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École Polytechnique et Università di Bologna di Scienze dell’Informazione.
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List of symbols.

Arrows.

• −→: basic transition relation, cf Section 2.1 and Definitions 3.1.5, 4.2.3
and 6.3.3.

• 7−→: collective transition relation, cf Definition 2.1.2.

• Z=⇒: downgraded transition relation, cf Definition 2.2.3.

• _:nanoκ rules, cf Definition 3.1.3.

• =⇒: weak transition relation, cf Definition 6.2.1.

Relations and equivalences.

• ≡: structural congruence, cf Definitions 3.1.2, 4.2.2 and 6.6.2.

•
◦
≡α: restricted α-renaming, cf Section 4.5.2.

• ∼IMC : weak markovian bisimilarity, cf Definition 2.2.4.

• ∼CTMC : lumping equivalence, cf Definition 2.2.5.

• ∼CME : substitution equivalence, cf Definition 5.2.3.

• ∼b: backward stochastic bisimulation, cf Definition 5.3.1.

• ∼: master equation equivalence, cf Theorem 5.4.1.

Calculi.

• msπ: stochastic π-calculus with mixed choice and finite rates, cf Sec-
tion 6.3.

• msπ∞: stochastic π-calculus with mixed choice and infinite rates, cf Sec-
tion 6.3.

• msπn: multi-scale π-calculus with mixed choice and rates of magnitude
less or equal to n, cf Section 6.5.

• msπΩ: multi-scale π-calculus with mixed choice and with no bound on the
magnitude of the rates, cf Section 6.5.

• ssπ: stochastic π-calculus with separate choice and finite rates, cf Sec-
tion 6.3.

• ssπ∞: stochastic π-calculus with separate choice and infinite rates, cf
Section 6.3.
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• ssπn: multi-scale π-calculus with separate choice and rates of magnitude
less or equal to n, cf Section 6.5.

• ssπΩ: multi-scale π-calculus with separate choice and with no bound on
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Encodings.
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cf Definition 4.3.1.
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cf Definition 4.3.2.
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Symbol related to CTMC.
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• µ: transition matrix, cf 2.1.1.
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• r, s, t: fields, cf Definition 3.1.1.
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• φ, ψ, ν: interfaces, cf Definition 3.1.1.

• x, y, z: bonds, cf Definition 3.1.1.

• ǫ: the empty bond, cf Definition 3.1.1.

Symbol related to the π-calculus.

• x, y, z: channels, cf Definitions 4.2.1, 6.3.1 and 6.6.1.

• A,B,C: agents, cf Definition 4.2.1, 6.3.1 and 6.6.1.

• P,Q,R: processes, cf Definition 4.2.1, 6.3.1 and 6.6.1.

• α, β, γ: actions, cf Definition 4.2.1, 6.3.1 and 6.6.1.
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Chapter 1

Introduction.
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Nano-muscles and nano-elevators, molecular scissors and molecular gyro-
scopes, molecular wheelbarrows and nano-cars, but also motors, rotors, switches,
shuttles, . . .Where will the imagination and ingeniousness of chemists stop in
the design of nano-scale machines ? The sky is the limit. Or is it the quark?

Nano-devices. These machines operate at the nano scale and are synthesized
from molecular subcomponents whose functionalities are combined in order to
implement some new functionality. So they are artificial molecular complexes
built on purpose to achieve a predetermined task.

For instance, rotaxanes [68] are systems composed of a dumbbell-like molec-
ular axle surrounded by a macrocycle molecule (called “ring”).

Figure 1.1: Schematic representation of a two-station rotaxane and its operation
as a controllable molecular shuttle.

The extremities of the axle are bulky chemical moieties (called “stoppers”)
big enough to prevent the ring from escaping, which would cause the disassembly
of the system. In rotaxanes containing two different recognition sites on the
axle (called “stations”), it is possible to switch the position of the macrocyclic
ring between the two stations by an external energy input as illustrated in
Figure 1.1. Several rotaxanes of this kind, known as molecular shuttles, have
already been developed (see [20] and the references therein) and used for building
more complex systems [48, 46, 2]. The energy input necessary for the motion
of the ring can be alternatively given by light, temperature, acid-base reactions
or redox reactions.

There are two distinct approaches to the design of nano-devices ([35] page
163). The “hard matter” approach proposes to take inspiration from the macro-
scopic principles and objects and adapt them to the nano-scale. The “soft mat-
ter” approach proposes to focus on the principles of chemistry in order to design
efficient, adapted and controllable motion at the molecular level. According to
the authors of the above review:

The advantage of the “hard matter” approach is that we understand
macroscopic mechanics very well and so we can easily see how to
construct mechanical machines. The disadvantage is that, under
most conditions, such machines must fight against the physics and
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chemistry intrinsic to their length scale. The advantage of the “soft
matter” approach is that [...] we can see how to exploit the natural
features of the nanoscale environment. Its disadvantage is that there
is no familiar macroscopic model to follow and nature’s exquisite
working examples are too complex in their detail to provide us with
more than broad clue at present.

[...]Both sets of design philosophies have already had many notable
successes and they are not mutually exclusive. No doubt their com-
bination will become increasingly important in the future.

In this thesis we study nano-devices stemming from the “soft matter” ap-
proach while keeping in mind that such devices could also be used in the “hard-
matter” approach in the future.

Various biochemical systems have been successfully represented and stud-
ied using formalisms originating from the Concurrency Theory. So our goal in
this thesis is to investigate a formal representation of nano-devices using such
formalisms and the possible applications of such modelings. What is the Con-
currency Theory? And what are the advantages and limitations of a formal
representation using concurrent formalisms?

A formal “in-silico” laboratory. Concurrency Theory is the field of Com-
puter Science devoted to the study of concurrent phenomena, that is processes
operating in parallel and interacting with each other. Typical examples are web
transactions, sensor networks or simply the various processes communicating
inside a machine, such as a car for instance. Process algebras are a class of
formalisms originating from Concurrency Theory (see for instance [55]), where
processes are expressed syntactically as terms built by composing various op-
erators. For instance, P |Q is the parallel composition of the terms P and Q
or P + Q is the term behaving either as the term P or as the term Q. So a
characteristics of the conceptual framework developed for Process algebras is
the focus on structure and compositionality, in the sense that the operational
semantics (which describes the possible executions of terms) is usually defined
in terms of structural rules, (that is rules following the structure of the terms).

The seminal works [64, 65] have shown that biomolecular processes can be
successfully represented and simulated using process algebra. This approach
are grounded on the analogy between molecules and processes and between
molecular reaction and process communication. It also takes advantage of the
intrinsic concurrent nature of biomolecular systems: the various entities react
together simultaneously and compete for resources. They are also distributed
in space. Indeed, some reactions occur only on the cytogenic membrane, in the
Golgi apparatus, or in the nucleus, for instance.

The advantages of this approach are manyfold. It offers a formal format for
the description of biomolecular systems and this eases the exchange and gath-
ering of models. It permits in-silico simulations, which usually saves both time
and ressources with respect to in-vitro or in-vivo experiments. More impor-
tantly it permits formal analysis techniques such as model-checking, abstract
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interpretation, reduction of the state space using behavioral equivalences, sen-
sitivity analysis, etc. Finally, once one is confident with a model, one could test
alternative scenario: for instance by investigating the effect of a “knock-out”,
that is the deletion of an interaction, or by considering alternative environmen-
tal conditions such as temperature or acidity. In brief, the goal of this approach
is to provide an “in-silico” laboratory for the studying of biochemical systems.

The main limitations of this approach are the following. First, it depends on
the available biomolecular data, in the sense that the agents and interactions of
a model are given by the experiments, or sometimes the beliefs, of biochemists.
Moreover, for the moment and to our knowledge, this approach has shown a
limited predictive power, in the sense that it has not revealed many behaviors
that were not experimentally observed yet. This is probably due to the lack
of law of interaction at the level of abstraction of these models. Finally the
analysis aspect of this approach is limited by the available computational power:
the systems studied are often very large and so the resulting state space does
not allow all the analysis techniques to be applied.

The systems studied in this approach are usually originating from systems
biology, typically protein-protein interaction networks or regulation networks.
However the arguments of the analogy molecules-processes and reactions-com
munications, and of the intrinsic concurrent nature of biochemical systems, are
still valid for nano-devices. And there is one more argument for applying this
approach to nano-devices: their compositional nature that correspond to the
compositional nature of process algebra.

Compositionality. An important feature of the “soft-matter” nano-devices
is their intrinsic compositional nature both in structure and function. Indeed a
device is built by assembling smaller molecular components and is often meant to
be reused as a component for a more complex device. Moreover the function of a
device is performed by combining the functions of its components. We illustrate
these principles by two examples: a nano-elevator built from the assembling of
three rotaxanes [2] and molecular logic circuits [73, 53].

The nano-elevator consists of the assembling of three rotaxanes and two flat
tray-like molecules. One of the trays acts as a roof and has three legs, each
of them consisting of a rotaxane. The other tray acts as a platform and it is
interlocked with the three rings of the rotaxanes. With the appropriate stimulus
it is possible to trigger the motion of the rings along the rotaxanes and obtain
in this way the up and down motion of the platform of the elevator. Figure 1.2
describes the “up” and “down” configurations of the nano-elevator.

This example illustrates how nano-devices can be composed to build the
structure and the function of a more sophisticated device. Maybe more impor-
tantly it emphasizes how rotaxanes are meant to be building blocks for more
complex machines.

The implementation of the various features of logical circuits using molecular
machines has already been investigated by chemists: in particular the basic
logical gates, logical circuits constituted by a small number of logical gates
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Figure 1.2: Schematic representation of the nano-elevator.

(see [73] and the references therein), as well as multiplexer and demultiplexer [53]
have been implemented. Let us present the latter more in detail.

A multiplexer is a logical gate that has two boolean inputs and one boolean
output. Moreover it can be in two states: in the first state the first input
is directed towards the output, while in the second state the second input is
directed towards the output. A demultiplexer behaves conversely: it has one
boolean input and two boolean outputs and according to its state the input is
directed either towards the first output or towards the second one. In order to
implement these gates the authors of [53] focus on the fluorescence and light-
absorption properties of the 8-Methoxyquinoline (simply written 8-MQ in the
following) and its protonated form 8-MQ-H+, as depicted in Figure 1.31. The
two states of both gates are embodied using 8-MQ and 8-MQ-H+, and the
input signals consist of incident light of different intensities, while the output
signals consist of fluorescence intensity of different wavelength. Thresholds are
chosen in order to transform these continuous signals into boolean values. The
switching from 8-MQ to 8-MQ-H+ and vice-versa is easily controlled using acid-
base reactions with the triflic acid and the tris-n-butylamine respectively.

For instance in the case of the multiplexer, the input signals are light inten-
sities of 285 nm and 350 nm while the output signal is fluorescence intensity at
474 nm. 8-MQ fluoresces with intensity at 474 nm in response to light excita-
tion at 285 nm but not in response to excitation at 350 nm. Instead 8-MQ-H+

fluoresces with intensity at 474 nm in response to light excitation at 350 nm but
not in response to excitation at 285 nm.

Even if the wiring of the input and output signals of the various molecular
gates remains a challenge, the efforts are clearly directed towards obtaining a
set of basic molecular gates that can be composed in a circuit.

Formal nano-devices. The compositional and concurrent nature of nano de-
vices indicates that formalisms originating from the Concurrency Theory and
especially process algebra, which we have introduced previously, constitute ap-

1The Figure 1.3 has been borrowed from [53].
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Figure 1.3: Schematic representation of 8-MQ, in red, and 8-MQ-H+, in green,
and their operations as multiplexer and as demultiplexer.

pealing candidates for the formal modeling, simulation and analysis of nano-
devices.

We start with the goal of formalizing the RaH rotaxane [68] in order to
simulate its behaviour in silico by means of some contemporary stochastic eval-
uator [43, 19]. What formalism should we choose ? Three main criteria drive
our choice:

• First, the dynamics of chemical systems is described using the Chemical
Master Equation (CME in the following) which provides a full description
of the probabilistic behaviour of chemical systems via the dynamics of its
discrete populations of molecules. It is a differential equation on P (ρ, t),
the probability of a stochastic system to be in the state ρ at time t, that
can be derived from the Chapman-Kolmogorov equation [71]. In order
to be able to reflect the CME, our language should be equipped with a
stochastic semantics. This is also necessary to perform simulations.

• Among the various stochastic Process algebras devoted to the study of
biological systems two main approaches have emerged: the rule-based ap-
proach [13, 5, 25, 21, 12] and the process-oriented approach [66, 67, 15, 43,
16]. According to the former approach – inspired by traditional chemical
kinetics – a system is specified as a set of reactions; according to the lat-
ter – inspired by process calculi – a system is specified by defining each
molecule as a process, and deriving the overall behaviour by means of
communication rules.

Process-oriented descriptions depart from ordinary biochemical models
because they define the sequences of actions once and for all and use
syntaxes usually devoted to Computer Science. Moreover the modelling
of a molecule is a term of size proportional to the number of interactions
addressing the molecule. As a consequence, such descriptions are less
intelligible to biochemists than rule-based approaches, whose syntax is
closer to biochemistry and whose complexity is spread over the reactions.
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On the other hand, the theory of process-oriented calculi is much more
developed and they retain several simulators and tools, which make them
attractive for experiments in silico (see for instance [39, 15, 43, 74, 45]).

We choose to have a rule-based language in order to benefit from the nice
modelling properties. However as we detail in the sequel our language can
be encoded in the stochastic π-calculus [64, 65]. The π-calculus [55] is
a process algebra of reference in the Concurrency Theory. It is devoted
to the representation of communicating and mobile systems. Its terms
model agents evolving in parallel and communicating by synchronization
on channels. Its stochastic version has been successfully used for repre-
senting biochemical systems [66, 67]. Our encoding in the stochastic π-
calculus permits us to also benefit from the advantages of the agent-based
approach.

• Finally most of the structure and the function of nano-machines rely on
the bound capability of the molecular components and on their change of
state, typically light-induced excitation or fluorescence. So our formalism
should explicitly describe these features.

Therefore a formalism such as the κ-calculus appears to be a perfect candi-
date. Indeed, as we detail in the following, it is a stochastic rule-based formalism
that explicitly represents the bounding capabilities of the molecules.

Its basic operator is the molecule, which possesses sites that can be either
free or bounded to others molecules sites and that can have an internal state.
Its dynamic is governed by reactions that operate on molecular complexes by
creating or destroying bounds and by updating the internal states. For instance,
the molecule A(s1 + r2 + 1 + 2x) has two internal states s and r and two sites
1 and 2. The states s and r are set to 1 and 2, respectively. The molecule A
is bound to another molecule on its site 2, and the bond is called x, and A is
unbound on its site 1. The κ-calculus retains a graphical representation – the
above molecule is rendered in Figure 1.4(a). The binary reaction

ρ1 A(s0 + 1),B(t1 + 1)
λ
_ A(s1 + 1x),B(t0 + 1x)

illustrated in Figure 1.4(b), specifies that every molecule A, whose internal

A
s=1  r=2

1
2

A B
s=1 t=0

A B
s=0 t=1

!

s=1  r=2
1

2

1 1 1 1

(a) (b)

Figure 1.4: Molecules and reactions in κ-calculus

state s equals 0 and whose site 1 is free, may react with every B, whose internal
state t equals 1 and whose site 1 is free. The result is a complex where A and
B are connected by a bond, called x, and the two internal states have swapped

13



values. The label λ of the reaction represents its rate, which corresponds to the
chemical kinetic rate of the reaction.

It is worth to notice that this reaction applies to the molecule A in Figure
1(a), as well as to every other A with a different value of r and/or with an
unbound site 2. That is, rules do not need to mention every internal states and
site, they only constrain some of them. This essential feature permits to obtain
compact modelings and to reuse them easily.

The stochastic semantics of the κ-calculus can be formulated in terms of
Continuous Time Markov Chains (CTMC in the following). In this model a
transition is labelled with a stochastic rate which determines its sojourn time,
i.e. the time before the transition can be fired. The CTMCs have a rich and
well-known theory which permits, in particular, the computation of the so-called
transient and steady states probabilities (See for instance [70]). In addition
the κ-calculus possesses an efficient simulation tool [25] and also some devoted
analysis techniques such as reachability analysis and causality analysis [28, 47,
24].

The full power of the κ-calculus, however, turns out not to be necessary for
the representation of nano-devices, where the kinds of interactions are simpler
than the ones for which the κ-calculus is usually used (see for instance [24]).
Therefore we choose to focus on a variant called the nanoκ calculus: it cor-
responds to the κ-calculus restricted to binary reactions and enhanced with
“exchange” reactions, which permit flipping the extremity of a bond from one

molecule to another. For instance, the exchange A(ax),B(b)
λ
−→ A(a),B(bx)

flips the bond x from the molecule A to the molecule B . Simplicity is not the
only benefit that we get from this restriction, the nanoκ calculus can indeed be
encoded in the stochastic π-calculus. The encoding enjoys a very strong correct-

ness property: S
λ
7−→ T⇔ [[S]]

λ
7−→ [[T]], where S and T are κ-terms, λ is the rate

of the transition, [[.]] is the encoding and S
λ
7−→ T is a transition between S and

T whose rate is λ. So this property means that a solution and its encoding have
exactly the same transitions. This permits us to benefit from the advantages of
both approaches: the nice modelling aspects of the nanoκ calculus and the rich
tools and theory of the stochastic π-calculus.

Chemical Master Equation and equivalences. We are also interested in
comparing the semantics of the chemical and nanoκ models of nano-devices.
The chemical semantics is the CME since it defines the probabilistic behaviors
of a system from its kinetics description. Some important semantics of the
process algebra are the various equivalences. These are relations defined on the
set of terms that equate terms when their behaviour are “similar”. Depending
on the meaning of the “similarity” one gets various equivalences. It typically
concerns the observable aspects of processes: the channel on which processes
can communicate, the names of their outermost membranes or ambients, or in
the case of the κ-family, the bound and free sites. Equivalences are useful to
reason about models, for demonstrating properties and for reducing the size of
a state space that one wants to study. This is particularly relevant in the case
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of model-checking [69, 39].

We investigate an equivalence obtained by reasoning on the CME. It equates
terms that have the same stochastic behaviors, that is the same probability
over time. It is obtained by permuting and substituting in the CME the variable
representing the terms equated by the equivalence.

Interestingly, it turns out that this equivalence that we defined only from
the CME perspective happens to correspond to an already existing equivalence
of Computer Science: the backward stochastic bisimulation [59, 69]. There are
many variants of bisimulations but their common denominator is that they
equate terms which can mimic each other’s sequences of transitions. The back-
ward bisimulation differs from the traditional bisimulations because it addresses
ingoing transitions rather than outgoing ones.

A consequence on the expressiveness of the stochastic π-calculus. In-
terestingly our study of nano-devices bears fruits also in the garden of theoretical
Computer Science and more precisely upon the expressiveness of the stochastic
π-calculus.

In the field of concurrent languages, expressiveness is an important and in-
triguing problem. Differently from the case of sequential languages, the purpose
of a program is not just to compute a function, but also to control the com-
munication and the interaction of the various parallel components of a system.
There are therefore more parameters and perspectives which must be taken into
account when assessing the expressive power of a new formalism.

Most of the main process calculi proposed in literature have been widely
investigated from the point of view of the expressive power, both in absolute
terms, i.e. their capability to solve problems, and in relative terms, i.e. their
comparison. In particular, there has been a lot of work aiming at establishing
the relation between different calculi, thus providing some structure for the huge
plethora of formalisms that have been proposed in the field of Concurrency. One
of the goals of such investigation is, of course, to individuate languages that have
the same expressive power but can be implemented in a more efficient way. The
encoding itself can be valuable, as the source language, even if less efficient,
may still be useful as a specification language. Another goal is to find out the
constraints to implementation. For example, if a language can solve a problem
that is known to be not solvable in a distributed asynchronous model (like for
instance the symmetric leader election), then we know that language cannot be
implemented in a totally distributed manner. The interested reader can find in
[60] an extended discussion of these issues.

Surprisingly however, for an important class of calculi, the stochastic ones
and the probabilistic ones, the question of relative expressiveness has not been
investigated much (as far as we know), despite the fact that there have been
many proposals already and that the areas are rather mature.

Here, we make a first step towards the study of relative expressiveness in
the stochastic and probabilistic setting. We focus on one of the key mechanisms
in Concurrency: the choice operator. This construct represents the selection
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between alternative computations, and may be controlled by means of guards.
Its importance relies on the fact that it is very useful in distributed systems for
allowing processes to interact and coordinate.

One can define various kinds of choice depending on the guards that are
allowed to appear in it. In process calculi, guards are usually communication
actions (input and output), and it is then natural to consider the following
classification:

• input-guarded choice: the guards can only be input actions,

• output-guarded choice: the guards can only be output actions,

• separate choice: a choice can contain input or output guards, but not
both,

• mixed choice: a choice can contain both input and output guards,

In the classical settings it has been proved that the asynchronous π-calculus
can encode input-guarded choice [58] and also separate choice [57]. On the
contrary, it cannot encode mixed choice [60], that has been already proved to
be strictly more powerful than the other kinds of choice [10]. In both cases, the
proof of the separation result relies on the capability/incapability of expressing
the solution to certain consensus problems.

We are interested in exploring whether the stochastic and probabilistic ex-
tensions of the above choice constructs presents a similar gap. In particular, we
consider this question in the context of the π-calculus. Remarkably our encod-
ing between the nanoκ calculus and the stochastic π-calculus necessitates mixed
choice, it cannot be achieved if we use only separate choices. This is the key
ingredient that permits us to study the relative expressiveness of the separate
choices and the mixed choice in the stochastic settings and to prove that the
latter is strictly more expressive than the former.

In order to complete the picture we also investigate the relative expressive-
ness of the separate choices and the mixed choice in the probabilistic setting.
In this setting transitions are labelled with a probability rather than a rate. In
particular this means that there is no notion of time. Surprisingly it turns out
that, in this settings, both kind of choices are equally expressive.

Contribution and Overview. In Chapter 2, we detail the problems specific
to the derivation of a stochastic semantics and we address the specific difficulties
due to the introduction of infinite rates.

In Chapter 3, we present the nanoκ calculus. We define and illustrate its
syntax and stochastic semantics. We then apply the nanoκ calculus to describe
and analyze an instance of 2-rotaxane, RaH [54, 1], for which the dynamic be-
haviour has been experimentally characterized in detail [36]. We consider two
groups of simulations. The first ones are used to validate the model, by checking
whether the experiments reproduced in silico coincide with those already per-
formed in vitro. The second ones simulate in silico the expected behaviour of

16



the rotaxane RaH under conditions not yet observed in vitro. Interestingly, we
show that under extreme conditions of very low concentration of rotaxane RaH,
some of the assumptions usually made about the behaviour of the rotaxane in
standard conditions of concentration, are no longer valid. The results of this
chapter have been published in [Cre07] and in [Cre08] for the extend version.

In Chapter 4, we first illustrate the difficulties we found for defining our
encoding from the nanoκ calculus to the stochastic π-calculus. We present the
syntax and stochastic semantics of the stochastic π-calculus. Then we define
the two steps constituting our encoding and illustrate the encoding on a toy-
modelling of a gene transcription. Finally we prove the correctness of the two
steps of the encoding with respect to the stochastic semantics. The results of
this chapter have been published in [Lan09].

In Chapter 5, we present the CME. We detail our proposal of an equivalence
based on the CME. We then present the backward stochastic bisimulation and
finally we prove the equivalence between the two equivalences. The results of
this chapter are submitted for publication in [Pra09a].

In Chapter 6, we investigate the relative expressiveness of the separate
choices and the mixed choice of the π-calculus in the stochastic and proba-
bilistic setting. We first focus on the stochastic settings. We use our previous
encoding from the nanoκ calculus to the stochastic π-calculus to prove that,
without infinite rates, the stochastic separate choices are strictly more expres-
sive than the stochastic mixed choice. We then extend our result to the case
of stochastic π-calculus with infinite rates. Then we show that separate choices
with infinite rates can encode mixed choice without infinite rates. We also in-
troduce the multi-scale π-calculus which extends the stochastic π-calculus with
rates of several order of magnitude and lift our expressiveness results to this
settings. Finally we detail the syntax and operational semantics of the prob-
abilistic π-calculus. We present our encoding between the probabilistic mixed
choice and the separate one. We also discuss the relative expressiveness of the
probabilistic input and output guarded choices. The results of this Chapter con-
cerning the probabilistic settings have been published in [Pal06], and the results
concerning the stochastic settings are submitted for publication in [Pra09b].

We detail the related and future works in each section separately.
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In this Chapter, first in Section 2.1, we present the difficulties due to the
derivation of the stochastic operational semantics, and then in Section 2.2, we
address the specificities of infinite rates.

2.1 On the stochastic operational semantics.

The semantics of stochastic languages is usually given in terms of Continuous
Time Markov Chains (CTMC in the following).

Definition 2.1.1 (Continuous time Markov chain) A CTMC is a triple
(S,→, s0) where S is a set of states, s0 ∈ S is the initial state and → is a
function from S × S to R>0 called the stochastic transition relation (or also

transition matrix). We use s
λ
−→ s′ to represent (s, s′, λ) ∈→, λ is called the

rate.

In this model a transition between two states s and s′ is labelled with a
stochastic rate λ that determines its sojourn time, that is the time spent in the
state s before the transition could be fired. Formally the random variable gov-
erning this sojourn time is the exponential law of parameter λ: the probability of
the transition being enabled within t time units is 1−e−λ×t. Due to the superpo-
sition property of the exponential distribution, in a state with n outgoing tran-
sitions of rate λ1, · · · , λn, the probability that the sojourn time is less than t is
exponentially distributed with rate

∑
i λi, i.e. Prob{delay < t} = 1−e−t

P

i ×λi ,
and in this case the probability that the j-th transition is fired is λj/(

∑
i λi).

This is known as the race condition.

The operational semantics of a language is usually given in terms of a La-
belled transition system[62]: in this approach, roughly speaking there is simply
a transition from a state P to a state Q whenever P contains a redex of the
language and the rewriting of this redex leads to Q. The derivation of a CTMC
however is much more difficult because of the relevance of the number of redexes
underlying the same transition. In order to illustrate this point let us consider a
toy system where there are two species A and B and one rule ρ : A,A −→ B ,B .
This means that an occurrence of A,A can be rewritten into B ,B . In the clas-
sical setting the labelled transition system contains, for instance, the following
transitions:

(a) A,A,B → B ,B ,B

(b) A,A,A→ B ,B ,A

because in both cases the left hand side of the rule is a subterm of the left
solutions. If we transfer this example to the stochastic setting, the reaction is

equipped with a rate λ. Then in the case of (a) we have A,A,B
λ
−→ B ,B ,B and

in the case of (b) we have A,A,A
3×λ
−→ B ,B ,A, since there are respectively one

and three occurrences of the reaction redex in (a) and (b). Formally, the rate
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of a transition is the sum of the rates of the redexes underlying the transition.
So one needs to count the number of these redexes. In contrast to the classical
setting P and P + P are not bisimilar in a stochastic settings.

In order to take care of the occurrences of redexes, we compute the stochastic
semantics in two steps. First, we decorate the terms of the language with
“tags” that permit us to distinguish between the occurrences of redexes. The
derived transition relation, called the basic transition relation, is such that each
transition corresponds to a unique redex. Then we compute the stochastic
semantics by merging the transitions having the same source and target terms
and by summing their rates: this is the collective transition relation. This
approach is illustrated in the Sections 3.1, 4.2 and 6.3 with the definitions of
the stochastic semantics of the nanoκ calculus, nanoπ-calculus and stochastic
π-calculus respectively.

The basic transition relation. This relation depends strongly on the syntax
and the redexes of the formalism and it is often more intelligible to have an ad-
hoc construction (that is less verbose in terms of tags). However it is possible
to derive a general construction. Given a term T we construct its tagged version
T ∗ by labelling each operator in T with a unique identifier. For instance the
tagged version of the previous solution A,A,B is Aα,Aβ ,Bγ : the identifier of
the first A molecule is α, the identifier of the second A is β and the identifier of
the B molecule is is γ.

Now the transitions of the tagged terms are derived following the traditional
semantics but are additionally labelled with the set of the identifiers of all the
operators constituting the occurrence of the redex and the redex itself. Having
a structural operational semantics [62] is particularly helpful here. In such a
semantics the derivation of the transitions follows the structure of the terms:
for each n-ary operator f there is a rule which permits to lift the transitions
of n subterms t1, . . . , tn to a transition of f(t1, . . . , tn). So one can additionally
lift the set of the identifiers of the operators which are part of the redex. Let us
illustrate this idea on the term T ∗. The following derivation:

A
ρL
−→ B

init

A,A
ρL
−→ B ,A

lift
B

ρR
−→ B

init

A,A,B
λ
−→ B ,A,B

com

becomes:

Aα ρL
−→α Bα

init

Aα,Aβ ρL
−→α Bα,Aβ

lift
Bγ ρR
−→γ Bγ

init

Aα,Aβ ,Bγ λ
−→α,γ Bα,Aβ ,Bγ

com

Roughly speaking the rule init transforms a reactant of a given rule into
the corresponding product, the rule lift permits us to lift such a transition
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to a context and the rule com synchronizes to complete the reaction. So the
rules init introduces as subscripts α and γ since these are the tags of the
molecules that embody the redex, the rule lift does not affect the subscript
since it only adds the contextual solution Aβ and the rule com makes the union
of the subscripts α and γ since they are the tags of its premises. The following
derivation corresponds to the occurrence of the redex embodied by Aβ and Bγ ,
one remarks that its subscript {β, γ} is different from the one of the previous
transition: {α, γ}.

Aβ ρL
−→β Bβ

init

Aα,Aβ ρL
−→β Aα,Bβ

lift
Bγ ρR
−→γ Bγ

init

Aα,Aβ ,Bγ λ
−→β,γ Aα,Bβ ,Bγ

com

The structural congruence. We often do not want to distinguish between
terms which differ by irrelevant syntactical details but actually represent the
same solution. To cope with this issue the terms of a language are usually quo-
tiented by a structural congruence [62]. An ad hoc structural congruence ≡ has
to be defined for each formalism and it can contain among others the associativ-
ity or commutativity of certain operators, or the α-renaming of bounded names.
We choose to introduce the quotient by the structural congruence at the step of
the collective transition relation, i.e. when we merge the basic transitions with
the same source and target terms (see definition 2.1.2 below). So it should also
be defined for the tagged terms. However as far as our computation of the basic
and collective transition relations is concerned, it is sufficient to define S∗ ≡ S′∗

if and only if S ≡ S′.

