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2 CHAPTER 1. INTRODUCTION

Over the past twenty years, computer technology has facilitated the phenomenal development
of the digital medical imaging, which is now widespread for diagnosis and therapy. Different
digital imaging modalities have revolutionized health care delivery around the world: Computed
tomography (CT), Magnetic Resonance Imaging (MRI), ultrasound, Computed Radiography
(CR)/Digital Radiography (DR), fluoroscopy, Positron Emission Tomography (PET), Single
Photon Emission Computed Tomography (SPECT), etc.. The performance of a digital medical
imaging system (including acquisition system, image post-processing system and visualization
system) has obviously a strong influence on the diagnostic quality, the safety and efficacy of the
interventional therapies performed by radiologists (or physicians).

“Facing a large number of digital medical imaging systems, how to choose the right systems
to ensure the image quality and ultimately the patient care?” This is a ticklish question which any
medical institute (or radiologist) must deal with. For example, numerous medical imaging display
stations (part of imaging system) are proposed. They offer different contrast ratio, resolution
and grey-level representation (8-bit or 12-bit). One question is then important: what are the best
parameters for a certain application? Moreover, image compression is an effective means to
archive medical images. When there are several tera bytes to archive per institute per year, are
lossless compression algorithms with low compression ratio (3:1 to 4:1) sufficient compared to
lossy compression algorithms with a high compression ratio (10:1 to 100:1)?

To answer the above type of questions, there is a need for good measurements of medical
image quality and for measuring the impact of quality on diagnostic accuracy and efficacy.

Many studies have reported the use of simple numerical approach such as the Peak Signal-
to-Noise Ratio (PSNR) to evaluate the medical image quality for a new acquisition protocol,
a new image post-processing algorithm (compression, watermarking, etc.) or a new display
station. However, this type of simple numerical approaches does not take into account the
complex anatomical nature of the images and does not correlate well with perceived quality
measurement [1].

A more reasonable measurement method is the so-called task-based approach [2], where
image quality should be assessed in the context of a specific diagnostic task. The underlying
paradigm is to quantify the quality of the image by its effectiveness with respect to its intended
purpose.

In the frame of task-based approach, one or more diagnostic tasks can be performed by a
panel of human observers (radiologists). During the assessment process, radiologists are asked
to perform the same diagnostic task given different medical imaging systems, which could be
acquisition devices, image post-processing algorithms or image visualization systems. A better
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task performance means a better diagnostic accuracy. Thus the system that enables radiologists to
gain a better task performance or to spend less time for interpretation with the same diagnostic
reliability is said to be better. The radiologists are the end-users of medical images, thus the
task performance of human observers is always the ultimate test of image quality. However,
the assessment methods using human observers requires time-consuming and expensive efforts
of radiologists, often highly trained and experienced experts [3], besides which variance exists
between and within radiologists’ responses [4].

Therefore, there is a growing demand for numerical observers (mathematical models). Once
the numerical observer achieves the task performance of medical experts, it can be used to evaluate
different medical imaging systems or other digital specialities with these same requirement such as
telemedicine, by employing the same paradigm as the assessment method using human observers
(mentioned above). And it is much easier, faster and cheaper to carry out, and has no variance
within its responses. Then the number of quality evaluation tests without radiologists can be
increased. The comparison of numerous systems with different parameters then allows to define
the best imaging systems. The optimal system enables radiologists to make a reliable diagnosis
in the shortest possible time. It has been argued that numerical observers are useful for medical
image quality assessment in place of human observers [5]. Though we need to note that the task
performance of human observers is still needed for the validation of a numerical observer [6].

The objective of this thesis is indeed to propose more clinically relevant 1 numerical observers
that can approach the diagnostic task performance of radiologists for the objective quality assess-
ment of medical images. The new numerical observers will be ultimately applied to quantify the
performance of medical imaging systems.

1.1 Studied tasks, modality and pathology

1.1.1 Studied tasks

The key problem of designing a numerical observer lies in modeling the diagnostic process
of radiologists. It is useful to firstly well characterize the diagnostic process in order to model it.
Except for images obtained to rule out the presence of disease, one commonly accepted approach
that we find in the literature [7, 8, 9] is to divide the diagnostic process into three tasks: detection,
localization and characterization.

1. “More clinically relevant” here means the numerical observer can perform the diagnostic task as radiologists
do in the clinical routine. For example, it cannot only detect but it can also localize multiple signals with unknown
parameters (amplitude, orientation, size and location).
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– The detection task simply requires the observer to find potential lesions while making as
few false decisions as possible.

– The localization task consists in indicating the location of each lesion. The location is a
clinically relevant variable, especially if it guides subsequent therapeutic interventions (e.g.
biopsy or surgery).

– The characterization task is related to the analysis of the different elements of the lesions
(contour, texture, etc.) for the differential diagnosis, and normally involves a linguistic
response (such as benign vs malignant, etc.), which is the most complicated task. Part of
some characterization tasks is the estimation task [2], which means estimation of one or
a few parameters of the lesion (e.g. intensity, size and orientation) to be detected. The
estimation task is of direct relevance to the purpose for which the image was obtained. For
example, for some pathologies, a lesion may first be detected, then its size is estimated to
determine the stage of the disease. When estimation and detection tasks are combined, the
overall procedure is termed a joint estimation-detection task.

So far to our knowledge, existing numerical observers are limited in task range: most of
them are dedicated to the detection task [10, 11, 12, 13, 14], much fewer are concerned with the
localization task [15], and none with the entire characterization task.

The scope of this thesis ranges from the detection task to the localization task, and the
estimation task (only a part of the characterization task considering the complexity of this task).

1.1.2 Studied modality and pathology

In this thesis, we restricted the scope to the MRI modality and the pathology of Multiple
Sclerosis (MS) for all our studies.
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Figure 1.1: MR images of two pathologies on different sequence (figures from [16]): Figure 1.1a
High-Grade Glioma (HGG) and Figure 1.1b Multiple Sclerosis (MS).

(a)

(b)
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The choice of the studied pathology is connected with the tasks that we studied. As far as the
detection and localization tasks are concerned, the abnormalities must not be too conspicuous.
Otherwise, observers (radiologists or numerical observers) could always detect and localize the
abnormalities easily. In that way, different imaging systems can not be differentiated through
different task performances of observers. Taking Magnetic Resonance Imaging (MRI) modality
for example, Figure 1.1 shows MR images of two pathologies: High-Grade Glioma (HGG) and
Multiple Sclerosis (MS). It is not hard to see from Figure 1.1a that the HGG lesion is so obvious
on any one of the six sequences that even a person without any medical background can tell
where it is. The evidence of the HGG lesion would not change even with moderate degradation
of the imaging system for detection and localization tasks. In contrast, the MS lesions are much
more subtle and difficult to be perceived, as seen from Figure 1.1b. Furthermore, an accurate
detection and localization of MS lesions is the first and the most important step for the diagnosis
and treatment of MS patients.

Moreover, for this particular pathology, orientation, size, position and number of lesions are
all considered as diagnostic criteria [17]. MS pathology is then well adapted for our numerical
observer study (with the aim of proposing new numerical observers which cannot only detect
but also localize multiple signals with unknown amplitude, orientation, size and location). Note
that MS patients generally have multiple lesions and the number of lesions is considered as a
diagnostic criterion for MS, where the minimum number of MS lesions is considered to be 13 in
the diagnostic criteria used in clinical studies [18].

Since the criteria for MS are largely based on brain MRI scan outcomes [19], we chose MRI
as the studied modality.

1.2 Organization of this thesis

This thesis is organized as illustrated in Figure 1.2. We begin with a general introduction in
this chapter and finally summarize the thesis in Chapter 10 while discussing some directions for
future research. The major portion of the thesis consists of three parts:

– The first part (Chapters 2 to 4) deals with the task performance quantification methods and
the existing numerical observers, which lays the foundation of this thesis.

– The second part (Chapters 5 and 6) presents the experimental pre-studies for investigating
the suitability of the use of existing numerical observers in our application, which lead to
our proposition of novel numerical observers.

– The third part (Chapters 7 to 9) is dedicated to our proposed novel numerical observers,
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which try to overcome the limitations of existing numerical observers in our application.
Their validation subjective studies are also detailed in this part.

Determine the studied
diagnostic task(s):
- the detection task;
- the localization task; or/and
- the characterization task.

Select the appropriate 
modality and pathology

Define the appropriate
Figure Of Merit (FOM)

Examine the existing
numerical observers

Investigate radiologists'
expertise

Develop a numerical 
observer that can 

model the studied-task 
performing process of 

radiologists

Investigate specialities 
of the medical images 

for the studied modality

Design and conduct 
subjective experiments 
to improve/validate the 

proposed numerical 
observer by comparing 
its FOM with those of 

radiologists

Flowchart of the development 
of a numerical observer  

Chapter 1
Introduction

Part I
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ROC Analyses 
and Existing 
Numerical 
Observers

Part II
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Perceptual 
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Model 
Performance

Part III
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ROC and its variants

Chapter 3 
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CJO for detection task
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Chapter 8
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on single-slice

Chapter 9
msPCJO for 

detection-localization task 
on multi-slice

Figure 1.2: Organization of this thesis.
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Part I

Overview of ROC Analyses and Existing
Numerical Observers
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Introduction of Part I

The first part of this thesis is dedicated to the state-of-the-art of the observer performance
evaluation methods in the medical image quality assessment domain and the existing numerical
observers.

Regarding medical image quality, the best medical image is not the one that looks most
beautiful, but the one that enables observers to achieve the best average performance in a specific
diagnostic task. Thus the first and important knowledge for the medical image quality assessment
is how to quantify the task performance of observers, either human observers or numerical
observers. Given the confidence rating responses of observers for a set of test images in the
detection task, we have the classic Receiver Operating Characteristic (ROC) curve to depict
the observer’s performance. Given the confidence rating and location coordinates responses of
observers for a set of test images in the joint detection-localization task, we have the variants of
ROC curve. Since our studied tasks include both the detection task and the localization task, we
will firstly introduce these increasingly popular methods in the medical domain.

With ROC analysis and its variants, medical imaging systems can certainly be assessed by
empirical studies using human observers (as said in Chapter 1). But this was generally costly
and time-consuming. Correspondingly, numerical observers have been proposed as a surrogate
for human observers for medical image quality assessment. Numerous numerical observers have
been proposed over last decades and they can be divided into two categories: model observer
(MO) and human visual system (HVS) model.

One category of existing numerical observers - MO - considers the image quality as a statistical
concept and uses statistical decision theory to mathematically characterize the image quality. The
other category of existing numerical observers - HVS models - evaluates the image quality based
on the characteristics of the HVS, considering that human observers are the ultimate receivers of
the visual information contained in an image. Both of the categories have their advantages and
limitations. Our proposed numerical observers are inspired from both of the families, and are
designed to overcome some of their limitations. Thus the first part of this thesis presents a variety

11
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of numerical observers of the two categories.
This part comprises three chapters.
In Chapter 2, we review the commonly used analysis method to summarize and quantify

observer’s different diagnostic task performance: the ROC analysis, the Localization ROC
(LROC), the Free-response ROC (FROC) and the Alternative Free-response ROC (AFROC).
We also describe some ways to establish the gold standard, which is indispensable for the ROC
analyses.

In Chapter 3, we discuss a number of MOs in the order of their evolution, from SKE to SKS,
from single-slice to multi-slice. We discuss their mathematical backgrounds, their distinguishing
features, and their limitations.

In Chapter 4, we present basic characteristics of the HVS, as well as the frequently-used
modeling of these characteristics. In particular, we devote attention to their applications in medical
image quality assessment.



2
ROC and its variants
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In this chapter, we will discuss ROC and its variants:

1. Receiver Operating Characteristic (ROC) analysis [20] for the detection task;

2. Localization ROC (LROC) analysis [21] for the detection-localization task of one signal on
an image;

3. Free-response ROC (FROC) analysis [22] for the detection-localization task of multiple
signals on an image;

4. Alternative Free-response ROC (AFROC) analysis [23] for the detection-localization task
of multiple signals on an image.

The above series of analysis will be called “the ROC analyses” hereafter.

The diagnostic accuracy is the extent to which the results of a diagnosis agree, in some
statistical sense, with patients’ actual states of health or disease. Thus for the detection task, this
means the ability to distinguish between two composite states of truth, “positive” versus “negative”
with respect to a specified disease; for the localization task, this means the ability to localize the
disease abnormality (e.g. lesion) position. The ROC analyses provide the most comprehensive
description in the sense that it displays all of the combinations of sensitivity and specificity that a
diagnostic test is able to provide as the observer’s “decision criterion” is varied [24].

Different figures of merit (FOMs) have been developed based on the ROC analyses to charac-
terize and quantify a certain task performance. FOMs can be the percentage of correct decisions
(PC), the area under the ROC curve (AUC), the intercept of the ROC curve with the line at 90
degrees to the no-discrimination line (also called Youden’s J statistic) [25], the area between
the ROC curve and the no-discrimination line, the d’ (d-prime, that is the distance between the
mean of the distribution under lesion-absent hypothesis and that under lesion-present hypothesis,
divided by their standard deviation, under the assumption that both these distributions are normal
with the same standard deviation), partial ROC areas, the area under the LROC curve (LAUC), the
area under the empirical FROC curve(FAUC), the augmented area under FROC curve (AFAUC),
jackknife alternative free-response ROC (JAFROC1 and JAFROC2), etc.. The fundamental idea
in the FOM design is to compute a FOM that rewards correct decisions and penalizes incorrect
decisions.

The ROC analyses are essential for comparing or assessing different imaging systems, as
well as for validating a numerical observer by comparing its FOM results with those gotten from
subjective experiments.
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2.1 Gold standard

A fundamental concept in the ROC analyses is gold standard (ground truth), which is the true
status of the images, that is to say the presence or absence of an abnormality for the detection
task, and the true abnormality positions for the localization task.

It is difficult to establish the gold standard without external corroborating evidence such as
pathology or other accepted tests, especially when the studied imaging modality itself is the gold
standard. For example, the brain MRI exam result is normally used as the gold standard for the
pathology of MS [19]. When the studied images are brain MR images of MS, what would be the
gold standard?

Even when a method for establishing the gold standard exists, the method is more often a
“bronze” standard rather than “gold” [26]. For example, biopsy proof is often used as the gold
standard for mammogram interpretation, but biopsy needles may miss their mark and pathologists
may make mistakes as well [2].

One alternative is to call upon a group of experts (truth-panel) who are then asked to establish,
according to consensus, a gold standard on the images being studied. It is also possible to ask
these experts to give their individual opinion on the image, and then keep only the images on
which all physicians raise a similar diagnosis [27]. Another useful way is to use simulated images
(adding simulated lesions on clinical images or simulated images), for which the gold standard is
known perfectly because the status of images are totally controlled by the investigator.

2.2 ROC

2.2.1 ROC curve

A development of signal detection theory, the ROC analysis has been widely applied in the
medical fields. To evaluate the observer’s task performance, ROC analysis has been used for
the detection task, where a binary positive/negative decision is made by comparing observer’s
confidence rating with a decision criterion. A positive decision is called a true positive (TP) when
the ground truth of an image is lesion-present, or a false positive (FP) on the contrary; a negtive
decision is called a true negative (TN) when the ground truth of an image is lesion-absent, or a
false negative (FN) on the contrary, as illustrated in Table 2.1 and Figure 2.1.
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Table 2.1: Four decision states of observer’s decision: true positive(TP), false positive(FP), false
negative (FN), true negative (TN).

Gold Standard
lesion-present lesion-absent

Observer’s Decision
positive true positive(TP) false positive(FP)
negative false negative (FN) true negative (TN)

Figure 2.1: The probability density functions (PDFs) for the observer’s response (confidence
rating) under the two hypotheses (lesion-absent and lesion-present). And the varying decision
criterion with the resulting four decision states: true positive(TP), false positive(FP), false negative
(FN) and true negative (TN).

Figure 2.2: An example of ROC curve, where the vertical coordinate at each point on the ROC
curve indicates the fraction of TPs out of the actual positives (TPF) that the observer can achieve
at each value of the horizontal coordinate, the fraction of false positives out of the actual negatives
(FPF). Different points on the curve are obtained by different settings of the observer’s decision
criterion, above which observer’s responses (confidence ratings) are classified as positive and
below which they are classified as negative.



2.2. ROC 17

A ROC curve (cf. Figure 2.2) is a graphical plot of the fraction of TPs out of the actual positives
(TPF) vs. the fraction of false positives out of the actual negatives (FPF). It is a comparison of two
operating characteristics (TPF & FPF) as the decision criterion changes. In medical domain, TPF
is also known as sensitivity, and FPF is one minus the specificity. The sensitivity is the ability to
correctly identify those with the disease, whereas the specificity is the ability to correctly identify
those without the disease.

The best possible decision of an observer would yield a point in the coordinate (0, 1) of the
ROC space in Figure 2.2 (the upper left corner), representing 100% sensitivity (no false negatives)
and 100% specificity (no false positives). A completely random guessing would give a point
along the diagonal line (the so-called line of no-discrimination) from the coordinate (0, 0) to the
coordinate (1, 1) (from the left bottom corner to the top right one). The diagonal divides the ROC
space. Points above the diagonal represent good decisions (better than random), points below
the line represent poor decisions (worse than random). Note that the output of consistently poor
decisions (which means that the observer always makes an opposite diagnosis compared to the
gold-standard) could simply be inverted to obtain good decisions.

2.2.2 Area under the ROC curve (AUC)

The AUC is a summary statistic of the ROC curve, used to reduce the ROC performance to a
single scalar value representing the performance. Since the AUC is a portion of the area of the
unit square, its value will always be between 0 and 1. The best possible decision of an observer
yields an AUC of 1; and a completely random guessing produces an AUC of 0.5 (chance value).

One important statistical property of the AUC is: AUC is equal to the probability that an
observer will rank a randomly chosen positive instance higher than a randomly chosen negative
one (assuming ’positive’ ranks higher than ’negative’). This is equivalent to the Mann-Whitney
U -test [28], which tests whether positives are ranked higher than negatives. It is also equivalent to
the Wilcoxon signed-rank test. In this way, it is possible to calculate the AUC by using an average
of a number of trapezoidal approximations [28]. In addition, a variety of ROC analysis softwares
can be downloaded from websites. A list is given on http://mips.ws/.

Supposing that one ROC curve (corresponding to observer A’s performance) is above another
one (corresponding to observer B’s performance) everywhere, it suggests that:

1. for any given set of costs or benefits for the various correct and incorrect decisions and
prevalence of the two diagnostic classes, the observer A always results in better task
performance in terms of cost-benefit analysis;

http://mips.ws/
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2. the observer A always has a higher sensitivity for any given specificity;

3. the observer A always results in a greater number of correct decisions regardless of disease
prevalence [29].

In this case, the higher the AUC is, the better the observer is. However, in cases where ROC
curves cross each other, the AUC value only characterizes the average task performance.

Note that any attempt to summarize the ROC curve into a single number loses the particular
discriminating procedure, even traditional ROC has been significantly improved over the years [24,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

2.3 Variants of ROC

The traditional ROC does not take location into account. Therefore, several extensions to the
traditional ROC have been proposed to address the limitation, especially:

– Localization ROC (LROC) for the joint detection-localization of one lesion on an image;
– Free-response ROC (FROC) and Alternative Free-response ROC (AFROC) for the joint

detection-localization of multiple signals on an image.

We then present the three ROC’s variants.

It should be noted that the localization task concerns a closeness or proximity criterion in
the presence of a lesion according to the gold standard. The proximity criterion could be an
acceptance radius (for small lesions) or a percentage overlap of the outlined region and the true
lesion (for big lesions). What constitutes the proximity criterion is a clinical decision that should
be decided on the basis of the clinical application.

When the lesion is small, its position is often represented by its center. The LROC/FROC/AFROC
paradigm classifies the marked coordinates, regardless of the marked rates, as a TP or FP by com-
paring the distance between the marked point and the actual center of the lesion to an predefined
acceptance radius: TP when the distance is less than the acceptance radius; FP otherwise. The
acceptance radius could be the diameter of the lesion. Then if the corresponding marked rate is
greater than the decision criterion, the TP or FP mark is classified as “positive”, and “negative” in
reverse.

2.3.1 LROC

Consider the case where an observer has a correct decision by reporting an image as positive,
but for a wrong reason since he may mistakenly identify a suspicious region on the background as
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the lesion, while neglecting the actual true lesion [40]. Such mistakes may lead to serious clinical
consequences. To avoid this ambiguity, LROC has been proposed [21]. In LROC paradigm, the
observer is forced to detect and locate the lesion together with a confidence rating [41]. Obviously,
a task that requires localization is harder than one that simply asks to observer to report “yes/no,
something is in the image”.

The ordinate of the LROC curve is the fraction of “positive” TP marks out of the number of
actual positive images; while its abscissa is the fraction of “positive” FP marks out of the number
of actual negative images, as shown in Figure 2.3. The LROC curve must contain the left bottom
point (0, 0), but does not necessarily include the top right point (1, 1). In other words, when the
fraction of “positive” FP marks out of the number of actual negative images is 1, the fraction
of “positive” TP marks out of the number of actual positive images may be lower due to wrong
localization results.

The area under the LROC curve (LAUC) is also a summary figure of merit of the LROC curve,
which takes values in the range [0, 1].

Figure 2.3: An example of LROC curve

Note that a generalization of the LROC curve to cases where the unknown lesion parameter
other than location (e.g. the number of lesions, the amplitude, the orientation, etc.) is being
estimated is the Estimation ROC (EROC) curve [42, 43]. In order to evaluate observers on more
general combined detection and estimation task, the EROC analysis uses the “expected utility” of
the estimate of the signal parameter for the TP cases as its ordinate and the same abscissa as the
LROC.



20 CHAPTER 2. ROC AND ITS VARIANTS

2.3.2 FROC

Consider the case where an observer detects and localizes correctly one lesion on the image,
but there are actually multiple lesions on the image and the observer misses other lesions. Such
mistakes can not be considered in the LROC paradigm, but may introduce serious clinical
consequences. Thus FROC has been proposed to allow the observer to specify an arbitrary number
of lesions on an image in addition to providing a confidence rating for each lesion.

Figure 2.4: An example of empirical FROC curve

As shown in Figure 2.4, an empirical FROC curve is a graphical plot of the fraction of
“positive” TP marks out of the total number of lesions (TPF) vs. the average number of “positive”
FP marks per image (FPR). The empirical FROC is useful for knowing whether the observer is
using all the rating scales. Ideally, the empirical FROC curve should approach a plateau towards
the upper end; the top right endpoint of the FROC curve should not be too close to the point (1,1)
in the FROC space. However, the area under the empirical FROC curve can no longer be a FOM
to summarize FROC curve, since a larger value of area under the empirical FROC curve can result
either from an increase in “positive” TP marks or an increase in the number of “positive” FP
marks on each image [29].

One FOM that could be used to summarize FROC data is the “augmented area under FROC
curve” [22], which can be interpreted geometrically as a measure of average performance supe-
riority over an artificial guessing free-response process. This FOM rewards for higher ability
to discriminate between FP and TP marks as well as for the higher detection fraction T̂PFmax,
while penalizes for a higher F̂PRmax and for a large effect of the acceptance radius, where
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(F̂PRmax, T̂PFmax) are the TPF and FPR when the criterion is so low that all rated marks are
considered “positive”. However, the “augmented area under FROC curve” should be avoided when
the lesion density is really low, for example, big image size with a small quantity of lesions. Since
in this case, this FOM equals approximately T̂PFmax, which means that this FOM would depend
only on the degree of localization accuracy, but has nothing to do with the rating performance.

2.3.3 AFROC

The AFROC paradigm provides an alternative way to analyze FROC data. The AFROC and
the FROC curves have the same ordinates, but differ in the abscissas. For each criterion, no matter
how many FPs are on one image, the AFROC only considers one FP mark, which is the one with
the highest rating. Then it uses the number of highest rated FPs divided by the total number of
cases as its abscissa, as shown in Figure 2.5. The AFROC curve include the point (1, 1), the same
as the ROC curve.

Figure 2.5: An example of AFROC curve

Two most common FOMs within the AFROC paradigm are: the area under the AFROC1
curve estimated using the jackknife procedure (JAFROC1) and the area under the AFROC2 curve
estimated using the jackknife procedure (JAFROC2) [44]. They differ in how to count the number
of highest rated FPs. While JAFROC2 counts only the highest rated FPs on actually negative
images, JAFROC1 counts the number of highest rated FPs on actually negative and actually
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positive images. Because more cases are used to form the estimate of fraction of FPs (FPF) in
JAFROC1, the values tend to be more stable and the statistical power is higher than JAFROC2 [45].
To the author’s knowledge, JAFROC1 is the FOM that has the highest statistical power up to now
for the detection-localization task.

Note that a completely random guessing would give a JAFROC1 FOM value of zero, or close
to zero (chance value) [46], since the chance of hitting a lesion approximates the lesion area
divided by the clinical image area (for small lesions, it approximates 0%). It is not like the ROC
analysis, where localization is not required and the chance value is 50%, as said in Section 2.2.2.

The JAFROC software can be downloaded for free from the website: http://www.devchakraborty.
com/downloads.html.

2.4 Conclusion

In this chapter, we have discussed the ROC analyses that have been proposed to describe
different diagnostic task performances, as summarized in Figure 2.6.
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Figure 2.6: ROC analyses characterize the task performance for different diagnostic tasks.

These ROC analyses are also useful for the validation of numerical observers: the FOM can
be calculated for both a numerical observer and radiologists; then the FOM of the numerical
observer can be compared to those of radiologists; if there is not a big difference between them,
the numerical observer can be said to approach well the radiologists’ performance.

http://www.devchakraborty.com/downloads.html
http://www.devchakraborty.com/downloads.html
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In Part III of this thesis, we will propose novel numerical observers for the detection task and
the joint detection-localization task of multiple signals. Thus the ROC analysis and the AFROC
analysis (JAFROC1) will be employed to validate our numerical observers.
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This chapter is dedicated to a review of the existing MOs. We begin with the introduction of
MO’s mathematical background, including some of the most popular image background (White
Gaussian Background, Correlated Gaussian Background, Lumpy Background and Clustered
Lumpy Background) and the usually used signal model (Gaussian signal). Note that we will
use the Correlated Gaussian Background and the Gaussian signal for our proposed numerical
observers in Part III of this thesis.

