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Résumé

Nous nous intéressons à la résolution de systèmes linéaires creux de très grande taille
sur des machines parallèles. Dans ce contexte, la mémoire est un facteur qui limite voire
empêche souvent l’utilisation de solveurs directs, notamment ceux basés sur la méthode
multifrontale. Cette étude se concentre sur les problèmes de mémoire et de performance
des deux phases des méthodes directes les plus coûteuses en mémoire et en temps : la
factorisation numérique et la résolution triangulaire. Dans une première partie nous nous
intéressons à la phase de résolution à seconds membres creux, puis, dans une seconde
partie, nous nous intéressons à la scalabilité mémoire de la factorisation multifrontale.

La première partie de cette étude se concentre sur la résolution triangulaire à se-
conds membres creux, qui apparaissent dans de nombreuses applications. En particulier,
nous nous intéressons au calcul d’entrées de l’inverse d’une matrice creuse, où les seconds
membres et les vecteurs solutions sont tous deux creux. Nous présentons d’abord plusieurs
schémas de stockage qui permettent de réduire significativement l’espace mémoire utilisé
lors de la résolution, dans le cadre d’exécutions séquentielles et parallèles. Nous montrons
ensuite que la façon dont les seconds membres sont regroupés peut fortement influencer
la performance et nous considérons deux cadres différents : le cas “hors-mémoire” (out-of-
core) où le but est de réduire le nombre d’accès aux facteurs stockés sur disque, et le cas
“en mémoire” (in-core) où le but est de réduire le nombre d’opérations. Finalement, nous
montrons comment améliorer le parallélisme.

Dans la seconde partie, nous nous intéressons à la factorisation multifrontale parallèle.
Nous montrons tout d’abord que contrôler la mémoire active spécifique à la méthode multi-
frontale est crucial, et que les techniques de “répartition” (mapping) classiques ne peuvent
fournir une bonne scalabilité mémoire : le coût mémoire de la factorisation augmente
fortement avec le nombre de processeurs. Nous proposons une classe d’algorithmes de ré-
partition et d’ordonnancement “conscients de la mémoire” (memory-aware) qui cherchent
à maximiser la performance tout en respectant une contrainte mémoire fournie par l’utili-
sateur. Ces techniques ont révélé des problèmes de performances dans certains des noyaux
parallèles denses utilisés à chaque étape de la factorisation, et nous avons proposé plusieurs
améliorations algorithmiques.

Les idées présentées tout au long de cette étude ont été implantées dans le solveur
MUMPS (Solveur MUltifrontal Massivement Parallèle) et expérimentées sur des matrices
de grande taille (plusieurs dizaines de millions d’inconnues) et sur des machines massi-
vement parallèles (jusqu’à quelques milliers de coeurs). Elles ont permis d’améliorer les
performances et la robustesse du code et seront disponibles dans une prochaine version.
Certaines des idées présentées dans la première partie ont également été implantées dans le
solveur PDSLin (solveur linéaire hybride basé sur une méthode de complément de Schur).

Mots-clés : matrices creuses, méthodes directes de résolution de systèmes linéaires, mé-
thode multifrontale, graphes et hypergraphes, calcul haute performance, calcul parallèle,
ordonnancement.
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Abstract

We consider the solution of very large sparse systems of linear equations on parallel ar-
chitectures. In this context, memory is often a bottleneck that prevents or limits the use
of direct solvers, especially those based on the multifrontal method. This work focuses on
memory and performance issues of the two memory and computationally intensive phases
of direct methods, namely, the numerical factorization and the solution phase. In the first
part we consider the solution phase with sparse right-hand sides, and in the second part
we consider the memory scalability of the multifrontal factorization.

In the first part, we focus on the triangular solution phase with multiple sparse right-
hand sides, that appear in numerous applications. We especially emphasize the computa-
tion of entries of the inverse, where both the right-hand sides and the solution are sparse.
We first present several storage schemes that enable a significant compression of the so-
lution space, both in a sequential and a parallel context. We then show that the way
the right-hand sides are partitioned into blocks strongly influences the performance and
we consider two different settings: the out-of-core case, where the aim is to reduce the
number of accesses to the factors, that are stored on disk, and the in-core case, where the
aim is to reduce the computational cost. Finally, we show how to enhance the parallel
efficiency.

In the second part, we consider the parallel multifrontal factorization. We show that
controlling the active memory specific to the multifrontal method is critical, and that
commonly used mapping techniques usually fail to do so: they cannot achieve a high
memory scalability, i.e., they dramatically increase the amount of memory needed by the
factorization when the number of processors increases. We propose a class of “memory-
aware” mapping and scheduling algorithms that aim at maximizing performance while
enforcing a user-given memory constraint and provide robust memory estimates before
the factorization. These techniques have raised performance issues in the parallel dense
kernels used at each step of the factorization, and we have proposed some algorithmic
improvements.

The ideas presented throughout this study have been implemented within the MUMPS
(MUltifrontal Massively Parallel Solver) solver and experimented on large matrices (up to
a few tens of millions unknowns) and massively parallel architectures (up to a few thousand
cores). They have demonstrated to improve the performance and the robustness of the
code, and will be available in a future release. Some of the ideas presented in the first part
have also been implemented within the PDSLin (Parallel Domain decomposition Schur
complement based Linear solver) package.

Keywords: sparse matrices, direct methods for linear systems, multifrontal method,
graphs and hypergraphs, high-performance computing, parallel computing, scheduling.
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Chapter 1

General introduction

1.1 General context

1.1.1 Sparse linear systems and direct methods

We consider the solution of linear systems of the form

Ax = b

where A is a large square sparse matrix, b is the right-hand side (possibly with sev-
eral columns) and x is the unknown. In Wilkinson’s definition, a sparse matrix is “any
matrix with enough zeros that it pays to take advantage of them”. Sparse matrices ap-
pear in numerous scientific applications (mechanics, fluid dynamics, quantum chemistry,
data analysis, optimization. . . ). In physical applications, sparsity is often due to the fact
that the matrix represents loosely coupled data or a discretized physical domain where a
limited-range interaction takes place; this implies that some unknowns of the linear sys-
tem do not interact with each other, resulting in structural zeros in the matrix. Solving
sparse linear systems is often a keystone in numerical simulations; nowadays, sparse lin-
ear systems from practical applications commonly have millions of unknowns, sometimes
billions.

There are two main classes of methods for the solution of sparse linear systems: direct
methods, that are based on a factorization of A (e.g., LU or QR), and iterative methods,
that build a sequence of iterates that hopefully converges to the solution. Direct methods
are acknowledged for their numerical stability but often have large memory and computa-
tional requirements, while iterative methods are less memory demanding and often faster
but less robust in general; the choice of a method is usually complicated since it depends
on many parameters such as the properties of the matrix and the application. Hybrid
methods, that aim at combining the strengths of both classes, are increasingly popular.

In this dissertation, we focus on direct methods that rely on Gaussian elimination,
i.e., algorithms that compute a factorization of the matrix A under the form LU (in the
general case), LDLT (in the symmetric case) or LLT (in the symmetric positive definite
case, Cholesky factorization). We provide in Algorithm 1.1 a simplistic sketch of LU
factorization in the dense case, i.e., the nonzero pattern of the matrix is not taken into
account. We ignore pivoting and numerical issues as it is not our point in this section and
we assume that any entry found on the diagonal is nonzero. Each step i in the factorization
consists of eliminating a pivot (the diagonal entry aii), which yields a new column in L
and a new row in U , and in modifying the trailing part of the matrix by performing a rank-
one update. These two operations are denoted by Factor and Update in the algorithm.
The approach presented in Algorithm 1.1 is a right-looking approach, which means that

1



1. General introduction

as soon as a column of the L factors is computed (Factor), an update of the trailing
part (columns “on the right” of column i) is performed (Update). The computations
can be reorganized to obtain a left-looking approach, in which, at every step, Update is
performed before Factor; in this case, Update is performed using the columns that are
already computed, that lie “on the left” of column i.

Algorithm 1.1 Dense LU factorization.
/* Input: a square matrix A of size n; A = [aij ]i=1:n,j=1:n */
/* Output: A is replaced with its LU factors */

1: for k = 1 to n do
2: Factor: ak+1:n,k ←

ak+1:n,k
akk

3: Update: ak+1:n,k+1:n ← ak+1:n,k+1:n − ak+1:n,k × ak,k+1:n
4: end for

In sparse direct methods, a key issue is the fill-in phenomenon; the Update operation
can be written as

∀i, j > k, aij ← aij − aik · akj

If aij = 0 but aik 6= 0 and akj 6= 0, then a zero entry in the initial matrix becomes nonzero
in the factors; in the end, the nonzero pattern of the factors is a superset of the nonzero
pattern of the initial matrix. We illustrate this phenomenon in Figure 1.1, where we show
the pattern of an initial matrix (a) and the pattern of its factors (b); elements (4, 3) and
(3, 4) are created when eliminating the second pivot. Sparse direct methods exploit the
nonzero pattern of the matrix to compute a graph that represents the nonzero structure
of the factors and is used as a task graph during the factorization.

We give a formal presentation of this idea in the context of the multifrontal method in
Section 1.2. Here, we provide a very simple example that we use to highlight the different
variants of sparse Gaussian elimination. Consider the example in Figure 1.1. One can
see that since a12 = 0 and a13 = 0, the Update operation performed when eliminating
the first pivot (a11) does not modify columns 2 and 3. Symmetrically, since a21 = 0 and
a31 = 0, the elimination of a11 does not modify rows 2 and 3; therefore, one is free to
eliminate pivots a22 and a33 before or after pivot a11, without any incidence on the result.
On the contrary, the second pivot must be eliminated before the third pivot (because
a23 6= 0 and a32 6= 0). Similarly, the fourth pivot must be eliminated after all the other
variables. This yields a dependency graph that we show in Figure 1.1(c).
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(b) Filled matrix.

4

1 3

2
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Figure 1.1: Nonzero pattern of a sparse matrix (a), nonzero pattern of its factors where
the fill-in entries are shaded (b), and task graph of the factorization (c).
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1.1. General context

Two main classes of sparse direct methods exist. Supernodal methods are the natural
extension of the left-looking and right-looking methods to sparse matrices; at each node in
the graph, some rows and columns of the factors are computed and stored, and are used
at some other nodes in the graph to perform updates. In a right-looking approach, once
the rows and columns of the factors associated with a given node are computed, they are
immediately used at some other nodes in the graph to perform some updates; in the left-
looking approach, this is the opposite: the updates are delayed as much as possible. From
this perspective, themultifrontal method can be considered as a variant of the right-looking
approach where every node has a temporary zone where partial updates are computed; the
updates associated with a node are carried throughout the task graph and accumulated
with some partial updates before they reach their final destination. We illustrate this
in the example in Figure 1.1. Consider the elimination of pivot 2. In the right-looking
method, once pivot 2 is eliminated, updates are applied to the rows and columns associated
with nodes 3 and 4. In particular, at node 4, the update a44 ← a44 − a42 · a24 is applied.
In the multifrontal method, the partial update −a42 · a24 is passed from node 2 to node 3.
Node 3 adds this partial update to its own partial update (−a43 ·a34) and passes the whole
update to node 4. The drawback of the method is that some temporary memory has to
be used to store and accumulate partial updates; however in practice the method delivers
high performance because it allows for large matrix-matrix operations and limits the use
of indirect addressing. The notion of aggregates was introduced in right-looking methods
to capture this advantage of the multifrontal methods. In this dissertation, we focus on
the multifrontal method (although many ideas can be applied to supernodal methods),
that we describe in detail in the next section.

Once the factorization is completed, the solution x of the system is computed in two
steps:

• The forward elimination consists of solving Ly = b for y, where b is the right-hand
side of the system.

• The backward substitution consists of solving Ux = y, where x is the solution of the
initial system.

We describe the two steps of triangular solution in Algorithm 1.2 in the dense case and
illustrate them in Figure 1.2. Note that we illustrate a right-looking approach for the
forward elimination (i.e., at each step, the trailing part of the solution vector is updated),
and a left-looking approach for the backward phase (i.e., each step begins with aggregat-
ing contributions from the components of the solution that are already computed); this
corresponds to a natural storage scheme where the L and U factors are stored by columns
and rows respectively. We describe in detail the multifrontal triangular solution phase in
Chapter 2.

1.1.2 Distributed-memory sparse direct solvers

A large part of this thesis is dedicated to the study of sparse direct methods in a parallel
context. We are particularly interested in distributed-memory architectures, in which
each one of the processes that execute a given code has its own memory address space.
Processes need to explicitly communicate using messages in order to exchange data; MPI
is by far the most widespread library for doing so. Note than since processors now have
several cores and can run several processes at the same time, we try to use these two
terms accurately; in particular, when describing parallel algorithms, the relevant metric
will most of the time be the number of processes.
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1. General introduction

Algorithm 1.2 Dense triangular solution algorithms.
Solution of Ly = b for y
(right-looking approach)
L is a unit lower triangular matrix

1: y ← b
2: for j = 1 to n do
3: for i = j + 1 to n do
4: yi ← yi − lij · yj
5: end for
6: end for

Solution of Ux = y
(left-looking approach)
U is an upper triangular matrix

1: x← y
2: for i = n to 1 by − 1 do
3: for j = i+ 1 to n do
4: xi ← xi − uij · xj
5: end for
6: xi ← xi/uii
7: end for

(a) Forward elimination (right-looking). (b) Backward substitution (left-looking).

Figure 1.2: Dense triangular solution algorithms.

Parallel, distributed-memory sparse direct methods consist of distributing the above-
mentioned task graph over a set of processes. The second part of this thesis is dedicated
to these aspects. Among publicly available and active distributed-memory sparse direct
solvers, one can cite PasTiX [52] and SuperLU_DIST [63], that implement different vari-
ants of supernodal methods, and MUMPS [9, 11], that implements a multifrontal method.
We describe MUMPS in detail in Section 1.3.1.

1.2 Background on multifrontal methods

The multifrontal method by Duff & Reid [32, 33] heavily relies on the notion of elimination
tree. The elimination tree was introduced by Schreiber [82] for symmetric matrices. The
unsymmetric case is much more complex; different structures that represent the elimina-
tion process and various strategies appear in the literature. The definition of elimination
trees for the unsymmetric case is recently introduced by Eisenstat & Liu [34, 36]. Firstly,
we describe the symmetric case in detail, then we briefly review the unsymmetric case.

1.2.1 The symmetric case

We start with the symmetric positive definite case; let A be a square symmetric positive
definite matrix of order n, and L the Cholesky factor of A (A = LLT ). Firstly, we define
the adjacency graph of A:
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1.2. Background on multifrontal methods

Definition 1.1 - Adjacency graph.
The adjacency graph of A is a graph G(A) = (V,E) with n vertices such that:

• There is a vertex vj ∈ V for each row (or column) j of A.

• There is an edge {vi, vj} ∈ E if and only if aij 6= 0.

Similarly, the filled graph of A is the adjacency graph G(F ) of F = L+ LT , the filled
matrix of A. Note that, because of the fill-in entries, the graph of A is a subgraph of the
filled graph (with the same vertices).

Many equivalent definitions exist for the (symmetric) elimination tree; we recommend
the survey by Liu [70] where many definitions, results and construction algorithms are
provided. The simplest definition is probably the following:

Definition 1.2 - Elimination tree (symmetric case); from [70].
The elimination tree of A is a graph with n vertices such that p is the parent of a node j
if and only if

p = min{i > j : lij 6= 0}

If A is irreducible, this structure is a tree; otherwise it is a forest. Throughout this
study, we will always assume that A is irreducible, unless stated otherwise. Another
definition is that the elimination tree is the transitive reduction of the filled graph1. We
illustrate the notions of adjacency graph, filled graph and elimination tree in Figure 1.3.
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(a) Initial matrix.
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(b) Filled matrix.
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(c) Adjacency graph.
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(d) Filled graph.
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(e) Elimination tree.

Figure 1.3: An initial matrix (a) and its factors (b), its adjacency graph (c), its filled
graph (d), and its elimination tree (e).

1More precisely, it is the transitive reduction of the directed filled graph, which is the same graph as
the filled graph, except that every edge {vi, vj} with i < j is directed from i to j.
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1. General introduction

The multifrontal method is based on the elimination tree. We strongly recommend
the survey by Liu [71] that provides a comprehensive and instructive presentation of
the multifrontal method. Here we recall the main ingredients that will be useful in the
following (we follow the proof and the notation from the above-mentioned survey). We
begin with two fundamental results:

Theorem 1.1 - [71, Theorem 3.1].
If node k is a descendant of j in the elimination tree, then the structure of the vector
(ljk, · · · , lnk)T is contained in the structure of (ljj , · · · , lnj)T .

Theorem 1.2 - [71, Theorem 3.2].
If ljk 6= 0 and k < j, then the node k is a descendant of j in the elimination tree.

Consider the j-th column of the L factor; let j, i1, . . . ir be the row indices of the
nonzeros in Lj:n,j and T (j) the subtree rooted at j. In the multifrontal method, every
node j in the elimination tree is associated with a dense frontal matrix Fj , defined as

Fj =


ajj aji1 . . . ajir
ai1j
... 0
airj

+U j with U j = −
∑

k∈T (j)\{j}


ljk
li1,k
...

lirk

 ·
(
ljk li1,k · · · lirk

)

The first term in the two-term sum that defines Fj is called the arrowhead matrix and
consists of nonzero elements of the initial matrix. Note that the entries that correspond
to fill-in entries are zeros. The second term is the subtree update matrix and is the sum
of all the rank-one updates from the columns that are descendant of j in the tree. It
follows from Theorem 1.1 and Theorem 1.2 that when Fj is computed, the first column
(and the first row by symmetry) is fully updated; the variable j is said to be fully-summed.
Therefore, one can apply a step of Gaussian elimination to Fj to eliminate the j-th pivot,
yielding the factor column Lj:n,j :

Fj =


ljj 0
li1j
... I
lirj

 ·
1 0

0 Uj

 ·
ljj li1j · · · lirj

0 I


Uj , the r × r Schur complement that results from the step of elimination, is also called
the contribution block associated with Fj . The following result holds:

Theorem 1.3 - [71, Theorem 3.3].

Uj = −
∑

k∈T (j)

 li1,k
...

lirk

 · (li1,k · · · lirk
)

This shows that once a step of elimination is applied to Fj , Uj , the (2,2) block of Fj
contains the sum of all the rank-one updates of the subtree rooted at j; those are the
updates that are needed to update the subsequent columns. Therefore, the frontal matrix
Fj contains all the information needed for the subsequent steps of the factorization, and
the information from the frontal matrices corresponding to descendants of j is no longer
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1.2. Background on multifrontal methods

needed. This is what the following result states by showing how to compute a frontal
matrix Fj using only the information coming from the children of j in the tree; denote
sj1, . . . , sj ncj the children of j:

Theorem 1.4 - [71, Theorem 4.1].

Fj =


ajj aji1 . . . ajir
ai1j
... 0
airj

 l↔ Usj1 l↔ . . . l↔ Usj ncj

The frontal matrix at a given node j is assembled (computed) by summing the ar-
rowhead matrix with the contribution blocks from the children of j; note that this is
not a regular sum, the contribution blocks have to be extended by introducing zero rows
and columns to conform with the indices of Fj . The l↔ operator is referred to as the
extend-add operator. Therefore, the multifrontal method consists of, at every node j in
tree:

1. Assembling the nonzeros from the original matrix (the arrowhead matrix) together
with the contribution blocks from the children nodes of j into the frontal matrix.

2. Eliminating the fully-summed variable j; this produces the j-th column in the factors
and a Schur complement (the contribution block) that will be assembled into the
parent node at a subsequent step in the factorization.

This process implies a topological traversal of the tree, i.e., a parent node must be processed
after its children. In practice, a postorder traversal is used; a postordering of the tree is
such that all the nodes in a given subtree are number consecutively. This allows the use
of a stack mechanism to store the contribution blocks. We discuss in detail the choice of
a postorder versus a topological traversal in Section 7.2.1.

The elimination tree and the associated frontal matrices are often referred to as the
assembly tree (although we will often use the generic term elimination tree in this thesis).
We illustrate in Figure 1.4(a) the assembly tree of the matrix from Figure 1.3(a). Note
that, when assembling node 5, the contribution block from 3 (a 1× 1 matrix) needs to be
extended to a 2× 2 matrix (in practice, other techniques are used).

The use of supernodes is a major practical improvement to the multifrontal method;
a supernode is a range of columns of the factors with the same lower diagonal nonzero
structure. They correspond to nodes that form a clique in the filled graph and are con-
nected to the same nodes. For example, in Figure 1.3(d), nodes 3 and 4, as well as nodes
1 and 2, form supernodes. The corresponding frontal matrices can be merged without in-
troducing any fill-in in the factors; this is referred to as no-fill amalgamation. This yields
the tree in Figure 1.4(b). The interest is that this enables the use of matrix-matrix dense
kernels; each front has a 2 × 2 block structure where several variables are eliminated at
the same time, enabling the use of dense matrix-matrix kernels. The criterion for forming
supernodes can be relaxed: columns whose structures are not exactly the same can be
grouped together. This generates some fill-in but also provides more efficiency.

1.2.2 The general case

Generalizing the elimination tree and the multifrontal method to the unsymmetric case
is not straightforward. The difficulty is that the structure of the factors cannot be repre-
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Figure 1.4: Elimination tree (a) and tree with some amalgamation (b) associated with the
matrix in Figure 1.3(a), with the frontal matrices shown at each node. The shaded entries
correspond to the factors and the empty entries correspond to contribution blocks.

sented using a tree. Indeed, the transitive reductions of the directed graphs of L and U
are directed acyclic graphs (dags for short), that Gilbert & Liu call elimination dags [45].
These structures are for example used in the supernodal code SuperLU_DIST.

In their initial approach, Duff & Reid choose to rely on the elimination tree of the
symmetrized matrix A + AT [33], and many codes, such as MUMPS, follow this idea.
This works well for problems that are structurally symmetric or nearly so, but this can
dramatically increase the memory and computational requirements for very unsymmetric
problems (in the structural sense). Other structures and approaches exist. We recommend
the survey by Pothen & Toledo [76, Section 5] and a discussion in one of Eisenstat & Liu’s
papers [35, Section 3]. Eisenstat & Liu define elimination trees for unsymmetric matrices
as follows:

Definition 1.3 - Elimination tree (general case); from [34].
The elimination tree of A is a graph with n vertices such that p is the parent of a node j
if and only if

p = min
{
i > j : i L⇒ j

U⇒ i
}

where i L⇒ j (respectively i U⇒ j) if and only there is a path from i to j in the directed
graph of L (respectively U).

Then they show that the two following properties are incompatible [35, Section 3]:

(a) The rows (respectively columns) of every frontal matrix Fk correspond to the rows
i such that lik 6= 0 (respectively, columns such that ukj 6= 0). Note that this means
that frontal matrices are possibly rectangular.

(b) Every update (contribution block) can be sent and assembled into a single frontal
matrix.

In the usual approach where the elimination tree of the symmetrized matrix A + AT is
used, (b) is satisfied: the contribution block of a front is sent to its parent only. However
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1.2. Background on multifrontal methods

(a) is violated because some fronts have nonzero entries in rows (respectively columns)
whose entries in the factor part are zero. Amestoy & Puglisi suggested an approach where
they remove on the fly, when a front is assembled, rows and columns that are structurally
zero [12]2; property (a) is still not ensured but this allows to reduce the computational
requirements and the effects are very interesting in practice.

The incompatibility between (a) and (b) shows that the unsymmetric elimination tree
cannot be used as a dataflow graph since contribution blocks might have to be sent to
multiple nodes, that can lie on different branches. Eisenstat & Liu propose an approach
where the tree is used as a task graph and a dag, which is for instance a supergraph of
the elimination tree, is used to enforce data dependencies. This idea appears in Gupta’s
work on the WSMP code [50] where he uses a variant of elimination dags as a task graph
and others dags as dataflow graphs; similarly, the UMFPACK code by Davis [29] relies
on the column elimination tree (elimination tree of the symmetric matrix AT A) as a task
graph and some structures relying on biclique covers as dataflow graphs .

In this study, we always consider the symmetric elimination tree, i.e., the elimination
tree of A+AT . In the first part, where we address problems related to sparse right-hand
sides, we heavily rely on the elimination tree as a representation of the structure of the
factors; in the second part where we tackle memory scalability problems, we view the
elimination more as a task graph. We believe that generalizing the ideas we present in
this thesis to unsymmetric elimination trees is not straightforward (although probably
feasible).

1.2.3 The three phases

Multifrontal codes often follow a three phase approach: analysis, numerical factorization,
triangular solution.

The analysis phase applies numerical and structural pretreatments to the matrix, in
order to optimize the subsequent phases. One of the main preprocessings, called reorder-
ing, aims at reducing the fill-in; it consists of permuting the rows and columns of the
initial matrix so that less fill-in will occur in the factorization of the permuted matrix.
Minimizing the fill-in is NP-complete [92]. Numerous heuristics have been studied to ob-
tain efficient techniques that significantly decrease the fill-in. They fall into two main
classes: local methods choose the pivot order by traversing the adjacency graph following
a local heuristic (e.g., nodes with lowest degree first). The Approximate Minimum De-
gree algorithm (AMD) is one of the most popular techniques [6]. Global methods try to
partition the adjacency graph and usually provide solvers with a tree of separators (sets
of nodes or edges whose removal disconnect the graph). Scotch [74] and MeTiS [55] are
probably the two most popular graph partitioning software packages. Once the ordering
is computed, the symbolic factorization computes the structure of the factors (in practice,
part of the work can be done during the ordering phase). The analysis phase also involves
numerical pretreatments that aim at avoiding problems during the factorization. Scaling
is a typical example of such a preprocessing: it computes two diagonal matrices Dr and
Dc such that Dr ADc has better numerical properties, that is, less pivoting and numerical
fill-in will occur during the factorization.

The numerical factorization computes the factors, relying on the pivot order and the
elimination tree computed during the analysis. A keystone issue is the numerical pivoting,
that aims at ensuring a good numerical accuracy by avoiding divisions by small pivots
(diagonal elements). In case a “bad” pivot is found, the associated row is swapped with

2This implies that fronts can be rectangular.
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1. General introduction

another unfactored row so that the new diagonal element has better properties. In this
dissertation we do not focus at all on numerical issues, therefore we do not describe in
detail the different existing pivoting strategies. We simply highlight a specific property of
the multifrontal method. Within a frontal matrix (corresponding to a supernode), pivots
can only be chosen inside the (1,1) block, because the rows and columns that touch the
contribution block are not fully summed; when a pivot cannot be eliminated without
jeopardizing the numerical accuracy, the corresponding rows and columns are swapped
with other columns and pushed to the border of the (1,1) block. They remain unfactored
and are delayed to the frontal matrix of the parent, where they appear as fully-summed
variables and are placed at the border of the (1,1) block; this is referred to as delayed
pivoting. We illustrate this in Figure 1.5. The frontal matrix of the parent becomes larger
and some fill-in occurs because of the variables that appear in the parent node but not in
the child. A variable might be delayed several times if needed. Therefore, the elimination
tree is a dynamic structure that can change during the factorization; in a parallel context,
this implies that some dynamic scheduling should be used in order to compensate for the
imbalance in workloads and memory loads that might arise because of delayed pivots and
that cannot be forecast. We highlight these aspects in the second part of this thesis.

0
0

0

0

Child node Parent node

Figure 1.5: Delayed pivoting: some pivots that cannot be eliminated (dark rows and
columns in the figure) are delayed to the parent node. Note that this introduces some
numerical fill-in (explicit zero entries in the parent node).

An interesting feature of the multifrontal method (as well as right-looking methods) is
that it can efficiently run out-of-core; this consists of using storage disks as an extension of
the main memory, which is useful when the memory requirements for the factorization are
larger than the main memory. In the multifrontal method, once the contribution block of
a frontal matrix is computed, the rows and columns of factors for this frontal matrix are
no longer needed (see Theorem 1.3 and 1.4); therefore, factors can be written to disk as
soon as they are computed (and removed from the main memory) without being read in
the rest of the factorization. This limits the volume of accesses to storage disks, that are
usually much slower than the main memory. In Chapter 4, we address a problem related
to the triangular solution phase in an out-of-core context.

The last step is the solution phase that computes the solution of the system in two
steps: forward elimination and backward substitution, as in the dense case. They consist
of a bottom-up and a top-down traversal of the tree, respectively. We describe these two
algorithms in detail in Section 2.4.
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1.3. Experimental environment

Finally, we provide some notation that will be useful in the following; for a given node
i (sometimes Ni):

• nfronti is the order of the frontal matrix associated with i.

• sfronti is the surface of the front.

• npivi is the number of fully-summed variables in the front.

• ncbi is the size of the contribution block.

• scbi is the surface of the contribution block.

• nci is the number of children of i.

• sib(i) is the set of siblings of i.

1.3 Experimental environment

1.3.1 The MUMPS solver

The main motivation for this work was to study and experiment algorithmic ideas in order
to improve the MUMPS solver. The MUMPS solver [9, 11] is a parallel direct solver that
implements the multifrontal method. MUMPS started in 1996 with the European project
PARASOL; it was inspired by the shared-memory code MA41 by Amestoy and Duff [7, 3],
which itself relies on the earlier HSL code MA37 by Duff and Reid. MUMPS primarily
targets at distributed-memory architectures; at the moment, multithreading is achieved
only using a multithreaded BLAS, but work is in progress to exploit shared-memory
parallelism using OpenMP [5].

MUMPS relies heavily on the elimination tree of the matrix A to be factored; if A is
unsymmetric, MUMPS uses the sparsity pattern of A + AT . Both tree parallelism and
node parallelism are exploited. We refer to sequential nodes and parallel nodes as Type 1
nodes and Type 2 nodes respectively. Type 2 nodes are distributed following a 1D row-
wise partitioning: the so-called master process holds the (1,1) block and the (1,2) block
(rows of the U factor) and is in charge of organizing the computations; slave processes are
in charge of the (2,1) block (columns of L) and the (2,2) block (the contribution block).
The root node can optionally be processed using a two-dimensional partitioning relying
on ScaLAPACK, in which case we call it a Type 3 root. We illustrate this in Figure 1.6.
Contrary to most codes that rely on static approaches where tasks are assigned to processes
in advance, MUMPS relies on a dynamic scheduling of the tasks, using a completely
asynchronous approach; this increases the complexity of the code but makes it able to
perform dynamic pivoting, which guarantees the numerical stability. We will describe all
these aspects in detail in Chapter 7.

MUMPS provides a large range of numerical features that make it a very robust code,
and it also provides many functionalities:

Input: MUMPS provides Fortran, C and MATLAB interfaces. The input matrix can
be unsymmetric or symmetric; it can be centralized or distributed, assembled or in
elemental format (i.e., represented as an expended sum of dense matrices). Real and
complex, single and double precision arithmetic are supported.
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Figure 1.6: Node types used within MUMPS: the Type 3 root node is distributed following
a 2D block cyclic partitioning, Type 2 nodes follow a 1D row-wise partitioning where the
master process holds the rows of the U factor while slave processes share off-diagonal
columns of the L factor and the contribution block. Type 1 nodes are processed by a
single process.

Analysis: many structural and numerical pretreatments (scalings) can be applied and
different ordering strategies and packages can be used, in particular AMD [6] and
some other local heuristics, PORD [83], MeTiS [55], Scotch [74] and their parallel
versions ParMeTiS [56] and PT-Scotch [28].

Factorization: LU , LDLT and Cholesky factorizations can be performed, depending on
the matrix. Many pivoting strategies (two-by-two pivots, delayed pivoting. . . ) are
implemented and guarantee the numerical robustness of the code. The factorization
can be performed in an out-of-core mode, where partial factors are saved on disks
as soon as they are no longer needed; using asynchronous I/O operations, this has
a relatively small impact on the performance but significantly reduces the memory
usage [1, 84].

Solve step: dense and sparse right-hand sides are supported; the solution can be either
centralized or distributed.

Postprocessing: iterative refinement can be applied to the solution vector, and a nu-
merical analysis can be performed to return more information to the user (backward
error, etc.).

Miscellaneous: many features are available beyond the classical analysis-factorization-
solution scheme: partial factorization and computation of the Schur complement
(see the next section), computation of the inertia and the determinant of the matrix,
computation of a nullspace basis for rank-deficient matrices. . .

The aim of this study is to tackle two difficulties that arise in MUMPS as well as in
many other sparse direct solvers:
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1. The triangular solve step of direct solvers is known to be less efficient than the
factorization: while many sparse factorization codes are able to reach reasonable
flop rates and speed-ups, the triangular solution often lags behind, which is critical
especially in applications where several solve steps (often thousands) are performed
after a factorization. This was confirmed in the last MUMPS Users’ Group Meeting
in 2010, where many users put “a more efficient solution phase” on their wish list.
In this study, we have been interested in improving the solution phase especially in
the case where sparse right-hand sides and/or sparse solution vectors are involved:
this is described in the first part of this dissertation, where we suggest different ideas
to improve the performance and the memory usage of the solution phase.

2. Memory is known to be a limitation to the use of direct solvers. In MUMPS, the
memory estimates computed prior to the factorization are often not very reliable
because of the dynamic nature of the code, where tasks are not assigned in advance.
Furthermore, MUMPS relies on the multifrontal factorization, which makes use of
a (parallel) stack to store contribution blocks: the behavior of this stack is difficult
to predict in a parallel environment. Thus users quite often face the error code “-
9”, which means that the workspace allocated before the factorization is too small,
because memory estimates were too optimistic. In this study we are interested in de-
veloping mapping and scheduling algorithms that enforce some memory constraints
and provide reliable memory estimates prior to the factorization: this is described
in the second part of this dissertation.

1.3.2 The PDSLin solver

Hybrid methods attempt to combine the strengths of direct and iterative methods in
order to obtain solvers that are able to tackle larger problems. Among these, the Schur
complement methods [85] have gained popularity in recent years and have demonstrated
to be scalable on large numbers of processors. In this method, the original linear system
Ax = b is first reordered into a system with the following block structure:

D1 E1
D2 E2

. . . ...
Dk Ek

F1 F2 . . . Fk C

 ·

u1
u2
...
uk
y

 =


f1
f2
...
fk
g

 (1.1)

where D` is referred to as the `-th interior subdomain, C consists of separators, and E`
and F` are the interfaces between D` and C. To compute the solution of the linear
system (1.1), we first compute the solution vector y on the interface by solving the Schur
complement system,

Sy = ĝ (1.2)
where the Schur complement S is defined as

S = C −
k∑
`=1

F`D
−1
` E`

and ĝ = g −
∑k
`=1 F`D

−1
` f`. Then, to compute the solution vector u` on the `-th subdo-

main, we solve the `-th subdomain system

D`u` = f` − E`y (1.3)
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1. General introduction

Many software packages implement this method: one can cite HIPS [38], MaPHyS
[47], ShyLU [78] and PDSLin [64]. We focus on the last, as some of the ideas presented in
Chapter 5 have been implemented and experimented within this solver. PDSLin uses the
parallel direct solver SuperLU_DIST [63] on each one of the interior domains D` (1.3).
PDSLin does not explicitly form the Schur complement S: its solves the Schur complement
system (1.2) using a preconditioned iterative method, the preconditioner being the LU
factorization of an approximate Schur complement S̃ obtained with SuperLU_DIST.

The approximate Schur complement S̃ is obtained through the following process: first,
a local matrix A` is associated with each subdomain D`:

A` =
(
D` Ê`
F̂` 0

)

where Ê` and F̂` are the nonzero columns of E` and nonzero rows of F` respectively. Then
D` is factorized using SuperLU_DIST, yielding P`D`P ` = L`U` where P` and P ` are row
and column permutations respectively. Then the update matrix T` is computed as

T` = F̂`D
−1
` Ê`

=
(
F̂`P `U

−1
`

) (
L−1
` P`Ê`

)
= W`G`

whereW` = F̂`P `U
−1
` and G` = L−1

` P`Ê` are computed using the parallel triangular solver
of SuperLU_DIST. A large amount of fill might occur in W` and G`. Thus, in order to
reduce the memory and computational cost, they are approximated by discarding entries
with magnitude less than a prescribed threshold, yielding their approximations W̃` and
G̃` and the approximate update matrix T̃` = W̃`G̃. Therefore, using the interpolation
matrices RE` and RF` that map the columns and rows of Ê` and F̂` respectively, the
approximate Schur complement is formed as

Ŝ = C −
k∑
`=1

RF` T̃`R
T
E`

Finally, in order to further reduce the cost of the preconditioner, small nonzero elements
are discarded from Ŝ, yielding the final approximate Schur complement S̃.

Two combinatorial problems are of interest in the framework of the PDSLin solver:

1. Computing the doubly-bordered form (1.1) so that multiple constraints are satisfied:
balancing the workload between the different subdomains (i.e., the cost of the fac-
torizations), balancing the workload between the different interfaces (i.e., the cost
of triangular solves) and reducing the size of the Schur complement. We have used
different graph and hypergraph partitioning formulations, and have developed a re-
cursive hypergraph bisection method. We have tackled this problem but it is out of
the scope of this dissertation, and we refer the reader to [57] and [91].

2. Partitioning the right-hand sides columns F̂ T` and Ê` in order to speed up the com-
putation of W` = F̂`P `U

−1
` and G` = L−1

` P`Ê`. This is described in Chapter 5,
where we have examined different heuristics and a hypergraph model.
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1.3. Experimental environment

1.3.3 Test problems

We describe in Table 1.1 the matrices that were used in the experiments carried out
during this study. They arise from various industrial and academic applications from
our partners; they all correspond to physical problems taking place in three-dimensional
domains with the exception of matrix211. This kind of matrices is often challenging for
direct solvers as they exhibit large amount of fill. The matrices we have selected exhibit
different properties in terms of symmetry, fill-in, etc., but they are not very demanding
numerically, as this was not the point of this study. We indicate in the table the size of
the factors obtained by ordering the matrices with MeTiS [55].

Matrix name Order Entries Factors Sym Arithmetic Description; origin
N (millions) (GB)

NICE20MC(∗) 715923 28.1 8.3 sym double real Seismic processing; BRGM lab
matrix211 801378 55.8 3.9 uns double real Fusion, M3D-C1 code; Center for Ex-

tended MHD Modeling
AUDI(∗) 943695 39.3 9.9 sym double real Automotive crankshaft model; Para-

sol collection
bone010(∗) 986703 36.3 8.6 sym double real 3D trabecular bone; Mathematical

Research Institute of Oberwolfach
pancake2_3 1004060 49.1 39.8 uns single cmplx 3D electromagnetism; Padova Univer-

sity
tdr190k 1110242 43.3 5.7 sym double real Accelerator; Omega3P code, SLAC

National Accelerator Laboratory
CONESHL(∗) 1262212 43.0 5.5 sym double real 3D finite element, SAMCEF code;

SAMTECH
Hook_1498(∗) 1498023 31.2 12.3 sym double real 3D model of a steel hook; Padova Uni-

versity
FLUX-2M(∗) 2001728 212.9 34.8 uns single cmplx 3D finite element, FLUX code; CE-

DRAT
CAS4R_LR15 2423135 19.6 4.5 sym single cmplx 3D electromagnetism; EADS Innova-

tion Works
meca_raff6 3269763 130.1 63.5 sym double real Thermo-mechanical coupling, Code_-

Aster; EDF

Table 1.1: Set of matrices used for the experiments. Those marked with (∗) are publicly
available on gridtlse.org. We indicate the symmetry either using “sym” (symmetric)
or “uns” (unsymmetric).

We have also used two generators that are able to create matrices with prescribed
size, corresponding to an nx × ny × nz physical domain: the “d11” generator produces
symmetric real matrices corresponding to an eleven-point stencil, and the “Geoazur” gen-
erator, provided by Stéphane Operto and Jean Virieux (Geoazur consortium), produces
unsymmetric complex matrices corresponding to a 27-point stencil. This generator is used
in Geophysics (modeling of acoustic wave propagation in the frequency domain), and the
matrices it generates are challenging for direct solvers as they are very memory demand-
ing. For example, with nx = ny = nz = 192, the size of the matrix is N = 7077888, the
number of entries in the matrix is 189.1 millions, and the size of the LU factors is 144 GB
(in single precision arithmetic).

1.3.4 Computational systems

We describe the different systems on which we have carried out our experiments:

• Pret, desktop machine at ENSEEIHT: one quad-core Intel Xeon W3350 processor
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1. General introduction

@3 GHz, 4 GB of memory and a 7200 RPM hard drive. Used for the experiments
in Chapter 4.

• Franklin, Cray XT4 machine at the National Energy Research Scientific Computing
Center (NERSC): 9572 nodes with one quad-core AMD Opteron 1356 processor
@2.3 GHz and 8 GB memory per node. Used for the experiments in Section 5.1.

• Hyperion, Altix ICE 8200 machine at the Calcul en Midi-Pyrénées resource center
(CALMIP): 352 nodes with two quad-core Intel Xeon 5560 processors @2.8 GHz and
32 GB memory per node. Used for the experiments in Section 5.2, Chapter 10 and
Chapter 11.

• Hopper, Cray XE6 machine at the National Energy Research Scientific Computing
Center (NERSC): 6384 nodes with two twelve-core AMD Opteron 6172 processors
@2.1 GHz and 32 GB memory per node. Used for some of the experiments in
Chapter 10.
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Solution phase with sparse
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Chapter 2

Introduction

The first part of this thesis focuses on memory and performance aspects of the multifrontal
solution phase with sparse right-hand sides and/or sparse solution vectors. While much
effort has been dedicated to exploiting the sparsity of the matrix in the factorization phase,
few studies have considered exploiting sparsity of the right-hand side(s) in the solution
phase. However, the main result was established in the 80’s by Gilbert [44]1, who showed
that the structure of the solution of Ax = b (with A non singular) is the closure of the
structure of b (see Section 2.2 for details). Interestingly, Gilbert and Liu used this theorem
to compute the structure of the LU factors by formulating the sparse LU factorization
as a sequence of sparse triangular solves [45], but paradoxically, few studies or codes have
used this result in the solution phase. Furthermore, little has been done about multiple
right-hand sides. In this work, we are interested in computations that involve multiple
sparse right-hand sides and sparse solution vectors; we focus on compressing the memory
space used by the solution phase, reducing the computational cost in different contexts
(in-core and out-of-core settings), and enhancing parallelism.

In this introductory chapter, we first mention in Section 2.1 various applications that
involve sparse right-hand sides and sparse solutions, and we especially highlight applica-
tions that involve computation of a set of entries of the inverse of a sparse matrix (that we
refer to as inverse entries); as we will see, this amounts to solving linear systems where
both the right-hand sides and the solution vectors are sparse. We also give a brief survey
of the existing methods for computing inverse entries. In Section 2.2, we describe how
to exploit sparsity of the right-hand sides and/or the solution vectors; we show how this
can be applied to the computation of inverse entries. We then describe the problems we
have focused on and our contributions in Section 2.3. Finally, we describe in Section 2.4
the general parallel multifrontal solution algorithm, as it will be useful for the subsequent
chapters.

2.1 Applications and motivations

2.1.1 Applications with sparse right-hand sides and/or sparse solution

Many physical applications involve solving linear systems with sparse right-hand sides that
correspond to data that is nonzero at only a few points of the physical domain. Similarly,
it is also often required to compute the solution of a problem at only a few points of the
domain, which corresponds to computing only a few entries of the solution vectors (we

1The publication is dated 1994 but the associated technical report is actually from 1986.
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2. Introduction

refer this to as selected solution or selected entries). These situations are for example
described in [16] in the context of Poisson’s equations.

Solving linear programming problems with the simplex algorithm often exhibits highly-
reducible matrices, sparse right-hand sides and sparse solution vectors. This situation is
referred to as “hyper-sparsity” [51].

Several methods for solving sparse linear systems involve intermediate steps that rely
on sparse right-hand sides, even if the initial right-hand side is not necessarily sparse. This
is the case in the Schur complement method where the update of the Schur complement
requires the solution of triangular systems with sparse right-hand sides (see Section 1.3.2).
This is also the case in the block-Cimmino method [13]; in this iterative method, several
augmented systems of the form [

G Ai
T

Ai 0

] [
ui

vi

]
=
[

0
ri

]

need to be solved at each iteration (the Ai’s correspond to a row-wise partition of the
initial matrix A). In these augmented systems, the right-hand side is sparse and only the
upper part, ui, of the solution is needed in the iterative process.

Nullspace computations in the context of rank revealing LU factorization for general
unsymmetric matrices also require the solution of linear systems with sparse right-hand
sides. In order to compute a basis of the nullspace of a rank-deficient matrix, one has
to solve Ax = 0. First, a rank-revealing factorization is performed, which provides A =
LU with det(L) 6= 0 and U containing “zero rows”, due to the detection of null pivots.
Therefore, one has to solve Ux = 0. Assume for example that pivot j is a null pivot. We
write Ux = 0 in the following form:U1:j−1,1:j−1 U1:j−1,j U1:j−1,j+1:n

0 0
Uj+1:n,j+1:n

 ·
x1:j−1

xj
xj+1:n

 =

0
0
0


Assuming Uj+1:n,j+1:n is not rank deficient, we have xj+1:n = 0, and xj can be set to

1. We thus have to solve:

U1:j−1,1:j−1 x1:j−1 = −U1:j−1,j ,

and the final nullspace vector is x = (x1:j−1; 1; 0). Note that the same set of equations
can be obtained by setting uj,j to 1 during the factorization and the right-hand side to
ej . Therefore, the nullspace vector can be computed by solving Ux = ej . In the general
case, U has several zero rows, and one has to solve UX = E, where each column of E is a
vector ej associated with a null pivot j, and the columns of E are sorted in the order in
which the null pivots have been detected. This scheme is explained in detail in [84].

