (up to 150) in a moderate field of 0.5 T. Most detector systems were
installed and ready for data taking by mid 2008 when the LHC was scheduled to
start operation, with the exception of parts of PHOS (1 out of 5 modules installed),
TRD (4 out of 18), PMD, and EMCal (its construction started in 2008). These
detectors have been completed for the Pb–Pb run of 2010 and later on.

The physics program with ALICE includes a number of measurements such as:

• particle multiplicity, spectra and correlations;

• event-by-event fluctuations;

• jets;

• direct photons;

• di-leptons;

• heavy quark and quarkonium production;

• low mass resonances;

• W± and Z0 bosons.
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3.2 Central Barrel Detectors

The ALICE central barrel is composed of three sets of detector systems: the
main tracking system (ITS and TPC) mainly used for the reconstruction of primary
vertex and charged tracks as well as particle identification; the particle identification
system (TRD, TOF and HMPID) used to separate charged kaons, pions, protons
and electrons in a wide pt range; the electromagnetic calorimeters (PHOS and EM-
Cal) allowing the measurement and reconstruction of neutral particles (photon, π0

and η etc.). In this section, after a brief overview of these detectors, we give a
short description of the algorithms developed for the reconstruction of the inter-
action vertex and tracks. We also present some detector performance for particle
identification.

3.2.1 Detector Layout

Inner Tracking System (ITS) [239, 240] The ITS consists of six cylindrical
layers of silicon detectors, with a radius between 3.9 cm and 43 cm. Pixel, drift and
strip detectors (SPD, SDD and SSD) have been chosen for the two innermost, the
two intermediate and the two outer layers, respectively. The SPD covers |η| < 2

and |η| < 1.4 for the inner and outer layers, respectively. This allows to provide,
together with the forward detectors, a continuous coverage in rapidity for charged
particles multiplicity measurements. The six layers will operate together with the
central detectors at low frequency (about 100 Hz), while the Silicon Pixel Detector
(SPD) can run at higher rate (about 1 kHz) to provide the vertex information for
events triggered by the forward muon spectrometer. The main aim of the ITS is to
provide precise track and vertex reconstruction close to the interaction point.

Time Projection Chamber (TPC) [241] The TPC is the main tracking de-
tector in the ALICE central barrel. It is designed to provide charged particle mo-
mentum measurements up to pt = 100 GeV/c, with good particle identification and
vertex determination in the high multiplicity environment of Pb–Pb collisions. The
simultaneous detection of high and low momentum particles is achievable with a low
magnetic field (≤ 0.5 T). The Time Projection Chamber is made of a cylindrical
field cage and is filled with 903 m3 of Ne/CO2/N2. It is composed of 18 trapezoidal
sectors. Multi-wire proportional chambers with cathode pad readout are mounted
on them. It has an inner radius of about 85 cm and an outer one of about 250 cm,
with a total length of about 500 cm. The 88 µs drift time is the limiting factor for
the luminosity in p-p collisions.

The TPC allows to measure charged particles from pt = 100 MeV/c to
100 GeV/c. The study of soft hadronic observables requires a resolution of 1%

for momenta between 100 MeV/c and 1 GeV/c, while the detection of hard probes
requires a 10% resolution for tracks with pt = 100 GeV/c. The latter can be achieved
by using the TPC in combination with the ITS and the TRD. The resolution on the
relative momentum between two particles, necessary for the study of two-particle
correlations, has to be better than 5 MeV/c. It is worth noting that the TPC can
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provide particle identification by dE/dx measurement from the low momentum re-
gion up to few tens of GeV/c, in combination with the TOF, the TRD and the
ITS.

Transition Radiation Detector (TRD) [242, 243] The TRD provides electron
identification for momenta greater than 1 GeV/c, where the pion rejection capability
through energy loss measurement in the TPC is no longer sufficient. It is used
with the TPC and the ITS in order to measure the production of light and heavy
vector meson resonances, and of open charm and beauty thanks to the good impact
parameter resolution of the ITS. A similar technique can be used to separate the
directly produced J/Ψ mesons from those arising from B-hadron decays. The TRD
consists of 18 sectors of 6 layers each with a 5 fold segmentation along the beam
direction, for a total of 18 × 5 × 6 = 540 detector modules. Each module consists
of a radiator of 4.8 cm thickness, a multi-wire proportional readout chamber with
cathode pad readout. The TRD increases the ALICE pion rejection capabilities by
a factor of 100 for electron momenta above 3 GeV/c and allows a mass resolution
of 100 MeV/c2 at the Υ region for B = 0.4 T.

Time Of Flight (TOF) [244, 245] The TOF allows for particle identification
in the intermediate momentum range, from 0.2 to 2.5 GeV/c. Coupled with the ITS
and the TPC it provides identification of pions, kaons and protons. Its large coverage
requires the use of a gaseous detector. Multi-gap Resistive Plate Chambers were
chosen, providing an intrinsic time resolution of better than 40 ps and an efficiency
close to 100%. The detector is segmented in 18 sectors in φ and 5 segments in z. It
is located at a radius between 370 cm and 399 cm and has a length of 745 cm.

High Momentum Particle Identification Detector (HMPID) [246] The
detector is dedicated to inclusive measurements of identified hadrons with pt >

1 GeV/c and extend π/K (K/p) separation to 3 (5) GeV/c. The HMPID has a
pseudo-rapidity acceptance of |η| < 0.6 and an azimuthal coverage of about 58

o ,
corresponding to 5% of the central barrel phase space. The detector is based on
proximity focusing Ring Imaging Cherenkov counters and consists of seven modules
of about 1.5× 1.5 m2 for each.

PHOton Spectrometer (PHOS) [247] The high resolution electromagnetic
spectrometer provides photon identification as well as neutral meson identification
through the di-photon decay channel. It can be used also as a fast trigger. The
PHOS is a single arm spectrometer including a highly segmented electromagnetic
calorimeter made of lead-tungstenate crystals coupled to Avalanche Photo-Diode
followed by a low-noise preamplifier, and a charged particle veto detector consisting
of a Multi-Wire Proportional Chamber with cathode-pad readout. The spectrome-
ter, positioned at the bottom of the ALICE setup at a distance of 460 cm from the
interaction point, covers a pseudo-rapidity range of |η| < 0.12 and 100

o in azimuthal
angle.
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Figure 3.2: Primary vertex resolution in
Pb–Pb collisions at

√
sNN = 2.76 TeV as

a function of half of the tracklets multiplic-
ity of the event [248]. Data taken in 2010,
see text for details.

ElectroMagnetic Calorimeter
(EMCal) [249] The EMCal en-
hances the ALICE capabilities for jet
quenching measurements. It enables
triggering on high energy jets, reduces
significantly the measurement bias
for jet quenching studies, improves
jet energy resolution and increases
existing ALICE capabilities to mea-
sure high momentum photons and
electrons. The EMCal is placed
between the ALICE space-frame, sup-
porting the entire central detectors,
and the magnet coils. The azimuthal
acceptance covered (107

o) is limited
by the PHOS and the HMPID. The
chosen technology is a layered Pb-
scintillator sampling calorimeter with
alternating layers of 1.44 mm of lead

and 1.76 mm of polystyrene scintillator with longitudinal wavelength-shifting fiber
light collection. The EMCal covers −0.7 < η < 0.7 and is positioned in opposite
side of the PHOS calorimeter.

3.2.2 Primary Vertex Determination

The reconstruction of the primary vertex is based on the information provided
by the SPD, which constitutes the two innermost layers of the ITS. The pairs of
reconstructed points are selected in these two layers, which are close in azimuthal
angle in the transverse plane. The z-position of the primary vertex is estimated by
using a linear extrapolation. A similar procedure is also performed in the transverse
plane. Due to the bending in the magnetic field, the linear extrapolation is an
approximation; however, thanks to the short distances from the interaction point,
the x- and y-coordinates of the primary vertex are determined with a sufficient
precision to be used as constraints in the first tracking pass. This estimate of the
primary vertex position is then used to correct the measurement of the z-coordinate,
for effects due to an off-axis position of the interaction point in the transverse plane.
For well focused beams one can determine the transverse position of the interaction
point averaging over many events, provided that the beam position is sufficiently
stable in time.

The resolution on the position of the primary vertex σvtx depends on the track
multiplicity ntrklet, i.e. on the charged-particle density as [237],

σvtx =
α√
ntrklet

⊕K. (3.1)

In Fig. 3.2 the resolution of x- and z-coordinate of the primary vertex reconstruction
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with the fitting function from Eq. (3.1) are shown. The resolution of the vertexer is
obtained by dividing the tracklets of the event in two random samples and recon-
structing two vertices for the two samples. The difference between these two vertices
is the measurement of the resolution as a function of the half tracklet multiplicity.
For charged-particle densities in central heavy-ion collisions, a vertex-position reso-
lution on the 10 µm level is obtained and in pp collisions (ntrklet ' 6− 7) the vertex
resolution ∼ 150 µm. This measurement of the primary-vertex position is used as
an input for the tracking.

After track reconstruction, the position of the primary vertex is then recalculated
using the measured track parameters.

3.2.3 Charged Track Reconstruction

The basic method employed for track finding and fitting is the Kalman fil-
ter [250]. This method relies on the determination, for each track, of a set of initial
seed values for the track parameters and their covariance matrix. In ALICE this
seeding is done using the space points reconstructed in TPC twice: the first time
assuming that the track originated from the primary vertex and the second one as-
suming that the track originated elsewhere (decay, secondary interaction, etc.). The
combination of the space points starts from a few outermost pad rows using, in the
first pass, the primary vertex position as a constraint. The procedure is repeated
several times, choosing a set of pad rows closer and closer to the centre of the TPC.
The Kalman filter essentially consists of the following steps:

1. propagate the state vector of the track parameters and their covariance matrix
to the next pad row;

2. add to the inverted covariance matrix, which represents the information matrix
of the knowledge of the track parameters at that point, a noise term to rep-
resent the information loss due to stochastic processes like multiple scattering
and energy loss fluctuations;

3. the track information will be updated, if the filter finds in the new pad row a
space point compatible with the track prolongation.

Then, repeat the seeding a second time without the primary vertex constraint.
After this step, the tracks are propagated to the outer layers of the ITS (ITS-

refit) in two independent passes, first imposing the primary vertex position as a
constraint, and then without this condition. Both sets of track parameters are
stored for further analysis. Whenever more than one space-point candidate is found
within the search window around the prolongation of a track (a half-width of four
standard deviations is typically used), all possible assignments are used as different
hypotheses and are followed independently towards the innermost ITS layer. In
this way each TPC track can have several candidate paths throughout the ITS.
A decision is made only at the end, based on the sum of the χ2 along the track-
candidates’ path in the ITS. Optionally, layer skipping and cluster sharing between
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Figure 3.3: Left: track prolongation efficiency in ITS for TPC tracks, for the request
of ITS-refit only (black) and ITS-refit with at least a point in SPD (red); data
from Pb–Pb collisions at

√
sNN = 2.76 TeV in 2010, MC results based on HIJING

simulations. Right: transverse impact parameter resolution estimate as a function
of pt for pions, kaons, protons; data from pp collisions at

√
s = 7 TeV in 2010, MC

corresponds to PYTHIA simulations with Perugia-0 configuration.

tracks are allowed, in which case a weight factor is introduced in the χ2 sum. The
left plot in Fig. 3.3 shows the track prolongation efficiency in the ITS for TPC
tracks, for the request of ITS-refit only (black) and ITS-refit with at least a point in
SPD (red), the additional requirement for at least one point in SPD helps to reject
the fake tracks which represent ∼ 20%, as estimated from data.

When the ITS tracking is completed, the Kalman filter is reversed and follows the
track from the inner ITS layers outwards. Starting with much more precise track
parameters than during the first step, the improperly assigned points (outliers),
now, can be eliminated. Then we continue following the tracks beyond the TPC,
assigning space points in the TRD, and matching the tracks with hits in the TOF,
minimum-ionizing clusters in the HMPID. Finally, the Kalman filter will be reversed
one last time to refit all tracks from the outside inwards, in order to obtain the values
of the track parameters at or nearby the primary vertex. Optionally, an additional
track-finding step using only points from the ITS would be proceeded, after having
removed all the ITS space points already assigned to tracks. This is useful for finding
tracks that have not been seeded in the TPC.

The track parameters obtained both with and without the primary vertex con-
straint are stored for all tracks, in order to allow for the subsequent analysis of short
lived particle decays (such as charm and beauty decays) taking place very close to
the primary vertex. The main performance parameter for such studies is the reso-
lution in the impact parameter (the distance between the primary vertex and the
track prolongation to the point of closest approach to the primary vertex). This res-
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olution depends both on the precision of the primary vertex position determination
and on the precision of the determination of the track parameters. The right plot
in Fig. 3.3 shows transverse impact parameter (d0(rφ)) resolution estimations for
charged pions, kaons and protons, obtained in pp collisions at

√
s = 7 TeV, taken in

2010. This is done using the ITS-refit and 2 points in SPD, and the primary vertex
was reconstructed using the beam constraint.

3.2.4 Particle Identification

Figure 3.4: Top: dE/dx of charged particles vs. their momentum, measured by the
ITS alone (left) and TPC (right), the lines are a parameterization of the Bethe-
Bloch curve. Bottom left: β vs. signed momentum in the TOF. Bottom right:
HMPID Cherenkov angle vs. track momentum, continuous lines represent theoretical
Cherenkov angle values vs. track momentum. The results correspond to pp collisions
at
√
s = 7 TeV.

In the ALICE central barrel, charged particle identification is done with the ITS,
TPC, TRD, TOF and HMPID detectors, each of them having a different momentum-
dependent performance. The best results are achieved by combining the information
they provide individually. Particle identification is performed in two steps: during
the first step, the information from each detector is used to assign to every track
a set of probabilities, one for each particle type; then, the information from the
individual detectors is combined in the second PID step.
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Figure 3.5: Left: charge deposit for electrons and pions at a momentum of 2 GeV/c,
in pp collisions at

√
s = 7 TeV. Data (symbols) are compared with test beam

measurements performed in 2004. Right: TPC dE/dx signal (in units of resolution)
relative to the electron Bethe-Bloch lines (shown in the top right panel of Fig. 3.4)
for 2 GeV/c tracks and 6 TRD tracklets, with and without electron tagging in the
TRD, in pp collisions at

√
s = 7 TeV (2011 data).

Four layers of the ITS (two silicon-drift and two silicon-strip detector layers) pro-
vide signal amplitude information, which can be used for PID in the low-momentum
range by measuring ionization energy loss dE/dx. This is estimated as a truncated
mean (using the two or three lowest amplitude signals out of four) in order to mini-
mize the influence of Landau fluctuations. The resulting plot is shown in the top left
panel of Fig. 3.4 for pp collisions at

√
s = 7 TeV. The resolution of the ITS dE/dx

measurement is about 11%, which allows for good π/K separation up to 450 MeV/c
and for good p/K separation up to about 1 GeV/c.

As in the ITS, the dE/dx measurement in TPC uses the truncated mean of
the 65% lowest-amplitude pad-row samples. The estimated resolution of the dE/dx

measurement depends slightly on the charged-particle density; it changes from 5.5%

for pp events to 6.5% for central Pb–Pb collisions according to the simulations.
Fig. 3.4 (top, right) shows the particle identification for tracks measured in the TPC
in pp collisions at 7 TeV. Typically, the separation power (expressed as number
of standard deviations) for different pairs of particle species starts with excellent
separation in the region below the particle masses; increasing the momentum, the
separation progressively worsen, and decreases to zero, at the value of momentum
where the Bethe-Bloch curves for the two particles cross each other.

The measurement of dE/dx in the TRD contributes to charged-particle PID in
the same momentum range as for the TPC. Although the ionization in the TRD
gas (based on xenon) is larger than that in the TPC (based on neon), the TRD
dE/dx measurement is only a complement to the TPC measurement, because of
the limited TRD track length L (the resolution scales as

√
L). The precision on the

dE/dxmeasurement in the TRD is estimated to be 18−20%. The TRD provides the
main source of information for electron identification in ALICE, and can also give
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electron-identification information at the trigger level. For electrons, the average
charge deposit is higher due to the additional contribution from the absorption of
bremsstrahlung transition radiation in the drift gas, as shown in the left panel of
Fig. 3.5. The electrons in the TRD can be tagged via the likelihood method 1, which
is expected to reject pions by a factor of 100 or better, for 90% electron detection
efficiency. The TPC dE/dx signal relative to the electron Bethe-Bloch lines (the left
and right peaks correspond to the contribution from charged pions and electrons,
respectively) for 2 GeV/c tracks and 6 TRD track-lets, with and without electron
tagging in the TRD, is shown in the right panel of Fig. 3.5.

As introduced above, charged-particle identification based on the dE/dx mea-
surements (in ITS and TPC) performs well in the 1/β2 2 region and, for gas-based
detectors, in the multi-GeV region. However, this technique inevitably leaves a hole
in the momentum range around the minimum of the ionizing losses (i.e. between 0.9

and 3 GeV/c). In the ALICE experiment this range is covered by the TOF detec-
tor, that is able to measure a particle’s arrival time with a precision of about 80 ps.
During the last tracking pass in the Kalman filter, the integral of the particle’s time-
of-flight for different mass hypotheses are computed, and compared with the TOF
measurement smeared by the response function. In this way, one can obtain the
TOF track probabilities for the different particle species. The TOF detector allows
to extend, on a track-by-track basis, the kaon/pion separation out to 2.5− 3 GeV/c
and the proton/kaon separation out to 3.5− 4 GeV/c, as shown in the bottom left
panel of Fig. 3.4.

Finally, the HMPID is used to further extend the momentum range for charged-
particle identification, although in a limited acceptance, by distinguishing the
Cherenkov angles of different particle species, albeit only within a limited accep-
tance. The expected performance is shown in the bottom right panel of Fig 3.4,
where the momentum dependence of the Cherenkov angle is plotted for different
particle species. As can be seen, the HMPID is able to identify protons up to
5 GeV/c.

Additionally, an excellent photon-detection capability is provided by the PHOS
and EMcal. The EMCal also opens the possibility of triggering on high-transverse-
momentum jets and allows us to improve the measurement of the jet energy including
the neutral component.

3.3 Global Detectors

As shown in Tab. 3.1, a set of small angle detectors, located in the forward and
backward rapidity regions, are used to deliver global information like centrality and
event plane in A-A collisions as well as multiplicity and trigger decisions in both
A-A and pp collisions. A short description of their layout is presented below.

1The details for likehood method are introduced in [133].
2β is the relativistic velocity in Natural System of Units, c = } = 1.
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Zero Degree Calorimeter (ZDC) [251] The ZDC provides a centrality estima-
tion and is used for triggering in Pb–Pb collisions, and allows to reject electromag-
netic interactions. The ZDC measures the energy carried in the forward direction
(at zero degrees relative to the beam direction) by non-interacting (spectator) nu-
cleons. The detector consists of two sets of hadronic calorimeters (for neutron and
protons), placed on both sides of the interaction point, at 116 m from it. The system
is completed by two electromagnetic calorimeters (ZEM), both placed at about 7 m
from the interacting point (in the side opposite to the muon spectrometer), which
allow to resolve ambiguities in the determination of the centrality.

The neutron calorimeter (ZN) is placed between the beam pipes and has the most
severe geometrical constraints: the transverse dimensions have to be smaller than
7 cm, requiring a very dense "passive" material (tungsten). The proton calorimeter
(ZP) is placed externally to the beam pipe and is made with a less dense material
(lead). The ZN, segmented in four regions, can also provide an estimate of the
reaction plane.

The electromagnetic calorimeter (ZEM), made of lead and quartz fibers, is de-
signed to measure the energy of particles, mostly photons generated from π0 decays,
at forward rapidities (4.8 < η < 5.7). Differently from the ZN and ZP, the ZEM
fibers are oriented at 45

o in order to maximize the detector response. The ZDCs
cannot provide an L0 trigger 3, since they are located too far from the interaction
point, but they can provide an essential L1 trigger for centrality.

Photon Multiplicity Detector (PMD) [252] It is a pre-shower detector mea-
suring the multiplicity and spatial (η − φ) distribution of photons on an event-by-
event basis, in the forward region (2.3 < η < 3.7). It can also provide estimates for
the transverse electromagnetic energy and the reaction plane. The PMD is placed
at about 360 cm from the interaction point (ZDC: ZEM side). It consists of two
identical planes of detectors, made of gas proportional counters with honeycomb
structure and wire readout, with a 3X0 thick lead converter in between them: the
front detector plane is used as charged particle veto while the detector plane be-
hind the converter is the pre-shower plane and registers hits from both photons and
charged hadrons.

Forward Multiplicity Detector (FMD), T0 and V0 [253] The FMD provides
a charged particle multiplicity information in the pseudo-rapidity range −3.4 < η <

−1.7 (muon spectrometer side) and 1.7 < η < 5.1 (PMD side). The FMD is
composed of three rings (1 inner, 2 inner and outer, and 3 inner and outer). Each
detector ring consists of 10 (for an inner ring) or 20 (for an outer ring) silicon
sensors. The full FMD contains 51200 silicon strips to be readout. The design
ensures, together with the ITS inner pixel layer, a full pseudo-rapidity coverage in

3The "fast" part of the ALICE trigger is split into two levels: a Level 0 (L0) signal which reaches
detectors at 1.2 µs, but which is too fast to receive all the trigger inputs, and a Level 1 (L1) signal
sent at 6.5 µs which picks up all remaining fast inputs. Details about triggers will be presented in
the next chapter.
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Figure 3.6: Layout of the ALICE muon spectrometer.

88



Muon Detection

polar, azimuthal angle coverage 171
o
< θ < 178

o , 360
o

minimum muon momentum 4 GeV/c
pseudo-rapidity coverage −4 < η < −2.5

Front Absorber

longitudinal position (from IP) −5030 < z − 900 mm
total thickness (materials) ∼ 10λint, ∼ 60X0 (carbon-concrete-steel)

Dipole Magnet

nominal magnetic field, field integral 0.67 T, 3 Tm
free gap between poles 2.972− 3.956 m
overall magnet length 4.97 m

longitudinal position (from IP) −z = 9.94 m (centre of the dipole coils)

Tracking Chambers

no. of stations, no. of planes of station 5, 2

longitudinal position of stations −z = 5357, 6860, 9830, 12920, 14221 mm
anode-cathode gap (equal to wire pitch) 2.1 mm for st. 1, 2.5 mm for st. 2− 5

gas mixture 80%Ar/20%CO2

pad size st. 1 (bending plane) 4.2× 6.3, 4.2× 12.6, 4.2× 25.2 mm2

pad size st. 2 (bending plane) 5× 7.5, 5× 15, 5× 30 mm2

pad size st. 3, 4 and 5 (bending plane) 5× 25, 5× 50, 5× 100 mm2

max. hit dens. st. 1− 5 (central Pb–Pb×2) 5.0, 2.1, 0.7, 0.5, 0.6 · 10−2hits/cm2

spatial resolution (bending plane) ' 70 µm

Tracking Electronics

total no. of FEE channels 1.08× 106

shaping amplifier peaking time 1.2 µs

Trigger Chambers

no. of stations, no. of planes of station 2, 2

longitudinal position of stations −z = 16120, 17120 mm
total no. of RPCs, total active surface 72, ∼ 140 m2

gas gap single, 2 mm
electrode material and resistivity BakeliteTM, ρ = 2− 8× 109 Ωcm

gas mixture Ar/C2H2F4/i-buthane/SF6 (50.5/41.3/7.2/1)
pitch of readout strips (bending plane) 10.6, 21.2, 42.5 mm (for trigger st. 1)

max. strip occupancy bend. (non bend.) plane 3% (10%) in central Pb–Pb
max. hit rate on RPCs 3 (40) Hz/cm2 in Pb–Pb (Ar–Ar)

Trigger Electronics

total no. of FEE channels 2.1× 104

no. of local trigger cards 234 + 8

Table 3.2: Summary of the main characteristics of the muon spectrometer. Ex-
tracted from [237].
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the range −3.4 < η < 5.1, and an overlap between the FMD and the ITS pixel
system of about 0.2 pseudo-rapidity units.

The T0 consists of two arrays of Cherenkov counters, with a time resolution
better than 50 ps, asymmetrically placed at 72.7 cm (muon spectrometer side) and
375 cm (PMD side) from the interaction vertex, with a pseudo-rapidity coverage of
−3.28 < η < −2.97 and 4.61 < η < 4.92, respectively. It is designed to provide a
T0 signal for the TOF detector, to measure the vertex position with a precision of
±1.5 cm, thus providing a L0 trigger when the position is within the preset values,
and can generate minimum bias and multiplicity triggers.

The V0 is made of two arrays of scintillators, located 90 cm (muon spectrometer
side) and 340 cm (PMD side) from the interaction point. Each detector is segmented
into 32 elementary counters distributed in 4 rings and 8 sectors, with a pseudo-
rapidity coverage of −3.7 < η < −1.7 and 2.8 < η < 5.1. The V0 is used for
triggering, centrality selection and participates in the luminosity measurement.

3.4 Forward Muon Spectrometer

In ALICE, the muon detection is performed in the pseudo-rapidity region −4 <

η < −2.5 (with the muon spectrometer [254, 255]. With this detector, the complete
spectrum of heavy-quark vector-meson resonances (i.e. J/Ψ, Ψ′, Υ, Υ′ and Υ′′), as
well as the low-mass resonances, can be measured in the µ−µ+ decay channel. The
simultaneous measurement of all quarkonium species with the same apparatus allows
a direct comparison of their production rate as a function of different parameters
such as transverse momentum and collision centrality. In addition to vector mesons,
the unlike-sign dimuon continuum up to masses around 10 GeV/c2 can be measured.
Since at LHC energies the continuum is expected to be dominated by muons from
the semi-leptonic decay of open charm and open beauty, it is possible to study
the production of open heavy flavours with the muon spectrometer. Additionallly,
heavy-flavour production in the region −2.5 < η < −1 should be accessible through
measurement of e − µ coincidences [256], where the muon is detected in the muon
spectrometer and the electron in the TRD. Finally,W± and Z0 can be also measured
with the muon spectrometer.

3.4.1 Design Consideration

As the accuracy of dimuon measurements is statistics limited (at least for the Υ

family), the geometrical acceptance of the spectrometer was chosen as large as possi-
ble. In addition, a large acceptance down to zero pt is required for measuring direct
J/Ψ production. At high pt a large fraction of J/Ψ is produced via b-decay [257].
Tevatron measurements [161] indicate that the contribution from b-decay to the
total J/Ψ yield is ' 10% for pt < 3− 4 GeV/c and increases linearly to ' 40% for
pt around 15−18 GeV/c. Since muon identification in the heavy-ion environment is
only feasible for muon momenta above about 4 GeV/c because of the large amount
of material (absorber) required to reduce the flux of hadrons, measurement of low-pt
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charmonia is possible only at small angles (i. e. at large rapidities) where muons are
Lorentz boosted.

A resolution of 100 MeV/c2 in the 10 GeV/c2 dimuon invariant-mass region is
needed to resolve the Υ, Υ′ and Υ′′ resonances. This requirement determined the
bending strength of the spectrometer magnet as well as the spatial resolution of the
muon tracking system. In addition, multiple scattering is minimized by a careful
optimization of the absorber and very thin detector planes. The tracking and trigger
detectors of the spectrometer have to cope with the high particle multiplicity of
heavy-ion collisions at LHC energies and have therefore a high granularity. The
spectrometer is also equipped with a selective dimuon trigger system to match the
maximum trigger rate [258].

The muon spectrometer is designed to detect muons in the polar angular range
171

o − 178
o . This interval, a compromise between acceptance and detector cost,

corresponds to the pseudo-rapidity range of −4 < η < −2.5. This allows the study
of heavy quarks in a region complementary to the one explored by the ALICE
central barrel and by other LHC experiments, like ATLAS and CMS. The layout
of the muon spectrometer is shown in Fig. 3.6. The spectrometer consists of the
following components: a passive front absorber to absorb hadrons and photons from
the interaction vertex; a high-granularity tracking system of 10 detection planes; a
large dipole magnet; a passive muon-filter wall, followed by four planes of trigger
chambers; an inner beam shield to protect the chambers from primary and secondary
particles produced at large rapidities.

The main challenge for the muon spectrometer results from the high particle
multiplicity per event rather than from the event rate, which is quite small. This
was taken into account both in the design of the absorbers (which have to provide
strong absorption of the hadron flux coming from the interaction vertex) and of
the detectors (which must be able to sustain the remaining high multiplicity). The
main parameters of the muon spectrometer are summarized in Tab. 3.2. They have
been optimized by means of simulations with a high multiplicity (an extra factor
of two larger than that predicted by HIJING). It is important to note that the
muon spectrometer relies on the V0 detector as a fast interaction trigger to make
the system more robust against background from beam-gas interactions in particular
during the proton-proton run at nominal beam intensity [259]. A High-Level Trigger
(HLT) for dimuons will reduce, by a factor four to five, the need in bandwidth and
data storage.

3.4.2 Front Absorber and Beam Shielding

The ALICE muon spectrometer design was driven by the requirement of coping
with a high multiplicity scenario anticipated in Pb–Pb collisions: about 7000 parti-
cles produced in the spectrometer acceptance and about 6000 particles intercepting
the beam-pipe in the region −7 < η < −4. The latter interact with the pipe and
introduce additional background particles in the acceptance.

The front absorber reduces the forward flux of charged particles by at least
two orders of magnitude and decreases the background of muons from the decay of
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Figure 3.7: Layout of front absorber.

pions and kaons by limiting the free path for primary π/K. This can be achieved
by minimizing the distance between the absorber and the vertex, compatibly with
the dimension of the inner tracker and the position of the multiplicity counters: the
minimal value imposed by such constraints is 90 cm.

The front abasorber has a 4.13 m length (∼ 10 λint) and is placed inside the
L3 magnet, at 90 cm from the interaction point. The absorber design and compo-
sition are optimized to provide good shielding capabilities and a limited multiple
scattering which should not compromise the spectrometer mass resolution. This
can be achieved by using low-Z material in the absorber layers close to the vertex
and high-Z shielding materials in the central part near to the tracking chambers.
Therefore, the central part close to the interaction point is made of carbon and con-
crete, while the central part close to the tracking chambers is composed of lead and
tungsten. The inner (outer) shield is composed of lead and tungsten (high density
materials). The absorber is completed by a combination of concrete and carbon, as
shown in Fig. 3.7. It is worth noting that the use of very dense material at the end
of the absorber has an important consequence for the tracking. Since the multiple
scattering in this layer is large (about 35X0) whereas the distance to the first track-
ing chamber is small (30 cm), the muon production angle is better defined when
the position measurement in the first chamber is combined with the position of the
interaction vertex, determined by the ITS.

The small-angle beam shield, as shown in Fig. 3.8, is made of dense materials
(tungsten, lead and stainless steel) encased in a 4 cm thick stainless steel envelope.
The latter is "pencil-shaped": it follows the 178

o acceptance line up to a maximum
radius of 30 cm and then stays constant up to the end of the spectrometer. The inner
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Figure 3.8: Schema of the beam shielding.

cone opens up till the end of the muon arm ("open geometry" configuration). Within
the absorber, the beam shield absorbs primary particles in the region −5 < η < −4.

3.4.3 Dipole Magnet

The dipole magnet [260], shown in Fig. 3.9, is placed 7 m from the interaction
vertex, at some 10 cm distance from the L3 solenoid. The size (free gap between
poles 3.5 m, height of the yoke 9 m, total weight about 900 t) is defined by the
requirements on the angular acceptance of the spectrometer. The magnetic flux
density (Bnom = 0.67 T, 3 Tm field integral between IP and muon filter) is defined
by the requirements on the mass resolution. It provides an horizontal magnetic field
perpendicular to the beam axis. The polarity can be inverted.

The magnet yoke is constructed from 28 low-carbon steel modules made for cost
reasons from existing steel stacks which consist of 3 cm thick steel sheets welded
to each other. The vertical poles are oriented at an angle of 9

o with respect to the
vertical symmetry plane leaving a free gap between the poles of 2.972−3.956 m. The
two Saddle type coils have semi-cylindrical coil ends. They are constructed from
hollow aluminum conductor with square cross-section of 25.5 cm2 and an internal
hole for cooling with demineralised water at a rate of some 130 m3/hr. Each coil is
assembled from 3 sub-coils with 4 layers of 14 turns each. They delimit the overall
length of the magnet to 5 m. The distance of the centre of the dipole yoke from the
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interaction vertex is 9.87 m.

Figure 3.9: Layout of dipole magnet of the
muon spectrometer.

The magnet was installed in its
final position on a 3 m high rein-
forced concrete platform. The close
distance between the solenoid mag-
net and the dipole leads to a strong
magnetic force (estimated at 120 t)
between the two magnets. Measure-
ments, at full power, do not indicate
any displacement of the magnet struc-
tures. The stray field in the vicinity of
the magnet attenuates rather rapidly
to less than 50 Gauss at the level of
the gangways.

3.4.4 Muon Tracker

The muon tracking system in-
cludes 5 tracking stations with the
The Geometry Monitoring System (GMS) together to ensure a high track
position and momentum resolution. After the description of the muon tracking
system, the algorithm for the muon track reconstruction will be discussed, in this
section.

3.4.4.1 Tracking Chambers

The tracking chamber design was driven by two main constraints: to achieve the
spatial resolution of 100 µm necessary for an invariant mass resolution of 100 MeV/c2

at the Υ mass and to operate in a maximum hit density of about 5 × 10−2 cm−2

expected in central Pb–Pb collisions. The resolution along the non-bending plane
(parallel to the magnetic field), should be better than about 2 mm to allow an
efficient track finding. An additional constraint is imposed by the large area (about
100 m2) covered by the tracking system.

All these requirements can be full filled by the use of Multi-Wire Proportional
Chambers (MWPC) with cathode pad readout. The detectors are arranged in
five stations: two are placed before, one inside and two after the dipole magnet.
Each station is made of two chamber planes, with two cathode planes each, which
are readout in order to provide bi-dimensional information. The segmentation of the
cathode pads is designed to keep the occupancy at a 5% level: since the hit density
decreases with the distance from the beam pipe, larger pads are used at larger radii.
This enables to keep the total number of channels at about one million.

Multiple scattering of the muons in the chamber is minimized by using compos-
ite material, such as carbon fibers. The chamber thickness corresponds to about
0.03X0. Although based on standard MWPC design, the individual chambers have
been adapted to meet the particular constraints on the different tracking stations.
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Figure 3.10: Layout of the tracking station 2 (left) and 4, 5 (right).

The first two are based on a quadrant structure [261]. The readout electronics is
distributed over the surface, as displayed in the left panel of Fig. 3.10. For the other
stations a slat architecture was chosen, with the electronics implemented on the side
of the slats, as shown in right plot of Fig. 3.10. The slats overlap to avoid dead zones
in the detector.

For all stations the front-end electronics is based on a 16-channel chip called
MANAS (Multiplexed ANAlogic Signal processor) including the function-
ality of charge amplifier, filter, shaper and track and hold. The signal digitization
is performed on board. The channels of four of these chips are fed into a 12-bits
ADC, read out by the Muon Arm Readout Chip (MARC), whose functionali-
ties include zero suppression. The entire chain is mounted on a front-end board, the
MAnas NUmérique (MANU): the 1.08 million channels of the tracking system
are treated by about 17000 MANU cards.

The Protocol for the ALICE Tracking CHamber (PATCH) buses provide
the connection between the MANUs and the Cluster ReadOut Concentrator
Unit System (CROCUS) crate. Each chamber is readout by two CROCUS,
which concentrate and format the data, transfer them to the DAQ 4 and dispatch
the trigger signals, coming from the Central Trigger Processor (CTP). These
crates allow also the control of the FEE and of the calibration processes.

3.4.4.2 The Geometry Monitoring System (GMS)

The requirement of a mass resolution of 1% at the mass of the Υ introduces
strong constraints on the alignment of the tracking chambers. During the installa-
tion phase the chambers are positioned according to theodolite measurements and
with photogrammetry, with a spatial accuracy of few tenths of a millimeter [262]. At
the beginning of each data taking period, dedicated runs without magnetic field are
carried out in order to align the ten tracking chambers with straight muon tracks,
thus determining the initial geometry of the system. However, after switching on the
magnet and electronic power supplies, such initial positioning is disturbed by the

4DAQ is the Data AcQuisition System, which is described in the next chapter.
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forces of the L3 and dipole magnetic fields, as well as by the thermal expansion of
the chambers and their support. The displacements and deformations are measured
and recorded during data taking by the Geometry Monitoring System (GMS), with
a resolution better than 40 µm.

Figure 3.11: General view of the GMS. The
red lines present the optical lines.

The GMS is an array of about
460 optical sensors which are placed
on platforms located at each corner
of the tracking chambers. Two differ-
ent types of optical devices were used:
the Boston CCD Angle Monitor
(BCAM) and the Proximity [263]. In
both cases the image of an object is
projected on a CCD sensor through a
lens: the analysis of the captured im-
age provides a displacement measure-
ments. The most relevant difference
between the devices is represented by
the luminosity object used: a pair of
point-like LEDs for the long range sys-
tem BCAM and a coded mask for the
short distance system Proximity.

The BCAM are used to monitor
the relative longitudinal distance between two neighboring chambers in different
stations, the flatness of the chamber supports and the absolute displacement of the
entire spectrometer, through eight optical lines linking chamber 9 to the ALICE
cavern walls. The longitudinal distance between two chambers of the same sta-
tion is measured by the Proximity device. The resulting optical lines are shown in
Fig. 3.11.

3.4.4.3 Muon Track Reconstruction

With the Raw data as input, the cluster-finder algorithm associates clusters to
the detector digits, and later the tracking algorithm deals with the reconstruction to
evaluate the muon tracks, their trajectory and associated properties. The cluster-
finder algorithm begins with the information of the digits and fits the charge induced
on the pads of the CPCs by the charged particles with a Mathieson-function-based
expression [264]. Thus the clusters coordinates can be extracted from those fits. The
tracking algorithm takes as input the clusters information. In the ALICE muon spec-
trometer two independent algorithms for track reconstruction have been developed.
One is based on the Kalman filter, and the other is based on the traditional tracking
algorithms that fit the position of the track associated clusters to reconstruct the
track. The Kalman filter is the default option in our reconstruction algorithm. For
both of the methods, the restrictions applied in tracking procedure are:

• first estimation of track momenta should be 3 GeV/c < p < 3 TeV/c;
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• cut χ2 at both the cluster and track levels;

• the reconstructible track should include 1 over 2 clusters on stations 1, 2 and
3 and 3 over 4 clusters on stations 4 and 5.

Figure 3.12: Principle of muon track reconstruction.

The track reconstruction starts from the two last tracking stations (stations 4

and 5) because they are less subject to background due to soft particles escaping
the front absorber. The algorithm begins linking cluster pairs on stations 4 and
5 (independently) and creating segments by joining the two clusters position by a
straight line. Those segments are extrapolated in the magnetic field to the vertex
position, as shown in Fig. 3.12, to have a first estimate of the track parameters
(position, slope and inverse bending momentum and corresponding errors). The
track momentum, p, is calculated through the usual Lorentz-law derived relationship
in the case of having only a magnetic field perpendicular to the particle momenta:

~F =
d~p

dt
= q( ~E + ~v × ~B), (3.2)

where q is the charge of muon, ~v is the velocity, ~E and ~B are the electric and
magnetic field of the dipole. With Eq. (3.2) one can obtain the relation between the
guessed track momentum p and the radius of curvature R by using:

p[GeV/c] = 0.3[T]×R[cm] = 0.3[T]× L[cm]

θd
, (3.3)

where L is the length of the magnet and

θd =
y5 − y4

z5 − z4
− y2 − y1

z2 − z1
, (3.4)
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as the geometry described in Fig. 3.12. Here comes the first restriction of both
tracking algorithms: tracks with p < 3 GeV/c or p > 3 TeV/c calculated by Eq. (3.3)
are rejected.

The second step is to consider as departure the guessed track from station 5
(station 4) clusters and extrapolate it to the station 4 (station 5). The algorithm
searches for at least one cluster on that station that could be associated to the track
(condition of 3/4 clusters on stations 4 and 5). The restriction applied to associate
clusters to tracks is a χ2 cut. The Kalman based reconstruction algorithm considers
all clusters that pass the criteria, while the traditional one usually considers the
best associated cluster, the one with the lowest χ2. Once a cluster is associated, the
track parameters are re-calculated. The Kalman algorithm uses the Kalman filter
procedure, and the traditional algorithm needs to fit again the associated clusters to
evaluate the new parameters. The next step is the track extrapolation to station 3.
As before, a χ2 cut is imposed as cluster selection criteria and a χ2 cut on the track
is also applied. A minimum of one cluster has to be associated to the track for it to
be considered (condition of 1/2 clusters on station 3) and then the track parameters
are re-evaluated. The remaining tracks are now extrapolated to station 2 and later
to station 1. The selection criteria are the same: the χ2 cut on the clusters and
the track and a minimum of 1 associated cluster on both stations (condition of 1/2

clusters on stations 1 and 2).
After the full reconstruction of the tracks in the tracking stations, one gets the

first reconstructed track parameters: the uncorrected track parameters. Then
their parameters can be extrapolated in two ways:

• by taking into account both the energy loss and Coulomb scatterings, the
Badier-Branson correction is used. It allows the correction of the parameters
of the track points to the vertex position measured by the SPD. This gives the
track parameters related to vertex. This method consists of calculating
the deviation angle from the most probable position of the muon to the end
of the absorber, the radiation length of the material and the vertex position.
Note that the distribution of the energy loss is very large (∼ 4 GeV) and very
asymmetric, thus, even if the energy loss is corrected on average, the fluctua-
tions are important. The corrections described in this item are of particular
interest for the study of muon from heavy flavour decays that decay near the
vertex;

• by taking into account only the energy loss. This calculation allows the Dis-
tance of Closest Approach (DCA) analysis and the study of background
noise when muons are produced far from the interaction point; the track pa-
rameters determined in this case are called the parameters related to DCA.

3.4.5 Trigger System

The design of the muon trigger system allows to reduce hadron background
which punch through the front absorber by requiring the tracks reconstructed in
the muon traker to match the corresponding hits in the two trigger stations (the
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iron filter between the muon tracker and the muon trigger stops almost all of punch
through hadrons). The muon trigger delivers different type of (di)muon triggers at
hardware level to reduce the background and improve the signals. In the following,
we introduce the general structure of the muon trigger system as well as the trigger
decision.

3.4.5.1 Design Layout

Figure 3.13: Left: scheme of the muon trigger stations MT1 and MT2 with two
planes of RPCs on both of them. Right: scheme of a Resistive Plate Chamber
(RPC).

The trigger system of the ALICE muon spectrometer consists of two trigger
stations (MT1 and MT2) located at about 16 m from the interaction point and 1 m
apart from each other, placed behind an iron muon filter, as shown in the left panel
of Fig. 3.13. The muon filter has a thickness of 120 cm. It is located between the
muon tracker and the trigger stations and corresponds to 7.2 interaction lengths. It
allows to select muon tracks because it stops low-energy background particles and
hadrons passing through the front absorber (or produced in this absorber).

Each station is composed of two planes of 18 Resistive Plate Chambers
(RPCs). RPCs are large area detectors, made up of high resistivity (∼ 3 − 9 ×
109 Ωm) Bakelite electrodes separated by 2 mm wide gas gap. The surface of the
Bakelite foils on the gap side is painted with linseed oil, while the external surface
is painted with graphite, with one layer connected to the high voltage and the other
to the ground (right plot in Fig. 3.13). The signal is picked up by read-out strips
connected with the Front-End Electronics (FEE), which basically consists of
a leading-edge discriminator stage followed by a shaper. The strips are placed on
both sides of the chambers, in order to provide a bi-dimensional information. The
horizontal strips measure the bending deviation due to the dipole magnetic field,
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while vertical strips measure the non-bending direction. The two layers of read-out
pads are therefore called “bending” and "non-bending" plane, respectively.

The signals coming from the FEE, consisting in the x and y fired strip patterns of
the four detection planes, are sent to the local trigger electronics. The whole system
is divided in 234 detection areas, each of them associated with a local trigger board.
The local board density reflects the strip segmentation which is finer in the region
close to the beam pipe, where a higher particle multiplicity is expected: in particular,
moving from the beam pipe outwards, the strip pitch is about 1, 2 and 4 cm in the
bending plane and about 2 and 4 cm in the non-bending plane.

The spatial resolution is better than 1 cm, the chamber response is fast, the
signal rises about 2 ns and the time resolution is 1-2 ns.

3.4.5.2 Trigger Decision

Figure 3.14: Sketch of the track transverse momentum determination by the ALICE
muon spectrometer trigger system.

The trigger decision in the ALICE muon spectrometer is taken by the muon
trigger chambers (RPCs). The trigger system is able to select in about 650 ns can-
didate muons or dimuon tracks (like-sign or unlike-sign) above a certain transverse
momentum. Note that this pt cut is justified to reduce the background of muons
from pion and kaon decays, which is predominant at low pt region. The selection
of candidate tracks is done by an algorithm at the electronics level. Roughly, the
algorithm takes the measured position on the first trigger station, that corresponds
to (y1, z1) in Fig. 3.14. It considers a straight line trajectory for the track with
origin in the interaction vertex, and evaluates which is the deviation of the mea-
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sured position in the second trigger station (y2, z2) with respect to this straight line
trajectory. The measured deviation in the Y plane (bending plane), labeled as δy2

in the figure, should be smaller than a certain cut, δY2-cut, which corresponds to
the pt cut [258]. The track deviation angle, θd, is calculated by means of

θd =
1

zf
(
z1y2 − z2y1

z2 − z1
) (3.5)

where zf is the z coordinate of the dipole. Thus using the small angle approximation
the track transverse momentum can be obtained through

pt ' qLB
z2 − z1

z1

√
x2

f + y2
f

δy2
, yf = y1

zf

z1
− δy2(

z1 − zf

z2 − z1
) (3.6)

B and L are the dipole magnetic field and length, as shown in Fig. 3.14.
To fulfil the design requirements the trigger system disposes of a three-level

electronics. First the local cards with a decision time of 250 ns treat the information
coming from a portion of the detector surface and provide a "local trigger", deciding
whether: there is no trigger, there is trigger for positive particles, there is trigger for
negative particles, or trigger with no deviation. Secondly the regional cards collect
the local cards information and evaluate if there is one candidate track (with which
sign), or two or more candidate tracks like-sign or unlike-sign. Finally, the global
card gathers regional cards information and provide five trigger signals that will be
sent to the Central Trigger Processor. The five possible muon input trigger signals
for the CPT are:

• like-sign dimuon candidate of low pt: PairLikeLPt trigger,

• like-sign dimuon candidate of high pt: PairLikeHPt trigger,

• unlike-sign dimuon candidate of low pt: PairUnlikeLPt trigger,

• unlike-sign dimuon candidate of high pt: PairUnlikeHPt trigger,

• single muon candidate of low or high pt: SingleLPt or SingleHPt triggers.

In particular, there are two trigger pt cuts: the low pt cut and the high pt cut
that correspond to a pt threshold of 1 GeV/c and 2 GeV/c respectively. These
cuts are not sharp, the intrinsic trigger efficiency is not an ideal step function. In
fact they are associated to the pt value for which the trigger efficiency attains 50%.
The efficiency increases sharply and reaches a plateau of about 99% (98%) at 3

(5) GeV/c for the low (high) pt trigger cut [258]. Those pt cuts combined with the
possibility that the trigger offers to disentangle particles’ charge permits to define
the five trigger signals. Notice that when the trigger has difficulties to identify the
particle charge sign it considers both signs to avoid any trouble. The low pt cut is
optimized for the J/Ψ physics and the high pt cut for the Υ physics. Moreover there
is also a minimum cut on pt that is defined by the maximum deviation that the local
electronics can afford. This cut is labeled as All pt cut and corresponds to about
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0.5 GeV/c. Note that a pt threshold of 4.2 GeV/c has been recently implemented
for W± study.

The CTP receives the trigger signals from detectors, coordinates their informa-
tion and decides whether the whole trigger conditions identify that an ’interesting’
event takes place. This decision is taken while considering the physics characteristics
of the events, which define a certain combination of detectors that should trigger,
and the available band-width. In [265] details about the different trigger configura-
tions defined at the present time can be found. Once we got a trigger signal from
the CTP, the tracking and trigger stations are readout and the information is saved
in the form of raw data.
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Chapter 4

ALICE Online and Offline

This chapter is devoted to the presentation of the data treatment chain, from
data taking at the detector level, via offline data reconstruction to data analysis.
It includes three parts. In the first part, the detector online system (trigger, Data
Acquisition, High Level Trigger and Detector and Experiment Control) is described.
In the second part, we expose the offline components associated to the experiment.
These are the offline computing model and the general offline framework. Most
of the content of these two parts are taken from Ref. [237]. In the third part, we
describe the offline analysis framework for muon data. After an overall description
of the framework, more details are given on the offline which has been developed for
the analysis presented in this thesis.

4.1 Online Control System

During the data taking, the first task is to determine if there is a interaction
according to the information received by the Trigger system (TRG) from some
fast detectors. Then the TRG should make a decision according to detectors which
have to be recorded via the Data AcQuisition (DAQ) system. Meanwhile, the
High Level Trigger (HLT) is used optionally to reduce the data volume and
select the interesting physics events. Of course, the cooperations of TRG, DAQ
and HLT cannot be achieved without the Detector Control System (DCS) and
Experiment Control System (ECS). All these modules constitute the online
control system for the data taking in ALICE [266] 1.

4.1.1 Trigger System (TRG)

The ALICE Central Trigger Processor (CTP) [267, 268] is designed to select
events having a variety of features at rates which can be downscaled to suit the
physics requirements and the restrictions imposed by the bandwidth of the DAQ
system, and the HLT. The challenge for the ALICE trigger is to make optimum use
of the component detectors, which are busy for widely different periods following
a valid trigger, and to perform trigger selection in a way which is optimized for
several different running modes: ion (Pb–Pb and several lighter systems), pA and
pp, varying by almost two orders of magnitude in counting rate.

The triggers in ALICE are based on the following operational principle: a num-
ber of detector systems (eg. V0, T0, PHOS, TRD, MUON spectrometer, etc.) each

1Some of them, like the DCS, not only make sense during data taking, but also are activated
when there is no beam.



providing a number of logic trigger signals (trigger classes) characterize a specific
measurement in this particular detector (e.g. multiplicity, high pt, muon pair, etc.).
These logical signals are sent to the CTP, as the trigger inputs. They are com-
bined by logical operations inside a FPGA 2 to form the different physics triggers
(e.g. minimum-bias or central collision, dimuon event, · · · ). In addition, the CTP
takes care of downscaling, pile-up protection, ready status of different detectors and
read-out memories, trigger priority, and finally synchronization with the LHC ma-
chine clock cycle, as distributed by the Trigger Timing and Control (TTC)
system [269, 270].

Another particular feature of the ALICE trigger is the possibility to dynamically
configure groups of detectors that participate in the readout of any given event. For
instance, while the TPC is constrained to relatively low trigger rates, both because
of drift time and data volume, the MUON spectrometer can record events at a much
higher rate. When it makes sense to do so in order to improve statistics for specific
physics channels, groups of detectors, called trigger clusters, are read out separately
and at higher rate.

The output trigger signal is sent to a number of Local Trigger Units (LTUs),
typically one for each sub-detector, where they are further processed according to
the different detector needs and finally sent back to the detector Front-End Elec-
tronics (FEE).

For coping with the large multiplicities in Pb–Pb collisions (interaction rate
8 kHz at luminosity L = 1030 cm−2s−1), and also because of use of some ’slow’
detectors (the TPC drift time can reach up to about 100 µs), some of the FEE in
ALICE is not pipe-lined but await for a trigger before processing or digitizing the
detector signals. The trigger is organized into three different levels, L0, L1, and
L2, which have different latencies, due to the different arrival times of the trigger
inputs and the stringent timing requirements of the detectors. In some detectors the
front-end electronics requires a strobe very early, and a first trigger decision must
be delivered 1.2 µs after the collision takes place. As some trigger detectors are not
able to send their input in time, the ’fast’ logic is divided into two stages: every
decision which can be achieved in 1.2 µs is used to make the L0 decision, and the
detectors which require longer contribute to the L1 decision, which arrives at the
detectors after 6.5 µs. Note that the CTP decision is made in 100 ns, with the rest
of the L0 latency coming from the generation time for the trigger input signals and
from the cable delays. The third step, the L2 decision, comes after the end of the
drift time in the TPC, i.e. at about 88 µs. The main purpose of this third step is to
wait for the end of the past-future pile-up protection. The read-out of the detector
electronics into the optical data link is initiated only upon receipt of a positive L2
decision. As mentioned in Sec. 3.4.5.2, the five trigger classes (trigger signals) from
MUON spectrometer contribute to the L0 decision.

In addition ALICE uses a very fast interaction ’pre-trigger’, which is derived
from the multiplicity arrays (V0, T0) and fed directly to the TRD within ≤ 200 ns
in order to activate the TRD electronics. Only if the TRD pre-trigger is sent, the

2FPGA: Field-Programmable Gate Array, more details can be find in Wikipedia: FPGA.
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TRD is ready to accept triggers, or to be read out. Therefore, the confirmatory TRD
pre-trigger signal (interaction detected AND TRD in ready state) is a prerequisite
for any class for which TRD triggers or readout are required.

In general, the input data handled by the ALICE CTP is global, in the sense that
the CTP does not correlate specific geometrical regions in different detectors. How-
ever, for given applications it might not be necessary to record data from all regions
of the detector, but only from given azimuthal sectors, with an obvious saving in
the overall data volume. The boundaries between these different azimuthal sectors,
which define Regions-of-Interest (RoI), line up in the larger central detectors
TPC, TRD and TOF, and equivalent boundaries could be imposed in software in
the ITS. If a given trigger detector can identify an azimuthal sector as being the
one carrying the information giving rise to the trigger (e.g. the presence of a high
pt electron), it is foreseen that a flag can be set to identify the sectors of interest.
These can then be treated in a special way, e.g. by selecting only those sectors for
readout to DAQ, or by treating them differently in the HLT.

When several trigger classes are running concurrently, it becomes necessary to
adjust the rates at which they are read out to reflect the physics requirements
and the overall DAQ bandwidth. These factors may dictate rates quite different
from the natural interaction rates. Studies of data flow through the front end and
DAQ systems show that with the current choices for numbers of front end buffers,
saturation of front end data storage can be avoided, but without further action
temporary data storage in the DAQ can become saturated, with a relaxation time
of the order of seconds. This phenomenon would particularly affect rare processes,
as these would find the available bandwidth for data recording utilized by more
common processes. To avoid this problem, all trigger classes are classified into two
groups: those corresponding to rare processes and those corresponding to common
processes. Initially all activated trigger classes can generate triggers. On a signal
from the DAQ, sent when the occupied temporary storage exceeds some preset ’high
water mark’, the common classes are temporarily disabled, thus ensuring continued
available bandwidth for rare processes. When the available temporary storage has
gone below some corresponding ’low water mark’ the common classes are again
enabled. Owing to the long relaxation time, timing is not critical, and software
signals are adequate for toggling the suppression of common classes.

4.1.2 Data AcQuisition (DAQ) System

ALICE will study a variety of (physics) observables, using different beam con-
ditions. A large number of trigger classes will be used to select and characterize
the events. The function of the DAQ system is to realize the data flow from the
detector up to the data storage, including the data flow to and from the HLT farm
as well as sub-event and complete event building. The DAQ system also includes
software packages for raw data integrity and system performance monitoring and
overall control of the DAQ system.

The architecture of the data acquisition is shown in Fig. 4.1. The detectors
receive the trigger signals and the associated information from the CTP, through a
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Figure 4.1: The overall architecture of the ALICE DAQ and the interface to the
HLT system [237].

dedicated LTU interfaced to a TTC system. The Front-End Read-Out (FERO)
electronics of the detectors is interfaced to the ALICE-standard Detector Data
Links (DDL) and used both for the transfer of physics data from the detector to
the DAQ and for the transfer of control commands and configuration parameters
in the opposite direction. The data produced by the detectors (event fragments)
are injected on the DDLs using the same standard protocol. The fact that all the
detectors use the DDL is one of the major architectural features of the ALICE DAQ.

At the receiving side of the DDLs there are PCI-X based electronic modules,
called ’DAQ Readout Receiver Card’ (D-RORC). The D-RORCs are hosted
by the front-end machines (commodity PCs), called Local Data Concentrators
(LDCs). Each LDC can handle one or more D-RORCs. The D-RORCs perform
concurrent and autonomous Direct Memory Access (DMA) transfers into the
LDCs’ memory, with minimal software intervention. The event fragments originated
by the various D-RORCs are logically assembled into sub-events in the LDCs. The
CTP receives a busy signal from each detector. This signal can be generated either
in the detector FERO’s or from all the D-RORCs of a detector. The role of the
LDCs is to ship the sub-events to a farm of machines (also commodity PCs) called
Global Data Collectors (GDCs), where the whole events are built (from all the
sub-events pertaining to the same trigger). The GDCs archive the data over the
storage network as data files of a fixed size to the Transient Data Storage (TDS).
During a run period, each GDC produces a sequence of such files and registers them
in the Alice Environment (AliEn) software [271].
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Another major architectural feature of the ALICE DAQ is the event builder,
which is based upon an event-building network. The sub-event distribution is driven
by the LDCs, which decide the destination of each sub-event. This decision is taken
by each LDC independently from the others (no communication between the LDCs is
necessary), but it is synchronized among them by a data driven algorithm, designed
to share fairly the load on the GDCs. The Event-Destination Manager (EDM)
broadcasts information about the availability of the GDCs to all LDCs. The role
of the GDCs is to collect the sub-events and assemble them into whole events. The
GDCs also feed the recording system with the events that eventually end up in
Permanent Data Storage (PDS).

In DAQ all hardware elements are coherently driven and controlled by the DAQ
software framework (DATE). The DATE controls and synchronizes the pro-
cesses running in the LDCs and the GDCs. It can run on an LDC, a GDC or
another computer. The monitoring programs receive data from the LDC or GDC
streams. They can be executed on any LDC, GDC or any other machine accessible
via the network. The fundamental requirement for a detailed, real-time assessment
of the DAQ machines (LDCs and GDCs), for the usage of the system resources,
and for the DATE performance is addressed by the DAQ performance moni-
toring software (AFFAIR) package. AFFAIR gathers performance metrics from
the LDCs and GDCs and performs the centralised handling of them. In addition,
DAQ also includes other monitoring and control applications: DAQ framework
for the Monitoring Of Online Data (MOOD) and DAQ framework for the
Automatic MOnitoRing Environment (AMORE), which are used to handle
the detector status, online and offline data stream, etc..

4.1.3 High-Level Trigger (HLT)

The High Level Trigger [272] combines and processes the full information from
all major detectors in a large computer cluster. It receives a copy of all relevant
raw data via DDLs and the ’HLT Readout Receiver Card’ (H-RORC) into the
Front-End Processors (FEP). The generated data and decisions are transferred
to dedicated LDCs. Its task is to select the most relevant data from the large input
stream and to reduce the data volume by well over an order of magnitude in order
to fit the available storage bandwidth while preserving the physics information of
interest. Therefore on-line processing is advised in order to select relevant events
or sub-events and to compress the data without losing their physics content. The
overall physics requirements of the HLT are categorized as follows:

trigger accept or reject events based on detailed online analysis;

select select a physics region of interest (RoI) within the event by performing only
a partial readout;

compress reduce the event size without loss of physics information by applying
compression algorithms on the accepted and selected data.
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Figure 4.2: The six architectural layers of HLT [237].

The HLT implements a processing hierarchy as shown in Fig. 4.2. The raw data
of all ALICE detectors are received via 454 DDLs at layer 1. The first processing
layer performs basic calibration and extracts hits and clusters (layer 2). The third
layer reconstructs the event for each detector individually. Layer 4 combines the
processed and calibrated information of all detectors and reconstructs the whole
event. Using the reconstructed physics observables layer 5 performs the selection
of events or regions of interest, based on run specific physics selection criteria. The
selected data is further subjected to complex data compression algorithms.

In order to meet the high computing demands, the HLT consists of a PC farm
of up to 1000 multi-processor computers. The data processing is carried out by
individual software components running in parallel on the nodes of the computing
cluster. In order to keep inter-node network traffic to a minimum and for the
means of parallelisation, the HLT data processing follows the natural hierarchical
structure. Local data processing of raw data is performed directly on the Front-End
Processors (FEPs), hosting the H-RORCs. Global data processing, with already
reduced data, is done on the compute nodes. The trigger decision, Event Summary
Data (ESD) of reconstructed events and compressed data are transferred back to
the DAQ via the HLT output DDLs.
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4.1.4 Detector and Experiment Control System

The primary task of theDetector Control System (DCS) is to ensure safe and
correct operation of the ALICE experiment. It will provide configuration, remote
control, and monitoring of all experimental equipment. Unlike most of the other
online systems, the DCS is supposed to be operational, throughout all operational
phases of the experiment, including shutdown periods, putting strong requirements
on availability and reliability. In order to ensure a coherent control system and
limit the resources needed to develop it, commonalities across the sub-detectors are
exploited and common solutions are developed and used wherever possible.

The hardware architecture is divided into three layers: the supervisory layer
(PCs) provides the user interface and the connection to disk servers or ALICE exter-
nal systems; the intermediate control layer (PCs and PLCs) will collect and process
information from the lowest (field) layer via field buses or the Local Area Network
and forward them to the supervisor (and vice versa). The field layer contains all
field devices (e.g. power supplies), sensors and actuators.

The software architecture is built as a tree-like structure representing the struc-
ture of sub-detectors, their sub-systems and devices. The basic building blocks for
implementation of the controls hierarchy are Control Units (that model the be-
haviour and interactions between components) and Device Units (that drive the
equipment to which they correspond). Like ECS, DAQ, and HLT, the DCS uses
an implementation based on Finite-State Machines (FSMs). These provide an
intuitive and convenient mechanism to model the functionality and behaviour of a
component. The architecture allows for the implementation of hierarchies of FSM
working in parallel providing rule-based automation and error recovery.

The software framework is based on the commercial SCADA (Supervisory
Controls And Data Acquisition) system PVSSII. The communication with the
experiment’s equipment can use a direct interface to PVSSII as well as alternatives
based on industrial standards (OPC) or a specific CERN development (DIM).

As well as controlling all sub-detector equipment, the DCS will also be the
interface to the various external services needed for the operation of the experiment
such as gas, cooling, electricity, safety, etc..

The Experiment Control System (ECS) provides a unified view of the ex-
periment and a central point from where all operations are initiated and controlled.
It also has to allow independent concurrent activities on parts of the experiment (at
the detector level) by different operators. Finally, it has to coordinate the opera-
tions of the specific control systems active on a lower level: the detector control, the
trigger control, the DAQ run control and the High-Level Trigger control.