Then in Section 3.2, we will present the different basic model observers:The ideal observer
(IO) achieves the maximum AUC attainable amongst all the MOs, but requires full knowledge of
the probability density functions (PDFs) of the image for each hypothesis (presence or absence of
a signal) which in general are high-dimensional functions and difficult to compute except for some
special cases. Its discriminant function, the likelihood-ratio, is usually a nonlinear function of the
image data. Instead of PDFs, the Hotelling observer (HO) requires only the first- and second- order
statistics of the image data for each hypothesis. It maximizes the Signal-to-Noise Ratio (SNR)
among all linear observers. This is equivalent to maximizing AUC if the statistics are Gaussian.
But the HO needs the inverted ensemble covariance matrix of the image, which is hard to calculate
in the face of modern image high-dimensionality. The channelized Hotelling observer (CHO)
emerged as required to reduce the dimentionality through channelization. The channelization is a
technique that decomposes an image into different spatial frequency and orientation channels by a
series of filters. And the choice of channel type determines the optimality of CHO: if the channels
are designed to achieve the performance of HO, the CHO is still an optimal linear observer; if
the channels are designed to model the intrinsic spatial frequency and orientation selectivity of
the human visual system (HVS), then the CHO is an anthropomorphic observer. Note that the
channelization technique of the CHO, which has several advantages, will also be employed in our
proposed numerical observers (cf. Part III).

Section 3.3 reviews the Signal Known Statistically (SKS) MOs, which are more clinically
relevant and may have a great potential to behave more closely to human observers than the
Signal Known Exactly (SKE) MOs. Several SKS MOs have been proposed for different cases. In
case of the detection of one signal with varying size and shape, different templates for different
combinations of signal parameters could be established and the optimal template response in
a maximum likelihood sense is output as the final test statistic. In the case of one signal with
varying location, the scanning CHO could exhaustively scans the image and output the location
giving the largest test statistic. For the detection of one signal with varying orientation, size or
amplitude, a series of SKS CHOs based on the joint detection and estimation (JDE) theory were
proposed recently. Note that our proposed numerical observers will also treat the SKS task (cf.
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Part III).

Finally, multi-slice MOs proposed in the literature are presented, considering the trend to
volumetric images in medical domain. Three categories of the existing multi-slice MOs are
single-slice CHO (ssCHO), volumetric CHO (vCHO) and multi-slice CHO (msCHO). The ssCHO
does not incorporate information in the z direction, and only considers the central slice; the vCHO
may have more calculation burden when the image size increases; the msCHO firstly obtains
a score for each slice in x-y plane then weights the score in the z direction to result in a scalar.
Note that the existing multi-slice MOs only process the SKE task, and we will propose a novel
multi-slice numerical observer for SKS task (cf. Chapter 9 in Part III).

3.1 General considerations

In general, model observer (MO) is designed to detect a signal on a noisy background. The
problem can be seen as the validation of one of the two following exclusive hypotheses:

H0 :the signal x is absent, only the noisy background b is observed;

H1 :the signal x is present on the noisy background b. (3.1)

Normally the amount of noise is assumed to be so small that it does not disturb the statistical
properties of the background.

The two hypotheses can be formulated as follows:

Hh : g = hx + b, h = 0, 1 (3.2)

where g is an M × 1 column vector representing the digital image under consideration consisting
of M pixels of the image; and the absence or presence of the signal is controlled by the binary
variable h. Hereafter, all 2D data (image, signal or background) will be represented by a column
vector through vertical concatenation.

3.1.1 Background models

In medical image quality assessment domain, the noisy background, denoted as b in Eq.(3.2),
is the modeling of clinical image without the presence of signal. The background complexity thus
depends on the considered application.

There are mainly four categories of background models used in the literature:
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1. White Gaussian Background (WNB): a simple statistical model, since each pixel is an
independent, identically distributed (i.i.d.) Gaussian. However this model is certainly not
clinically realistic.

2. Correlated Gaussian Background (CGB): an extension to the WNB, generated by convolving
white noise following the distribution N (0,1) with a 2D Gaussian kernel characterized by
σb. This model allows modeling the spatial correlation in clinical images while remains
easy to be mathematically manipulated.

3. Lumpy Background (LB) [47]: a more complex model in which a random number of
Gaussian functions (called lumps) are placed at random locations in the image. The number
of lumps is selected using a Poisson probability distribution; while lump locations are
selected using a uniform probability distribution. Note that the first- and second-order
statistics of this model are similar to those of CGB.

4. Clustered Lumpy Background (CLB) [48]: the most complex model among these four
background models, produced similarly as for LB. The main difference is that “clusters of
lumps”, instead of lumps, are placed at random locations in the image (locations are still
selected using a uniform probability distribution). The number of clusters and the number
of lumps in each cluster are also selected using a Poisson probability distribution. Moreover,
the lump profile here is a generalized Gaussian function, instead of a Gaussian function.
This spatially inhomogeneous model is widely used in mammography, since it is a good
facsimile of real textures observed in mammograms.

Examples of four background model images are shown in Figure 3.1, as a comparison.
Certain source codes of these background models (in Matlab) are available on the website
http://www.radiology.arizona.edu/cgri/IQ/page2/page4/page4.html.

We say that the task is a Background Known Exactly (BKE) task if all the parameters in
the background model b are known a priori by the observers. Otherwise, if at least one of the
parameters in the background model b is not known in advance, but specified by a probability
density function (PDF), the task corresponds to a Background Known Statistically (BKS) [49]
task.

http://www.radiology.arizona.edu/cgri/IQ/page2/page4/page4.html
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Figure 3.1: Examples of four background model simulations: (a) White Gaussian Background
(WNB) ; (b) Correlated Gaussian Background (CGB); (c) Lumpy Background (LB); (d) Clustered
Lumpy Background (CLB).

3.1.2 Signal Models

To facilitate the mathematical manipulation while keeping the analysis general and representa-
tive, the signal is usually modeled with a two-dimensional (2D) elliptical Gaussian function:

[x]p = a exp
(
−1

2 (p− q)t BtD−1B (p− q)
)

(3.3)

where [x]p denotes the intensity value of the added signal at the 2D coordinate p. The signal
intensity attenuation is hereby modeled by a Gaussian function of peak amplitude a, centered at
q. The diagonal matrix D in Eq.(3.4) specifies the ellipse’s scale σ and shape b (b ≥ 1). Note
that
√
bσ and σ are one-half of the ellipse’s major and minor axes respectively; when b = 1, the

ellipse arises as a circle. The rotation matrix B in Eq.(3.5) rotates the signal by θ around the
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signal center.

D =
 bσ2 0

0 σ2

 (3.4)

B =
 cos θ − sin θ

sin θ cos θ

 (3.5)

The signal parameters can be denoted as a vector:

α = [a, θ, b, σ, q] (3.6)

xα denotes then a particular realization. Note that other choices of signal models are also possible
with our numerical observer. In general, it could be written as:

[x]p = f(α) (3.7)

Similartly to the concepts of BKE and BKS, we say that the task is a Signal Known Exactly
(SKE) task if all the signal parameters α are known a priori by the observers. Otherwise, if at least
one of the signal parameters is not known exactly, but specified by a PDF, the task corresponds to
a Signal Known Statistically (SKS) task.

Given the signal model in Eq.(3.3), the signal information will be coded via the a priori

probability function of α, for which we assume that the different variables are independent:

P (α) = P (a)P (θ)P (b)P (σ2)P (q) (3.8)

The signal is only known from its statistical characteristics.
Figure 3.2 illustrates examples of one signal added on the four noisy backgrounds presented in

Figure 3.1 (the elliptical signal is at the centers). Note that with the presence of spatial correlation,
the same signal seems more difficult to be detected by human eyes.
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Figure 3.2: Examples of one elliptical signal (with σ = 3,
√
b = 2 and θ = π/4) added at the

center of the four noisy backgrounds presented in Figure 3.1.

3.2 Basics of MO

In case of the detection of a signal, every MO computes a scalar test statistic λ(g) via a
discriminant function of the image and they differ by their discriminant functions. Then a decision
is made in favor of hypothesisH1 if the test statistic λ(g) is greater than a decision criterion λc;
otherwiseH0 is selected. The decision rule can be represented as:

λ(g)
H1
≷
H0

λc (3.9)

Then by changing the decision criterion λc, the MO’s task performance can be characterized by a
figure of merit (FOM), e.g. the area under the Receiver Operating Characteristic (ROC) curve
(AUC) (cf. Chapter 2 for more information on the FOM).
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3.2.1 Ideal Observer (IO)

Any observer that performs a likelihood-ratio test (in the following form) is referred to as an
ideal observer [50]:

λIO(g) = P (g |H1)
P (g |H0) (3.10)

More conveniently, the log-likelihood-ratio ln λIO(g) = ln P (g |H1)
P (g |H0) is calculated instead of the

likelihood-ratio.

The ideal observer (IO) achieves the maximum AUC attainable amongst all the MOs. It
is “optimal” (or “ideal”) in the sense of AUC and sets an upper bound on the signal-detection
performance of any observer. Consequently, it is usually used for the design or optimization of
data acquisition hardwares [2].

However, the calculation of the likelihood-ratio requires full knowledge of the PDFs of the
image for each hypothesis, P (g|Hh), including the descriptions of the objects to be classified
and complete information regarding the measurement process and the noise statistics. In practice,
these PDFs are high-dimensional functions and difficult, if not impossible, to compute for real
clinical data sets. Moreover, its discriminant function, the likelihood-ratio, is usually a nonlinear
function of the image data g.

The IO is tractable only for some simple cases. For example, the analytical expression for
the likelihood-ratio in Eq.(3.10) can be derived for the SKE/BKE task where the image data are
assumed to be independent Gaussian or Poisson [2]. In more complex cases, the likelihood-ratio
can be estimated using the more sophisticated and powerful approach of Markov-chain Monte
Carlo (MRMC), used with LB and CLB background models in [49, 51].

3.2.2 Linear Observer

Linear observer is an observer who implements a linear discriminant which is a linear function
of the image data g. The general form of a linear discriminant (a test statistic) could be written as:

λl(g) = wtg (3.11)

where w is an M × 1 column vector, elements of w and g are assumed to be real, and wtg is the
scalar product of w and g.
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3.2.2.1 Nonprewhitening Matched Filter (NPWMF)

One linear observer is Nonprewhitening Matched Filter (NPWMF):

λNPWMF(g) = (〈g |H1〉 − 〈g |H0〉)tg (3.12)

where the angle brackets 〈...〉 denotes an expectation hereafter.

Many experiments have proved that when the correlated noise is introduced, the efficiency of
the human observer is reduced [2]. That illustrates that the human observer can not perform the
prewhitening operation. Therefore, the NPWMF is proposed to model the human observer.

3.2.2.2 Hotelling Observer (HO)

The Hotelling observer (HO) [2] which employs a linear discriminant is a practical alternative
to the IO. HO does not need the PDFs and requires only the first- and second- order statistics of
the image data for each hypothesis.

Given the intraclass scatter matrix S2 describing the average covariance matrix of the image
data:

S2 = 1
2

1∑
j=0

Kj = 1
2(K0 + K1) (3.13)

where

K0 = 〈(g − 〈g |H0〉)(g − 〈g |H0〉)t |H0〉

K1 = 〈(g − 〈g |H1〉)(g − 〈g |H1〉)t |H1〉 (3.14)

where K0 and K1 are the ensemble covariance matrice of the image data, without and with signal
respectively.

The linear test statistic of the HO is hereby:

λHO(g) = wt
HOg (3.15)

where

wHO = S−1
2 (〈g |H1〉 − 〈g |H0〉) (3.16)

The HO is also known as the “ideal linear observer” since it maximizes the Signal-to-Noise
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Ratio (SNR), also called detectability index, among all linear observers. This is equivalent to
maximizing AUC if the image data are Gaussian distributed.

Note that the definition of SNR here is different from the term used in electrical enginerring.
In medical image quality assessment domain, SNR is defined as the distance between the test
statistic mean divided by the square root of their average variance [52]:

SNR = 〈λ(g) |H1〉 − 〈λ(g) |H0〉√
1
2var0 + 1

2var1
(3.17)

where

var0 = 〈(λ(g)− 〈λ(g) |H0〉)(λ(g)− 〈λ(g) |H0〉)t |H0〉

var1 = 〈(λ(g)− 〈λ(g) |H1〉)(λ(g)− 〈λ(g) |H1〉)t |H1〉

The HO is “optimal” (or “ideal”) in the sense of SNR.

The HO has all the advantages that a linear observer has: it’s easy to compute; its performance
is easy to summarize; far less information regarding the image statistics is needed, etc.. However,
it needs the ensemble covariance matrix of the image and the ensemble covariance matrix of
the image needs to be inverted. This becomes problematic in the face of modern image high-
dimensionality. For example, if the image dimensions are 256× 256, its covariance matrix would
be 65536× 65536, which is practically not feasible.

3.2.3 Channelized Hotelling Observer (CHO)

To encounter the problem of the HO, another interesting linear observer CHO was proposed.

3.2.3.1 Channelization

One approach to reduce the calculation burden (introduced by the high-dimensionality) of one
image to a reasonable level is to pre-process the image data through a channelization stage.

The channelization, via a series of filters, is a technique that decomposes an image into
different channels [53]. The formalization matrix is written as:

g′ = Utg, (3.18)
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After we write the norms of the vectors in Eq.(3.41) as inner products, we have exactly
proved the inequality Eq.(3.40).

4. Model Observers Considering the Characteristics of HVS

4.1. Nonprewhitening Matched Filter (NPWMF).

Many experiments have proved that when the correlated noise is introduced, the efficiency
of the human observer is reduced. That illustrates that the human observer can not perform
the prewhitening operation.

Therefore, the Nonprewhitening Matched Filter (NPWMF) is proposed to model the
human observer:

λNPW(g) = ∆gtg
D2

≷
D1

λt (4.1)

where ∆g ≡ (g2 − g1)
t.

4.2. Channelized Hotelling Observer (CHO).

4.2.1. Channelized Observer.

In accordance with the works of many researchers, one important characteristic of the
Human Visual System (HVS) is found, that is actually HVS processes the images through a
finite number of channels.

Figure 3. Block Diagram of a Channelized Observer
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As shown in Fig.3 [1], the channel characteristic of the HVS could be thought of as a
process of decomposing the original image data g into P channels, each channel is represented
by a column vector up, p = 1, 2...P . So the output of the channels can be given by:

v = Utg (4.2)

where U is the M × P matrix whose columns are the channel profiles up, and v is the P × 1
vector of channel output.

So in terms of perceptual way (viz. replace the original image data g with the channel
output data v), it’s not difficult to name the “optimal” model observer. The channelized

g'

image data
g

Figure 3.3: An example of a channelized Model Observer (MO), where the input image is
decomposed by P filters.

where U (dimension M × P ) represents the linear filtering operator:

U = [u1,u2, ...,up, ...,uP ] (3.19)

where p = 1, 2, 3, ..., P . Note that the dimension of the channelized output g′ is reduced to P × 1,
and normally P �M . Then all the calculations are executed on these channelized data, which is
denoted by (·)′ hereafter. The block diagram of a channelized MO is illustrated in Figure 3.3.

3.2.3.2 Implementation of CHO

The Channelized Hotelling Observer (CHO) [53] emerged as required to resolve the problem
of HO (dimentionality) through channelization. It is well-known for its calculability and mathe-
matical traceability among the channelized MOs. Similar to the HO, the CHO also employs a
linear discriminant which is a linear function of the image g.

The CHO paradigm consists of two stages: training and test, as shown in Figure 3.4.

We take the SKE CHO as an example to illustrate the practical implementation of the training
and test stages, it is detailed as follows:

1. In the training stage, the inputs are two sets of images, one contains signal while the other
does not. Their ground truth is known for the CHO. The output is a template:

wCHO = Σ̂′
−1
x̂′ (3.20)

where x̂ is the estimated signal, which is the difference of the sample averages of the
channelized two sets; and Σ̂ is the average of the covariance matrices of the channelized



36 CHAPTER 3. MODEL OBSERVERS (MO)

1 N 2 … 

N pairs of  
Training Images 

Lesion-Absent Lesion-Present 
1 N 2 … g 

Test Image 

Get a template to be 
applied on the test 

image 

Test 
Statistic 

(Scalar λ) 

hypothesis H1: 
g=x+b 

hypothesis H0: 
g=b 

Figure 3.4: The CHO paradigm consists of two stages: training and test. In the training stage, the
inputs are two sets of images, one contains signal while the other does not; the output is a template.
In the test stage, the template is used to calculate a test statistic for each input test image.

two sets.

x̂′ = 〈g′ |H1〉 − 〈g′ |H0〉 (3.21)

Σ̂′ = 1
2(〈(g′ − 〈g′ |H0〉)(g′ − 〈g′ |H0〉)t |H0〉

+〈(g′ − 〈g′ |H1〉)(g′ − 〈g′ |H1〉)t |H1〉) (3.22)

2. In the test stage, the template wCHO is used to calculate a test statistic λCHO for each input
test image g′, the ground truth of which is however unknown to the CHO:

λCHO = wt
CHOg

′ (3.23)

By performing the test processing on a pile of test images (with and without signal), the
output test statistics are then used to calculate the area under the ROC (receiver operating
characteristic) curve for characterizing the detection performance.

From Eq.(3.23), we deduce that the CHO is also a linear HO.

3.2.3.3 CHO case study

Note that the idea of the channelization to decompose the image into some spatial frequency
and orientation channels (or sub-bands) also corresponds to the frequency and orientation selectiv-
ity of the HVS, one of the most important intrinsic characteristics of the HVS, cf. Section 4.2.6.
Thus the choice of the channel profile determines the optimality of CHO:

– If the channels are designed to achieve the performance of HO [54], then the CHO is still an
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“optimal” linear observer. By definition, the optimal MOs are the best possible in some sense
and normally have a much higher task performance than human, far from our objective.

– To correlate better with human performance, one possibility is to integrate the intrinsic
spatial frequency and orientation selectivity of the HVS into the channel profile by using
the CHO paradigm [5]. In this way, the CHO is considered as “anthropomorphic” rather
than “optimal”.

One type of channels commonly used in an “optimal” 1 CHO [54] is the rotationally symmetric
Laguerre-Gauss (LG) functions, which are the product of Laguerre polynomials and Gaussian
functions. Let Lp denote Laguerre polynomials:

Lp(x) =
p∑

p′=0
(−1)p′

Cp′

p

xp
′

p′! (3.24)

The LG functions are defined by

up(r | au) =
√

2
au

exp
(
−πr2

a2
u

)
Lp

(
2πr2

a2
u

)
(3.25)

where r ∈ R2, au is the spread parameter of the LG channel. These functions are then sampled
to yield the linear up. The exponential weighting exp (−πr2/a2

u) concentrates the weight of the
polynomials around a Gaussian envelope with spread σu (2σ2

u = a2
u/π).

As for the channels used in an “anthropomorphic” CHO [5], one example is the radially
symmetric difference-of-Gaussians (DOG) functions that have long been used to model spatial-
frequency selectivity in the HVS. The radial frequency profile of the pth channel is given by

up(ρ) = exp
−1

2

(
ρ

Qσp

)2
−

−1
2

(
ρ

σp

)2
 (3.26)

where ρ is a 2D spatial-frequency variable (pixels−1), the multiplicative factor Q > 1 defines the
bandwidth of the channel, and σp is the standard deviation of each channel. From an initial σ0,
each of the σp values in Eq.(3.26) is defined by σp = σ0a

p
u (au > 1). In [5], two types of DOG

channels were mentionned: the sparse DOG (S-DOG) using three channels, and the dense DOG
(D-DOG) using ten channels.

1. in the case of rotationally symmetric signal and background statistics
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3.2.4 Comparison of MOs

We conclude the discussion on the basics of MO by providing a comparison table Table 3.1,
which allows us to see more clearly how these basic MOs are evolved.

Table 3.1: Comparison of the Ideal Observer (IO), the Hotelling Observer (HO) and the Channel-
ized Hotelling Observer (CHO).

IO HO CHO
Linearity

of the
discriminant

function

Nonlinear Linear Linear

Optimal or
Anthropomorphic

Optimal
(maximum AUC
among all MOs)

Optimal
(maximum SNR

among all
linear MOs)

Optimal or
anthropomorphic

(depending on
channel profile)

Necessary data
to calculate
the template

Full knowledge
of the PDFs

of the image for
each hypothesis
P (g |H0) and
P (g |H1)

Only the first-
and second-

order statistics
of the image

for each
hypothesis

Only the first-
and second-

order statistic
of the

channelized
image for each

hypothesis

Calculability

The PDFs are
high-dimentional

functions and
difficult to

compute except
for a few

simple cases

High-
dimensionality:
the ensemble

covariance matrix
of the image
needs to be

inverted.

Dimentionality
reduction resulting
in less calculation

3.3 Signal Known Statistically (SKS) MO

The goal of anthropomorphic channelized MOs (by integrating the frequency and orientation
selectivity of the HVS into the channel profile) is to predict human performance, thus to allow us
to evaluate the image quality from the standpoint of end-users (human observers).

The anthropomorphic CHOs have successfully predicted human performance in SKE experi-
ments [2], where the signal attributes parameters (e.g. intensity amplitude, size, shape, orientation
and location) are exactly known by observers and do not vary throughout the entire experiment.
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However, SKE is not clinically realistic, because human observers (radiologists) do not know
exactly the signal parameters before the diagnostic analysis. Moreover, for pathologies with
multiple lesions, the signal parameters differ for each lesion depending on the stage of the lesion,
the background tissue characteristics, etc.. Several SKS experiments (where the signal attributes
are known statistically) showed that the uncertainty and variability in signal parameters can
significantly influence human performance [55, 15, 56]. It is thus reasonable to believe that the
SKS MOs would be more clinically relevant and may have a great potential to behave closer
to human observers than the SKE MOs. Since then, the SKS MOs have begun to draw more
attention in the last decade.

In recent publications, several authors proposed different approaches for different SKS tasks.

– Eckstein et al. [57, 58, 59] proposed to establish different templates for different combi-
nations of signal parameters and output the optimal template response (in a maximum
likelihood sense) as the final test statistic. As the authors pointed out, the limitation of this
method is that the required number of training images and the calculation amount increases
rapidly with the number of possible signal parameters. But this type of method is efficient
for the signal known exactly but variable (SKEV) 2 task [60], which could be considered as
a simple case of SKS task. Lartizien et al. [61] extended this method to 3D (volumetric)
images for signal location known exactly but variable.

– For the SKS task with signal location known statistically, Park et al. [15] proposed a
scanning CHO which exhaustively scans the image. Then the location that gives the largest
test statistic is chosen as the tentative location while that test statistic is the final test statistic.
This scanning CHO has the same problem of calculation burden as Eckstein’s method.

– Gifford et al. [62, 63, 64] proposed a visual-search (VS) model which firstly identifies some
candidate blobs guided by features of the test image and then applies the scanning CHO on
each candidate blob. With this pre-processing step, the visual-search (VS) model solves the
problem that the calculation amount increases rapidly with the image size.

– Clarkson [42] proposed an ideal Estimation ROC (EROC) [42, 43] observer, whose EROC
curve lies above those of all other observers for the given joint detection estimation task.
Within his theoretical framework, all signal parameters could be estimated along with the
calculation of the test statistic, but practically this has not been tackled yet.

– Whitaker et al. [65] proposed a scanning-linear estimator (SLE) for the pure estimation
task. Here “scanning” means performing a global-extremum search to maximize a linear
metric. He proved that the linear metric to be optimized can be derived as a special case

2. In the SKEV task, the signal varies from trial to trial but is known to the observer.
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of maximum a posteriori (MAP) estimation when the likelihood is Gaussian and a slowly
varying covariance approximation is made. But Whitaker et al. focused on the estimation
task and did not investigate the detection task performance, they evaluated the SLE’s
estimation performance when the signal has varying amplitude, size and location.

– Later, based on the joint detection and estimation (JDE) theory [66], Goossens et al. [67, 68]
proposed a series of corresponding SKS CHOs, each treats a signal with varying amplitude,
orientation or size separately, which deal with the estimation and the detection task.

Our objective is indeed to develop a predictive MO of human detection task performance, for
which the SKS task has a great potential. We remark that

1. SKS MOs have not been extensively studied yet;

2. the practicability needs to be improved and the range of variable signal parameters of the
existing SKS MOs has to be widened;

3. furthermore, no numerical model has studied the localization task of multiple signals per
image yet.

These inspire us to propose a novel numerical observer able to detect and localize multiple para-
metric signals with variable amplitude, orientation, scale and location, in order to represent more
realistically the routine diagnostic process. This novel numerical observer, called Perceptually
relevant Channelized Joint Observer (PCJO), will be presented in Chapter 8.

3.4 Multi-slice (3D) MO

For numerous studied modalities, such as MRI, radiologists normally view all image slices
of a stack (volumetric image) in their entirety by scrolling back and forth. Thus it becomes
increasingly important to investigate multi-slice/three-dimensional (3D) MOs, which would be
more clinically realistic than 2D MOs.

However, until now, the existing multi-slice MOs restrict the task of interest to the SKE/BKE
detection task, where one isotropic signal (of the same size for all images) is known to be located
in the center of the 3D stacks. The signal is usually modeled with a 3D circular Gaussian function.
For this type of task, several authors proposed different multi-slice MOs [69, 70, 71, 72, 73, 62, 74]
and a well-founded overview of these MOs can be found in [69].

As said in [69], the existing multi-slice MOs could be divided into three categories: single-slice
CHO (ssCHO), volumetric CHO (vCHO) and multi-slice CHO (msCHO). They will be presented
in Section 3.4.1, Section 3.4.2 and Section 3.4.3, respectively.
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3.4.1 Single-slice CHO (ssCHO)

The ssCHO is the most direct and simplest approach, which uses a conventional 2D (planar)
CHO and applies it on a single image slice of one 3D stack only [70]. As illustrated in Figure 3.5,
within the paradigm of the ssCHO, the CHO template, wCHO in Eq.(3.20), is calculated from the
central slices of the 3D training stacks, and the CHO test statistic, λCHO in Eq.(3.23), is obtained
by using the central slice of 3D test stack.

Note that the ssCHO does not incorporate information about signal contrast in the z direction
or the spatial correlation of the background and signal in the adjacent slices. Its performance is
expected to be poor.
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Figure 3.5: The ssCHO paradigm: the CHO template wCHO is calculated from the central slices
of the 3D training stacks, and the CHO test statistic λCHO is obtained by using the central slice of
3D test stack. Here each column represents one 3D stack of channelized image slices.

3.4.2 Volumetric CHO (vCHO)

The CHO is not limited by the dimensionality of the problem by definition. Therefore, a
straightforward approach is to extend the 2D CHO to 3D CHO, using 3D images, 3D signals and
3D channels, so-called the vCHO [71, 72], as illustrated in Figure 3.6.

Note that the vCHO becomes “aware” of the contrast and correlation between the adjacent
image slices. The vCHO is only useful when the 3D image data is not huge, if not (such as in
MRI), the related calculations will be not manageable.

3.4.3 Multi-slice CHO (msCHO)

The multi-slice CHO (msCHO) assumes that humans interpret the multi-slice image in a
two-stage process [73]:
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lesion-absent
3D training images

(after channelization)

lesion-present
3D training images

(after channelization)
3D test images

(after channelization)
3D CHO
template 3D CHO test

statistic
... ... ...