2.1.2 Applications involving the computation of inverse entries

The inverse of an irreducible sparse matrix is structurally full [31], thus it is impractical
to compute or store all its entries. However, many applications require the computation
of a set of inverse entries. Linear least-squares problems provide a typical example: the
inverse entries of the covariance matrix associated to the problem are of interest; in par-
ticular, the diagonal entries of the inverse of the covariance matrix provide a measure
of the quality of the fit [19]. We have been particularly motivated by a data analysis
application in astrophysics, where these diagonal entries were requested: the aim was to
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analyze images coming from a high-resolution spectrometer aboard the INTEGRAL (IN-
TERnational Gamma-Ray Astrophysics Laboratory) satellite [22, 20, 21]. This involved
solving a overdetermined system with about 1,000,000 equations and 100,000 unknowns.

It seems that historically, one of the first applications that required the numerical
computation of inverse entries, and that drove the development of specific methods to do
so, was the study of short-circuit currents, that involves the calculation of the diagonal
elements of the inverse of a so-called impedance matrix [86]. Other applications that
require the computation of inverse entries include quantum-scale device simulation, such
as the atomistic simulation of nanowires [25, 72], electronic structure calculations [65],
approximations of condition numbers [19], and uncertainty quantification in risk analysis
[18]. In all these applications, not all the inverse entries are requested, but only a subset,
quite often the diagonal elements or some subblocks along the diagonal.

Tang and Saad [87] propose an iterative method to compute the diagonal of the inverse;
they focus on matrices whose inverses have a decay property. Other studies mostly rely on
direct methods, and more specifically on the Takahashi equations [86]. These equations
assume an LDU factorization of the initial matrix A (of size N × N), and relate the
factors L, D and U to Z = A−1, using the equation Z = U−1D−1L−1:{

Z = D−1L−1 + (I − U)Z
Z = U−1D−1 + Z(I − L)

Using these equations, one can compute the entries in the upper part of Z and the
entries in the lower part of Z by using the U and L factors respectively:

∀i 6 j, zij = d−1
ij −

N∑
k>i

uikzkj

∀i > j, zij = d−1
ij −

N∑
k>j

ziklkj

Using these equations, one can compute the whole inverse matrix (starting with zNN ).
However, as said before, it is often not advisable nor necessary to compute the whole
inverse. Erisman and Tinney [37] propose a method to compute a subset of elements.
They first give an algorithm that computes the parts of the inverse of A that correspond
to the nonzero structure of (L + U)T , starting from entry (N,N) and proceeding in a
reverse Crout order. At every step, an entry of the inverse is computed using the factors
L and U and the already computed entries of the inverse. This approach is later extended
to the computation of any set of entries of the inverse, rather than the whole set in the
pattern of (L + U)T [73]. Finally, Campbell and Davis [23] proposed a multifrontal-like
approach (that they call the inverse multifrontal approach) to compute a set of elements
in the case of a numerically symmetric matrix using Takahashi’s equations. This method
uses the elimination tree of the initial matrix (processed from the root to the leaves) and
takes advantage of Level 3 BLAS routines (matrix-matrix computations). They propose
a parallel implementation in [24]. Lin et al. propose similar ideas in the symmetric case
with the SelInv algorithm [67] and have implemented an efficient parallel version [66].

Another approach is described in [61]. It uses the observation that if many LU fac-
torizations are performed, each of them with an ordering that puts a given diagonal entry
last, then the corresponding entry of the inverse is equal to 1/uNN (for each U). The
efficiency of the method relies on the fact that local factorizations are reused as much as
possible to limit the complexity and a nested dissection tree based on the physical finite
element mesh is used. The approach is shown to be very efficient on 2D meshes; it can be
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generalized to compute any arbitrary set of entries and is parallelizable. The algorithm is
later improved in [62] to exploit sparsity and symmetry.

2.2 Exploiting sparsity in the solution phase

2.2.1 General case

In the general case, a forward triangular solve with a dense right-hand side consists of
a complete bottom-up traversal of the elimination tree (from the leaves up to the root
node, following a topological order). The sparsity of the right-hand side can be exploited
to reduce this traversal to following a simple path; the key result is given by Gilbert &
Liu [45]):

Theorem 2.1 - Structure of the solution of a triangular system (Theorem 2.1 in [45]).
For any lower triangular matrix L, the structure of the solution vector x of Lx = b is given
by the set of nodes reachable from nodes associated with the right-hand side entries by
paths in the directed graph G(LT ) of the matrix LT .

We can reword this result in terms of elimination tree since we consider the LU
factorization of a matrix with a symmetric or symmetrized pattern (pattern of A+ AT ).
We denote P(i) the path from node i to the root node in the tree.

Lemma 2.1
The indices of the nonzero entries of the solution vector y of Ly = b are equal to the indices
of the nodes of the elimination tree that are in ⋃i∈struct(b) P(i), that is in the union of the
paths from the nodes corresponding to nonzero entries of b to the root.

We illustrate this result in Figure 2.1: solving Ly = e3 consists of visiting all the nodes
on the path from node 3 up to the root node, 6, i.e., nodes 3, 5 and 6. One can note that
the branch {1, 4} is not traversed.

Uz =y )2

eL y 3

6

2

3

5

4

1

(

=

Figure 2.1: Traversal of the elimination tree when solving with a sparse right-hand side
and/or a sparse solution. Ly = e3 is solved by visiting nodes 3, 5 and 6.

(
U−1y

)
2 is found

by traversing 6, 5, 3 and finally 2, assuming y6 6= 0.

We can address the case of selected entries in the solution using a similar reasoning: a
backward solution phase normally consists of visiting the whole tree following a top-down
traversal, but the set of nodes to be visited can be reduced if only a few components of the
solution are needed. We first provide a lemma that shows which part of the elimination
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2.2. Exploiting sparsity in the solution phase

tree needs to be visited when only the i-th entry of the solution of Uz = y is requested;
the extension to the computation of several entries is then straightforward. Although
very similar to the previous result, the proof does not seem to appear anywhere in the
literature.

Lemma 2.2
In order to obtain the i-th component of the solution to Uz = y, that is zi = (U−1y)i, one
has to solve the equations corresponding to the nodes that are in the unique path from
the highest node in struct(y) ∩ P(i) to i.

Proof. We first show (1) that the set of components of z involved in the computation of
zi is the set of ancestors of i in the elimination tree. We then (2) reduce this set using the
structure of y.

(1) We prove, by top-down induction on the tree, that the only components involved in
the computation of any component zl of z are the ancestors of l in the elimination
tree:

– Root node: zn is computed as zn = yn/unn (thus requires no other component
of z) and has no ancestor in the tree.

– For any node l: following a left-looking scheme, zl is computed as:

zl =

yl − n∑
k=l+1

ulkzk

 /ull =

yl − n∑
k;ulk 6=0

ulkzk

 /ull
All the nodes in the set Kl = {k : ulk 6= 0} are ancestors of l by definition
of the elimination tree (since we assume struct(UT ) = struct(L)). Thus, by
applying the induction hypothesis to all the nodes in Kl, all the required nodes
are ancestors of l.

(2) The pattern of y can be exploited to show that some components of z which are
involved in the computation of zi are zero. Noting ki the highest node in struct(y)∩
P(i), that is the highest ancestor of i such that yki 6= 0, we have:{

zk = 0 if k ∈ P(ki)\{ki}
zk 6= 0 if k ∈ (P(i)\P(ki)) ∪ {ki}

Both statements are proved by induction using the same left-looking scheme.

Therefore, the only required components of z lie in the path between i and ki, the highest
node in struct(y) ∩ P(i).

Note that if the initial matrix A is irreducible and if y results from the solution of
Ly = b, Lemma 2.1 implies that the last component of y, that corresponds to the root of
the elimination tree, is nonzero. Therefore, in Lemma 2.2, struct(y) ∩ P(i) is non-empty
(it contains the root node at least), and thus (U−1y)i is nonzero. Conversely, if the initial
matrix A is reducible, struct(y) ∩ P(i) could be empty: this can happen if no nonzero of
y lies in the connected component where i is. In that case, (U−1y)i = 0.

We illustrate the previous lemma using Figure 2.1: the second component of the
solution of Ux = y has to be computed. Assuming that y6 6= 0, this consists of visiting
all the nodes on the path from the root node, 6, to node 2, that is, nodes 6, 5, 3, and 2.
The branch {1, 4} is not visited.

23



2. Introduction

The two lemmas (that can clearly be combined if the right-hand side is sparse and
selected entries of the solution are to be computed) reduce the parts of the tree that have
to be visited to a few paths; this enables significant savings in terms of computations
(since, at each node, floating-point operations have to be performed), in terms of accesses
to the factors and in terms of storage for the solution space; we emphasize these properties
in the next chapters. When processing a block of right-hand sides instead of a single one,
the set of nodes to be visited is the union of the paths given by the previous lemmas. We
refer this set to as the pruned tree, and call tree pruning the process of computing the
pruned tree. We are particularly interested in computations with multiple sparse right-
hand sides and describe our contributions (and the content of the following chapters) in
Section 2.3.

We give in Algorithm 2.1 a sketch of tree pruning procedure. We assume that we have
a list of targets, that either correspond to the nonzero pattern of a block of sparse right-
hand sides (if we want to compute the pruned tree for the forward phase), or correspond
to the pattern of entries of the solution that are requested (if we want to compute the
pruned tree for the backward phase). The aim is to mark nodes that belong to the pruned
tree (array to_process) and to obtain the list of leaves of the pruned tree (which will be
used to initialize the pool of tasks in the forward elimination). For any entry in the list of
targets, the algorithm follows the path from the node corresponding to that entry up to
the root node; the algorithm stops if a node that has been previously visited is detected
(in order to avoid visiting branches more than once).

2.2.2 Application to the computation of inverse entries

The approach we use in this study relies on a traditional solution phase and makes use of
the equation AA−1 = I. More specifically, we compute a particular entry a−1

ij =
[
A−1]

ij

as
(
A−1ej

)
i; here ej is the j-th column of the canonical basis (the identity matrix). We

assume that the matrix A, whose inverse entries will be computed, has been factorized
using a multifrontal or supernodal approach into A = LU (or A = LDLT in the indefinite
symmetric case, or A = LLT in the symmetric positive-definite case). Thus, a−1

ij can be
obtained by solving successively two triangular systems:{

y = L−1ej

a−1
ij = (U−1y)i

If all entries in the pattern of (L+U) are requested, then the method that implements
the algorithm in [37] might be advantageous, whereas a method based on the traditional
solution of linear systems, such as the one we present here, has to solve at least n linear
systems and requires considerably more memory. On the other hand, if a set of entries
in the inverse is requested, any implementation based on the equations by Takahashi et
al. should set up necessary data structures and determine the computational order to
compute all the entries that are necessary to compute those requested. This seems to be
a rather time consuming operation.

We see from the above equations that, in the forward elimination phase, the right-
hand side vector, ej , contains only one nonzero entry and that, in the backward step, only
one entry of the solution vector is required. For efficient computation, we have to take
advantage of both these observations along with the sparsity of L and U . In our case, the
sparse vector b is a column of the identity, say ej . Lemma 2.1 implies that the only nodes
in the tree that have to be visited are the nodes in the unique path from node j to the
root. As the matrix is assumed irreducible, the last entry, yn, corresponding to the root
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2.2. Exploiting sparsity in the solution phase

Algorithm 2.1 Tree pruning procedure.
/* Input: targets, list of targets */
/* Output: to_process, nodes that belong to the pruned tree */
/* leaves, leaf nodes of the pruned tree */

1: to_process← false
2: is_leaf ← true
3: for i in targets do
4: N ← the node variable i belongs to.
5: /* Follow the path from N to the root node */
6: go_up← true
7: while go_up do
8: to_process(N )← true
9: if N is not the root node then
10: N ← parent of N
11: is_leaf(N )← false
12: if to_process(N ) then /* N has been met before */
13: go_up← false
14: end if
15: else /* Nothing more to do */
16: go_up← false
17: end if
18: end while
19: end for
20: leaves← ∅
21: for nodes N in the tree do
22: if is_leaf(N ) then
23: Add N to leaves
24: end if
25: end for

of the tree, is nonzero. Therefore, Lemma 2.2 states that we need to solve the equations
that correspond to nodes that lie in the unique path from the root node to node i. By
combining the two previous lemmas, one can see that to compute a particular entry a−1

ij

in A−1, the only entries of the factors which have to be used are the L factors on the
path from node j up to the root node, and the U factors on the path going back from the
root to node i (see also [84, Chapter 8] which follows a different approach to reach this
conclusion).

Figure 2.1 (page 22) illustrates the computation of a−1
23 . In the first step (forward phase

with sparse right-hand side), nodes 3, 5 and 6 are visited; in the second step (backward
phase with sparse solution), nodes 6, 5, 3 and 2 are visited. One can notice that the
branch {1, 4} of the tree is not traversed at all; it is pruned, and the subset {2, 3, 5, 6} to
be traversed is the pruned tree.

Note that the method that we have just discussed corresponds to the parenthesization

(
U−1

(
L−1ej

))
i

(2.1)
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of the general formula:

a−1
ij = eTi A

−1ej

= eTi U
−1L−1ej

There are, however, two other parenthesizations:

a−1
ij =

((
eTi U

−1
)
L−1

)
j

(2.2)

=
(
eTi U

−1
) (
L−1ej

)
(2.3)

We have the following theorem regarding the equivalence of these three parenthesizations,
when L and U are computed and stored in such a way that their sparsity patterns are the
transposes of each other. In a more general case, the three parenthesization schemes may
differ when L and UT have different patterns.

Theorem 2.2
The three parenthesizations for computing a−1

ij given in equations (2.1), (2.2) and (2.3)
access the same columns of the factor L and the same rows of the factor U .

Proof. Consider the following three computations

vT = eTi U
−1 (2.4)

y = L−1ej (2.5)
zj = (vTL−1)j (2.6)

The parenthesization (2.2) is computed using (2.4) and (2.6); the parenthesization (2.3) is
computed using (2.4) and (2.5). As we showed before, our parenthesization (2.1) requires
accessing the columns of L associated with the nodes in P(j), the unique path from the
root to node j, and the rows of U associated with the nodes in P(i), the unique path from
the root to node i. We now show that the other parenthesizations require accessing the
same parts of the factors.

As v = U−T ei and UT is lower triangular, by Lemma 2.1, computing v requires
accessing the rows of U associated with the nodes in P(i). Consider z = L−T v. As LT is
upper triangular, by Lemma 2.2, zj requires accessing columns of the L factor associated
with the nodes in P(j), since vN = (U−T ei)N 6= 0 for an irreducible A. Hence the
parenthesization (2.2) accesses the same parts of the factors as the parenthesization (2.1).
Computing y = L−1ej requires accessing the columns of L associated with the nodes in
P(j). Here we again use the fact that A is irreducible, and hence the parenthesization (2.3)
accesses the same parts of the factors.

Although we use equation (2.1) in our algorithms and implementation, we note that
the parenthesization (2.3) can be advantageous while computing only the diagonal entries
with the factorizations LLT or LDLT (with a diagonal D matrix), because in this case
we need to compute a single vector and compute the square of its norm. This formulation
can also be useful in a parallel setting where the solves with L and U can be computed
in parallel whereas, in the other two formulations, the solves using one of the factors have
to wait for the solves using the other to complete. We also note that if the triangular
solution procedures for U−T ei and L−1ej are available, then one can benefit from this
parenthesization if the number of row and column indices involved in the requested entries
is smaller than the number of these requested entries. In this case, many of the calculations

26



2.3. Contributions

can be reused if one computes a set of vectors of the form U−T ei and L−1ej for different
i and j and obtains the requested entries of the inverse by computing the inner products
of these vectors.

Note that computing inverse entries has been our main motivation during this study,
but, as mentioned above, this is essentially the same thing as computing selected entries of
the solution of a system with sparse right-hand sides, and the ideas we present throughout
this study apply equally to both situations.

Finally, to indicate the importance of exploiting the sparsity of the right-hand sides and
solution vectors, we show in Table 2.1 results for a large matrix from our experimental
set (see Table 1.1). In this table, we show the size of the factors, the total amount of
factors accessed and the execution time of the MUMPS solver for the computation of a
set of inverse entries. One can notice that exploiting sparsity reduces the solution time
by a factor of almost 25 on this example. The volume of factors to be accessed, which
is representative of the number of times nodes of the elimination tree are traversed, is
reduced by a factor ∼ 160.

Matrix Factor size Factors loaded (in GB.) Time (in secs.)
(in GB.) Dense Sparse Dense Sparse

FLUX-2M 34.8 103955 638 1041555 43947

Table 2.1: Random 10% diagonal entries of the inverse are computed. The columns
“Dense” correspond to solving the linear systems as if the right-hand side vectors were
dense. The columns “Sparse” correspond to solving the linear system while exploiting the
sparsity of the right-hand side vectors. The computations were performed on the Pret
system defined in Section 1.3.4.

2.3 Contributions
Exploiting sparsity in the right-hand sides and solution vectors has been studied in the
context of Slavova’s PhD thesis [84]; Slavova examined computations of inverse entries and
nullspace bases in an out-of-core context, where exploiting sparsity enables a significant
reduction in access to the factors. This work was the baseline for our study; we extend
this previous contribution by focusing on the following points:

• Reducing the amount of memory used in the solution phase by exploiting spar-
sity was not considered in [84]. This turns out to be critical when running large
experiments and we have addressed this point. In Chapter 3, we describe different
storage schemes for the solution when sparse right-hand sides and/or sparse solution
are used; they significantly reduce the amount of memory used during the solution
phase, thus enabling us to process much larger blocks of right-hand sides at once.
We first present some improvements for the storage scheme used with dense right-
hand sides. We then present a storage scheme based on the path theorem mentioned
in the previous section and that can be used in any case that involves sparse right-
hand sides and/or sparse solution. We finally present a storage scheme based on the
height the tree, that can be used when computing diagonal entries of the inverse.
We especially emphasize implementation issues in a parallel context, as this is not
trivial.

• Processing large sets of multiple sparse right-hand side was considered in [84]. Since
it is usually not possible to process large sets of right-hand sides at once because
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of memory constraints (even when using a very space-saving storage scheme), the
set of right-hand sides has to be partitioned into blocks. In her PhD thesis, Slavova
showed that the way right-hand sides are partitioned determines which parts of the
tree are pruned for each block, and thus permuting and partitioning the right-hand
sides strongly influences the volume of factors to be loaded during the solution phase.
Slavova studied this partitioning problem in the case where only diagonal entries are
computed and suggested a few heuristics. We have extended this study: we showed
that this partitioning problem is strongly NP-complete, and developed heuristics and
models even for the most general case (i.e., not only computing diagonal entries).
The compression of the solution space described in Chapter 3 also enabled us to run
much larger experiments. All these points are described in Chapter 4.

• Reducing the computation cost in an in-core context was not addressed in [84]. This
problem is tackled in Chapter 5 in two different ways. First, we show that when spar-
sity is not exploited within blocks (but only between blocks), the way the right-hand
sides are partitioned strongly influences the number of operations. Interestingly, this
problem is quite different from the above-mentioned partitioning problem (reducing
the volume of factors in an out-of-core context). We have developed different mod-
els and heuristics that have been experimented within the PDSLin solver, where
exploiting sparsity in the right-hand sides is interesting when computing the Schur
complement. Secondly, we have shown that exploiting sparsity within each block of
right-hand sides can strongly reduce the number of operations: we have implemented
and experimented this capability in the MUMPS solver.

• Slavova gave some hints on how to combine tree pruning and tree parallelism. We
extended these ideas and were able to push further the parallel performance. We
show that even though processing multiple blocks of right-hand sides might seem
embarrassingly parallel, there is no choice but to process them one after another, at
least in a distributed-memory context. We then show that reducing the size of the
pruned tree (which decreases the computational cost) and enabling tree parallelism
are contradictory objectives if sparsity is not exploited within blocks. Finally, we
show that combining an interleaving strategy with exploiting sparsity within blocks
enables good parallel performance. This is presented in Chapter 6, the last chapter
of this part of the thesis dedicated to the solution phase.

2.4 The multifrontal solution phase
We briefly recall how the parallel multifrontal solution phase works. Assuming that we
have NBRHS right-hand sides and a block size B (the number of right-hand sides held
and processed as a single block), the solution phase consists of the following loop:
for i = 1 to NBRHS by B do

ibeg ← i
iend← min(ibeg +B − 1,NBRHS)
Forward elimination on columns ibeg : iend
Backward substitution on columns ibeg : iend

end for
We describe the forward elimination and the backward substitution algorithms. We

depict a simplified version of what was done in MUMPS before the beginning of this
study. The algorithms correspond to an asynchronous implementation in a distributed
memory environment; they take advantage of tree parallelism and node parallelism as in
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the factorization phase by inheriting the mapping and the use of Type 1, Type 2 and
Type 3 nodes. Our point here is to highlight the memory structures used during the
solution phase; we omit technical details like delayed pivots, using ScaLAPACK on the
root node, etc. We only present algorithms that deal with a single right-hand side, but
they can naturally be extended to process a block of B right-hand sides at the same time:
every array has B columns instead of one, and level 3 BLAS (instead of level 2 BLAS)
operations are performed (_TRSM and _GEMM instead of _TRSV and _GEMV).

As we will see, both the forward elimination and the backward substitution use similar
data structures: an array that scales with the number of processes (i.e., its total size is N
and is distributed across the processes) called WRHS and an array of size N per process (Wb
in the forward phase, Wsol in the backward phase). This was acceptable in applications
with dense right-hand sides (the whole set of right-hand sides of size N × NBRHS is
already allocated in the user space) and on moderate numbers of processes, but it became
a bottleneck in applications involving sparse right-hand sides, where the number of right-
hand sides is usually large (e.g., NBRHS = N when computing all the diagonal entries
of the inverse) and where large block sizes are desirable (see the subsequent chapters).
Therefore, it became crucial to compress the solution space; this is described in the next
chapter.

2.4.1 The forward phase

The forward elimination process is described in Algorithm 2.2; it is the generalization
of the sequential algorithm described in Section 1.1. We highlight the two important
data structures that are used in the algorithm: Wb and WRHS. Wb is an array (of real
or complex entries) of size N used to store temporary data (contributions of the form
−lijyj), avoiding the use of a stack as is done in the factorization. First, it is initialized
with the values of the right-hand sides that correspond to fully-summed variables mapped
onto Myid (process considered):{

Wb(i) = b(i) if variable i is part of the pivot block of a front mapped onto Myid

Wb(i) = 0 otherwise

Then it is used to accumulate the contributions from one node to another. An im-
portant property has to be highlighted: every time a contribution is computed (in array
Wtmp2) and sent to the parent of the current node, the corresponding entries in Wb are
reset to 0. This is mandatory since a process uses the sameWb array for all nodes mapped
onto it; thus nodes mapped onto the same process can use the same slots in Wb to store
temporary contributions. We illustrate in Figure 2.2 that if entries of Wb are not reset
to zero, a contribution might be counted more than once. In this example, we denote the
array Wb mapped onto process Pi as Wbi. We follow what happens to variable 5, i.e.,
which contributions are stored in Wb(5) on every process and how x5 is finally computed.

First, nodes 1 and 2 are processed in parallel, on P0 and P1 respectively. At node
1, x1 is computed and the contribution −l51 · x1 is stored in Wb0(5); it is then sent to
P2 (because node 4, the parent of node 1, is mapped onto P2). Similarly, at node 2, x2
is computed and the contribution −l52 · x2 is stored in Wb1(5) and sent to P2. Assume
that P2 receives the messages from P0 and P1 before activating node 3 (this is one of the
many potential schedulings); x3 is computed and the contribution −l53 · x3 is added in
Wb2(5), that already contains −l51 · x1 − l52 · x2 (contributions from P0 and P1). Thus
Wb2(5) = −l53 ·x3− l51 ·x1− l52 ·x2 is sent to P3 that holds the parent of node 3. Here we
assume that Wb2(5) is not reset to zero and show that this leads to a wrong result. Node

29



2. Introduction

Algorithm 2.2 Forward elimination algorithm.
Main algorithm (forward elimination)
/* Input: the right-hand side */
/* POSinWRHS, position of a node in WRHS */
/* Output: WRHS, components of the solutions corresponding to variables */
/* in the pivot block of nodes mapped onto Myid */
/* Work arrays: Wb (size N), Wtmp1 and Wtmp2 (size maximum front size) */

1: Initialize the pool with the leaf nodes mapped onto Myid
2: Expand into Wb the entries of the right-hand side corresponding to variables in the

pivot block of nodes mapped onto Myid
3: while termination not detected do
4: if a message is available then
5: Process the message
6: else if the pool is not empty then
7: Extract a node N from the pool
8: Fwd_Process_Node(N )
9: end if

10: end while

Fwd_Process_Node(N )
11: /* L11 and L21 are the L factors of N */
12: /* Pparent is the master process of the parent of N */
13: Wtmp1← entries of Wb corresponding to fully summed variables of N
14: Wtmp1← L−1

11 ·Wtmp1 (_TRS_)
15: Copy Wtmp1 into WRHS (contiguous locations given by POSinWRHS(N ))
16: Wtmp2← entries of Wb corresponding to row indices of L21
17: Reset the corresponding entries of Wb to zero
18: if N is of Type 1 then
19: Wtmp2 = Wtmp2− L21 ·Wtmp1 (_GEM_)
20: Send the resulting contribution (Wtmp2) to Pparent
21: else if N is of Type 2 then
22: for all Islave slave of N do
23: Send to Islave Wtmp1 and rows of Wtmp2 matching rows owned by Islave
24: end for
25: end if

On reception of Wtmp1 + rows of Wtmp2 by a slave process
26: Multiply rows of L21 owned by the slave byWtmp1 and subtract fromWtmp2 (_GEM_)
27: Send the resulting contribution to Pparent

On reception of a contribution corresponding to N by Pparent
28: Assemble the contribution into Wb (scatter and add)
29: if all contributions corresponding to the parent of N have been received then
30: Insert parent of N into the pool
31: end if

4 is activated: x4 is computed and the contribution −l54 · x4 is added in Wb2(5) which
already contains−l53·x3−l51·x1−l52·x2 because it was not previously reset to 0. Therefore,
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Figure 2.2: Forward solution phase: the structure (indices) of the L and U factor is
indicated at each node. If node 3 is activated before node 4, then −l51 ·x1, the contribution
from node 1 to component 5 of the solution, passes through node 3 and not through node
4.

P3 receives −l53 ·x3− l51 ·x1− l52 ·x2 from node 3 and −l41 ·x4− l53 ·x3− l51 ·x1− l52 ·x2
from node 4: this is clearly wrong, as some contributions are present twice, and thus x5
will be wrong.

If Wb2(5) is reset to zero after P2 sends it to P3, then, when node 4 is processed,
the update −l54 · x4 is added in Wb2(5) which contains zero. Thus, P3 receives −l53 ·
x3 − l51 · x1 − l52 · x2 from node 3 and −l54 · x4 from node 4; this time the contributions
are present only once and the result is correct. It is worth noticing that contributions to
unfactored variables do not necessarily follow regular paths in the tree: in our example,
the contribution from node 1 to variable 5 is sent and accumulated into node 3 (that
does not lie in the same branch), while node 4, the child of node 5, does not receive this
contribution. This behavior is due to the asynchronous nature of the algorithm and to
the fact that no property can be assumed for the node to process mapping.

The other important data structure is WRHS: it scales with the number of processes
and contains, for each process, only the entries corresponding to fully summed variables
mapped onto this process. At the end of the forward elimination process, WRHS contains
the (distributed) solution of Lx = b. Each process holds an array of indirect addressing
(that we call an “indirection array” in the following) POSinWRHS which is precomputed to
obtain, for each node of the tree, its position in WRHS. Note that in the case of multiple
right-hand-sides (processed by blocks), POSinWRHS needs to be computed only once for all
blocks.

At the end of the forward phase, Wb can be freed and WRHS is a perfectly compact
structure holding the solution of the forward elimination (its total size, over the processes,
is N). Having such a compact structure is very useful in applications where the forward
and backward phases are separated, for example when using the Schur complement method
(see Section 1.3.2). In these applications, the forward phase is performed for all the blocks
of right-hand sides, and then the backward phase is performed: the partial solutions from
the forward phase for all the right-hand sides have to be stored, thus the need to have a
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compressed structure.
If the right-hand side is sparse, the tree pruning procedure is performed prior to the

forward elimination. Then, the only difference in the forward phase is that the pool of
tasks is initialized with the list of leaves of the pruned tree (which might not be leaves in
the complete tree).

2.4.2 The backward phase

The backward substitution process is described in Algorithm 2.3. We consider the un-
symmetric case and thus rely on the U factors: U11 and U12 are the U factors at a given
node N . In the symmetric case, U11 would be LT11 and U12 would be LT21. Throughout
the algorithm, the array Wsol (one array of size N per process) is used to save parts of
the solution, with the property that the solution for variable i will at least be available
in Wsol(i) on the process in charge of the pivot block containing i. Note that, for Type
2 nodes, each slave process performs a matrix-vector product and sends the result back
to the sender, thus implying more communications than in the forward elimination algo-
rithm, where slave processes do not have to send anything back to their corresponding
master process (they communicate directly with the parent node). The algorithm relies
on the fact that the solution entries that a node requires in order to compute the entries
associated with its fully-summed variables are the entries corresponding to its contribution
block, as the following left-looking equation shows: xi =

(
yi −

∑n
j=i+1 uij · xj

)
/uii. These

indices also belong to the structure of the parent of that node (either as fully-summed
variables or as contribution block indices), therefore, it is enough that a node passes to
its children the partial solution corresponding to its indices.

If the solution is sparse (i.e., if selected entries are requested), then the tree pruning
procedure is performed before the backward substitution. Then, during the backward
phase, the only difference is that a given node does not send pieces of solution to all its
children, but only to those that belong to the pruned tree. The solution phase ends when
the leaves of the pruned tree are reached. Finally, when extracting the solution, only the
requested entries are kept.
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Algorithm 2.3 Backward substitution algorithm.
Main Algorithm (backward substitution)
/* Input: WRHS, output of the forward elimination */
/* POSinWRHS, position of a node in WRHS */
/* Output: the solution */
/* Work arrays: Wsol (size N), x1, x2, and y1 */

1: Initialize the pool with the root node(s) mapped onto Myid
2: while termination not detected do
3: if a message is available then
4: Process the message
5: else if the pool is not empty then
6: Extract a node N from the pool
7: Bwd_Process_node(N )
8: end if
9: end while
10: Extract solution from Wsol arrays

Bwd_Process_node(N )
11: x2 ← entries of Wsol corresponding to columns of U12
12: if N is of Type 1 then
13: y1 ← entries of WRHS corresponding to fully summed variables of U11
14: Solve U11x1 = y1 − U12x2 for x1 (_GEM_ and _TRS_)
15: Expand x1 into Wsol
16: Send partial solution x1, x2 to masters of children nodes
17: else if N is of Type 2 then
18: Send (distribute) entries of x2 to the slaves, according to their structure
19: end if

On reception of x1, x2 from N
20: Update my view of the solution (scatter into Wsol)
21: Insert children of N mapped onto Myid into the local pool

On reception of parts of x2 by a slave of N
22: Multiply the part of U12 mapped onto Myid by the piece of x2 just received (_GEM_)
23: Send the negative of the result back to the master process of N

On reception of a portion of −U12x2 from a slave process by a master process
24: Add the contribution to WRHS
25: if this is the last update (all slaves sent their part) then
26: y1 ← entries of WRHS corresponding to fully summed variables of U11
27: Solve U11x1 = y1 for x1 (_TRS_)
28: Expand x1 into Wsol using POSinWRHS
29: Send partial solution x1, x2 to the master processes of children nodes
30: end if
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Chapter 3

Compressing the solution space

We mentioned in the previous chapter that our baseline algorithms for the forward elim-
ination and the backward substitution require a work array of size N , the size of the
matrix, on every process. This turned out to be critical in applications involving large
numbers of right-hand sides. In these applications, one would like to use large blocks of
right-hand sides at the same time as this is often very beneficial for the performance of
the BLAS and to reduce the number of accesses to the factors (we discuss these points
in the following chapters). For example, setting a block size of 1000 on a problem of size
10,000,000 would imply the allocation 10, 000, 000 × 1, 000 × 8 bytes per entry = 80 GB
per process which is of course infeasible. Furthermore, in the case where the right-hand
sides and/or the solution vectors are sparse, one could expect the memory consumption to
be reduced along the lines of the path theorem by Gilbert & Liu presented in the previous
chapter. Since only the variables that lie in a path or a few paths in the tree are nonzero in
the solution vectors, a workspace of size Θ(N) is not needed. In this chapter, we describe
storage strategies that significantly compress the solution space: the scheme we propose
for the case of dense right-hand sides scales almost perfectly with the number of processes
(i.e., the total memory consumption is of order Θ(N)); in the sparse case, we propose two
schemes: one fits the most general case (it works for any set of sparse right-hand sides and
any set of selected entries in the solution) and works in a parallel context, and the other is
reserved for the sequential case where the right-hand sides and the solution vectors have
only one nonzero component. This is typically useful when computing diagonal entries of
the inverse.

These storage schemes turn out to exhibit significant compression rates, especially in
the sparse case, and they also provide interesting performance gains as they enforce much
more locality than the baseline strategy.

3.1 Dense storage scheme

3.1.1 Idea

In this section we consider the case where both the right-hand sides and the solution vectors
are dense (i.e., all the components of the solution are requested). We can significantly
compress the solution space using the idea that a given process does not need to access all
the N components of the solution vectors. We adapt the WRHS array used in Algorithms 2.2
and 2.3 so that all the work can be done in that array (Wb and Wsol are thus no longer
needed) and so that, on each process, WRHS is compressed as much as possible. Each
process also has an indirection array to access WRHS. We list the properties from which we
derive the construction of WRHS and the indirection arrays:
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• Anywhere in the tree, both in the forward elimination and the backward substitution,
only master processes read from and write to WRHS: they write the components of
the solution that they have computed, the contributions that they receive from their
children (in the forward elimination), and the partial solutions that they receive
from their parent node (in the backward substitution); they also read pieces of WRHS
to be sent to their slaves, or children nodes, or parent nodes. On the other hand,
slave processes of Type 2 nodes never manipulate WRHS. Therefore, for any process
p, the indirection is defined only for variables that belong to a node whose master
is p. For the other variables, the indirection is undefined and no space needs to be
allocated in WRHS. Therefore, building the indirection consists of visiting, for each
process p, the list of nodes for which p is the master process.

• A given process might manipulate different variables in the forward phase and back-
ward phase because of pivoting. We illustrate this in Figure 3.1 which represents
an extreme case of what can happen structurally because of numerical issues: (a)
is an assembly tree prior to factorization, and (b) is the same assembly tree after
factorization; some pivoting has occurred: a pivot has been delayed at nodes 1 and
2, two pivots have been delayed at node 3 and a pivot has been delayed at node 4.
This results in some asymmetry in the nodes; not only do the order of row indices
and column indices differ (e.g., at node 1, row indices are {2, 1, 5} while column
indices are {1, 2, 5}), but also some variables might appear as row indices but not
as column indices and vice versa (e.g., at node 3, variable 1 appears as a row index
but is not in the list of column indices). Therefore, we need two indirection arrays:
one for the forward elimination (row indices) and one for the backward substitution
(column indices). We call them POSinWRHS_row and POSinWRHS_col respectively.
They are of size N and are built at the same time.

• For any process p, the length of WRHS is therefore the maximum between the num-
ber of variables that this process “touches” during the forward elimination (i.e.,
row indices) and the number of variables that it touches during the backward sub-
stitution (column indices). These two numbers might be different: for example,
in Figure 3.1(c), P1, the master of nodes 2 and 5, is in charge of seven row indices
({4, 8, 9, 5, 3, 6, 7}, the union of the row indices of nodes 2 and 5) but only six column
indices ({3, 8, 9, 7, 4, 6}). In any case, the total number of indices that p “touches”
is smaller than the sum of the size of the fronts mapped onto p, since some variables
might appear several times (at most once as eliminated variables, but possibly many
times as variables of contribution blocks). Summing over the number of processes,
the total length of the solution space is larger than N : the difference comes from
the contribution blocks, more specifically from variables that appear as contribution
blocks on a process but as eliminated variables on another one. Consider for example
row indices in Figure 3.1: 5 and 8 appear as eliminated variables on P1 and as indices
of contribution blocks on P0; similarly, 3, 6 and 7 appear as row eliminated variables
on P0 and in contribution blocks on P1. Hence, because of these five variables, the
sum of the size of WRHS over P0 and P1 is N + 5. Therefore, this new WRHS does not
scale perfectly: intuitively, its length will increase with the number of processes. In
a sequential context, the length of WRHS is N since only one process is in charge of
all the N variables.

• We want to enforce some data locality within each node:
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– We want to improve data locality during both the forward phase and the back-
ward phase: the eliminated variables of each node should correspond to con-
secutive slots in WRHS, therefore, when we build the two indirection arrays, we
traverse the list of eliminated variables of each node mapped onto the consid-
ered process and assign them to consecutive slots in WRHS. In the next step,
we also do this with variables of contribution blocks but here we cannot guar-
antee that all the variables will get consecutive slots in WRHS, since variables
that also appear as eliminated variables are already assigned to a slot. For
example, in Figure 3.1, the column indices corresponding to the contribution
block of node 2 are not assigned to consecutive positions in WRHS: indeed, since
7 also appears as an eliminated variable (for node 5), it is grouped with the
other eliminated variables of that node, namely 8 and 9. However, given the
way variables of contribution blocks are ordered (variables corresponding to
the block of eliminated variables of the parent, then variables corresponding to
the block of eliminated variables of the grandparent, etc.), it is very likely that
some locality will be achieved.

– We try to enforce some locality between the forward and backward phases: since
a component x1 of the solution is computed as U11x1 = y1 −U12x2 where y1 is
a component of the solution from the forward phase, it is probably beneficial
to have x1 and y1 in the same slots in WRHS. We try to enforce this by assigning
row eliminated indices and column eliminated indices of a node to the same
slots in WRHS. In cases where there is no pivoting, these lists are the same and
thus x1 and y1 are located in the same portion of WRHS. For example, in the
assembly tree of Figure 3.1, there will be some locality between the two phases
for variables 8 and 9 at node 5 since they are assigned to the same slots in WRHS
for the forward and the backward phase; this is due to the fact that they have
not been affected by pivoting and still have symmetric positions in the tree.

• We want to enforce some locality at the tree level: the eliminated variables of nodes
that are consecutive in the postorder should have consecutive slots in WRHS. This
will improve locality from one node to another (at least in subtrees mapped onto
the same process). Therefore, when constructing the indirections, we traverse the list
of nodes following a postorder (more precisely: the postorder used in the sequential
factorization).

3.1.2 Construction

Using the above-described properties, we derive in Algorithm 3.1 the construction of the
two indirection arrays POSinWRHS_row and POSinWRHS_col. It consists of two passes of
the list of nodes mapped onto a given process Myid, relying on the postorder:

1. The first pass of the algorithm assigns slots in WRHS, i.e., it assigns the two indirection
arrays POSinWRHS_row and POSinWRHS_col, for eliminated variables.

2. The second pass assigns slots in WRHS for variables that correspond to contribution
blocks and that have not been assigned during the first pass. Contrary to the first
pass, a different number of row and column variables can be processed, thus the two
indirection arrays are treated separately.

Note that we still have to allocate two arrays of size N , namely POSinWRHS_row and
POSinWRHS_col, on every process; however, this reduces significantly the size of WRHS
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and is far better than the baseline storage scheme, that requires an array of size N × B
to be allocated on every process (Wb in the forward phase, Wsol in the backward).
Overall, the size of the solution space is significantly reduced, even counting the size of
the indirection arrays, especially for large block sizes B. We illustrate the gains in storage
and in performance of this new storage scheme in Section 3.4.1.

Algorithm 3.1 Construction of the indirection arrays for the compressed solution space
(dense case).
m← 0; POSinWRHS_row← 0; POSinWRHS_col← 0
for any node N mapped onto Myid, following the postorder do

/* npivN is the number of eliminated pivots */
/* nfrontN is the size of the front */
/* row_listN is the list of row indices */
/* col_listN is the list of column indices */
for k = 1 to npivN do

i← row_listN (k); j ← col_listN (k)
m← m+ 1
POSinWRHS_row(i) = m
POSinWRHS_col(j) = m

end for
end for
mrow ← m; mcol ← m
for any node N mapped onto Myid, following the postorder do

for k = npivN + 1 to nfrontN do
i← row_listN (k); j ← col_listN (k)
if POSinWRHS_row(i) = 0 then

mrow ← mrow + 1
POSinWRHS_row(i)← mrow

end if
if POSinWRHS_col(j) = 0 then

mcol ← mcol + 1
POSinWRHS_col(j)← mcol

end if
end for

end for

3.2 A storage scheme based on a union of paths

3.2.1 Idea

We describe in this section a storage scheme dedicated to the case where both the right-
hand sides and the solution vectors are sparse (e.g., computation of inverse entries). If
the right-hand side or the solution is dense, there is not much to do in terms of memory
compression since one of the two triangular solution phases will require a workspace of
size Θ(N), and we use the storage scheme described in the previous section. If both the
right-hand sides and the solution vectors are sparse then, both in the forward elimination
and the backward substitution, only the nodes that lie in the pruned tree need to be
traversed, and only the corresponding variables need to be stored in the solution vector
WRHS. The storage scheme we present here is therefore a simple combination of the tree
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P0
fwd bwd
2 1
1 5
3 6
7 2
6 4
5 7
8 8

P1
fwd bwd
4 3
8 8
9 9
5 7
3 4
6 6
7 X

(c) Structure of WRHS.

Figure 3.1: Example of construction of WRHS. (a) is the initial assembly tree, before fac-
torization; during the factorization, some pivoting occurs, which modifies the structure of
the tree and generates some asymmetry in the front indices (b). (c) is the structure of
WRHS (for each position in WRHS, the index of the row/column variable that occupies this
position is shown); “fwd” refers to the forward phase and “bwd” refers to the backward
phase. An “X” indicates that the position is not used.

pruning procedure and the dense storage scheme previously described. Since it strongly
relies on the pruned tree, which is the union of the paths from a set of targets (pattern
of the right-hand and requested components of the solution) to the root node, we refer to
this storage scheme as the union sparse scheme.

The construction of the two indirection arrays is the combination of Algorithm 3.1
(dense storage scheme) and Algorithm 2.1 (tree pruning): instead of traversing the whole
set of nodes of the tree, the algorithm traverses the pruned tree by following each path
from a target node up to the root node, and tries to enforce locality:

• within nodes: eliminated variables of a given node are assigned to contiguous posi-
tions in WRHS. When possible (cf. the reasons mentioned in Section 3.1), contribution
block variables are assigned to consecutive slots in WRHS as well.

• between nodes: the algorithm assigns eliminated variables of nodes that belong to
the same branch to consecutive sections in WRHS. Since the solution phase will follow
these paths, this provides some locality.

• between the forward phase and the backward phase: eliminated variables of nodes
that are traversed both during the forward elimination and during the backward
substitution (note that some nodes might be traversed during one phase but not the
other) are assigned to the same slots in WRHS.

WRHS is built such that its structure is the following:
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3. Compressing the solution space

1. Fully-summed variables that are reached during the forward elimination.

2. Fully-summed variables that are reached during the backward substitution and that
do not appear in the forward elimination.

3. Variables that only appear in contribution blocks.

The construction follows three main steps:

1. POSinWRHS_row is set for variables that appear as eliminated variables in the forward
elimination phase, by traversing the pruned tree, i.e., by following paths from nodes
in the nonzero pattern of the right-hand sides up to the root, as in Algorithm 2.1.
POSinWRHS_col is also set for nodes that belong to the pruned tree corresponding
to the forward elimination, with negative values −m (m being the current position
in WRHS); this will be useful for telling which nodes are encountered in both phases.

2. POSinWRHS_col is set for variables that appear as eliminated variables in the back-
ward substitution phase. If a negative value −m is found, then it is set to m: this
way, row eliminated variables and column eliminated variables of a node visited both
in the forward phase and the backward phase are assigned to the same slots in WRHS.

3. POSinWRHS_col/row are set for contribution block variables.

3.2.2 Construction

We describe in Algorithm 3.2 the construction of the indirection arrays. Figure 3.2 illus-
trates the structure of WRHS for the computation of

(
A−1e2

)
3 with the assembly tree of

Figure 3.1(b). Since the right-hand side is e2, the pruned tree for the forward elimination
is the path from node 1 (node where 2 is a row eliminated variable) to the root node.
Since only component 3 of the solution is requested, the pruned tree for the backward
substitution is the path from node 2 (node where 3 is a column eliminated variable) to the
root node. Consider process P1: in the forward phase, the only node of the pruned tree
mapped onto P1 is node 5; node 5 has three variables thus three slots are required in WRHS
to store the solution. In the dense case, seven slots were needed (for the four variables in
node 2 and the three variables in node 5). Note that, on P0, the row eliminated variables
and the column eliminated variables of nodes 3 and 4 are assigned to the same positions
in WRHS (slots 2 to 5); however, the first slot in WRHS is used for the row variable 2, which
belongs to node 1; node 1 is not visited in the backward phase, therefore the first slot in
WRHS is not used in the backward phase (it is designated by an “X” in the figure).

