# Jing correlations in a 1D Bose gas on an atom chip *Mesures de corrélations dans un gaz de Bose 1D*

#### Thibaut Jacqmin

Laboratoire Charles Fabry Groupe d'optique atomique



November, 22nd 2012 PhD defense







▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙





### Why studying systems in dimensions lower than 3?

- Effect of interactions enhanced
- A whole bunch of new effects appear
- In quantum physics, thanks to confinement-induced quantization : very good quasi-low dimensional systems



Transport in a 50 nm nanowire (CEA)

・ロト ・四ト ・ヨト ・ヨト

### Why studying systems in dimensions lower than 3?

- Effect of interactions enhanced
  - A whole bunch of new effects appear
  - In quantum physics, thanks to confinement-induced quantization : very good quasi-low dimensional systems



2D electron gas in 1D quantum wells Density of states modified, more gain Example : laser diodes

(日) (四) (日) (日)

## Why studying 1D systems?

Gery interesting from the theoretical point of view because :

- Most "simple" strongly correlated many-body system
  - There exists powerful theoretical methods
  - There are exact results



Newton's cradle

・ロト ・ 日本 ・ 日本 ・ 日本

ж

### Low dimensional gases of ultra-cold atoms

**Cold** atoms are suitable systems to study this Physics because

- tel-00779447, version 1 22 Jan 20 possibility to get a 2D and 1D geometries
  - isolated systems
  - fine control of all parameters
    - many observables





#### Atom chips

### General framework : Quantum simulation

 $\begin{array}{c} \mbox{the product of the prod$ this work  $\rightarrow$  Lieb-Liniger model of 1D bosons with contact repulsive



Elliott H. Lieb

5

Producing a 1D gas of bosons on an atom chip

Introduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

Momentum distribution of 1D Bose gases

E 990

# Outline

Producing a 1D gas of bosons on an atom chip

ntroduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

<ロ> (四) (四) (三) (三) (三) (三)

Nomentum distribution of 1D Bose gases

### 1D criterion



・ロト ・聞ト ・ヨト ・ヨト

- 2

tel-00779447, version 1 - 22 Jan 2013



・ロト ・聞ト ・ヨト ・ヨト

æ

tel-00779447, version 1 - 22 Jan 2013



Trapping in two directions with a wire and a homogeneous magnetic field



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

tel-00779447, version 1 - 22 Jan 2013



Trapping in two directions with a wire and a homogeneous magnetic field



. . . . . . ,







If h is too small : longitudinal roughness of the potential

イロト イポト イヨト イヨト



If h is too small : longitudinal roughness of the potential Solution : current modulation

イロト イポト イヨト イヨト



< 回 > < 回 > < 回 >

- If h is too small : longitudinal roughness of the potential
- Solution : current modulation
- for  $h = 15 \ \mu m$  and  $I \le 1$  A,  $\omega_{\perp}/2\pi = [0.1, 80]$  kHz

## Longitudinal trapping

Harmonic longitudinal trapping



Typical trapping frequencies :

$$\omega_\parallel/2\pi =$$
 [3, 40] Hz $\omega_\perp/2\pi =$  [0.1, 80] kHz

・ロト ・ 日 ・ ・ 日 ・ ・

표 ▶ 표

## Longitudinal trapping



#### Harmonic longitudinal trapping



Other longitudinal geometries



Typical trapping frequencies :

$$\omega_\parallel/2\pi =$$
 [3, 40] Hz $\omega_\perp/2\pi =$  [0.1, 80] kHz

- Quartic trap
- Double well trap

イロト イポト イヨト イヨト

э

• Fine tuning of anharmonicity

## Longitudinal trapping



#### Harmonic longitudinal trapping



Other longitudinal geometries



Typical trapping frequencies :

$$\omega_\parallel/2\pi =$$
 [3, 40] Hz $\omega_\perp/2\pi =$  [0.1, 80] kHz

- Quartic trap
- Double well trap

э

• Fine tuning of anharmonicity

Longitudinal and transverse traps totally decoupled

### How do we observe the cloud?

tel-00779447, version 1 - 22 Jan 2013

#### Mirror on chip





### How do we observe the cloud?

tel-00779447, version 1 - 22 Jan 2013

#### Mirror on chip









Chip on copper mount



Chip inside vacuum

æ

・ロト ・聞ト ・ヨト ・ヨト

• Absorption imaging : a resonant laser illuminates the cloud, which is imaged on a CCD camera