Figure 3.6: The vCHO paradigm: the 3D CHO template is calculated from the entire volumetric
(3D) training images using 3D channels, and the CHO test statistic is obtained by using the entire
volumetric (3D) test images. Here each cube represents one channelized 3D images.

1. the image is preprocessed in planar views (x-y plane), slice after slice, and the scores
(forming a vector) obtained for each slice are buffered;

2. the score vector is processed in the z direction to result in the stack test statistic (a scalar).

In [69], the msCHO is divided into three types: msCHOa, msCHOb and msCHOc, as shown
in Figure 3.7, Figure 3.8 and Figure 3.9 respectively. For all three msCHOs, the image data is first
processed with a set of 2D channels. Then the three msCHOs process differently the channelized
images:

1. Within the msCHOa paradigm, the 2D CHO test statistic of the nth slice is obtained by
using a template calculated from the corresponding slice in the training images (that means
all the nth slices of all the training images).

2. Within the msCHOb paradigm: the 2D CHO test statistic of the nth slice is obtained by
using a single unique template calculated from the central slice in the training images.

3. Within the msCHOc paradigm, column vectors are obtained from the channelized training
images, then the 2D HO template is applied directly on the column vectors.
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Figure 3.7: The msCHOa paradigm: the 2D CHO test statistic of the nth slice is obtained by using
a template calculated from the corresponding slice in the training images (that means all the nth
slices of all the training images). Here each column represents one 3D stack of channelized image
slices.
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Figure 3.8: The msCHOb paradigm: the 2D CHO test statistic of the nth slice is obtained by
using a single unique template calculated from the central slice in the training images. Here each
column represents one 3D stack of channelized image slices.
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Figure 3.9: The msCHOc paradigm: column vectors are obtained from the channelized training
images, then the 2D HO template is applied directly on the column vectors.
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3.5 Conclusion

In this chapter, we firstly reviewed the most commonly used medical image background models
and signal (lesion) models in the literature. Then we reexamined the historical development and
applications of MOs:

1. from IO, HO to CHO where the mathematical tractability became more affordable;

2. from SKE task to SKS task, the latter considers the variability in signal parameters and
ultimately the task of interest becomes more clinical relevant;

3. form single-slice MO to multi-slice MO, in consequence of more use of volumetric/multi-
slice medical images in the clinical routine.

Complying with these trends of MOs, we will propose novel numerical observers for the SKS
task, as well as multi-slice images in Part III of this thesis.
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Popular objective approaches in the medical image quality assessment domain, such as model
observers (cf. Chapter 3), that have been specially proposed for medical images, mostly place
emphasis on the image itself (e.g. its statistical characteristics) without considering the human
observers’ perceptual characteristics. An exception is the channelized Hotelling observer (CHO)
that integrates the intrinsic spatial frequency and orientation selectivity of the human visual system
(HVS) into its paradigm. However the selectivity is not the only one characteristic of the HVS.
In order to correlate with the notion of “quality” as perceived by the HVS, we need to further
simulate the complicated processes of the HVS.

Beside medical imaging community, e.g. in the context of “natural” image and video quality
assessment, HVS models have been proposed and widely used for assessing the quality from the
human’s perspective by modeling the known response of the early vision system as measured by a
variety of physiology and psychophysics experiments. This inspires researchers to investigate the
utilization of the HVS models in the medical domain.

In this chapter, we will give an overview on the HVS models used in the medical domain, which
concern the perceptual difference models (PDMs), including their general structure, common
functions and applications in the medical image quality assessment domain. All PDMs have two
input images: a reference image and a distorted image. The output is some sort of perceptual
difference map between the two input images. Finally, a global note (scalar) can be obtained by
combing the information on the perceptual difference map, usually in a simple way.

It is important to note that in psychology, human vision processing can be conventionally
separated into two stages: sensation and perception [75]. The sensation stage is viewed as
a function of low-level biochemical and neurological events, it reacts with the impinging of
a stimulus upon the photoreceptors. The perception stage is a dynamic cognitive process of
interpreting information. Existing HVS models are mostly based on the sensation modeling,
while the perception modeling is much more complex, as it depends on various factors and is
tough to identify. For example, in the medical domain, the perception stage should integrate the
radiologists’ expertise, the given modality, the studied pathology, etc.

4.1 General structure

The HVS models used in the evaluation of medical image quality [76, 77, 10, 78, 11, 12]
belong to the perceptual difference model (PDM) [79, 80, 81, 82, 83] focusing on spatial contrast
detection. They are especially efficient for the detection of near-visibility-threshold distortion,
suitable for the diagnostic task performance evaluation where the detection targets are not too
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conspicuous.
To understand the general structure of PDMs, Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4

give the structural block diagrams of four of the most well-known PDMs, respectively:

1. Visible Difference Predictor (VDP) [79];

2. High Dynamic Range Visible Difference Predictor (HDR-VDP) [81];

3. Visual Contrast Gain Control model (VCGC) [82];

4. Spatial Standard Observer (SSO) [83].

We can see that all PDMs have two input images: a reference image and a distorted image.
The two images are firstly transformed into the luminance domain (in cd/m2). Then they are
passed through several functions, preprocessing functions and those modeling various HVS
properties: display model, calibration, amplitude nonlinearity, contrast sensitivity function (CSF),
decomposition channel function, contrast conversion, masking function, psychometric function,
sub-band pooling, etc.. After being processed by these functions, the two input images can be
interpreted as two perceptual images. Their difference is thus a perceptual difference map. A
spatial pooling function is applied on the map to produce a scalar overall score that reflects the
detection confidence rating.
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Figure 4.1: Block diagram of the Visible Difference Predictor (VDP) model
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Figure 4.2: Block diagram of the High Dynamic Range Visible Difference Predictor (HDR-VDP)
model
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4.2 Common functions

The PDMs differ by their function definitions. In this section, we will concisely present the
functions of HVS models, as well as the corresponding HVS characteristics that the functions try
to model.

4.2.1 Display Model

The Display Model converts the digital code values of the input images into physical lumi-
nances, considering the relationship between the grey levels (same for the digital values) of the
image and the luminances from the display instrument.

4.2.2 Calibration

During the Calibration stage, several input parameters (like viewing distance, physical pixel
spacing, maximum light level and image size) are used to calculate the values needed in the
subsequent stages, like visual frequency ρ in c/deg, orientation θ in deg, light adaptation level
l in cd/m2, image size i2 in deg2 and eccentricity e in deg, where the c, deg, cd and m are the
abbreviations of cycle(s), degree(s), Candela and meter(s).

4.2.3 Amplitude Nonlinearity

4.2.3.1 Corresponding HVS characteristics

Naturally confronted with a highly dynamic light intensity, the HVS has several mechanisms
which allow us to detect constantly objects in different environments despite large changes in the
level of ambient illumination, for example:

1. The pupillary light reflex controls the diameter of the pupil (1.5 to 8 mm) in response
to the intensity (luminance) of light that falls on the retina of the eye [84]. This reflex
is maintained by the pretectum, a region of neurons between the thalamus and midbrain,
which receives binocular sensory input from retinal ganglion cells of the eyes.

2. The photochemical concentration of the photoreceptor is relatively high in darkness and
decreases in the light. Correspondingly, this modifies the sensibility of the photoreceptor.

3. The neuronal responses of all the retinal cell layers are adjusted when the environment
changes. This adaptation is less effective than the previous one, but much faster [85].
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4.2.3.2 Amplitude nonlinearity functions

Amplitude Nonlinearity functions are used to model the HVS adaptation to the luminance and
the nonlinear response of retinal neurons.

One mostly used in the literature is Daly’s amplitude nonlinearity function [79], which is a
simplified version that is shift-invariant, invertible and implemented as simple point nonlinearities.
This amplitude nonlinearity function assumes that the HVS observer can view the image from any
arbitrarily close distance thus the HVS adapts to each pixel of an image. However, physiological
experiments have proved that the HVS can not adapt to infinitely small areas of an image, not to
mention one pixel. Thus Daly’s amplitude nonlinearity function remains to be a coarse simple
approximation of the luminance adaptation in the retina.

An alternative way is to use the optics point spread function (PSF) [86], since the blurring
effect from convolving the PSF with the input images could lead to a better approximation.
But introducing the PSF will cause a shift-variant nonlinearity and the accompanying problem
of noninvertibility. The invertible process (of the amplitude nonlinearity function) is usually
preferred for signal processing.

4.2.4 Contrast Conversion

4.2.4.1 Corresponding HVS Characteristics

The HVS is more sensitive to contrast than absolute luminance. This conversion from the
luminance to the contrast makes an object (or its representation in an image) distinguishable from
other objects and the background.

In the HVS, each retinal ganglion cell bears a receptive field, the organization of which
provides a way of detecting contrast. We can find detailed explanation in [87].

4.2.4.2 Contrast functions

There are many possible definitions of contrast, various definitions of contrast are used in
different situations. Here, only monochrome and static images are concerned, so we will use the
luminance contrast, which can be generalized as:

Contrast = Luminance Difference
Average Luminance

(4.1)

which is simply denoted as DI/I . The rationale behind this is that a small difference is negligible
if the average luminance is high, while the same small difference matters if the average luminance
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is low (according to Weber-Fechner law).

The contrast functions can be divided into two types:

– when the average luminance intensity is calculated over the whole input image, it is called
global contrast, like the contrast function defined in [79];

– when the average luminance intensity is calculated over the area of adaptation in the input
image, it is called local contrast, like the contrast function defined in [88].

4.2.5 Contrast Sensitivity Function (CSF)

4.2.5.1 Corresponding HVS Characteristics

Contrast sensitivity is a measure of the ability to discriminate between luminances of different
levels in an image. The minimum contrast required for an observer to detect a change in luminance
is known as the contrast threshold. Results of many psychophysical experiments showed that
the contrast threshold is affected by several factors such as the spatial frequency, the orientation,
the temporal frequency, the target size, the background luminance, the viewing duration, the
observer’s age, etc. The contrast threshold is the reciprocal of the contrast sensitivity, therefore the
lower the contrast threshold is the higher the contrast sensitivity and visual performance are [89].

The HVS is more sensitive to contrast at certain spatial frequencies. This is firstly illustrated
by F.W. Campbell and J.G. Robson [90] (cf.Figure 4.5). They showed that the HVS is more
sensitive to middle spatial frequencies. The pixel luminance is depicted as a sine-wave grating
along the horizontal axis. The spatial frequency increases exponentially from left to right, and the
contrast increases logarithmically from 100% at the bottom to 0.5% at the top. At the top, the
contrast is too low to see the grating (for 0.5% contrast, only homogeneous grey is seen). Very
wide (low spatial frequency) and very thin (high spatial frequency) gratings are harder to see than
the middle bars, even with high contrast [90].

This tells us that the HVS is most sensitive in detecting contrast differences occurring at
intermediate spatial frequencies (4-13 cycles per degree), i.e. at these spatial frequencies humans
can detect lower contrast differences than at any other spatial frequencies. The high-frequency
cut-off represents the limitation of HVS’s ability to resolve details: frequencies higher than 50
cycles per degree are undetectable even at maximum contrast. The high-frequency cut-off is
related to the packing density of the retinal photoreceptor cells: a finer matrix can resolve finer
gratings [91]. The low-frequency drop-off is due to lateral inhibition within the retinal ganglion
cells. A typical retinal ganglion cell presents a central disk with either excitation or inhibition in
the center and the surround (a concentric ring) responding oppositely. The bright bands fall on the
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development of color symbology is still ongoing, this technology is more complex and may require a tradeoff in 

resolution and luminance contrast in order to allow recognition of color symbology (Havig et al., 2001).  

 

Spatial frequency 
 

Contrast sensitivity is also dependent upon the size or spatial frequency of the features in the image. The visual 

system is more sensitive to contrast at certain spatial frequencies. The highest spatial frequency humans can see at 

any contrast is limited by the optical process. The concept of an optical transfer from the imaging system to the 

neural processing system has led to the development of the contrast sensitivity function (CSF). The CSF measures 

relative sensitivity versus spatial frequency and is accepted as a measure of assessing visual performance. 

Generally, high spatial frequencies gradients are harder to visualize than low spatial frequencies. However, this is 

not a direct relationship, as in some cases larger objects (lower spatial frequencies) are not always easier to see 

than smaller objects, as illustrated in Figure 10-15. This is also demonstrated by the CSF (Figure 7-11, Chapter 7, 

Visual Function) in which the sensitivity of the visual system to detect contrast decreases for lower and higher 

spatial frequencies. In those cases where the size of the object is not optimum—spatial frequency below two and 

above six cycles per degree (cpd) – the object’s contrast needs to be increased in order to be discerned from the 

background. However, under photopic conditions, frequencies higher than 40 cpd are undetectable even at 

maximum contrast. 
 

 
Figure 10-15. The human visual system is more sensitive to middle spatial frequencies. This illustration 
depicts a sine-wave grating in which spatial frequency increases exponentially from left to right, and the 
contrast increases logarithmically from 100% at the bottom to 0.5% at the top. At the top, the contrast is 
too low to see the grating to the point that only homogeneous grey is seen. Very wide (low spatial 
frequency) and very thin (high spatial frequency) gratings are harder to see than the middle bars, even 
with high contrast. (Courtesy of Dr. Izumi Ohzawa, University of California, School of Optometry). This 
figure was originally produced by F.W. Campbell and J.G. Robson, Applications of Fourier Analysis to the 
visible of gratings, Journal of Physiology (Campbell and Robson, 1968). 

 
Scotopic contrast sensitivity  

 

There is a marked difference between spatial contrast sensitivity under photopic and scotopic conditions. For 

instance, under scotopic conditions, frequencies higher than 8 cpd are undetectable even at maximum contrast. 

The contrast sensitivity of an aviator while wearing its night vision imaging systems (i.e., ANVIS) is decreased 

further by a factor of two over a range of spatial frequencies even under optimal ambient levels of illumination. 

Contrast sensitivity also is decreased considerably with decreasing night sky illumination. The sensitivity loss 

resulting from decreased ambient illumination is observed across all spatial frequencies; however, this effect is 

slightly greater for higher spatial frequencies (Rabin, 1993; Wiley and Holly, 1976). This reduction in contrast 

Figure 4.5: Illustration of the contrast sensibility (vertical axis) as a function of the spatial
frequency (horizontal axis). Figure originally produced in [90].

inhibitory as well as the excitatory region of the retinal ganglion cell resulting in lateral inhibition
and account for the low-frequency drop-off of the human contrast sensitivity function [92].

4.2.5.2 CSF

With the purpose of modeling the variance of the HVS response according to different spatial
frequencies, Contrast Sensitivity Function (CSF) reflects the HVS sensitivity of a contrasted
stimulus, normally as a function of spatial frequency.

As a complicated model, the CSF can be an anisotropic function of radial spatial frequency ρ in
cy/deg, orientation θ in deg, light adaptation level l in cd/m2, image size i2 in deg2, eccentricity
e in deg and lens accommodation due to the distance d in m, e.g. the CSF used in [79]; as a
simple model, the CSF can be an isotropic function of only radial spatial frequency ρ in cy/deg
and eccentricity e in deg, e.g. the CSF used in [93].

Note that most CSFs are used in the frequency domain, and frequency domain analysis can
easily use certain well-understood mathematical computations (e.g. FFT and FFT−1). If the
CSF stage is put before the decomposition channel function stage (cf. Section 4.2.6), thus the
nonlinear feature of CSF may introduce some distortions into the signal in the frequency domain
which would consequently interfere the application of the frequency selectivity. As indicated
in [94], the ordering of the stages is an important feature of the masking model and it is better to
place the linear stages before the nonlinear stages.
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4.2.6 Sub-band Decomposition

4.2.6.1 Corresponding HVS Characteristics

The results of many neurophysiological studies have shown that the specific selectivity based
on spatial frequency and orientation (and color, etc.) is a basic property of neurons in visual
cortical areas. The visual cortex refers to the primary visual cortex (also known as striate cortex
or V1) and extrastriate visual cortical areas such as V2, V3, V4, and V5.

It is widely believed that early responses of V1 neurons consists of sets of selective spatiotem-
poral filters. In the spatial domain, the mechanism of V1 can be regarded as the complex Fourier
transform or more approximately, Gabor transform [95]. Theoretically, these filters together can
carry out neuronal processing of spatial frequency, orientation, motion, direction, speed (thus
temporal frequency), and many other spatiotemporal features.

Besides V1, we should also notice V2 and V4. Orientation, spatial frequency, and color tuning
properties of simple cells in V2 are similar to those in V1. The responses of many V2 neurons are
also modulated by complex properties, such as the orientation of illusory contours and whether
the stimulus is part of the figure or the ground [96]. It is also known that V4 has similar tuning
properties for orientation, spatial frequency, and color. The difference with V1 is that V4 is tuned
for object features of intermediate complexity.

4.2.6.2 Sub-band decomposition function

The sub-band decomposition functions are usually a hierarchy of filters, used to model the
frequency selectivity and orientation selectivity of the HVS.

One example is the cortex filters [97, 79] which decompose data into some overlapping
“dom” filters dedicated to modeling the radial frequency selectivity, some overlapping “fan”
filters dedicated to modeling the orientation selectivity, and one separate base filter built at the
lowest-frequency without regard to orientation. Gabor array [82] and wavelet transform are also
often used to transform the input image into certain bands or channels, because their responses
approximate as well the functioning of the primary visual cortex V1.

4.2.7 Masking Function

4.2.7.1 Corresponding HVS Characteristics

Visual masking is a well-known characteristic of the HVS, which is used commonly to refer to
the visibility reduction of one stimulus, called the signal, by the presentation of a second stimulus,
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called the mask. One masking effect is caused by the time interval on the order of the presentation
of the two stimuluses. For still images, we only consider the simultaneous visual masking which
indicates the effect of one stimulus on the detectability of another where the stimuli are coincident
in space and simultaneous in time.

More specifically, Legge and Foley [94] proposed the concept of contrast masking, which is
used to study the spatial frequency selectivity of pattern vision by measuring signal thresholds at
one spatial frequency in the presence of masking patterns of other spatial frequencies.

There are actually two phenomena in the contrast masking: the masking effect and the
facilitation effect. The masking effect, illustrated in Figure 4.6, describes that with the raise of
the mask contrast, firstly (when MC < MC0) the threshold of visibility (T) is almost a constant
(T0), but after a certain value of the mask contrast (when MC > MC0), the threshold of visibility
will increase, that means the signal becomes harder to distinguish when the contrast mask is
high. The facilitation effect, illustrated in Figure 4.7, describes a contrary effect of the mask

when MC < MC0, then the threshold of visibility decreases with the augmentation of the mask
contrast, rather than remains a constant.

In addition, for high contrast masks and signals at medium and high spatial frequencies, many
studies have found that signal threshold elevation is maximal when the mask and signal have the
same frequency. Threshold elevation decreases regularly as the masking frequency departs from
the signal frequency [94]. The functions relating signal threshold elevation to masker frequency
may be termed spread of masking functions or masking tuning functions.

REPORT 2 - MULTI-CHANNEL PERCEPTION/VISION MODELS 12

More specifically, Legge and Foley[6] proposed the concept of contrast masking, which is
used to study the spatial frequency selectivity of pattern vision by measuring signal thresh-
olds at one spatial frequency in the presence of masking patterns of other spatial frequencies.

There are actually two phenomenons of the contrast masking: masking effect and facilita-
tion effect. The masking effect, illustrated in Fig.3, describes that with the raise of the mask
contrast, firstly (when MC < MC0) the threshold of visibility (T) is almost a constant (T0),
but after a certain value of the mask contrast (when MC > MC0), the threshold of visibility
will increase, that means with the appearance of a higher contrast mask, it becomes harder
to distinguish the signal. The facilitation effect, illustrated in Fig.4, describes a contrary
effect of the mask which shows that when MC < MC0, the threshold of visibility, in fact,
decreases with the augment of the mask contrast, rather than remains a constant.

Figure 3. Masking Effect

log (Mask Contrast)log (MC )0

log (T)

log (T )0

Figure 4. Facilitation Effect
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In addition, for high contrast masks, and signals at medium and high spatial frequencies,
many studies have found that signal threshold elevation is maximal when the mask and signal
have the same frequency. Threshold elevation decreases regularly as the masking frequency
departs from the signal frequency. The functions relating signal threshold elevation to masker
frequency may be termed spread of masking functions or masking tuning functions.

Figure 4.6: Masking Effect
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More specifically, Legge and Foley[6] proposed the concept of contrast masking, which is
used to study the spatial frequency selectivity of pattern vision by measuring signal thresh-
olds at one spatial frequency in the presence of masking patterns of other spatial frequencies.

There are actually two phenomenons of the contrast masking: masking effect and facilita-
tion effect. The masking effect, illustrated in Fig.3, describes that with the raise of the mask
contrast, firstly (when MC < MC0) the threshold of visibility (T) is almost a constant (T0),
but after a certain value of the mask contrast (when MC > MC0), the threshold of visibility
will increase, that means with the appearance of a higher contrast mask, it becomes harder
to distinguish the signal. The facilitation effect, illustrated in Fig.4, describes a contrary
effect of the mask which shows that when MC < MC0, the threshold of visibility, in fact,
decreases with the augment of the mask contrast, rather than remains a constant.

Figure 3. Masking Effect

log (Mask Contrast)log (MC )0
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Figure 4. Facilitation Effect
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In addition, for high contrast masks, and signals at medium and high spatial frequencies,
many studies have found that signal threshold elevation is maximal when the mask and signal
have the same frequency. Threshold elevation decreases regularly as the masking frequency
departs from the signal frequency. The functions relating signal threshold elevation to masker
frequency may be termed spread of masking functions or masking tuning functions.

Figure 4.7: Facilitation Effect

4.2.7.2 Masking Functions

Masking functions could be divided into single-channel masking and multi-channel masking,
depending on the number of channels used in the masking functions. Among multi-channel
masking functions, there are two types: inter-channel masking and intra-channel masking.

The inter-channel masking functions represent the masking and facilitation properties men-
tioned above Section 4.2.7.1. A computationally simple modeling is to reproduce the masking
effect by building the relationship between the threshold elevation and the mask contrast [79, 98],
which however does not account for the facilitation effect.

The intra-channel masking functions [99, 100, 82] models the lateral inhibition and lateral
excitation behaviors of the neurons in the receptive field (cf. Section 4.2.5.1 for this HVS
characteristic). While the functions in [100, 82] are image-driven (that is to say it can be applied
on an arbitrary pair of stimuli), the function in [99] can be applied only on the particular stimuli
employed.

4.2.8 Psychometric Function

The psychometric function relates the observer’s probability of detection/seen to the strength
of a stimulus, with the abscissa being the strength of a stimulus (the input of the function) and the
ordinate measuring the observer’s probability of detection/seen (the output of the function) [101].
The strength of a stimulus could be signal contrast, luminance, etc. Summary measures, such as a
detection/visibility threshold or a slope, may be also derived from the psychometric function.

The psychometric function is usually estimated based on experimental studies where observers
have to give one of two possible responses (e.g., yes or no in the yes/no experimental paradigm;
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or correct/incorrect in the two-alternative forced choice (2AFC) experimental paradigm) [102].MODEL-FREE PSYCHOMETRIC FUNCTIONS    1415

may be used (e.g., reaction times), only response propor-
tions are considered. They are treated as being distributed 
binomially, but this assumption can be relaxed.3

Using a local linear method removes the burden of decid-
ing about the parametric model when there is insufficient 
knowledge about the underlying processes. In a statisti-
cal sense, the local linear method also has the important 
property that its consistency, and hence lack of asymptotic 
bias, does not rely on the correctness of the model assumed 
by the experimenter (see, e.g., Fan & Gijbels, 1996, Sec-
tion 5.4). Thus, as the sample size increases, the estimated 
function necessarily approaches the true function.

As will be shown by the examples presented later, local 
linear fitting gives reliable results for a wide range of real 
and simulated data. The requirement that the psychometric 
function be smooth is not really restrictive, and most para-
metric methods assume the same. The local linear method 
can also adjust automatically to unknown upper and lower 
limits on a subject’s performance, including the conven-
tional guessing rate and lapsing rate, but if these limits are 
known, they can be incorporated explicitly in the local lin-
ear fit. Any summary measures, such as the threshold or 
slope, can be readily extracted from the fitted function.

Local linear fitting is not the only nonparametric 
method available for modeling psychometric functions, 
but it does offer several advantages over alternatives such 
as kernel smoothing, smoothing splines, Fourier series es-
timates, and wavelet approximations (see the discussions 
in, e.g., Fan & Gijbels, 1996; Härdle, Müller, Sperlich, & 
Werwatz, 2004; Hart, 1997; Simonoff, 1996).

The organization of this article is as follows. First, the 
essentials of the parametric method and the local linear 
method are described, with particular attention given to the 
role of the bandwidth in determining the local linear fit. 
A measure of goodness of fit is formulated, which is then 
combined with a cross-validation procedure to obtain an 
estimate of the optimum bandwidth. The effects of guess-
ing and lapsing are next analyzed, and their impact on de-
rived statistics, such as the threshold and slope, illustrated. 
Finally, a range of real data sets posing varying difficulty 
in fitting are modeled by the local linear method, and the 
results are compared with those from parametric methods.

Parametric Estimation
By way of preparation, it is useful to summarize the key 

features of the psychometric function and how it is fitted 
in a parametric approach based on maximum likelihood. 
The general form of the psychometric function is typically 
given as

 P(x)    (1    )F(x), (1)

where P(x) is the probability of a successful response 
at stimulus level x, the function F is a smooth, mono-
tonic function of x taking values between 0 and 1, and 
the constants  and  define the lower and upper asymp-
totes (Treutwein & Strasburger, 1999). The independent 
variable x is assumed to be one-dimensional, but this as-
sumption is not essential. The lower asymptote may be 
interpreted as a guessing rate, where, by the design of the 
experiment, performance is expected to be no better than 

the two models, but goodness of fit could not be used to 
decide which model best captured performance over the 
stimulus range (Strasburger, 2001, pp. 1371–1372).

How, then, should a model for a psychometric function 
be chosen? The approach advocated here is to use a non-
parametric method1 that is based on local linear fitting. In 
that no assumption is made about the shape of the true func-
tion underlying the experimental data, except for the basic 
requirement that it should be smooth,2 the approach may 
be considered, for psychophysical purposes, as model free. 
If necessary, the requirement could be added that the func-
tion should depend monotonically on the stimulus level, but 
this is usually satisfied automatically in the present applica-
tions. Although response measures other than quantal ones 

Table 1 
Definitions of Model Cumulative  

Distribution Functions F(x) in Standard Form 

Model cdf F(x)  Definition

Gaussian 1
2

22exp ,z dz
x

  x  

Weibull* 0,   x  0
1  exp( x ), 0  x   and   0

Reverse Weibull exp[ ( x) ],   x  0 and   0
1, 0  x   

Logistic [1  exp( x)] 1,   x  

Note—The general form of each function is obtained by transforming x 
to y  a0  a1x, where   a0   and a1  0; then y has the distribu-
tion F[(x  a0)/a1]. For example, the standard Gaussian cdf  has the 
general form , , where the parameters a0 and a1 are the mean  and 
standard deviation , respectively. *The Weibull cdf is sometimes writ-
ten as 1  exp( x), with x  0, after suitable transformation of variables 
(Strasburger, 2001); cdf, cumulative distribution function.