P0
fwd bwd
2 X
1 5
3 6
7 2
6 4
5 7
8 8

P1
fwd bwd
8 8
9 9
5 7
X 3
X 4
X 6

Figure 3.2: Structure of WRHS for the computation of
(
A−1e2

)
3 with the assembly tree of

Figure 3.1(b). “fwd” refers to the forward phase and “bwd” refers to the backward phase.
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3.2. A storage scheme based on a union of paths

Algorithm 3.2 Construction of the indirection arrays for the compressed solution space
(union sparse scheme).

/* Input: targets_rhs, nonzero pattern of the block of right-hand sides */
/* targets_sol, requested components of the solution */

/* Step 1: following the pruned tree for the forward phase, assign slots to row eliminated
variables and mark column eliminated variables */

1: to_process← false;m← 0
2: for l in targets_rhs do
3: N ← the node variable l belongs to.
4: /* Follow the path from N to the root node */
5: go_up← true
6: while go_up do
7: to_process(N )← true
8: /* npivN is the number of eliminated pivots */
9: /* nfrontN is the size of the front */
10: /* row_listN is the list of row indices */
11: /* col_listN is the list of column indices */
12: if N is mapped onto Myid then
13: for k = 1 to npivN do
14: i← row_listN (k); j ← col_listN (k)
15: m← m+ 1
16: POSinWRHS_row(i) = m
17: POSinWRHS_col(j) = −m
18: end for
19: end if
20: if N is not the root node then
21: N ← parent of N
22: if to_process(N ) then /* N has been met before */
23: go_up← false
24: end if
25: else /* Nothing more to do */
26: go_up← false
27: end if
28: end while
29: end for

/* Step 2: following the pruned tree for the backward phase, assign slots to column eliminated
variables */

30: m_row ← m; m_col← m
31: to_process← false
32: for l in targets_sol do
33: N ← the node variable l belongs to.
34: /* Follow the path from N to the root node */
35: go_up← true
36: while go_up do
37: to_process(N )← true

– Continued on next page –

41



3. Compressing the solution space

Algorithm 3.2: continued

38: if N is mapped onto Myid then
39: for k = 1 to npivN do
40: j ← col_listN (k)
41: if POSinWRHS_col(j) = 0 then
42: m_col← m_col + 1
43: POSinWRHS_col(j) = m_col
44: else /* A negative value −m is met; it is set to +m */
45: POSinWRHS_col(j) = −POSinWRHS_col(j)
46: end if
47: end for
48: end if
49: if N is not the root node then
50: N ← parent of N
51: if to_process(N ) then /* N has been met before */
52: go_up← false
53: end if
54: else /* Nothing more to do */
55: go_up← false
56: end if
57: end while
58: end for

/* Step 3a: assign slots to row variables corresponding to contribution blocks */
59: to_process← false
60: for l in targets_rhs do
61: N ← the node variable l belongs to.
62: /* Follow the path from N to the root node */
63: go_up← true
64: while go_up do
65: to_process(N )← true
66: if N is mapped onto Myid then
67: for k = npivN + 1 to nfrontN do
68: j ← col_listN (k)
69: if POSinWRHS_row(i)=0 then
70: m_row ← m_row + 1
71: POSinWRHS_row(i) = m
72: end if
73: end for
74: end if
75: if N is not the root node then
76: /* etc. same as before */
77: end if
78: end while
79: end for

/* Step 3b: assign slots to column variables corresponding to contribution blocks */
/* [Same as above with targets_sol and col_list] */
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3.3. A storage scheme based on the height of the elimination tree

3.3 A storage scheme based on the height of the
elimination tree

3.3.1 Assumptions

In the context of the computation of inverse entries, we have been interested in going
even further in the compression of the solution space, in order to be able to process even
larger blocks of right-hand sides at once (several thousands of columns per block on large
problems). We will show that, when computing diagonal entries of the inverse, it possible
to hold the solution space in an array whose size is proportional to the height of the pruned
elimination tree. This last storage scheme is less general than the two schemes previously
described. It assumes the following context:

• A sequential execution.

• Computation of diagonal entries of A−1, or, slightly more generally, a computation
where both the right-hand sides and the solution vectors have only one nonzero
entry.

It also requires a very particular feature of the computational scheme: sparsity must
be exploited within blocks of right-hand sides. This is described in detail in Chapter 5,
and here we simply sketch the idea. Let us take a simple example: consider the assembly
tree of Figure 3.1(b) and assume that inverse entries a−1

22 and a−1
44 are computed at the

same time, that is, there is a single block of right-hand sides [e2 e4]. Consider the forward
elimination phase: the pruned tree associated with this block of right-hand sides is the
union of the path from node 1 (which contains variable 2) to the root node and the path
from node 2 (which contains variable 4) to the root node. Since node 1 is not on the path
from node 2 to the root node,

(
L−1e4

)
2 = 0 (variable 2 being an eliminated variable of

node 1). Therefore, when solving with the right-hand side block [e2 e4], it is necessary to
store the partial solution

(
L−1e2

)
2 but not the component

(
L−1e4

)
2. Similarly, since node

2 is not on the path from node 1 to the root node,
(
L−1e2

)
4 is zero and does not have to be

stored. Only
(
L−1e4

)
4 is nonzero and has to be stored. The storage scheme presented in

the previous section would not exploit this sparsity: a row of WRHS would be used to store(
L−1 [e2 e4]

)
2 and another row would be used to store

(
L−1 [e2 e4]

)
4, ignoring the fact that

some elements of these rows are zeros. We can go further in memory compression: since
these two rows have complementary (non overlapping) patterns, a single row in WRHS is
enough to store their nonzero entries. In the first column of that row we store

(
L−1e2

)
2,

and in the other column we store
(
L−1e4

)
4.

3.3.2 Construction

Assuming that we have the ability to exploit sparsity within blocks, i.e., at each node, to
perform computations only on nonzero columns of the block of right-hand sides and to
store only the nonzero part of each partial solution, we can derive a storage scheme whose
memory requirement is proportional to the height of the tree: the location of a variable in
WRHS is its height in the tree. This works because every column of the block of right-hand
sides corresponds to a single path in the tree. Exploiting sparsity within the block is
roughly equivalent to saying that columns are processed independently and thus can be
stored in an array of size the height of the pruned tree, which is the maximum length
of the paths defined by each column. We refer to this scheme as the tree height storage
scheme. Once again, the storage scheme is designed to enforce locality within nodes (the
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3. Compressing the solution space

eliminated variables of a node are stored in contiguous locations in WRHS) and at the tree
level (in WRHS, the variables of the children of a node are located next to the variables of
that node). We describe in Algorithm 3.3 how the indirection arrays are constructed.

Algorithm 3.3 Construction of the indirection arrays for the compressed solution space
(tree height scheme).

/* Input: targets, indices of the diagonal elements of the inverse to be computed */

1: Compute the pruned tree; to_process(N ) is true if N belongs to the pruned tree
2: height(:) = 0
3: pool = {the root node}
4: while pool is not empty do
5: Extract a node N from the pool
6: if N is mapped onto Myid then
7: /* npivN is the number of eliminated pivots */
8: /* row_listN is the list of row indices */
9: /* col_listN is the list of column indices */

10: /* ncN is the number of children of N */
11: /* children(N ) is the list of children of N */
12: m← height(N )
13: for k = 1 to npivN do
14: i← row_listN (k); j ← col_listN (k)
15: m← m+ 1
16: POSinWRHS_row(i) = m
17: POSinWRHS_col(j) = m
18: end for
19: end if
20: for k = 1 to ncN do
21: Nk = children(Nk)
22: if to_process(Nk) then /* Nk belongs to the pruned tree */
23: height(Nk)← height(Nk) + npivN
24: Add Nk to the pool of nodes
25: end if
26: end for
27: end while

We illustrate in Figure 3.3 the structure of WRHS when computing the inverse entries
a−1

22 and a−1
44 on the assembly tree of Figure 3.1(b). The tree height scheme improves

over the union sparse scheme by storing the partial solutions associated to row eliminated
variables 2 and 4 on the same line of WRHS.

It is not possible to extend the tree height scheme to the most general case where the
right-hand sides or the solution vectors have more than one nonzero component (since in
that case a column of the right-hand side might require traversing more than one path in
the tree). In practice, we have limited our implementation to the sequential case (even
though a parallel implementation should be feasible). The ability to exploit sparsity within
blocks is described in Chapter 5; it allows us to significantly decrease the computational
cost and is particularly interesting in a parallel context for exploiting tree parallelism, as
explained in Chapter 6.
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(a) Union sparse scheme.

fwd bwd
8 8
9 9
5 7
7 2
6 4
1 X
3 X

2&4 X
(b) Tree height scheme.

Figure 3.3: Structure of WRHS for the computation of a−1
22 and a−1

44 with the assembly tree
of Figure 3.1(b), in a sequential context. “fwd” refers to the forward phase and “bwd”
refers to the backward phase. The tree height scheme improves on the union sparse scheme
by storing the components of the solution corresponding to row variables 2 and 4 in the
same locations in WRHS.

3.4 Experiments

We report in this section experimental results that highlight the benefits of the storage
schemes previously described, both in terms of memory and performance.

3.4.1 Dense right-hand sides: compression and locality effects

We report in Table 3.1 the size of the solution space for matrix AUDI for different number
of processes. We compare the baseline algorithm and our new dense storage scheme,
corresponding to Algorithm 3.1. We recall that the baseline algorithm uses an array of size
N on every process (Wb in the forward elimination, Wsol in the backward substitution),
and an array, WRHS, that scales perfectly with the number of processes; therefore the total
size of the solution space is N times the number of processes plus one, times the block
size. In the new algorithm, there is only one array, WRHS, that scales almost perfectly with
the number of processes. The block size is set to 128 for the purpose of the illustration,
even though it does not influence the comparison since, in both cases, the total size of
the solution space is proportional to the block size. Results show that, while the size of
the solution space grows linearly with the number of processes in the baseline algorithm,
it is fairly close to being constant in the new algorithm: it slowly increases, but there is
only a 30% increasing when going from 1 process to 32. Therefore, the compression rate
is almost equal to the number of processes (e.g., 25 on 32 processes).

Figure 3.4 illustrates the performance gains provided by the new storage scheme. We
measure the time for the solution phase in MUMPS on matrix AUDI, in a sequential
execution with a single right-hand side block with 128 columns. We compare the baseline
algorithm, the new storage scheme described in Algorithm 3.1 without enforcing locality
at the tree level (i.e., without traversing nodes in postorder), and the new storage scheme
where locality is enforced at both the node level and the tree level. Moreover, although
this is not related to memory compression, we also experimented with a row-major storage
scheme for WRHS, which is expected to deliver a better locality. This is also illustrated in
Figure 3.4. Results show that enforcing locality both at the node level and the tree level
improves the performance; the row-major storage also provides some speed-up. Altogether,
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3. Compressing the solution space

Processes Size of the of the solution space (GB)
Baseline algorithm New algorithm

1 1.8 0.89
2 2.7 0.90
4 4.5 0.95
8 8.1 0.97

16 15.3 1.03
32 29.7 1.20

Table 3.1: Total size of the solution space for matrix AUDI with a block size equal to 128
and different numbers of processes.

these optimizations decrease the solution time by around 30% on this example. Matrix
AUDI corresponds to a 3D problem, but we experienced even larger improvements on 2D
problems.
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Figure 3.4: Time in seconds for the solution phase on matrix AUDI, in a sequential
execution and a single right-hand side block with 128 columns. “Baseline” refers to the
baseline algorithm (no compression); “Compressed” refers to the compressed scheme where
locality is enforced within nodes but not at the tree level (the list of nodes is not traversed
following the postorder); “Compressed+PO” refers to the compressed scheme with locality
enforced at the tree level; “Compressed+PO+rows” refers to the compressed scheme with
a row-major storage for WRHS.

3.4.2 Sparse right-hand sides

We illustrate the gains in memory requirements for the two above-mentioned storage
schemes. Table 3.2 corresponds to the computation of the diagonal entries of the inverse
of matrix AUDI, in a sequential context, for different block sizes B. We compare the
baseline algorithm (which requires a solution space of size 2 × N × B in a sequential
execution), the union sparse scheme, and the tree height scheme (which is applicable here
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since we compute diagonal entries). We assume that the N right-hand sides (columns
of the identity matrix) are ordered according to their only nonzero entry, following the
postorder of the elimination tree used during the factorization. We will show in the next
chapters that this is often a good strategy to decrease both the memory requirements
and the computational cost. Results show that the storage schemes that exploit sparsity
are able to significantly decrease the memory consumption. On this example, there is a
factor of nearly a hundred in memory consumption. The tree height storage scheme is
slightly better than the union sparse scheme. Gains tend to grow when the block size
increases. This is intuitively expected, since the union sparse scheme yields a solution
space proportional to the size of the pruned tree, while the tree height scheme yields a
solution space proportional to the height of the pruned tree.

Size of the solution space (MB)
Baseline algorithm Union sparse storage Tree height storage
B = 128 B = 1024 B = 128 B = 1024 B = 128 B = 1024

1843 14745 20 162 19 154

Table 3.2: Size of the solution space for matrix AUDI when computing all the diagonal
entries of the inverse. Right-hand sides are ordered according to their only nonzero entry,
following the postorder used during the factorization.

Table 3.3 illustrates the computation of random off-diagonal entries of the inverse
of matrix AUDI. We assume again that the right-hand sides are ordered according to
their only nonzero entry, following the postorder of the elimination tree used during the
factorization. This time, the tree height scheme is not applicable. The union sparse
scheme offers significant gains upon the baseline scheme, but less than in Table 3.2. This
comes from the fact that we work with the union of the pruned tree for the forward
phase and the pruned tree for the backward phase. Since we have ordered the blocks of
right-hand sides according to the pattern of the right-hand sides, ignoring the pattern of
the solution, we have no control over the pruned tree for the backward phase (union of
the paths from the root node to the nodes corresponding to the requested entries). This
problem is highlighted in the next chapter. The table shows that gains tend to decrease
when the block size increases, but we still have a factor of almost five for B = 1024.

Size of the solution space (MB)
Baseline algorithm Union sparse storage
B = 128 B = 1024 B = 128 B = 1024

1843 14745 216 3264

Table 3.3: Size of the solution space for matrix AUDI when computing random general
(off-diagonal) inverse entries.
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Chapter 4

Minimizing accesses to the factors
in an out-of-core execution

In this chapter, we consider computations involving large number of sparse right-hand
sides in an out-of-core context. We focus on the computation of inverse entries as this
was our motivating application, but the results presented in this chapter apply to any
computation involving sparse right-hand sides and/or sparse solution vectors. When the
number of right-hand sides is large (e.g., NBRHS = N), one generally cannot process
them all at once because of the excessing memory usage, even using a sophisticated storage
scheme such as those introduced in the previous chapter. Therefore, right-hand sides are
processed by blocks. We show that the way the set of right-hand sides is divided into
blocks strongly influences the volume of factors to be loaded. We formulate this as a
partitioning problem and show that it is NP-complete. We also show that we cannot get a
close approximation to the optimal solution in polynomial time. We thus need to develop
heuristic algorithms, and we propose: (i) a lower bound on the cost of an optimum solution;
(ii) an exact algorithm for a particular case; (iii) two other heuristics for a more general
case; and (iv) hypergraph partitioning models for the most general setting. We compare
the proposed algorithms and illustrate the performance of our algorithms in practice using
MUMPS on large matrices.

4.1 A tree-partitioning problem

4.1.1 Formulation

We first focus on the case were only diagonal entries of the inverse are computed. As seen
in Section 2.2, in order to compute a−1

ii using the formulation{
y = L−1ei

a−1
ii = (U−1y)i

we have to access the columns of L that correspond to the nodes in the unique path from
node i to the root, and then access the rows of U that correspond to the nodes in the same
path. As discussed above, these are the necessary and sufficient parts of L and U that are
needed. In other words, we know how to solve efficiently for a single requested diagonal
entry of the inverse. Now suppose that we need to compute a set R of diagonal entries
of the inverse. If |R| is small, then we could identify all the columns of L and rows of U
that must be loaded for at least one requested entry in R and then solve for all R at once,
accessing the necessary and sufficient parts of L and U only once. However, |R| is very
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4. Minimizing accesses to the factors in an out-of-core execution

often large. In the application areas mentioned in Section 2.1, one often needs to compute
a large set of entries, such as the whole diagonal of the inverse (in that case, |R| = N).
The computations proceed in blocks of size B, where at each block a limited number of
diagonal entries are computed. This necessitates accessing (loading from disk) some parts
of L and U multiple times (in different blocks) according to the entries computed in the
corresponding blocks. In our computational scheme, after some factors are loaded from
disk to main memory and used at a given node of the tree, they must be discarded from
memory to have room for the next block of factors to be loaded; when the same part of an
L or U factor is needed for two successive blocks, we therefore cannot assume that they are
still in memory. The main combinatorial problem then becomes that of partitioning the
requested entries into blocks in such a way that the overall cost of disk-to-memory traffic
for the factors is minimized. In the rest of this chapter, we will often use the terminology
“factors loaded from disk”, which is the same as “factors accessed”, and also corresponds
to the traffic from disk to main memory.

Let us first discuss the influence of the block size B: in terms of volume of accesses
to the factors, the optimal block size is B = NBRHS . Indeed, if there is only one block
of right-hand sides, every node in the tree is traversed at most once (once if it belongs to
the pruned tree corresponding to the single block of right-hand sides, and not otherwise).
On the contrary, a block size B = 1 maximizes the volume of factors: the set of nodes
to be traversed during the whole solution phase is the same as before, but some nodes
are accessed multiple times because they appear in the pruned tree of different blocks; for
example, the root node is accessed for every block, i.e., NBRHS times. In this chapter,
the block size B is fixed (the choice of B is discussed later), and we consider the problem
of partitioning the set of right-hand sides into blocks of size B, so that the volume of
factors to be loaded is minimized.

Figure 4.1 illustrates the influence of the partitioning on the volume of factors to be
loaded. Diagonal entries a−1

1,1, a−1
2,2, a−1

3,3 and a−1
4,4 are requested and the block size B is set

to 2. The partitioning {{1, 2} , {3, 4}} leads to a volume of loaded factors of 10 (assuming
unit weights): indeed, the first block requires to access the nodes that are on the path from
node 1 to the root node and the nodes that are on the path from node 2 to the root node,
i.e., the six nodes {1, 2, 3, 4, 5, 6}. Similarly, the second block requires to access the nodes
that are on the path from node 3 to the root node and the nodes that are on the path
from node 4 to the root node, i.e., the four nodes {3, 4, 5, 6}. However, the partitioning
{{1, 4} , {2, 3}} leads to a volume of 8: indeed, nodes 3 and 4 are accessed only once while
they are accessed twice with the previous partitioning.

6

2

3

5

4

1

Figure 4.1: An example of the influence of the partitioning: diagonal terms 1, 2, 3 and 4
are requested and the block size is 2. The partitioning {{1, 2} , {3, 4}} leads to a volume
of loaded factors of 10 (assuming unit weights), whereas the partitioning {{1, 4} , {2, 3}}
leads to a volume of 8.
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We now formally introduce the combinatorial problem. Let T be the elimination tree
on N nodes, where the factors associated with each node are stored on disks (out-of-core).
Let w(i) denote the cost of loading the parts of the factors, L or U , associated with node
i of the elimination tree. Similarly let w(i, j) denote the sum of the costs of the nodes in
the path from node i to node j. The cost of computing a−1

ii is

cost(i) =
∑

k∈P(i)
2× w(k) = 2× w(i, r)

If we solve for a set R of diagonal entries at once, then the overall cost is

cost(R) =
∑

i∈P(R)
2× w(i) where P(R) =

⋃
i∈R
P(i)

Let B denote the maximum number of diagonal entries that can be computed at the same
time, i.e., the maximum size of a block. The TreePartitioning problem is formally
defined as follows: given a tree T with N nodes, a set R = {i1, . . . , im} of nodes in the
tree, and an integer B 6 m, partition R into a number of subsets R1, R2, . . . , RK so that
|Rk| 6 B for all k, and the total cost

cost(R) =
K∑
k=1

cost(Rk) (4.1)

is minimum.
The number of subsets K is not specified, but obviously K > dmB e. Without loss of

generality, we can assume that there is a one-to-one correspondence between R and leaf
nodes in T . Indeed, if there is a leaf node i where i /∈ R, then we can delete node i from
T since it does not appear in the pruned tree of any of the blocks. Similarly, if there is an
internal node i where i ∈ R, then we can create a leaf node i′ of zero weight, make it an
additional child of i, and set R = R \ {i} ∪ {i′}. For ease of discussion and formulation,
for each requested node (leaf or not) of the elimination tree we add a leaf node with zero
weight. To clarify the execution scheme, we now specify the algorithm that computes the
diagonal entries of the inverse specified by a given Rk. We first find P(Rk), the union of
the paths from the nodes corresponding to the entries in Rk to the root node; we then
start loading the associated L factors from the disk following a postorder and perform the
forward solves with L. When we reach the root node, we have |Rk| vectors and we start
loading the associated U factors from the disk and perform backward substitutions along
the paths that we traversed (in reverse order) during the forward substitutions.

4.1.2 A lower bound

We present a lower bound for the cost of an optimal partition. Let nl(i) denote the number
of leaves of the subtree T (i), which can be computed as follows:

nl(i) =
{

1 i is a leaf node∑
j∈children(i) nl(j) otherwise

We note that as all the leaf nodes correspond to the requested diagonal entries of the
inverse, nl(i) corresponds to the number of forward and backward solves that have to be
performed at node i.

Given the number of forward and backward solves that pass through a node i, it is
easy to define the following lower bound on the amount of factors loaded.
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4. Minimizing accesses to the factors in an out-of-core execution

Theorem 4.1 - Lower bound on the amount of factors to load.
Let T be a node weighted tree, w(i) be the weight of node i, B be the maximum allowed
size of a partition, and nl(i) be the number of leaf nodes in the subtree rooted at i.
Then we have the following lower bound, denoted by η, on the optimal solution c? of the
TreePartitioning problem:

η = 2×
∑
i∈T

w(i)×
⌈
nl(i)
B

⌉
6 c?

Proof. Follows easily by noting that each node i has to be loaded at least
⌈
nl(i)
B

⌉
times

both in the forward and backward substitution phases.

Each internal node is on a path from (at least) one leaf node, therefore dnl(i)/Be is
at least 1, and we have 2×∑i∈T w(i) 6 c?. We also note that by removing w(i) from the
formula, one obtains a lower bound on the total number of times the factors are loaded.

Figure 4.2 illustrates the computation of the lower bound. Entries a−1
11 , a−1

33 , and a−1
44

are requested, and the elimination tree of Figure 4.1 is modified accordingly to have leaves
(with zero weights) corresponding to these entries. The numbers nl(i) are shown next to
the nodes. Suppose that each internal node has unit weight and that the block size B is
2. Then, the lower bound is:

η = 2×
(⌈1

2

⌉
+
⌈1

2

⌉
+
⌈2

2

⌉
+
⌈3

2

⌉
+
⌈3

2

⌉)
= 14

6

3

5

4

1

3

2

3

1

1
4' 3'

1'
1

1 1

Figure 4.2: Number of leaves of the subtrees rooted at each node of a transformed elimi-
nation tree. The nodes corresponding to the requested diagonal entries of the inverse are
shaded, and a leaf node is added for each such entry. Each node is annotated with the
number of leaves in the corresponding subtree, resulting in a lower bound of η = 14 with
B = 2.

4.1.3 NP-completeness

We have the following computational complexity result, that shows that our partitioning
problem is difficult (it is unlikely that a solution can be found in polynomial time):

Theorem 4.2
The TreePartitioning problem is NP-complete.
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4.1. A tree-partitioning problem

Proof. We consider the associated decision problem: given a tree T with m leaves, a value
of B, and a cost bound c, does a partitioning S of the m leaves into subsets whose size
does not exceed B, and such that cost(S) 6 c exist? It is clear that this problem belongs
to NP since if we are given the partition S, it is easy to check in polynomial time that it
is valid and that its cost meets the bound c. We now have to prove that the problem is
in the NP-complete subset.

To establish the completeness, we use a reduction from 3-Partition [39], which is
NP-complete in the strong sense. Consider an instance I1 of 3-Partition: given a set
{a1, . . . , a3p} of 3p integers, and an integer Z such that ∑16j63p aj = pZ, does a partition
of {1, . . . , 3p} into p disjoint subsets K1, . . . ,Kp, each with three members, such that for
all 1 6 i 6 p, ∑j∈Ki aj = Z exist?

We build the following instance I2 of our problem: the tree is a three-level tree com-
posed of N = 1 + 3p+ pZ nodes: the root vr, of cost wr, has 3p children vi, of the same
cost wv, for 1 6 i 6 3p. In turn, each vi has ai children, each being a leaf node of zero
cost. This instance I2 of the TreePartitioning problem is shown in Figure 4.3. We
let B = Z and ask whether there exists a partition of leaf nodes of cost c = pwr + 3pwv.
Here wr and wv are arbitrary values (we can take wr = wv = 1). We note that the
cost c corresponds to the lower bound shown in Theorem 4.1; in this lower bound, each
internal node vi is loaded only once, and the root is loaded p times, since it has pZ = pB
leaves below it. Note that the size of I2 is polynomial in the size of I1. Indeed, because
3-Partition is NP-complete in the strong sense, we can encode I1 in unary, and the size
of the instance is O(pZ).

Now we show that I1 has a solution if and only if I2 has a solution. Suppose first
that I1 has a solution K1, . . . ,Kp. The partition of leaf nodes corresponds exactly to the
subsets Ki: we build p subsets Si whose leaves are the children of vertices vj with j ∈ Ki.
Suppose now that I2 has a solution. To meet the cost bound, each internal node has to
be loaded only once, and the root at most p times. This means that the partition involves
at most p subsets to cover all leaves. Because there are pZ leaves, each subset is of size
exactly Z. Because each internal node is loaded only once, all its leaves belong to the
same subset. Altogether, we have found a solution to I1, which concludes the proof.

...

... ... ...

1 2 3

1 2 3

{ { {...

Figure 4.3: The instance of the TreePartitioning problem corresponding to a given 3-
Partition problem. The weight of each node is shown next to the node. The minimum
cost of a solution for B = Z to the TreePartitioning problem is p×wr +3p×wv which
is only possible when the children of each vi are all in the same part, and when the children
of three different internal nodes, say vi, vj , vk, are put in the same part. This corresponds
to putting the numbers ai, aj , ak into a set for the 3-Partition problem which sums up
to Z.
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4. Minimizing accesses to the factors in an out-of-core execution

We can further show that we cannot get a close approximation to the optimal solution
in polynomial time.

Theorem 4.3
Unless P=NP, there is no 1 + o( 1

N ) polynomial approximation for trees with N nodes in
the TreePartitioning problem.

Proof. Assume that there exists a polynomial 1 + ε(N)
N approximation algorithm for trees

with N nodes, where limN→∞ ε(N) = 0. Let ε(N) < 1 for N > N0. Consider an arbitrary
instance I0 of 3-Partition with a set {a1, . . . , a3p} of 3p integers, and an integer Z such
that ∑16j63p aj = pZ. Without loss of generality, assume that ai > 2 for all i (hence
Z > 6). We ask if we can partition the 3p integers of I0 into p triples of the same sum Z.
Now we build an instance I1 of 3-Partition by adding X times the integer Z − 2 and
2X times the integer 1 to I0, where X = max

(⌈
N0−1
Z+3

⌉
− p, 1

)
. Hence I1 has 3p + 3X

integers and we ask whether these can be partitioned into p+X triples of the same sum
Z. Clearly, I0 has a solution if and only if I1 does (the integer Z − 2 can only be in a set
with two 1s).

We build an instance I2 of TreePartitioning from I1 exactly as we did in the proof
of Theorem 4.2, with wr = wv = 1, and B = Z. The only difference is that the value
p in the proof has here been replaced by p + X, therefore the three-level tree now has
N = 1 + 3(p+X) + (p+X)Z nodes. Note that X has been chosen so that N > N0. Just
as in the proof of Theorem 4.2, I1 has a solution if and only if the optimal cost for the
tree is c? = 4(p+X), and otherwise the optimal cost is at least 4(p+X) + 1.

If I1 has a solution, and because N > N0, the approximation algorithm will return a
cost of at most(

1 + ε(N)
N

)
c? 6

(
1 + 1

N

)
4(p+X) = 4(p+X) + 4(p+X)

N

But 4(p+X)
N = 4(N−1)

(Z+3)N 6 4
9 < 1, so that the approximation algorithm can be used to

determine whether I1, and hence I0, has a solution. This is a contradiction unless P=NP.

4.1.4 The off-diagonal case

As discussed before, the formulation for the diagonal case carries over to the off-diagonal
case as well. An added difficulty in this case is related to the actual implementation of
the solver. Assume that we have to solve for a−1

ij and a−1
kj , that is, two entries in the same

column of A−1. As seen in Section 2.2,{
y = L−1ej

a−1
ij = (U−1y)i

so only one y vector suffices. Similarly one can solve for the common nonzero entries in
U−1y only once for i and k. This means that, for the forward solves with L, we can perform
only one solve, and for the backward solves, we can solve only once for the variables in
the path from the root to the least common ancestor of i and j, lca(i, k). Clearly, this will
reduce the operation count. However, in an out-of-core context, this does not affect the
number of factors that we have to load. Avoiding the unnecessary repeated solves only
affects the operation count.
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If we were to exclude the algorithms that take advantage of the common indices among
the solves for two requested entries, then we can immediately generalize our results and
models developed for the case of diagonal entries to the off-diagonal case. Of course, the
partitioning problem will remain NP-complete (it contains the instances with diagonal
entries as a particular case). The lower bound can also be generalized to yield a lower
bound for the case with arbitrary entries. Indeed, we only have to apply the same reasoning
twice: once for the column indices of the requested entries, and once for the row indices
of the requested entries. We can extend the model to cover the case of multiple entries
in the same column; when indices are repeated (say a−1

ij and a−1
kj are requested), we can

distinguish them by assigning each occurrence to a different leaf node (we add two zero-
weighted leaf nodes to the node j of the elimination tree). Then adding these two lower
bounds yields a lower bound for the general case. However, in our experience, we have
found this lower bound to be loose. Note that applying this lower bound to the case where
only diagonal entries are requested yields the lower bound given in Theorem 4.1.

4.2 Heuristics

In this section, we suggest heuristics that address the case where only diagonal entries
are requested. We first suggest a very intuitive heuristic that relies on a postorder of the
tree and then describe a more sophisticated approach based on recursive bisection and a
matching algorithm.

4.2.1 A partitioning based on a postorder of the tree

A postordering of the tree is such that all the nodes in a given subtree are numbered
consecutively. Therefore, one can expect that partitioning the right-hand sides following
a postorder of the tree will provide a good locality for factor reuse between consecutive
columns of the right-hand sides: intuitively, consecutive right-hand sides for a topological
ordering will correspond to nodes which are likely to be close in the tree and thus to share
a long common path to the root node. We thus derive the PoPart heuristic: the PoPart
heuristic first orders the leaf nodes according to their rank in the postorder. It then puts
the first B leaves in the first part, the next B leaves in the second part, and so on. This
simple partitioning approach results in dF/Be parts, for a tree with F leaf nodes, and
puts B nodes in each part, except maybe in the last one. We have the following theorem
which states that this simple heuristic obtains results that are at most twice the cost of
an optimum solution.

Theorem 4.4 - Approximation guarantee of the PoPart heuristic.
Let ΠPO be the partition obtained by the algorithm PoPart and c? be the cost of an
optimum solution, then

cost(ΠPO) 6 2× c?

Proof. Consider node i. Because the leaves of the subtree rooted at i are sorted consec-
utively, the factors of node i will be loaded at most

⌈
nl(i)
B

⌉
+ 1 times. This is illustrated

in Figure 4.4; at a given node, the number of leaf nodes in the subtree rooted at i can be
written nl(i) = r1 + q ·B + r2 with 0 6 r1, r2 < B. If r1 > 0, r2 > 0 and r1 + r2 < B, the
factors of node i are loaded q + 2 =

⌈
nl(i)
B

⌉
+ 1 times; otherwise, they are loaded

⌈
nl(i)
B

⌉
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times. Therefore the overall cost is at most

cost(ΠPO) 6 2×
∑
i

w(i)×
(⌈

nl(i)
B

⌉
+ 1

)
6 η + 2×

∑
i

w(i)

6 2× c?

......... ... ...

q
BB 21r r{i

...

Figure 4.4: Approximation guarantee of the PoPart heuristic. At node i, nl(i) = r1 +
q ·B + r2; at most, i is accessed

⌈
nl(i)
B

⌉
times.

We note that the factor two in the approximation guarantee is rather loose in practical
settings, as 2 ×∑iw(i) will be much smaller than the lower bound η with a practical B
and a large number of nodes.

We have experimented with some heuristics aimed at improving the postorder by
performing vertex move refinements (à la Kernighan-Lin [58]). The results were rather
mixed and so we will not discuss them here, but we refer the reader to [79].

4.2.2 A matching algorithm

In this section, we first propose an algorithm that solves the partitioning problem exactly
when B = 2. It will serve as a building block for an algorithm for partitioning into blocks
of size B = 2k, for a positive integer k in the next subsection.

Since the blocks are of size 2, a matching can be used to define the blocks. Consider
the complete graph G = (V, V × V ) of the leaves of a given tree, and assume that the
edge (i, j) represents the decision to put the leaf nodes i and j together in a part. Given
this definition of the vertices and edges, we associate the value m(i, j) = cost({i, j}) to
the edge (i, j) if i 6= j, and m(i, i) = ∑

n∈V w(n) (or any sufficiently large number). Then
a minimum weighted matching in G defines a partitioning of the vertices in V with the
minimum cost (as defined in (4.1)). Although this is a short and immediate formulation, it
has a high run time complexity of O(|V |3) and O(|V |2) memory requirements. Therefore,
we propose another exact algorithm for B = 2.

The proposed algorithm Match proceeds from the parents of the leaf nodes to the
root. At each internal node n, those leaf nodes that are in the subtree rooted at n and
which are not put in a part yet are matched two by two (arbitrarily) and each pair is put
in a part; if there is an odd number of leaf nodes remaining to be partitioned at node n,
one of them (arbitrarily) is passed to parent(n). This algorithm attains the lower bound
shown in Theorem 4.1, and hence it finds an optimal partition for B = 2. The key idea
can be seen using Figure 4.4 and the corresponding notation. Assume for simplicity that
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in Match algorithm, leaf nodes are matched following a left-right order (instead of being
matched arbitrarily). We can never have, at a given node i, nl(i) = r1 + q · B + r2 with
r1 = 1 and r2 = 1; indeed, we necessarily have r1 = 0 and r2 = 0 (if the number of leaf
nodes in the subtree rooted at i is even) or r2 = 1 (if the number of leaf nodes is odd).
Thus node i is loaded

⌈
nl(i)
B

⌉
times, which corresponds to the lower bound.

The memory and the run time requirements are O(|V |). We note that two leaf nodes
can be matched only at their least common ancestor.

Algorithm 4.1 Match: An exact algorithm for B = 2.
/* Input: T = (V,E) with F leaves; each requested entry corresponds to a leaf node. The
root node is denoted by r. */
/* Output: Π2 = {R1, . . . , RK} where K = dF/2e */

1: for each leaf node ` do
2: Add ` to inds(parent(`)),
3: end for
4: Compute a postorder of the nodes of T
5: k ← 1
6: for Each non-leaf node n in postorder do
7: if n 6= r and inds(n) contains an odd number of vertices then
8: `← the node with the least weight in inds(n)
9: Move ` to inds(parent(n)), add w(n) to the weight of ` /* relay to the parent */
10: else if n = r and inds(r) contains an odd number of vertices then
11: `← a node with the least weight in inds(n)
12: Make ` a singleton
13: end if
14: for i = 1 to |inds(n)| by 2 do
15: Put the ith and i + 1st vertices in inds(n) into Rk, increment k /* match the

ith and i+ 1st items in the list inds */
16: end for
17: end for

We have slightly modified the basic algorithm and show this modified version in Algo-
rithm 4.1. The modifications keep the run time and memory complexities the same and
are included to enable the use of Match as a building block for a more general heuristic.
In this algorithm, parent(n) gives the parent of node n, and inds(n) is a list of indices
associated with node n. The sum of the sizes of the inds(·) lists is |V |. The modification
is that when there are an odd number of leaf nodes to partition at node n, the leaf node
with the least cumulative weight is passed to the parent. The cumulative weight of a leaf
node i when Match processes node n is defined as w(i, n)−w(n): the sum of the weights
of the nodes in the unique path between nodes i and n, including i, but excluding n. This
is easy to compute: each time a leaf node is relayed to the parent of the current node, the
weight of the current node is added to the cumulative weight of the relayed leaf node. By
doing this, the leaf nodes which traverse longer paths before being partitioned are chosen
before those with smaller weights.

We propose a heuristic algorithm that extends the previous approach when B = 2k
for some k > 2: the BiseMatch algorithm is shown in Algorithm 4.2. It is based on
a bisection approach. At each bisection, a matching among the leaf nodes is found by
a call to Match. Then, one of the leaf nodes of each pair is removed from the tree;
the remaining one becomes a representative of both. Since the remaining node at each
bisection step is a representative of two representative nodes of the previous bisection

57



4. Minimizing accesses to the factors in an out-of-core execution

step, after logB = k steps, BiseMatch obtains nodes that represent at most B− 1 other
nodes. At the end, the nodes, if not a representative node, are included in the same part
as their representative node.

Algorithm 4.2 BiseMatch: A heuristic algorithm for B = 2k.
/* Input: T = (V,E) with F leaves; each requested entry corresponds to a leaf node */
/* B = 2k: the maximum allowable size of a part */
/* Output: Π2k = {R1, . . . , RK} where |Ri| 6 B */

1: for level = 1 to k do
2: M ←Match(T )
3: For each pair (i, j) ∈M remove the leaf node j from T , and mark the leaf node i

as representative
4: Clean up the tree T so that all leaf nodes correspond to some requested entry
5: end for
6: Each remaining leaf node i corresponds to a part Ri where the nodes that are repre-

sented by i are put in Ri

As seen in the algorithm, at each stage a matching among the remaining leaves is
found by using the Match algorithm. When leaf nodes i and j are matched at their
least common ancestor lca(i, j), if w(i, lca(i, j)) > w(j, lca(i, j)) we designate i to be
the representative of the two by adding (i, j) to M , otherwise we designate j to be the
representative by adding (j, i) to M . With this choice, the Match algorithm is guided to
make decisions at nodes close to the leaves. The run time of BiseMatch is O(|V | logB),
with an O(|V |) memory requirement.

4.3 Hypergraph models
We show how the problem of finding an optimal partition of the requested entries can
be transformed into a hypergraph partitioning problem. Our aim is to develop a general
model that can address both the diagonal and the off-diagonal cases. We first provide a
few definitions; we then give the model for diagonal entries and finally its generalization
to the off-diagonal case; we refer to this heuristic as the HP partitioning.

4.3.1 The hypergraph partitioning problem

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets N . Every
net is a subset of vertices. The cardinality of a net hi is denoted as |hi|. The size of a
hypergraph is∑hi∈N |hi|. Weights can be associated with vertices. We use w(j) to denote
the weight of the vertex vj . Costs can be associated with nets. We use c(hi) to denote
the cost associated with the net hi.

Π = {V1, . . . ,VK} is a K-way vertex partition of H = (V,N ) if each part is nonempty,
parts are pairwise disjoint, and the union of the parts gives V. In Π, a net is said to
connect a part if it has at least one vertex in that part. The connectivity set Λ(i) of a net
hi is the set of parts connected by hi. The connectivity λ(i) = |Λ(i)| of a net hi is the
number of parts connected by hi. In Π, the weight of a part is the sum of the weights of
vertices in that part.

In the hypergraph partitioning problem, the objective is to minimize

cutsize(Π) =
∑
hi∈N

(λ(i)− 1)× c(hi) (4.2)
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This objective function is widely used in the VLSI community [59] and in the scientific
computing community [15, 26, 88]; it is referred to as the connectivity-1 cutsize metric.
The partitioning constraint is to satisfy a balancing constraint on part weights:

Wmax −Wavg

Wavg
6 ε

Here Wmax is the largest part weight, Wavg is the average part weight, and ε is a prede-
termined imbalance ratio. This problem is NP-hard [59].

4.3.2 Hypergraph model – diagonal case

We build a hypergraph whose partition according to the cutsize (4.2) corresponds to
the total size of the factors loaded. The requested entries (which correspond to the leaf
nodes) are going to be the vertices of the hypergraph, so that a vertex partition will define
a partition on the requested entries. The more intricate part of the model is the definition
of the nets. The nets correspond to edge disjoint paths in the tree, starting from a given
node (not necessarily a leaf) and going up to one of its ancestors (not necessarily the
root); each net is associated with a cost corresponding to the total size of the nodes in the
corresponding path. We use path(h) to denote the path (or the set of nodes of the tree)
corresponding to a net h. A vertex i (corresponding to the leaf node i in the tree) will be
in a net h if the solve for a−1

ii passes through path(h). In other words, if path(h) ⊂ P(i),
then vi ∈ h. Therefore, if the vertices of a net hn are partitioned among λ(n) parts, then
the factors corresponding to the nodes in path(hn) will have to be loaded λ(n) times. As
we load a factor at least once, the extra cost incurred by a partitioning is λ(n)− 1 for the
net hn. Given this observation, one case see the equivalence between the total size of the
loaded factors and the cutsize of a partition plus the total weight of the tree.

We now define the hypergraph HD = (VD,ND) for the diagonal case. Let T = (V,E)
be the tree corresponding to the modified elimination tree so that the requested entries
correspond to the leaf nodes. Then the vertex set VD corresponds to the leaf nodes in
T . As we are interested in putting at most B solves together, we assign a unit weight to
each vertex of HD. The nets are best described informally. There is a net in ND for each
internal node of T . The net hn corresponding to the node n contains the set of vertices
which correspond to the leaf nodes of subtree T (n). The cost of hn is equal to the weight
of node n, i.e., c(hn) = w(n). This model can be simplified as follows: if a net hn contains
the same vertices as the net hj where j = parent(n), that is if the subtree rooted at node
n and the subtree rooted at its parent j have the same set of leaf nodes, then the net hj
can be removed, and its cost can be added to the cost of the net hn. This way the net
hn represents the node n and its parent j. This process can be applied repeatedly so that
the nets associated with the nodes in a chain, except the first (the one closest to a leaf)
and the last (the one which is closest to the root), can be removed, and the cost of those
removed nets can be added to that of the first one. After this transformation, we can also
remove the nets with single vertices (these correspond to the parent of a leaf node with a
single child) as these nets cannot contribute to the cutsize. We note that the remaining
nets will correspond to disjoint paths in the tree T .

Figure 4.5 shows an example of such a hypergraph: the requested entries are a−1
11 , a−1

22 ,
and a−1

55 . Therefore, V = {1, 2, 5} and N = {h1, h2, h4, h5} (net h3 is removed according
to the rule described above and the cost of h2 includes the weight of nodes 2 and 3). Each
net contains the leaf vertices which belong to the subtree rooted at its associated node,
therefore h1 = {1}, h2 = {2}, h4 = {1, 2}, h5 = {1, 2, 5}. For example, for the partition
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V1 = {2} and V2 = {1, 5} shown on the right of the figure, the cutsize is:

cutsize(V1, V2) = c(h1)× (λ(h1)− 1) + c(h2)× (λ(h2)− 1)
+ c(h4)× (λ(h4)− 1) + c(h5)× (λ(h5)− 1)

= c(h4)× (2− 1) + c(h5)× (2− 1)
= c(h4) + c(h5)

Consider the first part V1 = {2}. We have to load the factors associated with the nodes
2, 3, 4, 5. Consider now the second part V2 = {1, 5}. For this part, we have to load the
factors associated with the nodes 1, 4, 5. Hence, the factors associated with the nodes 4
and 5 are loaded twice, while the factors associated with all other (internal) nodes are
loaded only once. Since we have to access each node at least once, the extra cost due to
the given partition is w(4) + w(5) which is equal to the cutsize c(h4) + c(h5).
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Figure 4.5: The entries a−1
11 , a−1

22 , and a−1
55 are requested. For each requested entry, a leaf

node is added to the elimination tree as shown on the left. The hypergraph model for the
requested entries is built as shown on the right.

Consider a tree of height H with F leaf nodes, then the size of the hypergraph model
can be at most (H − 1) × F . Assuming a nested dissection-like ordering on a matrix of
size N ×N , the size of the hypergraph corresponding to the case where all of the diagonal
entries of the inverse are requested will be Θ(N logN).

4.3.3 Hypergraph model – general case

For the general case where the set of requested entries is not restricted to diagonal entries,
the idea is to model the forward and backward solves with two different hypergraphs, and
then to partition these two hypergraphs simultaneously. It has been shown how to parti-
tion two hypergraphs simultaneously in [88]. The essential idea, which is refined in [89],
is to build a hypergraph by amalgamating the relevant vertices of the two hypergraphs,
while keeping the nets intact; this technique is referred to as vertex amalgamation. In our
case, the two hypergraphs would be the model for the diagonal entries associated with the
column subscripts (forward phase), and the model for the diagonal entries associated with
the row subscripts (backward phase), assuming that the same indices are distinguished by
associating them with different leaf nodes. We have then to amalgamate any two vertices
i and j where the entry a−1

ij is requested.
Figure 4.6 shows an example where the requested entries are a−1

71 , a−1
62 and a−1

95 . The
transformed elimination tree and the nets of the hypergraphs associated with the forward
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Figure 4.6: Example of hypergraph model for the general case: a−1
71 , a−1

62 and a−1
95 are

requested.

