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Avant-propos : résumé en français

Cette thèse se place dans le cadre général de l’inférence statistique des données de
grande dimension. C’est un domaine relativement récent, dont l’intérêt est apparu grâce au
développement de l’informatique moderne et la possibilité d’observer et de consigner une
quantité importante de données. La théorie des matrices aléatoires de grande dimension
permet de prendre en compte ce cadre, étant donné que la plupart des résultats limites
considèrent que la taille de la matrice tend vers l’infini. Une part non négligeable de ces
résultats concerne la matrice de covariance empirique Sn = 1

nXX
′, où X = (x1, . . . , xn) est

un n-échantillon de vecteurs aléatoires de dimension p (en général gaussien), possédant
une matrice de variance-covariance (ou de population) Σ. En particulier, plusieurs théo-
rèmes limites concernent les valeurs propres de Sn quand p et n tendent vers l’infini de
manière proportionnelle (voir Anderson et al. (2010); Bai & Silverstein (2010)). Ces derniers
fournissent des outils fondamentaux pour l’étude des statistiques usuelles, car la plupart
d’entre-elles sont des fonctions des valeurs propres de la matrice de covariance empirique
Sn.

Ce travail est divisé en six chapitres. Les trois premiers constituent une partie in-
troductive, tandis que les trois suivants concernent les contributions originales de cette
thèse.

Données de grande dimension et matrices aléatoires

Le premier chapitre commence par présenter le problème de la grande dimension, i.e.
lorsque que le nombre p de variables est « grand » par rapport à la taille de l’échantillon n.
En effet, le cadre asymptotique classique considère que p est « petit » et fixé tandis que n
tend vers l’infini. Nous faisons ici l’hypothèse que p et n tendent ensemble vers l’infini de
manière proportionnelle. Nous dressons ensuite un bref historique de la théorie des matrices
aléatoires. Nous rappelons les résultats sur l’analyse spectrale des matrices aléatoires de
grande dimension qui nous seront utiles pour la suite.

Comme indiqué au début de ce résumé, nous nous intéressons à la matrice de covariance
empirique, et plus particulièrement au comportement de son spectre. La distribution
spectrale empirique de Sn, notée F Sn est donc naturellement considérée. Une des méthodes
utilisée pour son étude est la transformée de Stieltjes (ou de Cauchy), qui permet de définir
une mesure et qui caractérise leur convergence en loi. En effet, la transformée de Stieltjes
sn de la mesure spectrale empirique d’une matrice carrée A n’est autre que le résolvant de
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AVANT-PROPOS : RÉSUMÉ EN FRANÇAIS

cette dernière à un facteur 1/n près :

sn(z) =

∫
1

x− z
FAn(dx) =

1

n
tr(A− zI)−1.

Dans le cas de la matrice de covariance empirique Sn, la transformée de Stieltjes
permet de démontrer que sa distribution spectrale empirique F Sn converge en loi vers une
distribution de Marčenko-Pastur si p et n tendent vers l’infini, avec p/n → c. Lorsque
Σ = σ2Ip par exemple, F Sn converge en loi vers la distribution de Marčenko-Pastur standard
de paramètres c et σ2. Ce n’est évidemment pas le cas dans le cadre classique : si p reste
petit et fixé, et n→∞, F Sn L→ FΣ = δσ2 . L’emploi de cette limite vers σ2 à la place de la
limite de Marčenko-Pastur constitue la raison fondamentale des mauvaises performances
des méthodes classiques de statistique multivariée en grande dimension.

Nous énonçons ensuite le théorème central limite pour la mesure spectrale de la matrice
de covariance empirique de Bai & Silverstein (2004). Ce dernier concerne les statistiques
spectrales linéaires

θ̂(f) =

∫
f(x) dFBn(x).

où Bn est une matrice de covariance empirique. Leur étude a un intérêt fondamental, car la
plupart des statistiques de population en analyse multivariée peuvent s’écrire en fonction de
la distribution spectrale empirique de FBn . Ce théorème est ensuite appliqué à un exemple
issu de Bai et al. (2009), qui concerne le problème du test de covariance d’un échantillon.

Nous présentons enfin le modèle que nous considèrerons dans cette thèse, à savoir le
modèle à variances isolées, ainsi que quelques résultats qui lui sont associés. Ce modèle a été
introduit par Johnstone (2001), qui a remarqué que plusieurs valeurs propres extrêmes de
certains échantillons de données s’écartent des autres valeurs propres, ces dernières restant
confinées dans le support de la loi de Marčenko-Pastur. Pour expliquer ce phénomène, il
proposa un « modèle à variances isolées » (spiked population model), où toutes les valeurs
propres de Tp sont égales à un, sauf un nombre fixé relativement petit m d’entres elles
appelées « spikes ». En d’autres termes, la matrice de population Σ a pour valeurs propres

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

,

où n1 + · · · + nK = m est le nombre de spikes. Bai & Yao (2012) ont ensuite étendu le
modèle présenté ci-dessus à un modèle à variances isolées généralisé.

Plusieurs auteurs ont étudié ce modèle, et en particulier Baik & Silverstein (2006),
qui ont montré la convergence presque-sûre des valeurs propres λn,1 ≥ · · · ≥ λn,m de la
matrice de covariance empirique Sn correspondant aux spikes. On note φ(αi) ces limites
presque-sûres. Dans Bai & Yao (2012), les auteurs ont démontré un théorème limite central
pour les vecteurs de dimension nk

√
n(λn,j − ψ(αk)), j ∈ Jk,
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AVANT-PROPOS : RÉSUMÉ EN FRANÇAIS

où Jk désigne l’ensemble des nk indices de αk.

Le modèle à facteurs

Le chapitre 2 présente le modèle à facteurs et la théorie de la vraisemblance classique
qui lui est associée. On se place ici dans le cadre classique : la dimension p des données reste
fixe, tandis que la taille de l’échantillon n tend vers l’infini. Le modèle à facteurs repose sur
la modélisation suivante : soit p le nombre de variables étudiées, n le nombre de données
observées xi et m le nombre de facteurs communs. Le modèle à facteurs s’écrit

xi =
m∑
k=1

fkiΛk + ei + µ (1)

= Λfi + ei + µ, (2)

où

- µ ∈ Rp représente la moyenne générale ;

- fi = (f1i, . . . , fmi)
′ sont les m facteurs aléatoires, appelés facteurs communs ou facteurs

scores (m < p) ;

- Λ = (Λ1, . . . ,Λm) est une matrice p×m de rang plein, appelée matrice des pondérations
(factors loadings) ;

- ei est le vecteur de bruit de dimension p, centré, indépendant de fi et de matrice de
variance-covariance Ψ = E(eie

′
i).

Les éléments de ei sont les facteurs spécifiques, appelés aussi facteurs uniques ou idiosyncra-
tiques : la variabilité non expliquée par les facteurs communs est représentée par la variance
de ce vecteur. Les hypothèses classiques de ce modèle sont :

- E(fi) = 0 et E(fif
′
i) = Ip ;

- Ψ = cov(ei) est diagonale ;

- Γ = Λ′Ψ−1Λ est diagonale, d’éléments diagonaux ordonnés et différents.

La dernière hypothèse permet d’éviter un problème d’identification. Par conséquent, nous
pouvons exprimer le modèle à facteurs par une condition sur la matrice de population
Σ = cov(xi)

Σ = ΛΛ′ + Ψ,

où les éléments diagonaux de ΛΛ′ sont appelés communalités, et les éléments de Ψ sont les
spécificités ou unicités. Notons qu’il existe d’autres hypothèses permettant aussi résoudre le
problème de l’identification.

Si les facteurs communs fi et les facteurs uniques ei sont Gaussiens, une théorie reposant
sur la vraisemblance est connue depuis Lawley (1940) (voir aussi Lawley & Maxwell (1971)).
On suppose ici que le nombre de facteurs communs m est donné. Dans ce cas, le vecteur des
observations x suit une loi normale N (µ,Σ), où Σ = ΛΛ′ + Ψ. Nous détaillons cette théorie,
et présentons le test du rapport de vraisemblance d’adéquation au modèle à facteurs.
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Différents types de modèles à facteurs existent : celui présenté en début de paragraphe
(voir (2)) est appelé « modèle à facteurs strict », dans lequel la matrice Ψ est supposée
diagonale.

Le modèle à facteurs strict à variance homoscédastique est une simplification du modèle à
facteurs strict : nous supposons en effet que Ψ = σ2Ip. C’est le modèle que nous considérerons
dans les chapitres 4 à 6. Dans ce cas, les équations définissant les estimateurs du maximum
de vraisemblance se simplifient et ces derniers possèdent une solution explicite. La statistique
du rapport de vraisemblance L∗ se simplifie aussi.

Le modèle à facteurs strict à variance homoscédastique est en fait une reformulation du
modèle à variances isolées. En effet, dans ce cas, Σ = ΛΛ′ + Ip et a pour spectre

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2︸ ︷︷ ︸
p−m

),

qui peut aussi être écrit sous la forme

spec(Σ) = σ2(α∗1, . . . , α
∗
m, 1, . . . , 1︸ ︷︷ ︸

p−m

), (3)

avec α∗i = αi
σ2 + 1, pour tout 1 ≤ i ≤ m.

Méthodes d’estimation du nombre de facteurs/spikes

Le chapitre 3 expose plusieurs méthodes pour l’estimation du nombre de facteurs/spikes :
notre première contribution consiste en effet en la construction d’une nouvelle méthode
d’estimation, et il est donc intéressant de connaitre les méthodes existantes.

Dans une première partie, nous considérons le cadre asymptotique classique. Nous
présentons brièvement la méthode du diagramme des valeurs propres (ou scree plot), ainsi
que les estimateurs AIC et BIC basés sur les critères d’information théorique introduits par
Akaike (1973, 1974) (AIC) et Rissanen (1978) (BIC/MDL). La « méthode de Laplace » de
Minka (2000), une autre méthode bayésienne, est aussi abordée.

La deuxième partie traite du contexte de la grande dimension, qui nous intéresse ici
particulièrement. Nous commençons par décrire la méthode SURE de Ulfarsson & Solo (2008)
qui est basée sur l’estimateur sans biais du risque de Stein (SURE). Nous abordons ensuite
la méthode de Harding (2007), avec laquelle nous comparons notre méthode dans le chapitre
4. Son estimateur est basé sur une comparaison entre les moments du spectre de la matrice
de covariance empirique Sn et ceux de cette même distribution spectrale empirique de Sn,
mais sans les facteurs. Les plus grandes valeurs propres de Sn sont successivement retirées
jusqu’à obtenir un écart « faible » entre les différents moments. Enfin, nous présentons la
méthode de Kritchman & Nadler (2008, 2009), qui est basée sur le fait qu’en l’absence
de facteur (m = 0), nSn suit une loi de Wishart de paramètres n et p. Johnstone (2001)
a donné la distribution asymptotique de la plus grande valeur propre dans ce cas. Nous
comparons notre estimateur à cette méthode dans les chapitres 4 et 5.
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Estimation du nombre de facteurs/spikes en grande dimension

Nous présentons chapitres 4 et 5 une nouvelle méthode d’estimation du nombre de
facteurs (ou spikes) en grande dimension. Dans le chapitre 4, nous nous plaçons dans le
cadre du modèle à variances isolées et nous considérons le cas où toutes les spikes sont
distinctes (i.e. de multiplicité un). Les valeurs propres de la matrice de covariance empirique
sont donc

spec(Σ) = σ2(α∗1, . . . , α
∗
m︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
p−m

), avec α∗1 > · · · > α∗m.

Nous supposons de plus que les α∗ sont plus grand que 1 +
√
c, et donc que toutes les

valeurs propres α des facteurs sont plus grandes que σ2√c. Pour tout α 6= 1, on définit la
fonction suivante

φ(α) = α+
cα

α− 1
.

Baik & Silverstein (2006) ont prouvé, sous une condition de moment sur x, que pour tout
k ∈ {1, . . . ,m} et presque-sûrement,

λn,k −→ σ2φ(α∗k). (4)

Ils ont aussi prouvé, pour tout 1 ≤ i ≤ L, où L est un rang prédéfini, que presque-sûrement,

λn,m+i → b = σ2(1 +
√
c)2.

Notre méthode d’estimation de m est basée sur une étude approfondie des différences entre
deux valeurs propres consécutives

δn,j = λn,j − λn,j+1, j ≥ 1.

En effet, les résultats cités plus haut impliquent que δn,j → 0 p.s., pour tout j ≥ m tandis
que pour j < m, δn,j tend vers une limite strictement positive. On pourra donc estimer m
à partir de l’indice j où δn,j devient petit. Plus précisément, notre estimateur est défini par

m̂n = min{j ∈ {1, . . . , s} : δn,j+1 < dn}, (5)

où s > m est un entier fixé suffisamment grand et dn est un seuil à définir. En pratique,
l’entier s doit être vu comme une borne préliminaire du nombre maximal de facteurs. Nous
faisons de plus l’hypothèse suivante, que vérifient les vecteurs gaussiens

Hypothèse 1. Les coordonnées yij du vecteur aléatoire y possèdent une loi symétrique et
ont une décroissance sous-exponentielle, i.e. il existe deux constantes positives C, C ′ telles
que, pour tout t ≥ C ′,

P(|yij | ≥ tC) ≤ e−t.

Nous prouvons alors le théorème suivant

Théorème 1. Soient (xi)1≤i≤n n copies i.i.d. du vecteur x = EΣ
1
2 y, où y ∈ Rp est un

vecteur aléatoire de moyenne nulle et de coordonnées qui vérifient l’hypothèse 1 et E une
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matrice orthogonale. On suppose que

Σ = cov(x) = σ2

(
Vm 0
0 Ip−m

)
où Vm possède m valeurs propres non nulles et différentes de un : α∗1 > · · · > α∗m > 1 +

√
c.

On suppose que p
n → c > 0 quand n→ +∞.

Soit (dn)n≥0 une suite réelle telle que dn → 0 et n2/3dn → +∞. Alors l’estimateur m̂n est
consistant, i.e P(m̂n = m)→ 1 quand n→ +∞.

La démonstration utilise le fait que λn,j −φ(α∗j ) possède une loi limite (Paul (2007); Bai
& Yao (2008)), ainsi que la proposition 5.8 de Benaych-Georges et al. (2011), qui montre
que la suite n

2
3 (λn,m+i − b) est tendue pour i ≥ 1.

Dans un premier temps, nous supposons que σ2 est connu et égal à un (dans le cas
contraire, il suffit de diviser les valeurs propres λn,j par σ2). Nous effectuons plusieurs
simulations, en prenant pour seuil dn la suite 4n−2/3β

√
2 log log n, où β = (1 +

√
c)(1 +

c−1/2)1/3. Nous considérons ensuite le cas où σ2 n’est pas connu et doit être estimé.
L’estimateur considéré est

σ̂2 =
1

p−m

p∑
i=m+1

λn,i.

Comme m n’est pas connu, nous construisons un algorithme qui prend en compte ce
fait. Nous effectuons ensuite des simulations pour comparer notre méthode à deux autres
existantes : celles de Harding (2007) dans un contexte d’économétrie, et celle de Kritchman &
Nadler (2008) en traitement du signal. Ces deux auteurs se placent dans le cadre équivalent
du modèle à facteurs. En faisant varier plusieurs paramètres du modèle, notre méthode
donne des résultats similaires et parfois meilleurs. Nous terminons le chapitre 4 en abordant
la question du cas d’égalité (spikes multiples) qui sera développée dans le chapitre 5, puis
par une discussion sur le choix de la suite dn.

Le chapitre 5 se place dans le cadre du modèle à facteurs où toutes les spikes ne sont
pas nécessairement simples. Supposons qu’il y ait K spikes différentes, chacune d’entres
elles apparaissant nk fois (i.e. de multiplicité nk). Dans ce cas, le spectre de Σ est,

spec(Σ) = (α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

) (6)

= σ2(α∗1, . . . , α
∗
1︸ ︷︷ ︸

n1

, . . . , α∗K , . . . , α
∗
K︸ ︷︷ ︸

nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

). (7)

avec n1 + · · · + nk = m et α∗i = αi
σ2 + 1. Quand toutes les spikes ne sont pas égales, les

différences entre les valeurs propres de la matrice de covariance empirique correspondant
aux spikes tendent vers une constante positive, tandis qu’avec deux spikes égales, cette
différence va tendre vers zéro : cela crée une confusion avec les différences de valeurs propres
qui ne sont pas perturbées, qui tendent aussi vers zéro. Cependant, la convergence des δn,i
pour i > m (bruit) est plus rapide (en OP(n−2/3)) que celle des δn,i provenant de spikes
égales (en OP(n−1/2)) : ceci est une conséquence du théorème 3.1 de Bai & Yao (2008),
et c’est l’élément clef pour l’adaptation de l’estimateur (5) à cette nouvelle utilisation, en
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utilisant un nouveau seuil dn. Le résultat de consistance est le suivant

Théorème 2. Soient (xi)1≤i≤n n copies i.i.d. de x qui suit le modèle à facteurs (2) et vérifie
l’hypothèse 1. On suppose que la matrice de population Σ possède K valeurs propres non
nulles et différentes de un : α∗1 > · · · > α∗K > 1 +

√
c, de multiplicités respectives (nk)1≤k≤K

(n1 + · · ·+ nK = m), et p −m valeurs propres de valeur un. On suppose que p
n → c > 0

quand n → +∞. Soit (dn)n≥0 une suite réelle telle que dn = o(n−1/2) et n2/3dn → +∞.
Alors l’estimateur m̂n est consistant, i.e m̂n → m en probabilité quand n→ +∞.

On peut remarquer que, comparé au théorème 1, la seule modification de l’estimateur
porte sur la vitesse de convergence de dn qui doit être en o(n−1/2). La démonstration
est similaire à celle du théorème 1, en utilisant en plus le théorème 3.1 de Bai & Yao
(2008). Nous effectuons ensuite plusieurs simulations, en utilisant une version modifiée de
l’estimateur m̂n, à savoir

m̂∗n = min{j ∈ {1, . . . , s} : δn,j+1 < dn et δn,j+2 < dn}. (8)

Au lieu de s’arrêter dès qu’une différence δn,k est en-dessous du seuil dn, l’estimateur modifié
s’arrête lorsque deux différences consécutives δn,k et δn,k+1 sont toutes les deux plus petites
que dn. Il est facile de voir que cet estimateur est toujours consistant.

Nous modifions aussi la suite utilisée pour le seuil dn par rapport au chapitre 4 : nous
prenons une suite de la forme Cn−2/3

√
2 log log n, avec C un paramètre à ajuster. Nous

effectuons ensuite de nombreuses simulations afin de vérifier la qualité de notre estimateur,
et nous prenons le C qui donne de meilleurs résultats. Nous comparons ensuite notre
estimateur m̂∗n à la méthode KN de Kritchman & Nadler (2008) : notre algorithme présente
de meilleures performances dans la plupart des cas. Cependant, il faut noter que l’estimateur
KN a été construit de manière à minimiser la probabilité de surestimation tandis que le nôtre
cherche à minimiser l’erreur globale. C’est pour cela que nous étudions ensuite l’influence
de la constante C sur la probabilité de surestimation et que nous observons que cette
dernière n’est pas constante et plus grande que celle de la méthode KN (fixée à γ = 0.5%).
Finalement, comme la constante C a été choisie au cas par cas, nous construisons une
méthode afin que cette dernière soit déterminée de manière auto-adaptative. Des simulations
montrent une légère dégradation des performances de notre estimateur avec ce nouveau
choix.

Corrections de quelques statistiques basées sur la vraisem-
blance dans un modèle à facteurs strict de grande dimension

Le chapitre 6 considère le modèle à facteurs strict avec une variance homoscédastique.
Comme pour les chapitres précédents, cela revient à prendre un échantillon gaussien
x1, . . . , xn indépendant dont la matrice de population Σ possède la représentation spectrale
(7).

Une théorie basée sur la vraisemblance est bien connue depuis Lawley (1940) dans
le cadre asymptotique classique. Les estimateurs du maximum de vraisemblance sont les

xiii



AVANT-PROPOS : RÉSUMÉ EN FRANÇAIS

suivants (Anderson & Rubin (1956)) :

σ̂2 =
1

p−m

p∑
i=m+1

λn,i, (9)

Λ̂k =
(
λn,k − σ̂2

) 1
2 vn,k, 1 ≤ k ≤ m, (10)

où vn,k est le vecteur propre normalisé de Sn correspondant à λn,k, pour 1 ≤ k ≤ p.
Dans le cadre classique, où p est petit et fixé tandis que la taille de l’échantillon n

tend vers l’infini, la convergence presque-sûre de ces estimateurs est bien établie, ainsi que
leur normalité asymptotique (Anderson & Amemiya (1988)). Ce n’est plus le cas quand p
est grand comparé à n. Des résultats de la théorie des matrices aléatoires permettent de
résoudre ce problème.

Dans un premier temps, nous considérons l’estimateur (9) σ̂2 de la variance commune
σ2. Nous démontrons sa normalité dans le cadre de la grande dimension, et exhibons un
biais négatif, qui n’existe pas dans le cadre classique, mais qui a été observé dans Kritchman
& Nadler (2008, 2009) par exemple. Le théorème est le suivant

Théorème 3. Nous supposons que les composantes xij des vecteurs (xi)1≤i≤n sont des
variables aléatoires centrées telles que E(|xij |4) = 3σ4 et de matrice de covariance cov(xi) =
Σ. Nous supposons de plus que p

n → c > 0 quand n→ +∞. Alors,

(p−m)

σ2
√

2c
(σ̂2 − σ2) + b(σ2)

L−→ N (0, 1),

où b(σ2) =
√

c
2

(
m+ σ2

∑m
i=1

1
αi

)
.

Le biais est asymptotiquement nul. La variance asymptotique reste la même que dans
le cadre classique. La démonstration utilise le théorème central limite pour statistiques
spectrales linéaires de Bai & Silverstein (2010) (théorème 9.10), ainsi que le résultat de
convergence presque-sûre (4) de Baik & Silverstein (2006). Nous illustrons ce résultat par
des simulations numériques. Ensuite, nous évaluons les performances de l’estimateur plug-in

σ̂2
∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√

2c.

Cet estimateur sans biais donne de bien meilleurs résultats que l’estimateur σ̂2.
Dans un second temps, nous nous intéressons au test du rapport de vraisemblance

d’adéquation à un modèle à facteurs strict à variance homoscédastique. L’hypothèse nulle
est

H0 : Σ = ΛΛ′ + σ2Ip,

où le nombre de facteurs m est donné. La statistique du rapport de vraisemblance est
(Anderson & Rubin (1956))

Tn = −nL∗,

xiv



AVANT-PROPOS : RÉSUMÉ EN FRANÇAIS

où

L∗ =

p∑
j=m+1

log
λn,j
σ̂2

,

et σ̂2 est l’estimateur de la variance (9). En gardant p fixé et en faisant tendre n vers l’infini,
la théorie classique montre que Tn converge vers une loi χ2

q , avec q = p(p+ 1)/2 +m(m−
1)/2− pm− 1. Cette approximation n’est plus valide en grande dimension. En particulier,
ce test devient biaisé puisque son niveau est beaucoup plus élevé que celui fixé.

En utilisant à nouveau le théorème 9.10 de Bai & Silverstein (2010), et les calculs
effectués dans Bai et al. (2009) et Zheng (2012), nous construisons une version corrigée de
la statistique Tn. Plus précisément, nous démontrons le théorème suivant

Théorème 4. Sous les mêmes hypothèses que le théorème 3, mais avec c < 1, on a

v(c)−
1
2 (L∗ −m(c)− ph(cn, H̃n) + η + (p−m) log(β))

L−→ N (0, 1),

où
• m(c) = log (1−c)

2 ;
• h(cn, H̃n) =

∫
log(x) dFcn,H̃n(x), avec H̃n = p−m

p δ1 + 1
p

∑m
i=1 δ αi

σ2
+1 ;

• η =
∑m

i=1 log((αi + 1)(1 + cσ2α−1
i )) ;

• β = 1− c
p−m(m+ σ2

∑m
i=1 α

−1
i ) ;

• v(c) = −2 log(1− c) + 2c
β

(
1
β − 2

)
.

En grande dimension, Tn ne converge plus vers une loi du χ2, mais vers une loi normale.
On utilisera la statistique v(c)−

1
2 (L∗−m(c)− ph(cn, H̃n) + η+ (p−m) log(β))) pour tester

H0. Ce test sera asymptotiquement normal. En pratique, nous avons besoin d’une expression
pour h(cn, H̃n). Nous conjecturons la valeur de cette intégrale et l’utilisons ensuite dans les
simulations numériques.

Notre test produit des niveaux proches du théorique, sauf quand la limite c du rapport
p/n est plus petite que 0.1. Par contre, le test classique devient rapidement biaisé produisant
des niveaux beaucoup plus élevés que celui de référence quand c se rapproche de un, ce qui
fait que l’hypothèse nulle n’est jamais acceptée quand p est grand.

Dans la dernière partie de ce chapitre, nous construisons un test de l’égalité de deux
spikes ou, de manière équivalente, de la norme de deux vecteurs de pondération. Le but est
d’effectuer le test suivant

H0 : αi = αi+1 v.s. H1 : αi 6= αi+1, (11)

où i ≤ m− 1. Pour construire ce test, nous utilisons le théorème 3.1 de Bai & Yao (2008),
qui donne la loi limite jointe de

{
√
n(λn,j − φ(α∗k)), j ∈ Jk} (12)

où Jk = {sk−1 + 1, . . . , sk}, si = n1 + · · ·+ ni pour 1 ≤ i ≤ K. Dans le cas gaussien réel,
c’est la loi des valeurs propres d’une matrice de Wigner gaussienne réelle. Cela permet
d’obtenir la distribution limite mn2 de

√
n(λn,i − λn,i+1) pour 1 ≤ i < m et dans le cas où
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les spikes correspondantes sont simples. Pour le cas multiple, nous utilisons la conjecture de
Wigner sur l’espacement des valeurs propres d’une matrice de Wigner gaussienne réelle pour
obtenir mnk . On peut donc utiliser la statistique Dn,i =

√
n(λn,i − λn,i+1) pour conduire

le test : sous H0, Dn,i a une densité mnk pour un certain nk tandis que sous H1, Dn,i est
équivalente à

√
n(φ(αi)− φ(αi+1)), et donc tend vers l’infini quand n→ +∞. Pour t > 0,

la p-valeur de ce test est :

pv(t) = e
− t2

4s2
k .

Nous effectuons ensuite des simulations pour vérifier les performances de ce test : l’erreur
de première espèce est proche du seuil théorique, cependant la puissance diminue quand les
valeurs de deux spikes différentes sont proches, ce qui était prévisible.

Conclusion et perspectives

Nous concluons cette thèse par quelques perspectives de travail. La première d’entre-elles
concerne l’extension du résultat de convergence de notre estimateur du nombre de facteurs
au modèle à variances isolées généralisé, en utilisant les résultats de convergence presque-sûre
énoncés dans Bai & Yao (2012). La difficulté concernera le cas d’égalité.

La seconde consiste à développer un estimateur de la multiplicité des spikes à partir
du test d’égalité. En utilisant les p-valeurs des tests consécutifs, on pourrait établir une
partition des spikes en fonction de leur multiplicité.

Enfin, on peut se poser la question de la correction de l’estimateur du maximum de
vraisemblance des vecteurs de pondération. Cela revient à étudier le comportement des
vecteurs propres de la matrice de covariance empirique en fonction de ceux de la matrice de
population. Quelques résultats existent, comme ceux de Benaych-Georges & Nadakuditi
(2011), mais il est difficile de trouver un meilleur estimateur que les vecteurs propres de la
matrice de covariance empirique.
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Introduction

Random matrix theory has been considerably developed over the past few years. This
thesis will consider the large dimensional framework. High-dimensional random matrices
allow this particularity to be taken into account, since most asymptotic results assume that
the matrix size tends to infinity. Many of these results concern the empirical covariance
matrix Sn = 1

nXX
′, where X = (x1, . . . , xn) is a n-sample of random vectors of dimension p

(generally Gaussians). In particular, several limiting theorems deal with the eigenvalues
of Sn when p and n tend to infinity proportionally (see Anderson et al. (2010); Bai &
Silverstein (2010)). The latter provides fundamental tools for the study of usual statistics,
since most of them are functions of the eigenvalues of the sample covariance matrix Sn.

In this work, we are interested in the spiked population model, introduced by Johnstone
(2001), where all the eigenvalues of the population covariance matrix Σ are equal, except
for a relatively small number among them, called “spikes”. This model covers the strict
factor model as a particular case.

This thesis is divided into six chapters. First three are introductory chapters. In the
first chapter, we briefly present random matrix theory. More precisely, we recall general
results regarding the spectral analysis of random matrices using the Stieltjes transform. We
describe the Marčenko-Pastur distributions, and give the central limit theorem for linear
spectral statistics of Bai & Silverstein (2004). Then we consider spiked population models
and recall the associated results of Baik & Silverstein (2006) and Bai & Yao (2008). The
second chapter presents the factor models and the associated maximum likelihood theory.
We finally review, in chapter 3, several standard methods for the factors number estimation,
in the classical framework as well as in the large dimensional one.

The remaining chapters present new contributions of this thesis. In particular, chapters
4 and 5 describe a new estimation method for the factors/spikes number in the high-
dimensional setting, using the convergence results of Baik & Silverstein (2006) and Bai
& Yao (2008). The considered estimator uses the eigenvalue behavior of the sample
covariance matrix Sn which differs depending on whether they correspond to spikes or not.
The estimator is based on differences between consecutive eigenvalues of Sn. Chapter 4
establishes the consistency of the estimator in the case where all the spikes are different and
compares it to two existing methods through extensive simulations. The estimator depends
on a threshold dn which should satisfy some conditions. In chapter 5, we extend our result
of consistency to the equality case and improve our estimator by changing the threshold.