Figure 1. Parametric estimation of a psychometric function for 
frequency of seeing. The proportion of responses “seen” is plot-
ted against log stimulus luminance. Filled circles are data from 
Miranda and Henson (2008) and are based on 3–20 trials at each 
stimulus level. The curves are parametric fits, as identified in 
the key. The horizontal solid line indicates the criterion level for 
a 50% threshold, and the arrows mark the extreme estimated 
thresholds, which were for the Gaussian and reverse Weibull cu-
mulative distribution functions.
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Figure 4.8: Figure from [103]: four parametric fitted psychometric function curves for frequency
of seeing. The proportion of responses “seen” is plotted against log stimulus luminance. Filled
circles are data from [104] and are based on 3-20 trials at each stimulus level. The horizontal solid
line indicates the criterion level for a 50% threshold, and the arrows mark the extreme estimated
thresholds, which were for the Gaussian and reverse Weibull cumulative distribution functions.

One common way of estimating the psychometric function is to fit a parametric model
to the experimental data and the parameters of the model are estimated by maximizing the
likelihood [105, 106, 107, 108]. However, it is difficult to specify the best parametric model in
practice when there is insufficient knowledge about the underlying processes. This is illustrated
graphically by Figure 4.8 [103] which represents four plausible models: Gaussian, Weibull,
reverse Weibull, and logistic cumulative distribution functions. The four functions have different
shapes, but all of them are acceptable on the basis of the goodness of their individual fits given the
number of data points. However, threshold estimates (corresponding to a criterion level of 50%
seen), indicated by the solid horizontal line in Figure 4.8 varied from 0.946 log cd·m−2 to 1.037
log cd·m−2. Whether these differences in threshold estimates are important depending on the
application, but it is clear that the choice of the model may lead to bias in the parametric curve.

Recently, a nonparametric approach based on local linear fitting was proposed in [103], where
no assumption is made about the true model underlying the data, except its smoothness. This
method removes the burden of deciding about the parametric model when there is insufficient
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knowledge about the underlying processes. That is why we chose this model-free method in our
experimental study in Section 5.2.1.

4.2.9 Error Pooling

Error pooling function includes sub-band pooling and spatial pooling, which are applied to
combine together the error information on the sub-bands and on the perceptual difference map,
respectively.

This last human visual processing stage is delicate, so far we do not know how this mechanism
occurred. Thus in the literature we normally employ two simple error pooling methods: the
probability summation (with product series) [79] and the Minkowski summation [98].

4.3 Applications in medical image quality assessment

In the literature, several researchers tried HVS models for the detection task on medical images.
Jackson et al. [76] adopted the Sarnoff model [80] for the detection of a simulated tumor added
on a region of a mammographic image without tumor. They compared the model’s detection task
performance with that of three human observers using the detectability index [2], and showed that
the detectability for the human observers and the one predicted by HVS model are close. However
they did not conduct any hypothesis test to demonstrate whether there is a significant detectability
difference. Sarnoff model was also employed by Krupinski et al. [77] to compare the CRT and
LCD viewing for mammographic images. The results suggested that observer performance with
LCD displays is superior to CRT viewing. The correlation between the just noticeable difference
(JND) outputs of Sarnoff model and the human observers is high. Huo et al. [78] and Jiang et

al. [11] developed a Perceptual Difference Model (PDM) as a quantitative image quality evaluation
tool to compare different reconstruction methods in the context of parallel magnetic resonance
imaging (MRI). The results were obtained in the form of signal contrast sensitivity, while the
detectability was fixed. The PDM and human observer showed the same comparison results and
after scaling, the numerical differences between the reconstruction algorithms could be reasonably
predicted from a perceptual point of view. Johnson et al. [12] recently presented new results
investigating the utility of a Visual Discrimination Model (VDM) developed at Siemens Corporate
Research for predicting JPEG 2000 bit rates corresponding to visually lossless compression of
virtual slides for breast biopsy specimens. The results indicated that for test images compressed
to their visually lossless thresholds, JND metrics computed by the VDM were nearly constant at
the 95th percentile level or higher.
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Note that the two input images of PDM vary for different applications: for the evaluation of
image post-processing algorithm, the reference image is the original non-processed image and
the distorted images are the images post-processed by different algorithms, see [78] for example;
while for the detection performance evaluation, the reference image is a healthy image without
abnormality and the distorted image is that with simulated abnormality, see [76] for example. We
remark that PDMs haven’t been applied on the diagnostic localization task to date.

4.4 Conclusion

In this chapter, we firstly analyzed and summed up the general structure of HVS models: they
process the two input images (a reference image and a distorted image) with several functions
modeling HVS properties and they output a scalar that quantify the perceptual difference between
the two input images. Then we described their common functions by explaining the corresponding
HVS characteristics. We ended with a brief overview of their applications in medical image
quality assessment domain.

It should be remembered that existing HVS models only consider the sensation stage of the
human vision processing, while the more complex perception stage presents substantial interests
to be integrated. Consequently, we allow for part of the perception stage in the framework of our
proposed numerical observers, as detailed in Part III of this thesis.



Conclusion of Part I

This first part was dedicated to the ROC analyses and existing MOs and HVS models. As
said before, medical image quality must be defined in terms of the average performance of some
observers for some diagnostic tasks.

To characterize and quantify the task performance, ROC analysis and its variants have been
proposed for different diagnostic tasks. In this part, we introduced the ROC for the detection
task; the LROC for the detection-localization task of one signal on an image; the FROC and
the AFROC for the detection-localization task of multiple signals on an image. All these ROC
analyses need the gold standard which in reality is difficult to obtain. Thus the consensus of
experts is usually taken as the gold standard, or the gold standard can be “controlled” by using
synthetic images and/or signals.

We remark that: although the JAFROC1 is showed to be the FOM that has the highest
statistical power for the detection-localization task up to now and has already been widely used to
characterize the human observer performance, it hasn’t been used to evaluate the performance
of a numerical observer (mainly because no other numerical observers has been used before to
process the signal localization in images that contain multiple signals).

Regarding the image quality assessment using observers, one possibility is performing empiri-
cal studies with human observers. But this is costly and time-consuming. Thus the alternative is
to use numerical observers, as substitutes for human observers, which have been widely used in
today’s medical image quality assessment community. In this part, we detailed two categories of
numerical observers: MO and HVS model.

In the frame of MO, the detection task (defined in Section 1.1.1) is a binary classification task
with two underlying hypotheses (presence or absence of a signal in the image). The IO was firstly
proposed for the optimization of the binary classification problem, which chooses the hypothesis
resulting in the greatest probability or likelihood of the image data given that hypothesis. It sets an
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upper bound on the detection task performance of any observer, but is tractable only for simplified
settings (e.g. when the image data is Gaussian). The HO and then the CHO emerged for solving
the mathematically intractable problems of the IO. The CHO paradigm allows integrating the
spatial frequency and orientation selectivity of the HVS. Today’s trend in MO is towards SKS and
multi-slice, considering the variability in signal parameters and more and more use of volumetric
medical images, respectively.

We remark that:
– the SKS MOs have not been extensively studied yet;
– there is a great demand for widening the range of variable signal parameters of the existing

SKS MOs.

In the frame of HVS model, the scalar output is some sort of perceptual difference between
the two input images: a reference image and a distorted image. The input images are processed by
a series of functions modeling different characteristics of the HVS: amplitude nonlinearity, CSF,
sub-band decomposition, contrast conversion, masking function, psychometric function, error
pooling, etc..

We remark that:
– existing HVS models are only sensation models;
– it is necessary to integrate the perception stage of the human vision processing in the numer-

ical observers, since the perception plays an important role in medical image perception.

We also remark that: no numerical model (neither MOs nor HVS models) has been proposed
for the localization task of multiple signals on single-slice images.



Part II

Preliminary Perceptual Studies:
Radiologist & Model Performance
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Introduction of Part II

The second part of this thesis is dedicated to the experimental pre-studies conducted during
the preliminary stage of my PhD work. Given the studied modality MRI and pathology MS, the
first question that we asked ourselves regarding whether we can employ the existing numerical
observers directly for the signal detection on single-slice MR image. Thus we designed some
subjective experiments to investigate the suitability of the use of existing numerical observers in
our application.

As underlined in Chapter 3, MOs were normally applied to homogeneous background, such
as the four types of background introduced in Section 3.1.1. Homogeneous background may
be realistic in some cases (e.g. mammography), but is not realistic for brain MR image where
radiologists normally view images in their entirety, not a small homogeneous region only (e.g.
an extracted white matter region). It is thus worthwhile to investigate the importance of the
supplemental anatomical information in the entire single-slice image. In addition, as underlined
in Chapter 4, existing HVS models are not obtained from clinically relevant experiments with
radiologists. The end users of medical images are radiologists, not naive observers as for natural
images. Radiologists’ expertise certainly influences their task performance, especially in the
cognitive process to interpret perceived information. Thus we firstly explored the above aspects
and provided further insight into human visual system processing for this specific task, which
laid the groundwork for our numerical observer modeling in MRI image quality assessment by
addressing the perspective of radiologist diagnostic performance.

The ultimate goal of medical images is to help radiologists gain a high diagnostic accuracy.
Thus evaluating medical image quality from radiologists’ perspective is a useful alternative
compared to optimal observer approach. While several HVS models exist in the literature
(Chapter 4), few works have been conducted to evaluate the suitability of these models w.r.t. the
diagnostic task performance, and none has investigated their utilization for the perception task.
Thus it is worth comparing the suitability of HVS models to radiologists’ sensation-perception
behavioral performances in the context of medical images. Although several HVS models have
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been compared for natural images, their comparison in the context of medical images is not
a straightforward exercise, since the characteristics of medical images require totally different
investigation method.

This part comprises two chapters.
In Chapter 5, we present the experimental studies using human subjects, which investigated

the influences of MR image anatomical information and observer expertise on the human visual
system processing (including the sensation stage and the perception stage) for specific tasks.

In Chapter 6, we propose to use the AUC and its variance estimates as the figure of merit to
study the suitability of four of the most well-known HVS models: : VDP, HDR-VDP, VCGC,
SSO.



5
Anatomical information & observer
expertise influence
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In this chapter, the study on the effects of anatomical information and observer expertise on
the detection task will be presented and analyzed in detail.

For brain MRI, radiologists view images in their entirety, but the MO studies are usually
carried on a relatively homogeneous region [109, 110]. Besides, HVS models are composed of
functions based on the results of experiments with naive observers (observers without medical
knowledge), rather than radiologists who are accustomed to reading the medical images. However
the expertise influence of radiologists cannot be neglected in the image perception. For example,
it was showed in [111] that experience combined with training provides the basis for generating
efficient visual search strategies and developing distinctive conceptual criteria for perceptual
differentiation and interpretation of true breast masses from image artifacts and structured noise
that mimics breast abnormalities; and it is demonstrated in [112] that the development of expertise
improved pattern recognition (taking more information in during the initial Gestalt or gist view)
as well as improved allocation of attention and visual processing resources.

We therefore designed experimental observer studies with the objective of:

1. comparing the ability of human observers to detect a lesion in the presence of an entire
brain slice (with more anatomical information than a white matter region considered as
homogeneous);

2. comparing the detection ability of radiologists to that of naive observers.

The studies are detailed in this chapter. This work has resulted in the conference paper [113].

5.1 Method

5.1.1 Experiment protocol

The experiments were conducted in the same viewing conditions, e.g. a simulated radiology
reading environment in the Hospital of Angers, France. One expert in brain MRI with 21 years’
experience (expert), three radiologists (radiologist 1, radiologist 2, radiologist 3) and eight Naive
observers (Naive 1, Naive 2, Naive 3, Naive 4, Naive 5, Naive 6, Naive 7, Naive 8) participated in
the study. The decision time was unlimited.

The medical display used in this study was KEOSYS Positoscope, which was calibrated to
the Digital Imaging and Communications in Medicine (DICOM) Grayscale Standard Display
Function (GSDF).

Brain MR images of a 25-year-old healthy volunteer (who gave his approval for using the
images), with simulated multiple sclerosis (MS) lesions of different degrees of intensity, were



5.1. METHOD 67

used in this study. The subject identifier was stripped to anonymize it. A single case was adopted
here to eliminate background as a variable.

The studied image is one axial slice of the T2 FLAIR sequence, and in this type of sequence,
the MS lesions appear as hyper-signal (“bright spot”).

Before the experiment, we have conducted a quick pre-experiment, in which the adjustment
method was used to get the estimated visibility threshold of the radiologists. In the procedure
of the adjustment method, the stimulus intensity was adjusted according to the radiologist’s
response until it is just detectable. Then fourteen intensities around the average estimated visibility
threshold (with a step of 10% of the average estimated visibility threshold) were chosen to make
the lesions not too conspicuous.

Finally a model-free estimation method [103] was used to generate the psychometric curves
(a single-variable function for each subject and each experiment, where y-axis represents the
proportion of “seen” and x-axis the lesion intensity), and to get the thresholds at the criterion level
of 50% of “seen”.

5.1.2 Lesion simulation

The synthetic MS lesions here are modeled by the two-dimensional elliptical Gaussian function
defined in Eq.(3.3). The scale parameter σ = 7 and the shape parameter b =

√
2 considering the

entire slice size is 996× 1274.

The experiment only included lesions within the white matter cortical tissue as MS is char-
acterized by lesions within the white matter. The proprieties of lesion shape, size, position and
orientation were verified and confirmed by a consultant radiologist who specializes in MS. During
the experiments, six non-overlapped lesions of different intensities are simulated for each trial,
while their size, position and orientation were fixed for each trial.

This simulation protocol is adopted to avoid the problem of obtaining a healthy subject slice
from a lesion present slice (the only data available in the hospital database).

5.1.3 Study experiments

For the first objective, two experiments were conducted with each participant on two separate
days (one month between the two days) to reduce the memory effect:

1. Experiment one (Exp 1) consisted of six white matter blocks being selected within the
white matter. Lesions were placed at the centre of each block, as shown in Figure 5.1.
Six blocks were selected from the same slice used in Experiment two (Exp 2) to ensure
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their characteristics remain the same and the results could be compared. Participants
were requested to report whether they could see an abnormality in each of the six blocks.
Participants reported findings by selecting either; a) “Yes, I see an abnormality in this block”
or b) “No, I can’t see any abnormality in this block”.

2. Experiment two (Exp 2) comprised of one axial, cerebral slice, with six lesions located
in separated areas of the slice, as shown in Figure 5.2 (the slice contains the same white
matter blocks as in Exp 1). As in the previous experiment, participants were asked to report
whether they were able to see an abnormality in each of the selected six areas as denoted
and labeled for reference in Figure 5.2.

The two experiments differ in the amount of anatomical information available to each partici-
pant. The results of Exp 1 and Exp 2 allow the comparison of observer detection when anatomical
information is present and withheld.

For the second objective, we asked different questions to different observers in Exp 1 and Exp
2:

– the three radiologists and eight Naive observers are required to note if they were aware of
the presence of hyper-signals (the abnormality here is a hyper-signal);

– the expert was asked to note if clinically significant signs were present or not, that means
that he thinks that hyper-signal is not just a noise or a background structure, but a clinical
abnormality candidate which deserves further check (the abnormality here is a clinically
significant sign).

All observers were trained using 20 training images. Radiologists and Naive observers were
trained for the hyper-signal detection, and the expert was trained for the clinically significant sign
detection.

The results of the two experiments then also yield a comparison of inter-rater performance, e.g.
between expert (specialized reader of MR image analysis with MS lesions), general radiologist
(specialized in medical image analysis only) and Naive observer (not specialized in image analysis
or medicine).
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Figure 5.1: An example of one trial of experiment one (Exp 1) with six synthetic lesions.

Figure 5.2: An example of one trial of experiment two (Exp 2) with six synthetic lesions (Red
labels were applied only for reader demonstration).
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5.2 Results

5.2.1 Psychometric curves

The model-free estimation method [103] was applied to the data to generate psychometric
curves for each lesion location, participant, and experiment. The perception thresholds were
gotten at the criterion level of 50% of “seen”. The twelve psychometric curves for all observers
for Exp 1, Area 6, and for Exp 2, Area 6, are presented in Figure 5.3a and Figure 5.3b respectively.

Since the following statistical analyses are based on the thresholds derived from the model-free
estimation method, it’s important to know how accurately this method predicts study outcomes.
Thus, the coefficient of determination, R2, was calculated to measure the goodness of fit. The
results are shown in Table 5.1, note that an R2 of 1.0 indicates perfect curve fitting data, and
many of our R2 values are close to 1. However, two Naive observer scores (Naive 3 and Naive
4) were outside of the normal distribution for this study: their R2 values were less than 0.9. As
a consequence the results of these observers are eliminated in the following statistical analyses.
Finally, the remaining observer results (including one expert, three radiologists and six Naive
observers) were included in subsequent analyses.

Figure 5.3: Psychometric curves for Exp 1, Area 6 (Figure 5.3a) and for Exp 2, Area 6 (Fig-
ure 5.3b). The red lines highlight the radiologist results, while the black lines highlight Naive
observer results.
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5.2.2 Differences between Observer Group

The observers were divided into three groups: expert, radiologists and Naives. As previously
discussed, each experiment and observer had different research questions (distinguish the presence
of hyper-signals for radiologists and Naives, or the presence of clinically significant signs for the
expert). The analysis was performed taking into account the question (hyper-signal detection vs
clinically significant sign detection) and the expertise (radiologist vs Naive). As a result, observer
threshold defined here is threshold of simple visibility for the three radiologists and six Naive
observers; while the threshold of the expert is threshold of clinically significant sign’s detection.

Two non-parametric comparisons were conducted, since our samples were not normally
distributed. The following studies include results of Exp 1 and Exp 2. The first comparison was
conducted to examine simple visibility differences between radiologist group and naive group.
The second comparison examined between expert group and radiologist group differences for two
levels of detection task. The significance level was set to p < 0.05. The p-values of each test
are shown in Table 5.2 and Table 5.3, respectively. The box plots of the corresponding visibility
thresholds are shown in Figure 5.4 and Figure 5.5.

From Table 5.2, it is evident that, the p-value is much smaller than 0.05, denoting that there
is a significant difference between the visibility threshold of radiologists and Naive readers.
Furthermore, from Figure 5.4, we can see that the visibility thresholds of radiologists are much
lower than those of Naives, except for Area 3.

From Table 5.3, we can see that for all areas, the p-value is much smaller than 0.05, indicating
that there is significant difference between expert detection thresholds and radiology visibility
thresholds. And Figure 5.5 highlights that expert detection thresholds are higher than radiologist
visibility thresholds. One reason may be that the expert needs more information (noisy background,
location...) to interpret cognitively a hyper-signal as a clinically significant sign.

Table 5.2: The p-values of Mann-Whitney test between radiologists and Naive observers.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
p-value <0.001 <0.001 0.506 0.019 0.016 <0.001

Table 5.3: The p-values of Mann-Whitney test between expert and radiologists.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
p-value <0.001 <0.001 0.010 <0.001 0.001 <0.001
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Figure 5.4: Comparison of thresholds between radiologists and naive observers.

	   Figure 5.5: Comparison of thresholds between radiologists and expert.
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5.2.3 Differences between Experiment

For this analysis, Mann-Whitney was applied to the two experiments (Exp 1 and Exp 2),
and the significance level remained at p < 0.05 for both studies. Firstly, the simple visibility
thresholds of the three radiologists and six Naives were compared, for six areas, between both
experiments and the results are shown in Table 5.4. It is apparent that there was no significant
difference between the visibility thresholds of Exp 1 and those of Exp 2, indicating that there
might be no contribution of anatomical information in the simple visibility task.

Secondly, the clinically significant detection thresholds of expert observer were compared
between Exp 1 and Exp 2. The p-value is 0.009 (p < 0.05) for the 6 areas, and from Figure 5.7
it is apparent that the detection threshold of Exp 2 is lower than that of Exp 1. Then there is
difference between the clinical significant detection threshold of Exp 1 and that of Exp 2; this
indicates that the anatomical information contributes to a reduction of the threshold in the clinical
significant detection task.

Table 5.4: The p-values of Mann-Whitney test between Exp 1 and Exp 2 for radiologists and
Naives.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
p-value 0.749 0.881 0.328 0.026 0.815 0.374

	  Figure 5.6: Comparison of thresholds between Exp 1 and Exp 2 for radiologists and naives,
highlighting that there is no contribution of anatomical information in the simple hyper-signal
visibility task.
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	  Figure 5.7: Comparison of thresholds between Exp 1 and Exp 2 for the expert.

5.3 Discussion

As said in Chapter 4, most previous researches have favored the opinion that visual perception
processing includes two stages: sensation and perception. In the present study, when radiologists
and Naives perform the same task (as Naives do not have relevant clinical knowledge, they can
only simply detect the hyper-signal), they are actually performing the sensation, low-level stage of
visual processing. However, when radiologists consider the clinical implications of a signal, they
are interpreting the findings cognitively, which may be considered as a high-level of perceptual
processing here.

Altogether, the results suggest that at the sensation stage, radiologists have better detectability
of simple hyper-signals than Naive observers. This reason may exist as radiologists receive much
more training in their daily life and are far more experienced in image assessment. To go further
in the visual processing, it would be interesting to explore more on the perception stage where
expertise appears to influence the interpretation of the hyper-signals with an elevation of the
detection threshold.

It is well known that in daily practice, radiologists always read an entire slice, rather than a
small homogeneous region with limited anatomical information. However, the results suggest
that with regard to the visibility threshold of sensation at the low-level stage of visual perception
processing, no difference exists between assessing the synthesized lesion region on the entire slice
or a small homogeneous area with the lesion implanted within it. However, if the primary aim is
to evaluate the threshold of perception, anatomical information must be taken into consideration
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as it facilitates radiological performance.

5.4 Conclusion

Anatomical information coupled with the experience of the radiology reader are non-negligible
factors, which must be assessed when evaluating diagnostic performance, however, these factors
have not yet been accounted for in numeric observer models or HVS models. This study aimed at
assessing a small piece of the puzzle – how much information do radiologists need of the original
image to detect a synthesized lesion in terms of a) its actual presence and b) whether the lesion
would be considered of clinical importance.

This study demonstrates different detection abilities between radiology and naive observers,
confirming that radiologists have lower simple detection thresholds than naïves, due to their
medical education background, clinical experience and expertise; it also demonstrates little impact
of anatomical information at the low-level stage of perception processing, these simple visibility
thresholds can be acquired by psychometric experiments on either the entire slice or on the small
homogeneous region.

We also notice the impacts at the high-level stage of perception processing. In this small
cross-sectional study, anatomical information plays an important role and facilitates radiology
detection and assessment.

This study intended to elaborate on questions surrounding the prediction of human observer
performance, to facilitate understanding of visual perception, particularly at different levels of
abnormality visual processing in the specific domain of diagnostic interpretation.
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In this chapter, the conformities of HVS models to radiologists’ sensation-perception behav-
ioral performances will be studied.

Beside medical imaging community, e.g. in the context of natural image and video quality
assessment, the widely used HVS models have been proposed for assessing the quality from the
human’s perspective by modeling the known response of the early vision system as measured by a
variety of psychophysical experiments. However, these psychophysical experiments have been
performed by naive observers with no specialized medical education background. Radiologists,
as human observers, share the common HVS characteristics. Nevertheless, our previous study
(Chapter 5) demonstrated that radiologists have lower simple detection thresholds than naive
observers in this task (perhaps more top-down processes that are better tuned to the task due
to better training etc.). Besides, compared to natural images, medical image possesses specific
features (for example, images are monochrome in MRI and CT, the noise and the contrast depend
on the modality...). This inspires us to investigate the utilization of HVS models in the medical
image domain.

In the literature, several researchers tried HVS models for the sensation task on medical images.
Normally HVS models underlined the perceptual difference between a non-degraded image and a
degraded image [78, 11, 12], although some have considered the abnormality detection [76, 77]
and used HVS models within the framework of task-based approach, but without separating the
sensation and perception tasks. Note that while it has been poorly addressed by “natural” image
quality assessment community, task-based approaches are fundamental in the context of medical
imaging.

From literature overview, those HVS models have been adopted in different ways (for example,
the two input images of PDM vary for different applications: for the evaluation of image post-
processing algorithm, the reference image is the original non-processed image and the distorted
images are the images post-processed by different algorithms; while for the detection performance
evaluation, the reference image is a healthy image without abnormality and the distorted image is
that with simulated abnormality), applied for different modalities, and evaluated with different
figures of merit (detectability, AUC, signal contrast sensitivity, etc.), so that they can not be com-
pared directly. Consequently, identifying which HVS model correlates the best with radiologists’
task performance is still an open issue.

In this chapter, we present a pilot study in response to the following two questions in a specific
context (MRI and MS):

1. As a task-based approach, could the generic HVS models be used to approach radiologists’
detection task performance? And if yes, which HVS model has a closest performance to
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that of radiologists?

2. To what extent the HVS models could approximate the radiologists’ performance in the
perception stage? Which is the optimal model in this sense?

To our knowledge, no attempt has been made before to compare HVS models in the medical
image quality assessment domain. Although several HVS models have been compared for natural
images, the characteristics of medical images require different investigation method. This work
has resulted in the conference paper [114] and the Student Scholar Award in [115].

6.1 Method

6.1.1 Studied HVS models and their setup

Four of the most well-known quantitative HVS models are selected for this study:

1. Visible Difference Predictor (VDP) [79];

2. High Dynamic Range Visible Difference Predictor (HDR-VDP) [81];

3. Visual Contrast Gain Control model (VCGC) [82];

4. Spatial Standard Observer (SSO) [83].

They are chosen for three reasons:

1. Quantitative HVS models, based on the spatial contrast detection, is efficient for the
detection of near-visibility-threshold distortion. In the case of the MS lesion detection, their
contrast levels are typically near the human visibility threshold.

2. Though the quantitative HVS models used in the literature [80, 78, 11, 12, 116, 76, 77]
showed convincing results, they are kept private to the corporate. We would like to develop
a free software, and these four models provide details for the implementation.

3. We did not choose qualitative HVS models, e.g. structural similarity index, since it has
been empirically and analytically proved to be directly related to the conventional mean
squared error (MSE) which often produces misleading values that do not correlate well with
perceived quality [117].

The structural block diagrams of these four HVS models are shown in Section 4.1. Their
different HVS function implementations are compared in Table 6.1.

The four HVS models need two input images (reference image and distorted image); and their
output is a prediction of the perceptual differences between the two images. Default parameters
of these four HVS models were used for the programming.
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Table 6.1: Differences among the four HVS models: Visible Difference Predictor (VDP), High
Dynamic Range Visible Difference Predictor (HDR-VDP), Visual Contrast Gain Control model
(VCGC) and Spatial Standard Observer (SSO) (“—” means the function part is not included in
the corresponding HVS model).