The collective transition relation. Once the basic transition relation is
given either by the general method or by a more efficient ad hoc method, and
supposing we are given a structural congruence, one can compute the collective
transition relation. This is done in a parametric way: the construction depends
only on the basic transition relation and the structural congruence.

Before presenting the definition of the collective transition relation we need
a few notations. We refer to the terms of the language as F,G,H, . . .. We refer

to the basic transition relation as
µ
−→∂ where µ is a possible label and ∂ a set

of tags.

• next(F ) = {((µ, ∂), G) | F ∗ µ
−→∂ G};

• given a tagged term G and given a set F of pairs (X,H), where X is
a pair of a label and a tag, and where H is a tagged term, let [F ]G be
{(X,H) | (X,H) ∈ F and H ≡ G};

• can(F) is defined over sets of pairs (X,G) (the first element is a pair
of a label and a tag, the second is a tagged term), such that the terms
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occurring as second element of the pairs are all structurally equivalent. It
returns a non-tagged term G′ such that there is X with (X,G′∗) ∈ F .

We can now present the formal definition of the collective transition relation:

Definition 2.1.2 (Stochastic collective transition relation) The stochas-

tic transition relation
λ
7−→ induced by a basic transition relation

ρ
−→∂ (∂ is the

set of indexes labelling the transition and ρ is the redex underlying the transi-
tion) and a structural equivalence ≡ on a language is the least relation satisfying

the following property. Suppose that F ∗ ρ
−→∂ G then:

F
λ
7−→ can([next(F )]G), where

λ =
∑

((ρ,∂),G′)∈[next(F )]G

rate(ρ)

The next(.) function collects the outgoing basic transitions of a given term,
the function [.]G selects the subset of these outgoing basic transitions that lead
to a term structurally congruent to G and finally can(.) selects a canonical
representative among these terms.

Remarque 1 In the case of an infinitely branching system the sum

∑

((ρ,∂),G′)∈[next(F )]G

rate(ρ)

might be infinite. These degenerated systems should be avoided by the basic tran-
sition relation since this would imply infinitely many redexes in a finite term.
It would result either from an infinite number of rules having at least one oc-
currence in the solution or from a rule having an infinite number of occurrences
in the solution. This is particularly irrelevant in the biochemical setting since
solutions are finite and the possibilities of interaction also.

We prevent such phenomena by having only a finite number of rules in our
modeling and checking that an occurrence of rule yields only one basic transition.
An alternative would be to accept an infinite number of rules but require that at
most a finite number of them apply in an given solution.

The first stochastic semantics of the π-calculus was introduced in [64]. It
considered a different philosophy where the stochastic rates were not attached to
redexes (i.e. channels in the π-calculus setting) but rather to actions. However
a machinery similar to our basic and collective stochastic transition relation
was developed in order to compute the stochastic operational semantics. The
occurrences of redexes were indeed differentiated by recording their position
inside the term tree.
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2.2 On the infinite rates.

In our modelings of nano-devices infinite rates happen to be very useful for rep-
resenting reactions which are much faster than the others. Since they might in-
troduce non-determinism infinite rates do not fit in the format of the CTMC and
their analysis techniques. Nevertheless we want to be able to reuse these mod-
els and techniques. So we first use the model of Interactive Markov Chains [42]
(IMC in the following) to handle infinite rates and then define the strictly Marko-
vian condition under which we can recover the model of CTMC.

But first we need to define the meaning of infinite rates. Intuitively if a
transition has an infinite rate, it is infinitely fast: that is it takes no time to
be fired. Formally the law governing the sojourn time is an exponential law of
infinite parameter: for all t the probability of the transition to be enabled in t
time units is 1− e−∞∗t = 1. In particular it means that infinite rate transitions
are always executed before finite rate ones.

The model of IMC extends the CTMCs with interactive transitions which
can be output or input on a given name or silent action. These transitions are
executed under the maximal progress hypothesis which states that interactive
transitions have higher priority than regular ones and should be executed first.
Thus we can represent our infinite rate transitions by silent interactive transi-
tions. The following definition presents the IMC restricted to silent interactive
transitions:

Definition 2.2.1 ((silent) Interactive Markov chain.) An interactive Mar-

kov chain is a tuple (S, 7−→,
∞
7−→, s0) where S is a set of states, where 7−→ is a

function from S × S to R>0 and where
∞
7−→∈ S × S and where s0 ∈ S.

s0 is the initial state, 7−→ is the stochastic transition relation (or also tran-

sition matrix) and
∞
7−→ is the (silent) interactive transition relation.

Notation (transient, Markovian states). We refer to the stochastic and

interactive transition relations with only one relation: we write s
α
7−→ s′ either

when α =∞ and (s, s′) ∈
∞
7−→ or when α ∈ R>0 and 7−→ (s, s′) = α.

A transition is immediate if it has infinite rate. We also call transient a
state which has an immediate outgoing transition and Markovian a state which
has no immediate outgoing transition. Given a set of states S we note St and
Sm the subset of its transient and Markovian states respectively.

The derivation of a CTMC semantics by means of basic and collective tran-
sition relations can be reused in the presence of infinite rates to derive an IMC
semantics. The whole procedure for the derivation of the basic transition rela-
tion can be reused as it is. For the collective transition relation the only difficulty
is the definition of the sum of the rates: it suffices to define ∞+ λ =∞ for all
finite rate λ.

We now carry on with the downgrading of an IMC into a CTMC under the
strictly Markovian property.
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The traditional approach to handle the non-determinism is to use sched-
ulers. A scheduler is a function which associates to a history, that is a valid
sequence of transitions, a transition continuing the history. The motivation for
this approach is to consider that the non-determinism represents the impact of
the environment on the system, and that a given scheduler represents a possible
behavior of the environment. However the non-determinism of the biochemical
systems is not due to some environment, it is quantifiable and a consequence
of the stochastic competition between the possible interactions, that is the race
condition in the CTMC vocabulary. Therefore we do not want to represent the
non-determinism as schedulers but we want to get rid of it: it is an artifact of
our use of the infinite rates.

Before presenting the downgrading of an IMC we define the strictly Marko-
vian property. We write 7−→∗ for the reflexive transitive closure of the relation
7−→. A system is confluent if whenever s 7−→ s′ and s 7−→ s′′ then there exists
s′′′ such that s′ 7−→ s′′′ and s′′ 7−→ s′′′.

Definition 2.2.2 (Strictly Markovian IMC) An IMC is strictly-Markovian
if every subsystem consisting of silent interactive transitions is a confluent (up-
to structural congruence) direct acyclic graph of finite depth.

Intuitively this means that whenever an execution reaches a transient state
s then the maximal sequences of immediate transitions starting from s termi-
nate and converge to the same state. So each non-deterministic scenario (or
scheduler) has exactly the same result on the execution. One can just choose
one arbitrarily.

We first introduce the auxiliary function next Markovian state defined on
solutions and yielding sets:

• nextm(S) = {((λ,T′),T) | S
λ
7−→ T′ ∞

7−→
∗

T such that λ ∈ R>0 , S and T

Markovian}

Then the downgrading of an IMC is defined by:

Definition 2.2.3 (Downgrading of IMC) Let (S,
α
7−→, s) be a strictly-Marko-

vian IMC. The transition relation
ν

Z=⇒, where ν ∈ R>0, is the least one such
that:

• For all Markovian states S and T, if S
λ
7−→

∞
7−→

∗
T then

S
ν

Z=⇒ can([nextm(S)]T)

with
ν =

∑

((λ,T′),T′′)∈[nextm(S)]T

λ

The strictly Markovian property implies that the relation
ν

Z=⇒ defines a
CTMC system. To assert the soundness of the downgrading process, we show
in Proposition 2.2.1 below that it maps the classical semantics of IMC, the
Markovian bisimulation [42], to the classical semantics of CTMC, the ordinary
lumping equivalence [49].
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Notation: Given a state S ∈ S, we write S
τ

=⇒ S if S ∈ Sm, we write S
τ

=⇒ T

if S ∈ St and if T = can({T′ ∈ Sm|S
∞
7−→

∗
T′}). Given a Markovian state S and

a set of states C ⊆ S, we denote with µ(S, C) the cumulative rate obtained as
the sum of all rates of the transitions from S to a state in C. This is formally
defined as follows:

µ(S, C) =
∑

S
λ

7−→T,T∈C

λ

Before presenting the definition of the Markovian bisimulation and of the
lumping equivalence, we use the introduced notation to state the following
lemma.

Lemma 2.2.1 Consider a strictly-Markovian IMC (S,
λ
7−→), two Markovian

states S and T, and the set of states C = {S′|S′ τ
=⇒ T′,T′ ≡ T} ∪ {T′|T′ ≡ T},

we have that:

• µ(S, C) > 0 if and only if there exists one and only one T′′ ≡ T such that

S
µ(S,C)
Z=⇒ T′′.

Proof The statement is a direct consequence of the Definition 2.2.3.�

Remarque 2 The above lemma has the following implications:

• the probability distribution of the sojourn time in a Markovian state is the
same in the IMC and in the downgraded CTMC and

• the probability that one of the paths S
λ
7−→

∞
7−→

∗
T′ with T′ ≡ T is taken in

the IMC corresponds to the probability that the unique transition S
λ′

Z=⇒ T′′,
with T′′ ≡ T, is taken in the downgraded CTMC.

In IMCs, the Markovian bisimulation is built from the classical concepts of
bisimulation corresponding to its interactive and Markovian parts. Two bisimi-
lar transient states should have the same outgoing interactive transitions. Two
bisimilar Markovian states should have same outgoing rates to the bisimulation
equivalence classes. It is naturally extended to the notion of weak Markovian
bisimulation. We formally detail this notion for strictly-Markovian IMCs as
follows.

Definition 2.2.4 (Weak Markovian bisimulation) Given a strictly-Marko-

vian IMC (S,
λ
7−→), an equivalence relation R on S is a weak Markovian bisim-

ulation if SRS′ implies that:

• if S
τ

=⇒ T then there exists T′ such that S′ τ
=⇒ T′ and TRT′;

• and for all R-equivalence classes C we have that µ(S, C) = µ(S′, C).

Two states S and S′ are bisimilar if SRS′ for some weak Markovian bisimulation
R. We write S ∼IMC S′.
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Performing the ordinary lumping of a CTMC consists of agglomerating states
that have equivalent forward behavior, that is from which the outgoing rates to
agglomerated states are equal.

Definition 2.2.5 ((Ordinary) Lumping equivalence) Given a CTMC (S,
λ
7−→), a partitioning P of S is a lumping if for every pair of partitions C and
C ′ (i.e. C,C ′ ∈ P) we have that

• if S,T ∈ C then µ(S, C ′) = µ(T, C ′).

Two states S and T are lumping-equivalent if they are contained in the same
partition of a lumping. We write S ∼CTMC T.

The soundness of the downgrading process is formalized as follows: two
Markovian states in a strictly-Markovian IMC are bisimilar if and only if they
are lumping-equivalent in the corresponding downgrading.

Proposition 2.2.1 Given a strictly-Markovian IMC (S,
λ
7−→), its downgrading

(Sm,
λ

Z=⇒), and two Markovian states S,T ∈ Sm, we have that:

• S ∼IMC T if and only if S ∼CTMC T.

Proof We first consider the only if part. If S ∼IMC T we prove that the
partitioning of Sm made by the equivalence classes of ∼IMC is a lumping,
which implies that S ∼CTMC T because S and T belong to the same equivalence
class. Indeed, given two states S′ and T ′ belonging to the same element of the
partition (and so Markovian), and given any element C of the partition let C be
the ∼IMC-equivalence class including C, and let µi and µc be the cumulative

rates on the IMC (S,
λ
7−→) and its downgrading (Sm,

λ
Z=⇒), respectively. We

have:

µc(S
′, C) = Σ

(λ,Z)∈{(λ,Z)|S′
λ

Z=⇒Z,Z∈C}

λ

= µi(S
′, C) by Lemma 2.2.1

= µi(T
′, C) because S′ and T′ are bisimilar

= Σ
(λ,Z)∈{(λ,Z)|T′

λ
Z=⇒Z,Z∈C}

λ by Lemma 2.2.1

= µc(T
′, C)

We now consider the if part. If S ∼CTMC T then there exists a partitioning
P such that S and T belong to the same partition. It is not restrictive to assume
that all partitions of P are closed under structural congruence (i.e. if W and Z

belong to the same partition, then also W′ and Z′ belong to the same partition
if W ≡W′, and Z ≡ Z′). We show how to define an equivalence relation R on S
which is a weak Markovian bisimulation and such that SRT (which will imply
S ∼IMC T). We define R such that QRQ′ if and only if:

• Q and Q′ are Markovian and belong to the same partition of P or
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• Q and Q′ are transients and there exists R and R′ belonging to a partition
of P such that Q

τ
=⇒ R and Q′ τ

=⇒ R′.

Because of the convergence property of strictly Markovian IMCs and because
the partitions of P are closed under structural congruence, R is an equivalence
relation. Moreover, each R-equivalence class C is composed of the Markovian
states of a partition of P, that we denote with C, plus the transient states Q

such that Q
τ

=⇒ Q′ for some Q′ ∈ C. As S and T belong to the same partition
of P, then SRT.

We complete the proof showing that R is a weak Markovian bisimulation.
Consider QRQ′ and anR-equivalence class C (and its corresponding partition C
of P). As we have already observed in the previous paragraph, the equivalence

classes are closed under immediate transitions so if Q
τ

=⇒ R then ∃R′. Q′ τ
=⇒ R′

and RRR′. Otherwise Q and Q′ are Markovian and we can apply Lemma 2.2.1

as follows (µ and µ are the cumulative rates on the IMC (S,
λ
7−→) and its down-

grading (Sm,
λ

Z=⇒), respectively):

µ(Q, C) =
∑

(λ,Z)∈{(λ,Z)|Q
λ

Z=⇒Z,Z∈C}
λ by Lemma 2.2.1

= µ(Q, C)
= µ(Q′, C) because Q and Q′ belong to the same partition
=

∑
(λ,Z)∈{(λ,Z)|Q′

λ
Z=⇒Z,Z∈C}

λ

= µ(Q′, C) by Lemma 2.2.1

�
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Chapter 3

A formal language for

nano-devices.
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In this Chapter we investigate the formal description of nano-devices. As
detailed in the Chapter 1, the κ-calculus[26] constitutes a good candidate be-
cause it has a stochastic semantics, it is rule-based and it permits us to represent
explicitly sites and internal states. Moreover it has an efficient simulator and
some causality and reachability analysis techniques. However the description of
nano-devices does not require the full power of the κ-calculus. So we focus on
the study the nanoκ calculus. It is simple and adequate for the description of
nano-devices and it retains the good properties of the κ-calculus. Moreover it
can also be encoded in the stochastic π-calculus, which permits us to reuse its
tools and theory, as we will see in the next Chapter.

The Chapter is organized as follows. In Section 3.1, we introduce the syntax
and semantics of the nanoκ calculus. In Section 3.2, we present a modeling
of the rotaxane in the nanoκ calculus and present several simulations. The
Chapter is closed by a conclusion in Section 3.3 and a discussion on related
works in Section 3.4.

3.1 The nanoκ calculus: syntax and semantics.

Definition 3.1.1 (nanoκ solutions, nanoκ pre-solutions) The nanoκ calcu-
lus uses several sets of names: species ranged over by A, B, C , . . . , fields names
ranged over by r, s, t, . . . , sites ranged over by a, b, c, . . . , and bonds names
that are totally ordered and countable and ranged over by x, y, z, . . . In order
to reflect their biochemical meaning, species, fields and sites are often addressed
using strings of characters.

We also suppose given three functions sf (.), f(., .) and ss(.): sf (.) associates
to each species a set of fields, f(., .) associates to each species and fields pair a
finite set of integers, and ss(.) associates to each species a set of sites.

A valuation of a species A is a function, possibly partial, which maps the
fields r ∈ sf (A) to a value in f(A, r). Valuations are ranged over by u, v, w,
. . .An interface of a species A is an injective map, possibly partial, from ss(A)
to either bonds or a special value ε. Interfaces are ranged over by σ, φ, ν, . . .

The terms defined by the following grammar:

S ::= A[u](σ) | S,S |

are called solutions when all the maps are total and pre-solutions otherwise.
The terms A[u](σ) are called molecules. is the empty solution. The operator
“,” is assumed to be associative, i.e. (S,T),R is equal to S,(T,R) and therefore
parentheses are always omitted.

Bonds always occur at most twice in solutions. A solution or a pre-solution
is proper if every bond therein occurs exactly twice.

Intuitively, a molecule A[u](σ) is determined by the species A to which it
belongs, and its valuation u and its interface σ. The values of the fields in u
represent the internal state of the molecule, for instance its electronic charges,
or some missing or additional protons. The sites in the interface σ represent
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the binding capabilities of the molecule. A site a mapped to a bond name x
means that a bond, called x, is established between a and a site of some other
molecule. A site mapped to the special value ε is free, it is not involved in any
bond.

For example, if the species A has two fields r and phos and three sites nh,
bipy, and 3 the following term is a molecule: A[r 7→ 0; phos 7→ 1](nh 7→ ε; bipy 7→
x; ). The fields r and phos have values 0 and 1, respectively; the site nh is free,
the site bipy is bond and the bond is x and this interface does not define the
state of the site 3, which may be bond or not.

Notation. In order to ease the reading, we write this molecule as A[r0 +
phos1](nh + bipyx) (the value ε is always omitted). Let ∅ be the empty map.
We write A(σ) instead of A[∅](σ), A[u] instead of A[u](∅), and simply A instead
of A[∅](∅). We denote by ran(σ) the range of an interface σ omitting ε and by
bonds(S) the set of bonds appearing in the solution S.

Remarque 3 We require the set of bond names to be totally ordered in order
to ease the building of a finitely branching basic transition relation (see 3.1.5).
The countability of the set of bond names is used only for the encoding into the
nanoπ-calculus (see the next Chapter and in particular the definition 4.3.1).

Example 3.1.1 As a running example we consider a toy chemical reaction:

AB ←→ A+ + B−

In these reactions, the complex formed by the two molecules of the species A
and B can be dissociated in the two ions A+ and B−, and vice versa. The
molecules of the two species can be in two possible states: either they have
a positive charge, i.e. a missing electron, like A+, or a negative charge, i.e.
an additional electron, like B− or they are in their standard states A and B.
We model these possible states using one field e with values −1, 0 and 1 that
denote respectively an additional electron, no missing or additional electron and
a missing electron. Moreover we model the possible complexation using a site
called bond. Formally we can use A[e1](bond) for A+, B [e−1](bond) for B− and
A[e0](bondx),B [e0](bondx) for AB respectively.

The structural congruence of the nanoκ calculus is given by the following
definition:

Definition 3.1.2 (Structural congruence of nanoκ) The structural equiva-
lence between solutions, denoted ≡, is the least congruence satisfying the follow-
ing three rules (we recall that solutions are already quotiented by associativity of
“,”):

1. S,T ≡ T,S;

2. ,S ≡ S;
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3. S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

Example 3.1.2 Commutativity and injective renaming of the structural equiv-
alence make it possible to prove:

A[e0](bondx),B [e0](bondx) ≡ B [e0](bondz),A[e0](bondz)

The dynamics of the nanoκ calculus is governed by means of reaction rules.
These rules correspond closely to the biochemical reactions we wish to model.
Intuitively a nanoκ term can perform a transition when it contains an instance
of the left hand side of a rule. Before formally presenting the rules of the nanoκ
calculus a few preliminary definitions are in order:

• we write σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 6= ε then
σ(i) = σ′(i) (intuitively all the bonds present in σ appear also in σ′);

• when we write u + u′ and σ + σ′ we assume that dom(u) ∩ dom(u′) = ∅
and dom(σ) ∩ dom(σ′) = ∅.

We can now define the different kinds of rules for the nanoκ calculus:

Definition 3.1.3 Reactions of nanoκ calculus are either creations, destruc-
tions, or exchanges and they are labelled by a rate, which is a positive real
number or ∞. Creations have the format:

A[u](σ),B [v](τ)
λ
_ A[u′](σ′),B [v′](τ ′),C1 [w1](η1), · · · ,Cn [wn](ηn)

where both hand sides are proper pre-solutions and where σ ≤ σ′, τ ≤ τ ′,
dom(u) = dom(u′), dom(v) = dom(v′), and wi and ηi are total. Destructions
have one of the formats:

A[u](σ),B [v](τ)
λ
_ A[u′](σ′),B [v′](τ ′)

A[u](σ),B [v](τ)
λ
_ A[u′](σ′)

where both hand sides are proper pre-solutions and where σ ≥ σ′, dom(u) =
dom(u′), and, in the first case, τ ≥ τ ′, dom(v) = dom(v′) and, in the second
case, τ has to be total. Exchanges have one of the formats:

A[u](σ),B [v](τ)
λ
_ A[u′](σ),B [v′](τ)

A[u](ax + σ),B [v](b+ τ)
λ
_ A[u′](a+ σ),B [v′](bx + τ)

where the pre-solutions A[u](σ),B [v](τ) and A[u](a+ σ),B [v](b+ τ) are proper
and dom(u) = dom(u′) and dom(v) = dom(v′).

In the rest of the thesis we assume that reactants share at most one bond,
i.e. ran(σ) ∩ ran(ρ) is either an empty set or a singleton.
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Creations produce new bonds between two unbound sites and/or synthesize
new molecules. Destructions behave in the other way around. Exchanges either
leave the interfaces unchanged or move one bond from a reactant to the other,
which we call bond-flipping exchange.1

It is worthwhile to remark that reactions do not address every field and site
of the reactants (both hand sides of a rule are pre-solutions). The intended
meaning is that two molecules react if they are instances of the left-hand side of
a reaction. We will formalize this notion later on in the basic transition relation
(see definition 3.1.5 ).

Example 3.1.3 The nanoκ calculus reactions that corresponds to the two re-
actions of our toy example are:

A[e0](bondx),B [e0](bondx)
100
_ A[e1](bond),B [e−1](bond)

A[e1](bond),B [e−1](bond)
10
_ A[e0](bondx),B [e0](bondx)

where we have considered a rate 100 for the left to right direction and 10 for the
right to left direction.

Stochastic semantics of the nanoκ calculus. We can now present the
stochastic semantics of nanoκ. As we anticipated in the Chapter 2, it is achieved
in several steps: first we build the basic transition relation, then the collective
transition relation is derived from the basic one and finally the resulting IMC is
downgraded into a CTMC, assuming that our system meets the strictly Marko-
vian property.

The semantics depends strongly on the sets of species and of reactions con-
sidered. We formalize this with the notion of nanoκ system:

Definition 3.1.4 (nanoκ systems) A nanoκ system is a tuple determined by
S a set of species names, N a set of fields and sites names, B a totally ordered
and countable set of bond names, sf (.) a map yielding the fields of a species,
f(., .) a map yielding the set of possible values of a field of a species, ss(.) a map
yielding the sites of a species and R a set of reactions.

Notation. We refer to a nanoκ system as (S,R) and keep the other elements
implicit in (S,R).

We now present the basic transition relation of the nanoκ calculus. In this
case it is not necessary to follow the general methods presented in the Chapter 2,
there exists a more efficient ad hoc method. Indeed since a nanoκ solution can
be seen as a sequence of molecules, the redex of a rule is uniquely identified by
the position of the two reactants inside this sequence. Therefore we only use
pairs of integers as identifiers. Note however that this process is much eased

1The terms creation and destruction have been preferred to complexation and decomplex-

ation used in [26, 52] because they have a more neutral chemical meaning.
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by postponing the structural congruence to the step of the collective transition
relation.

The definition of the basic transition relation of the nanoκ calculus requires
some notation. Let µ range over ρL, ı and ρR, ı and let ρL, ı = ρR, ı and ρR, ı =
ρL, ı where ı is an injective renaming (notice that µ = µ). The nanoκ reactions
may be addressed by:

A[u](σ),B [v](ρ)
λ
_ A[u′](σ′),S

where S may also be . With an abuse of notation we lift a renaming ı to a
solution by applying it pointwise. Finally we denote the set of names present
in a solution S with name(S).

Definition 3.1.5 Given a nanoκ system whose set of reactions is R, its ba-

sic transition relation, written either
ρ,ı
−→ℓ,ℓ′ or

µ,ı
−→ℓ, is the least relation that

satisfies the following rules:

• (init) If ρ = A[u](σ),B [v](φ)
λ
_ A[u′](σ′),S ∈ R, then for all ν we have

both:

– A[u+ w](ı ◦ σ + ν)
ρL,ı
−→1 A[u′ + w](ı ◦ σ′ + ν) and

– B [v + w](ı ◦ φ+ ν)
ρR,ı
−→1 T

where T is either B [v′+w](ı◦φ′+ν),ı(S′) if S = B [v′](φ′),S′ or ı(S) oth-
erwise and where ı is an order-preserving injective renaming with ran(ı)∩
ran(ν) = ∅;

• (lift) if S
µ,ı
−→ℓ S′ then both:

– S,T
µ,ı
−→ℓ S′,T and

– T,S
µ,ı
−→ℓ′+ℓ T,S′

where T has ℓ′ molecules and where (name(S′) \ name(S)) ∩ name(T) = ∅
if the rule of µ is a creation;

• (communication) if S
µ,ı
−→ℓ S′ and T

µ,ı
−→ℓ′ T′, let ρ be the rule of µ and

let  be an order-preserving injective renaming which maps name(S′,T′) \
name(S,T) (i.e. the created names) into the least bonds not belonging to
name(S,T) then:

– S,T
ρ,
−→ℓ,ℓ′′+ℓ′ (S

′,T′)

where S has ℓ′′ molecules.

The tags of the basic transition relation of the nanoκ calculus are integers
or pairs of integers. According to the general approach presented in the pre-
liminaries one would have to label each molecule with a unique identifier which
would be used as subscript when the molecule is part of a redex. However in
our case it is sufficient to record the position of the molecule inside the sequence
of molecules. For instance supposing that the reaction:
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A[e1](bond),B [e−1](bond) _ A[e0](bondy),B [e0](bondy)

is labelled ρ, then the solution A[e1](bond),A[e1](bond),A[e1](bond),B [e−1](bond)
has three outgoing basic transitions:

A[e1](bond),A[e1](bond),A[e1](bond),B [e−1](bond)
ρ
−→1,4

A[e0](bondy),A[e1](bond),A[e1](bond),B [e0](bondy)

A[e1](bond),A[e1](bond),A[e1](bond),B [e−1](bond)
ρ
−→2,4

A[e1](bond),A[e0](bondy),A[e1](bond),B [e0](bondy)

A[e1](bond),A[e1](bond),A[e1](bond),B [e−1](bond)
ρ
−→3,4

A[e1](bond),A[e1](bond),A[e0](bondy),B [e0](bondy)

The basic transition relation uses also finite injective renamings. We first
present the role of the ı renaming in the (init) rule and then the role of the 
renaming in the (communication) rule.

The role of the renaming of the (init) rule is to allow the instantiation of
the bond names of a rule in a given solution. To clarify this point, consider

the creation ̺′ = C (1x + 2),C (1x + 2)
10
_ C (1x + 2y),C (1x + 2y) (a bond is

created between two C molecules provided they are already bond). Then take
the solution C (1z +2),C (1v +2),C (1z +2), C (1v +2). We derive the expected
transition

C (1z + 2),C (1v + 2),C (1z + 2),C (1v + 2)
̺′

−→1,3 C (1z + 2w),C (1v + 2),C (1z + 2w), C (1v + 2)

following a structured operational semantics approach [62]. Namely, we focus
on the single reactants and lift the transitions to “,”-contexts. This is correct
to the extent that one records the instantiation of bonds in the left-hand sides
of reactions with the actual names of the molecules: the two reactants must
instantiate bonds in the same way. This is the reason why the first two molecules

of the above solution cannot react with ̺. More precisely, C (1z + 2)
̺′

L,ı
−→1

C (1z + 2w), where ı = [x 7→ z, y 7→ w], and C (1v + 2) 6
̺′

R,ı
−→1.

The role of the renaming in the (communication) rule is to ensure that for
a given a reaction and a pair of molecules of a given solution, one can derive at
most one basic transition corresponding to these molecules and this reaction. If
we do not require that the renaming is injective and order-preserving we would

be able to derive a transition C (1x +2),C (1x +2)
̺′

−→1,2 C (1x +2y),C (1x +2y)
for any free name y and so one occurrence of one redex would yield infinitely
many basic transitions.

Thus we need to choose one transition among these possibilities. By asking
that the created are the least ones we prevent the infinite number of possible
transitions. However since several bonds can be created by a reaction this only
ensures that the number of possible transitions is finite but not equal to 1. So
we also ask that the renaming is order preserving. This permit us to choose one
transition: the one where the name of the least created bond is mapped to the
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least name not present in the solution, the name of second least created bond
to the second least name not present in the solution, . . .

It is also worthwhile to notice that there is no rule lifting a transition
µ
−→ℓ,ℓ′

to a context “,”: we use the associativity of , to partition a solution S into
S′,S′′ such that the reactants are in S′ and S′′.

Remarque 4 One might wish to derive transition constituted of the firing of
several reactions. This approach seems relevant since all the reactions happen
in parallel. However the Gillespie algorithm [37], which is the standard simula-
tion method for stochastic process algebra, is not compatible with this approach.
Indeed the Gillespie algorithm simulates systems of biochemical reactions by
probabilistically selecting the next reaction to happen and the time spent before
it happens.

The compatibility of the structural congruence with respect to the basic tran-
sition relation is stated in the following proposition:

Proposition 3.1.1 Let S ≡ S′.

1. If S
µ
−→ℓ T then there exists a T′ and a renaming ı such that S′ ı(µ)

−→ℓ′ T′

and T ≡ T′ (with ı(µ) we denote the extension of the renaming ı to the
label µ);

2. if S
ρ
−→ℓ,ℓ′ T then there exists T′ such that S′ ρ

−→ℓ′′,ℓ′′′ T′ and T ≡ T′.

Proof

1. The proof is a straightforward induction on the derivation tree of S
µ
−→l T.

2. The result is a direct consequence of the first item and of the (communi-
cation) rule.

�

Now that the basic transition relation is defined, we can derive the collective
transition relation according to the definition 2.1.2. It is illustrated in the
following example.