Two categories are used to model operations, namely the Activity Domain and
the Detector. They are interrelated in the experiment, forming a two-dimensional
space upon which the ECS operates. Each Activity Domain extends across the
Detectors and, conversely, partitioning the system in independent sets of Detectors
implies cutting across all the Activity Domains.

At the centre of the ECS is a database, where all resources are described. The
Experiment Control Agent (ECA) is a utility that facilitates the manipulation
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of the database. Resources are allocated by the Partition Control Agent (PCA),
whichs creates a working environment for the Detector Control Agent (DCA),
in such a way that only allocated resources are seen by the sub-systems.

The technology is implemented via FSMs, which provide an intuitive way of
representing a behavioral model of a real object and provide a natural way for
communication, based on the control of objects located in a remote Activity Domain.

4.2 ALICE Offline Project

The role of the Offline Project is the development and operation of the frame-
work for data processing. This includes tasks such as simulation, reconstruction,
calibration, alignment, visualization and analysis. These are the final steps of the
experimental activity, which aimed at interpreting the data collected by the exper-
iment and at extracting the physics content. In a large and complex experiment
as ALICE, this implies the development and operation of a quite diverse set of
environments.

4.2.1 ALICE Computing Grid

Figure 4.3: Schematic view of the ALICE offline computing tasks in the framework
of the tiered MONARC model. Taken from Ref. [273].

The distributed computing infrastructure serving the ALICE experimental pro-
gramme (also the other experiments at LHC) is coordinated by the Worldwide
LHC Computing Grid (WLCG) project. The WLCG computing infrastructure
is, by nature, highly hierarchical, as shown in Fig. 4.3. All real data originate from
CERN, with a very large computing centre called Tier-0. Large regional computing
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centers, called Tier-1, share with CERN the roles of a safe storage of the data on high
reliably storage media and to perform the bulk of the organized processing of the
data. Smaller centers, called Tier-2, are logically clustered around the Tier-1’s. The
main difference between the two kind of centers is the availability of high-reliability
mass-storage media at Tier-1’s. Tier-2’s use the ’closest’ Tier-1 to store the data
that they produce. The major role of Tier-2’s is simulation and end-user (sometimes
also called chaotic) analysis.

Within the WLCG structure, a centre, to qualify as a Tier-1 or Tier-2, has to
sign and follow up the corresponding, Service Level Agreement (SLA), which
specifies Quality-Of-Service (QoS) and intervention delays. Smaller centres, cor-
responding to a departmental computing centre and sometimes called Tier-3’s, con-
tribute to the computing resources but there is no definite role or definition for
them.

The data processing strategy and the Tier computing centers hierarchy derive
from theMonarch model [274]. During proton-proton collisions the data, recorded
at an average rate of 100 MB/s, are written by the DAQ on a disk buffer at the
CERN (Tier-0) computing centre, where the following four activities proceed in
parallel on the RAW data:

1. copy to the CASTOR tapes;

2. export to the Tier-1 centers to have a second distributed copy on highly-
reliable storage media and to prepare for the successive reconstruction passes
that will be processed in the Tier-1 centers;

3. first pass processing at the Tier-0 centre, this includes: reconstruction, pro-
duction of calibration and alignment constants and scheduled analysis;

4. fast processing of selected sets of data, mainly calibration, alignment, recon-
struction and analysis on the CERN Analysis Facility (CAF) [275].

During nucleus-nucleus runs, as the rate of data acquisition is so high that an
excessive amount of computing resources and network bandwidth would be necessary
for quasi-online processing. Therefore the processing of the nucleus-nucleus RAW
data proceeds as follows:

1. registration of the RAW data in CASTOR;

2. partial export to the Tier-1 centers to allow remote users to examine the data
locally;

3. partial first pass processing at the Tier-0 centre to provide rapid feedback on
the offline chain;

4. fast processing, mainly calibration, alignment, reconstruction and analysis on
the CAF.
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The implementation of the above model relies on a distributed computing in-
frastructure enabled by Grid Middleware. Since 2001, ALICE developed a set of
Middleware services, AliEn [276], which implements the above model. With the de-
velopment of various large Middleware projects, it became possible to replace some
of these services with the services offered by these projects. In the resulting archi-
tecture, the user interacts with the Grid via the AliEn User Interface (UI), and
the services are offered by a combination of AliEn Middleware, providing high-level
or ALICE specific services, and the Middleware installed on the computing centre,
providing basic services. The key components and services of the AliEn are:

authentication & authorization this allows the user to access the Grid to anal-
ysis the data and submit the jobs for simulation and analysis;

job management this part includes the auditing services and workload manage-
ment, to validate the jobs on Grid and optimizes the queue of jobs by taking
into account job requirements based on input files, CPU time, architecture,
disk space, etc.; the workload management service can modify the job’s JDL 3

entry by adding or elaborating requirements based on the detailed informa-
tion it gets from the system like the exact location of the dataset and replicas,
client and service capabilities. When a job requires several files, the workload
management systems ’splits’ the job in several sub-jobs, each of them dealing
with files that are co-located at the same Storage Element (SE);

file catalogues input and output associated with any job is registered in the AliEn
File Catalogue controled by the Data management; a virtual file system
in which a file or a file collection (data set) is identified by a GloballyUnique
IDentifier (GUID); file catalogue does not own the files, it only keeps an
association between the LogicalFileName (LFN) and (possibly more than
one) Physical File Name (PFN) on a real file or mass storage system;
PFNs describe the physical location of the files and include the name of the
AliEn storage element and the path to the local file; the system supports file
replication and caching and uses file location information to schedule jobs for
execution.

AliEn also includes the Application Programming Interface (API) services to
provide an AliEn interface in ROOT (see Sec. 4.2.2), as well as the Information
and Monitoring services used to check and publish the status of Grid under the
MonALISA 4 framework [278].

4.2.2 AliRoot Framework

The ALICE offline framework, AliRoot [279], is shown schematically in Fig. 4.4 5

Its implementation is based on Object-Oriented techniques for programming and, as
3The AliEn user interface uses the Condor ClassAds [277] as a Job Description Language

(JDL).
4MonALISA=MONitoring Agents using a Large Integrated Services Architecture
5Before 2012, the ALICE collaboration had 4 Physics Working Groups (PWGs):
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Figure 4.4: Schematic view of AliRoot framework.

PWG1 ALICE Detector Performance,

PWG2 Soft Physics,

PWG3 Heavy Flavour an quarkonia,

PWG4 High pt and Photons,

as shown in Fig. 4.4. PWG3-MUON is one sub-group under the PWG3 which focus on the open
heavy flavours measurements via (di)muons, the quarkonia and vector bosons (low mass resonances,
W± and Z0) studies according to their dimuon decays. Since 2012, due to the increasing physics
topics in the ALICE collaboration, the physics working groups are splitted from 4 to 8:

PWG-PP Physics Performance,

PWG-CF Correlations Fluctuations and Bulk,

PWG-DQ Dileptons and Quarkonia,

PWG-HF Heavy Flavour,

PWG-GA Gamma (γ, photo) and π0,

PWG-LF Light Flavour spectra,

PWG-JE Jets,

PWG-UP Utra-peripheral, Diffractive, Cosmics and pp First Physics.

The old PWG3-MUON, is now separated in four sub-groups:

PWG-DQ-LMmumu Low Mass dimuon,
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a supporting framework, on the ROOT system [280], complemented by the AliEn
system which gives access to the computing Grid. These fundamental technical
choices result in one single framework, entirely written in C++, with some external
programs (hidden to the users) still in FORTRAN.

The AliRoot framework is used for simulation, alignment, calibration, recon-
struction, visualisation and analysis of the experimental data. AliRoot has been
in continuous development since 1998. In the preparation phase, before the start
of data taking, it was used to evaluate the physics performance of the full ALICE
detector and to assess the functionality of the framework towards the final goal
of extracting physics from the data. The role of the AliRoot framework is shown
schematically in Fig. 4.5. The kinematics tree containing, for example, the physics
processes at the parton level and the results of the fragmentation (primary parti-
cles) is created by event generators. The data produced by the event generators
contain full information about the generated particles: type, momentum, charge,
and mother-daughter relationship. During the transport, the response of the detec-
tors to each crossing particle is simulated. The hits (energy deposition at a given
point and time) are stored for each detector. The information is complemented by
the so called ’track references’ corresponding to the location where the particles are
crossing user defined reference planes. The hits are converted into digits taking
into account the detector and associated electronics response function. Finally, the
digits are stored in the specific hardware format of each detector as raw data. At
this point the reconstruction chain as implemented for the real data is activated.
To evaluate the software and detector performance, simulated events are processed
through the whole cycle and finally the reconstructed particles are compared to the
Monte Carlo generated ones.

The basic design features of the AliRoot framework are re-usability and modular-
ity. Modularity allows replacement of well defined parts of the system with minimal
or no impact on the rest. For example, it is possible to change the event genera-
tor or the transport Monte Carlo without affecting the user code. Elements of the
framework are made modular by defining an abstract interface to them. The codes
from the different detectors are independent so that different detector groups can
work concurrently on the system while minimizing the interference. The adopted
development strategy can handle design changes in production code for cases when
new elements are introduced. Re-usability is the protection of the investment made
by the programming physicists of ALICE. This investment is preserved by design-
ing a modular system and by making sure that the maximum amount of backward
compatibility is maintained while the system evolves.

The ROOT framework, upon which AliRoot is developed, provides an environ-

PWG-DQ-Jpsi2mumu J/Ψ→ µ−µ+,

PWG-DQ-Upsilon2mumu Υ→ µ−µ+,

PWG-HF-HFM Heavy Flavour Muons.

The analysis for this four new sub-groups are all based on the data from ALICE MUON Spec-
trometer, and there still are some common tasks shared between them. In order to facilitate the
analysis we keep still them together, as in Fig. 4.6.
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Figure 4.5: Data Processing Framework of AliRoot

ment for the development of software packages for event generation, detector sim-
ulation, event reconstruction, and data analysis. The ROOT system was extended
with ALICE specific classes and libraries grouped in modules. These libraries are
loaded dynamically and the contained classes share the same services with the native
ROOT classes, including object browsing, I/O, dictionary and so on. The ROOT
system is interfaced with the Grid Middleware in general and, in particular, with
the ALICE-developed AliEn system. In conjunction with the PROOF [281] system,
which extends ROOT capabilities on parallel computing systems and clusters, this
provides a distributed parallel computing platform for large-scale production and
analysis.

4.3 Analysis Framework of MUON

Analysis is the final operation performed on the data and the one finally des-
tined to extract physics information. In the ALICE Computing Model, the analysis
starts from the ESD produced during the reconstruction step. Analysis tasks pro-
duce Analysis Oriented Data (AOD) with standard content condensed from the
ESD as well as AODs for specific analyses. Further analysis passes can start from
condensed AODs.

An analysis framework (AliAnalysis) was developed for end-user analysis. The
AliAnalysis is based on TSelector and TTask classes in ROOT, it was imple-
mented such that the user code is independent of the used computing scheme (local,
PROOF or Grid). It also allows to include Monte Carlo information into the analy-
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sis chain so that it can be used for efficiency and acceptance correction studies. The
analysis framework permits the splitting of each analysis into a tree of dependent
tasks. Each task is data oriented: it registers the required input data and publishes
its output. The optimization of the execution chain is done after the registration of
all tasks included in the analysis.

4.3.1 Overall View

Figure 4.6: Schematic view of MUON analysis framework [282].

Fig. 4.6 shows the schematic view of the MUON analysis framework, extracted
from [282]. To illustrate this framework more clearly, we classify it into three inde-
pendent analysis chains: the filter & tag chain, the analysis chain and the correction
chain. The filter & tag chain provide the inputs for the analysis chain, and the fi-
nal physics results are gotten by merging the outputs from the analysis chain and
correction chain together.

The filter chain starts from the ESD, obtained by reconstructing the RAW data
with the calibration and alignment. There are two basic filter tasks named Ali-
AnalysisTaskESDfilter and AliAnalysisTaskESDMuonFilter used to extract
the physics information from the ESD and fill them into the AOD, according to
the cuts set in the filters. The AliAnalysisTaskESDfilter filters the ESD event
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except the MUON one. It records the information which will be directly used for
the physics analysis from the AOD. Also, during the filter procedure, there will be
the pre-construction for some physics observables, like jets, multi-body decay and
cascade decay, etc., and these results will be recorded in the corresponding branches
of the AOD tree.

The filter will both reduce the size of the AOD and make the analysis based on
the AOD more straightforward. On the other hand, the muon analysis just needs
inputs from the MUON spectrometer, SPD, V0 (T0) and ZDC. It is independent
on the other detectors in the central barrel 6. Also, not all the events include the
muon tracks (in particular in proton-proton collisions); as mentioned in Sec. 3.4.5.2,
the MUON spectrometer can take data alone with other detectors and build the
MUON triggered events. In this case the ESD MUON filter, AliAnalysisTaskES-
DMuonFilter, is separated from the global filter. It can be run both with the
global filter to build the full AOD event and alone to only fill the information for
muon analysis in the AOD. Additional, for muon analysis, there is another filter,
to record events which have at least one or two muon tracks in the AOD and build
the MuonAOD and/or diMuonAOD. This filter will decrease the file size further
and make the (di)muon analysis faster. Normally, the filter tasks are run on the
ALICE official train, several parallel tasks can also be run together with them to
make the detectors QA, to give preliminary distributions and to create the special
AODs similar as the (di)MuonAOD for special physics. The events tag (like event
multiplicity, number of tracks in special detectors) is build in this step. They are
used to select the interesting events for the analysers.

The analysis chain can be presented both in the ALICE official train and by
individual analysers. The tasks in the analysis chain, normally, are created by
the individual analysers for their specific physics requirements. As a example, we
will give a detailed introduction for our muon analysis task, in the next section
(Sec. 4.3.2).

The correction chain are used to get the correction efficiency for the final observ-
ables. The correction efficiency for a given final observable includes two parts, the
reconstruction efficiency and the acceptance efficiency. The reconstruction efficiency
depends on the dead channels of the detector read out, the misalignment etc.. The
first task to build the efficiency is to record these informations in the Offline Cal-
ibration Data-Base (OCDB), for simulating the detector response in the next
step. The detector occupancy will also affect the reconstruction efficiency. The
probability of different particles overlapping in the same detector region increases
with the event multiplicity. This effect becomes more important in Pb–Pb collisions.
One way to study the occupancy dependent reconstruction efficiency is to embed
the simulated physics signal with the OCDB built from data into the real RAW data
with different multiplicities and to perform the reconstruction for these embedding
events. The occupancy dependent efficiency, then, is gotten by measuring the re-

6As mentioned in Sec. 3.4, the study of electron–muon coincidences needs the combination of
the information from both MUON spectrometer and the central barrel detectors. Therefore, one
needs both the special trigger during the data taking and the independent filter to exact the signals.
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construction efficiency for the embedding signals. The acceptance efficiency is due
to the cuts used during the analysis. The estimate of this efficiency could be very
sensitive to the input shapes of the signal used for the simulation. The efficiency
matrix can be obtained via an iterative approach [283], but this needs a large cost
of CPU time. During our analysis, we choose an alternative method to estimate this
efficiency, the detailed illustration will be presented in the corresponding section of
our analysis later.

4.3.2 Muon Code for HF Analysis

Figure 4.7: Schematic view of the analysis tasks for the study of heavy flavours with
muon data.

The physics topic presented in this thesis is the measurement of open heavy
flavours via their single muon and/or dimuon decay channels in the ALICE MUON
spectrometer. The design of the analysis code should satisfy this physics purpose.

As shown in Fig. 4.6, ESDs are created after data reconstruction. The ESD filter
transfers the information from ESDs to AODs. Generally, the analysis is encouraged
from AODs because, thanks to their small size, the analysis is more straightforward
and faster. However, in some cases, the analysis has to be carried out at the ESD
level:

118



• AODs are usually produced a bit later than ESDs. Therefore, in order to have
a quick look at the data, it is sometimes mandatory to analysis the ESDs;

• after filtering, AODs do not include all information present at the ESD level.
It is therefore sometimes useful to analyze the ESDs in order, for instance,
to understand the background level in the data and to establish a strategy to
remove this background by means of cuts on variables stored in the ESDs;

• in some cases, ESDs are not converted to AODs in order to save additional
CPU time. This mostly happens for simulated data.

For the three reasons above, it is required that the analysis code must be able to
treat both ESDs and AODs as input.

The analysis code should also be able to treat Monte-Carlo data at two levels:
reconstructed data (like for real data) and MC truth. This is particularly important
in order to build efficiency correction matrices. This requires that, depending on
whether the analysis is based on data or simulations and according to the outputs
from the analysis task, the structure can change dynamically in order to only include
the reconstructed information or include simultaneously the additional MC truth
information.

These requirements are essential for the analysis using single muon and dimuon
channels. In order to save CPU time and to optimize the size of the output data, one
generally studies the single muon channel and the dimuon channel independently.
The analysis tasks should therefore be able to run in three different modes: single
muon analysis, dimuon analysis or both.

The muon analysis code design is shown in Fig. 4.7. In order to fulfill all above
requirements, it includes six modules:

AliAnalysisTaskSEMuonsHF the main task to implement the ALICE analysis
framework;

AliMuonInfoStoreRD extracts and stores the muon tracks information from
data, and implement the single muon selection cuts;

AliDimuInfoStoreRD combines the single muon information stored in AliMuon-
InfoStoreRD into dimuon pairs. In order to avoid to use again of the storage
ressources, it just saves the hyperlinks to the corresponding two single muons.
The methods for calculating the dimuon pair kinematics and for implementing
the dimuon pair selection cuts are performed in this module;

AliMuonInfoStoreMC is derived from AliMuonInfoStoreRD, and deals with sim-
ulated inputs. The reconstructed information saved in AliMuonInfoStoreRD
is in the same form as that from reconstructed (real) data. The additional
MC truth information is extracted and stored in this module. It includes a
method to distinguish muons originating from different sources. This makes
use of a switch allowing to loop over the muon mothers at parton level. Note
that the use of this switch is restricted to proton-proton simulated data where
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there is at most one heavy quark pair generated in each event. In Pb–Pb
collisions, where several heavy quark pairs are produced, it would require too
many loops and would increase the CPU time significantly;

AliDimuInfoStoreMC similar to AliMuonInfoStoreMC but it is derived from
AliDimuInfoStoreRD. It saves the two hyperlinks to the AliMuonInfoStoreMC
objects. The methods for identifying different dimuon sources are implemented
here;

AliMuonsHFHeader extracts and stores the information at event level, like the
event trigger mask, vertex position and collision centrality etc.. It is also used
to collect the information stored in the single muon or dimuon InfoStore to fill
the (di)muon distribution histograms according to the corresponding running
mode with the (di)muon selection cuts set in the (di)muon InfoStore.

The whole analysis chain includes the following steps:

1. the nature of the inputs (ESDs or AODs) is determined in AliAnalysisTaskSE-
MuonsHF automatically;

2. the input event is pushed into AliMuonsHFHeader. It extracts and saves the
information at event level;

3. loop over the muon tracks and record their information with AliMuonInfoS-
toreRD or AliMuonInfoStoreMC, depending if the input is data or simulation;

4. if the dimuon mode is required, additional loops to combine the MuonInfo-
StoreRD/MC in DimuInfoStoreRD/MC are activated in AliAnalysisTaskSE-
MuonsHF;

5. finally, all actived InfoStore modules are pushed in AliMuonsHFHeader, where
the distributions of (di)muons are filled according to the selection cuts at both
event level and (di)muon level.

The five modules in the box shown in Fig. 4.7 construct a ROOT tree containing
the muon event. If the corresponding switch is turned on, the tree level events will
be written to the output as a external AOD tree, which can be read by the standard
AOD class, AliAODEvent, for the local analysis. This analysis task has been
implemented in the ALICE official analysis train, as shown in Fig. 4.6. It is run and
allows to get the distribution of (di)muons on a weekly basis. As outputs based on
trees or n-tuples are forbidden to save disk storage, the flag for output the "own"
AOD tree is turned off in the official analysis train. Our specific analysis is fully
based on these "own" AODs.

In addition, in order to measure the flow of muons from heavy flavour decays, we
also updated the ALICE flow analysis framework. It will be introduced in Sec. 9.2.2.
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Part III

Measurements of Open Heavy
Flavours with the Muon

Spectrometer





Chapter 5

Performance Study of Open HF
Measurements

The capabilities of the ALICE muon spectrometer for reconstructing the open B-
hadron production cross section in Pb–Pb collisions at

√
sNN = 5.5 TeV was studied

in [284]. Here, we discuss the performance of the ALICE muon spectrometer to
measure the inclusive production differential cross sections of both the open charm
and the open beauty hadrons from single muons and unlike-sign dimuons in pp
collisions at

√
s = 14 TeV. These studies were started 2008 and finished before the

first data taking period with ALICE in December 2009. We start with a simple
(clean) case by considering that the background is perfectly subtracted. This also
allows to test the algorithms to disentangle charm and beauty components and to
convert the production cross section at the (di)muon level to the one at the hadron
level. Then a realistic background will be considered in order to discuss the muon
sources and possible methods for background subtraction. The results related to
this analysis are published in two ALICE internal notes [285, 286].

5.1 Analysis Inputs

In order to prepare the full analysis chain for the measurement of the open heavy
flavour hadron cross section in pp collisions at

√
s = 14 TeV, realistic high statistics

simulated data were required. For this purpose we used a high statistics simulation
produced within Physics Data Challenge 2006 (PDC06) via the Computing
Grid.

5.1.1 Simulation Strategy

The PDC06 sample is based on full AliRoot simulations of pp collisions, in-
cluding the response of the detector via GEANT3 [287], from generation to recon-
struction and production of Event Summary Data (ESD). Each event consists of a
cocktail with a minimum bias event from PYTHIA Monte-Carlo generator [288] and
quarkonium signals: J/ψ, ψ′, Υ(1S), Υ(2S), and Υ(3S) (it has been checked that
quarkonium production in the used PYTHIA version, PYTHIA 6.2, was negligible).
PYTHIA events were generated with the global QCD process option MSEL= 1,
the so-called ATLAS tuning for multiple interactions [289] and the CTEQ5L set
of parton distribution functions [158]. The main parameter that should be opti-
mized in PYTHIA is the phard

t threshold. A minimum phard
t of 2.76 GeV/c is in

particular mandatory to reproduce the pt distribution of cc pairs of NLO pQCD



calculations implemented in the HvQMNR program [151]. In such conditions, as
shown in Tab. 5.1, the charm production cross section is underestimated by a factor
of about two whereas the beauty production cross section agrees within errors with
NLO HvQMNR calculations [133]. The input production cross sections of char-
monium and bottomonium states (also shown in Tab. 5.1) have been provided by
the Colour Evaporation Model (CEM) [290]. They include direct production
and feed-down from higher mass resonances. Note that it has been shown that the
CEM predictions are in agreement with the experimental data at Tevatron energies
for bottomonium production and underestimate the charmonium cross sections by
about a factor of two [291]. The rapidity distributions of the different quarkonium
states are obtained from a parameterization of the CEM predictions whereas the
pt distributions are an extrapolation to

√
s = 14 TeV of the ones measured by the

CDF experiment at
√
s = 1.96 TeV. Finally, the default Lund String Model [292]

included in PYTHIA is used for the hadronisation.

cc bb J/ψ ψ′ Υ(1S) Υ(2S) Υ(3S)

σ (µb) 5677 490 49.44 7.67 0.989 0.502 0.228

Table 5.1: Heavy flavours and quarkonia production cross sections in pp collisions
at
√
s = 14 TeV simulated in PDC06.

In order to reduce the computing time and to accumulate sufficient statistics for
large muon pt or high dimuon invariant mass (Minv) studies, a software trigger is
applied at the generation level. It requires a minimum muon multiplicity (at least
one or two muons, respectively) in the acceptance of the muon spectrometer and a
pt threshold of 0.5 GeV/c on each muon. With this trigger at software level, the
background of muons from light hadron decays (mainly pions and kaons) is sup-
pressed strongly. This is due to the fact that in the AliRoot simulation framework,
for a better emulating the detector response, the decays of the short-life and long-
life particles are treated differently. The life-time of open heavy flavour hadrons
(cτ = 311.8 µm for D-hadrons and cτ ' 500 µm for B-hadrons typically) is very
short and they treated as short-time particles in the simulation. The decay of this
kind of particles is played by the internal decayer at the generation level before
pushing all particles into the transport code (eg. GEANT). If a semi-muonic decay
of open heavy flavour hadrons occurs in a given simulated event and the muon satis-
fies the pt threshold, it will be recorded and pushed into the transport code to finish
the whole decay chain. On the other hand, the life-time of pions (cτ = 7.9 m) and
kaons (cτ = 3.7 m) is quite large. Pions and kaons are treated as long-life particles
in the simulations. Their decay is handled by the external decayer in the transport
code but not at the generation level. In this case, if there are only pions and/or
kaons generated in a given event but no open heavy flavour hadrons, this event will
be rejected by the trigger at software level since the semi-muonic decay of pions
and kaons is not present in this stage. According to this principle, almost all events
without the semi-muonic decay of open heavy flavours in the acceptance of muon
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spectrometer are rejected by the trigger at the software level.
In addition to the muon spectrometer, the response of the sub-detectors, V0,

T0, SPD, TOF, ZDC, FMD and PHOS, which are required for other physics topics
are also simulated. Finally, a total number of about 1 ·106 (2.5 ·106) pp events with
single muon (dimuon) software trigger are available for the analysis. The simulations
cost ∼ 1400 and ∼ 17000 CPU days for single muon and dimuon productions,
respectively, and used ∼ 1.3 TB disk space for the storage.

5.1.2 Efficiency Correction

Figure 5.1: Single muon reconstruction efficiency as a function of pt and η.

The reconstruction efficiency correction for single muons is performed by means
of full AliRoot simulations modeling the full response of the muon spectrometer. It
is evaluated using an iterative procedure. The process first consists in simulating an
uniform muon pt distribution in the acceptance of the muon spectrometer. Then, the
same reconstruction procedure as for PDC06 data is applied to these simulated data.
The reconstruction efficiency is determined by computing the ratio of reconstructed
muon tracks to the simulated ones. For the next iteration, a weight technique allows
to use a realistic pt distribution, similar to the one from PDC06 production, for the
final reconstruction efficiency correction. A detailed description of the procedure
can be found in [293]. The resulting reconstruction efficiency as a function of pt and
pseudo-rapidity (η), without trigger consideration, is displayed in Fig. 5.1. One can
notice that in the acceptance of the ALICE muon spectrometer (−4 < η < −2.5)
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and for pt > 2 GeV/c, the global reconstruction efficiency amounts to about 95%.
The implementation of this efficiency correction for single muons is straightfor-

ward. It consists in weighting each muon track with the inverse of the efficiency
1/eff(pt, η) corresponding to the given muon track located in the (η, pt) plane. In
the dimuon Minv distribution, the correction is done by weighting the given dimuon
pair with 1/eff(pt,1, η1) × 1/eff(pt,2, η2) from individual tracks 1 and 2, respec-
tively. The correlations between the two muons are not taken into account in the
correction of the dimuon Minv distribution.

Figure 5.2: The single muon pt distributions (left) and unlike-sign dimuon Minv

distributions (right) from PDC06 after efficiency correction.

Fig. 5.2 shows the single muon pt distributions (left) and unlike-sign dimuon
Minv distributions (right) from PDC06, after the efficiency correction is applied.
A sharp pt cut of 1 GeV/c is used in the single muon pt spectrum in order to
remove the bias for the muon trigger threshold of pt > 0.5 GeV/c at generation
level. In the case of the dimuon Minv distributions, in addition to the acceptance
cuts (−4 < η < −2.5 and p > 4 GeV/c a pt threshold of 1.5 GeV/c is applied
on the reconstructed muon tracks. The resonance components include: low mass
resonances (η, ρ/ω and φ), charmonia (J/Ψ, Ψ′) and bottomonium states. Note
that in addition to prompt J/Ψ and Ψ′, also those from B-hadron decays are taken
into account in the corresponding resonance signals. The combinatorial background
includes uncorrelated unlike-sign muon pairs from charm and beauty decay and
from the decay of light hadrons. Since the PYTHIA setting used in the PDC06
simulation underestimates the charm production cross section by a factor of ∼ 2

(Tab. 5.1), as compared to the NLO pQCD calculations, the charm components in
(di)muon distributions have been scaled accordingly. Due to the (di)muon trigger at
the software level, the background of muons from light hadrons (mainly, pions and
kaons) is strongly suppressed in both the single muon pt distribution and dimuon
Minv distribution. As a consequence, the single muon pt spectrum is dominated by
muons from D and B hadrons and, dimuons from open beauty decays is the main
component in the dimuon Minv spectrum. Finally, the statistics available in the
PDC06 production allows to exploit the muon pt distribution up to ∼ 10 GeV/c
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and the dimuon Minv distribution up to ∼ 15 GeV/c2.

5.2 Sources of (di)muons from HF

In the following, we will ignore the background in both the single muon pt

distribution and the dimuonMinv distribution 1 and we will focus on the components
of muon from the decays D and B hadrons. Then these two components will be
separated via a combined fit. Before to apply the combined fit, it is important
to understand how to describe the shapes of the different muon components. The
situation is a little bit easier with the single muon pt distribution. Heavy quarks are
produced in hard scattering processes. According to pQCD, the cross section in this
process follows a power law: dσ/dpt ∝ 1/pnt (as in Eq. 1.21). Then, the single muon
distributions from both open charm and open beauty hadrons can be described by
a power law:

fµ
±

c/b =
A

(B2 + p2
t )n

, (5.1)

The additional parameters A and B are used to parameterize the effects from the
fragmentation and decay processes. The shape of the dimuon Minv distributions
from open heavy flavours is more complicated. In order to find the appropriate shape
functions, we should perform a detailed study of the dimuon sources from open heavy
flavours. There are two ways to form a correlated dimuon pair from open heavy
flavours: the decay pair mode and the decay chain mode. For instance, regarding the
beauty production, in addition to the direct semi-muonic decay B→ µνµX, second
generation muons can also originate from cascade decay B → DX, D → µνµX

′ . If
we consider a B+ and a B0 originating from a correlated bb pair, they suffer the
following decay chains:

B+ → D0µ+
1 νµ, D0 → µ−2 X

′
,

B0 → D+µ−3 νµ, D+ → µ+
4 X

′′
.

(5.2)

When we focus on unlike-sign dimuon pairs, the B decay can produce dimuons in
different ways:

• a combination of muons, µ+
1 µ
−
2 and µ−3 µ

+
4 , from same B-hadron through a

D-hadron decay, this is the BDsame channel;

• two muons from primary B decays, µ+
1 µ
−
3 , called as BBdiff ;

• two muons from the secondary decay feed down from open beauty to open
charm production, µ−2 µ

+
4 , called as secondary DDdiff .

1In the single muon pt distribution, background is mainly composed of muons from light hadrons,
the contribution from resonances is negligible since their production cross section is much smaller
than that of open heavy flavours; the background in the dimuon Minv distribution includes contri-
butions from both light hadron decays, uncorrelated background and from resonances, as shown
in right plot of Fig. 5.2.
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In addition, the µ+
1 µ

+
4 and µ−2 µ

−
3 give the like-sign dimuon pairs called as BDdiff .

Moreover, mixing in B0-B0 can produce the correlated like-sign BBdiff and secondary
DDdiff channels. Similarly to the B decays, open D hadrons can produce unlike-sign
correlated dimuons via primary DDdiff and D-chain (D decays to µ with a light
hadron, this light hadron further decays to a µ with opposite charge with respect
to the primary muon from D decays).

Figure 5.3: Reconstructed invariant mass distributions of correlated unlike-sign
dimuons from beauty (left) and charm (right) decays in pp collisions at

√
s = 14 TeV.

The different sources are displayed.

Fig. 5.3 (left) displays correlated unlike-sign dimuons from beauty decay origi-
nating from different sources. The secondary DDdiff component is included in the
BBdiff as they originate from two correlated b quarks. In the low Minv region, both
muons originate mainly from the BDsame channel and, in the high Minv region, each
muon comes from the direct decay or indirect decay (via a D-hadron) of a B-hadron
(BBdiff channel). Correlated unlike-sign dimuons from charm decay are produced
mainly through the DDdiff channel, as shown in right plot of Fig. 5.3. Indeed, the
component of unlike-sign dimuons from the D-chain channel is negligible. This is
due to the decay process of the light hadrons (mainly pions and kaons) coming from
D-hadrons suppressed by the front absorber of the muon spectrometer. Due to their
long life time, a very large fraction of them (∼ 90%) are stopped inside the front
absorber before they decay to muons.

Furthermore, the different pQCD NLO processes of the heavy flavour production
allow to separate the BBdiff and DDdiff components into more classes. Fig. 5.4
shows the pQCD processes associated with BBdiff channel (left) and DDdiff channel
(right). In the low Minv region, gluon splitting and flavour excitation processes are
responsible for the production of unlike-sign dimuons from beauty decay in the BBdiff

channel while, at highMinv pair creation becomes the dominant production process.
Similar trends are evidenced in the DDdiff channel. In particular, the gluon splitting
process populates significantly the lowMinv region and explains the structure in the
Minv distribution of correlated unlike-sign dimuons from charm decay.
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Figure 5.4: Reconstructed invariant mass distributions of correlated unlike-sign
dimuons from BBdiff channel (left) and DDdiff channel (right) decay in pp colli-
sions at

√
s = 14 TeV. The sources corresponding to different pQCD NLO processes

of heavy flavour production are shown.

After the detailed description of all the sources in the dimuon Minv spectrum of
muons from open charm and beauty hadrons, we can choose the proper functions to
describe the shapes of these two distributions. In case of the dimuonMinv spectrum
of open beauty hadrons, as shown in left plot of Fig. 5.3, the peak in the low Minv

region (BDsame) can be described by a Gaussian:

gaus(x, x0, σ) = exp[−1

2
(
x− x0

σ
)2], (5.3)

where x0 and σ2 are the mean and variance of the Gaussian distribution. Then, the
BBdiff component with a wider width is described by a Gaussian plus a tail function
as:

tail(x, x0, a, b, n) =
1 + a · (x− x0)

[b2 + (x− x0)2]n
, (5.4)

with parameters x0, a, b and n. This tail function is used to handle the trend of the
distribution in the high Minv region. By adding the three distributions, we get the
shape function of the Minv distribution of dimuons from B-hadrons as:

fµ
−µ+

b = B1 · gaus(Minv, b1, b2)

+B2 · [gaus(Minv, b3, b4) +B3 · tail(Minv, b5, b6, b7, b8)].
(5.5)

The parameters B1, B2 and B3 are used to for the normalization of the different
components, and together with the parameters b1 ∼ b8, Eq. (5.5) has a total number
of 11 parameters. The dimuon Minv spectrum of open charm hadrons is mainly
composed by the DDdiff channel. As shown in right plot of Fig. 5.4, the peak in the
low Minv region comes from the gluon splitting process and the peak in the middle
Minv region originates from the combination of the pair production and flavour
excitation processes. We used two independent Gaussians to describe them, and
the tail function (Eq. (5.4)) is introduced to describe the behaviour of the spectrum
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in the high Minv region, as in the case of dimuons from B-hadron decays. The final
shape function of dimuon from open charm hadrons is fitted with:

fµ
−µ+

c = D1 · gaus(Minv, c1, c2)

+D2 · gaus(Minv, c3, c4)

+D3 · tail(Minv, c5, c6, c7, c8)].

(5.6)

Similarly to Eq. (5.5), Eq. (5.6) also has 11 parameters (D1 ∼ D3 and c1 ∼ c8).

5.3 Separation of Charm and Beauty Components

With the corresponding shapes for charm and beauty components of single muon
pt distribution (Eq. (5.1)) and those of dimuon Minv distribution (Eq. (5.5) and
(5.6)), now, we focus on the separation of open charm and beauty components in
both single muon and dimuon spectra via a combined fit. Since this method is
model dependent, a particular emphasis will be also placed on the estimate of the
systematic errors. Note that for that study the muon pt distributions from PDC06
have been fitted and extrapolated up to 20 GeV/c. The statistics in both single
muon and dimuon distributions corresponds to an integrated luminosity of 1 pb−1.

5.3.1 Combined Fit

We exploit here a method which allows to unravel, via a combined fit, the charm
and beauty components from the total muon distribution in a self-consistent way.
This technique is applied to both the single muon pt distribution and to the unlike-
sign dimuon Minv distribution. The corresponding distribution shapes of (di)muons
from charm and beauty decay are assumed to be known but their amplitudes are left
as free parameters. This means, we use Eq. (5.1) and, Eq. (5.5) and (5.6) to fit the
corresponding (di)muon distributions from open charm and beauty at the generation
level, and obtain all parameters of the shape functions. Once the parameters are
obtained, the shape functions are noramlized to unit. The total muon or dimuon
distribution is fitted with:

Fµ
±/µ−µ+ = Dµ±/µ−µ+ · fµ

±/µ−µ+
c +Bµ±/µ−µ+ · fµ

±/µ−µ+

b , (5.7)

where, fµ
±/µ−µ+

c (fµ
±/µ−µ+

c ) are given by Eq. (5.1) for single muons and by Eq. (5.5)
and (5.6) for the dimuon case, and are normalized to unit. The parametersDµ±/µ−µ+

and Bµ±/µ−µ+ , in Eq. (5.7), are the corresponding amplitudes for charm and beauty
components.

Indeed, the total number of (di)muons, Tµ±/µ−µ+ = Dµ±/µ−µ+ + Bµ±/µ−µ+ ,
from heavy flavour decays is known in both simulations and experimental data 2.
Therefore Eq. (5.5) can be also written as:

Fµ
±/µ−µ+ = (Tµ±/µ−µ+ −Bµ±/µ−µ+) · fµ±/µ−µ+c +Bµ±/µ−µ+ · fµ

±/µ−µ+

b , (5.8)

2In case of real data, to get Tµ±/µ−µ+ , the background subtraction should be performed. We
are going to discuss some procedures for the background subtraction in Sec. 5.5.2.
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and one is left with only one parameter, the beauty amplitude Bµ±/µ−µ+ . In order
to avoid this constraint, we introduce the ratio Rµ±/µ−µ+ = Bµ±/µ−µ+/Dµ±/µ−µ+

into the total fitting function (Eq. (5.7)). In addition, by imposing Rµ±/µ−µ+ in a
given expected range can help to reduce the systematic errors of the combined fit.
Finally, the total fitting function becomes

Fµ
±/µ−µ+ = (Tµ±/µ−µ+ −Bµ±/µ−µ+) · (fµ±/µ−µ+c +Rµ±/µ−µ+ · fµ

±/µ−µ+

b ). (5.9)

In this formula, R = B/C is assumed to be known from Monte-Carlo, but its
amplitude is left as a free parameter allowed to vary within 60% around the nominal
value.

Figure 5.5: The results of the combined fit for single muon pt distributions (left)
and dimuon Mivn distributions (right).

Fig. 5.5 shows the result of the combined fit for single muon pt distributions
(left) and dimuon Minv distributions (right). The quality of the fit is very good, for
both single muon and dimuon cases, since the number of (di)muons from beauty
and charm decay extracted from the fits differs only by less than 1% from the
corresponding number of (di)muons in the histogram.

5.3.2 Systematic Uncertainties

In order to evaluate the systematic uncertainty on the measured muon yields
from charm and beauty decays, we have used the inputs provided in the report
from the joined HERA-LHC group [152]. This consists of theoretical predictions on
B-hadron and D-hadron rapidity (y) and pt dependent production cross sections cal-
culated in the framework of NLO pQCD with different choices for the quark masses,
the QCD factorisation and renormalisation scales, the fragmentation functions and
the parton distribution functions. As these predictions are available for B-hadrons
and D-hadrons only, the corresponding y and pt distributions have been parame-
terized 3 and used in order to produce the distributions of decay muons. These
pt distributions are shown in Fig. 5.6 together with their ratio with respect to the

3These parameteriszations are available in AliRoot.
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Figure 5.6: Transverse momentum distributions (upper panels) used for the esti-
mation of systematics uncertainties and ratios of these distributions to the nominal
case (lower panels). Shown from left to right are, D-hadrons, B-hadrons, decay
muons from D-hadrons and from B-hadrons. All distributions are presented in the
acceptance of the ALICE muon spectrometer.

Figure 5.7: Example of combined fits obtained with biased fµ
±

c/b shapes for single

muon pt distribution (left) and with biased fµ
−µ+

c/b shapes for unlike-sign dimuon
invariant mass distribution (right). The vertical error bars (smaller than the points
for single muon channel) are the statistical ones.

nominal case. Note that for each parameter, only the pt distributions which give the
largest deviation as compared to the baseline are displayed. They allow to extract
biased fµ

±
c and fµ

±

b shapes which are then used as inputs to fits similar to the ones
shown in Fig. 5.5 (left panel). As the theoretical predictions are available for single
hadron distributions only, the systematic uncertainty on the number of dimuons is
based on fµ

−µ+
c and fµ

−µ+

b shapes biased "by hand" in a reasonable way. Examples
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of fits with biased fµ
±/µ−µ+

c/b shapes are shown in Fig. 5.7.

Figure 5.8: Relative systematic uncertainty on the estimation of single muons from
charm (left) and beauty (right) decay vs. pt. The different curves correspond to
different values of pQCD parameters.

Figure 5.9: Relative systematic uncertainty on the estimation of unlike-sign dimuons
from charm (left) and beauty (right) decay vs. Minv. The different curves correspond
to different fµ

−µ+

c/b biased shapes.

The relative systematic uncertainty is calculated according to

∆N/N =
|Nµ±/µ−µ+

fit −Nµ±/µ−µ+

get |
N
µ±/µ−µ+

get

, (5.10)

where Nµ±/µ−µ+

fit and N
µ±/µ−µ+

get are the number of (di)muons extracted from the
fit and from the original histogram in each pt (Minv) bin, respectively. This relative
systematic uncertainty is shown in Fig. 5.8 and 5.9 and, they have been obtained by
combining available fc and fb biased shapes. The χ2 per degree of freedom gives a
good indication about the fit quality and allows to constrain the systematics. Only
fits with a χ2 per degree of freedom smaller than 100 are considered. Beyond that
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limit, the quality of fits is very bad. The mean value (black curves in Fig. 5.8
and 5.9) shows that this uncertainty is nearly independent of the muon pt and of
the dimuon Minv. Based on these results, we assume in the following that this
systematic uncertainty reaches ∼ 15% and ∼ 20% for single muons from charm and
beauty decay and, ∼ 20% and ∼ 15% for dimuons from charm and beauty decay.

5.4 Calculation of dσD/B/dpt(pt > pmin
t )

The measured (di)muon production differential cross section, from the combined
fits, can directly be compared to theoretical predictions provided the calculations
take into account fragmentation and decay. In this section, we go further and apply
a method which allows to convert this (di)muon production differential cross section
to the corresponding hadron production differential cross section.

5.4.1 Method

The B-hadron and D-hadron production pt-differential cross sections can be
extracted from the single muon pt distribution and from the unlike-sign dimuon
Minv distribution using the method developed by the UA1 collaboration [294, 154]
and further used by CDF [295] and D0 [160] collaborations at the Tevatron. This
is done by correcting for branching ratio and decay kinematics the single muon
and unlike-sign dimuon production cross sections measured within a given (di)muon
parameter kinematic space φµ through:

σD/B(pt > pmin
t ) = σµ←D/B(φµ)× FMC

µ←D/B(φµ, pmin
t )

=
Nµ←D/B(φµ)∫

L · dt × FMC
µ←D/B(φµ, pmin

t ),
(5.11)

where, Nµ←D/B(φµ) is the efficiency corrected (di)muon yield, and
∫
L · dt is the

integrated luminosity.
In Eq. (5.11), the scaling factor FMC

µ←D/B(φµ, pmin
t ) from the Monte-Carlo is de-

fined as:

FMC
µ←D/B(φµ, pmin

t ) =
σD/B(pt > pmin

t )

σD/B(φµ)
. (5.12)

It is the ratio of the B(D)-hadron cross section in the forward region (−4 < ηB(D) <

−2.5) with p
B(D)
t > pmin

t to the cross section of B(D)-hadrons decaying to a final
state containing a (di)muon within the parameter space φµ. The muon parameter
space (φµ) is defined by a pt range, a η range (−4 < η < −2.5), a momentum
range (p > 4 GeV/c) and a Minv range (for the dimuon channel). For a given φµ,
FMC
µ←D/B(φµ, pmin

t ) depends on pmin
t . It is also worth pointing out that the branching

ratio is taken into account in FMC
µ←D/B(φµ, pmin

t ).
FMC
µ←D/B(φµ, pmin

t ) is determined in a rather straight forward way by means
of high statistics Monte-Carlo simulations. Fig. 5.10 shows an example of
FMC
µ←D/B(φµ, pmin

t ) calculation. In this figure, the area labeled as S1 corresponds
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Figure 5.10: Illustration of FMC
µ←D/B(φµ, pmin

t ) calculation.

to σD/B(pt > pmin
t ), S2 is σD/B(φµ) and S3 = σD/B(φµ, pt > pmin

t ). As defined in
Eq. (5.12), FMC

µ←D/B(φµ, pmin
t ) = S1/S2. The value of pmin

t is determined by the con-
dition S3/S2 ' 90%: that is to say that 90% of accepted D(B)-hadrons that give a
(di)muon in φµ have a pt larger than that value.

5.4.2 Systematic Uncertainty on FMC
µ←D/B(φ

µ, pmin
t )

The Monte-Carlo scaling factor, FMC
µ←D/B(φµ, pmin

t ) = S1/S2, contains two
sources of systematic uncertainty: the uncertainty on the semi-muonic decay branch-
ing ratios; the dependence of FMC

µ←D/B(φµ, pmin
t ) on the shape of the B(D)-hadron pt

distribution. The former is about 3% and is negligible with respect to the errors
already present at the (di)muon level (Sec. 5.3.2). The latter has been evaluated for
the single muon channel by means of PYTHIA simulations discussed in Sec. 5.3.2
and FMC

µ←D/B(φµ, pmin
t ) has been calculated over a broad range in pmin

t . Fig. 5.11
displays the resulting systematic uncertainty on FMC

µ←D/B(φµ, pmin
t ) for some selected

single muon pt bins. The results clearly indicate that there is an optimal value of pmin
t

for which the dependence of FMC
µ←D/B(φµ, pmin

t ) on the shape of the B (D)-hadron pt

distribution used in the simulations becomes negligible. This optimal value selects
about 90% of the B(D)-hadrons that give a muon in a φµ phase space. The resulting
systematic error introduced on the calculation of FMC

µ←B(D) is of a few % (less than
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5%) and thus is also negligible with respect to the systematic uncertainty on the
extracted muon yields. The same definition of pmin

t is used to determine the Monte-
Carlo scaling factor in the unlike-sign dimuon channel. Note that we have observed
that the parameterization used for the estimation of FMC

µ+µ−←B(D) does not provide
a consistent description of the correlation in the dimuon spectrum, in particular for
beauty. Therefore a correction was applied. This consists in a renormalization of
the number of correlated dimuons originating from two quarks to the one originating
from the same quark in the quark-antiquark pair. This renormalization has been
done according to PYTHIA simulations.

Figure 5.11: Dependence of FMC
µ←B (left panel) and FMC

µ←D (right panel) Monte-Carlo
scaling factors on pmin

t for selected muon pt bins and, for different shapes of the
B-hadron and D-hadron pt distributions.

With present statistics accumulated in the Monte-Carlo simulations, relative
statistical errors on FMC

µ←B(D) range between 0.2% and 4% (0.4% and 6%) for beauty
(charm) signal. In the dimuon channel, the corresponding relative statistical errors
run from about 1% to 7% (8% to 13%) for beauty (charm) component. Note that
such error still can be further reduced, in particular for the dimuon analysis, as it
does not depend on the statistics in the PDC06 data but only on the Monte-Carlo
simulation used for computing FMC

µ←B/(D).

5.4.3 Results

The expected performance of the ALICE muon spectrometer for the measure-
ment of the beauty and charm inclusive production differential cross sections in pp
collisions at

√
s = 14 TeV is summarized in Fig. 5.12. It depicts the reconstructed B-

hadron (left) and D-hadron (right) inclusive production differential cross sections as
a function of pmin

t in the single muon channel (squares) and in the unlike-sign dimuon
channel (triangles). A nice agreement between single muon and unlike-sign dimuon
analysis is evidenced. The results indicate that the input distribution (red curve)
is well reconstructed over a large pt range going from about 2 GeV/c to 25 GeV/c
(3 GeV/c to 15 GeV/c) for beauty (charm) component. With our analysis cuts, one
reconstructs in the ALICE muon spectrometer acceptance about 82% (84%) of the
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beauty production cross section in the single muon (dimuon) channel with respect
to the total production cross section in the ALICE muon spectrometer acceptance.
The corresponding reconstructed charm production cross section amounts to only
17% and 34% in the single muon and dimuon channel, respectively.

Figure 5.12: B-hadron (left) and D-hadron (right) inclusive production differential
cross sections in pp collisions at

√
s = 14 TeV. The results are shown in the forward

region: −4 < ηB(D) < −2.5. The histogram is the input distribution. The points
correspond to the reconstructed results from single muon and dimuon channels,
respectively. The vertical error bars (smaller than the symbols in most of cases)
are the statistical ones. The height and width of the boxes represent the systematic
error from the fits and the uncertainty on the determination of pmin

t , respectively.

The total statistical uncertainty includes the statistical error on the (di)muon
yield and on the Monte-Carlo scaling factor. We remind that the relative statistical
error on the muon yield is negligible even at high pt and is less than 2% for both
beauty and charm component. This error amounts to about 2.5% (5%) for the
unlike-sign dimuon yield from beauty (charm) decay in the highestMinv range. The
present relative statistical error on FFM

µ←B/D does not exceed more than 6% and 13%

in the single muon and in the unlike-sign dimuon analysis, respectively. We stress
that such error still can be reduced, provided that more statistics is accumulated in
the Monte-Carlo simulation. Therefore, the main source of errors is the systematic
from the fit (height of boxes). This systematic error exhibits a nearly constant value
with pt orMinv of about 15% or 20%, depending on the physics channel. Additional
systematic uncertainties on the branching ratio (3%) and on the nucleon-nucleon
inelastic cross section (5%) are not displayed.

5.5 Discussions

We have reported on the ability of the ALICE muon spectrometer for the mea-
surement of the B-hadron and D-hadron inclusive production differential cross sec-
tions, via single muons and unlike-sign dimuons, in pp collisions at

√
s = 14 TeV.

The results indicate that the measurements could be carried out over a wide pt range.
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Systematic errors are expected not to exceed 20%. The measurements represent a
crucial benchmark for pQCD calculations and are essential for the understanding of
the corresponding results in Pb-Pb collisions.

But before to apply the whole strategy to the data, there are two key points
that are worth to be mentioned:

• the validation of the combined fit in Sec. 5.3.1 should be supported by suffi-
ciently high statistics. In particular for the single muon pt distributions, the
shapes of the distributions for both muons from D and B hadrons can be de-
scribed by Eq. (5.1). The only evidence that could ensure the separation of
these components is the crossing point in the single muon pt distribution for
charm and beauty components (around 4 ∼ 8 GeV/c, left plot in Fig. 5.5).
Therefore the statistics in data should allow to investigate a higher pt range;

• in the present analysis, we assume that all background is subtracted perfectly.
In data analysis, we should understand the sources of background and inves-
tigate different methods for their subtraction.

5.5.1 Statistics Estimates

In the following, we perform statistics estimates for different options of data
taking. This is done considering three scenarios of luminosity (< L >) and data-
taking time (t):

• < L >= 1 · 1030 cm−2s−1, t = 106 s, Npp = 7.0 · 1010 (scenario 1);

• < L >= 3 · 1030 cm−2s−1, t = 106 s, Npp = 2.1 · 1011 (scenario 2);

• < L >= 3 · 1030 cm−2s−1, t = 107 s, Npp = 2.1 · 1012 (scenario 3);

Npp is the corresponding number of pp collisions assuming that the pp inelastic
cross section is 70 mb. The scenario 3 is the so-called nominal run.

We examine in Fig. 5.13, for the three scenarios of data taking, the pt depen-
dence of the signal yield (left panel), signal over background ratio (middle panel)
and significance (right panel) corresponding to the muon contribution from beauty
(upper panels) and charm (lower panels) decays. The expected statistics is obtained
just by scaling the muon yields from PDC06 with the ratio of the number of pp colli-
sions in a given scenario to that of PYTHIA events. We have checked that in the pt

range of interest (pt > 2 GeV/c), the rates of single muons from beauty and charm
decays do not exceed the expected single muon trigger rate of 225 Hz [258]. Note
that the muon trigger rates should not exceed 1 kHz in order to keep the dead-time
of muon event readout to a low value and such a rate fits the bandwidth of the
ALICE muon High Level Trigger. Background includes muons from charm (beauty)
decay for the beauty (charm) component. A large statistics of muons from both
beauty and charm decay is expected over a wide pt range, even in the first scenario.
As a consequence the relative statistical uncertainty is small. In the first scenario
and at pt = 20 GeV/c, it remains smaller than 1.9% (2.2%) for beauty (charm)
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Figure 5.13: Signal yield (left), signal over background ratio (middle) and signifi-
cance (right) of the single muon contribution from beauty decay (upper panels) and
charm decay (lower panels) for the three scenarios of data taking.

contribution. The signal over background ratio (S/B) of the beauty component as
a function of pt rises strongly from about 0.4 to 1.2 in the pt range 2 ∼ 10 GeV/c
and, tends to saturate at 1.3 for pt > 12 GeV/c. S/B ratio of the charm component
decreases as pt increases and is about 0.8 for pt > 12 GeV/c. The beauty and charm
significances are very good over the all pt range, even in the first scenario.

The yields of unlike-sign dimuons from beauty and charm decay are summarized
in Fig. 5.14, where the corresponding S/B ratios and significances are also given.
Results are displayed in five Minv regions going from 0.6 GeV/c2 to 15 GeV/c2 and,
for same scenarios of data taking as in the single muon analysis. The statistics of
correlated unlike-sign dimuons from beauty decay and corresponding significances
are good. The statistics will be high enough to allow the measurement of the B-
hadron production differential cross section in the unlike-sign dimuon channel, even
in the first scenario of data taking. The S/B ratio is always greater than one.
It decreases strongly from ∼ 3.9 to 2.3 at low Minv (0.6 ∼ 4 GeV/c2) and then
increases significantly up to ∼ 3.4 in the Minv range 4 ∼ 15 GeV/c2. The decrease
of S/B ratio in the low Minv region is due to the peculiar shape of the charm signal
(right plot in Fig. 5.5). The statistics of unlike-sign dimuons from charm decay and
corresponding significances are also quite good over the wholeMinv range. However,
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Figure 5.14: The same as Fig. 5.13, but for dimuons.

one observes that the measurement of the charm signal suffers from limited statistics
in the first scenario, in particular in the highest Minv bin. As expected, the S/B
ratio of the charm contribution as a function ofMinv exhibits the opposite behaviour
as compared to the beauty component and is always smaller than one.

5.5.2 Background Subtraction

In order to study the background components in the inclusive muon pt spectrum,
we focus on the analysis of the minimum bias simulation of pp collisions at

√
s =

14 TeV, performed within the Physics Data Challenge 2008 (PDC08). Fig. 5.15
depicts the pt distribution of reconstructed tracks in the acceptance of the ALICE
muon spectrometer (left plot), with the corresponding production mechanisms (right
plot). The correction for reconstruction efficiency [285, 296] is applied to the data
for pt > 1 GeV/c. The different contributions to this distribution are also displayed.

• muons from charm decay (blue histogram) and beauty decay (red histogram);

• muons from primary light hadron decay, mainly π and K, (green histogram);

• muons from the decay of secondary light hadrons produced mainly inside the
front absorber (cyan histogram);

140



Figure 5.15: Left: pt distribution of reconstructed tracks in the ALICE muon spec-
trometer in minimum bias pp collisions at

√
s = 14 TeV (PDC08 production); the

yields corresponding to the different sources are also plotted. The data are corrected
for reconstruction efficiency, for pt > 1 GeV/c. Right: the production mechanisms
for different muon track sources.

• hadrons mis-identified as muons (punch-through hadrons, magenta his-
togram).

These components exhibit different features which are going to be exploited in the
following to unravel signal and background. In particular, one can remark that
the muon yield from light hadron decay is the main source of background in the
muon spectrometer. It dominates the low pt range of the muon distribution up
to about pt = 2 GeV/c, decreases steeply for increasing pt and becomes negligible
for pt & 6 GeV/c. The signal (muons from heavy flavour decay) prevails over the
background contributions for pt & 3 GeV/c.

As shown in Fig. 5.16 (left panel), part of the background can be suppressed
by requiring that the reconstructed track matches the track reconstructed in the
trigger system. We observe that thanks to the low pt trigger threshold of about
0.5 GeV/c, the particle yield below that value is strongly reduced but is not com-
pletely suppressed since this cut is not a sharp one. In pt > 1.5 GeV/c, almost all
punch-through hadrons (98%) are suppressed while the yield of muons from primary
light hadron decay and secondary light hadron decay is reduced by about 4% and
6%, respectively. Also, the signal is little affected by this condition since one rejects
about 4% of muons from both beauty and charm decay. Moreover, it is still possible
to enhance the differences between yields of muons from background and those from
heavy flavour decay by using the Distance of Closest Approach (DCA). The
DCA is defined as the distance between the extrapolated muon track and the inter-
action vertex, in the plane perpendicular to the beam direction and containing the
vertex. The influence of a cut on this observable is illustrated on Fig. 5.16 (right).
By removing tracks associated with large DCA values (DCA> 9.3 cm), one strongly
reduces the yield of muons from secondary light hadron decay (by about 40%) while
keeping the signal rejection rate at a low level. Tab. 5.2 summarizes the effect of the
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DCA cut on the rejection rate of tracks in the tracking system matched with the
trigger track. In these conditions, the number of muons from the decay of secondary
light hadrons is reduced by about 50% and the one from primary light hadron decay
is suppressed by about 12%, only. One observes a loss in the beauty (charm) signal
of about 7% (8%).

Figure 5.16: The some as Fig. 5.15 with the additinal requirements of track-trigger
matching (left) and further cut on DCA< 9.3 cm (right).

Sources
% of rejected tracks % of rejected tracks

with matching with matching & DCA

bottom 4.0 7.0

charm 4.0 8.0

primary K/π 4.0 12.0

secondary K/π 6.0 49.0

punch through hadrons 98.0 99.0

Table 5.2: Rejection rate of tracks sources with pt > 1.5 GeV/c with matching with
the trigger (second column) and, an additional DCA cut of 9.3 cm (third column).

Furthermore, the remaining muon component from primary light hadron decay
can be fully suppressed by using the distribution of primary vertex longitudinal
coordinate zv, provided by the SPD. Such method has been successfully tested with
fast simulations of Pb-Pb collisions at

√
sNN = 5.5 TeV and with full simulations of

pp collisions at
√
s = 14 TeV as reported in [297, 298].

In short, the muon two-dimensional distribution on zv and pt is fitted in each pt

bin with the function:

f(zv, pt) =
1√
2πσ

exp[
−(zv − µ)2

2σ2
] · [α(pt)|zabs + ∆zi − zv|+ β(pt)]. (5.13)

This function reflects the gaussian distribution of the vertex position multiplied
by the linear dependence between the vertex and the front absorber of the muon
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Figure 5.17: pt distribution of reconstructed tracks in the ALICE muon spectrometer
in PDC08 with DCA< 9.3 cm are matched with the trigger tracks and muons from
primary pion and kaon decays are subtracted. The contribution of muons from open
heavy flavour decay contaminated with secondary muons from pion and kaon decays
which is obtained by using the vertex method (blue histogram) is compared to the
expected distribution (red histogram).

spectrometer. It depends on four parameters: the gaussian mean (µ) and standard
deviation (σ) and, the straight line slope (α(pt)) and intercept (β(pt)). The quantity
|zabs + ∆zi − zv| is the free path that pions and kaons can travel before interaction
since zabs is the distance between the origin and the front absorber and ∆zi is the
mean path traveled by pions and kaons in the absorber before interaction, respec-
tively. The parameter β(pt) which gives the contribution of muons from beauty and
charm decays biased by the yield of muons from secondary pion and kaon decays is
displayed as a function of pt in Fig. 5.17. The results show that the pt distribution
of muons from open heavy flavours contaminated by the yield of secondary muons
from pion and kaon decays (β(pt) parameter, blue histogram) is well reconstructed.
However, one can notice that β(pt) is affected by large uncertainties, in particular
at high pt where the background contribution is small. This trend is expected since
the uncertainty is correlated to the statistical error (large at high pt) on the slope
parameter α(pt), the latter being related to the yield of muons from the decay of
primary pions and kaons.

In addition, in Ref. [297] it was suggested that, the secondary muons can be
further subtracted by matching the muon tracks with the FMD since the secondary
muons are generated inside the front absorber of muon spectrometer after the tracks
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pass through the FMD. But the acceptance of the FMD in the forward region
(−3.4 < η < −2.01 and −2.29 < η < −1.7, see Sec. 3.3) is not fully compatible with
the one of the muon spectrometer (−4 < η < −2.5). In the overlap region (−3.4 <

η < −2.5), it has been shown that the heavy flavour yield can be successfully
extracted in pp collisions, assuming a perfect efficiency of the FMD. The method,
still needs to be validated in Pb–Pb collisions, due to the increase of the FMD
occupancy which will affect the matching efficiency.

The background in the dimuon Minv distribution contains two parts: the reso-
nances and the uncorrected components. The subtraction of resonances is done in
a direct way due to clear peaks aroung the nominal mass. They are subtracted via
a combined fitting with resonances shape functions (Gaussian or Crystal Ball [299])
and exponential function for the continuum. The like-sign pair technique and the
event-mixing technique can be used to separate the correlated and uncorrelated
dimuon components, as mentioned in Ref. [256].
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Chapter 6

Analysis of pp data at√
s = 900 GeV

The first physics pp run at the LHC took place end of 2009, at
√
s = 900 GeV.

The main aim of the analysis of these data is the understanding of the apparatus
and data properties. The performance of the MUON spectrometer for the detection
of muon tracks is presented. Most of the muon selection cuts were fixed via the
study of the track characteristics. Some very important basic concepts, like the
event trigger classes and the principle of the physics event selection will also be
introduced. The understanding of these basic concepts, is very important for the
analysis of pp data at

√
s = 7 TeV that will be used for the measurement of heavy

flavour decay muons.
The study and/or understanding of the properties of the data cannot be done

without comparisons with realistic simulations. Two sets of simulations named
LHC10a3 (based on PYTHIA event generator) and LHC10a4 (based on PhoJet [300]
event generator) with V0, SPD and MUON spectrometer, are used in our analysis.
Realistic residual mis-alignment, realistic status of the front-end electronics and of
MUON trigger configuration are included in these simulations.