In chapter 6, we first consider the maximum likelihood estimator in a strict factor model
with homoscedastic variance. We correct the estimator of the common variance in the

1



INTRODUCTION

large dimensional context by evaluating its bias and establishing its asymptotic distribution.
Then we present a corrected version of the likelihood ratio statistic for the goodness-of-fit
test and find its asymptotic distribution. Finally, we propose a test for the equality of two
spikes or, equivalently, of the equality of the norm of two factor scores.
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Chapter 1

Large dimensional data and random
matrices

1.1 Large dimensional data

In multivariate statistics, we observe a random sample of p-dimensional observations
x1, . . . , xn. The statistical methods, such as the principal components analysis, were
developed at the beginning of the 20th century. Although some non-asymptotic methods
exist in the Gaussian case (Student or Fisher test for instance), results mostly consider an
asymptotic framework, where the number of observations n grows to infinity.

Most of these results assume that the dimension p of the variables is fixed and “small”
(less than ten generally), whereas the number of observations n tends to infinity. This is
the classical asymptotic theory. This theory has been adopted by the practitioners, but
recently they have been faced with a new problem, the analysis of high-dimensional data.

For a variety of reasons, these high-dimensional data appeared in a lot of scientific
fields. In the genetic field, thanks to the micro-array techniques, it is possible to record the
expression level of several thousands of genes from a single tissue. In finance, thanks to the
constant evolution of computing and the generalization of the Internet, each day we can
possibly have several gigabytes of data, from different markets around the world. Other
examples include wireless communications which could have a large number of users or
antennas, or the physics of mixture. In Table 1.1, the dimension of several types of data, as
well as the commonly associated sample sizes, are presented. We remark that the dimension
p of the data is quite far away from classical situations where p is lower than ten. This new
type of data is called “large dimensional data”.

Table 1.1: Examples of large dimensional data.
Data size p Sample size n c = p/n

Portfolio 50 500 0.1
Climate surveys 320 600 0.21
Speech analysis a× 102 b× 102 ' 1
ORL face data base 1440 320 4.5
Micro-arrays 1000 100 10
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1.1. LARGE DIMENSIONAL DATA

When the dimension of the data p becomes large, several well-known methods become
inefficient or even misleading. A seminal example is provided in Dempster (1958), where he
establishes the inefficiency of the Hottelling’s T 2 test statistic in such cases and provides
a remedy (named as non-exact test). However, by that time no statistician was able to
discover the fundamental reasons for such break-down of the well-established methods.

A new area in asymptotic statistics has been since then developed, where the data
dimension p is not fixed anymore but tends to infinity together with the sample size n.
This is the scheme of large dimensional asymptotics. For multivariate analysis, the problem
is therefore, which of the large sample size scheme and the large dimensional scheme is
closer to reality? As explained in Huber (1973), some statisticians might say that five
samples for each parameter in average are enough for using large sample asymptotic results.
Now, suppose there are p = 20 parameters and we have a sample of size n = 100. We may
consider the case as p = 20 being fixed and n tending to infinity (large sample asymptotics:
classical setting), or p = 2

√
n or p = 0.2n for instance (large dimensional asymptotics:

high-dimensional setting). So, we have at least three different options to choose for an
asymptotic setup. The natural question is then, which setup is the best choice among the
three? Huber (1973) strongly suggested to study the situation of increasing dimension
together with the sample size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a structured covariance
matrix, simulation results show that parameter estimation becomes very poor when the
number of parameters is larger than four. Also, it has been found that in linear regression
analysis, if the covariates are random (or have measurement errors) and the number of
covariates is larger than six, the behavior of the estimates departs far away from the
theoretical values, unless the sample size is very large. In signal processing, when the
number of signals is two or three and the number of sensors is more than ten, the traditional
MUSIC (Multivariate Signal Classification) approach provides very poor estimation of the
number of signals, unless the sample size is larger than a thousand. Paradoxically, if we
use only half of the data set, namely, we use the data set collected by only five sensors,
the signal number estimation is almost 100% correct if the sample size is larger than two
hundred. The underlying reason of this paradox is the following: if the number of sensors
(the dimension of data) is p, then one has to estimate p2 parameters. Therefore, when p
increases, the number of parameters to be estimated increases proportional to p2 while
the number of observations 2np increases proportional to p. This suggests that one has to
revise the traditional MUSIC method if the sensor number is large. For instance, it has
been done in Hachem et al. (2012).

Bai & Saranadasa (1996) presented an interesting problem, where they theoretically
prove that when testing the difference of means of two high dimensional populations,
Dempster (1958) non-exact test is more powerful than Hotellings T 2 test, even when the
T 2 statistic is well defined. It is well known that statistical efficiency will be significantly
reduced when the dimension of data or number of parameters becomes large. Thus, several
techniques of dimension reduction were developed in multivariate statistical analysis. As an
example, let us consider a problem in principal component analysis. If the data dimension
is ten, one may select three principal components so that more than 80% of the information
is reserved in the principal components. However, if the data dimension is a thousand
and three hundred principal components are selected, one would still have to face a large
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dimensional problem. If only three principal components are selected, 90% or even more of
the information carried in the original data set could be lost. Now, let us consider another
example 1. Let x1, . . . , xn be a Gaussian sample N (0, Ip) of dimension p, centered and
with identity covariance matrix (also called population covariance matrix). The associated
sample covariance matrix Sn is defined by

Sn =
1

n

n∑
i=1

xix
′
i.

An important statistic in multivariate analysis is

Tn = log(detSn) =

p∑
i=1

log λn,i,

where (λn,j)1≤j≤p are the eigenvalues of Sn. If p is kept fixed, then λn,j → 1 almost surely
as n→∞ and thus Tn → 0. Furthermore, by taking a Taylor expansion of log(1 + x), one
can show that, for any p fixed √

n

p
Tn

L−→ N (0, 2).

This suggests the possibility that Tn remains asymptotically normal for large p, assuming
that p = O(n). However, this is not the case: if we assume that p/n→ c ∈ (0, 1) as n→∞,
using results on empirical spectral distribution of Sn (see Section 1.3.1), it can be proved
that, almost surely,

1

p
Tn →

∫ b

a

log x

2πcx
((b− x)(x− a))

1
2 dx =

c− 1

c
log(1− c)− 1 := d(c) < 0,

where a = (1−
√
c)2 and b = (1 +

√
c)2. Thus, almost surely;√

n

p
Tn ' d(c)

√
np→ −∞.

Consequently, any test which assumes asymptotic normality of Tn will lead to a serious
error.

These examples show that the classical large sample limits are no longer suitable for
dealing with large dimensional data. Statisticians must seek out new limiting theorems
instead. Thus, the theory of random matrices (RMT) might be one possible method
for this aim, and hence, has received more attention among statisticians in recent years.
For the same reason, the importance of random matrix theory has found applications in
many research areas, such as signal processing, network security, image processing, genetic
statistics, stock market analysis, etc.

1. This example is inspired by the introduction of the book of Bai & Silverstein (2010).
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1.2 Random matrix theory

Random matrix theory goes back to the development of quantum mechanics in the
1940s and early 1950s. In quantum mechanics, the energy levels of a system are described
by the eigenvalues of an Hermitian operator A on an Hilbert space, called the Hamiltonian.
To avoid working with an infinite dimensional operator, it is common to approximate the
system by discretization, amounting to a truncation, keeping only the part of the Hilbert
space that is important to the problem under consideration. Thus, A becomes a finite, but
large dimensional random linear operator. Hence, the limiting behavior of large dimensional
random matrices attracts special interest among people working in quantum mechanics and
many laws were discovered during this period. For a more detailed review on applications of
random matrix theory in quantum mechanics and other related areas, the reader is referred
to the book by Mehta (2004).

Since the late 1950s, research on the limiting spectral analysis of large dimensional
random matrices has attracted considerable interest among mathematicians, probabilists
and statisticians. One pioneering work is due to Wigner (1955, 1958), and deals with the
semicircular law for a Gaussian (or Wigner) matrix which states that the empirical spectral
distribution of a high-dimensional Wigner matrix tends to a “semicircular law”. This work
was generalized by Arnold (1967, 1971) and Grenander (1963) in various aspects. Bai &
Yin (1988) proved that the empirical spectral distribution of a sample covariance matrix
(suitably normalized) tends to the semicircular law when the dimension of the data is
small, compared to the sample size. Following the work of Marčenko & Pastur (1967) and
Pastur (1972, 1973), the spectral analysis of large dimensional sample covariance matrices
was developed by many researchers, including Bai et al. (1986), Grenander & Silverstein
(1977), Jonsson (1982), Wachter (1978), Yin (1986) and Yin & Krishnaiah (1983). The
following authors have also worked on the empirical spectral distribution of the multivariate
Fisher matrix (or more generally of products of random matrices): Bai et al. (1986, 1987),
Silverstein (1985), Wachter (1980), Yin (1986) and Yin & Krishnaiah (1983). In the early
1980s, major contributions on the existence of limiting spectral distributions and their
explicit forms for certain classes of random matrices were made. In recent years, research
on random matrix theory is turning toward second order limiting theorems, such as the
central limit theorem for linear spectral statistics, the limiting distributions of spectral
spacings and extreme eigenvalues.

Recently, these results have been widely used in statistics. In the signal processing
field, the detection of a source by a sensor array is of particular interest. To cope with the
high-dimensional setting, large random matrix theory has been applied to signal detection
(Combettes & Silverstein (1992); Couillet & Debbah (2010)) and recently to hypothesis
testing, see Kritchman & Nadler (2009); Nadakuditi et al. (2008); Nadakuditi & Silverstein;
Bianchi et al. (2011); Onatski et al. (2012); Hachem et al. (2012). The book of Couillet
& Debbah (2011) shows also how random matrix theory can be applied to a variety of
problems in signal processing and wireless communications. In economics, we can cite
Harding (2007); Onatski (2009, 2010). More generally, in El Karoui (2005), the author
constructs a methodology of testing for white Gaussian noise in time series analysis using
random matrix theory. El Karoui (2008) and Bai et al. (2010) deal with the problem of
estimating the population spectral distribution from a high-dimensional sample covariance
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matrix. Ledoit & Wolf (2002); Srivastava (2005); Schott (2007); Bai et al. (2009) propose
several procedures in the high-dimensional setting for testing that a covariance matrix is
identity, or several covariance matrices are equal.

1.3 Spectral analysis of large dimensional random matrices

1.3.1 Fundamental tools

The aim of this section is to give an idea about the fundamental concepts and tools
which will be used in the following chapters.

1.3.1.1 Empirical and limiting spectral distributions

LetMp(C) be the set of squared matrices of size p with complex entries.

Definition 1. Let A ∈ Mp(C) and (λn,j)1≤j≤p be its eigenvalues. Its empirical spectral
distribution (ESD) is given by

FA =
1

p

p∑
j=1

δλn,j ,

where δa is the Dirac mass at point a.

Generally, the empirical spectral distribution FA is a probability measure on C. Its
support is included in R (resp. R+) if A is Hermitian (resp. Hermitian nonnegative definite).
For example, the rotation matrix

A =

(
0 −1
1 0

)
has eigenvalues ±i, so we have FA = 1

2(δi + δ−i), which is a measure on C. The symmetry

B =

(
0 1
1 0

)
has eigenvalues ±1, so FB = 1

2(δ1 + δ−1) has its support in R. In the following section, we
will often consider Hermitian and nonnegative definite covariance matrices: their empirical
spectral distribution will have a support included in R+.

One of the main problems in random matrix is the study of the limiting behavior of a
empirical spectral distributions sequence (FMn)n≥1, for a given random matrix sequence
(Mn)n≥1.

Definition 2. Let (An)n≥1 be a sequence of Mp(C). If the sequence of corresponding
empirical spectral distributions (FAn)n≥1 converges vaguely to a measure F (i.e. for all
function φ continuous and compactly supported, FAn(φ)→ F (φ) as n→∞), F is called
the limiting spectral distribution (LSD) of the matrices sequence (An)n≥1.
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If the limiting spectral distribution F is of mass one, the vague convergence becomes the
usual weak convergence (or in law), i.e. FAn(φ)→ F (φ) when n→∞ for all continuous
and bounded functions φ.

We are especially interested in sequences of random matrices with dimension p growing
to infinity: their study is called “theory of large dimensional random matrices”. More
precisely, we study the sample covariance matrices. Let x1, . . . , xn be a sample of random
observations of dimension p. The population covariance matrix is denoted by Σ = cov(xi).
The sample covariance matrix is defined by

S∗n =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′,

where x̄ = n−1
∑

i xi is the empirical mean of the sample. Most multivariate statistical meth-
ods rely on this sample covariance matrix e.g., principle components analysis, multivariate
regressions, one-sample or two-sample hypothesis testing, factor analysis, etc.

In spectral analysis of large dimensional random matrices, we generally define the sample
covariance matrix as the following

Sn =
1

n

n∑
i=1

xix
′
i,

as Sn and S∗n have the same limiting spectral distribution. Indeed, the difference between
S∗n and Sn is a matrix of rank one (see Theorem A.44 of Bai & Silverstein (2010)).

In the spectral analysis of Sn, it is usual to assume that the data size p tends to infinity
proportionally to the sample size n, i.e. p

n → c ∈ (0,∞) when p, n → ∞. When we
consider sample covariance matrices Sn, the eigenvalues are random variables, and the
corresponding empirical spectral distributions (F Sn)n≥1 are random probability measures
on R+ or, equivalently, a sequence of random variables of measures.

1.3.1.2 The Stieltjes transform

Eigenvalues of a matrix can be viewed as continuous functions of the matrix entries.
Nevertheless, these functions do not have closed forms when the matrix size exceeds four.
This is the reason why specific tools are needed for their study. There are three important
methods employed in this area:
• Moment method;
• Stieltjes transform;
• Orthogonal polynomial decomposition of the exact density of the eigenvalues.

We will consider results obtained via the Stieltjes transform method. We denote by Γµ the
support of a finite measure µ defined on R. Let

C+ = {z ∈ C|=(z) > 0}

be the open upper half complex plan with positive imaginary part.

Definition 3. Let µ be a finite measure on the real line. Its Stieltjes (or Cauchy) transform
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is defined as
sµ(z) =

∫
1

x− z
µ(dx), z ∈ C\Γµ.

The proofs of the results of this part can be found in Akhiezer (1965) and Krĕın &
Nudel′man (1977).

Proposition 1. The Stieltjes transform has the following properties:
1. sµ is holomorphic on C\Γµ;
2. z ∈ C+ if and only if sµ(z) ∈ C+;
3. If Γµ ⊂ R+ and z ∈ C+, then zsµ(z) ∈ C+;

4. |sµ(z)| ≤ µ(1)
d(z,Γµ)∨|=(z)| .

The next result is an inversion result.

Proposition 2. The total mass µ(1) can be recovered through the formula

µ(1) = lim
ν→∞

− iνsµ(iν).

Moreover, for all continuous and compactly supported φ : R→ R,

µ(φ) =

∫
R
φ(x)µ(dx) = lim

ν→0+

1

π

∫
R
φ(x)=sµ(x+ iν) dx.

Especially, for all two continuity points a < b of µ,

µ([a, b]) = lim
ν→0+

1

π

∫
R
=sµ(x+ iν) dx.

Thus, we can recover the initial measure from its Stieltjes transform.

Proposition 3. We assume that the following conditions are satisfied for a complex function
g:

1. g is holomorphic on C+;
2. g(z) ∈ C+ for all z ∈ C+;
3. lim sup

ν→∞
|iνg(iν)| <∞.

Then g is the Stieltjes transform of a real finite positive measure.

Stieltjes transform characterizes the vague convergence of finite measures. It is an
important tool for the study of random matrices.

Proposition 4. A sequence (µn)n≥1 of probability measures R converges vaguely to a
positive measure µ if and only if their Stieltjes transform (sµn)n≥1 converge to sµ on C+.

In order to obtain the weak convergence of the sequence (µn)n≥1, one can check the
vague convergence using the previous proposition and ensure that the limiting measure
µ is a probability measure (i.e. µ(1) = 1), using Proposition 2, or by direct calculation.

9



1.3. SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES

The link between Stieltjes transform and random matrix theory is the following: the
Stieltjes transform of an empirical spectral distribution FA of an Hermitian squared matrix
A = (aij)1≤i,j≤n of size n is given by

sn(z) =

∫
1

x− z
FA(dx) =

1

n
tr(A− zI)−1,

which is the resolvent of the matrix A times 1/n. Using a formula for the trace of an inverse
matrix (Bai & Silverstein (2010), Theorem A.4), we have

sn(z) =
1

n

n∑
k=1

1

akk − z − α′k(Ak − zI)−1αk
,

where Ak is the squared matrix of size n− 1 obtained by removing the k-th row and the
k-th column, and αk is the k-th column of A without the element k. If the denominator
akk − z−α′k(Ak − zI)−1α′k can be proved to be equal to g(z, sn(z)) + o(1) for some function
g, then a limiting spectral distribution F exists and its Stieltjes transform is given by the
solution of the equation

s =
1

g(z, s)
.

1.3.2 Marčenko-Pastur distributions

The Marčenko-Pastur distribution Fc,σ2 (MP law) of index c and scale parameter σ2

has the density

pc,σ2(x) =

{
1

2πxcσ2

√
(b(c)− x)(x− a(c)) when a(c) ≤ x ≤ b(c),

0 otherwise,

with a(c) = σ2(1 −
√
c)2 and b(c) = σ2(1 +

√
c)2, and a supplementary point of mass

1 − 1/c at the origin when c > 1. The constant c is the ratio of the dimension over
the sample size. This distribution has a mean σ2 and a variance cσ4. Its support is an
interval of length b(c)− a(c) = 4cσ2. When σ2 = 1, this distribution is called the standard
Marčenko-Pastur distribution, denoted by Fc. Figure 1.1 displays three densities of the
standard Marčenko-Pastur law for c ∈

{
1
8 ,

1
4 ,

1
2

}
. We can notice a behavior close to the

squared root function at the boundaries of these densities.
It is easy to see that when c tends to zero, the MP law Fc is reduced to the Dirac mass

δ1. Furthermore, if Xc follows the MP law Fc, then the sequence 1
2
√
c
(Xc − 1) converges

weakly to the semicircular law of Wigner.

1.3.2.1 Marčenko-Pastur law for independent vectors without cross-correlations

Marčenko and Pastur have been the first to find the limiting spectral distribution of a
high-dimensional sample covariance matrix. Their result has then been extended in various
directions (see Marčenko & Pastur (1967)).
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Figure 1.1: Density plots of the standard Marčenko-Pastur law with indexes 1/8, 1/4 and 1/2.

Proposition 5. Suppose that the coordinates of xi are complex i.i.d. with mean zero and
variance σ2. We assume that p/n→ c ∈ (0,∞). Then, with probability one, F Sn tends to
the MP law defined in (1.3.2).

This theorem was found by the end of the 1960s (for the mean convergence), but
its importance in high-dimensional statistics was only recognized at the begin of this
century. To understand its deep influence in multivariate analysis, we plot in Figure 1.2
the eigenvalues of the sample covariance matrix of an independent Gaussian sample. We
generated n = 320 realizations (xi)1≤i≤320 of i.i.d. Gaussian random vectors N (0, Ip) of size
p = 40. The histogram of the p = 40 eigenvalues of Sn shows a large dispersion from the
value one. If we refer to the classical asymptotic theory (assuming n = 320 is large enough),
the sample covariance matrix should be close to Σ = Ip = E(xix

′
i). As the eigenvalues are

continuous functions of the entries of the matrix, the eigenvalues of Sn should converge to
one, which is the unique eigenvalue of Ip. The plot clearly shows that this is far away from
being the reality. We also draw on the same plot the Marčenko-Pastur density pc, with
c = 40/320 = 1/8. The closeness between this density and the histogram of the sample
eigenvalues is striking.

Since the sample eigenvalues deviate significantly from the population eigenvalues, the
sample covariance matrix Sn is no more a reliable estimator of population covariance matrix
Σ anymore. This is the fundamental reason why classical multivariate methods perform
poorly when the data size becomes large. As an example, consider the T 2 Hotelling’s statistic,
linked to S−1

n . In a large dimensional framework (like p = 40 et n = 320), S−1
n deviates

significantly from Σ−1. In this example, the wider spread of the sample eigenvalues can lead
to a large number of small eigenvalues, even more if p/n is close to one. For instance, for
Σ = σ2Ip and c = 1/8, the smallest eigenvalue of Sn is close to a(c) = σ2(1−

√
c)2 = 0.42σ2,

so the largest eigenvalue of S−1
n is close to a(c)−1σ−2 = 1.55σ−2, a 55% over-spread to the

population value σ−2. When the ratio of the data size over the sample size increases to
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Figure 1.2: Eigenvalues of the sample covariance matrix issued from a Gaussian sample N (0, Ip) of
dimension p = 40 and with size n = 320. The curve is the standard Marčenko-Pastur density of index 1/8.

c = 0.9, the largest eigenvalue of S−1
n becomes close to 380σ−2. Therefore S−1

n is clearly not
a reliable estimator of Σ−1.

1.3.2.2 Generalized Marčenko-Pastur distributions

In Proposition 5, the population covariance matrix has the simple form Σ = σ2Ip, which
is quite restrictive. In order to consider a general population covariance matrix Σ, we
assume the following: the observed vectors (yk)1≤k≤n can be expressed as yk = Σ1/2xk,
where xk have i.i.d. components as in Proposition 5 and Σ1/2 is any non-negative squared
root of Σ. The associated sample covariance matrix is

Bn =
1

n

n∑
k=1

yky
′
k = Σ1/2

(
1

n

n∑
k=1

xkx
′
k

)
Σ1/2 = Σ1/2SnΣ1/2.

Here Sn denotes the sample covariance matrix (1.3.1.1) with i.i.d. components. Notice that
the eigenvalues of Bn are the same as the product SnΣ.

The following result extends Proposition 5 to random matrices of type Bn = SnΣ, for
all non-negative matrices Σ.

Proposition 6 (Bai & Silverstein (2010)). Let Sn be the sample covariance matrix defined
in (1.3.1.1) with i.i.d. components and (Σn)n≥1 be a sequence of nonnegative Hermitian
squared matrices of size p. Let Bn = SnΣn. We assume that:

1. The coordinates of xi are complex i.i.d. with mean zero and variance one;

2. The ratio of the data dimension over the sample size p/n→ c > 0 as n→∞;

3. The sequence (Σn)n≥0 is deterministic, or independent from (Sn)n≥1;
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4. The sequence (Hn)n≥0 = (FΣn)n≥0 of the empirical spectral distributions of (Σn)n≥0

converges weakly to a fixed probability measure H.

Then FBn converges weakly to a fixed probability measure Fc,H , whose Stieltjes transform,
denoted by s, is implicitly defined by the equation

s(z) =

∫
1

t(1− c− czs(z))
dH(t), (1.1)

where z ∈ C+.

The implicit equation given above has an unique solution in the space of functions from
C+ to C+. Moreover, the solution s of this equation has no closed-form expression, and
this is the unique information that we know about the limiting spectral distribution Fc,H .

There is, however, another way to present the fundamental equation (1.1). Take the
squared matrix of size n

Bn =
1

n
X′TX,

where X is the matrix made by the vectors (xi)1≤i≤n. The two matrices B and B have the
same positive eigenvalues and their empirical spectral distributions satisfy

nFBn − pFBn = (n− p)δ0.

Assuming that p/n→ c > 0, FBn has a limit Fc,H if, and only if, FBn has a limit F c,H . In
this case, the limits satisfy

F c,H − cFc,H = (1− c)δ0,

and their respective Stieltjes transform s and s are linked to each other by

s(z) = −1− c
z

+ cs(z).

Replacing s by s in (1.1), we find

s = −
(
z − c

∫
t

1 + s
dH(t)

)−1

.

Then solving this equation with respect to z leads to

z = −1

s
+ c

∫
t

1 + ts
dH(t), (1.2)

which indeed gives the inverse function of s. The equations (1.1) and (1.2) are of fundamental
importance in the methods of statistical estimation, and are called “Marčenko-Pastur
equations”.

The limiting spectral distribution Fc,H and its companion F c,H are called “generalized
Marčenko-Pastur distributions” with indexes c et H. In the case where Tn = Σ, the limiting
spectral distribution H of Σ is called “population spectral distribution”.
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1.3. SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES

1.3.3 Central limit theorem for linear spectral statistics of the sample
covariance matrix

In multivariate analysis, most of the population statistics can be written as a function
of the empirical spectral distribution Fn of some random matrices, i.e.

θ̂ =

∫
f(x) dFn(x).

θ̂ is called a “linear spectral statistic” (LSS), and can be considered as an estimator of
θ =

∫
f(x) dF (x), where F is the limiting spectral distribution of Fn.

If we consider the sample covariance matrix Bn, we saw in Section 1.3.2.2 that its
empirical spectral distribution Fn converges weakly to a generalized Marčenko-Pastur
distribution Fc,H . This consistency is not enough for a better statistical inference, for which
a central limit theorem is often required. In this section, we will present the result of Bai &
Silverstein (2004).

1.3.3.1 Statement of the theorem

We consider the following linear spectral statistic

θ̂(f) =

∫
f(x) dFBn(x).

As the convergences cn → c and Hn → H can be very slow, the difference

p

(
θ̂(f)−

∫
f(x) dF c,H(x)

)
could have no limit. Consequently, we have to consider the limiting distribution of the
normalized difference

p

(
θ̂(f)−

∫
f(x) dF cn,Hn(x)

)
.

In the sequel, we will denote

Xn(f) =

∫
f(x) dGn(x),

where:
Gn(x) = p(FBn(x)− Fcn,Hn(x)).

Proposition 7. We denote by (xjk) the entries of the vector xj. We assume:

(i) For all η ≥ 0,
1

np

∑
j,k

E(|xjk|41|xjk|≥η√n)→ 0 as n→∞;

14
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(ii) For all n, the xij = x
(n)
ij , 1 ≤ i ≤ p, 0 ≤ j ≤ n are independent, and satisfy

E|xij |2 = 1, max
i,j,n

E|xij |4 <∞,
p

n
→ y;

(iii) Tn ∈Mp(C) is nonnegative Hermitian, with bounded spectral norm in p, and there is
a cumulative distribution function H such that

Hn ≡ FTn L−→ H.

Let f1, . . . , fk be analytic functions on an open set of C which includes the interval

[lim inf
n

λTnn,min1]0,1[(y)(1−
√
c)2, lim sup

n
λTnn,max(1 +

√
c)2].

Then

(a) The random vectors (Xn(f1), . . . , Xn(fk)) are a tight sequence in n;

(b) If xij and Tn are real, and E(x4
ij) = 3, then

(Xn(f1), . . . , Xn(fk))
L−→ (Xf1 , . . . , Xfk),

where (Xf1 , . . . , Xfk) is a k-dimensional Gaussian vector with the following mean and
covariance

E(Xf ) = − 1

2πi

∮
C
f(z)

c
∫ s(z)3t2 dH(t)

(1+ts(z))3(
1− c

∫ s(z)3t2 dH(t)
(1+ts(z))2

)2 dz,

cov(Xf , Xg) = − 1

2π2

∮
C1

∮
C2

f(z1)g(z2)

(s(z1)− s(z2))2
s′(z1)s′(z2) dz1dz2,

where s(z)is the Stieltjes transform of F c,H ≡ (1−c)1[0,∞) +cFc,H (f, g ∈ {f1, . . . , fk}),
and C, C1, C2 are closed contours taken in the positive direction in the complex plane,
each enclosing the support of Fc,H ;

(c) If xij is complex with E(x2
ij) = 0 and E(|xij |4) = 2, then (b) also holds, except the mean

is zero and the covariance function is a half of the function given in (b).

1.3.3.2 Example of application

We consider here an example from Bai et al. (2009), which deals with the problem of
testing the covariance of a sample. Let x ∈ Rp be a random variable such that

x ∼ N (0p,Σp).

We would like to test
H0 : Σp = Ip versus H1 : Σp 6= Ip.
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If we want to test Σp = A, with a given A ∈Mp(C), we can go back to the null above by
the transformation A−1/2x. Let (x1, · · · , xn) be a n-sample of x such that p < n and Sn the
sample covariance matrix. We define

K∗ = tr Sn − log |Sn| − p. (1.3)

The likelihood ratio statistic is Kn = n.K∗. When p is fixed and n→∞, Kn
L−→ χ2

1
2
p(p+1)

under H0. However, when p becomes large, Kn grows to infinity, which leads to a test with
higher level than the given one. Thus it is necessary to construct a version of Kn suitable
in large dimensional setting. Notice that

K∗ =

p∑
i=1

(λn,i − ln(λn,i)− 1),

where (λn,i)1≤i≤p are the eigenvalues of Sn: this is a linear spectral statistic. We will apply
Proposition 7 to obtain the asymptotic distribution of Kn in large dimensional setting.
By taking Tn = Ip, Bn becomes Sn. Moreover, we have Hn = H = FTn = δ1, and also
Fc,H = Fc, and Xn(f) =

∫
R f(x) d(F Sn − Fcn)(x).

Applying Proposition 7, we obtain the following result

Proposition 8. We assume that the conditions in Proposition 7 hold, K∗ is defined as in
(1.3) and g(x) = x− ln(x)− 1. Then, under H0 and when n→∞,

K̃n = v(c)−1/2

(
K∗ − p

∫
R
g(x) dFcn(x)−m(c)

)
L−→ N (0, 1),

where m(c) = − log(1−c)
2 , and v(c) = −2 log(1− c)− 2c.