Example 3.1.4 As we have seen above the solution A[e1](bond),A[e1](bond),

A[e1](bond),B [e−1](bond) has three outgoing transitions labelled
ρ
−→1,4,

ρ
−→2,4

and
ρ
−→3,4 to structurally congruent states. Therefore we obtain an unique

collective transition:

A[e1](bond),A[e1](bond),A[e1](bond),B [e−1](bond)
300
7−→

A[e0](bondx),A[e1](bond),A[e1](bond),B [e0](bondx)

Finally the downgrading of a nanoκ collective transition relation can be
performed according to the definition 2.2.3.

36



Figure 3.1: Schematic representation of the shuttling processes of the molecular
ring in the examined rotaxane.

3.2 The nanoκ calculus at work: the rotaxane

case study

The investigated rotaxane RaH (Figure 3.1) [54, 1] is made of a stoppered axle
containing an ammonium (A) and an electron acceptor bipyridinium (B) sta-
tions that can establish hydrogen-bonding and charge-transfer interactions, re-
spectively, with the ring component, which is a crown ether with electron donor
properties. An anthracene moiety is used as a stopper because its absorption,
luminescence, and redox properties are useful to monitor the state of the sys-
tem. Since the hydrogen bonding interactions between the macrocyclic ring
and the ammonium center are much stronger than the charge-transfer interac-
tions of the ring with the bipyridinium unit, the rotaxane exists as only one
of the two possible translational isomers, denoted as RaH in Figure 3.1. In
solution, addition of a base (e.g., tributylamine) converts the ammonium center
into an amine function, giving the transient state Ra that is transformed into
the stable state Rb as a consequence of the displacement of the macrocycle onto
the B station. The process can be reversed by addition of acid (e.g., trifluo-
roacetic acid) and the initial state is restored, passing through the transient
state denoted as RbH. Nuclear magnetic resonance, absorption and lumines-
cence spectroscopic experiments, together with electrochemical measurements,
indicate that the acid-base controlled switching, which is fully reversible and
relatively fast, exhibits a clear-cut on-off behaviour [1].

The Rotaxane RaH is particularly appropriate to test the modeling approach
of the nanoκ calculus because it is one of the very few cases wherein not only
the thermodynamic properties, but also the dynamic behaviour of the system
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have been experimentally characterized in detail. Specifically, the macrocycle’s
shuttling process between the ammonium/amine and bipyridinium stations in
this rotaxane, driven by the successive addition of base and acid, have been in-
vestigated in solution [36]. The rate constants for the “forward” (Ra→Rb) and
“backward” (RbH→RaH) shuttling motions (vertical processes in Figure 3.1)
of the molecular ring, which occur, respectively, upon deprotonation and re-
protonation (that is upon loss or gain of a proton respectively) of the ammo-
nium/amine recognition site on the axle (horizontal processes in Figure 3.1),
were found to be 0.72s−1 and 40s−1 at 293◦K, respectively.

3.2.1 Modeling the rotaxane RaH in the nanoκ calculus.

The nanoκ calculus molecules. Figure 3.2 illustrates the nanoκ calculus
modeling of the rotaxane RaH. We use four species:

• Nh models the ammonium/amine station of the rotaxane: it has one field
h and two sites ring and axle;

• Axle models the spacer between the two stations: it has two fields h and
s and three sites nh, bipy, and ring ;

• Bipy models the bipyridinium station: it has one field h and two sites ring
and axle;

• Ring models the crown ether ring: it has no field and one site link ;

• AcidBase models the acid-base couple used to trigger the motion of the
rotaxane: it has one field h and no site.

The pairs of sites axle of Nh and nh of Axle, and axle of Bipy and bipy
of Axle are always linked in our modeling. They model the covalent bonds
maintaining the structural integrity of the axle. Exactly one site ring of Nh,
Bipy , and Axle is linked at a given moment at link of Ring . The first two
cases respectively model the “stable” RaH and Rb states of Figure 3.1 in which
the ring is steadily located around the Nh or the Bipy molecules, respectively.
The last case models the “unstable” states; these are the Ra and RbH states of
Figure 3.1 in which the ring is not steadily located.

Ammonium and amine functions have different chemical nature but can be
seen as protonated and deprotonated versions of the same species. Thus we
model both by the same nanoκ calculus species Nh. Its field h is used to record
the presence or absence of a proton on Nh: its value is 1 if it is protonated,
and 0 otherwise. We also need to distinguish between the two transient states
where the Ring is on the Axle: does it come from the Nh station of from the
Bipy one? In order to store this information we use the field s: its value is 1 if
the Ring comes from the Nh station and 0 otherwise.

As Ring ’s movements are triggered by protonations and deprotonations due
to acid-base reactions, we also need to have acid and base molecules in our
modeling. We choose to model an acid-base couple with only one species since

38



�� ������� 	��� A� BCDE ���	���FD

���

�CA�

�CA� �CA�

�CA�

�CA�

Figure 3.2: Initial state of the Rotaxane RaH in nanoκ calculus.

an acid and a base of the same couple only differ by a proton. We consider
the species AcidBase with no site and one field h having value 1 in case the
acid/base molecule holds the proton to be exchanged, 0 otherwise (for instance
AcidBase[h1] and AcidBase[h0] are respectively an acid molecule ready to give
a proton and a base molecule ready to receive a proton). If a different acid-base
were to be considered it would be modeled similarly by a species AcidBase2
with one field h and no site.

The initial state for rotaxane RaH is thus modeled by the term:

Nh[h1](axles + ringx) , Axle[h1 + s1](nhs + bipyr + ring) ,
Bipy [h1](axler + ring) , Ring(linkx)

graphically depicted in Figure 3.2.

Note that the Nh is initially protonated (and this information is present also
in the Axle and the Bipy), the Axle is bond to the Nh and the Bipy , and the
Ring is bond to the Nh.

The nanoκ calculus reactions. We now present the reactions used in our
modeling. Reactions 1, 2, 9 and 10 are presented with a double arrow (these are
reversible reactions). Formally they correspond to two nanoκ calculus reactions,
one achieved reading the reaction from left to right considering the rate over
the arrow, and the ones achieved reading it from right to left considering the
rate below. In this section we do not consider numerical values of rates, this is
detailed in part 3.2.2.

A base can get the proton of a protonated Nh, and a Nh can get a proton
from an acid. These acid-base reactions are reversible. Reactions 1 and 2 model
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this phenomenon. The systems corresponding to the left-hand side and right-
hand side coexist, even if one can be more predominant according to the ratio
nh base/base nh.

Nh[h1],AcidBase[h0]
nh base

_
^

base nh

Nh[h0],AcidBase[h1] (1)

The protonation state of the molecule Nh needs to be known by Bipy because
it affects its interaction with Ring . Reactions 3 and 4 achieve this by passing
information from Nh to Bipy through Axle. These updates are instantaneous
because they represent an immediate consequence of the protonation or depro-
tonation of the Nh station.

if (α 6= β)

Nh[hα](axles),Axle[hβ ](nhs)
∞
_ Nh[hα](axles),Axle[hα](nhs) (3α,β)

and:

Axle[hα](bipyr),Bipy [hβ ](axler)
∞
_ Axle[hα](bipyr),Bipy [hα](axler) (4α,β)

The above rule correspond actually to many rules, one for each possible value of
α and β. We gather them in two rules for the sake of the clarity. We achieve the
modeling of Ring movements in two steps. Firstly the instantaneous reactions
to deprotonation/reprotonation (reactions 5–8), and secondly the actual Ring
shuttling (reactions 9 and 10). The reactions (5) and (6) are used to enter in
“unstable” states when the Nh is deprotonated while the Ring is around the
Nh (reaction (5)), or protonated while the Ring is around the Bipy (reaction
(6)). On the other hand, the reactions (7) and (8) are used to re-enter in a
“stable” state in the case the Nh returns to its previous (de)protonated state
before the Ring actually binds to its new station. All these events are immediate
consequences of deprotonation or reprotonation of Nh; for this reason, they have
infinite rates. When a field contains a ∗, it means that there is a rule for each
possible value of the field.

Nh[h0](axles + ringx),Axle[s∗](nhs + ring)
∞
_

Nh[h0](axles + ring),Axle[s1](nhs + ringx) (5)

Bipy [h1](axler + ringx),Axle[s∗](biaxr + ring)
∞
_

Bipy [h1](axler + ring),Axle[s0](biaxr + ringx) (6)

Axle[s1](nhs + ringx),Nh[h1](axles + ring)
∞
_

Axle[s1](nhs + ring),Nh[h1](axles + ringx) (7)

Axle[s0](nhs + ringx),Bipy [h0](axles + ring)
∞
_

Axle[s0](nhs + ring),Bipy [h0](axles + ringx) (8)

We now complete our modeling with reactions 9 and 10 representing the com-
pletion of the Ring movement. These reactions are reversible because the Ring
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(A) (B)

Figure 3.3: Comparing the simulations in silico with the experiments in vitro.
Grey traces: number of Rings located around Bipys during the “forward”
Ra→Rb (part A) and the “backward” RbH→RaH (part B). Black traces: UV
absorbance changes observed upon the occurrence of the same respective shut-
tling processes.

is susceptible to leave its “stable” station due to the Brownian motion.

Axle[s∗](bipyr + ringx),Bipy [h0](axler + ring)
link bipy

_
^

unlink bipy

Axle[s0](bipyr + ring),Bipy [h0](axler + ringx) (9)

Axle[s∗](nhs + ringx),Nh[h1](axles + ring)
link nh

_
^

unlink nh

Axle[s1](nhs + ring),Nh[h1](axles + ringx) (10)

3.2.2 Simulation results.

The above modeling of rotaxane RaH in nanoκ calculus yields an IMC system
that is strictly markovian and so it can be downgraded to an equivalent CTMC.
Therefore we obtain a CTMC system that we use to simulate in silico the
behaviour of the rotaxane RaH. The simulations are performed using the SPiM
tool [19] using the encoding from the nanoκ calculus to the stochastic π-calculus
of the Chapter 4. We did not use the κ-factory because at the time we performed
the simulations it were not able to handle infinite rates.

As previously discussed the rates for the ring movements are respectively
link bipy = 0.72s−1 and link nh = 40s−1. On the basis of the estimated
equilibrium constants, the rates for the reverse reactions are quantified two
orders of magnitude smaller, i.e. unlink bipy = 0.0072s−1 and unlink nh =
0.4s−1.

The aim of the first two simulations depicted in Figure 3.3 is to check whether
the experimentation in silico can reproduce the results observed in in vitro [36].
The techniques used for the in vitro experimentation did not make it possible to

41



(A) (B)

Figure 3.4: Number of Rings located around Bipys (grey trace) and number
of deprotonated rotaxanes (black trace) during the “forward” shuttling in the
presence of base molecules (part A) and the “backward” shuttling in the presence
of acid molecules (part B) at concentration 10−4M .

observe and quantify the deprotonation/reprotonation rates (this is not surpris-
ing as these are very fast acid-base reactions). Thus, in the simulation we have
considered instantaneous deprotonation/reprotonation, i.e. either nh base =∞
and base nh = 0 for protonation, or nh base = 0 and base nh = ∞ for de-
protonation. In both simulations, we have considered 1000 rotaxanes: in the
first one we have simulated deprotonation and “forward” (Ra→Rb) shuttling,
in the second one reprotonation and “backward” (RbH→RaH) shuttling. In
the first simulation the shuttling phase is completed in around 6 seconds, while
in the second one in 0.1 seconds; this is a consequence of the different rates of
the two directions of shuttling. Very remarkably, simulated data are in striking
agreement with the experimental results.

After these initial encouraging results, we have decided to use the in silico
simulation techniques to provide a comprehensive view of the overall reactions
depicted in Figure 3.1, simulating also the deprotonation/reprotonation phases
not observed in the in silico experimentation. More precisely, the aim of this
second group of simulations was to either validate or invalidate the assumption
according to which deprotonation/reprotonation can be considered “instanta-
neous” with respect to the shuttling time. To this aim, we have simulated
deprotonation/reprotonation under two different concentrations of rotaxanes.
In fact, this is a bimolecular reaction whose rate is influenced by the concentra-
tion of the reactants. For instance, at a concentration close to those considered
in [36], e.g. 10−4M , assuming 1000 instances of rotaxane and base/acid, a plau-
sible rate for deprotonation/reprotonation is 2× 103s−1 (with reverse reaction
rate of the order of 2× 10−4s−1) while at the concentration 10−8M it is 0.2s−1

(with reverse reaction on the order of 0.2× 10−7s−1).

We have performed the two simulations, namely deprotonation with subse-
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(A) (B)

Figure 3.5: Number of Rings located around Bipys (grey trace) and number
of deprotonated rotaxanes (black trace) during the “forward” shuttling in the
presence of base molecules (part A) and the “backward” shuttling in the presence
of acid molecules (part B) at concentration 10−8M .

quent “forward” shuttling and reprotonation with subsequent “backward” shut-
tling, considering the two different concentrations.

The results at concentration 10−4M are reported in Figure 3.4; they essen-
tially confirm the validity of the “instantaneous” deprotonation/reprotonation
assumption at this concentration level. We report in Figure 3.5 the results for
concentration 10−8M ; in this case the rings start moving before the deproto-
nation/reprotonation phase is over. This proves that in the rotaxane RaH the
stimulus and the subsequent shuttling could interplay.

In the light of this observation, we have decided to investigate some addi-
tional scenarios not yet considered in the in vitro experimentations. In particu-
lar, we have decided to analyze the interplay between shuttling and a stimulus
given by weaker acid/base molecules, that is, for which the ratio between the
deprotonation/reprotonation rate and the reverse rate is smaller. In fact, the
ratio considered in the previously discussed simulations is on the order of 107;
a smaller reasonable ratio could be on the order of 103. Considering this new
ratio, assuming 1000 instances of rotaxane and base/acid, at the concentration
10−4M the new rates for deprotonation/reprotonation is 2×103s−1 with reverse
reaction rate on the order of 2s−1, while at the concentration 10−8M it is 0.2s−1

with reverse reaction on the order of 0.2× 10−3s−1. Using these new rates, we
have simulated the “forward” and “backward” shuttling at both concentrations,
10−4M in Figure 3.6 and 10−8M in Figure 3.7.

Interestingly, we found out that the “forward” shuttling is no longer guar-
anteed. In fact, only in some of the deprotonated rotaxanes the Ring actually
moves around the Bipy . In other terms, the efficiency of the rotaxane is no
longer close to 100% (as was the case in the in vitro experimentations and in
the other in silico simulations) but it is around 35% for concentration 10−4M ,
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(A) (B)

Figure 3.6: Number of Rings located around Bipys (grey trace) and number
of deprotonated rotaxanes (black trace) during the “forward” shuttling in the
presence of weak base molecules (part A) and the “backward” shuttling in the
presence of weak acid molecules (part B) at concentration 10−4M .

(A) (B)

Figure 3.7: Number of Rings located around Bipys (grey trace) and number
of deprotonated rotaxanes (black trace) during the “forward” shuttling in the
presence of weak base molecules (part A) and the “backward” shuttling in the
presence of weak acid molecules (part B) at concentration 10−8M .
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or 75% for concentration 10−8M . After an analysis of this initially unexpected
results, we can conclude that the inefficiency of the rotaxane is justified by the
fact that the reverse reaction of deprotonation (i.e. re-protonation) can activate
a chain of reactions that allows an already deprotonated rotaxane, with the Ring
around the Bipy , to return in the initial state (protonated with the Ring around
the Nh). This chain of reactions, under these particular circumstances, plays an
important role in the equilibrium between the number of deprotonated rotax-
anes with the Ring around the Nh and the number of deprotonated rotaxanes
with the Ring around the Bipy .

3.3 Conclusion.

We have introduced nanoκ, a calculus designed on purpose for the modeling of
nano-devices. The calculus is equipped with a stochastic semantics (defined in
terms of a CTMC) that can be used to simulate the evolution of the behaviour
of nano-devices using stochastic simulation techniques such as, for instance, the
Gillespie algorithm [37]. We have applied the nanoκ calculus to the modeling
and simulation of the RaH rotaxane [54, 1], a nano-device that attracted a
lot of attention inside the nano science and technology community, because it
proved very useful for building more complex nano-devices [48, 46, 2]. We have
used the nanoκ calculus model of the RaH rotaxane to simulate its behaviour
under conditions that were not yet considered in the in vitro experimentations.
We found out that under particular circumstances the nano-device is not as
efficient as expected. In particular, even if almost all the rotaxanes in a solution
are stimulated, only some of them change their internal structure according to
the stimulus.

As future work, we intend to use the nanoκ calculus to model and simulate
also more complex nano-devices, such as the nano-elevator [2]. As we detailed
in Chapter 1, nano elevators are composed of a platform and of three rotaxanes
that, once appropriately stimulated, move the platform up or down. We expect
to reuse the modeling of the rotaxane presented in this paper. In fact, one
of the most important peculiarities of the nanoκ calculus is that it supports
compositional modeling: the reactions describing the behaviour of the molecules
that are part of a nano-device, are still valid reactions also when the nano-device
is itself considered as a part of a more complex system.

We have already discussed in the Introduction the origins of the nanoκ cal-
culus, and its strong relationship with the κ-calculus[26]. Here we simply recall
that the nanoκ calculus can be seen as a member of the κ-family. The κ-calculus
benefits from efficient techniques of simulation and analysis [25, 24, 47, 27]. In
contrast to our nanoκ calculus this formalism allows reactions involving an ar-
bitrary number of molecules, but there are no exchanges rules, edges can only
be created or destroyed, not moved. These differences are explained by our
field of application. Dealing with the behaviour of nano-complexes, the relevant
reaction we met involve barely more than two molecules, but edges are often
exchanged and moved between molecules.
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3.4 Related works.

The nanoκ calculus has been influenced also by Cardelli’s language of stochastic
interacting processes [14, 17] that has been put in correspondence with Ordinary
Differential Equations. The stochastic semantics of the nanoκ calculus, indeed,
has been given following these lines.

Another process calculus for the modeling of biochemical systems is Bio-
PEPA [22, 7]. Differently from the Cardelli’s approach, there is no one-to-one
correspondence between processes and molecules, but one process is used to rep-
resent the concentration of one species. In Bio-PEPA the rates are associated
to the actions by means of “functional rates”: these are functions that are eval-
uated at the moment of the reduction of the systems. The idea of functional
rates is particularly useful when different kinetic laws are considered in the
same unifying framework. The possibility of considering different kinetic laws
is also proposed in BIOCHAM [13], a programming environment for modeling
biochemical systems, making simulations and querying the model in temporal
logic. Our approach is different from both Bio-PEPA and BIOCHAM because
we follow the Cardelli’s one-to-one correspondence between molecules and pro-
cesses. In fact, we have found this approach appropriate for a compositional
model of discrete state systems (in which we count the number of molecules
instead of considering their concentrations).

The beta-binders [63] which evolved recently into the BlenX language [30] are
another formalism that can represent complexing molecules. It is based on a π-
calculus where the usual communication discipline is relaxed to better represent
the complementarity of molecular binding sites. It is achieved by means of a
wrapping operator associating an interface to a group of π-processes.

Finally, in the calculus of looping sequences [6, 4] a different paradigm is
taken. Molecules are represented simply by a name rather than by a π-process
and they can be assembled in sequences. Closed chains of molecules are used to
represent membranes, while dynamics is governed by rewriting rules on names.
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Chapter 4

From biochemistry to

stochastic processes.
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4.1 Introduction.

As we detailed in the Chapter 1, two main approaches emerged for the formal
representation of biochemical systems: the rule-based approach [13, 25, 5, 21, 12]
and the process-oriented approaches [15, 43, 16]. The former is inspired by the
traditional chemistry kinetics while the latter is inspired by process calculi. In
brief, the advantage of the rule-based approach is that it provides a biochemical-
like syntax as well as simple and easily reusable modelings. The advantage of
the process-oriented approach is that it comes with all the theory and tools that
have been developed for process calculi [39, 15, 43, 74, 45].

In this chapter we bridge the gap between the two approaches by implement-
ing the nanoκ calculus presented in the previous Chapter, which is a rule-based
formalism, into a process-oriented formalism: the nanoπ-calculus, a subset of
the stochastic π-calculus. The nanoπ-calculus is a nice target language for sev-
eral reasons. First it is a subcalculus of the π-calculus and so we are optimistic
that it can benefit of much of the known theory and available tools that have
been developed for the π-calculus (see for instance [39, 74, 45]). Secondly it
corresponds to the core of the SPiM simulator: a simulator for the stochas-
tic π-calculus [19, 15]. And finally it is a natural and conservative extension
of the Chemical Ground Form calculus, for which Cardelli established a close
correspondence with systems of chemical equations [14] (see the related works
paragraph for some more details).

Despite the simplicity of the nanoκ reactions, their implementation in nanoπ-
calculus is complex if the stochastic semantics must be preserved. We present
and discuss the problems through a number of examples. We start with a simple
yet defective proposition of encoding that we upgrade three times until we reach
a correct encoding.

An implementation of nanoκ into nanoπ should project the behavior of each
molecule out of the set of reactions and collect them into a process definition.
For example, consider a set of reactions ρ1, ρ2, ρ3, . . . If ρ1 is:

ρ1 A[s0](a),B [t1](b)
λ1
_ A[s1](ax),B [t0](bx)

then the nanoπ process Â of the molecule A in the above example is:

Â(s, a) = behavior-of A in ρ1
+ behavior-of A in ρ2
+ behavior-of A in ρ3
+ . . .

That is, a molecule is implemented by a parametric process definition Â, whose
parameters s and a encode the values of the corresponding fields and sites. The
“behavior-of A in ρ1” might be defined as

[a = ε, s = 0]ρ1 x.Â(1, x)

where
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• [a = ε, s = 0] means that such a behavior may be triggered provided the
site a is unbound (has value ε) and the field s is equal 0;

• in this case the name of the reaction ρ1 is used as a channel on which
a fresh name (modeling the bond created) is output. The channel ρ1 is
expected to be declared in the context and to have rate λ1. We also expect
that in the definition B̂ the behavior-of A in ρ1 performs a corresponding
input on ρ1 when the field t is 1 and the site b is unbound;

• then Â will continue as the process Â(1, x), since the values of the field s
and site a after the reaction are respectively 0 and x.

However the analogy reaction-names as channels cannot be pushed forward
to destruction. In fact, supposing for instance that ρ2 is the following destruc-
tion:

ρ2 A[s1](ax),B [t0](bx)
λ2
_ A[s0](a),B [t1](b)

if the “behavior-of A in ρ2” was modeled as

[a = ¬ε, s = 1] ρ2 ().Â(0, ε)

then Â might interact with the wrong B̂ in the nanoπ implementation (a = ¬ǫ
means that a is bond). This difficulty may be circumvented by using the names
encoding bonds – that are shared exactly by the two connected molecules – in
order to send the disconnection signal. So the “behavior-of A in ρ2” becomes

[a = ¬ε, s = 1] a ().Â(0, ε)

and we are assuming that B̂ will input on a and that the rate of this name is λ2.
Unfortunately, this solution is also inadequate, because some other reaction

may address the site a of A. If for instance the reaction ρ3 is:

ρ3 A[s1](ax),B [s1](bx)
λ3
_ A[s0](ax),B [s0](bx)

with λ3 6= λ2. Because of this inequality, it is not possible to use the channel
x anymore. One should rather use a channel for every reaction addressing the
bond. In the above example:

Â(s, a.ρ2, a.ρ3) = [a.ρ2 = ε, a.ρ3 = ε, s = 1] ρ1 (x2 : λ2, x3 : λ3). Â(0, x2, x3)

+ [a.ρ2 = ¬ε, s = 0] a.ρ2 (). Â(1, ε, ε)

+ [a.ρ3 = ¬ε, s = 1] a.ρ3 (). Â(0, a.ρ2, a.ρ3)
+ · · ·

where the parameter a.ρ2 and a.ρ3 contain the channels corresponding to the
reactions ρ2 and ρ3 addressing the site a. Moreover these parameters are in-
stantiated in the branch corresponding to the rule ρ1 because this rule creates
the bond on a.
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Unfortunately, a last problem renders this solution defective. Consider the
rules:

ρ4 A(ax),C (c)
λ4
_ A(a),C (cx)

ρ5 B(bx),C (cx)
λ5
_ B(b),C (c)

In this case the following scenario is possible: thanks to the rule ρ1 a bond
is created between A and B, then thanks to ρ4 its A-extremity is flipped toward
C and then thanks to ρ5 the bond is destroyed. As we have argued before, the
encoding of B and C need to share a private channel dedicated to the modeling
of the rule ρ5. However before the firing of ρ4 B and C were not linked, so they
should not share such a channel. So the sharing of such a channel has to result
from the firing of ρ4. Our solution is to model the creation of a bond by the
creation of a channel for every reaction in the nanoκ system, and to exchange
or destroy the whole tuple of these channels whenever the bond is exchanged or
destroyed respectively.

Actually in an accurate solution, a bond in nanoκ should be represented in
nanoπ by a tuple whose length is the number of reactions that address that
bond directly or indirectly through sequences of exchanges: it corresponds to
the computation of all the possible future events and the creation of a dedicated
channel for each such event. But for the sake of the simplicity our solution over-
approximates the “precise” solution, by representing bonds with tuples whose
length is the size of the set of reactions – the gangs, in our terminology.

The encoding of nanoκ into nanoπ defined in this Chapter, written [[·]], is such

that S
λ
7−→nκ T if and only if [[S]]

λ
7−→nπ [[T]] (the arrow is subscribed to ease the

reading). It follows that S and [[S]] are strongly stochastic bisimilar [8]. Actually
our correctness property is even stronger: it corresponds to the case of a strong
stochastic bisimulation where the bisimulation relation is bijective. This could
be seen as some sort of homomorphism.

This is different from usual implementations that almost never preserve the
granularity of transitions, that is they encode one transition into several. Ac-
tually in the stochastic settings preserving the granularity is quite natural for
an encoding. This is because the stochastic rate attached to a transition is the
parameter of an exponential law governing the waiting time before the transi-
tion could be fired. Unfortunately the sum of two exponential law is not an
exponential law. So it seems unlikely that an encoding which does not preserve
the granularity could preserve the distribution of the sojourn time.

Infinite rates offer, however, an alternative: the time needed to perform a
sequence of transitions in which only one has a finite rate is the same as the
time to perform one transition with the same rate. But the non-determinism
introduced by the infinite rates make such an encoding hard to achieve.

The Chapter is organized as follows. In Section 4.2, we introduce the syntax
and semantics of the nanoπ-calculus. In Section 4.3, we define our encoding
between the nanoκ calculus and the nanoπ-calculus. In Section 4.4, we illustrate
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our encoding on an example. In Section 4.5, we collect the correctness theorems
of our encoding. The Chapter is closed by a conclusion in Section 4.6 and a
discussion on related works in Section 4.7.

4.2 The nanoπ-calculus.

Syntax of the nanoπ-calculus.

Definition 4.2.1 (Processes) The nanoπ-calculus uses two sets of identifiers:
channel names, which are totally ordered, include the natural integers1 and are
ranged over by x, y, u, · · · , and agents, ranged over by A, B, · · · . Channel
names have a rate that is a positive real number or ∞. This rate may be explic-
itly declared in the process or globally defined (for free names). The following
syntactic categories are used in the nanoπ-calculus:

M ::= [u = v] | MM matches

α ::= x (ũ) | x ũ | x(ũ : λ̃) actions
P ::= 0 | A(ũ)|P terms

Moreover agent declarations have the form:

A(x̃) ,
∑

i∈I

Miαi.Pi

and a process is a term (x̃ : λ̃) P where λ̃ are rates.

Matches are sequences of equalities between values. An action is either an
input x (ũ) on the channel x of a tuple of names ũ, or an output x ũ on x of a

tuple ũ, or an bond output x (ũ : λ̃) on x of a tuple of new names ũ with rates

λ̃. Terms can be the inert 0 or a parallel composition of agent invocations. The
parallel operator | is assumed to be associative.

The term x̃ : λ̃ has to be considered a set with the constraint that every two
different elements have different names. Processes are ranged over by P, Q, · · · .

Scope restrictions bind names, that is in (x : λ) P the x free in P is bond by

x : λ. Likewise, input x (ũ).P and bond output x (ũ : λ̃).P bind ũ with scope
P . The agent definition A(ũ) ,

∑
i∈I Miαi.Pi binds ũ with scope equal to the

right hand side of the definition. We write bn(T ) and bn(α) for the set of the
bonded names of a process T or of an action α. The bonded names of an action
α is bn(α) defined by ũ if α is either x (ũ) or x (ũ : λ̃), and by ∅ if α = x ũ.
Names that are not bound are called free and we write fn(T ) for the set of such
names in T .

We assume that all terms meet the following well formed properties:

• in (x̃ : λ̃)P , x̃ ⊆ fn(P ) (there is no garbage);

• bond names in agent definitions never clash with free names (this allows
us to avoid alpha-conversions).

1We ask that channels can be natural integers so that they can represent the values of the
fields of molecules.
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Notation. Whenever a match has the form [u = u], or a sum has only one
branch we omit to write them explicitly. For instance A(x̃) , Σ

i∈{1}
[x̃i = x̃i]α.P

is written A(x̃) , α.P .
Given any nanoπ term P , and any tuples of names ũ and ṽ, we define

P{ṽ/ũ} as the term P where the names of the tuple ũ have been substituted
by the names of the tuple ṽ. We can now present the structural congruence for
the nanoπ-calculus:

Definition 4.2.2 The relation ≡ is the smallest equivalence on the terms of
the nanoπ-calculus such that (recall that the solutions are already quotiented by
the associativity of |):

• (x̃ : λ̃)(P |Q) ≡ (x̃ : λ̃)(Q|P ): i.e. the parallel operator is commutative,

• P ≡ Q if Q is an α-renaming of P , that is given a tuple of bound names
x̃ of P and a tuple of names z̃ which do not appear in P , Q = P{z̃/x̃},

• 0|P ≡ P ,

• for any permutation σ of the set I, Σ
i∈I
αi.Pi ≡ Σ

i∈I
ασ(i).Pσ(i): that is the

choice is commutative.

Stochastic semantics of the nanoπ-calculus. The basic transition relation
of the nanoπ-calculus requires a few definitions:

• M is true if M is a sequence of [x = x].

• length(A1(ũ1) | · · · | An(ũn)) returns n.