6.1 Data Sample and Online Trigger

The pp data at
√
s = 900 GeV have been collected during the LHC09d run

period and the analysis is done with the second reconstruction pass (pass2). The
number of events and tracks in the MUON Spectrometer for each event trigger class
are listed in Tab. 6.1.

As shown in Tab. 6.1, 7 event trigger classes were implemented during this data
taking period. They belong to three kinds of triggers.

Beam crossing trigger (CBEAMB) This trigger allows to check whether the
beams are crossing the ALICE detectors or not, but it does not sign interac-
tions. This explains why we collected ∼ 151 M triggered events and just one
track reconstructed in the MUON tracking chambers;

Minimum bias trigger (CINT1) Differently from the beam crossing trigger, the
minimum bias trigger checks both the beam crossing and the interactions. It
requires at least a hit in either one of the V0 counters (V0A and V0C) or at



trigger classes events tracks in MUON Spectrometer

CBEAMB-ABCE-NOPF-ALL 150748 1

CINT1B-ABCE-NOPF-ALL 202685 1514

CINT1C-ABCE-NOPF-ALL 26653 5

CINT1A-ABCE-NOPF-ALL 29189 125

CINT1-E-NOPF-ALL 8067 0

CMUS1B-ABCE-NOPF-MUON 893 484

CMUS1A-ABCE-NOPF-MUON 99 37

no triggered (not physics event) 4807 0

total 422182 1665

Table 6.1: Number of events and reconstructed tracks in the ALICE MUON Spec-
trometer for each trigger class in LHC09d data.

Figure 6.1: Ratios of events in background
triggers to that in CINT1B trigger as a
function of the run number (data taking
time).

Figure 6.2: Ratio of events triggered in
CMUS1B with respect to that in CINT1B
as a function of the run number (data tak-
ing time).
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least a hit in one of the SPD layers 1. This is done online according to the
information received by the CTP from these sub-detectors (as mentioned in
Sec. 4.1.1). In order to ensure that the hits in SPD and/or V0 are from the
interactions, the beam crossing conditions are also checked. CINT1B is the
minimum bias trigger with two injected beams from both side of the ALICE
interaction point and it indicates there are two beams crossing each other and
making an interaction in ALICE. Although the CINT1A and CINT1C trigger
events satisfy the minimum bias trigger conditions, the beam is injected from
only one side, side-A (PMD side) or side-C (MUON Spectrometer side). Fi-
nally, CINT1-E triggers correspond to minimum bias events without any beam
injection (empty beam). With these background trigger events (CINT1A,
CINT1C and CINT1-E), hits in the trigger detectors could be attributed to
beam gas interactions (for CINT1A and CINT1C) and noise in the front-end
electronics (for CINT1A, CINT1C and CINT1-E). It is worth to notice that,
even in CINT1B, the minimum bias trigger decision could also be made in the
two situations just mentioned, with a coincidence between signals from the
two beam pickup counters. Then, a further offline selection should be applied
at software level to reject this background in CINT1B events (the offline event
selection will be discussed in Sec. 6.2.1).

Single muon trigger (CMUS1) In addition to the minimum bias trigger condi-
tions, the single muon trigger requires at least one track, above a pt threshold
of ∼ 0.5 GeV/c, triggered in the MUON trigger stations according to the
decision algorithm introduced in Sec. 3.4.5.2. As for the CINT1 trigger, the
CMUS1B is the single muon trigger with two injected beams from both side
of the ALICE interaction point, and CMUS1A corresponds to the single muon
trigger with only beam from side-A. The further offline event selection also
should be applied to these trigger events in order to reject the remaining back-
ground in CMUS1B triggered events.

The string "NOPF" in each trigger class means that the triggers have the Pass-
Future (PF) protection used to reject pile-up events. The last string "ALL" or
"MUON" in each trigger class is the name of the trigger cluster. The trigger cluster
is a group of detectors read for a given trigger. The included detectors in each
trigger cluster can change from a data taking period to another one, depending on
the detector status, run luminosity and system (pp collisions or Pb–Pb collisions).
If one sums over the number of different type of events (Tab. 6.1), the result is not
equal to the total number of events since some events are triggered by several trigger
classes.

It is quite interesting to see how different triggers evolved with the data taking
time. Fig. 6.1 shows the ratio of events in the background triggers, CINT1A (top,

1The trigger selection conditions implemented are the only way to define the interactions, these
conditions could change according to run status and special requirements. During our analysis,
we only use this definition to determine the interactions in pp collisions. With the increase of
multiplicity in Pb–Pb collisions, the definition of the interaction determination will change and
this will be discussed in Chap. 8.
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left), CINT1C (top, right), CINT-E (bottom, left) and CMUS1A (bottom, right),
with respect to that in the minimum bias trigger CINT1B, as a function of run
number. The run number increases with the data taking time, then, the trends
in Fig. 6.1 illustrate how the background evolved during the data taking. As one
can observe, the background conditions improved considerably from the first to the
last run by almost one order of magnitude. However, the ratio of CMUS1B over
CINT1B remains constant during the data taking period, as shown in Fig. 6.2. This
indicates that the status of the muon trigger is stable during data taking.

Both minimum bias triggered data (CINT1B) and muon triggered data
(CMUS1B) have been used in our muon analysis. In principle, by requiring at least
one triggered track in each event, the multiplicity of the muon tracks should be much
higher in muon triggered events than that in minimum bias triggered events and
one should collect more statistics in the muon triggered events. Since the statistics
in the muon triggered events is too small in the 900 GeV data sample, the following
analysis has been carried out with minimum bias triggered events.

6.2 Offline Event Selection

As mentioned, after the online event selection at the hardware level, there is still
some background in the physics triggered events, like CINT1B triggered events. In
this case, an offline trigger selection should be implemented to reject the remaining
background events. In this section, we start with the principle of the offline event
selection, then particular event selection conditions needed for the muon analysis
will be studied.

6.2.1 Physics Selection

The offline physics event selection or the so-called physics selection includes
following steps: reproduce the online trigger at software level, remove beam gas in
V0 leading time windows and background identification.

Hardware and software offline triggers We can have incorrect trigger deci-
sions at hardware level due to the response and noise of the front-end electronics.
Therefore, it is important to reproduce the trigger conditions at the offline level in
order to reject background.

V0 leading time Fig. 6.3 shows the event leading time distribution in V0A (left)
and V0C (right). There are two visible peaks in both distributions, and they corre-
spond to beam-beam interactions (red bands, labeled as BB) and beam gas (green
bands, labeled as BG). The events will be identified as beam gas events and will be
rejected if the leading time in any one of the beam gas windows of V0A or V0C.

Background identification In parallel to the determination of the V0 leading
time, background can be further identified according to the global event character-
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Figure 6.3: The V0 leading time distributions in V0A (left) and V0C (right). The
red band shows the time window for beam gas event, and the green band is the time
window for beam-beam interaction events.

istics. This identification is done according to the correlation between the tracklets
and clusters in SPD and the azimuthal cut to build a SPD tracklet pointing to the
beam axis during the reconstruction of the interaction vertex along z-axis [301].
More details about the background identification can be found in [302].

Figure 6.4: Event statistics in physics selection.

Fig. 6.4 shows the statistics of the physics selection in our data sample. The label
"FO" is the number of hits in SPD; "V0A" means at least one hit in V0A detector
and located in the beam-beam interaction leading time window (green band in left
plot of Fig. 6.3), "V0ABG" means that events are located in the leading time window
of beam gas in V0A detector (red band in left plot of Fig. 6.3). The definitions of
"V0C" and "V0CBG" are the same as "V0A" and "V0ABG". If the event is labeled
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either as "V0ABG" or "V0CBG", it is also labeled as "V0BG". According to the
above definitions, the minimum bias trigger condition is given by:

(FO >= 2)|(FO >= 1&(V0A|V0C))|(V0A&V0C), (6.1)

at software level.
Here, we define the physics selected events as the events which pass the offline

software trigger (as defined in Eq. (6.1)) and are not labeled as "V0BG", as listed
in the third column, in the right side of Fig. 6.4. As we can see, almost all the
CINT-E events are rejected under the physics selected conditions. This shows that,
the incorrect trigger decisions due to the front-end electronics are rejected effectively
by reproducing the online trigger at software level.

In the physics selected events, the background is further identified according
to the background identification conditions. The results are shown in the second
column in the right side of Fig. 6.4. After subtracting these background events from
the physics selected events, finally, we get the physics accepted events, as listed in
the first column in the right side of Fig. 6.4. The physics accepted events in CINT1B
trigger class are the inputs for our muon analysis.

6.2.2 Primary Vertex Selection

Figure 6.5: Left: vz distributions with and without applying the physics selection.
Right: distribution of number of contributors used for the primary vertex recon-
struction. Results are obtained from the analysis of pp collisions at

√
s = 900 GeV

collected in the end of 2009 with ALICE.

After the understanding of the physics selection, one will see how typical dis-
tributions are affected by the physics selection. The vz distributions from CINT1B
events without any cut (black line, labeled as "CINT1B"), in the physics selected
events (red line, labeled as "Phys Sel") and in the physics accepted events (blue line,
labeled as "Phys Acc") gotten from LHC09d data in pp collisions at

√
s = 900 GeV

are presented in the left plot of Fig. 6.5. One can observe that, there is a peak
around vz = 0. This peak corresponds to events without reconstructed primary
vertex, since the vertex position for these events is set at the origin of the global
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coordinate system (0, 0, 0). The physics selection conditions can reject part of these
events. But these events are insensitive to the additional conditions of the physics
accepted events. Also, some events with reconstructed vz position far from the cen-
ter of the ALICE detectors (vz = 0) are rejected in the final physics accepted data
sample.

As illustrated in Sec. 3.4.4, the last step of the muon track reconstruction is to
relate the reconstructed muon tracks to the primary vertex and correct the track
kinematics. This correction is very important to obtain the distribution of muons
from heavy flavour decays, since these muons are produced at the interaction point 2.
For events without primary vertex, the muon track kinematics is corrected using
(0, 0, 0) for the vertex position. In this case the spectrum of muons from heavy
flavour decays is not correct. To minimize this effect, we proposed to reject the
muon tracks in the events without primary vertex in our further analysis. This
rejection is done by requiring the number of contributors of primary vertex larger
than zero. The vertex contributor is the SPD tracklets of all reconstructed tracks
in the central barrel used to determine the position of the vertex. If the vertex
reconstruction fails a negative value of number of contributors will be set [301]:

= −2 absence of reconstructed points in SPD;

= −1 impossible to build suitable tracklets.

The right plot of Fig. 6.5 shows the distribution of number of primary vertex con-
tributors. The events located in the region of number of contributors< 0 are without
reconstructed primary vertex.

It is worth to notice that, here we just reject muon tracks in the event without
reconstructed primary vertex. If these events pass the physics selection, they are
still counted in the minimum bias events. In our further analysis, we keep these
events to count the total number of minimum bias events for the physics spectrum
normalization.

6.2.3 Effect of the Event Selection on Muon Tracks

Fig. 6.6 shows the pt (top left), η (top right), trigger matching (bottom left)
and DCA (bottom right) distributions of reconstructed muon tracks with different
event selection conditions as labeled inside each plot. The results are obtained from
LHC09d data in pp collisions at

√
s = 900 GeV.

After physics selection (the physics accepted events, labeled as "Phys Acc" in
the plots), a large fraction of reconstructed muon tracks are removed in the high pt

region. Since the physics selection is used to reject the beam gas background, these
tracks that are removed in the high pt region are mainly from beam gas events. As
mentioned in Sec. 1.5.3.2 and Sec. 5.2, the pt distribution of physics tracks follows
a power law, and it decreases sharply with pt, while the tracks in the beam gas
events are insensitive with pt. In this case, the fraction of beam gas tracks is larger

2Indeed, the typical decay lengths for D hadrons is ∼ 100 µm and for B hadrons is ∼ 500µm,
but they are negligible with respect to the resolution of the DCA of muon tracks, Sec. 6.3.
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Figure 6.6: pt (top left), η (top right), trigger matching (bottom left) and DCA
(bottom right) distributions of reconstructed muon tracks with different event se-
lection conditions as labeled inside each plot. Results are from LHC09d data in pp
collisions at

√
s = 900 GeV.

in the high pt region than in the low pt region. In the η distribution, the physics
selection mainly rejects tracks outside the acceptance of the MUON spectrometer
(in particular, in the region η > −2.5), indicating that there is a large fraction of
beam gas tracks located in this region 3. Also pt and η distributions are not very
sensitive with the additional requirement of reconstructed primary vertex in the
physics accepted data sample (labeled as "Phys Acc+Vtx" or "Phys Acc & Vtx" in
the plots).

In the trigger matching distribution, the tracks that are not matched with the
muon trigger are labeled as 0, 1 means that the track is matched with the all pt

trigger, the labels 2 and 3 express that the track is matched with the low pt (not
high pt trigger) and high pt trigger, respectively 4. In this data sample, the low pt

trigger is set as all pt, so when the tracks match the all pt trigger, it is replaced by

3According to the strategy of the muon tracks reconstruction, mentioned in Sec. 3.4.4, the
final tracks kinematics is given after relating the track to the primary vertex. In this case, the
kinematics for tracks not produced at the interaction point is incorrect. This is why we can find
a large number of tracks reconstructed in the MUON spectrometer but with the pseudo-rapidity
outside the acceptance of the spectrometer.

4The different pt trigger thresholds are mentioned in Sec. 3.4.5.2. Here, low and high pt threshold
is 0.5 GeV/c and 1 GeV/c, respectively
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the low pt trigger and explains why the bin of all pt trigger matching is empty. One
can observe that the effect of the physics selection is visible both for tracks with
and without trigger matching; and the effect of the additional reconstructed vertex
requirement is also small, in particular for tracks matched with the muon trigger. In
the physics analysis, it will be required that the tracks are matched with the muon
trigger tracks. In this case, the effect from the vertex cut for the tracks matched
with the muon trigger is negligible, and we don’t need to do further correction for
this vertex cut in our physics analysis.

Finally, when we look at the DCA distributions, the effect of the vertex cut is
visible in the region of large DCA values. The DCA determination in these events is
incorrect. As a consequence, the DCA distribution is wide for tracks reconstructed
in these events.

6.3 Muon Track Selection

In this section, we will introduce two important track selection cuts to be used
in our physics analysis:

matching with trigger This cut was already studied in Sec. 5.5.2 with simulated
data. It is studied here with data;

cut at the end of front absorber This cut has been introduced during the study
of the track resolution.

6.3.1 Matching with MUON trigger tracks

Fig. 6.7 shows the normalized DCA distributions of muon tracks without requir-
ing matching with trigger (left) and with matching with trigger (right) after the
physics selection is applied to LHC09d pp data at

√
s = 900 GeV. The distribution

is compared with the one from realistic simulations with PYTHIA and PhoJet as
event generators, under the same conditions. Before requiring the matching with
the trigger, one can notice that, there is a bump located in the large DCA region in
both data and simulations. The bump disappears after requiring matching with the
trigger. In both cases, the trends of the DCA distributions in data are well repro-
duced by the simulations, indicating that the bump in both data and simulations is
due to the same effect.

Fig. 6.8 shows the DCA distributions from realistic simulations with PYTHIA
(up) and PhoJet (down) used for the comparison with experimental results from
Fig. 6.7. In order to explain the bump in the large DCA region, the different muon
track sources are plotted. When we do not require the trigger matching (Fig. 6.8,
left plots), both PYTHIA and PhoJet simulations reproduce the bump in the high
DCA region which is due to punch-through hadrons. After the trigger matching
(Fig. 6.8, right plots), the bump disappears since almost all punch-trough hadrons
are rejected (they are stopped in the iron wall). This study confirms the results in
Tab. 5.2 from the performance study with PDC08 simulations.
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Figure 6.7: DCA distribution of muon tracks without matching with trigger (left)
and with matching with trigger (right) after the physics selection is applied to
LHC09d data (pp collisions at

√
s = 900 GeV). The results are normalized to unit

and compared with the ones from realistic simulations with PYTHIA and PhoJet,
under the same conditions.

Figure 6.8: DCA distributions of different muon track sources in simulations of pp
collisions at

√
s = 900 GeV with PYTHIA (up) and PhoJet (down). The results

are presented without matching with trigger (left) and with matching with trigger
(right). The realistic detector effects of LHC09d data in pp collisions at

√
s =

900 GeV are included in the simulations.
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Figure 6.9: Momentum p (left), pt (middle) and η (right) distributions of muon
tracks after the physics selection is applied to LHC09d data (pp collisions at

√
s =

900 GeV). The results are shown without the trigger matching (in blue) and with
the trigger matching (in red), respectively.

The effect of the trigger matching on different muon observables is shown in
Fig. 6.9. From left to right, one can find the momentum p, pt and η distributions.
The results are obtained from LHC09d data for pp collisions at

√
s = 900 GeV. In

each plot, the distribution without the trigger matching condition (blue) is compared
with that with the trigger matching condition (red). By looking into more detail,
following comments can be made:

• the spectrum in low momentum region is strongly affected by the trigger
matching,

• the trigger matching condition shifts the peak in the momentum distribution
to higher momenta.

Since the trigger matching rejects the hadronic component, this explains the shape of
the momentum distribution in the low momentum region. As mentioned in Sec. 3.4.4
the average energy loss of muons inside the front absorber is ∼ 3 GeV; when they
pass through the muon filter (the iron wall in front of the muon trigger system,
as shown in Fig. 3.6) there is an additional average energy loss of ∼ 1 GeV for
muons inside the iron wall. This additional energy loss is responsible for the strong
suppression in the low momentum region and the momentum shift to higher mo-
menta. Then, the trigger matching rejects not only punch-through hadrons but
also removes the low energy tracks. The suppression of low pt tracks can also be
explained by these two effects. In the η distribution, a huge part of tracks outside
the acceptance of the spectrometer is rejected by the trigger matching, since the
region outside the spectrometer acceptance is dominated by hadrons. In addition,
after the trigger matching, the yields decrease as η varies from -4 to -2.5, although
higher multiplicities are measured at mid-rapidity than at forward rapidity. This is
due to the trigger matching efficiency which decreases as η varies from −4 to −2.5

since the momentum resolution becomes worse [258].
The other effect of the trigger matching is to remove tracks produced in the beam

shield. Fig. 6.10 shows DCA versus η for tracks without trigger matching (left) and
with trigger matching (right) after the physics selection is applied to LHC09d data
(pp collisions at

√
s = 900 GeV). The pt cut of 0.5 GeV/c is implemented. Under
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Figure 6.10: DCA versus η for tracks without trigger matching (left) and with trigger
matching (right) after the physics selection is applied to LHC09d data (pp collisions
at
√
s = 900 GeV). A sharp pt of 0.5 GeV/c is applied.

the small angle approximation, there is a linear relation between η and DCA of
tracks produced inside the beam shield. According to this linear relation, it is easy
to identify this component in the left plot of Fig. 6.10. The disappearance of this
component (right plot of Fig. 6.10) shows the ability of the trigger matching to
reject the tracks produced in the beam shield 5.

Figure 6.11: Relative momentum resolution
σp/p as a function of p of the tracks recon-
structed in the MUON spectrometer. Re-
sults are from the LHC09d data (pp colli-
sions at

√
s = 900 GeV).

Finally, I prefer to go back to
Fig. 6.8 and mention something that
is not related to the trigger matching.
Comparing with Fig. 5.16, there is an
additional source labeled as "uniden-
tified tracks" in Fig. 6.8. These tracks
are not produced by particles but
by the incorrect hit combination dur-
ing the track reconstruction in the
MUON spectrometer, and they are
fake tracks. As shown in Fig. 6.8
(right), after trigger matching, the
fake track component is also negligi-
ble. But in Pb–Pb collisions, with the
increasing multiplicity and tracking
chamber occupancy, a large fraction of
fake tracks will be reconstructed. The
rejection of fake tracks in Pb–Pb col-
lisions is very important.

5As we will see, the trigger matching can reject part of the tracks produced in beam shield, but
not all. The remaining part has a large effect in the high pt region, and several new approaches
will be developed to further separate this component.
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6.3.2 Acceptance Cuts

The relative momentum resolution σp/p as a function of p, for tracks recon-
structed in the MUON spectrometer, is shown in Fig. 6.11 for LHC09d data (pp
collisions at

√
s = 900 GeV). First, σp/p decreases with the momentum in the low

momentum region, and it increases with p in the high momentum region. This trend
is well understood. In the low momentum region, σp/p is mainly affected by the
multi-scattering of low energy tracks when they cross the detector chambers. With
the increase of p, this multi-scattering effect becomes smaller and explains the de-
crease of σp/p with momentum. On the other hand, in the high momentum region,
σp/p is limited by the cell size of the detector chambers. In a given magnet field, the
smaller chamber cell size is required to ensure the track position resolution for high
energy tracks, and to calculate their curvature in this magnet field and momentum.
With a fixed chamber cell size, σp/p decreases with the momentum.

Figure 6.12: Composition of the front absorber of the ALICE muon spectrometer.

When looking into detail to Fig. 6.11, we can see that the momentum depen-
dence on σp/p can be identified in different components, in particular, in the low
momentum region. This indicates that not all tracks have the same multi-scattering
behaviour. For a given particle specie, its multi-scattering behaviour is different in
different material. As the front absorber is built with different materials, as shown
in Fig. 3.7 the different components in the σp/p distribution could be due to par-
ticles crossing different material region of the front absorber and suffering different
multi-scatterings.

To confirm this hypothesis, we can first look at the front absorber depicted in
Fig. 6.12. We can see that, the different materials in the end of the front absorber
are classified into different angle regions. This angle is defined as the polar angle at
the end of the front absorber in the ALICE global coordinate system. We denote
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Figure 6.13: Left: σp/p as a function of Rabs, the corresponding π − θabs region is
mentioned. Right: same as Fig. 6.11, but tracks are separated in different π − θabs

regions: 1
o − 2

o (red), 2
o − 3

o (blue), 3
o − 10

o (green) and 10
o − 90

o (purple).

this polar angle as θabs, and define the radius at the end of front absorber as,

Rabs = Labs · tan θabs, (6.2)

where Labs = 505 cm is the distance between the end of front absorber and the
origin of the ALICE global coordinate system. In Fig. 6.13 (left panel), one can see
that, σp/p is different from one Rabs (or θabs) region to an other. Fig. 6.13 (right
panel) shows σp/p versus p in different θabs regions (it corresponds to the different
components in Fig. 6.11).

Finally, to avoid the effect from different materials in the front absorber in our
further single muon analysis, we apply a cut 171

o
< θabs < 178

o (or 17.6 cm< Rabs <

80 cm) according to the geometry of the front absorber. This θabs (or Rabs) cut is
combined with the usual η cut, −4 < η < −2.5. They represent the accpetance
cuts.

6.4 Conclusion: Physics Analysis Cuts

Now it is time to make a conclusion about what we learnt from the analysis of
the 900 GeV pp data:

• the analysis should be performed with physics triggered events. For the muon
analysis, it could be minimum bias events or muon triggered events;

• to further reject the background in the physics triggered events, the offline
physics selection should be implemented;

• after the physics selection, the vertex cut is used to remove the muon tracks
in the events without the reconstructed primary vertex to minimize the bias
from the correction of the track kinematics, but these events are taken into
account in the total number of minimum bias events;
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• the trigger matching is required to reject punch-through hadrons , small energy
tracks and part of tracks produced in the beam shield;

• the cut 171
o
< θabs < 178

o 6 or 17.6 cm< Rabs < 80 cm is used to avoid
the effects from different materials in the front absorber, and with the cut
−4 < η < −2.5 they constitute the acceptance cuts.

Due to the careful study of 900 GeV data, all event and track cuts will be im-
plemented in the analysis of pp collisions at 7 TeV. They are mandatory for a
pre-subtraction of the background. This will make the analysis of 7 TeV data more
straightforward. Our main task in the analysis of the 7 TeV data will be the sub-
traction of muons from primary light hadron decays and secondary muons produced
inside the front absorber in order to extract the spectrum of muons from open heavy
flavour hadron decays.

6Since the analysis of the data token in 2011, the cut on θabs have been changed to 170
o

<

θabs < 178
o

. In this thesis, we use the old cut on θabs since the data aanlysed were collected in
2009-2010.
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Chapter 7

Heavy Flavour Production in pp
Collisions at

√
s = 7 TeV

The detailed analysis of pp data at
√
s = 900 GeV, presented in Chap. 6, allows

to discuss the analysis of pp collisions at
√
s = 7 TeV in a straightforward way.

During 2010, data have been taken in a total of six periods corresponding to dif-
ferent conditions of beam and detector operation. The periods are named LHC10b,
LHC10c, LHC10d, LHC10e, LHC10f and LHC10g. LHC10f and LHC10g correspond
to the high luminosity runs. The analysis in this chapter is based on the data from
LHC10c, LHC10d and LHC10e for which the statistics is sufficient to extract the
production cross section of muons from open heavy flavour decays. The data in
LHC10c and LHC10d are used to test the analysis strategy. The final results are
obtained with the data from LHC10e for which the high statistics allows to reach
muon pt up to about 12 GeV. Finally, data from LHC10c and LHC10d are used to
cross-check the results obtained with LHC10e.

7.1 Data Quality Assurance

The event and track selection strategy was discussed in Sec. 6.4. Before imple-
menting all these selections, the data Quality Assurance (QA) should be studied
to choose the correct data sample for our analysis.

7.1.1 Quality Assurance for Muon Analysis

The data quality assurance for muon analysis includes two parts. The first one
is the global data QA and the second one is specific to the MUON spectrometer.

First, let us look how to determine the global QA. A given data taking period is
the result of several independent runs. The global QA is used to identify and reject
the bad runs with the following conditions:

• During the data taking, different types of runs are recorded according to dif-
ferent needs, like, detector calibration, luminosity measurement etc.. The runs
taken for the physics analysis are labeled as "PHYSICS" in the physics parti-
tion. The first step of the global QA is to select these runs according to the
information in the log-book which has been filled during data taking.

• Then, for a given run, the two following conditions:

– data taking duration> 10 min,



– total sub-events> 5000

are set to check whether the data taking status of this run was stable or not;

• With the selected stable physics runs, the beam status and the beam energy
should also be checked. In pp collisions at

√
s = 7 TeV, the beam energy

should be
√
s/2 = 3500 GeV, If beam energy is not equal to this value or the

beam status is not labeled as "stable", this run should be removed.

• After checking the status of the data taking and of the injected beams, the sta-
tus of the DAQ system (like, whether the data are recorded in GDC correctly
or not) should also be checked.

• For the muon analysis, we have the additional following special requirements:

– both the MUON trigger stations and the V0 detector should be included
in the trigger detectors,

– the readout detectors should include the MUON trigger and tracker sta-
tions as well as the V0, SPD and ZDC.

The status of all above detectors should not be labeled as "bad" in the log-
book.

• Finally, the current in L3 magnet and the magnet dipole should be correct
and stable, otherwise, the track momentum will be determined incorrectly.

It is worth noticing that, in some cases, we will find a run passing all above selection
conditions, but its global data quality may be labeled as "bad" in the Run Con-
dition Table (RCT) [303]. This can be due to many reasons, like the TPC is not
included in the readout detectors (in this case, there is no effect for the muon analy-
sis). To avoid any further trouble, it is quite important to also take into account the
information from the detector experts. After the global QA selections, we should
inspect the conditions of the MUON tracker and trigger stations more closely, for
each run, to determine whether this run can be used for the analysis or not. For the
MUON tracker system, we consider following situations for a given run:

• the detector configuration is nominal and no major problem is observed, the
average number of clusters per track per chamber is above 0.9, this run is
usable for physics analysis;

• the detector configuration is lower that the nominal one, thus the tracking
efficiency is slightly reduced and the average number of clusters per track and
per chamber is above 0.75 (but below 0.9), this run still can be used for physics
analysis;

• the detector configuration is not nominal, for instance a DDL is missing or a
high occupancy in one detector element has appeared, the average number of
clusters per track and per chamber is below 0.75, thus the tracking efficiency
is modified. However if the tracking efficiency can be simulated correctly, this
run can be still usable for physics analysis;
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• if the detector configuration is not nominal and the tracking efficiency is not
understood, then this run is not usable for physics analysis.

Similarly, the QA definition for the MUON trigger system starts by checking the
detector configuration for a given run. If the configuration is nominal and the full
system is included in the trigger and readout detectors (or just small part of the
system is missing but the trigger efficiency is still under control), then this run is
usable for physics analysis. If the configuration of the trigger system is not nominal,
(problems occurring during data taking or the single muon or dimuon trigger is not
set correctly) then, of course, the corresponding runs have to be rejected from the
data sample for physics analysis.

7.1.2 Results of Data Quality Assurance

Here, we do not attempt to show all the QA plots in each data taking period.
We just list some typical examples to illustrate how we selected the correct data
samples for our analysis.

Before to show the results, some definitions for the muon tracks have to be added.
The MUON spectrometer includes two parts: the tracking stations and the trigger
stations. During the data taking, these two parts record the data independently.
Then, the reconstructed tracks in the MUON spectrometer are classified into three
classes:

tracker track this corresponds to a track which is reconstructed in the tracking
stations, no matter it is tagged by the trigger stations or not, and we say that
it "contains the tracker data";

trigger track this corresponds to a track which is tagged by the trigger stations,
no matter it is reconstructed in the tracking stations or not, and we say that
it "contains the trigger data";

matched track if a given track contains both the tracker data and the trigger data,
we labeled this track as the "matched track".

According to these definitions, the matched tracks correspond to tracks recon-
structed in the tracking system and matched with the corresponding one in the
trigger system. Also, the tracker tracks are the ones we used in the analysis and the
matched tracks are the ones of the tracker tracks with the all pt trigger matching
(pt > 0.5 GeV/c).

7.1.2.1 QA of LHC10c

Fig. 7.1 shows the ratios of the number of tracker tracks over trigger tracks
(top), matched tracks over trigger tracks (middle) and matched tracks over tracker
tracks (bottom) as a function of the run number in LHC10c period. The black
lines correspond to minimum bias events (CINT1B) and the red ones correspond to
muon trigger events (CMUS1B). In the bottom plot, the ratio between the number
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Figure 7.1: The ratios of the number of tracker tracks over trigger tracks (top),
matched tracks over trigger tracks (middle) and matched tracks over tracker tracks
(bottom) as a function of run number in LHC10c period. The black lines show the
results in the minimum bias events (CINT1B) and the red lines are the results in
the muon trigger events (CMUS1B).

of matched tracks over the number of tracker tracks is shown. This represents the
trigger matching efficiency. One can find that, the trigger matching efficiency is
almost flat in the first part of this plot in both minimum bias events and muon
trigger events. This means that the detector status is stable during these runs.
It drops to ∼ 50% in the last part of this period for minimum bias events. The
decrease of the trigger matching efficiency indicates that the status of the trigger
system was changed in the last runs. It was still stable according to the trigger
matching efficiency which shows a flat behaviour. This results from the fact that
half of the electronics of the trigger stations was not read out.

After having applied the QA selections defined in Sec. 7.1.1, we separate good
runs in LHC10c into two parts: the part with the full trigger stations is named
as LHC10c1 and the part with half of the trigger stations is named as LHC10c2.
During our analysis, to avoid the bias in the efficiency correction for the half of the
trigger stations, we just used the data in LHC10c1.

7.1.2.2 QA of LHC10d

The multiplicity of trigger tracks, tracker tracks and matched tracks in LHC10d
is shown in Fig. 7.2 and Fig. 7.3 for minimum bias events and muon trigger events,
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Figure 7.2: Multiplicity of trigger tracks (top), tracker tracks (middle) and matched
tracks (bottom) in minimum bias events from LHC10d. Results are shown as a
function of the run number.

respectively. From these two figures. One can notice that there is a region with large
multiplicity fluctuations located for the runs in the middle of this period. For sure,
these runs should be rejected as they correspond to an unstable detector status.

After excluding the unstable runs, for minimum bias events, the multiplicities
for the different kinds of tracks are systematically higher in the first part of the
period than in the last part. However, for the muon triggered events, the multi-
plicities for the different kinds of tracks are similar over the whole period. Since
the muon trigger events require at least a trigger track, this allows to reject tracks
from background events. The different evolution behavior of the track multiplicities
in the minimum bias events and the muon trigger events indicates that there is a
visible fraction of background events included in the first runs of LHC10d period.
The CTP information indicates that, due to the higher beam intensity in these runs,
the pile-up effect is larger. According to this, we separate the LHC10d period into
two parts, the first part with high beam intensity and pile-up is called as LHC10d1,
the other one with low beam intensity and low pile-up is called as LHC10d2.

If one looks at the multiplicity distribution in LHC10d2 a little bit carefully,
then one can find that, the multiplicities in the first runs are slightly lower than
that in the rest of the period. This is due to 7 tracking chambers that are missing
during the data taking of these runs. Furthermore, according to the different status
of the tracking stations, the LHC10d2 has been separated as LHC102a with 7 track-
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Figure 7.3: Same as Fig. 7.2, but for muon trigger events in LHC10d.

ing chambers missing and LHC10d2b with full tracking chambers. To avoid bias
from the pile-up correction in high beam intensity runs and bias for the efficiency
correction for the runs with missing 7 tracking chambers, we focus on the analysis
of the data sample LHC10d2b.

In addition, the QA for the LHC10e is similar as the one done in LHC10c and
LHC10d. Nothing particular needs to be mentioned for that period.

7.1.3 Pile-up Correction

Since there is no post-future protection settled during the data taking, the pile-up
effect is always present in different run periods, and sometimes, it was particularly
large, as in LHC10d1 period. The pile-up events make bias on the normalization of
data. In order to get the correct normalization in our final results, the pile-up effect,
anyhow, should be corrected. There are two different methods that can be used to
get the pile-up information from data. One method characterizes the pile-up events
by identifying the pile-up vertex in the reconstructed events; the other one is based
on the estimate of the mean number of collision events in each beam crossing. Now,
we are going to introduce these two methods.

7.1.3.1 Pile-up Vertex Identification

The first place to identify the pile-up vertex is during the estimate of the vertex
position according to the SPD tracklets. In this step, with a given set of cuts, not
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all the reconstructed tracklets in SPD are pointing to the same vertex. The main
vertex (the primary vertex candidates) is tagged as the one with largest contributors.
Then, remaining vertex candidates for which the contributors not point to the main
vertex are identified as the pile-up vertex candidates. Then, after the whole event
reconstruction, the information of these pile-up vertex candidates will be recorded
in the ESD/AOD as well as that of the primary vertex.

Figure 7.4: Transverse momentum distributions of reconstructed muon tracks from
the events with no identified pile-up vertex (blue) and from the tagged pile-up events
(black). To compare the shapes of these two distributions, we scaled them together
with the pt distribution in the full event sample (red) according to the integrated
yield given by the red line. These results are from the muon triggered events in run
124364 of LHC10d1 where the pile-up effect is large.

In each reconstructed event, one can loop over the pile-up vertex candidates and
identify the pile-up vertices according to the following cuts:

• the number of contributors of the pile-up vertex should be larger than a given
threshold, which depends on the event multiplicity;

• the reconstructed pile-up candidate should be located inside the estimated
collision diamond region, otherwise, it is not produced by a physics collision;

• the distance between the pile-up candidate and the primary vertex should
be larger than a given value which is determined by the position resolution of
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these two vertices in order to be sure that, they are not from the same collision
event.

If the total number of pile-up vertices, which passed above cuts in a given event is
larger than one, then this event will be tagged as pile-up event.

Fig. 7.4 shows the pt distribution of muon tracks from the events with no iden-
tified pile-up vertex (blue) and that from the identified pile-up events (black) in
muon triggered events from run 124364 located in LHC10d1 where the pile-up effect
is large. To compare their shapes, they are scaled together according to the yields
from the total number of events (red). In this figure, one can see that the pt distri-
butions of the muon tracks from both the pile-up events and no pile-up events are
similar, indicating that these two kinds of events include the same physics content.
We do not need to separate them, if we just want to extract the physics distribution.
But when we want to convert yields into a cross section, it is important to count
the correct number of minimum bias collisions.

The drawback of this method is that, we do not know exactly the efficiency for
the pile-up vertex identification according to the above cuts. In this case, neither the
cut of tagged pile-up events which will also reduce our statistics nor the correction
of the number of minimum bias collisions with the number of identified pile-up
vertex can be used in our analysis. The reason is the unknown pile-up identification
efficiency which will make a bias in the normalization.

7.1.3.2 Pile-up Factor Estimate

The pile-up can also be described in a mathematical side of view.
In a given data taking period, the number of crossing beams is given by the

CBEAMB trigger, and is named as NCBEAMB, the number of minimum bias col-
lisions is triggered by the L0 minimum bias trigger before the trigger selection, is
named as NL0b

MB
1. If there is always pile-up in the triggered minimum bias collisions,

NL0b
MB does NOT give the number of collisions but gives the number of triggered

data with At Least one collision occurring. Then, the ratio NL0b
MB /NCBEAMB does

NOT provide the probability to have one collision, but this is the probability to
have At Least one collision:

P (n ≥ 1) =
NL0b

MB

NCBEAMB
. (7.1)

To get the real number of collisions in NCBEAMB beam crossing, the corresponding
NCBEAMB should be corrected with the mean number of collisions in one beam
crossing (or the probability to have one collision).

The probability to have n collisions is given by Poisson distribution:

p(n,m) =
mn

n!
e−m, (7.2)

1As mentioned in Chap. 4, there are three different level of triggers applied during the data
taking, L0, L1 and L2. For each trigger, the trigger rates are taken into account before and after
the trigger selection, respectively. For example, we use L0a and L0b to denote the trigger rates at
L0 before and after the trigger selection, the same naming rule is applied to L1 and L2 triggers.
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Figure 7.5: Same as the middle plot in Fig. 7.2, the tracker track multiplicity in
minimum bias events from LHC10d. The results before the pile-up correction, black
line, are compared with the one after the pile-up correction with Eq. (7.8), red line.

where m is the mean of the distribution. Eq. (7.2) satisfied the normalization
condition:

∞∑
n=0

p(n,m) = 1. (7.3)

According to the definition of Eq. (7.1), we have,

P (n ≥ 1) =
∞∑
n=1

p(n,m) =
∞∑
n=0

p(n,m)− p(0,m) = 1− e−m =
NL0b

MB

NCBEAMB
, (7.4)

and get,

m = ln
NCBEAMB

NCBEAMB −NL0b
MB

. (7.5)

Finally, the mean number of collisions in one beam crossing or the probability to
have one collision is given by,

< ncoll >=

∑∞
n=1 n · p(n,m)∑∞
n=1 p(n,m)

=

∑∞
n=0 n · p(n,m)− 0 · p(0,m)∑∞

n=1 p(n,m)
. (7.6)

Assuming m is the mean of Poisson distribution and the relation in Eq. (7.4), we
have,

< ncoll >=
m

P (n ≥ 1)
=
NCBEAMB

NL0b
MB

ln
NCBEAMB

NCBEAMB −NL0b
MB

. (7.7)

169



Then, in NCBEAMB beam crossing, the number of minimum bias collisions is given
by:

N corr
MB =< ncoll > NL0b

MB = NCBEAMB · ln
NCBEAMB

NCBEAMB −NL0b
MB

. (7.8)

In Eq. (7.8), both NCBEAMB and NL0b
MB evolve with the data taking time t, N corr

MB

is also a function of t, and the pile-up correction (Eq. (7.8)) should be implemented
to data run by run. Fig. 7.5 shows the multiplicity of tracker tracks in minimum
bias events from LHC10d, the results before and after the pileup correction (with
Eq. (7.8)) are presented with black and red histograms, respectively. One can notice
that, after the pile-up correction, there is a reduction in the tracker track multiplicity,
especially for LHC10d1 period, where the pile-up effect is large, and the multiplicities
in LHC10d1 and LHC10d2b are consistent with each other and stable with the data
taking time. This is because Eq. (7.8) gives a stable way to estimate the real number
of minimum bias collisions in the pile-up events. We choose this method for the pile-
up correction in the following analysis.

7.2 Data Sample

Before to go through the physics analysis, I would like to show the statistics and
typical distributions in our used data samples. With the pile-up correction, we can
normalize the minimum bias events. But in the normalization of muon triggered
events sample, we should first know its equivalent statistics in the minimum bias
collisions. This issue will also be discussed in this section.

7.2.1 Summary of Statistics

run period reconctruction pass N ev
MB N trk

MB N trk
MU

LHC10c1 2 ∼ 56 M ∼ 362 k ∼ 848 k

LHC10d2b 2 ∼ 97 M ∼ 549 k ∼ 2.1 M

LHC10e 2 ∼ 120 M ∼ 761 k ∼ 6.7 M

Table 7.1: Statistics used in our analysis of LHC10c1, LHC10d2b and LHC10e. The
corresponding number of minimum bias events N ev

MB are gotten after the physics
selection, the number of tracks in both minimum bias events and muon trigger events
(labeled as N trk

MB and N trk
MU) are gotten after the muon selection cuts discussed in

Sec. 6.4.

Tab. 7.1 summarizes the statistics used in our analysis, all the numbers are
obtained after the event and muon track selection cuts discussed in Sec. 6.4. Also
the number of minimum bias events are corrected for pile-up with Eq. (7.8). In
this table, one can notice that, the ratios between number of tracks in the muon
trigger events and that in the minimum bias events increase with the run periods:
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run period simulation generator

LHC10c1
LHC10d4 PYTHIA Perugia-0
LHC10d4a PhoJet

LHC10d2b
LHC10f6 PhoJet
LHC10f6a PYTHIA Peruia-0

LHC10e – –

Table 7.2: Simulations used in our analysis for corresponding data taking run peri-
ods.

this shows that the data taking rate for the muon trigger events become higher and
higher during data taking. In particular, the statistics of tracks in the muon trigger
events in LHC10e is more than 3 times larger than the sum of those in LHC10c1
and LHC10d2b. With such high statistics, this data sample allows to extract muons
from heavy flavour decays up to 12 GeV/c, and our final results are gotton from this
data sample.

Figure 7.6: Transverse momentum (left) and η (right) distributions of muon tracks
in minimum bias events (red) and in muon trigger events (blue) in pp collisions at√
s = 7 TeV from LHC10c1. The ratios between the corresponding distributions

in the minimum bias events and that in the muon trigger event are shown in the
bottom panel.

Fig. 7.6 and 7.7 show the pt and η distributions after all selection cuts in pp
collisions at

√
s = 7 TeV from LHC10c1 and LHC10d2b, respectively. In each case,

the results from minimum bias trigger events (red) and that from muon trigger events
(blue) are compared together with the ratios between the distributions in these two
kinds of data samples, as presented in the bottom panel for each plot. The pt

reach in LHC10c1 is ∼ 10 GeV/c, and in the LHC10d2b, with higher statistics, the
measured pt goes up to ∼ 15 GeV/c. An other interesting result to be mentioned, is
that after all the selection cuts, the ratios between the distribution in minimum bias
events and that in the muon trigger events are almost independent of pt and/or η in
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Figure 7.7: The same as Fig. 7.6, but the distributions are from LHC10d2b.

both data samples. In the following we will see that, this property is very important
to normalize the muon triggered events. Also, the decrease of data taking rates for
the muon triggered events with respect to that of minimum bias events makes these
ratios decreasing from ∼ 0.4 to ∼ 0.3 from LHC10c1 to LHC10d2b.

Similarly to what has been done in pp collisions at
√
s = 900 GeV, there are

several sets of realistic simulations used for the analysis for each run period. Tab. 7.2
lists the simulations used in our analysis with their corresponding data taking pe-
riods. The main part of the analysis presented in this chapter was finished in
the beginning of 2011, and at that time, no simulations for LHC10e anchor runs
were available. Then, the simulations used in the analysis of LHC10e data are the
LHC10f6 and LHC10f6a for anchor runs of LHC10d. Also, for historical reason,
there is a simulation with the ideal detector configuration with PYTHIA ATLAS
tuning used in our analysis from time to time.

7.2.2 Event Normalization

The normalization of the distribution in minimum bias events is straightforward,

d2σµ

dptdη
=

1

pileup×N ev
MB

× 1

ε
× d2N trk

MB

dptdη
× σMB

pp , (7.9)

where, pileup×N ev
MB is the pile-up corrected number of minimum bias events, N trk

MB

is the number of muon tracks in the considered data sample, σMB
pp is the minimum

bias cross section in pp collisions under the given center of mass energy and ε is
the correction efficiency which we will mention later. In ALICE, σMB

pp is derived
from the cross section of the so-called "V0AND" events, which is a sub-sample of
the minimum bias events and measured via van der Meer scan [304]. The V0AND
triggered events correspond to coincidence signals in the two VZERO detectors. The
ratio between the cross section of V0AND events and minimum bias events is the
percentage of minimum bias events with the L0a trigger input fired and satisfying
V0AND conditions. Its value is 0.87 and remains stable within 1% over the analyzed
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data taking period. In this case, we get,

σMB
pp =

σV0AND
pp

0.87
= 62.3± 2.5 (syst.) mb, (7.10)

where the statistical uncertainty is negligible. With all the inputs, there is no diffi-
culty to implement Eq. (7.9) to normalize the minimum bias events. But Eq. (7.10)
can not be used to estimate the corresponding number of minimum bias events for
a given muon triggered data sample. There are two methods that we proposed to
used for the normalization of muon triggered events: one scales the events with
special triggers to the minimum bias triggered events according to the information
in CTP, the other one estimates the corresponding minimum bias events for a given
muon triggered data sample according to the event multiplicity. Now we give a short
introduction for both of them.

7.2.2.1 CTP Scalers

We can say that, the beam luminosity L is a constant in a short data taking
interval t, then for any kind of triggers, the triggered number of events before and
after different level of triggers N ev(Lib) and N ev(Lia) (i = 0, 1, 2) in the interval t
are given by:

N ev(L0b) = Lσ0t,

N ev(L0a) = Lσ0(t−∆tDD −∆tPF
0 ),

N ev(L1b) = Lσ1(t−∆tDD −∆tPF
0 ),

N ev(L1a) = Lσ1(t−∆tDD −∆tPF
1 ),

N ev(L2b) = Lσ2(t−∆tDD −∆tPF
1 ),

N ev(L2a) = Lσ2(t−∆tDD −∆tPF
2 ),

(7.11)

where, ∆tDD is the detector dead time and it depends on the related triggers (eg.
minimum bias trigger and muon trigger) according to the detectors used for the
trigger decision, ∆tPF

i and σi (i = 0, 1, 2) are the past future protection and triggered
cross section at different level of triggers, respectively. According to Eq. (7.11), we
can write:

σ1 =
N ev(L1b)

N ev(L0a)
σ0 σ2 =

N ev(L2b)

N ev(L1a)
σ1, (7.12)

and

σ2 =
N ev(L2b)

N ev(L1a)
· N

ev(L1b)

N ev(L0a)
σ0. (7.13)

According to the ALICE trigger configurations in pp collisions, we have,

N ev(L2a) = N ev(L2b) = N ev(L1a) = N ev(L1b) = N ev(L0a) 6= N ev(L0b), (7.14)

then, we get,
σ2 = σ1 = σ0. (7.15)
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In this case, for a given trigger type, we do not need to distinguish its cross section
in different trigger levels. Also, the number of events and tracks that we used in the
analysis are from L2a trigger, and they are equal to those coming from L0a trigger
according to Eq. (7.14). We need to notice that, even if our starting point is for a
given time interval t, all the relations we get now are independent of the data taking
time.

Now let go back to the normalization of the muon triggered events. If we forget
the pile-up effect for a moment, the production cross section of muons in the muon
triggered events can be expressed as:

d2σµ

dptdη
= [

1

N ev
MU

× 1

ε
× d2N trk

MU

dptdη
]L2a × σMU

pp

= [
1

N ev
MU

× 1

ε
× d2N trk

MU

dptdη
]L0a × σMU

pp ,

(7.16)

where the definitions of all terms the same as those in Eq. (7.9), the subscript L2a
means that the terms in the square bracket come from the L2a trigger and they are
equal to those in L0a trigger.

To get the muon cross section in Eq. (7.16), we need to know the value of σMU
pp

in pp collisions. According to Eq. (7.11), in a given time interval t we have

N ev
MB(L0b) = LσMB

pp t, N ev
MU(L0b) = LσMU

pp t, (7.17)

then, we get,

σMU
pp =

N ev
MU(L0b)

N ev
MB(L0b)

· σMB
pp . (7.18)

Indeed, what we get from the van der Meer scan is the cross section of "V0AND"
events under the minimum bias trigger. The cross sections of minimum bias events
σMB

pp and the one in V0AND events σV0AND
pp obey the relation:

σMB
pp =

N ev
MB(L0a)

N ev
V0AND(L0a)

· σV0AND
pp . (7.19)

Finally, putting Eq. (7.18) and (7.19) back to Eq. (7.16), we get the full formula
used for the muon triggered event normalization based on the CTP scalers,

d2σµ

dptdη
= [

1

N ev
MU

× 1

ε
× d2N trk

MU

dptdη
]L0a ×

N ev
MU(L0b)

N ev
MB(L0b)

× N ev
MB(L0a)

N ev
V0AND(L0a)

· σV0AND
pp

= [
1

N ev
V0AND

× 1

ε
× d2N trk

MU

dptdη
]L2a ×

N ev
MU(L0b)

N ev
MU(L0a)

× N ev
MB(L0a)

N ev
MB(L0b)

· σV0AND
pp .

(7.20)

The relation N ev
V0AND(L02) = N ev

V0AND(L22) is used in the last step of Eq. (7.20).
Eq. (7.20) is derived in a short time interval t during the data taking; to imple-

ment it, all the scaler numbers in this formula should be gotten from the integrals
over the data taking time, and the pile-up correction should also be added in this
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procedure. The drawbacks for this method are: it needs to validate the minimum
bias trigger and the so called V0AND trigger together with the muon trigger in the
same data taking period, and it is complicated to be implemented with the muon
trigger alone. Also, the final information in Eq. (7.20) is based on the condition
of Eq. (7.14), and cannot work when the trigger configurations are changed (eg. in
Pb–Pb collisions).

7.2.2.2 Multiplicity Scaling

To overcome the drawbacks of the CTP scaler method, we can treat the muon
triggered event normalization in a more easy way. Let us go back to the starting
point again, when the cross section of minimum bias events is measured (according
to the V0AND cross section via the van der Meer scan). For the normalization of
the muon triggered events, we need to estimate the equivalent number of minimum
bias collisions for a given muon triggered data sample. This estimate can be done
by noticing that, with a fixed center of mass collision energy, the multiplicity of
the muon tracks should not be changed in the minimum bias collisions, regardless
this collision is triggered by the minimum bias trigger or the muon trigger. This
property is validated by Fig. 7.6 and 7.7. After all analysis cuts, the ratios between
distributions in minimum bias events and that in muon trigger events are indepen-
dent with pt or η in a given run period. This means that the different event triggers
can be treated as the scales for the muon track multiplicity.

We denote the equivalent number of minimum bias collisions for a given muon
triggered data sample with N ev

MU muon triggered events and N trk
MU muon tracks as

N ev
MB=MU. It should satisfy the following relation:

Mµ =
N trk

MB

N ev
MB

=
N trk

MU

N ev
MB=MU

, (7.21)

where N trk
MB is the number of muon tracks in the minimum bias data sample with

N ev
MB the minimum bias triggered events and Mµ the muon track multiplicity in the

minimum bias collisions. Thus, similarly as Eq. (7.9), the normalization of muon
triggered events is,

d2σµ

dptdη
=

1

N ev
MB=MU

× 1

ε
× d2N trk

MU

dptdη
× σMB

pp

=
1

pileup×N ev
MB

× N trk
MB

N trk
MU

× 1

ε
× d2N trk

MU

dptdη
× σMB

pp .

(7.22)

The pile-up correction is included in the last step of Eq. (7.22).
By comparing with Eq. (7.20), the implementation of Eq. (7.22) is more straight-

forward in the physics analysis and do not need to use the additional CTP infor-
mation. Also, this method can be extrapolated to Pb–Pb collisions directly. With
these advantages, we adopt this method to normalize the muon triggered events in
our following analysis.

Fig. 7.8 shows the normalized pt distributions of inclusive muon tracks as a
function of pt (left) and η (right) after the pile-up correction in minimum bias events
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Figure 7.8: Normalized muon pt distribution in minimum bias events (labeled as
"MB data") and in muon trigger events (labeled as "MU data") with the pile-up
correction in LHC10c1 and LHC10d2b, respectively. The results are shown as a
function of pt (left) and η (left). The normalization of muon trigger events is done
with the multiplicity scaling method.

and muon trigger events, respectively. The muon triggered events are normalized
with the multiplicity scaling method, and the results from LHC10c1 are compared
with those from LHC10d2b. For a given run period, both the minimum bias event
sample and muon triggered event sample give similar multiplicity distributions. In
these two distributions, in particular in the η distribution, one can notice that, the
multiplicity of muon tracks in LHC10c1 is higher than that in LHC10d2b. This is
due to the fact that the efficiency correction is not implemented yet. The difference
between these two run periods comes from the different tracking efficiencies.

7.3 Background Subtraction

The first step of background subtraction is to identify the background compo-
nents. This can be done by means of realistic simulations. In this section, we start
by looking at the muon sources after the event and muon selection cuts defined in
Sec. 6.4. Then, we present the strategy for background subtraction according to
what we learned in Monte-Carlo.

Since in the final results, we would like to show the differential production cross
sections of muons from open heavy flavour decays both as a function of pt and as a
function of η, the total acceptance (−4 < η < −2.5) was divided into five pseudo-
rapidity bins, of bin size 0.3: −4 < η < −3.7, −3.7 < η < −3.4, −3.4 < η < −3.1,
−3.1 < η < −2.8 and −2.8 < η < −2.5. Then, the background subtraction and all
the other analysis steps are presented in each pseudo-rapidity bin in order to get
the corresponding pt-differential production cross sections: dσµ←HF/dpt(η). Next,
we add them together,

dσµ←HF

dpt
(−4 < η < −2.5) =

∑
η

dσµ←HF

dpt
(η), (7.23)
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to get the pt-differential production cross section in the total acceptance
dσµ←HF/dpt(−4 < η < −2.5), and integrate the pt-differential production cross
sections in each η bin,

dσµ←HF

dη
=

∫
dpt ·

dσµ←HF

dpt
(η), (7.24)

to get the η-differential production cross section dσµ←HF/dη.

7.3.1 Strategy

Figure 7.9: Transverse momentum distributions of muon track sources without any
selection cut (left) and with the standard selection cuts (right) in pp collisions
at
√
s = 7 TeV. Results from the LHC10f6a simulations with PYTHIA Perugia-0

tuning and realistic detector configurations correspond to LHC10d2b data sample.

Fig. 7.9 shows the pt distributions of different sources for tracks reconstructed
in the MUON spectrometer, without any selection cuts (left) and with the standard
selection cuts 2 (right) from LHC10f6a simulations with PYTHIA (Perugia-0 tun-
ing). This simulation corresponds to pp collisions at

√
s = 7 TeV, and the realistic

detector configurations of LHC10d2b data are used. As one can see, comparing
with the spectrum without any selection cut (left plot in Fig. 7.9), almost all the
hadron and fake track (the unidentified track) components are removed after all the
selection cuts (right plot in Fig. 7.9); also, the fraction of muons produced inside
the front absorber 3 is . 3% with respect to the total inclusive muon distribution in
pt > 2 GeV/c, and it can be neglected in this pt region. In this case, when we focus

2The cuts listed in the right plot of Fig. 7.9 are named standard muon selection cuts. In addition
to the analysis cuts at the event and track level we introduced in Sec. 6.4, there is an additional
p×DCA cut. At present, our following analysis still uses the analysis cuts listed in Sec. 6.4. As
we will see, the p×DCA cut is used to remove the beam gas background, especially in the high pt
region, and will not change the conclusions obtained without this cut.

3All the different muon sources have been already mentioned. We remind that muons produced
in the front absorber are called "secondary muons", since they mainly come from the interactions
of charged kaons and pions with the materials in the frond absorber, they are labeled as "µ ←
secondary K/π". The muons from the primary light hadrons and resonances are called as the
"primary muons", since they are mainly originating from charged kaon and pion decays. They can
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on pt > 2 GeV/c, the only main background component that we should consider is
primary muons.

To subtract the primary muons in the inclusive muon spectrum, we used the
following strategy:

• extract the pt-shapes of primary muons from realistic simulations with different
models under the same selection cuts which are applied in data in each of
pseudo-rapidity bin,

• normalize the pt-shapes of primary muons to the data to estimate the back-
ground in data;

• the uncorrected spectrum of muons from open heavy flavours decay are ob-
tained after subtracting the estimated primary muon background from data.

The systematic uncertainty on each step should be taken into account carefully.

7.3.2 Background Estimate

The first step for the background subtraction is to extract the shape of primary
muons from different predictions under the same selection cuts applied to the data.
As shown in the right plot of Fig. 7.9, after all the selection cuts, the statistics of
primary muons is not large enough to estimate the background in the high pt region
(pt > 8 GeV/c) in the simulations. One can imagine that, when we separate it into
five pseudo-rapidity bins, the statistics will be even smaller in each η region. Also,
it needs large CPU time and disk storage to increase the statistics in the simulations
since we should run the full analysis chain from generation until reconstruction. To
save CPU time and disk storage, we used the function described in Eq. (5.1) to
fit the pt-shapes of primary muons in a given η region. Then the extrapolation to
higher pt is performed. This procedure should be DONE very carefully, since fitting
and extrapolation could introduce additional bias in our background estimate. As
shown in Fig. 7.10, to validate the stability of this procedure, we perform following
checks (for each simulation):

1. fit the primary muon pt-spectrum in the five individual pseudo-rapidity re-
gions, and sum the fitting results in each of these regions together to get the
get the fitting spectrum in the total η region (blue lines);

2. fit the pt-spectrum of the primary muons again but in the total η region (red
lines);

3. compare the results from above two steps to see how different they are.

According to the results in Fig. 7.10, the comparison between the fit of the pt-
shape of primary muons in the total η region (−4 < η < −2.5) and the sum over

be also labeled "µ← primary K/π" or "decay muons". Also, the unidentified tracks can be labeled
as "fake tracks". So next time, when you see different labels in the so many incoming beautiful
figures, I wish you can understand what are they.
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the fit results in five individual pseudo-rapidity bins from realistic simulations of
LHC10d4 (pythia, upper, left), LHC10d4a (PhoJet, upper, right), LHC10f6 (Pho-
Jet, down, left) and LHC10f6a (PYTHIA, down, right) with the same selection cuts
applied to data, shows that the fit results from step 1 and 2 are in agreement, and
that the extrapolation is stable. Due to the statistics limitation, as in LHC10d4a,
these two kinds of fit results exhibit some differences in the high pt region. This
difference can be treated as the systematic uncertainty on the background extrap-
olation. However, since the background in this pt region is much smaller than the
signal (the muon from open heavy flavour decays), the total inclusive muon spec-
trum is almost insensitive on the observed difference. This systematic uncertainty
is neglected in our final systematic uncertainty. With higher statistics in the sim-
ulations, as LHC10f6 and LHC10f6a, the difference between these two kinds of fit
results disappears.

Figure 7.10: Comparison between the pt-shape of primary muons in total η region,
−4 < η < −2.5 (red lines) and the sum from fit results in 5 pseudo-rapidity bins
(blue lines). The results are obtained, under the same selection cuts applied to data,
from realistic simulations of LHC10d4 (pythia, upper, left), LHC10d4a (PhoJet,
upper, right), LHC10f6 (PhoJet, down, left) and LHC10f6a (PYTHIA, down, right).
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Figure 7.11: Upper panels: normalized inclusive pt distributions in−4 < η < −3.7 in
the muon triggered data from LHC10c1 (left) and LHC10d2b (right) with respect to
the number muon triggered events. The results are compared to the pt distributions
of inclusive muons and primary muons in the corresponding realistic simulations.
The simulations are scaled with SMC (Eq. 7.27), obtained in the same η region
before normalization with the corresponding number of events applied in the data.
Lower panels: ratio between the primary muons and inclusive muons in data and in
Monte-Carlo for LHC10c1 (left) and LHC10d2b (right).

7.3.3 Background Normalization

Before to describe the background normalization, we give the following definition:

N
inclusive/primary µ
RD/MC (low pt,∆η) =

∫
∆η

dη

∫ 1 GeV/c

0
dpt

d2N
inclusive/primary µ
RD/MC

dptdη
, (7.25)

which expresses the number of inclusive or primary muon tracks counted in 0 <

pt < 1 GeV/c in a given η region, ∆η, in the event sample from data (RD) or
Monte-Carlo (MC). After having obtained the background shapes from simulations,
the normalization of background to data is done according to the assumption: in the
low pt region (here, we use 0 < pt < 1 GeV/c) where the background from primary
muons dominates, in both data and Monte-Carlo, the ratio of yield of primary muons
to that of inclusive muons is the same in a given ∆η region:

RMC(∆η) =
Nprimary µ

MC (low pt,∆η)

N inclusive µ
MC (low pt,∆η)

=
Nprimary µ

RD (low pt,∆η)

N inclusive µ
RD (low pt,∆η)

, (7.26)
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Figure 7.12: The same as Fig. 7.11, in −3.7 < η < −3.4.

Figure 7.13: The same as Fig. 7.11, in −3.4 < η < −3.1.
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Figure 7.14: The same as Fig. 7.11, in −3.1 < η < −2.8.

Figure 7.15: The same as Fig. 7.11, in −2.8 < η < −2.5.
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In Eq. (7.26), Nprimary µ
MC (low pt,∆η), N inclusive µ

MC (low pt,∆η) and
N inclusive µ

RD (low pt,∆η) can be obtained from the used event sample in simu-
lation or data directly, according to the definition in Eq. (7.25). With the obtained
value of RMC(∆η) from the used Monte-Carlo sample, Nprimary µ

RD (low pt,∆η), the
number of primary muons in the used data sample in ∆η and low pt region, can be
estimated according to Eq. (7.26).

In this case, we scale Nprimary µ
MC (low pt,∆η) in the used simulation sample to

RMC(∆η)×N inclusive µ
RD (low pt,∆η) with the factor:

SMC(∆η) = RMC(∆η)× N
inclusive µ
RD (low pt,∆η)

Nprimary µ
MC (low pt,∆η)

=
N inclusive µ

RD (low pt,∆η)

N inclusive µ
MC (low pt,∆η)

. (7.27)

Then the scaling factor SMC(∆η), defined in Eq. (7.27) is used to scale the extracted
primary muon yield in a given ∆η (as shown in Fig. 7.10) to the data sample in
order to estimate the yield of primary muons in data.

