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The influence of dimensionality
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The influence of dimensionality
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The influence of dimensionality

S&xample of a neuronal network
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Intersection

Impossibility to interconnect more than 4 neurones in 2D.




Why studying systems in dimensions lower than 37

o Effect of interactions enhanced
@ A whole bunch of new effects appear

@ In quantum physics, thanks to confinement-induced quantization :
very good quasi-low dimensional systems

’ .

Transport in a 50 nm nan;)wir (EA)
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\Why studying systems in dimensions lower than 37

o Effect of interactions enhanced
@ A whole bunch of new effects appear

@ In quantum physics, thanks to confinement-induced quantization :
very good quasi-low dimensional systems

Bragg mirror —- =
2D electron gas in 1D quantum wells
Quantum wells— Density of states modified, more gain
— Example : laser diodes

Bragg mirror —

Image : University of Sheffield
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Why studying 1D systems?

3

—
Sery interesting from the theoretical point of view because :
@ Most “simple” strongly correlated many-body system

@ There exists powerful theoretical methods

@ There are exact results

tel-00779447, version 1 - 22 Jan
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Low dimensional gases of ultra-cold atoms

®Cold atoms are suitable systems to study this Physics because
@ possibility to get a 2D and 1D geometries

@ isolated systems

o fine control of all parameters

@ many observables

I Ebch Hutam Bys & 1, 25 - 30 (2005)

2D optical lattice
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Atom chips



General framework : Quantum simulation

o general cold atoms can be used to simulate a lot of models :
o Bose-Hubbard

@ Hawking radiation

@ Anderson localization

o ...

this work — Lieb-Liniger model of 1D bosons with contact repulsive
teractions.

tel-00779447, veysion 1 - 22 Jan 201
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Producing a 1D gas of bosons on an atom chip

Introduction to the physics of the 1D Bose gas

Density fluctuations in the quasi-condensate regime

Density fluctuations in the strongly interacting regime

tel-@779447 @ersion 1922 Jan 13

© Momentum distribution of 1D Bose gases



Outline

Producing a 1D gas of bosons on an atom chip
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ransverse harmonic potential

o Typically, for T~ 40 nK it requires v > 800 Hz
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Transverse trapping with microwires

@ The chip

atoms
gold wire o

substrate

=
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Transverse trapping with microwires

@ The chip

atoms
gold wire o

substrate
o Trapping in two directions with a wire and a homogeneous
magnetic field

Magnetic potential | V = —pp|B|
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Transverse trapping with microwires

@ The chip

atoms
gold wire o

substrate
o Trapping in two directions with a wire and a homogeneous
magnetic field

Magnetic potential | V = —pp|B|
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The transverse trapping frequency w, oc 1/h%.



Transverse trapping with microwires

@ Trapping in two directions with three parallel wires

atoms
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Transverse trapping with microwires

@ Trapping in two directions with three parallel wires

atoms

gold w1re
substrate
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o If his too small : longitudinal roughness of the potential
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Transverse trapping with microwires

@ Trapping in two directions with three parallel wires

atoms

gold w1re
substrate
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o If his too small : longitudinal roughness of the potential
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@ Solution : current modulation
e forh=15 pumand /| <1A, w, /27 = [0.1, 80] kHz



Longitudinal trapping
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@ Harmonic longitudinal trapping
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UJ||/27T = [3, 40] Hz
w, /2m = [0.1, 80] kHz



Longitudinal trapping

@ Harmonic longitudinal trapping

1,45 mm Typical trapping frequencies :
Z UJ||/27T = [3, 40] Hz
I w, /27 = [0.1, 80] kHz
1.40 mm

o Other longitudinal geometries

,version 1 - 22 Jan 2013
~

':r 1.45 mm @ Quartic trap

o 7 e Double well trap
ESTfl L] Iy @ Fine tuning of
Q < 1 40mm anharmonicity
o)

0.2 mm



Longitudinal trapping

@ Harmonic longitudinal trapping

1.45 mm Typical trapping frequencies :
Z UJ||/27T = [3, 40] Hz
I I wy /27 = [0.1, 80] kHz
1.40 mm

o Other longitudinal geometries

1.45 mm @ Quartic trap
7 @ Double well trap
;TIl Ll 14 e Fine tuning of
T 120mm anharmonicity
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0.2 mm

o Longitudinal and transverse traps totally decoupled



How do we observe the cloud ?