In large dimensions, the limiting distribution of Kn is not a χ2 law anymore, but a
Gaussian law. We reproduce here a table from Bai et al. (2009). For different values of p
and n, type I errors has been calculated from 10000 independent replications of the real
Gaussian distribution. The nominal Type I error is α = 0.05. Computations are done for
the traditional likelihood ratio test (LRT) and for the corrected likelihood ratio test (CLRT)
defined above.

p n
CLRT LRT

Size Difference with 5% Power Size Power
5 500 0.0803 0.0303 0.6013 0.0521 0.5233
10 500 0.0690 0.0190 0.9517 0.0555 0.9417
50 500 0.0594 0.0094 1 0.2252 1
100 500 0.0537 0.0037 1 0.9757 1
300 500 0.0515 0.0015 1 1 1

Table 1.2: Sizes and powers of the traditional LRT compared to the corrected LRT.

Powers are estimated under the alternative Σ = diag(1, 0.05, 0.05, 0.05, . . .). As showed
by the Table 1.2, the traditional LRT always rejects H0 when p is large, for instance for
p = 100 or 300, whereas the size calculated from the corrected LRT is close to the theoretical
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1.4. SPIKED POPULATION MODELS

size. For intermediate dimensions such as p = 50, the corrected LRT still gives good results,
whereas the traditional LRT has a size larger than 5%.

1.3.4 Limits of extreme eigenvalues

The smallest and largest eigenvalues of Sn give the spread of the sample eigenvalues.
This is the reason why their properties will be important in multivariate analysis. We
consider here the case Σ = Ip. The following proposition is for the simple case where the
components are i.i.d. as in Proposition 5.

Proposition 9. Let (xij)1≤i,j≤n be a double entries array with complex-valued random
variables, with mean zero and variance one, and finite fourth moment. Consider the sample
covariance matrix Sn defined in (1.3.1.1) where xk = (x1k, . . . , xpk)

′ and λn,1 ≥ · · · ≥ λn,p
denote its eigenvalues in a decreasing order. Then, when p/n→ c > 0,

λn,1
a.s.→ b = (1 +

√
c)2, (1.4)

λn,min
a.s.→ a = (1−

√
c)2, (1.5)

where

λn,min =

{
λn,p for p ≤ n,
λn,p−n+1 otherwise.

The existence of the fourth moment is also a necessary condition for the convergence
(1.4), see Bai et al. (1988). What is necessary for the convergence (1.5) is still an open
question.

1.4 Spiked population models

1.4.1 Definition of the model

In Section 1.3.2.2, we consider observations of the form xi = Σ1/2yi, where yi are i.i.d.
vectors of size p, with mean zero, variance one, and i.i.d. components. (xi)i≥1 is thus a
random sequence of i.i.d. vectors with mean zero and population covariance matrix Σ. If we
take Σ = Ip, then this corresponds to the “null” case, and we saw in 1.3.2 that the limiting
spectral distribution of Sn is the standard Marčenko-Pastur law. Nevertheless, as noticed in
Johnstone (2001), there are examples of real data which are significantly different from this
null case. Several extreme sample eigenvalues are separated from others that are confined in
the support of the Marčenko-Pastur distribution. To explain this phenomenon, Johnstone
(2001) proposed a “spiked population model”, where all the population eigenvalues equal
one, except a fixed and relatively small number among them, called “spikes”. In other words,
the population covariance matrix Σ has the following eigenvalues

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

(1.6)

where n1 + · · · + nK = m is the number of spikes. The spiked population model can be
viewed as a finite rank perturbation of the null case.

17



1.4. SPIKED POPULATION MODELS

When p/n→ c > 0, it is easy to see that the empirical spectral distribution of Sn still
converges to the standard Marčenko-Pastur law. However, the asymptotic behavior of the
extreme eigenvalues of Sn will be different from the null case.

Several authors have studied this model: Baik & Silverstein (2006) showed the almost sure
convergence of the extreme sample eigenvalues issued from a spiked population model. Paul
(2007) established a central limit theorem for the extreme sample eigenvalues corresponding
to simple spikes obtained from a Gaussian sample, and gave a result on the related
eigenvectors. In the Gaussian Wishart matrices case, the asymptotics of the extreme
eigenvalues have been established by Baik et al. (2005), and a transition phase, called
“BBP transition” has been revealed: there is a difference in the behavior regarding the
value of the perturbation. Benaych-Georges & Nadakuditi (2011) extended these results to
other perturbation models, additive or multiplicative, which are more general than spiked
population models, and showed the almost sure convergence of appropriate projections
of the eigenvectors corresponding to the spikes. Moreover, Benaych-Georges et al. (2011)
studied the deviations of the extreme eigenvalues of perturbed matrices.

Bai & Yao (2012) generalized the above model to a “generalized spiked population
model”. We assume that Tp has the following structure

Σp =

(
Vm 0
0 Tp−m

)
.

Moreover, we assume
(i) Vm is squared matrix of size m, where m is a fixed integer. The eigenvalues of Vm

are α1 > · · · > αK > 0 with respective multiplicities n1, . . . , nK (m = n1 + · · ·+ nK).
We denote by Jk the set of the nk indexes of αk in the matrix Σ;

(ii) The empirical spectral distribution Hp of Tp−m converges to a limiting non-random
distribution H;

(iii) The sequence of the largest eigenvalues of Σ is bounded;
(iv) The eigenvalues βn,j of Tp−m verify

sup
j
d(βn,j ,ΓH) = εp → 0,

where d(x,A) is the distance from x to a set A and ΓH is the support of H.

Definition 4. An eigenvalue α of Vm is called a “generalized spike”, or simply “spike”, if
α /∈ ΓH .

Consequently, the spectrum of the population covariance matrix Σ is composed of a
main part, the βn,j , and a smaller part of m spiked eigenvalues that are well separated from
the main part, in the form of Definition 4.

1.4.2 Limits of spiked eigenvalues

We denote by yij the components of yj and also assume
(v) Eyij = 0, E|y2

ij | = 1 et E|yij |4 < +∞ ;
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(vi) p/n→ c > 0.

Bai & Yao (2012) proved the following result

Proposition 10. Assume hypothesis (i)-(vi) holds true. Let λn,1 ≥ · · · ≥ λn,p be the
eigenvalues of Sn, and let

ψ(α) = α+ c

∫
tα

α− t
dH(t).

1. For a spiked eigenvalue αk which verifies ψ′(αk) > 0, we have

λn,k
a.s.→ ψ(αk), ∀k ∈ Jk;

2. We assume that ψ′(αk) ≤ 0. Let I be the maximum interval of ΓcH including αk.
Then:

(a) If I has a sub-interval (uk, vk) on which ψ′ > 0 (we take the larger interval),
then

λn,k
a.s.→ ψ(w), ∀k ∈ Jk,

where w is the bound of uk or vk closest to αk;

(b) If for all α ∈ I, ψ′(α) ≤ 0, then

λn,k
a.s.→ γk, ∀k ∈ Jk,

where γk is the γ-th quantile of H, with γ = H(−∞, αk), and H is the limiting
spectral distribution of Tp−m.

This proposition distinguishes two different types of spikes, those with positive ψ′, called
“distant spikes” and the others with a negative ψ′, called “closed spikes”. Distant spikes are
also characterized by ψ′(α) > 0 if and only if ψ(αj) is outside the support of the limiting
spectral distribution Fc,H . Furthermore, this property is highly dependent on the value of
c, since a spike can become distant (or stop being distant) if c is sufficiently large.

We now consider the special case where Tp−m = Ip−m. In this case we have:

ψ(α) = α+ c
α

α− 1
,

and
ψ′(α) = 1− c

(α− 1)2
.

Thus a spike α is distant if α > 1 +
√
c or α < 1−

√
c. The following result, proved by Baik

& Silverstein (2006), is a corollary of Proposition 10 :

Corollary 1. We assume that Tp−m = Ip−m. Under the same hypotheses of Proposition
10, we have

1. If αk > 1 +
√
c, then

λn,i
a.s.→ αk + c

αk
αk − 1

(= φ(αk)), ∀i ∈ Jk;
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2. If 1 < αk ≤ 1 +
√
c, then

λn,i
a.s.→ (1 +

√
c)2, ∀i ∈ Jk;

3. If αk < 1−
√
c and c < 1, then

λn,i
a.s.→ (1−

√
c)2, ∀i ∈ Jk;

4.
λn,m+1

a.s.→ b = (1 +
√
c)2.

Notice that when c ≥ 1, a distant spike has to be larger than one.
Figure 1.3 illustrates the previous result. It shows the eigenvalues of the sample

covariance matrix drawn from a normal law N (0,Σp), where Σp = diag(5, 4, 3, 1, . . . , 1).
We set p = 100 and the sample size is n = 300.

0 1 2 3 4 5 6

Eigenvalues of the sample coavariance matrix

Figure 1.3: Eigenvalues of a sample covariance matrix drawn from a normal law with Σp =

diag(5, 4, 3, 1, . . . , 1) and p = 100, n = 300.

We observe three eigenvalues which stand out from the others. These are the three
largest eigenvalues, and they correspond to the spikes. The other eigenvalues remain in the
support [a(c), b(c)] of the Marčenko-Pastur law Fc.

1.4.3 Central limit theorem for spiked eigenvalues

In Bai & Yao (2012), the authors proved a central limit theorem for the following vectors
of dimension nk √

n(λn,j − ψ(αk)), j ∈ Jk.

We rewrite the observed vectors as xj = Σ1/2yj where yj = (wij)1≤i≤p, by blocs xj = (ξj , ηj)
′,

with ξj = V
1/2
m (wij)1≤j≤m and ηj = T

1/2
p−m(wij)m≤j≤p. Let

X1 =
1√
n

(ξ1, . . . ξn) =
1√
n
ξ1:n et X2 =

1√
n

(η1, . . . , ηn) =
1√
n
η1:n.
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For λ /∈ Fc,H , we define the following random matrix

Rn(λ) =
1√
n

(
ξ1:n(I +An)ξ′1:n − Vmtr(I +An)

)
,

where An = An(λ) = X ′2(λI − X2X
′
2)−1X2 for λ /∈ Fc,H . Bai & Yao (2008) gives the

asymptotic distribution of the sequence (Rn(λ))n≥1. For λ /∈ ΓFc,H ,

1. If the random variables (wij) are real valued, the random matrix Rn(λ) converges
weakly to a symmetric random matrix R(λ) = (Rij(λ)) with centered Gaussian entries
and covariance matrix with a known explicit expression;

2. If the random variables (wij) are complex, the random matrix Rn(λ) converges
weakly to a centered Hermitian random matrix R(λ) = (Rij(λ)). Moreover, the
joint distribution of the real and imaginary parts of the upper-triangular block
(Rij)1≤i ≤j≤m is a 2K-dimensional Gaussian vector, whose covariance matrix has a
known explicit expression.

Take the spectral decomposition of Σ,

Σ = U

 α1In1 · · · 0

0
. . . 0

· · · 0 αK InK

U ′,

where U is a unitary matrix. Let ψk = ψ(αk) and R(ψk) denote the limiting Gaussian
distribution of the sequence of matrices of random forms (Rn(ψk))n described above. Let

R̃(ψk) = U ′R(ψk)U

and
m3(ψk) =

∫
x

(ψk − x)2
dFc,H(x).

Then we have the following result.

Proposition 11. For each distant spike, the real vector of dimension nk
√
n(λn,j − ψ(αk)), j ∈ Jk,

converges weakly to the distribution of the nk eigenvalues of the Gaussian matrix

1

1 + ym3(ψk)αk
R̃kk(ψk),

where R̃kk(ψk) is the k-th diagonal block of R̃(ψk) corresponding to the indexes {u, v ∈ Jk}.

It is interesting to notice that the limiting distribution of the nk sample eigenvalues is
generally not Gaussian, and asymptotically dependent. Nevertheless, the limiting distribu-
tion of a single eigenvalue λn,i is Gaussian if, and only if, the corresponding spike eigenvalue
is simple. Especially, we can recover Theorem 3 of Paul (2007), which consider the real
Gaussian case where Tp−m = Ip−m, and Vm diagonal with all its eigenvalues simple.
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If αk /∈ [1±
√
c], then

√
n(λn,k − φ(αk))

L→ N (0, σ2
αk

),

with σ2
αk

=
2α2
k((αk−1)2−c)

(αk−1)2
.

1.4.4 Fluctuations of the first non-spike eigenvalues when Tp−m = Ip−m

The previous result give the precise asymptotic behavior of sample eigenvalues cor-
responding to the spikes. In Benaych-Georges et al. (2011), the authors prove a result
(Proposition 5.8) on fluctuations of the extreme sample eigenvalues for a spiked popula-
tion model, including the first ones corresponding to non-spikes eigenvalues, i.e. λn,m+i,
1 ≤ i ≤ L, where L is a prefixed range. The following result is issued from their proposition.

Proposition 12. We assume the same assumptions as Proposition 11 with Tp−m = Ip−m
and that the entries wij of yj have a symmetric law and a sub-exponential decay, that means
there exists positive constants C, C’ such that, for all t ≥ C’, P(|wij | ≥ tC) ≤ e−t. Then,
for all 1 ≤ i ≤ L with a prefixed range L,

n
2
3 (λn,m+i − b) = OP(1),

where b = (1 +
√
c)2.

Consequently, the convergence of the λn,i, for i > m (noise) is faster (in OP(n−2/3))
than that of the λn,i from spikes (in OP(n−1/2)).
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Chapter 2

The factor model

2.1 Introduction

Factor analysis began with the works of Spearman (1904) on the human behavior,
completed then by Kelley (1928) and Thurstone (1931), who introduces, among others,
the representation of the factorial space and the use of matrix calculation. This method
has been developed and diversified thanks to Hotteling (1973) in particular. Then, factor
analysis has been commonly used in social sciences, especially in psychology (see Cudeck
& MacCallum (2007) for example). Recently, this method has become a tool widely used
in macroeconomic where the APT (Arbitrage Pricing Theory) of Ross (1976) and its
extension in Chamberlain & Rothschild (1983) rely deeply on the factor model. In wireless
communications, the relation between a signal emitted by a source and the received one by
the antennas is described by a factor model (see Tulino & Verdú (2004)). The first aim of
factor model was to reduce high-dimensional data into a smaller number of common factors
and variables are then described by linear combinations of these factors.

2.2 The model

In this section we consider the classical framework, where the size p of the data is kept
fixed whereas the sample size n tends to infinity. A factor model is defined as follows. Let
p denote the number of variables, n the number of data xi observed and m the number of
common factors. In a strict factor model, we have

xi =
m∑
k=1

fkiΛk + ei + µ (2.1)

= Λfi + ei + µ, (2.2)

where:

• µ ∈ Rp represents the general mean;

• fi = (f1i, . . . , fmi)
′ are the m random factors, called common factors or factors scores

(m < p);
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• Λ = (Λ1, . . .Λm) is a p×m full rank matrix, called factors loadings;
• ei is the p-dimensional noise vector, centered, independent from fi and with population

covariance matrix Ψ = E(eie
′
i).

The components of ei are the specific factors, also called unique factors or idiosyncratics
factors. The variability not explained by the common factors is represented by the variance
of this vector. Classical assumptions on this model are:
• E(fi) = 0 et E(fif

′
i) = Ip;

• Ψ = cov(ei) is diagonal;
• Γ = Λ′Ψ−1Λ is diagonal, with diagonal elements ordered and different.

The last hypothesis is used to avoid an identification problem (see Section 2.3.1.1). Con-
sequently, we can describe the factor model by a condition on the population covariance
matrix Σ = cov(xi)

Σ = ΛΛ′ + Ψ, (2.3)

where the diagonal elements of ΛΛ′ are called commonalities and the elements of Ψ are the
specificities.

The parameters to be estimated in a factor model are:
• The number of factors m;
• The population covariance matrix Ψ of the noise;
• The matrix of factors loadings Λ.

2.3 The identification constraints

The factor model 2.2 is characterized by an important number of parameters. For their
identification and in order to avoid multiple solutions, we need to impose some restrictions
on the correlations structure (2.3).

2.3.1 The problem of orthogonal rotations

Let C be an orthogonal squared matrix of size m. Let f∗i = C−1fi and Λ∗ = ΛC. The
model (2.2) can be rewritten as

xi = Λ∗f∗i + ei + µ,

with E(f∗i ) = 0, E(f∗i f
∗′
i ) = Ip, and Σ = Λ∗Λ∗

′
+ Ψ. It is seen that any orthogonal

transformation of one solution (Λ, fi) is also a solution. To solve this identification problem,
several solutions have been proposed in the literature. We briefly present three of them.

2.3.1.1 Diagonality of the matrix Γ

We have already outlined this hypothesis in the previous section. It consists of assuming
that Γ = Λ′Ψ−1Λ is diagonal, with diagonal elements ordered and different, and it will fix
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the orthogonal rotation C. This is the widely used hypothesis in the study of maximum
likelihood problems. It is invariant by scale changes and Λ will be unique apart from sign.
With this constrain, we add 1

2m(m+ 1) conditions on the correlations structure.

2.3.1.2 Simple structure

These are conditions which were proposed in psychology by Thurstone (1931) and consist
in choosing the matrix which has a maximum number of zero among the elements of ΛC.
This matrix solution can be considered as the matrix which gives the simplest structure
and the meaningful psychological interpretation.

2.3.1.3 Zero elements at specified positions

These conditions require prior information from the practitioner. In psychology, the
tester needs to know that some specific tests do not depend on specific factors. The
corresponding coordinates of these factors are then assumed to be zero. In this case, the
hypothesis E(fif

′
i) = Ip is no longer valid.

2.3.2 The number of parameters

The factor model structure has another identification problem. The number of distinct
elements of Σ is 1

2p(p + 1), and the number of free parameters is m(1 + p) for Ψ and Λ.
From them we need to remove 1

2m(m+ 1) elements fixed by the diagonality constraint of
Γ. The uniqueness of the solution is given when the difference q = (p−m)2−p−m

2 between
the number of equations and conditions, minus the number of unknown, is positive. When
q = 0, we will have the same number of parameters and equations, whereas when q > 0,
there will be more equations than parameters. In this case, the factor model will be a
simplification compared to the unique observation of the population covariance matrix.

2.4 Maximum likelihood estimation

If the common factors fi and the idiosyncratic factors ei are Gaussian, a likelihood
based theory is well-known since Lawley (1940) (see also Lawley & Maxwell (1971)). We
assume here that the number of common factors m is known. In this case, the vector of
observations x follows a normal distribution N (µ,Σ), where Σ = ΛΛ′ + Ψ. Le x1, . . . , xn be
an n-sample of x. We review the calculus done in Anderson (2003). The likelihood of this
sample is

L = (2π)−
pn
2 |Σ|−

n
2 exp

(
−1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

)
.

25



2.4. MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood estimator of µ is x̄ = 1
n

∑n
i=1 xi. We denote by Sn the sample

covariance matrix. Thus we have

L = (2π)−
pn
2 |Σ|−

n
2 exp

(
−n

2
tr(SnΣ−1)

)
.

In order to obtain the maximum likelihood estimator, we have to maximize the logarithm
of L

f(Λ,Ψ) = −n
2

(
log|Σ|+ tr(SnΣ−1)

)
− pn

2
log(2π).

So it is the same as solving the following equations simultaneously

∂f(Λ,Ψ)

∂Λ
= −n

2

(
Σ−1Λ− Σ−1SnΣ−1Λ

)
= 0,

∂f(Λ,Ψ)

∂Ψ
= −n

2
diag

(
Σ−1 − Σ−1SnΣ−1

)
= 0.

These equations simplify as

Λ = SnΣ−1Λ, (2.4)
diag(ΛΛ′ + Ψ) = diag(Sn). (2.5)

By definition of Σ, we have Σ−1Λ = Ψ−1Λ(Ip + Λ′Ψ−1Λ)−1. Finally we obtain

Λ(Γ + Ip) = SnΨ−1Λ, (2.6)
diag(ΛΛ′ + Ψ) = diag(Sn), (2.7)

and the diagonality constraint (2.3.1.1) of the matrix Γ = Λ′Ψ−1Λ. Let Λ̃ = Ψ−
1
2 Λ and

S̃n = Ψ−
1
2SnΨ−

1
2 . Equation (2.6) can be rewritten as

Λ̃(Ip + Λ̃′Λ̃) = S̃nΛ̃.

This equation shows that the column of Λ̃ are the eigenvectors of the matrix S̃n, and
the diagonal elements of Γ are the corresponding eigenvalues. Let λ̃n,1 ≥ · · · ≥ λ̃n,p be
the eigenvalues of S̃n and ũn,1, . . . , ũn,p the corresponding eigenvectors. We denote by
D̃ = diag(λ̃n,1, . . . , λ̃n,m) et Ũ = (ũn,1, . . . , ũn,m). In this case, we have Ũ ′Ũ = Im and, if
λn,m > 1,

Λ̃ = Ũ(D̃ − Im)
1
2 .

Thus the maximum likelihood estimator of Λ can be written as following

Λ̂ = Ψ
1
2 Ũ(D̃ − Im)

1
2 .

When λn,m ≤ 1, this method will not give real solutions. Nevertheless, it has been observed
that this problem appears only when the number of factors m is large. Practically speaking,
Lawley (1940) proposed first to calculate Λ for a given Ψ, then to update Ψ using the
equation (2.7).
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2.5. GOODNESS OF FIT TEST FOR THE FACTOR MODEL

Now we give the expression for the maximized likelihood. As Σ̂ = Λ̂Λ̂′ + Ψ̂, we have

tr(SnΣ̂−1) = tr(SnΣ̂−1(Σ̂− Λ̂Λ̂′)Ψ̂−1)

= tr(SnΨ̂−1 − (SnΣ̂−1Λ̂)Λ̂′Ψ̂−1)

= tr(SnΨ̂−1 − Λ̂Λ̂′Ψ̂−1)

= tr((Λ̂Λ̂′ + Ψ̂)Ψ̂−1 − Λ̂Λ̂′Ψ̂−1)

= p,

where the third equality uses (2.4), and the fourth (2.5) and the fact that Ψ̂ is diagonal.
Moreover,

|Ψ−
1
2 Σ̂Ψ−

1
2 | = |Ψ−

1
2 (Λ̂Λ̂′ + Ψ̂)Ψ−

1
2 |

= |Λ̂′Ψ−1Λ̂ + Im|
= λ̃n,1 · · · λ̃n,m,

and
|Ψ−

1
2SnΨ−

1
2 | = λ̃n,1 · · · λ̃n,p.

Thus we obtain

|Σ̂|
|Sn|

=
Ψ−

1
2 Σ̂Ψ−

1
2

Ψ−
1
2SnΨ−

1
2

=
λ̃n,1 · · · λ̃n,m
λ̃n,1 · · · λ̃n,p

=
1

λ̃n,m+1 · · · λ̃n,p
.

The maximized likelihood is then:

f(Λ̂, Ψ̂) = −n
2

(
log|Sn|+

p∑
i=m+1

log(λ̃n,i)

)
− pn

2
log(2π)− pn

2
.

2.5 Goodness of fit test for the factor model

We will give a likelihood ratio test that the factor model fits, namely the population
covariance matrix can be written as Σ = ΛΛ′+ Ψ, with Ψ a positive-definite squared matrix
of size p, and Λ a real matrix of size p×m, where m is given. As without any constraint,
the maximum likelihood estimator of Σ is Sn, the likelihood ratio test statistic is

max
µ,Λ,Ψ

L(µ,ΛΛ′ + Ψ)

max
µ,Σ
L(µ,Σ)

=
|Sn|

n
2

|Ψ̂ + Λ̂Λ̂′|
n
2

=

p∏
i=m+1

λ̃
n
2
n,i.
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2.6. ASYMPTOTIC LAW OF THE MAXIMUM LIKELIHOOD ESTIMATORS

Generally, we use −2 times the logarithm of the likelihood ratio statistic, which is

−n
p∑

i=m+1

log λ̃n,i, (2.8)

and the null will be rejected if (2.8) is too large. In the case where Ψ̂ and Λ̂ are asymptotically
Gaussian, the classical theory (i.e. p “small” is kept fixed, whereas n→∞) gives the limiting
distribution of (2.8). This is a χ2

q law, where the degree of freedom q corresponds to the
number of elements of Σ plus the number of restrictions concerning the identification, minus
the number of parameters in Ψ and Λ. Here q = 1

2((p−m)2−p−m). A variation, proposed
par Bartlett (1950), is to replace n by n− (2p+ 11)/6− 2m/3 in (2.8).

2.6 Asymptotic law of the maximum likelihood estimators

The results of this section consider the classical framework, where the dimension of the
data p is “small” and fixed, whereas the sample size n→∞. We do not assume anymore
that the common factors (fi)1≤i≤m and the specific factors are Gaussian. We have the
following Proposition 13.

Proposition 13 (Anderson (2003)). If we assume that Γ = Λ′Ψ−1Λ is diagonal for the
identification constraint, with diagonal elements different and ordered, and if Sn

P→ ΛΛ′+ Ψ,
then Λ̂

P→ Λ, and Ψ̂
P→ Ψ.

In order to let Sn
P→ ΛΛ′ + Ψ, it is enough that (fi, ei)

′ has a distribution with finite
moments of order two. The asymptotic normality is given by the following proposition:

Proposition 14 (Anderson & Amemiya (1988)). Let Θ = (θij)1≤i,j≤p = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′.
If (θ2

ij)1≤i,j≤p is nonsingular, if Λ and Ψ are identified by the condition that Λ′ΨΛ is diagonal
and the diagonal elements are different and ordered, if Sn → ΛΛ′ + Ψ in probability and if√
n(Sn − Σ) has a limiting distribution, then

√
n(Λ̂− Λ) and

√
n(Ψ̂−Ψ) have a limiting

distribution. The covariance of
√
n(Ψ̂ii−Ψii) and

√
n(Ψ̂jj−Ψjj) in the limiting distribution

is 2Ψ2
iiΨ

2
jjξ

ij (1 ≤ i, j ≤ p), where (ξij) = (θ2
ij)
−1.

It simply requires that (fi, ei)
′ has a distribution with finite fourth moments so that√

n(Sn − Σ) has a limiting distribution.

2.7 The different types of factor models

According to the different assumptions made on the parameters of the factor model, we
can distinguish between several types of factor models, described in this section.

2.7.1 The strict factor model

This is the model described Section 2.2. In this model, the matrix Ψ is assumed to be
diagonal.
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2.8. LINK WITH THE SPIKED POPULATION MODEL

2.7.2 The strict factor model with homoscedastic variance

This model is a simplification of the strict factor model. We assume that Ψ = σ2Ip.
This model is considered in chapters 5 and 6. In this case, the equations (2.4) and (2.5),
which define the maximum likelihood estimators can be simplified and become

Λ(Γ + Im) = Sn

(
1

σ2Ip

)
Λ, (2.9)

pσ2 = tr(Sn − ΛΛ′), with Γ = Λ′
(

1

σ2Ip

)
Λ diagonal. (2.10)

The estimation of Ψ is reduced to those of σ2. We will denote its estimator by σ̂2. These
equations have now an explicit solution, given by:

σ̂2 =
1

p−m

p∑
i=m+1

λn,i, (2.11)

Λ̂k =
(
λn,k − σ̂2

) 1
2 un,k, 1 ≤ k ≤ m, (2.12)

where un,k is the normalized eigenvector of Sn which corresponds to λn,k, for all 1 ≤ k ≤ p.
The previous theorems still apply to these estimators.

The likelihood ratio statistics can be simplified as

L∗ = n

p∑
i=m+1

log

(
λn,i
σ̂2

)

= log

(∏p
i=m+1 λ

1/(p−m)
n,i

1
p−m

∑p
i=m+1 λn,i

)n(p−m)

.

2.7.3 The approximate factor model

In this case, we do not assume the diagonality of Ψ anymore, we allow correlations
between the different idiosyncratic factors. This hypothesis allows to take into account
more cases, like cross-sectional and time dependences. We often find this model in finance
(see Harding (2007) for example).

2.8 Link with the spiked population model

In the strict factor model, we have seen that the population covariance matrix is
Σ = cov(xi) = ΛΛ′+Ψ, where Ψ is diagonal. Thus the spectrum of Σ will have the following
general form

spec(Σ) = (η1, . . . , ηm, βm+1, . . . , βp︸ ︷︷ ︸
p−m

),
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2.9. CONTRIBUTIONS OF THE THESIS

where η1 ≥ · · · ≥ ηm are the eigenvalues corresponding to noise plus the perturbation
part ΛΛ′, and βm+1 > · · · > βp are eigenvalues which arise only from the noise. So Σ has
the structure of a generalized spiked population model with spikes (ηi)1≤i≤m, under the
hypotheses that ηi /∈ ΓH , where H is the limiting spectral distribution of the sub-matrix of
Σ obtained by removing their first m rows and columns, and ΓH is its support.

In the strict factor model case with homoscedastic variance, we have Σ = ΛΛ′ + σ2Ip
which has the spectrum:

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2︸ ︷︷ ︸
p−m

),

and can be rewritten as

spec(Σ) = σ2(α∗1, . . . , α
∗
m, 1, · · · , 1︸ ︷︷ ︸

p−m

), (2.13)

with α∗i = αi
σ2 + 1, for all 1 ≤ i ≤ m. Thus, we recover the classical form of the spiked

population model (1.6).