Fig. 7.11 to 7.15 show the comparisons of the normalized inclusive muon pt

distributions in muon triggered data and that in the corresponding realistic simula-
tions in five pseudo-rapidity bins, the normalized pt distributions of primary muons
in each ∆η bin are also presented and the ratios between primary muons and in-
clusive muons in data and simulations are given. The simulations are scaled with
SMC defined in Eq. (7.27), before the normalization to the same number of events
in the data. In this case, the primary muon distribution depicted in these figures is
the estimated primary muon component in data. In general, the shape of inclusive
muons produced by PYTHIA (Perugia-0 tuning) are closer to that in data than the
one produced by PhoJet. But after the background normalization, both generators
give similar estimated fractions of primary muons with respect to data. The differ-
ence in the estimated primary muon fractions via these two generators is due to the
differences for RMC and primary muon shapes between PYTHIA and PhoJet, and
it will be taken into account in the final systematic uncertainty.

7.3.4 Uncorrected Results

After scaling the primary muon yields in the corresponding realistic simulations
to the used data samples, LHC10c1 and LHC10d2b, respectively, the background
fraction is estimated in the data. After background subtraction in both minimum
bias events and muon triggered events, the expected yields of muons from open
heavy flavour decays are obtained in these two kinds of triggered events. By using
Eq. (7.9) and (7.22), with the value of σMB

pp from Eq. (7.10) to normalize the results in
minimum bias events and muon triggered events, respectively, without the efficiency
correction, we obtained the results shown in Fig. 7.16 and 7.17. For both LHC10c1
and LHC10d2b, we have the two corresponding realistic simulations (as listed in
Tab. 7.2). The background subtraction for each of these data sample is realized
with its two realistic simulations independently, and the final results are given by
the central value of the expected signal cross sections, according to the two estimated
primary muon yields from different simulations. The systematic uncertainties are
not included.
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Figure 7.16: Uncorrected pt-differential production cross section of muons from open
heavy flavour decays in different η regions. Results from the minimum bias triggered
data and muon triggered data in LHC10c1 and LHC10c2 are compared together.
The systematics uncertainties are not yet shown.

Fig. 7.16 (bottom, right) shows the uncorrected pt-differential production cross
sections of muons from open heavy flavour decays in the total acceptance (−4 <

η < −2.5), obtained by adding the results in five pseudo-rapidity bins according to
Eq. (7.23). The results in Fig. 7.17, uncorrected η-differential production cross sec-
tions of muon signals in pt > 2 GeV/c, are obtained by integrating the pt-differential
production cross sections in each pseudo-rapidity bin according to Eq. (7.24).

In each run period, the minimum bias events and the muon triggered events
give the same results, this validates the strategy used in our analysis for event and
background normalization. The differences in the results from LHC10c1 and that
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Figure 7.17: Uncorrected η-differential production cross section of muons from open
heavy flavour decays in pt > 2 GeV/c, obtained according to Eq. (7.24). Results
from the minimum bias triggered data and muon triggered data in LHC10c1 and
LHC10c2 are compared. The systematic uncertainties are not yet shown.

from LHC10d2b are caused by the different tracking efficiencies in these two run
periods.

7.3.5 Systematic Uncertainty

As mentioned, the background from primary muons is estimated from realistic
simulations using different models. We used the fitting procedure to extract the
background shapes in different models. The systematic uncertainty on this pro-
cedure, as discussed in Sec. 7.3.2, is < 1% and can be ignored. The systematic
uncertainty on background subtraction, σbkg, includes two parts: one comes from
the different background shapes in different models σmodels, and the other one is
related to the background normalization σnorm.

We start with the estimate of σmodels. This is quite straightforward: we get
pt spectrum in data after the background subtraction, which corresponds to the
spectrum of muons from open heavy flavour decays, with different simulations in
different η regions; then, we calculate the mean value of the spectrum in each pt

and η bin and this average spectrum gives the central value of the muon signal; the
systematic uncertainty from models is given by the deviations between the spectrum
with the two used independent simulations and the average spectrum, as shown in
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Figure 7.18: Estimate of σmodels (left column) and σnorm (right column) with
LHC10d2b in different η regions, see text for more details.
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Figure 7.19: The ratios of primary muons (left) and secondary muons (right) to the
total muons in 0 < pt < 1 GeV/c (the region we used to calculate the RMC) in
different simulations.

the left column of Fig. 7.18. This kind of systematic uncertainty is small. In this
case, in a given η region, we use the maximum deviation in the pt spectrum to
estimate σmodels in this η bin.

Concerning the estimate of σnorm, the situation is a little bit complicated. The
transport process in all the used Monte-Carlo samples is provided by GEANT3
transport code. The yield of the secondary muons is sensitive to different transport
models (like GEANT4 [305] and Fluka [306]). In the most pessimistic case, the
differences of the yield of secondary muons with different transport codes is within
100%. To estimate σnorm, in each of used model, we change the yield of secondary
muons in 100% (this means that we consider no secondary muons or two times
more secondary muons) and we re-calculate RMC in Eq. (7.26). Then we implement
the new values of RMC in Eq. (7.27) to get the new scaling factors SMC for the
background. The deviations between the results from the new SMC and the central
value of the spectrum of signal muons, as shown in right column of Fig. 7.18, give
the estimated σnorm in each pt and η bin. Differently from σmodels, the systematic
uncertainty on the background normalization σnorm depends both on pt and η. We
extract the values of the maximum deviations in each pt and η bin between different
used models as σnorm in this given region.

The final values that we used for both σmodel and σnorm are summarized in
Tab. 7.3. The observed trends can be explained by looking at the results from
Fig. 7.19. This figure displays the ratios of primary muons (left) and secondary
muons (right) to the total muons in the region we used to calculate the RMC (0 <
pt < 1 GeV/c) in different simulations. Despite these ratios are not the same in
different simulations, they show a systematic trend:

• the ratio between primary muon yield to the total muon yield in 0 < pt <

1 GeV/c (R) decreases with |η|, this is due to the mean energy loss < pcut >'
3 GeV/c, then,

< pcut
t >=< pcut > sin θ, (7.28)

increases with the polar angle θ, in small |η| region, sin θ increases and more
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σmodel σnorm

pt (GeV/c)
2− 2.5 2.5− 3 3− 3.5 3.5; 4.0 4− 4.5 4.5− 5 > 5

2.5 < η < 2.8 7% 34% 22% 20% 16% 12% 10% 6%

2.8 < η < 3.1 5.5% 22% 18% 14% 12% 10% 8% 6%

3.1 < η < 3.4 4.5% 10% 9% 8% 7% 6%

3.4 < η < 3.7 3.0% 6%

3.7 < η < 4.0 2.0% 4%

Table 7.3: Systematic uncertainties introduced by the procedure used for the sub-
traction of primary muons. The absolute values of η are used. The systematic
uncertainties on normalization are corrected by the p×DCA cut, as it will be dis-
cussed in Sec. 7.6.3.2.

tracks are rejected in the low pt region;

• the ratio between secondary muon yield to the total muon yield decreases with
|η| in 0 < pt < 1 GeV/c due to the secondary muons produced inside the front
absorber, relating them to the primary vertex makes a systematic decrease of
their |η| value.

If the ratio of primary muon yield to total muon yield decreases with |η| in the
low pt region, this means that the fraction of primary muons is small in large |η|
region, then the background subtraction is more and more insensitive with the shape
of primary muons when |η| decreases. On the contrary, the decrease of the ratio
between the secondary muon yield to the total muon yield makes the re-calculated
value of RMC more and more sensitive to the secondary muon component when |η|
decreases. By combining all effects, finally, we get the trends shown in Tab. 7.3.

7.4 Efficiency Correction

The correction efficiency includes two aspects: the detection efficiency related
to the reconstruction efficiency from the given reconstruction algorithm (like the
Kalman Filter) and the dead channels in the detector cells or the readout electronics
etc.; the acceptance efficiency, which is introduced by the cuts implemented during
the analysis. For muon tracks, the correction efficiency is determined by following
factors:

• the tracking efficiency, which is one kind of detection efficiency, it is from the
track reconstruction in the tracking chambers, and it depends on the chamber
occupancy which related to the input track multiplicity;

• the trigger matching efficiency, which includes both acceptance efficiency and
detection efficiency components. On one hand, the trigger matching can be
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treated as a pt cut for the reconstructed tracks, on the other hand, there is
also an efficiency for matching the tracker tracks to the corresponding trigger
tracks;

• the efficiency to correct for the θabs cut which is one kind of acceptance cut:
we use 171

o
< θabs < 178

o to avoid the different material effects in the front
absorber. Part of reconstructed tracks in the pseudo-rapidity acceptance are
rejected by this cut, and this should be corrected in the final results.

The basic task of the efficiency correction for our analysis, is to take into account
all the above factors.

7.4.1 Strategy

The following efficiency correction strategy is used:

1. get the kinematic distributions of heavy quarks from theoretical predictions
(here we use the results from HvQMNR calculations [172]) as simulation in-
puts);

2. play the heavy quark hadronization and semi-muonic decay under the AliRoot
framework with realistic detector effects according to the corresponding data
taking period;

3. reconstruct the simulated muon tracks from heavy flavours under the realistic
reconstruction conditions in data;

4. the ratio between the distributions of reconstructed muon tracks with the
same selection cuts used in data and the input muon distributions from open
heavy flavour decays gives the correction efficiency including all above effi-
ciency sources.

Figure 7.20: The two-dimension efficiency correction matrices as a function of pt

and η, built with the input of charm quark kinematics from HvQMNR predictions
for LHC10c1 (left) and LHC10d2b (right), respectively.
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Fig. 7.20 shows the two-dimension efficiency correction matrices as a function of
pt and η with the charm quark kinematics from HvQMNR predictions as the input
for LHC10c1 (left) and LHC10d2b (right), respectively. In order to study the bias
introduced by the efficiency correction, the estimate of the systematic uncertainty
of the correction is also quite important. The systematic uncertainty estimate is
investigated with several independent test procedures.

7.4.2 Test of the Efficiency Correction in Simulations

Figure 7.21: The efficiency correction for the η (left) and pt (right) distributions
of muons from open charm hadrons in the ideal simulation with PYTHIA ATLAS
tuning. The reconstructed distributions are labeled as "reco", the distributions after
the efficiency correction are labeled as "corr" and the input distributions are labeled
as "kine". The ratio between the corrected distributions and the input distributions
are presented in the bottom panels. The correction matrix is built with the charm
quark kinematics distributions from HvQMNR predictions as the simulation inputs
and under the ideal detector configurations.

First, we should check whether the efficiency correction is reliable or not. This
can be done easily in simulations, with following steps:

1. prepare a two-dimension efficiency matrix as a function of pt and η built
with the charm quark kinematics distributions from HvQMNR predictions as
simulation inputs;

2. use it to correct the pt and η distributions of muons from open charm hadrons
in another independent simulation (here we use the results from the simulation
with PYTHIA ATLAS tuning);

3. compare the corrected results and the input distributions.
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For this study, here we just use the ideal detector configurations in the simulations.
As shown in Fig. 7.21, the input signal distributions are well reproduced by the
corrected spectrum, except that there are some differences in the η distribution.
This difference is caused by the efficiency estimate in the low pt region. Due to
the energy loss of muons in the front absorber and muon filter, the efficiency of
muon tracks is very small. As shown in [307], with a pt cut (pt > 2 GeV/c) the
conditions in the η distribution are strongly improved. The results in Fig. 7.21 allow
to conclude that, the corrected spectrum reproduces the input distribution and the
correction strategy is reliable.

Figure 7.22: Same conditions as in Fig. 7.21, except muons from open beauty
hadrons are used as input.

Since the fraction of charm and beauty components of the muon signals in data
are unknown, we cannot combine the efficiency matrix of muons from charm and that
of muons from beauty together. Our second test is to understand whether we can use
the efficiency matrix built with one single component to correct the distribution of
total muon signals. This test presented at the simulation level is shown in Fig. 7.22
and 7.23. In Fig. 7.22, we implemented the same correction matrix as used in the
first test to correct muons from open beauty hadrons in the ideal simulation with
PYTHIA ATLAS tuning. We find some deviations between the corrected results
and the input distributions in this case. These deviations appear in the low pt

region and the situation can be improved with a pt cut. This indicates that, in the
high pt region, the efficiency correction with our strategy is not only reliable but
also insensitive with the input signal pt shape used to build the correction matrix.
Then, we mix the charm and botto components of the signal muons together with
the fractions given by the PYTHIA ATLAS tuning, and implement the correction
again with the same matrix used in Fig. 7.22, as the results shown in Fig. 7.23.
These results confirm once more that, if the corrected results are insensitive with
the input shapes to build the correction matrix, in the pt region (pt > 2 GeV/c) we
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Figure 7.23: Same conditions as in Fig. 7.21, except taht total muon signals from
both open charm and beauty hadrons are used as input.

can use the correction matrix build with the single component of signal muons to
correct the total spectrum of muon from both open charm and beauty hadrons.

7.4.3 Systematic Uncertainty in Data

Finally, we tested the efficiency correction in data, and estimate the systematic
uncertainty on the efficiency correction. The main aim of this test is to understand
how the corrected results in data are sensitive to the efficiency matrices built with
different pt and η shapes of muon signals.

Figure 7.24: The efficiency correction matrices made by muons from charm (left) and
muons from beauty (right) with the inputs of HvQMNR predictions. The realistic
detector configurations corresponding to run 119159 in LHC10c1 are used for these
simulations.

In this case, we proceed as follows:
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Figure 7.25: Results of efficiency correc-
tion in run 119159 from LHC10c1 for
minimum bias data (up) and muon trig-
gered data (down), respectively. The ef-
ficiency matrix is built with muons from
charm with the corresponding realistic
detector configurations, as shown in left
plot of Fig. 7.24.

Figure 7.26: Results of efficiency correc-
tion in run 119159 from LHC10c1 for
minimum bias data (up) and muon trig-
gered data (down), respectively. The ef-
ficiency matrix is built with muons from
beauty with the corresponding realistic
detector configurations, as shown in right
plot of Fig. 7.24.

1. create the efficiency matrices for both muons from charm and muons from
beauty, respectively, with the realistic detector configurations for a given run
(here run 119159 in LHC10c1 is used), as shown in Fig. 7.24;

2. use these two efficiency matrices to correct the corresponding data, as shown
in Fig. 7.25 and 7.26; in these figures, the correction is presented for minimum
bias events and muon triggered events, respectively; also during the correc-
tions, all the analysis cuts are applied to build the correction matrices and to
the data;

3. compare the corrected results with these two independent correction matri-
ces, as shown in Fig. 7.27, and estimate the systematic uncertainty on the
efficiency correction according to the differences between the corrected results
with different correction matrices.

The results from the comparison shown in Fig. 7.27 are summarized in Tab. 7.4
and 7.5 for the minimum bias triggered data and muon triggered data, respectively.
In these tables, we get the value of the ratio between the corrected results from
these two independent correction matrices for minimum bias events (Tab. 7.4) and
muon trigger events (Tab. 7.5), respectively. Note that the values in the pt region
where the statistical fluctuations are large, are removed. Then we calculate the
mean of these ratios and the deviations between their values and the mean. Finally,
we found that the results in both minimum bias events and muon triggered events
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Figure 7.27: Comparison of the corrected results in run 119159 from LHC10c1 with
the correction matrices build by muons from charm (left plot of Fig. 7.24) and that
with muons from bottom (right plot of Fig. 7.24), for the minimum bais triggered
data (left) and muon triggered data (right), respectively.

pt [GeV/c] 2− 2.5 2.5− 3 3− 3.5 3.5− 4 4− 4.5 4.5− 5 mean

ratio 1.00 1.01 1.01 0.99 1.02 1.02 1.01

deviation 1% 0 0 1% 1% 1% −

Table 7.4: The ratio of the corrected results with two independent correction matri-
ces for run 119159 from LHC10c1 for the minimum bias triggered events extracted
from lower panel in left plot of Fig. 7.27 in some given pt regions.

pt [GeV/c] 2− 2.5 2.5− 3 3− 3.5 3.5− 4 4− 4.5 4.5− 5 mean

ratio 1.00 1.01 1.01 0.99 1.02 1.02 1.01

deviation 1% 0 0 1% 1% 1% −

Table 7.5: Ratio of the corrected results with two independent correction matrices
in run 119159 from LHC10c1 for the muon triggered events extracted from lower
panel in right plot of Fig. 7.27 in some given pt regions.

are almost the same, the maximum deviation is 1%. This 1% deviation is the
estimated systematic uncertainty on the efficiency correction. Recent studies [308],
using higher statistics data sample, give an upper limit for the systematic uncertainty
on efficiency correction of 0.8%. These results allow to conclude that the uncertainty
on the efficiency correction is small and can be neglected.

In addition, according to the structure of the tracking chambers of the MUON
spectrometer, the mis-alignment also affects the reconstructed pt spectrum. Due to
the mis-alignment, the tracks with opposite charges will shift to opposite directions
in the pt spectrum with respect to their real pt values. The understanding of the
misalignment depends on the real shape of the pt spectrum and also on the real
ratio between positive and negative tracks. But it is impossible to know it before
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the correction of the mis-alignment. Normally, the decoupling of the mis-alignment
from data is carried out via the iterative steps [293]. In our correction procedure, as
we saw, the corrected results in data are insensitive with the input pt shapes used
for building the correction matrices. This indicates that the misalignment do not
affect too much our interesting pt region for what concerns the efficiency correction.
In this case, instead of the further correction for the mis-alignment, we consider the
estimated uncertainty in our final systematic uncertainty, of 1%× pt with the unit
of pt in "GeV/c". In addition, there will be a 5% systematic uncertainty for the
detector response which should be also included in the final systematic uncertainty.
This value was obtained by comparing the values of trigger and tracking efficiencies
extracted from data and simulations.

7.5 Comparison with FONLL Predictions

One of the motivations of the open heavy flavour production cross section mea-
surement is to test the pQCD calculations. In this regard, it is important to compare
the measured results with the theoretical predictions. As mentioned in Sec. 2.1.3.2,
the FONLL calculations is one of the reasonable predictions for the open heavy
flavour production since it overcomes the divergence at high pt by the re-summation
of the pQCD series in the high pt region by matching the pQCD NLO calculations
with the calculations from fragmentation function formalism. To test the pQCD
framework, we are going to compare our results with the FONLL predictions. More-
over, in order to ensure that this comparison is done properly, the uncertainties on
FONLL predictions should also be considered.

7.5.1 Error Propagation for FONLL Predictions

Figure 7.28: The production cross sections of heavy quark pairs (left) and muons
from heavy quark decays (right) from FONLL predictions in −4 < η < −2.5, in pp
collisions at

√
s = 7 TeV.

The production cross sections of cc and bb in the acceptance of the ALICE
MUON spectrometer (−4 < η < −2.5) in pp collisions at

√
s = 7 TeV are shown in
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Figure 7.29: The rescaled ratios of production cross sections with respect to the
central values for cc (left) and bb (right) from FONLL predictions in −4 < η < −2.5,
in pp collisions at

√
s = 7 TeV.

Fig. 7.28 (left panel). As shown in Eq. (2.1), the calculation of the heavy flavour
production cross section depends on the input quark mass, the chosen PDF and
the used values of the renormalization and factorization scales, µR and µF. Each of
them will introduce an uncertainty on the predictions of the production cross section
of heavy quarks. In the results shown in Fig. 7.28 (left panel), the central values
are obtained by using µR = µF = µ0 =

√
p2

t +m2
Q with the charm quark mass

mc = 1.5 GeV/c2 and bottom quark mass mb = 4.75 GeV/c2. The uncertainties on
quark masses are estimated by setting the ranges of 1.3 GeV/c2 < mc < 1.7 GeV/c2

for charm quarks and 4.5 GeV/c2 < mb < 5.0 GeV/c2 for bottom quarks. The
uncertainty on the QCD scales are given by varying µR and µF independently with
the following conditions:

1

2
µ0 < µR, µF < 2µ0,

1

2
< µR/µF < 2,

(7.29)

to optimize the accuracy of the pQCD predictions [309]. The uncertainty on PDFs
is given by different sets of inputs from CTEQ 6. The rescaled production cross
sections with respect to the central values for charm and bottom quarks are shown
in left and right plots of Fig. 7.29, respectively, with the different sources of uncer-
tainties. In this figure, one can see that, by comparing with the uncertainties from
the quark masses and PDFs, the uncertainty from QCD scales is the largest one in
the whole pt region.

By considering the fragmentation and semi-muonic decay with appropriate
branching ratio, we get the pt-differential production cross section at muon level, as
shown in Fig. 7.28 (right panel). There are three kinds of muon sources: muons from
charm quarks, muons from bottom quarks and the muons from the indirect decay
of bottom quarks. In order to simplify the description in this section, we named
these three kinds of muons as charm µ, bottom µ and feed down µ, respectively.
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The uncertainties at quark level should be propagated at the muon level and the
additional uncertainty on the fragmentation process should also be included. But as
shown in Fig. 2.5, due to the hard fragmentation of heavy quarks, the uncertainty
on the fragmentation with different kinds of fragmentation functions is very small,
and by comparing with the other uncertainty sources it is negligible. In this case,
the results for different kinds of muons shown in Fig. 7.28 (right panel) only include
the same uncertainty sources at quark level.

For the comparison with data, we should add the production cross sections of
these three kinds of muons together. This will allow to get the results for muons
from both open charm hadron and open bottom hadron decays. The uncertainty on
these three kinds of muon sources are not independent and cannot be propagated
quadratically. To propagate the uncertainties correctly, the following steps are used:

1. both the bottom µ and feed down µ originate from bottom quarks, the pa-
rameters of these two sources cannot be changed independently;

2. add the central values of the production cross section of these three kind of
muons together to get the central value of the production cross section for
muons from open heavy flavour decays;

3. fix the other parameters in order to get the central cross section value, then
vary mc and mb independently. For both mc and mb one can choose three
different values, this will give 9 kinds of combinations, the maximum and min-
imum differences between these 9 combinations and the central cross section
value give the upper and lower uncertainties from the quark masses, σmax

mass and
σmin

mass;

4. similarly to the procedure just discussed, one changes the QCD scales indepen-
dently for muons from charm and those from bottom (the bottom µ and feed
down µ) while keeping the other parameters unchanged, in order to estimate
the upper and lower uncertainties from the QCD scales, σmax

scales and σ
min
scales. For

each case, there are 7 combinations of µR and µF which satisfy the conditions
of Eq. (7.29):

µR = µ0, µF = µ0,

µR = 0.5µ0, µF = 0.5µ0,

µR = 2µ0, µF = 2µ0,

µR = 2µ0, µF = µ0,

µR = µ0, µF = 2µ0,

µR = µ0, µF = 0.5µ0,

µR = 0.5µ0, µF = µ0.

(7.30)

Finally by combining the charm and bottom together, we can get a total 49

combinations for the QCD scales by mixing the QCD scales;

5. the upper and lower uncertainties from PDFs, σmax
PDFs and σmin

PDFs, are propa-
gated quadratically;
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After all above steps, the upper and lower uncertainties on the production cross
sections of muons from heavy flavour decays are obtained by adding quadratically
the corresponding uncertainties on quark masses, QCD scales and PDFs.

7.5.2 Results of the Comparison

After this short discussion about the uncertainty propagation in FONLL predic-
tions, we present the comparison between data and FONLL predictions.

Figure 7.30: The corrected pt-differential production cross sections of muons from
open heavy flavour decays in LHC10c1, LHC10c2 and LHC10e, in different η regions.
The results are compared with the FONLL predictions. In each run period, only
the muon triggered data are used.

Fig. 7.30 and 7.31 show the pt and η differential production cross section of
muons from open heavy flavours decays, respectively. The pt-differential produc-
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Figure 7.31: The corrected η-differential production cross section of muons from
open heavy flavour decays in LHC10c1, LHC10c2 and LHC10e, in pt > 2 GeV/c.
The result are compared with the FONLL predictions. In each run period, only the
muon triggered data are used.

tion cross sections are shown in different η regions. The results are from LHC10c1,
LHC10d2b and LHC10e by using the muon triggered data. They are corrected via
the strategy introduced in Sec. 7.4.1, with the correction matrices shown in Fig. 7.20
for LHC10c1 and LHC10d2b as examples, the correction matrix for LHC10e is cre-
ated via the same procedure used for LHC10c1 and LHC10d2b but with the realistic
detector simulations for LHC10e. The systematic uncertainty in data, at present,
just includes the one on background subtraction as discussed in Sec. 7.3.5. This
error is propagated bin by bin quadratically by using the Eq. (7.23) and (7.24). The
pt-differential production cross sections from different pseudo-rapidity bins (the first
five plots in Fig. 7.30) are added together to get the production cross section in the
total acceptance −4 < η < −2.5 (the last plot in the bottom right of Fig. 7.30), and
to integrate the results in each pseudo-rapidity region to obtain the η-differential
production cross section depicted in Fig. 7.31. The uncertainties in FONLL predic-
tions are calculated according to the strategy presented in Sec. 7.5.1. In these two
figures, one can notice that in the pt range up to 8 GeV/c, the measured differen-
tial cross sections of muons from heavy flavours decays from different run periods
agree well within uncertainties both as a function of pt and η. They also agree with
FONLL predictions within experimental and theoretical uncertainties.
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Figure 7.32: Similar as Fig. 7.30, but the comparison with FONLL predictions is
presented for LHC10e data, with pt measured up to 15 GeV/c.

Of course, we (indeed my bosses) are not satisfied if we just stop here. As
shown in Tab. 7.1, the statistics of the muon triggered events in LHC10e is three
times higher than the total statistics from LHC10c1 and LHC10d2b together. With
LHC10e period, we can perform the measurements in a higher pt region, up to
15 GeV/c, as shown in Fig. 7.32. Same analysis cuts, as in Fig. 7.30, are applied.
One can notice that, in the high pt region, the data are not reproduced by the
FONLL predictions. By comparing the data with FONLL predictions in Fig. 7.32,
we can notice that:

• in the total acceptance, −4 < η < −2.5, the results in data are higher than
those from FONLL predictions in the high pt region, pt & 8 GeV/c;

• the disagreements between data and FONLL predictions mainly come from
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the η regions close to the mid-rapidity region, −3.2 < η < −2.8 and −2.8 <

η < −2.5, and increase with pt;

• the disagreement between data and theoretical predictions become smaller
when |η| increases.

Up to now, it is difficul to conclude about the origin of the problem and if it
comes from our measurements or from the FONLL predictions. From our side, we
can check the data. Anyhow, the systematic trends in the disagreements give hints
for checking the data.

7.6 Beam Induced Backgroud Rejection

According to the trends in the differences between the experimental measure-
ments and the FONLL predictions, we started to check some distributions in each
pseudo-rapidity region and we attributed the differences between data and FONLL
to the beam induced background. The first justification of the beam induced back-
ground rejection is based on the fact that the extrapolation of reconstructed parame-
ters of muon tracks to the primary vertex is incorrect for background tracks produced
far away from the primary vertex, during the track reconstruction (Sec. 3.4.4.3).
This incorrect extrapolation can introduce some correlation relations between the
track kinematics variables. This is due to theCoulomb-Multi-Scattering (CMS)
between the tracks and the material in the front absorber. At final, we developed
a cut based on the behaviour of the Coulomb-Multi-Scattering to cut off the beam
induced background.

7.6.1 Additional Background component in the High pt Region

For the understanding of the differences between data and FONLL predictions
in the high pt region presented in Fig. 7.32, we first plotted the mean values of DCA
and tracking χ2 as a function of pt in different pseudo-rapidity regions, as shown in
Fig. 7.33.

Fig. 7.33 (left panel) presents the mean DCA values as a function of pt and for
the five pseudo-rapidity regions for the muon triggered data of LHC10e and with the
muon selection cuts listed in this plot. The DCA (Distance of Closest Approach),
introduced in Sec. 3.4.4.3, is defined as the closest distance between the primary
vertex and the track calculated according to the track parameters after the energy
loss correction in the front absorber (but before to relate the track parameter to the
primary vertex). According to this definition, a large value of DCA can be due to
following reasons:

• the production point of particles related to a given recontructed track is far
from the primary vertex, as for primary muons or beam shield induced particles
(as shown in left plot of Fig. 6.11);

• large scattering angles for the tracks inside the front absorber, as low pt tracks.
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Figure 7.33: The mean values of DCA (left) and tracking χ2 (right) for reconstructed
tracks versus pt bin in five pseudo-rapidity regions. The results are obtained from
the muon triggered events in LHC10e with the muon selection cuts.

In the left plot of Fig. 7.33, we can see that, in the last two η bins, −3.1 < η <

−2.8 and −2.8 < η < −2.5, the mean values of DCA (<DCA>) increase with pt

in the high pt region, while the <DCA> in the first three η bins is smaller and
insensitive with pt in the high pt region. The disagreements between data and
FONLL predictions in the last two η bins, as shown in Fig. 7.32, are consistent
with the existence of a new background source, with large DCA values, that was
not considered (or becomes important) in the high pt region for the last two η bins.
As a consequence, the model underestimates the experimental results. Since this
background is located in the high pt region, the associated large DCA values should
not be attributed to large scatterings of the primary and/or secondary muons in the
front absorber (this effect mainly affects the track in the low pt region). To confirm
that these background tracks are produced by physics particles, we further check the
mean values of the tracking χ2 (< χ2 >) distributions under the same conditions as
for <DCA> distributions, as in Fig. 7.33 (right panel). We find that, in the high
pt region for all pseudo-rapidity bins, the < χ2 > does not increase, indicating that
these background tracks are not fake tracks created by the tracking algorithm and
they are from physics particles.

After excluding all possible contributions for this kind of background, we con-
clude that this background comes from the beam shield induced particles (see also
Fig. 6.11). Since these particles are not produced in the simulations, we did not
pay sufficient attention to them during our former analysis! Also, because the
reconstructed kinematics observables are not correct after extrapolation of track
parameters to the primary vertex, the pt distribution does not follow the expected
trend, since the beam induced background becomes very important in the high pt

region, where the yield of physical tracks is strongly suppressed according to their
power law distribution (Eq. (5.1)).
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7.6.2 Kinematics Combination

Now, our main task is to cut off this beam induced background. In order to
find an appropriate observable to isolate this background, we start by considering
a very simple case. For a physical track produced at (or close to) the primary
vertex, without taking into account multi-scattering in the front absorber, θabs is
approximated to the polar angle θpol and it satisfies the following relation:

η = −1

2
ln(tan

θpol

2
) ≈ −1

2
ln(tan

θabs

2
). (7.31)

For bean induced tracks, θabs is calculated according to the radius of the tracks
at the end of the front absorber Rabs, as defined in Sec. 6.3.2. But after relating
the track parameters of the beam induced background to the primary vertex, the
absolute values of their polar angle is reduced, this increases their absolute η values
and the relation in Eq. (7.31) cannot be applied.

7.6.2.1 η − θabs Correlation

Figure 7.34: θabs distributions in −3.1 < η < −2.8 (left) and in −2.8 < η < −2.5

(right) from the muon triggered data in LHC10e with the muon selection cuts. The
results (red lines) are compared with the ones with DCA< 10 cm (blue lines) in
each η region.

In order to test what we thought is right or not, we compare in Fig. 7.34,
the θabs distributions without (red line) and with (blue lines) an additional cut of
DCA< 10 cm after the muon selection cuts, in −3.1 < η < −2.8 (left) and in
−2.8 < η < −2.5 (right), where the effect from the beam induced background is
large in the high pt region. The analysis is done with the muon triggered data in
LHC10e. In the θabs distributions without the additional DCA cut, we can see that,
there is always a fraction of tracks outside the corresponding η acceptance, as shown
by the bound made with the back lines calculated according to Eq. (7.31), indicating
that these tracks do not satisfy the relation in Eq. (7.31). If these tracks are beam
induced tracks, they should also have large DCA values. Then we roughly add a
cut of DCA< 10 cm (blue lines in Fig. 7.34), and found that almost all of the tracks
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outside the corresponding η acceptance are rejected. This results confirms what was
just mentioned: the beam induced background tracks have large DCA values and
do not satisfy the relation in Eq. (7.31) due to the incorrect extrapolation of their
track parameters to the primary vertex.

Figure 7.35: The distribution of η−θabs combination from muon triggered events in
LHC10e (left) and LHC10d2b (right) with the selection cuts in pt > 2 GeV/c, see
text for more details.

In this case, the beam induced background tracks will have a different η − θabs

correlation with respect to the other tracks. This is shown in Fig. 7.35, when
we present the η − θabs distribution with the muon track selection cuts in pt >

2 GeV/c by using the muon triggered data in LHC10e (left) and LHC10d2b (right).
In this figure, one can clearly distinguish two components in both data samples:
one component following the relation in Eq. (7.31) and another component which
do not follow this relation and which is mainly located in the η region where the
beam induced background is large. The second component, now we can confirm
confidently, is the one produced by the beam induced background. To define the
cut for the background component region in Fig. 7.35, we go back to the relation in
Fig. 7.35. If there is no scattering for the tracks in the front absorber, according to
the definitions of θpol and θabs by using the small angle approximation, we have:

θabs ≈ tan θabs =
Rabs

Labs
,

θpol ≈ tan θpol =
Rabs

Labs + vz
,

(7.32)

where, Rabs is the radius of the track position at the end of front absorber and
Labs = 505 cm is the distance between the end of the front absorber and the origin
of the ALICE global coordinate system, as defined in Sec. 6.3.2, vz is the position of
the primary vertex along the z-axis (beam direction) in the ALICE global coordinate
system. To get Eq. (7.31) we assume vz = 0, but in data vz is a distribution as shown
in left plot of Fig. 6.5. Therefore, we defined σθ(η) as:

σθ(η) = θabs − θpol =
Rabs

Labs
− Rabs

Labs + vz
= θpol(η)

vz

Labs
, (7.33)
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Figure 7.36: DCA (in pt > 2 GeV/c, left column) and pt (right column) distri-
butions without (red lines) and with (blue lines) the combination cut defined in
Eq. (7.34) in five pseudo-rapidity bins. The results are from the muon triggered
data in LHC10d2b with the muon selection cuts.
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by using η = −2.5 and vz = 10 cm. Finally, we cut η in 2σθ(η):

− ln(tan
θplo + 2σθ(η)

2
) < η < − ln(tan

θplo − 2σθ(η)

2
). (7.34)

This cut is shown by the two red curves in Fig. 7.35, and it allows for a good
separation of the beam induced background component from the other components.

7.6.2.2 Test of the Correlation Cut

To study the effects of the correlation cut defined in Eq. (7.34), first, as shown in
Fig. 7.36, we plot the DCA (left column) and pt (right column) distributions in the
five pseudo-rapidity bins without (red lines) and with (blue lines) this combination
cut by using the data from the muon triggered events in LHC10d2b with muon
selection cuts. The results concerning the DCA distributions are shown in the range
pt > 2 GeV/c.

After the combination cut, the beam induced background is rejected very effec-
tively, in particular in the last three η bins, −3.4 < η < −3.1, −3.1 < η < −2.8

and −2.8 < η < −2.5. The structures, due the beam induced background, located
in the region with large DCA values, disappear after applying the combination cut.
The right column of Fig. 7.36 shows the corresponding pt distributions. One can
observe that, after the correlation cut, the pt distribution is strongly improved, in
particular in the last two η bins.

Figure 7.37: The ratios of the track multiplicity with the muon selection cuts plus
the additional combination cut in minimum bias events to that in muon triggered
events as a function of pt (left) and η (right). The results are gotten from LHC10e.

Another aspect that we can see in the right column of Fig. 7.36 is that, the com-
bination cut not only improves the pt spectrum in the high pt region but also rejects
a fraction of tracks which are from the beam induced background in the low pt re-
gion. As mentioned in Sec. 7.2.2.2, the normalization of the muon triggered events
is done by using the ratio of the track multiplicities after the muon selection cuts
in minimum bias events to that in muon triggered events NMB

trk /NMU
trk , Eq. (7.22).

Since the combination cut modifies the pt spectrum in both low and high pt regions,
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LHC10e w/ muon selection cuts NMB
trk NMU

trk NMB
trk /NMU

trk

no combination cut 760520 6695576 11.3585%

w/ combination cut 705230 6206360 11.363%

Table 7.6: The number of reconstructed track in the MUON spectrometer with the
muon selection cuts in both minimum bias events and muon trigger events, together
with the corresponding ratios. The results are gotten with LHC10e data and shown
with and without the additional combination cut defined in Eq. (7.34).

after implementing this cut, we should check if the used normalization scenario is
still valid, that is to say if this ratio is still independent on pt and η, as shown in the
lower panels of Fig. 7.6 and 7.7. The results are displayed in Fig. 7.37 for data from
LHC10e period. According to the results shown in this figure, the normalization
procedure of the muon triggered events is still valid with the combination cut. Also,
as shown in Tab. 7.6, the number of reconstructed track in the MUON spectrome-
ter with the muon selection cuts from both minimum bias events and muon trigger
events, and corresponding ratios are presented without and with the combination
cut defined in Eq. (7.34). The value of NMB

trk /NMU
trk is unchanged before and after

the combination cut. A fraction of tracks is removed by the combination cut in both
minimum bias eveets and muon trigger events with respect to the results without
this cut, but the final ratios are not changed after applying this cut. This means
that the nomalized results will not be affected by this additional combination cut.
The modification of the measured spectrum in the low pt region, will also affect
the normalization of the background gotten from the models, Eq. (7.27). Since the
combination cut removes the beam induced background which is not reproduced by
simulations, this effect, indeed, will improve the background normalization proce-
dure. Also, since this cut removes the beam induced background and according to
Fig. 7.36 this cut has no effect on the muon yield from heavy flavours decays (our
signal) in pt > 2 GeV/c: we should not consider the correction of this cut in our
interesting pt region (pt > 2 GeV/c).

Now, we implement the combination cut defined in Eq. (7.34) to data as well as
the muon selection cuts, and measure the production cross sections of muon from
open heavy flavours decays again, as shown in Fig. 7.38. This figure is similar to
the one in Fig. 7.32: we just apply the additional combination cut to the selected
muon tracks. By comparing the results in Fig. 7.38 and that in Fig. 7.32, we can
see that, with the beam induced background rejected by the combination cut, the
production cross sections of muons from open heavy flavour decays in data are in
agreement with that from FONLL predictions up to pt = 15 GeV/c, in all of the η
regions.

Up to now, we found an additional beam induced background, which strongly
affects the high pt region and should be rejected from data. This can be successfully
done with the combination cut.
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Figure 7.38: Similar as Fig. 7.32, but the results are gotton with the additional
combination cut defined in Eq. (7.34).

7.6.2.3 Correlation Cut Optimization

Let us discuss the assumptions used to develop the combination cut in Eq. (7.34).
Without considering the vz spread and multi-scattering effects of the tracks in
the front absorber, we get θpol ≈ θabs, as in Eq. (7.31). By considering the vz

spread but still without multi-scattering effect, the polar angle can be approxi-
mated as Eq. (7.32). But, indeed, with multi-scattering effects, the approximation
in Eq. (7.32) does not give the real value of the polar angle. The difference between
this approximation and the polar angle reflects the Coulomb-Multi-Scattering effect
for tracks in the front absorber. Then we re-define this angle as θCMS,

θCMS = π − arctan
Rabs

Labs + vz
, (7.35)
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in the ALICE global coordinate system. By using the correlation between η− θCMS

instead of the η − θabs combination, we avoid the vz spread effect, and as shown in
Fig. 7.39. By comparing with the η − θabs correlation in Fig. 7.35, the η − θCMS

combination separates the beam induced background more clearly.
Since the η−θCMS combination separates the beam induced background accord-

ing to the Coulomb-Multi-Scattering effects, we should implement a cut using this
correlation. With Coulomb-Multi-Scatterings, the Root Mean Square (RMS) of
the scattering angle θRMS as a function of the incident particle momentum [310] is:

θRMS =
13.6 MeV

βcp
z
√
x/X0[1 + 0.038 ln(x/X0)], (7.36)

Figure 7.39: Same as the left panel of
Fig. 7.35, but with the correlation between
η and θCMS as defined in Eq. (7.35), see text
for more details.

where, p, βc and z are the momen-
tum, velocity and charge number of
the incident particle, and x/X0 is the
thickness of the scattering medium in
radiation lengths. During track re-
construction, multi-scattering effects
in the front absorber are corrected
with the Badier-Branson correction,
as mentioned in Sec. 3.4.4.3. In this
case, multi-scattering effects are ap-
proximated by one equivalent scatter-
ing at the place of the so-called Bran-
son plane. In case of the muon track
reconstruction, the Branson plane po-
sition is very close to the end of
front absorber. By approximating the
Branson plane position to the end of
front absorber and with x/X0 ' 60

(Tab. 3.2), after calculations [311] according to Eq. (7.36), the difference between
θpol and θCMS due to the multi-scattering effects can be expressed as:

σCMS(pt, η) =
0.06 GeV/c

pt
[π − θpol(η)]. (7.37)

It depends on both pt and η (θpol). By using σCMS(pt, η) in Eq. (7.37) instead of
the 2σθ(η) in Eq. (7.34) we get the bounds as shown by the red curves in Fig. 7.39,
which are used as the cuts to separate the beam induced component from the total
η − θCMS distribution.

Another adavntage of the new η − θCMS correlation is that, it separates the
beam induced background from the total combination distribution more clearly and
it improves the cut efficiency in the low pt region (0 < pt < 2 GeV/c). Fig. 7.40
shows the η− θCMS distributions in 0 < pt < 0.5 GeV/c (left column), 0.5 GeV/c <
pt < 1 GeV/c (middle column) and 1 GeV/c < pt < 2 GeV/c (right column) from
the data of muon trigger events in LHC10e (upper plots) and from the simulation of
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Figure 7.40: The η − θCMS distributions in 0 < pt < 0.5 GeV/c (left column),
0.5 GeV/c < pt < 1 GeV/c (middle column) and 1 GeV/c < pt < 2 GeV/c (right
column) from the data of muon trigger events in LHC10e (upper plots) and from
the simulation of LHC10f6a based on PYTHIA Perugia-0 tuning (lower plots). The
results are shown together with the cuts defined in Eq. (7.37) as the bound curves
and are obtained after the muon selection cuts in both data and simulations.

LHC10f6a based on PYTHIA Perugia-0 tuning (lower plots). All the results in this
figure are obtained after the muon selection cuts. The bounds in each plot show the
cut defined in Eq. (7.37) for the η − θCMS correlation. According to the simulation
results, we can find that cutting off the beam induced background via the η− θCMS

correlation in the low pt region does not remove the other muon sources in the total
distribution, in particular the muons from open heavy flavour decays.

We have presented the advantages of using the η − θCMS correlation to get rid
of the vz spread effect and to just consider the difference produced by the multi-
scattering effects. We also think if we can start with the multi-scattering as described
in Eq. (7.36) directly to reject the beam induced background. A complementary
method is presented in the following.

7.6.3 Study of p×DCA Observable

From Eq. (7.36), one can deduce that:

p× θRMS = const, (7.38)

with β ' 1 for high energy muon tracks. With the small angle approximation, for
tracks produced at or close to the primary vertex, we have:

DCA ∝ θscattering, (7.39)

where θscattering is the scattering angle for tracks inside the front absorber. Then,
Eq. (7.38) can be written in an alternative form as,

σ(p×DCA) ≡ p×DCARMS = const. (7.40)
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From Eq. (7.40) on can deduce that, for the tracks produced at or close to the
primary vertex, their momentum (p) times the RMS in their DCA distribution,
defined as σ(p × DCA), is a constant and does not depend on any other variable.
According to this property, the p×DCA distribution of muons from open heavy
flavour decays is expected different from the other sources and could be used to reject
the background in the inclusive moun spectrum, in particular the beam induced
background.

7.6.3.1 p×DCA Calibration

Before the calculation of p×DCA, it is very important to clarify the meaning of
each term inside it.

In Eq. (7.36), the momentum p corresponds to the one for the incident particle
when it is suffering scatterings, we denote this momentum as pCMS. The final
momentum that we obtained for the reconstructed track is corrected for the energy
loss in the front absorber and is related to the position of primary vertex, we denote
it as pvtx. Due to the energy loss nside the front absorber for the tracks produced
at or close to the primary vertex, before they suffer the scattering effects, indeed we
have,

ptrk < pCMS < pvtx, (7.41)

where, ptrk is the track momentum reconstructed in the tracking chambers with-
out any correction. To calculate the p×DCA correctly, we introduce the following
estimate:

pCMS '
1

2
(ptrk + pvtx). (7.42)

Now, let us consider the DCA term. The DCA that we used is the one in the
transverse plane (the plane perpendicular to the beam direction),

DCA =
√

DCA2
x + DCA2

y, (7.43)

where, DCAx and DCAy are the x and y components of DCA in the transverse
plane in the ALICE global coordinate system, respectively, and they are determined
according to the position of vz. In this case, to decrease the bias due to the approx-
imation in Eq. (7.39), first, we do following correction:

DCAx,vtx = DCAx − vx, DCAy,vtx = DCAy − vy, (7.44)

where vx and vy are the x and y positions of the primary vertex.
After the correction for the primary vertex position, the distributions of

DCAx,vtx and DCAy,vtx with the muon selection cuts for muon trigger data in
LHC10e are shown in the left and right plots of Fig. 7.41, respectively. One can
notice that the mean value of DCAx,vtx and DCAy,vtx are not zero. This is due to
the fact that the vertex from tracks is globally shifted from the nominal position due
to the global mis-alignment of the tracking chambers of the MUON spectrometer.
To avoid this misalignment effect, we correct it as:

DCAx,cor =DCAx,vtx− < DCAx,vtx >,

DCAy,cor =DCAy,vtx− < DCAy,vtx >,
(7.45)
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Figure 7.41: The DCAx,vtx (left) and DCAy,vtx (right) distributions with the muon
selection cuts for the muon trigger events in LHC10e.

when calculating the p×DCA, and get,

DCAcor =
√

DCA2
x,cor + DCA2

y,cor. (7.46)

Figure 7.42: p×DCA (pDCAcalib as defined in Eq. (7.47)) versus pt for muon trigger
data in LHC10e. The muon selection cuts are applied.

After all of these calibration steps, the final p×DCA for the muon tracks is
calculated as,

pDCAcalib ≡ pCMS ×DCAcorr, (7.47)
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with pCMS and DCAcorr defined in Eq. (7.42) and (7.46), respectively. Fig. 7.42
shows the distribution of the correlation between pt and the calibrated p×DCA
(pDCAcalib) defined in Eq. (7.47), pDCAcalib vs. pt, for muon trigger data from
LHC10e, with the muon selection cuts. We can notice that the behavior of the
beam induced background is very different from that for other sources. Most of
tracks (in particular, muons from open heavy flavour decays) satisfy the relation of
Eq. (7.40) controlled by the Coulomb-Multi-Scattering effects (Eq. (7.36)) and their
pDCAcalib values are in the RMS range defined in Eq. (7.40). But this relation is
not valid for the beam induced background. In pt > 2 GeV/c, the pDCAcalib value
of the beam induced background is far away from the central value determined by
Eq. (7.40), as shown in Fig. 7.42. Instead of the η − θabs or η − θCMS combination,
the p×DCA is another interesting variable to cut off the beam induced background
and it can be used in a more straightforward way than the previous observables.

7.6.3.2 Test of p×DCA Cut

To simplify the notations, in the following, if there no special declaration, we
just use p×DCA to express the calibrated result pDCAcalib defined in Eq. (7.47).

As shown in Fig. 7.42, p×DCA is a powerful variable to separate the beam
induced background. Before to implement this observable to remove the beam
induced background, we should study it in detail. According to Eq. (7.36), the
value of σ(p×DCA) defined in Eq. (7.40) depends on the property of the scattering
medium. Fig. 6.12 shows that, the material of the front absorber is different in
171

o
< θabs < 177

o and 177
o
< θabs < 178

o (the values of θabs listed in Fig. 6.12
are converted to those in the ALICE global coordinate system). In this case, the
extraction of the value for σ(p × DCA) in data should be presented in two θabs

regions, independently. This is done by fitting the calibrated p×DCA (calculated
via Eq. (7.47)) distributions with,

x · exp[−(
x− x0

σ
)2], (7.48)

where x0 and σ2 are the mean and variance of the Gaussian distribution (as defined
in Eq. (5.3) already), in 171

o
< θabs < 177

o and 177
o
< θabs < 178

o , respectively.
We define the Gaussian σ obtained from the fit as the measured σ(p×DCA) in data,
and denote it as σmeas(p× DCA). Tab. 7.7 shows the values of σmeas(p× DCA) in
171

o
< θabs < 177

o and 177
o
< θabs < 178

o from the muon trigger events in
LHC10e with the muon selection cuts. Then, the obtained values of σmeas(p ×

LHC10e w/ muon selection cuts 171
o
< θabs < 177

o
177

o
< θabs < 178

o

σmeas(p×DCA) 63 GeV/c×cm 120 GeV/c×cm

Table 7.7: The values of σmeas(p× DCA) in 171
o
< θabs < 177

o and 177
o
< θabs <

178
o from the muon triggered events in LHC10e with the muon selection cuts.
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DCA), as shown in Tab. 7.7, should be corrected for the mis-alignment of the track
momentum. During our analysis, we applied this correction in a very simple way
by parameterizing the uncertainty of the track momentum p on mis-alignment as
0.4 · p [312], and we get,

σ(p×DCA) =
√
σ2

meas(p×DCA) + (0.4 · p)2. (7.49)

Figure 7.43: Left: the ratio between the number of tracks in N · σ(p × DCA) cut
and the total number of tracks as a function of N in pt > 2 GeV/c. Right: the pt

distributions in N · σ(p×DCA) with various values of N , the ratios between the pt

distributions with and without the p× DCA cut are shown in the lower panel. All
the results are from muon trigger events in LHC10e with the muon selection cuts.

After the correction of σ(p×DCA), as defined in Eq. (7.49), we are going to cut
the p×DCA distribution in N ·σ(p×DCA), where N is the number of σ(p×DCA).
In order to determine the coefficient N , first, we perform the test shown Fig. 7.43
(left panel). In this plot, we show the ratio between the number of tracks with
N ·σ(p×DCA) cut and the total number of tracks as a function of N in pt > 2 GeV/c
from the muon trigger events in LHC10e with the muon selection cuts. We observe
that this ratio saturates at N ' 5. This indicates that, in N & 5 the pt spectrum
does not depend on N , in pt > 2 GeV/c. In order to understand into more detail
this result, we plot the pt distributions in N · σ(p × DCA) with various values of
N and the ratio between these distributions and the one without the p×DCA cut
in Fig. 7.43 (right panel). The results are obtained from the same data sample as
the one used in Fig. 7.43 (left panel). One observes that, by comparison with the
pt spectrum without the p×DCA cut, there is a suppression due to the rejection
of the beam induced background in the high pt region. Also, the pt spectrum is
almost unchanged when varying N in the range 3 to 8. According to these results,
we can conclude that the p×DCA cut removes the beam induced background very
efficiently in the high pt region and the results are stable by varying the cut with
the number of σ(p×DCA), N , in a large range.

To get our final results, together with the muon selection cuts, defined
in Sec. 6.4, we introduce the additional p×DCA cut in 5 · σ(p× DCA) for
the beam induced background rejection.
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As in Sec. 7.6.2.2, before to implement the cut of p×DCA in 5 · σ(p×DCA) in
data, there still are two issues that need to be investigated:

• check if this cut will affect the normalization of the muon trigger events
(Eq. (7.22));

• check if this cut will change the correction efficiency, as discussed in Sec. 7.4.

Figure 7.44: Similar as Fig. 7.37, but instead of implementing the η − θabs cut, the
additional cut p×DCA in 5 · σ(p × DCA) is used. The results are also compared
with those without the p×DCA cut.

The first issue could be checked quickly by making a similar ratio as that shown
in Fig. 7.37 but by using the p×DCA cut instead of the η − θabs cut. These results
are shown in Fig. 7.44. The ratio between muon tracks in minimum bias events and
muon trigger events, NMB

trk /NMU
trk , as a function of pt (left) and η (right) in LHC10e

is displayed just with the muon selection cuts (blue lines) and with the additional
p×DCA (red lines). The conclusion is similar to the one obtained from results in
Fig. 7.37: with the additional p×DCA cut in 5·σ(p×DCA), the value of NMB

trk /NMU
trk

does not depend on pt or η. Moreover, it is also consistent with the one without the
p×DCA cut. This means that, similarly to the η − θabs cut, the p×DCA does not
affect the normalization of the muon trigger events (Eq. (7.22)).

To study the second issue, we make the ratio between the pt distribution with
the p×DCA cut in 5 · σ(p×DCA) and the one without this cut for different muon
track sources in the simulations, with the muon selection cuts. These results are
shown in Fig. 7.45 for LHC10f6, PhoJet simulation (left) and LHC10f6a, PYTHIA
simulation with Perugia-0 tuning (right). According to these results, a p×DCA in
5 · σ(p × DCA) does not affect muons from open heavy flavour decays (our signal)
and primary muons. A small fraction of secondary muons is removed by this cut. In
this case, both the primary muon background estimate, as mentioned in Sec. 7.3.2,
and the efficiency correction in Sec. 7.4 are not affeected by this new cut. Since
this cut removes a fraction of the secondary muon component, in particular in
the low pt region, the normalization of the primary muon background (Sec. 7.3.3)
and the systematic uncertainty estimate on the background subtraction as shown
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Figure 7.45: Ratio between the pt distributions with p×DCA cut in 5 · σ(p×DCA)

and without this cut for different muon track sources from simulation from LHC10f6
(left) and LHC10f6a (right). The muon selection cuts are implemented.

in Tab. 7.3 should be corrected accordingly by varying the yield of the secondary
muons in the Monte-Carlo. As mentioned in Tab. 7.3, the systematic uncertainty
on the background normalization has already been corrected by this p×DCA cut.
For the final analysis, what we need to do, is to update the normalization of the
background in data with the new p×DCA cut.

7.6.3.3 Optimization of σ(p×DCA) in the high pt region

To reject the beam induced background, we implemented the 5 · σ(p × DCA)

calculated according to Eq. (7.49). As shown in Fig. 7.43 (right panel), this cut
works fine in our interesting pt region (2 < pt < 15 GeV/c). But in our incoming
analysis (eg. the W± boson study), we should investigate the p×DCA cut in a much
higher pt region (pt ' 25 ∼ 50 GeV/c, [313]). As the uncertainty on the mis-
alignment is 1%× pt, it will have a strong effect for the p×DCA in this very high pt

region. In this case, we cannot treat the mis-alignment effect as in Eq. (7.49). Also,
presently, the value of p×DCA is not only affected by the momentum resolution
from the mis-alignment but also by the DCA resolution. To do the full correction
of the σ(p×DCA), the DCA resolution should also be considered.

In this respect, in [314], the correction of σ(p×DCA) has been updated by con-
sidering the effect from both mis-alignment and DCA resolution. In the following,
we just give a short summary of the procedure.

According to Eq. (7.47), the full resolution of p×DCA should be,

d(pDCAcalib) ≈ (∆pCMS)×DCAcalib + pCMS × (∆DCAcalib). (7.50)

The first term in the right side of Eq. (7.50), (∆pCMS)×DCAcalib, corresponds
to the uncertainty on the momentum resolution for p×DCA. To illustrate this effect,
the following approximation is used,

σp
p
≈ ∆p

p
, (7.51)
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where ∆p/p is estimated via,

p∆s =
∆p

p−∆p
(7.52)

with the momentum resolution ∆s coming from the sagitta for the track momentum
determination during the reconstruction procedure, as in the example shown in
Fig. 3.12. Then, assuming that the relation in Eq. (7.52) is also valid for the pCMS

defined in Eq. (7.42) we get,

∆pCMS

pCMS
=

pCMS∆s

1 + pCMS∆s
. (7.53)

With the input from Eq. (7.53), the pCMS now, is corrected as,

palign = pCMS −∆pCMS =
pCMS

1 + pCMS∆s
, (7.54)

to avoid to overestimate the momentum due to the misalignment. With this correc-
tion, the requirement of,

palign ×DCAcalib < N · σmeas(p×DCA), (7.55)

becomes:
pCMS ×DCAcalib < N · (1 + pCMS∆s) · σmeas(p×DCA). (7.56)

Hence we have

(∆pCMS)×DCAcalib = (1 + pCMS∆s) · σmeas(p×DCA). (7.57)

To obtain the second term in the right side of Eq. (7.50), pCMS × (∆DCAcalib),
which includes the effect of the DCA resolution, the following approximation is con-
sidered: for a given primary vertex position, the DCA resolution could be estimated
by the resolution on track slope ∆k. Under the zero order approximation (assuming
that the mean value of the vertex position is at the origin of the ALICE global
coordinate system), one can get,

pCMS × (∆DCAcalib) = pCMS × (Ltrk ·∆k), (7.58)

where Ltrk = 535 cm is the distance between the origin of ALICE global coordinate
system and the first tracking chamber of the MUON spectrometer.

By adding the two parts of the p×DCA resolution in the right side of Eq. (7.50)
together quadratically, according to the estimate from Eq. (7.57) and (7.58), finally,
one can obtain the optimized p×DCA cut as:

pCMS ×DCAcalib < N · σcorr(p×DCA), (7.59)

with,

σcorr(p×DCA) =
√

[(1 + pCMSn ·∆s)σmeas(p×DCA)]2 + (pCMSLtrk∆k)2, (7.60)

where, n is introduced to cut off the momentum resolution in n ·∆s, normally one
can set n ' N .
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7.7 Results

Based on the previous discussion, it is time to summarize our analysis and to
show the final results.

7.7.1 Summary of the Analysis Strategy

To obtain the production cross section of muons from open heavy flavour (charm
and bottom quarks) decays, we adopt the following strategy.

1. Event trigger selection:

• muon triggered events, which have a large statistics of muon tracks, the
analysis is based on this data sample;

• minimum bias triggered events, used for the normalization of the muon
trigger events and also for cross checking the results gotten from muon
trigger events.

2. Physics selection: rejects a part of the beam gas background from physics
events.

3. Data quality assurance: rejects the bad runs which are not suitable for the
physics analysis, eg. runs in which a large part of detector cells or front-end
electronics is missing during the data taking or runs with high pile-up, since
the correction of these events should be done very carefully and sometimes it
could introduce large bias in the final results.

4. Muon track selection:

• rejects the tracks from the events without the reconstructed primary
vertex, this ensures that the kinematics of muons from open heavy flavour
decays is correct;

• −4 < η < −2.5, the acceptance cut, can reject part of the background
produced far from the primary vertex;

• 171
o
< θabs < 178

o , avoid the effects from different materials in the front
absorber;

• requiring that the reconstructed muon track is matched with the one in
the muon trigger, allows to reject punch through hadrons and part of the
beam induced backgound;

• p×DCA< 5 · σ(p×DCA), rejects the beam induced background.

All the above selections for events and muon tracks except the p×DCA cut
are called as the muon selection cuts in the previous sections. Now, with the
additional p×DCA cut we called them the Standard Muon Cuts.

5. Subtraction of the background from primary muons in the data after the stan-
dard cuts according to Monte-Carlo simulations.
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6. The efficiency correction and the normalization (conversion of yields into cross
sections). After this step, the final results can be compared to theoretical
predictions.

The systematic uncertainties in the above analysis steps include the following
sources:

• background subtraction, from 5% to 35%, depending on pt and η as summa-
rized in Tab. 7.3;

• detector response, 5% in the data sample used in this analysis;

• residual mis-alignment, 1%× pt;

• luminosity measurement for the normalization, 3.5% ( not included in the final
uncertainty values).

7.7.2 Final Results

The measured differential production cross section of muons from heavy flavour
decays as a function of pt in five (pseudo)-rapidity regions are shown in Fig. 7.46.
Note that η and y are identical for muons in the acceptance of the spectrometer,
and in pp the results are symmetric with respect to η (y) = 0. The results will be
presented as a function of y with positive values. The error bars (which are smaller
than symbols in most of the pt and y bins) represent the statistical uncertainties.
The boxes correspond to the systematic uncertainties. The systematic uncertainty
on σMB

pp at
√
s = 7 TeV measurement is not included in the uncertainty boxes.

The results are compared to FONLL predictions (gray curve and shaded band for
the systematic uncertainty) as discussed in Sec. 7.5.1. The uncertainty bands from
FONLL predictions are the envelope of the resulting cross sections. The ratios
between data and FONLL predictions are shown in Fig. 7.47. A good description
by the FONLL predictions of the data is observed within uncertainties, in all of the
rapidity regions. The measured production cross sections are systematically larger
than the central values of the model predictions.

By adding the results in Fig. 7.46 in each rapidity bin according to Eq. (7.23)
and (7.24), we get the results in Fig. 7.48. They show the measured differential
production cross sections of muons from heavy flavour decays as a function of pt in
the rapidity region 2.5 < y < 4 (left) and as a function of y in the range 2 < pt <

12 GeV/c (right). The lower panels present the ratios between data and the central
values of FONLL predictions. The results show again a good agreement with FONLL
predictions. The ratio data over central value of FONLL calculations as a function
of pt is about 1.3. This is consistent with the ALICE measurements of the pt-
differential production cross sections of D mesons [225] in the central rapidity region.
The CMS and ATLAS Collaborations made complementary measurements of the
heavy flavour production, with electrons and/or muons measured at mid-rapidity in
pp collisions at

√
s = 7 TeV [315, 316]. The production of muons from beauty decays,

measured by the CMS Collaboration in |η| < 2.1 and at high pt (pt > 6 GeV/c),
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exhibits a similar agreement with NLO pQCD calculations within uncertainties:
the data points lie in the upper limit of the model predictions. The results from
the ATLAS Collaboration concerning the production of muons and electrons from
heavy flavour decays in |η| < 2 (excluding 1.37 < |η| < 1.52) and in the region
7 < pt < 27 GeV/c are also consistent with FONLL calculations. The theoretical
charm and beauty components are also displayed in Fig. 7.48. According to these
predictions, the muon contribution from beauty decays is expected to dominate in
the range of pt . 6 GeV/c. In this region, it represents about 62% of the heavy
flavour decay muon cross section.

A paper related to the work presented in this chapter has been pubulished in
Physics Letters B for the ALICE collaboration, it can be found Appendix A.
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Figure 7.46: The pt-differential production cross section of muons from open heavy
flavour decays in pp collisions at

√
s = 7 TeV in five rapidity regions. The analysis is

based on the muon triggered data in LHC10e. The gray bands show the predictions
from the FONLL predictions. These results are published in Ref. [317].
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Figure 7.47: The ratio between the measured results in data and the central value
of the FONLL predictions, as shown in Fig. 7.46, in five rapidity regions, with the
re-scaled errors. These results are published in Ref. [317].
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7.8 Discussion

Up to now, we finished all the steps in the analysis strategy and we obtained
the results concerning the measurement of the cross section of muons from open
heavy flavour decays. In this section, we discuss two additional items related to this
analysis:

• the estimate of the single muon background based on data;

• the charm and bottom component separation.