The Beer-Lambert law gives the atomic density  $\rho$ 

$$\rho \propto \ln \frac{I_2}{I_1}$$

- $I_2$  : intensity in absence of atoms
- $I_1$  : intensity in presence of atoms
- Beer-Lambert ightarrow not always valid ightarrow more involved methods

### Typical experimental sequence



Laser cooling MOT  $1 \times 10^8$  at.  $K \simeq 200 \mu K$ 



・ロト ・聞ト ・ヨト ・ヨト

#### Typical experimental sequence



### Typical sequence

#### Last step : take a picture

Compute the longitudinal profile



- pixel size  $\Delta=$  4.5  $\mu$ m
- Cycle time  $\simeq$  18 s

# Outline

Producing a 1D gas of bosons on an atom chip

#### ntroduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

<ロ> (四) (四) (三) (三) (三)

Nomentum distribution of 1D Bose gases

#### Introduction to the physics of the 1D Bose gas

- tel-00779447, version 1 22 Jan 2013
- No Bose-Einstein condensation in 1D
  - No spontaneous continuous symetry breaking at finite T
- Lieb-Liniger Hamiltonian (g > 0) :

$$H = -\frac{\hbar^2}{2m} \int dz \ \Psi^{\dagger} \frac{\partial^2}{\partial z^2} \Psi + \frac{g}{2} \int dz \ \Psi^{\dagger} \Psi^{\dagger} \Psi \Psi$$

æ

- tel-00779447, version 1 22 Jan 2013
- No Bose-Einstein condensation in 1D
- No spontaneous continuous symetry breaking at finite T
- Lieb-Liniger Hamiltonian (g > 0) :

$$H = -\frac{\hbar^2}{2m} \int dz \ \Psi^{\dagger} \frac{\partial^2}{\partial z^2} \Psi + \frac{g}{2} \int dz \ \Psi^{\dagger} \Psi^{\dagger} \Psi \Psi$$

- Two scales :  $E_g = \frac{mg^2}{2\hbar^2}$  and  $I_g = \frac{\hbar^2}{mg}$
- Thermal equilibrium defined by :
  - Temperature parameter :  $t = \frac{k_B T}{E_{\sigma}}$
  - Interaction parameter :  $\gamma = \frac{1}{\rho l_g} = \frac{mg}{\hbar^2 \rho}$  Note that  $\gamma \nearrow$  when  $\rho \searrow$
- The equation of state can be computed exactly (Yang-Yang)

### Introduction to the physics of the 1D Bose gas

• 3D interactions are described by scattering length  $a_{3D}$ 

・ロト ・個ト ・ヨト ・ヨト

æ

- As long as  $a_{3D} \ll l_{\perp} \rightarrow 3D$  interactions
- Effective 1D coupling constant  $g=2\hbar\omega_{\perp}a_{3D}$

### Introduction to the physics of the 1D Bose gas

- 3D interactions are described by scattering length  $a_{3D}$
- As long as  $a_{3D} \ll l_{\perp} \rightarrow 3D$  interactions
- Effective 1D coupling constant  $g=2\hbar\omega_{\perp}a_{3D}$

Characterization of the system with correlation functions

 $\bullet$  One-body correlation function  $\rightarrow$  phase coherence

$$g^{(1)}(z)=rac{\langle\hat{\Psi}^{\dagger}(z)\hat{\Psi}(0)
angle}{
ho}$$

 $\bullet\,$  Two-body correlation function  $\to$  density fluctuations

$$g^{(2)}(z)=rac{\langle\hat{\Psi}^{\dagger}(z)\hat{\Psi}^{\dagger}(0)\hat{\Psi}(0)\hat{\Psi}(z)
angle}{
ho^2}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

### The 1D Bose gas at thermal equilibrium : Phase diagram



Negligible interactions : Ideal Bose gas regime  $g^{(2)}(0) = 2$ 

イロト イヨト イヨト
# The 1D Bose gas at thermal equilibrium : Phase diagram



Negligible interactions : Ideal Bose gas regime  $g^{(2)}(0) = 2$ 

(日) (四) (日) (日)

Density fluctuations reduced because of interactions : Quasi-condensate regime  $g^{(2)}(0)\simeq 1$ 