(hfwd) and backward (hbwd) solves are shown. Note that the nets hfwd
3 as well as hbwd

3 ,
hbwd

4 , and hbwd
8 are removed. The nodes of the tree which correspond to the vertices

of the hypergraph for the forward solves are shaded with light grey; those nodes which
correspond to the vertices of the hypergraph for the backward solves are shaded with dark
grey. The composite hypergraph is shown in the right-hand figure. The amalgamation of
light and dark grey vertices is done according to the requested entries (vertex i and vertex
j are amalgamated for a requested entry a−1

ij ). A partition is given in the right-hand
figure: Π = {{a−1

62 }, {a
−1
71 , a

−1
95 }}. The cut size is c(hbwd

5 ) + c(hfwd
4 ) + c(hfwd

5 ). Consider
the computation of a−1

62 . We need to load the L factors associated with the nodes 2, 3, 4,
and 5 and the U factors associated with 5, 4, 3 and 6. Now consider the computation of
a−1

71 and a−1
95 ; the L factors associated with 1, 4, and 5, and the U factors associated with

5, 10, 8, 7, and 9 are loaded. In the forward solution, the L factors associated with 4 and 5
are loaded twice (instead of once if we were able to solve for all of them in a single pass),
and in the backward solution the U factor associated with 5 is loaded twice (instead of
once). The cutsize again corresponds to these extra loads.

We note that building such a hypergraph for the case where only diagonal entries are
requested yields the hypergraph of the previous section, where each net is repeated twice.

4.4 Experiments

We conduct three sets of experiments. In the first set, we compare the quality of the results
obtained by the PoPart, BiseMatch and hypergraph-based heuristics using MATLAB
implementations. For these experiments, we created a large set of TreePartitioning
problems, each of which is associated with computing some diagonal entries in the inverse
of a sparse matrix. In the two other sets, we perform experiments with MUMPS on
large matrices coming from various industrial applications. Using the out-of-core option
of MUMPS, we investigate the performance of the natural ordering, the PoPart heuristic
and the hypergraph model (as we can use off-the-shelf hypergraph partitioning software).
In the second set of experiments, we investigate the computation of a set of diagonal
entries, and in the third set we investigate the computation of off-diagonal entries.
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4.4.1 Assessing the heuristics

Our first set of experiments focuses on the computation of diagonal entries and compares
the heuristics PoPart, BiseMatch, and the hypergraph partitioning which were dis-
cussed in Sections 4.2 and 4.3. We have implemented the first two heuristics in MATLAB
and used PaToH [27] for hypergraph partitioning. We use a set of matrices from the
University of Florida (UFL) sparse matrix collection1. The matrices we choose satisfy the
following characteristics: 10000 6 N 6 100000, the average number of nonzeros per row is
greater than or equal to 2.5, and in the UFL index the posdef field is set to 1. At the time
of writing, there were a total of 60 matrices satisfying these properties. We have ordered
the matrices using the metisnd routine of the Mesh Partitioning Toolbox [46] and have
built the elimination tree associated with the ordered matrices using the etree function
of MATLAB. We assume that the size of the solution space is proportional to the height
of the elimination tree (as in Section 3.3), and we consider several settings with memory
sizes equal to k × N for k ∈ {2, 8, 32, 128, 512, 1024}. Since the solution space is of size
the height of the tree h multiplied by the block size, and since we want B to be a power
of 2 for BiseMatch, the corresponding block sizes are of the form B = k × 2blog N

h
c.

We have assigned random weights in the range 1–200 to tree nodes. Then, for each
P ∈ {0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00}, we have created 10 instances (except for P =
1.00) by randomly selecting P × N integers between 1 and N and designating them
as the requested entries in the diagonal of the inverse. Notice that for a given triplet
of a matrix, B, and P , we have 10 different trees to partition, resulting in a total of
10× 6× 6× 60 + 6× 60 = 21960 TreePartitioning problems.
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Figure 4.7: The performance profile of the proposed PoPart, BiseMatch, and hyper-
graph partitioning heuristics with respect to the lower bound η on the cost of the partition
with respect to the amount of factors loaded. The cost obtained by each method for each
TreePartitioning problem instance is divided by η for that instance, and the perfor-
mance profiles are drawn with respect to these numbers. The closer the plots are to 1.0,
the better the method. The graphs measure the fraction of the test cases for which the
method is within x of the lower bound where x is the value on the x axis. Thus in about
90% of the test cases PoPart obtains results that are smaller than 1.1× η.

We summarize the results with the performance profiles (proposed in [30]) shown in
1http://www.cise.ufl.edu/research/sparse/matrices/
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Figure 4.7. The performance profile for a specific heuristic shows the fraction of the
TreePartitioning problems for which the heuristic gives results that are within some
value τ of the lower bound η. As seen in the figure, the three heuristics obtain results
that are close to the optimum in almost all cases, where the ranking of the heuristics is
clearly BiseMatch, PoPart, and the hypergraph partitioning-based model. The plot
shows that in 90% of the cases, PoPart obtains results that are less than 1.1×η. Among
these three heuristics, the run time complexity of the hypergraph partitioning problem is
the highest. In addition to this, the memory requirements are also the highest. We think
therefore that either BiseMatch or PoPart should be used in real applications when
computing all the diagonal entries of the inverse. Upon a closer look at the data, we see
that BiseMatch is better than PoPart in almost 13000 instances whereas the reverse
is true in almost 2000 instances, in both cases the difference was very small (see also the
performance profile). As these results show, we do not lose much by not implementing the
BiseMatch heuristic in MUMPS. Furthermore, PoPart is the fastest of the discussed
heuristics. Therefore, we identify PoPart as our preferred partitioner when computing
diagonal entries of the inverse.

4.4.2 Large-scale experiments – diagonal entries

In this section, we give results obtained by using MUMPS with the out-of-core option and
a nested dissection ordering provided by MeTiS [55]. We use a subset of the matrices
from industrial applications described in Table 1.1. All experiments have been performed
with direct I/O access to files so that we can guarantee effective disk access independently
of both the size of the factors and the size of the main memory. Because of the direct
I/O access to the files, we are sure that the operating system will not use a system cache
of uncontrolled size. I/O buffers of controlled size (see [8]) are then introduced to enable
efficient prefetching. The direct I/O mechanism is also helpful in the standard solution
phase [8]. All results are obtained on the Pret machine described in Section 1.3.4.

As indicated earlier, since we consider the computation of diagonal entries in a sequen-
tial context, we can use the tree height storage scheme for the solution space. We first
calibrate the size of the solution space WRHS and then define the block size B by dividing
the size of WRHS by the height of the elimination tree. Let us take a typical large matrix
(e.g., AUDI) to explain how we dimension the size of the workspace WRHS. On this matrix,
an I/O buffer area of size 700 MB is recommended for the efficient prefetching of the fac-
tors (see [8]). Furthermore, to enable Level 3 BLAS operations on dense contiguous data,
a workspace of size the maximum front size times the block size is needed to hold tempo-
rary data from WRHS. For a typical block size of a few thousand as used in practice for this
matrix, it is appropriate to have a workspace of maximum size 600 MB. For all integer
and internal data 300 MB are used, and 500 MB are needed to store the initial matrix.
Finally, we assume that we wish to save 400 MB for the operating system and 500 MB
for the application data. This adds up to 3 GB, and since 4 GB of memory are available
in our experimental system, 1 GB can be used for WRHS. Therefore, we will assume in the
following experiments that, for a given matrix, the block size, B, is obtained from dividing
of the size of the WRHS work array (1 GB) by the height of the associated elimination tree.
The block size will thus depend on the matrix and its size will be indicated.

Table 4.1 shows the total size of the factors loaded and the execution time of the
solution phase of MUMPS with different settings and partitions. A random selection of
N/10 diagonal entries (10%) of the inverse of the given matrices is computed with the
block size B defined as above. The values in the column “Lower bound” are computed
according to Theorem 4.1. The columns “Nat” and “PoP” correspond respectively to
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the natural partitioning (the indices are partitioned in the natural order into blocks of
size B) and to the PoPart heuristic. When reordering the right-hand sides following a
postorder (PoPart) instead of following the natural order (Nat), the total number of
loaded factors is reduced significantly, resulting in a noticeable impact on the execution
time. The hypergraph model also provides very good volumes of loaded factors. However,
compared to the PoPart heuristic which is almost free, it is rather expensive. We have
tried to modify PaToH’s quality parameter setting, which resulted in a much smaller
partitioning time but did not produce good enough partitions; we set PaToH’s parameter
bisec_fixednetsizetrsh to the number of vertices in a given hypergraph.

Lower Volume of loaded Running time of the Block Hypergraph information
bound factors (GB) solution phase (s.) size Time Cells Nets

Matrix (GB) Nat PoP HP Nat PoP HP (s.) Size |V| |N|
NICE20MC 29 66 32 32 5534 1635 1619 6633 204 860840 71592 13028
AUDI 34 175 40 39 10494 2044 1988 6349 588 1351869 94369 20792
CONESHL 21 55 23 24 3622 1702 1695 8856 571 1628724 126221 34892
FLUX-2M 142 638 152 161 43947 12848 13178 4486 9925 11954507 200172 46361
CAS4R_LR15 12 123 13 12 44228 1487 1481 11316 2838 3489756 242313 127255

Table 4.1: Total size of the loaded factors and execution times using MUMPS with three
different partitionings. A random 10% of the diagonal entries are requested. The memory
constraint for the solution space is 1GB; the corresponding block size B is shown. The
out-of-core executions use direct I/O access to the files. Columns Nat, PoP and HP refer
to exploiting the sparsity of the right-hand side vectors under a natural partitioning, the
PoPart heuristic, and a hypergraph partitioning, respectively. The time for partitioning
the hypergraph and its size (sum of the number of vertices in each net) are shown in the
last four columns.

4.4.3 Large-scale experiments – off-diagonal entries

We perform two sets of experiments for the off-diagonal case to assess the proposed hyper-
graph partitioning-based model. In the first set, we conduct experiments with MUMPS
(with the out-of-core factorization option and standard settings including an ordering
based on nested dissection). As we are in the off-diagonal case, we use the union sparse
storage scheme for the solution space (as mentioned in the previous chapter, the tree
height scheme is restricted to diagonal entries). We set a fixed block size B = 384, which
leads to a solution space of size close to 1 GB for the first five matrices in Table 1.1. As
this leads to a smaller scale comparison in terms of block size, we also present simulation
results with varying and larger block sizes as in the diagonal case. In both sets of exper-
iments, we compute a random selection of N/20 off-diagonal entries (no two in the same
column).

The results are shown in Table 4.2. The table displays the lower bound and the total
size of the factors loaded with a natural ordering, a PoPart partition on the column
indices, and a partition of the hypergraph using PaToH with default options, except that
we have requested a tighter balance for the sizes of the parts.

As expected, the formulation based on hypergraph partitioning obtains a better result
than PoPart in most cases. Compared to what happens in the diagonal case, the cost
of partitioning the hypergraph is negligible compared to the cost of the solution phase.
The storage for the model is also modest compared to the requirements of the solution
phase; since the sum of the sizes of the nets of the model amounts to a few million (almost
12 million for the largest case), partitioning the hypergraph requires a few tens to a few
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Lower Volume of loaded Running time of the Hypergraph information
bound factors (GB) solution phase (s.) Time Cells Nets

Matrix (GB) Nat PoP HP Nat PoP HP (s.) Size |V| |N|
NICE20MC 161 860 714 545 9665 7372 5651 48 858927 35796 20168
AUDI 189 1350 1069 831 13653 11036 8686 55 1347103 47184 31520
CONESHL 159 712 662 668 9115 8529 8561 101 1621030 63110 52759
FLUX-2M 712 4543 3646 3053 60318 48607 41246 311 11747048 100086 71649
CAS4R_LR15 69 1271 761 824 24588 15173 16121 178 3453464 121156 160666

Table 4.2: Total size of the loaded factors and execution times using MUMPS with three
different partitionings. A random selection of N/20 off-diagonal entries are requested;
entries are partitioned into blocks of size 384. The out-of-core executions use direct I/O
access to the files. Columns Nat, PoP and HP refer to exploiting the sparsity of the right-
hand side vectors under a natural partitioning, the PoPart heuristic and a hypergraph
partitioning, respectively. The time for partitioning the hypergraph and its size (sum of
the number of vertices in each net) are shown in the last four columns.

hundred Megabytes. There is, however, a large difference between the lower bounds and
the performance of the heuristics.

Similar to the diagonal case, it is possible to modify the PaToH options to improve
the quality of the partitioning, and to limit the amount of loaded factors with HP. With
the same block size of 384, the volume of loaded factors with HP are for example reduced
from 824 GB to 640 GB for CAS4R_LR15 and from 668 GB to 314 GB for CONESHL.

Finally, we present simulation results obtained in the off-diagonal case if an algorithm
similar to the one used for the diagonal case were implemented (so that a workspace
proportional to B multiplied by the height of the tree would be used, and hence the block
sizes would be identical to those in Table 4.1). We show in Table 4.3 the resulting volume
of loaded factors with PoPart and HP, together with the lower bound obtained. The
characteristics of the hypergraph are the same as those reported in Table 4.2, because the
same set of off-diagonal entries is used. We observe that the volume of factors loaded is
much smaller, indicating that such an algorithm would also significantly decrease the time
for solution in such an out-of-core context. They are also much closer to the lower bound
than with the smaller blocks of Table 4.2.

Lower Volume of loaded
bound factors (GB) Block

Matrix (GB) PoP HP size
NICE20MC 22 61 50 6633
AUDI 24 91 66 6349
CONESHL 15 49 35 8856
FLUX-2M 84 403 254 4486
CAS4R_LR15 10 49 38 11316

Table 4.3: Total size of the loaded factors with PoPart and HP. The same N/20 off-
diagonal entries as in Table 4.2 are requested but a large block size is used.
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Chapter 5

Minimizing computational cost in
an in-core execution

In this chapter, we consider reducing the computational cost (more specifically the number
of operations) in computations involving multiple sparse right-hand sides. We have seen
in Section 2.2.1 how to reduce the traversal of the tree to the pruned tree by exploiting
sparsity in the right-hand sides and/or solution vectors. However, there are two ways of
performing operations at each node of the pruned tree: either operations are performed on
the whole block of right-hand side columns, or sparsity is exploited within each block, i.e.,
at a given node, operations are performed only on the columns of the right-hand side that
this node has to update, i.e., that are nonzero at the rows corresponding to that node. Let
us take an example. Consider the elimination tree in Figure 5.1 and assume that we want
to solve Lx = [e1 e2] at the same time, i.e processing the two right-hand side columns
at once. The pruned tree is {1, 2, 4, 5, 6, 7}. If, at each node, operations are performed
on the whole block of columns, then some unnecessary operations are performed; indeed,
at node 1, the partial right-hand side block, i.e., the set of rows of the right-hand side
that is passed to node 1, is [1 0], therefore unnecessary operations are performed on the
second column. Similarly, since nodes 4 and 5 are not on the path from node 1 to the
root node, the first component in the right-hand side block at these nodes is zero, leading
to some useless operations. These extra operations are performed on the “padded zeros”
that have been introduced so that the multiple columns of the right-hand sides have the
same pattern.

3

1

2

6

7

5

4

Figure 5.1: A simple elimination tree.

On the contrary, one could perform a symbolic analysis to determine which columns of
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the block of right-hand sides a given node needs to process (i.e., on which columns _TRS_
and _GEM_ need to be performed); this is what we refer to as exploiting sparsity within
blocks.

In this chapter, we examine the two possibilities of exploiting or not exploiting the
sparsity within blocks. In Section 5.1, we examine the case where sparsity is not exploited
within blocks. In that context, the way the right-hand sides are partitioned into blocks
strongly influences the number of operations. The problem sounds similar to what we
have considered in the previous chapter, but it is actually quite different. We tackle
this problem in the context of the triangular solution of the PDSLin solver described in
Section 1.3.2. In Section 5.2, we examine how sparsity can be exploited within blocks. We
have studied and implemented this feature in MUMPS; to our knowledge, this property
is not exploited in any other solver.

5.1 Performing operations on a union of paths

We consider computations with multiple sparse right-hand sides where at each node of
the pruned tree, operations are performed on the whole block (of size B) of right-hand
sides (this is what we refer to as “performing operations on a union of paths”). In this
context, the ordering of the right-hand sides influences the number of operations. Let us
consider the example in Figure 5.1 and consider the solution of Lx = [e1 e2 e3], with a
block size B = 2; one block contains two right-hand sides, and the other contains only one.
Assume for simplicity that the number of operations performed at each node is equal to
the number of columns in the processed block. Consider the partitioning {{e1, e2}, {e3}}:
the number of operations for the first block is 12 (there are six nodes in the pruned tree,
and two operations are performed at each node since there are two columns in the block).
The number of operations for the second block is 2 (there are two nodes in the pruned
tree, 3 and 7, and one column to be processed), thus the total number of operations is 14.
Now consider the partitioning {{e1, e3}, {e2}}: the number of operations is 13 (4 × 2 for
the first block plus 5 × 1 for the second block). The extra number of operations for the
first partitioning comes from the fact that at nodes 4 and 5 two operations are performed
while this does not happen with the second partitioning. Two “padded zeros” have been
introduced to the structure of the first column (that corresponds the solution of Lx = e1),
at indices 4 and 5, so that the two columns of the first block (solution of Lx = [e1 e2])
have the same structure; this is illustrated in Figure 5.2. Therefore, the partitioning of
the columns of the right-hand sides influences the number of operations to be performed,
and hence the performance of the triangular solution. If one uses the union sparse storage
scheme described in Section 3.2, then the padded zeros also represent an extra memory
cost since, in that case, the solution space follows the union of the paths that form the
pruned tree. The problem is thus to find, for a fixed block size B, a partitioning that
minimizes the number of padded zeros.

This problem sounds like the TreePartitioning discussed in the previous chapter
but it is actually quite different. Let us first discuss the influence of the block size B: in
the out-of-core problem, the optimal block size was B = NBRHS since the nodes of the
pruned tree were loaded once only; on the contrary, B = 1 was the worst choice. In this
in-core problem, the opposite is true: B = 1 is the best choice as it introduces no extra
operations; on the contrary B = NBRHS maximizes the number of operations as, at every
node in the union of paths from the structures of the NBRHS right-hand sides to the root
node, operations will be performed on NBRHS columns, thus introducing many padded
zeros.
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1: X 0
2: X X
4: 0 X
5: 0 X
6: X X
7: X X

Figure 5.2: Structure of the solution of Lx = [e1 e2] with the elimination tree of Figure 5.1.
Components 4 and 5 of the first column are structural zeros but are stored and involved
in computations; they are “padded zeros”.

For a given block size B, the two problems are also different: let us again consider the
example in Figure 5.1 and the solution of Lx = [e1 e2 e3]. We showed that in the in-core
problem, the partitioning {{e1, e3}, {e2}} was better than {{e1, e2}, {e3}}. In the out-of-
core problem, the opposite is true: on the one hand, {{e1, e3}, {e2}} leads to accesses to
9 nodes (four for the first block, 1, 3, 6 and 7, plus five for the second block: 2, 4, 5, 6
and 7). On the other hand, {{e1, e2}, {e3}} leads to 8 accesses (six for the first block plus
two for the second block) and is thus better. The difference between the two partitionings
comes from node 6, which is loaded only once in the first partitioning. The two problems
are thus different; we have tried similar approaches, i.e., a postordering and hypergraph
model, but the hypergraph model, that we describe in Section 5.1.2, is actually completely
different from the one described in Section 4.3.

This in-core problem was motivated by the computation of the Schur complement in
the PDSLin solver, where sparsity is not exploited within blocks; we reuse the notation
from Section 1.3.2, although the results are applicable to any sparse triangular solution.
In this context, the objective is to reorder the columns of Ê` in order to maximize the
structural similarity among adjacent columns and hence minimize the number of padded
zeros in order to reduce the cost of the computation of G` = L−1

` P`Ê`. For the rest of
this section, we drop the subscript ` in D`, G`, Ê`, and use ` to denote the `-th part of
the m-way partition of Ê.

5.1.1 A partitioning based on a postorder of the tree

Similar to what was presented in Chapter 4 in the context of the computation of inverse
entries, using a partitioning based on a postorder of the tree is a reasonable idea. Contrary
to the computation of inverse entries, the right-hand sides here have more than one nonzero
entry. We choose to reorder the columns of Ê according to their first nonzero entry,
following the postorder of the elimination tree of the corresponding subdomain D. The
reason this ordering may reduce the number of padded zeros is the same as in the previous
chapter: let i and j be the first nonzero indices in two adjacent columns. Since the RHS
columns are sorted by the first nonzero row indices, the two nodes i and j are likely to
be close together in the postordered elimination tree, and the two paths from the i-th
node and the j-th node to the root node are likely to have large degree of overlap in the
elimination tree. As a result, this reordering technique is likely to increase the structural
similarity among adjacent columns.

This simple heuristic is easy to implement, and is effective in practice. However, it
only considers the first nonzeros in the columns, and ignores the fill-ins generated by other
nonzeros.
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5.1.2 Hypergraph model

Our second reordering technique is based on a hypergraph model. We reuse some of the
definitions and notation introduced in Section 4.3. Our goal is to partition the columns
of Ê into m parts, where the similarity of the row structure among the corresponding
columns of G in the same part is maximized. To partition the RHS columns Ê into
m parts, we use the row-net hypergraph model of the solution vectors G, whose nonzero
structure is obtained by a symbolic triangular solution (using the path theorem presented
in Section 2.2.1). The row-net hypergraph model of G is such that:

• There is a vertex vj for each column j of G.

• There is a net ni for each row i of G, such that vj ∈ ni ⇐⇒ gij 6= 0.

• The weight of a vertex vj is the number of nonzeros in column j of G: |{i : gij 6= 0}|.

Consider a partition Πm = {V1,V2, . . . ,Vm} of the columns of G into m parts, with
B the number of columns in each part. To simplify our discussion, we assume that the
number of columns is divisible by B. Let ri denote the set of columns of G whose i-th
row have nonzeros, i.e., ri ≡ {j : gij 6= 0}. Then, for a given part V`, the number of zeros
to be padded in the i-th row is given by the formula

cost(ri,V`) =
{
|V`| − |ri ∩ V`| if ri ∩ V` 6= ∅
0 otherwise

If the i-th row does not have any nonzero in any columns of V`, then clearly no zeros are
padded in the i-th row of V`. On the other hand, if V` has a nonzero in the i-th row, then
for each column in V` for which gij = 0, there will be a padded zero. Hence, this cost
function counts the number of padded zeros in the i-th row of V`. The total cost of Πm is
the total number of padded zeros and is given by

cost(Πm) =
nG∑
i=1

∑
V`∈Λi

(|V`| − |ri ∩ V`|)

where nG is the number of rows in G.
In our numerical experiments, we used PaToH to partition the first m×B columns of

G enforcing each part to have B columns by setting the imbalance parameter to be zero.
The remaining columns of G are gathered into one part at the end. Since each part has
B columns, we obtain

cost(Πm) =
nG∑
i=1

(λiB − |ri|) (5.1)

We can further manipulate the formula (5.1) and obtain
nG∑
i=1

(λiB − |ri|) =
nG∑
i=1

λiB − nnz(G)

=
nG∑
i=1

(λi − 1)B +
nG∑
i=1

B − nnz(G)

=
nG∑
i=1

(λi − 1)B + nGB − nnz(G)

Hence, for a given G, the cost function (5.1) and the connectivity-1 metric (4.2) with
each net having the constant cost of B differ only by the constant value (nGB−nnz(G)).
Therefore, one can minimize (5.1) by minimizing (4.2).
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5.1.3 Experiments

We examine the performance of the two reordering techniques, namely the postordering of
the elimination tree and the hypergraph partitioning-based ordering, in terms of fraction
of padded zeros and in terms of triangular solution time. All results are obtained on the
Franklin machine described in Section 1.3.4. We report results on the last two matrices
of Table 1.1; a few more results can be seen in [91]. For both matrices, we extract eight
subdomains using PT-Scotch [28] (parallel nested dissection), and a minimum degree
ordering is applied to each subdomain.

Figure 5.3 shows the fraction of padded zeros using the postordering of the elimination
tree, the hypergraph-based ordering and the ordering coming from the nested dissection
(PT-Scotch) of the global matrix, that we refer to as the “natural ordering”. For each
block size B and each of the three orderings, the bar and the marker represent the range
and average over the eight data points corresponding to the eight triangular solution
phases (one for each subdomain) respectively. One can see that the number of padded
zeros increases as B increases. Using a postordering or the hypergraph-based ordering
significantly reduces the number of padded zeros over the natural ordering. On matrix
tdr190k, there is a clear difference between the postordering and the hypergraph-based
ordering, while this is not the case with matrix matrix211. We believe that this comes from
the fact that the filled interfaces G` are much sparser on matrix211 than on tdr190k: the
effective density of the eight G` is between 1.1% and 3.7% for matrix211 and between 2.2%
and 4.7% for tdr190k. A larger effective density provides more chance for the reordered
columns to have similar row structures, and the hypergraph model seems to exploit this
property better than the postordering, since the postordering takes only the first nonzero
position into account. The numbers shown at the bottom of the plots are the maximum
and average ratios of the number of padded zeros from the postordering over that from
the hypergraph ordering.
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Figure 5.3: Fraction of the padded zeros using different ordering schemes with varying
partition block size B.

Figure 5.4 shows the total time spent in the triangular solves L−1
` E` using the three

above-mentioned orderings. On the two medium-size problems tdr190k and matrix211, the
optimal block size seems to be around 80 when using the postordering or the hypergraph-
based partitioning. Using one of these two orderings instead of the natural ordering
provides gains in completion time between 15% and 30%. The speed-ups gained by the
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hypergraph ordering over the postordering are shown in the figures at the bottom of the
plots.
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Figure 5.4: Sparse triangular solution time using different ordering schemes with varying
partition block size B.

We are interested in reducing the cost of the hypergraph partitioning, which was
prohibitive in some cases. We examined the effect of removing quasi-dense rows of the
solution vectors from the model: indeed, since these rows are nonzero for almost all the
columns of the solution vectors, they do not give much information and unnecessarily
increase the size of the model. We report on some experiments in Figure 5.5. The block
size B is fixed at 60, and we remove from the model the rows whose density is greater than
or equal to a density threshold τ . Figure 5.5(a) shows the number of rows that are kept in
the model as a function of the threshold τ ; Figure 5.5(b) shows the fraction of padded zeros
(using the hypergraph-based partitioning) as a function of τ ; finally, Figure 5.5(c) shows
the triangular solution time and the time for partitioning the hypergraph as a function of
τ .
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Figure 5.5: Effects of applying a density threshold before partitioning the sparse right-
hand sides, for matrix tdr190k. Each marker (e.g., circle or square) represents one of the
eight subdomains generated.

One can see that when using a threshold τ around 0.1, about 50% of rows are removed;
the time for computing the hypergraph is significantly decreased, but the quality of the
partitioning (number of padded zeros) remains the same, thus the time for the triangular
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solution is not affected. When τ becomes too small (10−2), almost all rows are removed;
the time for hypergraph partitioning becomes negligible, but the fraction of padded zeros
significantly increases (which means that too much information was removed from the
model), and the solution time increases as well.

5.2 Exploiting sparsity within blocks
We now examine the exploitation of sparsity within blocks of right-hand side columns.
This idea came out when working on the parallelization of the A−1 feature in MUMPS: it
turned out that exploiting sparsity within blocks was the only way to enable tree paral-
lelism without increasing the number of operations. This is described in the next chapter.
In this chapter, we show how to exploit sparsity within blocks of right-hand sides and
present a few experimental results in a sequential context. For the sake of simplicity, we
first consider the computation of a set of diagonal inverse entries, and we then provide
a few remarks about the general case (off-diagonal entries or general sparse right-hand
sides).

5.2.1 Core idea and construction

We have illustrated the exploitation of sparsity within blocks in Chapter 3 in order to
introduce the “tree height” storage scheme. Let us recall the same example. Consider
the elimination tree in Figure 5.6(a). Assume that we want to compute a−1

22 and a−1
44 at

the same time. This implies solving Lx = [e2 e4] with the two right-hand side columns
processed at the same time, i.e., B = 2. Here the pruned tree is the whole elimination
tree. Variable 2 belongs to node 1 and variable 4 belongs to node 2; since node 1 is not on
the path from node 2 to the root node

(
L−1e4

)
2, is a structural zero. Therefore, at node

1 where the computations associated with the eliminated variable 2 are performed, it is
not necessary to process the whole block (the two columns) of right-hand sides; processing
only the first column suffices. A similar idea applies to the backward phase: at the end
of the solution of Ax = [e2 e4] with B = 2, a−1

22 and a−1
24 can be found at the second row

of the block of solution vectors. However, a−1
24 is not requested: at node 1 (that holds the

eliminated variable 2) it it thus not necessary to process the second column of the block
of right-hand sides; processing only the first column suffices.

The core idea is to work at each node only on the columns from the B right-hand
sides currently being processed that are active at that node. We denote [ej1 ej2 . . . ejB ]
the right-hand side block. By saying that a column ejk is active at a node N , we mean
that this node belongs to P(jk), the pruned tree corresponding to the single column ejk
(which is included in the pruned tree corresponding to the whole B-sized block). This is
equivalent to saying that there is an eliminated variable i belonging to node N and such
that (L−1yi)jk is structurally nonzero. Therefore, at node N where row i is processed,
it is not necessary to operate on the B columns, but only on the subset of columns that
are active at that node; this is what we call exploiting sparsity within the B-sized block.
Thus the set on which we do our computations is as small as it can be and so we are as
efficient in terms of operation count as possible if the sparsity of an individual right-hand
side is not exploited (i.e., for B 6= 1). Thus, at the leaf nodes, the set of right-hand sides
on which computations are performed will normally be quite small, corresponding only
to entries present at that node. However, note that because of tree pruning, there will
be at least one right-hand side being operated on at every leaf node. As we progress up
the tree, the computational set will increase, with the set at any node being the union
of the set at the children with any new entries appearing at the node. At the root node
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(assuming irreducibility) the set will be of size B, i.e., the whole right-hand side block. A
very important feature is that, if we postorder the B block of right-hand sides, the set at
any node will always be a contiguous subset of entries from the B block so that only the
position of the first and last entries need be passed and the merging process at a node is
trivial. This implies that we do not need a costly indirection to indicate which columns
need to be processed by a given node: we simply need to provide every node with an
interval of columns to be processed. No copy into a temporary buffer is needed.

There is no constraint on the size of the subblock to be processed at each node.
For example, at a node where only one variable is active, the size of the subblock to be
processed is 1. This is likely to happen at a leaf node of the elimination tree. On an earlier
version of our algorithm, we requested a minimum size of computational block (that we
called Bsparse) so that the block size at any node was a multiple of Bsparse although the
contiguity property was still maintained. However, although this was attractive because of
specifying minimum computational units for the BLAS, it could mean that we did totally
unnecessary operations. With our present approach, as we progress up the tree, we will
have bigger blocks when it is more efficient to use the BLAS particularly if we wish to
exploit parallel BLAS.

These blocks can be computed in two steps, as presented in Algorithm 5.1:

1. Initialization: we work on requested nodes only, that is nodes of the pruned elimi-
nation tree containing a variable which is a row or column subscript of a requested
entry (for the forward and backward step respectively). The block of right-hand
sides that we will deal with at this node is initialized for each entry of the inverse
corresponding to a column index of the frontal matrix. Since each B block of right-
hand sides is postordered, the variables of each requested node that are a column
index (or row in the backward case) of a requested entry correspond to consecutive
columns of the right-hand side; therefore, each set is an interval.

2. Propagation: following a bottom-up traversal, the block for each node is computed
as the union of its own (initialized) block and the blocks of its children. Since we are
working on the pruned tree, every leaf corresponds to at least one requested entry
and has an initialized set, thus ensuring that all sets are well-defined. By recursion
(starting at the leaves), since each block of right-hand sides is postordered, the sets
of the children at every node of the pruned tree are consecutive intervals, and thus
the union is an interval. Therefore, the block of right-hand sides associated with
every node of the pruned tree is an interval of columns from the B block.

Algorithm 5.1 Exploiting sparsity using subblocks of a B-sized block.
1: Initialization phase: a subblock of columns of the right-hand sides is associated

with each node of the assembly tree corresponding to (a)requested entry(ies).
2: Propagation phase: the columns to be processed by a node are defined as the union

of its subblock and those of its children.

We provide in Figure 5.6 an example of computations of the intervals along the lines of
the algorithm presented above. B is fixed at 4 and diagonal entries a−1

11 , a−1
33 , a−1

44 and a−1
77

are requested, therefore, during the forward elimination step, the system Lx = [e1 e3 e4 e7]
is solved. During the initialization phase, nodes 1, 2 and 4 are concerned as they contain
the variables corresponding to the requested entries. For example, node 4 contains variable
7, which corresponds to the fourth column in the right-hand side block; thus its interval
is initialized with [4 4]. Then, during the propagation phase, it is computed as [4 4] union

74



5.2. Exploiting sparsity within blocks

the interval associated with node 3 (its single child). The interval associated with node
3 is empty after the initialization (because no entry of the right-hand side corresponds
to node 3), and then is the union of the interval corresponding to 2 with the interval
corresponding to 3; thus it is ∅ ∪ [1 1] ∪ [2 3] = [1 3]. Therefore, the interval associated
with 4 is [1 3] ∪ [4 4], yielding the interval [1 4].

5 6 7
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7 8
7
8
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9

9
8

85

3 4 6
3
4
6

2 7

7

1 2 5
1
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1

(a) Elimination tree.

Intervals after:
Node Initialization Propagation
1 [1 1] [1 1]
2 [2 3] [2 3]
3 ∅ [1 3]
4 [4 4] [1 4]
5 ∅ [1 4]

(b) Intervals.

Figure 5.6: Example of computation of the interval to be processed at each node. The
requested entries are a−1

11 , a−1
33 , a−1

44 and a−1
77 ; they correspond to the underlined indices in

the tree (a). The intervals to be processed at each node are indicated in (b).

We conclude this section with some remarks:

• In the general case where the right-hand sides or solution vectors do not have a single
nonzero entry, we cannot necessarily permute the blocks in order to guarantee that
the sets of columns to be processed at each node will be contiguous, i.e., intervals. In
this case, in order to keep an efficient and simple implementation, the set of columns
to be processed at each node is defined as the interval that borders that set. This
introduces some padded zeros (as in the previous section) and increases the number
of operations (although it is still reduced compared to the case where sparsity is not
exploited within each block), but it avoids the use of indirections and lists. Similar to
what is presented in the previous section, the way the columns are ordered influences
the number of padded zeros; we have not investigated this problem, but once again
using a postorder-based permutation seems to be reasonable strategy.
We provide an example: assume that one has to solve

Lx =


1 0 1
1 1 0
0 1 1
0 0 0
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using the elimination tree in Figure 5.7, with B = 3. Whatever the permutation of
the right-hand sides is, one of the nodes has to process a discontiguous set of columns
of the right-hand sides: for example, processing the right-hand sides in their original
order, node 1 has to process columns 1 and 3 but not column 2.

3

4

1 2

(a) Elimination tree.

1: X 0 X
2: X X 0
3: 0 X X
4: X X X

(b) Structure of the solution.

Node Interval
1 {1, 3} → [1 3]
2 [1 2]
3 [2 3]
4 [1 3]

(c) Intervals.

Figure 5.7: Example of elimination tree (a) for which, if one has to solve Lx = [e1 +
e2 e2 + e3 e1 + e3] with B = 3, there is no way to permute the right-hand side columns so
that the set of columns to be processed at each node is contiguous, unless some padded
zeros are introduced. The structure of the solution (b) and the intervals associated with
each node (c) are shown in the case where the permutation is the natural order {1, 2, 3}.

• When exploiting sparsity within each block, the order of the columns within each
block has an influence on the number of operations (in the same manner as in
Section 5.1), while this is not the case when sparsity is not exploited within blocks
(since operations are performed on the whole block at every node of the pruned tree).
Therefore, this provides some leeway for the backward phase, which is interesting
when computing a set of off-diagonal inverse entries. We showed in Chapter 4
and in Section 5.1 that, when computing off-diagonal entries (or, more generally,
when dealing with sparse right-hand sides and sparse solution vectors with different
structures) it is difficult to find a permutation of the right-hand side columns that
can minimize the number of accesses to the factors or the computational cost. This
is because it is hard to find a permutation than can be beneficial for both the forward
and backward phases. When exploiting sparsity within blocks, one can for example
choose to use a global permutation that has a good effect for the forward phase and
then reorder each block between the two phases following a permutation that will
locally have a good effect on the backward solution.

• When exploiting sparsity within blocks, the block size B does not have an influence
on the operation count (for a fixed ordering of the columns, and assuming that no
padded zeros are introduced). Therefore, it is advantageous to use blocks as large as
possible (the block size being perhaps limited by memory constraints), as this will
be beneficial for the BLAS and will not increase the number of operations.

5.2.2 Experiments

We report on experiments with some of the matrices of our experimental set (Table 1.1)
in Table 5.1. 10% of the diagonal entries of the inverse are computed using the sparse
inverse functionality in MUMPS; the block size is B = 1024. Experiments were performed
on one node (i.e., 8 cores) of the Hyperion system defined in Section 1.3.4, using an 8-
way multithreaded BLAS and one MPI process. We report the time and the number of
operations for the solution phase, with and without exploiting sparsity within each block.
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Operations (×1012) Time (s)
w/o ES w/ ES w/o ES w/ ES

Matrix within blocks within blocks within blocks within blocks
AUDI 42.2 36.9 1385 985
NICE20MC 35.4 31.1 1137 817
bone010 33.3 28.7 1213 719
CONESHL 34.1 31.3 1285 808
Hook_1498 111.2 104.9 2807 2141
CAS4R_LR15 15.0 12.9 1144 582

Table 5.1: Influence of exploiting sparsity (“ES”) within each block of right-hand sides.
10% of the diagonal inverse entries are computed using the sparse inverse functionality
in MUMPS, with B = 1024, on the Hyperion system defined in Section 1.3.4, using an
8-way multithreaded BLAS.

As expected, exploiting sparsity within each block of right-hand sides decreases the
number of operations to be performed; this results in some improvement in computation
time. We see that the improvement is a superlinear function of the number of operations:
we believe this comes from the fact that working on a reduced set of columns at each
node improves data locality, and that it also comes from the fact that the operations that
are suppressed (compared to a strategy where sparsity is not exploited within blocks) are
likely to correspond to nodes at the bottom of the tree, where the flop rates are often
low, since those nodes are usually small. Note that when exploiting sparsity within the
blocks, we reach a speed of 49 GFlops/s (for matrix Hook_1498), which is almost 60%
of the peak of DGEMM on this system. This is a very good speed for a sparse triangular
solution, especially since we exploit sparsity at many different levels (in the factors, in the
right-hand sides and between columns of the right-hand sides). We provide further results
in the next chapter, where the ability to exploit sparsity within blocks of right-hand sides
is used in order to obtain an efficient parallelization of the computation of inverse entries.
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Chapter 6

Enhancing parallelism

In this chapter, we concentrate on the parallel performance of the solution phase with
multiple sparse right-hand sides. Once again, our leading application is the computation
of inverse entries but all the ideas presented here equally apply to general sparse right-hand
sides. We first show that although performing triangular solution on multiple blocks seems
embarrassingly parallel, since one would like to process several blocks simultaneously, we
have no choice but to process blocks of right-hand sides one after each other. We then show
that in the case of multiple sparse right-hand sides, enabling tree parallelism and reducing
the size of the pruned tree (in order to reduce the computational cost) are contrasting
objectives. We finally suggest that in order to enable tree parallelism without increasing
the computational cost, one has to exploit sparsity within blocks of right-hand sides, as
described in the previous section.

6.1 Processing multiple right-hand sides in a parallel
context

In the context of computing many entries of the inverse, we solve for several right-hand
sides at the same time and, at first glance, this seems to exhibit the classical phenomenon
of being embarrassingly parallel. However, when we combine this with the fact that we
wish to exploit a parallel matrix factorization, the situation is not that straightforward
and we find that we lack the mechanism to fully exploit the independence of the right-hand
sides.

In a distributed memory environment, we would like to run parallel instances of the
linear solver in parallel, each instance using the whole set of processes to solve for a
block of right-hand sides (because all distributed factors might have to be accessed),
which is not possible using MPI. A potential workaround would be to replicate the factors
on all processes, or to write the factors “shared” on disk(s), and to simulate a shared
memory paradigm by launching sequential instances in parallel, each of them accessing
the distributed factors. Unfortunately, this is not feasible for any distributed-memory
sparse solver; furthermore, such a solution would then really lose the benefit of our parallel
factorization and the cost of accessing the distributed factors (which might be stored on
local disks) would be prohibitive.

Therefore, the blocks of entries to be computed are processed one at a time. Note
that, in a shared memory environment where each thread has access to the single copy
of the factors held in the main memory, blocked solves could be performed in parallel
(perhaps using threaded BLAS). We could expect a good speed-up (up to the number of
cores/processors), but the approach will be limited because of constraints in the shared
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memory system: parallel accesses to the single instance of the factors might induce much
bus contention between the threads.

6.2 Combining tree parallelism and tree pruning

6.2.1 An interleaving strategy

We first assume that sparsity is not exploited within blocks, as in most sparse solvers; as
presented in Section 5.1, using a good permutation of the right-hand sides is crucial in
order to the reduce the number of operations. In the case of the computation of inverse
entries, using a postorder is a reasonable strategy (especially when computing diagonal
entries) as it puts together nodes which are close in the tree and thus reduces the size of
the pruned tree. Commonly used mapping techniques are usually close to a subtree to
subcube mapping [40]; nodes in the lower part of the tree are likely to be mapped onto
a single process, whereas nodes in the upper part of the tree are mapped onto several
processes (we provide more detail on this in Chapter 7). As a consequence, few processes
(probably only one) will be active in the lower part of tree when processing a block of
right-hand sides. An interleaving strategy was suggested in [84] to remedy this situation:
it consists of interleaving the different right-hand sides so that every process will be active
when a block of entries is computed. This algorithm is described in Algorithm 6.1. We
propose some modifications and some alternative strategies later, in particular for the
management of Type 2 nodes.

Algorithm 6.1 Interleaving algorithm.
/* Input: old_rhs: preordered list of requested entries */
/* node-to-master process mapping */
/* Output: new_rhs: the interleaved list of entries */

Current process ← P0
while old_rhs has not been completely traversed do

Look for an entry corresponding to a node mapped onto the current process
if an entry has been found then

Add the entry to new_rhs
end if
Change current process (cyclicly)

end while

We illustrate the problems raised by this approach on the following (archetypal) ex-
ample, illustrated in Figure 6.1. We assume that all the diagonal entries of A−1 are
requested and that the block size B is N/3. The right-hand sides are processed following
a postordering (which is straightforward here). Let us examine different situations:

1 proces: on this example, for a given B, the postorder is optimal with respect to the
number of operations. As mentioned in the previous chapter, the optimal block size
in terms of operation count is in general 1: indeed, as the assembly tree is pruned
for each block, and as each node of the pruned assembly tree processes B right-hand
sides (as we do not exploit sparsity within the blocks), increasing the block size
necessarily increases the number of operations.

2 processes: nodes 1 and 2 are mapped onto processes P0, and P1 respectively, and node
3 is a Type 2 node (mapped onto P0 and P1).
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Without interleaving: when processing the first block (columns 1 to N/3 of the
right-hand sides shown in Figure 6.1(c)), only nodes 1 and 3 are traversed.
Thus, at the bottom of the tree (node 1), only one process, P0, is active.
Similarly, when processing the second block, only P1 is active at the bottom of
the tree.

With interleaving: entries are computed by blocks such that each block has N/6
entries on P0 and N/6 entries on P1 (see Figure 6.1(d)). However, all the N/3
columns of the block must be operated on by each node (we do not take advan-
tage of sparsity in the right-hand sides), so the operation count is multiplied
by 2 and so is the speed (2 processes active at the same time). Thus, there is
no speed-up.

2

3

1

(a) Matrix.

2

3

1

1P0P

P0 1P

(b) Elimination tree.

(c) Right-hand sides. (d) Interleaved RHS.

Figure 6.1: Archetypal example: computation of the diagonal entries of the matrix in (a),
corresponding to the elimination tree in (b). The original right-hand side is (c) and is
permuted using the interleaving procedure shown in Algorithm 6.1 in order to enable tree
parallelism (d): every block has components that belong to node 1 and 2 thus processes
P0 and P1 are active at the bottom of the tree when processing the first two blocks, but
the operation count increases.

This example illustrates the fact that interleaving is a good way to put all processes
to work, but tends to destroy the benefits of the postordering (or any other permutation
aimed at reducing the number of operations).