7.8.1 Data Based Background Estimate

As mentioned in Sec. 7.3.2, Monte-Carlo studies show that primary muons are
mainly muons from charged kaon and pion decays. But indeed, this component
also includes muons from the muonic decays of low mass resonances (η, ρ, ω, φ,
etc.), quarkonium (J/Ψ, Υ, etc.), baryons and hyperons. Instead of estimating the
primary muon background based on the Monte-Carlo, one can also reproduce the
yield of primary muons according to the measured spectra of their mother particles
in data, as an alternative way. In the high pt region (pt > 2 GeV/c), in addition
to the muons from charged K/π decays, the µ−µ+ ← J/Ψ also represents a visible
fraction in the total yield of primary muons. In this section, we are going to discuss
the primary muon component estimate according to the spectra of charged K/π
and J/Ψ measured in ALICE in the mid-rapidity region. A comparison with the
previous results, as those shown in Fig. 7.46 and 7.48, will be presented.

Figure 7.49: The measured spectra of π−, K−and p (left), and π+, K+and p (right)
in central rapidity region (|y| < 0.5) in pp collisions at

√
s = 7 TeV with ALICE.

All the results are fitted by the Lévy function, see the text for more details.

We start with the charged K/π spectra measured in pp collisions at
√
s = 7 TeV

in the central rapidity region |y| < 0.5 from ALICE, as shown in Fig. 7.49. All these
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spectra are fitted with the Lévy function,

1

N ev

d2N

dptdy
||y|<0.5 =

1

N ev

dN

dy
||y|<0.5

× (n− 1)(n− 2)

nC[nC +m0(n− 2)]
pt(1 +

mt −m0

nC
)−n,

(7.61)

where, m0 is the mass in the rest frame and m0 ' 0.1396 GeV/c2 for π±,
m0 ' 0.4937 GeV/c2 for K±; mt =

√
m2

0 + p2
t is the transverse mass; n, C and

the normalization factor 1/N ev·dN/dy are the parameters obtained from the fit, for
charged K/π. The values are listed in Tab. 7.8. Then, we extrapolate the charged

Lévy fit π+ π− K+ K−

1/N ev·dN/dy 2.27501 2.25188 0.27939 0.27893

n 5.59591 5.91166 6.59587 6.43006

C (GeV) 0.11614 0.12176 0.19547 0.19545

Table 7.8: Values of the parameters in Lévy function (Eq. (7.61)) obtained by fitting
the charged K/π spectra shown in Fig. 7.49.

K/π spectra from central rapidity region to forward rapidity region by parameter-
izing the rapidity dependence as [318]:

1

N ev

d2N

dptdy
=

1

N ev

dN

dptdy
|y=0 × exp(− y2

2σ2
y

), (7.62)

where σy is the extrapolation factor, and the term 1/N evdN/dy|y=0 can be esti-
mated according to Eq. (7.61). By fitting the ratio of the charged K/π spectra
in different bins in the forward region to that in the central rapidity region and
according to different Monte-Carlo predictions, we obtained σy ' 3.32 [319].

With all above inputs, we can use the parameterization formula given by
Eq. (7.62) to generate the spectrum of muons from charged K/π decays in the accep-
tance of the muon spectrometer via simulations with realistic detector configurations
and by considering the proper decay branching ratio and the decay kinematics.

Concerning the estimate of muons from J/Ψ decays, we used the inputs of mea-
sured prompt J/Ψ spectra in pp collisions at

√
s = 7 TeV from LHCb [320], as

shown in the left plot of Fig. 7.50. As for charged K/π spectra, we used these
distributions as the inputs of the simulation with realistic detector configuration,
and obtain the muon spectra from the prompt J/Ψ decays in different η regions as
shown in the right plot of Fig. 7.50. The ratio between the normalized spectra of
muons from prompt J/Ψ decay and the inclusive muon spectrum after the normal-
ization are shown in the lower panel of this plot. According to these results, the
fraction of muons from prompt J/Ψ decay is . 5% of the total inclusive muon yield
in pt > 2 GeV/c.
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Figure 7.50: Left: the prompt J/Ψ spectra measured in pp collisions at
√
s = 7 TeV

from LHCb [320]. Right: the normalized pt-differential spectra of muons from the
prompt J/Ψ decay according to the prompt J/Ψ distributions from LHCb (left plot)
in different η regions; the ratio between the spectra of muons from the prompt J/Ψ

decay and the normalized inclusive muon spectrum measured in pp collisions at√
s = 7 TeV with the ALICE muon spectrometer is shown in the lower panel of this

plot.

Figure 7.51: Left: Comparison between the results in Fig. 7.46 and those with the
background subtraction via the parameterized K/π and J/Ψ distributions measured
in data. Right: similar as Fig. 7.47, the ratios between the production cross sections
of muons from heavy flavour decays measured in data and the central values of the
FONLL predictions.

After subtraction of the estimated muon yield from the parameterized K/π and
J/Ψ decays from the data, with the proper normalization, we can get the results
in Fig. 7.51 and 7.52. These results are labeled as "Param K/π and J/Ψ for back-
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Figure 7.52: Similar as Fig. 7.48, but the production cross section of muons from
heavy flavour decays based on the background estimate via the parameterized K/π
and J/Ψ distributions are added at here.

ground" and shown in blue. The systematic uncertainty in these results include
the one from the σy estimate in Eq. (7.50) which is gotten by varying the value of
σy from different models [321], the 1% × pt from the misalignment and the 5% on
detector response. The results from our previous method labeled as "MC for back-
ground" and shown in red are also presented in Fig. 7.51 and 7.52 for comparison.
These results were obtained around August of 2011, and at that time the systematic
uncertainty on the normalization was estimated as 4% as presented in this two fig-
ures. One can find that the results from the parameterized background are a little
bit higher than our previous results in low pt region (2 < pt < 4 GeV/c). A possible
explanation is that within the scenario of the parameterized background, we do not
include all the sources of primary muons. For instance, the contribution of muons
from low mass resonances and baryons cannot be ignored. But in the high pt region
(pt > 4 GeV/c), the two methods give similar results within uncertainties. Anyhow,
the results from the method with the parameterized background are presented as a
cross check for our published results which are shown in Fig. 7.46, 7.47 and 7.48,
and also as a validation of the published results, in particular in the high pt region.

7.8.2 Charm and Bottom Component Separation

After the measurement of the production cross section of muons from heavy
flavour decays, it is worth to try to separate the charm and bottom components,
as mentioned in Sec. 5.3.1. Indeed, we did this test during Summer 2010 with data
from LHC10d2b [322].

For this test, we follow the strategy discussed in Sec. 5.3.1. We separate the
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charm and bottom components via the combined fit according to Eq. (5.9). But
instead of initializing the single muon shape functions fc and fb from models, here
we do the initialization according to data:

1. subtract the estimated background in the inclusive muon spectrum with the
muon selection cuts;

2. initialize fc and fb in low pt region (3 < pt < 6 GeV/c) and high pt region
(6 < pt < 15 GeV/c), respectively;

3. with the initalized shape functions, we presented the combined fit in the muon
spectrum after the background subtraction;

4. by comparing the results from the combined fit and those from the HvQMNR
predictions we found ∼ 9% deviation between data and the predictions.

But at that time the p×DCA cut was not developed and the beam induced back-
ground introduced a bias in the results, in particular in the high pt region. In this
case, we do not present the results from this test. But it is worth to present an
outlook concerning the implementation of the combined fit in data:

• our test is positive since it shows that it is possible to separate the charm and
bottom components in data via the combined fit;

• instead doing the initialization of the shape functions from models, we can
also try to initialize the shape functions directly with data;

• the mis-alignment effect should be treated very carefully, in particular in the
high pt region;

• we also need to develop a proper way to estimate and control the systematic
uncertainty in the combined fit.
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Chapter 8

Heavy Flavour Suppression in
Pb–Pb Collisions at√

sNN = 2.76 TeV

In this chapter we focus on the measurement of the nuclear modification factor
RAA of muons from open heavy flavour decays in Pb–Pb collisions at

√
sNN =

2.76 TeV in order to investigate heavy-quark in-medium energy-loss in the Quark
Gluon Plasma (QGP) expected to be formed in heavy-ion collisions.

Data analysis in Pb–Pb collisions is for many items such as trigger selection,
data quality assurance, event and muon track selections and efficiency correction,
similar to that in pp collisions as described in the previous chapters. We begin with
a description of the data sample used and of the event and muon track selections.
We mainly emphasize the points which are particular to Pb–Pb collisions.

This study is based on the LHC10h data period which took place in the end of
2010 during the first LHC heavy-ion run. The analysis of this data sample started
in December 2010, when the first reconstruction pass was achieved.

The whole analysis is separated into three different stages which took place in
three different time periods. In each of these stages, the data samples used are
different.

Dec. 2010–Mar. 2011 in this stage, the analysis was based on the first reconstruc-
tion pass (pass 1) of LHC10h. Around 70 runs have been used at most. The
aim was to study the centrality determination and to optimize the cuts, in
particular for fake track rejection.

Apr. 2011–May 2011 the analysis concerned the LHC10h second reconstruction
pass (pass 2). In this second reconstruction pass, the parameters for muon
track reconstruction have been optimized in order to reduce the fraction of
fake tracks and to improve the momentum resolution, in particular in the high
pt region. The results of the data quality assurance (QA) analysis became
available during this analysis. According to the QA results, there were 94 runs
available for the single muon analysis. At that time, the centrality selection
and the normalization factors in different centrality classes were made available
by the corresponding analyzers. The main purpose of the analysis at this step
was to obtain preliminary results on the inclusive muon nuclear modification
factors (RAA and RCP) to be presented at the Quark Matter conference in
May 2011.



From autumn of 2011 on we completed the analysis on the Grid of the total
94 runs in LHC10h pass 2 which were validated by the muon QA selections
in order to accumulate as much statistics as possible 1. From the software
side, both the physics selection and the centrality selection were fine-tuned.
In particular, the centrality QA was added in the official centrality selection.
The final data sample used was also required to satisfy the QA selection for
the centrality determination. The ultimate goal at this step was to obtain
the final results on the RAA of muons from open heavy flavour decays for
publication.

8.1 Event Trigger Selection

As for the analysis of pp data, the selection of physics-collision events and of
QA events should be applied for Pb–Pb data. The event QA for muon analysis in
Pb–Pb collisions is similar to that of pp collisions. It follows the same standard
mentioned in Sec. 7.1.1. For the physics-collision event selection, there are two
trigger classes implemented in the LHC10h period, the minimum-bias trigger and
the high-multiplicity trigger. In the following, we explain the difference between the
event-trigger selection in Pb–Pb collisions and in pp collisions.

8.1.1 Trigger Classes

In Pb–Pb collisions, the minimum bias trigger is only fired when two bunches
have been detected in both sides of the ALICE detector. This is similar to the situ-
ation in pp collisions. However, the conditions for the trigger decision in minimum-
bias Pb–Pb collisions takes into account the much larger multiplicity of produced
particles compared to pp collisions.

In the early stage of data taking, with low luminosity, the minimum-bias events
in Pb–Pb collisions are flagged by three different trigger classes:

CMBS2A-B-NOPF-ALL & CMBS2C-B-NOPF-ALL at least two hits are
found in the SPD and each SPD layer should include at least one hit ("S2"),
plus at least one cell fired in V0A or V0C;

CMBAC-B-NOPF-ALL there is at least one cell fired in both V0A and V0C.

Note that in pp collisions, the minimum-bias trigger requires at least one cell fired
in the whole SPD without condition on the layer fired. The string "NOPF" means
that no past and future protection in implemented and "ALL" is the name of the
trigger cluster described in Sec. 6.1. What is similar to pp collisions is that, in Pb–
Pb collisions, one also requires that at least two detectors should be fired out of the
three trigger detectors (SPD, V0A and V0C). This condition is called 2-out-of-3.

1Depending on the status of the Grid, some sub-jobs fail. To improve the statistics, we have to
re-submit the failed sub-jobs several times until a given fraction (eg. 95%) of statistics is collected.
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With increasing luminosity, the 2-out-of-3 condition is not sufficient to separate
the physics-collision events and the beam-gas background. Therefore the 3-out-of-
3 condition, which requires that all of the three trigger detectors are fired with at
least 2 hits in different layers of SPD plus at least one cell fired in V0A and V0C, is
applied. The corresponding trigger class is CMBACS2-B-NOPF-ALL.

Figure 8.1: The correlation between the cor-
rected TDC timing of ZDC C−A and that
of ZDC C+A. The results are obtained from
minimum bias triggered events. The tails cor-
responding to the de-bunching collisions are
shown in the plot.

Then, all the above hardware-
level triggers have to be reproduced
again at both hardware and soft-
ware levels with the detector cali-
bration, after event reconstruction,
to avoid the response and noise of
the front-end electronics. Further-
more, the V0 leading time and the
background identification are imple-
mented to reject the residual beam-
gas background. This procedure is
called as the Physics Selection, as
mentioned in Sec. 6.2.1.

8.1.2 De-bunching

In Pb–Pb collisions, and differ-
ently to pp collisions, there are two
additional backgrounds, the electro-
magnetic (EM) events and the so
called "de-bunching collisions". The
ZDC plays a major role in the re-
jection of these two backgrounds.
As the electromagnetic interaction is
much weaker than the strong inter-
action, the deposited energy in the collisional region in EM events is much smaller
than that from inelastic strong interactions. In another words, the spectator nucle-
ons, which can be detected by the ZDC, will take a large fraction of the injection
energy in EM events. The additional cut on the ZDC trigger bit is used to reject
this background.

De-bunching collisions are produced via the following mechanism: in each 25 ns
bunch crossing time, there are 10 packets usually but only one is populated. How-
ever, some ions can jump in a different packet and induce collisions. We call this
kind of collisions as the "de-bunching collisions". The displacement of primary
vertex corresponding to these collisions in the z direction can be estimated as,

∆vz = 2.5 ns/2× c ' 37.5 cm, (8.1)

where c ' 3 · 108 m/s is the light speed. The detection of these collisions is strongly
biased because they can take place far away from the ALICE detector. The left and
right elements of ZDC-ZN and ZDC-ZP (see Sec. 3.3 for the details), called "ZDC
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A" and "ZDC C", which are placed far from the ALICE central detectors (116 m),
deliver higher timing difference resolution than the VZERO detector. Fig. 8.1 shows
the correlation between the corrected TDC timing of ZDC C−A and that of ZDC
C+A. The results are obtained from minimum-bias triggered events with the CM-
BACS2 trigger class under the 3-out-of-3 trigger condition. The "normal" collision
events are located around the centre of this distribution and the tails (as labeled in
this figure) result from de-bunching events. Thes events are characterized by a large
time asymmetry between ZDC C and ZDC A. According to these results, further
cuts in the combination of ZDC timing is implemented in the physics selection of
Pb–Pb collisions to reject de-bunching collisions.

8.1.3 Selection Results

Figure 8.2: Event statistics table in physics selection of run 139036 in LHC10h pass
2, with AliRoot version v5-02-02-AN.

Fig. 8.2 shows the statistics table of run 139036 in LHC10h pass 2. The results
are obtained with AliRoot version v5-02-02-AN 2. By comparing this table to the
event statistics table for pp collisions shown in Fig. 6.4, there are three different
points to be mentioned:

• the "ZDC A & ZDC C" cut is used to reject the EM events in Pb–Pb collisions
according to the energy taken by the spectator nucleons;

• the ZDC timing cut, as shown in Fig. 8.1, is implemented to cut off de-bunching
collisions;

• there is no background identified event (third column from the right). This
indicates that the beam-gas background in LHC10h is negligible thanks to the

2The physics selection has continuously been developed and/or optimized according to the data
taking conditions, and the layout of the statistics table from the physics selection has also been
slightly modified from one version of AliRoot to another.
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much lower luminosity compared to pp runs (L = 1.3 · 1025 cm−2s−1 for the
Pb–Pb collisions in LHC10h and L = 0.6 ∼ 1.2·1029 cm−2s−1 in pp collisions).

The last column in the right side of Fig. 8.2 shows the counted pile-up events via
the pile-up vertex identification method as introduced in Sec. 7.1.3.1. Finally, the
trigger class C0SMH-B-NOPF-ALL corresponds to the high-multiplicity trigger.
It is a sub-sample of the minimum-bias trigger which requires, in addition, that 100
hits are found in the SPD outer layer. In the following analysis, we only use the
minimum bias triggered events.

8.2 Centrality Determination

There are usually two kinds of approaches to determine the event centrality in
data. One, based on the definition presented in Sec. 1.4.2.1, consists in binning
the event multiplicity distribution according to the total integral. Another way is to
measure the number of spectator nucleons. In ALICE, the first approach can rely on
the charged particle multiplicity reconstructed in central barrel, the SPD tracklets,
the FMD multiplicity or the VZERO amplitude. The number of spectators Nspec,
used in the second approach, can be determined by the total energy deposited EZDC

in ZDC-ZN and ZDC-ZP via

EZDC =
√
sNN ×Nspec, (8.2)

with
√
sNN = 2.76 TeV in the present case. The centrality selection based on these

methods are provided "officially" in ALICE. In our analysis, we use the central-
ity determined in the framework of the first approach according to the VZERO
amplitude.

Figure 8.3: The impact parameter distri-
ubtion in Pb–Pb collisions.

Figure 8.4: An example of DoubleNBD
grid fitting to the VZERO amplitude.

In the following we illustrate how to implement the first centrality determination
approach. A short description for using the ZDC deposition energy is also given.
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8.2.1 VZERO Amplitude

In order to use the VZERO amplitude to determine the event centrality, one
should first correct the gain saturation in each VZERO cell. Then the event multi-
plicity (refered to as VZERO amplitude) distribution similar as the one in Fig. 1.9
can be obtained. By binning this distribution according to the fraction of the total
integral, the centrality classes for each event are determined. In the further analysis,
the estimate of < Npart > and < Ncoll > is very important for normalizing the events
in a given centrality class. In ALICE, the values of < Npart > and < Ncoll > are
obtained using the Glauber model to reproduce the event multiplicity distribution
via the following steps:

Figure 8.5: The Ncoll (left) and Npart (right) distributions in different centrality
classes obtained from the multiplicity distribution in Fig. 8.4.

1. under the assumption of a random distribution of the impact parameter ~b,
each of the surface element d2~b becomes:

d2~b = bdφdb→ πdb2, (8.3)

and has the identical weight with respect to other surface elements. This
property gives an uniform distribution of b2. According to this, the impact
parameter distribution in Pb–Pb collisions is obtained as in Fig. 8.3;

2. using the b distribution in Fig. 8.3 as input, Pb–Pb collisions are simulated
via Monte-Carlo with the Glauber model under the optical limit approxima-
tion [50];

3. the values of Ncoll and Npart are given for each simulated event via a Monte-
Carlo approach, and assuming σinel

NN = 64 mb at
√
sNN = 2.76 TeV. Then the

multiplicity of a given event is modeled as,

mult =
1− β

2
·M(Npart) + β ·M(Ncoll), (8.4)
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where the parameter β is the fraction of hard processes, which satisfy the Ncoll

scaling, in the total binary collisions. The function M(N) is expressed as,

M(N) =
N∑
i=1

ni, (8.5)

each ni in Eq. (8.5) is sampled according to the probability given by the
Double Negative Binomial Distribution (DoubleNBD) [323],

P (ni) = DoubleNBD(k1,m1, k2,m2, α), (8.6)

where ki and mi (i = 1, 2) are the input parameters for each NBD, α gives
the weight between two NBDs as,

DoubleNBD(k1,m1, k2,m2, α) = αNBD(k1,m1)+(1−α)NBD(k2,m2); (8.7)

by collecting a large sample of the simulation events with the given value of
the 6 parameters, k1, m1, k2, m2, α and β, the multiplicity distribution is
obtained according to Eq. (8.4);

4. by varying the values of all of these 6 parameters and re-do all the above steps,
one can obtain a set of multiplicity distributions, called the DoubleNBD
Grid, given by the Glauber model;

5. after normalization of each distribution on the DoubleNBD grid, the χ2 be-
tween the distributions on the DoubleNBD grid and the measured event mul-
tiplicity distribution in data (eg. the distribution of SPD tracklets or VZERO
amplitude) can be calculated. The simulated multiplicity distribution with
the minimum value of χ2 corresponds to the best fit on the DoubleNBD grid
to data. Fig. 8.4 shows an example of this fit with k1 = 3, m1 = 4, k2 = 2,
m2 = 11, α = 0.4 and β = 0.13. The total multiplicity distribution are sep-
arated in four regions which correspond to four centrality classes 0 − 10%,
10− 20%, 20− 40% and 40− 90%;

6. by cutting the multiplicity bins obtained in Fig. 8.4 according to Ncoll and
Npart, the corresponding distributions in each centrality classes are obtained,
as shown in Fig. 8.5; then the values of < Ncoll > and < Npart > in different
centrality classes can be extracted from the corresponding distributions.

All the above results were obtained at the end of 2010 just after the reconstruction
of the LHC10h pass 1 data. Then the ALICE Collaboration did a more detailed
study applying all above steps to LHC10h pass 2 data, and published the results
in [324].

ALICE also allows to determine the centrality via the SPD tracklets, the number
of clusters in the inner or outer layer of SPD, the TPC tracks and the FMD mul-
tiplicity. The strategy is almost the same as that mentioned above, in the example
using the VZERO amplitude. The combinations of VZERO amplitude vs. FMD
multiplicity and that vs. SPD tracklets are used for the centrality determination
too, under the assumption of the VZERO amplitude is proportional to the FMD
multiplicity and to the SPD tracklets.
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8.2.2 EZEM vs. EZDC

An alternative way to determine the centrality class is to use the correlation
between the energy deposit in ZDC-ZEM (EZEM and EZDC) defined in Eq. (8.2).
The underlying assumptions are: in the most central collisions, EZEM reaches its
maximum value and EZDC is very low since Nspec detected in ZDC-ZN and ZDC-
ZP is small. Starting from these central collisions and following the shape of the
correlation, b (or Nspec) increases as the collisions become more and more peripheral.
In this way, it is possible to separate the centrality classes according to the well
defined percentiles of the total hadronic cross section:

xi × σ =

∫ bi

0
db

dσ

db
=

∫
EZDC,i

dEZDC

∫
EZEM,i

dEZEM
d2σ

dEZDCdEZEM
, (8.8)

Figure 8.6: The combination distribution of
corrected ZEM amplitude and EZDC. The re-
sults are obtained from minimum-bias trig-
gered events in LHC10h pass 2. The four
centrality bins are selected with the VZERO
amplitude.

where i refers to the selected region
in EZDC–EZEM plane, which corre-
sponds to 0 < b < bi, and xi is the
fraction of total (inelastic) hadronic
cross section. Fig. 8.6 shows the
correlation between ZEM amplitude
(∝ EZEM) and EZDC. The four
centrality bins in this figure are de-
termined by the VZERO amplitude,
but in principle this also can be done
by cutting the fraction of the total
cross section in the correlation as de-
scribed in Eq. (8.8). The advantage
of using the EZDC vs. EZEM cor-
relation to determine the centrality
classes is that, by applying cuts on
the correlation distribution, one can
get < EZDC > in different central-
ity classes. By using Eq. (8.2) the
values of < Nspec > are obtained as
a function of the collision centrality.
Then, according to the relation:

Npart = A−Nspec, (8.9)

with the atomic number A = 208 for Pb and < Npart > can be estimated in each
centrality class. This can be used to correct the results obtained from the method
mentioned in Sec. 8.2.1 which uses the VZERO amplitude, the FMD multiplicity
etc., where < Npart > is given by Glauber model. This improves the accuracy on
the centrality determination and the estimated values of < Npart > and < Ncoll >.
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8.2.3 Centrality QA

ALICE delivers the centrality determination methods discussed above via the
official Centrality Selection framework. This framework has been updated from
summer 2011 on by adding the centrality QA selection in order to decrease the bias
in the centrality determination. The selection is classified into two sets of cuts:

• cuts the vertex quality,

– |vz| < 10 cm, this cut removes the events far from the the ALICE central
detectors. Indeed, the signals from the detectors used for the centrality
determination could be biased by these events and introduce uncertainties
in the centrality calibration;

– number of vertex contributor ≥ 1. As the multiplicity in Pb–Pb collisions
is much higher than that in pp collisions, this cut does not make sense
for most of the events. However the residual beam gas interaction which
could be identified as ultra-peripheral collisions can be rejected by this
cut;

• the correlation cuts used to reject pile-up and beam gas events. The defini-
tion of the event centrality is based on the event multiplicity distribution, as
introduced in Sec. 1.4.2.1. Both pile-up and beam gas events strongly bias
the event multiplicity distribution and are responsible for uncertainties in the
centrality determination; the correlation cut on a few σ in the correlation of
VZERO amplitude vs. SPD tracklets, TPC tracks and EZDC is used to reject
this background. The basic assumptions to implement these cuts are that the
VZERO amplitude is proportional to the SPD tracklets and the TPC tracks,
and the relation between VZERO amplitude and EZDC is comparable to that
of EZEM vs. EZDC, as shown in Fig. 8.6.

Figure 8.7: The event distribution as a function of centrality (left) and vz distribu-
tion (right) in LHC10h pass 2. The results are obtained from minimum-bias trigger
events. In both cases, the red histogram shows the results after the physics selection
and the blue one shows the results with the additional centrality QA selection.
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The event distribution as a function of centrality and the vz distribution are
shown in the left and right plots of Fig. 8.7, respectively. These results are obtained
from the minimum-bias events in LHC10h pass 2. The red histograms are the results
after the physics selection and the blue ones are the results with the additional
centrality QA selection. In the left plot of Fig. 8.7, the centrality is determined via
the VZERO amplitude. One can see that, for centralities up to 90%, both the event
distribution and the efficiency of the centrality QA are quite stable. Due to the
vertex quality cuts, the width of the vz is largely decreased after the centrality QA
selection, as shown in the right plot of Fig. 8.7.

8.2.4 Centrality Scaling Factors

centrality class < Npart > < Ncoll > < TAA > (mb−1)

0− 10% 356.5± 3.6 1502.7± 169.9 23.4797± 0.972587

10− 20% 260.5± 4.4 923.26± 99.6 14.4318± 0.573289

20− 40% 157.3± 3.4 438.8± 43.9 6.85556± 0.283436

40− 60% 68.76± 2.4 128.2± 12.7 2.0039± 0.112462

60− 80% 22.57± 1.05 26.82± 2.46 0.419123± 0.0334287

40− 80% 45.5± 2.05 77.1± 8.0 1.20451± 0.071843

Table 8.1: Mean values of number of participants (< Npart >), number of binary
collisions (< Ncoll >) and nuclear overlap function (< TAA >) in six centrality
classes from Glauber model. Results are offered by ALICE officially.

Finally, we list in Tab. 8.1 the mean values of number of participants (< Npart >),
number of binary collisions (< Ncoll >) and nuclear overlap function (< TAA >) in
six centrality classes which will be used in the following analysis (these values are
available officially in ALICE). σinel

NN = 64 mb is used as the input to the Glauber
model to obtain these results. The < TAA > is defined as

< TAA >= m · TAB, (8.10)

where m and TAB are defined in Eq. (2.16) and (2.22), respectively. Then, with
Eq. (2.24) one can get:

< TAA >=< Ncoll > /σinel
NN . (8.11)

According to Eq. (8.11), instead of the < Ncoll >, < TAA > can also be used for
the normalization of Pb–Pb related observables. The advantage to use < TAA >

is that, the determination of < Ncoll > depends on the input value of σinel
NN for the

Glauber model. The ratio in Eq. (8.11) can cancel part of the bias caused by the
input σinel

NN value. In the following analysis we use < TAA > to calculate the nuclear
modification factors of muons.
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8.3 Track Selection

After the above discussion on the data selection at the event level, we discuss in
the following the muon track selection in Pb–Pb events. We start with some typical
distributions and a revised study of the effect of the p×DCA cut. A summary of
the analysis cuts and the event statistics will be given at the end of this section.

8.3.1 Typical Distributions

Figure 8.8: Left: muon track multiplicity distribution as a function of centrality.
Right: normalized pt distribution of muon tracks in different centrality classes.
The results are obtained with the muon selection cuts listed in each plot and from
LHC10h pass 2 data analyzed in April 2011.

Following the discussion in Sec. 6.3, a first set of cuts should be implemented on
the muon tracks, for Pb–Pb events which pass the physics selection and centrality
QA selection. These are the muon selection cuts listed in Sec. 6.4. With the cen-
trality determined according to the ALICE official centrality selection framework,
different distributions of selected muon tracks can be obtained.

Two typical distributions are shown in Fig. 8.8: the muon track multiplicity
distribution as a function of centrality (left), and the pt distribution of muon tracks
in different centrality classes normalized by the corresponding < Ncoll > (right).
The results are obtained from LHC10h pass 2 data with the selection cuts listed in
the plots. These results were presented during April 2011. The centrality QA was
not included in the ALICE official centrality selection framework at that time.

In the left plot of Fig. 8.8 one can see that:

• the fraction of tracks removed by the acceptance cut (−4 < η < −2.5 and
171

o
< θabs < 178

o) is larger in central collisions than in peripheral collisions.
This is due to the higher detector occupancy due to the larger event multi-
plicity in central collisions. There are more fake tracks which can be partly
removed by the acceptance cuts in central collisions than in the peripheral
collisions;
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• the tracking–trigger matching efficiency is almost independent of centrality
after the acceptance cuts. This indicates that the status of the muon trigger
is stable whatever the occupancy;

• the results shown in this plot and the distributions at event level shown in the
left plot of Fig. 8.7 illustrate that there is a bad efficiency of the centrality
determination for centrality& 90%. In order to cope with that, we focus our
physics analysis in the 0− 80% centrality class in the following.

By comparing the normalized pt distributions of the selected muon tracks in
different centrality classes, as shown in the right plot of Fig. 8.8, one can notice
that the spectra are more suppresed in central than in peripheral collisions. This
phenomenon is expected since the parton in-medium quenching strength increases
with the collision centrality.

We have already repeated in this thesis many many times that the study of the
quenching of heavy flavours is very interesting. In this chapter, we are going to
show how to measure the suppression of open heavy flavours in the semi-muonic
decay channel. Although the time to finish writing this thesis in order to deliver it
on time to the referees is now limited, under the name of SCIENCE, I will forget
the referee issue, and explain how we achieve this final goal step by step rigorously,
using our usual style!

8.3.2 Fake Tracks

As previously discussed, the evolution of the efficiency of the acceptance cuts
with the collision centrality is due to the corresponding evolution of the fraction of
fake tracks outside the muon spectrometer acceptance which are rejected by these
acceptance cuts. This arises another question: what about fake tracks inside the
acceptance of the muon spectrometer?

Figure 8.9: The mean values of DCA (left) and tracking χ2 (right) as a function
of pt in different centrality classes. The results are obtained from LHC10h pass 2

data with the muon selection cuts. The corresponding results from pp collisions at√
s = 7 TeV (from LHC10e pass 2) are also shown.
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To get some first feelings about fake tracks in Pb–Pb collisions, we present the
results conerning the mean values of DCA and tracking χ2 as a function of pt in
different centrality classes obtained from the LHC10h pass 2 data, in the left and
right plots of Fig. 8.9, respectively. In this figure, we can see that:

• in the most peripheral collisions (centrality 40−80% here), both the <DCA>
and tracking < χ2 > are independent on pt;

• when the centrality of the collision increases, both <DCA> and tracking <
χ2 > increase with pt and the slopes of this increase become larger;

• by looking at tracking < χ2 > in pp collisions, as shown in the right plot of
Fig. 8.9 (or the right plot of Fig. 7.33), we can see that this tracking < χ2 >

does not depend on pt. Therefore, the increase of both <DCA> and tracking
< χ2 > in central Pb–Pb collisions should be attributed to a new background
source which is not present in pp collisions. This new source of background
consists of fake tracks which are induced by the high detector occupancy in
central Pb–Pb collisions.

Now, we can confirm that, after the muon selection cuts, there is still a fraction of
fake tracks located in the high pt region inside the acceptance of muon spectrometer.
This fraction of fake tracks is larger in central collisions. A second question then
arises: how to cut off this annoying background?

Figure 8.10: The η − θabs correlation of muon tracks with the selection cuts from
LHC10h pass 1 in the centrality classes 0− 20% (left) and 60− 80% (right), respec-
tively. The red lines show the 3σ limit of the correlation calculated according to
Eq. (7.34).

Do not worry, we always can find some ideas! From the left plot of Fig. 8.9, we
can see that fake tracks show the same behavior in DCA distribution in the high pt

region as the beam-gas background in pp collisions. As shown in Sec. 7.6.2.1, the
correlation of η − θabs allows to clearly distinguish the beam-gas background from
other tracks. Our first idea is then to see whether this correlation can also be used
to distinguish fake tracks from other single muon sources. The left and right plots of
Fig. 8.10 show this correlation for muon tracks with the selection cuts in centrality
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classes 0− 20% and 60− 80%. The 3σ limit of the correlation is shown by the red
lines, calculated according to Eq. (7.34). As expected, the fake tracks are separated
from other tracks by the η − θabs correlation, as shown in the left plot of Fig. 8.10,
in central Pb–Pb collisions. The right plot of Fig. 8.10 shows the correlation in
peripheral collisions where the fraction of fake tracks is negligible. The correlation
between real tracks is defined by Eq. (7.31) and these real tracks are contained in
the 3σ band. The results from Sec. 7.6.3 have shown that the component which can
be separated via the η− θabs correlation can also be cut off by the p×DCA cut. We
implement in the following the p×DCA cut in Pb–Pb collisions with the p×DCA
calibration.

8.3.3 p×DCA in Pb–Pb Collisions

Figure 8.11: Left: the momentum distributions of muon tracks at different recon-
struction steps as labeled in the plot. The pCMS observable defined in Eq. (7.42) is
also shown in this plot (black histogram). Right: the vx and vy distributions used
to correct the DCAx and DCAy, as defined in Eq. (7.44). All the distributions are
obtained from LHC10h pass 2 data with the selection cuts listed in the plots.

Concerning the calibration of p×DCA in Pb–Pb collisions, we follow the same
strategy as in pp collisions as mentioned in Sec. 7.6.3.1. Some control plots used for
the calibration are shown in Fig. 8.11 and 8.12.

The left plot of Fig. 8.11 shows the momentum distribution of muon tracks
reconstructed in the tracking stations, after the Branson plane correction, and with
the final correction relative to the primary vertex in purple, blue and red (labeled
as puncorr, pcorrBP and pcorvtx, respectively). The results are obtained from LHC10h
pass 2 data with the muon selection cuts listed in the plot. The pCMS distribution
used for the calculation of the pDCAcalib (defined in Eq. (7.47)) is also shown in
this plot as the black histogram. The right plot of Fig. 8.11 shows the vx and vy of
muon tracks used for the DCAx and DCAy correction. These are obtained under the
same conditions as the left plot. By correcting the DCAx and DCAy distributions,
shown by the red histograms in the left and right plots of Fig. 8.12, with the input
vertex distributions in the right plot of Fig. 8.11 according to Eq. (7.44), we get the
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Figure 8.12: The distributions of DCAx (left) and DCAy (right) without the cor-
rection of the vertex position (red histograms) and with the vertex correction (blue
histograms), according to Eq. (7.44) and with the inputs of vx and vy distributions
from the right plot of Fig. 8.11.

blue histograms in Fig. 8.12 corresponding to the corrected DCAx (left) and DCAy
(right) distributions, respectively.

One can notice that, in the left plot of Fig. 8.12, the DCAx distribution is asym-
metric. This phenomenon has already been observed in pp collisions, as shown in the
left plot of Fig. 7.41. At that time, to reduce the bias on < DCAx/y,vtx > (defined
in Eq. (7.44)) estimate, we extract the values in the region of DCA< 100 cm. What
is different between Pb–Pb collisions and pp collisions here is that, Pb–Pb collisions
have different centrality classes. So we would like to check how this asymmetric
structure in the DCAx distribution affects the < DCAx,vtx > estimate in different
centrality classes.

Figure 8.13: Left: < DCAx/y,vtx > with different selection conditions. Right: fits of
the pDCAcalib in two different θabs regions according to the function in Eq. (7.48).
The results are obtained from LHC10h pass 2 data with the selection conditions
listed in the plots.

The evolution of < DCAx/y,vtx > with the collision centrality is shown in the
left plot of Fig. 8.13. In this plot we can see that:
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• < DCAy,vtx > slightly decreases in peripheral collisions and is constant in
central collisions;

• with the cuts |DCA| < 100 cm or p > 4 GeV/c, < DCAy,vtx > is uniform in
all centrality bins;

• similarly to < DCAy,vtx >, the < DCAx,vtx > is constant versus centrality
for centralities & 20%, but in the most central collisions its values increases
with centrality. The two cuts implemented here, can partly restore the <
DCAx,vtx > as a constant in the whole centrality region.

Finally, we can conclude that the deviation of < DCAx/y,vtx > results from the
soft tracks originating from multi-scatterings in the front absorber. The asymmetric
structure in the DCA distributions is due to a non-uniform material structure versus
azimuthal angle in the front absorber.

To avoid the bias on the p×DCA calibration, we extract the < DCAx/y,vtx >

values by fitting their distributions in centrality> 20% with a straight lines (shown
by the black line in the left plot of Fig. 8.13).

Figure 8.14: The left and right plots are similar to the upper and lower plots in the
right plot of Fig. 7.43. The results are here obtained from LHC10h pass 2 data.

Up to now, we obtain all the inputs for the p×DCA calibration. The fitting
results of the pDCAcalib in 171

o
< θabs < 177

o and 177
o
< θabs < 178

o according
to Eq. (7.48) are shown in the right plot of Fig. 8.13. After these fits the values

LHC10h pass 2 w/ muon selection cuts 171
o
< θabs < 177

o
177

o
< θabs < 178

o

σmeas(p×DCA) 60.69 GeV/c×cm 101.53 GeV/c×cm

Table 8.2: The values of σmeas(p× DCA) in 171
o
< θabs < 177

o and 177
o
< θabs <

178
o in LHC10h pass 2 data extracted from the fit presented in the right plot of

Fig. 8.13.

of σmeas(p × DCA) in these two regions are obtained. They are listed in Tab. 8.2.
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Then, following the same strategy as the one in pp collisions, we should validate the
number of σmeas(p×DCA) used to separate fake tracks from other tracks.

Figure 8.15: The correlation of pDCAcalib vs. pt in 171
o
< θabs < 177

o (left) and
177

o
< θabs < 178

o (right) from LHC10h pass 2 data with the muon selection cuts.
The black lines correspond to 5σmeas(p × DCA) obtained from the fits in the right
plot of Fig. 8.13.

Figure 8.16: Similar as Fig. 8.9, but the results are obtained with the additional
p×DCA cut in 5σmeas(p×DCA).

As shown in the upper and lower panels of the right plot of Fig. 7.43, we show,
for Pb–Pb collisions, the pt distribution of selected muons with different numbers
of σmeas(p×DCA) cut and the ratio between this distribution and the one without
the p×DCA cut in the left and right plots of Fig. 8.14, respectively. As it was the
case for pp collisions and according to the results in Fig. 8.14, a cut on p×DCA of
5σmeas(p × DCA) is sufficient for our analysis. The pDCAcalib vs. pt correlation in
Pb–Pb collisions for LHC10h pass 2 data, in 171

o
< θabs < 177

o and 177
o
< θabs <

178
o with the black lines corresponding to 5σmeas(p× DCA) cuts are shown in the

left and right plots of Fig. 8.15, respectively. We can see that, the fake tracks and
other muon sources are clearly separated by this 5σmeas(p×DCA) cut. In order to
get more confidence in our p×DCA study in Pb–Pb collisions, finally we add the
additional p×DCA cut in 5σmeas(p×DCA) in the distributions in Fig. 8.9, and the
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results are shown in the left and right plots of Fig. 8.16. We see that after the cut
on p×DCA, the <DCA> and tracking < χ2 > distributions as a function of pt are
similar, in all centrality classes to the ones in pp collisions (where there is no fake
tracks) with the same muon selection cut conditions. This strongly confirms that
the p×DCA cut successfully rejects the fake tracks in Pb–Pb collisions.

8.3.4 Statistics Summary

Now, it is time to make a summary of the muon data sample selection in Pb–Pb
collisions with the corresponding statistics that we used for our final analysis.

Firstly, the selection at event level can be classified into three parts:

event trigger selection as there is no muon trigger used to collect the LHC10h
data, the minimum-bias trigger events with the 2-out-of-3 or 3-out-of-3 con-
ditions correspond to the default data sample for our analysis;

physics selection the principle of the physics selection is almost the same as that
in pp collisions, the additional ZDC timing cut is used to reject the de-bunching
and EM background;

centrality selection it includes two parts,

• centrality QA, this is used to remove events far from the center of ALICE
barrel detectors and pile-up events, and beam gas to reduce the bias in
the centrality determination,

• choosing events in centrality region 0 − 80% to ensure a good efficiency
of the centrality determination.

The selection at track level is similar to that used in pp collisions. We just add
the requirement that the reconstructed vertex is included inside the centrality QA
selection already. We combine all above conditions together and called them as the
standard muon selection in Pb–Pb collisions.

cut all +centQA +0− 80%

No. of events 23894769 20507552 16595117

Table 8.3: Event statistics in LHC10h pass 2 used for the final analysis.

cut all +centQA +0− 80% +η cut +θabs cut +trM

No. of events 47928319 41110737 41005680 32008436 30879884 10271205

Table 8.4: Muon track statistics in LHC10h pass 2 used for the final analysis.

The statistics at event and track levels used for our final analysis with different
selection cuts is listed in Tab. 8.3 and 8.4, respectively. The results are obtained from
the minimum bias trigger events in LHC10h pass 2 data analyzed during September
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Figure 8.17: The pt (upper) and DCA (lower) distributions of muon tracks with the
standard selection cuts in different centrality classes. The results are obtained from
LHC10h pass 2 data which is used for our final analysis. The distributions without
the p×DCA cut and those with p×DCA cut are compared.
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2011. Thanks to the low beam injection luminosity during this data taking period,
the pile-up effect is negligible (and the centrality QA selection removes almost all
pile-up events). Therefore the pile-up correction is not implemented in the Pb–Pb
analysis for the event normalization.

Finally, the pt and DCA distributions of muon tracks with the standard selection
cuts in different centrality regions are shown in the upper and lower plots of Fig. 8.17,
respectively. The results are obtained from LHC10h pass 2 data used for our final
analysis. The distributions without the p×DCA cut and those with p×DCA cuts
are compared.

8.4 Reference from pp Collisions

After the above discussion of issues related to the selection of the data sample,
now, we can focus on the measurement of muons from heavy flavour decays. Differ-
ently from the analysis in pp collisions, it took us a very long time to fix the final
strategy of get the physics results in Pb–Pb collisions. We first describe our physics
goal and what inputs are needed.

Our final aim is to get the nuclear modification factor of muons from open heavy
flavour decays in the acceptance of the muon spectrometer (−4 < η < −2.5) in Pb–
Pb collisions at

√
sNN = 2.76 TeV (based on the LHC10h pass 2 data),

Rµ←HF
AA (pt) =

1

< TAA >
× 1

N ev
× 1

εAA
× dNµ←HF

AA /dpt

dσµ←HF
pp /dpt

, (8.12)

where: N ev, εAA and dNµ←HF
AA /dpt are the number of events, the correction effi-

ciency and the uncorrected spectrum of muons from open heavy flavour decays in a
given centrality class in Pb–Pb collisions. The value of < TAA > is obtained from
Tab. 8.1 according to the chosen centrality class; dσµ←HF

pp /dpt is the production
cross section of muons from open heavy flavour decays at

√
s = 2.76 TeV. Before go-

ing to Pb–Pb data, we are going to mention in this section how we get the reference
term dσµ←HF

pp /dpt in pp collisions.
Similarly to the analysis of Pb–Pb data, there are also three important periods

to get the dσµ←HF
pp /dpt.

Dec. 2010–May to 2011 during this time, the pass 2 data of pp collisions at√
s = 2.76 TeV was not available (the pass 1 data of pp collisions at

√
s =

2.76 TeV has been available in the beginning of 2011). To get the reference
of dσµ←HF

pp /dpt in pp collisions at
√
s = 2.76 TeV, we have interpolated the

measured production cross section of muons from heavy flavour decays in pp
collisions at

√
s = 7 TeV, as shown in Fig. 7.48, to this lower collision energy,

via a scaling factor obtained from the FONLL calculations;

End of 2011 when the pp data at
√
s = 2.76 TeV became available, we

have extracted dσµ←HF
pp /dpt at this energy using the method implemented

at
√
s = 7 TeV. A that time simulations from only one model (PYTHIA
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Perugia-0 tuning) with realistic detector configurations were available. In or-
der to estimate the background, and especially the corresponding systematic
uncertainty, we need at least two model predictions. Therefore, at that time,
in order to get an additional model prediction, we have scaled the results
from the PHOJET simulations at

√
s = 7 TeV to this lower energy for the

background estimation.

Beginning of 2012 the simulations with realistic detector configurations ac-
cording to both PYTHIA Perugia-0 and PHOJET for pp collisions at

√
s =

2.76 TeV have been completed. We have therefore implemented the full strat-
egy as we did for pp collisions at

√
s = 7 TeV to get dσµ←HF

pp /dpt. This is used
to calculate our final result: the RAA of muons from heavy flavour decays.

In the following, we give a short review of results from each of period.

8.4.1 Energy Interpolation

The basic principle to get the production cross section at
√
s = 2.76 TeV from

that at
√
s = 7 TeV via the energy interpolation is expressed as:

dσµ←HF
pp

dpt
|2.76 TeV = interpF(

2.76 TeV

7 TeV
)× dσµ←HF

pp

dpt
|7 TeV, (8.13)

where dσµ←HF
pp /dpt|7 TeV is obtained from data in pp collisions at

√
s = 7 TeV, as

shown in Fig. 7.48, with the interpolation factor from the FONLL calculations 3,

interpF(
2.76 TeV

7 TeV
) =

dσµ←HF
pp /dpt|2.76 TeV

dσµ←HF
pp /dpt|7 TeV

|FONLL. (8.14)

As listed in Fig. 7.29, there are three main sources of uncertainties in the FONLL
calculations: the quark masses, the QCD scaling factors and the PDFs. So, the key
point is to propagate these uncertainties to the predicted production cross sections
of muons from heavy flavour decays at these two energies correctly via the ratio of
the interpolation factor Eq. (8.14).

In Fig. 7.29, one can see that the uncertainty on the PDFs is very small for
both charm and beauty and can be neglected. To calculate the uncertainties on the
interpolation factor, we only take into account the propagation of the uncertainties
on the quark masses and on the QCD scales. Then, the error propagation procedure
is very similar to what was discussed in Sec. 7.5.1:

1. estimate the uncertainties on the quark masses and the QCD scales, σmass and
σscales, independently;

3Indeed, what we get from FONLL calculations is the production cross section of muons from
heavy flavour decays at

√
s = 2.75 TeV. We use this result to estimate the corresponding cross

section at
√
s = 2.76 TeV. The difference in the results between these two energies, in principle is

negligible.
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2. add them together quadratically to get the final uncertainty:

σinterF =
√
σ2

mass + σ2
scales. (8.15)

Figure 8.18: Left: the interpolation factor for scaling the production cross section
of muons from heavy flavour decays from pp collisions at

√
s = 7 TeV to that

at
√
s = 2.76 TeV via FONLL calculations. The results are obtained by fixing

µF = µR = µ0, and by varying the masses of charm and beauty quarks in the 9

combinations listed in the plot. The yellow band shows the envelope of the results
obtained with all mass combinations. Right: the re-scaled results from the left side
plot according to the one with mc = 1.5 GeV/c2 and mb = 4.75 GeV/c2. The yellow
band shows the envelope of these re-scaled results. It corresponds to the relative
uncertainty of the interpolation factor from quark masses.

Figure 8.19: As in Fig. 8.18, the results are obtained by fixing mc = 1.5 GeV/c2

and mb = 4.75 GeV/c2 and by varying the QCD scales in the corresponding 49

combinations. The color lines show the results for charm and beauty choices the
with different values of the QCD scales.

To obtain the uncertainty on the interpolation factor from the quark masses,
we fix the QCD scales as µF = µR = µ0 with the value µ0 =

√
p2

t +m2
Q for
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Figure 8.20: The interpolation factor (left) and its re-scaled ratio (right), with the
uncertainties on the quark masses and the QCD scales obtained from Fig. 8.18 and
Fig. 8.19, respectively. The total uncertainty calculated according to Eq. (8.15) is
also shown.

both charm and beauty. Then we use the masses of charm and beauty quarks
in the 9 combinations listed in Fig. (8.18) to calculate the interpolation factor in
Eq. (8.15). The results from different quark mass combinations are shown in the
left plot of Fig. (8.18), the yellow band shows the envelope of the results from all
different mass combinations. By re-scaling these results according to the ones with
mc = 1.5 GeV/c2 and mb = 4.75 GeV/c2, we get the results in the right plot
of Fig. (8.18). The yellow band shows the envelope of these re-scaled results. It
corresponds to the relative uncertainty on the interpolation factor from the quark
masses.

Similarly to what we have done to obtain the uncertainty on the interpolation
factor from the quark masses, to get the uncertainty from the QCD scales, we fix
the values of the quark masses to mc = 1.5 GeV/c2 and mb = 4.75 GeV/c2 for
charm and beauty, respectively. Then, we vary the values of the QCD scales in the
total 49 combinations as mentioned in Sec. 7.5.1 and calculate the corresponding
interpolation factor. The results are shown in the left plot of Fig. 8.19. In the right
plot of Fig. 8.19 the re-scaled results according to the one with µF = µR = µ0 for
both charm and beauty are shown. The yellow band shows the envelope of these re-
scaled results. It corresponds to the relative uncertainty on the interpolation factor
from the QCD scales.

We now consider the uncertainties on the interpolation factor from the quark
masses and the QCD scales obtained from Fig. (8.18) and Fig. 8.19, respectively, and
add them together according to Eq. (8.15). The results with the total uncertainties
are shown in the left plot of Fig. 8.20. The central value of the interpolation factor
in this plot is obtained by choosing mc = 1.5 GeV/c2 and mb = 4.75 GeV/c2 and
µF = µR = µ0. The re-scaled results according to this central value are shown in
the right plot of Fig. 8.20.
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Figure 8.21: The dσµ←HF
pp /dpt|2.76 TeV cal-

culated according to Eq. (8.13) (in red) and
compared with the inclusive muon produc-
tion cross section in data (in black). See
text for more details.

With the inputs of
dσµ←HF

pp /dpt|7 TeV from Fig. 7.48
and the interpolation factor from the
left plot of Fig. 8.20 from Eq. (8.13),
dσµ←HF

pp /dpt|2.76 TeV is obtained via
this energy interpolation procedure.
It is shown by the red curve in
Fig. 8.21. The systematic uncer-
tainty on this cross section is shown
by the red boxes. It includes the
uncertainty on dσµ←HF

pp /dpt|7 TeV

and the one from the interpolation
factor as shown in Fig. 8.20. The
black curve in this figure shows the
production cross section of inclusive
muons in data 4. The difference
between dσµ←HF

pp /dpt|2.76 TeV and the
production cross section of inclusive
muons indicates the contribution
from the background (blue curve). The systematic uncertainty on the estimated
background (blue boxes) only includes the one from dσµ←HF

pp /dpt|2.76 TeV.
A more detail study of the energy interpolation for the heavy flavour production

can be found in Ref. [325].

8.4.2 Reference from pp Data at 2.76 TeV

The data sample we used to obtain the dσµ←HF
pp /dpt|2.76 TeV is LHC11a pass

2. After the data QA selection for muon analysis, there are 18 runs to be used.
The used statistics at the event and muon track level in minimum bias trigger and
muon-trigger data are summarized in Tab. 8.5 and Tab. 8.6, respectively.

trigger type w/o cut +Phys. Sel. +Reco. Vtx.

MB trigger 34961767 34666268 31517941

MU trigger 8820393 8670397 8345001

Table 8.5: The event statistics in the used LHC11a data sample.

Similarly to what we did in pp collisions at
√
s = 7 TeV, the final results are

obtained from muon trigger events and minimum-bias events are used to normalize
muon-trigger events according to Eq. (7.22). In Tab. 8.6 the muon selection cuts
(Sel. cuts) are defined in Sec. 6.4 as usual and the p×DCA is cut at 5 · σ.

At the end of 2011, only the simulations with the PYTHIA Perugia-0 tuning

4The pp collisions at
√
s = 2.76 TeV data are introduced in Sec. 8.4.2. The correction strategy

to get this result will be mentioned in Sec. 8.6.1.
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trigger type w/o cut +Sel. cuts +p×DCA

MB trigger 516933 147746 146989

MU trigger 5162369 4326614 4305063

Table 8.6: The muon-track statistics in the used LHC11a data sample.

using realistic detector configurations for LHC11a was available. Two scenarios
were used to get the production cross section of muons from open heavy flavour
decays via the method implemented in pp collisions at

√
s = 7 TeV [326]:

scenario 1: estimate the background using only the PYTHIA simulation and shift
the central value of the spectrum after the background subtraction with the
estimated systematic error on the background subtraction in pp collisions at√
s = 7 TeV (Tab. 7.3);

scenario 2: scale the background from PHOJET simulation at
√
s = 7 TeV to√

s = 2.76 TeV according to the ratio between the spectra of decay muons
from PYTHIA simulations at

√
s = 2.76 TeV and

√
s = 7 TeV. Then perform

the background subtraction with the PYTHIA simulation at
√
s = 2.76 TeV

and this scaled background.

Figure 8.22: Left: production cross section of muons from heavy flavour decays in
pp collisions at

√
s = 2.76 TeV from LHC11a. This was obtained at the end of 2011

according the two scenarios described in the text. The results are also compared
with the ones using the energy interpolation (red curve in Fig. 8.21) and FONLL
predictions. Right: the ratio between the production cross section of muons from
heavy flavour decays in pp collisions at

√
s = 2.76 TeV in the left side plot and that

obtained in pp collisions at
√
s = 7 TeV (shown in Fig. 7.48). The interpolation

factor in the left plot of Fig. 8.20 using the FONLL calculations is also presented
for comparison.

The production cross sections of muons from heavy flavour decays in pp collisions
at
√
s = 2.76 TeV extracted from LHC11a data according to above scenario 1 and
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scenario 2 are shown in the left plot of Fig. 8.22. They are labeled "w/ one model"
and "w/ two models", respectively. The results from the energy interpolation (red
curve in Fig. 8.21), labeled as "w/ shift from 7 TeV", is also compared with the
FONLL predictions. One can see that, within errors, the results from the three
methods are in agreement and are also consistent with the FONLL predictions.
This can be seen more clearly from the re-scaled ratios according to the central
value of FONLL predictions shown in the lower panel of this plot. Furthermore, we
have computed the ratio between these results and the production cross section of
muons from heavy flavour decays in pp collisions at

√
s = 7 TeV (Fig. 7.48) and

compared them with FONLL predictions (the interpolation factor in the left plot of
Fig. 8.20). As expected, a very good agreement is found with FONLL predictions.

Figure 8.23: The production cross sections of muons from heavy flavour decays in pp
collisions at

√
s = 2.76 TeV from LHC11a. The background is estimated according

to both PYTHIA and PHOJET simulations with realistic detector configurations.
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The PHOJET simulation with realistic detector configuration of LHC11a be-
came available in the beginning of 2012. With this new simulation plus the one
from PYTHIA Perugia-0 we have repeated the complete analysis strategy that we
have applied to pp collisions at

√
s = 7 TeV and got, in the same conditions, the

production cross sections of muons from heavy flavour decays in pp collision at√
s = 2.76 TeV. This is shown in Fig. 8.23. The sources of the systematic uncer-

tainties shown by the red boxes are the same as those listed in Sec. 7.7.1. The value
of these uncertainties are:

• background subtraction: ∼ 13% from model and 5−20% from transport code
depending on pt;

• detector response: 3%;

• residual mis-alignment: 1%× pt;

• luminosity measurement (normalisation): 1.9% (not included in the red boxes
in Fig. 8.23).

This result will be used in Eq. (8.12) to calculate the final results for the RAA of
muons from open heavy flavour decays in Pb–Pb collisions at

√
sNN = 2.76 TeV.

8.5 Background Estimate

After having obtained the denominator dσµ←HF
pp /dpt in Eq. (8.12), to calculate

the RAA of muons from open heavy flavour decays in Pb–Pb collisions at
√
sNN =

2.76 TeV in Sec. 8.4, we need now to consider the numerator 1/εAA×dNµ←HF
AA /dpt.

This corresponds to the corrected spectrum of muons from open heavy flavour de-
cays a given centrality class in Pb–Pb collisions at

√
sNN = 2.76 TeV. We start by

describing the challenges to obtain this term and the solutions we finally found.
They do not only affect our analysis strategy but also determine the way to correct
the Pb–Pb data for efficiency.

8.5.1 Strategy

In Pb–Pb collisions, the main challenge is to get the corrected pt spectrum of
muons from open heavy flavour decays 1/εAA × dNµ←HF

AA /dpt, in Eq. (8.12), for all
centrality classes. Similarly to the approach used in pp collisions, this term can be
obtained as

1

εAA
× dNµ←HF

AA /dpt =
1

εAA
× (dN incl µ

AA /dpt − dNbkg
AA /dpt), (8.16)

with the uncorrected inclusive muon spectrum dN incl µ
AA /dpt and the uncorrected

background spectrum dNbkg
AA /dpt in a given centrality class in Pb–Pb data. In

pp collisions, the background spectrum (mainly primary muons) is estimated using
different Monte-Carlo models. The same strategy to estimate the background in Pb–
Pb collisions cannot be implemented since the quenching effects in Pb–Pb collisions
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are unknown in the forward rapidity region and therefore are not well described by
any kind of model. In addition, the uncertainty on cold nuclear effects also induces
bias in the simulations.

We should find an alternative way to estimate the background in Pb–Pb colli-
sions. The basic idea to estimate the background in Pb–Pb collisions is to use the
cocktail-data based which is introduced in Sec. 7.8.1:

• as discussed during the analysis of pp collisions, in the high pt region, the
background is almost only constituted of primary muons which mainly come
from kaon and pion decays;

• if we use the measured spectra of kaons and pions in the ALICE central barrel,
we can extrapolate them to the forward region and reproduce their decay muon
spectra.

The general idea for this is:

1. using the similar steps as in Sec. 7.8.1, extrapolate the K/π spectra in pp colli-
sions measured in ALICE central barrel to the forward rapidity via Eq. (7.62);

2. in Pb–Pb collisions, by assuming,

R
K/π
AA (pt, y) = ny ×RK/π

AA (pt, y = 0), (8.17)

where factor ny describes the differences of the quenching effect between the
central and forward rapidities, one can get,

1

N ev
AA

· d2N
K/π
AA

dptdy

= < Ncoll > ×RK/π
AA (pt, y)× 1

N ev
pp

· d2N
K/π
pp

dptdy

=ny× < Ncoll > ×RK/π
AA (pt, y = 0)× 1

N ev
pp

· dN
K/π
pp

dpt
|y=0 × exp[−1

2
(
y

σy
)2]

=ny ×
1/N ev

AA · dN
K/π
AA /dpt|y=0

1/N ev
pp · dNK/π

pp /dpt|y=0

× 1

N ev
pp

· dN
K/π
pp

dpt
|y=0 × exp[−1

2
(
y

σy
)2]

=ny ×
1

N ev
AA

· dN
K/π
AA

dpt
|y=0 × exp[−1

2
(
y

σy
)2];

(8.18)

3. finally, the background spectra of muons from K/π decays in pp and Pb–Pb
collisions can be obtained by implementing the decay processes K/π → µ

in Monte-Carlo by considering the effect of the front absrober of the muon
spectrometer,

1

N ev
AA(pp)

dN
µ←K/π
AA(pp)

dpt
|−4<η<−2.5 =

1

N ev
AA(pp)

∫
∆η

dη
d2N

µ←K/π
AA(pp)

dptdη
⇐ 1

N ev
AA(pp)

d2N
K/π
AA(pp)

dptdy
.

(8.19)
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8.5.2 Inputs from Data

Figure 8.24: Left: the pt spectra of charged pions measured in ALICE central barrel
in different centrality bins in Pb–Pb collisions at

√
sNN = 2.76 TeV. The results are

normalized to the number of events and compared with the charged pions spectrum
measured in pp collisions under the same conditions. Right: the RAA of charged
pions obtained according to the pt spectra in the left plot. The results are compared
with the RAA of the measured total charged particles.

As mentioned in our proposal described in Eq. (8.19), we will use the cocktail
data based method, which needs as input the charged K/π spectra in mid-rapidity
as shown in Eq. (8.18), to estimate the decay muon background in Pb–Pb collisions.
The implementation of this procedure started in November 2011. The measurement
of kaons and pions in the ALICE central barrel in Pb–Pb collisions at

√
sNN =

2.76 TeV, available at that time, are presented in Fig. 8.24 and 8.25, respectively.
The left plot of Fig. 8.24 shows the pt spectra of charged pions in different cen-

trality classes from ALICE central barrel in Pb–Pb collisions at
√
sNN = 2.76 TeV.

The results are normalized to the number of events and compared to the pt spec-
tra of charged pions measured in the ALICE central barrel in pp collisions at√
s = 2.76 TeV. The right plot of Fig. 8.24 shows the charged pion RAA in dif-

ferent centrality classes with the inputs from the left side plot. The RAA of total
charged particles is also presented in this plot for comparison. This figure contains
the inputs of the cocktail data based on charged pions for all centrality classes that
we are interested in.
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Figure 8.25: RAA of K0
s measured in 0 − 5% (left) and 60 − 80% (right) centrality

classes from ALICE central barrel in Pb–Pb collisions at
√
sNN = 2.76 TeV. The

results are compared to other charged particles as well as to model predictions as
labeled in the plots.

Concerning of the inputs for kaons, as shown in Fig. 8.25, some information is
missing.

• Indeed, what we need are the results of charged kaons but at that time only
the results of K0

s were approved. In order to cope with that, we estimate the
spectra of charged kaons from those of K0

s according to:

N(K+) +N(K−) ' 2 ·N(K0
s). (8.20)

This assumption is also used for the comparison of the data with HIJING
predictions as shown in the left plot of Fig. 8.25.

• Another limitation from the kaon data is that the results are only available
in two centrality classes: 0− 5% and 60− 80% as shown in the left and right
plots of Fig. 8.25, respectively. To overcome this problem, we implemented
a modification in the background estimation strategy. This is explained in
Sec. 8.5.3.3.

8.5.3 Convert the Spectra of K/π to the Muon Level

With all above inputs using measurements performed in the ALICE central
barrel, now we begin to estimate the decay muon background in Pb–Pb collisions
according to Eq. (8.19) step by step.

8.5.3.1 Validation of the Rapidity Extrapolation

In the first step of Eq. (8.19), the extrapolation of the measured K/π spectra
in Pb–Pb collisions from central to forward rapidities as shown in Eq. (8.18), we
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Figure 8.26: The spectra of π− (left) and π+ in different centrality classes measured
in ALICE central barrel in Pb–Pb collisions at

√
sNN = 2.76 TeV. The results

concern the low pt region where thermal production dominants. The Blast-Wave
fits for these spectra are also shown in the plots.

assumed that only the quenching effect is different between central to forward ra-
pidities, the Eq. (8.17). In contrary to pp collisions, in Pb–Pb collisions particles
can be produced according to:

• partonic scatterings in the early stage of the collisions;

• inside the fireball via the thermal production. This production mechanism
dominantes in the low pt region.