@ Mirror on chip
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How do we observe the cloud ?

@ Mirror on chip

gold mirror @
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Chip on copper mount Chip inside vacuum



How do we observe the cloud ?

@ Absorption imaging : a resonant laser illuminates the cloud, which
is imaged on a CCD camera

Doublet

vd

Resonant beam

T Objective

@ The Beer-Lambert law gives the atomic density p

)

I
p X nl1

> : intensity in absence of atoms
Iy : intensity in presence of atoms
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@ Beer-Lambert — not always valid — more involved methods



Typical experimental sequence

! Laser cooling
OT 1x 108 at.  Optical mollases
~200u K 5x 107 at. T ~ 10 uK

tel-00779447, versigrnzl

Optical pumping

in the trapped
Zeeman sublevel

Magnetic trap
5 x 10° at.




Typical experimental sequence

Optical pumping
in the trapped
Zeeman subleve]

! Laser cooling :
OT 1x 108 at.  Optical mollases
~200u K 5x 107 at. T ~ 10 uK

Magnetic trap
5 x 10° at.

versigrel

Transport towards
AC trap position
and transfer from

DC trap to AC trap

Final evaporation
for about 1 s to the
wanted temperature

AC Magnetic trap 300 — 10000 at.

Evaporation for 2.5 s
T =20 — 120 nK

T3 x10%at. T ~ 1uK 8 x 10* at.

el-00779447,




Typical sequence

o Last step : take a picture

o Compute the longitudinal profile

0 50 100 150 200 250

500 pm zZ/A

(]

pixel size A = 4.5 ym
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Cycle time ~ 18 s



Outline

Introduction to the physics of the 1D Bose gas
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Introduction to the physics of the 1D Bose gas

@ No Bose-Einstein condensation in 1D
@ No spontaneous continuous symetry breaking at finite T
o Lieb-Liniger Hamiltonian (g > 0) :

h2 H?
_ t 9 g twt
H= > /de822W+2/dz\U\U\IJ\U
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Introduction to the physics of the 1D Bose gas

o No Bose-Einstein condensation in 1D
@ No spontaneous continuous symetry breaking at finite T

o Lieb-Liniger Hamiltonian (g > 0) :

/dz wf—w+ /dz viytyy

2 2
. _ mg - h
e Two scales : E; = 52> and [; = g
@ Thermal equilibrium defined by :
o Temperature parameter : t = k,‘:iT
8
o Interaction parameter : v = pi, = ;,L"Tgp Note that v ,* when p
g

@ The equation of state can be computed exactly (Yang-Yang)

tel-00779447, version 1 - 22 Jan 2013



Introduction to the physics of the 1D Bose gas

@ 3D interactions are described by scattering length asp
o As long as a3p < /| — 3D interactions
o Effective 1D coupling constant g = 2hw | a3p

tel-00779447, version 1 - 22 Jan 2013



Introduction to the physics of the 1D Bose gas

™
S o 3D interactions are described by scattering length azp

N
c o As long as a3p < /| — 3D interactions
™ o Effective 1D coupling constant g = 2w azp

@ Two-body correlation function — density fluctuations

N

N

—

5 Characterization of the system with correlation functions
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E) @ One-body correlation function — phase coherence
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The 1D Bose gas at thermal equilibrium : Phase diagram

6

o Negligible interactions : Ideal Bose gas regime g(?)(0) = 2
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The 1D Bose gas at thermal equilibrium : Phase diagram

6

o Negligible interactions : Ideal Bose gas regime g(?)(0) = 2

o Density fluctuations reduced because of interactions :
Quasi-condensate regime g(?)(0) ~ 1
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The 1D Bose gas at thermal equilibrium : Phase diagram