• Given two name creation (x̃ : λ̃) and (ỹ : λ̃′), the name creation (x̃ :

λ̃+ ỹ : λ̃′) is defined as the sequence z1 : λ1, · · · , zn : λn where z1, · · · , zn

are pairwise different names, {z1, · · · , zn} = x̃ ∪ ỹ, and zi : λi if either

(zi : λi) ∈ ỹ : λ̃′ or zi 6∈ ỹ and zi : λi ∈ x̃ : λ̃.

• [(x̃ : λ̃)P ]GC = (z̃ : λ̃′)P such that (y : λ′′) ∈ (z̃ : λ̃′) if y ∈ fn(P ) and

y : λ′′ is in x̃ : λ̃: that is the operation [(x̃ : λ̃)P ]GC removes the declaration
of the names that are not used P .

• Given a name renaming ı, with an abuse of notation we lift it to a tuple
of names or to a process by applying it pointwise.

Definition 4.2.3 The basic transition relation of the nanoπ-calculus, written
either

α
−→l.i,l′.j or

τλ−→l.i,l′.j or
α
−→l.i, is the least one satisfying the following

rules:

• (init) let A(ũ) =
∑

i∈I Miαi.Pi. If the matches Mj{ev/eu} are true, then

A(ṽ)
αj{ev/eu}
−→ 1.j Pj{ev/eu};
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• (lifts) if P
α
−→l.i P

′ and bn(α)∩ fn(Q) = ∅ and l′ = length(Q), then both:

– P | Q
α
−→l.i P

′ | Q and

– Q | P
α
−→l′+l.i Q | P

′;

• (communication) let l′′ = length(P ), λ be the rate of x, and Q
x (eu)
−→l′.i′ Q

′.

If P
x ev
−→l.i P

′ then:

– (z̃ : λ̃′)(P | Q)
τλ−→l.i,l′+l′′.i′ [(z̃ : λ̃′)(P | Q{ev/eu})]GC .

If P
x (ev:gλ′′)
−→ l.i P

′ then

– (z̃ : λ̃′)(P |Q)
τλ−→l.i,l′+l′′.i′ [(z̃ : λ̃′+ı̃(v) : λ̃′′)(P ′{g

ı(v)/ev}|Q
′{g

ı(v)/eu})]GC

where ı is an order-preserving injective renaming that maps ṽ to the least
names not belonging to name(P | Q) \ {ṽ

⋃
ũ}. Symmetrically when P

performs an input and Q performs an output.

As for nanoκ, there is always at most one (z̃ : λ̃′)P ′ such that (x̃ : λ̃)P
τλ′′

−→l,i,l′,i′

(z̃ : λ̃′)P ′ because created names are the least possible ones and because the
renamings are order-preserving.

Now that the basic transition relation is defined, the collective transition
relation can be derived according to the definition 2.1.2, and the downgrading
can be performed according to the definition 2.2.3.

4.3 Encoding the nanoκ calculus into the nanoπ-

calculus.

The definition of the encoding of the nanoκ calculus into the nanoπ-calculus is
presented in two steps. The first one defines an internal translation of nanoκ
calculus that expands every bond into tuples of bonds. The bonds in the tuple
are an over-approximation of the reactions that use the bond. We call these
tuples of newly generated names gangs. The second step defines a translation
from nanoκ (with gangs) to nanoπ.

Before proving the correctness of the encoding we will illustrate it on an
example.

4.3.1 Gangs: a dedicated name for every reaction.

In the following we use tuples of the same length n, which is equal to the number
of reactions in the nanoκ system we want to encode. These tuples are ordered
as follows: (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if, for every i, xi ≤ yi. We
ask that the set of these tuples is totally ordered: for all tuples x̃ and ỹ, either
x̃ ≤ ỹ or ỹ ≤ x̃. Let εn be the tuple of n elements ε and let  be a bijective
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function that maps ε to εn and names to n-tuples of names such that x ≤ y if
and only if (x) ≤ (y).

Remarque 5 Such a set of tuples and such a function  exist because the set of
names is totally ordered and countable. Indeed, since the set of names is totally
ordered and countable we can write it (xk)k∈[[1...∞[[. Then it suffices to define
(.) in the following way: (xk) is the tuple {x(k−1)×n+1, . . . , xk×n} and (ε) is
εn.

We do have that this set of tuples it totally ordered and that the function 
is bijective from {(xk)k∈[[1...∞[[

⋃
{ε}} to {(xk) | k ∈ [[1 . . .∞[[}

⋃
{εn} and such

that x ≤ y if and only if (x) ≤ (y).

Definition 4.3.1 Let R = {ρi : Li
λi

_ Ri | i ∈ 1..n} be a set of nanoκ reaction
rules.

Given a presolution S , its encoding [(S)] is defined by (S). The encoding of

R is written [(R)] and is defined by {ρi : [(Li)]
λi

_ [(Ri)] | i ∈ 1..n}.

Namely [(R)] and [(S)] are such that

• interfaces map sites to gangs, that is tuples of bonds of length n ;

• two distinct tuples do not contain the same name;

• tuples preserve the order of bonds in R and S.

The correctness of this part of the encoding is stated in Theorem 4.5.1.

4.3.2 From gangs to the nanoπ-calculus: agents as mole-

cules.

The second step of our translation encodes given nanoκ systems with gangs of
bonds into processes of nanoπ.

As discussed in section 4.1, we encode a species A by a parametric agent
definition Â(x̃, ỹ, z̃) = P , whose parameters represent the possible values of
fields and sites of the molecules of that species. The body P is a choice with a
branch for every reaction involving the species A. A molecule A[u](σ) is modeled
by an invocation Â({[u, σ]}).

We assume that the field and site names are totally ordered (using the lex-
icographic order for instance) so that we can index them with integers. Note
that though the value of a field is an integer, it does not clash with the integer
index, since the index only concerns the name of the field and not its value. We
begin by defining {[u, σ]}. Let ε and ¬ε be two distinguished channels. Then
{[u, σ]} is equal to the tuple {[u]}0, {[σ]}1, {[σ]}2, where

• {[u]}0 yields the tuple of the values of the fields in u;

• {[σ]}1 yields the concatenation of the gangs in the range of σ;
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• {[σ]}2 yields a tuple of length equal to the size of dom(σ), whose i-th
element is ǫ if all the element of the tuple σ(i) are ε and ¬ǫ if not.

The parameters in {[σ]}2 permit us to check in the agent definition whether
a site is free without using mismatch (see [.]σ in the 4-th item of the list below).
Then we continue with a sequence of definitions, where n is the number of
reactions in the nanoκ system considered:

• if A[u](σ),B [v](φ)
λ
_ A[u′](σ′),S ∈ R then both A[u](σ)

λ
_ A[u′](σ′) ∈

RL and B [v](φ)
λ
_ S ∈ RR;

• If ρ is a creation, we define CR(ρ,R) to be the sequence (x1 : λ1, · · · , xm :
λm) where every subsequence (xi×n : λi×n, xi×n+1 : λi×n+1, · · · , xi×n+n−1 :
λi×n+n−1) corresponds to the i-th bond created by ρ and λi×n, · · · ,
λi×n+n−1 are the rates of the reactions in R. Similarly if ρ is an exchange
EX(ρ,R) is the set of the bonds exchanged by the reaction ρ.

• [x1, · · · , xm]u is the sequence of matches [xi = u(i)]i∈dom(u) where u is a
possibly partial evaluation;

• [x1, · · · , xm]σ is the sequence of matches (Mi)i∈dom(σ) where Mi = [xi = ǫ]
if all the element of the tuple σ(i) are ε, and Mi = [xi = ¬ǫ] if not, and
where σ is a possibly partial interface;

• Given a tuple x̃ of length m and a possibly partial valuation u whose
domain has size m, set0(x̃, u) is the tuple of length m whose i-th element
is u(i) whenever i ∈ dom(u), and the i-th element of x̃, otherwise;

• Given two tuples x̃ and ỹ of size m ∗ n and p ∗ n respectively and two
possibly partial interfaces σ and σ′ that have the same domain of size m,
set1(x̃, σ, σ

′, ỹ) is the tuple (uk)k∈[[0..m∗n−1]] such that for all i ∈ [[0..m−1]]
and j ∈ [[0..n− 1]] the element un∗i+j equals:

– xn∗i+j if i 6∈ dom(σ) or σ(i) = σ′(i) (i.e. i is neither mentioned nor
affected by the interfaces);

– ε if σ(i) ∈ ran(σ) \ ran(σ′) (i.e i is free in σ′ but not in σ);

– yn∗k+j if σ′(i) is the k-th bond in ran(σ′) \ ran(σ) (i.e. it is the k-th
bond created or exchanged);

• Given a tuple x̃ of length m and a possibly partial interface σ whose
domain has size m, set2(x̃, σ) is the tuple of length m whose i-th element
is xi if i 6∈ dom(σ), otherwise it is ε if σ(i) = εn, and it is ¬ε if σ(i) 6= εn;

• proj(x̃, a) is the tuple (xn∗a+i)i∈[[0..n−1]] and proj(x̃, a, i) is xn∗a+i;

Intuitively the matches [x̃]u and [z̃]σ, where x̃ and z̃ are expected to be
some {[v]}0 and {[φ]}2 respectively, check that x̃ and z̃ are compatible with
requirements of u and σ respectively. The update function set0(x̃, u), where
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x̃ is expected to be some {[v]}0, updates x̃ according to the valuation u. The
update function set1(ỹ, σ, σ

′, w̃), where ỹ and w̃ are expected to be some {[φ]}1
and the names received from the synchronization respectively, updates ỹ with
the names of w̃ or with ε according to the change from σ to σ′. The update
function set2(z̃, σ), where z̃ is expected to be some {[φ]}2, updates z̃ according to
σ. The operation proj(ỹ, a), where ỹ is expected to be some {[φ]}1, extracts from
ỹ the gang corresponding to the site a, and the operation proj(ỹ, a, i) extract
from this gang the channel name corresponding to the reaction of index i.

Every preliminary notation is in place for the definition of the encoding from
nanoκ with gangs to nanoπ.

Definition 4.3.2 Given a nanoκ system, let R be its set of reactions and n be
the size of R. The nanoπ agent corresponding to the species A is:

Â(x̃, ỹ, z̃) =
∑

ρ:A[u](σ)
λ
_A[u′](σ′) ∈RL

[x̃]u [z̃]σ αρ,L . Pρ,L

+
∑

ρ:A[u](σ)
λ
_S ∈RR

[x̃]u [z̃]σ αρ,R . Pρ,R

where the length of x̃ is the number of fields of the species A, the length of ỹ is
n times the number of sites of A and the length z̃ is the number of sites of A.
In addition:

• if ρ is a creation with an empty set of bonds in the left-hand side then

αρ,L = ρ(ũ : λ) and αρ,R = ρ (ũ) and (ũ : λ) = CR(ρ,R);

• if ρ is a creation with a bond x in the left-hand side then αρ,L = proj(ỹ, a, i)

(ũ : λ) and αρ,R = proj(ỹ, a, i) (ũ), where a is the site of A bond by x, i

is the index of ρ in R and (ũ : λ) = CR(ρ,R);

• if ρ is a destruction with a bond x in the left-hand side then αρ,L =

proj(ỹ, a, i) ( ) and αρ,R = proj(ỹ, a, i) ( ), where a is the site of A bond
by x and i is the index of ρ in R;

• if ρ is an exchange with an empty set of bonds in the left-hand side or with
a bond occurring once and in A then αρ,L = ρ ũ and αρ,R = ρ (ũ), where
ũ is either empty, if there is no bond in the left-hand side, or proj(ỹ, a) if
the site with the bond is a;

• if ρ is an exchange with a bond x shared by the reactants then one defines
αρ,L = proj(ỹ, a, i) (ũ) and αρ,R = proj(ỹ, a, i) (ṽ), where a is the site of
A bond by x, i is the index of ρ in R, ṽ is a tuple of fresh names and
ũ is either empty, if there is no bond in the left-hand side apart x, or
proj(ỹ, A, a′) if A has a further bond on the site a′.

As regards continuations:

• Pρ,L = Â(set0(x̃, u
′), set1(ỹ, σ, σ

′, bn(αρ,L)), set2(z̃, σ
′))

• if S = then Pρ,R is 0,
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• if S = A[u′](σ′),C1 [v1](φ1), · · · ,Cn [vn](φn) then Pρ,R is Â(set0(x̃, u
′),

set1(ỹ, σ, σ
′, bn(αρ,L)), set2(z̃, σ

′)),Ĉ1({[u1]}1, {[φ1]}2, {[φ1]}3), · · · ,
Ĉh({[uh]}1, {[φh]}2, {[φh]}3).

Finally the encoding of a nanoκ solution with gangs is:

{[A1 [u1](σ1), · · · ,Am [um](σm)]} , (δS)(Â1{[u1, σ1]}, · · · ,Âm{[um, σm]})

where δS is the minimal set that contains

• (ρ : λ), if ρ has no bond between its reactants and has rate λ,

• (x(i,a),1 : λ1, . . . , x(i,a),n : λn) if the site a of the molecule Ai [ui](σi)
is bound, if x̃(i,a) are the names of the corresponding gang, and where
(λ1, . . . , λn) are the rates of the reactions in R.

Remarque 6 Remarkably, our encoding retains some interesting compositional
properties. First of all, consider two solutions S and S′ and their encodings
(δS)P and (δS′)P ′, respectively. Without loss of generality, let us suppose that
δS

⋂
δS′ = fn(P )

⋂
δS′ = δS

⋂
fn(P ′) = ∅. This property can be guaranteed

using α-conversion. Then the encoding of the parallel composition S|S′ is (δS ∪
δS′)(P |P ′) where (δS ∪ δS′) is the union of the name declarations δS and δS′ .
More interestingly, if we add a new reaction rule to a system that we have
already encoded, there are very few changes to be made. First, we need to
expand the length of the gangs by one. Then, we have to add one line to the
definitions corresponding to the two species occurring in the left hand side of
the new reaction, in order to describe this additional behavior for the molecules
belonging to these two species.

4.4 The encoding at work.

To illustrate our encoding we chose a toy-modeling of the transcription of a
gene. There are three species:

• Gn models a gene. It has one field tr and two sites pr and rnap; tr is 1
when the gene is being transcribed by the RNA polymerase and 0 if not;
pr and rnap are used to link to Pr and RNAp, respectively;

• Pr models the various promoter-sequences of the gene. It has one field
act and two sites rnap and gn. The activation of the promoters by the
transcription-factors is represented by switching act from 0 to 1. The sites
rnap and gn are used to link RNAp and Gn, respectively;

• RNAp models the RNA polymerase. It has one field act that is set to 1
when the molecule is activated by the complexations with the promoters
and the transcription factors, it is set to 0 otherwise. It has a site link
that may be bound either to Pr or to Gn, according to the stage of the
transcription;
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There are three reactions. The creation ρ1 models the binding of the RNA
polymerase to the promoters (between sites rnap of Pr and link of RNAp) and
their activation (update of the fields act of Pr and RNAp). The exchange ρ2

models the motion of the RNA-polymerase to the gene and the beginning of
the transcription itself (update of the field tr of Gn to 1). The destruction ρ3

models the termination of the transcription. For the sake of the simplicity we
chose not to model the release of a messenger RNA.

ρ1 : Pr [act0](rnap),RNAp[act0](link)
λ1
_ Pr [act1](rnapx),RNAp[act1](linkx)

ρ2 : Pr [act1](rnapy + gnx) , Gn[tr0](prx + rnap)
λ2
_ Pr [act0](rnap+ gnx) , Gn[tr1](prx + rnapy)

ρ3 : RNAp[act1](linkx) , Gn[tr1](rnapx)
λ3
_ RNAp[act0](link) , Gn[tr0](rnap)

The encoding of this nanoκ system yields the following three recursive def-
initions in nanoπ. We notice that, in the encoding of Gn, the parameters
pρ1, pρ2, pρ3, ?p correspond to the gang of the site pr (the parameters pρ1, pρ2, pρ3

are yielded by {[.]}1 and the parameter ?p by {[.]}2), similarly the parameters
rρ1, rρ2, rρ3, ?r correspond to the gang of the site rnap.

Ĝn(tr, pρ1, pρ2, pρ3, rρ1, rρ2, rρ3, ?p, ?r) ,

[tr = 0, ?p = ¬ǫ, ?r = ǫ] pρ2 (r1, r2, r3) . Ĝn(1, pρ1, pρ2, pρ3, r1, r2, r3, ?p,¬ǫ)

+ [tr = 1, ?r = ¬ǫ] rρ3 () . Ĝn(1, pρ1, pρ2, pρ3, ǫ, ǫ, ǫ, ?p, ǫ)

In the encoding of Pr , the parameters rρ1, rρ2, rρ3, ?r correspond to the gang
of the site rnap and the parameters gρ1, gρ2, gρ3, ?g correspond to the gang of
the site gn.

P̂r(act, rρ1, rρ2, rρ3, gρ1, gρ2, gρ3, ?r, ?g) ,

[act = 0, ?r = ǫ] ρ1 (r1 : λ1, r2 : λ2, r3 : λ3) . P̂r(1, r1, r2, r3, gρ1, gρ2, gρ3,¬ǫ, ?g)

+ [act = 1, ?r = ¬ǫ, ?g = ¬ǫ] gρ2 (rρ1, rρ2, rρ3) . P̂r(0, ǫ, ǫ, ǫ, gρ1, gρ2, gρ3, ǫ, ?g)

In the encoding of the species RNAp, the parameters lρ1, lρ2, lρ3, ?l correspond
to the gang of the site link.

R̂NAp(act, lρ1, lρ2, lρ3, ?l) ,

[act = 0, ?l = ǫ] ρ1 (r1, r2, r3)) . R̂NAp(1, r1, r2, r3,¬ǫ)

+ [act = 1, ?l = ¬ǫ] lρ3 . R̂NAp(0, ǫ, ǫ, ǫ, ǫ)

Finally, the encoding of the solution Pr [act0](rnap+ gnx),Gn[tr0](prevx +
rnap), RNAp[act](link) is the term

(ρ1 : λ1, pr1 : λ1, pr2 : λ2, pr3 : λ3)( P̂r(0, ǫ, ǫ, ǫ, pr1, pr2, pr3, ǫ,¬ǫ)

| Ĝn(0, pr1, pr2, pr3, ǫ, ǫ, ǫ,¬ǫ, ǫ)

| R̂NAp(act, ǫ, ǫ, ǫ, ǫ)
)
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4.5 Correctness of the encoding.

In this section we state and prove the correctness of our encoding. We first
prove in Theorem 4.5.1 that the first step of the encoding provides a one-to-
one correspondence between the basic transitions of the terms of the nanoκ
calculus and the basic transitions of the nanoκ calculus with gangs. Similarly
we prove in Theorem 4.5.2 that the second step of the encoding provides a one-
to-one correspondence between the basic transitions of the terms of the nanoκ
calculus with gangs and the basic transitions of the nanoπ-calculus. Then in
Theorem 4.5.3 we prove how to lift the correctness from the basic transition
relation to the collective transition relation. And finally in Theorem 4.5.4 we
state the correctness of the full encoding with respect to the collective transition
relation.

4.5.1 Correctness of the encoding from nanoκ to nanoκ

with gangs with respect to the basic transition rela-

tion.

Before stating the correctness of the introduction of the gangs we need a few
definitions. Given a renaming ı, we define [[ı]] to be the renaming which coin-
cides with  ◦ ı ◦ −1 pointwise (recall that  is the bijective function associating
gangs to names in the definition 4.3.1). We have that if ı is injective and order-
preserving then [[ı]] is also injective and order-preserving because  is bijective
and such that x ≤ y if and only if (x) ≤ (y). Then for α ∈ {L,R} we define
[[ρα, ı]] , ([[ρ]])α, [[ı]].

For the sake of the readability, from now on we omit the subscript  in the
encoding and write only [[.]].

We can now state the correctness of the introduction of gangs with respect
to the basic transition relation:

Theorem 4.5.1 For all solutions S and T of the nanoκ calculus:

1. if S
µ
−→l T then [(S)]

[(µ)]
−→l [(T)].

2. if S
ρ
−→l,l′ T then [(S)]

[(ρ)]
−→l,l′ [(T)].

3. if [(S)]
µ
−→l T then there exists S′ and µ′ such that: [(S′)] = T, S

µ′

−→l S′,
and µ = [(µ′)].

4. if [(S)]
ρ
−→l,l′ T then there exists S′ and ρ′ such that: [(S′)] = T, S

ρ′

−→l,l′ S′,
and ρ = [(ρ′)].

Proof

1. We prove the result by induction on the derivation tree of S
µ
−→1 T.
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• If the transition S
µ
−→l T has been obtained by the (init) rule, there

is a rule ρ : A[u](σ),B [v](φ)
λ
_ A[u′](σ′),R such that the transition

is written:

(α) either A[u+ w](ı ◦ σ + ν)
ρL,ı
−→1 A[u′ + w](ı ◦ σ′ + ν)

(β) or B [v + w](ı ◦ φ+ ν)
ρR,ı
−→1 ı(R)

with ran(ı)
⋂

ran(ν) = ∅. The reaction ρ is translated into [(ρ)] :

A[u]( ◦ σ),B [v]( ◦ φ)
λ
_ A[u′]( ◦ σ′), (S). So using the (init) rule

one can derive respectively:

(α) either A[u+ w](ı′ ◦  ◦ σ + ν′)
[(ρ)]L,ı′

−→ 1 A[u′ + w](ı′ ◦  ◦ σ′ + ν′)

(β) or B [v + w](ı′ ◦  ◦ φ+ ν′)
[(ρ)]R,ı′

−→ 1 (ı′ ◦ )(R)

assuming that ran(ı′)
⋂
ν′ = ∅. We can choose ı′ = [(ı)] and ν′ = ◦ν

because ran([(ı)])
⋂
 ◦ ν = ∅. Indeed ran([(ı)])

⋂
 ◦ ν′ = ∅ if and only

if ran(ı ◦ −1)
⋂
ν = ∅ since  is bijective, and ran(ı ◦ −1)

⋂
ν = ∅

is implied by ran(ı)
⋂
ν = ∅. Now since [(ı)] ◦  =  ◦ ı we deduce

respectively:

(α) either [(A[u+ w](ı ◦ σ + ν))]
[(ρL,ı)]
−→ 1 [(A[u′ + w](ı ◦ σ′ + ν))]

(β) or [(B [v + w](ı ◦ φ+ ν))]
[(ρR,ı)]
−→ 1 [(ı(R))]

which concludes the proof of this case.

• If the transition S
µ
−→l T has been obtained by the (lift) rule, there

are S1, S2 and S′ such that bn(µ)
⋂

name(S′) = ∅ and either S1
µ
−→l

S2 and S = S1, S
′ and T = S2, S

′ or S1
µ
−→l−#(S′) S2 and S = S′, S1

and T = S′, S2, where #(S′) is the length of S′.

If we are in the former case, then by induction hypothesis we have

that [(S1)]
[(µ)]
−→l [(S2)]. Moreover since  is bijective and (name(S2) \

name(S1))
⋂
n(S′) = ∅ we have that (name([(S2)]) \ name([(S1)]))

⋂

name([(S′)]) = ∅. So by the (lift) rule we obtain [(S)] = [(S1)], [(S
′)]

[(µ)]
−→l

[(S2)], [(S
′)] = [(T )].

In the other case, the proof is achieved with the same arguments.

2. Suppose that S
ρ
−→l,l′ T. This transition has been obtained with the

(communication) rule, so there are S1, S2, T1, T2, µ and ı such that

S = S1, S2 and T = ı(T1, T2) and S1

µ
−→l T1 and S2

µ
−→l′−#(S1) T2 where

#(S1) is the size of S1 and where ı maps name(T1,T2) \ name(S) to the
least names not occurring in S. By the first item of the theorem we obtain

that [(S1)]
[(µ)]
−→l [(T1)] and [(S2)]

[(µ)]
−→l′−#(S1) [(T2)].

Since [(µ)] = [(µ)] and #(S1) = #([(S1)]), by the (communication) rule

we obtain that: [(S1)], [(S2)]
[(ρ)]
−→l,l′ ı′([(T1)], [(T2)]) for some ı′ mapping

name([(T1)], [(T2)]) \ name([(S1)], [(S2)]) to the least names not occurring
in [(S1)], [(S2)], that is in [(S)].
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Because  is injective and such that x ≤ y ⇔ (x) ≤ (y) we have that
[(ı)] maps name([(T1)], [(T2)]) \ name([(S1)], [(S2)]) to the least names not
occurring in [(S1)], [(S2)], that is in [(S)]. So we can choose ı′ = [(ı)]. Since
[(ı)] ◦  =  ◦ ı we have that [(ı)]([(T1)], [(T2)]) = ([(ı)] ◦ )(T1,T2) = ( ◦

ı)(T1,T2) = [(T )]. And thus: [(S)]
[(ρ)]
−→l,l′ [(T)].

3. We prove the result by induction on the derivation tree of [(S)]
µ
−→l T .

• If the transition [(S)]
µ
−→l T has been obtained by the (init) rule,

there is a rule [(ρ)] : A[u]( ◦ σ),B [v]( ◦ φ)
λ
_ A[u′]( ◦ σ′), (R) such

that the transition is written:

(α) either A[u+ w](ı ◦  ◦ σ + ν)
[(ρ)]L,ı
−→ 1 A[u′ + w](ı ◦  ◦ σ′ + ν)

(β) or B [v + w](ı ◦  ◦ φ+ ν)
[(ρ)]R,ı
−→ 1 (ı ◦ )(R)

with ran(ı)
⋂

ran(ν) = ∅. So the reaction ρ is A[u](σ),B [v](φ)
λ
_

A[u′](σ′),R. So using the (init) rule we can derive respectively:

(α) either A[u+ w](ı′ ◦ σ + ν′)
ρL,ı′

−→1 A[u′ + w](ı′ ◦ σ′ + ν′)

(β) or B [v + w](ı′ ◦ φ+ ν′)
ρR,ı′

−→1 ı(R)

with ran(ı′)
⋂

ran(ν′) = ∅. We can choose ı′ = −1 ◦ ı ◦  and ν′ =
−1 ◦ ν because ran(−1 ◦ ı ◦ )

⋂
−1 ◦ ν = ∅. Indeed ran(−1 ◦ ı ◦

)
⋂
−1 ◦ ν = ∅ if and only if ran(ı ◦ )

⋂
ν = ∅ since  is bijective,

and ran(ı ◦ )
⋂
ν = ∅ is implied by ran(ı)

⋂
ν = ∅. Now it suffices to

define respectively:

(α) either S′ , A[u′+w](−1◦ı◦◦σ′+−1◦ν) and µ′ , ρL, 
−1◦ı◦

(β) or S′ , (−1 ◦ ı)(R) and µ′ , ρR, 
−1 ◦ ı ◦ 

to conclude the proof of this case.

• If the transition [(S)]
µ
−→l T has been obtained by the (lift) rule, there

are S1, T′ and S2 such that (name([(S1)])\name(T ))
⋂

name([(S2)]) = ∅

and either [(S)] = [(S1)], [(S2)] and T = T′, [(S2)] and [(S1)]
µ
−→l T′ or

S = [(S2)], [(S1)] and T = [(S2)],T
′ and [(S1)]

µ
−→l−#([(S2)]) T′, where

#([(S2)]) is the length of [(S2)].

If we are in the former case, then by induction hypothesis we have

that there exists S′′ and µ′ such that [(S′′)] = T ′ and S1
µ′

−→l S
′′ and

µ = [(µ′)]. Moreover since  is bijective and (name([(S1)])\name(T ))
⋂

name([(S2)]) = ∅ we have that (name(S1)\name(S′′))
⋂
n(S2) = ∅. So

by the (lift) rule we obtain [(S)] = [(S1)], [(S2)]
[(µ′)]
−→l [(S′′)], [(S2)] = T .

In the other case, the proof is achieved with the same arguments.

4. Suppose that [(S)]
ρ
−→l,l′ T. This transition has been obtained with the

(communication) rule, so there are [(S1)], [(S2)], T1, T2, µ and ı such that

S = S1, S2 and T = ı(T1, T2) and [(S1)]
µ
−→l T1 and [(S2)]

µ
−→l′−#([(S1)]) T2
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where #([(S1)]) is the size of [(S1)], where ρ is the rule of µ and where ı
maps name(S1,S2)\name(T1,T2) to the least names not occurring in [(S)].
By the third item of the theorem we obtain that there exists S′

1, S′
2 and

µ such that [(S′
1)] = T1 and [(S′

2)] = T2 and S1

µ′

−→ S′
1 and S2

µ′

−→ S′
2 and

[(µ′)] = µ.

Since #(S1) = #([(S1)]), by the (communication) rule we obtain that

S1,S2

ρ′

−→l,l′ ı
′(S′

1,S
′
2) where [(ρ′)] = ρ and for some ı′ mapping name(S′

1,S
′
2)

s \ name(S1,S2) to the least names not occurring in S1,S2, that is in S.

Because  is injective and such that x ≤ y ⇔ (x) ≤ (y) we have that
−1◦ ı◦ maps name(S′

1,S
′
2)\name(S1,S2)to the least names not occurring

in S1,S2, that is in S. So we can choose ı′ = −1 ◦ ı ◦ . Now it suffices
to define S′ = (−1 ◦ ı ◦ )(S′

1,S
′
2): we do have that [(S′)] = ((−1 ◦ ı ◦

)(S′
1,S

′
2)) = (ı ◦ )(S′

1,S
′
2) = ı(T1,T2) = T and S

ρ′

−→l,l′ S′ and [(ρ′)] = ρ.

�

4.5.2 Correctness of the encoding from nanoκ with gangs

to nanoπ with respect to the basic transition relation.

Before stating the correctness of the encoding in the nanoπ-calculus we need
a few definitions. If A is the l-th molecule in S and if the rule of µ corre-
sponds to the i-th branch of the choice in Â, we define {[l, S, µ]} to be the
pair (l, i). We also let {[ρL, ı]} and {[ρR, ı]} to be respectively αρ,L and αρ,R

as defined in Definition 4.3.2. We also define 〈A1 [u1](σ1), . . . ,Am [um](σm)〉 ,

Â1{[u1, σ1]}, . . . , Âm{[um, σm]} that is the encoding deprived of the name decla-
rations.

Finally we define
◦
≡α to be the α-renaming where names are only permuted.