The rapidity extrapolation is not valid for the particle produced inside the fireball.
Therefore, before considering the extrapolation, we should exclude the pt region
where thermal particles are dominant.

Figure 8.27: The study of thermal charged
pions. See text for more details.

Fig. 8.26 shows the π− and π+ dis-
tributions measured in ALICE central
barrel in the low pt region, in the left
and right plots, respectively. The re-
sults are fitted via the Blast-Wave
(BW) function [327] which describes
well the thermal behaviour of particles
in the fireball formed in heavy ion col-
lisions. To understand which pt region
is dominated by thermal production in
the total charged pion spectrum, we
add together the fits of π− and π+.
We then extrapolate these BW fits to
the high pt region. After that, we
can compare the fit results and those
gotten from the left plot of Fig. 8.24.
Fig. 8.27 shows one of this comparison

for the charged pion spectra in the 0 − 5% centrality class. We can observe that
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thermal pions, which are described by the BW fits (red histogram in Fig. 8.27),
dominates in pt < 4 GeV/c. If we convert the pion spectra to decay muons, this
pt threshold will become lower. Therefore, in our cocktail data based strategy of
background estimation, the particle spectra extrapolation for pt > 4 GeV/c, via
Eq. (8.17), is justified. Our final results will also be presented in this pt region.

8.5.3.2 Fast Simulation Method

After the validation of the rapidity extrapolation, now, we focus on the second
step: obtain the spectra of decay muons in different centrality classes in Pb–Pb
collisions. Using the parameterization and generation strategy as in Sec. 7.8.1, will
cost a very long CPU time. It is therefore better to implement a faster technique
to convert the spectra of kaons and pions to decay muons.

Figure 8.28: Left: the normalized pt distributions of charged pions in different
centrality classes derived from the left plot of Fig. 8.24. Right: the distribution of
muons from charged pion decays in 18 < pt < 20 GeV/c with a flat pt distribution
of the charged pions as input.

To convert the K/π spectra to those of decay muons, we start with the case
of charged pions with ny = 1 (assuming the same quenching at mid-rapidity and
forward rapidity), as an example. Using as input the invariant normalized pt spectra
for charged pions, as show in the left plot of Fig. 8.24, we convert them to the
normalized pt distributions of charged pions. The results are shown in the left plot of
Fig. 8.28. The general way to convert these pt distributions of charged pions to those
of their decay muons is to parameterize these distributions and implement them in a
generator to perform the semi-muonic decay processes via a Monte-Carlo technique.
In this case, we should proceed with the generation several times. Because the pt

spectra decrease with pt according to a power law, if we want to obtain a good
statistics in the high pt region, a large simulation time is required.

An alternative way to do this conversion is to proceed as shown in Fig. 8.29. We
first generate a flat pt distribution of charged pions, (black lines in this plot). After
the semi-muonic decay of these pions via Monte-Carlo, we obtain the decay muons
from pions in different pt regions (color lines in this plot). In this Monte-Carlo
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simulation, the effect of the front absorber of the muon spectrometer is simulated
by applying the cut

ρ < 130 cm, (8.21)

where ρ is the distance between the origin and the muon production point 5. Then,
the normalization of the muon distributions in this plot to a given pion spectrum in
the left plot of Fig. 8.28, is done according to the following steps:

1. for each muon we get the transverse momentum of its mother pion pπt ;

2. weight this muon according to the bin content at pt = pπt in the given pion
spectrum in the left plot of Fig. 8.28, then re-fill it in the muon distribution
with the weighted corresponding systematic error shown by the error bars;

3. loop over the above steps for all muons and we get a new muon distribution
weighted according to the given pion spectrum;

4. finally, we normalize this weighted muon distribution with the total number of
generated mother pions and the decay muon distribution according to a given
input pion spectrum from the left plot of Fig. 8.28 is obtained.

Figure 8.29: The distribution of muons
from π± decays in different mother pi-
ons pt regions with a flat pt distribu-
tion of the charged pions as input and
a cut on the muon production distance
of < 130 cm.

With this strategy, we need to run the
generation only once. Then we can scale
the decay muon distributions according
to any input pion spectrum. Also, since
we generate the charged pions with a flat
pt distribution, it is easy to have a good
statistics in the high pt region. This is
reflected in the distributions of both the
generated pions and the decay muons in
Fig. 8.29. One can see that indeed the
statistical error bars are negligible in both
cases.

In order to fully validate this strategy,
an important check has to be done. Ac-
cording to the left plot of Fig. 8.28 (also
the left plot of Fig. 8.24), the measured
charged pion spectra in ALICE central
barrel do not exceed pt = 20 GeV/c, and
therefore our scaling too. Pions from the
higher pt region still have a chance to de-
cay into muons in our pt region of interest. If we do not consider their contribution

5According to Tab. 3.2, the distance between the origin of the beam interaction point and the
front absorber is 90 cm. The distance of the mean free path of hadrons in the front absorber is
40 cm. Therefore, only muons coming from pions which decay at a distance less than 130 cm from
the interaction point have a chance to pass through the front absorber and to be detected in the
muon spectrometer.
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there will be a bias in the final scaled muon spectrum. To overcome this issue, first
we should define what is our interesting pt region in the data. According to the
upper plot of Fig. 8.17, the statistics in the data can allow to present the physics
results up to pt = 10 GeV/c. This is the upper limit of our pt region. There-
fore, we should check that the muons from pion decays with pt > 20 GeV/c will
not populate the muon spectrum in pt < 10 GeV/c. This is confirmed by looking
at the right plot of Fig. 8.28. Here, only the distribution of muons from pion de-
cays with 18 < pt < 20 GeV/c is shown. We can see that there is no muon with
pt < 10 GeV/c from pions with pt > 18 GeV/c. This means that if we consider
muons with pt < 10 GeV/c, the pion spectra from ALICE central barrel with pt up
to 20 GeV/c can be used to estimate the muon spectra from charged pion decays. By
combining the discussion in Sec. 8.5.3.1 and here, the final results will be presented
in 4 < pt < 10 GeV/c.

Figure 8.30: Left: the control plot used to get the upper limit of the pt for the
mother kaons. See text for more details. Right: the measured kaon spectra in
ALICE central barrel in Pb–Pb collisions at

√
sNN = 2.76 TeV and pp collisions at

the same collision energy. The results are extrapolated with a fit using Eq. (1.21).

In principle, the above strategy implemented for pions should be also valid for
kaons. As shown in Fig. 8.25, the measured kaon spectra in the ALICE central
barrel is limited to pt = 16 GeV/c. One should check if kaons with pt > 16 GeV/c
decay to muons with pt < 10 GeV/c. This is studied in the left plot of Fig. 8.30,
where we show the difference between the number of muons from kaon decays with
pt < pmax

t and those from kaon decays with pt < 10 GeV/c as a function of pmax
t ,

with as input a flat kaon pt distribution. We can see that this difference saturates at
pmax

t = 40 GeV/c. This means kaons with pt > 40 GeV/c do not decay to muons with
pt < 10 GeV/c. Furthermore, to validate the conversion strategy we implemented for
pions, the input pt spectra of kaons should at least reach pt = 40 GeV/c. Therefore,
we fit the measured pt spectra of kaons from ALICE central barrel with a power law
(Eq. (1.21)), and extrapolate to the higher pt region, as shown in the right plot of
Fig. 8.25.

After implementing all the steps needed for the fast simulation for both pions
and kaons, we get the spectra of muons from pion and kaon decays in different
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Figure 8.31: Muons from pion (left) and kaon (right) decays in −4 < η < −2.5,
with ρ < 130 cm and ny = 1.

centrality classes, as shown in Fig. 8.31. The kaon data from the ALICE central
barrel are only available in two centrality regions: 0 − 5% and 60 − 80%. In the
following, we are going to discuss how to get the spectra of decay muons in all our
interested centrality regions.

8.5.3.3 Centrality Extrapolation

Figure 8.32: Left: the RAA of muons in different centrality classes obtained by
converting the charged pion spectra in left plot of Fig. 8.28 to the muon level, the
error bars show the systematic uncertainties converted from the mother pion spectra.
Right: the RAA of muons from kaon decays in different centrality classes, the results
are compared of those from pion decays in the corresponding centrality classes.

In order to find a way to get the spectra of muons from K/π decays in all of the
interested centrality regions, here we keep ny = 1 and calculate the RAA of muons
from pion and kaon decays, respectively. These results are shown in Fig. 8.32. In
the right plot of Fig. 8.32, we can see that, in each centrality class, both the trend
and the magnitude of the Rµ←πAA and Rµ←K

AA as a function of pt are different. The
observed differences allow us to conclude that it is mandatory to use both pion and
kaon data in order to estimate the RAA of muons from pion and kaon decays.
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Now we add the pt spectra of muons from pion decays and those from kaon
decays in a given centrality class in Pb–Pb collisions and in pp collisions to build
the RAA of decay muons 6. The results are labeled as Rµ←K/π

AA in the left plot of
Fig. 8.33, for the two centrality classes.

Figure 8.33: Left: the RAA of different sources of decay muons in two different
centrality classes as labeled in the plot. The results are obtained after all conversion
steps in Sec. 8.5.3.2 with the inputs from Fig. 8.29. Right: the double ratio between
Rµ←πAA and Rµ←K/π

AA which is obtained from the left plot in two different centrality
classes.

As already mentioned, the kaon data from the ALICE central barrel are only
available in two centrality classes. In addition both the magnitude and the trend
of Rµ←πAA and Rµ←K

AA vs. pt are different in these two centrality bins. It is therefore
difficult to get the RAA of decay muons in all centrality classes. This issue is nev-
ertheless solved according to the results shown in the right plot of Fig. 8.33, where,
we present the double ratio between Rµ←πAA and Rµ←K/π

AA (the RAA of decay muons),

DAA(pt) =
R
µ←K/π
AA (pt, ny = 1)

Rµ←πAA (pt, ny = 1)
|−4<η<−2.5. (8.22)

One can see that even if the RAA from different sources of decay muons is different
in a given centrality region, this double ratio does not depend strongly on centrality.
Therefore WE use the central value of the double ratio as a modification function
to get Rµ←K

AA in all centrality classes and to obtain the corresponding Rµ←K/π
AA . The

differences between these two double ratios give the systematic uncertainty on this
modification.

6One can notice that pion data are measured in |η| < 0.8 and kaon data are measured in
|η| < 0.75 according to the left plot of Fig. 8.28 and the right plot of Fig. 8.30, respectively. The
normalization according to the η bin width is applied before we add muons from kaons and muons
from pions together.
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Then, the decay muon background to all centrality regions can be scaled as:

1

N ev
AA

dN
µ←K/π
AA

dpt
|−4<η<−2.5

=ny ×
1

N ev
AA

dN
µ←K/π
AA

dpt
|ny=1
−4<η<−2.5

=ny× < Ncoll > ×[R
µ←K/π
AA (pt, ny = 1)× 1

N ev
pp

dN
µ←K/π
pp

dpt
]|−4<η<−2.5

=ny× < Ncoll > ×DAA × [Rµ←πAA (pt, ny = 1)× 1

N ev
pp

dN
µ←K/π
pp

dpt
]|−4<η<−2.5.

(8.23)

In this procedure the uncertainty on DAA comes from the differences between its
mean value and its results in 0 − 5% and 60 − 80% centrality classes. Now, the
background in Pb–Pb collisions as shown in Eq. (8.19), is recalculated in Eq. (8.23)
here, in all centrality bins according to the data inputs. In order to get the output
from Eq. (8.23), there are two additional terms, the quenching exptrapolation factor
ny and the decay muon spectrum in pp collisions 1/N ev

pp · dNµ←K/π
pp /dpt|−4<η<−2.5,

are required. In the following, we are going to discuss how to obtain these two terms
in Sec. 8.5.4 and Sec. 8.5.5, respectively.

8.5.4 Estimate of the Rapidity Extrapolation Factor

Due to the unknow quenching effect in this new LHC energy range, the estimate
of the rapidity factor ny in Eq. (8.23) is another challenge in the analysis. We start
to estimate the ny factor according to some model predictions to get the first feeling.
In the final results, we treat the range of the range of ny, which estimated based on
data measurements, as one kind of systematic uncertainty.

8.5.4.1 Rapidity Extrapolation Based on Model Predictions

According to the conclusion in Sec. 8.5.3.2, Eq. (8.23) can be used in the region
4 < pt < 10 GeV/c, where the nuclear effects are dominated by the in-medium
parton quenching. Therefore the factor ny in Eq. (8.23) mainly reflects the difference
between the energy loss of partons in the central and forward rapidity regions. It
can be estimated according to the relation between the RAA and the parton energy
loss.

We call dσ/dpt(E) the particle production cross section normalized per binary
collision without energy loss. If we only consider the parton quenching effect, the
mean energy loss < ∆E > results in a systematic shift of the particle spectra. Then,
with the energy loss, the particle production cross section becomes dσ/dpt(E+ <

∆E >), and the RAA for the hard partons can be estimated as:

RAA(pt = E) =
dσ/dpt(E+ < ∆E >)

dσ/dpt(E)
. (8.24)
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According to the BDMPS limit [223], we have the following relation:

< ∆E >∝ αsCR < q̂ > L2, (8.25)

where αs and CR are the QCD coupling constant and the color Casimir factor,
respectively. As discussed in Sec. 1.2.1, L is the path length of the partons inside
the QCD medium and < q̂ > is the transport coefficient used to describe the mean
energy exchange between the partons and the medium. Concerning the parameters
in the right side of Eq. (8.25):

• αs depends on the temperature of the hot and dense matter and it does not
change in the QCD medium formed in Pb–Pb collisions;

• CR only depends on the parton species as mentioned in Sec. 1.2.1;

• L is related to the overlap region of the two colliding nucleus. Its mean value
is also fixed for a given collision centrality class.

In a given collision centrality class, all the above three parameters are fixed and
do not depend on the rapidity. Only the value of < q̂ > depends on the medium
density and is therefore expected to be rapidity dependent.

Under the BDMPS approximation, the difference of < ∆E > in the central and
forward rapidity regions is only reflected via < q̂ >. We use the factor k to express
the ratio between < q̂ > in the Central Barrel (CB) and the forward (FW)
rapidity region and set,

< q̂CB >= k× < q̂FW >, (8.26)

where k > 1. Since the medium density in the central rapidity region is larger than
that in the forward rapidity region, then one can get,

< ∆EFW >=
1

k
× < ∆ECB > . (8.27)

Inserting Eq. (8.27) into Eq. (8.24), the factor ny in Eq. (8.23) can be expressed as:

ny =
RFW

AA

RCB
AA

=
dσ/dpt(E+ < ∆E > /k)

dσ/dpt(E+ < ∆E >)
. (8.28)

Using the same assumption as in Eq. (1.21),

dσ

dpt
∝ 1

pmt
, (8.29)

where m < 6 is obtained from the fits to the ALICE charged particle spectra as
mentioned in Sec. 1.5.3.2, Eq. (8.28) becomes:

ny =
RFW

AA

RCB
AA

=
(E+ < ∆E >)m

(E+ < ∆E > /k)m

= (
k + k· < ∆E > /E

k+ < ∆E > /E
)m

< (
k + k· < ∆E > /E

1+ < ∆E > /E
)m = km,

(8.30)
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where in the last relation, we use k > 1.
Now, our problem consists to estimate the value of k in Eq. (8.30), according to

the difference between the medium density in the central and the forward rapidity
regions. To achieve this goal, we follow the assumption used in Ref. [328],

< q̂ > (η) =< q̂ > (η = 0)× dNch/dη

dNch/dη|η=0
, (8.31)

and get

k =
< q̂CB >

< q̂FW >

dNch/dη|CB

dNch/dη|FW
' 1.2, (8.32)

with the ratio of the charged particle density between the central and the forward
rapidity regions predicted by the CGC model [329].

Combining all these equations together, finally we have

ny < km . 1.26 ' 3, (8.33)

which gives the upper limit of the factor ny in Eq. (8.23). Now we shortly discuss
the following three points for Eq. (8.33).

• Our starting point for this estimate is the BDMPS approximation in Eq. (8.25)
which is used to describe the hot nuclear effects (quenching) of partons in the
QCD medium. However, the input for estimating the k factor is from the CGC
theory (Eq. (8.32)) which is derived from cold nuclear effects. Therefore, the
final result in Eq. (8.33) not only includes hot nuclear effects but also cold
nuclear effects, partly.

• Indeed Eq. (8.33) gives the upper limit of the factor n. According to this
upper limit, we set the range of n as:

0 < ny < 3, (8.34)

this range gives the uncertainty of the Rµ←K/π
AA |FW estimate in Eq. (8.17).

According to Eq. (8.33), Eq. (8.17) can be also expressed as

0 < R
µ←K/π
AA |FW < 3×Rµ←K/π

AA |CB, (8.35)

with R
µ←K/π
AA |CB = R

µ←K/π
AA (pt, y = 0) obtained according to the stragtegy

mentioned in Sec. 8.5.3.3.

• The upper limit of the factor k is only estimated according to the BDMPS and
CGC predictions. Other models could give different predictions. To estimate
the full uncertainty on the factor k, we should include predictions from several
different kinds of models, and this, in some sense, is an impossible duty. In
the left plot of Fig. 8.33, one can see that, in peripheral collisions (60− 80%)
R
µ←K/π
AA |CB ' 0.65. Using this value in Eq. (8.35), one can get the upper limit

of Rµ←K/π
AA |FW which is ∼ 2. This value can, for sure, be considered as a limit

for any prediction. For central collisions, there is no hint about the range of
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R
µ←K/π
AA |FW estimated in Eq. (8.35). To overcome this drawback, we modify

Eq. (8.35) as:

0 < R
µ←K/π
AA |FW < max{3×Rµ←K/π

AA |CB, 1}. (8.36)

The physics meaning of Eq. (8.36) is that, in central collisions where 3 ×
R
µ←K/π
AA |CB < 1, we set the range of Rµ←K/π

AA |FW as:

0 < R
µ←K/π
AA |FW < 1, (8.37)

this upper and lower limits correspond to the situation where all partons are
quenched and there is no quenching for partons, respectively.

8.5.4.2 Rapidity Extrapolation Based on Data Measurements

Figure 8.34: RCP extracted from the inclusive charged particle distributions in dif-
ferent η ranges, and three centrality classes 0 − 5%, 30 − 40% and 50 − 60% with
respect to a common peripheral sample (60−80%). Statistical errors are shown with
vertical lines and the overall systematic uncertainty is shown with gray boxes [330].

In our final results, we estimate the range of factor ny according to the measured
RCP of charged particles in ATLAS [330] up to η = 2.5, as shown in Fig. 8.34.
According to these results, the RCP of charged particles is insenstive to the rapidity
up to η = 2.5, and indicates that the quenching strength from central rapidity region
to forward rapidity does not change within uncertainties. In this case, we choose
ny = 1 to present the final results and we vary the value of factor ny within 100%,
0 < ny < 2, to estimate the uncertainty of the quenching strength in the forward
rapidity region.
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8.5.5 Yield of Decay Muons in pp Collisions

Figure 8.35: The spectra of decay muons normalized at the cross section level in pp
collisions at

√
s = 2.76 TeV, see text for more details.

Up to now we get the range of ny in Eq. (8.23). To finalize the back-
ground estimate in Pb–Pb collisions now, we are going to estimate the term
of dN

µ←K/π
pp /dpt|FW, the corrected spectrum of decay muons in pp collisions at√

s = 2.76 TeV, in Eq. (8.23).
In principle, we can get dN

µ←K/π
pp /dpt|FW directly by using the strategy men-

tioned in Sec. 7.8.1 with the input K/π spectra in pp collisions at
√
s = 2.76 TeV

from the left plot of Fig. 8.28 and the right plot of Fig. 8.30, respectively. After
this procedure, we need to add the further correction of background to get the full
term of 1/εbkg

pp × dN
µ←K/π
pp /dpt|FW. On another hand, with the strategy mentioned

in Sec. 8.5.3.2, using the fast simulation procedure, the output spectra are obtained
at the generation level. In other words, they can be treated as the results already
corrected by the efficiency. Therefore, we apply a background estimate procedure
in pp collisions at

√
s = 2.76 TeV by combining the two strategies mentioned in

Sec. 7.8.1 and Sec. 8.5.3.2.

1. Extrapolate the K/π spectra from ALICE central barrel (left plot of Fig. 8.28
and right plot of Fig. 8.30) to the forward rapidity region according to
Eq. (7.62). In this equation, σy = 1.59 ± 0.22 is obtained by fitting the
ratios of the charged K/π spectra in the forward region to that in the central
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rapidity region according to PYTHIA Perugia-0 and PHOJET simulations in
pp collisions at

√
s = 2.76 TeV.

2. Use the extrapolated K/π spectra in the forward region to scale the muons
generated with the flat K/π distributions after cutting off the distance be-
tween their production point and the collision interaction point (130 cm). An
example is shown in Fig. 8.29. The method for the scaling is described in
Sec. 8.5.3.2 and Sec. 8.5.3.3, but instead of the one dimension weight in pt

implemented in Pb–Pb collisions, here we apply the scaling in both pt and η
to describe the acceptance effect of the muon spectrometer 7.

3. Finally, by adding muons from kaon and pion decays together, the decay muon
spectrum in pp collisions in the forward region is obtained.

Fig. 8.35 shows the spectra of decay muons obtained according to the above steps,
all the results are normalized to the cross section according to data. The spectra
of muons from pion and kaon decays are shown in the red and blue histograms,
respectively. The spectrum of muons from kaon decays is labeled as "µ ← 2K0"
in this figure, this is due to the fact that we used the spectrum of K0

s to estimate
the charged kaon spectra in data as mentioned in Sec. 8.5.2. The yield of the
charged kaons in data is given by the yield of K0

s with a factor of 2 as described in
Eq. (8.20). By adding the spectra of muons from pion and kaon decays together,
the spectrum of decay muons is obtained, as shown with the black histogram. The
systematic errors on all these spectra, shown by the boxes, are propagated from the
systematic uncertainties on the input data. For the comparison, the spectrum of
decay muons from the two Monte-Carlo simulations, used in Sec. 8.4.2 to get the
results of production cross section of muons from heavy flavour decays in Fig. 8.23,
is also displayed in this figure. The systematic uncertainties affecting the decay
muon spectrum from the Monte-Carlo models come from the model differences and
the transport code as illustrated in Sec. 8.5.2. Since the spectrum of decay muons
obtained here is at the generation level (we do not implement the reconstruction
as mentioned), to compare the results from Monte-Carlo simulations with it, the
spectrum of decay muons from Monte-Carlo models are also gotten at the generation
level. Indeed, we can see that, the spectrum of decay muons obtained from these
two independent methods agree each other quite well, within errors.

8.6 Efficiency and Uncertainty

After the background estimate in Pb–Pb collisions, it is time to present the
background subtraction and show the final corrected results. Differently from pp
collisions, according to this fast simulation strategy in Sec. 8.5.3.2, the background

7As we already mentioned, in Eq. (7.62), the effect of η just plays a role as a scaling factor of
the pt spectra. Our final aim is to calculated the RAA in which this scaling factor cancels out.
However, to estimate the muon pt spectrum in pp collision this η scaling factor is very important,
especially for normalizing the spectrum of decay muons to the data.
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spectra of muons from pion and kaon decays in Pb–Pb collisions shown in Fig. 8.31
are corrected automatically, since there is no detection effect in the procedure used
to produce the decay muons. In this case, the output from Eq. (8.19) is the second
term shown in the right side of Eq. (8.16),

1

εAA
× dNbkg

AA /dpt =
1

N ev
AA(pp)

dN
µ←K/π
AA(pp)

dpt
|−4<η<−2.5. (8.38)

Inserting the relation Eq. (8.38) back into Eq. (8.16) we can get,

1

εAA
× dNµ←HF

AA /dpt =
1

εAA
× dN incl µ

AA /dpt −
1

N ev
AA

dN
µ←K/π
AA

dpt
|−4<η<−2.5. (8.39)

Eq. (8.39) means that, in Pb–Pb collisions we should present the efficiency correction
of the inclusive muon spectra before the background subtraction. Then the back-
ground subtraction and signal efficiency correction procedure described in Eq. (8.16),
which have already implemented in the analysis of pp collisions at

√
s = 7 TeV,

cannot be used here. To get the corrected signal spectra in Pb–Pb collisions, the
background should be subtracted from the efficiency corrected spectra of inclusive
muons. For getting the final results, firstly, we discuss the efficinecy correction of
inclusive muons in Pb–Pb collisions.

8.6.1 Efficiency Correction

In principle, in a given centrality class in Pb–Pb collisions, the factors which
affect the correction efficiency of muon tracks are the same as those in pp collisions,
as listed in the begining of Sec. 7.4. But due to the evolution of the event multiplicity
with the collision centrality in Pb–Pb collisions, the occupancy of the tracking and
trigger chambers of the muon spectrometer changes with the collision centrality. The
change of the occupancy affects the reconstruction efficiency of muon tracks. This
is indicated in Fig. 8.9, where we see that, the fraction of fake tracks reconstructed
in the muon spectrometer increases as the event centrality increases, and this is
attributed to the decrease of the reconstruction efficiency due to the increase of
the event multiplicity and detector occupancy when the collisions become more and
more central. In this case, differently from that in pp collisions, in Pb–Pb collisions,
the correction efficiency is not fixed but evolves with the collision centrality.

Anyhow, as mentioned above, the factors which affect the correction efficiency
in Pb–Pb collisions are the same as those in pp collisions. According to this, one
direct way to estimate the correction efficiency in different centrality regions in Pb–
Pb collisions is to simulate several event samples, and each of them with the input
multiplicity corresponding to that in a given centrality region, then the correction
efficiency can be obtained by comparing the reconstructed sample with its corre-
sponding input in each centrality region. But the main problem to implement this
procedure is that, in principle, the input multiplicity in data in unknown, before the
efficiency correction.
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On the other hand, according to the performance studies even with the twice in-
put multiplicity predicted by Hijing in central Pb–Pb collisions at

√
sNN = 5.5 TeV,

the occupancy of the tracking chambers of muon spectrometer is still not very large
and is about 3.5% [221]. In this case, one does not expect strong changes in the ef-
ficiency correction of muon tracks, from pp collisions to central of Pb–Pb collisions.
Under this expectation, we estimate the efficiency correction in two steps:

• the efficiency correction in pp collisions which is also equivalent to that in
peripheral Pb–Pb collisions;

• the evolution of the correction efficiency with the collision centrality in Pb–Pb
collisions.

Now we start the efficiency estimate with the efficiency correction of inclusive
muons in pp collisions. Here, due to the low occupancy, the correction efficiency,
for sure, is insensitive with the particle multiplicity, and the main factor which
affects the efficiency correction is the misalignment effect of the detector chambers
which depends on the shape of the particle pt distributions. But as mentioned in
Sec. 8.5.3, the used statistics in LHC10h data sample, allows to investigate the region
pt < 10 GeV/c, as shown in Fig. 8.17. In this pt region, the misalignment effect is
not very large (∼ 1% × pt with pt in unit of GeV/c). Furthermore, as discussed in
Sec. 8.5.3.1, Eq. (8.36) which is used to estimate the RAA of decay muons in the
forward region can be applied only in pt > 4 GeV/c, and the final results will be also
presented in this pt region. So, for the efficiency correction, we only need to focus on
this pt region, too. As proved in Sec. 7.4.3, the corrected results are insensitive with
the input shapes used to build the correction matrices in pt > 2 GeV/c. In other
words, in our interesting pt region 4 < pt < 10 GeV/c, if we ignore the misalignment
effect for a moment, the efficiency matrix built with one given input pt shape can be
used to correct different kinds of particles with different pt shapes in pp collisions.
In this case, we build the correction matrix for the inclusive muons with muons from
beauty decay from the HvQMNR predictions as the input for pp collisions.

centrality (%) 0− 10 10− 20 20− 40 40− 60 40− 80 60− 80

efficiency ratio 0.966 0.977 0.984 0.99 0.998 1

Table 8.7: The ratios between the efficiency correction of single muons in different
centrality regions and the one in 60 − 80%. The results are gotten by embedding
the J/Ψ signal in LHC10h data [331].

In the second part of the correction efficiency, the dependence of the collision
centrality in Pb–Pb collisions, is estimated by means of the so called embedding
technique. The general idea of the embedding is:

1. simulate a sample of events with a given number of signal in each of them;

2. let these signals cross the detectors in the transport code;
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3. then merge the simulated hits in the detectors, produced by the input signal,
with the detected hits in data event by event to build the so-called embedding
event;

4. after the reconstruction of the embedding events as the real data, the re-
construction efficiency for the embedded signal is obtained according to the
Monte-Carlo information of the reconstructed input signal in the simulation.

The advantage to use the embedding is that, by merging the simulated hits with
those from the real data, the problem of estimating the input multiplicity in data is
overcame. Tab. 8.7 shows the ratios between the correction efficiency of single muons
in different centrality regions and the one in 60− 80%, in which the multiplicity is
very close to that in pp collisions. The results are gotten by embedding the J/Ψ

signal in LHC10h data. As expected, due to the quite low occupancy of the muon
spectrometer in central Pb–Pb collisions (∼ 5%), the efficiency from peripheral to
central collisions decreases by less than < 5%.

After all, the correction efficiency of the inclusive muons in Pb–Pb collisions is
obtained by modifying the efficiency matrix, which is gotten in pp collisions with
the input of muons from beauty decays from the HvQMNR predictions, with the
ratios in Tab. 8.7 gotten from the embedding of J/Ψ signals in LHC10h data.

8.6.2 Systematic Uncertainty on the Final Results

Finally, by using Eq. (8.39) and Eq. (8.12), the RAA of muons from open heavy
flavour decays can be expressed as (in the following the default acceptance is −4 <

η < −2.5):

Rµ←HF
AA =

1

< TAA >
· 1

N ev
AA

· dNµ←HF
AA /dpt

dσµ←HF
pp /dpt

=
1

< TAA >
· 1

N ev
AA

· 1

εAA
× dN incl µ

AA /dpt − dNbkg
AA /dpt

dσµ←HF
pp /dpt

=
1

< TAA >
· 1

N ev
AA

· 1

εAA
× dN incl µ

AA /dpt

dσµ←HF
pp /dpt

− 1

< TAA >
· 1

N ev
AA

· dN
µ←K/π
AA /dpt

dσµ←HF
pp /dpt

,

(8.40)

where 1/N ev
AA · 1/εAA · dN incl µ

AA /dpt is the corrected pt spectrum of inclusive muons
measured in a given centrality region in Pb–Pb collisions at

√
sNN = 2.76 TeV,

dσµ←HF
pp /dpt is the measured production cross section of muons from open heavy

flavour decays in pp collisions at
√
s = 2.76 TeV, 1/N ev

AA · dN
µ←K/π
AA /dpt is the

background distribution given by Eq. (8.23). To explain the systematic uncertainty
estimation, we define:

termA =
1

< TAA >
× 1

N ev
AA

× 1

εAA
× dN incl µ

AA /dpt

dσµ←HF
pp /dpt

,

termB =
1

< TAA >
× 1

N ev
AA

× dN
µ←K/π
AA /dpt

dσµ←HF
pp /dpt

,

(8.41)
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and Eq. (8.40) becomes,

Rµ←HF
AA = termA− termB. (8.42)

Now we describe the uncertainty sources in termA and termB one by one.
The systematic uncertainty on termA includes:

• systematic uncertainty on < TAA > and σinel
NN used to normalize dσµ←HF

pp /dpt.
These two sources are independent with pt. We put them together and call it
as the systematic uncertainty on normalization, σNorm;

• systematic uncertainties on 1/N ev
AA · dN

incl µ
AA /dpt, they are:

– misalignment, 1%× pt (pt in GeV/c),

– detector response, 3.5%,

– 1% from the efficiency estimation via embedding;

• systematic uncertainty on dσµ←HF
pp /dpt, see Sec. 8.4.2.

To understand the sources of systematic uncertainty on termB, firstly, we put
Eq. (8.23) in:

termB = ny ×DAA(pt) ·Rµ←πAA (pt, ny = 1) · 1

N ev
pp

· dN
µ←K/π
pp /dpt

dσµ←HF
pp /dpt

· < Ncoll >

< TAA >

= ny ×DAA(pt) ·Rµ←πAA (pt, ny = 1)×
1/N ev

pp · dNµ←K/π
pp /dpt × σinel

NN

dσµ←HF
pp /dpt

= ny ×DAA(pt) ·Rµ←πAA (pt, ny = 1) · dσ
µ←K/π
pp /dpt

dσµ←HF
pp /dpt

.

(8.43)

In Eq. (8.43), we use the definition:

< TAA >≡ < Ncoll >

σinel
NN

. (8.44)

Now we discuss the systematic uncertainty on each term in Eq. (8.43) one by one.

DAA, its systematic uncertainty comes from the differences between its mean value
and the values in the central and peripheral collisions, as shown in Fig. 8.33.

Rµ←πAA (pt, ny = 1), its systematic uncertainty includes,

• systematic uncertainty on the input data from the central barrel, as
shown in Fig. 8.24 and Fig. 8.25;

• systematic uncertainty on the rapidity extrapolation, the one on the fac-
tor σy in Eq. (7.62) and Eq. (8.18), but this uncertainty is cancelled in
the ratio;
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• in this case the systematic uncertainty on Rµ←πAA (pt, ny = 1) only includes
the one from the input K/π spectra from the central barrel.

dσ
µ←K/π
pp /dpt, the systematic uncertainty includes:

• systematic uncertainty on the input data from the central barrel;

• systematic uncertainty on σy for the rapidity extrapolation;

• 15% on the absorber effect estimate in Eq. (8.21) 8.

Of course, in termB the systematic uncertainty on dσµ←HF
pp /dpt is also included.

Note that, Eq. (8.43) does not include <AA> and the uncertainty on σinel
NN is

canceled in the ratio:
dσ

µ←K/π
pp /dpt

dσµ←HF
pp /dpt

. (8.45)

In this case, termB is independent with the systematic uncertainty on normalization
σNorm. To treate σNorm in an universal way, we recalculate it as:

σR
Norm =

σNorm

termA− termB|ny=1
. (8.46)

We use ny = 1 to calculate the central values of the results and the integrated
values (in 4 < pt < 10 GeV/c) are used to calculate the ratios in termA and termB

in Eq. (8.46), respectively.
Also, one can see that the term dσµ←HF

pp /dpt is present in both termA and
termB. If we propogate the errors on termA and termB independently, the error
on dσµ←HF

pp /dpt will be double counted. To avoid this and also for including the
uncertainty on the factor ny, the following strategy is used.

In both differential and integrated Rµ←HF
AA we use ny = 1 to calculate the central

values, Rµ←HF
AA (ny = 1).

In the integrated Rµ←HF
AA , the systematic uncertainty on dσµ←HF

pp /dpt is sep-
arated from other uncertainty sources and combined with σR

Norm (defined in
Eq. (8.46)) together and called the "correlated uncertainty". The remaining part of
the uncertainty called the "uncorrelated uncertainty" is estimated via the following
steps:

1. get the maximum and minimum values of Rµ←HF
AA , the Rmax and Rmin accord-

ing to the range of ny;

2. calculate the value of Rµ←HF
AA (ny = 1) and the corresponding uncertainties

σC
upper and σC

lower according to all uncorrelated uncertainty sources defined
above, the systematic uncertainty on dσµ←HF

pp /dpt was separated from other
so there is no double counting in the calculation of σC

upper and σC
lower;

8This systematic uncertainty is estimated by varying the cut value in Eq. (8.21) from 110 cm
to 150 cm, and it changes the yields of both muons from kaon and pion decays in ∼ 15%. But the
value of Rµ←πAA (pt, ny = 1) does not change while varying the value of this cut.
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3. the upper and lower error bars on ny estimate are,

σQ
upper =Rmax −Rµ←HF

AA (ny = 1)

σQ
lower =Rµ←HF

AA (ny = 1)−Rmin;
(8.47)

4. the total uncertainties with respect to the central values are given by the
Central Limit Theorem,

σupper =

√
(σC

upper)
2 + (σQ

upper)2

σlower =

√
(σC

lower)
2 + (σQ

lower)
2.

(8.48)

For the differential Rµ←HF
AA (pt), the uncertainty on dσµ←HF

pp /dpt is propagated
with σC

upper and σC
lower together (also called σC

upper and σC
lower). For the error propa-

gation, we just use the uncertainty on dσµ←HF
pp /dpt once, such that there is also no

double counting. Then, using Eq. (8.48) we get the pt dependent σupper and σlower.
Finally, we put the re-calculated systematic uncertainty on normalization defined in
Eq. (8.46) independently, as a fraction of percentage with respect to the integrated
Rµ←HF

AA (ny = 1).

8.7 Results

After all these steps, now it is time to show our final results. We start with a
short discussion about the inclusive muon RCP then, we focus on the results of RAA

of muons from heavy flavour decays in the forward rapidity region.

8.7.1 RCP of Inclusive Muons

With the last input of the correction efficiency, we are ready to get the RAA

of muons from open heavy flavour decays. Do not be too excited, cowboys, please
come down! As usual, before to present the final results, it is worth to make a short
discussion.

The RAA is the ratio between the spectra in Pb–Pb collisions and that in pp
collision scaled by the number of binary collisions. If there is no nuclear effect,
the value of RAA should be unity. The deviation between the measured values
of RAA and unity reflects the nuclear effects. In this case, RAA is a very powerful
observable to study the properties of the QCD medium formed in heavy ion collisions
by researching how they affect the particles passing through it. We can imagine that,
when the collision centrality becomes more and more peripheral, nuclear effects will
become and more weak to approach the limiting case: pp collisions where there is
no nuclear effect. In these conditions, the nuclear effects can also be reflected by the
ratio between the spectra in central collisions and that in a peripheral centrality bin
after the normalization with the number of binary collisions in both of them. This
ratio is the so called central-to-peripheral ratio (RCP) and can be calculated as:

RCP =
1/TAA × dN/dpt|central

1/TAA × dN/dpt|peripheral
. (8.49)
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Figure 8.36: RCP of inclusive muons as a function of pt in different centrality regions
in Pb–Pb collisions at

√
sNN = 2.76 TeV. The reference is provided by the centrality

region 40− 80%. The results are gotten from LHC10h pass 2 data.

Figure 8.37: RCP of inclusive muons as a function of the centrality percentage in
pt > 5 GeV/c (left) and pt > 6 GeV/c (right) in Pb–Pb collisions at

√
sNN =

2.76 TeV. The reference is the centrality region 60 − 80%. The results are gotten
from LHC10h pass 2 data.

The advantage of RCP is that, the bias on the detector response and that on the
TAA estimate is partly canceled in this ratio.

The pt-differential RCP of inclusive muons after the standard muon selection
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cuts in pt > 4 GeV/c and three different centrality bins is shown in Fig. 8.36.
Due to the statistics limitation, here the peripheral reference bin is chosen as the
centrality class 40 − 80%. The grey boxes present the systematic uncertainties on
the inclusive muon pt spectra: 1% × pt on misalignment and 3.5% on detector
response. The strong suppression of RCP in the most central collisions (0 − 10%)
indicates strong quenching effects. The clear increase of the values of the RCP with
the centrality percentage indicates that the quenching effects are reduced when the
collisions become more and more peripheral.

Alternatively, to investigate the evolution of the values of RCP with the collision
centrality more clearly, we present the integrated RCP as a function of the centrality
percentage in pt > 5 GeV/c and pt > 6 GeV/c in the left and right plots of Fig. 8.37,
repectively. Since we integrated the pt spectra, the statistics is sufficient to choose
the peripheral reference bin as 60−80%. Differently from Fig. 8.36, here the system-
atic uncertainties on the muon pt spectra are shown as the red boxes and the grey
boxes are used to show the systematic uncertainty on TAA listed in Tab. 8.1. The
integrated RCP decreases with the centrality percentage and the same conclusion as
that of Fig. 8.36 can be made. But, due to the higher pt cuts than that in Fig. 8.36,
the values better reflect the evolution of the suppression for muons from open heavy
flavour decays with the collision centrality.

8.7.2 RAA of Muons from Heavy Flavour Decays

The results of RAA as a function of pt for muons from open heavy flavour de-
cays in centrality classes 0 − 10% and 40 − 80% measured in the ALICE muon
spectrometer in Pb–Pb collisions at

√
sNN = 2.76 TeV are shown in the left and

right plots of Fig. 8.38, respectively. The central values (full symbols) and the pt

dependent asymmetric systematic errors (empty boxes) are gotten according to the
above strategy. The vertical error bars are the statistical uncertainty. The relative
systematic uncertainty on the normalization is shown as the grep boxes (plotted at
RAA = 1) in these two given centrality regions. To validate Eq. (8.17) for estimating
the nuclear effects of decay muons in the forward region, the results are only shown
in pt > 4 GeV/c. In this figure, a larger suppression is observed in central collisions
than in peripheral collisions, with no significant pt dependence within uncertainties.

Fig. 8.39 shows the centrality dependence of the RAA for the muons from open
heavy flavour decays in the acceptance of muon spectrometer in 6 < pt < 10 GeV/c.
The analysis is carried out in five centrality classes from 0 − 10% to 60 − 80%

listed in the first five rows in Tab. 8.1. The results are depicted as a function
of < Npart >. As in Fig. 8.38, the central values of the results are gotten with
n = 1. The suppression of forward heavy flavour decay muons exhibits a strong
increase with increasing centrality, reaching a factor of about 3− 4 in the 10% most
central collisions. This indicates a strong quenching effect of heavy quarks in the
QCD medium in the forward rapidity region. In both Fig. 8.38 and Fig. 8.39 the
systematic uncertainties are shown as discussed in Sec. 8.6.2.

A paper related to the work presented in this chapter has been published in
Physical Review Letters and it is in Appendix B.
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8.7.3 Discussions

Figure 8.40: Left: RAA of muons from heavy flavour decays as a function of pt for
the centrality 0 − 10%, which is extracted from left plot of Fig. 8.38. Right: RAA

of D-mesons as a function of pt for the centrality in 0 − 7% measured in ALICE
central barrel (|η| < 0.5) [333]. Both results are obtained in Pb–Pb collisions at√
sNN = 2.76 TeV and compared with the model predictions, see the text for more

details.

Figure 8.41: Left: RAA of muon from heavy flavour decays as a function of centrality
gotten from Fig. 8.39. Right: RAA of D-mesons as a function of centrality measured
in ALICE central barrel (|η| < 0.5) [333]. Both results are shown in pt > 6 GeV/c.

To extract more information from these final results, we compared them with
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the measured results from ALICE central barrel.

Figure 8.42: RAA of muon from heavy flavour decays as a function of centrality
gotten from Fig. 8.39 and that of heavy flavour electrons measured in |η| < 0.6.

Fig. 8.40 shows the RAA as a function of pt of muons from heavy flavour decays
measured in the acceptance of the ALICE muon spectrometer and that of D-mesons
measured in ALICE central barrel (|η| < 0.5) [333]. Both results are obtained in
in Pb–Pb collisions at

√
sNN = 2.76 TeV. Also, different model predictions: "Vitev

rad.+dissoc." [334], "BAMPS" [335] and "BDMPS-ASW rad." [222], are compared
with both results from heavy flavour muons at forward rapidity and D-mesons at
central rapidity. The models implementing radiative energy loss ("BDMPS-ASW")
and radiation plus dissociation mechanisms ("Vitev") can describe both muon and
D meson data. Within errors, we can find that, the suppresion of heavy flavours
at muon level at forward rapidity and that at hadron level at mid-rapidity are con-
sistent. In addition, the predictions from EPS09 [55] shows in Fig. 8.40 indicate
that the shadowing effect on heavy flavour production in the forward region is ex-
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pected to be small. In Fig. 8.41, we campare the RAA as a function of centrality of
muons from heavy flavour decays and that of D-mesons. Both results are shown in
pt > 6 GeV/c. Even if the associated pt of heavy quarks in these two measurements
are not the same, within errors we find again a nice agreement between these two
results.

Finally, we make the comparison between the results from forward rapidity and
those from central rapidity more directly, as shown in Fig. 8.42. This figure shows
the RAA of muons from heavy flavour decays as a function of centrality, gotten from
Fig. 8.39, and that of heavy flavour electrons measured in |η| < 0.6. The RAA is
shown in both cases at lepton level. We can clearly find that, these two results are
in agreement within errors.

After all of these comparisons, we can conclude that, a strong suppression of
high pt muons from heavy flavour decays is observed at forward rapidity, in the
most central collisions. The measured suppression is insensitive with pt in 4 < pt <

10 GeV/c. It is compatible with that of electrons from heavy flavour decays and
D-mesons at central rapidity.
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Chapter 9

Elliptic Flow of Muons in Pb–Pb
Collisions at √sNN = 2.76 TeV

The study of the RAA of muons from open heavy flavour decays is described in
the previous chapter. But before we go through this chapter, let us go back to the
beginning of Chap. 8, where the time schedule for the analysis of Rµ←HF

AA is listed.
This schedule shows that there was no activity during the summer of 2011. At that
time, I was not in summer vacation but did some analyses for the elliptic flow of
inclusive muons in Pb–Pb collisions with the ALICE muon spectrometer. This is
what we are going to report about in this chapter. The physics motivations of the
flow measurement are described in Sec. 1.4.3.1 and Sec. 2.2.3.4. Our aim here is:

• validate the flow analysis methods for muons at forward region;

• study the background subtraction strategy in the flow analysis in order to
obtain the flow of muons from open heavy flavour decays.

The data sample used here is the same as that used for Rµ←HF
AA study: LHC10h pass

2 data which correspond to Pb–Pb collisions at
√
sNN = 2.76 TeV.

The basic issues of the LHC10h pass 2 data (like physics and centrality selections,
and muon QA) were discussed in Chap. 8. Here we focus on the elliptic flow analysis
of inclusive muons. In the following a short overview of the principles for general
flow analysis methods will be discussed first. Then we implement these methods
for data analysis after taking into account our experimental constraints. Finally,
the strategy for the extraction of the elliptic flow of muons from open heavy flavour
decays as well as the outlook of this work will be presented.

9.1 Flow Analysis Methods

The collective flow observables have been measured with data since 1980’s. Since
then, different flow analysis methods have been developed. Flow analysis methods
available in the early days can be classified into two different categories:

• fit the pt or rapidity distributions of the particles of interest by assuming a
local thermal equilibrium and a hydrodynamical evolution of the considered
system. By doing so, information about the initial conditions, the EOS, the
dynamics of the system expansion and the freeze-out temperature etc. can
be extracted (eg. Ref. [327]). This approach, of course, strongly depends on
model assumptions;



• the alternative way is based on the study of the azimuthal event shapes from
experimental data without any model. Some commonly used methods in this
category are directivity tensor [336], three dimensional [337] and two dimen-
sional [338] sphericity analyses.

Nowadays, more flow analysis methods from the second category are available.
These can be sorted out into two classes i) calculate the collective flow from defini-
tions and ii) extract the flow signal in data according to the correlation behavior of
the flow. Before implementing these methods in data analysis, in the following we
will give a short general introduction on their principle.

9.1.1 Event Plane Method

In the Event Plane (EP) method [339], the collective flow is calculated directly
from the data following the definitions in Eq. (1.15) and Eq. (1.16). Some typical
issues in flow analysis can be illustrated with this method. So in this introduction,
we do not follow the history of the developments for flow analyses, but we start with
the event plane method.

9.1.1.1 Event Plane

First, let us go back to Eq. (1.15), and do its Fourier expansion in an alternative
way. Generally, the particle invariant spectrum can be written as:

E
d3N

dp3
=

d3N

ptdptdydφ
=

d2N

ptdptdy
· r(pt, y, φ), (9.1)

where the function r(pt, y, φ) should satisfy the normalization condition,∫ 2π

0
dφ · r(pt, y, φ) = 1. (9.2)

The Fourier expansion for r(pt, y, φ) is:

r(pt, y, φ) =
1

2π
[1 + 2 ·

∞∑
n=1

(QX(pt, y, n) cosnφ+QY (pt, y, n) sinnφ)], (9.3)

where,

QX(pt, y, n) =

∫ 2π

0
dφ · r(pt, y, φ) cosnφ,

QY (pt, y, n) =

∫ 2π

0
dφ · r(pt, y, φ) sinnφ.

(9.4)

In each phase space of pt, y and n, one can define the Q-Vector:

~Q(pt, y, n) = {QX(pt, y, n), QY (pt, y, n)} = {Vn(pt, y), nΨn}, (9.5)
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with

QX(pt, y, n) = Vn(pt, y) cosnΨn,

QY (pt, y, n) = Vn(pt, y) sinnΨn.
(9.6)

Then, Eq. (9.3) becomes:

r(pt, y, φ) =
1

2π
[1 +

∞∑
n=1

2Vn(pt, y) cosn(φ−Ψn)]. (9.7)

Finally, putting Eq. (9.7) back into Eq. (9.1), one can get:

E
d3N

dp3
=

d2N

2πptdptdy
· [1 + 2Vn(pt, y) cosn(φ−Ψn)]. (9.8)

By comparing Eq. (9.8) and Eq. (1.15), one can see that Ψn here plays the same role
as the reaction plane ΨR in Eq. (1.15), and it called the n-th order Event Plane.
In order to determine the event plane Ψn in a given event, the following steps have
to be considered:

1. since the number of particles in each event is finite, Eq. (9.4) becomes:

QX(pt, y, n) =
M∑
j

r(pt, y, φj) cosnφj ,

QY (pt, y, n) =

M∑
j

r(pt, y, φj) sinnφj ,

(9.9)

where M is the number of particles used to calculate the Q-vector;

2. according to Eq. (9.6), the n-th order event plane is:

Ψn =
1

n
· arctan

∑M
j=1 r(pt, y, φj) sinnφj∑M
j=1 r(pt, y, φj) cosnφj

. (9.10)

Similarly to Eq. (1.16), with the calculated event plane for each event according to
Eq. (9.10), the collective flow becomes

vn =< cosn(φ−Ψn) >, (9.11)

and it is averaged over both particles and events.
Eq. (9.10) and Eq. (9.11) contain basic principle of the event plane method. Now

we are going to discuss some issues related to these two formulae which are also of
general interest for all other flow analysis methods.
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9.1.1.2 Particles of Interest and Reference Particles

By comparing Eq. (9.8) and Eq. (1.15), one can observe that not only the event
plane plays the same role as reaction plane, but also Vn, which can be calculated as

Vn(pt, y) =
√
Q2
X(pt, y, n) +Q2

Y (pt, y, n). (9.12)

According to Eq. (9.6), Vn(pt, y) plays the same role as the n-th order collective
flow parameter vn. The latter is the signal that one wants to extract from data. So,
what is the difference between Vn in Eq. (9.8) and vn in Eq. (9.11) or Eq. (1.16)?

In Sec. 1.4.3.1 we emphasized that, the invariant distribution from Eq. (1.15) is
related to the Particles of Interest (POI) which is the signal. On the other hand,
the invariant distribution in Eq. (9.1) concerns the particles used to determine the
event plane via Eq. (9.10). Due to the fact that the reaction plane is determined
by the collision geometry in the early stage, the measured event plane should be
insensitive to the particle sample which is used for its measurement. However, if
the event plane is measured using the POI, then the correlations between the POI
and the event plane will bias the results for the collective flow. Normally, to avoid
this auto-correlation effect, the POI are excluded from the sample of particles which
are used to determine the event plane. These particles are called as Reference
Particles (RP).

The POI and RP are two very important concepts in flow analyses. They have to
be separated from each other at the beginning in almost all flow analysis methods.
The general principle for separating the POI and RP is to consider different particle
species and/or kinematical regions. For example, if one wants to measure the flow
of charged kaons, the POI will be K±. One can then choose other particle species
for the RP, like charged pions, to determine the event plane. If the POI is all
charged particles measured in the central rapidity region, the RP can be chosen
as the measured particles at forward rapidities. In these cases, one removes the
correlation between the POI and the measured event plane.

Since the event plane is independent on pt and rapidity, the calculation of the
Q-vector in Eq. (9.9) should not be done in each pt and rapidity regions, and Vn in
Eq. (9.12) is generally independent on pt and rapidity. Vn is the flow of RP and is
called Reference Flow. It gives the reference direction for calculating the flow of
POI 1. Due to the fact that Vn is independent on pt and rapidity, in some of the
flow analysis methods, it is also named Integrated Flow and the flow of POI is
named Differential Flow.

9.1.1.3 Discussion

For a given event the orientation of the reaction plane ΨR is fixed, and should
therefore not change with different analysis conditions. A precise value of ΨR is
difficult to extract from data. On the other hand, the n-th order event plane Ψn,
which can be measured via final state observables according to Eq. (9.10), plays the

1Indeed, in the phase space of Q-vector, this reference direction is the position of event plane.
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role of the reaction plane for the n-th order harmonic in the Fourier expansion. This
does not mean that the value of ΨR and that of Ψn should be the same. Using Ψn

instead of ΨR can be done only if they satisfy the condition:

cosn(φ−ΨR) = cosn(φ−Ψn)

⇒n(φ−Ψn) + 2kπ = n(φ−ΨR)

⇒Ψn = ΨR + 2
k

n
π,

(9.13)

where both n and k are positive integers. This means that in a given event, the
choice of the n-th order event plane is not unique.

Determination of vn via Lower Order Harmonic The n-th order collective
flow can also be calculated with the m-th order event plane if,

n = l ·m, (9.14)

with positive integers l, m and n via:

vn =< cosn(φ−ΨR) >

=< cos lm(φ−Ψm + 2
k

m
π) >

=< cos[lm(φ−Ψm) + kl · 2π] >

=< cos lm(φ−Ψm) > .

(9.15)

This is general to most of the flow analysis methods. The n-th order differential
flow can be calculated with the m-th order of Q-vector or the integrated flow if m
and n satisfy the relation Eq. (9.14). However, in most of the flow analysis methods,
the uncertainty on the final results increases with the factor l in Eq. (9.14) 2. To
minimize the uncertainty, usually l = 1 is used (both the differential flow and the
integrated flow have the order of harmonic). The advantage to use the m-th order
harmonic to determine the n-th order of flow is that in most of the flow analysis
methods, the uncertainty σ and the used statistics M follow 3,

σα ∝ 1

M
, (9.16)

2With the event plane method, the factor l mainly affects the event plane resolution.
3The estimate of the systematic uncertainty for different flow analysis methods is very compli-

cated and we will not go through the details. The general sources of uncertainties are:

• fluctuations caused by the finite statistics;

• non-flow correlations like jets, resonance decays etc.;

• non-uniform acceptance correlations.

Some of them can be partly removed by implementing cuts in the analysis, like: choose particles
with pt less than a given value helps to remove correlations from mini-jets; set a rapidity gap is
used to reject correlations from resonance decays. In parallel, correlations due to the non-uniform
acceptance can be treated by efficiency corrections.
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where α is a positive real number because of the finite number of used particles M
per event. Also, the magnitude of flow normally decreases with the harmonic order
n, then the relative uncertainty σ/vn will increase when the harmonic order becomes
higher. If the harmonic of the differential flow n is high, and the multiplicity M
of RP is not sufficient, then, the lower order harmonic m to determine the n-order
flow can be used to decrease the total uncertainty on the final results.

Particle Weights An alternative way, also commonly used in most of the flow
analysis methods to reduce the uncertainty on the flow signal, is to apply particule
weights. According to its definition, the factor r in Eq. (9.9) should satisfy the
normalization condition Eq. (9.2). However, one can find that, even if the factor
r is not normalized, it cancels out in the ratio of Eq. (9.10) and this has no effect
on the event plane determination. Indeed, the Q-vector is a general observable in
different flow analysis methods as it includes the information of both the integrated
flow and the orientation of the event plane. Then, according to Eq. (9.6), both
QX and QY are proportional to Vn. In most of the flow analysis methods, the
Q-vector is calculated by using as weight variables which are proportional to Vn
in order enhance its magnitude. For instance, in the low pt region, since v2 ∝ pt,
pt can be used as a particle weight to calculate the elliptic flow and rj = pt(φj).
In low-energy collisions, v1 ∝ η. In this case, rj = η(φj) is used to calculate the
directed flow. After the weighting, the Q-vector can always be normalized according
to the used weights (in the case of the event plane method, as already mentioned,
the normalization factor resulting from the particle weights naturally cancel out in
the ratio of Eq. (9.10)). Also, particle weights are not applied to RP to calculate
the Q-vector but they also can be used for POI. In the event plane method, with
the POI weights wj , Eq. (9.11) becomes:

vn =

∑
j wj cosn(φj −Ψn)∑

j wj
. (9.17)

Event Plane Resolution All above discussions are valid in the context of ideal
experimental conditions: fluctuations due to finite number of particles, non-flow
correlations and effects related to Non-Uniform Acceptance (NUA) were not
taken into account. In data, the above effects will bias the final results. Therefore,
with the event plane method, the event plane determination and Eq. (9.13) are not
validate anymore. It becomes:

Ψn = ∆Ψ + ΨR + 2
k

n
π, (9.18)

where ∆Ψ is the difference between the measured event plane orientation and the
real one. It also results a difference between the measured flow,

vmeas
n =< cosn(φ−Ψm) > (9.19)

and the real flow,
vreal
n =< cosn(φ−ΨR) > . (9.20)
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With the relation in Eq. (9.18), one can get:

vmeas
n =< cosn(φ−Ψm) >

=< cosn(φ−ΨR −∆Ψ) >

=< cosn(φ−ΨR) cosn∆Ψ− sinn(φ−ΨR) sinn∆Ψ >

=< cosn(φ−ΨR) cosn(Ψm −ΨR) >

⇒ vreal
n =

vmeas
n

< cosn(Ψm −ΨR) >
,

(9.21)

with < sinn(φ−ΨR) >= 0. < cosn(Ψm−ΨR) > is called the event plane resolution.
Eq. (9.21) shows that to get the real flow, the results using the event plane method
should be corrected by the event plane resolution. This correction always increases
the measured flow because cosn(Ψm−ΨR) < 1. The methods used to estimate the
event plane resolution will be introduced in Sec. 9.3.1.3.

9.1.2 Fit-Q and Scalar Product

The event plane method offers a direct way to calculate the flow according to
the definition, but its drawbacks are:

• final results are biased by the event-by-event fluctuations, and have to be
corrected by the event plane resolution;

• non-flow correlations are difficult to remove;

• further corrections should be implemented to deal with non-uniform accep-
tance (NUA) correlations.

The Fit-Q (FQ) and Scalar Product (SP) methods are developed to overcome
part of the first two drawbacks of the event plane method. In the following, we will
make a short description of these two methods. The correction for the NUA will be
introduced in Sec. 9.3.1.1.

9.1.2.1 Fit-Q

The starting point of Fit-Q method is to consider a simple case assuming no
flow, Vn = 0. In this case:

1. according to Eq. (9.6), QX(n) = QY (n) = 0;

2. however, due to event-by-event fluctuations the values of QX(n) and QY (n)

are not zero;

3. the distributions of QX(n) and QY (n) can then be treated as independent
Gaussians with the same width σ according to the Central Limit Theorem;
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4. the 2 dimension distribution of Q-vector can then be written as:

d2P

d ~Qn
=

dP

dQX(n)
· dP

dQY (n)

=
1

2πσ2
exp[−1

2
(
QX(n)

σ
)2] · exp[−1

2
(
QY (n)

σ
)2]

=
1

2πσ2
exp[−1

2

Q2
X(n) +Q2

Y (n)

σ2
] =

1

2πσ2
exp[−1

2
(
Vn
σ

)2].

(9.22)

The last step in Eq. (9.22) shows the Vn distribution when there is no flow.
Under such condition, let us calculate the expression of σ. Firstly, we separate σX
and σY . According to the definition of Eq. (9.9) one get,

σ2
X =< (rj cosnφj− < QX(n) >)2 >=< r2

j cos2 nφj > . (9.23)

Here, < QX(n) >= 0 is used. Since the particle weights rj and azimuthal φj are
independent, Eq. (9.23) becomes:

σ2
X =

1

M

∑
j

∑
k

δj,kr
2
j cos2 nφk

=
1

M

∑
j

r2
j

∑
k

cos2 nφk

= M < r2
j >< cos2 nφj >,

(9.24)

where M is the number of particles used to calculate the Q-vector. Similarly, one
can have

σ2
Y = M < r2

j >< sin2 nφj > . (9.25)

Then, following the assumption σX = σY , one can get:

σ2 = σ2
X = σ2

Y =
1

2
(σ2
X + σ2

Y )

=
1

2
M < r2

j > (< cos2 nφj > + < sin2 nφj >)

=
1

2
M < r2

j >,

(9.26)

where the relation,

< cos2 nφj >=< sin2 nφj >

=
1

2π

∫ 2π

0
dnφ cos2 nφ =

1

2π

∫ 2π

0
dnφ sin2 nφ =

1

2

(9.27)

is used in the last step.
By adding the non-vanished flow Ṽn (here we also use Ṽn to express the real

value of the flow and use Vn to express the measured flow value), the Gaussian σ
in Eq. (9.26) will not change. It only shifts the mean value in the Vn distribution
Eq. (9.22) from zero to Ṽn. Because Vn is also the norme of Q-vector, the shift in
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the mean value of Vn indeed corresponds to the shift of the mean value of Q-vector.
We use ~Qn = {Vn, nΨn} to express the measured Q-vector and ~QR

n = {Ṽn, nΨR} to
express the real Q-vector. Then Eq. (9.22) becomes:

d2P

d ~Qn
=

d2P

VndVndnΨn

=
1

2πσ2
exp[−1

2
(
~Qn − ~QR

n

σ
)2]

=
1

2πσ2
exp[−1

2

V 2
n + Ṽ 2

n − 2VnṼn cosn(Ψn −ΨR)

σ2
]

⇒ dP

VndVn
=

∫ 2π

0
dn(Ψn −ΨR)

d2P

VndVndnΨn

=
1

σ2
exp[−V

2
n + Ṽ 2

n

2σ2
] · I0(

VnṼn
σ2

),

(9.28)

where I0(x) is the modified Bessel function. In data, the real values of the differ-
ential flow Ṽn(pt, y) can be obtained by fitting the event-by-event Vn distribution
in different pt and rapidity windows with Eq. (9.28) and using Ṽn and σ as the fit
parameters.

Since Vn is the norme of Q-vector, this method is named as Fit-Q [67]. The
advantage of the Fit-Q method, compared to the event plane method, is that it
allows to extract the flow signal according to the event-by-event fluctuations and it
avoids to apply corrections resulting from the event plane resolution. However, its
disadvantages are:

• the RP and POI are not separated. Auto-correlations between the particles
used to calculated the Q-vector in each event will bias the final results. Also,
if the statistics for the POI is small, the uncertainty from the fit will be large;

• σ in Eq. (9.26) only includes the contribution from the event-by-event fluc-
tuations. Non-flow and NUA correlations need to be further corrected in the
final results.