6.2.2 Combining interleaving and sparsity within blocks

We showed that we need a strategy able to find a trade-off between the number of op-
erations and parallelism (i.e., performing activities that involve as many processes as
possible): this can be achieved by exploiting sparsity within each block. Let us take the
same example: first, a postorder is applied within each block of right-hand sides, yielding
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the set of columns in Figure 6.2. Then, each node in the tree is provided with a subset of
columns of the right-hand sides that this node has to process: in the first and the second
blocks, node 1 only has to process the first N/6 columns of the block (instead of the whole
block of N/3 columns), since only these columns contain variables that belong to that
node. Node 2 only has to process the last N/6 columns of the block. At node 3, the
whole block is processed (the set of columns to be processed is the union of the intervals
coming from its children, for instance the union of the first half and the second half of
the N/3 columns). Therefore, the number of operations is the same as it is without using
interleaving; however, tree parallelism is still exploited (processes P0 and P1 are active
at the same time). Thus, combining the interleaving strategy with the ability to exploit
sparsity within blocks of right-hand sides enables tree parallelism without affecting the
operation count, and is thus likely to provide some parallel efficiency.

Figure 6.2: Set of right-hand side columns after postordering each block.

We also address two issues related to the interleaving process described in Algorithm
6.1. The first issue is related to the way the node-to-process mapping is done. Mapping
algorithms usually identify a set of sequential tasks (subtrees that will be processed by
a single process), relying for example on the Geist-Ng algorithm [40]. We call the set of
roots of the sequential subtrees layer L0. Then the upper part of the tree is mapped,
and this mapping can strongly influence the behaviour of the interleaving algorithm. We
illustrate this in Figure 6.3, where four entries are requested. With a block size of 2,
Algorithm 6.1 yields the partitioning {{1,2},{3,4}}. This gives poor parallelism in the
first block since nodes corresponding to entries 1 and 2 are processed one after another
(the computation of the block involves two processes but they are not active at the same
time). We suggest the following strategy: perform an interleaving pass first on the lower
part of the tree (sequential subtrees at layer L0), then on the upper part. On the example
of Figure 6.3, the partitioning becomes {{1,3},{4,2}}, which provides a better parallelism
since two processes are active at the same time within each block.

We now address the issue of managing the parallel nodes (so-called Type 2 nodes) when
interleaving the requested entries over the processes. We note that we did not consider
Type 2 nodes in Algorithm 6.1. The strategy used in [84] is, whenever a Type 2 node is
found, to keep selecting entries that belong to nodes mapped onto the current process.
The assumption is that the requested entries are ordered following the postorder, and thus
this strategy implies that all entries in the current node will be ordered consecutively. This
idea works well if all processes are involved in the Type 2 node, but might give a poor
interleaving if this is not the case, that is if Type 2 nodes are rather small and involve
only a small number of processes.

Another strategy is to count the load on each process (that is the number of entries
selected on the process), and, when a Type 2 node is encountered:

1. The load on all the processes concerned with this node is updated;
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P0
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(a) Elimination tree.

Entries in postorder:
1 2 3 4

Interleaving with original management of L0:
1 2 3 4

Interleaving with new management of L0:
1 3 4 2

(b) Entries.

Figure 6.3: Example of interleavings obtained with different management of layer L0.

2. The least loaded process (among all processes) becomes the current process.

This strategy is expected to give better parallelism (more processes involved in the compu-
tation of a block) and better load balancing. Note that, in this case, a complete mapping
has to be provided, that is, for each node, the master and the list of processes that take
part in the processing of the node.

We illustrate this idea in Figure 6.4. On this example, all the diagonal entries are
requested. If B = 4, we see that, with the first strategy, some blocks involve only a few
processes. For example, the third block is [5 6 7 8] with the first strategy, and involves
only two processes; with the alternative strategy described above, the third block becomes
[5 13 6 14] and involves all the processes.
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1 3
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1PP0 3PP2
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(a) Elimination tree.

Postorder:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Interleaving with original management of Type 2 nodes:
1 3 9 11 2 4 10 12 5 6 7 8 17 18 19 20 13 14 15 16

Interleaving with new management of Type 2 nodes:
1 3 9 11 2 4 10 12 5 13 6 14 7 15 8 16 17 18 19 20

(b) Entries.

Figure 6.4: Example of interleavings with different managements of Type 2 nodes.

We have implemented these different variants but we have not pushed our experiments
very far. We have not observed clear differences between these variants, thus we do not
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report on results. In the experimental results reported in the next section, we use the
baseline interleaving strategy.

6.3 Experiments

6.3.1 Influence of the different strategies

We first illustrate in Table 6.1 the influence of the different strategies (interleaving and
exploiting sparsity within blocks) on a medium size problem (11-pt stencil discretization
of a 200×200×20 domain), using one node (eight cores) of the Hyperion system defined in
Section 1.3.4, with single-threaded BLAS and B = 512. We show the time for the solution
phase, the operation count and the average number of processes active at the same time
during the computation, for one, four and eight MPI processes. Firstly, we see that using
the baseline strategy (i.e., neither interleaving nor exploiting sparsity within blocks), the
parallel efficiency is low (e.g., the speed-up is 1.3 on eight processes): this is because the
average number of processes that are active at the same time is close to one. If the inter-
leaving procedure is activated but sparsity is not exploited within blocks, the operation
count significantly increases (e.g., it is multiplied by 4 on eight processes); this prevents
good speed-up, even though the average number of active processes increases. However,
when sparsity is exploited within blocks, the operation count is no longer increased (it
actually decreases), and thus speed-ups are significantly better: on eight processes, the
speed-up is almost 4.

Procs Strategy Time Operation Active
(seconds) (×1012) procs

1 - 1667 16.2 1

4
IL off ES off 1366 16.2 1.20

IL on ES off 2028 45.4 3.92ES on 659 15.2

8
IL off ES off 1241 13.3 1.10

IL on ES off 1508 61.0 7.76ES on 418 12.4

Table 6.1: Computation of a random 10% of the diagonal entries of the inverse of a matrix
corresponding to an 11-pt stencil discretization of a 200×200×20 domain, using one node
of the Hyperion system defined in Section 1.3.4. The different strategies are compared:
“IL” stands for the interleaving strategy and “ES” for exploiting sparsity within blocks of
right-hand sides. We indicate the time for the solution phase, the operation count and the
average number of processes that are active at the same time during the computation.

We report in Table 6.2 on experiments on some problems from our experimental set
(Table 1.1), using four nodes of the Hyperion system. Here we simply compare the
baseline strategy with the new one where both interleaving and exploiting sparsity within
blocks are enabled. The new strategy is significantly better than the baseline algorithm:
on matrix NICE20MC, the speed-up increases from 3.8 to 22 (on 32 processes). This is a
satisfying performance for a triangular solution phase, especially considering that sparsity
is exploited at many different levels.
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Matrix MPI processes
1 32

Baseline IL+ES
AUDI 1143 380 75
NICE20MC 945 245 43
bone010 922 327 70
CONESHL 803 293 48
Hook_1498 1860 720 173
CAS4R_LR15 882 482 116

Table 6.2: Time in seconds for the computation of a random 1% of the diagonal entries of
the inverse. The block size is B = 1024. We compare the sequential performance with the
parallel performance on 32 MPI processes (4 nodes of the Hyperion system), using the
baseline algorithm and the combination of interleaving (“IL”) and sparsity within blocks
(“ES”).

6.3.2 Influence of the block size

We show in Table 6.3 the influence of the block size B for the 11-point problem described
above. In the sequential case, increasing the block size B from 64 to 128 decreases the
time for the solution phase, which is probably due to the efficiency of the BLAS on larger
blocks. However, when increasing B from 128 to 512 and then 1024, the efficiency of the
BLAS cannot compensate for the fact that the operation count increases as a function
of B; therefore, the solution time increases. However, when exploiting sparsity within
blocks, the operation count does not depend on B; therefore, on eight processes, when
right-hand sides are interleaved and sparsity is exploited within blocks, the time for the
solution phase decreases as a function of B. With B = 1024, the speed-up is 5.3. If we
compare the best sequential time with the best parallel time, the speed-up is almost 4.

Procs Strategy Block size
64 128 512 1024

1 - 1518 1432 1667 2002
8 IL on ES on 555 466 418 379

Table 6.3: Influence of the block size: a random 10% of the diagonal entries of the inverse
of a matrix corresponding to an 11-pt stencil discretization of a 200×200×20 domain are
computed. The influence of the block size B on the time for the solution phase (indicated
in seconds) is illustrated both for sequential and parallel executions, with interleaving
(“IL”) and exploiting sparsity within blocks (“ES”), on one node of the Hyperion system.
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Controlling active memory in the
parallel multifrontal factorization
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Chapter 7

Introduction

The second part of this dissertation addresses memory issues in the parallel sparse fac-
torization. Much work has been carried out to improve the performance of sparse factor-
izations, but it is well known that memory is often a bottleneck that prevents the use of
direct solvers. We address the problem of reducing the amount of temporary data used
during the factorization. The multifrontal factorization requires to store some temporary
data (the contribution blocks) that adds up to the memory reserved for the factors. The
active memory, which consists of a frontal matrix being processed and a stack of contri-
bution blocks, can vary much during the factorization and it can be significantly large.
Similarly, efficient supernodal methods relying on the fan-in scheme also require the use
of temporary memory spaces called aggregated update blocks [14]. We focus exclusively
on the multifrontal factorization (contrary to the first part of the study that applies both
to supernodal and multifrontal methods), although many ideas could be adapted to the
supernodal case.

Some studies, that we review in Section 7.2, have tackled the problem of minimizing
the active memory of the multifrontal factorization in a sequential context; however, the
parallel case has not been addressed much. Controlling and estimating the active memory
in a parallel context are difficult, especially in an asynchronous solver such as MUMPS.
We have assessed this problem both theoretically and with practical experiments, and we
showed that commonly used node-to-process mapping strategies do not lead to a good
memory scalability of the active memory. The main goal of this study has thus been to
develop mapping and scheduling algorithms that are able to enforce some memory con-
straints (provided by the user or computed automatically), and that lead to a predictable
behavior in terms of memory usage. Being able to control the active memory is crucial
since, as we demonstrate in this chapter, the amount of active memory can dangerously
grow with the number of processes. It is also important to have accurate memory es-
timates for the robustness of direct solvers, especially for those, such as MUMPS, that
rely on estimates computed during the analysis phase to perform a static allocation of
the memory at the beginning of the factorization. We have implemented these strategies
within MUMPS and have carried out experiments on large matrices. A property of our
approach is that, compared to the mapping technique previously used in MUMPS, it tends
to assign more processes to nodes at the top of the tree; this raised performance issues in
the parallel dense kernels used within MUMPS, and we have suggested and implemented
some enhancements.

The plan of this second part is as follows: in this introductory chapter, we describe the
parallel multifrontal factorization, and we particularly emphasize the asynchronous scheme
used within MUMPS. We describe commonly used static mapping, dynamic scheduling
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and memory estimates strategies, once again emphasizing what is done in MUMPS. We
review previous studies that address the problem of minimizing active memory in a sequen-
tial context, and we formulate the parallel counterpart of this problem. In Chapter 8, we
show why commonly used mapping techniques fail at achieving a good memory scalability:
we start with a very simple example, and we then derive a theoretical proof on regular
grids with nested dissection. We also provide some experimental results that illustrate the
need for a better control of the active memory. In Chapter 9, we describe a mapping tech-
nique that we refer to as the memory-aware mapping. It aims at maximizing performance
while enforcing a given memory constraint. The starting point for this part of the study is
Agullo’s PhD thesis [1, Chapter 10], where the main idea of the memory-aware mapping
is introduced and some preliminary experimental results are provided; we have suggested
a few improvements and have pushed the implementation and the experiments further.
In Chapter 10, we highlight some implementation and performance issues; we especially
emphasize some communication pattern issues that arise in the parallel dense kernels used
within MUMPS; although this is not directly related to our main problem (controlling the
active memory), these issues are raised by the nature of our mapping algorithm. We have
tackled these problems (in particular, we have studied and implemented an asynchronous
broadcast algorithm), and this enabled to leverage the performance of MUMPS. Finally,
we present in Chapter 11 experimental results on large matrices and large number of cores.

7.1 The parallel multifrontal factorization

7.1.1 An asynchronous scheme

We describe a simple asynchronous scheme that outlines what is done in MUMPS or other
asynchronous solvers. The idea of an asynchronous approach is to maintain a pool of ready
tasks on every process during the factorization. An initial static mapping initializes the
pool of tasks of every process with tasks that can be processed immediately (typically
the leaves of the tree). Then, whenever the dependencies of a task are met, this task is
inserted in one of the local pools. Large tasks can be processed using several processes.
The dynamic scheduling is in charge of two decisions:

• On a given process, the selection from its local pool of the next ready task to be
processed.

• The subdivision of large tasks and their distribution on a set of processes. The pro-
cess in charge of distributing and organizing a task is called the master process; the
other processes are called the slave processes. Slave processes are selected dynami-
cally according to a scheduling policy that relies on an estimated global view of the
state (memory usage, workload. . . ) of all the processes. This implies that processes
have to exchange information with what we call state information messages.

We provide in Algorithm 7.1 a generic asynchronous approach that can be used in many
parallel computations. The main advantage of such an approach is that it is dynamic; the
scheduling can compensate the load imbalances or delays that arise during the computa-
tion. This is clearly interesting because the complexity of modern hardware architectures
makes it almost impossible to predict the performance. It is also especially interesting in
the context of numerical pivoting, since it tends to create load imbalance; furthermore,
delayed pivots require to modify the graph of tasks (the tree in our case) on the fly, as
described in Section 1.2. This tends to increase the size of the nodes near the top of the
tree, thus these nodes might need to be processed using more processes than predicted.
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7.1. The parallel multifrontal factorization

Algorithm 7.1 A generic asynchronous algorithm (local view of a given process).
/* Input: a set of tasks to be processed */

1: pool← share of initial ready tasks of the process /* static mapping */
2: while the global termination is not detected do
3: if a state information message is ready to be received then
4: Receive the message
5: Process the message, i.e., update the estimated state information of other pro-

cesses
6: else if an application-related message is ready to be received then
7: Receive the message
8: Process the message, i.e., typically, perform some computations, insert a new

ready task in the pool, update scheduling dependencies, send a new message. . .
9: else if the local pool is not empty then
10: Extract a task T from the pool /* dynamic scheduling */
11: if T is large then
12: Select some slaves /* dynamic scheduling */
13: Subdivide T , i.e., send work to the slaves (application-related messages)
14: Process T in cooperation with the slaves (using asynchronous application-

related messages)
15: end if
16: Update local state information and send it to other processes
17: end if
18: end while

7.1.2 Common mapping techniques

In this section we review common static mapping techniques for sparse factorizations (par-
ticularly the multifrontal factorization), and we emphasize the mapping and scheduling
strategies used in MUMPS. One of the earliest efforts is the sparse-wrap scheme [42]; its
first step consists of mapping the leaves of the tree on the processes in a wrap fashion
(similar to a round-robin). Then, assuming the leaves are removed from the tree, the new
set of leaves is mapped in the same manner, and this process is repeated until the root
of the tree is mapped. The main drawback of this technique is that it generates large
amounts of communication, because it ignores the topology of the tree. The subtree-to-
subcube mapping [43] addresses this issue. It assumes a balanced tree (e.g. the nested
dissection of a regular problem) and a number of processes equal to a power of two. The
central motivation is to obtain a mapping that fits multiprocessor systems with a hyper-
cube topology. The mapping process consists of a top-down traversal of the tree. Chains
of nodes (that correspond to separators of the domain) are mapped in a wrap fashion.
Whenever a node with two children subtrees1 is met, the list of processes is split into two
lists (that correspond to two disjoint hypercubes of lower dimension) and each subtree is
mapped onto one of the lists. This scheme is shown to minimize communication require-
ments on regular problems and is also shown to significantly enhance the performance of
the triangular solution. However, it is not suitable for irregular problems.

Geist and Ng generalized the subtree-to-cube mapping and suggested the bin-pack
mapping [40], that can be used on irregular trees. It consists of computing a layer in

1Or four children subtrees, depending on the models; cf. the study on the nested dissection in Chap-
ter 8.
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the tree (that we denote L0) with minimum size such that the subtrees rooted at that
layer can be mapped onto the processes ensuring a load balance criterion. Firstly, the
root node is taken as the potential layer L0; then, until the balance condition is met, the
potential layer is modified by replacing the node with the heaviest load by its children.
We illustrate this process in Figure 7.1. When L0 is found, every subtree rooted at a node
of that layer is processed on a single processor; subtrees are mapped following a first-
fit-decreasing heuristic (i.e., trees with the heaviest load first). Above this layer, nodes
are mapped in a wrap fashion. Pothen and Sun adapted this scheme to clique trees (i.e.,
assembly trees instead of elimination trees in the strict sense) and suggested a different
way of mapping the nodes above L0 (which they call the dominating cliques) [75]. In a
bottom-up traversal starting from L0, every node is mapped onto the union of the lists of
processors its children are mapped onto.

→

Figure 7.1: A step of construction of the layer L0 in Geist and Ng bin-pack mapping. The
potential layer (shaded nodes) is increased by replacing the node with the heaviest load
(solid node) by its children.

The proportional mapping by Pothen and Sun generalizes the subtree-to-cube map-
ping [75]; the aim is to better take the shape of the tree and the distribution of the
workloads into account. The mapping process consists of a top-down traversal of the tree.
Firstly, all the processes are assigned to work on the root node. Then, at every node in the
tree, the list of processes working at that node is split among its children, proportionally
to the weights (workloads) of the subtrees rooted at these children. Consider a node in
the tree with ncf children. Denote pf the number of processes working at that node and
Wi the load of the subtree rooted at a child i. The number of processes given to node i is

pi = Wi∑ncf
j=1Wj

· pf

Here the metric used at each step of the mapping is the workload of each subtree; this
yields what we refer to as a workload-based proportional mapping. Clearly, this criterion
can be replaced by another depending on the objectives. If one aims at enforcing a
memory balance rather than a load balance, one can use a memory-based variant; we
report on experimental results using this strategy in the next chapters. Prasanna and
Musicus proposed an optimal (in terms of run time) scheduling strategy for tree-shaped
graphs of tasks, where the time for computing a parallel task (a malleable task) using
p processes is L

pα (with 0 < α 6 1), where L is the length of the task [77]. Beaumont
and Guermouche assessed this behaviour in MUMPS [17]; they found that parallel nodes
often exhibit slightly superlinear speed-ups (i.e., α > 1) because of the partitioning used
in MUMPS, where the master process is always in charge of the same part of the node,
regardless of the number of processes. For example, when going from 2 to 4 processes,
the number of slave processes goes from 1 to 3, yielding a superlinear speed-up (assuming
the master part is small enough). Beaumont and Guermouche however proposed to use
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the scheduling suggested by Prasanna and Musicus even if α > 1. This amounts to a
proportional mapping where the number of processes given to a node i

pi = L
1
α
i∑ncf

j=1 L
1
α
j

· pf

Note that in general, a step of proportional mapping generally attributes decimal
number of processes to each subtree. One can choose to arrange these numbers so that
they perfectly add up to the number of processes given to the parent node, yielding a
perfect partitioning of the set of processes on the children subtrees. We present a more
robust scheme in Chapter 9.

An interesting property of the proportional mapping is that the traversal of every
process (i.e., the set of tasks that this process performs and the order in which it processes
them) is fully known in advance. Indeed, every process is in charge of a sequential subtree
and takes part in the computation of the parallel nodes that lie on the path between the
root node of this sequential subtree and the root node of the elimination tree; this defines
a unique possible traversal. We illustrate this in Figure 7.2. Denoting i the root node of
the sequential subtree mapped onto a given process, the traversal followed by that process
is T (i)∪P(i). If no dynamic scheduling strategy is enabled, every process will follow such
a traversal.

0...7

0...3 4...7

0...1 2...3 4...5 6...7

0 1 2 4 65 73

Figure 7.2: When using a proportional mapping, every process follows a partial postorder
traversal of the tree. In the figure, a perfectly balanced complete binary tree is mapped
onto 8 processes. The traversal for process 2 is highlighted.

The main advantage of the above-mentioned property is that it is very easy to estimate
the memory usage of a process (both the factors part and the active memory, but we
focus on the active memory); indeed, one can simply simulate the traversal followed by
the process and simulate the variations in its memory usage. We illustrate this in the
unsymmetric case and consider that no in-place assembly is performed (cf. Section 7.2).
Consider a given process P ; when a node i is activated:

• The frontal matrix associated with i is allocated; if P works on i, the memory usage
of P increases accordingly.

• The contribution blocks of the children nodes of i are freed from the memory; since
we consider a proportional mapping, P works on only one of the children nodes of
i. The memory usage of P decreases.
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• The factor part of the frontal matrix associated with i is deducted from the active
memory (we recall that we consider the active memory and not the total memory).

We illustrate this behavior in Figure 7.3, where we show, for a given tree mapped onto 4
processes using a proportional mapping, the behavior of the memory consumption follow-
ing the global sequential postorder (remember that we know that every process follows
a partial postorder). Consider for example process P0. P0 works on node 1, that has 10
fully-summed variables and a contribution block of size 10. Firstly, P0 allocates the whole
frontal matrix corresponding to 1, i.e., 400 reals. Then, since node 1 has no children,
nothing is freed from memory. In the third step, the factor part of 1 is deducted from the
active memory, therefore the memory usage becomes 400 − 300 = 100 reals (this is the
contribution block of 1). We traverse the whole tree repeating this process and we have
in the end an history of the memory usage of every process.
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(a) Example of tree.
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(b) Memory consumption (reals).

Figure 7.3: Memory consumption for a tree mapped onto 4 processes using a proportional
mapping: the tree and its mapping with npiv and ncb shown below each node (a) and the
memory consumption for each one of the processes as a function of the global postorder
(node 1 to node 10) (b). Every node in the tree corresponds to three potential changes
in the memory usage of a process: the node is allocated, the contribution blocks of its
children are freed, the factor part of the frontal matrix is deducted from the active memory.

We provide in Algorithm 7.2 an algorithm that estimates the peak of active memory
of a given process by following a postorder traversal of the tree; every node corresponds
to three possible updates in the peak, as in the above-mentioned process. However, there
is no assumption on the mapping; in the case of a proportional mapping, the algorithm
computes the exact peak of active memory thanks to the above-mentioned property. If
a mapping where the traversal for each process cannot be predicted is used, then the
algorithm provides only an estimate, without any guarantee if the mapping does not
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exhibit any good property. For simplicity, we assume that we are in the unsymmetric case
and that slaves of Type 2 nodes share equals parts of the node.

Algorithm 7.2 Estimation of the peak of active memory of a given process.
/* Input: the elimination tree T , its mapping and its sequential postorder order */
/* P a given process */
/* Output: S, the peak of active memory of the process we consider */
/* Local: M , the current active memory of the process we consider */

1: S ← 0,M ← 0
2: for all nodes i in T , following order do
3: /* 1/ The front is allocated */
4: if P works on i then
5: if i is of Type 1 then
6: M ←M + sfronti /* Allocate the whole front */
7: else if i is of Type 2 then
8: if P is the master process of i then
9: M ←M + npivi · nfronti /* Allocate the (1,1) and (2,2) block */
10: else
11: M ←M + ncbi

pi−1 · nfronti /* Allocate a stripe of the (2,1) and (2,2) block */
12: end if
13: else if i is of Type 3 then
14: M ←M + sfronti

pi
/* Processes equally share the surface of the front */

15: end if
16: end if
17: S = max(S,M) /* Potential update of S */
18: /* 2/ The contribution blocks of the children of i are freed */
19: for all children nodes j of i do
20: if P works as a slave process on j then
21: M ←M − ncbj

pj−1 · nfrontj /* Free a stripe of contribution block */
22: end if
23: end for
24: /* 3/ The factor part is deducted for the active memory */
25: if P works on i then
26: if i is of Type 1 then
27: M ←M − npivi

2 − 2 · npivi · ncbi /* Deduct the whole factors part */
28: else if i is of Type 2 then
29: if P is the master process of i then
30: M ←M − npivi · nfronti /* Deduct the (1,1) and the (1,2) block */
31: else
32: M ←M − ncbi

pi−1 · npivi /* Deduct a stripe of (1,1) block */
33: end if
34: end if
35: end if
36: end for

Until now, we have described strict proportional mapping strategies in which the set
of processes associated with a node is split into disjoint sets that are distributed to its
children. As we will demonstrate in the next chapter, this is not a memory friendly
strategy. One can choose to use a relaxed proportional mapping in which the sets of
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processes given to different siblings can overlap. The main drawback is that the traversal
followed by a process is no longer predictable; indeed, a process is allowed to work on two
parallel branches and will follow a traversal that interleaves the nodes of these branches in
some way. In consequence, one cannot accurately estimate the memory usage of a given
process.

7.1.3 Mapping and scheduling techniques in MUMPS

We briefly trace the history of the mapping and scheduling techniques used in MUMPS. In
the earliest versions, MUMPS was fully dynamic in the sense that every process could be
selected to work on any Type 2 node [9]. MUMPS 4.0 works as follows. Any process needs
to allocate enough memory to be able to work on every Type 2 node, and, in order to
enable an efficient dynamic scheduling during the factorization, parts of the initial matrix
are duplicated onto all the processes. Furthermore, there is an upper bound on the size
of the slave tasks due to a limit on the size of the communication buffers. Thus, there is
a minimum number of slave processes per Type 2 node. Memory estimates are computed
following a worst-case scenario where, at every node, only this minimum number of slaves
is selected. For example, if the minimum number of processes per Type 2 node is 3,
estimates are computed assuming that every process has to store, for every node i in the
tree, scbi

3 . This leads to severe overestimates. The mapping process is the following:

1. Using the above-mentioned Geist-Ng algorithm, the layer L0 is built.

2. Every node above L0 is given one of the types described in Section 1.3.1 (1, 2, or 3).

3. A master process is assigned to every Type 2 node.

During the factorization, the scheduler gives the priority to message reception and process-
ing. The idea is that since a message is a potential source of work and parallelism, giving
the priority to message reception can avoid that a sender with a full buffer is blocked. We
will come back to this aspect in Chapter 10.

The concept of candidate processes is introduced in MUMPS 4.2 [10]. Each Type 2
node has a limited set of potential slave processes. The interest is that all non-candidates
of a node do not take the memory or the workload associated with this node into account
in their estimates, which leads to a more accurate prediction. Furthermore, this notion
can be used to enforce a subtree-to-subcube principle; nodes that are close in the tree can
be mapped onto neighboring processors. This enhanced mapping works as follows:

1. The layer L0 is built as before.

2. A relaxed workload-based proportional mapping is applied and determines a set of
preferential processes for each node. For each layer in the tree,

a) The tree is modified (nodes can be amalgamated or split – cf. Chapter 10).

b) The type of every node in the layer is determined. Firstly, the number of
candidates of every Type 2 node is equal to its number of preferential processes.
Then, optionally, candidates of the layer can be redistributed according to the
relative weight of the nodes. The motivation is that since the proportional
mapping relies on the weight of the subtrees, a large node rooting a small
subtree might have a small number of preferentials.
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c) Tasks are mapped using a layer-wise task mapping, which is a variant of list
scheduling [48]. Each task has a list of potential processes (its preferentials,
then its non-preferentials, sorted by increasing load). Tasks are mapped one
after another, from the most to the least expensive, on the first process (of their
list) that satisfies some constraints (e.g. memory or work limit).

3. The tree is postprocessed following a top-down traversal to improve memory bal-
ance. For every Type 2 node, the master process and one of the candidates may be
exchanged if this improves memory balance.

At run time, the slave processes of a Type 2 node are selected among its candidates, the
least loaded ones first. The number of slaves of a Type 2 node, nslaves, must satisfy a
minimum granularity condition: nslaves ≥ max

(⌊
ncb

k_max

⌋
, 1
)
, where k_max is a parameter;

when k_max increases, the amount of communications decrease (because Type 2 nodes are
mapped onto fewer processes) and the performance tends to increase, but the gap between
memory estimates and the effective memory usage increases.

Finally, in MUMPS 4.6, the zone above L0 is replaced with 3 zones (L0 is Zone 4) [11]:

Zone 1: a relaxed proportional mapping is applied at the top of the tree, and is aimed
at providing some flexibility during the factorization, which enables to correct im-
balances that appear in the tree.

Zone 2: below Zone 1, a strict(er) proportional mapping is applied.

Zone 3: between Zone 2 and L0 (Zone 4), each node inherits the preferentials of its parent.
This means that this zone locally behaves like the fully dynamic code mentioned
above. The size of Zone 3 is based on a maximum number of processes proc_max;
during the mapping, if the number of preferentials given to a node is less than
proc_max, then this node and its descendants (down to L0) belong to Zone 3 and
have the same set of candidates. This choice is motivated by the following ideas:

• The fully dynamic code is competitive on small number of processes, and the
number of preferentials of a node of this zone is likely to be small.
• Increasing the number of candidates near L0 makes the memory management
easier (large contribution blocks are handled without problem), and the leeway
in the choice of candidates is likely to provide a better balance.
• This can be used to take memory locality on shared-memory systems or systems
with shared-memory nodes into account.

The main drawback is that severe overestimates occur in this zone, as in the fully
dynamic code.

The choice of the candidates of Type 2 nodes is similar to what is done in the above-
mentioned strategy, except that it takes more constraints into account (the maximum
size of a buffer, the remaining memory and the maximum size of the factors). Memory
estimates are computed thanks to a bottom-up traversal that simulates the factorization;
for each process, the memory estimate increases when an assembly or a factorization
occurs, and decreases when a contribution block is discarded, as described in the previous
section. The main difference with the previous versions of the code is that memory
estimates no longer follow a worst-case scenario where, at every node, a minimum number
of processes is used. Instead, they rely on a best-case scenario where, at every node,
work can be assigned to all of its candidates. This leads to smaller estimates, that are
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more accurate but can sometimes be too optimistic. Memory estimates are relaxed (by
a multiplicative factor), in order to give more flexibility and to anticipate the effects of
delayed pivoting.

During the numerical factorization, the scheduler uses the following mechanisms:

• Memory monitoring: the supplementary memory of each process is kept up-to-date;
it is the difference between the factor size predicted according to the optimistic
scenario and the effective factor size assigned to the process. This monitoring allows
the scheduler to deviate from the optimistic scenario by using this flexibility.

• Anticipation of the tasks: the arrival of costly tasks is anticipated slightly before
they are inserted in the pool of tasks, and taken into account when choosing can-
didates. When selecting slave processes, if a potential slave process has a small
current workload but will be heavily loaded “soon”, the master of a node will likely
not select it as a slave.

• Dynamic selection of the slaves: a maximum number of slaves is determined; it is
the minimum between the number of candidates and a bound on the ratio between
the computational costs of the slaves and master tasks. Then, the scheduler tries to
find a set of slaves so that:

– All constraints are respected: maximum buffer size, remaining memory (taking
the deviation from the static mapping into account) and maximum size of the
factors.

– The maximum workload (over the slaves) is minimized.

This last strategy is the one used in the current version of MUMPS at the time of
writing (version 4.10.0). It is worth noticing that memory issues have often been the
motivation for improving the mapping and scheduling strategies. The dynamic scheduling
strategy used in the current version relies on very sophisticated mechanisms that compen-
sate the load and memory imbalances that arise during the factorization. However, we
believe that the static part can be improved. We demonstrate in Chapter 8 that propor-
tional mapping-based strategies fail at achieving a good scalability of the active memory,
and we suggest a new mapping strategy in Chapter 9.

7.2 Controlling the active memory
In this section, we provide some details about the mechanism of stack memory used in
the multifrontal method. We review the studies that address the problem of minimizing
the active memory in a sequential context, which amounts to finding an optimal traversal
of the tree. We then describe the parallel counterpart of this problem; in particular, we
define the notion of memory efficiency that will be our reference metric in the rest of the
study. Finally, we show that our problem can be formulated as a tree pebble game. We
recall the work by Liu that addresses the sequential case [69], and we show how to derive
the parallel case. Although we do not use this formulation in the rest of the study, we
believe it draws an interesting combinatorial parallel and could be used to derive some
heuristics.

7.2.1 The sequential case

In the rest of the study, we denote Si the sequential peak of active memory associated
with a node i, i.e., the peak of active memory yielded by a sequential traversal of the
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subtree rooted at i. Note that this is not the same thing as the peak of active memory
when reaching i during the traversal of the whole tree. We introduce the notion of stacked
set2. We assume that the tree is traversed following a postorder (we discuss this later).

Definition 7.1 - Stacked set.
The stacked set S(i) of a node i is the set of nodes whose siblings have not been visited
when the traversal reaches node i:

S(i) = {j : j is numbered before i in the postorder and sib(j) ∩ P(i) 6= ∅}

The notion of stacked set is illustrated in Figure 7.4. When reaching i, the maximum
active memory usage is at least Si plus the memory for the contribution blocks of the
nodes in S(i), the stacked set of i, that are stored at least until i is reached. We insist
that Si is the peak of active memory for traversing the subtree rooted at i, forgetting
about the rest of the tree. When comparing sequential and parallel executions, we will
denote Sseq the peak of active memory for a sequential traversal of the tree; Sseq = Sr
with r the root node of the tree.

i

Figure 7.4: Stacked set S(i) of a node i. Shaded nodes are nodes that have been visited,
and solid nodes are the nodes in the stacked set.

The way the peak is computed depends on the assembly scheme, that defines:

• The moment when the frontal matrix of a parent node is allocated.

• The choice of an overlap in memory between the frontal matrix of a parent node
and the first contribution block that is assembled to it.

The first leeway is the moment when a frontal matrix is allocated (with respect to the
frontal matrices of its children nodes). The possibilities are the following:

• The terminal allocation scheme: the memory for a frontal matrix is allocated after
all its children have been processed. This is the most common scheme.

• The early allocation scheme: the memory for a frontal matrix is allocated right after
its first child has been processed. This allows to consume the following contribution
blocks on the fly.

• The flexible allocation scheme: the memory of the frontal matrix is allocated at an
appropriately chosen time in order to consume some of the contribution blocks of
its children on the fly. The way the tree is traversed and the position at which each
frontal matrix is allocated can significantly improve the memory usage [49].

2The notion is derived from [90] where it is called the “visited set” and defined for binary trees.
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In the following, we consider only the terminal allocation scheme in order to provide a
simple global picture of the management of the active memory in a sequential context.
We refer the reader to [60] for a thorough description.

The second margin is the possible overlap between a frontal matrix and contribution
block of the first child assembled into it. The possibilities are the following:

• The classical assembly scheme: at a given time, the frontal matrix associated with
a node is not allowed to overlap with any of the contribution blocks in the stack
memory. This is for example used in the MA41 code [3]. In this context (and
assuming a terminal allocation), the sequential peak of active memory at a node i
with children sij , j = 1 . . .nci is computed as

Si = max

 max
j=1...nci

Ssij +
j−1∑
k=1

scbsik

 , sfronti +
nci∑
j=1

scbsij


The first term in the expression (the first term in the “max”) is the maximum, over
the children of i, of the peaks of these children plus what is stacked in memory before
each child. The second term is the allocation of node i; in the classical allocation
scheme, the front associated with i is not allowed to overlap in memory with the
contribution blocks of its children, therefore the memory needed to allocate i is
the size of the associated frontal matrix plus the size of all the contribution blocks
coming from its children.

• The in-place assembly scheme3: the memory for the frontal matrix of a parent node
is allowed to overlap with the contribution block at the top of the stack. Assuming
that the tree is traversed following a postorder (we discuss this later in this section),
this contribution block is the last one to be computed before that node and the first
one to be assembled into it. It can be assembled “in-place” to form the frontal matrix.
This requires the order of the variables of a node and its child to be compatible;
we refer the reader to [60] for more details. This scheme is available in MUMPS
(among other solvers) for sequential executions and sequential parts of the tree in
parallel executions. In this context, the sequential peak of active memory for a node
i is computed as

Si = max

 max
j=1...nci

Ssij +
j−1∑
k=1

scbsik

 , sfronti +
nci−1∑
j=1

scbsij


Note that the only difference compared to the classical scheme is in the term that
represents the allocation of the frontal matrix associated with i: the contribution
block of the last child is removed from the expression since it is included in the
memory for the frontal matrix of i.

• The max-in-place assembly scheme: this a natural extension of the in-place scheme
where the a frontal matrix overlaps in memory with the largest contribution block [2].
This requires a different memory management (that we do not describe here) since
the corresponding child is not necessarily the last one to be processed before its
parent. Using this scheme, the sequential peak of active memory for a node is

Si = max

 max
j=1...nci

Ssij +
j−1∑
k=1

scbsik

 , sfronti +
nci∑

j=1,j 6=jmax
scbsij


3Also known as the last-in-place scheme.
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with jmax the index of the child node of i with the largest contribution block.

For a given assembly scheme, the way the tree is traversed strongly influences the
peak of active memory. We recall that in the multifrontal method the only constraint
is to traverse the tree following a topological ordering (i.e., a parent node is processed
after its children). Among topological orderings, postorders are often preferred because
they allow for a simple and efficient management of the memory using a stack mechanism
that provides data locality. Furthermore, postorders also allow the use of the above-
mentioned in-place assembly scheme, that provides significant gains in active memory in
practice (often about 30% [60]). Liu [68, 69] and Jacquelin et al. [54] showed how to
compute the best postorder and the best topological order; furthermore, Jacquelin et al.
experimentally assess how these two possibilities compare to one another. We review these
works. Firstly, Jacquelin et al. show that it is possible to build trees for which postorders
perform arbitrarily bad compared to the best traversal. They consider general task trees
where every node is a task associated with three types of files (input, output, temporary
files); they consider top-down traversals of the tree but the transformation to bottom-up
traversals is easy. They assume that the system has a 2-level memory hierarchy (typically
a fast but small main memory, and a large but fast secondary memory) and tackle two
problems:

• MinMemory: find the minimum amount of main memory needed to traverse the
tree without accessing the secondary memory; provide the associated traversal.

• MinIO: given a main memory size, find the minimum volume of I/O (between the
main memory and the secondary memory) needed to traverse the tree; provide the
associated traversal and an I/O scheduling (i.e., the communications between the
two levels of memory).

MinMemory is the problem we are interested in. The authors propose an algorithm,
MinMem, that finds the best topological order. It relies on an algorithm called Explore
that checks if the tree can be processed with a given amount of memory. If this is not the
case, Explore returns a cut in the tree reachable with the given amount of memory, the
associated traversal, and the extra amount of memory needed to add at least another node
to the traversal. Then, by running Explore again with this extra amount of memory, the
cut will be improved. MinMem simply consists of running Explore until the leaves of
the tree are reached (remember that the authors consider top-down traversals) and thus
finds the minimum amount of memory needed to traverse the tree.

Concerning the minimization of the volume of I/O, Jacquelin et al. show that the
three following problems, that look increasingly difficult, are NP-complete4:

1. Given a postorder of the tree, find the I/O scheduling that minimizes the volume
of I/O. Note that in the particular case of the multifrontal method, this problem is
polynomial [2].

2. Find the minimum volume of I/O for any postorder.

3. Find the minimum volume of I/O for any topological order (this is MinIO)

They propose some heuristics that define the scheduling, relying on the order given by
solving MinMemory. Their experimental findings are the following:

4They use a reduction from 2-Partition.
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• On trees corresponding to large sparse matrices coming from real applications, the
optimal traversal is a postorder 95% of the time. In the worst case, the overhead in
memory induced by using the best postorder instead of the best order is 18%.

• On random trees, the optimal traversal is not a postorder 60% of the time. The
average and maximum overheads induced by using a postorder are 18% and 122%.

The experimental results from [54] along with the advantages cited above reinforce the
intuition that following a postorder in (sequential) multifrontal codes is probably the best
choice. In the following, we always consider that a postorder traversal in followed in the
sequential case.

Before Jacquelin et al., Liu tackled the MinMemory problem in the context of the
multifrontal method. Here we describe how he finds the best postorder. We show how
he finds the best topological ordering in the next section, as this is related to tree pebble
games. Liu firstly assumes that an in-place assembly scheme is used, and, at any node i
in the tree, writes the sequential peak of active memory as

Si = max

 max
j=1...nci

Ssij +
j−1∑
k=1

scbsik

 , sfronti +
nci−1∑
j=1

scbsij


= max

j=1...nci

max
(
Ssij , sfronti

)
+

nci−1∑
j=1

scbsij

 (7.1)

Clearly, by minimizing the peak at each node following a bottom-up traversal, the
overall peak, i.e., the peak at the root node will be minimized. At a given node, mini-
mizing the peak amounts to finding an ordering of its children that minimizes the above
expression. The key result is the following:

Theorem 7.1 - Liu [68, Theorem 3.2].
Given a set of values (xi, yi)i=1,...,n, the minimal value of

max
i=1,...,n

xi +
i−1∑
j=1

yj


is obtained by sorting the sequence (xi, yi) in decreasing order of xi − yi.

By applying this result to Equation (7.1), Liu finds the postorder that minimizes the
peak of active memory. At every node i in the tree, the subtrees rooted at that node
(sij , j = 1, . . . ,nci) have to be traversed by decreasing order of max(Ssij , sfronti)− scbj .
This yields a reordering algorithm that we report in Algorithm 7.3.

With different assembly schemes (e.g. the classical scheme or the max in-place scheme),
the technique used to find the best postordering is the same. We show in Table 7.1 the
terms that play the role of “xi” and “yi” for every assembly scheme. We refer the reader
to Table 3.1 and Table 3.2 in [60, Chapter 3] for a complete analysis of the minimization
of the active memory and the total storage for all the possible assembly and allocation
schemes; our table is an excerpt of Table 3.1.

7.2.2 The parallel case

The problem of minimizing the active memory in a parallel context has been little ad-
dressed. Firstly, we emphasize that the memory usage for a parallel execution might be
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Algorithm 7.3 Reordering of the tree applying Theorem 7.1. At every node i, child
subtrees are reordered by decreasing order of max(Ssij , sfronti)− scbj .

/* Input: a tree T */
/* in_order, an arbitrary postordering of T */
/* Output: out_order, the new postordering of T */

1: for all nodes i in T , following in_order do
2: if i is a leaf node then
3: Si = sfronti
4: else
5: Sort the children sij by decreasing order of max(Ssij , sfronti)− scbj
6: Compute Si using the new ordering of the children and 7.1
7: end if
8: end for
9: Traverse the tree following a top-down dept-first search using the new ordering of the

children in order to get the final postorder

Assembly
scheme xi yi
classical Si scbi
in-place max(Si, sfronti) scbi

max-in-place Si scbi
Table 7.1: Ordering of the children that minimizes the peak of active memory, assuming
a terminal allocation, depending on the assembly scheme. The optimal ordering is found
by applying Theorem 7.1 with the adequate xi and yi.

completely different from that of a sequential execution; therefore, the problem is not only
about nicely distributing the amount of memory needed for a sequential execution among
the different processes. A bad mapping and/or scheduling might yield a total amount
of memory significantly higher than that of a sequential execution. We give a simplis-
tic example in Figure 7.5; the tree is mapped onto two processes. We assume that the
two leaf nodes are significantly larger than the two others (C � ε) and that the size of
their contribution block is negligible. The total amount of active memory for a sequential
traversal is (approximately) Sseq = C. However, using a proportional mapping, the total
amount of memory is 2C (assuming that the two leaf nodes are active at the same time,
which is natural here). This demonstrates that the mapping and the scheduling strategies
influence not only the balance of the memory usage but also the total consumption.

In a parallel setting, the objective depends on the type of system we consider:

• In a shared-memory context, the objective is to minimize the total memory footprint.
Unless one considers memory locality issues, balancing the memory usages of the
different processes is less important.

• In a distributed-memory context, minimizing the total memory consumption is de-
sirable but it is also crucial to maintain a balanced memory usage between the pro-
cesses, to avoid that a process runs out of memory (assuming that all the processes
can access the same amount of memory, which is the most frequent setting).

Minimizing the total memory consumption in a parallel setting is complicated as it
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Figure 7.5: The tree is mapped onto two processes P0 and P1. We assume C � ε and
nfront ' C for the leaf nodes. The peak of active storage for a sequential traversal is C.
However, the total amount of active memory in a parallel execution is 2C.

is difficult to compute this total memory usage. Unless a scheduling with very specific
properties is used, this would require to track at run time the memory usage of every
process (so that, at any given time, we could sum the memory usages), which is almost
infeasible, even in a shared-memory context. What is feasible though is to compute the
maximum peak of active memory of every process. The sum of the peaks of the different
processes provides an upper bound on the total consumption, that might be very loose
depending on what processes do. For a parallel execution on p processes, we denote Smax
and Savg the maximum and average peaks of active memory (among the p processes)
respectively. Savg is computed as the sum of the p peaks divided by p; note that, with the
above observation p · Savg is an upper bound on the total consumption.

The performance of a parallel algorithm executed on p processes is often assessed using
a notion of efficiency; given the above observations, we consider two kinds of memory
efficiency metrics that depend on p:

• eavg(p) = Sseq
p · Savg

; this metric compares the total memory usage (using an upper

bound, as described above) to that of a sequential execution. It is relevant in a
shared-memory context, as explained above.

• emax(p) = Sseq
p · Smax

; this metric, combined with the other one, can detect the fact
that one (or more) process uses too much memory, which is relevant in a distributed-
memory context. For example, emax(p) = 0.2 means that at least one of the processes
uses 5 times more memory than Sseq

p which represents the ideal situation; indeed,
the ideal situation is to have Smax = Sseq

p (thus eavg(p) = emax(p) = 1) which means
that the memory perfectly scales, i.e., the sequential peak is perfectly distributed
among the processes.