Functions VDP HDR-VDP VCGC SSO

Amplitude
Nonlinearity

arbitrary
units

just noticeable
difference

(JND) units
— —

Contrast
Sensitivity
Function

(CSF)

one
CSF filter

a set of
CSF filters

for different
adaptation
luminance

one
CSF filter

[118]

one
CSF filter

[119]

Decomposition
into

Multiple
Channels

cortex filters cortex filters Gabor array —

Sub-band
Pooling

probability
summation

probability
summation

Minkowski
summation —

Spatial
Pooling

probability
summation

probability
summation

Minkowski
summation

Minkowski
summation

Masking
Function

intra-channel
masking:
threshold
elevation
function

same as
VDP

inter-channel
masking —
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After years of medical education and clinical experience, radiologists diagnose without any
reference image. On the assumption that the radiologist has a reference healthy image 1 in
mind [116, 76], we take a brain MR slice of a healthy volunteer as the reference image, on which
there is no lesion; distorted images are generated adding simulated multiple sclerosis (MS) lesions
of different degrees of intensity to the reference image. The MS lesion has been modeled in the
same way as in Section 5.1.2.

6.1.2 Subjective experiments

Three radiologists participated on four separate days to neglect the fatigue influence. All
experiments were conducted in a simulated radiology reading environment in the Hospital of
Angers, France. The decision time was unlimited. The viewing distance was 40cm (the distance
observed in clinical routine in the Hospital of Angers), and the visual angle is 42 pixels per degree.

The medical display used in this study was KEOSYS Positoscope, which was calibrated to the
DICOM GSDF. We established a look-up table (LUT), which is the most accurate specification of
the display response function, as the display model (relating pixel values to displayed luminance
levels) involved in the HVS models. The LUT was derived from the measurements of a luminance
meter (included in X-Rite i1XTreme).

In order to study the HVS model’ conformity to radiologists’ sensation and perception behavior,
four subjective experiments were conducted. 84 distorted images were generated using 14 contrast
levels and 6 locations in white matter region (since MS is a white matter disease) on the slice. In
each trail, one distorted image was shown to observers, which leads to 84 trials per experiment.

1. Experiment 1 (sensation task on entire slice): In each trial, a healthy cerebral MR slice with
one superimposed simulated lesion was shown to the radiologist. We asked radiologist if he
could detect a hyper-signal on the slice.

2. Experiment 2 (sensation task on homogeous region): In each trial, a homogeneous white
matter region, without other anatomical cues, selected from the same slice as in the experi-
ment 1 (to ensure its characteristics remain the same, cf. Figure 6.1) with one superimposed
simulated lesion was shown to the radiologist. We asked radiologist if he could detect a
hyper-signal on the region.

3. Experiment 3 (perception task on entire slice): In each trial, the same whole cerebral slice
as in experiment 1 was shown to the radiologist in each trial. Radiologists were asked to

1. There are lots of ways for radiologists to obtain this reference image: for example, some radiologists will refer
to normal atlases and other sources when examining an image; in MS there are longitudinal sets of images and the
previous image is a reference in terms of looking for change (as in many diseases).
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report if a clinical sign existed on the slice.

4. Experiment 4 (perception task on homogeous region): In each trial, the same homogeneous
white matter region as in experiment 2 was shown to the radiologist. The condition differs
from experiment 2 as radiologists were asked if a clinical sign existed on the region.

a simulated lesion

Figure 6.1: The left image is a healthy cerebral MRI slice with a simulated lesion on the top-right
of the slice; the right image is the zoomed white matter region containing the simulated lesion.

6.1.3 Performance evaluation method

One difficulty of model comparison is that the four models’ outputs are in different ranges:
both the VDP and the HDR-VDP provide a detection probability ranging from 0 to 1; the VCGC
gives arbitrary units of response difference (greater than 0); the output of SSO is in units of
just-noticeable difference (JND) greater than 0. Thus there is no direct way to compare their
outputs quantitatively.
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The usual solution in the medical domain to evaluate an objective metric’s performance for
the detection task is to use the figure of merit AUC, which is adopted here to evaluate the HVS
models in a quantitative manner.

The input images are first divided into two classes: signal absent and signal present, according
to the gold standard. The output of each HVS model is then considered as a test statistic, to be
compared with a decision threshold tc resulting in signal present if t > tc, and signal absent
otherwise. According to the decision of a HVS model, four states (TP, FP, TN, FN) exist for
drawing the ROC curves and calculating the AUC values. In finite dataset experiments, tc values
are chosen to explore the whole range of the model output. The output range of an HVS model
does not affect the binary classification task performance as long as the decision rule remains
unchanged.

It is widely accepted that the gold standard is difficult to define; it is more often a bronze
standard rather than gold (cf. Section 2.1). In our simulation case, the truth status is signal present
for all images since a simulated signal is added on the reference input image, and consequently FP
and TN are nonexistent. An alternative is to take the consensus of radiologists as the gold standard,
for which some images of the lower intensity stimulus are considered as signal absent. The AUC
performance thus measures the distance between a particular HVS model and the radiologists’
diagnostic results, which is in line with our initial goal - to evaluate medical image quality from
the radiologist’s point of view. In this study, the consensus was established for each trial using the
majority decision of radiologists. Thus N0 signal absent images and N1 signal present images
(N0 +N1 = 84) are obtained according to this consensus.

6.1.4 One-shot estimate

For each HVS model, a metric should be derived to evaluate its performance given the test
statistics on the set of N0 + N1 images. As a figure of merit, the exact value of AUC is only
computable given the probability density functions (PDF) of the test statistics, for which the
four HVS models in this study do not yield analytical expressions due to their complexity. With
finite experiment datasets, we used Gallas’s one-shot method [33] to calculate an unbiased AUC
estimate together with the estimate of its variance, since it is proved to be unique, uniformly
minimum variance and unbiased; and it is very easy to calculate.

In our application, each HVS model plays the role of a single non-random reader (term
definition cf. [33]) due to its deterministic algorithm behavior (lack of randomness). Thus the
corresponding AUC estimate and the variance estimate are given by:
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ÂUC = 1
N0N1

N0∑
i=1

N1∑
j=1

step(t1j − t0i) (6.1)

v̂ar = c1M̂1 + c2M̂2 + c3M̂3 + (c4 − 1)M̂4 (6.2)

where t1j denotes the test statistic output of an HVS model for the jth signal-present image and
t0i for the ith signal-absent image. The step function step(·) in Eq.(6.1) is 1 when the argument
is positive, 0 when the argument is negative, and 0.5 when the argument is zero. The linear
combination coefficients and the cross moments are also given in [33]:

c1 = 1
N0N1

c2 = N0 − 1
N0N1

c3 = N1 − 1
N0N1

c4 = (N0 − 1)(N1 − 1)
N0N1

M̂1 =
N0∑
i=1

N1∑
j=1

[step(t1j − t0i)]2
N0N1

M̂2 =
N0∑
i=1

N1∑
j=1

N0∑
i′ 6=i

step(t1j − t0i)step(t1j − t0i′)
N0N1(N0 − 1)

M̂3 =
N0∑
i=1

N1∑
j=1

N1∑
j′ 6=j

step(t1j − t0i)step(t1j′ − t0i)
N0N1(N1 − 1)
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M̂4 =
N0∑
i=1

N1∑
j=1

N0∑
i′ 6=i

N1∑
j′ 6=j

step(t1j − t0i)step(t1j′ − t0i′)
N0N1(N0 − 1)(N1 − 1)

It is noteworthy that for each HVS model, the AUC estimate and its variance estimate
expressions only involve the ordering of test statistic values through the use of the step function.
Thus two HVS model yield the same AUC estimate values if and only if the number of instances
of t1j − t0i > 0, i = 1, ...N0, j = 1, ...N1 is equal [33].

6.2 Results

6.2.1 ROC curves of HVS models

The ROC curves of the four studied HVS models using the consensuses obtained from the four
experiments are presented in Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5. These graphical
representations show that in all of the experiments, VDP has the largest AUC value and SSO has
the smallest AUC value.

Figure 6.2: Experiment 1 (sensation task on entire slice): the ROC curves for the four HVS
models.
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Figure 6.3: Experiment 2 (sensation task on homogenous region): the ROC curves for the four
HVS models.

Figure 6.4: Experiment 3 (perception task on entire slice): the ROC curves for the four HVS
models.
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Figure 6.5: Experiment 4 (perception task on homogenous region): the ROC curves for the four
HVS models.

6.2.2 AUCs for the sensation and the perception tasks

The AUC comparisons between Experiment 1 and Experiment 2, Experiment 3 and Experiment
4 are demonstrated in Figure 6.6a and Figure 6.6b, respectively. They do not only show the
estimates of the AUCs’ standard deviations and the ordering of the four models’ AUC values in
each stage of the HVS (sensation and perception), but also reveal the influences of anatomical
information in the two different stages of the HVS. Discussions about these results will be found
in Section 6.3.
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Figure 6.6: The Area Under the receiver operating characteristic Curve (AUC) comparison
between Experiments 1 and 2 (Sensation task), and between Experiments 3 and 4 (Perception
task).
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Experiment 3: clinical sign on whole cerebral slices
Experiment 4: clinical sign on white matter regions
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6.2.3 Pair wise comparisons of the AUCs

We performed the t-test for the pair wise comparisons of the AUCs with 95% confidence
interval. The statistical hypothesis tests clarify whether the differences between HVS models
(cf. Table 2) and between Experiments (cf. Table 3) are importantly significant or not (in our
case, when the p-value is less than 0.05, it means that the two AUCs are significantly different.).
Discussions about these results will be found in the next section.

Table 6.2: AUC comparison results among the four HVS models of Experiment 1, 2, 3 and 4, the
four symbols in the table cells denote the four experiments in order. “◦” indicates p-value < 0.05
(there is a significant difference between the two models) and “-” indicates p-value >= 0.05
(there is no significant difference between the two models). For example, in the cell of VDP vs.
VCGC, “◦◦◦-” means there is a significant difference between VDP and VCGC in Experiment 1,
2, 3, but there is no significant difference between VDP and VCGC in Experiment 4.

VDP HDR-VDP VCGC SSO
VDP

HDR-VDP ◦◦◦◦
VCGC ◦◦◦- ◦◦◦◦
SSO ◦◦◦◦ ◦◦◦◦ ◦◦◦◦

Table 6.3: AUC comparison results among the four Experiments of HVS models, the four
symbols in the table cells denote the four HVS models (VDP, HDR-VDP, VCGC, SSO) in order.
“◦” indicates p-value < 0.05 (there is a significant difference between the two models) and “-”
indicates p-value >= 0.05 (there is no significant difference between the two models). For
example, in the cell of Experiment 2 vs. Experiment 3, “◦◦◦-” means there is a significant
difference between Experiment 2 and 3 for VDP, HDR-VDP and VCGC, but there is no significant
difference between Experiment 2 and 3 for SSO.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Experiment 1
Experiment 2 - - - -
Experiment 3 ◦◦◦◦ ◦◦◦-
Experiment 4 ◦◦◦◦ ◦◦◦◦ ◦◦◦◦

6.3 Discussion

From Figure 6.6a and Table 6.2, it can be observed that the VDP model presents a significantly
higher AUC score estimate (> 0.95) with a small variance for the sensation task. The estimates of
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AUC differ significantly between the VDP model and any other HVS model. In that sense, the
VDP model performance is the closest to the radiologists’ sensation task performance and it is
significantly better than the other HVS models chosen for comparison.

Figure 6.6b and Table 6.3 confirm the same trend for the perception task: the VDP model
remains the closest to the radiologists’ perception task performance and it is significantly better
than other models. In addition, it is showed that the HVS models perform closer to radiologists
when more anatomical information is available, since the AUCs of all HVS models are much
lower in Experiment 4 (clinical sign on white matter region) than in Experiment 3 (clinical sign
on whole cerebral slice).

Table 6.3 indicates that there is a significant difference of AUC values between the sensation
task and the perception task (Experiment 1 vs. 3, and Experiment 2 vs. 4) for all of the four
HVS models. The results presented Figure 6.6a and Figure 6.6b pointed out that even if the
VDP approximates almost perfectly the radiologists in the sensation task, the distance between
them in the perception task is still important. Besides, Table 6.3 shows that for the sensation
task, HVS models’ performances remain nearly the same with or without anatomical information
(Experiment 1 and 2); however, for the perception task, the performances are significantly different
with or without anatomical information (Experiment 3 and 4).

Finally we note that in both the sensation and the perception experiments, the SSO model is
always the worst, i.e. the most distant model to the radiologists’ detection consensus using the
AUC metric. Note that the SSO is a simplified model by eliminating several sensation features,
such as the spatial frequency and the orientation selectivity, the visual masking effect based
on these selectivity sub-bands, and the sub-band pooling. These simplifications lead to lower
complexity and faster computation. Although it has been demonstrated to be an effective tool
for the application of display metrology [83], our results suggest that the spatial frequency and
orientation selectivity modeling are important for the medical image inspection.

6.4 Conclusion

In this chapter, four HVS models are compared for their potential use as a perceptual model
observer for the detection task on MR images. The results suggest that the VDP model outperforms
the other three HVS models and can be used to correctly model the radiologists’ sensation
task; nevertheless, there is a considerable distance between the HVS models’ performance and
radiologists’ perception performance. Moreover, in the perception task it is important to include
the anatomical information which helps the HVS models gain a better and closer performance. Our
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proposed assessment methodology remains valid for comparing and choosing the most suitable
model observer that best fits the radiologists’ consensus results. This type of study offers an
insight into modeling the diagnostic process and highlights the characteristics to be considered for
developing a suitable model for medical image quality assessment.
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Conclusion of Part II

This second part was dedicated to the experimental pre-studies for exploring the application
of existing numerical observers on the MS lesion detection on MR images. In our experiments,
MS lesions were simulated as the target stimuli for detection.

The purpose of the first study was to analyze the influences of MR image anatomical informa-
tion and radiologist expertise on the detection task. Two different image backgrounds were used
in the following experiments: a) homogeneous region of white matter tissue, and b) one slice of
a healthy brain MR image. One expert radiologist, three radiologists and eight Naive observers
(without any prior medical knowledge) performed these experiments, during which different
questions dependent were asked depending upon the level of experience; the three radiologists
and eight Naive observers were asked if they were aware of any hyper-signal, likely to represent
an MS lesion, while the most experienced expert was asked if a clinically significant sign was
present. With the percentages of responses “yes” displayed on the y-axis and the lesion intensity
contrasts on the x-axis, psychometric function was generated from the observer’ responses. Re-
sults of psychometric functions and calculated thresholds indicated that radiologists had better
hyper-signal detection ability than Naive observers, which was intuitively shown by the lower
simple visibility thresholds of radiologists. Moreover, the study indicated that for the radiologists,
the simple visibility thresholds remained the same with and without the anatomical information.
But anatomical information reduced the threshold for the clinically significant sign detection task.

In the second study concerning the comparison of HVS models, healthy cerebral MR slice
of T2 FLAIR sequence was taken as reference image; that with one simulated MS lesion was
taken as distorted image. 84 differently distorted images are generated given fourteen intensity
levels and six positions. The model performance is evaluated against gold standard derived from
three radiologists’ consensus. Thus the AUC measures the distance between the model and the
radiologist performance. Four experiments have been specially designed to identify radiologists’
sensation and perception behavior. The AUC estimates differ significantly between one HVS
model - Visible Difference Predictor (VDP) and other HVS models. VDP presents a significantly

93
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higher AUC score estimate (>0.95) with a small variance in the four cases, although it is still far
away from the human performance in the perception task.

Results in Chapter 5 and Chapter 6 indicate that there is a great demand for:
– a novel numerical observer which can treat not only small homogeneous regions, but also

entire images with anatomical structures;
– a novel numerical observer which can take into account the radiologists’ expertise and the

perception stage of visual processing, knowing that the sensation models (existing HVS
models) cannot really approach radiologist performance in the perception task.



Part III

Proposed novel numerical observers
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Introduction of Part III

Recall the technical barriers for existing numerical models in case of both single-slice and
multi-slice images, as said in Part I and Part II:

1. the range of variable signal parameters of the existing SKS MOs urgently needs to be
widened;

2. the perception of the HVS processing needs to be considered, knowing that the existing
HVS models are only sensation models;

3. more complex diagnostic tasks (e.g. the localization and estimation tasks, task on multi-slice
images) have to be treated;

4. in numerous modalities (e.g. MRI, CT scan...) the entire image with anatomical information
has to be processed and not only a small homogeneous regions, because of the importance
of anatomical information in the diagnostic decision;

5. radiologists’ expertise needs to be taken into account.

In the last part of this thesis, we propose several novel numerical observers trying to surmount
these barriers, for both single-slice and multi-slice medical images.

This part comprises three chapters.
In Chapter 7, we propose a novel SKS MO, named as Channelized Joint detection and

estimation Observer (CJO), for the detection of one parametric signal with random amplitude,
orientation and size on single-slice images.

In Chapter 8, we propose a nonlinear numerical observer, named as Perceptually relevant
Channelized Joint Observer (PCJO) for the detection-localization of multiple parametric signals
with random amplitude, orientation, size and location on single-slice images, while the number of
signals on the image is also unknown.

In Chapter 9, we propose a multi-slice numerical observer, named as multi-slice PCJO
(msPCJO) for the detection-localization of multiple parametric signals with random amplitude,
orientation, size and location on multi-slice images, while the number of signals in the volumetric
image is also unknown.
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7
CJO for detection task on single-slice
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In this chapter, we deal with the simplest task in the diagnostic process: the signal-detection
on single-slice images.

As said in Section 3.3, the experiments on SKE MOs showed that the task performances of
these models are much higher than that of human observer according to the AUC FOM. The main
reason lies in the unrealistic hypothesis of the SKE MO concerning the exact knowledge of the
signal of interest on the image, while the human observer only has a vague idea on the signal
parameters (location, amplitude, shape, orientation and size). Contrarily, the SKS MO constitutes
a model closer to human observation, by including the random characteristics of the signal. The
SKS MO searches the presence of a certain category of signals, not the signal known a priori.
Thus we expect that this flexibility can lead to a MO with a task performance closer to that of
human observer.

Toward this goal, we deepen the research in the SKS MO and extend the SKS CHO presented
in [120] to the case in which signal amplitude, orientation and size are unknown at the same
time. We named our extended numerical observer the Channelized Joint detection and estimation
Observer (CJO).

7.1 Joint Detection and Estimation (JDE)

Recall that for the detection task, the two hypotheses can be formulated as follows:

Hh : g = hx + b, h = 0, 1 (7.1)

where g is an M × 1 column vector representing the digital image with M pixels, and the binary
variable h controls the absence or presence of the signal x. xα denotes a particular signal with
parameters vector α:

α = [a, θ, b, σ, q] (7.2)

where a represents the signal amplitude (intensity), θ represents the signal orientation, b represents
the signal shape, σ represents the signal scale, and q represents the signal location (the coordinates
of the signal center).

One possible solution for SKS tasks [120] is an approach based on the joint detection and
estimation (JDE) theory [66], in which the estimates of α in Eq.(7.2) and Hh in Eq.(7.1) are
chosen jointly to maximize the joint posterior probability P (α,Hh | g). Thus the validation of a
hypothesis in Eq.(7.1) is accompanied by the maximum a posteriori probability (MAP) estimation
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of unknown signal parameters:

̂(α,Hh) = arg max
α,Hh

P (α,Hh | g)

= arg max
α,Hh

P (g |α,Hh)P (α)P (Hh)
P (g)

= arg max
α,Hh

P (g |α,Hh)P (α)P (Hh) (7.3)

where the statistical independence of α and Hh has been exploited. Under the assumption of a
zero-mean Correlated Gaussian Background (CGB, cf. Section 3.1.1), the conditional probability
density function P (g |α,Hh) can be written as:

P (g |α,Hh) = 1√
(2π)M |Σb |

exp
{
−1

2(g − hxα)tΣb
−1(g − hxα)

}
(7.4)

In view of the monotonic logarithmic function, the maximization of the Eq.(7.3) is then equivalent
to:

̂(α,Hh) = arg max
α,Hk

{
lnP (Hh) + lnP (α)− 1

2(g − hxα)tΣ−1
b (g − hxα)

}
(7.5)

= arg max
α,Hh

{lnP (Hh) + lnP (α)

− 1
2(gtΣ−1

b g − hxt
αΣ−1

b g − hgtΣ−1
b xα + h2xt

αΣ−1
b xα)

}
(7.6)

= arg max
α,Hh

{lnP (Hh) + lnP (α)

− −1
2(−hxt

αΣ−1
b g − hxt

αΣ−1
b g + h2xt

αΣ−1
b xα)

}
(7.7)

= arg max
α,Hh

{
lnP (Hh) + lnP (α) + hxt

αΣ−1
b (g − 1

2hxα)
}

(7.8)

where the term gtΣ−1
b g is ignored in Eq.(7.7) since it is not a function of α andHh. Notice that

the transpose of a scalar term (e.g. hgtΣ−1
b xα) is equal to itself.



102 CHAPTER 7. CJO FOR DETECTION TASK ON SINGLE-SLICE

7.1.1 Estimation

The estimation problem here is actually to find the parameters maximizing the probability in
the maximum a posteriori probability (MAP) sense:

α̂ = arg max
α

P (α | g)

= arg max
α

max {P (g |xα,H1)P (α)P (H1), P (g |xα,H0)P (α)P (H0)}

= arg max
α

max {P (g |xα,H1)P (α)P (H1), P (g |H0)P (α)P (H0)} (7.9)

which is equivalent to maximizing separately P (α |Hk, g) for k = 0, 1, then comparing the
two results and choosing the bigger one. Notice that the estimated parameters have no physical
meaning in the case of hypothesisH0 (signal is absent).

Without loss of generality, two additional assumptions are often taken in practice to further
simplify the expression:

– the parameters are uniformly distributed over the admissible space
(P (α) ∝ 1);

– the two hypotheses k = 0, 1 are equiprobable: P (H0) = P (H1).

This simplification is adopted in this work to facilitate the validation of the model observer for
SKS tasks. Thus from Eq.(7.8) and Eq.(7.9), the estimation problem becomes:

α̂ = arg max
α

{
max

{
xt
αΣ−1

b (g − 1
2xα), 0

}}
(7.10)

where 0 corresponds to the case k = 0. It follows that:

– if for all α, xt
αΣ−1

b (g − 1
2xα) ≤ 0, then the maximization in Eq.(7.10) is meaningless since

the maximum is always zero;
– otherwise α̂ = arg maxα

{
xt
αΣ−1

b (g − 1
2xα)

}
.

Consequently the estimation algorithm can be written as:
1. Calculate αt:

αt = arg max
α

{
xt
αΣ−1

b (g − 1
2xα)

}
; (7.11)

2. Determine α̂ according to the following rules:

α̂ =

αt if xt
αtΣ

−1
b (g − 1

2xαt) > 0

any value in the space of α else
(7.12)
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It should be noted that in general there is no analytical solution for Eq.(7.11) because of
the nonlinearity and non-concavity of the function. An alternative is to solve the maximization
problem by an iterative method. The iterative algorithm is then run over the parameter space of α,
according to some updating rule which often involves matrix multiplications for each iteration.

7.1.2 Detection

Now we consider the posterior probabilities of the two hypotheses given the estimated signal
parameters α̂ and a particular observation g:

P (Hk | α̂, g) = P (Hk)P (α̂)P (g |Hk, α̂)
P (g | α̂)P (α̂) ∝ P (Hk)P (g |Hk, α̂) k = 0, 1 (7.13)

where P (g | α̂) in the denominator is omitted since it is not a function ofHk.

The classical decision approach, based on signal detection theory, is to choose H1 when
P (H1 | α̂, g) > P (H0 | α̂, g) andH0 in the reverse case, which leads to the decision rule as below:

lnP (H1) + lnP (g |H1, α̂)
H1
≷
H0

lnP (H0) + lnP (g |H0, α̂)

⇔ −1
2(g − xα̂)tΣ−1

b (g − xα̂) + 1
2g

tΣ−1
b g

H1
≷
H0

ln P (H0)
P (H1)

λ = xt
α̂Σ−1

b

(
g − 1

2xα̂
)H1
≷
H0

ln P (H0)
P (H1) (7.14)

It’s easy to see that the test statistic λ is linear in g, given the optimal estimated signal
parameters, the background covariance matrix Σb and the prior probabilities of two hypotheses
P (Hk) (often assumed to be equal without special knowledge of the data set).

Note that the test statistic is actually realized jointly with the estimation step. In other words,
the comparison xt

αtΣ
−1
b (g − 1

2xαt) > 0 determines both the estimate of the signal parameters
Eq.(7.12) and the validation of Hk (detection decision) Eq.(7.14), where the name JDE comes
from.

7.2 CJO

The calculation of the test statistic in Eq.(7.14) has the same compute-intensive problem as
HO, in the face of modern images high dimensionality. The inversion of the covariance matrix
Σ−1

b costs O(M3), knowing that the dimension of Σb is M ×M when the number of pixels in the
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image is M . So the CHO’s channelization method Eq.(3.18) is employed in CJO to reduce the
dimentionality.