9.1.2.2 Scalar Product

The Scalar Product (SP) method [339] follows the idea of the event plane method.
The advantage of this method is that it automatically takes into account (part of)
both event-by-event fluctuations and non-flow correlations.

Principle The first step of the scalar product method is to separate the RP in
each event into two equivalent sub-events with the same multiplicity. There are two
general ways to build the sub-events:

• choose RP in two symmetrical η windows: [ηmin, ηmax] and [−ηmax,−ηmin]

and leave a η gap ∆η = 2 · ηmin between these two sub-events. These kinds of
sub-events are called η sub-events;
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• separate the total RP sample randomly into two sub-samples and assure the
same number of particles in each sub-sample. The resulting sub-events are
called as random sub-events.

In both η sub-events and random sub-events non-flow correlations from jets and
resonance decays are (partly) removed. With the not-normalized particle weights
rj in Eq. (9.9), the Q-vector in these two sub-events can be written as:

~Qan = {
∑
j

rj cosnφaj ,
∑
j

rj sinnφaj} = {MaV a
n , nΨa

n}

~Qbn = {
∑
j

rj cosnφbj ,
∑
j

rj sinnφbj} = {M bV b
n , nΨb

n}
(9.29)

where, a and b denote the two different sub-events,Ma andM b are the normalization
factors for ~Qan and ~Qbn, respectively. The total Q-vector is given by:

~Qn = ~Qan + ~Qbn = {MVn, nΨn}, (9.30)

where M is the normalization factor of the total Q-vector. As the two sub-events
have the same (or very similar) number of particles, we have:

Ma 'M b ' 1

2
M

V a
n ' V b

n ' Vn.
(9.31)

Then, for each POI, we define another vector ~q as:

~qn = {cosnφ, sinnφ}, (9.32)

with |~qn| = 1. The average value of the scalar product between ~Qn and ~qn over all
the POI and events gives:

< ~Qn · ~qn >=< MVn cosn(φ−Ψn) >=< MVn > vmeas
n , (9.33)

where the definition in Eq. (9.19) is used in the last step. According to Eq. (9.33), the
measured differential flow vmeas

n for POI can be obtained when the term < MVn >

is determined from data. According to Eq. (9.31), the term < MVn > could be
extracted via the same average value of the scalar product between ~Qan and ~Qbn:

< ~Qan · ~Qbn >=< MaM bV a
n V

b
n cosn(Ψa

n −Ψb
n) > . (9.34)

By considering the condition in Eq. (9.31), one can get:

< ~Qan · ~Qbn >= < MaM bV a
n V

b
n >< cosn(Ψa

n −Ψb
n) >

'1

4
< M2V 2

n >< cosn(Ψa
n −Ψb

n) > .
(9.35)

By comparing with Eq. (9.33), one can see that there is an additional term <

cosn(Ψa
n −Ψb

n) > in Eq. (9.35). Now, we are going to discuss what is the meaning
of this term:

< cosn(Ψa
n −Ψb

n) > =< cosn[(Ψa
n −ΨR)− (Ψb

n −ΨR)] >

=< cosn(Ψa
n −ΨR) >< cosn(Ψb

n −ΨR) > .
(9.36)

294



Due to the the fact that the difference between Ψa
n (Ψb

n) and ΨR are mainly at-
tributed to event-by-event fluctuations, according to Eq. (9.28), the sin terms van-
ished. If the statistics in the sub-events a and b is large, one can get:

< cosn(Ψn −ΨR) >' < cosn(Ψa
n −ΨR) >'< cosn(Ψb

n −ΨR) >

'
√
< cosn(Ψa

n −Ψb
n) >,

(9.37)

and indeed, < cosn(Ψn −ΨR) > is the event plane resolution in Eq. (9.21).
M and Vn being two independent variables, finally, by combining Eq. (9.21),

Eq. (9.33) and Eq. (9.35), the real values of the differential flow can be obtained:

vreal
n (pt, y) =

vmeas
n (pt, y)

< cosn(Ψn −ΨR) >

=
vmeas
n (pt, y)√

< cosn(Ψa
n −Ψb

n) >

=
< ~Qn · ~qn(pt, y) >

2

√
< ~Qan · ~Qbn >

.

(9.38)

Discussion In the scalar product method, the non-flow correlations are removed
by using the sub-events RP. The total event being built according to Eq. (9.30),
non-flow correlations are even removed in random sub-events, but these correlations
still exist in the total RP sample. In this case, normally, in the scalar product
method, we use the η sub-events. On the another hand, the validation of the final
results given by Eq. (9.38) depends on the validation of the conditions in Eq. (9.31),
in the η sub-events, the event-by-event fluctuations could bias Eq. (9.31). In this
case, to select the η sub-events, many cuts should be implemented for the RP to
ensure these two sub-events are equivalent.

In addition, the event plane resolution in the scalar product method is estimated
via Eq. (9.37). This formula is validated when the statistics in the RP sample
is large. The uncertainties in the scalar product method mainly come from the
deviation of Eq. (9.37).

Finally, as with the event plane method, one can also implement the particle
weights for POI, and the n-th order differential flow could be calculated with m-th
order harmonic if m and n satisfy the condition in Eq. (9.14).

9.1.3 Cumulant Methods

This method allows to extract the flow signal from its correlation behaviour.
Indeed, the flow reflects the correlation between all POI and the non-flow correla-
tions are only present between a given number of particles. The advantages of the
cumulant methods are:

• non-flow effects can be removed order-by-order based on the correlation be-
haviour;
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• event-by-event fluctuations are avoided: there is no need to reconstruct the
event plane;

• the correction of the NUA correlations is done numerically in these methods.

The cumulants method that we are going to introduce and the Lee-Yang-Zeroes
method which we will present in Sec.9.1.4 belong to this category.

But the drawbacks of these methods are:

• the correlation behaviour is always biased by the statistical uncertainty, the
uncertainty of the final results will be larger, if the statistics is not large
enough;

• the magnitude of the flow depends on pt, rapidity and collision centrality, the
correlation behaviour is also different from one region to another, in order to
avoid the bias from the mixing of different correlation behaviours, it is better
to divide the phase space in small bins but again, the statistical uncertainty
will be larger if the bin size is small.

The basic idea of the cumulants method is to reject the non-flow correlations
order-by-order. One can use first the method named Generating Function Cu-
mulants (GFC) which calculate the cumulants via the numerical interpolation,
but in some cases, the final results are unstable since they would be sensitive to
the initial conditions of the interpolation. The alternative way is to use the method
called Q-Cumulants (QC), which extracts the cumulants order-by-order according
to the measured Q-vector with data.

9.1.3.1 Generating Function Cumulants

Before everything, let us play a small game in mathematics. As illustrated in
Sec. 1.4.3.1, with sufficient statistics, we have:

< sinn(φ−ΨR) >= 0, (9.39)

and the average is done over both particles and events. Then according to Euler’s
formula, the layout of the flow definition Eq. (1.16) can be changed as:

vn =< cosn(φ−ΨR) >

=< cosn(φ−ΨR) > +i < sinn(φ−ΨR) >

=< cosn(φ−ΨR) + i sinn(φ−ΨR) >

=< ein(φ−ΨR) > .

(9.40)

In the following, most of the time we will use the definition in Eq. (9.40) to express
the flow parameter vn.
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Correlations and Cumulants Let us consider a simplest case: two particle
correlations in a given event:

< ein(φj−φk) >=< einφj >< einφk > +cn{2}. (9.41)

In Eq. (9.41), if there is no correlation between particle j and k, cn{2} = 0. If we
separate the correlations into two parts:

• flow correlations which are present in all particles;

• non-flow correlations which are present only between a given number of par-
ticles.

The non-vanished value of cn{2} is due to both of these two kinds of correlations.
Furthermore, in case of four particle correlations, we have:

< ein(φj1+φj2−φk1−φk2) >

= < ein(φj1−φk1) >< ein(φj2−φk2) >

+ < ein(φj1−φk2) >< ein(φj2−φk1) > +cn{4}
=2 < ein(φj−φk) >2 +cn{4},

(9.42)

where cn{4} = 0 if there is no correlation between the four particles: j1, j2, k1

and k2. By considering both flow and non-flow correlations in Eq. (9.42): the
non-vanished value of cn{4} still contains the contribution from flow correlations;
since the two-particle correlations are included in the term < ein(φj−φk) > already,
there is no non-flow correlation up to four particles in cn{4}. We define cn{2} as
the n-th order 2-particle correlation cumulant and cn{4} as the n-th order
4-particle correlation cumulant. Following this way, we can define cn{2k} as
the n-th order 2k-particle correlation cumulant. In the non-vanished value
of cn{2k} the contribution from non-flow correlations up to 2k particles is rejected
and the contribution from flow correlations are still present. In the limiting case,
the non-vanished value of cn{∞} only includes the contribution of flow correlations
and the contribution from all the non-flow correlations are rejected. In this case, we
can get the following conclusions:

• there is a relation between cn{2k} and the n-th order flow parameters;

• the non-flow correlations are removed up to 2k particles in the final flow results
determined according to cn{2k}.

In the following, we are going to determine the relation between the cumulants and
the flow parameters.

Integrated Flow As with the event plane method and the scalar product method,
the first step to get the differential flow of POI in the cumulant method is to use the
RP to make a reference flow or integrated flow. So the first task in the cumulant
method is to build the relation between the cumulants and the integrated flow. In
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the generating function cumulant method [340], the cumulants are generated via a
generating function.

In a given event, one can define a function Gn(z) as:

Gn(z) =
M∏
j=1

(1 +
z∗einφj + ze−inφj

M
), (9.43)

where M is the number of RP in this given event, z is a complex variable and z∗ is
the complex conjugate of z. It is easy to probe that the function Gn(z) in Eq. (9.43)
is a real-valued function 4. Then the generating function of cumulants is given by:

Cn(z) ≡M(< Gn(z) >1/M −1) =
∑
k,l

z∗kzl

k!l!
cn{k + l}, (9.45)

where the average of Gn(z) runs over the events with the SAME RP multiplicity
M , the cn{k+ l} are the coefficients of the power expansion series. According to its
definition, Cn(z) is also a real-valued function and all the terms with k 6= l vanish
in Eq. (9.45). Then Cn(z) becomes:

Cn(z) =
∑
k

|z|2k
(k!)2

cn{2k}. (9.46)

By calculating the coefficient cn{2k} in Eq. (9.46) term by term, one can deduce
that the cn{2k} coefficient is indeed the defined n-th order 2k-particle cumulant,
this is why Cn(z) is called as the generating function of cumulants.

As mentioned, cn{2k} includes the information on the flow correlations and
is related to the flow parameter. To get this relation, we calculate Cn(z) in an
alternative way. The average of Gn(z) in Eq. (9.45) can be performed in two steps:

1. average over the events with the same value of ΨR;

2. average over the results with different ΨR.

We denote < x|ΨR > as the average of quantity x with fixed value of ΨR >, then,

< einφj |ΨR > =< ein(φj−ΨR)+inΨR |ΨR >

=< ein(φj−ΨR)|ΨR > einΨR

= Vne
inΨR ,

(9.47)

where in the last step, we used the definition in Eq. (9.40) and since we only consider
the RP, the term < ein(φj−ΨR) > gives the integrated flow Vn. Then one can get:

< Gn(z)|ΨR >= (1 +
zVne

−inΨR + z∗Vne
inΨR

M
)M . (9.48)

4If sz = x+ iy, with real-values of variables x and y, Eq. (9.43) becomes:

Gn(z) =

M∏
j=1

(1 +
2x cosnφj + 2y sinnφj

M
), (9.44)

without any imaginary part.
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With large M values to satisfy the condition,

M !

(M − 2k)!
'M2k, (9.49)

finally, we have:

< Gn(z) > =

∫ 2π

0

dΨR

2π
< Gn(z)|ΨR >

=

[M/2]∑
k=0

M !

(M − 2k)!(k!)2
(
Vn
M
|z|)2k

' I0(2Vn|z|),

(9.50)

and
Cn(z) 'M(I

1/M
0 (2Vn|z|)− 1) ' ln I0(2Vn|z|). (9.51)

With the serie expansion of Eq. (9.51) and by comparing the coefficients of the |z|2k
terms with those in Eq. (9.46) one by one, one can obtain the relations between the
cumulants and flow parameters as:

V 2
n {2} = cn{2}
V 4
n {4} = −cn{4}
V 6
n {6} = cn{6}/4

...

(9.52)

where Vn{2k} denotes Vn determined via the cumulants of the 2k-particle correla-
tions cn{2k}. Of course, in Vn{2k} the non-flow correlations are rejected up to the
order of 2k-particles.

As usual, the particle weights rj can also be implemented in the calculation of
the integrated flow in the generating function cumulant method via:

Gn(z) =
M∏
j=1

[1 +
rj
M

(z∗einφj + ze−inφj )]. (9.53)

In this case, there will be the same normalization factor from the used particle
weights present before the cn{2k} in Eq. (9.46) and the Vn{2k} in Eq. (9.51). Finally
the relations in Eq. (9.52) will not change, but the results should be normalized with
this factor.

Differential Flow Following a similar strategy which has been already used in
the event plane and scalar product methods, after getting the integrated flow of RP,
the differential flow of POI can be obtained via the following steps:

1. determine the cumulants of the differential flow according to the cumulants of
integrated flow;
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2. find the relation between the differential cumulants and the corresponding flow
parameters.

In the following, we detail this procedure.
To get the differential cumulants, the following generating function is defined:

Dmn/n(z) =
< eimnφGn(z) >

< Gn(z) >
, (9.54)

where: φ is the azimuthal angle of POI, the function Gn(z) is defined in Eq. (9.43)
for the RP, m is an integer and the average over both POI and events. The physics
meaning of Eq. (9.54) can be understood as:

• the function Gn(z) is build by the RP and it includes the information of the
integrated cumulants or the integrated flow;

• in the numerator, < eimnφGn(z) > relates the POI to the RP, this procedure
is quite similar as Eq. (9.11) in the event plane method and Eq. (9.33) in the
scalar product method, in this case, the numerator contains the information
on the differential cumulants or the differential flow;

• the term < Gn(z) > in the denominator has a similar meaning as the term
< ~Qan · ~Qbn > in Eq. (9.38) which is used to cancel the effects from the RP in
the numerator as well as to correct the event-by-event fluctuations;

• the final ratio of Eq. (9.54) only includes the correlation information of POI;

• according to above discussion, in Eq. (9.54), m = 1 allows to determine the
n-th order differential flow vn with the same order of harmonic, m > 1 means
that we use the lower order harmonic to determine the vn.

It is worth to notice that, the differential generating function (Eq. (9.54)) can also
be understood as the correlations between each POI and several RP, to avoid self-
correlations, if a particle (eg. the j-th particle) belongs to both POI and RP, its
contribution should be removed from Gn(z) in the numerator of Eq. (9.54) by di-
viding the term eimnφjGn(z) with 1 + rj/M(z∗einφj + ze−inφj ).

In analogy with to Eq. (9.46), the power expansion series of Eq. (9.38),

Dmn/n(z) =
∑
k

z∗kzk+m

k!(k +m)!
d′mn/n{2k +m+ 1}, (9.55)

the coefficients d′mn/n{2k + m + 1} should be the differential cumulants for POI.
But indeed, Dmn/n(z) is a complex-valued function and d′mn/n{2k+m+ 1} are also
complex-valued. In this case, the differential cumulants d{2k +m+ 1} are defined
as:

dmn/n{2k +m+ 1} = <[d′mn/n{2k +m+ 1}]. (9.56)

On the other hand, the Dmn/n(z) can be calculated as:

Dmn/n(z) =

∫ 2π
0 dΨR

2π < eimnφGn(z)|ΨR >

< Gn(z) >
' Im(2Vn|z|)

I0(2Vn|z|)
vmn, (9.57)
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where the approximation in Eq. (9.49) is used in the last step. By comparing the
coefficients in terms of z∗kzk+m between Eq. (9.55) and Eq. (9.57) and according to
the definition of the differential cumulants in Eq. (9.56), one can get:

vn/n{2} = dn/n{2}/Vn
vn/n{4} = −dn/n{4}/V 3

n

...

(9.58)

when m = 1 and

v2n/n{3} = d2n/n{3}/V 2
n

v2n/n{5} = −d2n/n{5}/(2V 4
n )

...

(9.59)

when m = 2. Here, vmn/n{2k + m + 1} denotes the mn-th order differential flow
determined via the n-th order harmonic with the 2k-particle cumulant.

Also the particle weights wj for POI can be used to build the differential gener-
ating function as:

Dmn/n(z) =
< wje

imnφjGn(z) >

< Gn(z) >
, (9.60)

and the final results should be normalized according to the used weights. The
pt and rapidity dependence of the differential flow vmn/n{2k+m+ 1}(pt, y) can be
obtained by computing the differential generating function in Eq. (9.54) or Eq. (9.60)
in different pt and rapidity windows.

Discussion To implement the generating function cumulants, there are two con-
ditions that should be satisfied:

• to build the generating function Cn(z) or Dmn/n(z), it is required that the
events should have the same multiplicity of RP, M , and this requirement is
satisified by choosing small centrality bin size in the analysis. If this condition
is not fulfilled the event-by-event M fluctuations will bias the final results;

• to compute both the integrated flow Vn{2k} and the differential flow
vmn/n{2k + m + 1}(pt, y) the value of M should be large enough to satisfy
the approximation in Eq. (9.49).

Due to these two requirements, the pre-condition for the implementation of the
generating function cumulant method is that the statistics of both RP and POI in
data should be large.

Another issue in the generating function cumulant method is that, both the inte-
grated generating function Cn(z) and the differential generating function Dmn/n(z)

depend on the arbitrary complex-valued variable z. In practice, Cn(z) or Dmn/n(z)

is computed via the numerical interpolation with pmax×qmax complex-valued points:

zp,q = r0
√
p · (cos

2qπ

qmax
+ i sin

2qπ

qmax
), (9.61)
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where p = 1, 2, · · · , pmax and q = 0, 1, · · · , qmax− 1. In this case, one should change
the values of r0, pmax and qmax to test the stability of the final results. If the final
results are sensitive to these initial values of the interpolation, then the generating
function cumulant method is not applicable.

The detail of the interpolation and the correction of the NUA correlations can
be found in Ref. [341]. The uncertainty estimation in generating function cumulant
method is introduced in Ref. [340].

9.1.3.2 Q-Cumulants

One of the problem in the generating function cumulant method is that, if the
interpolation procedure is unstable, the method cannot be used. The Q-Cumulant
(QC) method [342] is built to overcome this drawback by extracting the cumulants
order-by-order via the measured Q-vector in data.

Integrated Cumulants First, as in Eq. (9.40), in Q-cumulant method, the Q-
vector in a given event is defined as a complex:

Qn =

M∑
j=1

einφj . (9.62)

According to this definition, indeed one can find that for a given event, Eq. (9.41)
and Eq. (9.42) can be expressed as:

< 2n >≡ < ein(φj−φk) >=
|Qn|2 −M
M(M − 1)

,

< 4n >≡ < ein(φj1+φj2−φk1−φk2) >

=
|Qn|4 + |Q2n|2 − 2<[Q2nQ

∗2
n ]

M(M − 1)(M − 2)(M − 3)
− 4(M − 2)|Qn|2 − 2M(M − 3)

M(M − 1)(M − 2)(M − 3)
,

(9.63)

where M is the number of used RP in this given event. With the definition of
Eq. (9.41) and Eq. (9.42), in principle, one can express the cumulants cn{2} and
cn{4} with this complex-valued Q-vector. The cumulants come from the average
over all the events, and N (j) denotes the number of events (the j-th event in the
sample). Finally, one can get:

cn{2} =

∑N
j=1(|Qn|2j −Mj)∑N
j=1Mj(Mj − 1)

,

cn{4} =

∑N
j=1(|Qn|4j + |Q2n|2j − 2<[Q2nQ

∗2
n ]j)∑N

j=1Mj(Mj − 1)(Mj − 2)(Mj − 3)

−
∑N

j=1[4(Mj − 2)|Qn|2j − 2Mj(Mj − 3)]∑N
j=1Mj(Mj − 1)(Mj − 2)(Mj − 3)

− 2 · c2
n{2}.

(9.64)

Following this way, one can calculate the cumulants order-by-order by hand. Af-
ter getting the sufficient orders of cumulants, then the integrated flow is obtained
according to Eq. (9.52).
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Particle Labels As mentioned in the generating function cumulants, in Eq. (9.54)
or Eq. (9.60), if the particle belongs to both POI and RP, its constribution should be
subtracted from function Gn(z) in the numerator when relating this particle to the
function Gn(z). To apply the same procedure in Q-cumulants, the POI are labeled
into two types:

• all the POI are labeled as the p particles, mp denotes the total number of POI;

• inside the p particles, the particles which also belong to the RP sample are
labeled as q particles, mq denotes the total number of particles in this sub-
sample.

According to this label rule, one defines the p-vector and q-vector as:

pn ≡
mp∑
j=1

einφj , qn ≡
mq∑
j=1

einφj . (9.65)

In building the differential cumulants, q particles are treated differently from those
only labeled as the p particles.

Differential Cumulants The strategy to determine the differential cumulants is
the same as that to determine the integrated cumulants: use the re-defined Q-vector
from Eq. (9.62) to express the d′mn/n{2k + m + 1} (or dmn/n{2k + m + 1}) order-
by-order by hand. Here, we only show the calculation of dn/n{2} as an example.

According to the definition in Eq. (9.55) in a given event, one can get:

d′n/n{2} =< ein(φPOI−φRP) >

=
1

mpM −mq

mp∑
j=1

M∑
k=1,k 6=j

ein(φPOI−φRP)

=
pnQ

∗
n −mq

mpM −mq
.

(9.66)

Then the average of this quantity is done over all the events and one gets:

dn/n{2} = <[d′n/n{2}] = <[

∑N
j=1(pnQ

∗
n −mq)j∑N

j=1(mpM −mq)j
], (9.67)

where N is the total number of events and j denotes the j-th event. Following this
way, one can calculate the higher order differential cumulants one by one by hand.

After obtaining both the integrated and the differential cumulants up to a suffi-
cient order, then, the differential flow can be calculated according to the formula as
Eq. (9.58) or Eq. (9.59). The pt and rapidity dependence of the differential flow in
Q-cumulants can be obtained by determining the p- and q-vectors in Eq. (9.65) in
different pt and rapidity windows. The higher orders of both integrated and differ-
ential Q-cumulants can be found in Ref. [342] as well as the correlation of the NUA
corrections and the uncertainty estimate 5.

5During a private communication with one of the developers of Q-cumulants method, A. Bi-
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Discussion Indeed, in the Q-cumulant method, both the integrated flow and dif-
ferential flow are calculated according to the relations derivated from the gener-
ating function cumulants method, eg. Eq. (9.52) Eq. (9.58) and Eq. (9.59). The
only improvement in Q-cumulant method cumulants is that, instead of calculating
the cumulants via the numerical interpolation as in generating function cumulants
method, in this method, the cumulants are extracted from data order by order. In
this case, the cumulant values are more stable in Q-cumulant method than that
in generating function cumulant method. Another advantage of the Q-cumulant
method is that, to get the average cumulants over all the events, eg. Eq. (9.64) and
Eq. (9.67), it is not needed that the events have the same multiplicity, then the
event-by-event multiplicity fluctuations are also removed in this method.

9.1.4 Lee-Yang-Zeroes Methods

Let us make a short conclusion before to introduce this more recent method.
One kind of important background in the flow signal is what we called the non-

flow correlations. It is difficult to remove them in the event plane method. However,
by applying analysis cuts one can can partly reduce some non-flow correlations,
but each cut could introduce biases in the final results. Also, in the event plane
method, one should take care about the event-by-event fluctuations and the NUA
correlations. To overcome the drawbacks of the event plane method, in the scalar
product method, the non-flow correlations are partly rejected by the η sub-events
and the event plane resolution is also corrected automatically. In an alternative way,
the cumulant methods extract the flow according to its correlation behaviour. In
this case, not only the event-by-event fluctuations can be corrected automatically
but also the non-flow correlations are subtracted order-by-order. In addition, the
correction of the NUA correlations is implemented in cumulant methods numerically.
But the drawback of the cumulants methods is that, to get the higher order of the
cumulants in both the GFC method and QC method is very complicated. In the
practice, one can only use the finite orders (in principle, at most up to the 8th order)
of cumulants to calculate the flow in data.

The Lee-Yang-Zeroes (LYZ) method is developed to overcome this problem
in cumulant methods, the results from the Lee-Yang-Zeroes method are equivalent
to the infinite order of cumulants:

vn{LYZ} = vn{∞,GFC/QC}. (9.68)

In this case, there is no non-flow correlation included in the final results from the
Lee-Yang-Zeroes method.

landzic, we learn that, some parts about the NUA correlation and uncertainty estimate of this
method have been updated, and all of these updates are available in the Flow Package of Ali-
Root.
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9.1.4.1 Lee and Yang’s Theory of Phase Transitions

As mentioned many times, the flow represents the correlations between all the
particles in a given event and this is quite similar as another phenomenon in the
nature: the phase transition. When a phase transition happens, there will be long
range correlations between all the particles in the system. In this case, the method
used to measure the flow in data could be analogous to the one used to describe the
phase transition in statistical physics. The Lee-Yang-Zeroes method is triggered by
one of the phase transition theory built by Lee and Yang in 1952. So firstly, we give
a brief overview of Lee and Yang’s theory.

If one considers the grand canonical partition function, we get

G(µ) =
∞∑
N=0

ZN exp(
µN

kBT
), (9.69)

where ZN is the canonical partition function for N particles, kB is the Boltzmann’s
constant, µ and T are the chemical potential and temperature of the system. The
grand canonical partition function Eq. (9.69) corresponds to the un-normalized prob-
ability of possible states of the system. To normalize Eq. (9.69), one can define the
G-function as:

G(µ) =
G(µ)

G(µc)
=
∞∑
N=0

PN (µc)y
N (µ). (9.70)

Here:

PN (µc) =
1

G(µc)
exp(

µcN

kBT
), (9.71)

is the normalized probability of a system with N particles with chemical potential
µc, and

y(µ) = exp(
µ− µc

kBT
) (9.72)

is the fugacity. In this case, Eq. (9.70) can be written as:

G(y) =< yN > . (9.73)

Of course, the G-function in Eq. (9.73) has no zero value when y is a real-valued
variable, but with complex-valued y, one can get many zeroes of G-function in the
complex plane. Lee and Yang proved that [343]:

• if the phase transition occurs at µc, the zeroes of G-function in the complex
plane will become more and more close to y = 1 with the increase of the
system volume;

• if there is no phase transition, the zeroes of G-function in the complex plane
will not change with the volume of the system.

The above conclusion from Lee and Yang can be briefly understood as follows.
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• If there is no phase transition, there are only short range correlations between
the particles in the system, and the system can be classified with different
clusters with particles having short range correlations between each other.
Since the total partition function of the system is the product of the partition
functions of the clusters, the zeroes of G-function in Eq. (9.73) are determined
by the zeros of those in each cluster. Then the position of zeroes of the G-
function for the total system will not change when its volume increases (large
number of independent clusters in the system).

• if a phase transition occurs, the short range correlations between the particles
in the clusters become the long range correlations between the particles in
the whole system. The probability distribution PN in Eq. (9.70) will widely
spread between the volume V of the two phases. With the relation N ∝ V , y
obeys to:

ln y ∝ 1

V
, (9.74)

and this makes the zeroes of G-function in Eq. (9.73) closer and closer to
y = 1 when the system volume V increases with a phase transition occurring
at µ = µc.

As mentioned, both the phase transition and the flow have a similar property:
correlations between all particles in the system. According to the theory of Lee and
Yang, the phase transition or the correlations between particles is characterized by
the distribution of the zeroes of the G-function Eq. (9.73). Following this idea, if
one can build a similar G-function according to the final observables in data, the
correlations between all particles or flow can also be characterized by the zeroes of
that function.

9.1.4.2 Flow Determination with Lee-Yang zeroes

The key point to implement the idea from the phase transition theory of Lee
and Yang in the flow analysis is to construct a similar function as the G-function in
Eq. (9.73) which includes the information on the correlations between particles in
the system.

Integrated Flow In the Lee-Yang-Zeroes method, the generating function of the
integrated flow for RP is constructed as:

Gθn(z) =< ezQ
θ
n >, (9.75)

where z is a complex-valued variable and the average is over all the used events in
the sample. In a given event Qθn is defined as,

Qθn =

M∑
j=1

rj cosn(φj − θ), (9.76)
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in which M is the number of used RP in this given event, rj denotes the particle
weights and θ is an arbitrary angle. The Qθn in Eq. (9.75) can be treated as the
projection of Q-vector to an arbitrary direction θ. By comparing Eq. (9.75) with
Eq. (9.73) one can find that, Qθn has the same role as the number of particles N ,
and ez has the same role as the fugacity y; since Qθn is scaled by the number of RP,
M , and N is scaled as the system volume V , M is equivalent to V .

To get the relation between Gθn(z) and the integrated flow, first one can consider
the following power expansion under the assumption of |z| � 1 and rj is normalized:

ln < ezQ
θ
n |ΨR > ' z· < Qθn|ΨR > +O(z2)

= zVn cosn(θ −ΨR) +O(z2).
(9.77)

By assuming that O(z2) is independent on ΨR, Gθn(z) can be calculated as,

Gθn(z) =< ezQ
θ
n >

=

∫ 2π

0

dΨR

2π
< ezQ

θ
n |ΨR >

'
∫ 2π

0

dΨR

2π
exp[zVn cosn(θ −ΨR) +O(z2)]

= eO(z2)I0(zVn).

(9.78)

On the other hand, as in cumulants method, by expanding Gθn(z) as the power
series:

lnGθn(z) =
∞∑
k=1

z2k

(2k)!
cθn{2k}, (9.79)

and comparing the coefficient cθn{2k} with each z2k term in Eq. (9.78) the inte-
grated flow Vn{2k} then, can be extracted order-by-order. The θ dependence of
the coefficient cθn{2k} is canceled in the coefficient of term O(z2). The final results
is independent of θ. Up to now, the function Gθn(z) looks like only as an alterna-
tive way to build the integrated cumulant generating function of Eq. (9.43). As
mentioned, the expression of Gθn(z) is analogous to the G-function Eq. (9.73), the
correlations of all particles, the flow without the non-flow correlations, in principle
can be extracted according to the zeroes of Gθn(z).

The correlations of all particles correspond to the coefficient cθn{∞} in Eq. (9.79).
Indeed, by comparing the coefficient of z2k term between Eq. (9.78) and Eq. (9.79)
up to k →∞ [344], one can get,

Gθn(ir) = lim
k→∞

Gθn(z) = eO(z2)J0(irV θ
n {∞}), (9.80)

where J0(x) is the zero order Bessel function, r = =z is the imaginary part of
z 6, V θ

n {∞} corresponds to the integrated flow from the infinity order of cumulant
cθn{∞}.

To get V θ
n {∞} via the Lee-Yang-Zeroes method, the following steps are used:

6This is consistent with the further study of Lee and Yang: all zeroes of G-function Eq. (9.73)
lie on the imaginary axis [345].

307



1. with a fixed value of θ, build Gθn(ir) according to Eq. (9.75) in data;

2. plot |Gθn(ir)| as a function of r and determine the first position of minimum 7

rθ0;

3. since the first zero of J0(x) in the imaginary axis is given by x = ij01 ' i2.405,
the V θ

n {∞} is determined as:

rθ0 × V θ
n {∞} = j01

⇒V θ
n {LYZ} ≡ V θ

n {∞} =
j01

rθ0
' 2.405

rθ0
.

(9.81)

Differential Flow What is important in the Lee-Yang-Zeroes method is to un-
derstand how to implement the conclusions from the Lee and Yang’s study of the
phase transitions. The whole approach of this method is shown in the case of the
integrated flow. With such illustration, the differential flow determination becomes
more straightforward.

1. As that in the cumulant methods, one defines a differential generating function
as:

Dθ
mn/n(z) =< cosmn(φ− θ)ezQθn >, (9.82)

with the complex-valued variable z. The differential cumulants dmn/n{k} can
be given by the coefficients of the power expansion:

Dθ
mn/n(z)

Gθn(z)
=
∞∑
k=0

zk

k!
dmn/n{k}. (9.83)

2. With the same approach for calculating Gθn(z) in Eq. (9.78) under the assump-
tion |z| � 1 one gets:

lim
|z|→0

Dθ
mn/n(z)

Gθn(z)
=

Im(zV θ
n )

I0(zV θ
n )
· vθmn/n, (9.84)

where vθmn/n is the differential flow.

3. Compare the coefficients of zk terms up to k → ∞, the results at the first
minimum position rθ0 of function |Gθn(ir)| then can be gotten as:

vθmn/n{LYZ} ≡ vθmn/n{∞}

= V θ
n {LYZ} · J1(j01)

Jm(j01)
<[i1−m

< cosmn(φ− θ)eirθ0Qθn >
< Qθne

irθ0Q
θ
n >

],
(9.85)

where j01 = 2.405.
7The Lee and Yang’ theory of phase transitions is used to deal with the statistical system which

means that one can treat the number of particles N →∞ in the system. But in the analysis of flow
in data, the finite number of particles and events will make the zeroes slightly off the imaginary
axis. So in practice, the position of first minimum of |Gθn(ir)| is used instead of the position of the
first zeroe of this function.
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9.1.4.3 Discussion

By comparing with Q-cumulants method, the advantage of the Lee-Yang-Zero
method is that one does not need to calculate the cumulants order-by-order by hand,
it returns the results from the infinity order of cumulants. The following items are
worth to notice for implementing this method in data analysis:

• in principle, both the integrated flow and differential flow are insensitive to
the arbitrary angle θ, but in practice, normally, the final results are gotten
from the average value of the results with several θ values,

Vn{LYZ} =< V θ
n {LYZ} >, vmn/n{LYZ} =< vθmn/n{LYZ} >; (9.86)

• as with the cumulant methods, the correction of the NUA correlations is im-
plemented in Lee-Yang-Zeroes method numerically;

• to avoid the self-correlation in the differential cumulants, the particles belong-
ing to both RP and POI should be removed from term eir

θ
0Q

θ
n in the numerator

of Eq. (9.85) one by one as those in the generating function cumulant method;

• both the POI and RP can be weighted by the particle weights, and as in all
the other methods, the final results should be normalized according to the
used particle weights;

• the pt and rapidity dependence of the differential flow is given by Eq. (9.85)
in different pt and rapidity windows;

• finally, what important is that, the Lee-Yang-Zeroes method, in principle
should be implemented to events having the same impact parameter |~b|, in
this case, it is better to choose small centrality bins to implement this method,
otherwise, the fluctuations between the collision centralities could bias the re-
sults.

Here, Qθn in Eq. (9.76) is chosen as a summable function [346], the corresponding
results withQθn are labeled as Vn{LYZ,SUM} and vmn/n{LYZ,SUM}. Alternatively,
the Qθn can also be defined as a product function [347], the corresponding results
withQθn are labeled as Vn{LYZ,PROD} and vmn/n{LYZ,PROD}. More details
about the Lee-Yang zeroes theory are given in Ref. [348]. A practice guide of Lee-
Yang-Zeroes method can be found in [349].

By the way, the integrated flow Vn{LYZ} from Lee-Yang-Zeroes method is cor-
rected both for the NUA correlations (numerically) and the non-flow correlations.
In this case, one can use Vn{LYZ} to correct the integrated flow from the event plane
method, Eq. (9.12), and remove both the NUA correlations and non-flow correla-
tions in the event plane method via a event-by-event weight. This approach is called
as Lee-Yang-Zero Event Plane (LYZEP) method. The detailed illustration of
this method is in [350].
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9.2 Data Analysis Environment

After this long and boring introduction on different flow analysis methods, we
are now going to move to a more interesting thing, the data analysis.

As already mentioned, except for the Fit-Q method, the RP and POI should
be defined before the analysis in all other methods introduced in Sec. 9.1. In this
analysis, the POI are the inclusive muons detected in the ALICE muon spectrometer
at forward rapidities. Since the data sample used for flow studies is the same as that
presented in Chap. 8 (LHC10h pass 2 the Pb–Pb collisions at

√
sNN = 2.76 TeV),

the event and muon selections here follow the strategy implemented in the analysis
discussed in Chap. 8. The first task is to choose the proper RP in order to build
the reference for the flow of muons.

9.2.1 Reference Particle Selection

Figure 9.1: The normalized azimuthal dis-
tributions of different kinds of RP with the
corresponding RP selection cuts or correc-
tions.

In this analysis the POI being the
muons in the forward rapidity region,
the way to evidence the correlations
between the POI and RP is to choose
the RP detected in the ALICE cen-
tral barrel. The corresponding avail-
able RP are the SPD tracklets, the
global charged tracks reconstructed in
the central barrel and the tracks re-
constructed with TPC standalone
(TPCsa) 8.

The selection of the SPD track-
lets is straightforward and no selection
cuts are needed. In case of the global
tracks and TPCsa tracks, to ensure
the track quality and reject part of
the non-flow correlations, several cuts
were used. These cuts are provided by

people working on flow analyses with central barrel data. They can be classified into
three categories:

• the kinematics cuts which are used to reject part of the non-flow correlations.
For both global tracks and TPCsa tracks, the kinematics range is set as 0.2 <

pt < 5 GeV/c, −0.8 < η < 0.8;

• cuts on the reconstruction quality, like the number of used clusters, the dE/dx

in TPC, minimum and maximum values of tracking χ2 per cluster etc.;

8Among the four experiments at the LHC only ALICE is equipped a TPC. This allows to have
track reconstruction and PID in a wide pt range and for different particle species.
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• the geometrical cuts, like the DCA to the primary vertex, from the kink decays
etc.. These cuts are used to reject some tracks from particle decays.

The exact values of these cuts are officially set in the flow package of AliRoot.
For LHC10h pass 2, they are called Standard Global Track Cuts 2010 and
Standard TPC Standalone Track Cuts 2010 for global tracks and TPCsa
tracks, respectively. After the track selection, we named the corresponding RP
Standard Global Track and Standard TPCsa Tracks.

In Fig. 9.1, the normalized azimuthal distributions of SPD tracklets (in blue),
the standard global track (in black) and the standard TPCsa tracks (in red) are
shown. One can see that the standard TPCsa tracks have an uniform azimuthal
distribution. Therefore, the NUA corrections to standard TPCsa tracks are smaller
than for others tracks. For this reason, we choose the standard TPCsa tracks for
the RP reconstruction in the flow study of inclusive muons.

As we mentioned in Sec. 8.1.1, there is no muon trigger in LHC10h, and the
analysis is based on minimum bias events. In this case, choosing TPCsa tracks as
the RP is convenient. In the LHC11h data sample, the muon trigger was added.
Since the statistics of single muons in muon triggered events is much larger than
that in the minimum bias data sample, in the future, the analysis of the muon
flow will use the muon triggered data. However, the TPC is not included in the
muon trigger cluster. Therefore, in future analyses, the RP should be provided by
another detector (included in the muon trigger cluster) like the VZERO. In order to
develop an analysis strategy which we can use in the future, the VZERO amplitude
is also used as the RP in this analysis. The normalized distribution of the VZERO
amplitude after correction for the gain saturation is also shown in Fig. 9.1. One
can observe that this distribution is not quite flat and also has holes. Therefore,
in order to use the VZERO amplitude as the RP, one should take care about NUA
corrections as well as non-flow correlations since there is an overlap region between
the acceptance of the VZERO and that of the muon spectrometer. On the other
hand, it is interesting to note that the results with these two kinds of RPs can be
checked against each other.

9.2.2 Single Muons in the Flow Package

Figure 9.2: The pt (left), η (middle) and φ (right) distributions of global tracks
without any selection cut.
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Figure 9.3: The pt (left), η (middle) and φ (right) distributions of standard global
tracks with the selection cuts.

Figure 9.4: The pt (left) and η (right) dependence of v2 for the RP from second
order GFC method.

Figure 9.5: The pt (left) and η (right) dependence of v2 for the RP from the second
order QC method.

All algorithms to compute the collective flow with different methods are provided
officially in the so-called Flow Package in AliRoot. This package was developed for
flow analyses in the ALICE central barrel and the muon selection was not included.
To validate our analysis, we built an interface in the flow package in order to select
muons with the analysis cuts described in Chap. 8. The flow package is a very
complicated code and any modification in this package should be done carefully. In

312



Figure 9.6: The pt (left) and η (right) dependence of v2 for the POI from the second
order GFC method.

Figure 9.7: The pt (left) and η (right) dependence of v2 for the POI from the second
order QC method.

Figure 9.8: The pt (left), η (middle) and φ (right) distributions of muon tracks
without any selection cut.

order to validate our developments in the interface, we did a performance test of
this new code. The test includes the following three steps.

1. Reproduce the track distributions in the central barrel obtained with the of-
ficial flow package using the modified flow package with the muon interface.
Here we choose the global tracks for the comparison. The global track distri-
butions in central barrel without any cuts and with selection cuts are shown in
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Figure 9.9: The pt (left), η (middle) and φ (right) distributions of muon tracks with
standard muon selection cuts.

Fig. 9.2 and Fig. 9.3, respectively. In these figures the inverted triangles cor-
respond to results obtained with the official flow package and the open circles
(labeled as "Muon Flow Code") are obtained with the updated flow package
for the muon flow analysis. To make the comparison as complete as possible,
the results are shown for different centrality classes labeled in the figures. One
can see that, in all cases, the official flow package and the muon flow code give
the same results. This means that the modification of the flow package does
not affect the track selection in the flow package.

2. Reproduce the results from official flow package via the muon flow code. At
this stage, we show the global tracks in Fig. 9.2 as POI and the standard global
tracks with the selection cuts in Fig. 9.3 as RP. Then we compute the elliptic
flow via the GFC and the QC methods. The results of the integrated flow from
the second order cumulant of GFC and QC methods are shown in Fig. 9.4 and
Fig. 9.5, respectively. In each case, the results from the official flow package
and the results from the "muon flow code" are compared together. One can
see that there is no difference between the results from the two codes. In
addition, the corresponding differential flow of the POI is shown in Fig. 9.6
and Fig. 9.7. Again, one can see that the results from the two analysis codes
are absolutely the same. We note that these results are not meaningful for
physics at this stage since no detail configuration is included. Our aim here is
only to test the validity of the modified flow package.

3. Reproduce the muon distributions from the muon analysis code that we in-
troduced in Sec. 4.3.2 via the "muon flow code". The corresponding results
are shown in Fig. 9.8 (without any muon selection cut) and Fig. 9.9 (with the
standard muon selection cuts used in Chap. 8). By comparing the results from
the muon analysis code and that from the "muon flow code", one can see that
the "muon flow code" validates all functions of the muon analysis code and
ensure that the input inclusive muon distributions for the flow analysis are the
same as those used in the analysis presented in Chap. 8.

4. After all of these comparisons, we can conclude that: on one hand, the "muon
flow code" can reproduce both the track distributions and the flow results
in central barrel from the official flow package; on the other hand, it also
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reproduces the muon distributions from the muon analysis code. This validates
the "muon flow code".

9.3 Analysis Configuration

After the determination of the RP samples and the validation of the analysis
code, we select the SP, GFC, QC and LYZ methods for the analysis. The EP method
needs to deal with the corrections of event-plane resolution, non-flow corrections and
the NUA corrections and in addition it is difficult to control the bias due to flow
fluctuations. However, this is one of the basic methods for flow analysis and it is
worth to compare also the results from this method.

9.3.1 Corrections for the Event Plane Method

As mentioned, the implementation of the EP method is straightforward but its
underlying corrections are very complicated. The following steps should be consid-
ered:

1. the correction of the NUA correlations. This step is also called as event plane
flattening;

2. rejection of the non-flow correlations;

3. method implementation;

4. estimation of the event-plane resolution;

5. final results with the correction for the event-plane resolution.

Let us now introduce these steps one by one.

9.3.1.1 Event Plane Flattening

Generally, there are four kinds of popular used methods for event plane flatten-
ing:

• weighting method;

• recentering method;

• shifting method;

• mixed-events method.

The details for all these methods are presented in Ref. [339].
As shown in Fig. 9.1, the azimuthal distribution of the standard TPCsa and

that of the corrected VZERO amplitude are quite different. We also use different
kinds of event-plane flattening strategy. For standard TPCsa RP, we only apply the
weighting method and for the corrected VZERO RP, we will combine the weighting
method, the recentering method and the shifting method.
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Standard TPCsa RP The black curve in the left plot of Fig. 9.10 shows the nor-
malized azimuthal distribution r(φ) of standard TPCsa tracks. The corresponding
φ-weight w(φ) for the event-plane flattening is given by:

w(φ) =
1

r(φ)
·
∫ 2π

0

dφ

2π
r(φ), (9.87)

which is shown by the red histogram in the left plot of Fig. 9.10.

Figure 9.10: Left: the azimuthal distribution and its weight distributions of standard
TPCsa tracks. Right: the reference elliptic flow as a function of pt for standard
TPCsa tracks calculated via the EP method according to Eq. (9.12). Results are
obtained from LHC10h pass 2 data.

Furthermore, we also implemented the particle weights to deduce the event-by-
event fluctuations. As mentioned in Sec. 9.1.1.3, the particle weights are chosen as
quantities which are proportional to Vn. The pt dependence of the reference flow v2

for standard TPCsa RP is obtained from the EP method via Eq. (9.12) in different
centrality regions. This is shown in the right plot of Fig. 9.10. According to these
results one can find that, in each centrality region, the reference flow first increases
with pt almost linearly up to pt ' 2 GeV/c, and it saturates when pt & 2 GeV/c.
According to this behaviour, we choose the particle weights as a function of pt as:

w(pt) =

{
pt (pt < 2 GeV/c)

2 (pt > 2 GeV/c).
(9.88)

The final weights rj for the standard TPCsa RP are given by

rj = wj(φ)× wj(pt). (9.89)

Fig. 9.11 shows the 2nd order event plane Ψ2 distributions for standard TPCsa
RP in four different centrality bins as labeled in the figure and obtained with the
particle weights defined in Eq. (9.89). One can see that after the event plane flatten-
ing with the weighting method, there are still fluctuations in the Ψ2 distributions.
These fluctuations increases as the centrality of the collision increases. In the most
central collisions (0− 10%) the fluctuations are of the order of ∼ 10%. The results
indicate that there is still room for improving the event plane flattening of standard
TPCsa RP, eg. use φ-weight in each centrality bin.
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Figure 9.11: The 2nd order event plane Ψ2 distributions for standard TPCsa RP in
different centrality classes obtained with the particle weights defined in Eq. (9.89).

Correction for saturation of the VZERO RP The azimuthal distribution of
the corrected VZERO amplitude shown in Fig. 9.1 is not as perfect as that of the
standard TPCsa RP. The procedure of event plane flattening for VZERO is indeed
more complicated.

Fig. 9.12 shows the distributions of saturation corrected VZERO amplitude as a
function of the sector number in different centrality classes. One can see that even
after the gain saturation corrections, the fluctuations of the amplitude between
different sectors are still very large. The weighting method is here used to smooth
these fluctuations. It is built by considering the following items:

1. due to the fact that the VZERO includes two sub-detectors, V0A and V0C,
the weighting method should be implemented for these two sub-detectors in-
dependently;

2. Mj denotes, in a given event, the corrected VZERO amplitude (Fig. 9.12) for
the j-th sector. Mwgt

j is the weighted one. It corresponds to the real value of
the VZERO amplitude in this sector;

3. < Mj > denotes the mean value of Mj in the events in the same centrality
class;

4. Mj− < Mj > gives the fluctuations of Mj in a given event, assuming the
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Figure 9.12: The distributions of saturation corrected VZERO amplitude as a func-
tion of sector number in different centrality classes.

distribution of Mj− < Mj > is a Gaussian,

Pj = Aj exp[(
Mj− < Mj >

σj
)2], (9.90)

where Aj is the normalization factor, σj is the variance ofMj which is obtained
from the data;

5. < M > denotes the mean value of Mj over all the sectors in a given VZERO
sub-detector (V0A or V0C) for events in the same centrality class. Mwgt

j − <
M > gives the fluctuations between different sectors in events with the same
centrality;

6. the fluctuations in both Mj− < Mj > and Mwgt
j − < M > being caused by

the statistical uncertainty, after the normalization, they should have the same
probability distribution:

Mj− < Mj >

σj
=
Mwgt
j − < M >

σ
, (9.91)

where σ is the variance of M ;

7. finally, the weights to get Mwgt
j for the j-th sector are given by:

Mwgt
j =

Mj− < Mj >

σj
× σ+ < M > . (9.92)
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Figure 9.13: The distributions of saturation corrected VZERO amplitude as a func-
tion of sector number after the event-by-event weighting according to Eq. (9.92) in
different centrality classes.

Fig. 9.13 shows the distributions of the saturation corrected VZERO amplitude
as a function of the sector number after the weighting of the amplitude in each
sector event-by-event according to Eq. (9.92). The results show that the amplitude
distributions are improved by the weighting procedure.

Figure 9.14: The x (left) and y (right) components of 2nd order Q-vector calculated
from VZERO amplitude after the weighting. The results are shown in different
centrality classes as labeled in the plots.
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Figure 9.15: The x (left) and y (right) components of 2nd order Q-vector with the
re-centering according to Eq. (9.93). The results are shown in different centrality
classes as labeled in the plots.

After the weighting, in each event, we correct the Q-vector according to the
re-centering method via:

~Qre−cent
n =

~Qn− < ~Qn >

~σ( ~Qn)
, (9.93)

where ~Qn is the Q-vector in a given event calculated after the weighting of the
VZERO amplitude and ~Qre−cent

n denotes the one after the re-centering. < ~Qn >

is the mean value of ~Qn over the events in the same centrality class. ~σ( ~Qn) is the
variance of ~Qn which is used to correct the event-by-event fluctuations in the Q-
vector distributions in each centrality class. The 2nd order Q-vector distributions
before and after the re-centering in different centrality classes are shown in Fig. 9.14
and Fig. 9.15, respectively.

After the re-centering of the Q-vector, the event-plane Ψn can be calculated
according to Eq. (9.10) event-by-event. Then we correct this event plane according
to the shifting method:

Ψshifting
n =Ψn +

1

n
·
N∑
k=1

∆kn/n,

∆kn/n =
2

k
(< cos knΨn > sin knΨn − cos knΨn < sin knΨn >),

(9.94)

where, n = 2 since we focus on the elliptic flow. We choose N = 10. The results on
the 2nd order event-plane Ψ2 distributions before and after the shifting according
to Eq. (9.94) are compared in Fig. 9.16 in different centrality classes.

After all the correction steps, the final distributions of the event plane built via
the VZERO amplitude, (red curves in Fig. 9.16), show a very good uniform trend
in all centrality classes.

9.3.1.2 Non-Flow Correlations

Concerning the rejection of non-flow correlations, we proceed as follows.
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Figure 9.16: The 2nd order event plane Ψ2 distributions calculated according the
Q-vector after the re-centering with Eq. (9.93) in different centrality classes. The
results are shown before the shifting (black histograms) and after the shifting ac-
cording to Eq. (9.94) (red histograms), respectively.

POI the inclusive muons are selected with the standard muon analysis cuts. Since
the front absorber allows to reject most of the hadronic component (> 90%),
non-flow correlations from mini-jets are negligible in POI compared with the
contribution of muons from the resonance decays. The latter is also very
small in the distribution of inclusive muons. Therefore non-flow correlations
are expected not to have a visible effect in POI.

standard TPCsa RP non-flow correlations from mini-jets are also partly rejected
via the pt cuts (0.2 < pt < 5 GeV/c). Non-rejected non-flow correlations are
difficult to estimate. They remain as a bias in the final results.

VZERO RP there are more cases to be considered:

• in case we can only get the amplitude from each VZERO cell, these cor-
relations are very difficult to separate but part of these can be accounted
for via the event plane flattening procedure;

• what is important is that, due the fact that the acceptance of the VZERO
and the muon spectrometer partly overlap, there are both near-side and
away-side correlations between the muon spectrometer and V0C and
V0A, respectively;
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• these correlations also bias the results from other methods when using
the VZERO for the RP;

• at present, the only way to check the effects from these correlations is to
compare the results obtained with the VZERO RP and those from the
standard TPC RP. If the differences are small, we just treat this bias as
a systematic uncertainty.

9.3.1.3 Event Plane Resolution

Figure 9.17: The 2nd order event-plane resolution for standard TPCsa RP (left)
and VZERO RP (right) as a function of centrality. See text for more details.

One of the most popular method used to estimate the event-plane resolution is
based on the event-by-event fluctuations [202, 351]. The procedure is similar to that
used to derive Eq. (9.28). To implement this method with data, the following steps
are used:

1. in each event, separate the RP into two random sub-events a and b. Then
calculate Ψa

2 and Ψb
2 event-by-event;

2. calculate < cos 2(Ψa
2 −Ψb

2) > for events within a same centrality class;

3. solve the following equation:

< cos 2(Ψa
2 −Ψb

2) >=
π

8
χ2e−χ

2/2[I0(
χ2

4
) + I1(

χ2

4
)]2, (9.95)

and get the value of χ in each centrality region;

4. the event-plane resolution in a given centrality class is

< cos 2(Ψ2 −ΨR) >=

√
π

2
χe−χ

2/2[I0(
χ2

2
) + I1(

χ2

2
)]. (9.96)

Eq. (9.95) and Eq. (9.96) are only valid for the 2nd order harmonic. For other order
harmonics, one should follow the procedure in [351] and calculate them by hand.
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The left plot in Fig. 9.17 shows the event-plane resolution for standard TPCsa
tracks, estimated with the random sub-event technique, as a function of centrality.
In this plot, the result labeled as "Oll" is from the standard method using Eq. (9.95)
and Eq. (9.96). It is compared to results from another two methods labeled as and
"Dan" [336] and "Nor" [339]. In the "Dan" method, the event-plane resolution is
estimated as:

< cosn(Ψn −ΨR) >= cos
n

2
(Ψa

n −Ψb
n). (9.97)

The "Nor" method gives the event-plane resolution via 9:

< cosn(Ψn −ΨR) >=
√

2 · cosn(Ψa
n −Ψb

n). (9.99)

The right plot in Fig. 9.17 shows the event-plane resolution of the VZERO RP
with random sub-events from the standard method in Eq. (9.95) and Eq. (9.96) as a
function of centrality. By comparing these results with the corresponding ones from
the standard TPCsa RP, we can find that the standard TPCsa RP gives a worse
event-plane resolution compared to that from the VZERO RP. This could be due to
fluctuations in the event-plane distributions with standard TPCsa RP (Fig. 9.11)
which are larger than that from the VZERO RP (Fig. 9.16).

9.3.2 Configurations of Other Methods

Compared to the correction with the EP method, the configurations of other
methods are more easier. Thanks to the developers of the Flow Package, the cor-
rections of the NUA correlations for the SP, the GFC and the QC methods, are
implemented numerically in AliRoot. The LYZ method does not need to be cor-
rected for NUA correlations. Also, we do not implement the particle weights in the
above methods.

Concerning the SP method, its configuration is more straightforward. In this
method, the η sub-events are separated as |∆η| > 1 with the standard TPCsa RP.
In the case of the VZERO RP, they are separated according to V0A and V0C.

In the following, we will discuss some control plots from the GFC, the QC and
the LYZ methods to check if these methods can be used in our analysis.

9.3.2.1 Generating Function Cumulants

As mentioned, the calculation of the cumulants in the GFC method depends
on the numerical interpolation of pmax × qmax complex-value points with the initial
value r0 in Eq. (9.61). The first task in the implementation of the GFC method
is to test the stability of the results with different values of r0. The left plot of
Fig. 9.18 shows the c2{2} distribution as a function of centrality with r0 = 2.2, 1

and 4 for standard TPCsa tracks. Despite the values of r0 change in a large range
9Indeed, this method only gives the upper limit of the event-plane resolution,

< cosn(Ψn −ΨR) >≤
√

2 · cosn(Ψa
n −Ψb

n). (9.98)
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Figure 9.18: Left: the 2nd order integrated cumulant c2{2} distributions as a func-
tion of centrality with different values of r0 as labeled in the plot. Right: the
integrated cumulant distribution as a function of the cumulant order in different
centrality regions. The results are obtained with the standard TPCsa RP.

(∼ 100%), the results of the cumulants are exactly the same. This proves that the
GFC method is stable with the standard TPCsa RP.

Figure 9.19: The integrated Q-cumulant
distributions as a function of the cumulant
orders in different centrality classes with the
standard TPCsa RP.

The right plot of Fig. 9.18 presents
the integrated cumulant distribution
as a function of the cumulant order
in different centrality regions. We can
see that, in each centrality region, only
the 2nd order of the integrated cu-
mulant c2{2} has a finite value while
the others vanish. These results mean
that, with this condition, only the 2nd
order of integrated cumulants can be
used to calculate the differential flow
of inclusive muons.

We also observe that all order of
cumulants vanish with the VZERO
RP, despite many different kinds
of configurations have been tested.
Then, the conclusion for GFC method
is that, even the value of cumulants

are insensitive with the value of the parameter r0, they can only be implemented
with the standard TPCsa RP and the corresponding differential flow of inclusive
muons can only be calculated with the 2nd order cumulants.

9.3.2.2 Q-Cumulants Method

Fig. 9.19 shows the integrated Q-cumulant distribution as a function of the
cumulant order in different centrality classes with the standard TPCsa RP. These
results show that, in the QC method, the cumulants are validated up to the 4th
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Figure 9.20: |Gθn(ir)| as a function of r with the standard TPCsa RP from sum
generating function (left) and product generating function (right), respectively. The
results are shown in different centrality regions as labeled in each plot.

Figure 9.21: The same as Fig. 9.20, but with the VZERO RP.

order with the standard TPCsa RP. Then the corresponding differential flow of the
inclusive muons can be determined according to the integrated flow up to this order.

Again, as it is the case with the GFC method, when we use the VZERO RP, all
integrated cumulants vanish. In this case, none of the GFC and the QC methods
can be used with the VZERO RP. The problem of implementing the cumulants
methods with VZERO RP is still under investigation.

9.3.2.3 Lee-Yang-Zeroes Method

In the LYZ method, the integrated flow is determined by the position of the
first minimum of |Gθn(ir)|. To check if the LYZ method can be used, one should
first plot |Gθn(ir)| as a function of r. Fig. 9.20 and Fig. 9.21 show these results
with both the standard TPCsa RP and the VZERO RP, respectively, in different
centrality regions. In each case, the results from the sum generating function and
those from the product generating function are presented. One can see that, with the
standard TPCsa RP, both the sum generating function LYZ method and the product
generating function LYZ method are validated since there are obvious minimum
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positions in each case. With the VZERO RP, clear minima only appear with the
sum generating function while with the product generating function there is no
minimum and the distributions in all centrality classes are the same. The results
show that only the sum generating function LYZ can be implemented with the
VZERO RP.

9.4 Results and Discussions

According to the study presented in Sec. 9.3, the status of the different flow
analysis methods with the standard TPCsa RP and VZERO RP is summarized in
Tab. 9.1 10.

status standard TPCsa RP corrected VZERO RP

V2{EP} √ √

V2{SP} √ √

V2{GFC, 2} √ ×
V2{GFC, 4} × ×
V2{QC, 2} √ ×
V2{QC, 4} √ ×

V2{LYZ, SUM} √ √

V2{LYZ,PROD} √ ×

Table 9.1: The status of the different flow analysis methods with the standard
TPCsa RP and the VZERO RP.

9.4.1 Preliminary Results

In all the validated cases in Tab. 9.1: the event plane distribution with standard
TPCsa RP is not very flat after the flattening procedure. The GFC method always
gives very large error bars [352]. All these issues are still presently under study. In
the final results, we exclude these two cases.

In Fig. 9.22, the pt-dependence of v2 for inclusive muons with different analysis
methods and different kinds of RP are compared together in four centrality classes.
The LYZ methods, with both sum and product generating functions, are not vali-
dated in the most central (0 − 10%) and most peripheral (40 − 80%) collisions. In
the two intermediate centrality bins (10−20% and 20−40%), the LYZ methods give
results very similar to those from the 4th order of QC method. The results from
the LYZ and 4th order of QC methods are systematically lower than those from
other methods since they allow to reject almost all non-flow correlations. Also, flow
fluctuations could be responsible for the observed trends. In all cases, the v2 from

10"
√
" means validated and "×" means not validated.
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Figure 9.22: The pt-dependence of v2 for inclusive muons with different analysis
methods and different kinds of RP in four centrality classes.

Figure 9.23: The same as Fig. 9.22, but the results are integrated over pt and shown
as a function of centrality.

the 2nd order of the QC method gives smaller results than the SP method. This
was expected since the 2nd order of the QC method rejects non-flow correlations
up to the 2nd order but in the SP method non-flow correlations are only partly
rejected via the η sub-events. Within uncertainties, all results from different cases
are consistent with each other. We note that the large fluctuations in the high pt
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region are due to a lack of statistics.

Figure 9.24: The mean values of the results in Fig. 9.23 for pt > 4 GeV/c.

Fig. 9.23 shows the v2 of inclusive muons integrated over pt and as a function
of centrality with different analysis methods and RPs. Results from different cases
are similar to those in Fig. 9.22. These results exhibit a systematic trend: from the
most central collisions to the most peripheral ones, v2 increases, reach a maximum
value for semi-central collisions, and then decreases. This is due to the fact that v2

results from the asymmetric pressure gradient in the initial stage of the collisions.
In the most central and most peripheral collisions, the asymmetry of the initial
system is small and makes the values of v2 smaller. The systematic trend in the v2

of inclusive muons in Fig. 9.23 show hints that a thermalized partonic phase was
formed in Pb–Pb collisions at

√
sNN = 2.76 TeV.

The mean values of v2 in Fig. 9.23 for pt > 4 GeV/c are shown in Fig. 9.24.
According to the study presented in Chap. 8, in this high pt region, muons from
heavy flavour decays dominate. From this figure, one can see that v2 does not depend
on the collision centrality for centrality classes > 10%. Also, in this high pt region,
v2 is believed to be controlled by the path length dependence of parton energy loss
in the QCD medium. To systematically investigate this interesting property, we are
going to analyse more statistics from the Pb–Pb data taken in 2011.
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9.4.2 Discussion

With the LHC10h pass 2 data, we studied the v2 of inclusive muons according
to the following steps:

1. implementation the muon selection cuts in the flow package;

2. investigation of the strategy for the event-plane flattening, especially for the
VZERO RP;

3. test if the different flow analysis methods with both the standard TPCsa RP
and the VZERO RP can be applied;

4. extract preliminary results of v2 for inclusive muons.