# The 1D Bose gas at thermal equilibrium : Phase diagram



- Negligible interactions : Ideal Bose gas regime  $g^{(2)}(0) = 2$
- Density fluctuations reduced because of interactions : Quasi-condensate regime  $g^{(2)}(0)\simeq 1$
- Interactions mimicking the Pauli principle for fermions : Strongly interacting regime  $g^{(2)}(0) \ll 1$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

# The 1D Bose gas at thermal equilibrium : Phase diagram



- Negligible interactions : Ideal Bose gas regime  $g^{(2)}(0) = 2$
- Density fluctuations reduced because of interactions : Quasi-condensate regime  $g^{(2)}(0)\simeq 1$
- Interactions mimicking the Pauli principle for fermions : Strongly interacting regime  $g^{(2)}(0) \ll 1$
- No phase transition in only smooth crossovers

# Outline

Producing a 1D gas of bosons on an atom chip

ntroduction to the physics of the 1D Bose gas

#### Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

<ロ> (四) (四) (三) (三) (三) (三)

Nomentum distribution of 1D Bose gases

tel-00779447, version 1:- 22 Jap 2013

$$\langle \delta 
ho(z) \delta 
ho(0) 
angle = 
ho \delta(z) + 
ho^2(g^{(2)}(z) - 1)$$

: correlation length

$$\delta \ll \Delta 
ightarrow \langle \delta N^2 
angle = \langle N 
angle + \langle N 
angle 
ho \int_{-\infty}^{+\infty} [g^{(2)}(z) - 1] dz$$

æ

<ロト </p>

tel-00779447, version  $\ddagger 22$  daß 2013  $\downarrow$   $\approx 13$   $\vdots$   $\vdots$   $\vdots$  dg

$$\langle \delta 
ho(z) \delta 
ho(0) 
angle = 
ho \delta(z) + 
ho^2(g^{(2)}(z) - 1)$$

: pixel size

correlation length

$$<\Delta \rightarrow \langle \delta N^2 \rangle = \langle N \rangle + \langle N \rangle \rho \int_{-\infty}^{+\infty} [g^{(2)}(z) - 1] dz$$

Fluctuations-dissipation theorem :

$$\langle \delta N^2 \rangle = \Delta k_B T \frac{\partial \rho}{\partial \mu}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

•  $\langle \delta N^2 
angle 
ightarrow$  Yang-Yang thermodynamics

- Statistical analysis over hundreds of images
- $\delta N$  binned according to  $\langle N 
  angle$
- Local density approximation
  - homogeneous system
  - z is not relevant



(日) (四) (日) (日)



(日) (四) (日) (日)

- We plot  $\langle \delta {\it N}^2 \rangle$  as a function of  $\langle {\it N} \rangle$
- Contribution of optical shot noise subtracted

#### Expected behaviour in different regimes



$$\langle \delta N^2 \rangle = \langle N \rangle + \langle N \rangle \rho \underbrace{\int [g^{(2)}(z) - 1] dz}_{I_c}$$

$$\langle \delta N^2 \rangle = \frac{\langle \delta N^2 \rangle}{l_c} = \frac{\langle \delta N^2 \rangle}$$

- Classical gas  $\rho l_c \ll 1 \rightarrow \langle \delta N^2 \rangle \simeq \langle N \rangle$
- Degenerate gas  $\rho I_{c} \gg 1 \rightarrow \langle \delta N^{2} \rangle \simeq \langle N \rangle^{2} I_{c} / \Delta$



(日) (四) (日) (日)

∃⇒

#### Expected behaviour in different regimes

Ideal Bose gas regime tel-00779447, version 1<sub>8</sub><sup>-</sup> 22 Jan 2013  $\langle \delta N^2 \rangle = \langle N \rangle + \langle N \rangle \rho \int [g^{(2)}(z) - 1] dz$  $l_c = \lambda_{dB} : |\mu| \gg T$  $l_c \gg \lambda_{dB} : |\mu| \ll T$ 

Quasi-condensate : EOS:  $\mu \simeq g\rho$  $\langle \delta N^2 \rangle \simeq \Delta k_B T/g$   Classical gas  $\rho l_c \ll 1 \rightarrow \langle \delta N^2 \rangle \simeq \langle N \rangle$ 

 $l_{c}$ 

 Degenerate gas  $\rho I_c \gg 1 \rightarrow \langle \delta N^2 \rangle \simeq \langle N \rangle^2 I_c / \Delta$ 

(日) (四) (日) (日)