The maximization in Eq.(7.11) based on the channelized image g′ is then formulated as
follows:

αt = arg max
α

xt
α

‖Uα‖2
F

(
Uα (Σ′b)

−1 Ut
α

)(
g − 1

2xα
)

(7.15)

where ‖Uα‖2
F is a channel matrix energy normalization factor and ‖·‖F denotes the Frobenius

norm of the matrix [120]. Ideally, we want the function to be optimized in Eq.(7.15) is close
enough to that in Eq.(7.11), so that the impact of the dimentionality reduction is minimal. Intu-
itively, this implies that the covariance matrix Σ′b and the channel matrix Uα should be calibrated
properly, namely Σ−1

b ≈ 1
‖Uα‖2

F
Uα (Σ′b)

−1 Ut
α. This is a sufficient condition but not necessary for

that the αt obtained by Eq.(7.15) is approximate to that given by Eq.(7.10).7.3 Channelized Hotelling observers for SKS detection tasks 267

Figure 7.11: Illustration of the channel design condition (equation (7.26)): a rota-
tion by 72° in the image domain corresponds to a matrix multiplication in the channel
domain. The channel matrix U0 and the matrices Aα, A

′
α need to be chosen suitably,

such that in the figure the end result for transiting from xα to x
′
0 is the same, inde-

pendent of the path being followed. The problem of orientation-unaware detection is
discussed in more detail in Section 7.3.2.

from known reference parameters): Aαxα = x0. Similarly, A
′
α does the same

in the channel space by mapping UT
0 xα onto UT

0 x0. Figure 7.11 illustrates
the case of the orientation-unaware detection of a signal. Before explaining the
design of fixed channel matrices satisfying (7.26), we will first show that the
estimation part now completely takes place in channel space. Therefore, we
substitute (7.26) into the estimator (7.25):

α̂ = arg max
α

1

‖AT
αU0‖2

F

x
′T
0 C

′−1
b

(
A

′T
α y

′ − 1

2
x

′
0

)
(7.27)

with y
′
= UT

0 y and x
′
0 = UT

0 x0 the projected observed image and the projected
reference signal, respectively. Now we see that both the reference signal x0 and
the observed image y are projected only once, using the fixed channel matrix.
Exactly the same applies to test statistic from equation (7.24), which becomes:

t
′
JDE =

1

‖AT
αU0‖2

F

xT
α̂AT

α̂U0C
′−1
b A

′
α̂U

T
0 y

=
1

‖AT
αU0‖2

F

x
′T
0 C

′−1
b A

′
α̂y

′
. (7.28)

Because y
′

and x
′
0 can be precomputed prior to the optimization in (7.27),
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Figure 7.11: Illustration of the channel design condition (equation (7.26)): a rota-
tion by 72° in the image domain cor responds to a matrix multiplication in the channel
domain. The channel matr ix U0 and the matrices A , A need to be chosen suitably,
such that in the figure the end result for transiting from x to x0 is the same, inde-
pendent of the path being followed. The prob lem of orientation-unaware detection is
discussed in more detai l in Section 7.3.2.

from known reference parameters): A x = x0. Similarly, A does the same
in the channel space by mapping UT

0 x onto UT
0 x0. Figure 7.11 illust rates

the case of the orientation-unaware detection of a signal. Before explaining the
design of fixed channel matrices satisfying (7.26), we will first show that the
estimation part now completely takes place in channel space. Therefore, we
substitute (7.26) into the estimator (7.25):

ˆ = arg max 1
AT U0

2
F

x T
0 C 1

b
A T y 1

2
x0 (7.27)

with y = UT
0 y and x0 = UT

0 x0 the pro jected observed image and the pro jected
reference signal, respectively. Now we see that both the reference signal x0 and
the observed image y are projected only once, using the fixed channel matrix.
Exactly the same applies to test statistic from equation (7.24), which becomes:

tJDE = 1
AT U0

2
F

xTˆ ATˆ U0C 1
b
AˆUT

0 y

= 1
AT U0

2
F

x T
0 C 1

b
Aˆ y . (7.28)

Because y and x0 can be precomputed prior to the optimization in (7.27),

Figure 7.1: An illustration of the channel design condition (from Goossens’ thesis [120]): a
rotation in the image domain corresponds to a matrix multiplication in the channel domain. The
channel matrix U and the matrices Aα, A′α need to be chosen suitably, such that in the figure the
end result for transiting from xα to x′0 is the same, independent of the path being followed.

The maximization problem in Eq.(7.15) is hardly realizable since practically it needs a whole
set of channel matrices Uα with varying α (the search space of α is huge). An important
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contribution of Goossens is to solve this problem by searching the optimal parameters in the
channel domain instead of the spatial domain, without loss of accuracy. This requires that a
transform on the signal in the spatial domain can be expressed as an equivalent transform on
the signal in the channel domain, thus he added an extra requirement for designing the channel
matrix:

Uα = At
αU = U (A′α)t (7.16)

where U is a fixed channel matrix which does not depend on α and conduce to reduce the data
dimensionality; Aα serve to map the parametric signal xα onto a reference signal x0 (with a
known orientation/scale): Aαxα = x0; A′α map the channelized parametric signal x′α onto the
channelized reference signal x′0 : A′αx′α = x′0, and the size of A′α is normally much smaller than
that of Aα. A clear illustration (taking the orientation-unknown detection task as an example) is
shown in Figure 7.1 (from Goossens’ thesis [120]).

Then the estimation and the detection (as in Eq.(7.11) and Eq.(7.14) respectively) can be
rewritten as:

αt = arg max
α

1∥∥∥U (A′α)t
∥∥∥2

F

(x′0)t (Σ′b)
−1
(

A′αg′ −
1
2x
′
0

)
(7.17)

α̂ = f(αt) as defined in (7.12)

λ = 1∥∥∥∥U (
A′
α̂

)t
∥∥∥∥2

F

(x′0)t (Σ′b)
−1
(

A′α̂g
′ − 1

2x
′
0

)
(7.18)

7.2.1 Amplitude-unknown, orientation-unknown and scale-unknown task

In [120], suitable channels according to the different specific tasks of detection (amplitude-
unknown, orientation-unknown or scale-unknown) have been derived.

The simplest task is the amplitude-unknown case for which any channel could be adopted
since in order to satisfy Eq.(7.16) it suffices to choose

A′a = a−1I (7.19)

For the other two more complicated tasks (orientation-unknown and scale-unknown), a set of
steerable channels is adopted for the orientation-unknown case while a set of shiftable channels
is adopted for the scale-unknown case. An important feature of these steerable/shiftable basis
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channels is that another channel at any orientation/scale may be computed as a linear combination
of the basis channels [121, 122].

In polar-frequency coordinates, let ω be the radial frequency and ϕ be the angular orientation.
The steerable channels are given in Eq.(7.20):

fθk(ϕ) = (K − 1)!2K−1√
K(2K − 2)!

(cos(ϕ− θk))K−1 (7.20)

where θk = (k − 1)π
K

for k = 1, . . . , K are evenly spaced analysis angles and K is the number of
steerable channels.

Next, the scale-shiftable channels are defined as follows:

fσj(ω) = sinc
(

log2( |ω |
π

+ ε) + log2 σj

)
|ω | < π; (7.21)

where σj = 2j−1 for j = 1, . . . , J and J is the number of scale-shiftable channels; ε is a small
positive number to make sure the result is defined for ω = 0 (e.g. ε = 2−52). The product of the
two functions defines then the channel functions for the amplitude-orientation-scale-unknown case:

fθk,σj(ω, ϕ) = fθk(ϕ)fσj(ω) k = 1, . . . , K; j = 1, . . . , J (7.22)
An example of channels (K = 3 and J = 4) is shown in Figure 7.2.
By storing each sampled channel function Eq.(7.22) in a column, we construct the channel

matrix UM2×JK for the amplitude-orientation-scale-unknown case, for which the (j−1)K+k -th
column is the vectorized channel fθk,σj(ω, ϕ).

Two corresponding transform matrices for the orientation-unknown case and scale-unknown
case are given by Eq.(7.23) and Eq.(7.24) respectively [120]:

[A′θ]m,n = 1
K

sin(π(m− n)− θK)
sin(π(m− n)/K − θ) m,n = 1, . . . , K; (7.23)

[A′σ]m,n = sinc (((m− n)− (−log2σ))) m, n = 1, . . . , J; (7.24)

where θ is the signal orientation and σ is the signal scale; and the sinc function is:

sinc(t) =

 1 t = 0
sin(πt)
πt

t 6= 0
(7.25)
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scale1−orientation1 scale1−orientation2 scale1−orientation3

scale2−orientation1 scale2−orientation2 scale2−orientation3

scale3−orientation1 scale3−orientation2 scale3−orientation3

scale4−orientation1 scale4−orientation2 scale4−orientation3

Figure 7.2: An example of the filters for the amplitude-orientation-scale-unknown case, when the
number of steerable channels K = 3 and the number of scale-shiftable channels J = 4
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7.2.2 CJO for the amplitude-orientation-scale-unknown task

The design of the transform matrix for the orientation-scale-unknown case depends on the
sample storage ordering during the construction of channel matrix U, we have in the present
configuration:

A′α = A′a,θ,σ = 1
a

A′σ ⊗A′θ (7.26)

where ⊗ denotes the Kronecker product.
Notice that for an odd number K, the matrix A′θ has the interesting unitary property:

(A′θ)tA′θ = I. This is useful for reducing the calculation burden of the normalization factor∥∥∥U (A′α)t
∥∥∥2

F
= 1

a2

∥∥∥U (A′σ ⊗A′θ)
t
∥∥∥2

F
, which costs O(M2 · (JK)2) by direct evaluation. A sim-

plified numerical method is provided here.

From the definition of the Frobenius norm, we have:

∥∥∥U (A′σ ⊗A′θ)
t
∥∥∥2

F
= trace

(
(A′σ ⊗A′θ) UtU (A′σ ⊗A′θ)

t)
= trace

(
UtU (A′σ ⊗A′θ)

t (A′σ ⊗A′θ)
)

= trace
(
UtU

(
(A′σ)t ⊗ (A′θ)t

)
(A′σ ⊗A′θ)

)
= trace

(
UtU

[(
(A′σ)tA′σ

)
⊗
(
(A′θ)tA′θ

)])
= trace

(
UtU

[(
(A′σ)tA′σ

)
⊗ I

])
(7.27)

Let (A′σ)tA′σ = S = [sij] (i, j = 1, . . . , J), and divide the matrix UtU (of dimension JK × JK
) into J × J submatrices Tij (i, j = 1, . . . , J), each of dimension K ×K, then Eq.(7.27) can be
written as:

J∑
i=1

trace
 J∑
j=1

sjiTij

 =
J∑
i=1

trace
 J∑
j=1

sijTij


=

J∑
i=1

J∑
j=1

trace (sijTij)

=
J∑
i=1

J∑
j=1

sijtrace (Tij) (7.28)

Therefore it costs only O(J2) to calculate the normalization factor given an odd value of K. We
also note that Tij (i, j = 1, . . . , J) is known a priori, independent of image data, thus trace (Tij)
can be pre-calculated.



7.2. CJO 109

7.2.3 Practical implementation of the CJO for the amplitude-orientation-
scale-unknown task

As SKE CHO’s practical implementation (cf. Section 3.2.3.2), we can realize the CJO for the
amplitude-orientation-scale-unknown task by training and test stages.

7.2.3.1 Stage 1: Training

In the training stage, the inputs are two sets of images (with-signal and without-signal) whose
ground truth is known, including all the signal parameters α (so that A′a,θ,σ can be calculated).
Let g denote a particular image, xα a particular signal.

The outputs of this stage are the estimated channelized reference signal x′0 and a template w,
unlike the SKE CHO in Section 3.2.3.2.

x̂′0 = 〈A′a,θ,σx′α〉 = 〈A′a,θ,σ(Utxα)〉 (7.29)

w =
(
Σ̂′b
)−1

x̂′0 (7.30)

where 〈·〉 denotes the sample average. Σ̂′b is the estimated background covariance matrix:

Σ̂′b =1
2〈(g

′ − 〈g′ |H0〉) (g′ − 〈g′ |H0〉)t |H0〉+
1
2〈[(g

′ − x′α)− 〈(g′ − x′α) |H1〉] [(g′ − x′α)− 〈(g′ − x′α) |H1〉]t |H1〉 (7.31)

where g′ is the channelized image with the M2-by-JK channel matrix U constructed from
Eq.(7.22):

g′ = Utg (7.32)

7.2.3.2 Stage 2: Test

In the test stage, w and x′0 are used to estimate the signal parameters, as well as to calculate
the test statistic λ for each input test image g, the ground truth is however unknown to the CJO.

To find the maximum in Eq.(7.17), we used a trivial but very general problem-solving tech-
nique: brute-force search for a certain number (denoted byN ) of equally spaced signal parameters.
Then the maximum of the test statistics yielded by all the possible combinations of chosen param-
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eters is chosen as the final test statistic:

λ = max
a,θ,σ

(λa,θ,σ) = max
a,θ,σ

 wt∥∥∥∥U (
A′a,θ,σ

)t
∥∥∥∥2

F

(
A′a,θ,σg′ −

1
2 x̂
′
0

) (7.33)

By comparing Section 3.2.3.2 and Section 7.2.3, we can find the influence introduced by the
unknown variable.

7.3 Performance evaluation of the CJO

In this section, we will evaluate the CJO’s estimation and detection performance using both
the synthesized correlated Gaussian backgrounds and the real clinical backgrounds (white matter
regions extracted from brain MR axial images of T2 FLAIR sequences).

7.3.1 Parameter setup for the CJO

For both synthesized images and real clinical images, the image size is 65 × 65; 500 pairs
of images are used for the training stage (500 with-signal and 500 without-signal images), and
100 pairs of images are used for the test stage. The simulated lesion is located in the center of
the images. The signal orientation range is [θmin, θmax] = [0, π]. The signal amplitude range
[amin, amax] and the signal scale range [σmin, σmax] cover the corresponding maximum accessible
parameter space according to the background type. For example, [amin, amax] = [1, 255] (pixel
intensity value), and [σmin, σmax] = [1, 6] with

√
b = 2 for real clinical images.

7.3.2 Numerical instability problem

7.3.2.1 Problem formulation

To verify whether the signal parameters (amplitude, orientation and scale) could be well
estimated by the CJO, we can plot the estimated signal parameters vs. true values of signal
parameters. One example is shown in Figure 7.3, from which we can see that the relationship
between the estimated signal parameters and their true values is nearly linear, and the orientation
estimation is less biased than the estimation of the other two parameters.

In this study, we used the AUC and the estimate of its variance [33] as the FOM for the
detection performance evaluation. In general, a higher value of AUC means a better detection
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Figure 7.3: (a) Plot of estimated signal amplitudes vs. true values of signal amplitude; (b) Plot
of estimated signal orientations vs. true values of signal orientation; and (c) Plot of estimated
signal scales vs. true values of signal scale. Here the number of steerable channels K = 3 and the
number of scale-shiftable channels J = 5.

performance. Moreover, we used the normalized root-mean-square error (NRMSE) [123] to
quantify the signal parameter estimation errors to facilitate their comparison under different setups.
The NRMSE is the root-mean-square error (RMSE) [124] divided by the range of true values.
Lower NRMSE value indicates that the difference between the estimated value and the true value
is smaller.

Figure 7.4: First row: examples of real clinical backgrounds which are white matter regions
extracted from brain MR axial images of T2 FLAIR sequence. Second row: examples of real
clinical backgrounds plus simulated lesions with different signal parameters.

We tested CJO’s performances using both the Correlated Gaussian Background (CGB) and
the real clinical background. The CGB here was generated by convolving white noise following
the distribution N (0,1) with a 2D Gaussian kernel characterized by σb = 10. The real clinical
background here was a white matter region, extracted from healthy brain MR axial images of a T2
FLAIR sequence. As said before, the MS is a white matter disease; and in the T2 FLAIR sequence,
MS lesions appear as hypersignals (intensity is higher than its surrounding white matter), which



112 CHAPTER 7. CJO FOR DETECTION TASK ON SINGLE-SLICE

could then be simulated by Eq.(3.3). Examples of white matter regions and those with simulated
lesions are shown in Figure 7.4.

Plots of NRMSE and AUC with different combinations of number of steerable channels K
and number of scale-shiftable channels J for the two types of background with the signal shape
parameter

√
b = 2 are shown in Figure 7.5 and Figure 7.6.

Viewing the CJO performance results in Figure 7.5 and Figure 7.6, we notice that contrary to
expectation, increasing the number of channels yields unstable (even decreasing) performances.
We only showed the results for

√
b = 2 here, but this instability problem exists for whatever

values of
√
b.
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Figure 7.5: Plots of NRMSE and AUC as a function of the number of channels (the number of
steerable channels is K and the number of scale-shiftable channels is J .) for correlated Gaussian
background with the signal shape parameter

√
b = 2.
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Figure 7.6: Plots of NRMSE and AUC as a function of the number of channels (the number of
steerable channels is K and the number of scale-shiftable channels is J .) for white matter region
with the signal shape parameter

√
b = 2.

7.3.2.2 Matrix condition and inversion

In collaboration with a postdoctoral fellow D. GE who also worked on the EQuIMOSe
project, after investigating all the aspects in the design and implementation of the CJO, we
finally find the cause of this numerical instability by tracing back to the implementation of
the classical SKE CHO in the literature. This is because the estimated covariance matrix Σ̂′b
in Eq.(7.31) becomes extremely ill-conditioned when the number of channels is large. The
classical SKE CHO (the MATLAB source code of which can be found on the website http:

http://www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html
http://www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html
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//www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html) also faces this problem regarding
the estimated covariance matrix Σ̂′ in Eq.(3.22).

This problem has not been revealed before, mainly because the number of channels used in
the SKE CHO is normally small. But when we increase the number of channels in the SKE CHO,
we can observe that the detection performances of the SKE CHO do not necessarily augment
correspondingly for most channel and background sets. The investigation on the numerical
instabilities for the SKE CHO will be given in [125] in the near future.

Now let us get back to the CJO. An example of the condition number 1 w.r.t. the number of
channels for the correlated Gaussian background (results in the numerical instabilities as shown
in Figure 7.5) is given in Figure 7.7. Note that the total number of channels in the CJO is equal to
K × J , we observed that:

– the condition numbers grow nearly exponentially by increasing the number of scale-shiftable

channels J for every number of steerable channels K, while the condition numbers grow
relatively slowly by increasing the number of steerable channels K for every number of
scale-shiftable channels J ;

– when (K, J) = (3, 9), (5, 8), (5, 9), (7, 8), (7, 9), (9, 7), (9, 8), (9, 9), the matrix is ill-
conditioned 2 (with high condition numbers > 1011).

Note that the condition number evolution w.r.t. the number of channels for white matter region
(results in the numerical instabilities as shown in Figure 7.6) yields similar results as commented
above even though only correlated Gaussian background results are shown in Figure 7.7.

As a general rule, the inversion of a matrix for the resolution of a linear system Sx = y yields
an error of order :

|S−1y − x0 | ∼ ε · cond(S),

by noting x0 the exact solution, ε = 10−16 the order of float point precision, and cond(S) the
condition number of the matrix S.

1. The condition number is the ratio between the biggest eigenvalue in absolute value and that of the smallest
2. A problem with a high condition number is said to be ill-conditioned

http://www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html
http://www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html
http://www.radiology.arizona.edu/CGRI/IQ/page2/page4/page4.html
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Figure 7.7: Example of the condition number of the matrix Σ̂′b with increasing number of channels
(the number of steerable channels is K and the number of scale-shiftable channels is J) for the
correlated Gaussian background. The test is realized with a parameter setup identical to Figure 7.5

7.3.2.3 Tikhonov regularization method

The empirical estimate matrix Σ̂′b is by construction (cf. Eq.(7.31)) non-negative definite and
allows the following singular value decomposition (SVD) :

Σ̂′b = VDVt, (7.34)

where V is an orthonormal matrix containing normalized eigenvectors (VVt = I), and D =
diag(d1, . . . , dp) is a diagonal matrix whose main diagonal contains eigenvalues in the descending
order d1 ≥ . . . ≥ dp > 0. We recall that the condition number is the ratio d1/dp. Its direct inverse
writes thus Σ̂′

−1
= VD−1Vt.

The Tikhonov regularization [126] is particularly adapted to the evaluation of moderate
dimension ill-conditioned problems such as Eq.(7.30) (a few channels are necessary to enter the
ill-conditioned zone) and provides a direct closed-form solution. Instead of calculating Eq.(7.30)
by direct inverse as the solution of a linear problem :

Σ̂′b ·w = x̂′0, (7.35)
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a bias is introduced deliberately in the solution research by considering the following problem :

min
{1

2‖Σ̂
′
b ·w − x̂′0‖2 + 1

2η‖w‖
2
}
, (7.36)

for which the positive coefficient η controls the regularization level of the expected solution.
In the SVD point of view, the regularization method can be applied to replace

(
Σ̂′b
)−1

in
Eq.(7.30) with

w† = Σ†x̂′0 (7.37)

Σ† =
(

Σ̂′
t
Σ̂′ + ηI

)−1
Σ̂′

t
= V


d1

η+d2
1

. . .
dp

η+d2
p

Vt (7.38)

by choosing d2
1 � η � d2

p for the ill-conditioned cases. We note that for cases with relatively
small condition numbers, the regularization has negligible effects by imposing d2

1 � η : Σ† is close
to the direct inverse of Σ̂′b and thus the detection performances should not change significantly.
On the contrary, for ill-conditioned cases the presence of η avoids the division by zero with the
eigenvalues such as dp.

Although the CJO was used to illustrate the principle, other numerical observers involv-
ing an ill-conditioned matrix inversion are equally subject to the phenomenon. The Tikhonov
regularization method is then adopted for all our proposed novel numerical observers hereafter.

In the Section 7.3.3, the detection and estimation performances of the CJO using the Tikhonov
regularization method, for both correlated Gaussian background and real clinical background, are
presented.

7.3.3 Results

For both the NRMSE and the AUC, different signal shape parameters are considered:
√
b =

1.5, 2, 3, 4. A bigger value of b means the elliptical signal gets a more elongated shape.
The results with the correlated Gaussian background for

√
b = 1.5, 2, 3, 4 are shown in

Figure 7.8, Figure 7.9, Figure 7.10 and Figure 7.11, respectively. The results with the real clinical
background (white matter regions) for

√
b = 1.5, 2, 3, 4 are shown in Figure 7.12, Figure 7.13,

Figure 7.14 and Figure 7.15, respectively.
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Figure 7.8: Plots of NRMSE and AUC as a function of the number of steerable channels K and
the number of scale-shiftable channels J for correlated Gaussian background when the signal
shape parameter

√
b = 1.5, using Tikhonov regularization method.



118 CHAPTER 7. CJO FOR DETECTION TASK ON SINGLE-SLICE

(3,3)(3,4)(3,5)(3,6)(3,7)(3,8)(3,9)(5,3)(5,4)(5,5)(5,6)(5,7)(5,8)(5,9)(7,3)(7,4)(7,5)(7,6)(7,7)(7,8)(7,9)(9,3)(9,4)(9,5)(9,6)(9,7)(9,8)(9,9)
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

AU
C

(K,J)

(3,3)(3,4)(3,5)(3,6)(3,7)(3,8)(3,9)(5,3)(5,4)(5,5)(5,6)(5,7)(5,8)(5,9)(7,3)(7,4)(7,5)(7,6)(7,7)(7,8)(7,9)(9,3)(9,4)(9,5)(9,6)(9,7)(9,8)(9,9)
0

0.1

0.2

0.3

0.4

0.5

0.6

(K,J)

N
or

m
al

iz
ed

 R
oo

t−
M

ea
n−

Sq
ua

re
 E

rro
r (

N
R

M
SE

)

 

 
amplitude estimates
orientation estimates
scale estimates

K=3 K=5 K=7 K=9

Figure 7.9: Plots of NRMSE and AUC as a function of the number of steerable channels K and
the number of scale-shiftable channels J for correlated Gaussian background when the signal
shape parameter

√
b = 2, using Tikhonov regularization method.
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Figure 7.10: Plots of NRMSE and AUC as a function of the number of steerable channels K and
the number of scale-shiftable channels J for correlated Gaussian background when the signal
shape parameter

√
b = 3, using Tikhonov regularization method.
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Figure 7.11: Plots of NRMSE and AUC as a function of the number of steerable channels K and
the number of scale-shiftable channels J for correlated Gaussian background when the signal
shape parameter

√
b = 4, using Tikhonov regularization method.
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Figure 7.12: Plots of NRMSE and AUC as a function of the number of steerable channels K
and the number of scale-shiftable channels J for real clinical background when the signal shape
parameter

√
b = 1.5, using Tikhonov regularization method.
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Figure 7.13: Plots of NRMSE and AUC as a function of the number of steerable channels K
and the number of scale-shiftable channels J for real clinical background when the signal shape
parameter

√
b = 2, using Tikhonov regularization method.
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Figure 7.14: Plots of NRMSE and AUC as a function of the number of steerable channels K
and the number of scale-shiftable channels J for real clinical background when the signal shape
parameter

√
b = 3, using Tikhonov regularization method.
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Figure 7.15: Plots of NRMSE and AUC as a function of the number of steerable channels K
and the number of scale-shiftable channels J for real clinical background when the signal shape
parameter

√
b = 4, using Tikhonov regularization method.
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7.3.4 Discussion

By comparing Figure 7.9 to Figure 7.5, and Figure 7.13 to Figure 7.6, we can see that after
using Tikhonov regularization method, the CJO’s performances are non-degrading (monotonous)
while increasing the number of channels. Thus this result confirms that Tikhonov regularization
method can resolve the ill-conditioned matrix inversion problem, the main cause of the numerical
instability. It is important to achieve stable performance results with respect to the number of
channels for a given dataset such that the choice of optimal parameters should not be influenced
by numerical instability. In that sense, the Tikhonov regularization method achieves that goal by
obtaining a stable asymptotic performance that characterizes the upper limit of linear observers.

Throughout all the results, we observe that:

– Contrary to the number of scale-shiftable channels J , the number of steerable channels
K does not influence a lot the detection and estimation performance. The detection
performance tends to be stable when J reaches 4 or 5. Since fewer number of channels
requires fewer calculation complexities, the optimal channel numbers could be (K, J) =
(3, 4) or (3, 5) here for this given dataset.

– In general, more important estimation errors (bigger NRMSE values) lead to lower values
of AUC, viz. worse detection task performance (e.g., (K, J) = (3, 3), (5, 3), (7, 3), (9, 3)).

– Among different parameters, the CJO estimates better the signal orientation than the signal
amplitude and scale. And low orientation estimation error helps to gain a really good
detection task performance (AUC > 0.95), even though amplitude and scale estimation
errors remain higher (cf. Figure 7.10, Figure 7.11, Figure 7.14 and Figure 7.15). Ultimately
the orientation estimation seems to have the greatest effect on the detection performance
among the three unknown signal parameters.

– For both types of background, the CJO’s estimation and detection performances are better
for more elongated signal (bigger value of b).

– The CJO performs better on the correlated Gaussian background than on the real clinical
background. This is understandable considering the background model used in the CJO
is indeed the correlated Gaussian background and the complexity of the problem in real
clinical situations.

7.4 Conclusion

In this chapter, we proposed a novel SKS MO - Channelized Joint detection and estimation
Observer (CJO), that treats signal with variable amplitude, orientation and scale. Compared to the
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few existing SKS MO, the CJO extends the range of variable signal parameters. The preliminary
performance results show that the detection task performances of the CJO are desirable both for
the correlated Gaussian background and the white matter background of MR images of T2 FLAIR
sequence.

In the meantime, we presented in this section the idea of using Tikhonov regularization method
to address the ill-conditioned matrix inversion problem, the main cause of the numerical instability.
This can be generalized to all numerical observers requiring the inverse of an ill-conditioned
matrix.
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PCJO for detection-localization task on
single-slice
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Let us now consider a more clinically realistic but more complex situation: a test image may
have multiple signals, and observers do not exactly know the position, amplitude, orientation and
scale of each signal, nor the number of signals on each test image.

In fact, if there is only one signal on the image and the signal position is the only one unknown
parameter, then the CJO approach can be applied by using position-shiftable channels for this
particular localization task. But the required number of channels increases rapidly if a fine
spatial resolution is needed, e.g. 652 channels are needed for a grid of 65× 65 spatially selective
channels, as explained in [120]. Moreover position shiftability requires the channels to have
limited bandwidth (regions of support) in the frequency domain while scale shiftability requires
them to have compact regions of support in the spatial domain [122]. Thus, it is impossible to
design channels that are shiftable in position and in scale at the same time. Moreover, localization
task of multiple signals on an image is more challenging .