That is given two processes S
◦
≡α T if and only if S is an α-renaming of T as

defined in the structural congruence (see definition 4.2.2) and bn(S) = bn(T ).

Theorem 4.5.2 1. If S
µ
−→l T then:

• if µ = ρR, ı and ρ is an exchange then:

〈S〉
{[µ]}
−→{[l,S,µ]} 〈T{bn({[µ]})/ı(EX(ρ))}〉

• otherwise 〈S〉
{[µ]}
−→{[l,S,µ]} 〈T〉.

2. If S
ρ
−→l,l′ T then {[S]}

τrate(ρ)
−→ {[l,S,ρ]},{[l′,S,ρ]}

◦
≡α {[T]}.

3. If 〈S〉
µ
−→l.i T then there exist S′ and µ′ such that S

µ′

−→l S′, µ = {[µ′]}
and:

• if µ′ = ρR, ı and ρ is an exchange then 〈S′{bn(µ)/ı(EX(ρ))}〉 = T,

• otherwise 〈S′〉 = T.
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4. If {[S]}
τλ−→l.i,l′.i′ T then there exist S′ and ρ such that: {[S′]}

◦
≡α T, S

ρ′

−→l,l′

S′, and rate(ρ) = λ.

Before proving Theorem 4.5.2, we gather some facts about our encoding in
the following lemmas.

Lemma 4.5.1 • [{[u]}0]v is true if and only if ∃v′.u = v + v′.

• [{[σ]}2]φ is true if and only if ∃ı, ν.σ = ı ◦ φ+ ν.

Proof By definition of [.]v, [.]φ and {[.]}. �

Lemma 4.5.2 For any evaluation u and any interface σ we have that:

• set0({[u+ w]}0, u
′) = {[u′ + w]}0 if dom(u) = dom(u′),

• and set2({[ı ◦ σ + ν]}2, σ
′) = {[ı ◦ σ′ + ν]}2 if dom(σ) = dom(σ′).

Given a transition ρ : A[u](ı ◦ σ + ν)
µ
−→ A[u′](ı ◦ σ′ + ν),S, it holds that:

• set1({[ı ◦ σ + ν]}1, σ, σ
′, ı(CR(ρ,R))) = {[ı ◦ σ′ + ν]}1 if ρ is a creation,

• set1({[ı ◦ σ + ν]}1, σ, σ
′, ∅) = {[ı ◦ σ′ + ν]}1 if ρ is a destruction,

• and set1({[ı◦σ+ν]}1, σ, σ
′, ı(EX(ρ,R))) = {[ı◦σ′+ν]}1 if ρ is an exchange.

And:

• 〈A[u′+w](ı◦σ′+ν),S〉 = Â(set0({[u+w]}0, u
′), set1({[ı◦σ+ν]}1, σ, σ

′,B), set2({[ı◦
σ + ν]}2, σ

′)), 〈S〉 where B is either ı(CR(ρ,R)), ∅ or ı(EX(ρ,R)) if ρ is a
creation, a destruction or an exchange respectively.

Proof By definition of the set functions and {[.]}. �

We are now ready to prove Theorem 4.5.2.
Proof (of Theorem 4.5.2)

1. We prove the result by induction on the derivation tree of S
µ
−→l T.

• If transition S
µ
−→l T has been obtained by the (init) rule, there is

a rule ρ : A[u](σ),B [v](φ)
λ
_ A[u′](σ′),R such that the transition is

written:

– either A[u+ w](ı ◦ σ + ν)
ρL,ı
−→1 A[u′ + w](ı ◦ σ′ + ν)

– or B [v + w](ı ◦ φ+ ν)
ρR,ı
−→1 ı(R)

with ran(ı)
⋂

ran(ν) = ∅.

Let us suppose that we are in the second case and that R is not the
empty solution. Otherwise the proof is achieved similarly.
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In B̂(x̃, ỹ, z̃) the branch corresponding to ρ (let us call j its index) is

written [x̃]v[z̃]φαρ,R.(B̂(set0(x̃, v
′), set1(ỹ, φ, φ

′, bn(αρ,R)), set2(z̃, φ)),
〈R′〉) where αρ,R is defined by the definition 4.3.2.

By Lemma 4.5.1 we have that the matches [{[v+w]}]v and [{[ı◦φ+ν]}]φ
are true. So by the (init) rule we obtain that B̂({[v + w]}0, {[ı ◦

φ + ν]}1, {[ı ◦ φ + ν]}2)
αρ,R
−→1.j B̂(set0({[v + w]}0, v

′), set1({[ı ◦ φ +
ν]}1, σ, σ

′, bn(αρ,R)), set2({[ı ◦ φ+ ν]}2, φ
′)), 〈R′〉.

The rest of the proof depends on µ:

– if µ = ρR, ı and ρ is an exchange then by Lemma 4.5.2 we have
that B̂(set0({[v+w]}0, v

′), set1({[ı◦φ+ν]}1, φ, φ
′, bn(αρ,R)), set2(

{[ı◦φ+ν]}2, φ
′), 〈R′〉) = 〈B [v′+w](ı◦φ′+ν){bn(αρ,R)/ı(EX(ρ))},

R′〉, since in nanoκ the exchanged names are already passed to
the products of the reaction at the step of the (init) rule, while
in nanoπ it is only achieved by the communication during the
step of the (communication) rule.

– otherwise by Lemma 4.5.2 we have that B̂(set0({[v + w]}0, v
′),

set1({[ı ◦ φ + ν]}1, φ, φ
′, bn(αρ,R)), set2({[ı ◦ φ + ν]}2, φ

′), 〈R′〉) =
〈B [v′ + w](ı ◦ φ′ + ν),R′〉.

It suffices now to notice that {[ρR, ı]} = αρ,R and 1.j = {[l,S, µ]}.

• If the transition S
µ
−→l T has been obtained by the (lift) rule, there

are S1, S2 and S′ such that either S1
µ
−→l S2 and S = S1, S

′ and

T = S2, S
′ or S1

µ
−→l−#(S′) S2 and S = S′, S1 and T = S′, S2, where

#(S′) is the length of S′.

If we are in the former case, then by induction hypothesis we have

that 〈S1〉
{[µ]}
−→{[l,S1,µ]} 〈S2〉. Moreover by definition of the nanoπ-

calculus (we suppose that bond names never clash with free names)
we have that bn({[µ]}) ∩ name(S′) = ∅. So one can apply the (lift)

rule and obtain: 〈S〉 = 〈S1〉|〈S
′〉

{[µ]}
−→{[l,S,µ]} 〈S2〉|〈S

′〉 = 〈T〉.

In the other case, the proof is achieved with the same arguments.

2. Suppose that S
ρ
−→l,l′ T. This transition has been obtained by the (com-

munications) rule so there exists S1, S2, T1, T2, ρ, ı and  such that:

• S = S1,S2 and T = (T1,T2),

• S1

ρL,ı
−→l T1,

• and S2

ρR,ı
−→l′−length(S1) T2

where dom() = name(T1,T2) \ name(S1,S2) and ran() is the set of the
least names not occurring in S.

The remainder of the proof depends on ρ:

• Suppose that ρ is a creation. By the first item of the theorem we
have that:
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– 〈S1〉
{[ρL,ı]}
−→ {[l,ρL,ı,S1]} 〈T1〉,

– 〈S2〉
{[ρR,ı]}
−→ {[l′−length(S1),ρR,ı,S2]} 〈T2〉,

and by the definition 4.3.2 there exists a, ũ, λ̃ and ṽ such that
{[ρL, ı]} = a (ũ : λ̃) and {[ρR, ı]} = a (ṽ) (a is either ρ or a private
name if respectively ρ as a bond in its left-hand or not), and such
that rate(a) = rate(ρ). So by the (communication) rule:

{[S]} = δ(〈S1〉|〈S2〉)
τrate(ρ)
−→ {[l,ρL,ı,S1]},{[l′−length(S1),ρR,ı,S2]}+length(〈S1〉)

[(δ + k(ũ) : λ̃)(〈T1〉{k(ũ)/ũ}|〈T2〉){k(ũ)/ṽ}]GC

where dom(k) = ũ and ran(k) are the least names not occurring
in 〈S1〉|〈S2〉 \ {ũ

⋃
ṽ}. Let {[T]} be written δ′(〈(T1)〉|〈(T2)〉). We

obtain that:

δ′(〈(T1)〉|〈(T2)〉)
◦
≡α [(δ + k(ũ) : λ̃)(〈T1〉{k(ũ)/ũ}|〈T2〉){k(ũ)/ṽ}]GC

by several arguments.

– First maps the names created by ρ to the least names not occur-
ring in S and k maps the names created by the synchronization
to the least names not occurring in 〈S1〉|〈S2〉 \ {ũ

⋃
ṽ}. These

names might not be the same because the names in some {[S′′]}
are the names in S′′ plus the names appearing as bound names
of the inputs and bound outputs. However it suffices to rename
these bound names to obtain that ran() = ran(k).

– Then since the names created by the synchronization are exactly
the names created by ρ (as defined in definition 4.3.2) we obtain

〈(T1)〉|〈(T2)〉)
◦
≡α (〈T1〉{k(ũ)/ũ}|〈T2〉){k(ũ)/ṽ}.

– Finally since ρ is a creation, by construction of the set functions,
no name is removed after the synchronization. So the names
declared in the encoding of T are exactly those declared in the
encoding of S plus those created by the reaction: that is δ′ =
δ + k(ũ) : λ̃. And since no name is removed the operation [.]GC
has no effect.

Thus we obtain: {[S]}
τrate(ρ)
−→ {[l,ρ,S1]},{[l′,ρ,S]}

◦
≡α {[T]}.

• Suppose that ρ is a destruction. By the first item of the theorem we
have that:

– 〈S1〉
{[ρL,ı]}
−→ {[l,ρL,ı,S1]} 〈T1〉,

– 〈S2〉
{[ρR,ı]}
−→ {[l′−length(S1),ρR,ı,S2]} 〈T2〉,

and by the definition 4.3.2 there exists a, such that {[ρL, ı]} = a ()
and {[ρR, ı]} = a (), and such that rate(a) = rate(ρ). So by the
communication rule:

{[S]} = δ(〈S1〉|〈S2〉)
τrate(ρ)
−→ {[l,ρL,ı,S1]},{[l′−length(S1),ρR,ı,S2]}+length(〈S1〉)

[δ(〈T1〉|〈T2〉)]GC
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Now since ρ is a destruction name(T1|T2) \ name(S) = ∅ and so 
is the empty renaming and 〈T1〉|〈T2〉 = 〈T〉. Finally we have that
[δ(〈T1〉|〈T2〉)]GC = {[T]} because the update functions set1 and set2
removes the names corresponding to the deleted bond and because
the [.]GC operation remove the definition of these names.

• Suppose that ρ is an exchange. The proof of the case where it has

the format A[u](σ),B [v](φ)
λ
_ A[u′](σ),B [v′](φ) is proved similarly

to the case of the destruction: the arguments are the same except for
the last point on the names which is eliminated since this reaction
has no effects on names. Otherwise by the first item of the theorem
we have that:

– 〈S1〉
{[ρL,ı]}
−→ {[l,ρL,ı,S1]} 〈T1〉,

– 〈S2〉
{[ρR,ı]}
−→ {[l′−length(S1),ρR,ı,S2]} 〈T2{bn({[ρR, ı]})/ı(EX(ρ))}〉,

and by the definition 4.3.2 there exists a, ũ and ṽ such that {[ρL, ı]} =
a ũ and {[ρR, ı]} = a (ṽ), and such that rate(a) = rate(ρ). So by the
communication rule:

{[S]} = δ(〈S1〉|〈S2〉)
τrate(ρ)
−→ {[l,ρL,ı,S1]},{[l′−length(S1),ρR,ı,S2]}+length(〈S1〉)

[δ(〈T1〉|〈T2{bn({[ρR, ı]})/ı(EX(ρ))}〉{ũ/ṽ})]GC

Let {[T]} be written δ′(〈(T1)〉|〈(T2)〉). We obtain that δ′(〈(T1)〉|
〈(T2)〉) = [δ(〈T1〉|〈T2{bn({[ρR, ı]})/ı(EX(ρ))}〉{ũ/ṽ})]GC by several ar-
guments.

– Since ρ is an exchange name(T ) = name(S),  is the empty
renaming. Moreover no name is either created nor removed by
the synchronization and so the operation [.]GC has no effect and
δ = δ′.

– By the definition 4.3.2 we have that ṽ = bn({[ρR, ı]}) and ı(EX(ρ))
= ũ. So 〈(T2)〉 = 〈T2{bn({[ρR, ı]})/ı(EX(ρ))}〉{ũ/ṽ}) and also
〈(T1)〉 = 〈T1〉.

Thus we obtain: {[S]}
τrate(ρ)
−→ {[l,ρ,S1]},{[l′,ρ,S]} {[T]}.

3. We prove the result by induction on the derivation tree of 〈S〉
µ
−→l.i T .

• If the transition has been obtained by the (init) rule, then the solution
S can be written A[w](τ) and by construction of the encoding (see

definition 4.3.2) the i-th branch of 〈S〉 = Â({[w]}0, {[τ ]}1, {[τ ]}2) can
be written [{[w]}0]u[{[τ ]}2]σ αρ,side.Pρ,side where the matches are true
and where ρ is a reaction of rate λ, side ∈ {L,R} and µ = αρ,side

and such that:

– either ρ : A[u](σ)
λ
−→ ∈ RR, side = R and Pρ,side = 〈 〉 = 0,

– or ρ : A[u](σ)
λ
−→ A[u′](σ′) ∈ RL, side = L and Pρ,side =

Â(set0({[w]}0, u
′), set1({[τ ]}1, σ, σ

′, bn(αρ,side)), set2({[τ ]}2, σ
′)),

66



– or ρ : A[u](σ)
λ
−→ A[u′](σ′),R′ ∈ RR, side = R and Pρ,side =

Â(set0({[w]}0, u
′), set1({[τ ]}1, σ, σ

′, bn(αρ,side)), set2({[τ ]}2, σ
′)),

〈R′〉,

The proof of the two first cases are a subcase of the proof of the last
case, so we suppose that we are in the last case. By Lemma 4.5.1
and since the matches are true we have that there exists v, ı and ν
such that w = u+v and τ = ı◦σ+ν. So by the (init) rule we obtain

A[u+ v](ı ◦ σ + ν)
ρside,ı
−→ 1 A[u′ + v](ı ◦ σ′ + ν), 〈R〉. The remainder of

the proof depends on ρside.

– If ρ is an exchange then by Lemma 4.5.2 we have that 〈S〉 =

Â(set0({[u+ v]}0, u
′), set1({[ı ◦ σ + ν]}1, σ, σ

′, bn(αρ,R)), set2({[ı ◦
σ+ν]}2, σ

′), 〈R′〉) = 〈A[u′+v](ı◦σ′+ν){bn(αρ,R)/ı(EX(ρ))},R′〉,
since in nanoκ the exchanged names are already passed to the
products of the reaction at the step of the (init) rule, while in
nanoπ it is only achieved by the communication during the step
of the (communication) rule.

– Otherwise by Lemma 4.5.2 we have that 〈S〉 = Â(set0({[u +
v]}0, u

′), set1({[ı◦σ+ν]}1, σ, σ
′, bn(αρ,R)), set2({[ı◦σ+ν]}2, σ

′), 〈R′〉)
= 〈A[u′ + v](ı ◦ σ′ + ν),R′〉.

• If the transition has been obtained by the (lift) rule, then there exists

S1, S2 and T′ such that either 〈S1〉
µ
−→l.i T

′, S = S1,S2 and T =

T ′, 〈S2〉 or 〈S1〉
µ
−→(l−length(S2)).i T

′, S = S2,S1 and T = 〈S2〉, T
′.

If we are in the former case, then by the induction hypothesis there

exists S′ and µ′ such that S1

µ′

−→l.i S′, µ = {[µ′]} and

– either 〈S′{µ/ı(GC(ρ))}〉 = T ′ if µ′ = ρR, ı and if ρ is an exchange

– or 〈S′〉 = T ′ otherwise.

By the lift rule we obtain S = S1,S2

µ′

−→l.i S′,S2 (if ρ is a creation we
have that name(S′) \ name(S1)

⋂
name(S2) = ∅ because name(S′) \

name(S1)
⋂

name(S2) = bn(µ)
⋂

name(〈S2〉) which is equal to ∅ by
the (lift) rule). It suffices now to notice that:

– either 〈S′{µ/ı(GC(ρ))},S2〉 = T if µ′ = ρR, ı and if ρ is an ex-
change,

– or 〈S′,S2〉 = T otherwise.

The proof of the other case is achieved by the same arguments.

4. Suppose that {[S]}
τλ−→l.i,l.j T . This transition has been obtained by the

(communication) rule. So there exist δ, S1, S2, T1, T2 and µ such that

{[S]} = δ(〈S1〉, 〈S2〉 and 〈S1〉
µ
−→l.i T1 and 〈S2〉

µ
−→(l′−length(S1)).j T2.

By the third item of this theorem, there exist S′
1, S′

2 and µ′ such that:

• S1

µ′

−→l S′
1, {[µ

′]} = µ and if µ′ = ρR, ı where ρ is an exchange then
〈S′

1{bn(µ)/ı(EX(ρ))}〉 = T1 otherwise 〈S′
1〉 = T1,
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• S2

µ′

−→l−length(S1) S′
2, {[µ

′]} = µ and if µ′ = ρR, ı where ρ is an
exchange then 〈S′

2{bn(µ)/ı(EX(ρ))}〉 = T2 otherwise 〈S′
2〉 = T2,

Let ρ be the rule of µ′, we have that S = S1,S2

ρ
−→l,l′ (S

′
1,S

′
2) for some

order-preserving injective renaming  mapping name(S′
1,S

′
2)\name(S1,S2)

to the least names not present in name(S1,S2). It remains to prove that
{[(S′

1,S
′
2)]} = T , this depends on ρ:

• If ρ is a creation, then we can suppose that the pair (µ, µ) equals

(x (ũ : λ̃), x (ṽ)) for some channel x and some tuples of names ũ and
ṽ. So since 〈S′

1〉 = T1 and 〈S′
2〉 = T2 we have T = [(δ + k(ũ) :

λ̃)(〈S′
1〉{k(ũ)/ũ}|〈S

′
2〉{k(ũ)/ṽ})]GC for some k mapping ũ to the least

names not occurring in 〈S′
1〉|〈S

′
2〉\{ũ

⋃
ṽ}. Let us write {[(S′

1,S
′
2)]} =

δ′(〈(S′
1)〉|〈(S

′
2)〉), we obtain that δ′(〈(S′

1)〉|〈(S
′
2)〉)

◦
≡α [(δ + k(ũ) :

λ̃)(〈S′
1〉{k(ũ)/ũ}|〈S

′
2〉{k(ũ)/ṽ})]GC by several arguments:

– First maps the names created by ρ to the least names not occur-
ring in S and k maps the names created by the synchronization
to the least names not occurring in 〈S′

1〉|〈S
′
2〉 \ {ũ

⋃
ṽ}. These

names might not be the same because the names in some {[S′′]}
are the names in S′′ plus the names appearing as bound names
of the inputs and bonded outputs. However it suffices to rename
these bonded names to obtain that ran() = ran(k).

– Then since the names created by the synchronization are exactly
the names created by ρ (as defined in definition 4.3.2) we obtain

〈(S′
1)〉|〈(S

′
2)〉

◦
≡α 〈S

′
1{k(ũ)/ũ}〉|〈S

′
2{k(ũ)/ṽ}〉.

– Finally since ρ is a creation, by construction of the set functions,
no name is removed after the synchronization. So the names
declared in T are exactly those declared in the encoding of S

plus those created by the reaction: that is δ′ = δ+k(ũ) : λ̃. And
since no name is removed the operation [.]GC has no effect.

• If ρ is a destruction, then we can suppose that the pair (µ, µ) equals
(x (), x ()) for some channel x and some tuple of names ũ. So since
〈S′

1〉 = T1 and 〈S′
2〉 = T2 we have T = [δ(〈S′

1〉|〈S
′
2〉)]GC. Let us write

{[(S′
1,S

′
2)]} = δ′(〈(S′

1)〉|〈(S
′
2)〉). We obtain that δ′(〈(S′

1)〉|〈(S
′
2)〉) =

〈(δ)(T1|T2)〉GC because since ρ is a destruction  is the empty renam-
ing, so 〈(S′

1)〉|〈(S
′
2)〉 = T1|T2. Finally we have that δ′(〈(S′

1)〉|〈(S
′
2)〉)

= 〈(δ)(T1|T2)〉GC because the update functions set1 and set2 remove
the names corresponding to the deleted bond and because the [.]GC
operation removes the definition of these names.

• If ρ is an exchange then we can suppose that the pair (µ, µ) equals
(x ũ, x (ṽ)) for some channel x and some tuples of names ũ and ṽ.
So since 〈S′

1〉 = T1 and 〈S′
2{bn(µ)/ı(EX(ρ))}〉 = T2 we have T =

[δ(〈S′
1〉|〈S

′
2{bn(µ)/ı(EX(ρ))}〉{ũ/ṽ})]GC. Let us write {[(S′

1,S
′
2)]} =

δ′(〈(S′
1)〉|〈(S

′
2)〉). We obtain that:
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δ′(〈(S′
1)〉|〈(S

′
2)〉) = [δ(〈S′

1〉|〈S
′
2{bn(µ)/ı(EX(ρ))}〉{ũ/ṽ})]GC

by several arguments.

– Since ρ is an exchange  is the empty renaming. Moreover no
name is either created nor removed by the synchronization and
so the operation [.]GC has no effect and δ = δ′.

– By the definition 4.3.2 we have that ṽ = bn(µ) and ı(EX(ρ)) = ũ.
So 〈(S′

1)〉 = 〈S′
1〉 and 〈(S′

2)〉 = 〈S′
2{bn(µ)/ı(EX(ρ))}〉{ũ/ṽ}.

�

4.5.3 Correctness of the encoding with respect to the col-

lective transition relation.

Theorem 4.5.3 Given any pair of languages C1 and C2, let L1 and I1, and L2

and I2 respectively be the label sets (i.e. the symbols on top of the transitions)
and the tag sets (i.e. the subscripts of the transitions) of their basic transition
relation and ≡1 and ≡2 their structural equivalences. With an abuse of notation
we denote respectively by −→ and 7−→ the basic and collective transition relation
of both calculi.

For any encoding ([.]) from C1 to C2, if there exist two injective maps σ from
C1 × L1 × I1 to L2 and τ from C1 × L1 × I1 to I2, such that:

• rate(σ(P, ρ, i)) = rate(ρ)

• P
ρ
−→i Q implies ([P ])

σ(P,ρ,i)
−→ τ(P,ρ,i)

◦
≡α ([Q])

• ([P ])
ρ
−→i Q implies that there exist Q′, ρ′ and i′ such that ([Q′])

◦
≡α Q,

P
ρ′

−→i′ Q
′, σ(P, ρ′, i′) = ρ and τ(P, ρ′, i′) = i

• P ≡1 Q⇔ ([P ]) ≡2 ([Q])

then P
λ
7−→ Q if and only if there exists Q′ such that ([P ])

λ
7−→ Q′ and Q′ ≡ ([Q]).

Before proving Theorem 4.5.3, we state and prove the following lemma:

Lemma 4.5.3 The hypotheses of Theorem 4.5.3 imply that:

∑
((µ,l),R)∈[next(P )]Q

rate(µ) =
∑

((σ(P,µ,l),τ(P,µ,l)),([R]))∈[next(([P ]))]([Q])

rate(σ(P, µ, l))

Proof The second and third items of the hypothesis imply that ((µ, l), R) ∈
[next(P )]Q if and only if ((σ(P, µ, l), τ(P, µ, l)), ([R])) ∈ [next(([P ]))]([Q]). There-
fore Σ

((µ,l),R)∈[next(P )]Q
rate(µ) = Σ

((σ(P,µ,l),τ(P,µ,l)),([R]))∈[next(([P ]))]([Q])

rate(µ). The

result is now obtain by using the first item of the hypothesis.
�
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We are now ready to prove Theorem 4.5.3.
Proof (of Theorem 4.5.3)

• Proof of P
λ
7−→ Q⇒ ([P ])

λ
7−→ ([Q]).

By construction of the collective transition relation, there exists a term

Q′ ∈ C1, an identifier l ∈ I1 and a label µ ∈ L1 such that P
µ
−→l Q

′, Q ≡1

Q′ and moreover λ = Σ
((µ′,l′),R)∈[next(P )]Q′

rate1(µ
′). By Lemma 4.5.3,

λ = Σ
((σ(P,µ′,l′),τ(P,µ′,l′)),([R]))∈[next(([P ]))]([Q])′

rate2(P, σ(µ′, l′)). So ([P ])
λ
7−→

can([next(([P ]))]([Q′])) by construction of the collective transition relation.

By definition of can(.), can([next(([P ]))]([Q′])) ≡2 ([Q′]). Since Q ≡1 Q
′ and

by the last item of the hypothesis, ([Q′]) ≡2 ([Q]). So can([next(([P ]))]([Q′])) ≡2

([Q]) and so ([P ])
λ
7−→

◦
≡α ([Q]).

• Proof of ([P ])
λ
7−→ ([Q])⇒ P

λ
7−→ Q.

By construction of the collective transition relation, there exists a label

µ′ ∈ L2, an identifier l′ ∈ I2 and a term R′ ∈ C2 such that ([P ])
µ′

−→l′ R
′,

R′ ≡2 ([Q]) and moreover λ = Σ
((µ,l),T )∈[next(([P ]))]R′

rate2(µ). By the third

item of the hypothesis, this sum can be rewritten into

Σ
((σ(P,µ′,l′),τ(P,µ′,l′)),([T ′]))∈[next(([P ]))]R′

rate2(σ(P, µ′, l′))

By lemma 4.5.3 and since ([Q]) ≡ R′ implies [next(P )]([Q]) = [next(P )]R′ ,

we obtain λ = Σ
((µ′,l′),T ′)∈[next(P )]Q

rate2(µ
′). So P

λ
7−→ can([next(P )]Q)

by construction of the collective transition.

By definition of can(.), can([nextλ(P )]Q) ≡1 Q. Conclusion P
λ
7−→ Q.

�

We can now state our final correctness theorem.

Theorem 4.5.4 S
λ
7−→ T in nanoκ if and only if there exists P such that

{[ [(S)] ]}
λ
7−→ P and P ≡ {[ [(T)] ]} in nanoπ.

Proof We prove the result by applying Theorem 4.5.3 on the two encodings
[(.)] and {[.]}. For [(.)], one defines σ(S, ρ, (l, l′)) = ρ and τ(S, ρ, (l, l′)) = (l, l′). For
{[.]}, one defines σ(S, ρ, (l, l′)) = τλ where λ is the rate of ρ and τ(S, ρ, (l, l′)) =
(l.i, l′.i) where i is the index of the reaction ρ. Theorems 4.5.1 and 4.5.2 imply
that these definitions fit the first three hypotheses of Theorem 4.5.3. Moreover,
it is easy to see that for any nanoκ solutions S and T S ≡ T⇔ [(S)] ≡ [(T)] and
for any nanoκ solutions with gangs S and T, S ≡ T⇔ {[S]} ≡ {[T]}. �
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4.6 Conclusion and Future work.

Our current interests are mainly in simulators and analysis tools for nanoπ-
calculus. In fact, this contribution allows us to simulate nanoκ systems. How-
ever, the same encoding also makes it possible to model-check nanoκ formaliza-
tions in the PRISM platform [29], since it supports verifications of probabilistic
and stochastic extensions of π-calculus [38]. More precisely, it should be possible
to wire our encoding from the nanoκ calculus to nanoπ with the implementation
in [38]. There are two questions of concern. Firstly, our encoding uses polyadic
communications, which is not considered in [38]. However this should be one
of the next extensions of this work. The second issue is more problematic. A
relevant constraint for the efficiency of the encoding in [38] is the absence of
name creations within agent definition. This is not the case for our encoding,
because agents may perform bonded outputs. Yet, in nanoκ subsystems where
the creation of new molecules is finite, the number of names used at every stage
of the computation is finite. So, a clever algorithm might compute this number
statically (an over-approximation is k × h, where k is the maximal number of
molecules and h is the maximal length of the arguments of an agent) and use
a garbage-collection mechanism to recycle names. This should allow the static
allocation of variables in the PRISM language to handle all the private names.

4.7 Related work.

In [66], it has been shown that systems of molecular interactions with explicit
bonds might be represented and simulated using the stochastic π-calculus. Our
encoding corroborates this result since the nanoπ-calculus is a subset of the
stochastic π-calculus. We remark that the example provided in [66] and, we
believe, the descriptions done in this approach, can easily be rewritten in nanoπ-
calculus and even in a sub-calculus of it, since our encodings does not use its
full power.

Encodings from the full κ-calculus to nanoκ calculus, or to π-calculus are
presented in [26] and [23]. Yet, they only preserve non-stochastic semantics and
would hardly preserve the stochastic semantics since they do not preserve the
granularity. In facts, encodings preserving the stochastic semantics do not exist,
due to the negative results of [51].

In [14], Cardelli has encoded chemical systems into process algebra and back
preserving both the stochastic and the ODE semantics. Our encoding extends
these encodings because the CGF process algebra used in [14] is a subset of the
nanoπ-calculus and because the nanoκ calculus extends the language of chemical
reactions of [14] with explicit bonds between molecules and with internal states.
However, our results are weaker than those in [14], since we only assert the
correctness of the encoding with respect to the stochastic semantics.

Another stochastic process calculus that has been used also for the model-
ing of biochemical systems is PEPA [43]. For instance, in [12], PEPA has been
exploited to examine the influence of the Raf Kinase Inhibitor Protein (RKIP)
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on the Extracellular signal Regulated Kinase (ERK) signaling pathway. Also in
that paper, as in the present one, a reagent-centric view and a pathway-centric
(process-centric in our terminology) view are studied. Our analysis of the two
approaches is different for two main reasons. First of all, in the PEPA-based ap-
proach one process is used to represent the concentration of one species while we
follow the Cardelli’s approach considering one process for each molecule. In fact,
we have found this approach appropriate for a compositional model of discrete
state systems (in which we count the number of molecules instead of considering
their concentrations). The second difference is that in [12] only finitely many
different species are considered, thus the translation from the reagent-centric to
the pathway-centric views can be obtained using an intermediate matrix rep-
resentation that quantifies the impact of each reaction on each reagent in a
manner analogous to the stoichiometry matrix of the chemical reactions. We
cannot exploit this approach as we do not impose any bound on the number
of different complexes that can be produced in a nanoκ calculus system. More
recently, the PEPA approach has been also extended with a reaction-centric
model called Bio-PEPA [21]. Also in this case, one process is used to represent
the concentration of one species.
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Chapter 5

Comparing the chemical

master equation and the

backward stochastic

bisimulation.