Also, there are many outlooks:

• check the results with more statistics using the Pb–Pb data taken in 2011 with
muon triggered events;

• investigate whether there is any bias to determine the RP in muon triggered
events;

• improve the event-plane flattening for the standard TPCsa RP;

• validate the cumulant methods and the LYZ method with the product gener-
ating function for the VZERO RP. This is quite important if the analysis in
the future is based on muon triggered events;

• develop the strategy to extract the flow of muons from open heavy flavour
decays from the results of inclusive muons.

For what concerns the last item, Fig. 9.24 shows that one possible way is to
apply a high pt cut. There could be two possible ways to obtain the results at lower
pt:

• use the measured flow of light hadrons and extrapolate it in the acceptance of
muon spectrometer to estimate the flow of background muons [353];

• since muons from open heavy flavour decays are mainly located in the low
DCA region, the flow measured for DCA larger than a given value could be
used to measure the flow from the background muons [354].

According to above two proposals, if the flow from the background muons vbkg
n

can be estimated, and if we can know the fraction of background fbkg from other
approaches, eg. the vertex unfolding method [297, 282], then flow of muons from
open heavy flavour decay vµ←HF

n can be estimated as:

vµ←HF
n =

vinclusive µ
n − vbkg

n · fbkg

1− fbkg
, (9.100)

where vinclusive µ
n denotes the flow of inclusive muons as shown in Fig. 9.22 and

Fig. 9.23.
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Conclusion and Outlooks

In this thesis, after a general introduction on heavy ion collisions and QCD phase
transitions, we summarized the motivations for the study of open heavy flavours in
nucleon–nucleon, nucleon–nucleus and nucleus–nucleus collisions. In particular, we
emphasized the novelties at the LHC energies. Then we gave an overview of:

• the ALICE detector with a detailed description of the forward muon spec-
trometer;

• the ALICE online and offline frameworks;

• the offline analysis framework (for data and simulations) and, in particular,
the software developed for the study of heavy flavours.

After this general introduction on both theoretical and experimental aspects,
the work done in this thesis has been presented in five different parts.

First, we have shown a performance study, based on simulation, for the mea-
surement of D- and B-hadron production cross sections via the single muon and the
dimuon channels in pp collisions at

√
s = 14 TeV. We have started with an ideal

case, without background. We have used a procedure based on a combined fit to
separate the single muon and dimuon components from charm and beauty decays
from the total single muon pt distribution and dimuon invariant mass distribution,
respectively. After that, the pt distribution of open D- and B-hadrons have been ob-
tained by correcting the corresponding (di)muons pt (invariant mass) distributions
for the reconstruction efficiency of (di)muons in the ALICE muon spectrometer,
the kinematics of the open heavy flavour hadron semi-muonic decays and the decay
branching ratios. After normalization to the number of minimum bias events and
to the corresponding minimum bias cross section in pp collisions at

√
s = 14 TeV,

the pt-differential production cross sections of open D- and B-hadrons have been ob-
tained. The systematic uncertainty on the final results mainly come from two parts:
a first one from the combined fit to separate the muon components from open charm
and beauty hadron decays and a second one from the conversion of the (di)muon
pt (invariant mass) distributions to the pt-differential spectra at the hadron level.
The first uncertainty was estimated by performing combined fits with different fit
parameters. The second uncertainty was estimated by comparing results with cor-
rection factors from different shapes in order to mimic different model predictions.
The reconstructed production cross sections of open heavy flavour hadrons are in
very good agreement with the simulation inputs within errors. Furthermore, we
discussed the strategy to remove different background sources in the single muon
pt distribution. After implementation of the strategy in minimum bias simulations,
and background subtraction, we have repeated all above steps and obtained again



a nice agreement between the reconstructed pt-differential production cross section
of open heavy flavour hadrons and the input in the minimum bias simulations. The
final results show the ability of the ALICE muon spectrometer for reconstructing
the production cross section of open D- and B-hadrons via the (di)muon channels.
All the strategy used in this work give very important insights for the data analysis.

After this performance study, we have started analyzing the data in pp collisions
at
√
s = 900 GeV collected at the end of 2009. This first helped us to understand

some features in the data:

• event trigger classes and the detector cluster used to deliver different kinds of
event trigger;

• selection of physics events according to the offline physics selection;

• efficiency of the selection of muon tracks.

Furthermore, this study allowed to investigate the performance of the ALICE muon
spectrometer for physics analyses:

• reconstruction of muon tracks;

• behaviour of the background components;

• optimization of cuts used to reject the background.

With the findings from the study of this data sample, the incoming physics analysis
becomes more straightforward.

The data taken in pp collisions at
√
s = 7 TeV in 2010 offer sufficient statistics

for physics analysis. The physics aim at this stage was to measure the production
cross section of muons from open heavy flavour decays. We started with the study of
the data quality assurance (QA) and muon analysis by means of the ALICE official
physics event selection. Other conditions have been implemented at both event and
muon track levels in order to reject background not suitable for physics analyses.
After the event and the muon track selection, we have investigated the normaliza-
tion strategy of the selected data sample. As the data sample has been collected
with both minimum bias events and muon trigger events, the physics analysis has
been validated for both types of events. The strategy for the normalization has been
presented for these two samples, separately. What is important in the normalization
of minimum bias events is the pile-up correction. We introduced two independent
methods for this correction, one is based on applying the cuts of the reconstructed
pile-up vertex and another is based on the estimate of the pile-up factor according to
the CTP information. The later is more stable than the first one for the data taking
period where the pile-up effect is small. As the data taking periods which have the
largest pile-up effects are rejected by the QA selection, in the data analysis, we cor-
rected the pile-up effects with CTP information. The key point of the normalization
of muon triggered events is to estimate the corresponding number of the minimum
bias events for the used muon triggered data sample. Two methods can be used, the
CTP scaling method and the multiplicity scaling method. The advantage of the later
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is that it avoids to investigate the evolution of the CTP rate for different triggers
with the data taking time. In practice, we choose the multiplicity scaling method
to normalize the muon triggered events. After understanding all basic conditions,
the main part in this work was to subtract the background from the inclusive muon
spectrum. We decided to show the results for pt > 2 GeV/c since, according to
MC simulations the only dominant background component in this region is muons
from primary kaon and pion decays. The method used to estimate the yield of
this background in data is to get its predicted pt shape from models and normalize
it to data. The differences between different models and transport codes give the
corresponding systematic uncertainty. After the subtraction of the background and
efficiency correction via efficiency matrices built under realistic detector configura-
tions, the pt-differential production cross sections of muons from open heavy flavour
decays were obtained in five η bins. Then the η-differential production cross section
was obtained by integrating the results in these five η bins and the pt-differential
distribution in the acceptance of the muon spectrometer was obtained by adding the
results in the five different η bins. A good agreement has been observed between
data and FONLL predictions. Finally, we have also discussed an alternative method
to estimate the background. This consists in extrapolating the charged kaon and
pion spectra measured in the ALICE central barrel to forward rapidity in order to
get the decay muon spectra in the forward region via the MC simulations for the
decay kinematics. The results obtained with this background estimate strategy fully
agree with the ones from the previous method. The results from these studies give
the baseline for investigating nuclear effects on heavy flavour production in heavy-
ion collisions as well as for validating pQCD calculations in this new energy regime.
This work is published in Physics Letters B (see Appendix A).

The first heavy-ion run, Pb–Pb collisions at
√
sNN = 2.76 TeV, took place at the

LHC in the end of 2010. This allowed to study the suppression of high-pt muons from
open heavy flavour decays, which is thought to result from in-medium energy loss
of heavy quarks. After an introduction of the event and track selections in Pb–Pb
collisions, in particular of their differences compared to pp collisions, we illustrated
the principle of the centrality selection in data with the corresponding centrality
QA cuts. Then we focused on the background estimate in Pb–Pb collisions. Due to
unknown quenching effects in data which are hard to estimate from simulations, the
strategy for the background estimate here is quite different from that in pp collisions.
First, we assumed that the quenching strength in the central rapidity region is
the same as that at forward rapidity. Under this assumption, we extrapolated
the measured pt spectra of kaons and pions in different centrality classes in Pb–
Pb collisions from the ALICE central barrel region to the forward rapidity region.
We then have built, with fast simulations, the decay muon spectra in the forward
region in different centrality classes. At this step, to avoid the lack of input data
from the central barrel measurements, we have used the measured yield of K0

s to
estimate the yield of charged kaons, and derived those in all centrality classes using
the double ratio between the RAA of decay muons from kaons and pions and that
of muons from pion decays, in two centrality classes. After this, the difference
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of the quenching strength for charged hadrons between the central barrel and the
forward region has been estimated as an uncertainty of 100% (varying the estimated
yield of decay muons in different centrality regions from 0 to 100%). The nuclear
modification factor RAA of the signal muons has been obtained by dividing the
estimated spectra of muons from open heavy flavour decays (which was obtained
by subtracting the estimated decay muon background in each centrality class to the
corresponding inclusive muon spectrum) by the production cross section of heavy
flavour decay muons measured in pp collisions at

√
s = 2.76 TeV (analysed with the

same strategy as that implemented for the 7 TeV data). These results show a very
clear suppression which increases when the collisions become more and more central.
This suppression does not depend on transverse momentum for pt > 4 GeV/c. This
work is accepted as a publication of Physical Review Letters (see Appendix B).

Also, with the Pb–Pb data taken at the end of 2010, we have presented a first
measurement of the elliptic flow of inclusive muons. The motivation for this work
was to validate different flow analysis methods and to test the strategy for the
measurement of the flow of muons from heavy flavour decays. After the introduction
of different flow analysis methods, we illustrated our physics requirements. Then, the
preliminary results of the inclusive muon flow have been obtained by implementing
different flow analysis methods. The results from different method are in good
agreement with each other within errors. The results from this study are:

• different flow analysis methods have been systematically tested for muon flow
analysis;

• validation of the event plane flattening procedure for the VZERO amplitude;

• the stability of the cumulants methods and the Lee-Yang Zeros method have
been investigated;

• according to the results of the elliptic flow for inclusive muons, proposals for
getting the flow of muons from open heavy flavour decays have been detailed.

Of course, there are plenty of issues left for coming PhD students:

• in both pp and Pb–Pb collisions, the extraction of muons from open heavy
flavour decays is difficult to handle in the pt region where the background
level is large (we started at pt > 2 GeV/c and pt > 4 GeV/c in pp and Pb–Pb
collisions, respectively). One of the solution would be to estimate the decay
muon components by unfolding the vertex distribution with fits which take into
account the decay length of light hadrons. An alternative way to overcome
this problem is to study punch through hadrons in the muon spectrometer as
follows:

1. isolate punch through hadrons which are rejected by the matching of the
reconstructed tracks with the muon trigger tracks;

2. after the correction of the front absorber effect and detector efficiency
(this step could be quite similar to that implemented in the fast simu-
lation which has been used to estimate the decay muon background in
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Pb–Pb collisions), the charged hadron spectra in data in the forward
region could be reproduced;

3. use as input this reproduced spectra in the simulations with the realis-
tic detector configurations, then the spectra of both decay muons and
secondary muons could be estimated in data;

4. with such a strategy, the measurement of muons from open heavy flavour
decays could be done in all the pt range (but one should be careful about
the tracking efficiency at low pt due to the 3 GeVc mean energy loss of
muon tracks in the front absorber);

5. furthermore, this procedure also should allow us measure the RAA of
charged hadrons.

• The background subtraction for muon elliptic flow is not as straightforward as
that for identified particles as one should know both the fraction of background
and the magnitude of flow of the background. Some proposals on this topic
are given in Sec. 9.4.2.

• With the high statistics in both pp and Pb–Pb collisions taken in 2011 and
2012 (until now), we can start to study W physics with the muon spectrometer.
The main challenge is not to extract the W signals, but the present momentum
resolution in the high pt region that should be improved and a better alignment
is needed.

The final words to the young and ambitious researchers: enjoy life during
your PhD career in heavy-ion physics!
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compared to predictions based on perturbative QCD calculations.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The study of heavy flavour (charm and beauty) production in
proton–proton collisions at LHC (Large Hadron Collider) energies
provides an important test of perturbative QCD (pQCD) calcula-
tions [1,2] in a new energy domain, where unprecedented small
Bjorken-x (momentum fraction) values are probed. In the rapid-
ity region 2.5 < y < 4, charm (beauty) production at

√
s = 7 TeV

is expected to be sensitive to x values down to about 6 · 10−6

(2 · 10−5). Important progress has been achieved in the under-
standing of heavy flavour production at lower energies. In earlier
measurements, the beauty production cross section in pp collisions
at

√
s = 1.8 TeV measured by the CDF and D0 experiments [3,4] at

the FNAL Tevatron, was found to be higher than Next-to-Leading
Order (NLO) pQCD predictions [1]. More recent results from the
CDF Collaboration [5], for pp collisions at

√
s = 1.96 TeV, are de-

scribed well by Fixed Order Next-to-Leading Log (FONLL) [6,7]
and NLO [8] pQCD calculations. The charm production cross sec-
tion measured at the FNAL Tevatron [9] is also well reproduced
by FONLL [10] and GM-VFN [11] calculations within experimen-
tal and theoretical uncertainties, although at the upper limit of the
calculations. The PHENIX and STAR Collaborations [12,13] at the
RHIC (Relativistic Heavy Ion Collider) measured the production of
muons and electrons from heavy flavour decays in pp collisions at√

s = 0.2 TeV. The upper limit of FONLL pQCD calculations [14] is
consistent with the measurement of electrons from heavy flavour
decays in the mid-rapidity region, while in the forward rapid-
ity region the production of muons from heavy flavour decays is

✩ © CERN for the benefit of the ALICE Collaboration.

underestimated by the model calculations. Furthermore, at LHC en-
ergies, the ATLAS [15], LHCb [16] and CMS [17,18] Collaborations
reported on the measurement of beauty production in pp collisions
at

√
s = 7 TeV. The results are consistent with NLO pQCD calcula-

tions within uncertainties. A similar agreement with FONLL calcu-
lations is also observed for mid-rapidity electrons and muons from
heavy flavour decays, measured by the ATLAS experiment [19] in
pp collisions at

√
s = 7 TeV. In this respect, it is particularly inter-

esting to perform the measurement of heavy flavour decay muon
production in the forward rapidity region at the LHC and compare
it with theoretical models.

The investigation of heavy flavour production in pp collisions
also constitutes an essential baseline for the corresponding mea-
surements in heavy ion collisions. In the latter, heavy quarks are
produced at early stages of the collision and then experience the
full evolution of the extremely hot and dense, strongly interacting
medium [20,21]. The modification of the heavy flavour transverse
momentum distributions measured in heavy ion collisions with
respect to those measured in pp collisions is considered as a sen-
sitive probe of this medium [22,23].

Finally, the study of heavy flavour production is also impor-
tant for the understanding of quarkonium production, both in pp,
p–nucleus and nucleus–nucleus collisions [20,21].

The ALICE experiment [24] measures the heavy flavour pro-
duction at mid-rapidity through the semi-electronic decay chan-
nel [25] and in a more direct way through the hadronic D-meson
decay channel [26], and at forward rapidity through the semi-
muonic decay channel. In this Letter, we present the measure-
ment of differential production cross sections of muons from
heavy flavour decays in the rapidity range 2.5 < y < 4 and trans-
verse momentum range 2 < pt < 12 GeV/c, with the ALICE muon

0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2012.01.063
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spectrometer [24], in pp collisions at
√

s = 7 TeV. The results are
compared to FONLL pQCD calculations [2,27].

The Letter is organized as follows. Section 2 consists of an
overview of the ALICE experiment with an emphasis on the muon
spectrometer and a description of data taking conditions. Section 3
is devoted to the analysis strategy: event and track selection, back-
ground subtraction, corrections, normalization and determination
of systematic uncertainties. Section 4 addresses the experimental
results: pt- and y-differential production cross sections of muons
from heavy flavour decays at forward rapidity, and comparisons to
FONLL pQCD predictions. Conclusions are given in Section 5.

2. The ALICE experiment and data taking conditions

A detailed description of the ALICE detector can be found
in [24]. The apparatus consists of two main parts: a central
barrel (pseudo-rapidity coverage: |η| < 0.9) placed in a large
solenoidal magnet (B = 0.5 T), which measures hadrons, electrons
and photons, and a muon spectrometer (−4 < η < −2.51). Several
smaller detectors for global event characterization and triggering
are located in the forward and backward pseudo-rapidity regions.
Amongst those, the VZERO detector is used for triggering purposes
and in the offline rejection of beam-induced background events. It
is composed of two scintillator arrays placed at each side of the
interaction point and covering 2.8 < η < 5.1 and −3.7 < η < −1.7.
The central barrel detector used in this work for the interaction
vertex measurement is the Silicon Pixel Detector (SPD), the inner-
most part of the Inner Tracking System (ITS). The SPD consists
of two cylindrical layers of silicon pixels covering |η| < 2.0 and
|η| < 1.4 for the inner and outer layer, respectively. The SPD is
also used in the trigger logic.

The muon spectrometer detects muons with momentum larger
than 4 GeV/c and is composed of two absorbers, a dipole magnet
providing a field integral of 3 Tm, and tracking and trigger cham-
bers. A passive front absorber of 10 interaction lengths (λI), made
of carbon, concrete and steel, is designed to reduce the contribu-
tion of hadrons, photons, electrons and muons from light hadron
decays. A small angle beam shield (θ < 2◦), made of tungsten,
lead and steel, protects the muon spectrometer against secondary
particles produced by the interaction of large-η primary parti-
cles in the beam pipe. Tracking is performed by means of five
tracking stations, each composed of two planes of Cathode Pad
Chambers. Stations 1 and 2 (4 and 5) are located upstream (down-
stream) of the dipole magnet, while station 3 is embedded inside
the dipole magnet. The intrinsic spatial resolution of the tracking
chambers is better than 100 μm. Two stations of trigger chambers
equipped with two planes of Resistive Plate Chambers each are lo-
cated downstream of the tracking system, behind a 1.2 m thick
iron wall of 7.2 λI . The latter absorbs most of the hadrons that
punch through the front absorber, secondary hadrons produced in-
side the front absorber and escaping it and low momentum muons
(p < 4 GeV/c). The spatial resolution of the trigger chambers is
better than 1 cm and the time resolution is about 2 ns. Details
concerning track reconstruction can be found in [28,29].

The results presented in this publication are based on the anal-
ysis of a sample of pp collisions at

√
s = 7 TeV collected in 2010,

corresponding to an integrated luminosity of 16.5 nb−1.
The data sample consists of minimum bias trigger events (MB)

and muon trigger events (μ-MB), the latter requiring, in addition

1 The muon spectrometer covers a negative pseudo-rapidity range in the ALICE
reference frame. η and y variables are identical for muons in the acceptance of
the muon spectrometer, and in pp collisions the physics results are symmetric with
respect to η (y) = 0. They will be presented as a function of y, with positive values.

to the MB trigger conditions, the presence of one muon above a
transverse momentum (pt) threshold that reaches the muon trig-
ger system. The MB trigger is defined as a logical OR between the
requirement of at least one hit in the SPD and a hit in one of the
two VZERO scintillator arrays. It also asks for a coincidence be-
tween the signals from the two beam counters, one on each side
of the interaction point, indicating the passage of bunches. This
corresponds to at least one charged particle in 8 units of pseudo-
rapidity. The logic of the μ-MB trigger requires hits in at least
three (out of four possible) trigger chamber planes. The estimate of
the muon transverse momentum is based on the deviation of the
measured track with respect to a straight line coming from the in-
teraction point, in the bending plane (plane measuring the position
along the direction perpendicular to the magnetic field). By apply-
ing a cut on this deviation, tracks above a given pt threshold are
selected. The pt threshold allows the rejection of soft background
muons mainly coming from pion and kaon decays, and also to limit
the muon trigger rate when high luminosities are delivered at the
interaction point. In the considered data taking period, the pt trig-
ger threshold was set to its minimum value of about 0.5 GeV/c
and the corresponding muon trigger rate varied between about
40 and 150 Hz. The instantaneous luminosity at the ALICE inter-
action point was limited to 0.6–1.2 · 1029 cm−2 s−1 by displacing
the beams in the transverse plane by 3.8 times the r.m.s. of their
transverse profile. In this way, the probability to have multiple MB
interactions in the same bunch crossing is kept below 2.5%.

The alignment of the tracking chambers, a crucial step for
the single muon analysis, was carried out using the MILLEPEDE
package [30], by analyzing tracks without magnetic field in the
dipole and solenoidal magnet. The corresponding resolution is
about 300 μm in the bending plane, for tracks with pt > 2 GeV/c.
With such alignment precision, the relative momentum resolution
of reconstructed tracks ranges between about 1% at a momentum
of 20 GeV/c and 4% at 100 GeV/c.

3. Data analysis

The single muon analysis was carried out with muon trigger
events while, as will be discussed in Section 3.4, minimum bias
trigger events were used to convert differential muon yields into
differential cross sections. The identification of muons from charm
and beauty decays in the forward region is based on the pt distri-
bution of reconstructed tracks. Three main background contribu-
tions must be subtracted and/or rejected:

– decay muons: muons from the decay of primary light hadrons
including pions and kaons (the main contribution) and other
meson and baryon decays (such as J/ψ and low mass reso-
nances η, ρ , ω and φ);

– secondary muons: muons from secondary light hadron decays
produced inside the front absorber;

– punch-through hadrons and secondary hadrons escaping the
front absorber and crossing the tracking chambers, which are
wrongly reconstructed as muons.

A Monte Carlo simulation based on the GEANT3 transport code
[31,32] and using the PYTHIA 6.4.21 event generator [33,34] (tune
Perugia-0 [35]) was performed to obtain the pt distributions of
these different contributions. They are displayed in Fig. 1 after all
the selection cuts discussed in Section 3.1 were applied. After cuts,
the component of muons from heavy flavour decays prevails over
the background contribution for pt � 4 GeV/c. The simulation re-
sults indicate that the hadronic background and the contribution of
fake tracks (tracks which are not associated to one single particle
crossing the whole spectrometer) are negligible. The component of
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Fig. 1. Transverse momentum distribution of reconstructed tracks in the muon spec-
trometer after all selection cuts were applied (see Section 3.1 for details). The dis-
tributions were obtained from a PYTHIA [33,34] (tune Perugia-0 [35]) simulation of
pp collisions at

√
s = 7 TeV. The main sources are indicated in the figure.

muons from W± and Z0 decays, which dominates in the pt range
30–40 GeV/c [36,19], is not considered in this analysis. This con-
tribution is negligible in the pt range of interest 2–12 GeV/c.

3.1. Data sample: event and track selection

The data sample used in the physics analysis amounts to
1.3 · 107 μ-MB trigger events. These selected events satisfied the
quality criteria on detector conditions during data taking and the
analysis quality criteria, which reduced the beam-induced back-
ground. This was achieved by using the timing information from
the VZERO and by exploiting the correlation between the number
of hits and track segments in the SPD. The accepted events have at
least one interaction vertex reconstructed from hits correlation in
the two SPD layers. The corresponding total number of tracks re-
constructed in the muon spectrometer is 7.8 ·106. Various selection
cuts were applied in order to reduce the background contribu-
tions in the data sample. Tracks were required to be reconstructed
in the geometrical acceptance of the muon spectrometer, with
−4 < η < −2.5 and 171◦ < θabs < 178◦ , θabs being the track polar
angle measured at the end of the absorber. These two cuts re-
ject about 9% of tracks. Then, the track candidate measured in the
muon tracking chambers was required to be matched with the cor-
responding one measured in the trigger chambers. This results in a
very effective rejection of the hadronic component that is absorbed
in the iron wall. This condition is fulfilled for a large fraction of re-
constructed tracks since the analysis concerns μ-MB trigger events.
The fraction of reconstructed tracks that are not matched with a
corresponding one in the trigger system is about 5%. For compar-
ison, in MB collisions this fraction is about 64%. Furthermore, the
correlation between momentum and Distance of Closest Approach
(DCA, distance between the extrapolated muon track and the in-
teraction vertex, in the plane perpendicular to the beam direction
and containing the vertex) was used to remove remaining beam-
induced background tracks which do not point to the interaction
vertex. Indeed, due to the multiple scattering in the front absorber,
the DCA distribution of tracks coming from the interaction vertex
is expected to be described by a Gaussian function whose width
depends on the absorber material and is proportional to 1/p. The
beam-induced background does not follow this trend and can be
rejected by applying a cut on p × DCA at 5σ , where σ is extracted
from a Gaussian fit to the p × DCA distribution measured in two
regions in θabs, corresponding to different materials in the front
absorber. This cut removes 0.4% of tracks, mainly located in the
high pt range (in the region pt > 4 GeV/c, this condition rejects
about 13% of tracks). After these cuts, the data sample consists of
6.67 · 106 muon candidates.

The measurement of the heavy flavour decay muon production
is performed in the region pt > 2 GeV/c where the contribution
of secondary muons is expected to be small (about 3% of the total
muon yield, see Fig. 1). In such a pt region the main background
component consists of decay muons and amounts to about 25% of
the total yield (see Fig. 1).

3.2. Subtraction of the background contribution of decay muons

The subtraction of the background component from decay
muons (muons from primary pion and kaon decays, mainly)
is based on simulations, using PYTHIA 6.4.21 [33,34] (tune
Perugia-0 [35]) and PHOJET 1.12 [37] as event generators. In or-
der to avoid fluctuations due to the lack of statistics in the high pt
region in the Monte Carlo generators, the reconstructed pt distri-
bution of decay muons, obtained after all selection cuts are applied
(Section 3.1), is fitted using

dN

dpt

μ←decay

= a

(p2
t + b)c

, (1)

where a, b and c are free parameters. The fits are performed in
five rapidity intervals, in the region 2.5 < y < 4. The normalization
is done assuming that the fraction of decay muons in the data
is the same as the one in the simulations, in the region where
this component is dominant (pt < 1 GeV/c). Finally, the (fitted) pt
distribution is subtracted from the measured muon pt distribution.
The subtracted pt distribution is the mean of the pt distributions
from the PYTHIA and PHOJET event generators.

The total systematic uncertainty due to this procedure in-
cludes contributions from the model input and the transport code
(GEANT3 [31,32]). The former takes into account the shape and
normalization of the pt distribution of decay muons, and the ob-
served difference in the K±/π± ratio as a function of pt in the
mid-rapidity region [38] between ALICE data and simulations. The
results show that both PYTHIA (tune Perugia-0) and PHOJET un-
derestimate this ratio by about 20%. The corresponding uncertainty
due to this difference between data and simulations is propagated
to the muon yield in the forward rapidity region. The effect of
the transport code is estimated by varying the yield of secondary
muons within 100% in such a way to provide a conservative esti-
mate of the systematic uncertainty on the secondary particle pro-
duction in the front absorber. The systematic uncertainty from the
model input varies from about 7% to 2% as y increases from 2.5
to 4, independently of pt, while the one from the transport code
depends both on y and pt and ranges from 4% (3.7 < y < 4) to
a maximum of 34% (pt = 2 GeV/c and 2.5 < y < 2.8). The cor-
responding values of these systematic uncertainties as a function
of pt and y are summarized in Table 1. They are added in quadra-
ture in the following.

3.3. Corrections

The extracted yields of muons from heavy flavour decays are
corrected for acceptance, reconstruction and trigger efficiencies by
means of a simulation modelling the response of the muon spec-
trometer. The procedure is based on the generation of a large
sample of muons from beauty decays by using a parameteriza-
tion of NLO pQCD calculations [29]. The tracking efficiency takes
into account the status of each electronic channel and the residual
mis-alignment of detection elements. The evolution of the track-
ing efficiency over time is controlled by weighting the response
of electronic channels as a function of time. The typical value of
muon tracking efficiency is about 93%. The efficiencies of the muon
trigger chambers are obtained directly from data [28] and em-
ployed in the simulations. The typical value of such efficiencies
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Table 1
Systematic uncertainties introduced by the procedure used for the subtraction of decay muons. MC and transport refer to the systematic uncertainty due to model input and
transport code, respectively. See the text for details.

MC Transport

pt (GeV/c)

[2.0;2.5] [2.5;3.0] [3.0;3.5] [3.5;4.0] [4.0;4.5] [4.5;5.0] >5.0

2.5 < y < 2.8 7% 34% 22% 20% 16% 12% 10% 6%
2.8 < y < 3.1 5.5% 22% 18% 14% 12% 10% 8% 6%

3.1 < y < 3.4 4.5% 10% 9% 8% 7% 6%

3.4 < y < 3.7 3.0% 6%
3.7 < y < 4.0 2.0% 4%

Fig. 2. Acceptance × efficiency as a function of generated pt , obtained from a sim-
ulation of muons from beauty decays.

is about 96%. Fig. 2 shows the resulting acceptance and efficiency
(A × ε) as a function of generated pt. The global A × ε increases
significantly up to about 2 GeV/c and tends to saturate at a value
close to 90%.

The systematic uncertainty corresponding to the sensitivity of
A × ε on the input pt and y distributions was estimated by
comparing the results with those from a simulation using muons
from charm decays. This amounted to less than 1% and was ne-
glected. The accuracy in the detector modelling introduces a sys-
tematic uncertainty estimated to be 5%, by comparing the values
of trigger and tracking efficiencies extracted from data and simu-
lations [28].

The distortion of the measured pt distribution, dominated in
the high pt region by the effect of residual mis-alignment, is also
corrected for by introducing in the simulation a residual mis-
alignment of the same order of magnitude as in the data. However,
this residual mis-alignment is generated randomly. A pt depen-
dent relative systematic uncertainty on the muon yield of 1% × pt
(in GeV/c) is considered in order to take into account the differ-
ences between the real (unknown) residual mis-alignment and the
simulated one. This is a conservative value determined by compar-
ing the reconstructed pt distribution with or without including the
residual mis-alignment.

3.4. Production cross section normalization

The differential production cross section is obtained by normal-
izing the corrected yields of muons from heavy flavour decays to
the integrated luminosity. Since the yields have been extracted us-
ing μ-MB trigger events, the differential production cross section
is calculated according to

d2σμ±←HF

dpt dy
= d2Nμ±←HF

dpt dy
× Nμ±

MB

Nμ±
μ-MB

× σMB

NMB
, (2)

where:

–
d2 Nμ±←HF

dpt dy is the pt- and y-differential yield of muons from
heavy flavour decays;

– Nμ±
MB and Nμ±

μ-MB are the numbers of reconstructed tracks that
satisfy the analysis cuts in MB and μ-MB trigger events, re-
spectively;

– NMB is the number of minimum bias collisions corrected as
a function of time by the probability to have multiple MB
interactions in a single bunch crossing, and σMB is the cor-
responding measured minimum bias cross section.

σMB is derived from the σVZERO-AND cross section [39] measured
with the van der Meer scan method [40]. The VZERO-AND condi-
tion is defined as a logical AND between signals in the two VZERO
scintillator arrays. Such a combination allows one to reduce the
sensitivity to beam-induced background. The σVZERO-AND/σMB ra-
tio is the fraction of minimum bias events where the VZERO-AND
condition is fulfilled. Its value is 0.87 and it remains stable
within 1% over the analyzed data sample. This gives σMB = 62.5 ±
2.2 (syst.) mb. The statistical uncertainty is negligible, while the
3.5% systematic uncertainty is mainly due to the uncertainty on
the beam intensities [41] and on the analysis procedure related
to the van der Meer scan of the VZERO-AND signal. Other ef-
fects, such as oscillation in the ratio between MB and VZERO-AND
counts, contribute less than 1%.

3.5. Summary of systematic uncertainties

The systematic uncertainty on the measurements of the pt-
and y-differential production cross sections of muons from heavy
flavour decays accounts for the following contributions discussed
in the previous sections:

– background subtraction: from about 5% (3.7 < y < 4) to
a maximum of 35% (2.5 < y < 2.8, pt = 2 GeV/c), see Sec-
tion 3.2 and Table 1;

– detector response: 5% (Section 3.3);
– residual mis-alignment: 1% × pt (Section 3.3);
– luminosity measurement: 3.5% (Section 3.4).

The resulting systematic uncertainty, in the rapidity region
2.5 < y < 4, varies between 8–14% (the 3.5% systematic uncer-
tainty on the normalization is not included).

4. Results and model comparisons

The measured differential production cross sections of muons
from heavy flavour decays as a function of pt in the rapidity re-
gion 2.5 < y < 4 and as a function of y in the range 2 < pt <

12 GeV/c are displayed in Fig. 3 (circles), left and right panels,
respectively. The error bars (which are smaller than symbols in
most of the pt and y bins) represent the statistical uncertain-
ties. The boxes correspond to the systematic uncertainties. The
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Fig. 3. Left: pt-differential production cross section of muons from heavy flavour decays in the rapidity range 2.5 < y < 4. Right: y-differential production cross section
of muons from heavy flavour decays, in the range 2 < pt < 12 GeV/c. In both panels, the error bars (empty boxes) represent the statistical (systematic) uncertainties.
A 3.5% normalization uncertainty is not shown. The solid curves are FONLL calculations and the bands display the theoretical systematic uncertainties. Also shown, are the
FONLL calculations and systematic theoretical uncertainties for muons from charm (long dashed curves) and beauty (dashed curves) decays. The lower panels show the
corresponding ratios between data and FONLL calculations.

systematic uncertainty on σMB is not included in the boxes. The
results are compared to FONLL predictions [2,27] (black curve and
shaded band for the systematic uncertainty). The central values
of FONLL calculations use CTEQ6.6 [42] parton distribution func-
tions, a charm quark mass (mc) of 1.5 GeV/c2, a beauty quark
mass (mb) of 4.75 GeV/c2 and the renormalization (μR) and fac-
torization (μF) QCD scales such that μR/μ0 = μF/μ0 = 1 (μ0 =
mt,q =

√
p2

t + m2
q ). The theoretical uncertainties correspond to the

variation of charm and beauty quark masses in the ranges 1.3 <

mc < 1.7 GeV/c2 and 4.5 < mb < 5.0 GeV/c2, and QCD scales in
the ranges 0.5 < μR/μ0 < 2 and 0.5 < μF/μ0 < 2 with the con-
straint 0.5 < μF/μR < 2. The FONLL predictions for muons from
beauty decays include the components of muons coming from
direct b-hadron decays and from b-hadron decays via c-hadron
decays (e.g. B → D → μ channel). The uncertainty band is the en-
velope of the resulting cross sections. The ratios between data and
FONLL predictions are shown in the bottom panels. A good de-
scription of the data is observed within uncertainties, for both the
pt distribution (up to 12 GeV/c) and the y distribution (in the
pt range from 2 to 12 GeV/c). The measured production cross sec-
tions are systematically larger than the central values of the model
predictions. The ratio of data over central values of FONLL cal-
culations as a function of pt and y is about 1.3 over the whole
pt and y ranges. This is consistent with the ALICE measurements
of the pt-differential production cross sections of D mesons [26]
in the central rapidity region. The CMS and ATLAS Collaborations
made complementary measurements of the heavy flavour produc-
tion, with electrons and/or muons measured at mid-rapidity in
pp collisions at

√
s = 7 TeV [18,19]. The production of muons from

beauty decays, measured by the CMS Collaboration in |η| < 2.1 and
at high pt (pt > 6 GeV/c), exhibits a similar agreement with NLO
pQCD calculations within uncertainties: the data points lie in the
upper limit of the model predictions. The results from the ATLAS
Collaboration concerning the production of muons and electrons
from heavy flavour decays in |η| < 2.0 (excluding 1.37 < |η| <

1.52) and in the region 7 < pt < 27 GeV/c are also consistent with
FONLL calculations.

The theoretical charm and beauty components are also dis-
played in Fig. 3. According to these predictions, the muon con-
tribution from beauty decays is expected to dominate in the range

pt � 6 GeV/c. In this region, it represents about 62% of the heavy
flavour decay muon cross section.

A similar comparison between data and FONLL calculations was
performed in five rapidity intervals from y = 2.5 to y = 4 (Fig. 4,
upper panels). The corresponding ratio of data over FONLL pre-
dictions is depicted in the lower panels of Fig. 4. The model cal-
culations provide an overall good description of the data up to
pt = 12 GeV/c in all rapidity intervals, within experimental and
theoretical uncertainties.

5. Conclusions

We have presented measurements of the differential production
cross sections of muons from heavy flavour decays in the rapid-
ity range 2.5 < y < 4 and transverse momentum range 2 < pt <

12 GeV/c, in pp collisions at
√

s = 7 TeV with the ALICE experi-
ment. The FONLL pQCD calculations are in good agreement with
data within experimental and theoretical uncertainties, although
the data are close to the upper limit of the model calculations.
Both the pt and y dependence of the heavy flavour decay muon
production cross section is well described by the model predic-
tions. The results provide an important baseline for the study of
heavy quark medium effects in nucleus–nucleus collisions.
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The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at

forward rapidity, 2:5< y< 4, in pp and Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN
p ¼ 2:76 TeV. The pt-differential

inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative

QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A

weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a

factor of about 3–4 is observed in 6< pt < 10 GeV=c. The suppression shows no significant pt

dependence.
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The study of ultrarelativistic heavy ion collisions is
aimed at investigating the properties of strongly interacting
matter in the extreme conditions of high temperature and
energy density expected to be reached. Under such con-
ditions, quantum chromodynamics (QCD) calculations on
the lattice predict the formation of a deconfined partonic
phase, the quark-gluon plasma, and chiral symmetry is
restored [1]. Heavy quarks (charm and beauty), abundantly
produced at the Large Hadron Collider (LHC), are sensi-
tive probes of the properties of the quark-gluon plasma.
Because of their large masses, they are created mainly in
hard scattering processes during the early stage of the
collision and subsequently interact with the hot and dense
medium. In particular, measurement of open heavy-flavor
hadrons may probe the energy density of the system
through the mechanism of in-medium energy loss of heavy
quarks. The in-medium effects are usually quantified by
means of the nuclear modification factor RAA of the trans-
verse momentum (pt) distribution. Using the nuclear over-
lap function from the Glauber model [2], RAA can be
expressed as

RAAðptÞ ¼ 1

hTAAi �
dNAA=dpt

d�pp=dpt

; (1)

where hTAAi is the average nuclear overlap function in a
given centrality class. The term dNAA=dpt is the
pt-differential yield in nucleus-nucleus (AA) collisions,
while d�pp=dpt is the pt-differential inclusive cross sec-

tion in pp collisions. The value of RAA is unity for hard
probes if no nuclear modification is present. A RAA value
smaller than unity can arise from partonic energy loss as

well as other nuclear effects. According to QCD, the
radiative energy loss of gluons should be larger than that
of quarks, and due to the dead cone effect [3–6], heavy
quark energy loss should be further reduced with respect to
that of light quarks. The contribution from other interaction
mechanisms, for instance collisional energy loss [7,8], in-
medium fragmentation, recombination, and coalescence
[9–11], could also lead to a modification of heavy-flavor
hadron pt distributions in AA collisions. Finally, initial
state effects [12,13] could complicate the interpretation
of any deviation from unity of the RAA in terms of energy
loss effects, particularly in the low pt region. The study of
p-A collisions is required to quantify the role of initial state
effects. The PHENIX and STAR Collaborations have re-
ported a strong suppression of electrons from heavy-flavor
decays at midrapidity, in central Au-Au collisions atffiffiffiffiffiffiffiffi
sNN
p ¼ 200 GeV at RHIC [14–17]. The PHENIX

Collaboration also measured a significant suppression of
muons from heavy-flavor decays at forward rapidity in
central Cu-Cu collisions at

ffiffiffiffiffiffiffiffi
sNN
p ¼ 200 GeV [18].

Recently, a significant suppression of D mesons [19] and
J=c ’s from B decays [20] was measured at midrapidity in
central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN
p ¼ 2:76 TeV by ALICE

and CMS at the LHC, respectively. A complementary
measurement of heavy-flavor suppression at forward ra-
pidity, at the same energy, is of great interest in order to
provide new constraints on models which aim at describing
the nuclear modification factor as partonic energy loss.
In this Letter, we report the first measurement at the

LHC of the production of muons from heavy-flavor decays
at forward rapidity (2:5< y < 4), with the ALICE experi-
ment [21], in pp and Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN
p ¼

2:76 TeV. The measured pt-differential inclusive cross
section of muons from heavy-flavor decays in pp colli-
sions at

ffiffiffi
s
p ¼ 2:76 TeV is compared to perturbative QCD

(pQCD) calculations. In-medium effects are investigated
by means of the nuclear modification factor as a function of

*Full author list given at the end of the article.
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pt in 4< pt < 10 GeV=c, and as a function of collision
centrality in 6<pt < 10 GeV=c.

The ALICE experiment is described in detail in [21].
The apparatus is composed of a central barrel (pseudora-
pidity coverage j�j< 0:9), a muon spectrometer (� 4<
�<�2:5 [22]), and a set of detectors for global collision
characterization and triggering located in the forward and
backward pseudorapidity regions. The two scintillator ar-
rays (VZERO), covering the 2:8<�< 5:1 and �3:7<
�<�1:7, are used for triggering, centrality determina-
tion, and background removal. The two zero degree calo-
rimeters (ZDC), located at �114 m from the interaction
point, are used in offline rejection of background events.
The silicon pixel detector (SPD), a two-layer central barrel
that constitutes the innermost part of the inner tracking
system, is included in the trigger logic. The SPD provides
also the interaction vertex reconstruction. The muon spec-
trometer consists of a 10 interaction length (�I) passive
front absorber, a beam shield, an iron wall, a 3 Tm dipole
magnet, and a set of tracking and trigger chambers.
Tracking is performed by means of five stations of cathode
pad chambers, with the third station inside the dipole
magnet. The tracking system is supplemented by two
trigger stations of resistive plate chambers, behind a
1.2 m thick iron wall with thickness 7:2�I. The latter
absorbs hadrons that punch through the front absorber, as
well as secondary hadrons produced inside it and low
momentum muons, mainly from pion and kaon decays.

The Pb-Pb data were collected during the 2010 run. The
rate of hadronic collisions was about 100 Hz, correspond-
ing to a luminosity of 1:3� 1025 cm�2 s�1. The results
presented in this Letter are based on the analysis of mini-
mum bias (MB) trigger events. The MB trigger required
the following conditions: a signal in at least two pixel chips
in the outer layer of the SPD and a signal on each VZERO
detector. The beam-induced background was reduced by
using the timing information from the VZERO and ZDC
detectors, and by exploiting the correlation between the
number of hits and track segments in the SPD. Moreover, a
minimal energy deposit in the ZDC was required in order
to reject electromagnetic interactions. Finally, only events
with an interaction vertex within �10 cm from the center
of the detector along the beam line were analyzed. Pb-Pb
collisions were classified according to their degree of
centrality by means of the sum of the amplitudes of the
signals in the VZERO detectors, as described in [23,24].
The analysis was limited to the 80%most central events for
which the MB trigger was fully efficient. This leads to a
data sample of 16:6� 106 Pb-Pb collisions which, in
the following, will be divided into five centrality classes:
0–10%, 10%–20%, 20%–40%, 40%–60%, and 60%–80%
[the two last bins will be grouped together for the study of
RAA(pt)]. The corresponding integrated luminosity is
Lint ¼ 2:71� 0:09 �b�1. The values of the mean number
of participating nucleons and mean nuclear overlap

function are given in Table I. They were determined with
the Glauber Monte Carlo simulation assuming an inelastic
nucleon-nucleon cross section of 64 mb [23]. The strategy
of cuts applied to reconstructed tracks is similar to the one
used for pp collisions [25]. Various selection cuts were
used in order to improve the purity of the data sample.
Tracks were required to be reconstructed in the geometrical
acceptance of the muon spectrometer. A track candidate
measured in the muon tracking chambers was then re-
quired to be matched with the corresponding track mea-
sured in the trigger chambers. This results in a very
effective rejection of the hadronic background that is ab-
sorbed in the iron wall. Furthermore, the correlation be-
tween the momentum and the distance of closest approach
(distance between the extrapolated muon track and the
interaction vertex in the plane perpendicular to the beam
direction and containing the vertex) was used to remove the
remaining beam-induced background tracks that do not
point to the interaction vertex and fake tracks (tracks not
associated to one single particle crossing the spectrome-
ter). After these selections, the data sample consists of
10� 106 muon candidates. The RAA measurement of
muons from heavy-flavor decays will be performed at
highpt ðpt > 4� 6 GeV=cÞ where the main background
component consists of muons from primary pion and kaon
decays. The Pb-Pb distributions are corrected for accep-
tance and for tracking and trigger efficiency (A�) using the
procedure described in [25]. The global A� is close to 80%
for pt > 4 GeV=c. The dependence of the trigger and
tracking efficiency on the detector occupancy, which is
correlated with the collision centrality, was evaluated by
means of the embedding procedure [26]. A decrease of the
efficiency of about 4%� 1% is observed in the 10% most
central collisions.
The RAA of muons from heavy-flavor decays in the

forward rapidity region is calculated according to Eq. (1),
which can be written as

R�� HF
AA ðptÞ ¼ 1

hTAAi �
dN

��
PbPb=dpt � dN

�� ��;K�
PbPb =dpt

d��� HF
pp =dpt

;

(2)

TABLE I. Mean number of participating nucleons (hNparti) and
mean nuclear overlap function (hTAAi) for different centrality
classes, expressed in percentiles of the hadronic Pb-Pb cross
section.

Centrality hNparti hTAAi ðmb�1Þ
0–10% 357� 4 23:48� 0:97
10%–20% 261� 4 14:43� 0:57
20%–40% 157� 3 6:85� 0:28
40%–60% 69� 2 2:00� 0:11
60%–80% 23� 1 0:42� 0:03
40%–80% 46� 2 1:20� 0:07
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where dN
��
PbPb=dpt and dN

�� ��;K�
PbPb =dpt are the inclusive

muon and charged pion and kaon decay muon pt distribu-
tions at forward rapidity in Pb-Pb collisions, respectively.

The pp reference, d�
�� HF
pp =dpt, was obtained from the

analysis of muon-triggered events collected during a pp
run at

ffiffiffi
s
p ¼ 2:76 TeV, in March 2011, with integrated

luminosity of 19 nb�1 after event selection cuts. The
analysis technique from the event and track selection to
the normalization is the same as that described in [25].
Figure 1 shows the measured pt-differential inclusive cross
section of muons from heavy-flavor decays in the kine-
matic region 2:5< y< 4 and 2< pt < 10 GeV=c. In the
range pt > 4 GeV=c (pt > 6 GeV=c), regions of interest

for the R
�� HF
AA ðptÞ measurement, the contribution of

muons from primary light hadron decays (mainly primary
pion and kaon decays) that was subtracted amounts to
about 19% (12%) of the total yield. The error bars are
statistical uncertainties. The open boxes represent the sys-
tematic uncertainties varying from 15% to 24%, depending
on pt. This includes the contributions from background
subtraction (ranging from a maximum of about 24% at
pt ¼ 2 GeV=c to 14% at pt ¼ 10 GeV=c), detector re-
sponse (3%), and residual misalignment of tracking cham-
bers (1%� pt, in GeV=c). The systematic uncertainty on

the minimum bias pp cross section (1.9%), used in the
normalization, is not shown. The data are compared to
fixed order next-to-leading log (FONLL) pQCD predic-
tions [27,28] (curve, with shaded band for the uncertainty).
The ratio between data and FONLL calculations is also
shown. The measured pt-differential inclusive cross sec-
tion of muons from heavy-flavor decays is well reproduced
by the calculations within experimental and theoretical
uncertainties, although at the upper limit of the predictions.
A similar agreement between heavy-flavor results and
pQCD calculations was also reported in pp collisions atffiffiffi
s
p ¼ 7 TeV in the four LHC experiments and at lower
energies at the FNAL Tevatron and at the RHIC (see [25]
and references therein). The contributions of muons from
charm and beauty decays from the FONLL calculations are
displayed separately in Fig. 1. According to these predic-
tions, the component of muons from beauty decays ex-
ceeds that of muons from charm decays for pt * 6 GeV=c.
The pt distribution of muons from heavy-flavor decays

in Pb-Pb collisions at forward rapidity is obtained by
subtracting the muon background component (mainly
muons from primary pion and kaon decays) from the
corrected inclusive muon pt-differential distribution. The
presence of unknown nuclear effects, in particular,
medium-induced parton energy loss at forward rapidity,
prevents subtraction of this contribution by means of
Monte Carlo simulations, as was done in pp collisions
[25]. Hence, the contribution of muons from primary ��
and K� decays at forward rapidity in Pb-Pb collisions
was estimated by extrapolating to forward rapidity (2:5<
y< 4) the pt distributions of pions and kaons measured at
central rapidity (jyj< 0:8) in pp and Pb-Pb collisions [29]
and generating the corresponding pt distributions of decay
muons with a simulation of the decay kinematics and of the
front absorber. For the rapidity extrapolation, it was as-
sumed that the suppression of pions and kaons is indepen-
dent of rapidity up to y ¼ 4. This assumption is motivated
by the observation, made by the ATLAS Collaboration,
that the central-to-peripheral nuclear modification factor of
charged hadrons does not show any � dependence up to
� ¼ 2:5 within uncertainties [30]. The systematic uncer-
tainty introduced by this assumption was conservatively

estimated by varying R��;K�
AA ðptÞ from 0 (full suppression)

up to 2 times its value. The entire background-estimation
procedure is detailed in the following.
The pt distribution of pions and kaons at forward rapid-

ity in Pb-Pb collisions in a given centrality range is ex-
pressed as

dN��;K�
PbPb =dpt ¼ hTAAiðd���;K�

pp =dptÞ½R��;K�
AA ðptÞ�y¼0:

(3)

The midrapidity pion and kaon pt distributions measured
in pp collisions were extrapolated to forward rapidity
using [31]:
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FIG. 1 (color online). Transverse momentum differential in-
clusive cross section of muons from heavy-flavor decays in
2:5< y< 4, in pp collisions at

ffiffiffi
s
p ¼ 2:76 TeV. The vertical

error bars (open boxes) are the statistical (systematic) uncertain-
ties. The solid curve and the band show FONLL [27,28] calcu-
lations and theoretical uncertainties, respectively. The FONLL
calculations are also reported for muons from charm (long
dashed curves) and beauty (dot-dashed curves) decays, sepa-
rately. The lower panel shows the ratio between data and FONLL
calculations.
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d2N��;K�
pp =dptdy¼½d2N��;K�

pp =dptdy�y¼0 exp
��y2
2�2

y

�
; (4)

with �y ¼ 3:18. The latter is the average of the values

obtained with the PYTHIA [32] and PHOJET [33] event
generators. Equation (4) assumes that the shape of the pt

distribution is independent of y. However, results from the
BRAHMS Collaboration suggest a small dependence at
large rapidities [34], but the effect is expected to be neg-
ligible in the analysis due to the small amount of muons
from pion and kaon decays in the pt range of interest (see
below).

Then, the muon pt distributions in 2:5< y< 4 in pp
and Pb-Pb collisions were obtained by means of fast simu-
lations using the resultant pion and kaon pt distributions as
input. The effect of the front absorber was taken into
account by considering only pions and kaons that decay
before reaching a distance corresponding to one interaction
length in the absorber.

The input charged pion pt distributions were measured
up to pt ¼ 20 GeV=c for all centrality classes used in the
analysis. The kaon pt distributions were determined only at
low pt. Therefore, the K0

S pt distributions, measured up

to 16 GeV=c were used, considering that NðKþÞþ
NðK�Þ ¼ 2NðK0

SÞ. A further extrapolation up to

40 GeV=c, by means of a power law fit, was needed. In
addition, the K0

S pt distributions were measured only for

the 0–5% and 60%–80% centrality classes. As a conse-
quence, the pt distributions of muons from pion and kaon
decays at forward rapidity were determined only in these
two centrality classes. For the other centrality classes used

in this analysis (Table I), the dN
�� ��;K�
PbPb =dpt distribu-

tions were obtained by scaling the R�� ��
AA ðptÞ with the

double ratio R
�� ��;K�
AA ðptÞ=R�� ��

AA ðptÞwhich was found
to be the same in the 0–5% and 60%–80% centrality
classes, within a maximum variation of 9% included in
the systematic uncertainty.

This procedure allowed us to estimate dN�� ��;K�
PbPb =dpt

and then to deduce the nuclear modification of muons
from heavy-flavor decays at forward rapidity according
to Eq. (2). The background contribution to the muon pt

distribution increases with decreasing pt. Hence, in order
to limit the systematic uncertainty on its subtraction, RAA

was computed for pt > 4 GeV=c where this component is
7% (11%) of the total muon yield in central (peripheral)
collisions.

The systematic uncertainties on the RAA of muons from
heavy-flavor decays originate from the pp reference, the
corresponding Pb-Pb yields, and the average nuclear over-
lap function. The systematic uncertainty on the pp refer-
ence, previously discussed, is about 15%–17% for
pt > 4 GeV=c. The systematic uncertainty on the yields
of muons from heavy-flavor decays in Pb-Pb includes
contributions from the following: (1) the inclusive muon
yields in Pb-Pb collisions, about 6%–10%, containing the

systematic uncertainty on the detector response (3.5%), the
residual misalignment (1%� pt, in GeV=c) and the cen-
trality dependence of the efficiency determined with the
embedding procedure (1%); (2) the yields of muons from
primary pion and kaon decays in pp collisions at forward
rapidity, about 17%, due to the systematic uncertainty on
the input midrapidity distributions, the extrapolation pro-
cedure (�y parameter), and the absorber effect (pion and

kaon mean free path in the absorber); (3) the R
�� ��
AA ðptÞ,

about 14%–17%, due to the systematic uncertainty on the
input midrapidity pion pt distributions; (4) the

R
�� ��;K�
AA ðptÞ=R�� ��

AA ðptÞ double ratio, up to 9% at

pt ¼ 10 GeV=c; (5) the unknown suppression at forward
rapidity for muons from primary pion and kaon decays. As
mentioned, a conservative systematic uncertainty was con-

sidered by varying R��;K�
AA ðptÞ from 0 to 2 times its value,

with the additional condition that the upper limit does not
exceed unity. Finally, the systematic uncertainty on the
normalization includes the 1.9% uncertainty on the mini-
mum bias cross section measurement in pp collisions and
the uncertainty of 4.3% (centrality class 0–10%) to 7.3%
(centrality class 60%–80%) on hTAAi.
Figure 2 presents the RAA of muons from heavy-flavor

decays in 2:5< y< 4, as a function of pt in central
(0–10%, left) and peripheral (40%–80%, right) collisions.
The vertical error bars are the statistical uncertainties. The
pt-dependent systematic uncertainties are displayed by the
open boxes and include all the contributions previously
discussed, except the normalization uncertainty that is
displayed at RAA ¼ 1. A larger suppression is observed
in central collisions than in peripheral collisions, with no
significant pt dependence within uncertainties.
The centrality dependence of the RAA of muons from

heavy-flavor decays was studied in the range 6<pt <
10 GeV=c where the contribution of muons from B decays
becomes dominant in pp collisions according to the central
value of the FONLL calculations: in particular, it amounts

0 2 4 6 8 10

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2
 HF in 2.5<y<4←±µ=2.76 TeV, 

NN
sALICE Pb-Pb 

Centrality 0-10%

 (GeV/c)
t

p
2 4 6 8 10

Centrality 40-80%

FIG. 2 (color online). RAA of muons from heavy-flavor decays
in 2:5< y< 4 as a function of pt, in the 0–10% (left) and
40%–80% (right) centrality classes, in Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN
p ¼ 2:76 TeV. Vertical bars (open boxes) represent the

statistical (systematic) uncertainty. The filled box centered at
RAA ¼ 1 is the normalization uncertainty. Horizontal bars show
the bin widths.
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to about 58% and 68% at pt ¼ 6 and 10 GeV=c, respec-
tively, (Fig. 1). The analysis was carried out in five central-
ity classes from 0–10% to 60%–80% (Table I). The
resulting RAA is displayed as a function of hNparti in

Fig. 3. The contribution to the total systematic uncertainty,
which is fully correlated between centrality classes (filled
boxes), including the pp reference and normalization, is
displayed separately from the remaining uncorrelated sys-
tematic uncertainty (open boxes). The RAA of muons from
heavy-flavor decays at forward rapidity exhibits a strong
suppression with increasing centrality, reaching a factor of
about 3–4 in the 10% most central collisions.

The ALICE Collaboration has measured the production
of promptDmesons in 2<pt < 16 GeV=c at midrapidity
(jyj< 0:5) [19] and the CMS Collaboration reported on
that of nonprompt J=c from beauty decays, in 6:5<pt <
30 GeV=c and jyj< 2:4 [20]. The corresponding suppres-
sion of D mesons and J=c from beauty decays in those
studies is similar to that reported here for muons from
heavy-flavor decays, although in a different pt and rapidity
region.

In conclusion, we have reported on the first measure-
ment of the production of high-pt muons from heavy-
flavor decays at forward rapidity, in pp and Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN
p ¼ 2:76 TeV with the ALICE detector.

FONLL pQCD calculations describe well the pp data
within experimental and theoretical uncertainties, with
the data being close to the upper limit of the model
predictions. The RAA of high-pt muons from heavy-flavor
decays indicates a clear suppression increasing towards the
most central collisions. The measured suppression is al-
most independent of pt, in the region 4<pt < 10 GeV=c.
These results provide clear evidence for large in-medium
effects for heavy quarks in central Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN
p ¼ 2:76 TeV. The forthcoming p-Pb collisions will

complement these measurements, by providing insight into

the possible contribution of initial nuclear matter effects,
although those are expected to be less important in the high
pt region studied here.
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C. Petta,43 S. Piano,96 A. Piccotti,17 M. Pikna,68 P. Pillot,33 O. Pinazza,6 L. Pinsky,49 N. Pitz,34 D. B. Piyarathna,49
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D. Röhrich,24 R. Romita,27 F. Ronchetti,54 P. Rosnet,13 S. Rossegger,6 A. Rossi,6,55 C. Roy,48 P. Roy,64

A. J. Rubio Montero,58 R. Rui,73 E. Ryabinkin,16 A. Rybicki,45 S. Sadovsky,61 K. Šafařı́k,6 R. Sahoo,118 P. K. Sahu,42
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56Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands

57Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
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91Sezione INFN, Bari, Italy

92Soltan Institute for Nuclear Studies, Warsaw, Poland
93Sezione INFN, Rome, Italy

94Department of Physics, University of Oslo, Oslo, Norway
95Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

96Sezione INFN, Trieste, Italy

PRL 109, 112301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

112301-10



97Chicago State University, Chicago, Illinois, USA
98Warsaw University of Technology, Warsaw, Poland

99Universidad Autónoma de Sinaloa, Culiacán, Mexico
100Physics Department, University of Rajasthan, Jaipur, India

101Technical University of Split FESB, Split, Croatia
102Yerevan Physics Institute, Yerevan, Armenia

103University of Tokyo, Tokyo, Japan
104Department of Physics, Sejong University, Seoul, South Korea

105Eberhard Karls Universität Tübingen, Tübingen, Germany
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Résumé

Les calculs de chromodynamique quantique prédisent, dans des conditions extrêmes de tempé-
rature et de densité d’énergie, la formation d’une phase de matière dans laquelle on assisterait
au déconfinement des hadrons en un plasma de quarks et gluons. Les collisions d’ions lourds
ultra-relativistes ont pour objectif principal l’étude des propriétés de ce milieu. Les saveurs
lourdes (charme et beauté) sont produites principalement lors de processus durs aux premiers
instants de la collision puis interagissent avec le milieu produit. Par conséquent, la mesure de
ces saveurs lourdes ouvertes devrait permettre d’extraire des informations concernant le système
créé aux premiers instants de la collision. Cette thèse est dédiée à l’étude des saveurs lourdes
ouvertes dans les collisions pp et Pb–Pb avec les muons simples mesurés aux rapidités avant avec
le spectromètre à muons d’ALICE. Les performances du spectromètre à muons pour la mesure
des saveurs lourdes ouvertes, via les (di)-muons, dans les collisions pp et l’analyse des premières
collisions pp à

√
s = 900 GeV avec pour objectif la compréhension de la réponse du détecteur

sont d’abord présentées. La section efficace différentielle de production des muons issus de la
désintégration des saveurs lourdes ouvertes est mesurée dans les collisions pp à

√
s = 7 TeV

et 2.76 TeV. Un bon accord avec les prédictions FONLL (Fixed Order Next-to-Leading Log)
est obtenu pour les deux énergies. Le facteur de modification nucléaire, RAA, des muons issus
de la désintégration des saveurs lourdes ouvertes, illustrant la perte d’énergie des quarks lourds
dans le milieu, est mesuré dans les collisions Pb–Pb à

√
sNN = 2.76 TeV. Dans les collisions

centrales (0 − 10%), une importante suppression des taux de production des muons issus de la
désintégration des saveurs lourdes ouvertes est mise en évidence. Le ”flow” elliptique, v2, des
muons issus de la désintégration des saveurs lourdes ouvertes apporte des informations concer-
nant les processus de thermalisation des quarks lourds et les effets de perte d’énergie. Ce ”flow”
elliptique des muons simples est extrait en utilisant plusieurs méthodes.

Mots clés : LHC, ALICE, collisions pp, collisions d’ions lourds ultra-relativistes, muons, produc-
tion de saveurs lourdes, facteur de modification nuclaire, ”flow” elliptique, calculs pQCD.

Abstract

According to quantum chromodynamics (QCD) calculations, at extreme conditions of tempera-
ture and energy density the formation of a deconfined medium, the Quark-Gluon Plasma (QGP),
is expected. Ultra-relativistic heavy-ion collisions aim at investigating the properties of such
strongly-interacting matter. Heavy quarks (charm and beauty) are of particular interest since
they are expected to be produced mainly in hard scattering processes during the early stage of
the collision and subsequently interact with the hot and dense medium. Therefore, the measure-
ment of open heavy flavours should provide essential information on the properties of the system
formed at the early stage of heavy-ion collisions. This thesis work is devoted to the study of open
heavy flavours in pp and Pb–Pb collisions via single muons with the ALICE forward muon spec-
trometer. It starts with the performance study of the muon spectrometer for the measurement of
open heavy flavour production in pp collisions via (di-)muons and, the analysis of first pp colli-
sions at 900 GeV to understand the response of the apparatus. The differential production cross
section of muons from heavy-flavour decays is measured in pp collisions at

√
s = 7 and 2.76 TeV.

A good agreement between data and FONLL (Fixed Order Next-to-Leading Log) predictions
is obtained at the two colliding energies, within uncertainties. The nuclear modification factor,
RAA, of muons from heavy-flavour decays, which illustrates the heavy quark in-medium energy
loss, is measured in Pb–Pb collisions at

√
sNN = 2.76 TeV. In the most 10% central Pb–Pb

collisions, a strong suppression of the yield of muons from heavy-flavour decays is observed. The
elliptic flow, v2, of muons from heavy-flavour decays is believed to shed light on the thermalization
processes of heavy quarks and on the path length dependence of heavy quark in-medium energy
loss. Finally, the elliptic flow of inclusive muons is extracted with different flow analysis methods.

Keywords: LHC, ALICE, pp collisions, ultra-relativistic heavy-ion collisions, single muons,
heavy-flvour production, nuclear modification factor, elliptic flow, pQCD calculations.
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