However, in order to represent more realistically the routine diagnostic process, the localization
task is highly important, especially if the signal locations have significantly impact on the
subsequent therapeutic interventions (e.g. biopsy or surgery).

To solve this problem, we propose a novel Perceptually relevant CJO (PCJO) by taking
advantage of the state-of-the-art in HVS modeling and our CJO. The only known signal parameter
for the PCJO is the signal shape. The PCJO also involves the perception stage to some extent.

To validate the task performance of the PCJO compared to that of human observers, we also
designed a free-response subjective experiment in this chapter.

This work has been published in the journal paper [127].

8.1 Structure diagram of the PCJO

The structure diagram of the PCJO is shown in Figure 8.1. The PCJO consists of two parts:

1. Candidate selection (outlined by a red dashed line in Figure 8.1) which generates several
test blocks for each image under test, and outputs the center position of each test block on
the image (performing the localization task);

2. Application of the CJO on candidates which calculates a test statistic for each test block
(performing the detection task).

The underlying paradigm consists in dividing the diagnostic process into two steps:
– the first step is a global search to locate the abnormality candidates deserving further check,

based on the human vision functioning used to detect abnormalities from the perceived
image under test (the sensation stage of human vision processing);
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Figure 8.1: The structure diagram of the proposed Perceptually relevant Channelized Joint
Observer (PCJO).

– the second step is a cognitive analysis and interpretation of each candidate, mainly depend-
ing on radiologists’ semiological knowledge and past experience (the perception stage of
human vision processing), which leads to their final decision.

8.1.1 Candidate selection

We remark that most numerical observers have ignored the intermediate result of the PDMs -
the perceptual difference map, which actually can provide extremely useful information for the
localization task. Our last study [115] showed that the Visible Differences Predictor (VDP) [79]
presents a good approximation of radiologists’ sensation performance in the context of multiple
sclerosis (MS) lesion detection on MR image (which is the same scenario as in our performance
evaluation study in Section 8.3). Thus the VDP is adopted in this paper to model the radiologists’
global search and to yield a candidate map.

The VDP schema is shown in Figure 4.1. Basically, the VDP is used to produce a map
of the probability of detecting the differences between two input images. On the assumption
that radiologists know what a healthy brain image should be like and refer to it in their mind
during the diagnostic process, we take an image acquired from a healthy person as Reference

image and the same image with simulated signals (modeled by Eq.(3.3)) as Distorted image, as
Jackson did in [76]. Thus, the VDP actually predicts the probability that the signal is visible in
radiologists’ perceptual domain. Remind the different steps in VDP models: a display model is
involved to relate pixel values to displayed luminance levels; an amplitude nonlinearity function
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is used to model the nonlinear response to luminance of the photoreceptors in the retina; one
CSF is adopted in VDP as a function of radial spatial frequency, orientation, light adaptation
level, image size in deg2, eccentricity and lens accommodation due to the viewing distance; the
cortex transform is applied to decompose the image into several sub-bands (spacial frequency-
and orientation- selectivity); an intra-channel masking function quantifies the visibility decrease
due to the presence of a supra-threshold background; a psychometric function characterizes the
increase in the probability of detection as the signal contrast increases; finally a sub-band pooling
combines the detection probability of each sub-band into a single map that describes the overall
detection probability pij for every pixel (i, j) in the image.

Since the VDP behaves well in terms of approximate sensation performance, we just use
a simple method to get the signal candidate map for the PCJO’s preliminary version. This is
generated from the VDP output detection probability map in five steps:

1. Creating a binary image by setting a probability threshold Tp on the detection probability
map:

bij =

1 if pij ≥ Tp

0 else
(8.1)

where bij denotes the pixel value at the position (i, j) on the binary image, Tp is chosen
empirically.

2. Finding and labeling 8-connected objects in the binary image.

3. Eliminating certain objects by thresholding the number of pixels for each labeled object,
such as π

√
bσ2

min.

4. Relabeling 8-connected objects in the processed binary image.

5. Calculating the gravity centers of the labeled objects.

These labeled objects are considered as signal candidates. Then a test block of predetermined
size 1

√
M ×

√
M centered around each object center is extracted from the distorted image. These

test blocks are the inputs for the test stage of the CJO, and the center positions are saved as the
localization response of the PCJO.

1. This size has to be adapted to the lesion size of the studied pathology.
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8.1.2 Application of the CJO on candidates

Our last study [115] also showed that there is still a gap between the VDP’s performance and
radiologists’ perception performance. One important reason is that radiologists can “learn” from
experience. Thus we also “train” our perceptually relevant numeric observer, using empirical data,
to make it behave more like radiologists. This is realized by using the training stage of the CJO.
Then we apply the CJO technique on every

√
M ×

√
M test block and save its test statistic as the

detection response of the PCJO.

The outputs of the PCJO are the test statistics and the center positions of the test blocks. Then
an FROC or AFROC FOM could be used to characterize the PCJO detection-localization task
performance.

8.2 Comparisons of PCJO with other numerical observers

Table 8.1 gives a comparison of our PCJO with several existing numerical observers. We can
see that the PCJO is the only one which tackles both the detection and localization task problems
among the five listed numerical observers. The PCJO needs least signal information and integrates
most HVS features. In addition, it allows multiple signals on the image.

8.3 Human observer study for performance evaluation

8.3.1 Studied pathology

To study the PCJO task performance, we selected MS as the studied pathology. As said in
Section 1.1.2, the main reason is that for this particular pathology, orientation, size, position
and number of lesions are all considered as diagnostic criteria [17], which is well adapted
for our PCJO study. Note that MS patients generally have multiple lesions and the number
of lesions is considered as a diagnostic criterion for MS, where the minimum number of MS
lesions is considered to be 13 in the diagnostic criteria used in clinical studies [18]. Besides, MS
lesions are subtle and difficult to be perceived. This also makes MS a suitable pathology for the
joint detection-localization task, for which the abnormality of the pathology should not be too
conspicuous.
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Table 8.1: Comparison of our PCJO with existing model observers.

Task Signal information
Allowed
# signals
per image

Included HVS features

CHO [52] Detection
Full knowledge

about all the
signal parameters

one
Frequency and orientation

selectivity of HVS

Eckstein’s
model

[57, 58, 59]
Detection

Signal size and shape
are unknown,
while other

signal parameters
are known exactly

one
Frequency and orientation

selectivity of HVS

Goossens’s
SKS CHO

[67]
Detection

Signal orientation
is unknown, while

other signal parameters
are known exactly

one
Frequency and orientation

selectivity of HVS

Park’s
model [15] Localization

Signal position
is unknown, while

other signal parameters
are known exactly

one
Frequency and orientation

selectivity of HVS

PCJO
Detection &
localization

Signal amplitude,
orientation, scale,

position are unknown,
while signal shape
is known exactly

multiple

Many HVS characteristics:
nonlinear response
of photoreceptors

to luminance;
variations in

visual sensitivity
as a function of

spatial frequency;
spatial frequency &

orientation selectivity;
visual masking properties;

visual psychometric
function.
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8.3.2 Experimental images

From a retrospective database of the Hospital of Angers, we collected 20 healthy subjects’ MR
brain images (3D axial stacks) of the T2 FLAIR sequence which is the most efficient sequence
for the MS lesion detection. We then chose 90 independent non contiguous slices among these
stacks. According to the radiologists’ feedback after the study, none of them could tell whether
some slices were from same subjects. Thus we considered these images as independent.

The slices were originally acquired at 256 × 256 and 16-bit per pixel. Then we asked a
neuroradiologist (who did not participate in the experiment) to use the digital imaging processing
tools (zoom/interpolation, windowing) to modify each slice as radiologists are accustomed to do
in clinical routine. The resulting 1024× 1024 and 8-bit images were optimized for MS diagnosis
and could not be modified during the experiment.

On T2 FLAIR sequence, MS lesions appear as small hyper intense signals of elliptical shape,
inferior to 10 millimeters. Their amplitude is higher than the surrounding white matter [128].
We used Eq.(3.3) to model the MS lesions on this sequence, since our precedent study [113] had
verified that experts found it well mimics MS lesions. According to this study, when we added
lesions with a luminance contrast between 0.1 and 0.35, we obtained an expected detection rate
between 60% and 80%. Overall 145 lesions (with random luminance contrasts between 0.1 and
0.35) were simulated. All the 90 images had 1 to 4 lesions.

8.3.3 Human observer study

We conducted a free-response subjective experiment [129] in order to assess human perfor-
mances.

8.3.3.1 Participants

Six radiologists participated in the experiment in a simulated radiology reading environment at
the University Hospital of Angers, France. Radiologists 1 and 2 are MS experts, with respectively
21 and 10 years’ experience; Radiologists 3-6 are not MS experts, with respectively 6, 3, 8 and 5
years’ experience.

8.3.3.2 Experimental protocol

According to [130], it is important to verify that the ambient lighting in the diagnostic reading
room is below 15 lux. The ambient lighting level in our experiment room was set to 11 lux
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Figure 8.2: GUI of the free-response subjective experiment for the performance evaluation of the
PCJO.

(same as the radiology reading environment at the Hospital of Angers, France). The medical
display used in this study was KEOSYS Positoscope, which was calibrated to the Digital Imaging
and Communications in Medicine (DICOM) Grayscale Standard Display Function (GSDF). The
viewing distance was 40cm, and the visual angle was 42 pixels per degree.

Each radiologist had to read 90 images, a 10-image training was also offered beforehand. The
display was set to be gray (grey level=55, which had been adjusted by the same neuroradiologist
who did not participate in the experiment) during the presentation of two slices for 0.5s. The
decision time was unlimited. Radiologists performed the detection-localization task without
knowing exactly the lesion characteristics (intensity amplitude, orientation, size, position). They
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were even not told the maximum possible number of lesions on each image (only knew the number
of lesions ≥ 0). The experiment was conducted in a controlled environment, thus the readers
could not modify the images.

8.3.3.3 Experiment’s graphical user interface (GUI)

For this experiment, we developed a special GUI (shown in Figure 8.2).

First, a radiologist decided whether there was one lesion on one image. Upon clicking on
the “YES” button, a horizontal line and a vertical one appeared on the image and their point of
intersection followed the cursor to indicate the lesion positions on the image. By a left click on a
position, the radiologist could define the center of a detected lesion, and a cross mark appeared
at the position while the two lines disappeared. The radiologist could cancel a previous center
definition by using the “CANCEL” button, which deleted the cross mark and made the horizontal
and vertical lines appear again. Then the radiologist expressed his confidence rating for the
marked region by typing directly a percentage number or using the slider bar. In case of visual
interference, clicking the “Hide Marks” and the “Hide Rates” button toggled off either the marks
or the rates, and changed them to “Show Marks” and “Show Rates”, that allowed undoing the
previous operation. If another lesion was detected on this image, the above process could be
repeated by clicking the “+1 LESION” button.

Clicking the red “0 LESION” button terminated the diagnosis process on the current image. A
dialog box then popped up showing all the marks and the rates and the next image was displayed
upon validation of the results; otherwise, the diagnosis on the current image restarted.

8.3.4 PCJO’s setup

The reference images for the VDP were from the stack of healthy axial slices; while the
distorted images for the VDP were obtained by randomly adding simulated lesions on the healthy
images. Note that the same set of 90 images with lesions, read by radiologists in our free-response
subjective experiment (cf. Section 8.3.2), fed the VDP as distorted images.

The possible positions of simulated lesions (q) were the coordinates of the pixels within the
white matter. The default parameter values in VDP were adopted, and the probability threshold
Tp in Eq.(8.1) was set to 0.9.

The training blocks for the CJO were constructed by extracting white matter regions from the
stacks of healthy axial slices, but different from those regions used in the candidate selection and
the subjective experiment. This ensured that the training blocks and the test blocks of the CJO
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were different. In our experiment, 1000 different white matter blocks were extracted, 500 blocks
without signal and 500 blocks with a simulated signal were used for the training step of the CJO.
The block size was predetermined as

√
M ×

√
M = 65×65. The scale range of simulated lesions

was [σmin, σmax] = [1, 6], and the lesion shape was fixed (
√
b = 2 in this paper). The possible

signal amplitude was [amin, amax] = [1, 255] (pixel intensity value). The signal orientation range
was [θmin, θmax] = [0, π].

8.3.5 Performance evaluation method

The JAFROC1 [44] (cf. Section 2.3.3) was selected to evaluate the detection-localization task
performance of PCJO compared with that of radiologists.

The JAFROC1 analysis was conducted using the software “JAFROC 4.1” (downloaded from
http://www.devchakraborty.com/). The acceptance radius R was set to 12 (one-half of the lesion’s
major axis) in our study. In addition, the DBM-MRMC significance testing integrated in the
software was conducted to examine JAFROC1 FOM differences between observers.

8.4 Results and discussion

8.4.1 PCJO performance w.r.t. radiologists’ performances

The JAFROC1 FOMs of the six radiologists are shown in Table 8.2. The DBM-MRMC
significance testing is conducted to examine JAFROC1 FOM differences between each pair of
radiologists. The significance level is set to p < 0.05. The p-values are shown in Table 8.3.
Table 8.2 and Table 8.3 illustrate that the experts have a significantly higher FOM than the other
four radiologists, while no significant difference exists among the FOMs of the two experts, nor
among the FOMs of the other four radiologists (cf. Section 8.4.3 for more discussions).

Table 8.2: The JAFROC1 FOMs of the six radiologists. The JAFROC1 FOMs of the experts are
highlighted in red.

JAFROC1 FOM Standard Error
Radiologist 1 (expert 1) 0.7672 0.0326
Radiologist 2 (expert 2) 0.7110 0.0329

Radiologist 3 0.4736 0.0378
Radiologist 4 0.4278 0.0399
Radiologist 5 0.4742 0.0419
Radiologist 6 0.4728 0.0369

http://www.devchakraborty.com/
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Table 8.3: The p-values from the DBM-MRMC significance testing to examine JAFROC1 FOM
differences between each pair of the radiologists. The p-values smaller than 0.05 are highlighted
in red. Radiologists 3-6 are denoted by Rad 3, Rad 4, Rad 5 and Rad 6 in this table.

p-values expert 1 expert 2 Rad3 Rad 4 Rad 5 Rad 6
expert 1
expert 2 0.1240
Rad 3 <0.0001 <0.0001
Rad 4 <0.0001 <0.0001 0.2176
Rad 5 <0.0001 <0.0001 0.2176 0.2115
Rad 6 <0.0001 <0.0001 0.9835 0.2254 0.9704
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There is no significant difference compared with the experts’ FOMs
There is significant difference compared with the experts’ FOMs
Expert 1’s FOM
Expert 2’s FOM

Figure 8.3: JAFROC1 FOMs of the PCJO for different combinations of K and J . The p-values
for examining JAFROC1 FOM differences between the PCJO and the experts are also calculated,
and those greater than 0.05 are highlighted in red, which means that the corresponding JAFROC1
FOMs of the PCJO are not significantly different from those of the experts.
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We then calculate the JAFROC1 FOMs for the PCJO with different combinations of the
number of steerable channels K and the number of scale-shiftable channels J . The p-values for
examining JAFROC1 FOM differences between the PCJO and the experts are also calculated. Part
of the results are illustrated in Figure 8.3. The results show that the number of steerable channels
K hardly influences the PCJO FOM, while the number of scale-shiftable channels J does. When
J is equal or less than four, there is no significant difference between the PCJO FOMs and those
of the experts (p > 0.05). The PCJO with J = 4 has the closest FOM to that of expert 1 and the
PCJO with J = 3 has the closest FOM to that of expert 2. This also illustrates that even using
a small number of channels (e.g. K = 3 and J = 4, 3× 4 = 12 channels) can result in a good
FOM, close to those of the experts; this allows to reduce the calculation burden in the PCJO.

8.4.2 PCJO performance w.r.t. other numerical observers’ performances

Compared to other numerical observers, one distinctive point of the PCJO is that it does
not need to have a priori knowledge about the signal amplitude, orientation and scale in the
detection-localization task, thanks to the CJO part (cf. Chapter 7) which can estimate the signal
parameters. This obviously yields more clinical relevance (more clinically realistic).

To further verify the usefulness of the signal parameter estimation, we compare the PCJO
with two other numerical observers selected from Table 8.1: the CHO [52] and Goossens’s SKS
CHO [67]. The two numerical observers are selected since their source codes are available. In
order to use the same FOM, it is necessary to perform the localization task as well, which is
however not included in these two numerical observers. Therefore, to conduct the comparison,
the two numerical observers are not directly used, but are used to replace the CJO part in the
PCJO, while the candidate selection step in Section 8.1.1 remains the same. This also allows us to
compare them with the radiologists’ detection-localization task performances.

Note that the signal amplitude, orientation and scale should be known exactly in the CHO and
the signal amplitude and scale should be known exactly in Goossens’s SKS CHO. Thus, these
need-to-know parameters should be fixed in advance. We test their performances with different
settings of signal parameters. The JAFROC1 FOMs of the CHO combined with the candidate
selection step and those of Goossens’s SKS CHO combined with the candidate selection step are
presented in Table 8.4 and Table 8.5, respectively.

We observe that with any setting of signal parameters and number of channels, the CHO and
Goossens’s SKS CHO combined with the candidate selection step always have similar JAFROC1
FOMs. Furthermore, they are always significantly higher than the JAFROC1 FOMs of the experts,
according to the DBM-MRMC significance testing results.
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Table 8.4: The JAFROC1 FOMs of the CHO combined with the candidate selection step, for
different fixed values of signal amplitude, orientation, scale, and different number of Laguerre-
Gaussian (LG) channels used in CHO.

amplitude orientation scale
# LG

channels
JAFROC1

FOM
Standard

Error
11 0 2 3 0.8663 0.0250
11 0 2 9 0.8586 0.0265
11 0 2 21 0.8484 0.0273
11 π/4 6 3 0.8676 0.0242
11 π/4 6 9 0.8644 0.0247
11 π/4 6 21 0.8621 0.0250
11 π/2 10 3 0.8648 0.0245
11 π/2 10 9 0.8533 0.0259
11 π/2 10 21 0.8434 0.0262
51 0 6 3 0.8675 0.0242
51 0 6 9 0.8644 0.0248
51 0 6 21 0.8621 0.0251
51 π/4 2 3 0.8643 0.0253
51 π/4 2 9 0.8564 0.0269
51 π/4 2 21 0.8475 0.0277
51 π/2 10 3 0.8656 0.0244
51 π/2 10 9 0.8536 0.0260
51 π/2 10 21 0.8485 0.0264

131 0 10 3 0.8656 0.0244
131 0 10 9 0.8536 0.0260
131 0 10 21 0.8488 0.0264
131 π/4 2 3 0.8639 0.0254
131 π/4 2 9 0.8559 0.0269
131 π/4 2 21 0.8478 0.0277
131 π/2 10 3 0.8656 0.0244
131 π/2 10 9 0.8636 0.0260
131 π/2 10 21 0.8488 0.0264
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Table 8.5: The JAFROC1 FOMs of Goossens’s SKS CHO combined with the candidate selection
step, for different fixed values of signal amplitude, scale, and different number of steerable
channels used in Goossens’s SKS CHO.

amplitude scale
# steerable
channels

JAFROC1
FOM

Standard
Error

11 2 3 0.8559 0.0266
11 2 9 0.8502 0.0264
11 2 21 0.8222 0.0287
11 6 3 0.8641 0.0248
11 6 9 0.8613 0.0251
11 6 21 0.8576 0.0249
11 10 3 0.8626 0.0249
11 10 9 0.8606 0.0251
11 10 21 0.8587 0.0248
51 2 3 0.8523 0.0277
51 2 9 0.8585 0.0254
51 2 21 0.8400 0.0261
51 6 3 0.8661 0.0248
51 6 9 0.8657 0.0246
51 6 21 0.8567 0.0251
51 10 3 0.8651 0.0247
51 10 9 0.8643 0.0248
51 10 21 0.8515 0.0256
131 2 3 0.8562 0.0272
131 2 9 0.8499 0.0264
131 2 21 0.8211 0.0271
131 6 3 0.8669 0.0246
131 6 9 0.8650 0.0247
131 6 21 0.8644 0.0244
131 10 3 0.8662 0.0245
131 10 9 0.8625 0.0252
131 10 21 0.8604 0.0250
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8.4.3 Discussion

It will be interesting to further investigate the radiologists’ results (cf. Table 8.2). Remember
that the JAFROC1 chance value is near zero. The results mean that Radiologists 3-6 are not
necessarily “bad”, just not as good as the experts. In Table 8.6, we present the number of TP
marks, the number of FP marks for the laxest criterion (confidence rating > 0) on all 90 images,
as well as the detection rate (number of TP marks divided by the total number of simulated lesions,
that is 145). From Table 8.6, we can see that all the radiologists have acceptable detection rates
which are greater than 0.5; and five of six radiologists have expected detection rates (between
60% and 80%) since lesions’ luminance contrasts were adjusted between 0.1 and 0.35, which
is in coherence with our previous study [113]. The big difference between the two experts and
Radiologists 3-6 is the number of FP marks: the experts have really few FP marks while the
Radiologist 3-6 have a number of FP marks almost the same as the number of TP marks. That is
why the experts have a significantly higher performance than the other 4 radiologists. Actually, by
observing the subjective experiment and talking to the radiologists after the experiment, we note
that Radiologists 3-6 could not really tell the difference between the MS lesions and the cerebral
cortex that also appears as hyper-signal, without referring to the information in the adjacent slices,
in some difficult cases. They tended to mark more lesions rather than to miss one lesion when they
had doubts. However the experts were far more experienced in MS image reading and they could
even imagine where the cerebral cortex locates without the adjacent slices in the difficult cases.
This also reveals that the experience/training on a certain pathology can dramatically influence
the diagnostic task performance on this pathology.

Table 8.6: The detection rate, number of TP marks, number of FP marks for the laxest criterion
(confidence rating > 0) on all 90 images of the six radiologists.

Detection Rate # TP marks # FP marks
Radiologist 1 (expert 1) 0.7241 105 22
Radiologist 2 (expert 2) 0.7241 105 36

Radiologist 3 0.7448 108 112
Radiologist 4 0.6690 97 107
Radiologist 5 0.6897 100 110
Radiologist 6 0.5172 75 76

What we expect from a numerical observer is, of course, to obtain an approximate performance
compared to that of the experts. The results of JAFROC1 FOM (which has a high statistical
power) demonstrate that our proposed single-slice numerical observer - PCJO - can correctly
approach the experts’ detection-localization task performances, with a relative small number of
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channels; while other existing numerical observers always outperform the experts’ performances.
This suggests that the PCJO paradigm is a promising method with a good clinical relevance.

8.5 Conclusion

In this chapter, we have proposed a novel numerical observer called the Perceptually relevant
Channelized Joint Observer (PCJO). To our best knowledge, we are the first ones to propose such
a numerical observer that can perform the joint detection-localization task when multiple signals
with random amplitude, orientation, size and location might present on one image, and the number
of lesions is unknown.

Compared to other numerical observers in the literature,

– the PCJO greatly extends the range of variable signal parameters by extending the SKS
MOs;

– the PCJO considers the perception stage of the HVS using a training process;
– the PCJO addresses the difficulty of multiple-signal localization using a PDM to select

candidate blocks.

We also conducted a free-response experiment close to the clinical paradigm to get the
detection-localization task performances of radiologists. We then used the JAFROC1 FOM to
evaluate the PCJO performance. We found that for the studied images (axial MRI slices of the
T2 FLAIR sequence), there is not a significant difference between the PCJO performance and
human performance. We also compared the PCJO with other mathematical observers using the
JAFROC1 FOM by adding the candidate selection part to these mathematical observers which
cannot perform localization task originally. The results showed that other mathematical observers
have a significantly higher performance than that of radiologists.

In the proposed PCJO, we used a perceptual difference model (PDM) to select candidate
blocks for signal detection by a channelized model observer. The big advantage of this approach
is that it is more computationally feasible for modeling combined detection-localization task
performance. The main limitation of this approach is that the PDM requires two images differing
only in the presence of one or more signals to be detected. This is addressed effectively with
simulation methods that introduce lesion signals into healthy images, a simulation which is also
required to generate signal-present images for MOs. But this model is well adapted for comparing
and optimizing medical image systems since we can do it with simulated lesions.

We conclude that this initial study suggests that the PCJO paradigm (a candidate search process
plus a decision making process) is promising for accurately predicting radiologists’ performance
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in the joint detection-localization task.
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Three-dimensional (3D) volumetric visualization of MRI and CT data of the brain, the internal
organs and the spine has become the standard for routine patient diagnostic care [131]. Compared
to single-slice image, volumetric (multi-slice) image provides more anatomical information, which
allows for a better distinction between true lesions and noise or background structure.

Thus radiologists would very probably change their behavior and perform differently when
they could make their diagnoses on multiple slices (viewing a stack in its entirety by scrolling back
and forth). During our subjective experiment for the validation of the proposed numerical observer
PCJO (cf. Section 8.3), we noticed that without adjacent slices, radiologists less experienced in
MS image reading often mistook cerebral cortex for lesion. That might explain why Radiologist
3-6 made a lot of FP marks (cf. Table 8.6). Two concrete examples are shown in Figure 9.1,
where radiologists marked the hyper-signal in the red circle as a lesion candidate, whereas they
considered the hyper-signal as the cerebral cortex in the presence of the adjacent slice.

This discovery inspires us to further investigate the multi-slice diagnoses and explore multi-
slice (or 3D) numerical observers which have a potential to be more clinically relevant.

In the literature, multi-slice numerical observers have been proposed in the framework of MOs,
but not yet in the frame of HVS models. According to the overview on the existing multi-slice
MOs in Section 3.4, we remark that:

1. existing multi-slice MOs perform only SKE detection task;

2. existing multi-slice MOs detect only symmetrical signal;

3. the signal is always located at the centre of the volumetric (or 3D) image.

In this chapter, we will extend the PCJO to a multi-slice numerical observer (Section 9.1).
We introduce the asymmetrical signal and the SKS detection task into the multi-slice numerical
observer, capable of estimating signal parameters (location, amplitude, orientation and size). In
addition, we will conduct a multi-slice subjective experiment in which the adjacent slices will be
shown to the radiologists for the performance comparison (Section 9.2).
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Figure 9.1: Two examples of two adjacent cerebral slices: the red circles indicate where the
cerebral cortex may be confused with a lesion if only the left slice is provided (single-slice image).