6

o Negligible interactions : Ideal Bose gas regime g(?)(0) = 2

o Density fluctuations reduced because of interactions :
Quasi-condensate regime g(?)(0) ~ 1
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@ Interactions mimicking the Pauli principle for fermions : Strongly
interacting regime g(®(0) < 1



The 1D Bose gas at thermal equilibrium : Phase diagram

6

o Negligible interactions : Ideal Bose gas regime g(?)(0) = 2

o Density fluctuations reduced because of interactions :
Quasi-condensate regime g(?)(0) ~ 1

@ Interactions mimicking the Pauli principle for fermions : Strongly
interacting regime g(®(0) < 1
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@ No phase transition in only smooth crossovers
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Outline

Density fluctuations in the quasi-condensate regime



In situ density fluctuations measurements

(0p(2)3p(0)) = pd(2) + p*(g?)(2) — 1)
. pixel size
. correlation length

+o0

(6N?) = (N) + (N)p / 8@ (2) — 1]dz

—00

<A —
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In situ density fluctuations measurements

(0p(2)3p(0)) = pd(2) + p*(g?)(2) — 1)
. pixel size
. correlation length

+o0

(6N?) = (N) + (N)p / 8@ (2) — 1]dz

—00

<A —

— Fluctuations-dissipation theorem :

dp
N2 kg T ==
(6N%) = A an

teI-OO779447 version ];,— 22;,1615> 2q13

@ (6N?) — Yang-Yang thermodynamics



In situ density fluctuations measurements

_ . ‘M __{ Contribution of
o Statistical analysis over ) e _ o
. 4 1 atomic fluctuations
hundreds of images 100 /.f' o{,\\ 1
-,
@ 0N binned according to (N) N\rf MEM} curve
. . . 4/ Y __Optical shot noise
@ Local density approximation | . H@

e homogeneous system

: 100 150 200
e z is not relevant =

<
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In situ density fluctuations measurements

_ . ‘M | Contribution of
@ Statistical analysis over o1 omic i
. £l atomic fluctuations
hundreds of images ?100 /.f' o{,\ 1
o 0N binned according to (N) N\rf pemans
: . . d Y __Optical shot noise
@ Local density approximation 0 bt H@

e homogeneous system

_ 100 150 200
e z is not relevant =

<

e We plot (§N?) as a function of ()

@ Contribution of optical shot noise subtracted

tel-00779447, version 1 - 22 Jan 2013



Expected behaviour in different regimes
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Expected behaviour in different regimes

™ o Ideal Bose gas regime

o

ph 2 e

c (ON%) = (N) +(N)p [ [g7(2) — 1]dz

&

N le

N

1g,

*—‘{_\\_\{c' = Aap :|p| >T o Classical gas

5 |‘T P ple < 1= (N2) =~ (N)
g le> Aag - |p|l < T @ Degenerate gas

> 0 . ple > 1= (GN2) ~ (N)2/./A
S (6N?) /
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w  (ON?) ~ AkgT/g



EXperimental results in the quasi-condensate regime

@ Bosonic bunching at low densities — super-Poissonian
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EXperimental results in the quasi-condensate regime

@ Bosonic bunching at low densities — super-Poissonian

(4] .
= fluctuations
N e Saturation of the density fluctuations in the QBEC regime
c
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v 0T T = . .
| b — Poissonian level
— 10F | o i
= | T — Ideal Bose gas
O=30r | —~ .
Nz | i I | — Exact Yang-Yang
B=00r [ oo g FEs oo eyl 5
G>) ok | F /_/-/'}f | thermodynamics
o e Quasi—cond (beyond 1D)
< ! ) 20 40 60 80 100 120 140
g (V) 10 <
": o T ~ 15 nK - \\\ Ideal Bose gas
o SN
o kgT/hAw, ~0.1 - ’ 1
S / K 10 ' :
9 o pu= 30” Quasi-condensate Strongly
o i / ML ~ 0.2 10° interacting

10° 107 10"

PRL 106, 230405 (2011) S

10 10"



EXperimental results in the quasi-condensate regime

@ Bosonic bunching at low densities — super-Poissonian

(9) .
= fluctuations
N e Saturation of the density fluctuations in the QBEC regime
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@ @ In the QBEC regime : super and sub-Poissonian fluctuations
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First observation of the quantum quasi-condensate regime

o (6N2) < (N) and (5N2) = (N) + (N)p [[g@(2) — 1]dz
— g® <1 = g?(0) dominated by quantum fluctuations.