2.9 Contributions of the thesis

In chapter 6, we assume the high-dimensional framework, where the dimension p of the
data tends to infinity together with the sample size n, and p/n tends to a positive constant
c. Firstly, we study the maximum likelihood estimator σ̂2 in this new framework, and we
give its asymptotic distribution. This allows us to obtain the expression of the bias of this
estimator, which appears when we consider high-dimensional setting. Secondly, we correct
the test that the factor model fits, by giving the asymptotic limit of the likelihood ratio
statistic (2.8). We conclude chapter 4 by defining an equality test of the norm of two factors
scores, or equivalently of two spikes.
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Chapter 3

Existing methods for the estimation
of the number of factors/spikes

3.1 Estimation of the number of factors in the classical frame-
work

First we present estimators of the number of factors in the classical framework, where
the dimension of the data p is kept fixed, whereas the number of observations n tends to
infinity.

3.1.1 The scree plot

This is an empirical method introduced by Cattell (1966), based on the analysis of the
plot of the sample covariance eigenvalues, arranged in decreasing order. This plot generally
shows an important decrease, followed by a stabilization of the eigenvalues, and it has been
observed that the number of eigenvalues before the drop corresponds to the number of
factors. It is a subjective criterion based solely on the analysis of a plot.

3.1.2 The estimators based on information theoretic criteria

We present here estimators based on information theoretic criteria introduced by Akaike
(1973, 1974) (AIC), Schwarz (1978) and Rissanen (1978) (BIC/MDL). The principle is to
take the number of factors which minimizes the criteria AIC or BIC/MDL. These criteria
consider the problem of finding the model which fits best with the data, given a n-sample
x1, . . . , xn with dimension p and a parametrized set of densities f(x1, . . . , xn,Θ).

The model which gives the minimum AIC is selected, with

AIC = −2 log f(x1, . . . , xn, Θ̂) + 2k,

where k is the number of free parameters in Θ, and Θ̂ is the maximum likelihood estimator
of Θ. The AIC is an unbiased estimator of the Kulback-Liebler mean distance between the
estimated density f(x1, . . . , xn, Θ̂) and the modeled density f(x1, . . . , xn,Θ). The second
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3.1. ESTIMATION OF THE NUMBER OF FACTORS IN THE CLASSICAL FRAMEWORK

term is a bias correction, whereas the first term is the log-likelihood of the maximum
likelihood estimator.

Schwarz and Rissanen were inspired by the work of Akaike (1973, 1974). Schwarz (1978)
uses a Bayesian approach: he associates a prior density with each candidate model, and
selects those which give a maximum posterior probability (BIC). The Rissanen’s approach
is based on information theoretic arguments. As each model can be used to encode the
observed data, Rissanen proposes to select the model which leads to a minimal length code.
Schwarz and Rissanen’s approaches lead to the same criterion when the sample size becomes
large,

BIC = − log f(x1, . . . , xn, Θ̂) +
1

2
k log n.

Except a factor 2, the first term is identical to the criterion AIC. The second term differs
only from a factor 1

2 log n.
In the strict factor model case with Ψ = σ2Ip, we find k = m(2p − m) + 1. For

f(x1, . . . , xn, Θ̂), we take the likelihood ratio statistic (2.8)

n

p∑
i=m+1

log λ̃n,i = n

p∑
i=m+1

log

(
λn,i
σ̂2

)

= log

(∏p
i=m+1 λ

1/(p−m)
n,i

1
p−m

∑p
i=m+1 λn,i

)n(p−m)

.

Estimators of the number of factors m̂AIC or m̂BIC are then given by the value of m ∈
{0, . . . , p− 1}, which minimize

AIC(m) = −2 log

(∏p
i=m+1 λ

1/(p−m)
n,i

1
p−m

∑p
i=m+1 λn,i

)n(p−m)

+ 2m(2p−m),

or

BIC(m) = − log

(∏p
i=m+1 λ

1/(p−m)
n,i

1
p−m

∑p
i=m+1 λn,i

)n(p−m)

+
1

2
m(2p−m) log n.

Several works have analyzed the performance of these two estimators, such as Fishler
et al. (2002), Liavas & Regalia (2001), Xu & Kaveh (1995) or Zhang et al. (1989). The
latter proved that the BIC estimator is strongly consistent when n→∞. Associated with
its simplicity, the BIC estimator is therefore the standard tool for detecting the number of
signals (factors) in signal processing. For large samples, it has been empirically observed
that the main source of error for this estimator is an under-estimation of the factors number
of one.

In the AIC estimator case, it has been shown that it tends to over-estimate the factors
number when the sample size tends to infinity. Expressions of this over-estimation probability
can be found in Xu & Kaveh (1995) and Zhang et al. (1989). One could rely on Stoica &
Sélen (2004) for a review of the rules based on the information criteria.
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3.2. ESTIMATION OF THE NUMBER OF FACTORS IN HIGH-DIMENSION

3.1.3 Another Bayesian method: the Laplace method

In a Bayesian framework, the general methodology is to maximize the probability of the
data given m factors p(x1, . . . , xn|m), which is called the evidence. This is the framework
used for the BIC criterion. For this framework, the authors used a second order Taylor
expansion, because it is generally difficult to obtain an analytic expression of the evidence,
as it needs an integration over all the parameters of the model. Nevertheless, Minka (2000)
gave a more precise expression, using a Laplace approximation of the integrals, which is∫

g(θ) dθ ' g(θ̂)(2π)
col(A)

2 |A|−
1
2 ,

where θ̂ = argmax
θ

f(θ), A = −
[

d2 log f(θ)
dθidθj

]
θ=θ̂

and col(A) is the column number of A. Using

this approximation, the author obtains the following expression

− log p(x1, . . . , xn|m) ' L− log p(Pm)− d+ r

2
log 2π +

1

2
log |Az|+

m

2
log n, (3.1)

where d = pm−m(m+ 1)/2, and

p(Pm) = 2−m
m∏
i=1

Γ

(
p− i+ 1

2

)
π−

p−i+1
2 ,

|Az| =

m∏
i=1

p∏
j=i+1

n(l−1
n,j − l

−1
n,i)(λn,i − λn,j),

where Γ is the gamma function, p(Pm) is a prior non-informative distribution for Pm =
(vn,1, . . . , vn,m) (vn,i being the eigenvector which corresponds to λn,i), ln,j equals to λn,j if
j ≤ m and σ̂2 otherwise. The m minimizing the expression (3.1) is the estimator of the
number of factors.

The BIC method can be viewed as a simplification of this criterion, obtained by removing
the terms which are not growing in n.

3.2 Estimation of the number of factors in high-dimension

When the data dimension p is large compared to the sample size n (not necessarily
p > n), the classical methods described above are not effective anymore. One can consult
the paper of Kritchman & Nadler (2009), in which the authors compare their algorithm
described in Section 3.2.3 below with the AIC and BIC methods. As the classical methods
are ineffective in these circumstances, it becomes necessary to develop new methods which
deal with this high-dimensional framework. The aim of this section is to present some
estimators built in this context.
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3.2. ESTIMATION OF THE NUMBER OF FACTORS IN HIGH-DIMENSION

3.2.1 Method SURE of Ulfarsson and Solo

The method of Ulfarsson & Solo (2008) is based on the Stein Unbiased Risk Estimator
(SURE). We aim to find the number of factors m that minimizes the risk

Rm = E‖ν − ν̂‖2,

where ν = Λf and ν̂ = Λ̂f̂, Λ̂ being the maximum likelihood estimator of Λ, and

f̂ = EΛ̂,σ̂2(f|x1, . . . xn).

The problem is that ν is generally unknown. The idea is to replace Rm by an unbiased
estimator that we are able to calculate. Stein (1981) explained how to construct such a risk
under Gaussian assumptions. This estimator is given by the following expression

R̂m =
1

n

n∑
i=1

‖ni‖2 +
2σ2

n

n∑
i=1

tr
(
∂ν̂i
∂x′i

)
−mσ2,

where ni = xi − ν̂i. Use of SURE is based on the fact that, since SURE is an unbiased
estimator of the risk, then one expects that, on average, the minimizer of SURE is an
unbiased estimator of the minimizer of the risk.

The main task is to compute the partial derivative in the previous expression. After
some calculations, we obtain

R̂m = (p−m)σ̂2 + σ̂4
m∑
i=1

λ−1
n,i + 2σ̂2(1− n−1)m

−2σ2σ̂2(1− n−1)
m∑
i=1

λ−1
n,i +

4(1− n−1)σ2σ̂2

n

m∑
i=1

λ−1
n,i + Cm,

with Cm = 2(1−n−1σ2)
n

∑m
i=1

(
1− σ̂2

λn,i

)∑
i 6=j

λn,j+λn,i
λn,j−λn,i . The variance σ2 is assumed to be

known. Otherwise, a natural choice is σ̂2, but the authors observed that it does not work
well in practice. So they propose an other estimator which performs better. The estimator
of m will be the minimizer of R̂m.

3.2.2 Method of Harding

In the work of Harding (2007), an estimation method is presented with a factor model
where the idiosyncratic factors ei can have a dependence in n (auto-regressive vectors in
n for instance). Nevertheless, simulations are done for strict factor models. The general
idea is to compare the spectral moments of Sn with the empirical spectral distribution of
Sn without the factors, and to remove the largest eigenvalues one by one in Sn until the
“distance” between the moments is minimum.

More precisely, the author considers the decomposition Sn = Ξn + Ψn (i.e. Ξn = ΛΛ′),
where the rank of Ξn is m. Let Π(Sn) be the vector of the first s moments of the empirical
spectral distribution of the covariance matrix Sn, Π(Ψn) the equivalent for Ψn and Π(σ2)
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3.2. ESTIMATION OF THE NUMBER OF FACTORS IN HIGH-DIMENSION

its limit as p and n→∞, pn → c. Harding’s method is summarized as follows:

• First, compute the moments Π(σ2) of the asymptotic eigenvalue distribution of the
covariance matrix of Ψn for a large (p, n) sample;
• By Proposition 7, we have that p(Π(Ψn)−Π(σ2))

L→ N (∆,W );
• Consequently, estimate σ2 by

σ̂2
0 = argmin

σ2

J(σ2),

where J(σ2) = (Π(σ2)−Π(Sn))′Ŵ−1(Π(σ2)−Π(Sn)) and Ŵ is a consistent estimate
of W , calculated by estimated σ2 from a first step estimation with W = Ip;
• Next, remove the largest eigenvalue of the spectrum of Sn and re-estimate the

parameter σ2, as previous, to get a new estimate σ̂2
1;

• The previous step is repeated by progressively removing largest eigenvalues and for a
predetermined number of times to get a sequence of estimates σ̂2

1, σ̂
2
2, etc.;

• Finally, among the minimized objective functions J(σ̂2
i ), choose the order corre-

sponding to the smallest minimized value. This is the estimator of the number of
factors

m̂ = argmin
i

J(σ̂2
i ).

Actually, we know that for m fixed and p, n → ∞, Π(Sn) → Π(σ2). So the criterion
is the minimization of the variance W = W (σ2). This decreases up to m (until we have
removed the eigenvalues corresponding to the spikes), then it stays stable. The procedure
of Harding leads to an underestimation of m, where p and n are fixed. As a result, Harding
constrained the function J with a function of type kσ̂2g(p, n), where k is the number of
eigenvalues removed, σ̂2 is the estimated variance at the step q and g(p, n) is a function
such that g(p, n)→ 0 when p, n→∞. The finally proposed choice for g is the following
function given by Bai & Ng (2002) based on a BIC criterion:

g(p, n) =

(
p+ n

pn

)
ln

(
pn

p+ n

)
.

3.2.3 Method of Kritchman and Nadler

The method of Kritchman & Nadler (2008, 2009) is based on the fact that, in the
absence of factors (m=0), nSn follows a standard Wishart distribution with parameters
n and p. In this case, Johnstone (2001) has provided the asymptotic distribution of the
largest eigenvalue of Sn.

Proposition 15. Let Sn be the sample covariance matrix of n vectors distributed as
N (0, σ2Ip), and λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be its eigenvalues. Then, when n → ∞, such
that p

n → c > 0

P
(
λn,1
σ2

<
βn,p

n2/3
s+ b

)
→ F1(s), s > 0

where b = (1+
√
c)2, βn,p =

(
1 +

√
p
n

)(
1 +

√
n
p

) 1
3 , and F1 is the Tracy-Widom distribution
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of order 1.

From Corollary 1, we know that the eigenvalues of Sn which correspond to factors tend
to a value greater than b = (1 +

√
c)2. Consequently, we can distinguish a factor eigenvalue

λ from a noise one at an asymptotic significance level γ by checking whether

λn,k > σ2

(
βn,p−k

n2/3
s(γ) + b

)
(3.2)

where s(γ) verifies F1(s(γ)) = 1 − γ and can be found by inverting the Tracy-Widom
distribution. This distribution has no explicit expression, but can be computed from a
solution of a second order Painlevé ordinary differential equation. The estimator KN is based
on a sequence of nested hypothesis tests of the following form: for k = 1, 2, . . . ,min(p, n)−1,

H(k)
0 : m ≤ k − 1 vs. H(k)

1 : m ≥ k .

For each value of k, if (3.2) is satisfied, H(k)
0 is rejected and k is increased by one. The

procedure stops once an instance of H(k)
0 is accepted and the number of factors is then

estimated to be m̂KN = k − 1. Formally, the estimator KN is defined by

m̂KN = argmin
k

(
λn,k < σ̂2

(
βn,p−k

n2/3
s(γ) + b

))
− 1.

The authors proved the strong consistency of their estimator as n→∞ with fixed p, by
replacing the fixed confidence level γ with a sample-size dependent one γn, where γn → 0
sufficiently slowly as n→∞. They also proved that lim

p,n→∞
P(m̂KN ≥ m) = 1.

3.3 Contributions of the thesis

In chapters 4 and 5 we propose an estimator of the number of factors based on the
analysis of the difference between two consecutive eigenvalues δn,j = λn,j − λn,j+1 of the
sample covariance matrix Sn, the latter being in decreasing order.

Chapter 4 considers the framework of the spiked population model described in Section
1.4, with Tp−m = Ip−m, which is a formulation equivalent to the factor model. In this
case, Corollary 1 shows that the eigenvalues which correspond to the spikes αk tend to
φ(αk) almost surely, whereas the following converge to b, which is the upper-bound of the
Marčenko-Pastur law. If we assume that the spikes are all different (i.e. with multiplicity
one), the difference will tend almost surely to a positive constant if there is a spike inside,
and zero otherwise. Accordingly, we can detect the number of spikes by inspecting the
index j where δn,j has a value below a given threshold. We compare this new estimator to
the methods of Harding (2007) and Kritchman & Nadler (2008, 2009);

In chapter 5, we consider the framework of the strict factor model. We extend our
previous method to the case where the factors/spikes can be equal, by using a difference
in terms of convergence rate between the eigenvalues of Sn corresponding to the spikes
(see Proposition 11), and the other eigenvalues. We further modify the threshold used in
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chapter 4. As this new threshold depends on a constant to be adjusted, we construct a
procedure with an automatic calibration of this constant. We do simulation experiments
and compare our method with the one of Kritchman & Nadler (2008, 2009).
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Chapter 4

On determining the number of spikes
in a high-dimensional spiked
population model

Abstract: In a spiked population model, the population covariance matrix
has all its eigenvalues equal to units except for a few fixed eigenvalues
(spikes). Determining the number of spikes is a fundamental problem
which appears in many scientific fields, including signal processing (linear
mixture model) or economics (factor model). Several recent papers studied
the asymptotic behavior of the eigenvalues of the sample covariance matrix
(sample eigenvalues) when the dimension of the observations and the
sample size both grow to infinity so that their ratio converges to a positive
constant. Using these results, we propose a new estimator based on the
difference between two consecutive sample eigenvalues.
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4.1. INTRODUCTION

4.1 Introduction

In a spiked population model, the population covariance matrix has all its eigenvalues
equal to units except for a few fixed eigenvalues (spikes). This model appears in many
scientific fields often with different names. In economics, it is called “factor model” within
the Ross Arbitrage Pricing Theory (APT) and the aim is to relate observed data (assets)
to a small dimensional set of unobserved variables which are then estimated (see Ross
(1976)). In physics of mixture, “linear mixture models” are naturally considered for various
phenomena (see Naes et al. (2002)). In wireless communication, a signal emitted by a source
is modulated and received by an array of antennas which will permit the reconstruction of
the original signal.

An important question to be addressed under this model is how many factors (or
components, or signals) there are. It is generally a first step preliminary to any further
study such as estimation and forecasting.

Many methods for determining the number of factors have been developed, based on
the minimum description length (MDL), Bayesian model selection or Bayesian Information
Criteria (BIC) (See Bai & Ng (2002)). Nevertheless, these methods are based on asymptotic
expansions for large sample size and may not perform well when the dimension of the data
p is large compared to the sample size n. To avoid this problem of high dimension, several
methods have been recently proposed using the random matrix theory, such as Harding
(2007) or Onatski (2009) in economics, and Kritchman & Nadler (2008) in array processing
or chemometrics literature.

In this chapter, we present a new estimator for the number of spikes from high-
dimensional data. Our approach is based on the results of Bai & Yao (2008) and Paul (2007)
which give the limiting distributions of the extreme eigenvalues of a sample covariance
matrix coming from a spiked population model, and a recent result of Benaych-Georges
et al. (2011). The obtained results are presented in Section 4.3.

The remaining sections of the chapter are organized as follows. In Section 4.2, we
introduce the spiked population model, and recall known results on the almost sure limits
of extreme eigenvalues which lead to the idea of our estimator. In Section 4.3 we define
precisely our estimator and prove its consistency in the case of simple spikes with known
variance. Next we give a method of estimation in the case of simple spikes with unknown
variance. In Section 4.5, we define the factor/linear mixture model that we link to the spiked
population model and we compare our method to those of Harding (2007) and Kritchman
& Nadler (2008). We consider the case of spikes with greater multiplicity in Section 4.6.
Throughout the chapter, simulation experiments are conducted to access the quality of the
proposed estimation.
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4.2. SPIKED POPULATION MODEL

4.2 Spiked population model

We consider x = EΣ
1
2 y, where y ∈ Rp is a zero-mean random vector of i.i.d. components,

E is an orthogonal matrix and

Σ = cov(x) = σ2

(
Vm 0
0 Ip−m

)
,

where Vm has K non null and non unit eigenvalues (α∗k)1≤k≤K with respective multiplicity
(nk)1≤k≤K (n1 + · · ·+ nK = m). Therefore, the eigenvalues of the population covariance
matrix Σ are unit except the αj , called spike eigenvalues. Notice that, if the observations are
Gaussian, we may assume that V is diagonal by using a suitable orthogonal transformation.

Let (xi)1≤i≤n be n independent copies of x. The sample covariance matrix is

Sn =
1

n

n∑
i=1

xix
′
i.

It is assumed in the sequel that m is fixed, and p and n are related so that when n→∞,
p
n → c > 0. Moreover, we assumed that α∗1 > · · · > α∗K > 1 +

√
c. For α 6= 1, we define the

function

φ(α) = α+
cα

α− 1
. (4.1)

Let λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be the eigenvalues of the sample covariance matrix Sn. Let
si = n1 + · · ·+ ni for 1 ≤ i ≤ K. Baik & Silverstein (2006) proved that, under a moment
condition on x, for each k ∈ {1, . . . ,K} and sk−1 < j ≤ sk almost surely,

λn,j −→ σ2φ(α∗k).

In other words, with the hypotheses that α∗k > 1 +
√
c for all k, and has multiplicity nk,

then φ(α∗k) is the limit of nk packed sample eigenvalue {λn,j , sk−1 + 1 ≤ j ≤ sk}. They
also prove that for all 1 ≤ i ≤ L with a prefixed range L almost surely,

λn,m+i → b = σ2(1 +
√
c)2.

Our aim is to estimate m when only Sn is known. The idea is to use, as suggested in
Onatski (2009), differences between consecutive eigenvalues

δn,j = λn,j − λn,j+1.

Indeed, applying the results quoted above it is easy to see that a.s. if j ≥ m, δn,j → 0 while
when j < m, δn,j tends to a positive limit if the α∗k are different. Thus it is possible to
detect m from index-numbers j where δn,j becomes small.
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4.3 Case of simple spikes with known variance σ2

In this section, we suppose that σ2 is known and that all the spikes are simple, i.e
n1 = · · · = nK = 1. Under these hypotheses the population eigenvalues are

spec(Σ) = σ2(α∗1, . . . , α
∗
m︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
p−m

).

We also need the following assumption:

Assumption 1. The entries yij of the random vector y have a symmetric law and a
sub-exponential decay, that is there exists positive constants C, C ′ such that, for all t ≥ C ′,

P(|yij | ≥ tC) ≤ e−t.

Especially, the Gaussian vectors satisfy this hypothesis.

As stated previously, the main observation is that when one follows the sample eigenvalues
in a descending order, the successive spacings δn,j shrink to small values when approaching
non-spiked values. Therefore, our estimation method will use a carefully determined
threshold dn. We propose to estimate m by the following

m̂n = max{j ∈ {1, . . . , s} : ∀k ∈ {1, . . . , j}, δn,j ≥ dn and δn,j+1 < dn},

where s > m is a fixed number big enough, and dn is a level to determine. In practice, the
integer s should be thought as a preliminary bound on the number of possible spikes.

4.3.1 Consistency

Theorem 1. Let (xi)1≤i≤n be n copies i.i.d. of x = EΣ
1
2 y, where y ∈ Rp is a zero-mean

random vector of i.i.d. components which satisfies Assumption 1 and E is an orthogonal
matrix. Assume that

Σ = cov(x) = σ2

(
Vm 0
0 Ip−m

)
where V has m non null, non unit and different eigenvalues α∗1 > · · · > α∗m > 1 +

√
c.

Assume that p
n → c > 0 when n→∞.

Let (dn)n≥0 be a real sequence such that dn → 0 and n2/3dn →∞. Then the estimator m̂n

is consistent, i.e P (m̂n = m)→ 1 when n→∞.

In the sequel, we will assume that σ2 = 1 (if it is not the case, we consider λn,j
σ2 ). For

the proof, we need two theorems. The first, Proposition 16, shows that the limiting law of
λn,j − φ(α∗j ) is Gaussian (Bai & Yao (2008) and Paul (2007)):

Proposition 16. Assume that the entries xij of x satisfy E(|xij |4) <∞, α∗j > 1 +
√
c for

all 1 ≤ j ≤ m and have multiplicity 1. Then as p, n→∞ so that p
n → c,

√
n(λn,j − φ(α∗j ))

L−→ N (0, σ2(α∗j ))
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4.3. CASE OF SIMPLE SPIKES WITH KNOWN VARIANCE σ2

where σ2(α∗j ) = 2α∗2j

(
1− c

(α∗j−1)2

)
.

The second, Proposition 17, is issued from the second part of Proposition 5.8 of Benaych-
Georges et al. (2011):

Proposition 17. Under the Assumption 1, for all 1 ≤ i ≤ L with a prefixed range L,

n
2
3

β
(λn,m+i − b) = OP(1),

where β = (1 +
√
c)(1 +

√
c−1)

1
3 .

We also need the following lemma:

Lemma 1. Let (Xn)n≥0 be a tight sequence of random variables. Then for all real sequence
(un)n≥0 which diverges to infinity,

P(|Xn| ≥ un)→ 0.

Proof. As (Xn)n≥0 is a tight sequence, for all ε > 0, it exists a compact K such that, for all
n ∈ N, P(Xn /∈ K) < ε. Furthermore, as un →∞, it exists N ∈ N such that for all n ≥ N ,
[−un, un] ⊃ K. So P(|Xn| > un) ≤ P(Xn /∈ K) < ε. Consequently, P(|Xn| > un)→ 0.

Proof. of Theorem 1. We have

{m̂n = m} = {m = max{j : δn,j ≥ dn}}
= {∀j ∈ {1, . . . ,m}, δn,j ≥ dn} ∩ {δn,m+1 < dn}.

Therefore

P(m̂n = m) = P

 ⋂
1≤j≤m

{δn,j ≥ dn} ∩ {δn,m+1 < dn}


= 1− P

 ⋃
1≤j≤m

{δn,j < dn} ∪ {δn,m+1 ≥ dn}


≥ 1−

m∑
j=1

P(δn,j < dn)− P(δn,m+1 ≥ dn).

Convergence of P(δn,m+1 ≥ dn). In this case, δn,m+1 = λn,m+1 − λn,m+2 (non-spike
eigenvalues). We consider the following sequence of random variables

Yn =
n

2
3

β
(λn,m+i − b).
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4.3. CASE OF SIMPLE SPIKES WITH KNOWN VARIANCE σ2

By Proposition 17, (Yn)n≥1 is a tight sequence. So by using lemma 1, for any sequence
(an)n≥0, an →∞ we have

P(|Yn| ≥ an)→ 0.

Therefore

P(|Yn| ≤ an) = P

(
n

2
3

β
(|λn,m+i − b| ≤ an

)

= P
(
|λn,m+i − b| ≤

an

n
2
3

β

)
−→ 1.

We choose dn → 0 such that n2/3dn →∞. So we have

P(λn,m+i ∈ Jn)→ 1,

with
Jn = [b± dn/2] .

It follows
P (δn,m+1 ≤ dn) ≥ P ({λn,m+i ∈ Jn} ∩ {λn,m+i+1 ∈ Jn})→ 1.

Therefore
P(δn,m+1 ≥ dn)→ 0.

Case of 1 ≤ j ≤ m. These indexes correspond to the spike eigenvalues. By using Proposition
16 and the previous argument, it is easy to show that we can choose a real sequence (vn)n≥0,
vn → 0 such that

√
nvn →∞ and

P(λn,j ∈ In,j)→ 1,

where
In,j =

[
φ(α∗j )± vn

]
.

Therefore
– For all 1 ≤ j < m, we have

P
(
δn,j ≥ φ(α∗j )− φ(α∗j+1)− vn

)
≥ P ({λn,j ∈ In,j} ∩ {λn,j+1 ∈ In,j+1})→ 1.

Let
wn,j = φ(α∗j )− φ(α∗j+1)− vn.

– For j = m, δn,m = λn,m − λn,m+1. By using the first section of the proof, one can
show that

P (δn,m ≥ φ(α∗m)− b− (vn + dn)) ≥ P ({λn,m ∈ In,m} ∩ {λn,m+1 ∈ Jn})→ 1.
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4.3. CASE OF SIMPLE SPIKES WITH KNOWN VARIANCE σ2

Let
wn,m = φ(α∗m)− b− (vn + dn) .

– Therefore for all 0 ≤ j ≤ m we have

P(δn,j ≥ wn,j)→ 1 ⇒ P(δn,j < wn,j)→ 0.

As dn → 0 and for all 1 ≤ j ≤ m, wn,j → wj > 0, it exists N ∈ N : ∀n ≥ N ,

P(δn,j < dn) ≤ P(δn,j < wn,j)→ 0.

So we have
m∑
j=1

P(δn,j < dn)→ 0.

Conclusion. P(δn,m+1 ≥ dn)→ 0 and
∑m

j=1 P(δn,j < dn)→ 0, therefore

P(m̂n = m) −→
n→∞

1.

4.3.2 Simulation experiments

Now we will illustrate the previous result by some simulations. First, we have to
chose the sequence dn to be used. Theoretically speaking, all the sequences satisfying the
requirement dn → 0 such that n2/3dn → ∞ are convenient. We tested several sequences
and we decided to take one of the form an

n2/3β, with a sequence (an)n≥0 proportional to√
2 log log n: this idea came from that, as in the case of the mean of i.i.d random variables,

the λn,j corresponding to the spikes tend to a Gaussian law (Proposition 16). So we can
conjecture a result analog to the law of the iterated logarithm 1 for the λn,j , j ≤ m. Finally,
we choose an = 4

√
2 log log n and simulate two different models: one with dispersed spikes

which should lead to an easier estimation of m, and a more difficult case with closer spikes:

• Model 1: m = 5, (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (259.72, 17.97, 11.04, 7.88, 4.82);

• Model 2: m = 4, (α∗1, α
∗
2, α
∗
3, α
∗
4) = (7, 6, 5, 4).

Note that the values of model 1 have been chosen to be the same as in Harding (2007).
For each model, two different values of c, 0.3 and 0.6, are considered. We give in Tables 4.1
and 4.2, respectively, the distribution of m̂n, its mean and mean squared error over 1000
independent replications. The frequency of m̂n = m is given in Figure 4.1.

1. If we consider an i.i.d. sequence of random variables (xi)1≤i≤n with mean 0 and variance 1, the
sum Sn = x1 + · · ·+ xn has an almost-sure fluctuation of order an =

√
2 log logn, i.e. − lim infn Sn/an =

lim supSn/an = 1, so the empirical mean has an a.s. fluctuation of order
√

2 log logn/
√
n. The empirical

mean has also Gaussian fluctuations in distribution of order
√
n. In the non-spike case, n2/3(λ1 − b)→ F1,

the Tracy-Widom law of order 1. Therefore, a law of the iterated logarithm for λ1 would be that a.s., λ1− b
is of order of

√
2 log logn/n2/3 (

√
n would be replaced by n2/3).
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4.3. CASE OF SIMPLE SPIKES WITH KNOWN VARIANCE σ2

Table 4.1: Mean, mean squared error and empirical distribution of m̂n over 1000 independent replications
for model 1.