We will show in the next chapter that the proportional mapping as well as the mapping
used in MUMPS do not provide a good memory scalability. However, we mention a
mapping technique that perfectly scales in memory. The idea is to map all the nodes
of the tree on all the processes and to traverse the tree following the postorder used in
the sequential case; this is what we call the all-to-all mapping. One easily sees that this
technique does not exploit tree parallelism (all the branches are serialized), that it leads
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to dramatic amounts of communication (both within nodes when performing dense partial
factorizations and between nodes when communicating contribution blocks), and that it
does not deliver adequate granularities within nodes. Therefore, this is not feasible at all;
we assess this in Chapter 11 where we show that using this technique, prohibitive amounts
of communications (particularly in terms of numbers of messages) arise. However, ignoring
practical implementation issues, this mapping technique clearly provides a perfect memory
scalability (eavg(p) = emax(p) = 1). We will see in Chapter 9 that reusing the idea of an
all-to-all mapping in some parts of the tree is a component of the mapping algorithm we
suggest. This observation also implies that, in a parallel context, minimizing the active
memory is not the right problem, since the solutions to this problem are likely to yield
poor performance. We do not really want to minimize the active memory; we would
rather control the active memory, i.e., to enforce a given memory constraint that would
be provided by the user or defined by hardware specifications. Then, for this memory
constraint, we would like to maximize the performance; this is exactly the aim of the
mapping technique we describe in Chapter 9.

7.2.3 Relation to the tree pebble game

We conclude this chapter with an interesting formulation of our problem. A pebble game
is a game played on an acyclic graph (here we consider only trees); the rules of the most
simple variant are the following:

• Initially no vertices carry pebbles.

• A pebble may be placed on a input vertex (for us, a leaf) at any time.

• If all the predecessors (for us, the children) of an internal vertex carry pebbles, a
new pebble may be placed on that vertex, or a pebble may be moved from one of
its predecessors to that vertex.

• A pebble can be removed from the graph at any time.

The goal is to place pebbles on output vertices (for us, the root node). The objective can
be to minimize the number of pebbles that are used (the pebble cost) or the number of time
steps (turns). This game has applications in the VLSI community and in semantics [81].
Liu mentions in [68] that Gilbert pointed out the connection of the minimization of the
sequential peak of active memory with the tree pebble game. Assuming an elimination
tree where all the nodes have unitary weight (memory cost), i.e., sfront = 1, the pebble
game works exactly as the traversal of an elimination tree. The pebbles represent units of
memory. The rule that allows a pebble to move from a node to is parent is equivalent to
an in-place assembly. Minimizing the number of pebbles amounts to minimizing memory
requirements. Note that the rules induce a topological traversal of the tree, but not
necessarily a postorder. Liu mentions that the traversal of the tree he suggests is actually
a known optimal solution to the pebble game.

In our problem, traversing a node requires to use several units of memory. This suggests
to use a generalized tree pebble game where every node i has a weight τ(i). Only one
rule is modified: a pebble may be removed from a node i if there are τ(i) pebbles on it.
In [69]5 Liu shows how minimizing the active memory in a left-looking sparse factorization
can be formulated as a generalized tree pebble game. The elimination tree is transformed

5Note that is not the same reference as before; this publication is dedicated to the generalized tree
pebble game.
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using the following process: every node i is transformed into two nodes i− and i+ where
i+ is the only child of i−. τ(i+) is the number of nonzeros in columns of L associated with
T (i) that are needed to compute column i; τ(i−) is the number of nonzeros in columns
of L associated with T (i) that are still needed after i is processed. Going from i+ to
i− represents the fact that a row is written on disk and can be removed from the main
memory.

Liu then describes an algorithm that finds the optimal solution to the generalized tree
pebble game. The idea is to work recursively at each subtree; for a given node, the best
ordering is obtained by merging the best orderings of its children subtrees. This merging
process is the most difficult part of the algorithm. Firstly, Liu shows that the pebble
cost is not a relevant metric; some orderings of a given subtree with the same pebble
cost might lead to different results when they are merged with the ordering of another
subtree. Liu introduces a new order relation between traversals and deduces the merging.
Coarsely, in order to merge the orderings for two subtrees rooted at two siblings, the
idea is to find a way to interleave these two orderings by detecting the nodes that yield
local maxima and minima in the pebbling sequences (Liu calls them “hills” and “valleys”
respectively). The idea is to take advantage of the “valleys” of a subtree to traverse the
“hills” of the other one; we provide a very simple example in Figure 7.6, that also shows
in which situations a postorder may be the best traversal. In the figure, one can see that
any of the two postorderings needs at least 8 pebbles (since a node with τ = 5 and a node
with τ = 3 need to be pebbled at some point), while the traversal 1-2-4-5-3-6-7 requires
only 6 pebbles. The key idea is to stop one of the branch at a minimum in the pebble
sequence (1 here) in order to start and traverse completely the other branch. By stopping
the traversal of the left-hand branch at node 2 before traversing the right-hand branch,
only one pebble is “stacked” instead of three for a postorder traversal.

1

2

3 6

7

1

5

33

1

1

4

5

5

Figure 7.6: An example of generalized tree pebble game; the weight τ of each node is
shown next to the node (and underlined). Any postorder traversal requires to use 8
pebbles, while the ordering 1-2-4-5-3-6-7 has a pebble cost of 6.

The algorithm proposed by Liu provides the optimal solution. Jacquelin et al. showed
that their algorithm MinMem finds the same traversal and has the same worst-case com-
plexity; however their algorithm is about three times faster in practice (they mention that
Liu’s algorithm is slow because it relies on a slow list merging process).

Finally we briefly describe how the parallel problem could be formulated as a general-
ized tree pebble game. We suggest to use pebbles with different colors, with color for each
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process. A pebble would thus represent a unit of memory for a given process. Using the
same rules as in the game described above, we immediately have a game that represents
the problem of the minimization of the active memory in a parallel context. As mentioned
above, this is not exactly our problem: we are interested in finding a traversal of the tree
that maximizes the performance under a given memory constraint. A memory constraint
can be represented simply by limiting the number of pebbles of each color. We then need
to represent the performance. Remember that one of the variants of the pebble game
consists of finding the minimum number of turns (pebbles moves or placements) in the
game, instead of finding the minimum number of pebbles. The number of turns can serve
as a representation of the time for traversing the tree. Rules need to be added in order to
have a good model of parallel performance; we give a few hints:

• Several pebbles can be placed on a node at the same time; however, several pebbles of
the same color cannot be placed on different nodes at the same time. This represents
the fact that a process cannot work on different tasks at the same time; however
tasks are divisible and a process can interleave fractions of different tasks.

• If a node is pebbled with too many colors (the threshold needs to be defined), there
is a penalty in the number of turns; this penalizes intra-node communication.

• Similarly, a rule could be used to favour traversals that enforce a subtree-to-subcube
principle (e.g. relying on the number of colors used for a given subtree).

We have not pushed this formulation further but we believe that it can be interesting.
We also believe that some of the ideas from the study by Liu (more specifically the idea
of “hills” and “valleys”) could be interesting for our parallel problem, but we have not
explored this option.
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Chapter 8

Memory scalability issues

In this chapter we show that commonly used mapping techniques do not achieve a good
memory scalability. We start with a very simple but realistic example where we analyze
step-by-step, on a given tree, the behavior of the proportional mapping with respect to
the active memory. In this example, after two steps of proportional mapping, i.e., once
the grandchildren of the root node are mapped, the memory efficiency is bounded by
0.16, which is unacceptably low. We then present a theoretical analysis of the memory
scalability of the proportional mapping on 2D regular grids with nested dissection. We
show that the memory efficiency tends rapidly to zero when the number of processes
increases. Finally, we report on some experimental results with the MUMPS solver, using
the default mapping strategy. We show that the memory efficiency typically lies between
0.10 and 0.40.

These theoretical and practical results show that the proportional mapping and the
variant used in MUMPS tend to let the memory usage grow dangerously with the number
of processes. This demonstrates that there is a strong need for mapping strategies aiming
at controlling the active memory.

8.1 A simple example

In this simple example, we illustrate the behavior of the proportional mapping on a simple
yet realistic elimination tree. We consider a memory-based proportional mapping strategy,
but we could make the same observations about a workload-based strategy. We consider
the tree in Figure 8.1 and assume that it will be mapped onto 64 processes. Firstly,
these 64 processes are assigned to the root node r. Then, a first step of memory-based
proportional mapping is used to distribute these 64 processes among the three children of
r: s1, s2 and s3, as illustrated in Figure 8.1(a). The sequential peaks of active memory of
the subtrees rooted at s1, s2 and s3 are 4 GB, 1 GB and 5 GB respectively. Therefore, s1
gets 4

4+1+5 · 64 ' 26 processes; s2 gets 1
4+1+5 · 64 ' 6 processes and s3 gets 5

4+1+5 · 64 ' 32
processes. Note that we have chosen to round the numbers of processes so that they add
to 64 and are distributed without any overlap; a relaxed technique could be used but this
would not change the result. At this stage, we can compute an upper bound of the peak of
active memory of each process. Consider the 26 processes working on the subtree rooted at
s1. The sequential peak of active memory of this subtree is 4 GB, therefore, at best, that
is, assuming a perfect memory scalability can be attained for this subtree, the maximum
peak of active memory among these 26 processes will be 4 GB

26 = 0.16 GB. Similarly, the
maximum peaks of active memory for the 6 processes working on the subtree rooted at
s2 and the 32 processes working on the subtree rooted at s3 are lower bounded by 1 GB

6
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and 5 GB
32 respectively; ignoring rounding errors, all these numbers are the same (0.16 GB)

since we have applied a memory-based proportional mapping. We can now derive a first
lower bound on the memory efficiency for this problem; since the sequential peak of active
memory for the whole tree is 5 GB, the memory efficiency is bounded as follows:

e(p) = Sseq
p · Smax(p) 6

5 GB
64 · 0.16 6 0.5

It is indeed fairly easy to see why the efficiency is bounded by 1
2 . The sequential peaks of

the whole tree and the subtree rooted at s3 are the same1; however, only half the processes
work on the latter subtree. Therefore, even if a perfect memory scalability is attained on
the subtree rooted at s3, the memory usage for the 32 processes working on that subtree
is twice what we are targeting (5 GB

32 instead of 5 GB
64 ).

64

32626
4GB 1GB 5GB

5GB

s1 2s 3s

11s
21s 22s 23s 31s

111s 311s

32s

112s 312s

(a) First step of proportional mapping.

64

326

1GB 1GB 1GB
1GB2GB4GB

26
2 2 2

21 11

26

r

s1 2s 3s

11s
21s 22s 23s 31s

111s 311s

32s

112s 312s

(b) Second step of proportional mapping.

Figure 8.1: A two-step example of memory-based proportional mapping. At each node,
we indicate the sequential peak of active memory (in GB) and the number of processes
assigned by the proportional mapping. 64 processes are assigned to the root node r; after
one step of proportional mapping, they are distributed among the children of the root
node, s1, s2, s3 (a). Then another step of proportional mapping assigns processes to the
grandchildren of the root node (b).

Now we consider a second step of proportional mapping, where the mapping of the
grandchildren of r is computed. s11 is the only child of s1 and thus inherits the 26
processes s1 is mapped onto. s2 has three children with the same sequential peak of active
memory, thus the processes mapped onto s2 are equally split, and every child inherits
from 6

3 = 2 processes. s3 is mapped onto 32 processes and has two children, s31 and s32;
their sequential peaks are 2 GB and 1 GB respectively. Therefore s31 is mapped onto
2
3 · 32 ' 21 processes, and s32 is mapped onto 1

3 · 32 ' 11 processes. Now we consider
memory efficiency and follow the same reasoning as above. Assume we can obtain a perfect
scalability on the six subtrees rooted at the grandchildren of r; the maximum peak, among
the 64 processes, is at best max

{
4 GB

26 , 1 GB
2 , 2 GB

21 , 1 GB
11

}
= 0.5 GB. In terms of efficiency,

it yields
e(p) = Sseq

p · Smax(p) 6
5 GB

64 · 0.5 6 0.16

1Actually they cannot be exactly the same since the peak at r is at least the peak at s3 plus the
contribution blocks of s1 and s2; here we assume for simplicity that these contribution blocks are negligible.
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This time the bad scalability is due to the three subtrees rooted at the children of s2.
Their sequential peak is 1 GB, which represents one fifth of the sequential peak of the
complete tree; however they receive a much smaller fraction of the 64 processes since they
get only 2 processes. Therefore the memory efficiency is upper bounded by 5 · 2

64 ' 0.16.
This example is very simplistic but it illustrates what happens in reality. In our

example, the subtree rooted at s3 can be seen as a “memory attractor”; its sequential
peak is the same as the sequential peak of the whole tree, which means that the sequential
peak of the whole tree actually takes place in this subtree. However, since the proportional
mapping partitions the list of processes and distributes them among s3 and its siblings,
the memory efficiency necessarily decreases. At this stage of the mapping process, the
only way to guarantee a perfect memory scalability is to assign the 64 processes to the
subtree rooted at s3. Of course, this prevents using a strategy à la proportional mapping
since there is thus no way to assign disjoint sets of processes to siblings. This observation
is one of the motivations for the strategies presented in the next chapter. Note that a
workload-based proportional mapping (which is a more common setting) would exhibit
the same behavior: indeed, unless the workload of the subtree rooted at s3 is extremely
large compared to the workloads of the two other subtrees (which is unlikely since the
peaks of active memory are comparable), s3 will not inherit from all or almost all the
processes, yielding once again a low memory scalability.

8.2 Theoretical study on regular grids

8.2.1 Main result

We now extend the previous example to more general trees. A first step towards a more
general result can be found in Agullo’s PhD thesis [1, Chapter 10]. Agullo quantifies
the sub-optimality of the proportional mapping on perfect binary trees with fronts of the
same size, where the fully-summed blocks and contribution blocks have the same number
of variables; he shows that in this particular case the following relation holds

e(p) = O

( log(p)
p

)
We extend this result to elimination trees corresponding to a nested dissection of a

regular 2D grid; we show the following result:

Theorem 8.1 - Sub-optimality of the proportional mapping on a 2D regular grid.
Let T be an elimination tree corresponding to a nested dissection of a regular 2D square
grid with a nine-point stencil. For a given number of processes p, the memory efficiency
of a strict memory-based proportional mapping of T is

emax(p) = O(C · pα) (with C ' 0.18, α ' −0.2)

This result is interesting since it quantifies what was surmised in the simple example
presented above. However, we warn the reader that the proof is rather tedious and does
not bring much information about our problem; it is presented in the next two subsections
for the sake of completeness but can be skipped without loss of comprehension. At the
end of the proof, we provide some simulation results that confirm our quantification. In
the last section of the chapter, we report on experiments results using MUMPS that also
confirm our theoretical result.

Note that we have investigated only the 2D case. The same theoretical study could be
carried out for the 3D case. We believe that a similar conclusion would be reached.
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8.2.2 Proof – context

Our proof is based on the nested dissection model introduced by George in his original
article [41]. The proof is as follows:

1. We recall the main ingredients of the nested dissection model described in George’s
paper, and we give a thorough description of the structure of the elimination tree
associated with the sparse matrix that corresponds to the grid. Note that for the
sake of simplicity we consider that an LU factorization is used (the computation of
the memory usage is a bit easier than in the symmetric case); this does not change
our reasoning nor the final result.

2. We compute the sequential peak of active memory associated with a multifrontal
factorization of that matrix.

3. We describe how the elimination tree is mapped using a memory-based proportional
mapping strategy with a given number of processes p.

4. We compute the maximum peak of active memory among the p processes and deduce
the memory efficiency.

Firstly, we recall the nested dissection model and describe the structure of the elimi-
nation tree. The 2D regular grid is as follows. We consider (n + 1)2 nodes (square cells)
on a square mesh. Nodes have coordinates (i · h, j · h), for 0 6 i, j 6 n where h is a geo-
metrical length (not used in the following). We assume n = 2l for simplicity. Each node is
connected to its eight closest neighbors (i.e., we take into account “diagonal” neighbors);
the 5-point stencil can be derived easily. The main idea is to define geometrical separa-
tors that have a “+” shape, so that they recursively divide the domain into four parts.
The elimination of a separator is as follows. Two branches or “spokes” (denoted (1) and
(2) thereafter) of each “+”-shaped separator are eliminated independently and then the
remaining part (denoted (3)) is eliminated, so that, in the end, the elimination process
yields a binary tree where each “+”-shaped separator represents three nodes.

Separators of the domain are described via a function π defined as2:
π(0) = 0
π(n) = 0
∀i ∈ 1 . . . n− 1, π(i) = p+ 1 with p = max{k : mod(i, 2k) = 0})

Then the level sets of separators are defined as:

Sepk = {(i, j) : max(π(i), π(j)) = k}

We illustrate these level sets in Figure 8.2 for n = 16. One can notice that they indeed
have “+” shapes; near the border the separators may have spokes with different lengths.
We show in Figure 8.3 the tree of separators of the domain; note that this is not the same
as the elimination tree, as shown in the following.

Since max π = l (remember that n = 2l), there are l+ 1 levels of separators. Variables
are eliminated from Sep0 to Sepl. Each level set Sepk has (n/2k)2 “+”-shaped sets of
unknowns (except Sep0 that has only 4), which are independent from one another; thus
they can be eliminated in any order. Within each set, the strategy chosen in [41] is to

2We use a slightly different definition than that from [41], but the tree is the same in the end.
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Figure 8.2: Level sets of separators for n =16. Nodes with the same number k belong to
the same set of separators Sepk. Each set of separators Sepk consists of several “+”-shaped
separators.
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Figure 8.3: Tree of separators for n = 16. Every separator splits the domain into four
disconnected subdomains.

follow a minimum-degree ordering, i.e., at each step the spoke that generates the least
fill-in is chosen to be eliminated.

For each separator, we describe the structure (i.e., the number of fully summed vari-
ables and the size of the contribution block) of (1), (2), and (3) in the filled graph. For
0 < k < l, each Sepk has 3 type of sets:

• There are
(
n

2k − 2
)2

“interior sets”. Their structure is illustrated in Figure 8.4(a):

(1) has 2k−1 − 1 unknowns, all connected to the same 6(2k−1 − 1) + 6 = 3 · 2k
unknowns.

(2) is similar to (1).
(3) has 2k−1 unknowns, all connected to the same 8(2k−1−1)+8 = 2k+2 unknowns.

• There are 4
(
n

2k − 2
)
“boundary sets”. Their structure is illustrated in Figure 8.4(b):

(1) has 2k−1 unknowns, all connected to the same 4(2k−1 − 1) + 5 = 2k+1 + 1
unknowns.

(2) has 2k−1 − 1 unknowns, all connected to the same 6(2k−1 − 1) + 6 = 3 · 2k
unknowns.
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8. Memory scalability issues

(3) has 2k − 1 unknowns, all connected to the same 6(2k−1 − 1) + 7 = 3 · 2k + 1
unknowns.

• There are 4 “corner sets”. Their structure is illustrated in Figure 8.4(c):

(1) has 2k−1 unknowns, all connected to the same 3(2k−1 − 1) + 4 = 3 · 2k−1 + 1
unknowns.

(2) has 2k−1 unknowns, all connected to the same 4(2k−1 − 1) + 5 = 2k+1 + 1
unknowns.

(3) has 2k − 1 unknowns, all connected to the same 4(2k−1 − 1) + 5 = 2k+1 + 1
unknowns.

(1) (2)(3)

(a) Interior sets.

(1) (2)(3)

(b) Boundary sets.

(1)

(2)

(3)

(c) Corner sets.

Figure 8.4: Structure of the three types of separators in the nested dissection model.
Note that every square in the figure is a node in the grid. In each figure, every “+”-
shaped separator has three parts: (1), (2) and (3) (in gray). Empty (white) squares
correspond to nodes that descendants of the separator in the tree. Striped squares are
spokes of separators that are ancestors of the separator we consider; in general, a “+”-
shaped separator touches two other separators.

Consider for example the level set Sep2 in Figure 8.2, i.e., the sets of nodes labeled
with a 2: there are 4 interior sets, near the center of the grid, with a perfectly symmetric
shape. There are 8 border sets; they touch one side of the square grid and the spoke that
touches the border of the grid is longer than the 3 others. There are 4 corner sets; they
touch two sides of the grid and the spokes that touch the border of the grid are longer
than the 2 others.

Finally Sep0 and Sepl are two special cases:

• Sep0 has four sets consisting of a single variable connected to 3 variables.

• Sepl has a unique “+”-shaped set: its first two spokes have n/2 variables, connected
to n+ 1 variables, and the remaining part (root of the tree) has n+ 1 variables.

We now describe the structure of the tree. The root node of the tree corresponds to
part (3) of the unique separator of Sepl:

• It has two children, corresponding to parts (1) and (2) of Sepl.

• Both children have two children, each of them corresponding to one of the 4 corner
sets of Sepl−1.
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8.2. Theoretical study on regular grids

The rules that recursively define the structure of the tree are described in Figure 8.5; we
denote interior sets with an [i], boundary sets with a [b] and corner sets with a [c]. We
show, for each kind of separator:

• How the nodes corresponding to (1), (2) and (3) are connected.

• The kind of separators corresponding to the children nodes of (1), (2) and (3).

(3)

(1) (2)

[i]

[i] [i] [i] [i]

(a) Each interior set of Sepk is the
parent of 4 interior sets in Sepk−1.

(3)

(1) (2)

[b]

[b] [b] [i] [i]

(b) Each boundary set of Sepk is
the parent of 2 boundary sets and
2 interior sets in Sepk−1.

(3)

(2)

(1)

[c]

[i]

[c] [b]

[b]

(c) Each corner set of Sepk is the
parent of 1 corner, 2 boundary sets
and 1 interior set in Sepk−1.

Figure 8.5: Structure of the subtrees associated with each kind of separator.

We provide a few more details for the sake of completeness:

• In an interior subtree rooted at Sepk, there are:

– 2 · 4k−1 − 1 nodes.

– (2k − 1)2 eliminated variables.

• In a boundary subtree rooted at Sepk, there are:

– 2 · 4k−1 − 1 + 2k−1 nodes.

– 2k · (2k − 1) eliminated variables.

• In a corner subtree rooted at Sepk, there are:

– 1
24k + 2k nodes.

– (2k)2 eliminated variables.

• In the whole tree, there are:

– n2

2 + 2 · n+ 3 nodes.

– (n+ 1)2 eliminated variables.
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8.2.3 Proof – computation of the memory efficiency

Now that we have fully described the structure of the elimination tree, we can compute
the memory efficiency. Firstly, we compute the sequential peak of active memory.

Lemma 8.1 - Sequential peak of active memory for a 2D regular grid.
The sequential peak of active memory is reached when assembling the root node of the
last corner subtree (corresponding to level l − 1) and its value is 6.25 · n2 + 6 · n+ 3.

Proof. We prove by induction on k (from 0 to l − 1, i.e., traversing the tree bottom-up)
that for each one of the three types of subtree defined above, the peak of active memory
is reached when assembling the root node. The final step consists of examining what
happens at the top of the tree (Sepl and Sepl−1). We reuse the notation introduced in
Section 7.2.

Basis: for k = 1, the proof is trivial and shown in Figure 8.6.

(3)

(3)

(a) Interior sets: the peak is ob-
tained for (3) and represents (1 +
8)2 = 81 reals.

(1) (3)
(3)

(1)

(b) Boundary sets: the peak is
obtained for the assembly of (3):
(1 + 7)2 + 52 = 89.

(1)

(2)

(3)

0

(3)

(2)

(1)

0

(c) Corner sets: the peak is ob-
tained for the assembly of (3):
(1 + 5)2 + 52 = 61 (note the pres-
ence of Sep0).

Figure 8.6: Computation of the sequential peak of active memory for k = 1.

Inductive step: we suppose that, at level Sepk (1 6 k < l), the peak of active memory
of every subtree rooted at Sepk is obtained when allocating the root node, and we prove
that this is also the case for level Sepk+1. At every node, the peak of active memory
is expressed as a second order polynomial of 2k; the comparisons needed to compute a
“max” are done computing the roots of the polynomial, but we do not provide all the
details. Sometimes we need to determine which ordering of the children nodes minimizes
the peak; when the way the children are ordered has no influence on the peak, we indicate
which ordering gives the lowest average memory consumption.

For each set of separators Sepk+1, we consider the three kinds:

• Interior sets:

1. Below nodes (1) and (2) are subtrees corresponding to interior sets of Sepk.
Their peak is reached when allocating their root node (induction hypothesis)
and is (allocation of the root node + contribution blocks of its children):(

2k − 1 + 2k+2
)2

+ 2 ·
(
3 · 2k

)2

= 43 · 22k − 10 · 2k + 1

2. The peak of active memory for the subtree rooted at (1) (or (2) similarly) is
(we do not take the ordering of the children into account since their subtrees
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are the same):

max
(
sfront(1) + scbs(1),1 + scbs(1),2 , Ss(1),2 + scbs(1),1

)
= max

(
(2k − 1 + 3 · 2k+1)2 + 2 · (2k+2)2, 43 · 22k − 10 · 2k + 1 +

(
2k+2

)2
)

= max
(
81 · 22k − 14 · 2k + 1, 59 · 22k − 10 · 2k + 1

)
= 81 · 22k − 14 · 2k + 1 (i.e., assembly of (1)/(2))

3. Finally, at node (3), the peak is (we do not take the ordering of the children
into account since their subtrees are the same):

max
(
sfront(3) + scb(1) + scb(2), S(2) + scb(1)

)
= max

((
2k+1 − 1 + 2k+3

)2
+ 2 ·

(
3 · 2k+1

)2
, 81 · 22k − 14 · 2k + 1 +

(
3 · 2k+1

)2
)

= max
(
172 · 22k − 20 · 2k + 1, 117 · 22k − 14 · 2k + 1

)
= 172 · 22k − 20 · 2k + 1 (i.e., assembly of (3))

Therefore, the peak of active memory is obtained when allocating the root node
(i.e., (3)).

• Boundary sets:

1. Below node (1) are two subtrees corresponding to boundary sets of Sepk. Their
peak is reached when allocating their root node (induction hypothesis) and is
(allocation of the root node + contribution blocks of its children):

(
2k − 1 + 3 · 2k + 1

)2
+
(
2k+1 + 1

)2
+
(
3 · 2k

)2

= 29 · 22k + 4 · 2k + 1

2. The peak of active memory for the subtree rooted at (1) is (we do not take the
ordering of the children into account since their subtrees are the same):

max
(
sfront(1) + scbs(1),1 + scbs(1),2 , Ss(1),2 + scbs(1),1

)
= max

((
2k + 2k+2 + 1

)2
+ 2 · (3 · 2k + 1)2, 29 · 22k + 4 · 2k + 1 +

(
3 · 2k + 1

)2
)

= max
(
43 · 22k + 22 · 2k + 3, 38 · 22k + 10 · 2k + 2

)
= 43 · 22k + 22 · 2k + 3 (i.e., assembly of (1))

3. Below node (2) are two subtrees corresponding to interior sets of Sepk. Their
peak is reached when allocating their root node (induction hypothesis) and is
(allocation of the root node + contribution blocks of its children):

(
2k − 1 + 2k+2

)2
+ 2 ·

(
3 · 2k

)2

= 43 · 22k − 10 · 2k + 1
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4. The peak of active memory for the subtree rooted at (2) is (we do not take the
ordering of the children into account since their subtrees are the same):

max
(
sfront(2) + scbs(2),1 + scbs(2),2 , Ss(2),1 + scbs(2),2

)
= max

((
2k − 1 + 3 · 2k+1

)2
+ 2 · (2k+2)2, 43 · 22k − 10 · 2k + 1 +

(
2k+2

)2
)

= max
(
81 · 22k − 14 · 2k + 1, 59 · 22k − 10 · 2k + 2

)
= 81 · 22k − 14 · 2k + 1 (i.e., assembly of (2))

5. Finally, at node (3), the peak is (this time the ordering of the children matters,
so we consider both possibilities):

max
(
sfront(3) + scb(1) + scb(2), S(1) + scb(2), S(2) + scb(1)

)

= max


(
2k+1 − 1 + 3 · 2k+1 + 1

)2
+
(
2k+2 + 1

)2
+
(
3 · 2k+1

)2
,

43 · 22k + 22 · 2k + 3 +
(
3 · 2k+1

)2
,

81 · 22k − 14 · 2k + 1 +
(
2k+2 + 1

)2


= max

(
116 · 22k + 8 · 2k + 1, 79 · 2k + 22 · 2k + 3, 97 · 22k − 6 · 2k + 2

)
= 116 · 22k + 8 · 2k + 1 (i.e., assembly of (3))

Therefore, the peak of active memory is obtained when allocating the root
node (i.e., (3)). An interesting point is that the peak is independent of the
ordering of the children of (3). However, the average memory consumption can
be decreased by processing (2) before (1) (because S(1) + scb(2) is smaller than
S(2) + scb(1)).

• Corner sets:

1. Below node (1) are two subtrees corresponding to a corner set and a boundary
set of Sepk. Their peak is reached when allocating their root node (induction
hypothesis) and is (allocation of the root node + contribution blocks of its
children3):

corner subtree:
(
2k − 1 + 2k+1 + 1

)2
+
(
2k+1

)2
+
(
2k+1 + 1

)2

= 17 · 22k + 4 · 2k + 1

boundary subtree:
(
2k − 1 + 3 · 2k + 1

)2
+
(
2k+1 + 1

)2
+
(
3 · 2k

)2

= 29 · 22k + 4 · 2k + 1

3Note that for the corner set, the “interior” child of the root node belongs to Sepk−1; for k = 1, it is
null.
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2. The peak of active memory for the subtree rooted at (1) is:

max
(
sfront(1) + scbs(1),1 + scbs(1),2 , Ss(1),1 + scbs(1),2 , Ss(1),2 + scbs(1),1

)

= max


(
2k + 3 · 2k + 1

)2
+
(
2k+1 + 1

)2
+
(
3 · 2k + 1

)2
,

17 · 22k + 4 · 2k + 1 +
(
3 · 2k + 1

)2
,

29 · 22k + 4 · 2k + 1 +
(
2k+1 + 1

)2


= max

(
29 · 22k + 18 · 2k + 3, 26 · 2k + 10 · 2k + 2, 33 · 22k + 8 · 2k + 2

)
=
{
for k = 1, 29 · 22k + 18 · 2k + 3
for k > 2, 33 · 22k + 8 · 2k + 2

Here, the peak (not only the average consumption) is dependant of the ordering
of the children. The best traversal processes the boundary subtree then the
corner subtree; in that case, we get rid of the term 33 · 22k + 8 · 2k + 2 and the
peak is reached when allocating (1):

29 · 22k + 18 · 2k + 3

3. The peak of active memory for the subtree rooted at (2) is:

max
(
sfront(2) + scb(1) + scbs(2),2 , S(1) + scbs(2),2 , Ss(2),2 + scb(1)

)

= max


(
2k + 2k+2 + 1

)2
+
(
3 · 2k + 1

)2
+
(
3 · 2k + 1

)2
,

29 · 22k + 18 · 2k + 3 +
(
3 · 2k + 1

)2
,

29 · 22k + 4 · 2k + 1 +
(
3 · 2k + 1

)2


= max

(
43 · 22k + 22 · 2k + 3, 38 · 2k + 24 · 2k + 4, 38 · 22k + 10 · 2k + 2

)
= 43 · 22k + 22 · 2k + 3 (i.e., assembly of (2))

Once again, the peak is reached when allocating the root node, independently of
the ordering of the children. In order to minimize the average consumption, (1)
can be processed before the other child. It is worth noticing that the ordering
of the children of (1), that has an influence on the peak of the subtree rooted at
(1), does not change anything here (with the other ordering, 38 · 2k + 24 · 2k + 4
becomes 42 · 2k + 14 · 2k + 3, which is still smaller than 43 · 22k + 22 · 2k + 3).

4. Finally, at node (3), the peak is:

max
(
sfront(3) + scbs(3),1 + scb(2), Ss(3),1 + scb(2), S(2) + scbs(3),1

)

= max


(
2k+1 − 1 + 2k+2 + 1

)2
+
(
2k+2

)2
+
(
2k+2 + 1

)2
,

43 · 22k − 10 · 2k + 1 +
(
2k+2 + 1

)2
,

43 · 22k + 22 · 2k + 3 +
(
2k+2

)2


= max

(
68 · 22k + 8 · 2k + 1, 59 · 2k − 2 · 2k + 2, 59 · 22k + 22 · 2k + 3

)
= 68 · 22k + 8 · 2k + 1 (i.e., assembly of (3))

Once again, the peak is independent of the ordering of the nodes. However, the
average consumption is minimized by processing (2) before the other subtree
(interior set).
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We showed that for all 1 6 k < l, the peak of a tree rooted at Sepk is reached when
assembling the root node. The last step is to examine k = l, that is the final separator:

1. Below (1) and (2) are subtrees corresponding to the four corner sets of Sepl−1. Their
peak is reached when allocating their root node and is (k = l−1 in 17 ·22k+4 ·2k+1)

4.25 · n2 + 2 · n+ 1

2. At node (1) (or (2) similarly), the peak is (note that we do not matter about the
ordering of the children since their subtrees are the same):

max
(
sfront(1) + scbs(1),1 + scbs(1),2 , Ss(1),2 + scbs(1),1

)
= max

(
(n/2 + n+ 1)2 + 2 (n+ 1)2 , 4.25 · n2 + 2 · n+ 1 + (n+ 1)2

)
= max

(
4.25 · n2 + 7 · n+ 3, 5.25 · n2 + 4 · n+ 2

)
= 5.25 · n2 + 4 · n+ 2 (for n > 4 . . . )

Thus, the peak of the subtree rooted at (1) (or (2)) is reached when allocating the
second child of (1) (or (2)).

3. Finally, at node (3), the peak is (we do not matter about the ordering of the children
since their subtrees are the same):

max
(
sfront(3) + scb(1) + scb(2), S(2) + scb(1)

)
= max

(
(n+ 1)2 + 2 (n+ 1)2 , 5.25 · n2 + 4 · n+ 2 + (n+ 1)2

)
= max

(
3 · n2 + 6 · n+ 3, 6.25 · n2 + 6 · n+ 3

)
= 6.25 · n2 + 6 · n+ 3

Therefore, the peak is reached when allocating the second child of (2), i.e., the fourth
corner separator with respect to the postorder.

We showed that the sequential peak of active memory is reached when allocating the
root node of the last corner subtree. We illustrate this in Figure 8.7 that shows the shape
of the top of the tree and the state of the active memory when the peak takes place.
In Figure 8.8, we show the behavior of the active memory memory during a sequential
traversal of a tree with n = 8. Each node of the tree is associated with three consecutive
markers in the figure, that correspond to the allocation of that node, the removal of the
contribution blocks of its children from the active memory, and finally the removal of its
factored part (only the contribution block stays in the active memory). (c) corresponds
to the allocation of the root node, (b) corresponds to the allocation of its right-most child
(i.e., the one ordered last in the postorder), and (a) corresponds to the allocation of the
last corner subtree, which corresponds to the peak of active memory.

The next step of the proof consists of computing a memory-based proportional mapping
of the tree. We use two simplifications:

• We work with decimal number of processes, i.e., we do not apply any rounding.

• We assume that every task (node) can be perfectly distributed among the processes
it is mapped to.
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Figure 8.7: Top of the tree obtained from a nested dissection, with n > 16. The contents
of the active memory when the peak is reached are shown with red circles.
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Figure 8.8: Behavior of the active memory during a sequential traversal of a tree with
n = 8. Each node of the tree is associated with three consecutive markers in the figure,
that correspond to the allocation of that node, the removal of the contribution blocks
of its children from the active memory, and finally the removal of its factored part. (a)
corresponds to the allocation of the last corner subtree, which corresponds to the peak
of active memory, (b) corresponds to the allocation of its right-most child (i.e., the one
ordered last in the postorder), and (c) corresponds to the allocation of the root node.

• At each node, the way the processes are distributed to its children depends on the
level k we consider; however, we can ignore low-order terms. For example, consider
a boundary set at a given level k. Say node (3) has been given p processes; we
want the compute the mapping for nodes (1) and (2). The sequential peak at (1) is
10.75 · 22k + 11 · 2k + 3 and the peak at (2) is 20.25 · 22k + 7 · 2k + 1. The sum of
these two peaks is 31 · 22k + 18 · 2k + 4 thus the number of processes given to (1) is:

10.75 · 22k + 11 · 2k + 3
31 · 22k + 18 · 2k + 4

This ratio tends to 10.75
31 = 0.346 when p tends to infinity; at level 5, it is already

0.35. Therefore, we can use a constant ratio by considering that these divisions
occur only for k > 5. Indeed, we are interested in large problems, e.g. l � 7 (i.e.,
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8. Memory scalability issues

N � 16129). At level 5, the number of processes at each node has been divided
by (roughly) 4l−5. If it is 1, the subtrees below level 5 are processed sequentially,
and we do not compute ratios. Otherwise, it probably means that the number of
processes is unreasonably high compared to the size of the matrix. Therefore, when
mapping the children, we will use the asymptotic ratios (as if k = +∞).

Using these two simplifications, we can derive the rules that describe how processes
are distributed for each kind of separators; they are shown in Figure 8.9.
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respectively.

Figure 8.9: Distribution of the processes for the three kinds of separators using a memory-
based proportional mapping.

The final step of the proof of the theorem consists of computing the memory efficiency.
We compute a lower bound on the parallel peak. The reasoning is the same as the one
we used in the simple example at the beginning of the chapter; at best, in every subtree
T (i), the maximum peak of active memory is Si

pi
, and, by computing the maximum over

all the subtrees, we obtain a lower bound on the parallel peak on the whole tree. This
bound might be rather loose but it is enough for our purpose and, in the end, we obtain
an upper bound on memory efficiency that demonstrates that a proportional mapping is
not suitable with respect to memory scalability. We consider the three types of subsets:

• Interior sets: one can prove by induction that, in the best case where a perfect
efficiency is attained in every subtree, the maximum peak among the processes is
reached when allocating the root node. The key idea is the following (we consider
only the terms in 22k for simplicity; sometimes the terms in 2k need be checked
to distinguish between two polynomials with the same term in 22k). Assume that
there are p processes working at (3). The peak at this node is at least 172·22k

p ; this
is larger than the term 81·22k

0.5p that comes from node (1) (or (2)) and the term 43·22k

0.25p
that comes from the interior subtrees below.

• Boundary sets: consider a boundary set of Sepk mapped onto p processes. One
can prove that the maximum peak is reached at the assembly of the root node of
sequential boundary subtrees, or at the level above (it depends on roundings but
does not change the asymptotic result in the end); we consider the last case in the
following.

• Corner sets: one can show that the peak comes from the boundary subtrees.
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8.2. Theoretical study on regular grids

Finally, at level l, one can show that the assembly of (1), (2) and (3) do not change the
peak. Therefore, the maximum peak is reached for sequential boundary subtrees. Among
these trees, the maximum peak is reached for the highest sequential boundary trees (i.e.,
the ones with the highest root node among all the sequential boundary trees); there are
four of them, and they are below the first boundary subtree of each corner set. These
trees correspond to level ks such that:

ks = l − 2 +
log p+ log 17

736
log 43

248
' l − 0.4 log2 p+ 0.15

Therefore, the maximum parallel peak Smax(p) is lower bounded by :

29 · 22ks + 4 · 2ks + 1

Finally, we can compute an asymptotic expression for emax(p) by keeping only the
terms in 22l; for n and p large enough, the efficiency is bounded by:

emax(p) 6 Sseq(p)
p · Smax(p)

6 0.18 · p−0.2

We have assessed this prediction for n = 1024, using a symbolic code that builds a
tree that corresponds exactly to the nested dissection model presented above, and that
computes the peak of each process by performing postorder traversals of the tree. We show
the results in Table 8.1. We observe that the model fairly corresponds to the simulation
results; remember that we neglected rounding problems and used asymptotic fractions in
many places. Furthermore, what we have computed is an upper bound of the efficiency.
We also report on experiments using MUMPS on the same problem. The ordering is
computed with MeTiS. Note that MUMPS uses a mapping primarily based on a relaxed
proportional mapping, while our model gives an upper bound on memory efficiency for
a strict proportional mapping; this explains why, on 32 and 64 processes, the memory
efficiency is higher than our bound. However, even with this difference, we observe that
the results are very close to our prediction when the number of processes increases.

p emax(p)
Model Simulation MUMPS

32 0.090 0.107 0.189
64 0.078 0.091 0.113
128 0.068 0.073 0.062
256 0.059 0.053 0.053
512 0.051 0.044 0.040

Table 8.1: Memory efficiency computed using the model and a symbolic code, for a 2D
nested grid with n = 1024.

This result shows that, using a strict memory-based proportional mapping, the memory
efficiency emax(p) tends to significantly decrease when the number of processes increases.
The proof is interesting since we have computed a lower bound on the parallel memory
usage by considering that, in every subtree, a perfect memory scalability is attained. Even
in this best case, the memory efficiency for the whole tree is low. This simply demonstrates
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8. Memory scalability issues

that the proportional mapping does not assign enough processes to the nodes, at least to
those that are in demanding-parts of the tree; when going down in the tree, the number
of processes decreases too much compared to memory needs.

In the next section, we complement this result with practical experiments using the
MUMPS solver; the results confirm the need for a better control of active memory.

8.3 Experimental results

In this section, we provide experimental results using the current version of MUMPS
(4.10.0 at the time of writing). We assess the memory scalability of the code on different
matrices from our experimental set. In Table 8.2, we report on experiments with the
Geoazur generator described in Section 1.3.3; we generate a matrix corresponding to a
192 × 192 × 192 grid. The size of the matrix is N = 7077888, the number of entries in
the matrix is 189.1 millions, and the size of the LU factors is 144 GB (in single precision
arithmetic). The sequential peak of active memory is 36.9 GB. The number of processes
ranges from 32 to 512 and we measure emax and eavg.

p Smax(p) (GB) emax(p) Savg(p) (GB) eavg(p)
32 5.24 0.22 3.83 0.31
64 3.02 0.19 1.88 0.30
128 1.66 0.18 0.99 0.29
256 1.09 0.13 0.49 0.29
512 0.70 0.10 0.26 0.28

Table 8.2: Memory scalability of MUMPS on a Geoazur problem corresponding to a 1923

grid. We provide the maximum and average peaks of active memory and the corresponding
memory efficiency.

We notice that the memory efficiency is low even with a small number of processes.
emax decreases significantly when the number of processes increases, while eavg is rather
stable. Therefore, there is a problem of balance of the memory usage of the different
processes, but not only; we recall that eavg = 0.28 means that, on average, processes use
1/0.28 = 3.5 times more memory than they should if we wanted to perfectly divide the
sequential peak of active memory. We observe that the behavior of emax is close to what
the model introduced in the previous section predicts, i.e., emax strongly decreases when
p increases. Thanks to the relaxed variant of proportional mapping used within MUMPS,
the efficiency is better than what our model predicts, but is it still very low.

In Table 8.3, we report on experimental results with different matrices from Table 1.1,
with a fixed number of processes (p = 128).

Matrix Sseq (MB) Smax(p) (MB) emax(p) Savg(p) (MB) eavg(p)
NICE20MC 1301 222 0.05 141 0.07
AUDI 1493 125 0.09 77 0.15
CONESHL 870 57 0.12 29 0.23
FLUX-2M 2967 340 0.07 124 0.19
CAS4R_LR15 131 67 0.02 18 0.06

Table 8.3: Memory scalability of MUMPS for different problems from Table 1.1 with a
fixed number of processes p = 128.
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As with the previous table, we notice that the memory scalability is very poor. Once
again there is problem of balance; on matrix CAS4R_LR15, the maximum peak is almost
4 times the average peak. For the same matrix, eavg = 0.06 which means that the average
peak is more than 16 times what we are targeting, which of course might simply prevent
a user to perform the factorization.

All these experimental results, along with the model introduced in the previous section,
show that there is a need for a mapping technique able to enforce a much better memory
scalability. The simple example introduced at the beginning of this chapter leads to
surmise that the number of processes associated with each node should be increased,
at least at the top of the tree and in the parts of the tree that are the most memory-
demanding. However, in the parts of the tree that are not troublesome in terms of memory,
using a proportional mapping is still a valid strategy. In the next chapter, we present
different “memory-aware” mapping algorithms that aim at enforcing this idea: increasing
the number of processes given to each node in the memory demanding parts of the tree,
and using a proportional mapping whenever it is possible.
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Chapter 9

A class of memory-aware
algorithms

We demonstrated in Chapter 8 that the proportional mapping and its variants lead to
a low scalability of the active memory; however, the proportional mapping is interesting
in terms of performance since it maximizes tree parallelism and reduces the volume of
communication within parallel nodes and between nodes of the tree. We also introduced
in Chapter 7 an “all-to-all mapping” which consists of a constrained traversal of the tree
where all the processes work on every node, following a postorder. However, this solution
generates prohibitive amounts of communications, it does not exploit tree parallelism and
yields too small granularities at nodes at the bottom of the tree. Therefore it is not feasible
at all. In this chapter, we introduce a “memory-aware mapping” that hybridizes these
two techniques and tries to enforce a given memory constraint (the maximum amount of
active memory that a process can use). Basically, the idea is to use an all-to-all mapping in
memory demanding parts of the tree, and a proportional mapping whenever we can be sure
that it will not violate the memory constraint. This approach was introduced in Agullo’s
PhD thesis [1, Chapter 10]; we recall it in Section 9.1. We suggest in Section 9.2 some
refinements that still enforce the memory constraints and leverage the performance of the
factorization. In Section 9.3, we show how we convert a mapping with rational numbers
of processes into a mapping with integer numbers following the technique proposed by
Beaumont and Guermouche in [17]. In Section 9.3.3, we highlight some problems that
require the use of some relaxation parameters in the memory-aware mapping.