~

N
DN Ideal Bose gas
Z
t ~
100 g(0)

<1

Quasi—condensate Strongly
10° interacting
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First observation of the quantum quasi-condensate regime

o (6N2) < (N) and (5N2) = (N) + (N)p [[g@(2) — 1]dz
— g® <1 = g?(0) dominated by quantum fluctuations.

~

N
5 o DN K Ideal Bose gas
10 (0); NG
7
AN
t 0 NN
10 g?(0) <1

Quasi—condensate Strongly
10° interacting

3 2

10° 107 10" 10 !

10

o However we still measure therrR/al fluctuations.

Non trivial quantum fluctuations
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First observation of the quantum quasi-condensate regime

o (6N2) < (N) and (5N2) = (N) + (N)p [[g@(2) — 1]dz
— g® <1 = g?(0) dominated by quantum fluctuations.

~

N
5 o DN K Ideal Bose gas
10 (0); NG
7
AN
t 0 ; NN
10 g?(0) <1

Quasi—condensate Strongly
10° interacting

10° 10° 10" 100 10

o However we still measure thermal fluctuations.

Non trivial quantum fluctuations

dominate Thermal phonons :
=S hw(k) < kpT — k < kr
< Quantum fluctuations hw(kr) = kT

~
>
~

1

~
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__ Thermal fluctuations
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Outline

Density fluctuations in the strongly interacting regime



T he strongly interacting regime

Relative wavefunction of
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T he strongly interacting regime

Relative wavefunction of

™ .
<o bosons in a box at o At finite T, strong interactions if
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T he strongly interacting regime

Relative wavefunction of

(9] .
%‘two bosons in a box at @ At finite T, strong interactions if
=0: kT < Ep > t< 1
& 16—
: == () ¢ 2 S Ideal Bose gas
—_— N
N =T __ 1
1 T o - N
— E>E, , 10 N
vy <1 Weak interactions i
c Quasi-condensate Strongly
Or)2 L/2 10° interacting|
2 z PR —
E Strong interactions | ¥ (z) 10° 107 10" 10 10
> Y
E<E @ Bose-Fermi mapping
g
7> 1 . L) Vg(z1, ..., zn) = S[VE(z1, ..., zn)]

\ z

@ Observed in many groups since 2004 in 2D optical lattices
o Inhomogeneity of atom number, temperature, trapping frequency
o Only global quantities are accessible
o No thermometry available
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Density fluctuations in a Fermi gas

Poissonian fluctuations

.
.
P
-
.
-
.
-
—~ s
“Z e Fermi gas fluctuations
-
> 7z
= P
P
P

o Poissonian at low densities
o Sub-Poissonian at intermediate densities

@ Zero at high densities
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EXperimental results in the strongly interacting regime

o t =5.4with v, ~20 kHz
@ Absence of super-Poissonian density fluctuations

@ Sub-Poissonian density fluctuations at any density

152 051 030 022 0.15 Typical image

—
55

[ B e e e A

oo}

~

, Vergion 1-22 Jan 2013
“
|

0 PP ] -
S 10 20 30 40 50 10 —
E W Quasi-condensate  Strongly
%olid line : Yang-Yang 10° interacting

7

@ashed line : Poissonian fluctuation 10 1 1¢

%ed line : t < 1 limit

PRL 106, 230405 (2011)




Outline

Momentum distribution of 1D Bose gases
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Introduction

@ Phase coherence is described by the one body correlation function

(wi(r)w(0))

W) =
g(r) =
() )

o lgW(r)= ;/(nk>eik’;€ (nk) : population of momentum hk.

o Conclusion : measuring (ny) is equivalent to probing g(!)(r).

o g(r) unknown in general — Quantum Monte Carlo calculations
(Tommaso Roscilde, ENS Lyon)
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Non-degenerate Bose gas

™
g e Maxwell-Boltzmann gas
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Degenerate Bose gas
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Quasi-condensate
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S o Contribution of phonons give g (r) = e T7/2n

Do n(k) is Lorentzian in ideal Bose gas degenerate regime and quasi

condensate regime. The width differs by a factor 2.