Distribution of m̂n

(p, n) Mean MSE 1 2 3 4 5 6 7
(30,100) 5.057 0.212 0.001 0.007 0.009 0.0 0.883 0.1 0.002
(60,200) 5.081 0.107 0.001 0.001 0.0 0.0 0.91 0.088 0.0
(120,400) 5.079 0.073 0.0 0.0 0.0 0.0 0.921 0.079 0.0
(240,800) 5.069 0.064 0.0 0.0 0.0 0.0 0.931 0.069 0.0
(60,100) 5.056 0.139 0.001 0.004 0.003 0.002 0.914 0.076 0.0
(120,200) 5.08 0.098 0.0 0.001 0.002 0.0 0.91 0.087 0.0
(240,400) 5.072 0.079 0.002 0.0 0.0 0.0 0.924 0.075 0.0
(480,800) 5.072 0.069 0.0 0.0 0.0 0.0 0.929 0.07 0.001

Table 4.2: Mean, mean squared error and empirical distribution of m̂n over 1000 independent replications
for model 2.

Distribution of m̂n

(p, n) Mean MSE 0 1 2 3 4 5
(30,100) 3.718 1.086 0.0 0.001 0.059 0.0 0.778 0.085
(60,200) 3.925 0.582 0.013 0.024 0.019 0.0 0.857 0.087
(120,400) 4.005 0.331 0.01 0.01 0.001 0.0 0.902 0.077
(240,800) 4.062 0.110 0.002 0.001 0.0 0.0 0.924 0.073
(60,100) 3.478 1.655 0.053 0.086 0.059 0.001 0.734 0.067
(120,200) 3.818 0.823 0.025 0.033 0.024 0.0 0.853 0.065
(240,400) 3.969 0.394 0.009 0.015 0.011 0.0 0.893 0.072
(480,800) 4.051 0.108 0.003 0.0 0.0 0.0 0.934 0.063
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Figure 4.1: Frequency of m̂n = m over 1000 independent replications.

In both cases, we can observe the asymptotic consistency of the estimator. Comparing
the two models, except the last case (p, n) = (480, 800), the estimator performs better in
model 1 than in model 2. This phenomenon is due to the fact that the differences between
consecutive eigenvalues are smaller in model 2 so that it is more difficult to distinguish
spikes from non spikes.
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4.4. CASE OF SIMPLE SPIKES WITH UNKNOWN VARIANCE

Within a given model, the convergence is slower in the c = 0.6 case. We could explain
this by the fact that the gap between two consecutive spike eigenvalues stays the same, and
when c increases, the spectrum of Sn is more dispersed, so that the differences δn,j from
non-spikes are larger and again our detection problem is more difficult to solve.

It is worth mentioning that the chosen constant dn = 4
√

2 log logn
n2/3 β leads to a slight over-

estimation of m for the tested sizes (p, n). This finite-sample behavior could be improved
with a more sophisticated choice of dn which however seems a difficult point to address.

4.4 Case of simple spikes with unknown variance

In practice, the scale parameter σ2 is also unknown and we need to estimate it as well.
First, we will explain how to do in the non-spikes (null) case, i.e. Σ = σ2Ip, and then in
the case with spikes.

4.4.1 Estimation of the variance in the white case

We consider a zero-mean random vector x ∈ Rp with population covariance matrix

Σ = cov(x) = σ2Ip.

We keep the previous assumptions. We will use the law of large numbers to estimate the
unknown variance σ2. We have the following theorem (Marčenko & Pastur (1967), Bai &
Silverstein (2004))

Proposition 18. We denote by (xjk) the entries of the vector xj. Assume that, for any
η ≥ 0:

1

η2np

∑
j,k

E(|xjk|21|xjk|≥η√n)→ 0 when n→∞.

Then, with probability one, the empirical spectral distribution (ESD) F Sn of Sn weakly
converges to the Marčenko-Pastur distribution with ratio index c and scale parameter σ2,
denoted by Fc,σ2(x), which has a density function

pc,σ2(x) =

{
1

2πxcσ2

√
(b(c)− x)(x− a(c)) if a(c) ≤ x ≤ b(c)

0 otherwise
,

where a(c) = σ2(1−
√
c)2 and b(c) = σ2(1 +

√
c)2.

Note that σ2 represents the mean of the limiting distribution. Moreover, it is well-known
that under the condition of Proposition 18, it holds almost surely,

σ̂2 =
1

p

p∑
i=1

λn,i → σ2.
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4.4. CASE OF SIMPLE SPIKES WITH UNKNOWN VARIANCE

4.4.2 Determining the number of spikes with an unknown variance

As we notice in the first section, when the variance is known and different from one,
we only have to divide the consecutive differences δi,n by this variance. As the variance
is unknown, we will replace it by the estimator σ̂2 = 1

p

∑p
i=1 λn,i, which converges almost

surely to σ2 when p→∞. Nevertheless, because of the spikes, the variance of σ̂2 will be
greater than the one in the null case. The variance will be minimum if we only take the
mean of the non-spike eigenvalues i.e. those that have an index i ≥ m+ 1. The problem
is that we do not know m. By consequence, the idea is to make a first estimation m̂0

n of
m with σ̂2

0 = 1
p

∑p
i=1 λn,i. Then, if m̂0

n > 0, we set σ̂2
1 = 1

p−m̂0
n

∑p
i=m̂0

n+1
λn,i (so we have

σ̂2
0 ≥ σ̂2

1), and we reestimate m by m̂1
n using this new estimation. We repeat it until we

find an index k such that m̂k
n = m̂k+1

n . If such an index does not exist, the algorithm will
stop at the preliminary bound k = s fixed initially. To sum up, here is the algorithm:

m1=0
sigma2=1/p*(lambda_1+...+lambda_p)
m2="estimator of the known variance case with division by sigma2"

while m2~=m1 do
m1:=m2
sigma2=1/(p-m1)*(lambda_(m1+1)+...+lambda_p)
m2="estimator of the known variance case with division by sigma2"

end

result=(m1,sigma2)

4.4.3 Simulation experiments

We conduct the simulations with two values of the variance σ2 = 1, and σ2 = 500 to
see if a high variance will influence the estimation. We keep the same other parameters as
in the previous simulation study of Section 4.3 and estimate σ2 and the number of spikes
with the method explained above. Additional to the statistics about the spikes number
estimator m̂n, we provide also those about the final estimate σ̂2 of the unknown variance.
The results are displayed in Tables 4.3 to 4.6. The frequency of m̂n = m is given in Figure
4.2 and 4.3, and the mean of σ̂2 in Figure 4.4.
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4.4. CASE OF SIMPLE SPIKES WITH UNKNOWN VARIANCE

Table 4.3: Mean, mean squared error and empirical distribution of m̂n, mean and mean squared error of
σ̂2 over 1000 independent replications for model 1 and σ2 = 1.

Distribution of m̂n σ̂2

(p, n) Mean MSE 1 2 3 4 5 6 7 Mean MSE
(30,100) 5.052 0.338 0.003 0.015 0.008 0.0 0.849 0.0 0.125 0.955 0.015
(60,200) 5.108 0.112 0.0 0.001 0.0 0.0 0.89 0.107 0.002 0.97 0.0
(120,400) 5.069 0.076 0.0 0.001 0.0 0.0 0.927 0.072 0.0 0.986 0.0
(240,800) 5.084 0.077 0.0 0.0 0.0 0.0 0.916 0.084 0.0 0.993 0.0
(60,100) 5.087 0.236 0.001 0.009 0.004 0.0 0.865 0.122 0.002 0.943 0.003
(120,200) 5.095 0.092 0.0 0.0 0.001 0.0 0.902 0.097 0.0 0.971 0.0
(240,400) 5.07 0.065 0.0 0.0 0.0 0.0 0.93 0.07 0.0 0.985 0.0
(480,800) 5.067 0.063 0.0 0.0 0.0 0.0 0.933 0.067 0.0 0.993 0.0
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Figure 4.2: Frequency of m̂n = m over 1000 independent replications with σ2 = 1.

Table 4.4: Mean, mean squared error and empirical distribution of m̂n, mean and mean squared error of
σ̂2 over 1000 independent replications for model 2 and σ2 = 1.

Distribution of m̂n σ̂2

(p, n) Mean MSE 0 1 2 3 4 5 6 Mean MSE
(30,100) 3.362 2.019 0.079 0.078 0.091 0.0 0.658 0.094 0.0 1.052 0.043
(60,200) 3.806 1.023 0.032 0.038 0.026 0.0 0.805 0.098 0.001 0.994 0.005
(120,400) 3.983 0.483 0.019 0.008 0.004 0.0 0.878 0.091 0.0 0.991 0.001
(240,800) 4.071 0.144 0.003 0.001 0.001 0.0 0.907 0.088 0.0 0.994 0.0
(60,100) 3.367 1.898 0.069 0.081 0.096 0.001 0.674 0.079 0.0 1.003 0.012
(120,200) 3.781 1.04 0.034 0.034 0.036 0.0 0.806 0.089 0.001 0.986 0.002
(240,400) 3.965 0.472 0.015 0.015 0.007 0.0 0.892 0.071 0.0 0.99 0.0
(480,800) 4.052 0.125 0.002 0.003 0.0 0.0 0.926 0.069 0.0 0.994 0.0
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4.4. CASE OF SIMPLE SPIKES WITH UNKNOWN VARIANCE

Table 4.5: Empirical distribution of m̂n, mean and mean squared error of σ̂2 over 1000 independent
replications for model 1 and σ2 = 500.

Distribution of m̂n σ̂2

(p, n) 1 2 3 4 5 6 7 Mean MSE
(30,100) 0.003 0.012 0.005 0.0 0.823 0.155 0.002 474.909 3281.714
(60,200) 0.0 0.001 0.0 0.0 0.904 0.094 0.001 485.019 99.558
(120,400) 0.0 0.001 0.0 0.0 0.918 0.080 0.001 492.608 21.244
(240,800) 0.0 0.0 0.0 0.0 0.914 0.086 0.0 496.316 3.519
(60,100) 0.002 0.008 0.006 0.001 0.870 0.113 0.0 472.816 688.994
(120,200) 0.0 0.002 0.0 0.0 0.898 0.099 0.001 485.49 55.489
(240,400) 0.0 0.0 0.0 0.0 0.928 0.071 0.001 492.699 7.242
(480,800) 0.0 0.0 0.0 0.0 0.933 0.067 0.0 496.377 1.654

Table 4.6: Empirical distribution of m̂n, mean and mean squared error of σ̂2 over 1000 independent
replications for model 2 and σ2 = 500.

Distribution of m̂n σ̂2

(p, n) 0 1 2 3 4 5 6 Mean MSE
(30,100) 0.079 0.088 0.090 0.0 0.649 0.093 0.001 528.651 11223.872
(60,200) 0.037 0.037 0.029 0.0 0.794 0.103 0.0 498.032 1478.184
(120,400) 0.009 0.01 0.005 0.0 0.880 0.096 0.0 494.613 107.355
(240,800) 0.003 0.0 0.002 0.0 0.918 0.075 0.002 496.813 8.770
(60,100) 0.071 0.104 0.059 0.001 0.687 0.078 0 501.754 3126.083
(120,200) 0.036 0.038 0.043 0.0 0.809 0.074 0.0 493.687 438.063
(240,400) 0.013 0.007 0.009 0.0 0.900 0.071 0.0 494.445 39.686
(480,800) 0.004 0.001 0.0 0.0 0.941 0.054 0.0 496.836 3.576

First, we can see the asymptotic consistency of the estimator of m in all the four cases. If
we compare these simulations with the known variance case, we can see that the estimation
is less accurate in the small (p, n). Furthermore, as in the previous case, the convergence
is slower in the c = 0.6 case and the estimator performs better in model 1 than in model
2, for both values of σ2. The estimation of m is more accurate with an unknown variance
of σ2 = 500. This is due to the fact that the difference between the eigenvalues of Sn
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Figure 4.3: Frequency of m̂n = m over 1000 independent replications with σ2 = 500.
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Figure 4.4: Mean of σ̂2 over 1000 independent replications.

corresponding to the spikes is higher in this case, because the spikes are multiplied by σ2.
We also give the mean and mean squared error of m̂n in the σ2 = 1 case (Tables 4.2

and 4.3) to compare with Table 4.1, where σ2 = 1 also, to see the effect of its estimation.
The variance and the bias are higher especially for small values of (p, n) in this case with
unknown variance.

The estimation of σ2 performs well, but it seems to be underestimated. There is no
particular difference between the two values of c in model 1 but in model 2, contrary to
the estimation of m, the convergence seems to be faster in the c = 0.6 case for σ̂2. The
variance of the estimator decreases if n and p increase, and is lower in the c = 0.6 case. As
expected, the mean squared error is lower in the σ2 = 1 case.

4.5 Comparison with two related methods

In signal processing or econometric literature, the factor model (or linear mixture model)
is often used. This model is defined as follows: let (xi = x(ti))1≤i≤n be an i.i.d n-sample of
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4.5. COMPARISON WITH TWO RELATED METHODS

p-dimensional random vectors satisfying

xi =

m∑
k=1

fkiΛk + ei

= Λfi + ei,

where

• fi = (f1i, . . . , fmi)
′ ∈ Rm are m random factors (or signals) assumed to have zero mean,

unit variance, and mutually independent;

• Λ = (Λ1, . . . ,Λm) is a p ×m fixed unknown matrix of rank m (response vectors or
factor loadings);

• ei ∼ N (0, σ2Ip), σ2 ∈ R is the noise level.

It is easy to show that in this case, the population covariance matrix takes the form of a
spiked population model: the spikes are only slightly modified. If we denote by α the vector
of spikes in the factor model, we have the following relationship with our original vector α∗:

α∗ =
α

σ2
+ 1.

Here determining the number of spikes m means the detection of the number of fac-
tors/signals m. We will explain and compare two methods from econometrics (Harding
(2007)) and signal processing (Kritchman & Nadler (2008)), respectively.

4.5.1 Method of Harding and comparison

In his paper, Harding (2007) uses less restrictive assumptions as the sequence ei is not
necessarily independent, but he simulates a Gaussian model. His general idea is to compare
the spectral moments of Sn with the empirical spectral distribution of Sn without the
factors (or spikes), and to remove the largest eigenvalues one by one in Sn until a “distance”
between the moments is minimum.

More precisely, the variance of the noise is seen as a parameter θ and his idea is to
write Sn = Ξn + Ωn (rank(Ξn) = m) as a sum of a finite rank perturbation Ξn of the noise
covariance Ωn. Let Π(Sn) be the vector of the first s moments of the empirical spectral
distribution of the covariance matrix Sn, Π(Ωn) the equivalent for Ωn and Π(θ) its limit as
p and n→∞, pn → c. Here is the procedure of Harding:

• First, compute the moments Π(θ) of the asymptotic eigenvalue distribution of the
covariance matrix of Ωn for a large (p, n) sample;

• By Bai & Silverstein (2004), we have that p (Π(Ωn)−Π(θ))
L−→ N (∆,W ). Conse-

quently, estimate θ by:

θ̂0 = argmin
θ

(Π(θ)−Π(Sn)′ Ŵ−1 (Π(θ)−Π(Sn)︸ ︷︷ ︸
J(θ)

,
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4.5. COMPARISON WITH TWO RELATED METHODS

where Ŵ is a consistent estimate of W , computed by estimating θ from a first step
estimation with W = Ip;

• Next, remove the largest eigenvalue of the spectrum of Sn and re-estimate the parameter
θ as previously to get a new estimate θ̂1;

• This step is repeated by progressively removing large eigenvalues and for prefixed
number of times to get a sequence of estimates θ̂2, θ̂3, ...etc;

• Finally, among the minimized objective functions J(θ̂i) choose the order one which
corresponds to the smallest minimized value

m̂0 = argmin
i

J(θ̂i).

Actually, we know that for m fixed and p, n→∞, Π(Sn)→ Π(θ). So the criterion is
the minimization of the variance W = W (θ): it decreases until m (until we have removed
the eigenvalues corresponding to the spikes), then it stays stable. The procedure of Harding
leads to an underestimation of m, at p and n fixed. That is why he penalized the function
J with a function of type kθ̂g(p, n), where k is the number of eigenvalues removed, θ̂ is
the estimated variance at the step q and g(p, n) is a function such that g(p, n)→ 0 when
p, n→∞. The finally proposed choice for g is the following function given by Bai & Ng
(2002) based on a BIC criterion

g(p, n) =

(
p+ n

pn

)
ln

(
pn

p+ n

)
.

For his simulation experiments, he tested four different “distances” but we only keep the
one based on the BIC criterion which is the best. Furthermore, we do not give all cases he
tested. The simulation design was a little bit different, indeed Harding does not choose the
spikes directly, but he generates ei as a Gaussian law N (0, Ip) and Λ in a deterministic way.
We calculate the corresponding spikes and it leads to the following values:

• (p, n) = (30, 100): (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (258.719, 16.973, 10.038, 6.877, 3.817);

• (p, n) = (90, 100): (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (259.010, 18.101, 10.785, 7.276, 3.692);

• (p, n) = (210, 300): (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (259.083, 18.418, 10.992, 7.377, 3.649);

• (p, n) = (250, 500): (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (259.005, 18.453, 11.057, 7.448, 3.634).

Nonetheless, these cases stay very close. Below we compare his results to ours. We
only give in Table 4.7 the mean and mean squared errors of the estimator as reported in
Harding’s paper.

Both methods perform well and their results are overall very close except that Harding’s
estimation yields a slightly smaller MSE for m̂n. However, one should have in mind that
this estimation has a very complex construction and a rigorous justification of its different
steps is still open. Moreover, the spikes in Table 4.7 are large and well-separated one from
each other; it remains unclear how this method will perform in a case where the spikes are
much smaller and closer like in model 2, considered in sections 4.3 and 4.4. By contrast, our
estimator has a very simple construction and we proved its consistency under reasonable
assumptions.
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4.5. COMPARISON WITH TWO RELATED METHODS

Table 4.7: Compared mean and mean squared error of our m̂n and σ̂2 and those of Harding over 5000
independent replications and σ2 = 1.

m̂n σ̂2

Harding’s estimator PY estimator Harding’s estimator PY estimator
(p, n) Mean MSE Mean MSE Mean MSE Mean MSE

(30,100) 5.028 0.028 5.087 0.266 0.942 0.004 0.946 0.008
(90,100) 5.040 0.048 5.049 0.232 0.944 0.001 0.943 0.0
(210,300) 5.004 0.004 5.087 0.082 0.982 0.0 0.980 0.0
(250,500) 5.002 0.002 5.077 0.072 0.989 0.0 0.988 0.0

4.5.2 Method of Kritchman & Nadler and comparison

These authors assume the Gaussian case. In the absence of spikes, nSn follows a Wishart
distribution with parameters n, p. In this case, Johnstone (2001) gave the asymptotic
distribution of the largest eigenvalue of Sn.

Proposition 19. Let Sn be the sample covariance matrix of n vectors distributed as
N (0, σ2Ip), and λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be its eigenvalues. Then, when n → ∞, such
that p

n → c > 0

P
(
λn,i
σ2

<
βn,p

n2/3
s+ b

)
→ Fi(s), s > 0

where b = (1 +
√
c)2, βn,p =

(
1 +

√
p
n

)(
1 +

√
n
p

) 1
3 and Fi is the i-th Tracy-Widom

distribution.

We assume that the variance σ2 is known. To distinguish a spike eigenvalue λ from a
non-spike one at an asymptotic significance level γ, their idea is to check whether

λn,k > σ2

(
βn,p−k

n2/3
s(γ) + b

)
(4.2)

where the value of s(γ) can be found by inverting the Tracy-Widom distribution. This
distribution has no explicit expression, but can be computed from a solution of a second
order Painlevé ordinary differential equation. Their estimator is based on a sequence of
nested hypothesis tests of the following form: for k = 1, 2, . . . ,min(p, n)− 1,

H0: m ≥ k vs. H1: m ≤ k − 1 .

For each value of k, they test the likelihood of the k-th eigenvalue λn,k as arising from
a signal or from noise as (4.2). If (4.2) is satisfied, H0 is accepted and k is increased by
one. The procedure stops once an instance of H0 is rejected and the number of spikes is
estimated to be m̂n,2 = k − 1. Formally, their estimator is defined by

m̂n,2 = argmin
k

(
λn,k < σ̂2

(
βn,p−k

n2/3
s(γ) + b

))
− 1.

When σ2 is unknown, they estimate it by the same method we used. For their simulations,
they use four different settings, with σ2 = 1
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4.5. COMPARISON WITH TWO RELATED METHODS

• A1: α = (200, 50), c = 4 (i.e. α∗ = (201, 51));

• A2: α = (200, 50), c = 1;

• B1: α = (200, 50, 10, 5), c = 4 (i.e. α∗ = (201, 51, 11, 6));

• B2: α = (200, 50, 10, 5), c = 1;

with p = 64 and p = 1024. Notice that, contrary to ours and those of Harding, in their
simulation, c > 1 and the difference between two consecutive spikes is higher. We add two
settings with different variance

• A2’: α = (200, 50), c = 1, σ2 = 20 (i.e. α∗ = (11, 3.5));

• B2’: α = (200, 50, 10, 5), c = 1, σ2 = 2 (i.e. α∗ = (101, 26, 6, 3.5));

and p = 64. The results are displayed in Tables 4.8 and 4.9.

Table 4.8: Summary for p = 64 showing the frequency of m̂ = m.
Setting Our estimator Estimator KN

A1 ; (p, n) = (64, 16) 0.943 0.994
A2 ; (p, n) = (64, 64) 0.966 0.993
A2’; (p, n) = (64, 64) 0.602 0.513
B1 ; (p, n) = (64, 16) 0.348 0.238
B2 ; (p, n) = (64, 64) 0.947 0.995
B2’; (p, n) = (64, 64) 0.734 0.682

With small p and n, both estimators performs well, except for the A2’, B1, and B2’
cases where the spikes α∗ are closer to 1 +

√
c than in the other cases.

Table 4.9: Summary for p = 1024 showing the frequency of m̂ = m.
Setting Our estimator Estimator KN

A1; (p, n) = (1024, 256) 0.995 0.994
A2; (p, n) = (1024, 1024) 0.986 0.993
B1; (p, n) = (1024, 256) 0.999 0.999
B2; (p, n) = (1024, 1024) 0.986 0.994

With larger p and n, the results from both methods are comparable. Nevertheless,
theoretical properties remain unclear for the KN estimator: it is proved that

lim
p,n→∞

P (m̂n,2 ≥ m) = 1,

and, in the one factor case (m = 1) that

lim
p,n→∞

P (m̂n,2 > m) = γ.

That is by construction, the proposed estimator cannot be fully consistent but nearly
consistent with an incompressible asymptotic error of γ. Actually the authors are using a
very small test level γ = 0.005 in their experiments. Whether this property remains true
for general case with more than one spike stays open and even so, this near-consistency is a
bit unsatisfactory from a theoretical point a view.
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4.6 Case of spikes with multiplicity greater than one

The problem with two identical spikes is that the difference between the corresponding
eigenvalues of the sample covariance matrix will tend to zero, as the non-spike ones.
Nevertheless, we tried to estimate the number of spikes with the same procedure, and our
method still works: we can explain it by the fact that the convergence of the λn,i, for i > m
(non-spikes) is in OP

(
n−2/3

)
, whereas that of the difference corresponding of two identical

spikes is in OP
(
n−1/2

)
(consequence of Theorem 3.1 of Bai & Yao (2008)). Consequently,

for finite n, the difference δn,i corresponding to two equals spikes will be still higher than
the δn,i corresponding to non-spikes. Furthermore, the variance in the convergence of this
difference is 2α∗2

(
1− c

(α∗−1)2

)
∼
∞

2α∗2, which is quite high for high spikes. A complete
justification of our method in this case with multiple spikes is described in chapter 5. Here
we provide some simulation results in order to have a first idea about its performance.

We will only consider the known variance case. If it is not the case, the procedure
explained before will apply without any problem. Here are the results with the same
simulation design as previously, except that we introduce multiple spikes. We consider two
models:

• Model 3: m = 6, (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5, α
∗
6) = (259.7, 259.7, 18, 11.1, 7.9, 4.8);

• Model 4: m = 6, (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5, α
∗
6) = (7, 6, 6, 6, 5, 4).

For each model, two different values of c, 0.3 and 0.6, are considered, and we give in Figure
4.5 the frequency of m̂n = m and in Table 4.10 the mean and the mean squared error of
our estimator over 1000 independent replications.

Table 4.10: Mean and mean squared error of m̂n over 1000 independent replications for model 1 and 2.
Model 3, m = 6 Model 4, m = 6

(p, n) Mean MSE Mean MSE
(30,100) 6.085 0.168 4.529 4.393
(60,200) 6.077 0.121 4.86 4.199
(120,400) 6.088 0.082 5.31 3.061
(240,800) 6.073 0.068 5.597 2.051
(60,100) 6.043 0.151 4.118 4.797
(120,200) 6.092 0.108 4.614 4.453
(240,400) 6.081 0.074 5.159 3.447
(480,800) 6.079 0.073 5.562 2.058

In both cases, we can observe the asymptotic consistency of the estimator, but the
convergence is slower in model 4. Indeed, the eigenvalue spacings are smaller. Furthermore,
the values of the spikes are small, so that the variance in the convergence of the spikes is
not very high and the fluctuations of the difference are smaller than in model 3.

4.7 Complement: on the choice of the sequence dn

In this section, we present a complement on the choice of the sequence dn, which has
not been published in Passemier & Yao (2012b).
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Figure 4.5: Frequency of m̂n = m over 1000 independent replications.

4.7.1 Introduction

In Theorem 1, we can choose any sequence satisfying the requirement dn → 0 such that
n2/3dn → ∞. In practice, the choice of dn is an important but also difficult question to
address. In our simulations, we used a sequence of the form an

n2/3β, where β is the variance
in Proposition 3.2 and an = 4

√
2 log log n: this choice came when thinking about a result

analog to the law of the iterated logarithm. With this chosen sequence dn, we saw that our
estimator performed well. Nevertheless, we mentioned a slight over-estimation of m.

In this complement, we present a new sequence which performs better despite the fact
that it requires to know αm.

4.7.2 The sequence

To avoid the over-estimation of m, we need to increase slightly the sequence dn. Propo-
sition 16 shows that the Gaussian convergence of the eigenvalues λn,j of Sn to φ(α∗j ) is in
1/
√
n, that is why we choose a new sequence d̃n in o(1/

√
n). As the variance σ2(α∗j ) in this

Gaussian convergence is an increasing function of α∗j , we decide to take into account σ(αm):
if α∗m is large, d̃n is increased so we reduce the overestimation of m. We define:

d̃n = C
σ(α∗m)√

n

where C is a constant to determine. After several experiments, we set C = 0.75.

4.7.3 Simulation experiments

4.7.3.1 Comparison with our previous simulations experiments

We keep the same parameter as in the previous simulation studies. As the estimation of
the variance σ2 has only a slightly influence, we do not estimate it and we use σ2 = 1:
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• Model 1: m = 5, (α∗1, α
∗
2, α
∗
3, α
∗
4, α
∗
5) = (259.72, 17.97, 11.04, 7.88, 4.82);

• Model 2: m = 4, (α∗1, α
∗
2, α
∗
3, α
∗
4) = (7, 6, 5, 4).

For each model, two different values of c, 0.3 and 0.6, are considered. We give in Tables
4.11 and 4.12, respectively, the distribution of m̂n, its mean and mean squared error over
1000 independent replications.

Table 4.11: Mean, mean squared error and empirical distribution of m̂n over 1000 independent replications
for model 1.

Distribution of m̂n

(p, n) Mean MSE 1 2 3 4 5 6
(30,100) 4.964 0.153 0.002 0.011 0.003 0.0 0.973 0.11
(60,200) 4.991 0.0 0.005 0.001 0.0 0.0 0.989 0.60
(120,400) 5.0 0.0 0.0 0.0 0.0 0.0 1 0.0
(240,800) 5.0 0.0 0.0 0.0 0.0 0.0 1 0.0
(60,100) 4.939 0.245 0.002 0.019 0.007 0.0 0.954 0.018
(120,200) 5.002 0.038 0.0 0.003 0.0 0.0 0.986 0.011
(240,400) 5.004 0.0 0.0 0.0 0.0 0.0 0.996 0.004
(480,800) 5.072 0.069 0.0 0.0 0.0 0.0 1 0.0

Table 4.12: Mean, mean squared error and empirical distribution of m̂n over 1000 independent replications
for model 2.

Distribution of m̂n

(p, n) Mean MSE 0 1 2 3 4 5
(30,100) 3.408 1.519 0.045 0.086 0.088 0.0 0.759 0.02
(60,200) 3.648 1.059 0.038 0.044 0.041 0.0 0.863 0.014
(120,400) 3.894 0.363 0.009 0.019 0.012 0.0 0.949 0.011
(240,800) 4.062 0.110 0.002 0.001 0.0 0.0 1 0.0
(60,100) 3.428 1.604 0.056 0.069 0.092 0.001 0.758 0.044
(120,200) 3.724 0.885 0.024 0.037 0.052 0.0 0.852 0.035
(240,400) 3.969 0.394 0.013 0.014 0.011 0.0 0.947 0.015
(480,800) 3.899 0.383 0.003 0.0 0.0 0.0 0.99 0.01

In both cases, we can observe an improvement of the results, especially in model 1: the
convergence is faster than in model 2. The aim of reduce the overestimation is reached. We
can still notice a slower convergence in the c = 0.6 case.

4.7.3.2 Comparison with the method of Kritchman and Nadler

We recall the previous settings used by Kritchman & Nadler (2008). For their simulations,
they use four different settings, with σ2 = 1:
• A1: α = (200, 50), c = 4 (i.e. α∗ = (201, 51);
• A2: α = (200, 50), c = 1;
• B1: α = (200, 50, 10, 5), c = 4 (i.e. α∗ = (201, 51, 11, 6);
• B2: α = (200, 50, 10, 5), c = 1;

with p = 64 and p = 1024. Notice that in these simulations, c > 1 and the difference
between two consecutive spikes is higher. We still do not estimate the variance σ2. The
results are displayed in Tables 4.13 and 4.14.
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Table 4.13: Summary for p = 64 showing the frequency of m̂ = m.
Setting With dn With d̃n Estimator KN

A1; (p, n) = (64, 16) 0.943 0.987 0.994
A2; (p, n) = (64, 64) 0.966 1 0.993
B1; (p, n) = (64, 16) 0.348 0.528 0.238
B2; (p, n) = (64, 64) 0.947 0.986 0.995

With small p and n, there is an improvement with the use of d̃n: it is close to the results
of the estimator KN for A1 and B2 cases, but better in the two other cases.