73



5.1 Introduction.

In this Chapter we study the relationship between the chemical and the com-
puter science semantics. An important chemical semantics is the CME. Important
semantics of the process algebra are the various equivalences. We investigate an
equivalence obtained by reasoning on the CME. Interestingly, it turns out that
this equivalence corresponds exactly to the an equivalence already studied in
computer science [59, 69]: the backward stochastic bisimulation.

The Chapter is organized as follows. In Section 5.2 we present the CME and
motivate the CME-equivalence, in Section 5.3 we present the backward stochastic
bisimulation and in Section 5.4 we state and prove the correspondence between
the two semantics. We also provide some examples of encodings preserving
the master equation equivalence. The Chapter is closed by a conclusion in
Section 5.5 and a discussion on related works in Section 5.6.

5.2 Chemical master equation and chemical equiv-

alences.

5.2.1 The chemical master equation.

Given a CTMC (S, µ, e0) we note Exit(e) the exit rate of the state e defined by
Σ

f∈S
µ(e, f). The definition of the CME follows:

Definition 5.2.1 Given a CTMC (S, µ, e0), let P (e, τ) be the probability of the
system being in state e at time τ knowing that the system was in state e0 at
time 0. The CME associated with the CTMC is defined by the following set of
equations, for all e ∈ S:

δP (e, τ)

δτ
= Σ

f∈S
[µ(f, e).P (f, τ) − µ(e, f).P (e, τ)]

or equivalently

= Σ
f∈S

[µ(f, e).P (f, τ)] − Exit(e).P (e, τ)

The CME provides a full description of the probabilistic behavior of chem-
ical systems by the dynamics of the discrete populations of molecules. It is
a differential equation on the probabilities P (e, τ) that can be derived from
the Chapman-Kolmogorov equation [71]. Since it is usually very hard to solve,
techniques such as the Gillespie’s algorithm have been developed to simulate its
solution [37].

The term µ(f, e).P (f, t) contributes positively to the derivative since it cor-
responds to the entering of e from f at time τ , and conversely µ(e, f).P (e, τ)
contributes negatively since it corresponds to the exiting of e to f at time τ .
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Figure 5.1: Two CTMCs.

Notation For the sake of the readability we often write e instead of P (e, τ)

and ė instead of δP (e,τ)
δτ .

5.2.2 Chemical equivalences.

We now motivate our definition of an equivalence based on the CME from a purely
chemistry-related point of view. We first obtain the notion of CME-permutability
(definition 5.2.2) which is not satisfying and therefore we carry on with the
notion of CME-substitution (definition 5.2.3) which is going to be our notion of
CME-equivalence.

We want to consider as equivalent two states of a CTMC which have similar
equation in the CME or similar role inside the CME. If the notion of similarity
is defined appropriately, this should permit us to identify states with have the
same stochastic behavior. Consider for instance the CTMC of Figure 5.1 (a).
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The CME is the following set of equations:

ė0 = 4 ∗ e4 − 1 ∗ e0

ė1 = 4 ∗ e5 − 1 ∗ e1

ė2 = 1 ∗ e1 − 2 ∗ e2

ė3 = 1 ∗ e0 − 2 ∗ e3

ė4 = 2 ∗ e2 − 4 ∗ e4

ė5 = 2 ∗ e3 − 4 ∗ e5

The polynomials 4 ∗ e4 − 1 ∗ e0 and 4 ∗ e5 − 1 ∗ e1 of the first two equations
are not exactly the same, however they are similar enough to lead to similar
behavior. Indeed they only differ on variables e4 and e5, and e0 and e1, which
correspond to states with symmetric roles in the CME. So permuting e0 with e1,
e2 with e3, and e4 with e5, leaves the set of equations unchanged and so the
stochastic behaviors. We formalize this idea in the following definition.

Definition 5.2.2 A CME-permutation is a permutation σ on the set of states
such that whenever f = σ(e), if ė = Σ

g
[αg.g] − α.e then ḟ = Σ

g
[αg.σ(g)] − α.f .

Two states e and e′ are permutable in a CME if there exists a CME-permutation
σ such that σ(e) = e′.

In words, by applying σ on the variables of the equation of e, one obtains
the equation of σ(e). So the CME is stable by σ. In Figure 5.1(a), the pair of
states e0 and e1, e2 and e3 and e4 and e5 are permutable.

This notion should however be relaxed. Consider the example of Figure 5.1(b).
The pair of states e0 and e1, e2 and e3, and e4 and e5 are permutable but the
state e′4 is not permutable with any other state. However we would like to say
that it has an equation similar to the one of e4 and e5. Indeed the corresponding
equations are:

ė′4 = 1 ∗ e2 + 1 ∗ e3 − 4 ∗ e′4
ė4 = 2 ∗ e2 − 4 ∗ e4

ė5 = 2 ∗ e3 − 4 ∗ e5

Suppose that e2 and e3 are equivalent, that is they have the same stochastic
behavior, then they contribute similarly to any equation in the CME, and one
can replaced one with the other. Thus the terms 1 ∗ e2 + 1 ∗ e3, 2 ∗ e2 and 2 ∗ e3
should be equivalent. We formalize this in the following definition.

Definition 5.2.3 A CME-substitution φ, is an application whose domain is the
set of states, such that whenever φ(e) = φ(f), if ė = Σ

g
[αg.g] − α.e and

76



ḟ = Σ
h

[βh.h] − β.f , then Σ
g

[αg.φ(g)] − α.φ(e) and Σ
h

[βh.φ(h)] − β.φ(f) are

the same polynomials (the terms φ(g), φ(e), φ(h) and φ(f) are the variables
of the polynomials and the terms αg, α, βh and β are the coefficients of the
polynomials).

Two states e and e′ are CME-equivalent in a CME if there exists a CME-substitution
φ such that φ(e) = φ(e′). We then write e ∼CME e

′.

In words, if φ(e) = φ(f) then by applying φ on the equations of e and
f , one obtains the same equation. In Figure 5.1, e0 ∼CME e1, e2 ∼CME e3 and
e4 ∼CME e5 ∼CME e

′
4. The notion of CME-permutability is weaker than the notion

of CME-equivalence.

Proposition 5.2.1 If two states of a CTMC are CME-permutable then they are
CME-equivalent.

Proof. Given a CME-permutation σ choose a representative for each equiva-
lence class of σ and define the substitution φ such that φ(e) is equals to the
representative of the class to which e belongs. Then the properties of σ imply
that φ is a CME-substitution.

The following proposition states the soundness of our definition:

Proposition 5.2.2 For all states e and e′, if P (e, 0) = P (e′, 0) and e ∼CME e
′

then at every instant τ one has P (e, τ) = P (e′, τ).

Proof. The results could be proved directly but it is easier to obtain from the
correspondence with the backward stochastic bisimulation: it is an immediate
corollary of Proposition 5.3.1 and Theorem 5.4.1.

5.3 The backward stochastic bisimulation.

The notion of forward bisimulation has been widely studied (see [3, 9, 43] among
others). On the contrary the notion of backward stochastic bisimulation has al-
ready been studied but quite rarely [59, 69]. While the traditional notion of
forward bisimulation concerns the outgoing transitions of a process, the back-
ward bisimulation concerns the ingoing transitions and the exit rate.

Definition 5.3.1 An equivalence relation R on the set of states of a CTMC is
a backward stochastic bisimulation if and only if whenever eR f :

• for any R-equivalence class C, µ(C, e) = µ(C, f)

• Exit(e) = Exit(f)

Two states e and f are backward bisimilar if there exists a backward bisimulation
R such that eRf . Then we write e ∼b f .

77



In words when two states are equivalent then the cumulative rate from every
equivalence class of the bisimulation to these states are the same, and their
exit rate are the same. As usually one can prove that the arbitrary union of
bisimulations is again a bisimulation. The union of all bisimulation is called
bisimilarity.

In the traditional presentation of bisimulation, transitions are labeled with
actions. In this setting we can restrict ourselves to τ -transitions and use only
rates as labels since we are concerned only with the global state of the system: no
interaction with the environment is to be expected. However it could interesting
to try to find a chemical counterpart for the labeled version of the bisimulation.

As it was already pointed out in [69] it is worth to notice that two backward
bisimilar states have the same probability.

Proposition 5.3.1 For all states e and e′, if P (e, τ) = P (e′, τ) and e ∼b e
′

then at every instant τ one has P (e, τ) = P (e′, τ).

The results holds because the theory of lumpability [11] has shown that
it holds for exact lumping and because the backward stochastic bisimulation
corresponds to the exact lumping (in the same way that forward stochastic
bisimulation corresponds to ordinary lumping).

5.4 The correspondence between the two seman-

tics.

We are now ready to prove the correspondence between the two semantics: the
following theorem states that the chemical semantics, the CME-equivalence, is
equal to the computer science semantics, the backward stochastic bisimulation.

Theorem 5.4.1 Two states of a CTMC are CME-equivalent if and only if they
are backward stochastic bisimilar:

e ∼CME f ⇔ e ∼b f

We call this equivalence the master equation equivalence and note it ∼.

Proof of the “if” direction. Given a backward bisimulation R, choose a
representative for each equivalence class of R. Then define the substitution φ
such that φ(e) is equals to the representative of the class to which e belongs.
The properties of R imply that φ is a CME-substitution.

Proof of the “only if” direction. Given a CME-substitution φ, define the
relation R by sRt if and only if φ(e) = φ(f). The properties of φ imply that R

is a backward bisimulation.
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Examples. We carry on with an example of stochastic encoding which pre-
serves the master equation equivalence.

In [14] L.Cardelli provided encodings from a dialect of CCS, the CGF-
calculus, and formal system of chemical reaction and vice-versa. The encodings
preserve both the discrete and continuous semantics, that is the ordinary dif-
ferential equation semantics and the stochastic semantics. In [18] he provided a
master equation for process algebra and in particular showed that his encodings
preserve the master equation in the sense that a system of chemical reaction or
a process algebra term and their encodings have the same set of equations. This
implies that these encodings preserve our notion of master equation equivalence.

In the previous Chapter we have presented an encoding from the nanoκ
calculus to the nanoπ-calculus. It satisfies the following correctness property:

S
λ
7−→ T ⇔ [[S]]

λ
7−→≡ [[T ]], where S and T are nanoκ solutions, [[S]] and [[T ]] are

their encodings and λ is a stochastic rate. Now consider a given nanoκ calculus
system and call C = (S, µ, s0) the CTMC obtained by computing its stochastic
collective transition relation and downgrading it, and call [[C]] = ([[S]], [[µ]], [[s0]])
the CTMC whose states are the encodings of the states of S and whose stochastic
transition relation is obtained as the downgrading of the stochastic collective
transition relation of the nanoπ-calculus on these terms. By the correctness
property of the encoding we have that each state e ∈ S and its encoding [[e]]
have the same ingoing and outgoing transitions and so are equivalent by the
master equation equivalence.

5.5 Conclusion.

We have presented the master equation equivalence that is motivated by the CME
and proved that it corresponds to the backward bisimulation. This establishes
a bridge between chemistry and process algebra at the semantics level.

It is worth noticing that our interest for the ingoing transitions raise a specific
problem:

Given a term Q, is the set of terms P that reduce to Q decidable ? Is it
finitely computable ?

The corresponding question for the traditional equivalences concerns the
computability and decidability of the outgoing transitions, since the traditional
equivalences rely only on the outgoing transitions. This question is not straight-
forward and has already been studied in [72]: the main difficulties are probably
the decidability of the structural congruence, the possible infinite branching
introduced by the name creation and the unguarded recursion.

This indicates that the decidability and computability of the ingoing transi-
tions is not straightforward and that we should take care of it in order to assess
the relevance of the master equation equivalence. We can already provide some
insights.

In the case of rule-based languages such has the nanoκ calculus, the full
κ-calculus or the Bigraphs [56, 50], there are usually a finite number of rules
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and each of them can be applied in a finite number of ways to a given a term.
So the outgoing transitions are finitely computable. If moreover the rules are
reversible, that is, if whenever P −→ Q is a valid rule then so is Q −→ P ,
then the ingoing transitions can be computed similarly to the outgoing ones. In
Bigraphs rules are always reversible and also in nanoκ if we prevent the creation
and destruction of molecules.

In the case of the nanoπ some issues are also worth noting. For a given set
of agent definitions, we can compute all the pairs of choice branches that could
synchronize for some proper instantiations of the parameters. Then we can
compute the set of the continuations corresponding to these synchronizations.
Finally it suffices to look for these continuations that are subterms of the process
Q.

However the main problem with these derivations of the ingoing transitions
is that they also compute the states that lead to Q but that would not be
reachable by forward transitions. And the interest of such states is arguable
since they do not appear in any execution of the system. Therefore we consider
looking for some constraints that ensure that states are backward reachable if
and only if they are forward reachable.

Future works: toward a biochemical metric. In the stochastic setting,
equivalences require that the stochastic rate of the transitions matched by the
equivalence have to be exactly the same. This requirement is often too strong in
practice because of the sensitivity it imposes on these numbers. It is particularly
true in the case of biochemical systems where the data are measured with a
finite precision. Metrics have been introduced to cope with this problem in the
probabilistic setting. A metric is a distance between processes such that two
processes are probabilistically bisimilar whenever their distance is 0. Moreover
this distance should be continuous in the probabilities of the processes. There
also exist algorithms to compute the distance between two processes up to a
given error [32, 33].

We wish to build a metric on top of the master equation equivalence. The
establishing of such a metric would have many applications. A first one would
be to reduce the size of the state space of a model: given an error ǫ one can
aggregate groups of states supposing that their distance is less than ǫ. This
seems particularly relevant in the case of the approximate model-checking [40].
Another application is the sensitivity analysis: the sensitivity of a process P to
a given parameter could be studied by computing the distance between P and
P where the parameter has been slightly modified.

The standard approach to the building of a metric consists of three steps.
First, a logic characterizing the considered bisimulation is defined: that is, a
logic such that two processes are bisimilar if and only if they satisfy the same
set of formulas. Then a satisfaction degree of a formula is defined. And finally,
the distance between two processes is the greatest difference of satisfaction de-
gree of the processes on all the formulas. We can be optimistic that such a logic
can be defined in the case of the backward stochastic bisimulation because such
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a logic exists for both stochastic bisimulation [34] and classical backward bisim-
ulation [59]. The definition of the satisfaction degree might be more difficult
but the example of the probabilistic case seems a good trail to follow.

5.6 Related Works.

Connection between the process algebra field and the chemical master equiva-
lence is not unheard of. In [18] Cardelli provided a notion of master equation
for process algebra and proved that its encodings between systems of chemical
reactions and process algebra [14] preserve exactly the notion of master equa-
tion. We believe that his approach and our are complementary: he extends the
notion of CME to the field of process algebra while we provide a correspondence
between the CME and an equivalence already studied in computer science.
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Chapter 6

Expressiveness of stochastic

and probabilistic π-calculi.
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6.1 Introduction.

In this Chapter we present an unexpected consequence of our study of nano-
devices on the expressiveness of the π-calculus.

The stochastic settings. We focus on one of the key mechanisms of Concur-
rency: the choice operator. The process P1 + . . .+Pn can “choose” to evolve as
one of the Pi. A choice is guarded if each branch is prefixed by an action, that
is each Pi in the above choice is written αi.P

′
i . The choices are traditionally

classified according to the possible guards:

• input-guarded choice: the guards can only be input actions,

• output-guarded choice: the guards can only be output actions,

• separate choice: a choice can contain input or output guards, but not
both,

• mixed choice: a choice can contain both input and output guards,

In the classical settings, it has been proved that the asynchronous π-calculus
(without choice and with asynchronous outputs) can encode the separate choice [57,
58], but not the mixed choice [60]. We investigate whether a similar gap holds
in the stochastic settings. It turns out that such a gap exists between the sepa-
rate and mixed stochastic choices when both calculi have or do not have infinite
rates. Moreover we also show that, under a reasonable assumption, the addition
of infinite rates to the separate choice permits us to encode the mixed choice
without infinite rates.

In order to establish the relative expressive power of two languages our crite-
rion is the existence or non-existence of “admissible” encodings between them.
Our notion of admissible encoding is mainly inspired from the operational cor-
respondence [61]. Intuitively we ask that a term and its encoding exhibit the
same finite rate transitions. In the case of a separation result, a standard ap-
proach consists of exhibiting a problem that can be solved using one language
but not using the other, and such that a “reasonable” encoding preserves the
solutions of the problem. The existence of such a problem ensures the absence
of a “reasonable” encoding. This was for instance the approach adopted in
[60]: the “leader election” problem can be solved with processes having mixed
choices, but not with processes having only the separate choice. Interestingly,
our separation results are proved using the following problem:

Given a fragment of the stochastic π-calculus, is there an encoding from the
nanoκ calculus to this language?

Since the separate choice is not sufficient to perform the encoding that we
have presented in Chapter 4, but the mixed choice is, the above problem permits
us to establish our separation results between the separate choice and the mixed
one in the stochastic settings.
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A hierarchy of rates. As mentioned above the separate choice with infinite
rate can encode the mixed choice without infinite rate, but no with infinite
rate. Supposing a higher order of infinity in the rates, could the separate choice
equipped with these “bigger” infinite rate, encode the mixed choice with normal
infinite rate? To investigate this question in the Section 6.5 we introduce the
multi-scale π-calculus where rates can be of different orders of magnitude. That
is instead of having just finite rates belonging to R+ and infinite rates, we have
a hierarchy of rates (i, r) ∈ N × R+, where i is the magnitude of the rate.
Intuitively a rate of magnitude i+1 is infinitely faster than a rate of magnitude
i, and has higher priority. So the race condition is performed only between rates
of higher magnitude. This is a hierarchy of rates in the sens that all the rates
(0, r) are slower than the rates (1, r′), which again are slower than all the rates
(2, r′′),. . .

There is also a biochemical motivation for this proposition: biochemical
systems often exhibit stochastic behaviors ranging over a very large scale of
rates, and so it is common to assume some of them to be instantaneous or on
the contrary to neglect some of them. Therefore we introduce the multi-scale
π-calculus where rates can be of different order of magnitude, and we extend
our expressiveness results to it.

The probabilistic settings. In order to complete the picture we also inves-
tigate the relationship between separate and mixed choices in the probabilistic
settings. Surprisingly it happens that both kind of choices are equally expres-
sive: we provide an encoding from the separate choice to the mixed one. We
also conjecture that the separate choice cannot be encoded either in the output
guarder choice nor in the input guarded choice.

The Chapter is organized as follows. In Section 6.2 we discuss the definition
of weak stochastic transitions and what properties a stochastic encoding should
possess. In Section 6.3 we present the syntax and semantics of the stochastic π-
calculus and in Section 6.4 we present our expressiveness results in the stochastic
settings. In Section 6.5 we introduce the multi-scale π-calculus and extend our
expressiveness results to its settings. In Section 6.6 we introduce the syntax
and semantics of the quantitative and probabilistic π-calculi. In Section 6.7 we
present our expressiveness results in the probabilistic settings. In Section 6.8
we discuss the relative expressive power of the separate choice and the input
and output guarded choices. Finally, in Section 6.9 we discuss the design of our
calculus. The Chapter is closed by a conclusion in Section 6.10 and a discussion
on related works in Section 6.11.
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6.2 On weak stochastic transitions and stochas-

tic encodings.

Weak transitions. In the classical setting, observing all the transitions is
often considered as a too precise level of observation. The so-called τ -moves,
namely the internal synchronization of a process, are usually considered as non
observable. The weak transitions permit us to obtain a more realistic point of
view. Let 7−→ be the one-step transition relation, and 7−→∗ its reflexive and
transitive closure, then the weak-transition relation =⇒ is defined by:

P
α

=⇒ Q⇔ P
τ
7−→

∗ α
7−→

τ
7−→

∗
Q,

where α is a label and
τ
7−→ is an internal synchronization.

The stochastic setting introduces another important observable: the elapsing
of time. We consider the finite rate transitions as observable and the instan-
taneous transitions as unobservable: since these transitions take no time, one
cannot tell how many of them have occurred. So we define the weak stochastic
transition in the following way:

Definition 6.2.1 (Weak stochastic transitions) The weak stochastic tran-

sition relation is defined by P
λ

=⇒ Q⇔ P
∞
7−→

∗ λ
7−→

∞
7−→

∗
Q.

Alternatively to the previous definition one may eliminate the unobservable
instantaneous transitions using the downgrading process, as defined in defini-
tion 2.2.3. The reason why we do not follow this direction is exactly because
the downgrading process eliminates the non-determinism introduced by the in-
finite rates, while in this Chapter on the contrary we wish to investigate the
consequences in terms of expressiveness of the introduction of rates, both finite
or infinite.

Stochastic encodings. What properties do we require for an encoding be-
tween stochastic languages ? The answer certainly depends on whether we want
to prove a positive result or a separation result. Stronger results are obtained
by imposing stronger conditions in the first case and weaker conditions in the
latter one. There is not yet a general agreement about which should be consid-
ered “good conditions”, still one can identify a set of minimum conditions an
encoding should satisfy (see [61] for a review on classical encoding criterions).
We choose to consider the following conditions.

If P can do an infinite sequence of instantaneous transitions we write P
∞

=⇒
Ω
.

Definition 6.2.2 (Admissible encoding) An encoding [[.]] is admissible if
and only if:

1. for all processes P and Q, [[P |Q]] = δP,Q([[P ]]|[[Q]]) where δP,Q is a possibly
empty name declaration;

2. P
∞

=⇒
Ω

if and only if [[P ]]
∞

=⇒
Ω
;
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3. for all µ ∈ R+

⋃
{∞}, if P

µ
=⇒ Q then [[P ]]

µ
=⇒ [[Q]];

4. for all λ ∈ R+, if [[P ]]
λ

=⇒ R then ∃Q such that R
∞

=⇒ [[Q]] ∧ P
λ

=⇒ Q.

The reasons for this definitions are the following:

• An encoding should be uniform i.e. homomorphic with respect to the
parallel composition, namely [[P |Q]] = δP,Q([[P ]]|[[Q]]) where δP,Q is a dec-
laration of new names. This ensures that two parallel processes are trans-
lated into two parallel processes, possibly using new names but without
any coordinator process.

• In the non stochastic setting introducing τ -divergence, that is infinite se-
quence of τ -moves, is sometimes accepted. However in the stochastic
setting such divergence represents a serious problem: since the silent tran-
sitions are the instantaneous ones, and since such transitions have priority
over the finite rate ones, it means that one will keep doing instantaneous
transitions forever without elapsing of time. Therefore we ask that a pro-
cess can do an infinite sequence of instantaneous transitions if and only if
its encoding can do the same.

• An encoding should preserve a “reasonable” semantics. Among the various
criterion proposed in [61], we choose the operational correspondence since
it is one of the weakest and we adapted it to the stochastic setting. More
precisely we ask that any weak transition from P to Q is mimicked by
the encodings of P and Q, and that any weak transition starting from the
encoding of P is the beginning of a weak transition that matches a weak
transition of P .

Our separation results are formulated using the notion of admissible encod-
ing. Remarkably this property is preserved by composition:

Proposition 6.2.1 Given two admissible encodings [(.)] and {[.]} their composi-
tion [({[.]})] is also an admissible encoding.

6.3 The stochastic π-calculi: syntax and seman-

tics.

In this section we present the syntax and semantics of the stochastic π-calculus [64,
65, 67, 66]. Actually the operators are the same as the ones of the nanoπ-calculus
(which we defined in the Chapter 4), but here they are allowed to be combined
in more flexible ways.

Definition 6.3.1 (Syntax of the stochastic π-calculus) The stochastic π-
calculus uses two set of names: channel names, which are totally ordered, and
agent names. Channel names are associated with a rate that is either strictly
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positive or infinite. This rate is either explicitly declared in the process or globally
defined (for free names). The terms of the stochastic π-calculus use the following
syntactic categories:

P ::= P |P | Σ
i∈I
αi.Pi | (x̃ : λ̃)P | [u = v]P | A(z̃) | 0

α ::= x ỹ | x (ỹ)

The meaning of these operators has been already discussed in the Section
4.2. We recall that each channel is associated with a rate, which is defined either
globally for the free names or with the name restriction operator otherwise, and
that for each agent A(z̃) we ask for an unique definition A(z̃) := P .

Notation. In the following msπ and ssπ refer to the stochastic π-calculus
where all choices are mixed or separate respectively, and where the rates of all
channels are finite. The corresponding languages with infinite rates are denoted
msπ∞ and ssπ∞ respectively.

In order to define the basic transition relation of the stochastic π-calculus we
need to define its tagged version. We assume an infinite set of tags that is closed
by the concatenation operator “.” such that given two tags ξ and χ, ξ.χ is also
a tag. Given a set of tags X we define ξ.X to be the set {ξ.χ |χ ∈ X}.

Definition 6.3.2 (The tagged stochastic π-calculus) Given a term P its
tagged version P ∗ is defined as follows:

(P |Q)∗ = P ∗|Q∗

( Σ
i∈I
αi.Pi)

∗ = Σ
i∈I
αξi

i .(Pi)
∗

((x̃ : λ̃)P )∗ = (x̃ : λ̃)(P )∗

([u = v]P )∗ = [u = v](P ∗)

(A(z̃))∗ = Aξ(z̃)

where the ξi’s are pairwise different fresh tags, where we assume that the set
of tags used in P ∗

i are pairwise disjoint and similarly for the set of tags of the
processes P ∗ and Q∗.

Given a tagged term Q, the tagged term ξ.Q is the term Q where all tags
have been prefixed by ξ.

Given a tagged term P , its untagged version is obtained by erasing all tags
and is noted P .

Definition 6.3.3 The basic transition relation for the stochastic π-calculus is

written
µ
−→X where X is a set of identifiers and where µ ∈ {(z̃ : η̃)x ỹ ; x (ỹ) ; τλ},

and it is the least relation defined as :
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(Sum)
Σ

i∈I
αxi
i .Pi

αi−→xi Pi
(Par)

P
µ
−→X Q bn(µ)

⋂
name(R) = ∅

P|R
µ
−→X Q|R

(New)
P

µ
−→X Q z /∈ name(µ)

(z : λ)P
µ
−→X (z : λ)Q

(Open)
P

(ey:eη)xeu
−→ X Q z 6= x z /∈ ũ \ ỹ = ∅

(z : λ)P
(z:λ,ey:eη)xeu
−→ X Q

(Com)
P

(ey:eη)xeu
−→ X P

′ Q
x (ev)
−→Y Q

′ fn(Q)
⋂
ỹ

(ỹ : η̃)(P|Q)
τrate(x)
−→ X

S

Y (ỹ : η̃)(P|Q{ũ/ṽ}

(Ag)
P∗{ũ/ṽ}

µ
−→X Q A(ṽ) := P

Aα(ũ)
µ
−→α.X α.Q

plus the symmetric version of the (Par) and (Com) rules.

Definition 6.3.4 The structural congruence of the stochastic π-calculus is the
least equivalence relation such that:

• P ≡ Q if Q is obtained from P by α-renaming,

• P |Q ≡ Q|P and (P |Q)|R ≡ P |(Q|R),

• Σ
i∈I
αξi

i .Pi ≡ Σ
σ(i)∈I

αξi

i .Pi for any permutation σ of I,

• (x : λ)(P |Q) ≡ P |(x : λ)Q when x /∈ fn(P ),

• (x : λ)0 ≡ 0,

• 0 + P ≡ 0|P ≡ P,

• (x : λ)(y : η)P ≡ (y : η)(x : λ)P.

Then the collective transition of the stochastic π-calculus is built from the
basic transition relation and the structural congruence according to the defini-
tion 2.1.2.

The version of the stochastic π-calculus presented here differs from the origi-
nal one [64, 65, 67, 66] where rates are attached to actions rather than to channel
names. We choose to study this version rather than the other one because as
far as we know it is nowadays much more used, especially in the formal system
biology field.

6.4 Gaps and bridges between synchronous and

asynchronous stochastic π-calculi.

In this section we collect our expressiveness results. We prove that without
infinite rate mixed choice is strictly more expressive than separate choice (Part
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6.4.1), we extend this result to the case of infinite rates (Part 6.4.2) and we
show that separate choice with infinite rates can encode finite rate mixed choice
assuming that (Part 6.4.3).

6.4.1 The msπ calculus is strictly more expressive than

the ssπ calculus.

Before stating our first result we need to prove the following key lemma:

Lemma 6.4.1 ∀P ∈ ssπ, if P can be written P = (x̃ : r̃)(Q|Q) and if P
λ
7−→ P ′

then ∃P ′′ ∈ ssπ such that P ′ λ′

7−→ P ′′.

Proof Such a collective transition P
λ
7−→ P ′ corresponds to a set of basic

transitions which are either internal to Q or are synchronizations between the
two Q’s.

If there is one transition of the first type, then it means that P ′ ≡ (ỹ :

t̃)(Q′|Q), with Q
λ
7−→ Q′. Since P ′ contains another Q it can do another tran-

sition.

Otherwise there is one transition of the second type, and it means that
Q contains an input and an output on a same channel, say x. Since Q has
only separate choice, this implies that Q ≡ (ỹ : s̃)(R |x z.Q1 + Σ |x (w).Q2 +
Σ′), where Σ and Σ′ are the remaining part of the choices. Thus P ′ ≡ (z̃ :
t̃)(R |Q1 |x (w).Q2 + Σ′ |R |x z.Q1 + Σ |Q2), from which a synchronization on
the channel x is again possible. �

We can now state and prove the first result of this section:

Theorem 6.4.1 There is no admissible encoding from msπ to ssπ.

Proof By restricting the encoding of the Chapter 4 to finite rates, we get an
encoding from nanoκ to msπ. The correctness Theorem 4.5.4 states that this is
an admissible encoding. Suppose there exists an admissible encoding from msπ
to ssπ. Then we can compose it with the one from nanoκ to msπ, to obtain
an encoding from nanoκ to ssπ. By Proposition 6.2.1 it is again an admissible
encoding. We now prove that no such encoding exists, which ends the proof.