1/p* tails and kinetic energy

@ Short distance correlation (“contact”) properties of the
Lieb-Liniger model :

V(z1, ..y 2,y .00y 2p)

Z'i Z'iJrl Z'i+2 V4 n(k) X — 'FOI’ |arge k,s

o E = Ex+ Eint — Yang/Yang
Eint = %Ngng(z)(O)
g®(0) x E /0g — Hellman-Feynman theorem

Conclusion : Eg is a thermodynamic quantity

tel-00779447, version 1 - 22 Jan 2013



1/p* tails and kinetic energy

@ Short distance correlation (“contact”) properties of the
Lieb-Liniger model :

V(z1, ..y 2,y .00y 2p)

p2 Ziy Zy, Z n(k) oc — | for large k's

o E = Ex+ Eint — Yang/Yang
Eint = %Ngng(z)(O)
g®(0) x E /0g — Hellman-Feynman theorem
Conclusion : Eg is a thermodynamic quantity

And Ei is the RMS width of the momentum distribution :
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Ex = 22 [ dk k®n(k) — thermometry



State of the art
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Focusing method

@ In optics : Fourier transform of a field — Fourier plane of a lens

o Multiply by quadratic phase and propagate

Adapted from Amerongen's thesis

o Quadratic phase — longitudinal harmonic kick potential

@ Propagation — time of flight
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o Typical parameters :
frick = 40 Hz, tyjck = 0.7 ms and TOF = 27ms



Focusing sequence

40y imaging
Iz
fL 4kHz: 3 L </decompressmn
Lo 200H 1
T R -t
thick ty

ransverse decompression step to avoid too huge transverse expansion

1.45 mm

Z
LinL L 14

1.40 mm

0.2 mm

wire configuration = very harmonic focusing pulse
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Results : quasi-condensate regime

1

0
p/h (")

PRA 86, 043626 (2012)
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Results : degenerate ideal Bose gas
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Conclusion on momentum distributions

@ Distributions are essentially Lorentzian
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Conclusion on momentum distributions

@ Distributions are essentially Lorentzian

@ Thinking of measuring kinetic energy for thermometry is not
relevant for purely 1D samples

@ No quantitative theory in the region probed — QMC needed
@ Bogoliubov approximation not accurate for our parameters
@ No observation of 1/k* tails

@ Good agreement of temperatures extracted from QMC fit and
independant thermometry
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Conclusion

@ In situ density fluctuations — powerful tool to characterize
two-body correlations in a 1D Bose gas
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Conclusion

@ In situ density fluctuations — powerful tool to characterize
two-body correlations in a 1D Bose gas

@ Observation of the quantum quasicondensate regime
@ Reaching the strongly interacting regime with an atom chip

Magnetic focusing technique — momentum distribution in one
shot

@ Measurement of momentum distributions in the weakly
interacting regime
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@ Out-of-equilibrium physics : thermalization of 1D systems
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@ Out-of-equilibrium physics : thermalization of 1D systems
@ More strongly interacting — Mott phase

e Measure momentum distributions in the Tonks limit
e Study specifically the 1D Mott transition

@ Do measurements in quartic (or higher power law) traps

o Tomography method for g(®)(z) measurement
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©

Out-of-equilibrium physics : thermalization of 1D systems

(4

More strongly interacting — Mott phase

e Measure momentum distributions in the Tonks limit
e Study specifically the 1D Mott transition

(]

Do measurements in quartic (or higher power law) traps

(]

Tomography method for g(?)(z) measurement

Momentum correlations
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