Table 4.14: Summary for p = 1024 showing the frequency of m̂ = m.
Setting With dn With d̃n Estimator KN

A1; (p, n) = (1024, 256) 0.995 1 0.994
A2; (p, n) = (1024, 1024) 0.986 1 0.993
B1; (p, n) = (1024, 256) 0.999 0.98 0.999
B2; (p, n) = (1024, 1024) 0.986 1 0.994

With larger p and n, the new d̃n performs better than the other two, except for the B1
case, where the spikes are closer than in the A case.

4.7.3.3 Comparison of dn and d̃n

We draw the plot of the two sequences showing the difference between them in Figure 4.6.
We consider two cases:

• Case 1: c=0.3, αm = 4, 82;

• Case 2: c=1, αm = 6;
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Figure 4.6: Comparison of dn and d̃n.

The two sequences are close in both cases: a small difference can change the performance
of the estimation.
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4.7.4 Conclusion

The new sequence performs better in most cases. The problem is now how to estimate
σ(α∗m). One can estimate α∗m by inverting the function φ (4.1), but here m is assumed to
be unknown. This requires further work to construct a procedure which take into account
this hypothesis. Nevertheless, despite this new sequence can not be use in practice, this
study underlines the difficulty of choosing the sequence dn and shows that we can choose a
sequence which performs better.

60



Chapter 5

Estimation of the number of factors,
possibly equal, in the
high-dimensional case

Abstract: Estimation of the number of factors in a factor model is an
important problem in many areas such as economics or signal processing.
Most of classical approaches assume a large sample size n whereas the
dimension p of the observations is kept small. In this chapter, we consider
the case of high dimension, where p is large compared to n. The approach
is based on recent results of random matrix theory. We extend our
previous results to a more difficult situation when some factors are equal,
and compare our algorithm to an existing benchmark method.

Keywords: Factor model, covariance matrix, random matrix theory, high-
dimensional statistics, Tracy-Widom laws.

AMS subject classification: 62F07, 62F12, 60B20.

This chapter is submitted in
Journal of Multivariate Analysis

under the title:
“Estimation of the Number of Factors, Possibly Equal, in the High-Dimensional Case.”

It has been written in collaboration with Jian-Feng Yao.

5.1 Introduction

The factor model appears in many scientific fields, such as economics and psychology
literature, where the number of factors has a primary importance (Anderson (2003), Ross
(1976)). Similar models can be found in physics of mixture (see Kritchman & Nadler (2008),
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5.1. INTRODUCTION

Naes et al. (2002)) or population genetics. In wireless communications, a signal (factor)
emitted by a source is modulated and received by an array of antennas which will permit
the reconstruction of the original signal. More recently, spiked population models have been
introduced in Johnstone (2001) that encompass factors models.

A fundamental problem here is the determination of the number of factors. Many
methods have been developed, mostly based on information theoretic criteria, such as
the minimum description length (MDL) estimator, Bayesian model selection or Bayesian
Information Criteria (BIC) estimators, see Wax & Kailath (1985) for a review. Nevertheless,
these methods are based on asymptotic expansions for large sample size and may not
perform well when the dimension of the data p is large compared to the sample size n. To
our knowledge, this problem in the context of high-dimension appears for the first time in
Combettes & Silverstein (1992). Recent advances have been made using random matrix
theory by Harding (2007) or Onatski (2009) in economics, and Kritchman & Nadler (2008)
in chemometrics literature.

Several studies have also appeared in the area of signal processing from high-dimensional
data. Everson & Roberts (2000) proposed a method using both RMT and bayesian inference,
while Ulfarsson & Solo (2008) combined random matrix theory and Stein’s Unbiased Risk
Estimator (SURE). Nadakuditi & Edelman (2008) and Nadler (2010) improved estimators
based on information theoretic criteria and Kritchman & Nadler (2009) constructed an
estimator based on the distribution of the largest eigenvalue (hereafter refereed as the KN
estimator). In Passemier & Yao (2012b), we have also introduced a new method based on
recent results of Bai & Yao (2008) and Paul (2007) in random matrix theory. It is worth
mentioning that for high-dimensional time series, an empirical method for the estimation of
factor number has been recently proposed in Lam et al. (2011) and Lam & Yao (2012).

In most cited references, factors are assumed to be distinct. However, we observe that
when some of these factors become close, the estimation problem becomes more difficult
and these algorithms need to be modified. We refer this new situation as the case with
possibly equal factors and its precise formulation will be given in Section 5.3.2. The aim
of this work is to extend our method Passemier & Yao (2012b) to this new case and to
compare it with the KN estimator, that is known in the literature as one of best estimation
method.

The rest of the chapter is organized as follows. Section 5.2 introduces the model. In
Section 5.3, we define the estimation problem of the number of possibly equal factors
and present our solution. We establish its asymptotic consistency. Section 5.4 provides
simulation experiments to assess the quality of our estimator. Next, we recall the KN
estimator and conduct simulation experiments to compare these two methods. In Section
5.6, we analyze the influence of a tuning parameter C used in our estimator. Finally, Section
5.7 concludes with discussions. All proofs are given in the appendix.

62



5.2. PROBLEM FORMULATION

5.2 Problem formulation

We consider the following strict factor model

xi =

m∑
k=1

fkiΛk + ei (5.1)

= Λfi + ei, (5.2)

where

• f = (f1i, . . . , fmi)
′ ∈ Rm are m random factors (m < p) assumed to have zero mean, unit

variance and be independent;

• Λ = (Λ1, . . . ,Λm) is the p×m full rank matrix of factors loadings;

• e ∼ N (0, σ2Ip) is a p × 1 vector of additive noise, independent from fi, σ2 ∈ R is the
unknown noise level.

The population covariance matrix Σ = cov(xi) of xi equals ΛΛ′ + σ2Ip and has the
spectral decomposition

W′ΣW = σ2Ip + diag(α1, . . . , αm, 0, . . . , 0)

where W is an unknown basis of Rp and α1 ≥ α2 ≥ · · · ≥ αm > 0. The sample covariance
matrix of the n p-dimensional i.i.d. vectors (xi = x(ti))1≤i≤n is

Sn =
1

n

n∑
i=1

xix
′
i.

Denote by λn,1 ≥ λn,2 ≥ · · · ≥ λn,p its eigenvalues. Our aim is to estimate m on the basis
of Sn. To start with, we assume that the noise level σ2 is known. If this is indeed not the
case, we will give a method in Section 5.3.3 to estimate it.

5.3 Estimation of the number of factors

In this section, we first recall our previous result of Passemier & Yao (2012b) in the
case of different factors. Next, we propose an extension of the algorithm to the case with
possibly equal factors. The consistency of the extended algorithm is established.

5.3.1 Previous work: estimation with different factors

We consider the case where the (αi)1≤i≤m are all different, so there are m distinct
factors. According to Passemier & Yao (2012b), let us rewrite the spectral representation
of Σ as

W′ΣW = σ2diag(α∗1, . . . , α
∗
m, 1, . . . , 1),

with
α∗i =

αi
σ2

+ 1.
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5.3. ESTIMATION OF THE NUMBER OF FACTORS

It is assumed in the sequel that p and n are related so that when n→∞, p/n→ c > 0.
Therefore, p can be large compared to the sample size n (high-dimensional case).

Moreover, we assumed that α∗1 > · · · > α∗m > 1 +
√
c, i.e. all the factors strengths

(αi)1≤i≤m are greater than σ2√c. For α 6= 1, we define the function

φ(α) = α+
cα

α− 1
.

Baik & Silverstein (2006) proved that, under a moment condition on x, for each k ∈
{1, . . . ,m} and almost surely,

λn,k −→ σ2φ(α∗k).

They also proved that for all 1 ≤ i ≤ L with a prefixed range L and almost surely,

λn,m+i → b = σ2(1 +
√
c)2.

The estimation method of m in Passemier & Yao (2012b) is based on a close inspection of
differences between consecutive eigenvalues

δn,j = λn,j − λn,j+1, j ≥ 1.

Indeed, the results quoted above imply that a.s. δn,j → 0, for j ≥ m whereas for j < m,
δn,j tends to a positive limit. Thus it becomes possible to estimate m from index-numbers
j where δn,j becomes small. More precisely, the estimator is

m̂n = min{j ∈ {1, . . . , s} : δn,j+1 < dn}, (5.3)

where s > m is a fixed sufficiently large number, and dn is a threshold to be defined. In
practice, the integer s should be thought as a preliminary bound on the number of possible
factors. In Passemier & Yao (2012b), we proved the consistency of m̂n providing that the
threshold satisfies dn → 0, n2/3dn →∞ and under the following assumption on the entries
of x:

Assumption 2. The entries xij of the random vector x have a symmetric law and a
sub-exponential decay, that means there exist positive constants C, C ′ such that, for all
t ≥ C ′,

P(|xij | ≥ tC) ≤ e−t.

5.3.2 Estimation with possibly equal factors

As said in the introduction, when some factors have close values, estimation algorithms
need to be modified. More precisely, we adopt the following theoretical model with K
different factor strengths α1, . . . , αK , each of them can appear nk times (equal factors),
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respectively. In other words,

spec(Σ) = (α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

)

= σ2(α∗1, . . . , α
∗
1︸ ︷︷ ︸

n1

, . . . , α∗K , . . . , α
∗
K︸ ︷︷ ︸

nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

).

with n1 + · · ·+nK = m. When all the factors are unequal, differences between sample factor
eigenvalues tend to a positive constant, whereas with two equal factors, such differences
will tend to zero. This fact creates an ambiguity with those differences corresponding to
the noise eigenvalues which also tend to zero. However, the convergence of the δn,i’s, for
i > m (noise) is faster (in OP(n−2/3)) than that of the δn,i from equal factors (in OP(n−1/2))
as a consequence of Theorem 3.1 of Bai & Yao (2008). This is the key feature we use to
adapt the estimator (5.3) to the current situation with a new threshold dn. The precise
asymptotic consistency is as follows:

Theorem 2. Let (xi)1≤i≤n be n copies i.i.d. of x which follows the model (5.2) and
satisfies Assumption 2. Suppose that the population covariance matrix Σ has K non null
and non unit eigenvalues α1 > · · · > αK > σ2√c with respective multiplicity (nk)1≤k≤K
(n1 + · · ·+nK = m), and p−m unit eigenvalues. Assume that p

n → c > 0 when n→∞. Let
(dn)n≥0 be a real sequence such that dn = o(n−1/2) and n2/3dn →∞. Then the estimator
m̂n is consistent, i.e m̂n → m in probability when n→∞.

Notice that, compared to the previous situation, the only modification of our estimator
is a new condition dn = o(n−1/2) on the convergence rate of dn. The proof of Theorem 2 is
postponed to the appendix.

5.3.3 Estimation of the noise level

When the noise level σ2 is unknown, an estimation is needed. In Passemier & Yao
(2012b), we used an algorithm based on the maximum likelihood estimate

σ̂2 =
1

p−m

p∑
i=m+1

λn,i.

As explained in Kritchman & Nadler (2008, 2009), this estimator has a negative bias. Hence
the authors developed an improved estimator with a smaller bias. We will use this improved
estimator of noise level in our simulations for both estimator m̂n and estimator m̃n (see
Section 5.5).

5.4 Simulation experiments

To assess the quality of our estimator, we first make the following modification: instead
of making a decision once some difference δn,k is below the threshold dn (see (5.3)), the
modified estimator stops when two consecutive differences δn,k and δn,k+1 are both below
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5.4. SIMULATION EXPERIMENTS

dn. More precisely, we set

m̂∗n = min{j ∈ {1, . . . , s} : δn,j+1 < dn and δn,j+2 < dn}. (5.4)

It is easy to see that the proof for the consistency of m̂n applies equally to m̂∗n under the
same conditions as in Theorem 2.

It remains to choose a threshold sequence dn to be used for our estimator m̂∗n. As argued
in Passemier & Yao (2012b), we use a sequence dn of the form Cn−2/3

√
2 log log n, where

C is a “tuning” parameter to be adjusted. In all simulations, we consider 500 independent
replications and take σ2 = 1.

Table 5.1 gives a summary of parameters in our simulation experiments. There are
two sets of experiments. In the first one (Figures 5.1, 5.2 and models A, B, C and D in
Table 5.1), factors are different and these experiments extend and complete results already
reported in Passemier & Yao (2012b). The second set of experiments (Figures 5.3, 5.4 and
models E, F, G, H and J in Table 5.1) addresses the new situation where some factors are
equal. Figure 5.7 considers the case of no factor. (Figures 5.5 and 5.6 report comparison
results developed in Section 5.5).

Table 5.1: Summary of parameters used in the simulation experiments. (L: left, R: right)
Fig. Factors Mod. Factor Fixed parameters Var.
No. No. values p, n c σ2 C par.

5.1 Different (α) (200, 800) 1/4 Given 5.5
α

(2000, 500) 4 9

5.2L Different
A (6, 5)

10 Given 11 nB (10, 5)
B (10, 5) Estimated

5.2R Different C (1.5) 1 Given 5 nD (2.5, 1.5)

5.3 Possibly E (α, α, 5) (200, 800) 1/4 Given 6
αequal F (α, α, 15) (2000, 500) 4 9.9

5.4L
Possibly G (6, 5, 5)

10 Given 9.9 nequal H (10, 5, 5)
H (10, 5, 5) Estimated

5.4R Possibly I (1.5, 1.5) 1 Given 5 nequal J (2.5, 1.5, 1.5)
5.5 Models A and D
5.6 Models G and J

5.7 No factor K No factor 1 Given 8
n

10 15

5.8L Models A and G
5.8R Models B and H
5.9L Models C and I, with C automatically chosen
5.9R Models D and J, with C automatically chosen

5.4.1 Case of different factors

In Figure 5.1, we consider the case of a single factor of strength α, and we analyze
the probability of misestimation as a function of factor strength α, for (p, n) = (200, 800),
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c = 0.25 and (p, n) = (2000, 500), c = 4. We set C = 5.5 for the first case and C = 9 for
the second case. The noise level σ2 = 1 is given.
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Figure 5.1: Misestimation rates as a function of factor strength for (p, n) = (200, 800) and (p, n) =

(2000, 500).

Our estimator performs well: we recover the threshold from which the behavior of the
factor eigenvalues differs from the noise ones (

√
c = 0.5 for the first case, and 2 for the

second).
In Figure 5.2 left panel, we consider two models with two factors (m = 2), in three

situations:

• Model A: (α1, α2) = (6, 5) and σ2 = 1 is given;
• Model B: (α1, α2) = (10, 5) and σ2 = 1 is given;
• Model B: (α1, α2) = (10, 5) and σ2 = 1 is to be estimated;

The estimation is harder in model A as the factor have closer strengths. We fix c = 10
(p� n), and we plot the misestimation rates against the sample size n. Here C = 11.

As expected, our estimator performs better in model B than in model A. In both cases,
we observe the asymptotic consistency. Compared to model B with σ2 given, the estimation
of σ2 does not affect our estimator significantly, which seems robust against the unknown
noise level.

Figure 5.2 right panel considers two cases with c = 1 and a given noise level σ2 = 1:

• Model C: (α) = (1.5);
• Model D: (α1, α2) = (2.5, 1.5).

This experiment is designed with factor strengths close to the critical value
√
c = 1.

Thus the problem becomes more difficult and misestimation rates are higher than in the
left panel. Here we used C = 5.
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Figure 5.2: Misestimation rates as a function of n for models A, B (left) and model C, D (right).

5.4.2 Case with equal factors

We keep the same parameters as in the previous section while adding some equal factors.
This leads to results reported in Figures 5.3 and 5.4 which are to be compared to Figures
5.1 and 5.2. In Figure 5.3, we consider
• Model E: (α1, α2, α3) = (α, α, 5), 0 ≤ α ≤ 2.5;
• Model F: (α1, α2, α3) = (α, α, 15), 0 ≤ α ≤ 8;
with (p, n) = (200, 800) for the model E and (p, n) = (2000, 500) for the model F. Here
m = 3, C = 6 for model E and C = 9.9 for model F.

In Figure 5.4 left panel, we consider two models, analog to model A and B, with three
factors (m = 3):

• Model G: (α1, α2, α2) = (6, 5, 5) and σ2 = 1 is given;
• Model H: (α1, α2, α2) = (10, 5, 5) and σ2 = 1 is given;
• Model H: (α1, α2, α2) = (10, 5, 5) and σ2 = 1 is to be estimated.

Again we fix c = 10 (p� n), and we plot misestimation rates against the sample size
n. Here C = 9.9 and σ2 is given. Comparing to the case of different factors (Figure 5.2),
these rates are significantly higher with however a clear and rapidly decreasing trend. If we
compare model G and model H, a smaller spacing between two first factors deteriorates the
algorithm only slightly. Moreover in model H and similar to Figure 5.2, estimation of an
unknown variance σ2 does not affect our estimator significantly.

Figure 5.4 right panel considers two cases with c = 1, σ2 = 1 given and factor strengths
close to the critical value

√
c:

• Model I: (α, α) = (1.5, 1.5);
• Model J: (α1, α2, α2) = (2.5, 1.5, 1.5).
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Figure 5.3: Misestimation rates as a function of factor strength for (p, n) = (200, 800), model E and
(p, n) = (2000, 500), model F.
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Figure 5.4: Misestimation rates as a function of n for model G, H (left) and model I, J (right).

Here we use C = 5. In this more difficult situation, misestimation rates vanish much
more slowly than in the left panel.

In summary, these experiments have demonstrated the proposed estimator is able to find
the number of factors in all the considered situations. In particular, when factor strengths
are close or even equal, or close to the critical value, the algorithm remains consistent
although the convergence rate becomes slower.
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5.5 Method of Kritchman & Nadler and comparison

5.5.1 Algorithm of Kritchman & Nadler

In their paper, Kritchman & Nadler (2008, 2009) develop a different method also based
on random matrix theory to estimate the number of factors. In this section we compare by
simulation our estimator (PY) to the Kritchman & Nadler’s one (KN). The authors have
compared their estimator KN with existing estimators in the signal processing literature,
based on the minimum description length (MDL), Bayesian information criterion (BIC)
and Akaike information criterion (AIC), see Wax & Kailath (1985). In most of the studied
cases, the estimator KN performs better. Furthermore, in Nadler (2010) this estimator is
compared to an improved AIC estimator and it still has a better performance. Thus we
decide to consider only this estimator KN for the comparison here.

In the absence of factors, nSn follows a Wishart distribution with parameters n, p.
In this case, Johnstone (2001) has provided the asymptotic distribution of the largest
eigenvalue of Sn.

Proposition 20. Let Sn be the sample covariance matrix of n vectors distributed as
N (0, σ2Ip), and λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be its eigenvalues. Then, when n → ∞, such
that p

n → c > 0

P
(
λn,1
σ2

<
βn,p

n2/3
s+ b

)
→ F1(s), s > 0

where b = (1+
√
c)2, βn,p =

(
1 +

√
p
n

)(
1 +

√
n
p

) 1
3 and F1 is the Tracy-Widom distribution

of order 1.

Assume the variance σ2 is known. To distinguish a factor eigenvalue λ from a noise one
at an asymptotic significance level γ, their idea is to check whether

λn,k > σ2

(
βn,p−k

n2/3
s(γ) + b

)
(5.5)

where s(γ) verifies F1(s(γ)) = 1 − γ and can be found by inverting the Tracy-Widom
distribution. This distribution has no explicit expression, but can be computed from a
solution of a second order Painlevé ordinary differential equation. The estimator KN is based
on a sequence of nested hypothesis tests of the following form: for k = 1, 2, . . . ,min(p, n)−1,

H(k)
0 : m ≤ k − 1 vs. H(k)

1 : m ≥ k.

For each value of k, if (5.5) is satisfied, H(k)
0 is rejected and k is increased by one. The

procedure stops once an instance of H(k)
0 is accepted and the number of factors is then

estimated to be m̃n = k − 1. Formally, their estimator is defined by

m̃n = argmin
k

(
λn,k < σ̂2

(
βn,p−k

n2/3
s(γ) + b

))
− 1.

Here σ̂ is some estimator of the noise level (as discussed in Section 5.3.3). The authors
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5.5. METHOD OF KRITCHMAN & NADLER AND COMPARISON

proved the strong consistency of their estimator as n→∞ with fixed p, by replacing the
fixed confidence level γ with a sample-size dependent one γn, where γn → 0 sufficiently
slow as n→∞. They also proved that lim

p,n→∞
P (m̃n ≥ m) = 1.

It is important to notice here that the construction of the KN estimator differs from
ours, essentially because of the fixed alarm rate γ. We will discuss the issue of the false
alarm rate in the last section.

5.5.2 Comparison with our method

We give a value of γ = 0.5% to the false alarm rate of the estimator KN, as suggested
in Kritchman & Nadler (2009) and use their algorithm available at the author’s homepage.

In Figure 5.5, we consider model A and model D as previously:

• Model A: (α1, α2) = (6, 5);

• Model D: (α1, α2) = (2.5, 1.5).

We keep the same constant C and σ2 = 1 is given to both estimators.
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Figure 5.5: Misestimation rates as a function of n for model A (left) and model D (right).

For model A, the performance of the two estimators are close. However the estimator PY
is slightly better for moderate values of n (n ≤ 400) while the estimator KN has a slightly
better performance for larger n. For model D, our algorithm has a lower misestimation
rate in almost all cases in both models, with an improvement ranging from 10% to 30% for
moderate sample sizes n ≤ 400.

Figure 5.6 considers model G and J, two models analog to model A and D but with two
equal factors:

• Model G: (α1, α2, α2) = (6, 5, 5);

• Model J: (α1, α2, α2) = (2.5, 1.5, 1.5).
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Figure 5.6: Misestimation rates as a function of n for model G (left) and model J (right).

Again we keep the same constant C and σ2 = 1 is given to both estimators.
For model G, the estimator PY shows superior performance for n ≤ 500 (up to 20%

less error): adding an equal factor affects more the performance of the estimator KN. The
difference between the two algorithms for model J is higher than in the previous cases: the
estimator PY performs better, up to 25%.

In Figure 5.7 we examine a special case with no factor at all (model K). The estimation
rates become the so-called false-alarm rate, a concept widely used in signal processing
literature. The cases of c = 1 and c = 10 with σ2 = 1 given are considered.

We chose C = 8 for the first case and C = 15 for the second case. In both situations,
false alarm rates of two estimators are similar and low (less than 1%), and the KN one has
a slightly better performance.

In summary, in most of situations reported here, our algorithm compares quite favorably
to an existing benchmark method (the KN estimator). It is also important to notice a
fundamental difference between these two estimators: the KN estimator is designed to keep
the false alarm rate as a very low level while our estimator attempts to minimize an overall
misestimation rate. We develop more in details these issues in next section.

5.6 On the tuning parameter C

5.6.1 Influence of C on the misestimation and false alarm rate

In the simulation experiments, we choose the constant C “by hand” to have the lowest
misestimation rate. However, to have a fair comparison to either the KN estimator or
any other method determining the number of factors, the different methods should have
comparable false alarm probabilities. This section is devoted to an analysis of possible
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Figure 5.7: Misestimation rates as a function of n in the case of no factor for c = 1 (left) and c = 10

(right).

relationship between the constant C and the implied false alarm rate. Following Kritchman
& Nadler (2009), the false alarm rate γ of such an algorithm can be viewed as the type I
error of the following test

H0: m = 0 vs. H1: m > 0,

that is the probability of overestimation in the white case. Recall the step k of the algorithm
KN tests

H(k)
0 : m ≤ k − 1 vs. H(k)

1 : m ≥ k.

In Kritchman & Nadler (2009), the authors argue that their threshold is determined such
that

P(reject H(k)
0 |H

(k)
0 ) ≈ γ.

More precisely, they give an asymptotic bound of the overestimation probability: they show
that for n = 500 and p > 10, this probability is close to γ.

Since for our method, we do not know explicitly the corresponding false alarm rate,
we evaluate it by simulation. We choose two typical situations among previously reported
ones, namely Figure 5.3 (see Table 5.1). Table 5.2 gives the results with 500 independent
replications.

Table 5.2: False alarm rates in case of C = 5, c = 1 (Figure 2R) and C = 11, c = 10 (Figure 2L).
(p,n) (150,150) (300,300) (500,500) (700,700)

C = 5, c = 1 (Fig. 2R) 0.124 0.098 0.078 0.086
(p,n) (1500,150)(3000,300)(5000,500)(7000,700)

C = 11, c = 10 (Fig. 2L) 0.046 0.04 0.048 0.024
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The false alarm rates of our algorithm are much higher than the false alarm rate γ = 0.5%
of the KN estimator, especially for the case with C = 5 and c = 1. Nevertheless, and
contrary to the KN estimator, the overestimation rate of our estimator will be different from
the false alarm rate, and will depend on the number of factors and their values. Indeed, we
use the gaps between two eigenvalues, instead of each eigenvalue separately. Consequently,
there is no justification to claim that the probability P(m̂n > m|m = q), for q > 1 will be
close to P(m̂n > 0|m = 0). To illustrate this phenomenon, we use the settings of models
B (m = 2) and J (m = 3) and we evaluate the overestimation rate using 500 independent
replications (note that the corresponding false alarm rates are those in Table 5.2). The
results are displayed in Table 5.3.

Table 5.3: Empirical overestimation rates from model B (α = (10, 5), c = 10, C = 11) and model J
(α = (2.5, 1.5, 1.5), c = 1, C = 5).

(p,n) (150,150) (300,300) (500,500) (700,700)
Model B 0.028 0.024 0.028 0.018
(p,n) (1500,150) (3000,300) (5000,500) (7000,700)

Model J 0.012 0.026 0.032 0.027

We observe that these overestimation rates are lower than the false alarm rates given in
Table 5.2: this confirms that no obvious relationship exists between the false alarm rate γ
and the overestimation rates for our algorithm.

Furthermore, we can easily see that when C increases, overestimation rates will decrease
but underestimation rates will then increase. It explains also why we had to use in model
K (no factor) a constant C greater than in the other model with the same ratio cn = p/n.

In summary, if the goal is to keep overestimation rates at a constant and low level, one
should employ the KN estimator without hesitation (since by construction, the probability
of overestimation is kept to a very low level). Otherwise, if the goal is also to minimize the
overall misestimation rates i.e. including underestimation errors, our algorithm can be a
good substitute to the KN estimator. One could think of choosing C in each case to have a
probability of overestimation kept fixed at a low level, but in this case the probability of
underestimation would be high and the performance of the estimation would be poor, since
our estimator is constructed to minimize the overall misestimation rate.

5.6.2 On the choice of C

The tuning parameter C was chosen from case to case in previous experiments. We now
provide an automatic calibration of this parameter. The idea is to use the difference of the
two largest eigenvalues of a Wishart matrix (which corresponds to the case of no factor).
Indeed, our algorithm stops once two consecutive eigenvalues are below the threshold
dn corresponding to a noise eigenvalue. As we do not know precisely the distribution of
the difference between eigenvalues of a Wishart matrix, we approximate the distribution
of the difference between the two largest eigenvalues λ̃n,1 − λ̃n,2 by simulation under 500
independent replications. We then take the mean s of the 10th and the 11th largest spacings,
so s has the empirical probability P(λ̃n,1 − λ̃n,2 ≤ s) = 0.98: this value will give reasonable
results. We calculate a C̃ by multiplying this threshold by n2/3/

√
2× log log(n). The
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results for various (p, n), with c = 1 and c = 10 are displayed in Table 5.4.

Table 5.4: Approximation of the threshold s such that P(λ̃n,1 − λ̃n,2 ≤ s) = 0.98.
(p,n) (200,200)(400,400)(600,600) (2000,200)(4000,400)(7000,700)

Value of s 0.340 0.223 0.170 0.593 0.415 0.306
C̃ 6.367 6.398 6.277 11.106 11.906 12.44

The values of C̃ are quite close to the values used in previous simulation experiments
(C = 5 for c = 1 and C = 9.9 or 11 for c = 10), although they are slightly higher. Therefore,
this automatic calibration of C̃ can be used in practice for any data and sample dimensions
p and n.

To assess the quality of this automatic calibration procedure, we run again a part of the
previous simulation experiments this time using C̃. Figure 5.8 considers the case where
c = 10. On the left we consider model A (α = (6, 5)) and model G (α = (6, 5, 5)) (upper
curve). On the right we have model B (α = (10, 5)) and model H (α = (10, 5, 5)) (upper
curve). The dashed lines are the previous results with C manually chosen.
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Figure 5.8: Misestimation rates as a function of n for models A, G (left) and models B, H (right).

Using the new automatically method causes only a slight deterioration of the estimation
performance. We again observe significantly higher error rates in the case of equal factors
for moderate sample sizes.

Figure 5.9 considers the case where c = 1, with models C (α = 1.5) and I (α = (1.5, 1.5))
(upper curve) on the left and model D (α = (2.5, 1.5)) and J (α = (2.5, 1.5, 1.5)) (upper
curve) on the right.