Suppose then that an admissible encoding [[.]] from nanoκ to ssπ exists.
Since in this case there is no instantaneous transitions, the items 3 and 4 of

the admissibility definition imply that P
λ
7−→ Q ⇔ [[P ]]

λ
7−→ [[Q]]. Consider the

system where there are two species A and A′ with no field and no site, and

only one reaction: A,A
λ
7−→ A′,A′. And consider the encoding of the solution

S = A,A and S′ = A′,A′. Since S
λ
7−→ S′, [[S]]

λ
7−→ [[S′]]. Since the encoding is

uniform, [[S]] can be written (x̃ : t̃)(Q|Q) where Q = [[A]]. So by Lemma 6.4.1

this implies that there exists a transition [[S′]]
λ′

7−→ T . But the solution S′ cannot
match this transitions since no reaction can be applied in it. �
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6.4.2 The msπ∞ calculus is strictly more expressive than

the ssπ∞ calculus.

We carry on with the extension of the previous result to the π-calculi with
infinite rates. In this case we need to consider a coarser problem to obtain
our separation result. Before stating it, we need to introduce the concept of
networks (originally used in [60]).

Formally a network of processes of the π-calculus is a term (x̃ : λ̃)〈[P1; . . . ;Pn]〉
where the scope of the restriction on x̃ is the set of the Pi’s. It represents the
process (x̃ : λ̃)(P1| . . . |Pn) while explicitly keeping track of the distribution of
the processes. Indeed the term P |Q|R may be interpreted as the parallel com-
position of three processes P , Q and R or as the composition of two processes
P |Q and R. In networks this ambiguity is removed: in δ〈[P1; . . . ;Pn]〉 each Pi

represents a separate process.
Next we add the commutativity of “;” to the structural congruence: that is

〈[P ;Q]〉 ≡ 〈[Q;P ]〉.
The counterpart of the rule (Open) and (New) for the networks are added to

basic transition as well as the following three rules and the symmetric version
of the last two:

(Intro− Net)
P

µ
−→X Q

〈[P]〉
µ
−→X 〈[Q]〉

(Par− Net)
〈[P]〉

µ
−→X 〈[Q]〉 bn(µ)

⋂
name(〈[R1; . . . ; Rn]〉) = ∅

〈[P; R1; . . . ; Rn]〉
µ
−→X 〈[Q; R1; . . . ; Rn]〉

(Com− Net)
〈[P]〉

(ey:eη)xeu
−→ X 〈[P

′]〉 〈[Q]〉
x (ev)
−→Y 〈[Q

′]〉 fn(Q)
⋂
ỹ

(ỹ : η̃)〈[P; Q]〉
τrate(x)
−→ X

S

Y (ỹ : η̃)〈[P; Q{ũ/ṽ}]〉

Then the collective transition relation is defined as usually (see Definition
2.1.2).

We say that an admissible encoding is distributed when the encoding of
a solution S = A1 [u1](σ1), . . . ,An [un](σn) is a network δS〈[[[A1 [u1](σ1)]]; . . . ;
[[An [un](σ1n)]]]〉. The criterion used to prove our separation result is now:

Does there exist an admissible and distributed encoding from the nanoκ
calculus with infinite rates and where reaction neither create nor destroy

molecules to a fragment of the stochastic π-calculus?

Similarly to the previous section we start with a key lemma. It differs from
the lemma 6.4.1 by the fact that it concerns instantaneous transitions and net-
works and because it requires that P ′′ is also a symmetric process.

Lemma 6.4.2 ∀Q ∈ ssπ∞, let P be the network (x̃ : r̃)〈[Q;Q]〉. If P
∞
7−→ P ′

then ∃Q′ ∈ ssπ∞ and (ỹ : s̃) such that P ′ ∞
7−→ (ỹ : s̃)〈[Q′;Q′]〉.
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Proof Such a transition P
∞
7−→ P ′ corresponds either to an instantaneous

transition internal to Q or to an instantaneous synchronization between the two
Qs.

In the first case, P ′ can be written (z̃ : t̃)〈[Q′;Q]〉, with Q
∞
7−→ Q′. So

P ′ ∞
7−→ (z̃′ : t̃′)〈[Q′;Q′]〉.
In the second case, Q contains an input and an output on the same channel,

say x, whose rate is infinite. Since Q has only separate choice, this implies that
Q can be written (ỹ : t̃)(R |x z.Q1 + Σ |x (w).Q2 + Σ′) where Σ and Σ′ are the
remaining part of the choices. Thus P ′ can be written (z̃ : s̃)〈[R |Q1 |x (w).Q2 +

Σ′ ; R |x z.Q1+Σ |Q2{z/w}]〉. And so P ′ ∞
7−→ (z̃′ : t̃′)〈[R |Q1 |Q2{z/w} ; R |Q1 |

Q2{z/w}]〉. It suffices now to define Q′ = R |Q1 | Q2{z/w}. �

Theorem 6.4.2 There is no admissible encoding from msπ∞ to ssπ∞.

Proof First we remark that we can restrict the encoding of the Chapter 4
to reactions which neither create nor destroy molecules. In this way we get
an encoding from nanoκ (with infinite rates and where reactions neither create
nor destroy molecules) to msπ∞. The correctness Theorem 4.5.4 guarantees
that this is admissible. Actually it is also distributed. Indeed if we write the
encoding of a solution S = A1 [u1](σ1), . . . ,An [un](σn) as the following network
δS〈[〈A1 [u1](σ1)〉, . . . , 〈[An [un](σn)]〉]〉, we can prove again the same correctness
theorem. Let us now suppose that there is an admissible encoding from msπ∞ to
ssπ∞. We can compose it with the one from nanoκ to msπ∞ and get an encoding
from nanoκ to ssπ∞: in the above network each process msπ∞ 〈A1 [u1](σ1)〉 is
replaced by its encoding, which belongs to ssπ∞. By Proposition 6.2.1 this
yields an admissible encoding and by construction it is also distributed. We
now prove that no such encoding exists, which yields the theorem.

Suppose then that a distributed and admissible encoding [[.]] from nanoκ to
ssπ∞ exists. Consider the system where there are three species A, A′ and A′′

with no field and no site, and two reactions: A,A
∞
7−→ A′,A′′ and A,A′ λ

7−→
A′′,A′. And consider the encoding of the solution S = A,A and S′ = A′,A′′.
Since the encoding is admissible and distributed, [[S]] = (x̃ : t̃)〈Q;Q〉 where

Q = [[A]]. Since S
∞
7−→ S′, there exists R such that [[S]]

∞
=⇒ R. By Lemma

6.4.2 this implies that there exists a Q′ such that R
∞
7−→ (x̃′ : t̃′)〈Q′;Q′〉. If this

new process can again do an instantaneous transition the lemma can be applied
again, possibly infinitely many times depending on the processes. In this way we
build two sequences of processes (Ri)i∈I and (Qi)i∈I such that Q0 = Q, R0 = R

and ∀i ∈ I there exists a declaration of name δi such that δi〈Qi;Qi〉
∞
7−→ Ri

∞
7−→

δi+1〈Qi+1;Qi+1〉. Because the solution S does not diverge and since admissible
encodings preserve divergence, the set I is finite. Let i0 be its maximum. We
have that [[S]]

∞
=⇒ δi0〈Qi0 ;Qi0〉, so by the last item of the admissibility definition

there exists a solution T such that δi0〈Qi0 ;Qi0〉
∞

=⇒ [[T ]] and S
∞

=⇒ T . By
maximality of i0, and because there is only one instantaneous transition from
S, we obtain that δi0〈Qi0 ;Qi0〉 = [[A′,A′′]]. And so [[A′]] = [[A′′]] = Qi0 .

We now have a contradiction because A′ can perform a reaction which A′′

cannot mimic, and thus their encodings must be different. �
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6.4.3 The ssπ∞ calculus versus the msπ calculus.

We now consider the question whether the addition of infinite rates to the
separate choice allows encoding the mixed choice. Unfortunately we are not
able to provide a full answer. However if we assume mixed choices to be proper
(that is without input and output on the same channel) then the encoding is
possible. This is presented in the following definition:

Definition 6.4.1 Let [[.]] be the encoding from the proper mixed choice π-calculus
with finite rates to ssπ∞ defined on the proper mixed choice by:

[[ Σ
i∈I
xi yi.Pi + Σ

j∈J
xj (yj).Qj ]] , (z :∞, z′ :∞)

[ Σ
i∈I
xi yi.([[Pi]] | z′ ) + z

| Σ
j∈J

xj (yj).([[Qj ]] | z) + z′ ]

and defined homomorphically on the other operators, that is [[P |Q]] = [[P ]]|[[Q]],
[[(x̃ : η̃)P ]] = (x̃ : η̃)[[P ]] and [[[u = v]P ]] = [u = v][[P ]], and each equation
A(x̃) := P becomes [[A(x̃)]] := [[P ]].

Intuitively the mixed choice is divided into its input-guarder and output-
guarded components that are put in parallel. In order to ensure that after a
synchronization, on the output xi yi for instance, the input choice is disabled
we develop a preemption mechanism. Once the output has been consumed the
continuation [[Pi]] is put at top level as expected, but together with an output
on the channel z′. This output can synchronize with the corresponding input in
the input choice, and since it has infinite rate, this synchronization has priority
on any other transition.

This encoding would not work if the mixed choice was not proper, that it
if it has an input and an output on the same channel, because these actions
would be able to synchronize in the encoding. The following theorem states the
correctness of this encoding.

Theorem 6.4.3 For all terms P of the proper mixed choice π-calculus with
finite rates, and for all λ ∈ R

⋃
{∞}:

1. If P
λ
7−→ Q then [[P ]]

λ
7−→

∞
=⇒ [[Q]].

2. If [[P ]]
λ
7−→ R then there exists a term Q of the proper mixed choice π-

calculus such that R
∞

=⇒ [[Q]] and P
λ
7−→ Q.

Theorem 6.4.3 concerns the collective transition relation. In order to prove it
we first need to prove a lemma reformulating the theorem for the basic transition
relation:

Lemma 6.4.3 For all term P of the proper mixed choice π-calculus:
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1. If P
µ
−→X Q then there exists R and R′ such that [[P ]]

µ
−→X R

∞
=⇒ R′ ≡

[[Q]].

2. If [[P ]]
µ
−→X R then there exists Q and R′ such that R

∞
=⇒ R′ ≡ [[Q]] and

P
µ
−→X Q.

Proof

1. The result is obtained by an induction on the proof tree of P
µ
−→X Q.

If the transition has been obtained by the (Sum) rule, let us suppose
without loss of generality that µ is an input, it means that P is a choice
written Σ

i∈I
(xi (z̃i))

ai .Pi + Σ
j∈J

(yj z̃j)
bj .Pj and there is a i0 be such that

µ = xi0 (z̃i0), X = {ai0} and Q = Pi0 . Then by definition of the encoding:

[[P ]] = (z :∞, z′ :∞)(

Σ
i∈I

(xi (z̃i))
ai .([[Pi]]|(z)

di) + (z′)e

| Σ
j∈J

(yj z̃j)
bj .([[Pj ]]|(z′ )

cj ) + (z )f )

And so:

[[P ]]
xi0

( fzi0
)

−→ ai0
(z :∞, z′ :∞)(

[[Pi0 ]]|(z)
di

| Σ
j∈J

(yj z̃j)
bj .([[Pj ]]|(z′ )

cj ) + (z )f )

∞
7−→ [[Pi0 ]]

where the second transition is obtained by synchronization on the channel

z. Thus we have [[P ]]
µ
−→X

∞
7−→ [[Q]] since Pi0 = Q.

The other cases are easily proved using the fact that the encoding is ho-
momorphic on every operators but the choice.

2. The result is obtained by induction on the structure of P . If [[P ]] is a choice
Σ

i∈I
(xi (z̃i))

ai .Pi + Σ
j∈J

(yj z̃j)
bj .Pj , then by definition of the encoding:

[[P ]] = (z :∞, z′ :∞)(

Σ
i∈I

(xi (z̃i))
ai .([[Pi]]|(z)

di) + (z′)e

| Σ
j∈J

(yj z̃j)
bj .([[Pj ]]|(z′ )

cj ) + (z )f )

Since we assume that the mixed choice are proper no synchronization can
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occur between the xi and the yj , so any transition of [[P ]] is of the form:

[[P ]]
xi0

( fzi0
)

−→ ai0
(z :∞, z′ :∞)(

[[Pi0 ]]|(z)
di

| Σ
j∈J

(yj z̃j)
bj .([[Pj ]]|(z′ )

cj ) + (z )f )

or similarly in case of an output. So scheduling the synchronization on
the channel z we obtain:

(z :∞, z′ :∞)([[Pi0 ]]|(z)
di | Σ

j∈J
(yj z̃j)

bj .([[Pj ]]|(z′ )
cj ) + (z )f )

∞
7−→≡ [[Pi0 ]]

And finally it suffices to remark that P
xi0

( fzi0
)

−→ ai0
Pi0 .

Again, the other cases are easily proved using the fact that the encoding
is homomorphic on every operators but the choice.

�

We can now prove Theorem 6.4.3:
Proof

1. Suppose that P
λ
7−→ Q. By construction of the collective transition rela-

tion there is a basic transition P ∗ τη
−→X Q∗ and λ = Σ

((τη,X),R)∈[next(P∗)]Q∗

η.

As a consequence of Lemma 6.4.3:

Σ
((τη,X),R)∈[next(P∗)]Q∗

η = Σ
((τη,X),[[R]])∈[next([[P∗]])][[Q∗]]

η

and so by construction of the collective transition relation, [[P ]]
λ
7−→

∞
=⇒

[[Q]].

2. Suppose that [[P ]]
λ
7−→ R. By construction of the collective transition

relation, there is a basic transition [[P ]]∗
λ
7−→ R∗ and we have that λ =

Σ
((τη,X),R′∗)∈[next([[P ]]∗)]R∗

η. By lemma 6.4.3:

Σ
((τη,X),R′∗)∈[next(P )∗]R∗

η = Σ
((τη,X),R′∗)∈[next([[P∗]])]R∗

η

and so by construction of the collective transition relation, P
λ
7−→

∞
=⇒ Q.

�

Interestingly, we have the following corollary:

Corollary 6.4.1 The encoding of Definition 6.4.1 is admissible.
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6.5 Generalization of the results to the case of

the multi-scale π-calculus.

In this section we introduce the multi-scale π-calculus: it extends the stochas-
tic π-calculus with rates of different order of magnitude. Two main reasons
motivate this proposition. First, biochemical systems often exhibit stochastic
behaviors ranging over a very large scale of rates. It is common to assume some
of them to be instantaneous or on the contrary to neglect some of them. The
multi-scale π-calculus is a first attempt to cope with such phenomena. More-
over the results of the previous section and in particular the result of part 6.4.3
suggest to introduce several degrees of infinity in the rates.

Definition 6.5.1 (Syntax of the multi-scale π-calculus) The multi-scale
π-calculus uses two set of names: channel names, which are totally ordered,
and agent names. Channel names are associated with a rate that is a pair
(i, r) ∈ Z× R+. This rate is either explicitly declared in the process or globally
defined (for free names). The terms of the multi-scale π-calculus use the same
syntactic categories as the stochastic π-calculus (see Definition 6.3.1).

Our proposition is to replace rates, which are strictly positive or infinite, by
a pair (i, r) where i is a relative integer and r is a strictly positive real number.
The order of magnitude of the rate is modeled by i, the higher i the higher
the order of magnitude. A transition whose rate is (i, r) has priority on every
transition of rate (j, s) such that j < i. Such priority are not unheard of (see
EMPA language for instance [9]) but as far as we know it is the first time it is
used in terms of order of magnitude.

This new definition of rates does not affect the tagged version, the structural
congruence and the basic transition relation of the multi-scale π-calculus:

Definition 6.5.2 The tagged version of the multi-scale π-calculus, its structural
congruence and its basic transition relation are defined exactly as the ones of
the stochastic π-calculus (see Definitions 6.3.2, 6.1 and 6.3.3).

On the contrary the definition of the collective transition relation needs to
be adapted. In particular the race condition should occur only between the
transitions whose rate are of maximal order of magnitude. Before presenting
the new collective transition relation we need a few definitions:

• The sum (i, r) + (i, s) is defined to be (i, r + s);

• We define (i, r) ≥ms (j, s) if and only if i ≥ j;

• nextms(F ) = {((µ, ∂), G) | F ∗ µ
−→∂ G ∧ ∀F ∗ µ′

−→∂′ G′, rate(µ) ≥ms

rate(µ′)}.

The following definition defines the new stochastic transition relation and is
parametric in the basic transition relation and the structural congruence:
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Definition 6.5.3 The stochastic transition relation
λ
7−→ induced by a basic tran-

sition relation
ρ
−→∂ and a structural equivalence ≡ on a language is the least

relation satisfying the following property. Suppose that F ∗ ρ
−→∂ G then:

F
λ
7−→ can([nextms(F )]G), where

λ =
∑

((ρ,∂),G′)∈[next(F )]G, rate(ρ)=(i,r)

r

We note msπn and ssπn the mixed choice and separate choice fragments of
the multi-scale π-calculus in which the degree of the rates is bounded by n, and
we note msπΩ and ssπΩ the mixed choice and separate choice fragments of the
multi-scale π-calculus in which the degree of the rates is not bounded. The
extension of the results of the previous section to the multi-scale π-calculus are
presented in the following theorem:

Theorem 6.5.1 For any relative integer n:

1. there is no admissible encoding from msπn to ssπn;

2. there is an encoding [[.]] from proper msπn to ssπn+1 such that:

• if P
λ
7−→ Q then [[P ]]

λ
7−→

∞
=⇒ [[Q]];

• and if [[P ]]
λ

=⇒ R then there exists Q such that R
∞

=⇒ [[Q]] and P
λ
7−→

Q.

3. there is an encoding [[.]] from proper msπΩ to ssπΩ such that:

• if P
λ
7−→ Q then [[P ]]

λ
7−→

∞
=⇒ [[Q]];

• and if [[P ]]
λ

=⇒ R then there exists Q such that R
∞

=⇒ [[Q]] and P
λ
7−→

Q.

Proof

1. The result is proved similarly to Theorem 6.4.1.

2. The encoding is obtained similarly to the one of the part 6.4.3.

3. The encoding is obtained similarly to the one of the part 6.4.3.

�

Conjecture I claim that the following holds:

“There is no admissible encoding from msπΩ to proper msπΩ.”

And consequently, there is no admissible encoding from msπΩ to ssπΩ.
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6.6 An operational semantic of the quantitative

and probabilistic π-calculus with mixed choice.

In this section we present two operational semantics for the probabilistic π-
calculus with mixed choice: the quantitative semantics and the probabilistic
semantics. They exhibit both probabilistic and non-deterministic behaviors.
The variations of behavior due to the environment, the scheduler or the adver-
sary, may be more naturally considered as non-deterministic, since we may not
have any information on it a priori. This is why, as in [41], we consider a syntax
with a probabilistic choice and a classical parallel operator. The former repre-
sents the behavioral variations due to the process in a given scheduling scenario.
The latter generates non-deterministically different scheduling scenarios. Corre-
spondingly, the operational semantics yields for each non-deterministic scenario
a group of transitions describing the relative probabilities of the possible behav-
iors in this scenario.

6.6.1 Syntax and semantics of the quantitative and prob-

abilistic π-calculi.

Syntax.

Definition 6.6.1 The syntax of the probabilistic and quantitative π-calculus is
defined by the following grammar

Prefixes α ::= xy | x(y) | τ

Processes P ::= Σi∈I(αi, pi).Pi | (x)P | P |P

| X | rexX .P | 0

where the pi’s are positive real numbers.

The main modification of the syntax is the addition of a positive coefficient
on each branch of a choice: the weights. This is the method used in [41, 64]
for instance. Intuitively, the greater the coefficient of a branch is, the more
probable is its execution. We explain in Section 6.6.1 how probabilities are
computed from these coefficients. We also adopt a variant of recursion: instead
of agent invocation we use recursion variable and recursive process: recX .P is
the recursive process that defines the recursion variable by X := P where P
may contain occurrences of X. We choose this variant because our encoding
works much better in this settings.

We sometimes write (α1, p1).P1 + ...+(αn, pn).Pn instead of Σi≤n(αi, pi).Pi.
The empty sum represents a terminated process and is denoted by 0.

In the case of the probabilistic semantics we require that, for each choice
Σi≤n(αi, pi).Pi, the sum Σi∈Ipi be 1.
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Following the terminology used in Concurrency Theory, we call asynchronous
the sub-language in which outputs can only be followed by the terminated pro-
cess (asynchronous outputs), and occur only in trivial choices, i.e. in choices of
cardinality 1. In other words, outputs can only appear in constructs of the form
xy.0.

We use the same structural congruence as for the stochastic π-calculus (see
Definition 6.1).

Definition 6.6.2 The structural congruence of the probabilistic and quantita-
tive π-calculus is the least equivalence relation such that:

• P ≡ Q if Q is obtained from P by α-renaming,

• P |Q ≡ Q|P and (P |Q)|R ≡ P |(Q|R),

• Σ
i∈I

(αi, pi).Pi ≡ Σ
σ(i)∈I

(αi, pi).Pi for any permutation σ of I,

• (x)(P |Q) ≡ P |(x)Q when x /∈ fn(P ),

• (x)0 ≡ 0,

• 0 + P ≡ 0|P ≡ P,

• (x)(y)P ≡ (y)(x)P.

Operational Semantics. Weighted choices associate a coefficient with each
action. Intuitively this coefficient represents the chances for the action to be
executed: the higher the coefficient is, the more probable the action is.

To obtain probabilities from these coefficients, they only need to sum up to
1. It is therefore sufficient to re-normalize each coefficient. Here we have two
alternatives: re-normalizing each choice, directly in the term and at each step of
execution, or re-normalizing after the derivation of the transitive closure of each
possible step. Both possibilities seem reasonable and they correspond to our
two semantics: the probabilistic semantics and the quantitative one, respectively.
The probabilistic case requires the sum of the probabilities associated with each
step to be equal to 1, and that each rule keeps the sum equal to 1.

The difference between these two semantics is that the coefficient in the
quantitative case may be used to represent also other kinds of information. For
instance, it could be associated to the expected speed of some reaction which
enables the guard (i.e. the inverse of the expected time that takes for the
guard to become enabled). As an example, let P = (a1, 10).P1 +(a2, 10).P2 and
Q = (b1, 5).Q1 + (b2, 5).Q2, and consider their parallel composition P |Q. In
the probabilistic case, all coefficients are re-normalized to 1/2 and have equal
chance to occur. But in the quantitative case, a1 and a2 are more likely to
occur first. Furthermore b1 and b2 could be in competition with a1 and a2, for
instance if they all are input actions on a channel where there is only an output
available. So, the probability to occur first may translate into the probability
to occur at all.
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Another motivation for considering the quantitative approach is the follow-
ing: our main result, the encoding of probabilistic mixed choice into probabilistic
separate choice, presents some technical problems with respect to the restric-
tion operator in the probabilistic semantics, while this problem disappears in
the quantitative semantics.

Rules common to both semantics. As mentioned above the operational
semantics do not derive isolated transitions such as P

α
7−→ Q but rather they

derive groups of transitions such as P{
αi7−→pi

Pi}i∈I . We refer to such groups
of transitions as steps. We omit the notation i ∈ I when there is no ambiguity.

We do not distinguish steps of the form P{
αi7−→pi

Pi,
β
7−→q1

Q,
β
7−→q2

Q} and

P{
αi7−→pi

Pi,
β
7−→q1+q2

Q}
Rules (Cong), (Sum) and (Rec) are the probabilistic extension of the cor-

responding rules in the classical π-calculus.

(Sum) :
Σi(pi,µi).Pi{

µi7−→pi
Pi}

(Cong) :
P≡P ′ P{

µi7−→pi
Pi} ∀i.Pi≡P ′

i

P ′{
µi7−→pi

P ′

i}

(Rec):
P [recXP/X]{

µi7−→pi
Pi}

recXP{
µi7−→pi

Pi}

The (Com) rule corresponds to the fusion of the three classical rules of
the π-calculus for interleaving, communication and communication with scope
extrusion (called PAR, COM and CLOSE traditionally).

(Com) :
P{

µi7−→pi
Pi} Q{

ηj
7−→qj

Qj} ∀i,j. bn(µi)
T

fn(Qj)=∅ ∧ bn(ηj)
T

fn(Pi)=∅

(P |Q){
αi,j
7−→piqj

Ri,j}

where Ri,j and αi,j are defined by:

1. if µi = yx, ηj = y(z),

(a) either Ri,j = Pi|Qj [x/z] ∧ αi,j = τ : communication.

(b) or Ri,j = Pi|Q ∧ αi,j = µi: left interleaving.

(c) or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

2. symmetric case: µi = y(z), ηj = yx

3. if µi = y(x), ηj = y(z),

(a) either Ri,j = (x)(Pi|Qj [x/z]) ∧ αi,j = τ : communication and
scope extrusion

(b) or Ri,j = Pi|Q ∧ αi,j = µi : left interleaving.
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(c) or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

4. symmetric case: µi = y(z), ηj = y(x)

5. otherwise,

(a) either Ri,j = Pi|Q ∧ αi,j = µi: left interleaving.

(b) or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

This is more complicated than other probabilistic calculi in literature because
we are dealing with an asynchronous model (asynchronous in the sense of no
global clock): each process can proceed at his own speed and decide whether
to synchronize or not, and this for each transition of the steps, hence several
different cases can occur when combining the steps of two parallel processes.

Given two steps P{
µi
7−→pi

Pi}i∈I and Q{
ηj
7−→qj

Qj}j∈J , we want to build a

step from P |Q. To this end, for each pair of transitions (P
µi
7−→pi

Pi, Q
ηj
7−→qj

Qj)
we build a transition of P |Q using one of the three classical rules for the paral-

lel composition. For instance, if P{
xy
7−→1/2 P

′, . . .} and Q{
x(z)
7−→1/3 Q

′, . . .}, then

from P |Q we will have steps of the form P |Q{
τ
7−→1/6 P

′|Q′[y/z], . . .} (commu-

nication), of the form P |Q{
xy
7−→1/6 P

′|Q, . . .} (left interleaving), and of the form

P |Q{
x(z)
7−→1/6 P |Q

′, . . .} (right interleaving).

One may wonder why we do not put these steps together in one single step
from P |Q. This is because the alternative between these three cases should be
non-deterministic rather than probabilistic, as in the classical π-calculus.

Note that the non-determinism of the calculus derives from this rule only.

Let us illustrate the rule COM with an example. For simplicity we omit the
parameters in the communication. Furthermore, if in a step we have two transi-
tion with the same label and the same continuation, then we write the transition
only once, of course with probability equal to the sum of the probabilities.

Example 6.6.1 Consider the processes P = (1/2, y).P1 + (1/2, x).P2 and Q =
(1/3, y).Q1 + (2/3, z).Q2. The possible steps of P |Q are 24, in fact 3 possible
outcomes derive from the combination between the first branch of P and the first
of Q, 2 from the first of P and the second of Q, 2 from the second of P and
the first of Q, and 2 from the second of P and the second of Q. All the possible
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steps are :

P |Q{
τ
7−→1/6 P1 |Q1,

y
7−→1/3 P |Q1,

x
7−→1/2 P2 |Q}

P |Q{
τ
7−→1/6 P1 |Q1,

y
7−→1/3 P |Q1,

x
7−→1/6 P2 |Q,

z
7−→1/3 P |Q2}

P |Q{
τ
7−→1/6 P1 |Q1,

y
7−→1/3 P |Q1,

y
7−→1/6 P |Q1,

x
7−→1/3 P2 |Q}

P |Q{
τ
7−→1/6 P1 |Q1,

y
7−→1/3 P |Q1,

y
7−→1/6 P |Q1,

z
7−→1/3 P |Q2}

P |Q{
τ
7−→1/6 P1 |Q1,

z
7−→1/3 P |Q2,

x
7−→1/2 P2 |Q}

P |Q{
τ
7−→1/6 P1 |Q1,

z
7−→2/3 P |Q2,

x
7−→1/6 P2 |Q}

P |Q{
τ
7−→1/6 P1 |Q1,

z
7−→1/3 P |Q2,

y
7−→1/6 P |Q1,

x
7−→1/3 P2 |Q}

P |Q{
τ
7−→1/6 P1 |Q1,

z
7−→2/3 P |Q2,

y
7−→1/6 P |Q1}

P |Q{
y
7−→1/2 P1 |Q,

x
7−→1/2 P2 |Q}

P |Q{
y
7−→1/2 P1 |Q,

x
7−→1/6 P2 |Q,

z
7−→1/3 P |Q2}

P |Q{
y
7−→1/2 P1 |Q,

y
7−→1/6 P |Q1,

x
7−→1/3 P2 |Q}

P |Q{
y
7−→1/2 P1 |Q,

y
7−→1/6 P |Q1,

z
7−→1/3 P |Q2}

P |Q{
y
7−→1/6 P1 |Q,

z
7−→1/3 P |Q2,

x
7−→1/2 P2 |Q}

P |Q{
y
7−→1/6 P1 |Q,

z
7−→2/3 P |Q2,

x
7−→1/6 P2 |Q}

P |Q{
y
7−→1/6 P1 |Q,

z
7−→1/3 P |Q2,

y
7−→1/6 P |Q1,

x
7−→1/3 P2 |Q}

P |Q{
y
7−→1/6 P1 |Q,

z
7−→2/3 P |Q2,

y
7−→1/6 P |Q1}

P |Q{
y
7−→1/6 P |Q1,

y
7−→1/3 P |Q1,

x
7−→1/2 P2 |Q}

P |Q{
y
7−→1/6 P |Q1,

y
7−→1/3 P |Q1,

x
7−→1/6 P2 |Q,

z
7−→1/3 P |Q2}

P |Q{
y
7−→1/3 P |Q1,

y
7−→1/3 P |Q1,

x
7−→1/3 P2 |Q}

P |Q{
y
7−→1/3 P |Q1,

y
7−→1/3 P |Q1,

z
7−→1/3 P |Q2}

P |Q{
y
7−→1/6 P |Q1,

z
7−→1/3 P |Q2,

x
7−→1/2 P2 |Q}

P |Q{
y
7−→1/6 P |Q1,

z
7−→2/3 P |Q2,

x
7−→1/6 P2 |Q}

P |Q{
y
7−→1/3 P |Q1,

z
7−→1/3 P |Q2,

x
7−→1/3 P2 |Q}

P |Q{
y
7−→1/3 P |Q1,

z
7−→2/3 P |Q2}

The two (New) rules. The four previous rules are the same for both seman-
tics. But as restrictions can erase some actions (if x ∈ fn(µ)∧¬(µ = zx∧z 6= x),
then (x) prevents P from doing µ) one has, in the probabilistic case, to re-
normalize coefficients so that the sum stays equal to 1. In the quantitative case
it is sufficient to erase transitions which do not satisfy the condition without
modifying coefficients.