#### Experimental results in the quasi-condensate regime

Bosonic bunching at low densities  $\rightarrow$  super-Poissonian tel-00779447, version 1 - 22 Jan 2013 fluctuations 0.05 0.02 0.0150 Poissonian level 40 Ideal Bose gas -30 Exact Yang-Yang 20 thermodynamics 10Quasi-cond (beyond 1D) 0  $\frac{1}{80}$   $\langle N \rangle$ 20 40 60 120 140 100 $10^{6}$  $T\simeq 15 \text{ nK}$ Ideal Bose gas  $10^{3}$  $k_B T / \hbar \omega_{\perp} \simeq 0.1$  $10^{0}$  $\mu \simeq 30 nK$ Ouasi-condensate Strongly  $10^{-3}$ interacting  $\mu/\hbar\omega_{\perp}\simeq 0.2$  $10^{-3}$  $10^{-2}$  $10^{-1}$  $10^{0}$  $10^{1}$ PRL 106, 230405 (2011)

うくで

# Experimental results in the quasi-condensate regime

- Bosonic bunching at low densities  $\rightarrow$  super-Poissonian fluctuations
- Saturation of the density fluctuations in the QBEC regime



### Experimental results in the quasi-condensate regime

- Bosonic bunching at low densities  $\rightarrow$  super-Poissonian fluctuations
- Saturation of the density fluctuations in the QBEC regime
- In the QBEC regime : super and sub-Poissonian fluctuations



#### First observation of the quantum quasi-condensate regime

$${}_{2} \bullet \langle \delta \mathsf{N}^{2} \rangle < \langle \mathsf{N} \rangle \text{ and } \langle \delta \mathsf{N}^{2} \rangle = \langle \mathsf{N} \rangle + \langle \mathsf{N} \rangle \rho \int [g^{(2)}(z) - 1] dz$$

 $ightarrow g^{(2)} < 1 
ightarrow g^{(2)}(0)$  dominated by quantum fluctuations.



イロト イヨト イヨト

∃⇒

# First observation of the quantum quasi-condensate regime

• 
$$\langle \delta N^2 \rangle < \langle N \rangle$$
 and  $\langle \delta N^2 \rangle = \langle N \rangle + \langle N \rangle \rho \int [g^{(2)}(z) - 1] dz$   
 $\rightarrow g^{(2)} < 1 \rightarrow g^{(2)}(0)$  dominated by quantum fluctuation  
 $t_{10^0}^{10^0}$   
 $t_{10^{-3}}^{10^0}$   
 $g^{(2)}(0) < 1$   
Quasi-condensate  
 $10^{-3}$   $10^{-2}$   $10^{-1}$   $10^0$   $10^1$   
• However we still measure thermal fluctuations.  
Non trivial quantum fluctuations  
 $\hbar\omega(k) \ll k_B T \rightarrow k \ll n$   
 $\hbar\omega(k_T) = h$ 

 $\rightarrow g^{(2)} < 1 \rightarrow g^{(2)}(0)$  dominated by quantum fluctuations.



# First observation of the quantum quasi-condensate regime

$${}_{2} \bullet \langle \delta \mathsf{N}^{2} \rangle < \langle \mathsf{N} \rangle \text{ and } \langle \delta \mathsf{N}^{2} \rangle = \langle \mathsf{N} \rangle + \langle \mathsf{N} \rangle \rho \int [g^{(2)}(z) - 1] dz$$

 $\rightarrow g^{(2)} < 1 \rightarrow g^{(2)}(0)$  dominated by quantum fluctuations.



# Outline

Producing a 1D gas of bosons on an atom chip

ntroduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

<ロ> (四) (四) (三) (三) (三)

Iomentum distribution of 1D Bose gases

# The strongly interacting regime



• At finite T, strong interactions if  $k_BT \ll E_g \rightarrow t \ll 1$ 



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

# The strongly interacting regime



• At finite T, strong interactions if  $k_BT \ll E_g \rightarrow t \ll 1$ 



• Bose-Fermi mapping  $\Psi_{\rm B}(z_1,...,z_N) = S[\Psi_{\rm F}(z_1,...,z_N)]$ 

・ロト ・聞ト ・ヨト ・ヨト

Э

# The strongly interacting regime



- Inhomogeneity of atom number, temperature, trapping frequency
- Only global quantities are accessible
- No thermometry available

## Density fluctuations in a Fermi gas





・ロト ・聞ト ・ヨト ・ヨト

æ

- Poissonian at low densities
- Sub-Poissonian at intermediate densities
- Zero at high densities