9.1 A simple “memory-aware” mapping

9.1.1 Idea and algorithm

We assume that we are given a memory constraint M0 that represents the maximum
amount of active memory that a process is allowed to use. This constraint is defined
by the user or can be set automatically. The memory-aware mapping works as follows.
We assume that the tree has been reordered in order to reduce the sequential peak of
active memory (following the algorithm described in Chapter 7). We also assume that
a preliminary traversal of the tree has been performed in order to obtain the sequential
peak Si and the number of floating-point operations Wi for each subtree T (i). Then, a
top-down traversal of the tree is performed which computes the mapping. Firstly, all the
processes are assigned to the root node. Then, recursively, once a node is mapped onto pf
processes, its children are mapped. We first check if a proportional mapping of the children
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is feasible1 by simulating a proportional mapping and checking the memory constraint for
every child i. Denote pi the number of processes that a proportional mapping would assign
to i. For every child i, we check the condition Si

pi
6M0:

• If all the subtrees T (i) respect this condition, then the step of proportional mapping
is accepted; the children subtrees will be processed in parallel on the number of
processes provided by the step of proportional mapping. For the subsequent steps
of the mapping procedure, the memory constraint M0 remains the same.

• If at least one of the subtrees does not respect the condition, then the step of
proportional mapping is rejected. All the children subtrees inherit the processes
of their parent (∀i, pi = pf ) and will be processed one after another during the
factorization, following a local (partial) postorder. In this case, when a subtree T (j)
is processed, the contribution blocks of the previous siblings (1 6 i < j) are stacked
and equally distributed in the memory of the pf processes. Therefore, for the next
steps of the mapping procedure, the memory constraint is modified: M0 becomes
M0 −

∑j
i=1

scbi
pi

(assuming siblings are numbered following the postorder) in order
to take into account these contribution blocks.

At each step of the traversal, the condition Si
pi

6 M0 means “is it possible to process
the subtree T (i) on pi processes, using at most M0 per process?”. Thus, when a step of
proportional mapping is accepted, we ensure that every subtree will respect the memory
constraint; perhaps, for some memory-demanding subtrees for which Si is close (lower but
almost equal) to pi ·M0, this will require to apply an all-to-all mapping. For “easier” parts
of the tree, a regular proportional mapping will be used. In the end, this yields a hybrid
mapping in-between a proportional mapping and an all-to-all mapping.

Some scheduling constraints have to be set:

• When a step of proportional mapping is rejected, constraints are set so that a node
cannot start before its previous (in the sequential postorder) siblings have finished,
i.e., the subtrees rooted at its siblings have been completely processed. The first
sibling inherits the constraint of its parent, so that constraints are propagated to
the bottom of the tree. For example, if the parent node is constrained so that it has
to wait for a node N (e.g. its sibling) then the constraint is propagated and the first
sibling has to wait for the same node as N (e.g. its “uncle”). Using this mechanism
at every level, constraints is propagated to the bottom of the tree.

• When a step of proportional mapping is accepted, every child inherits the constraint
of its parent (similar to what we describe above).

In order to represent the scheduling constraints, it is enough to specify the predecessor
of every constrained node, since, when some constraints are set, we create a “chain” of
serialized subtrees; a given subtree simply has to wait for one other subtree to complete.
The way the scheduling constraints are implemented is detailed in Section 10.1.

Note that whenever an all-to-all mapping is locally used, all the associated processes
stack pieces of the same contribution blocks. Assuming that contribution blocks can be
equally distributed among processes, these processes stack the same amount of memory.
Therefore, the algorithm does not need to track the volume of active memory of each
process; in any subtree, the remaining memory of the processes working at that subtree
is the same. At a given node i in the tree, for any process p working at the node, the

1The metric (e.g. memory or operation count) used in the proportional mapping is chosen in advance.
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memory constraint isM0 minus the pieces of contribution blocks that have been previously
stacked; these contribution blocks belong to nodes that are in the stacked set of i (S(i),
cf. Definition 7.1) and that are mapped onto p. We illustrate this in an example in the
next section.

The memory-aware mapping procedure is presented in a recursive fashion in Algo-
rithm 9.1; we provide a simplified version where we only compute the number of processes
given to each node, not a true mapping (see Section 9.1.3 for more details). The main
point is to show how we propagate scheduling constraints and the memory constraint
throughout the tree.

We mentioned that the memory-aware mapping aims at ensuring a given memory
constraint. Another interesting feature is that, similar to a strict proportional mapping
or an all-to-all mapping, it allows to compute accurate memory estimates prior to the
factorization. Indeed, at a given set of siblings in the tree, the set of processes is either
perfectly split (when a step of proportional mapping is accepted) or the traversal of the
set of siblings is completely constrained (when a step of proportional mapping is rejected).
Therefore, as in the proportional mapping and in the all-to-all mapping, it is possible to
compute memory estimates simply by simulating a (partial) postorder traversal of the tree
for each process.

9.1.2 Example

We illustrate a few steps of memory-aware mapping in Figure 9.1; this is almost the
same example as the one we used in the previous chapter (the only difference is that
this time nodes s1 and s3 have large contribution blocks, thus the sequential peak of
active memory is changed). The tree is to be mapped onto 64 processes and the memory
constraint is M0 = Sseq

64 = 111 MB. Firstly, the 64 processes are assigned to the root
node r; then the three children s1, s2 and s3 of r are mapped. The first step consists of
computing a proportional mapping of the three children nodes. s1 is given 26 processes,
s2 is given 6 processes and s3 is given 32 processes. Then, the memory constraint is
checked for the three subtrees. At node s1, the sequential peak of active memory is 4 GB;
thus 4 GB

26 = 158 MB is greater than M0. Therefore, the subtree rooted at s1 cannot
be processed using 26 processes without violating the memory constraint. Thus the step
of proportional mapping is rejected; the three children subtrees are mapped onto the 64
processes and are serialized (T (s1) will be processed first, then T (s2), then T (s3)). Then
the three subtrees are mapped using the same procedure.

Now consider the mapping of the subtree rooted at s3. Since we serialized the three
children subtrees of r, we have to take into account that, when processing T (s3), the
contribution blocks of s1 and s2 are stacked in memory and are equally distributed among
the processes. Assume that the contribution block of s1 weights 1600 MB and that the
contribution block of s2 weights 500 MB. For a given process, the available memory is
no longer M0 but M0 − 1600 MB

64 − 500 MB
64 = 78 MB. A proportional mapping of the

two children of s3 attributes 43 processes to s31 and 21 processes to s32. This step
of proportional mapping is accepted since the memory constraint is ensured for both
subtrees (Ss31

43 = 48 MB < M0 and same for s32). Then, when mapping the children of
s31, a proportional mapping cannot be used. Indeed, a proportional mapping attributes
22 processes to s311 and 21 processes to s312; doing so, the memory constraint cannot be
ensured at these nodes since Ss311

22 = 93 MB > M0 (remember that in this part of the tree,
the memory constraint is no longer 111 MB but 78 MB since we know that T (s1) and
T (s2) have to be completely processed before any node in T (s3) can start). Therefore,
these two subtrees are mapped onto the same 43 processes as s31 and are serialized. In
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Algorithm 9.1 Basic memory-aware algorithm.
Main procedure (memory-aware mapping)
/* Input: T the tree (root node r) */
/* p, number of processes */
/* M0, memory constraint */
/* Output: NUM , number of processes of each node (size: number of nodes in the tree) */
/* PREV , array representing serialization constraints (predecessor of each node) */

1: PREV (r) = 0 /* No specific constraint for the root node, 0 by convention */
2: Call MA(T, p,M0,NUM ,PREV )

3: Procedure MA(T, p,M0,NUM ,PREV )
/* Input: T a tree (root node r); p, number of processes; M0, memory Constant */
/* Input-output: NUM , number of processes; PREV , scheduling constraints */

/* Step 1: Simulate a proportional mapping */
4: Every sibling Ni receives a number of processes pi 6 p (proportional mapping)

/* Step 2: Check memory constraints */
5: reject_prop← false
6: for all siblings Ni do
7: if Si

pi
> M0 then

8: reject_prop← true
9: Break

10: end if
11: end for

/* Step 3: Set the number of processes and the constraints */
12: if reject_prop then /* Reset to an all-to-all mapping */
13: for all siblings Nj do
14: NUM (Ni) = p
15: PREV (Ni) = Ni−1 (for i = 1: PREV (N1) = PREV (r))
16: end for
17: else /* The step of proportional mapping is accepted */
18: for all siblings Ni do
19: NUM (Ni) = pi
20: PREV (Ni) = PREV (r)
21: end for
22: end if

/* Step 4: Recursively call the memory-aware mapping on all the children subtrees */
23: for all siblings Ni do
24: if prop_reject then
25: stack ←

∑i−1
j=1 scbi

26: else
27: stack ← 0 /* Nothing is stacked; M0 will not be decreased */
28: end if
29: Call MA(T (Ni), pj ,M0 − stack

p ,NUM ,PREV )
30: end for

the other parts of the tree, the steps of proportional mapping are accepted; this yields the
mapping shown in Figure 9.1(b).
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We illustrate how the memory constraint is propagated using the notion of stacked set.
Consider a process p assigned to s22. The stacked set of node s22 is {s1, s21}; however, s21
is not mapped onto p since a step of proportional mapping was used at node s2. Thus, at
s22, what is stacked in the memory of p is a piece of contribution of s1 only. Therefore, if
we were to map a subtree rooted at s22, the memory constraint would be M0 −

scbs1
64 .

In this simple example, since the algorithm manages to map the tree usingM0 = Sseq
64 , a

perfect or near perfect memory scalability can be expected. Furthermore, in this example,
our mapping is far from being an all-to-all mapping, thus a much better performance can
be expected.
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(b) Memory-aware mapping

Figure 9.1: Simple example of memory-aware mapping. In (a), we indicate the sequential
peak of active memory at each node. In (b), the tree is mapped using the memory-aware
mapping with M0 = 5 GB

64 . At the root node r, a proportional mapping of its children
s1, s2, s3 cannot be applied without violating the memory constraint; therefore an all-to-
all mapping of this set of children is applied. We show the scheduling constraints with
arrows; the subtree rooted at s1 is processed before the subtree rooted at s2, and the
subtree rooted at s3 is processed last. Similarly, the subtrees rooted at s311 and s312 are
mapped using a local all-to-all mapping.

9.1.3 Difficulties

We have not mentioned the difficulties of our mapping technique. Firstly, a step of propor-
tional mapping usually attributes non-integer number of processes to each subtree. One
could choose to round these numbers and arrange them so that they add up to the number
of processes given to the parent node, yielding a perfect partitioning of the set of processes
on the children subtrees. However, this is potentially not very robust with respect to mem-
ory since the memory constraint can no longer be guaranteed on the subtrees for which
the number of processes has been rounded down. Applying a relaxation parameter when
checking the constraint at each step of the mapping might not be sufficient since rounding
effects might accumulate when going down in the tree. We have chosen to use a more
sophisticated scheme where we allow a process to work part time on two parallel subtrees;
this allows to have decimal number of processes at each subtree. This scheme is inspired
by a strategy proposed by Beaumont and Guermouche, where they refer to processes that
work part time as extra processes [17]. We describe this strategy in Section 9.3.

We have also assumed that the contribution block of each node could be equally
distributed among the processes that work on that node in order to update the memory
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constraint M0. However, this is not always feasible; for instance this is cannot be done
using MUMPS, and we highlight this difficulty in Section 9.3.3.

9.2 Detecting groups of siblings
The main idea of the memory-aware mapping is to detect memory-demanding parts of
the tree. When a problematic subtree is detected among a set of siblings, the whole set of
siblings it belongs to is mapped using a local all-to-all mapping; all the siblings inherit the
mapping of their parent, and all the subtrees are serialized i.e. processed one after another.
Although this works well in enforcing the memory constraint, this is quite constraining as
it potentially maps small subtrees on many processes and sets many serializations even
in less memory-demanding parts of the tree. Indeed, for a given set of siblings in the
tree, some of subtrees rooted at these siblings might have a high sequential peak of active
memory while some others might have a small peak and do not require to be mapped
onto many processes. This might not happen much in regular problems (e.g. PDEs with
finite elements discretizations) where the trees are quite often fairly balanced, but it could
happen in more irregular problems. In this situation, we would like to relax the baseline
strategy and avoid to serialize the whole siblings. In this section, we refine the main
idea of the memory-aware mapping and propose a strategy where, when working on a set
of siblings, we try to detect groups of subtrees within which a proportional mapping is
applied and that are serialized such that the memory constraint is ensured. Similar to the
baseline strategy, the memory constraint M0 is ensured. The interest is that this variant
decreases the number of serializations and to decrease the number of process in easier
parts of the tree.

9.2.1 A motivating example

We use once again the example that we showed in the previous chapters. Figure 9.2(a)
shows the elimination tree and the sequential peak of active memory of each node. The
tree is to be mapped onto 64 processes and this time we choose to slightly relax the
memory constraint M0 = 1.1 · Sseq64 = 122 MB (i.e., we target a memory efficiency of
1

1.1 = 0.91). Using this memory constraint, one can easily show that the memory-aware
mapping behaves exactly as in the previous example. In particular, the children of the root
node r cannot be mapped using a proportional mapping. The memory-aware mapping
therefore applies a local all-to-all mapping; the three subtrees are serialized and mapped
onto the 64 processes. We can however go one step forward. Since the subtree rooted at
s3 is the most constraining subtree, using all the processes at this subtree is a reasonable
strategy. However, we can map s1 and s2 using a proportional mapping of these two
nodes, then process them in parallel and constrain the scheduling so that the subtree
rooted at s3 starts after both the subtrees rooted at s1 and s2 are finished. Indeed, a
proportional mapping of s1 and s2 (without s3) attributes 4

4+1 · 64 = 51 processes to s1
and 13 processes to s2. This is acceptable with respect to the memory constraints since
4 GB

51 = 78 MB < M0 and 1 GB
13 = 78 MB < M0.

This time, we also have to check that, taking into account what is stacked at s1
and s2, the subtree rooted at s3 can be processed using 64 processes. Indeed, this is a
major difference compared to the baseline algorithm; in the basic memory-aware mapping,
whenever an all-to-all mapping is locally used, all the processes stack the same thing. This
is different in the variant with groups. In our example, the 51 processes working on the
subtree rooted at s1 stack equal parts of the contribution block of s1; similarly, the 13
processes working on the subtree rooted at s2 stack equal shares of the contribution block
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(b) Memory-aware mapping with groups.

Figure 9.2: Memory-aware mapping with groups: the two subtrees rooted at s2 and s3
can be put in a group within which a proportional mapping is applied. The scheduling is
constrained so that the subtree rooted at s3 can start only after the group is finished i.e.
when the subtree rooted at s2 and the subtree rooted at s3, that are processed in parallel,
are finished.

of node s2. These two contribution blocks are different and the ratio of their sizes is not
the same as the ratio of the sequential peaks of the two subtrees; therefore the processes
stack different amounts of memory. This implies that the algorithm has to control the
active memory of each process, while it was possible to use a global stack in the basic
algorithm. The algorithm is still able to ensure the memory constraint on every process,
but it might yield more imbalance in memory because of the distribution of contribution
blocks. This imbalance could prevent processing a subtree even using all the processes
used at its parent node. In this example, things work well; for the 51 processes working
on the subtree rooted at s1, the memory constraint (remaining memory) when mapping
s3 is M0 − 1600 MB

51 = 94 MB. For the 13 processes working on the subtree rooted at s2,
the memory constraint at s3 is M0− 500 MB

13 = 87 MB. On every process, enough memory
is available for processing the subtree rooted at s3 if the 64 processes are used on this
subtree; indeed Ss3

64 = 80 MB which is smaller than the remaining memory on any process
(whether it works on the subtree rooted at s1 or the subtree rooted at s2).

Note that in this example, one can show that putting s1 and s2 together and s3 alone
is the only valid partitioning with respect to the memory constraint (the constraint is not
ensured using the two other possibilities).

9.2.2 Algorithm

We now show formally how our variant of the memory-aware mapping is built. As the
basic memory-aware mapping, it consists of a top-down traversal of the tree; the only
difference is the way a set of siblings is processed. In the basic memory-aware mapping,
the whole set is mapped using a proportional mapping; then the memory constraint is
checked for every subtree, and if the constraint cannot be ensured on at least one subtree,
the whole set of siblings is reset to an all-to-all mapping. Our algorithm tries to detect
groups of siblings within which a proportional mapping can be applied without violating
the memory constraint, and taking into account the fact that groups are serialized (as
mentioned above, this requires to track the active memory of every process). We assume
the following scheme:
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• We are given an order for traversing the list of siblings.

• Following this order, we form groups of nodes as large as possible.

By forming groups as large as possible, our aim is to decrease the number of serializations,
and to obtain a mapping that is as close as possible to a proportional mapping while
ensuring the memory constraint. We have chosen to form groups following a fixed order
for simplicity. One could formalize our problem in terms of partitioning (how to partition
the set of siblings so that there is a minimum number of parts and the memory constraint
is ensured in each part?). This seems to be a very difficult partitioning problem (as the
constraint to be checked on a part depends on the other parts) that looks somewhat like
a knapsack problem, but we have not tackled it. We believe that following a fixed order
such as the one provided by the sequential traversal is reasonable.

Following this strategy, we form a group using the following procedure. Denote i the
current position in the list of siblings and Ni the associated node, and assume that the
previous nodes have been processed i.e. have been given a number of processes. Firstly,
we need to check that Ni can at least be a singleton i.e. can be alone in a group. Indeed, it
could happen that, because unbalanced shares of the contribution blocks of the previous
siblings have been stacked, the memory constraint cannot be ensured on at least one
process, even if Ni forms a group by itself. In that case, we reset all the previous siblings
to an all-to-all mapping; this will reset the balance among the processes. Then, starting
from i, we add nodes to the group until the memory constraint can no longer be satisfied.
We repeat this process until the whole set of siblings has been partitioned. Finally, the
mapping is computed (a proportional mapping is applied within each group) and the
scheduling constraints are set (each group has to wait for the previous one to finish before
it starts). We show how such scheduling constraints can be implemented in the next
chapter.

Finally, we emphasize the constraints to be ensured within each group. We set some
notation. We denote Nf the parent node of the set of siblings we consider. We denote pf
the number of processes Nf is mapped to. Assume that we are building the g-th group,
denoted Vg, and that g − 1 groups V1, . . . ,Vg−1 have been built already. We denote Nj
a node of the g − 1 first groups and Ni a node of the group being built. For a given
node Ni (or Nj), pi is the number of processes Ni is mapped onto, sfronti is the size
(surface) of the frontal matrix associated with Ni, and scbi is the size (surface) of the
contribution block of Ni. Finally, we keep track of the active memory of every process in
an array PSTACK . PSTACK (Ni, p) is the size of the contribution blocks that are stacked
on process p before the factorization enters in the subtree rooted at Ni, i.e., the nodes in
the stacked set of Ni that are mapped onto p. The constraints we ensure when forming
groups are the following:

• The nodes within a group can be mapped using a proportional mapping without
violating the memory constraint:

(Cstk): ∀Ni ∈ Vg,∀p working on Ni,

Si
pi
< M0 − PSTACK (Nf , p)−

g−1∑
k=1

∑
Nj∈Vk

scbj
pj

• The assembly of the parent node can be done without violating the memory con-
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straint2:

(Casm): ∀Ni ∈ Vg, ∀p mapped onto Ni,

scbi
pi

+
sfrontf
pf

< M0 − PSTACK (Nf , p)−
g−1∑
k=1

∑
Nj∈Vk

scbj
pj

We summarize our algorithm in Algorithm 9.2. We do not emphasize the way the
scheduling constraints are set; this is described in Section 10.1.

Algorithm 9.2 Computation of groups of siblings.
/* Input: a set of siblings N1, . . . ,Ns */
/* a given order used to traverse the list of nodes (order) */

1: while not all the children have been collected (following order) do
2: i= current node
3: if i cannot be alone without violating (Cstk) or (Casm) then
4: Reset previous siblings to an all-to-all mapping
5: end if
6: Starting from i: collect as many nodes as possible as long as (Cstk) and (Casm)

can be ensured
7: Use a proportional mapping on the group, serialize with the previous ones
8: end while

9.3 Decimal mapping, granularities and relaxations
In this section, we describe some practical aspects of the memory-aware mapping. We
show how we handle a mapping with decimal number of processes, we describe how we
enforce some granularities at every subtree, and we show that we need to introduce some
relaxations parameters in the mapping.

9.3.1 Handling decimal number of processes

As we mentioned in Section 9.1, we have chosen not to round the numbers of processes
computed at each step of the mapping process to integer values, as this is potentially
dangerous with respect to memory constraints. Beaumont and Guermouche use a scheme
where they round the number of processes but allow a process to work on two parallel
branches at the same time [17]. We refined this idea by allowing a process to work part
time on two parallel subtrees; this allows to have decimal number of processes at each
subtree. Firstly, we illustrate our scheme using the example in Figure 9.3. The subtree
rooted at node r is mapped onto 8 processes. We assume that a step of proportional
mapping is accepted and yields the following distribution: the subtree rooted at s1 is
given 1.5 processes, the subtree rooted at s2 is given 4.2 processes and s3 is given 2.3
processes. We enforce the following mapping:

• P0 works full time on the subtree rooted at s1.

• P1 works 50% (in terms of memory) on the subtree rooted at s1 and 50% on the
subtree rooted at s2.

2This condition is not new and can be integrated in the basic memory-aware mapping, but we had not
mentioned it before for simplicity.

135



9. A class of memory-aware algorithms

• P2, P3 and P4 work full time on the subtree rooted at s2.

• P5 works 70% on the subtree rooted at s1 and 30% on the subtree rooted at s2.

• P6 and P7 work full time on the subtree rooted at s3.

We recall that since a step of proportional mapping was accepted, the three subtrees are
processed in parallel. By saying that a process works part time on two subtrees, we mean
that it is allowed to work on any node of these subtrees at any time. In order to respect
the memory constraint, we have to modify the way parallel nodes are distributed. For
example, consider node s3. 2.3 processes work on that node; P6 and P7 work full time while
P5 works part time. When s3 is processed, it is not split in three equal shares; P5 is given
only 0.3

2.3 = 13% of the memory of s3. Following this scheme at any step in the mapping
process, no more than 0.3

2.3Ss3 is used on P5, at any node in the subtree rooted at s3. Note
that there is no assumption on the scheduling of P5 in the two subtrees rooted at s2 and
s3; P5 can interleave tasks of these two subtrees in any order. Similarly, no more than
0.7
4.2Ss2 is used on P5 at any time in the traversal of the subtree rooted at s2. In the end,
no matter how the independent traversals of these two subtrees take place, no more than
0.7
4.2Ss2 + 0.3

2.3Ss3 6 0.7M0 + 0.3M0 (the step of proportional mapping is accepted) 6M0 is
used on P5.

In the end, any node in the tree is given a set of processes where at most two processes
work part time. We refer to these processes as supplementary processes; they work part
time on two sibling subtrees that are processed in parallel. This scheme allows us to use
the decimal number of processes provided by each accepted step of proportional mapping
and to enforce memory constraints. We can also adapt the computation of memory esti-
mates so that they take this modified distribution of parallel nodes into account. Since
a supplementary process can work on two independent subtrees (i.e., that are processed
in parallel), it is harder to get an accurate estimate since we cannot predict the order in
which the tasks assigned to this process will be performed. We use the upper bound given
by the sum of the peaks of these subtrees divided by their respective numbers of processes
times the share of the process we consider (e.g. for P5, 0.7

4.2Ss2 + 0.3
2.3Ss3). This might result

in slightly pessimistic estimates.

P0 P1 P2 P3 P4 P5 P6 P7

r

s1 s2 s3
0.7 0.30.5 0.5

Figure 9.3: Mapping with decimal numbers of processes. P1 works part time on the subtree
rooted at s1 and the subtree rooted at s2; P5 works part time on the subtree rooted at s2
and the subtree rooted at s3. Therefore, node s2 has two supplementary processes, namely
P1 and P5.

One can notice in the figure that processes are seen as consecutive intervals; every node
is assigned to an interval of processes, i.e., the mapping gives to every node two bounds.
If the difference between these two bounds is larger than two, then the two processes
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corresponding to the bounds will be extra processes, while the processes “in the middle”
work full-time on the node. For example, in the figure, P2, P3 and P4 work full-time on
s2.

9.3.2 Granularities

We showed that we allow processes to work partly on a given subtree. However, we want
to avoid extreme cases where, for example, 2.0001 processes are assigned to a subtree,
or where a very small subtree is assigned to two processes that work part time on it.
We enforce some minimum granularities, in order to avoid these extreme cases that can
unnecessarily increase the amount of communication or lead to a loss in performance. We
have the following two rules:

• If the number of processes given to a subtree is smaller than a threshold tolsingle < 1
and the mapping is such that two processes work on this subtree, the subtree is
preempted on the process that has the largest share. This is illustrated in Figure 9.4.

• For a given subtree, if the share of work given to a supplementary process working
on that subtree is smaller than a threshold tolwork, this process is removed from the
list of processes working on that subtree. This is illustrated in Figure 9.5.

P0 P1

s

< tol single

P0 P1

s→

Figure 9.4: If the number of processes given to a subtree is smaller than tolsingle, this
subtree is not allowed to be processed on two processes. It is preempted on the process
that holds the major part.

s

< tol work

s→

P0 P1 P2 P3 P0 P1 P2 P3

Figure 9.5: A process is not allowed to dedicate less than tolwork of its workload to a
subtree.

Note that when one of these rules applies, the memory usage of the concerned processes
is modified, and the memory constraint can be (hopefully marginally) violated. When
the first rule applies, the memory usage of the only impacted process is multiplied by
1 + tolsingle at worst. Similarly, when the second rule applies to a subtree, the memory
usage of the processes working on that subtree is multiplied by 1 + tolwork at worst. We
choose to introduce a relaxation parameter relaxG (“G” for “granularities”) that we use
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when checking the memory constraint at each step of the mapping; at a given node Ni
mapped onto pi processes, instead of checking Si

pi
≤M0, we check

Si
pi
≤ M0
relaxG

Using relaxG > 1 + tolsingle > 1 + tolwork should be enough. In practice, tolsingle and
tolwork are small (e.g. 0.10) thus their in impact on the memory usage is expected to be
limited.

9.3.3 Other relaxations

In our description of the memory-aware mapping and its variant, we assumed that it was
possible to perfectly distribute the memory associated with a node to a set of processes.
Unfortunately, depending on the implementation choices of each solver, this might not
always be possible. For example, we recall that in MUMPS, parallel nodes (Type 2 nodes)
are distributed following a row-wise one-dimensional partitioning. In the unsymmetric
case, the so-called master process is in charge of the fully-summed block and the U12
block, while the so-called slave processes are in charge of the L21 block and the contribution
block. It is possible to perfectly (or almost perfectly) distribute the L21 block and the
contribution block to the slaves, but the share of the node given to the master process
might be completely different. The same problem arises in the symmetric case. In case the
share of the master process is larger than the share of the slave processes, the node can be
transformed into a chain of nodes that yields a more balanced partition. We refer this to as
“splitting” the node; this is presented in detail in the next chapter. In the case where the
share given to the master process is smaller than the share of the slave processes, not much
can be done (in particular, in MUMPS, the master process of a node is not allowed to be a
slave process of the same node). In any case, even if another distribution is used (e.g. a 2D
block cyclic partitioning) it is almost always impossible to guarantee a perfectly balanced
distribution. This imbalance might prevent the memory-aware mapping from respecting
the memory constraint. We choose to introduce a relaxation parameter relaxU > 1 (“U”
for “unbalanced”) that we use when checking the memory constraint at each step of the
mapping; at a given node Ni mapped onto pi processes, instead of checking Si

pi
≤M0, we

check
Si
pi
≤ M0
relaxU

We note that the most extreme case is a node with a very small number of fully-
summed variables and a very large contribution block; if such a node is mapped onto two
processes, then the memory load for the slave process can be arbitrarily larger than for
the master process. Therefore, there is potentially a factor of two between the maximum
memory load and the average memory load at this node. This means that we should set
relaxU > 2 in order to ensure that the memory constraint can be met. This might be
very restrictive since it could force the mapping to be very close to an all-to-all mapping.
However, in practice, such nodes are not met very often, in particular at the top of the
tree. We observed that a relaxation parameter between 1 and 2 is enough in many cases.

Some other sources of imbalance motivate the need for relaxation parameters. For
example, delayed pivoting can dynamically modify the structure of the tree during the
factorization and therefore change the memory usage of each process. This can introduce
some imbalance that we need to anticipate when mapping the tree; we can introduce
another relaxation parameter relaxP (for “pivoting”). Similarly, if we choose to relax
our scheduling strategy (e.g. in order to compensate for the natural load imbalance that
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can arise during a parallel execution), it has to be anticipated in the mapping process;
we can introduce a relaxation parameter relaxA (“asynchronous”). In the end, we have
a relaxation parameter that is the product of the different parameters we mentioned
(relax = relaxG · relaxU · relaxP · relaxA) and the constraint to be checked at each step
of the mapping is

Si
pi
≤ M0
relax
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Chapter 10

Performance aspects

In this chapter we describe some implementation aspects and performance issues. In
Section 10.1, we describe our implementation of the scheduling constraints used in the
memory-aware mapping and the variant with groups. In Section 10.2, we highlight some
performance issues that we met in parallel nodes. We mentioned that the memory-aware
mapping tends to assign more processes than the proportional mapping to the nodes,
especially at the top of the tree. This revealed a weakness in one of the communication
patterns used in MUMPS. We have improved this pattern, and this enhanced the perfor-
mance of the solver (not only in the context of the memory-aware mapping). This work is
described in Section 10.2. We also mentioned in the previous chapter that it is important
to be able to split nodes in equal shares in order to guarantee the memory constraint when
the memory-aware mapping is used. In MUMPS, whenever a parallel node is processed,
there is a difference between the master process and the slave processes; if the share of
the master process is too large, the node can be transformed (split) into a chain of nodes.
In Section 10.3, we describe several splitting strategies that enable to leverage the per-
formance of the solver. Once again, the ideas we present are interesting not only in the
context of the memory-aware mapping.

10.1 Enforcing serializations

As described in the previous chapter, the memory-aware mapping strategy we suggest
requires to enforce some precedence constraints during the factorization. In the basic
algorithm, we need to set constraints that prevent a given subtree T (i) from starting
before another subtree T (j) (rooted at one of its siblings j) is completely processed. This
means that the leaves of T (i) cannot start before node j is processed. In the variant
introduced in Section 9.2, a given subtree may have to wait for a group of subtrees.

10.1.1 Simple case

Here we describe how we enforce serializations in the basic algorithm. In Algorithm 9.1, we
set precedence constraints using an array PREV ; PREV (i) = j means that node i cannot
start before node j is completely processed. Therefore, we use a global state information
mechanism such that, every time a node is completed, the master process of that node
informs all the other processes that the node has been processed. All the processes hold
an array DONE (of size the number of nodes in the tree) such that DONE(i) is true if
node i is known to be finished. When a process receives the information that a node i
is finished, it sets DONE(i). Note that, for Type 2 nodes, the master process needs to
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know that all its slave processes have finished their task before it can inform the other
processes; therefore, slave processes send a message to the master process when they have
processed their share of the node.

For a given process, the selection of the next task to be processed is modified; instead
of selecting the task at the top of the pool, a process selects the first task (node) i such
that:

PREV (i) = 0 (i is not constrained to wait for another node)
or
PREV (i) 6= 0 and DONE(PREV (i)) (the predecessor of i is processed already)

10.1.2 Group dependencies

In the variant of the memory-aware mapping that relies on groups (we recall that the idea
is to partition a set of siblings into groups; each group is processed using a proportional
mapping, and groups are serialized), a given node has to wait for several nodes (a group) to
be processed before it can start. We slightly change the meaning of PREV and introduce
two arrays, SIZE and GRP, that provide the structure of the groups:

• PREV (i) = −g means that i is constrained to wait for all the nodes in group g to
be processed before it can start.

• GRP(i) = g means that node i belongs to group g.

• SIZE(g) is the size of group g. SIZE is initialized before the beginning of the
factorization and duplicated on every process. Then, every time a process receives
the information that a node i is completed, SIZE(GRP(i)) is decreased (if i belongs
to a group, i.e., if GRP 6= 0 by convention).

We illustrate this in Figure 10.2, where a set of four siblings is partitioned into three
groups: {1}, {2, 3} and {4}.

1 2 3 4

5

1 2 3
(a) A tree with groups.

PREV =
[
0 −1 −1 −2 0

]
GRP =

[
1 2 2 3 0

]
SIZE =

[
1 2 1

]
(b) Dependencies structures.

Figure 10.2: An example of tree with groups (a) and the associated structures for the
scheduling (b).

Using these structures, the mechanism for the selection of tasks is the following: every
time a process activates a new task, it chooses the first task i from the pool such that:

PREV (i) = 0 (i is not constrained)
or
PREV (i) < 0 and SIZE(GRP(PREV (i))) = 0 (the group i depends on is completed)

142



10.2. Communication patterns in parallel nodes

10.2 Communication patterns in parallel nodes

As described in the previous chapter, the memory-aware mapping tends to increase the
number of processes associated with each node, at least at the top of the tree (we assess this
behaviour with practical experiments in the next chapter). This raised several performance
issues when we carried out experiments within MUMPS. In particular, we found that, in
the unsymmetric case, the communication pattern used to send the rows held by the
master process to the slave processes in Type 2 nodes was a bottleneck. We describe
this pattern in Figure 10.3(a); the master process performs a pipelined factorization and
sends pieces of factors (diagonal blocks of L and rows of U) to all its slaves. In the
symmetric case, the pattern is different as there are communications between slaves; each
slave receives some data from all the previous slaves and sends some data to the next slaves
(cf. Figure 10.3(b)). The master-to-slaves communication pattern is the same as in the
unsymmetric case, but it does not represent a bottleneck in practice since the volume to be
sent from the master process to its slaves is significantly lower than in the unsymmetric
case. We observed that slave-to-slave communications perform rather well in practice;
therefore, we focus on the unsymmetric case and the master-to-slaves communication
pattern. In this section, we describe how the master-to-slaves communication pattern
is implemented within MUMPS, and we suggest another strategy. We emphasize some
implementation issues and provide some experimental results.

P0

P1

P2

P3

(a) Unsymmetric case.

P0

P1

P2

P3

(b) Symmetric case.

Figure 10.3: Communication pattern used within Type 2 nodes.

10.2.1 Baseline scheme

As described above, the master-to-slaves communication pattern is a one-to-many opera-
tion where the master process sends the same piece of data to all the slave processes. As
we consider as asynchronous design (cf. Chapter 7), we wish this communication to be
non-blocking, so that the master process can compute a block of factors while the pre-
vious block is sent; therefore, we wish to have an asynchronous broadcast. Non-blocking
collective operations are not part of the MPI standard (MPI-2) at the time of writing;
some libraries, such as LibNBC [53] provide a prototypical implementation of non-blocking
collective operations. However, the semantic of these operations requires that all the pro-
cesses involved in the collective operation call the same function; for example, if one
wants to perform an asynchronous broadcast (ibcast), then all the processes have to call
ibcast. This is quite constraining for our asynchronous approach which is written so that
any process can, at any time, receive and treat any kind of message and task. Remember
that, as illustrated in Algorithm 7.1, any time a process is idle, it checks if it can receive
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a message (that may provide some work to be done) by calling iprobe to check whether
a message is available (note that an irecv has been posted before in general); we want
to keep this generic approach. Therefore, a handmade non-blocking collective operation
where all the processes use the regular isend and irecv operations was designed in the
very first releases of MUMPS.

The implementation of the master-to-slaves communication pattern within MUMPS
is the following:

• The master process copies the data to be sent in a buffer.

• The master process performs a loop of calls to isend to send the data to every slave.

• At some point, every slave process will receive the message (irecv) and process the
data.

Note that the same buffer is used for all the calls to isend, meaning that, in order to free
memory in the buffer, the completion of all the isends must be checked. Also, contrary
to some other communication patterns in MUMPS (e.g. for contribution blocks), stripes
of factors are sent in a single message.

We found that this implementation was a bottleneck for Type 2 nodes, especially on
large number of processes. In order to assess this out of the context of MUMPS, we wrote
a benchmark code that mimics the communications occurring in an unsymmetric Type 2
node:

• The master sends a block of data to all the slaves, then an other block, and so on
until all blocks are sent; then it waits till the end. Sends are non-blocking.

• Slaves receive each block. Receives are non-blocking in MUMPS but blocking in
the benchmark; this does not change the result since no computation is done in the
benchmark.

Speed is computed as the total volume of communications divided by the wall time. We
provide some results in Table 10.1, where we simulate the communications occurring in a
node of size 64000 with 1000 fully-summed variables; the master process sends 30 messages
of size about 160 MB to every process. We provide results on two systems with different
architectures from our experimental set, namely Hyperion and Hopper.

Processes Volume Time Speed
(total/per node) (GB) (s) (GB/s)

2/1 0.49 0.28 1.76
4/1 1.48 0.94 1.57
8/1 3.44 2.15 1.60

16/1 7.38 4.80 1.54
32/2 15.24 9.50 1.60
64/4 30.98 19.50 1.59

(a) Hyperion system, 16 nodes.

Processes Volume Time Speed
(total/per node) (GB) (s) (GB/s)

2/1 0.49 0.12 4.08
4/1 1.48 0.32 4.63
8/1 3.44 0.73 4.71

16/1 7.38 1.50 4.92
32/2 15.24 3.22 4.73
64/4 30.98 6.58 4.71
(b) Hopper system, 16 nodes.

Table 10.1: Benchmark of the baseline communication pattern in the unsymmetric case,
for a node with nfront = 64000 and npiv = 1000.

144



10.2. Communication patterns in parallel nodes

One can easily notice that the aggregated speed is almost constant, regardless of the
number of processes and the architecture1. Using only one or several MPI processes on
a given node does not seem to have much influence either. This behavior is of course
disappointing, as we would like to see the aggregated speed increase with the number of
processes.

Using a very simple performance model, we demonstrate that this behaviour is a
severe limitation to the performance. We focus on the unsymmetric case and compute
the maximum number of processes that can be used to overlap communications with
computations, i.e., for a number of processes greater than this maximum number, the
total time will be dominated by the time for communications. We consider a node of
size nfront with npiv fully-summed variables and ncb variables in the contribution block,
processed on p processes (i.e., there are p− 1 slave processes). The master process sends
stripes of factors of height b (b is the block size for the blocked factorization) and width
nfront−(j+1)·b (with j the step in the blocked factorization process). Thus, at each step,
the communication time for sending a piece of factors to any slave is, ignoring latency:

tc = (nfront − (j − 1) · b) · b
vc

with vc the communication speed. Once the message is received by a slave process, the
slave updates its part of the L factors and the contribution block; this consists of a
triangular solution on a matrix of size b × b with ncb

p−1 right-hand sides and an update
of a ncb

p−1 × (nfront − (j − 1) · b) matrix (note that this corresponds to the block on the
right of the columns that have been computed with the triangular solution: this include
pieces of factors, not only the contribution block). Therefore, the computation cost is
b2·ncb+2b·ncb·(nfront−(j−1)·b)

p−1 , thus the computation time is

tf = b2 · ncb + 2b · ncb · (nfront − (j − 1) · b)
vf · (p− 1)

with vf the computational speed (flops rate). In order to get overlapping between com-
munications and computations, we need tc 6 tf :

tc 6 tf ⇐⇒
(ncb − (j − 1) · b) · b

vc
6
b2 · ncb + 2b · ncb · (nfront − (j − 1) · b)

vf · (p− 1)

⇐⇒ (nfront − (j − 1) · b) · b
vc

6
2b · ncb(nfront − (j − 1) · b)

vf (p− 1)
(b� 2(nfront − (j − 1) · b))

⇐⇒ p 6 1 + 2 vc
vf
· ncb

As expected, the maximum number of processes depends on the communication speed;
the higher the communication speed, the higher the maximum number of processes.

Now we use our experimental model for the communication speed of the “loop of
isend” pattern. We denote vtotc the aggregated speed; here vtotc is a constant, that we
denote βc. We have βc ' 1.6 GB/s on Hyperion and βc ' 4.7 GB/s on Hopper. Assuming
the aggregated speed is equally distributed among the processes (in other words, assuming

1The Hyperion system has a hypercube topology and relies on the Infiniband connection technology,
while the Hopper system has a 3D-torus topology and uses the Cray Gemini network.
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that they receive the stripes of factors at the same time), the communication speed for
one master-to-slave communication is vc = β

p−1 . Therefore, the above equation becomes:

tc 6 tf ⇐⇒ (p− 1)2 < αncb (with α = 2βc
vf

)

⇐⇒ p 6 1 +
√
αncb

This upper bound is quite low in practice; consider for example the Hyperion system.
Using a single-threaded BLAS, one can assume vf = 8 GFlops/s (in double precision
arithmetic). This yields α = 0.05. With ncb = 16000, it yields p 6 29. This is very low;
consider for example a 3D regular grid of size 1283; the first separator (the root node) is
of size 1282 = 16384 which means that the children of the root node have a contribution
block of size ncb = 16384. Given the size of the problem, it is not unreasonable to use 64
processes or more. If a memory-aware mapping is used and serializes the subtrees rooted
at the children of the root node, at least 64 processes are assigned to work on the children
of the root node. This is much larger than the upper bound, which means that at these
nodes, the computation time will be dominated by the time for communications, which is
not desirable. This demonstrates that a one-to-many pattern based on a loop of isend is
a serious bottleneck.

10.2.2 A tree-based asynchronous broadcast

We suggest to replace the above-mentioned pattern with a tree-based scheme: communi-
cations follow a tree of width w, where the master process sends its data to w processes
(instead of sending data to all the slaves), which in turn send theses pieces to w processes,
and so on. At each level, a process sends data to w processes using the baseline algorithm,
that is, a loop of isend. The idea is that once the first level (children of the root node) is
reached, truly parallel communications take place. This is illustrated in Figure 10.4. In
the following, we call terminal processes and relay processes the processes that correspond
to leaf nodes and internal nodes in the broadcast tree respectively. Relay processes have
to relay to their children the blocks of factors they receive from their parent, while leaf
processes simply receive blocks. Note that this scheme is one of the options proposed in
the ibcast routine implemented in LibNBC.

We provide an upper bound on the speed yielded by this pattern; the time for traversing
the tree is the time for going from one level to another (a “hop”) times the number of
levels. The number of levels (i.e., the depth of the tree) is approximately blogw pc; the time
for a hop is the time for a 1-to-w regular transfer, i.e. Volume 1-to-w

βc/w
= 2Total volume/(p−1)

βc/w
;

therefore, the total speed vtotc should be

vtotc = βc
p− 1
blogw pc

Thus, the aggregated speed becomes proportional to the number of processes; it is p−1
logw p

times larger than the speed of the baseline algorithm.
We assessed the binary case (w = 2) using a benchmark that works along the lines of

Algorithm 10.1. Experiments have been carried out on 32 nodes of Hyperion and 32 nodes
of Hopper. On Hopper, each node has 24 cores, and experiments have been performed up
to 32× 24 = 768 cores; for Hyperion, the prediction uses βc = 1.8GB/s, and for Hopper,
βc = 4.7GB/s.
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(a) Baseline algorithm.
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(b) Tree-based algorithm.

Figure 10.4: One-to-many communication pattern used for sending blocks of factors from
the master process to the slave processes. In the baseline algorithm, the master sends data
to every process (with a loop of isend) (a). We suggest a tree-based pattern, where every
process corresponding to an internal node of the tree sends data to w other processes (b).
Note that w = p− 1 is equivalent to the baseline algorithm.

Processes Volume Time Speed Predicted
(tot/node) (GB) (s) (GB/s) (GB/s)

4/1 1.48 0.57 2.60 2.70
8/1 3.44 0.65 5.29 4.20
16/1 7.38 0.75 9.84 6.75
32/1 15.24 0.90 16.93 11.16
64/2 30.98 1.50 20.65 18.90

128/4 62.45 2.20 28.39 32.66

(a) Hyperion system, 32 nodes.

Processes Volume Time Speed Predicted
(tot/node) (GB) (s) (GB/s) (GB/s)

32/1 15.24 0.48 31.75 29.14
64/2 30.98 0.95 32.61 49.35
128/4 62.45 1.65 37.85 85.27
256/8 125.39 2.10 59.71 149.81

512/16 251.28 3.07 81.85 266.86
768/24 377.16 3.10 121.67 400.54

(b) Hopper system, 32 nodes.

Table 10.2: Experiments with a binary tree-based communication pattern.

The differences between the model and the actual speed probably come from the fact
that during a 1-to-2 transfer, speed is not equally distributed among the two receivers (in
other words, messages do not arrive at the same time); therefore the longest path in the tree
is not necessarily the theoretical critical path, and it is hard to predict what can happen.
Furthermore, it may happen that a node has only one child (this is the case in these
experiments: since p is a power of 2, there is only one node at depth blog2 pc); therefore
some 1-to-1 transfers take place instead of 1-to-2 transfers. The large differences on Hopper
for large number of processes might come from shared-memory effects: indeed, with 24
processes on a single node, βc drops from 4.7 GB/s to 1.5 GB/s; with βc = 1.5 GB/s and
p = 768, the model predicts 127 GB/s, which is very close from the 121.67 GB/s observed
in practice. These results show that the tree-based pattern can deliver very large speeds,
especially for large number of processes, and it constitutes a significant improvement over
the baseline pattern.