Compared to the previous situation where c = 10, using the automatic value C̃ affects a
bit more our estimator (up to 10% of degradation). Nevertheless, the estimator remains
consistent. Furthermore, we have to keep in mind that our simulation experiments have
considered critical cases where factors eigenvalues are close: in many of practical applications,
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Figure 5.9: Misestimation rates as a function of n for models C, I (left) and models D, J (right).

theses factors are more separated so that the influence of C will be less important.

5.7 Concluding remarks

In this chapter we have considered the problem of the estimation of the number of
factors in the high-dimensional case. When some factors have close or even equal values,
the estimation becomes harder and existing algorithms need to be re-examined or corrected.
In this spirit, we have proposed a new version of our previous algorithm. Its asymptotic
consistency is established. It becomes unavoidable to compare our algorithm to an existing
competitor proposed by Kritchman & Nadler (2008, 2009) (KN). From our extensive
simulation experiments in various scenarios, we observe that overall our estimator could
have smaller misestimation rates, especially in cases with close and relatively low factor
values (Figures 5.2 and 5.4) or more generally for almost all the cases provided that the
sample size n is moderately large (n ≤ 400 or 500). Nevertheless, if the primary aim is to
fix the false alarm rate and the overestimation rates at a very low level, the KN estimator
is preferable.

However, our algorithm depends on a tuning parameter C. Most of the experiments
reported here are obtained with a finely-turned value of C and its value varies from case
to case. By comparison, the KN estimator is remarkably robust and a single value of
γ = 0.5% was used in all the experiments. In Section 5.6, we have provided a first approach
to an automatic calibration of C which is quite satisfactory. However, more investigation is
needed in the future on this issue.
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Appendix

In the sequel, we will assume that σ2 = 1 (if it is not the case, we consider λn,j
σ2 ). For

the proof, we need two theorems. The first, Proposition 21, is a result of Bai & Yao (2008)
which gives a CLT for the nk-packed eigenvalues

√
n[λn,j − φ(α∗k)], j ∈ Jk

where Jk = {sk−1 + 1, . . . , sk}, si = n1 + · · ·+ ni for 1 ≤ i ≤ K.

Proposition 21. Assume that the entries xij of x satisfy E(|xij |4) <∞, α∗j > 1 +
√
c for

all 1 ≤ j ≤ K and have multiplicity n1, . . . , nK respectively. Then as p, n → ∞ so that
p
n → c, the nk-dimensional real vector

√
n[λn,j − φ(α∗k)], j ∈ Jk

converges weakly to the distribution of the nk eigenvalues of a Gaussian random matrix
whose covariance depends on α∗k and c.

The second, Proposition 22, is issued from the Proposition 5.8 of Benaych-Georges et al.
(2011):

Proposition 22. Assume that the entries xij of x have a symmetric law and a sub-
exponential decay, that means there exists positive constants C, C’ such that, for all t ≥ C’,
P(|xij | ≥ tC) ≤ e−t. Then, for all 1 ≤ i ≤ L with a prefixed range L,

n
2
3 (λn,m+i − b) = OP(1).

We also need the following lemma:

Lemma 2. Let (Xn)n≥0 be a sequence of positive random variables which weakly converges
to a probability distribution with a continuous cumulative distribution function. Then for
all real sequence (un)n≥0 which converges to 0,

P(Xn ≤ un)→ 0.

Proof. As (Xn)n≥0 converges weakly, it exists a function G such that, for all v > 0,
P(Xn ≤ v)→ G(v). Furthermore, as un → 0, it exists N ∈ N such that for all n ≥ N ,
un ≤ v. So P(Xn ≤ un) ≤ P(Xn ≤ v), and lim

n→∞
P(Xn ≤ un) ≤ lim

n→∞
P(Xn ≤ v) = G(v).

Now we can take v → 0: as (Xn)n≥0 is positive, G(v)→ 0. Consequently, P(Xn ≤ un)→ 0.

Proof. of Theorem 2. The proof is essentially the same as Theorem 3.1 in Passemier & Yao
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(2012b) (Theorem 1, chapter 4), except when the factors are equal. We have

{m̂n = m}
= {m = min{j : δn,j+1 < dn}}
= {∀j ∈ {1, . . . ,m}, δn,j ≥ dn} ∩ {δn,m+1 < dn}.

Therefore

P(m̂n = m)

= P

 ⋂
1≤j≤m

{δn,j ≥ dn} ∩ {δn,m+1 < dn}


= 1− P

 ⋃
1≤j≤m

{δn,j < dn} ∪ {δn,m+1 ≥ dn}


≥ 1−

m∑
j=1

P(δn,j < dn)− P(δn,m+1 ≥ dn).

Case of j = m+ 1. In this case, δn,m+1 = λn,m+1 − λn,m+2 (noise eigenvalues). As dn → 0
such that, n2/3dn →∞, and by using Proposition 22 in the same manner as in the proof of
Theorem 3.1 in Passemier & Yao (2012b), we have

P(δn,m+1 ≥ dn)→ 0.

Case of 1 ≤ j ≤ m. These indexes correspond to the factor eigenvalues.

– Let I1 = {1 ≤ l ≤ m|card(Jl) = 1} (simple factor) and I2 = {l− 1|l ∈ I1 and l− 1 > 1}.
For all j ∈ I1 ∪ I2, δn,j corresponds to a consecutive difference of λn,j issued from two
different factors, so we can still use Proposition 21 and the proof of Theorem 3.1 in
Passemier & Yao (2012b) to show that

P(δn,j < dn)→ 0, ∀j ∈ I1.

– Let I3 = {1 ≤ l ≤ m− 1|l /∈ (I1 ∪ I2)}. For all j ∈ I3, it exists k ∈ {1, . . . ,K} such that
j ∈ Jk.
– If j+ 1 ∈ Jk then, by Proposition 21, Xn =

√
nδn,j converges weakly to a limit which

has a density function on R+. So by using Lemma 2 and that dn = o(n−1/2), we
have

P (δn,j < dn) = P
(√
nδn,j <

√
ndn

)
→ 0;

– Otherwise, j + 1 /∈ Jk, so αj 6= αj+1. Consequently, as previously, δn,j corresponds
to a consecutive difference of λn,j issued from two different factors, so we can still
use Proposition 21 and the proof of Theorem 3.1 in Passemier & Yao (2012b) to

78



5.7. CONCLUDING REMARKS

show that
P(δn,j < dn)→ 0.

– The case of j = m is considered as in Passemier & Yao (2012b).

Conclusion. P(δn,m+1 ≥ dn)→ 0 and
∑m

j=1 P(δn,j < dn)→ 0, therefore

P(m̂n = m) −→
n→∞

1.
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Chapter 6

Corrections of some likelihood
statistics in a high-dimensional strict
factor model

Abstract: Factor models appear in many areas, such as economics or
signal processing. If the factors and errors are Gaussian, a likelihood-
based theory is well-known since Lawley (1940). However, these results
are obtained in the classical scheme where the data dimension p is kept
fixed while the sample size n tends to infinity. This point of view is not
valid anymore for large-dimensional data, and usual statistics have to
be modified. In this chapter, we consider the strict factor model with
homoscedastic variance. First, we give the bias of the estimator of the
noise variance. Then we present a corrected likelihood ratio test of the
hypothesis that the factor model fits. Finally, we define a test of equality
of the norm of two factor loadings vectors.

Keywords: Factor model, covariance matrix, random matrix theory, high-
dimensional statistics, hypothesis testing, maximum-likelihood estimation,
likelihood ratio test.

AMS subject classification: 62F03, 62F12, 60B20.

This chapter is a preprint
which have the title:

“Corrections of some likelihood statistics in a high-dimensional strict factor model.”

It has been written in collaboration with Jian-Feng Yao.
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6.1. INTRODUCTION

6.1 Introduction

In a factor model, variables are described as linear combinations of factors with added
noise. This model, which first appears in psychology, is now widely used and appears in
many scientific fields. In finance, the Arbitrage Pricing Theory (APT) of Ross (1976) and its
extension in Chamberlain & Rothschild (1983) heavily rely on factor analysis model. Similar
models can be found in physics of mixture, see Kritchman & Nadler (2008); Naes et al.
(2002) or population genetics. In wireless communications, a signal emitted by a source is
modulated and received by an array of antennas which will permit the reconstruction of
the original signal, using a factor model (Bianchi et al. (2011); Hachem et al. (2012); Vallet
et al. (2012)). More recently, spiked population models have been introduced in Johnstone
(2001) that encompass factor models.

A statistical theory for the maximum likelihood estimation is well-known since Lawley
(1940), see also Lawley & Maxwell (1971). Furthermore, the asymptotic normality of the
maximum likelihood estimators is established in Anderson & Amemiya (1988). Amemiya &
Anderson (1990) also gives a likelihood ratio test for model fit which has an asymptotic
χ2 distribution under the null. However, these results are developed from a classical point
of view where the data dimension p is kept fixed while the sample size n tends to infinity.
This scheme is not valid anymore for large-dimensional data.

In the strict factor model case, Kritchman & Nadler (2008) observed that the maximum
likelihood estimator of the homoscedastic variance has a negative bias, and proposed an
empirical correction. In Section 6.4, we give the bias and propose an unbiased estimator.
Section 6.5 considers the goodness-of-fit test for the strict factor model: we propose a
corrected likelihood ratio test to cope with the high-dimensional effects. Next we define a
test of the equality of the norm of two consecutive vectors of factor scores, or equivalently
of two consecutive spikes.

The remaining sections of the chapter are organized as follows. In Section 6.2, we
introduce the definition of the strict factor model and the related maximum likelihood
theory. In Section 6.3, we recall some results from random matrix theory which will be
useful in the following. Throughout the chapter, simulation experiments are conducted to
access the quality of the proposed estimation.

6.2 Strict factor model

6.2.1 The model

Let p denote the number of variables and n the sample size. In a general factor analysis
model, the p-dimensional observation vectors (xi)1≤i≤n are of the form

xi =

m∑
k=1

fkiΛk + ei + µ (6.1)

= Λfi + ei + µ, (6.2)

where
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• µ ∈ Rp represents the general mean;
• fi = (f1i, . . . , fmi)

′ are m random factors (m < p);
• Λ = (Λ1, . . .Λm) is the p×m full rank matrix of factor loadings;
• ei is a p-dimensional centered vector of noise, independent from fi and with covariance

matrix Ψ = E(eie
′
i).

In order to remove indeterminacy and avoid identification problem in the model, commonly
used restrictions are

• E(fi) = 0 and E(fif
′
i) = Ip;

• Ψ = cov(ei) is diagonal;
• Γ = Λ′Ψ−1Λ is diagonal.

Consequently, the population covariance matrix Σ = cov(xi) is

Σ = ΛΛ′ + Ψ.

In a strict factor model with homoscedastic variance, we assume in addition

Ψ = σ2Ip,

where σ2 ∈ R is the common variance of the noise ei. In this case, Σ = ΛΛ′ + σ2Ip and has
the spectral decomposition

W′ΣW = σ2Ip + diag(α1, . . . , αm, 0, . . . , 0)

where W is an unknown basis of Rp and α1 ≥ α2 ≥ · · · ≥ αm > 0. Let x̄ be the sample
mean. The sample covariance matrix of the n p-dimensional i.i.d. vectors (xi)1≤i≤n is

Sn =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′.

We denote by λn,1 ≥ λn,2 ≥ · · · ≥ λn,p its eigenvalues.

6.2.2 Maximum likelihood estimators

If the fi and ei are Gaussian, a likelihood-based theory has been developed by Lawley
(1940). The maximum likelihood estimator of µ is x̄ and those of Λ and Ψ are obtained by
solving the following implicit equations

Λ(Γ + Im) = SnΨ−1Λ, (6.3)
diag(ΛΛ′ + Ψ) = diag(Sn), with Γ diagonal. (6.4)

These equations can be solved using EM-type algorithms, see Zhao et al. (2008) for a review.
The asymptotic normality of the maximum likelihood estimators Λ̂ (resp. Ψ̂) of Λ (resp.
Ψ) is established in Anderson & Amemiya (1988) (actually under a more general setting
than assuming normal distributions):
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Proposition 23. Let Θ = (θij)1≤i,j≤p = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′. If (θ2
ij)1≤i,j≤p is nonsingular,

if Λ and Ψ are identified by the condition that Λ′ΨΛ is diagonal and the diagonal elements
are different and ordered, if Sn → ΛΛ′ + Ψ in probability and if

√
n(Sn − Σ) has a limiting

distribution, then
√
n(Λ̂− Λ) and

√
n(Ψ̂−Ψ) have a limiting distribution. The covariance

of
√
n(Ψ̂ii−Ψii) and

√
n(Ψ̂jj−Ψjj) in the limiting distribution is 2Ψ2

iiΨ
2
jjξ

ij (1 ≤ i, j ≤ p),
where (ξij) = (θ2

ij)
−1.

In the strict factor model case, the estimation of Ψ = σ2Ip is simplified to that of σ2.
The equations (6.3) and (6.4) defining the maximum likelihood estimates (m.l.e.) become

Λ(Γ + Im) = Sn

(
1

σ2Ip

)
Λ, (6.5)

pσ2 = tr(Sn − ΛΛ′), with Γ = Λ′
(

1

σ2Ip

)
Λ diagonal. (6.6)

In Anderson & Rubin (1956), the authors give the explicit solutions of (6.5) and (6.6):

σ̂2 =
1

p−m

p∑
i=m+1

λi, (6.7)

Λ̂k =
(
λn,k − σ̂2

) 1
2 vn,k, 1 ≤ k ≤ m, (6.8)

where vn,k is the normalized eigenvector of Sn corresponding to λn,k, for 1 ≤ k ≤ p.
In the classical setting where p is kept fixed and small whereas the sample size n→∞,

the almost sure convergence of these estimators is well-established. Nevertheless, this is no
longer the case when p is large compared to n.

Notice that using Proposition 23, one can calculate (see appendix for details) the
asymptotic variance of the m.l.e. σ̂2, which is

σ2
MLE =

2σ4

p−m
. (6.9)

6.3 Results from random matrix theory

6.3.1 Results about spiked population model

Let us rewrite the spectral representation of Σ as a spiked population model:

spec(Σ) = (α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

) (6.10)

= σ2(α∗1, . . . , α
∗
1︸ ︷︷ ︸

n1

, . . . , α∗K , . . . , α
∗
K︸ ︷︷ ︸

nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

), (6.11)

with n1 + · · ·+ nK = m and
α∗i =

αi
σ2

+ 1.
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It is assumed in the sequel that p and n are related so that when n→∞, cn = p/n→
c > 0. Therefore, p can be large compared to the sample size n (large-dimensional case).

Moreover, we assumed that α∗1 ≥ · · · ≥ α∗m > 1 +
√
c, i.e all the eigenvalues αi are

greater than σ2√c. For α 6= 1, we define the function

φ(α) = α+
cα

α− 1
.

In Baik & Silverstein (2006) it is proved that, under a moment condition on xi, for each
k ∈ {1, . . . ,m} and almost surely,

λn,k −→ σ2φ(α∗k) (6.12)

= αk + σ2 + σ2c

(
1 +

σ2

αk

)
. (6.13)

It is also proved that for all 1 ≤ i ≤ L with a prefixed range L and almost surely,

λn,m+i → b = σ2(1 +
√
c)2.

Furthermore, Bai & Yao (2008) give the joint distribution of

{
√
n(λn,j − φ(α∗k)), j ∈ Jk} (6.14)

where Jk = {sk−1 + 1, . . . , sk}, si = n1 + · · ·+ ni for 1 ≤ i ≤ K.

6.3.2 Empirical spectral distribution and Marčenko-Pastur distributions

Let H be a probability measure on R+ and c > 0 a constant. We define the map

g(s) = gc,H(s) =
1

s
+ c

∫
t

1 + ts
dH(t) (6.15)

in the set C+ = {z ∈ C : =z > 0}. The map g is a one-to-one map from C+ onto
itself (see Bai & Silverstein (2010), chapter 6), and the inverse map m = g−1 satisfies
all the requirements of the Stieltjes transform of a probability measure on [0,∞). We
call this measure F

¯c,H
. Next, a companion measure Fc,H is introduced by the equation

cFc,H = (c− 1) δ0 +F
¯c,H

(note that in this equation, measures can be signed). The measure
Fc,H is referred as the generalized Marčenko-Pastur distribution with indexes (c,H).

Let Fn = 1
p

∑p
i=1 δλn,i be the empirical spectral distribution (ESD) of Sn. It is well

known that when Σ = σ2Ip, Fn converges to the Marčenko-Pastur distribution of indexes
(c, δσ2), denoted as Fc,σ2 , with the following density function

pc,σ2(x) =

{
1

2πxcσ2

√
(b(c)− x)(x− a(c)) if a(c) = σ2(1−

√
c)2 ≤ x ≤ b(c) = σ2(1 +

√
c)2

0 otherwise.

This limit still holds for the spiked population model (6.11).
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Let Hn = FΣ be the ESD of Σ. We have

Hn =
p−m
p

δσ2 +
1

p

m∑
i=1

δαi+σ2

and Hn → δσ2 .

6.3.3 CLT for LSS of a high-dimensional covariance matrix

We consider the following empirical process

Gn(f) = p

∫
R
f(x)[Fn − Fcn,Hn ](dx), f ∈ A,

where A is the set of analytic functions f : U → C, with U an open set of C such that
[1(0,1)(c)a(c), b(c)] ⊂ U . As Hn = FΣ → δσ2 and following Bai et al. (2009), we have the
following proposition which is a specialization of Theorem 9.10 of Bai & Silverstein (2010)
(which covers more general matrices).

Proposition 24. Assume that f1, . . . , fk ∈ A and the entries xij of the vectors (xi)1≤i≤n
are i.i.d. real random variables with mean 0, E(|xij |4) = 3σ4 and cov(xi) = Σ = ΛΛ′ + σ2Ip.
Then the random vector (Gn(f1), . . . , Gn(fk)) converges to a k-dimensional Gaussian vector
with mean vector

m(fj) =
fj(a(c)) + fj(b(c))

4
− 1

2π

∫ b(c)

a(c)

fj(x)√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k,

and covariance function

v(fj , fl) = − 1

2π2

∮ ∮
fj(z1)fl(z2)

(m(z1)−m(z2))2
dm(z1)dm(z2), j, l = 1, . . . , k, (6.16)

where m(z) is the Stieltjes transform of F c,δσ2 = (1− c)δ0 + cFc,δσ2 . The contours are non
overlapping and both contain the support of Fc,δσ2 .

6.4 Estimation of the homoscedastic variance

As observed in Kritchman & Nadler (2008, 2009), in high-dimensional setting, the m.l.e.
σ̂2 in (6.7) has a negative bias. In this section, we will give this bias and show its asymptotic
normality.

Theorem 3. We assume the same conditions of Proposition 24. Then, we have

(p−m)

σ2
√

2c
(σ̂2 − σ2) + b(σ2)

L−→ N (0, 1),

where b(σ2) =
√

c
2

(
m+ σ2

∑m
i=1

1
αi

)
.
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Proof. We have

(p−m)σ̂2 =

p∑
i=m+1

λn,i

=

p∑
i=1

λn,i −
m∑
i=1

λn,i.

By (6.13), we have

m∑
i=1

λn,i −→
m∑
i=1

(
αi +

cσ4

αi

)
+ σ2m(1 + c) a.s. (6.17)

For the first term, we write

p∑
i=1

λi = p

∫
xdFn(x)

= p

∫
x d(Fn − Fcn,Hn)(x) + p

∫
x dFcn,Hn(x)

= Gn(x) + p

∫
x dFcn,Hn(x).

By Proposition 24, the first term is asymptotically normal

Gn(x) =

p∑
i=1

λn,i − p
∫
x dFcn,Hn(x)

L−→ N (m(x), v(x)),

with the mean

m(x) = 0 (6.18)

and the variance

v(x) = 2cσ4 (6.19)

are calculated in the appendix. Furthermore, by lemma 1 of Bai et al. (2010) (which can
be proved using (6.15)), we have∫

x dFcn,Hn(x) =

∫
t dHn(t)

=
p−m
p

σ2 +
1

p

m∑
i=1

(
αi + σ2

)
= σ2 +

1

p

m∑
i=1

αi.
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So we get

p∑
i=1

λn,i − pσ2 −
m∑
i=1

αi
L−→ N (0, 2cσ4). (6.20)

By (6.17) and (6.20) and using the Slutsky lemma, we obtain

(p−m)(σ̂2 − σ2) + cσ2

(
m+ σ2

m∑
i=1

1

αi

)
L−→ N (0, 2cσ4).

6.4.1 Simulation experiments

We consider an i.i.d. Gaussian sample of size n in three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 1;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 3, c = 1.5.

Figure 6.1 presents the histograms of 1000 replications of

(p−m)

σ2
√

2c
(σ̂2 − σ2) + b(σ2)

for the three models above, with different sample size n and p = c× n, compared to the
density of the standard normal probability law. Even when the sample size is moderate like
n = 100, the distribution is almost normal.

In Table 6.1, we compare the empirical bias of σ̂2 (i.e. the empirical mean of σ2 − σ̂2 =
σ2 − 1

p−m
∑p

i=m+1 λn,i) over 1000 replications with the theoretical one b(σ2)/(p −m) in
different settings.

Table 6.1: Comparison between the empirical and the theoretical bias in various settings.
Settings Empirical bias Theoretical bias |Difference|

Model 1
p = 100 n = 100 -0.1556 -0.1589 0.0023
p = 400 n = 400 -0.0379 -0.0388 0.0009
p = 800 n = 800 -0.0189 -0.0193 0.0004

Model 2
p = 20 n = 100 -0.0654 -0.0704 0.0050
p = 80 n = 400 -0.0150 -0.0162 0.0012
p = 200 n = 1000 -0.0064 -0.0063 0.0001

Model 3
p = 150 n = 100 -0.0801 -0.0795 0.0006
p = 600 n = 400 -0.0400 -0.0397 0.0003
p = 1500 n = 1000 -0.0157 -0.0159 0.0002

The empirical bias is close to the theoretical one. As expected, the difference between
the two bias decreases when p and n increase. There is no particular difference between the
three models.
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Model 1 (p=n=100)
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Model 3 (p=150,n=100)
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Figure 6.1: Histogram of (p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2) compared with the density of a standard Gaussian law.

6.4.2 A bias-corrected estimator

The previous theory recommends to correct the negative bias of σ̂2. However, the bias
b(σ2) depends on the number m and the values αi of the spikes. These parameters could
not be known in real-data applications and they need to be first estimated. In the literature,
consistent estimators of m have been proposed, e.g. in Passemier & Yao (2012b,a) and
Kritchman & Nadler (2008). For for the values of the spikes αi, it is easy to see that it can
be done by inverting the function φ in (6.13) at the corresponding eigenvalues λj . Moreover,
by applying the delta-method to (6.14), we can obtain the asymptotic distribution of this
estimator.

As the bias depends on σ2 which we want to estimate, a natural correction is to use the
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plug-in estimator

σ̂2
∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√

2c.

To assess the quality of this bias-corrected estimator σ̂2
∗, we conduct some simulation

experiments using the previous settings: in Table 6.2, we give the empirical mean of σ̂2
∗ over

1000 replications compared with the empirical mean of σ̂2, as well as the mean absolute
deviations.

Table 6.2: Comparison between σ̂2 and σ̂2
∗ in various settings.

Settings
σ̂2 |σ2 − σ̂2| σ̂2

∗ |σ2 − σ̂2
∗|Model No. p n σ2

1
100 100

4
3.8441 0.1559 3.9966 0.0034

400 400 3.9617 0.0383 4.0000 < 10−5

800 800 3.9806 0.0194 3.9998 0.0002

2
20 100

2
1.9321 0.0679 1.9993 0.0007

80 400 1.9846 0.0154 2.0007 0.0007
200 1000 1.9937 0.0063 2.0000 < 10−5

3
150 100

3
2.8413 0.1587 2.9940 0.0060

600 400 2.9599 0.0401 2.9992 0.0008
1500 1000 2.9842 0.0158 3.0000 < 10−5

The bias-corrected estimator is far much better than σ̂2: here mean absolute deviations
are reduced by 95% at least. The proposed correction of the bias performs well in the three
models.

6.5 Corrected likelihood ratio test of the hypothesis that the
factor model fits

In this section we consider the following goodness-of-fit test for the strict factor model.
The null hypothesis is then

H0 : Σ = ΛΛ′ + σ2Ip,

where the number of factors m is specified.
Following Anderson & Rubin (1956), the likelihood ratio test (LRT) statistic is

Tn = −nL∗,

where

L∗ =

p∑
j=m+1

log
λn,j
σ̂2

,

and σ̂2 is the variance estimator (6.7). Keeping p fixed while letting n → ∞, then the
classical theory states that Tn converges to χ2

q , where q = p(p+1)/2+m(m−1)/2−pm−1,
see Anderson & Rubin (1956). However, this classical approximation is no more valid in
the large-dimensional setting. Indeed, we will prove that this criterion leads to a high rate
of false-alarm. In particular, the test becomes biased since the size will be much higher
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than the nominal level (see Table 6.3).
In a way similar to Section 6.4, we will construct a corrected version of Tn using

Proposition 24 and calculus done in Bai et al. (2009) and Zheng (2012). As we consider the
logarithm of the eigenvalues of the sample covariance matrix, we will assume in the sequel
that c < 1 to avoid null eigenvalues. We have the following theorem

Theorem 4. We assume the same conditions of Proposition 24, with c < 1, i.e. the entries
xij of the vectors (xi)1≤i≤n are i.i.d. real random variables with mean 0, E(|xij |4) = 3σ4

and cov(xi) = Σ = ΛΛ′ + σ2Ip. Then, we have

v(c)−
1
2 (L∗ −m(c)− ph(cn, H̃n(σ2)) + η + (p−m) log(β))

L−→ N (0, 1),

where

• m(c) = log (1−c)
2 ;

• h(cn, H̃n(σ2)) =
∫

log(x) dFcn,H̃n(σ2)(x), with H̃n(σ2) = p−m
p δ1 + 1

p

∑m
i=1 δαi/σ2+1;

• η =
∑m

i=1 log((αiσ
−2 + 1)(1 + cσ2α−1

i ));

• β = 1− c
p−m(m+ σ2

∑m
i=1 α

−1
i );

• v(c) = −2 log(1− c) + 2c
β

(
1
β − 2

)
.

Proof. We have

L∗ =

p∑
i=m+1

log
λn,i
σ̂2

=

p∑
i=m+1

log
λn,i
σ2
−

p∑
i=m+1

log
σ̂2

σ2

=

p∑
i=m+1

log
λn,i
σ2
− (p−m) log

(
1

p−m

p∑
i=m+1

λn,i
σ2

)

= L1 − (p−m) log

(
L2

p−m

)
,

where we have defined a two-dimensional vector (L1, L2) = (
∑p

i=m+1 log
λn,i
σ2 ,

∑p
i=m+1

λn,i
σ2 ).

CLT when σ2 = 1. To start with, we consider the case σ2 = 1. We have

L1 =

p∑
i=m+1

log λn,i

=

p∑
i=1

log λn,i −
m∑
i=1

log λn,i
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= p

∫
log(x) dFn(x)−

m∑
i=1

log λn,i

= p

∫
log(x) d(Fn − Fcn,Hn)(x) + p

∫
log(x) dFcn,Hn(x)−

m∑
i=1

log λn,i.

Similarly, we have

L2 = p

∫
x d(Fn − Fcn,Hn)(x) + p

∫
x dFcn,Hn(x)−

m∑
i=1

λn,i.

By Proposition 24, we find that

p

( ∫
log(x) d(Fn − Fcn,Hn)(x)∫
x d(Fn − Fcn,Hn)(x)

)
L−→ N

((
m1(c)
m2(c)

)
,

(
v1(c) v1,2(c)
v1,2(c) v2(c)

))
(6.21)

with m2(c) = 0 and v2(c) = 2c and

m1(c) =
log (1− c)

2
, (6.22)

v1(c) = −2 log (1− c), (6.23)

v1,2(c) = 2c. (6.24)

Formulas m2 and v2 have been established in the proof of Theorem 3 and the remaining
ones are proved in Section 6.8.

In Theorem 3, with σ2 = 1, we found that∫
x dFcn,Hn(x) = 1 +

1

p

m∑
i=1

αi,

and
m∑
i=1

λn,i
a.s.−→

m∑
i=1

(
αi +

c

αi

)
+m(1 + c).

For the last term of L1, by (6.13), we have

log λn,i −→ log(φ(αi + 1)) = log
(
(αi + 1)(1 + cα−1

i )
)
a.s.

Summarizing, we have obtained that

L1 −m1(c)− ph(cn, Hn) + η(c, α)
L−→ N (0, v1(c)) ,

where h(cn, Hn) =
∫

log(x) dFcn,Hn(x) and η(c, α) =
∑m

i=1 log((αi + 1)(1 + cσ2α−1
i )).
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Similarly, we have
L2 − (p−m) + ρ(c, α)

L−→ N (0, v2(c)) ,

where ρ(c, α) = c(m+
∑m

i=1 α
−1
i ).

Using (6.21) and the Slutsky lemma, we finally get the following CLT for (L1, L2)′(
L1

L2

)
L−→ N

((
m1(c) + ph(cn, Hn)− η(c, α)

p−m− ρ(c, α)

)
,

(
v1(c) v1,2(c)
v1,2(cn) v2(cn)

))
,

with h(cn, Hn) =
∫

log(x) dFcn,Hn(x), η(c, α) =
∑m

i=1 log((αi+1)(1+cσ2α−1
i )) and ρ(c, α) =

c(m+
∑m

i=1 α
−1
i ).

CLT with general σ2. When σ2 = 1,

spec(Σ) = (α1 + 1, . . . , αm + 1, 1, . . . , 1),

whereas in the general case

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2)

= σ2
(α1

σ2
+ 1, . . . ,

αm
σ2

+ 1, . . . , 1
)
.