# Experimental results in the strongly interacting regime

- t = 5.4 with  $\nu_{\perp} \simeq 20 \ kHz$
- Absence of super-Poissonian density fluctuations
- Sub-Poissonian density fluctuations at any density





イロト イポト イヨト イヨト

# Outline

Producing a 1D gas of bosons on an atom chip

ntroduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

<ロ> (四) (四) (三) (三) (三) (三)

Momentum distribution of 1D Bose gases

tel-00779447, version 1 - 22 Jan 2013

Phase coherence is described by the one body correlation function

$$g^{(1)}(r)=rac{\langle \Psi^{\dagger}(r)\Psi(0)
angle}{
ho}$$

$$g^{(1)}(r) = rac{1}{
ho} \int \langle n_k 
angle e^{-ikr} rac{dk}{2\pi} \langle n_k 
angle$$
 : population of momentum  $\hbar k$ .

**<u>Conclusion</u>** : measuring  $\langle n_k \rangle$  is equivalent to probing  $g^{(1)}(r)$ .

 $g^{(1)}(r)$  unknown in general ightarrow Quantum Monte Carlo calculations (Tommaso Roscilde, ENS Lyon)

### Non-degenerate Bose gas



▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

#### Degenerate Bose gas



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

#### Quasi-condensate



- Contribution of phonons give  $g^{(1)}(r) = e^{-Tz/2n}$
- n(k) is Lorentzian in ideal Bose gas degenerate regime and quasi condensate regime. The width differs by a factor 2.

# $1/p^4$ tails and kinetic energy

 $\Psi(z_1,...,z,...,z_n)$ 

• Short distance correlation ("contact") properties of the Lieb-Liniger model :

$$n(k) \propto rac{1}{k^4}$$
 for large k's

 $E = E_{K} + E_{int} \rightarrow \text{Yang}/\text{Yang}$   $E_{int} = \frac{1}{2}Ngng^{(2)}(0)$   $g^{(2)}(0) \propto \partial E/\partial g \rightarrow \text{Hellman-Feynman theorem}$ <u>Conclusion</u>:  $E_{K}$  is a thermodynamic quantity

# $1/p^4$ tails and kinetic energy

 $n(k) \propto \frac{1}{k^4}$  for large k's

 $E_{K} = \frac{\hbar^{2}}{2m} \int dk \ k^{2} n(k) \rightarrow \text{thermometry}$ 

うして 山田 エリ・エリ・ 山田 うらつ

#### State of the art

tel-00729447, version 1 - 22 Jan 2013



# Focusing method

tel-00779447, version 1 - 22 Jan 2013

In optics : Fourier transform of a field  $\rightarrow$  Fourier plane of a lens Multiply by quadratic phase and propagate

Adapted from Amerongen's thesis

 $\mathsf{Quadratic\ phase} \to \mathsf{longitudinal\ harmonic\ kick\ potential}$ 

 $\mathsf{Propagation} \to \mathsf{time} \text{ of flight}$ 

Typical parameters :  $f_{kick} = 40 \text{ Hz}, t_{kick} = 0.7 \text{ ms} \text{ and } TOF = 27 \text{ ms}$ 

#### Focusing sequence



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

#### Results : quasi-condensate regime



▲ロト ▲圖ト ▲画ト ▲画ト → 画 → のへの

#### Results : degenerate ideal Bose gas



PRA 86, 043626 (2012)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つへの

# Conclusion on momentum distributions

#### Distributions are essentially Lorentzian

・ロト ・聞ト ・ヨト ・ヨト

æ

- tel-00779447, version 1 22 Jan 2013
- Distributions are essentially Lorentzian
- Thinking of measuring kinetic energy for thermometry is not relevant for purely 1D samples

・ロト ・聞ト ・ヨト ・ヨト

æ
- Distributions are essentially Lorentzian
- Thinking of measuring kinetic energy for thermometry is not relevant for purely 1D samples
- No quantitative theory in the region probed ightarrow QMC needed

・ロト ・四ト ・ヨト ・ヨト

- Distributions are essentially Lorentzian
- Thinking of measuring kinetic energy for thermometry is not relevant for purely 1D samples
- No quantitative theory in the region probed ightarrow QMC needed
- Bogoliubov approximation not accurate for our parameters

- Distributions are essentially Lorentzian
- Thinking of measuring kinetic energy for thermometry is not relevant for purely 1D samples
- No quantitative theory in the region probed ightarrow QMC needed