Now we assess how this new communication pattern influences the performance of
Type 2 nodes. As in the previous section, we compute the maximum number of pro-
cesses for which computations overlap communications. Remember that regardless of the
communication pattern, this maximum number is

p < 1 + 2 vc
vf
· ncb
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Algorithm 10.1 Tree-based unsymmetric communication pattern benchmark for the
binary case w = 2 (local view of a given process).

Input: a set of pieces of data to be sent from process 0 to p− 1 processes.
Work array: desc, the set of descendants of each process in the tree.

1: /* Phase 1: each process is given the set of its descendants in the tree */
2: /* 1.1: each process receives its set */
3: if my rank = 0 then
4: My set of descendants = {1,. . . ,p}
5: else
6: Blocking receive of my set of descendants (desc[1..nb])
7: end if
8: /* 1.2: each process defines its set of children */
9: Non-blocking send of desc[2..nb/2] to my first son (desc[1]) (if any)

10: Non-blocking send of desc[nb/2+2..nb] to my second son (desc[nb/2+1]) (if any)

11: /* Phase 2: communications take place */
12: for each piece of data do
13: if my rank != 0 then
14: Blocking receive of a piece of data
15: end if
16: Non-blocking send of the data to my first child (if any)
17: Non-blocking send of the data to my second child (if any)
18: end for

We now have vc = vtotc
p−1 = βc

blogw pc
(instead of vc = βc

p−1). Thus, the equation becomes

(p− 1)blogw pc < αncb

This equation is not solvable explicitly, but we can solve the close-by equation p logw p <
αncb by means of the Lambert function W (reciprocal of x 7→ xex):

p logw p < αncb ⇐⇒ p < eW (αc loge w)

Any W (x) with x > 1
e is computable numerically as limn→∞wn with wn+1 = wn −

wnewn−x
(1+wn)ewn and w0 = 1. On the same example as above, we obtain p = 118 instead
of p = 29. This shows that this communication pattern can significantly leverage the
performance of Type 2 nodes compared to the baseline strategy.

We implemented this tree-based communication pattern within MUMPS. We describe
some implementation issues in the next section; here we provide some experimental results.
We measure the time for factorizing a node with npiv = 32000 and ncb = 32000 on 64
processes (we use 32 nodes of the Hyperion system). The node is split into a chain of
30 nodes (cf. the next section). We compare tree-based communication patterns with
different widths: w = p − 1 (i.e., the baseline algorithm), w = 2 and w = 8. We also
compare the performance using a single-threaded BLAS and a 4-way multithreaded BLAS;
this enables to assess the weight of the computations over the total time. The results are
reported in Table 10.3; we notice that the tree-based scheme with w = 2 and w = 8
significantly increase the performance, especially when a multithreaded BLAS is used,
which shows that the influence of the communications is reduced.

148



10.2. Communication patterns in parallel nodes

Tree Time (s)
width 1-way threaded BLAS 4-way threaded BLAS

p− 1 596 468
2 403 167
8 401 167

Table 10.3: Experiments with the tree-based communication pattern within MUMPS.

10.2.3 Implementation issues

Implementing the tree-based asynchronous broadcast we suggest in a dynamic asyn-
chronous code is far from being straightforward. We highlight three difficulties: firstly, we
show that messages can overtake, then we show two potential sources of deadlocks. We
describe how we solve these problems.

The first problem we emphasize is a situation where messages can overtake. Firstly we
need to describe a central idea of our asynchronous approach. Anytime a process is unable
to send a message because its send buffer is full (typically because a receiver is busy and
does not consume messages), it tries to receive a new message and to treat the associated
task (calling a routine that we call Try_recv_and_treat), hoping that this will unlock
the situation. This exhibits a recursive behavior, since a new task may in turn require to
send a message; if this fails once again, the process tries to receive and treat a new task
(calling again Try_recv_and_treat), and so on, until the situation is unlocked. In the
end, once the situation is unlocked (i.e., the send buffer of the process is no longer full and
messages can be processed), the recursive calls to Try_recv_and_treat are unstacked
and the tasks that were on hold are completed following the reverse order of their arrival.
We illustrate this in Algorithm 10.2, where we show how Try_recv_and_treat, the
routine that receives and handle messages, interacts with Process_factors_block, the
routine that handles the messages corresponding to a block of factors.

Algorithm 10.2 Management of messages corresponding to block of factors.
1: Try_recv_and_treat( . . . )
2: Wait for availability of a message (blocking or non-blocking, probe,iprobe)
3: Check the tag of the message: if it is a block of factors, call Process_factors_block
4: . . .

5: Process_factors_block( . . . )
6: Extract the list of descendants in the broadcast tree, i.e., the processes the block must

be relayed to.
7: try_again← true
8: while try_again do
9: Try to send the block to all the descendants using isend
10: if a problem is detected then /* The send buffer is full */
11: Call Try_recv_and_treat( . . . )
12: else
13: try_again← false
14: end if
15: end while
16: Process the block (triangular solution and matrix-matrix product)
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Now we demonstrate that in the context of the tree-based communication pattern,
this mechanism can lead to messages overtaking one another. Consider the example in
Figure 10.5; the node is mapped onto three processes (the master process is P0 and the
slaves are P1 and P2). We assume a tree-based broadcast of width w = 1, i.e., a chain
P0 → P1 → P2. P0 sends blocks of factors to P1 which in turn sends them to P2; if for
some reason P2 does not consume the messages from P1 (typically, P2 is busy working
at another part of the tree), the send buffers of P1 may be become full; we denote b1 a
block that cannot be sent. The asynchronous approach dictates that P1 tries to receive
and process a new task that might unlock the situation. Assume that this new task is
another block of factors from P0 that we denote b2; once P1 receives this block, it must
process it (in our approach, we do not allow not to process a task, as this would require
to store the data that are not processed in a temporary area). Therefore, P1 tries to send
this new block to P2; assume that this time P2 consumes the message. The block b2 is
received by P2, and then (unstacking the recursive calls to Try_recv_and_treat and
Process_factors_block), the block b1 is finally received by P2.

P0

P1

P2

P0
P1
P2

irecvnew

tta tb tc

Figure 10.5: A simple example where messages can overtake one another; if P1 cannot
send a message to P2 (time ta), it calls irecv and receives another message from P0 (time
tb) and sends it to P2; in the end (time tc), the messages arrive on P2 in the wrong order.

The problem at this point is that blocks of factors must be received in the right order;
indeed, in the pipelined factorization process, the updates associated with a block must
be computed before the next block can be processed. Furthermore, as we mentioned
above, we cannot afford to store all the blocks in a temporary area before performing the
updates; blocks must be received in the right order and consumed on the fly. In order
to prevent this situation, we propose to forbid a process that enters in recursive calls to
Try_recv_and_treat to receive and process new blocks of factors. More precisely, we
forbid this process to receive and process blocks that have to be relayed to other processes;
however, it can receive and process terminal blocks. This is useful if the process we consider
works on several nodes and is a terminal process for one of the nodes. Therefore, we need to
use two tags (message identifiers) in order to distinguish between blocks to be relayed and
terminal blocks. We adapt Try_recv_and_treat and Process_factors_block as
shown in Algorithm 10.3. The variable allow_relay is used to know whether the process is
allowed to receive and treat blocks to be relayed. Note that the variable allow_relay_set
is used to guarantee that the process does not reset allow_relay before the end of the
recursion (i.e., before all recursive calls to Try_recv_and_treat are unstacked).

We now show that there are two potential sources of deadlocks. We illustrate them in
Figure 10.6 and Figure 10.7; in both cases, we assume that the communication pattern is
a tree-based broadcast with w = 1, i.e., a chain. In Figure 10.6, the deadlock comes from
the ordering of the slaves; P1 is the parent of P2 in the broadcast tree associated with
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Algorithm 10.3 New management of messages corresponding to block of factors.
1: Try_recv_and_treat(allow_relay)
2: if allow_relay then
3: Receive any message (iprobe)
4: else
5: Receive any message except a block of factors to be relayed (iprobe)
6: end if
7: Check the tag: if it is a block of factors, call Process_factors_block(allow_relay)
8: . . .

9: Process_factors_block(allow_relay)
10: Extract the list of descendants in the broadcast tree, i.e., the processes the block must

be relayed to.
11: allow_relay_set← false
12: try_again← true
13: while try_again do
14: Try to send the block to all the descendants using isend
15: if a problem is detected then /* The send buffer is full */
16: if allow_relay then
17: allow_relay ← false /* Non-terminal blocks of factors are no longer allowed */
18: allow_relay_set← true
19: end if
20: Call Try_recv_and_treat(allow_relay)
21: else
22: try_again← false
23: end if
24: end while
25: if allow_relay_set then
26: allow_relay ← true /* Non-terminal blocks are now allowed */
27: end if
28: Process the block (triangular solution and matrix-matrix product)

node 1, while it is the child of P2 in the broadcast tree associated with node 2 (see the
caption). This implies that the relay processes on a path of the broadcast tree of a given
node should follow a global order. In particular, one can show that the deadlock cannot
happen if there is only one level of relay processes, that is, if there are only three levels in
the tree: the root node, its children, that are relay processes, and its grandchildren, that
are terminal processes i.e. leaf nodes. Indeed, in the example, the deadlock comes from
the fact that, at some point, P1 and P2 no longer accept blocks of factors to be relayed;
however, if we remove P3 and P5 from the example, P1 and P2 become terminal processes.
When P1 can no longer sends messages from P2, it starts refusing blocks to be relayed;
however, at node 2, it receives blocks that do not need to be relayed (while this is not the
case in the initial example), and this unlocks the situation.

In practice, we can easily force the broadcast tree to have only one level of relay
processes by setting w = √p. We have assessed in the previous section that this setting
can provide good performance; in Table 10.3, p = 64 and setting w =

√
64 = 8 provides

similar performance as w = 2.
In Figure 10.7, the deadlock is due to the fact that process P6 is the master of a node

(node 2) and has to relay blocks of factors at another node (node 1). We can forbid
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P0

P1

P2

P3

P4

P2

P1

P5

1 2

Figure 10.6: A simple example of deadlock: P2 is busy receiving the messages from P4
(node 2), thus the send buffer of P1 becomes full (node 1). P1 no longer accepts blocks of
factors to be relayed, thus the send buffer of P2 becomes full (node 2). Therefore P2 no
longer accepts blocks of factors to be relayed and no longer consume the messages from
P1 (node 1). This yields a deadlock (between P1 and P2).

such situations by constraining the selection of the slave processes of Type 2 nodes; only
processes that are guaranteed not to become the master of a Type 2 node before the end
of the current node can be selected as relay processes (this information can be initialized
during the static mapping and updated on the fly during the factorization). In the case
where this is too constraining (i.e., too many processes are banned from the list of potential
relay processes), we can set w = p− 1 to revert to the baseline strategy.

P0

P1

P2

P3

P6

P7

P6

P1

P3

P4

P5

P8

1 2

Figure 10.7: A second example of deadlock: P6 is busy sending messages to P1 (node 2),
thus it does not consume the messages from P3 and the send buffer of P3 becomes full
(node 1). Therefore P3 no longer accepts blocks of factors to be relayed at both nodes;
this blocks P1 (node 2) and blocks P6 in the end. Even if P6 can still receive blocks from
P3, it cannot relay these blocks to P7 since its send buffer is full. This yields a deadlock
(between P1 and P6).

10.3 Splitting nodes

10.3.1 Idea and strategies

As mentioned in the previous chapter, it is important to be able to equally distribute a
node on a set of processes; this is crucial in the context of the memory-aware mapping
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and often desirable in general. In MUMPS, only one process (the master process) holds
the fully-summed block and the rows of U (in the unsymmetric case) of a given node; the
slave processes share the rows corresponding to the contribution block. This might result
in severe imbalances depending on the number of fully-summed variables, the size of the
contribution block, and the number of processes to be used. Consider the unsymmetric
case: every slave process holds a stripe of height about ncb

p−1 (there are p − 1 slave pro-
cesses; for the sake of simplicity, we ignore the fact that some slave processes could be
supplementary processes as described in the previous chapter). If npiv � ncb

p−1 , the master
process has a much larger workload than the slave processes, which might be a bottleneck
in terms of performance. This might also result in severe imbalances in memory usage
that might prevent respecting the memory constraint in the context of the memory-aware
mapping.

The idea used in MUMPS is to transform a Type 2 node into an equivalent chain.
Given a number of parts k (that can be chosen according to different criteria), the node
is transformed into a chain of k nodes with about npiv

k fully-summed variables. The first
node (the lowermost node) in the chain has the same size as the initial node; the last node
is of size ncb + npiv

k . Note that here and in the following, the notation npiv and ncb always
refer to properties of the initial (non-split) node.

The baseline strategy (used in MUMPS) consists of mapping all the nodes of the
chain on the same p processes. This is illustrated in Figure 10.8: the initial node (a) is
transformed into a chain of k nodes (b); every node is mapped onto the p processes. The
drawback is that, compared to the initial node, the volume of communication significantly
increases since pieces of contribution blocks have to be communicated from one node
of the chain to its parent node, because processes do not keep the same row indices
when traversing the chain. Another strategy (that we refer to as the new strategy in
the following) consists of enforcing a constrained mapping where processes hold the same
rows indices all along the chain, such that there is no communication between nodes of
the chain. This implies that some processes stop working at some point in the chain. This
is illustrated in Figure 10.8(c). In this example, k = 4 (the node is split into four nodes)
and p = 7 (i.e., there are six slave processes). The seven processes work on the first node
of the chain, but only four of them work on the last node. Note that the lowermost slaves
work during the whole traversal of the chain (we call them the “never master” slaves in
the figure) while the others work as slaves at the bottom of the chain, then they become
the master of a node, and they finally stop working (we call them the “once master”
slaves in the figure). This scheme corresponds to a pipelined factorization of the node;
this is (almost) equivalent to a scheme where several processes are allowed to be master
processes and share the fully-summed part of the initial node. The drawback is that this
scheme requires k < p which might be too constraining; furthermore, if k is close to p, the
number of processes working at the top of the chain might become very small and might
yield a bottleneck; in this case, one can use a hybrid scheme where the chain is processed
following the new strategy but is “restarted” from times to times, i.e., some nodes are
redistributed on all the processes in order to reset to balance.

We report on some experiments in Table 10.4. One can notice that the volume of com-
munication is significantly decreased. However, the communications that we suppressed
are all-to-all communications (slave processes exchanging pieces of contribution block) are
fast in practice and do not constitute a strong bottleneck, which is why the gains with
this new splitting strategy are interesting but less spectacular than what is achieved with
the asynchronous broadcast presented in the previous section, that addresses the problem
of the master-to-slaves communications.
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Figure 10.8: Splitting of a Type 2 node. Dashes show how the contribution block of a
node is distributed.

Strategy Volume of com- Time (s)
-munications (GB) 1-way threaded BLAS 4-way threaded BLAS

Baseline 1134 591 468
New 625 484 367

Table 10.4: Experiments using 64 processes (32 nodes of the Hyperion system). The
chain corresponds to a node with 32000 fully-summed variables and a contribution block
of size 32000, which is split into 30 nodes. We compare the baseline strategy with the new
splitting approach.
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10.3.2 Performance models

We have not mentioned how the number of parts k is determined. In the context of the
memory-aware mapping, the most cautious strategy consists of computing k such that
all the processes have the same memory usage along the chain; consider for the baseline
splitting strategy for the sake of simplicity. The peak of active memory of every process
takes place at the first node of the chain; for the master of the first node, it is npiv

k ·nfront
and for the slave processes of the first node, it is ncb+(k−1)npiv/k

p−1 · nfront; these two
quantities2 are the same if and only if:

k = npiv
nfront · p

In a relaxed strategy where one wants to maximize the performance, k should balance
the workload of the different processes. Here we briefly describe some performance models
that provide, for a given node:

• The maximum number of processes that can be used to overlap communications
with computations (this is a simple extension of the model described in the previous
section).

• The number of parts that balances the workloads.

Firstly, we compute the computational cost of each kind of task:

Total cost: the total operation count is 2
3(npiv + ncb)3 − 2

3ncb3 as the factorization of
the whole front minus the cost for the factorization of the contribution block.

Computational cost of master tasks:

Non-split node: 2
3npiv3 + npiv2 · ncb (factorization of the fully-summed part and

update of the U rows).
Split in k parts (note that this does not depend on the splitting scheme, i.e., the

baseline strategy or the new one): each node of the chain has npiv
k fully-summed

variables and ncb+(k−i)npiv
k columns in the contribution block, with i ∈ 1 . . . k

the number of the node in the chain (1 = the first/lowest, k = the last/highest).
The total cost of master tasks is

k∑
i=1

[
2
3

(npiv
k

)3
+
(npiv

k

)2 (
ncb + (k − i)npiv

k

)]

=(npiv + 6ncb · k + 3npiv · k) npiv2

6k2

Computational cost of slave tasks:

No splitting: npiv2·ncb+2npiv·ncb2

p−1 (one triangular solution with a matrix of size npiv
with ncb

p−1 right-hand sides and one product of a ncb
p−1×npiv matrix by a npiv×ncb

matrix).
2Note that we used simplified expressions: we assumed that every process could work in-place from

one node to another; this actually not feasible with the baseline splitting strategy.
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Baseline splitting: there are p − 1 slaves at each node and they have the same
load (assuming a regular partitioning). The total computational cost of any
slave process is

k∑
i=1

[(npiv
k

)2 ncb + (k − i) npiv
k

p− 1 + 2npiv
k

(
ncb + (k − i) npiv

k

)2

p− 1

]

=
npiv

(
12ncb2 · k2 + 12ncb · npiv · k2 − 6ncb · npiv · k + 4npiv2 · k2 − 3npiv2 · k − npiv2)

6k2(p− 1)

New splitting: each slave j works on nodes 1 . . .min(j, k); there are two kinds of
slaves:
“Once master” slaves (slaves 1 . . . k − 1): they hold a stripe of height npiv

k ,
are active i times (i: number of the slave) as a slave, once as master and
then are no longer active. They have different loads: slave 1 is the least
loaded (it processes one slave task then stops working), while slave k − 1
is the most loaded. The total computational cost for any “once master”
slave is

j∑
i=1

[(npiv
k

)2 npiv
k

+ 2npiv
k

npiv
k

(
ncb + (k − i)npiv

k

)]

=jnpiv2(2ncb · k + 2npiv · k − npiv · j)
k3

Thus, the minimum is npiv2(2ncb·k+2npiv·k−npiv)
k3 (for j = 1), the maximum

is (k − 1)npiv2(2ncb·k+npiv·k+npiv)
k3 (for j = k) and the average over the k − 1

“once master” slaves is npiv2(npiv+6ncb·k+4npiv·k)
6k2 .

“Never master” slaves (slaves k . . . p− 1): they hold a stripe of height ncb
p−k

and are active on the whole chain. They all have the same load; the total
computational cost for any “never master” slave is

k∑
i=1

[(npiv
k

)2 ncb
p− k

+ 2npiv
k

ncb
p− k

(
ncb + (k − i)npiv

k

)]

=ncb · npiv · 2ncb + npiv
p− k

Now that we have expressions for the computational cost, we can compute the number
of parts that balances the computational costs (depending on the type of splitting to be
used). We do not provide all the details. If one wants to balance the computational
cost of master tasks and the computational cost of slave tasks using the baseline splitting
strategy, then one can show that the optimal number of parts is

k∗1 = 3npiv · (2ncb + npiv)
4(3ncb2 + 3ncb · npiv + npiv2)

· (p− 1)

If one wants to balance the cost of “never master” slave tasks and “once master” slave
tasks using the new splitting strategy, one can show that the optimal number of parts is

k∗2 = npiv2 · (3ncb + 2npiv)
2(npiv + ncb)3 − 2ncb3 · p

We illustrate the computational costs of the different kinds of tasks for a node with
npiv = 16000, ncb = 16000 and p = 128 in Figure 10.9. We observe that k1∗ and
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10.3. Splitting nodes

k∗2 are quite close, which means that, if the new splitting is used, one can choose k
in between these two values to obtain a good balance of all the tasks. However, the
figure also highlights the large difference between the least loaded process and the most
loaded process when the new splitting is used (even in this example where the number of
processes is much larger than the numbers of parts we consider); this shows that it might
be necessary to use the above-mentioned strategy where at some point in the chain, a
node is redistributed on all the processes (the chain is “restarted”).
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Figure 10.9: Computational cost of the different types of tasks as a function of the number
of nodes in the split chain. The node has 16000 fully-summed variables and 16000 variables
in the contribution blocks; the chain is processed on 128 processes.

Finally we can, as in the previous section, determine the maximum number of processes
that allows to overlap communications with computations. We recall that this number of
processes is

p∗ = 1 + 2 vc
vf
· ncb

We can put all these equalities together in order to determine, for a given node, the optimal
number of parts k∗ the node should be split into and the optimal number of processes p∗
to be used. For example, if the baseline splitting and the baseline communication pattern
are used: p

∗ = 1 +
√
α · ncb

k∗ = 3npiv·(2ncb+npiv)
4(3ncb2+3ncb·npiv+npiv2) · (p− 1)

For example, for a node with npiv = ncb = 16000, vf = 8 GF/s and βc = 1.6 GB/s =
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200 MReals/s (this corresponds to the Hyperion system),{
p∗ = 29
k∗ = 10

In Figure 10.10, we report on experimental results corresponding to the above situation,
using the Hyperion system; we observe that for a number of parts or a number of processes
different than that predicted by our performance model, the run time increases, which
shows that our model is relevant.
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Figure 10.10: Performance of the traversal of a split chain corresponding to a node with
npiv = ncb = 16000 on the Hyperion system, around the predicted optimal configuration
(p = 29, k = 10).

These models can be used to estimate the performance at a given node, or can be
embedded in the mapping algorithm in order to choose how to process Type 2 nodes.
We believe that the following process could be used: starting with a given memory-aware
mapping, one could compare, for every node i in the tree, the number of processes assigned
by the mapping (denoted pi) with the optimal number of processes provided by our model
(denote p∗i ). If pi > p∗i , one can try to set pi to p∗i ; if this can be done without violating
the memory constraint, this will lead to a better performance at node i. The remaining
pi − p∗i processes can then be redistributed to other nodes (typically siblings of i) j such
that pj < p∗j . Ultimately, this could even allow to move or even remove some precedence
constraints. We believe this could be a serious direction for future work.
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Chapter 11

Experiments on large problems

11.1 Experimental settings

We use an experimental version of MUMPS where the memory-aware mapping and its
variant with groups, as well as the associated scheduling mechanisms described in the
previous chapters, have been implemented. We use two matrices from Table 1.1, namely
pancake2_3 and meca_raff6, and a matrix produced with the Geoazur generator corre-
sponding to a grid of size 192× 192× 192; the three matrices are ordered using MeTiS.
The sequential peaks of active memory for these three matrices are 11.2 GB, 8.8 GB and
42.6 GB respectively. We carried out experiments on the Hyperion system described
in Section 1.3.4 and used 64 MPI processes (on 32 nodes of Hyperion) for matrices
pancake2_3 and meca_raff6 and 256 MPI processes (on 64 nodes of Hyperion) for the
Geoazur matrix. We used a single-threaded BLAS (MKL 12.0), the Intel compilers (12.0)
and Intel MPI (4.0).

We assess the following strategies:

• The default mapping and scheduling strategies in MUMPS 4.10.0, described in Sec-
tion 7.1.3, constitute our reference.

• A strict proportional mapping.

• A memory-aware mapping, with different memory constraints M0.

• An all-to-all mapping. We recall that it consists of assigning all the processes to work
at all the nodes, following the same traversal as in the sequential case; this should
deliver a perfect memory scalability but prohibitive amounts of communication and
low performance.

Different metrics can be used for the proportional mapping and the memory-aware map-
ping; we have experimented a workload-based strategy and a memory-based strategy, as
described in Chapter 7. For the variant of the memory-aware mapping where groups of
siblings are formed (see Chapter 9.2), we only experimented a memory-based strategy
(but the workload-based version is feasible too).

The global relaxation parameter (as described in Section 9.3) is relax = 1.7 for pan-
cake2_3 and the Geoazur matrix, and relax = 1.9 for meca_raff6. The latter matrix
is symmetric; in MUMPS, the default strategy for partitioning Type 2 nodes is to as-
sign equal workloads to slave processes (assuming their workloads are similar when the
node starts, otherwise a partitioning that balances the workloads is used). Since a one-
dimensional row-wise partitioning is used, slave processes are given bands of the matrix
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with a “trapezoidal” shape (as shown in Figure 10.3(b)). Bands that yield equal work-
loads have different surfaces thus different memory costs, which is a problem since, in the
memory-aware mapping, we rely on the assumption that Type 2 nodes are equally dis-
tributed. This problem does not arise in the unsymmetric case since slave processes hold
rectangular bands with the same surface and that yield the same workload and memory
requirements.

As described in the previous chapter, splitting nodes with a large number of fully-
summed variables is crucial in order to be able to equally divide these nodes on the
processes they are mapped onto. We use a strategy where nodes with a master part larger
than a prescribed threshold (a maximum surface) are split so that this criterion is met.
For matrices pancake2_3 and meca_raff6, this maximum surface is 8 MB, and for the
Geoazur matrix, it is 24 MB.

11.2 Assessing the different strategies

In this section, we analyze the differences between the above-mentioned strategies. We ex-
perimented all the above-mentioned strategies with matrices pancake2_3 and meca_raff6
on 64 processes. Table 11.1 and Table 11.2 describe the results for matrix pancake2_3
and meca_raff6 respectively. We recall that the sequential peak of active memory for
these two matrices are 11.2 GB and 8.8 GB respectively. Since we work with 64 processes,
a perfect memory scalability (emax = eavg = 1) is reached if and only if Smax = Savg =
11.2 GB

64 = 175 MB for the pancake2_3 matrix and Smax = Savg = 8.8 GB
64 = 138 MB for

the meca_raff6 matrix, where Smax and Savg are the maximum and the average peak of
active memory over the 64 processes respectively. The Geoazur matrix corresponds to a
larger problem (the number of operations is two orders of magnitude larger than that of
the two other matrices) and we experimented only a few of the above-mentioned strate-
gies. In particular, we tuned the amalgamation of the tree so that the root node has three
children nodes, which enables to assess the effect of the strategy with groups at the top
of the tree (we discuss this later in this section). The results are reported in Table 11.3.

Firstly, we discuss the all-to-all mapping strategy. As expected, this strategy delivers
a near-perfect memory scalability1. However, the run time is 2 to 3 times higher than that
with the MUMPS default mapping strategy. This might not seem to be so bad at first
sight; however, we experimented an all-to-all mapping for the pancake2_3 matrix with
128 processes instead of 64 and found that the run time increases to 1769 s, which means
that there is a large speed-down. This is due to the prohibitive amounts of communication
generated by the all-to-all mapping. For the pancake2_3 matrix and 64 processes, the vol-
ume of communication with the all-to-all mapping is roughly twice the volume generated
by the default mapping in MUMPS, and the number of messages is 30 times larger than
the number of messages with the default mapping. When going from 64 to 128 processes,
the number of messages for the all-to-all mapping is multiplied by 2, which worsens the
situation. These amounts of communications show that the all-to-all mapping is in general
infeasible, especially for large number of processes.

The proportional mapping generates large memory footprints with a large difference
between the maximum peak and the average peak, which means that there is a large
imbalance between the different processes. For instance, we have emax = 0.07 for the
pancake2_3 matrix, emax = 0.04 for the meca_raff6 matrix and emax = 0.08 for the

1With the meca_raff6 matrix, the scalability is not so good and one can notice that memory usages
are imbalanced since the maximum peak and the average peak are significantly different. We believe this
comes from the above-mentioned problem with the partitioning of Type 2 nodes in the symmetric case.
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Settings Results
Mapping M0 Metric Smax (MB) Savg (MB) Time (s)

MUMPS - - 900.3 539.4 418

Proportional - workload 2426.9 865.9 622
memory 1286.3 749.9 468

Memory-aware
400 MB

workload 356.2 234.2 591
memory 322.7 225.0 598
groups 290.6 228.1 584

200 MB workload 181.5 180.0 684
memory 181.5 179.6 668

All-to-all - - 181.5 179.2 1062

Table 11.1: Experiments with the pancake2_3 matrix described in Table 1.1 on 64 pro-
cesses, using 32 nodes of the Hyperion system described in Section 1.3.4 with a single
threaded BLAS. We compare the default mapping and strategies in MUMPS with a pure
proportional mapping, a memory-aware mapping with different memory constraints M0
with optionally the use of groups, and an all-to-all mapping. For the proportional mapping
and the memory-aware mapping, a workload-based and a memory-based strategy are com-
pared (third column). For the memory-aware mapping, we compare with M0 = 400 MB
and M0 = 200 MB (second column), that correspond to emax = 0.44 and emax = 0.88
respectively since the sequential peak of active memory for this matrix is 11.2 GB.

Setting Results
Mapping M0 Metric Smax (MB) Savg (MB) Time (s)

MUMPS - - 1078.80 796.51 324

Proportional - workload 3303.53 1745.61 501
memory 2687.84 1735.69 497

Memory-aware
320 MB

workload 364.69 214.39 360
memory 375.37 193.02 374
groups 329.59 209.05 367

160 MB workload 183.87 119.02 374
memory 176.24 110.63 378

All-to-all - - 171.66 103.76 968

Table 11.2: Experiments with the meca_raff6 matrix described in Table 1.1 on 64 pro-
cesses, using 32 nodes of the Hyperion system described in Section 1.3.4 with a single
threaded BLAS. We compare the default mapping and strategies in MUMPS with a pure
proportional mapping, a memory-aware mapping with different memory constraints M0
with optionally the use of groups, and an all-to-all mapping. For the proportional mapping
and the memory-aware mapping, a workload-based and a memory-based strategy are com-
pared (third column). For the memory-aware mapping, we compare with M0 = 320 MB
and M0 = 160 MB (second column), that correspond to emax = 0.44 and emax = 0.88
respectively since the sequential peak of active memory for this matrix is 8.8 GB.

Geoazur matrix; this behavior corresponds to what we predicted and experimented in
Chapter 8 and is of course unacceptable. The performance is good (with respect to the
performance delivered by MUMPS) with the pancake2_3 matrix and the Geoazur matrix
but the results are less clear with the last matrix (meca_raff6). Surprisingly, the run
time can sometimes be better with a memory-based strategy than with a workload-based
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Settings Results
Mapping M0 Metric Smax (MB) Savg (MB) Time (s)

MUMPS - - 1610.1 610.0 1331

Proportional - workload 1932.6 625.5 1323
memory 1810.1 623.2 1483

Memory-aware

380 MB memory 329.6 177.0 2079
groups 381.4 228.1 1779

225 MB memory 227.4 122.0 2690

Table 11.3: Experiments with a Geoazur matrix corresponding to a 192×192×192 on 256
processes, using 64 nodes of the Hyperion system described in Section 1.3.4 with a single
threaded BLAS. We compare the default mapping and strategies in MUMPS with a pure
proportional mapping and a memory-aware mapping with different memory constraints
M0 with optionally the use of groups. For the proportional mapping and the memory-
aware mapping, a workload-based and a memory-based strategy are compared (third
column). For the memory-aware mapping, we compare with M0 = 380 MB and M0 =
225 MB (second column), that correspond to emax = 0.44 and emax = 0.73 respectively
since the sequential peak of active memory for this matrix is 42.6 GB.

strategy, which is not intuitive. In terms of memory, the memory-based strategy performs
better than the workload-based strategy, which is natural.

For these three problems, the memory-aware mapping delivers very interesting results.
For the pancake2_3 and meca_raff6, we experimented with two values of M0 that cor-
respond to emax = 0.88 and emax = 0.44; for example, on the pancake2_3 matrix, we
experimented with 11.2 GB

0.88 = 400 MB and 11.2 GB
0.44 = 200 MB. For the Geoazur matrix,

we experimented with two values of M0 that correspond to emax = 0.73 and emax = 0.44.
For the pancake2_3 matrix and the Geoazur problem, the memory-aware mapping always
manages to respect the memory constraint. For the other matrix this is not the case; this
might be due to the management of Type 2 nodes in the symmetric case and this needs
to be investigated. In any case, the performance is interesting since the run time is com-
parable to that of MUMPS. The larger the memory constraint is, the lower the run time
is, which is what was expected. For the pancake2_3 matrix, it is interesting to see that,
with M0 = 200 MB, we reach a near-perfect memory scalability since the results in terms
of memory are the same as with an all-to-all mapping with a much better performance.

There is a slight improvement in run time on the two medium-sized problems when
the strategy with groups is used; the results are clearer with the Geoazur matrix. For
the latter, we tuned the tree on purpose in order to have a root node with 3 children
nodes. We illustrate the top of the tree in Figure 11.1. The three children subtrees cannot
be mapped onto 256 processes using a proportional mapping with M0 = 380 MB since
(41.5+23.5+22.8)·relax

256 = 583 MB ≥ M0. However, two groups can be formed: {s1} and
{s2, s3}.

We visually assess the behavior of the different strategies in Figure 11.2. In this figure,
we show how a given strategy behaves compared to a strict proportional mapping, as a
function of the depth in the tree, for the Geoazur matrix. There is a marker for every
strategy, and the ordinate of a point is the ratio between two numbers:

1. The average number of processes given to the nodes lying at the depth in the tree
that corresponds to the abscissa of the point.

2. The average number of processes given by a strict proportional mapping to the nodes
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42.6GB

41.5GB 23.5GB 22.8GB

r

s1 s2 s3

Figure 11.1: Top of the tree for the Geoazur problem. The root node has 3 children. The
sequential peaks of active memory are shown for every subtree.

lying at the depth in the tree that corresponds to the abscissa of the point.

At the bottom of the tree (here depth 10 and below), we notice that the ratios are close
to 1, which means that the different strategies behave like a proportional mapping at
the bottom of the tree. However, at the top of the tree, the ratios are greater than 1,
which means that, on average, nodes are assigned more processes than if a proportional
mapping was used. For example, for nodes at depth 2, a memory-aware mapping with
M0 = 225 MB assigns, on average, 3.8 times more processes than a proportional mapping.
We notice that when M0 increases, the memory-aware mapping tends to behave more
like a proportional mapping, while, when M0 decreases, it is closer to being an all-to-
all mapping at the top of the tree. For a given memory constraint, the variant with
groups allows the memory-aware mapping to be closer to a proportional mapping while
maintaining the same memory constraint.
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Figure 11.2: Number of processes given by the different mapping strategies with respect to
a strict memory-based proportional mapping, as a function of the depth in the tree. For a
given point, the ordinate is the ratio between (1) the average of number of processes given
by the strategy corresponding to the marker, over the nodes at the depth corresponding
to the abscissa, and (2) the average number of processes given by a proportional mapping.

Overall, the memory-aware mapping exhibits very interesting results compared to
the default strategy in MUMPS, since we are able to significantly decrease the memory
footprint without dramatically decreasing the performance. For the three problems we
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report here, we were able to decrease the average memory peak by factors between 2 and
4 and the maximum memory peak by factors between 3 and 6 while staying below 1.5
times the run time of the default mapping in MUMPS.

11.3 Towards very large problems
When experimenting with large problems, we noticed disappointing performance (in terms
of flop-rate). We investigated this and found that the performance of the parallel kernels
in MUMPS is low, especially on large number of processes. This is at least partly due to
the one-to-many communication pattern described in Section 10.2; as described in that
section, we suggested and implemented a tree-based asynchronous broadcast algorithm
that exhibits very interesting performance, and we believe that it can really improve the
performance of the factorization, especially when a memory-aware mapping is used, since
it tends to assign large numbers of processes to the nodes at the top of the tree. As
we mentioned, the implementation of this communication pattern is far from being easy
as there are many sources of problems (in particular, deadlocks); we addressed these
problems and now have a functional implementation. However we did not have enough
time to combine this asynchronous broadcast, as well as the different splitting strategies
described in Section 10.3, together with the memory-aware mapping.

We plan to perform experiments that combine the memory-aware mapping together
with the improvements suggested in the previous chapter, on larger problems with larger
numbers of processes. We also plan to experiment with problems from different origins
(in particular, non-PDE problems) since we expect that they might exhibit trees with
irregular shapes that could be interesting for the variant of the memory-aware mapping
with groups.
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Chapter 12

General conclusion

12.1 General results

In the first part of this thesis, we have addressed several problems related to the triangular
solution phase with sparse right-hand sides. We have been particularly interested in
problems where both the right-hand sides and the solution vectors are sparse, such as
the computation of inverse entries. Firstly, we showed that it is possible to exploit the
nonzero pattern of the right-hand side columns in order to compress the solution space.
We proposed a general scheme that can be used in a parallel context with any set of sparse
right-hand sides. We also designed a storage scheme of size proportional to the height of
the elimination tree, that can be used in sequential executions where the right-hand sides
and the solution vectors have only one nonzero entry; it particular, it can be used for the
computation of diagonal entries of the inverse, which is a very common setting. We also
suggested a scheme for the dense case, since the one used in MUMPS was not scalable.
Secondly, we showed that even if an efficient storage scheme is used, large sets of right-
hand sides columns must be partitioned into blocks. We showed that in an out-of-core
context, the blocking strongly influences the volume of factors to be loaded; this yields a
partitioning problem that we proved to be NP-complete. We proposed several heuristics:
a partitioning based on a postorder of the tree, a bisection approach based on a matching
algorithm and a hypergraph model that can handle the most general case. In an in-core
context, we examined two schemes: exploiting sparsity within each block and operating
on each block as a whole. In the case where sparsity is not exploited within blocks, we
showed that the partitioning of the right-hand sides influences the computational cost.
We showed that this problem is different from the out-of-core problem, and we suggested
different heuristics: once again a partitioning based on a postorder of the tree and a
hypergraph model (different from the previous one). We demonstrated how to exploit
sparsity within blocks to decrease the computational cost, and we showed that it is crucial
in a parallel context, in order to be able to exploit the nonzero pattern of the right-hand
sides and tree parallelism at the same time.

In the second part of the study, we have studied the memory scalability of the multi-
frontal factorization; we have been particularly interested in reducing the amount of active
memory in a parallel context. We demonstrated that common mapping and scheduling
strategies, such as the proportional mapping and the complex variant used in MUMPS,
do not provide a good memory efficiency, i.e., they let the memory usage dangerously
grow when the number of processes increases. This was demonstrated with a theoretical
study on regular grids ordered with nested dissection where we showed that the memory
efficiency yielded by strict proportional mapping rapidly tends to zero when the number
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of processes increases; we also reported on experiments (using the mapping strategy from
MUMPS as well as a strict proportional mapping) that confirm this result. We suggested
a mapping strategy that aims at maximizing the performance while enforcing a given
memory constraint (the maximum amount of memory to be used on every process); the
idea is to detect which parts of the tree can be mapped using a proportional mapping
without violating the memory constraint, and to enforce some serializations (scheduling
constraints) in memory-demanding parts of the tree. This study raised multiple problems
in the parallel dense kernels used in MUMPS; in particular, we suggested a tree-based
asynchronous broadcast algorithm to be used for master-to-slaves communications, and
we studied the splitting of nodes with large master tasks into a chain of nodes that yields
a better balancing in terms of computational cost or memory usage.

12.2 Software improvements

The ideas suggested in the first part of the study were implemented in two solvers, namely
PDSLin and MUMPS. In PDSLin, the triangular solution step used to update the Schur
complement was improved by appropriately partitioning the set of right-hand sides (that
corresponds to the interfaces of the domain). We observed that using one of the heuristics
we suggest can reduce the time for the sparse triangular step by about 30%. In MUMPS,
we significantly improved the solution phase by redesigning the solution space. In the dense
case, the solution space is now scalable, i.e., its size is almost independent of the numbers
of processes (while the baseline solution space was of size proportional to the number of
processes). Furthermore, the new scheme is also more efficient as it provides more data
locality. It allows to decrease the solution time by about 25% in our experiments. The
storage scheme we designed for sparse right-hand sides (and sparse solution vectors) allows
to significantly decrease the memory requirements; we observed factors of 100 on some
problems when computing inverse entries. This allows to use large blocks of right-hand
sides; this is interesting in an out-of-core context since this decreases the volume of factors
to be loaded, and this is also interesting in an in-core context since it is beneficial for BLAS
operations. Using one of the reordering techniques we suggest to partition a set of sparse
right-hand sides, one can significantly reduce the amount of factors to be loaded in an
out-of-core context; we observed reductions in run time by factors between 3 and 30 on
practical cases. The ability to exploit sparsity within blocks of sparse right-hand sides
was also implemented within MUMPS; it is interesting in a sequential context since it
reduces the number of operations (we observed reductions of about 30% in the triangular
solution time when computing inverse entries) and in a parallel context since it allows to
combine tree parallelism with the ability to exploit the sparsity of right-hand sides; when
computing inverse entries, we managed to obtain speed-ups above 20 on 32 processes
while the baseline strategy provided almost no speed-up. All these improvements are
fully implemented and will be available in the next public release of MUMPS. Since the
performance of the solution phase is often pointed as a limitation by the users, this is
quite an important achievement.

The mapping and scheduling strategies we suggest in the second part of the thesis
have been implemented within MUMPS; some work remains to be done (see the next
section), but the results are already quite interesting. The memory-aware mapping (and
the associated constrained scheduling) significantly improves the robustness of the code
since it allows to have a better control of the memory usage and much more reliable
memory estimates without decreasing the performance too much. The improvements
we suggested for the parallel dense kernels have been implemented in MUMPS. They
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are interesting not only in the context of the memory-aware mapping: the new splitting
strategy allows to reduce the amount of slave-to-slave communications in split chains, and
the tree-based broadcast for master-to-slaves communications significantly speeds up the
transfer of blocks of factors. Combined together, these improvements decrease the weight
of the communications in the performance of parallel nodes; this allows to take advantage
of faster processors or multithreaded BLAS for example. We observed during our practical
experiments that the time for processing large nodes could be reduced by factors up to
5. These improvements have been implemented and we hope to release them in a public
version of MUMPS in the future; this will be very interesting for the users as they quite
often report to experience memory problems during the factorization.

We emphasize that the ideas presented throughout this study could be applied or
adapted to any multifrontal or supernodal solver as well as many hybrid solvers (at least
the codes that rely on the Schur complement method). Some of our ideas, such as the
tree-based asynchronous broadcast, could be used in other kinds of parallel applications.

12.3 Perspectives and future work

We briefly describe some possible ideas for future work. Concerning the partitioning of
sparse-right hand sides, we showed that the hypergraph model was potentially the most
interesting technique as it is able to handle the most general case. However, the time for
partitioning this hypergraph is sometimes prohibitive. It would be interesting to explore
ways to compress or simplify our model in order to reduce the time for partitioning and
the memory requirements; note that this is what we did in the in-core case (by removing
quasi-dense rows in the model) and the results were interesting. Some work probably
remains to be done to push the performance of the solution phase further, especially in
the parallel case; even if we increased significantly flop rates and speed-ups, there is still
room for improvement. We believe that some work needs to be done to improve the
solution phase with dense right-hand sides before addressing the sparse case.

Many ideas can be explored to push our study on the memory scalability further.
We believe that it is important to combine our memory-aware mapping with an efficient
scheduling strategy in order to compensate the imbalances that can occur during the
factorization. Using the current scheduling strategy in MUMPS could be considered but
would make memory estimates difficult to compute; another idea could be to use deadlock
avoidance algorithms [80], that could manage the remaining memory of each process as
a critical resource in order to guarantee the memory constraints. We also believe that
the performance models we suggested for parallel nodes can be used to enforce some
granularities and modify some precedence constraints within the mapping; we plan to
investigate this in the near future. We would also like to assess whether it is feasible and
interesting to use our tree-based asynchronous broadcast algorithm in the symmetric case.

Finally, we highlight some recent works that could be combined with our study on the
memory scalability. Modern supercomputers commonly have a distributed-memory archi-
tecture where each compute node has several computational units (processors, cores. . . )
and a shared-memory architecture. Within each node, a combination of MPI and multi-
threading generally performs better than using one MPI process per computational unit.
The simplest strategy consists of using multithreaded BLAS routines. Some recent ex-
periments with MUMPS show that better performance can be achieved by using mul-
tithreaded programming to exploit tree parallelism, by mapping different subtrees on
different threads [5]. However, this means that the memory usage of a subtree processed
on a single MPI process is more difficult to compute, because this subtree is possibly
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processed using several threads. We need to assess the effect of these strategies on the
global memory consumption and see whether a memory-aware approach is needed at the
multithreading level too. Recent studies showed that low-rank approximations techniques
can be used to decrease the computational cost and the memory requirements of multi-
frontal factorizations with controlled numerical accuracy. Experiments carried out with
MUMPS showed that, on large regular problems (e.g., elliptic PDEs), the amount of mem-
ory needed to store the factors could be reduced by factors between 2 and 5 without a
significant loss of precision [4]. Compressing the active memory using these techniques
is currently under investigation. In this context, one cannot predict the gains in storage
before the factorization. Furthermore, the problems targeted by the low-rank techniques
are extremely large (sometimes several billions of unknowns) and will be solved on very
large numbers of cores. Therefore, the question of mapping and scheduling a low-rank
approximations-based factorization is open and needs to be addressed.
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A.1 Submitted publications

[A] I. Yamazaki, X. S. Li, F.-H. Rouet, and B. Uçar, Partitioning, ordering, and
load balancing in a parallel hybrid linear solver. Submitted to the International
Journal on High Performance Computing Applications, 2012.

[B] L. Bouchet, P. R. Amestoy, A. Buttari, F.-H. Rouet, and M. Chauvin,
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Astronomy & Astrophysics, 2012.
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