(a)

(b)
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9.1 Multi-slice PCJO (msPCJO)

9.1.1 3D signal model

To add simulated MS lesion on volumetric MR images, firstly we construct a 3D signal model
based on the 2D Gaussian signal model in Eq.(3.3):

[x]p = a exp
(
−1

2 (p− q)t BtD−1B (p− q)
)

(9.1)

where [x]p denotes the intensity value of the added signal at the 3-D coordinate p. The signal
intensity attenuation is hereby modeled by a Gaussian function of peak amplitude a, centered
at q. Without loss of generality, the diagonal matrix D in Eq.(9.2) specifies three parameters,
respectively the equatorial radii σ1 and σ2 (along the x and y axes) and the polar radius σ3 (along
the z-axis), in order to determine the shape of the ellipsoid, whereas the rotation matrix B given
in Eq.(9.3) specifies the spatial orientation transformation of the current ellipsoid w.r.t. the image
coordinate system [132]. We used here the x-y-z convention with independant Euler angles φ, θ,
and ψ. 1

D =


σ2

1 0 0
0 σ2

2 0
0 0 σ2

3

 (9.2)

B =
cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

 (9.3)

The visualization of a 3D signal example for which φ = θ = 0, ψ = π/4 is presented as
volumetric slices in Figure 9.2.

1. The rotations are applied firstly around the x-axis by φ, secondly around the y-axis by θ and thirdly around
the z-axis by ψ. Each basic rotation appears counter-clockwise and the axis about which it occurs points toward the
observer.
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Figure 9.2: The visualization of a 3D signal example as volumetric slices.

9.1.2 Extension of the PCJO to the msPCJO

The promising task performances of the PCJO on 2D images (cf. Section 8.4) encourage us to
extend it to the multi-slice case, as a more realistic modeling of the diagnostic process in clinical
routine.

The structure diagram of the multi-slice PCJO (msPCJO), shown in Figure 9.3, is similar to
that of the PCJO. The msPCJO also consists of two steps:

1. Candidate selection (outlined by red dashed lines in Figure 9.3) to generate several 2D test
blocks for each volumetric (3D) image (each volumetric image corresponds to one patient),
and then to output the 3D center position of each test block on the image;

2. Application of the 2D CJO on candidates to calculate a test statistic for each test block.

The difference between the msPCJO and PCJO lies in the first step - candidate selection,
which will be explained in Section 9.1.2.1.
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Figure 9.3: Structure diagram of the multi-slice PCJO (msPCJO).
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9.1.2.1 Candidate selection in the msPCJO

Many radiologists view the 3D volume first then look at slices, others look at slices directly,
depending on the modality and the pathology of interest. In both way, they have to process the
volumetric image slice by slice. Thus we assume that radiologists interpret multi-slice images by
pre-processing the volumetric image slice-after-slice (in x-y plane) to locate the lesion candidates
on each slice and then integrate information across the slices to make the final decisions.

Under this assumption, the VDP (HVS model) is applied and outputs a detection probability
map for each slice. 3-D coordinates with detection probability superior to the given threshold Tp
(Tp = 0.9 in this study) are preselected. These selected coordinates {xn}1,...,N are then readily
to be classified based on a Gaussian mixture model (GMM) since the signal intensity is itself
a gaussian function (cf. Eq.(9.1)) and the problem here is to inverse the mixture (de-mix) of
a linear superposition of unknown numbers of Gaussian distributions. We tested here one of
the well-known methods of classification based on the GMM: the expectation-maximization
(EM) [133] algorithm.

For a given class number I , the EM algorithm draws confidence ellipsoids (centers and
covariances). The Bayesian Information Criterion (BIC) is then computed to assess the number
of classes. Indeed, the minimization of the BIC solves the over-fitting problem 2 by using a
penalization term on the number of free parameters k (directly related to the number of classes) :

BIC = −2
N∑
n=1

log
{

I∑
i=1

πiN (xn |µi,Σi)
}

+ k log(N) (9.4)

9.1.2.2 Application of the CJO in the msPCJO

For each 3D lesion center, a 2D block (of fixed dimension
√
M ×

√
M = 65 × 65 in this

study) on the corresponding x-y plane is extracted, upon which is applied the 2D CJO algorithm
as detailed in the Chapter 7. The above-described procedure needs to be applied on the multi-slice
images of several patients to allow for the calculation of the figure of merit.

2. Likelihood tends to infinity if one class is created for each data xn
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9.2 Multi-slice subjective experiment for performance evalua-
tion

9.2.1 Subjective experiment

To evaluate the msPCJO’s detection-localization task performance, we designed a multi-slice
free-response subjective experiment. The studied pathology was MS and the studied modality
was MRI, the same as the performance evaluation study for the PCJO (cf. Section 8.3.1).

We used the same 10 healthy subjects’ brain MR axial images of the T2 FLAIR sequence as
in Section 8.3.2, but we chose 50 contiguous slices among the 3D stack of each subject. The slice
thickness is 1mm and the voxel size in the 3D image is 1mm ×1mm ×1mm. Note that the 90
images (single slices) used in the performance evaluation study for the PCJO (cf. Section 8.3.1)
are part of the 500 slices (10 subjects × 50 contiguous slices/subject). The purpose is to compare
observers’ task performances in both cases of multi-slice and single-slice.

3D synthetic MS lesions were added on these 3D volumetric images. Note that for the present
3D signal model from Eq.(9.1), a different elliptical hyper signal (as an intersection of the ellipsoid
volume and the slice plane) is added upon each 2D slice. To shorten the experiment time, the
maximum number of lesions is 15 per patient.

The participants, the experimental protocol and the setup of the VDP and the CJO are also the
same as in the performance evaluation study for the PCJO (cf. Section 8.3.3).

The process of the experiment is as follows:
– Before the experiment, radiologists were told that the number of lesions in the stack of each

subject is smaller than 15; and there is no lesion on the first and the last slices.
– For each patient, radiologists could always scroll up and down the slices via the up and

down arrow keys on the keyboard. The slice number is shown on the right side of the GUI.
– When they detected a first suspicious lesion, they went to the central slice of this lesion and

pressed the spacebar on the keyboard. This action made appeared a horizontal line and a
vertical line on the image whose point of intersection followed the cursor to indicate the
positions on the image, as shown in Figure 9.4.

– Then a dialog box popped up to ask radiologists the confidence rate (number contained
between 0 and 100), as shown in Figure 9.5.

– Radiologists repeated the above procedure to mark all the lesions in the 3D stack, and click
the “Finish” button to finish the experiment for one patient.

– Radiologists repeated the above procedure for the 10 patients.
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Figure 9.4: GUI of the multi-slice free-response subjective experiment for the performance
evaluation of the msPCJO, where a horizontal line and a vertical line appear on the image and
their point of intersection followed the cursor to indicate the lesion positions on the image.
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Figure 9.5: GUI of the multi-slice free-response subjective experiment for the performance
evaluation of the msPCJO, where a dialog box popped up to ask radiologists the confidence rate
(number contained between 0 and 100).
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9.2.2 Participants

Except Radiologist 2 (namely expert 2), all other five radiologists having participated in the
experiment for the performance evaluation of the PCJO have also participated in this multi-slice
experiment. Thus we keep the same identification number for the radiologists as in Section 8.3.3.1.
Radiologist 1 is an MS expert, with 21 years’ experience; Radiologists 3-6 are not MS experts,
with respectively 6, 3, 8 and 5 years’ experience.

9.2.3 Performance evaluation method

We still use the software “JAFROC 4.1” to evaluate the msPCJO’s performance w.r.t. that of
radiologists, and the DBM-MRMC significance testing integrated in the software was conducted
to examine JAFROC1 FOM differences between observers.

9.3 Results and discussion

9.3.1 JAFROC1 FOMs and p-values

The JAFROC1 FOMs of the five radiologists are shown in Table 9.1. The DBM-MRMC
significance testing is conducted to examine JAFROC1 FOM differences between each pair of
radiologists. The significance level is set to p < 0.05. The p-values are shown in Table 9.2.

Table 9.1: The JAFROC1 FOMs of the five radiologists for the multi-slice experiment. The
JAFROC1 FOMs of the expert is highlighted in red.

JAFROC1 FOM Standard Error
Radiologist 1 (expert 1) 0.9267 0.0161

Radiologist 3 0.7837 0.0636
Radiologist 4 0.9192 0.0420
Radiologist 5 0.6547 0.0852
Radiologist 6 0.6320 0.0995

We then calculate the JAFROC1 FOMs for the msPCJO with different combinations of the
number of steerable channels K and the number of scale-shiftable channels J . The p-values for
examining JAFROC1 FOM differences between the PCJO and the radiologists are also calculated.
Part of the results are illustrated in Table 9.3 and Table 9.4, noting that the results tend to be stable
when J > 4 and K barely affects the JAFROC1 FOMs.
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Table 9.2: The p-values from the DBM-MRMC significance testing to examine JAFROC1 FOM
differences between each pair of the radiologists. The p-values smaller than 0.05 are highlighted
in red. Radiologists 3-6 are denoted by Rad 3, Rad 4, Rad 5 and Rad 6 in this table.

Expert 1 Rad3 Rad 4 Rad 5 Rad 6
Expert 1

Rad 3 0.1489
Rad 4 0.9499 0.2637
Rad 5 0.0278 0.2866 0.0322
Rad 6 0.0177 0.2114 0.0206 0.8506

Table 9.3: The JAFROC1 FOMs of the msPCJO for the multi-slice experiment, w.r.t. different
number of steerable channels K and number of scale-shiftable channels J .

(K,J) JAFROC1 FOM Standard Error
(3,3) 0.7076 0.1320
(3,4) 0.7645 0.1057
(3,5) 0.7820 0.0991
(5,3) 0.7029 0.1336
(5,4) 0.7622 0.1094
(5,5) 0.7785 0.1033
(7,3) 0.7099 0.1324
(7,4) 0.7622 0.1102
(7,5) 0.7797 0.1019

Table 9.4: The p-values from the DBM-MRMC significance testing to examine JAFROC1 FOM
differences between the msPCJO with different (K, J) settings and radiologists. Radiologists
3-6 are denoted by Rad 3, Rad 4, Rad 5 and Rad 6 in this table. The p-values smaller than 0.05
are highlighted in red, which means that the corresponding JAFROC1 FOMs of the msPCJO are
significantly different from those of the radiologists.

(K,J) Expert 1 Rad3 Rad 4 Rad 5 Rad 6
(3,3) 0.0157 0.3990 0.0196 0.5578 0.4026
(3,4) 0.0731 0.8316 0.0874 0.2240 0.1426
(3,5) 0.1095 0.9846 0.1292 0.1590 0.0973
(5,3) 0.0136 0.3708 0.0171 0.5929 0.4321
(5,4) 0.0691 0.8116 0.0828 0.2339 0.1497
(5,5) 0.1012 0.9538 0.1198 0.1707 0.1053
(7,3) 0.0168 0.4135 0.0210 0.5406 0.3883
(7,4) 0.0691 0.8116 0.0828 0.2339 0.1497
(7,5) 0.1039 0.9640 0.1228 0.1667 0.1025
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9.3.2 Detection rate, # TPs and # FPs

In Table 9.5, we present the number of TP marks, the number of FP marks for the laxest
criterion (confidence rating > 0) on all the slices of the 10 patients for both the radiologists and
the msPCJO, as well as the detection rate (number of TP marks divided by the total number
of simulated lesions, that is 86). Note that the signal locations are calculated in the “candidate
selection” step in the msPCJO schema, thus the number of steerable channels K and the number
of scale-shiftable channels J (in the CJO part) do not influence the number of TP marks, the
number of FP marks and the detection rate.

Table 9.5: The detection rate, number of TP marks, number of FP marks for the laxest criterion
(confidence rating > 0) on all the slices of 10 patients. The total number of simulated lesions is
86. The results of the msPCJO is highlighted in red.

Detection Rate # TP marks # FP marks
Radiologist 1 (expert 1) 0.8953 77 2

Radiologist 3 0.8372 72 3
Radiologist 4 0.9186 79 2
Radiologist 5 0.7209 62 5
Radiologist 6 0.6163 53 5

msPCJO 0.8256 71 4

9.3.3 Discussion

9.3.3.1 On radiologists’ performances

It is interesting to inquire into the changes in radiologists’ performances from single-slice
experiment to multi-slice experiment.

Comparing Table 9.1 to Table 8.2, we find that both experts and radiologists improved their
detection-localization performances with the help of volumetric information (adjacent slices):
Expert 1’s JAFROC1 FOM is increased from 0.7672 to 0.9267; Radiologists 3-6’s JAFROC1
FOMs are increased from around 0.47 to above 0.63. The biggest surprise is that Radiologist 4
attained similar performance to that of Expert 1. The p-value results in Table 9.2 confirm that there
is no significant difference between Radiologist 3-4 and Expert 1, while Expert 1 and Radiologist
4 have a significantly higher performance than Radiologist 5-6.

Comparison between Table 9.5 and Table 8.6 also reveals that when volumetric images were
provided, all the five radiologists had various degree of improvement on the detection rate and
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reduction on the number of FP marks for the laxest criterion. Especially Radiologist 4 detected
even slightly more lesions than Expert 1.

Besides, in the course of the subjective experiments, we observed that all the radiologists
gave higher confidence notes in the multi-slice experiment than in the single-slice experiment.
They explained to us that with the access to adjacent slices, they can be more confident about the
presence of MS lesions.

In general terms, the results show the importance of the volumetric information for the
radiologists to detect and localize abnormalities. Radiologists less experienced in the diagnosis
of MS lesions on MR images may also reach a good performance as an expert when volumetric
information is available.

9.3.3.2 On the msPCJO’s performances

Similar to the results in Section 8.4.1, Table 9.3 indicates that the number of steerable channels
K hardly influences the msPCJO FOM, while the number of scale-shiftable channels J does.

Table 9.3 and Table 9.4 reveals that:

1. There is no significant difference between the msPCJO FOMs and those of the five radi-
ologists (p > 0.05), except when J = 3 the msPCJO FOMs (around 0.7) are significantly
lower than those of Expert 1 and Radiologist 4 (around 0.9).

2. With (K, J) = (3, 5) (not much calculation burden), the msPCJO attains its maximum
detection-localization task performance (around 0.78), which is nearest to that of Radiologist
3 (medium performance level among five radiologists), but still lower than those of Expert
1 and Radiologist 4 (top performance level among five radiologists).

From the detection rate point of view (cf. Table 9.5), the msPCJO almost detects as many
lesions as Radiologist 3 does, but fewer than Expert 1 and Radiologist 4 do. This indicates that the
“candidate selection” step (which controls the detection rate of the msPCJO) needs to be improved
if we want to approach the top performance level of radiologists. Towards that goal, it would
be essential to investigate the mechanisms that radiologists employ to combine the volumetric
information in the tasks of detection and localization of lesions on a multi-slice image.

9.4 Conclusion

In this chapter, we have proposed a novel numerical observer called the multi-slice PCJO
(msPCJO) in order to predict human performance in a more clinical relevant situation.
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Compared to other multi-slice numerical observers in the literature, the msPCJO greatly
extends the range of variable signal parameters and diagnostic tasks by including an SKS MO
(CJO) and an HVS model (VDP). To our best knowledge, we are the first ones to propose such a
numerical observer that can perform the joint detection-localization of multiple 3D signals with
random amplitude, orientation, size, location and number of lesions.

We also conducted a multi-slice free-response experiment close to the clinical paradigm to
get the detection-localization task performance of radiologists when volumetric information is
available. We found that for our studied modality and pathology, the msPCJO can predict human
performance in some degree: close to the medium performance level of radiologists, but still some
distance to the top performance level of radiologists. This implies that a deeper investigation
on the radiologists’ interpretation process of multi-slice images is necessary to achieve a better
performance (in terms of approximation to radiologists’ possible top performance level).

In this preliminary study, we had only 10 patients in the multi-slice free-response experiment.
This leads to lower statistical power when statistical analysis (such as the JAFROC1 and the DBM-
MRMC) was performed. Therefore, more patients are absolutely needed for further validation of
the msPCJO.
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Conclusion of Part III

This part of thesis was dedicated to our proposed novel numerical observers.
The CJO extends the range of variable signal parameters of the existing SKS MO based on

the JDE theory. It is expected to be more clinically relevant in case of one-signal detection on
single-slice images.

Regarding the PCJO, in the “candidate selection” stage, the integration of an HVS model helps
to treat the entire single-slice image with anatomical structures and to overcome many problems
associated with the computational feasibility for the localization task; in the “application of the
CJO on candidates” stage, the inherent training mechanism in the CJO contributes to develop the
expertise of the PCJO by accumulating experience when reading more medical images.

The msPCJO is an extension of the PCJO on multi-slice images. It has the same advantages
as the PCJO, thus the msPCJO can treat more complex task than the existing numerical observers
while extending the task scope to joint detection-localization and the unknown signal parameters
scope to amplitude, orientation, size, location and the number of signals in the volumetric image.

Two subjective experiments were conducted for validating the PCJO and the msPCJO. The
JAFROC1 FOM was used for comparing their detection-localization task performance to that
of radiologists. The results show that the two numerical observers predict well the human
performance. Thus our models are promising for the evaluation of medical imaging systems from
end-user’s point of view.
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10.1 Brief summary

With the growth of medical imaging technologies, the question of their assessment on the
impact and benefit on patient care is rising. Development and design of those medical imaging
technologies should take into account the concept of image quality assessment as it affects the
diagnostic ability of radiologists. While the subjective quality image assessment is costly and
time-consuming, there is a great need to evaluate the image quality objectively, but from the
radiologists’ perspective. Recently emerged new trend is the numerical observer in the frame of
task-based approach.

This thesis contributed various new aspects and methods to this topic. After a careful review
of the existing numerical observers, we proposed several novel numerical observers while con-
sidering several human factors involved in image analysis and interpretation, e.g. sensation and
perception issues, expertise influence and diagnostic analysis pipeline (detection, localization,
characterization), etc.. Our novel numerical observers greatly extended the range of variable signal
parameters and the scope of diagnostic tasks. They reached the radiologists’ task performance in
more and more realistic clinical conditions.

Note that our objective to develop predictive numerical observers of human task performance
is not to substitute radiologists in the daily diagnosis. Assuming that we have two medical imaging
techniques or systems, the objective of the predictive numerical observers is to come up with,
without using radiologists, the better technique or system for which radiologists can have a better
diagnostic performance.

10.2 Contributions and list of publications

The main contributions and novelties of this research that were discussed in detail in this
thesis, are:

1. A specialized study of the influence of radiologists’ expertise and anatomical information
on the perception of MR images (detailed in Chapter 5). The exploration of these aspects
provided further insight into human visual system processing for the diagnostic task. This
study provided the inspiration and argument for the numerical observer modeling for
MRI image quality assessment by addressing the perspective of radiologist diagnostic
performance. Published in SPIE MI conference [113].

2. A first comparison between the diagnostic task performance of Human Visual System (HVS)
models (one family of numerical observers, cf. Chapter 4) and that of radiologists in the
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context of MR images (detailed in Chapter 6). The characteristics of medical images require
different comparison methods, compared to natural images. Our comparison method can
be then applied on images of other medical imaging modalities. It’s important to know the
existing models’ performance in order to use them correctly and improve them according to
their application. Published in SPIE EI conference [114] and received the Student Scholar
Award in MIPS XIV Conference [115].

3. A novel Signal Known Statistically (SKS) Model Observer (MO) - Channelized Joint
detection and estimation Observer (CJO) (detailed in Chapter 7). The CJO is an extension
of the SKS MO proposed by Goossens in [120], which can detect a signal with variable
parameters (amplitude, orientation and size) on a single-slice image. The CJO widens
the range of variable signal parameters of the existing SKS MOs for the detection task on
single-slice images, and involves the estimation task (part of the characterization task).

4. A novel numerical observer - Perceptually relevant Channelized Joint Observer (PCJO) for
detecting and localizing multiple signals with variable parameters (amplitude, orientation,
size, location and the number of signals on an image) on a single-slice image (detailed in
Chapter 8). The existing numerical observers for the localization task only consider the
image with at most one signal [15], so far none considers the image with more than one
signal. The PCJO greatly expands the limited task scope of existing numerical observers
while integrating part of the human visual processing aspects. It is much more clinically
relevant and its detection-localization task performance on single-slice images is close to
that of radiologists. Published in IEEE TRANS. MEDICAL IMAGING [115].

5. A novel framework and implementation of the multi-slice PCJO (msPCJO) for the detection
and localization of multiple signals with variable parameters (amplitude, orientation, size,
location and the number of signals in an image) on a multi-slice/3D image (detailed in
Chapter 9). Existing multi-slice/3D MOs narrow the studied task down to the Signal Known
Exactly (SKE) detection task of one symmetrical signal located at the centre of the 3D
image. In our framework, the application of the PCJO to the multi-slice/3D case leads to
numerical observers that are more clinically realistic.

6. The design and implementation of two validation studies (free-response subjective experi-
ments) for the PCJO and the msPCJO by comparing the numerical observers’ detection-
localization task performance to that of radiologists. Note that although the Free-response
ROC (FROC) / Alternative Free-response ROC (AFROC) paradigm has already been
widely used to characterize the human observer performance, this is the first time that a
FROC/AFROC method is used to evaluate the performance of a numerical observer (since
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no other numerical observers has been used before to process the signal localization on
images that contain multiple signals).

So far, our research work resulted in 6 published papers (1 journal publication and 5 conference
publications), as bellow:

[Zhang et al., 2012] L. Zhang, C. Cavaro-Ménard, and P. Le Callet (2012). A Perceptually
relevant Channelized Joint Observer (PCJO) for the detection-localization of parametric
signals. IEEE Transactions on Medical Imaging, June 2012.

[Zhang et al., 2012a] L. Zhang, C. Cavaro-Ménard, and P. Le Callet (2012). Evaluation of HVS
models in the application of medical image quality assessment. In IS&T/SPIE Electronic

Imaging, Burlingame, California, USA, 22 - 26 January 2012

[Zhang et al., 2012b] L. Zhang, C. Cavaro-Ménard, and P. Le Callet (2012). Key issues and
specificities for the objective medical image quality assessment. In VPQM, Scottsdale,
Arizona, USA, 19 - 20 January 2012

[Zhang et al., 2011a] L. Zhang, C. Cavaro-Ménard, and P. Le Callet (2011). The effects of
anatomical information and observer expertise on abnormality detection task. In SPIE

Medical Imaging, Orlando, Florida, USA, 12-17 February 2011

[Zhang et al., 2011b] L. Zhang, C. Cavaro-Ménard, and P. Le Callet (2011). Using AUC to
study perceptual difference model suitability for the detection task on MR image. In MIPS

XIV Conference, Dublin, Ireland, 9-12 August 2011 (Student Scholar Award)

[Cavaro-Ménard et al., 2010] C. Cavaro-Ménard, L. Zhang, and P. Le Callet (2010). Diagnostic
quality assessment of medical images : Challenges and trends. In 2nd European Workshop

on Visual Information Processing (EUVIP), Paris, France, 4-6 July 2010 (invited paper)

10.3 Directions for future work

Several directions are open for future researches:

1. The preliminary validation results of our novel numerical observers demonstrate their
great potential. Thus we are considering their application on the quantification of medical
imaging system performance and the comparison of different image processing algorithms
or different medical displays, as shown in Figure 10.1. When the display system is modeled
by the display model in the VDP part, with regard to different image processing algorithms,
the PCJO or the msPCJO will give different outcomes, based on which the different
performances of these algorithms can be evaluated. Similarly, when the image processing
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Figure 10.1: Using the PCJO to quantify the medical imaging system performance: the reference
images for the VDP and the training images for the CJO can be obtained from healthy subjects,
then the distorted images for the VDP can easily be produced using a signal model.

algorithm is given, we can compare the performances of different displays by building their
corresponding display models.

2. There is a lot of room for improvement of the CJO/PCJO: improving the steerable/shiftable
channels to incorporating the decomposition mechanisms of the HVS; ameliorating the
candidate select algorithm based on the VDP output detection probability map; including
the variability of the signal shape; considering the characterization of signals, etc..

There is also a lot of room for improvement of the msPCJO: extending the CJO to 3D CJO;
improving the candidate select algorithm based on the VDP output detection probability

map on each slice; or incorporating factors in human temporal perception. The objective
is to integrate better the information in the z direction or the spatial correlation of the
background and signal in the adjacent slices for the multi-slice perception.

These future extensions could make numerical observers more anthropomorphic and more
clinically relevant, to better predict the human performance.

3. Although in this thesis, we restricted the scope to the MRI modality and the Multiple
Sclerosis (MS) pathology, the framework of the proposed numerical observers can be
applied on all digital imaging modalities. It will be interesting to apply the proposed
numerical observer frameworks on other imaging modalities and/or pathologies. Each
medical imaging modality has its own specific features corresponding to the studied physical
and physiological phenomena. It may be needed to change the background model, the signal
model, and the derivations of signal parameter estimation and the test statistic calculation
according to the studied modality and pathology.
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Lu Zhang-Ge
Modèles Numériques pour l’Évaluation Objective de la Qualité d’Images Médi-
cales

Numerical Observers for the Objective Quality Assessment of Medical Images

Résumé
L’évaluation de la qualité des images médicales
est essentielle pour optimiser un système
d’imagerie. Dans le cadre d’approches basées sur
la tâche, les modèles numériques proposés ont
des limites: pour la tâche de localisation, la plupart
des modèles ont besoin de la connaissance a
priori des paramètres du signal; les modèles
dédiés à la détection de signaux dans une image
3D se limitent aux signaux symétriques.
Dans cette thèse, nous proposons de nouveaux
modèles numériques: le CJO pour la détection sur
une coupe d’un signal dont l’amplitude,
l’orientation et la taille ne sont pas connus a priori ;
le PCJO et le msPCJO pour la
détection-localisation de plusieurs signaux
paramétriques d’amplitude, d’orientation, de taille
et d’emplacement variables sur une coupe (PCJO)
ou en 3D (msPCJO). Deux expériences ont été
conçues et mises en œuvre pour la validation de
nos modèles sur des images IRM présentant des
lésions de SEP. Les résultats indiquent que nos
modèles sont performants et prometteurs pour
l’évaluation de systèmes d’imagerie.

Abstract
Medical image quality assessment is critical for
comparing and optimizing medical imaging system.
In the frame of task-based approach, numerical
observers proposed for the objective medical
image quality assessment have several limitations:
e.g. for the multi-signal localization, most need a
priori knowledge of signal parameters; multi-slice
MOs narrow the task down to the detection of one
symmetrical signal at the image centre.
In this thesis, we propose novel numerical
observers: the CJO for the detection of one
parametric signal with random amplitude,
orientation and size on single-slice; the PCJO and
the msPCJO for the detection-localization of
multiple parametric signals with random amplitude,
orientation, size and location on single-slice and
multi-slice, respectively. Two observer studies
were designed and implemented for their validation
on MR images with MS lesions, and the JAFROC
FOM results indicate that they are promising for
predicting radiologists’ task performance,
ultimately for evaluating medical imaging systems.

Mots clés
Évaluation de la qualité d’images médicales,
Modèle Numérique, SVH, VDP, JAFROC, IRM.

Key Words
Medical image quality assessment, Model
Observer, HVS, VDP, JAFROC, MRI.
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