As for the rule (Com), each of these two rules correspond to several rules
of the classical π-calculus. In each rule, the first set corresponds to the actions
that output the name bound by the (x). The second set corresponds to the
action that do not involve any name bound by the (x). These cases corresponds
to the classic rules OPEN and NU.
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The quantitative case.

(Newq) :
P{

µi
7−→pi

Pi} ∃i.(x /∈ fn(µi) ∨ (µi = zx ∧ z 6= x))

(x)P{
zi(x)
7−→pi

Pi, µi = zix, zi 6= x}
⋃
{

µi
7−→pi

(x)Pi, x /∈ fn(µi)}

The probabilistic case. The rule for the probabilistic case is obtained from
previous one by re-normalizing the coefficients.

(Newp) :
P{

µi
7−→pi

Pi} ∃i.(x /∈ fn(µi) ∨ (µi = zx ∧ z 6= x))

(x)P{
zi(x)
7−→qi

Pi, µi = zix, zi 6= x}
⋃
{

µi
7−→qi

(x)Pi, x /∈ fn(µi)}

with ∀i.qi = pi/(Σj:x/∈fn(µj)∨(µj=zx∧z 6=x)pj)

Note that each rule, except Newq for the quantitative case, preserves the
sum of the coefficients. Thus in the probabilistic case we derive only steps where
the sum of the coefficients is equal to 1.

Note also that the renormalization in (Newp) is the aspect of the probabilis-
tic π-calculus that we do not manage to encode in the next section.

6.6.2 Weak steps.

The weak steps are defined by:

wea1 :
P{

µi
7−→pi

Pi}

P{
µi

=⇒pi
Pi}

wea2 :
P{

µi
=⇒pi

Pi}
⊎
{

τ
=⇒q Q} Q{

ηj
=⇒rj

Rj}

P{
µi

=⇒pi
Pi}

⊎
{

ηj
=⇒q.rj

Rj}

wea3 :
∀n.P{

µi
=⇒pin

Pi} limn→∞
pin = pi

P{
µi

=⇒pi
Pi}

The first two rules are inspired by [31]. The last one is new and represents the
limit case of the second one. Note that the limit only concerns probabilities.This
last rule is very important because our encoding is based on a loop that allows
one to backtrack whenever we take the wrong decision. Eventually, the right
decision will be taken with probability 1 but this may happen only in the limit.

Note that also here the sum of the coefficients is preserved.
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6.7 Encoding the mixed choice into the separate

choice.

6.7.1 The encoding.

We show that, in the probabilistic π-calculus without name restriction and in
the quantitative π-calculus, the mixed choice and the separate one are equally
expressive. The reason why we do not consider the restriction operator is be-
cause, at present, we are not able to provide a correct probabilistic encoding.

The correctness of the encoding is stated in Theorems 6.7.1 and 6.7.2 for
the probabilistic semantics and in Theorems 6.7.3 and 6.7.4 for the quantitative
semantics.

Definition 6.7.1 The encoding [[.]] is defined by:

[[(x)P ]] = (x)[[P ]]

[[P |Q]] = [[P ]]|[[Q]]

[[rexX .P ]] = recX .[[P ]]

[[X]] = X

Let P be a mixed choice of the form Σi∈I(pi, xiyi).Pi + Σj∈J(qj , τ).Qj + Σk∈K

(rk, xk(zk)).Rk. For W defined to be Σi∈I pi + Σj∈J qj + Σk∈K rk, we define
the encoding of P as follows:

[[P ]] = recX .( (
Σi∈I pi

W
, τ).Psend

+(
Σj∈J qj
W

, τ).Pτ

+(
Σk∈K rk

W
, τ).Preceive

)

where:

Psend = Σi∈I(
W × (1− ǫ)

Σi∈I(pi)
pi, xiyi).[[Pi]] + (ǫ, τ).X

Pτ = Σj∈J(
W × (1− ǫ)

Σj∈J(qj)
qj , τ).[[Qj ]] + (ǫ, τ).X

Preceive = Σk∈K(
W × (1− ǫ)

Σk∈K(rk)
rk, xk(zk)).[[Rk]] + (ǫ, τ).X
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Our encoding is homomorphic w.r.t. all constructors except the choice. Let P
be a mixed choice Σi∈I(pi, xiyi).Pi +Σj∈J(qj , τ).Qj +Σk∈K(rk, xk(zk)).Rk. We
begin by making a blind choice (that is guarded by τ -actions) between three
branches corresponding to outputs, inputs or τ ’s. Then in each branch we make
a (separate) choice between the outputs, inputs or τ . As one can go in the
outputs branch (for instance) even if the context enforces communication on an
input, we have to include a mechanism to backtrack. To this end, the separate
choice contains also a τ -prefixed branch going back recursively to the beginning,
with weight ǫ, which needs to be smaller than 1. This means that the process
can, in principle, loop forever, however the probability of this event is 0.

6.7.2 Correctness of the encoding.

The structure of the proof.

Completeness of the encoding. Theorems 6.7.1 and 6.7.3 state that if P
can perform a step, then [[P ]] can perform the corresponding weak step. To
prove these results, we use Lemma 6.7.1. Essentially, the properties stated by
the items 1 to 5 of this lemma show that the weak variants of Rules (Sum),
(Rec), (Cong), (Com) and Newq, respectively, are sound with respect to =⇒.
By “weak variant” of rule X here we mean the rule obtained by replacing 7−→
with =⇒ in X.

Lemma 6.7.1

1. If Q{
ηj
7−→qj

Qj} has been obtained with the (Sum) rule then Q{
ηj

=⇒qj
Qj},

2. If P [recXP/X]{
µi

=⇒pi
Pi}, then recXP{

µi
=⇒pi

Pi},

3. If P ≡ P ′, P{
µi

=⇒pi
Pi} and ∀i.Pi ≡ P

′
i , then P ′{

µi
=⇒pi

P ′
i},

4. If P{
µi

=⇒pi
Pi}, Q{

ηj
=⇒qj

Qj}, ∀i, j.bn(µi)
⋂

fn(Qj) = ∅ and bn(ηj)
⋂
fn(Pi)

= ∅, then (P |Q){
αi,j
=⇒piqj

Ri,j}, where the αi,j’s and the Ri,j’s are defined
as in the COM rule,

5. In the probabilistic semantics if P{
µi

=⇒pi
Pi} and ∃i.(x /∈ fn(µi) ∨ (µi =

zx ∧ z 6= x)), then (x)P{
zi(x)
=⇒pi

Pi, µi = zix, zi 6= x}
⋃
{

µi
=⇒pi

(x)Pi, x /∈
fn(µi)}.

Proof (of Lemma 6.7.1) The five items of the lemma are proved by a
straightforward induction on the proof tree of the premise. We detail it only for
the second item, the other case are identical.

• If P [recXP/X]{
µi

=⇒pi
Pi} has been obtained by the rule (wea1), then

P [recXP/X]{
µi
7−→pi

Pi}. By application of the (Rec) rule we obtain that

recXP{
µi
7−→pi

Pi}. Finally by application of the rule (wea1) we get recXP

{
µi

=⇒pi
Pi}.
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• If P [recXP/X]{
µi

=⇒pi
Pi} has been obtained by the rule (wea2), then the

step can be written P [recXP/X]{
ηj

=⇒qj
Qj}

⋃
{

ρk
=⇒q.rk

Rk} where there

is a process Q such that P [recXP/X]{
ηj

=⇒qj
Qj}

⋃
{

τ
=⇒q Q} and Q{

ρk
=⇒rk

Rk}. By induction hypothesis we obtain that recXP{
ηj

=⇒qj
Qj}

⋃
{

τ
=⇒q Q}.

And finally by the (wea2) rule recXP{
ηj

=⇒qj
Qj}

⋃
{

ρk
=⇒q.rk

Rk}.

• If P [recXP/X]{
µi

=⇒pi
Pi} has been obtained by the rule (wea2), then for

all n there are pi,n such that P [recXP/X]{
µi

=⇒pi,n
Pi} and limn→∞pi,n =

pi. By induction hypothesis we get recXP{
µi

=⇒pi,n
Pi}. Finally by the

(wea3) rule we obtain recXP{
µi

=⇒pi
Pi}.

�

Unfortunately the same result does not hold for the ruleNewp. The following
is a counterexample.

Example 6.7.1 Let P = (1/2, c).0+ (1/2, τ).Q and Q = (1/2, b).0+ (1/2, a).0.

We have P{
c
7−→1/2 0,

b
=⇒1/4 0,

a
=⇒1/4 0}. If the equivalent of Lemma 6.7.1.v for

Newp were to hold, then we should have also (a)P{
c

=⇒2/3 0,
b

=⇒1/3 0} (the co-
efficient are different from the Newq case because we need to apply renormaliza-

tion). However, we have only the strong steps (a)P{
c
7−→1/2 0,

τ
7−→1/2 νa.Q} and

(a)Q{
b
7−→1 0}, so by Rule wea2 we can only obtain (a.P ){

c
=⇒1/2 0,

b
=⇒1/2 0}.

The discrepancy illustrated by the above counterexample is due to the fact
that the renormalization in the weak variant of Rules (Sum), (Rec), (Cong) and
(Com) would take place at a different time than in Rules weak1-weak3.

This also implies that the homomorphic translation of the name restriction
is not correct.

Soundness of the encoding. Conversely, the soundness of the encoding is
stated in Theorems 6.7.2 and 6.7.4. We would like to have that if [[P ]] can
perform a step, then P can perform the corresponding weak step. However we
cannot get this result: since the translation divides a mixed choice into various
separate choices, we get more possibilities in the translated term than in the
original.

Indeed, as a translated term can only make a blind choice, to get a standard
bisimulation we would need that the Psend, Preceive and Pτ resulting from the
encoding are associated with P by the bisimulation. This does not work, one
can easily see that these terms have in general steps different from those of the
initial term.

However, all the weak steps that [[P ]] can perform can be continued so as
to get a step in the ones of P . For instance, after [[P ]] has performed the blind
choice, it can perform the output choices, which will result in a weak step of

the form [[P ]]{
xiyi
=⇒pi

[[Pi]]}
⊎
{

τ
7−→Σjqj

Pτ}
⊎
{

τ
7−→Σkrk

Preceive}. By repeating
this for the other two kinds of branches, we will get a weak step of the form
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[[P ]]{
xiyi
=⇒pi

Pi}
⊎
{

τ
=⇒qj

Qj}
⊎
{

xk(zk)
=⇒ rk

Rk}, which corresponds exactly to the
step of P .

This situation is well known in the classical setting: it is often the case
that an encoding does not preserve the operational semantics at each step. In
other words, it may happen that some intermediate states in the computation
of an encoded process do not correspond to the encoding of any derivative of
the original process. However, it is often the case that the encoding satisfies

a property of the following form: if [[P ]]
µ

=⇒ Q, then there exists P ′ such that

[[P ]]
µ

=⇒ Q
τ

=⇒ [[P ′]] and P
µ

=⇒ P ′.
To formalize the above idea in the probabilistic setting, we introduce the

notion of completion of a step:

Definition 6.7.2 Let P be a process and let P{
µi
7−→pi

Pi} be one of its steps. A

completion of this step is a weak step obtained by first applying wea1 to P{
µi
7−→pi

Pi}, and then continuing with applications of wea2 and wea3.

Intuitively, completing a step means to explore the possible continuations
of this step, going deeper each time we get a τ . The wea3 rule indeed only
modifies coefficients and the rule wea2 permits to extend only silent transitions.
Thus the completion of a step does not go further, in each branch, than the first
non-silent action.

We remark that the notion of completion is quite robust, in the sense that it
does not reduce the interaction possibilities, as shown by the following proposi-
tion.

Proposition 6.7.1 Let P be a process, P{
µi
7−→pi

Pi} be one of its steps, and

P{
ηj

=⇒qj
Qj} be one of its completions. Consider now a process R, and R{

αk7−→rk

Rk} one of its steps. Let X be a step obtained by applying the COM rule to

P{
µi
7−→pi

Pi} and R{
αk7−→rk

Rk}. By applying the 4-th item of Lemma 6.7.1 with

premises P{
ηj

=⇒qj
Qj} and R{

αk7−→rk
Rk}, we obtain a step Y of P |R that is a

completion of X.

Proof The result is obtained by a straightforward induction on the proof tree

of P{
ηj

=⇒qj
Qj}. �

We are now ready to complete the formal assessment of the correctness of
the encodings, first for the probabilistic semantics and then for the quantitative
one.

Theorem 6.7.1 In the probabilistic semantics, if P{
µi
7−→pi

Pi} can be derived

without using the rule Newp, then [[P ]]{
µi

=⇒pi
[[P ]]i}.

Proof The result is obtained by a standard induction on the proof tree of

P{
µi
7−→pi

Pi}.
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• If the transition has been obtained by a (Sum) rule, then it means that
P is written Σ

i∈I
(pi, xi yi).Pi + Σ

j∈J
(qj , τ).Qj + Σ

k∈K
(rk, xk yk).Rk and that

the transition is written P{
xi yi
7−→pi

Pi}
⋃
{

τ
7−→qj

Qj}
⋃
{

xk yk7−→ rk
Rk}. By

definition of the encoding, for W , Σi∈I pi + Σj∈J qj + Σk∈K rk:

[[P ]] = recX .( (
Σi∈I pi

W
, τ).Psend

+(
Σj∈J qj
W

, τ).Pτ

+(
Σk∈K rk

W
, τ).Preceive

)

where:

Psend = Σi∈I(
W × (1− ǫ)

Σi∈I(pi)
pi, xiyi).[[Pi]] + (ǫ, τ).X

Pτ = Σj∈J(
W × (1− ǫ)

Σj∈J(qj)
qj , τ).[[Qj ]] + (ǫ, τ).X

Preceive = Σk∈K(
W × (1− ǫ)

Σk∈K(rk)
rk, xk(zk)).[[Rk]] + (ǫ, τ).X

By application of the (Sum) rule we get [[P ]]{
τ
7−→Σi∈I pi/W Psend,

τ
7−→Σj∈J qj/W

Pτ ,
τ
7−→Σk∈K rk/W Preceive}. By application of the (wea2) rule, we get

[[P ]]{
xi yi
=⇒(1−ǫ)pi

[[Pi]]}
⋃
{

τ
=⇒(1−ǫ)qj

[[Qj ]]}
⋃
{

xk yk
=⇒ (1−ǫ)rk

[[Rk]]}
⋃
{

τ
=⇒ǫ [[P ]]}.

By iterating this process n times we obtain the step [[P ]]{
xi yi
=⇒En(1−ǫ)pi

[[Pi]]}
⋃
{

τ
=⇒En(1−ǫ)qj

[[Qj ]]}
⋃
{

xk yk
=⇒En(1−ǫ)rk

[[Rk]]}
⋃
{

τ
=⇒ǫn [[P ]]}, where

En = Σ
1≤i≤n

ǫi. Since limn→∞(1−ǫ)×En = (1−ǫ)
(1−ǫ) = 1, and limn→∞ǫ

n = 0

because ǫ ≤ 1, we can apply the (wea3) rule and get [[P ]]{
xi yi
=⇒pi

[[Pi]]}
⋃
{

τ
=⇒qj

[[Qj ]]}
⋃
{

xk yk
=⇒ rk

[[Rk]]}.

• If the transition has been obtained by a rule (Rec), (Cong) or (Com), the
result is easily obtained by the induction hypothesis and the items 2, 3
and 4 of Lemma 6.7.1 respectively.

�

Theorem 6.7.2 In the probabilistic semantics, if [[P ]]{
µi
7−→pi

Pi} can be derived

without using the (Newp) rule, then there exist Qj’s such that [[P ]]{
ηj

=⇒qj
[[Qj ]]}

is a derivable completion of the above step and P{
ηj

=⇒qj
Qj}.
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Proof The result is obtained by a standard induction on P .

• If P is a choice written Σ
i∈I

(pi, xi yi).Pi + Σ
j∈J

(qj , τ).Qj + Σ
k∈K

(rk, xk yk).Rk.

By definition of the encoding, for W , Σi∈I pi + Σj∈J qj + Σk∈K rk:

[[P ]] = recX .( (
Σi∈I pi

W
, τ).Psend

+(
Σj∈J qj
W

, τ).Pτ

+(
Σk∈K rk

W
, τ).Preceive

)

where:

Psend = Σi∈I(
W × (1− ǫ)

Σi∈I(pi)
pi, xiyi).[[Pi]] + (ǫ, τ).X

Pτ = Σj∈J(
W × (1− ǫ)

Σj∈J(qj)
qj , τ).[[Qj ]] + (ǫ, τ).X

Preceive = Σk∈K(
W × (1− ǫ)

Σk∈K(rk)
rk, xk(zk)).[[Rk]] + (ǫ, τ).X

So the only step of transitions of P and [[P ]] are respectively P{
xi yi
7−→pi

Pi}
⋃
{

τ
7−→qj

Qj}
⋃
{

xk yk7−→ rk
Rk} and [[P ]]{

τ
7−→Σi∈I pi/W Psend,

τ
7−→Σj∈J qj/W

Pτ ,
τ
7−→Σk∈K rk/W Preceive}. So we prove that the step of [[P ]] has the fol-

lowing completion: [[P ]]{
xi yi
=⇒pi

[[Pi]]}
⋃
{

τ
=⇒qj

[[Qj ]]}
⋃
{

xk yk
=⇒ rk

[[Rk]]}.

By application of the (wea2) rule, we get [[P ]]{
xi yi
=⇒(1−ǫ)pi

[[Pi]]}
⋃
{

τ
=⇒(1−ǫ)qj

[[Qj ]]}
⋃
{

xk yk
=⇒ (1−ǫ)rk

[[Rk]]}
⋃
{

τ
=⇒ǫ X}. By iterating this process n times

we obtain the step [[P ]]{
xi yi
=⇒(1−ǫ)×Enpi

[[Pi]]}
⋃
{

τ
=⇒(1−ǫ)×Enqj

[[Qj ]]}
⋃
{

xk yk
=⇒ (1−ǫ)×Enrk

[[Rk]]}
⋃
{

τ
=⇒ǫn X}, where En = Σ

1≤i≤n
ǫi. Since limn→∞(1−

ǫ)×En = (1−ǫ)
(1−ǫ) = 1, and limn→∞ǫ

n = 0 because ǫ ≤ 1, we can apply the

(wea3) rule and get [[P ]]{
xi yi
=⇒pi

[[Pi]]}
⋃
{

τ
=⇒qj

[[Qj ]]}
⋃
{

xk yk
=⇒ rk

[[Rk]]}.

• Otherwise the result is easily obtained using the induction hypothesis, by
the items 2, 3 and 4 of Lemma 6.7.1 and by the fact that the encoding is
uniform on every operator but the choice.

�
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Theorem 6.7.3 In the quantitative semantics, if P{
µi
7−→pi

Pi}, then [[P ]]{
µi

=⇒pi

[[P ]]i}.

Proof The result is achieved using the same arguments as for Theo-
rem 6.7.1.�

Theorem 6.7.4 In the quantitative semantics, if [[P ]]{
µi
7−→pi

Pi}, then there

exist Qj’s such that [[P ]]{
ηj

=⇒qj
[[Qj ]]} is a derivable completion of the above step

and P{
ηj

=⇒qj
Qj}.

Proof The result is achieved using the same arguments than for Theo-
rem 6.7.3. �

We conclude this section with the following remark.

Remarque 7 We can use the same mechanism to reduce the size of separate
choice to two. This reduces the language to a very simple form of separate
choices: blind choices, and choices of size 2 in which one of the branches is
prefixed by a τ . The encoding works exactly in the same way as the previous
one. We separate each branch of the separate choice, as we separated inputs
from outputs and from τ . The correctness theorems are identical.

[[Σi∈I(pi, µi).Pi]] =

recX .(

Σi∈I (pi, τ).Qi

)

where: Qi = (1− ǫ, µi).[[Pi]] + (ǫ, τ).X

6.8 Expressiveness of the separate choice.

We just showed how the mixed choice can be reduced to separate choice of size
two. The question is now the relative expressiveness of the input-guarded and
output-guarded choice. First we simply show how to lift to the probabilistic
settings the classical encodings of [44] between output guarded choice and input
guarded choice:

[[x(y).P ]] = (z)(xz | z(y).[[P ]])

[[xy.Q]] = x(z).(zy | [[Q]])

And we make the conjecture that there is no encoding from the pair of
separate choice to only one of them.
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6.8.1 Encodings between input and output guarded choices.

These encodings highlight the symmetry between the two choices and establish
that they are equally expressive. One has to note that the encodings only use
asynchronous outputs (although they can be used within choices). So all the
four languages with either input or output choice, and with asynchronous output
or not, are equivalent.

Encoding the input guarded choice into the output guarded choice.

[[Σi∈I(pi, xi(yi)).Pi]] = (zi)i∈I( Σi∈I(pi, xizi) | Πi∈Izi(yi).[[Pi]] )

[[xy.P ]] = x(z).(zy | [[P ]])

Encoding the output guarded choice into the input guarded choice.

[[x(y).P ]] = (z)(xz|z(y).[[P ]])

[[Σi∈I(pi, xiyi).Pi]] = Σi∈I(pi, xi(z)).(zyi|[[Pi]])

6.8.2 A failed attempt to encode the separate choice.

We present here our best attempt to encode separate choice by input guarded
choices, we discuss the reason why it does not work, and we conjecture that it
is not possible to define such an encoding.

In a non probabilistic setting, various kinds of choice have been encoded by
using the parallel operator. The basic idea is to put in parallel the branches
of the choice, making sure that only one of them would be executed. See for
instance [57, 58]. This idea however cannot work here, since the transitions
would not be in the same step anymore. In other words, we cannot encode choice
with parallelism since in the choice the decision between two branches is ruled
by probabilities, while in the parallel product it is ruled by non-determinism.
So a choice can only be translated in another choice, similar for actions and
probabilities.

So, our only hope is to translate separate choices into input guarded choices.
Let us, for instance, consider again the idea of [44]. This encoding can be lifted
to choices in the following way:
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[[(p, x(y)).Px + (1− p, τ).Pτ ]] =

(z)(

xz | (p, z(y)).[[Px]] + (1− p, τ).[[Pτ ]]

)

[[(px, xy).Px + (1− px, τ).Pτ ]] =

(px, x(z)).( zy|[[Px]] )

+ (1− px, τ).[[Pτ ]]

However this does not work since the translation of the output guarded
choice can synchronize with xz while simultaneously the translation of the input
guarded choice can execute its τ . The input choice performed its τ but the
output choice began its branch of synchronization, and there is no way to go
backwards. As we do not have output choices, the backward mechanism of the
previous encoding can not work for the outputs. The translation of the outputs
guarded choice is now in a deadlock which was not possible in the original term.

A solution could be to replace the τ of the translation of the input choice by
an input on channel x so that the xz can synchronize either with this branch
or with the input branch of the translation of the outputs guarded choice. But
then another input guarded choice on x can interfere. It also contains a xz′ that
can be received by the first input guarded choice while the xz would be received
by the output guarded choice. Here again we get an unexpected deadlock.

6.9 Discussion and criticisms on the design of

our calculus.

In the design of our language we made some decisions that may be controversial,
in particular regarding the rule for the parallel composition. We had a discus-
sion with Roberto Segala on this subject, and he came out with the following
example:

Consider the following processes:

• P = (1/2, a).0 + (1/2, b).0

• Q = recX((1/2, a).X + (1/2, c).X)

A possible step for P |Q is:

P |Q{
τ
7−→1/4 Q,

a
7−→1/4 P |Q,

c
7−→1/2 P |Q}

If the communication does not occur then the system stays in the same
state. Thus by scheduling always this step, we have a computation where the
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communication occurs eventually with probability 1. Roberto Segala did not
find this acceptable since a has probability 1/2 in P , so there should be no
context where the synchronization on the channel a occurs with a probability
greater than 1/2.

The key point is this example is that the decision taken are not kept in
memory. Indeed if the synchronization does not occur, it could be the case that
it is because P has decided to make a b. But at the next step, we reschedule
the same step (with probability 1/4 of synchronizing) without taking account
of the fact that P had already selected b.

However we believe that the intuition of the choice mechanisms is that the
commitment to a certain branch in a choice takes place at the same time as
the transition, so we find natural to think of the choice as memory-less, and in
the above example we find it correct that the communication occurs eventually
with probability 1. But this is a matter of interpretation of course, and so we
leave up to the reader to decide.

6.10 Conclusion.

In the classical settings, it has been proved that the separate choice is strictly
less expressive than the mixed choice. In the main results of this Chapter we
have proved that, in the stochastic settings, the same expressiveness gap exists,
when both calculi have or do not have infinite rates. On the contrary, we have
proved that in the probabilistic settings both choices are equally expressive.
This provides a panorama of the relative expressive power of the separate and
mixed choices.

6.11 Related work.

We are not aware of studies of the expressiveness of the stochastic π-calculus.
On the contrary our results concerning the probabilistic settings present some
analogy with the one in [60], where mixed choice was encoded using probabilistic
input-guarded choice. The difference is that in our case we have separate choice
available, and we present a much simpler encoding, based on a default possibility
of backtracking. The encoding in [60] is based on a sophisticated extension of the
dining cryptographers protocol. We think that such idea cannot be extended
to our setting. On the other hand, we are not sure either that our simpler
encoding can be adapted somehow to the setting in [60], because ours requires
a choice construct with both output and τ prefixes, which is not present in the
probabilistic asynchronous π-calculus considered in [60].
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Chapter 7

Conclusion.
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Summary. We have presented general principles governing the design of nano-
scale machines and explained why these devices are intrinsically compositional
both in structure and function, as well as concurrent. These properties indi-
cate that formalisms originating from the Concurrency theory and in particular
process algebra are interesting candidates for the formal modeling, simulation
and analysis of such systems. Our choice of formalism was driven by three
main criterions: our language should possess a stochastic semantics, it should
be rule-based and it should be able to explicitly represent the molecular bound-
ing capabilities and changes of configuration. The κ-calculus could have been
a good choice, however we preferred to introduce the nanoκ calculus, which is
more adequate for the formal representation of nano-device.

The nanoκ calculus is chemical-like and simple, it provides modeling easy
to compose, modify and reuse. We have illustrated our approach with a case
study of a 2-rotaxane consisting of a formal modeling in the nanoκ calculus and
a series of in-silico simulations. First we validated our model by simulating the
up and down motion of the ring around the axle of the rotaxane. The curves
obtained by our in-silico experiment match well with the curves measured in
practice. We have also simulated the rotaxane under conditions of concentration
not observable in practice, and we were able to show that a classical chemical
assumption was no longer valid in this setting.

We also provided an encoding of the nanoκ calculus in the nanoπ-calculus. It
satisfies a correctness property saying essentially that a solution S has a nanoκ-
transition of rate λ to a solution T if and only the encoding of the solution S

has a nanoπ-transition of rate λ to the encoding of the solution T. This is a
very strong property and we believe that our encoding should be seen as an
homomorphism. Moreover this close correspondence between the two languages
should permit us to benefit at the same time of much of the well-known theory
and the various tools of the π-calculus (which includes nanoπ) and of the nice
modeling properties of the nanoκ calculus.

We have established a bridge between Chemistry and Computer Science at
the semantics level by highlighting the close relationship between the chemical
master equation and the backward stochastic bisimulation. Indeed, we intro-
duced an equivalence motivated only from the perspective of the chemical mas-
ter equation and showed that it corresponds exactly to the backward stochastic
bisimulation. Moreover, we explained why we believe that the master equation
equivalence resulting from this study could be the first step toward a biochem-
ical metric, which promises to have fruitful applications such as the reduction
of the state space of our models or the sensitivity analysis.

Our journey in the world of nano-devices made also a detour by the Theo-
retical Computer Science. Indeed the establishing of our encoding from nanoκ
to nanoπ had an unexpected fallout on the expressiveness of the stochastic π-
calculus. Since our encoding necessitated the mixed choice, we were able to
prove that the separate choice is strictly less expressive than the mixed one in
the stochastic setting. The result has been proved in presence or absence of
infinite rates, and we proved also that separate choice with infinite rate can
encode mixed choice without infinite rate. This set of results also motivated the
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introduction of the multi-scale π-calculus, where rates can be of several order
of magnitude and to which we extend our expressiveness results. Interestingly,
the concept of rates ranging over several order of magnitude is also relevant to
the modeling of biochemical systems.

Discussion and perspectives. Looking back at the previous chapters, we
believe that we have provided formal modeling, simulation and analysis of nano-
devices. The modeling aspect has been quite successful. Indeed, we highlighted
various advantages of the modelings performed in the nanoκ calculus: the lan-
guage is chemical-like and simple and models are easy to reuse or modify. We
also believe that the nanoκ modelings are easy to compose. However this last
point remains to be demonstrated, which we plan to achieve by reusing our
model of the rotaxane for a model of the nano-elevator, a device built upon
three rotaxanes.

The simulation aspect also has been successful. Indeed the simulations have
validated the modeling of the rotaxane and they have permitted to study the
system under conditions not observable in practice. In particular we have shown
that under extreme conditions of concentration, the rotaxane is not as efficient
as expected.

The analysis aspect, though successful, is not as complete as the previous
ones. We provided an encoding from the nanoκ calculus to the nanoπ-calculus,
which should permit us to reuse much of the tools and theory of the π-calculus,
and besides we provided a bridge between chemistry and computer science at
the semantics level. These results promise various analysis applications such
as model-checking or abstract interpretation for instance as well as potential
theoretical development in terms of metrics. However the efficiency and interest
of these achievements still need to be illustrated by concrete examples. Our main
goals for the future are an automatic model-checker for the nanoκ calculus and
establishing a metric based on the master equation equivalence.

Once again miscegenation has proved itself to be valuable. The tree growing
at the frontier between Chemistry and Computer Science bears numerous fruits,
whose taste should please the gardeners of both worlds.
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