- Bogoliubov approximation not accurate for our parameters
- No observation of  $1/k^4$  tails

- Distributions are essentially Lorentzian
- Thinking of measuring kinetic energy for thermometry is not relevant for purely 1D samples
- No quantitative theory in the region probed ightarrow QMC needed
- Bogoliubov approximation not accurate for our parameters
- No observation of  $1/k^4$  tails
- Good agreement of temperatures extracted from QMC fit and independant thermometry  $% \left( {{\left[ {{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}} \right)$

(日) (四) (日) (日) (日)

# Conclusion

In situ density fluctuations  $\rightarrow$  powerful tool to characterize two-body correlations in a 1D Bose gas

・ロト ・聞ト ・ヨト ・ヨト

# Conclusion

In situ density fluctuations  $\rightarrow$  powerful tool to characterize two-body correlations in a 1D Bose gas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Observation of the quantum quasicondensate regime

# Conclusion

- In situ density fluctuations  $\rightarrow$  powerful tool to characterize two-body correlations in a 1D Bose gas
- Observation of the quantum quasicondensate regime
- Reaching the strongly interacting regime with an atom chip

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- In situ density fluctuations  $\rightarrow$  powerful tool to characterize two-body correlations in a 1D Bose gas
- Observation of the quantum quasicondensate regime
- Reaching the strongly interacting regime with an atom chip

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- tel-00779447, version 1 22 Jan 2013
- In situ density fluctuations  $\rightarrow$  powerful tool to characterize two-body correlations in a 1D Bose gas
- Observation of the quantum quasicondensate regime
- Reaching the strongly interacting regime with an atom chip
- Magnetic focusing technique  $\rightarrow$  momentum distribution in one shot

Measurement of momentum distributions in the weakly interacting regime

#### Out-of-equilibrium physics : thermalization of 1D systems

・ロト ・個ト ・モト ・モト

# Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting $\rightarrow$ Mott phase

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

tel-00779447, version 1 - 22 Jan 2013

Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting  $\rightarrow$  Mott phase

æ

• Measure momentum distributions in the Tonks limit

tel-00779447, version 1 - 22 Jan 2013

Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting  $\rightarrow$  Mott phase

・ロト ・聞ト ・ヨト ・ヨト

- Measure momentum distributions in the Tonks limit
- Study specifically the 1D Mott transition

tel-00779447, version 1 - 22 Jan 2013

Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting  $\rightarrow$  Mott phase

- Measure momentum distributions in the Tonks limit
- Study specifically the 1D Mott transition

Do measurements in quartic (or higher power law) traps

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

tel-00779447, version 1 - 22 Jan 2013

Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting  $\rightarrow$  Mott phase

- Measure momentum distributions in the Tonks limit
- Study specifically the 1D Mott transition

Do measurements in quartic (or higher power law) traps Tomography method for  $g^{(2)}(z)$  measurement

(日)、

tel-00779447, version 1 - 22 Jan 2013

Out-of-equilibrium physics : thermalization of 1D systems More strongly interacting  $\rightarrow$  Mott phase

- Measure momentum distributions in the Tonks limit
- Study specifically the 1D Mott transition

Do measurements in quartic (or higher power law) traps T

Tomography method for  $g^{(2)}(z)$  measurement

Momentum correlations

- Atom Ship team Isabelle Bouchoule Bess Fang Tarik Berrada Aisling Johnson Indranil Dutta Eugenio Cocchi Nicolas Tancogne
- LPN (fabrication) Sophie Bouchoule Sandy Phommaly
- Atelier mécanique André Guilbaud Patrick Roth

- Ingénieurs électroniciens André Villing Frédéric Moron
- Collaborations théorie Karen Kheruntsyan (YY) Tommaso Roscilde (QMC)
- Directeurs Chris Westbrook Christian Chardonnet Pierre Chavel Bernard Bourguignon Alain Aspect
- Spécialistes du vide Antoine Browaeys Alexei Ourjoumtsev

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

#### Remerciements

. . .

#### **Spécialiste d'Oslo** Yvan Sortais

#### Enseignement

Lionel Jacubowietz Fabienne Bernard Sylvain Perrot Julien Moreau Mathieu Hébert Gaëlle Lucas-Leclin Sylvie Lebrun Thierry Avignon Cédric Lejeune

#### • Groupe d'optique atomique

・ロト ・聞ト ・ヨト ・ヨト