Thus, if we consider λi/σ2, we will find the same CLT by replacing the (αi)1≤i≤m by αi/σ2.
Furthermore, we divide L2 by p−m to find(

L1
L2
p−m

)
L−→ N

((
m1(c) + ph(cn, H̃n(σ2))− η(c, α/σ2)

1− ρ(c,α/σ2)
p−m

)
,

(
2c

(p−m)2
2c
p−m

2c
p−m −2 log(1− c)

))
,

with η(c, α/σ2) =
∑m

i=1 log((αiσ
−2 + 1)(1 + cσ2α−1

i )), ρ(c, α/σ2) = c(m + σ2
∑m

i=1 α
−1
i )

and H̃n(σ2) = p−m
p δ1 + 1

p

∑m
i=1 δαi/σ2+1.

Asymptotic law of L∗. We have L∗ = g(L1, L2/(p−m)), with g(x, y) = x−(p−m) log(y).
We will apply the multivariate delta-method on (6.25) with the function g. We have
5g(x, y) =

(
1,−p−m

y

)
and

L∗
L−→ N (β1 − (p−m) log(β2),5g(β1, β2) cov(L1, L2/(p−m))5 g(β1, β2)′),

with β1 = m1(c) + ph(cn, H̃n(σ2))− η(c, α/σ2) and β2 = 1− ρ(c,α/σ2)
p−m . After calculation we

finally get

L∗
L−→ N

(
m1(c) + ph(cn, H̃n(σ2))− η(c,

α

σ2
)− (p−m) log(β2),−2 log(1− c) +

2c

β2

(
1

β2
− 2

))
.
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To test H0, we then can use the statistic

v(cn)−
1
2 (L∗ −m(c)− ph(cn, H̃n(σ2)) + η + (p−m) log(β)) ,

This test is asymptotically normal. In practice, we need an accurate expression for
h(cn, H̃n(σ2)) =

∫
log(x) dFcn,H̃n(σ2)(x). However, this is missing at the moment and

we conjecture the following formula.

Conjecture 1. For H̃n(σ2) = p−m
p δ1 + 1

p

∑m
i=1 δαi/σ2+1,

p

∫
log(x)dFcn,H̃n(x) =

m∑
j=1

log
(αj
σ2

+ 1
)

+ p

∫
log(x)dFcn,δ1(x) + o(1). (6.25)

The second term can be calculated using the density of the Marčenko-Pastur law (see
appendix): we have

h(cn) =

∫
log(x)dFcn,δ1(x) (6.26)

=
cn − 1

cn
log(1− cn)− 1. (6.27)

Simulation results given in appendix suggest that the conjectured formula (6.25) is quite
accurate.

6.5.1 Simulation experiments

For the simulation experiments, we will use the following statistic, obtained from (6.25)
by changing h(cn, H̃n(σ2)) to its conjectured value:

v(cn)−
1
2 (L∗ −m(c)− ph(cn) + ϑ+ (p−m)log(β)),

where

• β = 1− c
p−m(m+ σ2

∑m
i=1 α

−1
i ) as previously and;

• ϑ = η −
∑m

j=1 log(αjσ
−2 + 1) =

∑m
i=1 log(1 + cσ2α−1

i ).

The corresponding test will be hereafter referred as the corrected likelihood ratio test (CLRT
in short).

We consider again the models 1 and 2 described in Section 6.4.1, and a new one
(model 4):

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8, 7, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 1, varying c.

Table 6.3 gives the realized sizes (i.e. the empirical probability of rejecting the null
hypothesis) of the classical likelihood ratio test (LRT) and the corrected likelihood ratio test
(CLRT) proposed above. For the LRT, we use the correction proposed by Bartlett (1950),
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that is replacing Tn = −nL∗ by T̃n = −(n− (2p+ 11)/6− 2m/3)L∗. The computations are
done under 10000 independent replications and the nominal test level is 0.05.

Table 6.3: Comparison of the realized size of the classical likelihood ratio test (LRT) and the corrected
likelihood ratio test (CLRT) in various settings.

Settings Realized size of CLRT Realized size of LRT

Model 1
p = 90 n = 100 0.0497 0.9995
p = 180 n = 200 0.0491 1
p = 720 n = 800 0.0496 1

Model 2
p = 20 n = 100 0.0324 0.0294
p = 80 n = 400 0.0507 0.0390
p = 200 n = 1000 0.0541 0.0552

Model 4

p = 5 n = 500 0.0108 0.0483
p = 10 n = 500 0.0190 0.0465
p = 50 n = 500 0.0424 0.0445
p = 100 n = 500 0.0459 0.0461
p = 200 n = 500 0.0491 0.2212
p = 250 n = 500 0.0492 0.7395
p = 300 n = 500 0.0509 0.9994

The sizes of our new CLRT are close to the theoretical one, except when the ratio
c = p/n is small (less than 0.1). On the contrary, the sizes produced by the classical LRT
are much higher than the nominal level when c is going close to one, and the test will always
be rejected when p is large.

6.6 Testing the equality of two spiked eigenvalues

In this section, the aim is to conduct the following test

H0: αi = αi+1 vs. H1: αi 6= αi+1,

where i ≤ m − 1 is fixed. From the point of view of the factor model, it is the same to
test the equality of the norm of two vectors of factor scores. To this end, we will begin by
detailing the result (6.14) of Bai & Yao (2008). Without any loss of generality, we consider
here that σ2 is known and equal to one.

6.6.1 Law of the spacings of two consecutive eigenvalues

Proposition 25. Assume that the entries xi of x satisfy E(|xi|4) <∞, α∗j > 1 +
√
c for

all 1 ≤ j ≤ K and have multiplicity n1, . . . , nK respectively. Then as p, n → ∞ so that
p
n → c, the nk-dimensional real vector

βn,j =
√
n{λn,j − φ(α∗k), j ∈ Jk}

converges weakly to the distribution of the nk eigenvalues of a Gaussian random matrix G
whose covariance depends on αk and c.
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In the real Gaussian case, G is a nk×nk real Gaussian-Wigner matrix (with independent
entries) of the form

M = sk

 W1,1 · · · W1,nk
...

. . .
...

Wnk,1 · · · Wnk,nk

 ,

where s2
k =

2α∗2k ((α∗k−1)2−c)
(α∗k−1)2

.

Since the joint distribution of eigenvalues of a Gaussian-Wigner matrix is known, we
get the following (unordered) density for the limiting distribution of the nk-dimensional
vector βn,j :

g(x1, · · · , xnk) = Cexp

(
− 1

2s2
k

nk∑
i=1

x2
i

)∏
j<k

|xj − xk| (6.28)

where C−1 = s
nk(nk+1)

2
k 2

3nk
2
∏nk
j=1 Γ

(
1 + j

2

)
.

6.6.1.1 Case of multiplicity two

When nk = 2, this expression becomes

g(x1, x2) =
1

4s3
k

√
π
|x1 − x2|exp

(
− 1

2s2
k

(x2
1 + x2

2)

)
.

From this, one can get the limiting distribution of βn,i−βn,i+1 =
√
n(λn,i−λn,i+1) =

√
nU2

when nk = 2 (case of multiplicity two)

m2(x) =
1

2s2
k

|x|e
− x2

4s2
k ,

so

P(
√
nU2 ≤ ε) = 1− e

− ε2

4s2
k .

6.6.1.2 Case of multiplicity greater than two

When the multiplicity is greater than two, we can not directly compute the law of
βn,i− βn,i+1 =

√
n(λn,i− λn,i+1) from (6.28). Nevertheless, we can use the Wigner Surmise

(see Mehta (2004)) to approximate it. Wigner considered normalized spacings. Based
on arguments from the analysis of a model for nuclear energy levels, he conjectures an
expression for the nearest neighbor spacings probability density function, when the size of
the matrix goes to infinity. When the spacings are normalized by

√
2π/nk, the expression

is

mW (x) =
π

2s2
k

|x|e
−πx

2

4s2
k .
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It was in fact an approximation and Gaudin (1961) demonstrated that this approximation
is good, even for small nk. Actually, the exact expression is known but complicated to
calculate (see Section 7.4 of Mehta (2004)). If we remove the normalization, we find

mnk(x) =
nk
4s2
k

|x|e
−nkx

2

8s2
k ,

so

P(
√
nUnk ≤ ε) = 1− e

−nkε
2

8s2
k .

6.6.2 Definition of the test

We recall the test (6.6):

H0: αi = αi+1 vs. H1: αi 6= αi+1

To conduct this test, we will use the statistic Dn,i =
√
n(λn,i − λn,i+1): under H0 ,

Dn,i have the density function mnk for some nk whereas under H1, Dn,i is equivalent to√
n(φ(αi)− φ(αi+1)), thus tends to infinity when n→∞. For t > 0, the p-value function

of the test is

pv(t) = sup
H0

P(Dn,k > t)

= sup
nk≥2

e
−nkt

2

8s2
k

= e
−nkt

2

8s2
k |nk=2

= e
− t2

4s2
k .

Let dobs be the observed value of Dn,i. Then, at a significance level γ, H0 will be rejected if
pv(dobs) < γ, i.e.

dobs >
√
−4s2

k log(γ).

6.6.3 Simulation experiments

We consider an i.i.d. Gaussian sample of size n in three different models
• Model 5: Spec(Σ) = (10, 10, 5, 5, 1, . . . , 1), c = 0.3 and c = 0.6;
• Model 6: Spec(Σ) = (10, 10, 10, 5, 5, . . . , 1), c = 0.3 and c = 0.6;
• Model 7: Spec(Σ) = (10, 10, 9, 9, 1, . . . , 1), c = 0.3 and c = 0.6.

We performs two different tests: one where the null H0 is theoretically verified, and an other
one with a null H̃0 not true. We ran 1000 independent replications and took a nominal
level of 0.1. As the law of the statistic Dn,i depends on s2

k, which itself depends on the
unknown αi, we display the results of the simulation experiments using the real αi, and
using the estimated one obtained by inverting the function φ in (6.13).
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Furthermore, when αi = αi+1, s2
i = s2

i+1: this is no longer the case when αi 6= αi+1. As
the p-value is an increasing function of s2

i , we take s2
i+1 in the calculation of the realized

size, in order to maximize the power.

Table 6.4: Realized size of the test H0: α1 = α2 and H̃0: α2 = α3 for model 5, with c = 0.3 and c = 0.6.

α∗i known α∗i estimated
(p, n) H0: α1 = α2 H̃0: α2 = α3 H0: α1 = α2 H̃0: α2 = α3

(30,100) 0.082 0.903 0.183 0.841
(60,200) 0.087 0.995 0.165 0.992
(120,400) 0.099 1 0.150 1
(240,800) 0.103 1 0.136 1
(60,100) 0.101 0.873 0.188 0.831
(120,200) 0.083 0.997 0.154 0.992
(240,400) 0.102 1 0.144 1
(480,800) 0.100 1 0.132 1

For the model 5 (see Table 6.4), the realized sizes of the test are close to the theoretical
ones when we considered the α∗i known. For the first test (α1 = α2), H0 is accepted with an
empirical probability of 0.1. For the second test (α2 = α3), H̃0 is not accepted in most of
the cases, as expected. When α∗i is estimated, the realized sizes are slightly higher than the
theoretical one, but seems to tend to the correct value. From the last column, we can see
that the powers are close to one, even if they are lower than in the case where α∗i is known.
When c increases, the realized sizes of the test (α1 = α2) are closer to the theoretical value
0.1. The use of estimated αi in s2

k influences more the realized sizes than the powers: the
realized sizes increase but tend to the correct value.

Model 6 is a modification of model 5: here we consider that the first spike is of multiplicity
three. The results are displayed in Table 6.5.

Table 6.5: Realized size of the test H0: α2 = α3 and H̃0: α3 = α4 for model 6, with c = 0.3 and c = 0.6.

α∗i known α∗i estimated
(p, n) H0: α2 = α3 H̃0: α3 = α4 H0: α2 = α3 H̃0: α3 = α4

(30,100) 0.023 0.766 0.109 0.708
(60,200) 0.024 0.987 0.100 0.971
(120,400) 0.034 1 0.086 1
(240,800) 0.029 1 0.066 1
(60,100) 0.015 0.781 0.094 0.722
(120,200) 0.026 0.993 0.102 0.983
(240,400) 0.018 1 0.061 1
(480,800) 0.031 1 0.065 1

As expected by the construction of the test, we have lower realized sizes but lower
powers too compared to model 5. As in this last one, the realized sizes are increased by
using an estimator of αi, but remain under the nominal level.

Model 7 considers a more difficult case, where the spacing between the spikes is small:
it will be harder to distinguish α2 from α3, so the powers of the test will be lower. The
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results are displayed in Table 6.6.

Table 6.6: Realized size of the test H0: α1 = α2 and H̃0: α2 = α3 for model 7, with c = 0.3 and c = 0.6.

α∗i known α∗i estimated
(p, n) H0: α1 = α2 H̃0: α2 = α3 H0: α1 = α2 H̃0: α2 = α3

(30,100) 0.062 0.039 0.109 0.133
(60,200) 0.064 0.050 0.100 0.123
(120,400) 0.057 0.106 0.086 0.154
(240,800) 0.068 0.220 0.066 0.254
(480,1600) 0.087 0.354 0.106 0.372
(60,100) 0.058 0.041 0.099 0.151
(120,200) 0.058 0.057 0.094 0.127
(240,400) 0.064 0.092 0.085 0.141
(480,800) 0.075 0.199 0.100 0.238
(960,1600) 0.083 0.389 0.096 0.406

The powers are much lower than in the case where the spikes are well-separated.
Nevertheless, the realized sizes remain good. The convergence is slower in this case.

6.7 About the estimation of Λk

In section 6.2.2 we give the maximum likelihood estimators of the factor scores Λk,
Λ̂k =

(
λn,k − σ̂2

)1/2
vn,k, where vn,k is a normalized eigenvector of Sn corresponding to

λn,k, for 1 ≤ k ≤ p. Therefore, spec(Λ̂′kΛ̂k) = (λn,1, . . . , λn,m), and the eigenvalues
αi are estimated by λn,i. However, by (6.13), this estimation is no longer accurate in
large dimensional setting. As explained in the previous section, we will estimate α∗i by
φ−1(λn,i/σ

2), i.e. αi by α̂i = σ2φ−1(λn,i/σ
2)− σ2 where

φ−1(x) =
1

2

(
x+ 1− c+

√
(x+ 1− c)2 − 4x

)
.

For the eigenvectors vn,k, 1 ≤ k ≤ m, we know that they do not tend to the corresponding
eigenvector uk of the population covariance Σ when both p and n tend to infinity. More
precisely, in Benaych-Georges & Nadakuditi (2011) the authors give the almost sure limit of
|〈vn,k, ker(αiIp−ΛΛ′)〉|2, i ∈ Jk, which is a function of αk: when αk is simple, this means that
vn,k will, with high probability, lie on a cone around uk. Furthermore, when the multiplicity
of αk is greater than two, the equations followed by the corresponding eigenvectors will
have an infinity of solutions. Consequently, we keep the sample eigenvectors vn,k as an
estimate of the population eigenvectors uk, and we will estimate Λk by Λ̃k = α̂

1/2
i vn,k.

The difference compared to Λ̂ is the estimation of its norm α
1/2
i . We can notice that, by

applying the delta-method and using (6.14), one can derive the asymptotic distribution of
{
√
n(α̂j − αk), j ∈ Jk}.
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6.8 Appendix: complementary proofs

Proof of (6.9) By Proposition 23, we know that the inverse of the Fisher Information
Matrix (FIM) is I−1(ψ11, . . . , ψpp) = (2ψ2

iiψ
2
jjξ

ij)ij . We have to change the parametrization:
in our case, we have ψ11 = · · · = ψpp. Let g : R→ Rp, a 7→ (a, . . . , a). The FIM in this new
parametrization becomes

I(σ2) = J ′I(g(σ2))J ,

where J is the Jacobian matrix of g. As

I(g(σ2)) =
1

2σ8
(θ2
ij)ij ,

we have

I(σ2) =
1

2σ8

p∑
i,j=1

θ2
ij ,

and

Θ = (θij)ij = Ψ− Λ(Λ′Ψ−1Λ)−1Λ′

= σ2(Ip − Λ(Λ′Λ)−1Λ′).

By hypothesis, we have Λ′Λ = diag(d2
1, . . . , d

2
m). Consider the Singular Value Decomposition

of Λ, Λ = UDV, where U is a p× p matrix such that UU′ = Ip, V is a m×m matrix such
that V′V = Im, and D is a p×m diagonal matrix with d1, . . . , dm as diagonal elements. As
Λ′Λ is diagonal, V = Im, so Λ = UD. By elementary calculus, one can find that

Λ(Λ′Λ)−1Λ′ = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
p−m

),

so
Θ = σ2diag(0, . . . , 0︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
p−m

).

Finally,

I(σ2) =
1

2σ8
(p−m)σ4 =

p−m
2σ4

and

σ2
MLE = I−1(σ2) =

2σ4

p−m
.
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Proof of (6.18) By Proposition 24, for g(x) = x, by using the variable change x =
σ2(1 + c− 2

√
c cos θ), 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k

=
σ2(1 + c)

2
− σ2

2π

∫ π

0
(1 + c− 2

√
c cos θ) dθ

= 0.

Proof of (6.19) Let s(z) be the Stieltjes transform of (1 − c)1[0,∞) + cFc,δ1 . One can
show that

m(z) =
1

σ2
s
( z
σ2

)
.

Then, in Proposition 24, we have

v(fj , fl) = − 1

2π2

∮ ∮
fj(σ

2z1)fl(σ
2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2), j, l = 1, . . . , k. (6.29)

For g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(σ2z1)g(σ2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − σ4

2π2

∮ ∮
z1z2

(s(z1)− s(z2))2
ds(z1) ds(z2)

= 2cσ4,

where − 1
2π2

∮ ∮
z1z2

(s(z1)−s(z2))2
ds(z1) ds(z2) = 2c is calculated in Bai et al. (2009) (it corre-

sponds to v(z1, z2), Section 5, proof of (3.4)).

Proof of (6.22) By Proposition 24, for σ2 = 1 and g(x) = log(x), by using the variable
change x = 1 + c− 2

√
c cos θ, 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4c− (x− 1− c)2

dx, j = 1, . . . , k

=
log(1− c)

2
− 1

2π

∫ π

0
log(1 + c− 2

√
c cos θ) dθ

=
log(1− c)

2
− 1

4π

∫ 2π

0
log |1−

√
ceiθ|2 dθ

=
log(1− c)

2
,

where
∫ 2π

0 log |1−
√
ceiθ|2 dθ = 0 is calculated in Bai & Silverstein (2010).
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Proof of (6.23) By Proposition 24 and (6.29), for σ2 = 1 and g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − 1

2π2

∮ ∮
log(z1) log(z2)

(s(z1)− s(z2))2
ds(z1)ds(z2)

= −2 log(1− cn),

where the last integral is calculated in Bai & Silverstein (2010).

Proof of (6.27) Fcn,δ1 is the Marčenko-Pastur distribution of index cn. By using the
variable change x = 1 + cn − 2

√
cn cos θ, 0 ≤ θ ≤ π, we have∫

log(x)dFcn,δ1(x) =

∫ b(cn)

a(cn)

log x

2πxcn

√
(b(cn)− x)(x− a(cn)) dx

=
1

2πcn

∫ π

0

log(1 + cn − 2
√
cn cos θ)

1 + cn − 2
√
cn cos θ

4cn sin2 θ dθ

=
1

2π

∫ 2π

0

2 sin2 θ

1 + cn − 2
√
cn cos θ

log |1−
√
cne

iθ|2 dθ

=
cn − 1

cn
log(1− cn)− 1,

where the last integral is calculated in Bai & Silverstein (2010).

Proof of (6.24) In the normal case with σ2 = 1, Zheng (2012) gives the following
equivalent expression of (6.16):

v(fj , fl) = − lim
r→1+

κ

4π2

∮ ∮
|ξ1|=|ξ2|=1

fj(|1 + hξ1|2)fl(|1 + hξ2|2)
1

(ξ1 − rξ2)2
dξ1 dξ2,

where κ = 2 in the real case and h =
√
c in our case. We take fj(x) = log(x) and fl(x) = x,

so we need to calculate

v(log(x), x) = − lim
r→1+

1

2π2

∮ ∮
|ξ1|=|ξ2|=1

|1 +
√
cξ2|2

log(|1 +
√
cξ1|2)

(ξ1 − rξ2)2
dξ1 dξ2.
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We follow the calculations done in Zheng (2012): when |ξ| = 1, |1 +
√
cξ|2 = (1 +

√
cξ)(1 +√

cξ−1), so log(|1 +
√
cξ|2) = 1

2

(
log(1 +

√
cξ)2 + log(1 +

√
cξ−1)2

)
. Consequently,∮

|ξ1|=1

log(|1 +
√
cξ1|2)

(ξ1 − rξ2)2
dξ1 =

1

2

∮
|ξ1|=1

log(1 +
√
cξ1)2

(ξ1 − rξ2)2
dξ1 +

1

2

∮
|ξ1|=1

log(1 +
√
cξ−1

1 )2

(ξ1 − rξ2)2
dξ1

=
1

2

∮
|ξ1|=1

log(1 +
√
cξ1)2

(
1

(ξ1 − rξ2)2
+

1

(1− rξ1ξ2)2

)
dξ1

= 0 + iπ

 1

(rξ2)2

2
√
c

1 +
√
c

rξ2


= 2iπ

√
c

rξ2(rξ2 +
√
c)
.

Thus,

v(log(x), x) =
1

iπ

∮
|ξ2|=1

|1 +
√
cξ2|2

√
c

ξ2(ξ2 +
√
c)

dξ2

=
1

iπ

∮
|ξ|=1

(
1 + c+ c(ξ + ξ−1)

) √
c

ξ(ξ +
√
c)

dξ

=
1

iπ

∮
|ξ|=1

(√
c(1 + c)

ξ(ξ +
√
c)

+
c

ξ +
√
c

+
c

ξ2(ξ +
√
c)

)
dξ

= 2(1 + c− (1 + c) + c+ 1− 1)

= 2c.

Simulation experiments for the conjecture (6.25) We assume that σ2 = 1. We have

p∑
i=1

log λi = p

∫
log(x) d(Fn − Fcn,Hn)(x) + p

∫
log(x) dFcn,Hn(x).

We know that
p

∫
log(x) d(Fn − Fcn,Hn)(x)→ N (m1(c), v1(c)) ,

where m1(c) = log (1−c)
2 and v1(c) = −2 log(1− c). We consider three different settings

• Model A: spec(Σ) = (4, 3, 0, . . . , 0) + (1, . . . , 1), c = 0.2;
• Model B: spec(Σ) = (25, 16, 9, 0, . . . , 0) + (1, . . . , 1), c = 0.9;
• Model C: spec(Σ) = (8, 7, 0, . . . , 0) + (1, . . . , 1), varying c.

In Table 6.7, we give the empirical mean of
∑p

i=1 log λi − log (1−c)
2 over 1000 replications, as

well as the value of
m∑
i=1

log(αi + 1) + p

∫
log(x) dFcn,δ1(x),

where ∫
log(x) dFcn,δ1(x) =

cn − 1

cn
log(1− cn)− 1.
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Table 6.7: Empirical mean over 1000 replications, compared to the conjectured expression.

Settings Conjecture Empirical mean

Model A
p = 20 n = 100 0.8472 0.8507
p = 80 n = 400 -5.5983 -5.6063
p = 200 n = 1000 -18.4894 -18.5231

Model B
p = 90 n = 100 -58.5803 -58.5959
p = 180 n = 200 -125.5544 -125.5406
p = 720 n = 800 -527.3993 -527.3442

Model C

p = 10 n = 500 -6.5567 -6.5572
p = 50 n = 500 1.6889 1.6860
p = 200 n = 500 -42.4756 -42.4657
p = 300 n = 500 -112.4652 -112.4810

We see that the empirical mean is close to the value of the conjecture, in all the cases.
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Conclusion and perspectives

Statistical analysis of large dimensional data is a relatively recent field, which interest
appeared with the possibility of the observation and the storage of a high amount of data.
Random matrix theory is a theoretical framework which allows to solve some problems in
this specific context.

Spiked population model, which can be viewed as a reformulation of the factor model,
appears in several scientific fields. This is the reason why it has been studied in the large
dimensional contest using, in particular, random matrix theory.

Determination of the number of factors (or spikes) is a fundamental problem which is
often a first step before a more complete study. In the first part of this thesis, we constructed
a new method for the estimation of the number of spikes in a spiked population model, by
analyzing the behavior of the difference of two consecutive ordered eigenvalues of the sample
covariance matrix. We proved its consistency in the simple spikes case, as well as in the
case where their multiplicity is greater than one. We proposed several thresholds verifying
the consistency criterion, including an auto-adaptive one. The main advantages of this
method are its simplicity and its ease of implementation, as well as its good performance.

The second part of our work considers the strict factor model with homoscedastic
variance. We studied the maximum likelihood estimator of the variance by establishing
its limiting distribution, when the sample and data sizes both tend to infinity. Thus, we
can give its bias expression, which does not appear in the classical framework. Then we
corrected the goodness-of-fit test to a factor model based on the likelihood ratio statistic.
We finally construct an equality test of two consecutive spikes.

The current state of our work shows us several perspectives for further works.

(i) Extension of the consistency result of the factor number estimator to the
generalized spiked population model. Almost sure convergence results have been
proved by Bai & Yao (2012) for these models, which generalized the results of Baik
& Silverstein (2006). It will be still possible to distinguish the spikes from the noise
by analyzing the consecutive differences between two eigenvalues of Sn. The equality
case will be more difficult to study, since there is no existing results on the speed of
convergence for the non-spiked eigenvalues.

(ii) Construction of an estimator for the spikes multiplicity from the equality
test. Assuming that the number of spikes is known, the result will be a partition
of the spikes depending on their multiplicity. We could, for example, calculate the
p-value of the equality test of two consecutive eigenvalues. From these p-values, we
would search the partition that best fits, by minimizing a function of the p-value
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suitably chosen.

(iii) Correction of the maximum likelihood estimator of the factor scores. Ac-
tually, it means to study the eigenvectors behavior of the sample covariance matrix,
as a function of those of the population covariance matrix. Few results exist (as
Benaych-Georges & Nadakuditi (2011)), but it is difficult to find a better estimator
than the eigenvectors of the sample covariance matrix.
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Inférence statistique dans un modèle à variances isolées de grande dimension

Résumé : Cette thèse s’intéresse à l’estimation statistique dans un modèle à variances isolées
(modèle spike) de grande dimension. La théorie des matrices aléatoires permet de prendre en compte
cette spécificité, puisque la plupart des résultats limites s’appliquent aux matrices dont la taille
tend vers l’infini. Une part importante de ces résultats concerne la matrice de covariance empirique.

Dans un premier temps, nous nous intéressons à l’estimation du nombre de facteurs/spikes. La
différence de comportement des valeurs propres de la matrice de covariance empirique, selon que
l’on considère celles correspondant aux spikes ou non, nous permet de construire un estimateur. Ce
dernier correspond à la différence de deux valeurs propres consécutives ordonnées. Nous établissons
la consistance de l’estimateur dans le cas où toutes les spikes sont distinctes, et le comparons à
deux méthodes existantes à travers des simulations. L’estimateur dépend d’un seuil qui doit remplir
certaines conditions. Dans la suite, nous étendons le résultat de consistance au cas d’égalité et
améliorons l’estimateur en changeant de seuil.

Dans un second temps, nous considérons les estimateurs du maximum de vraisemblance d’un
modèle à facteurs strict à variance homoscédastique. En utilisant un théorème limite pour les
statistiques spectrales linéaires, nous corrigeons l’estimateur de la variance commune en grande
dimension en donnant l’expression de son biais et en établissant sa loi limite. Nous présentons
une version corrigée du test du rapport de vraisemblance d’adéquation à un modèle à facteurs.
Finalement, nous construisons un test d’égalité de deux spikes.

Mots clefs : Matrices aléatoires, grande dimension, modèle à facteurs, modèle à variances isolées,
mesure spectrale, matrice de covariance, test d’hypothèses, valeurs propres extrêmes, estimation
paramétrique, maximum de vraisemblance.

Statistical inference in a high-dimensional spiked population model

Abstract: This thesis deals with the statistical inference of large dimensional data. The random
matrix theory allows to take into account this framework, since most asymptotic results apply
to large-dimensional random matrices. A large number of these results concerns the population
covariance matrix.

First, we are interested in estimating the number of factors/spikes in large dimension. To
construct our estimator, we use the fact that the eigenvalue behavior of the sample covariance
matrix differs depending on whether they correspond to spikes or not. The estimator is based on
differences between consecutive ordered eigenvalues. We establish the consistency of the estimator
in the case where all the spikes are different, and compare it to two existing methods through
simulation experiments. The estimator depends on a threshold which should satisfy some conditions.
Furthermore, we extend our result of consistency to the equality case and improve our estimator by
using a dimension-adapted threshold.

Secondly, we consider the maximum likelihood estimator in a strict factor model with ho-
moscedastic variance. Using a central limit theorem for linear spectral statistics, we correct the
estimator of the common variance in high-dimensional setting by evaluating its bias and establishing
its limiting law. We present a corrected version of the goodness-of-fit test for a factor model. Finally,
we propose a test for the equality of two spikes.

Keywords: Random matrices, large dimension, factor model, spiked population model, spec-
tral distribution, sample covariance matrix, hypothesis testing, extreme eigenvalues, parametric
estimation, maximum-likelihood estimation.
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