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Toroidal momentum transport : a crucial is-

sue for ITER
I Goal : obtain plasma conditions favorable for tokamak performance
→ importance of particle and heat transport

I The presence of toroidal rotation can reduce heat transport through
I stabilization of modes which degrade confinement [Bondeson&Ward ’94]
I saturation of turbulent transport by sheared flows [Biglari et al. ’90]

Perspective for ITER

I Present experiments :
toroidal rotation dominated by
external sources

I Future experiments (e.g. ITER) :
external torque will be small
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Intrinsic toroidal rotation is observed

in tokamaks

I Intrinsic rotation has been observed in existing tokamaks

I Example from D-IIID using varying external sources :

⇒ An understanding of the mechanisms for intrinsic rotation generation
and transport is required to predict the toroidal rotation level and profile
in ITER
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What governs the evolution of toroidal

rotation in tokamaks ?

Basic (fluid) equation for the evolution of toroidal velocity :

ρ∂tVϕ = −ρνneo (Vϕ − Vϕneo)− ρ∇ · 〈Ṽ Ṽ 〉 − 1

µ
∇ · 〈B̃B̃〉 − jfast × B

Key physics :

I Neoclassical friction due to collisional processes

I Turbulent generation of toroidal rotation

I Magnetohydrodynamic (MHD) effects

I Fast particles

I Boundary conditions : interaction with flows in the tokamak edge
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Modeling collective processes in tokamak

plasmas

Models for the plasma response to electromagnetic fields

I Fluid description (3D)
I Modeling of fluid density, velocity and temperature
I Assumes weak departure from local thermodynamic equilibrium
I Not satisfying in core tokamak plasmas, mean free path ∼ 10km

I Kinetic description (6D)
I Required for low collisional plasmas, includes wave-particle resonances
I Probability distribution F of particles in 6D phase-space
I Solve Fokker-Planck equation

∂tF (x, v)− [H,F ] = C (F )
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From kinetic (6D) to gyrokinetic (4+1D)

I 6D distribution function → prohibitive computational cost

reduction of dimensionality : 6D → 5D

I in the case of strongly magnetized plasmas

I for frequencies < cyclotron frequency

I Resulting model : Fokker-Planck equation for F̄

∂t F̄ −
[
H̄, F̄

]
= C (F̄ )

for gyrocenter distribution function F̄ (x, v‖, µ)

I Magnetic moment µ =
mv2
⊥

2B is an invariant of the model
⇒ 4+1D model, numerically costly but accessible with modern
high-performance-computing (HPC) resources
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The Gysela code for flux-driven gyroki-

netic simulations of core plasma turbulence
I Solves gyrocenter distribution function

F̄ (r , θ, ϕ, v‖, µ)

I Full-f : no scale separation
equilibrium/perturbations

I Flux-driven system, global geometry

I Electrostatic ITG turbulence

I adiabatic electron response
I Gyrokinetic equation : [Brizard & Hahm, Rev.Mod.Phys. 2007]

B∗||
∂F̄

∂t
+∇ ·

(
dxG
dt

B∗|| F̄

)
+

∂

∂v‖

(
dv‖
dt

B∗|| F̄

)
= C(F̄ ) + S

I Poisson equation : ∇2φ = − 1
ε0

∑
species nses ⇒ δne = δni

τ (φ− 〈φ〉) =
1

neq

∫
J ·
(
F̄ − Feq

)
d3v +

1

neq
∇⊥ · (neqφ∇⊥φ)
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Gysela : a massively parallel

numerical code

I Semi-Lagrangian numerical scheme

I Massively parallel simulations. Results from strong scaling :
82% efficiency for 8k cores, 61% for 65k cores [G.Latu et al., 2012]

I Number of grid points ∝ (ρ∗)
−3 where ρ∗ ≡ ρi/a

Parameters for ITER-size plasma simulation (ρ∗ = ρi/a = 1/512)

I (r , θ, ϕ, v‖, µ) grid : (1024, 1024, 128, 128, 16) for a 1/4 torus
→∼ 3.1011 grid points in 5D phase-space

I one month run on 8192 processors
→ 6.106 hours ∼ 7 centuries of computing time !
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Conservation of toroidal angular momentum

in gyrokinetics

I The gyrokinetic model is a reduction of the kinetic model

I Is it accurate enough to model the transport of toroidal momentum ?

Controversial issue : is toroidal angular momentum conserved in the
reduced model used by GK codes ?

I [Parra&Catto, PPCF’08, PoP’10] No, additional terms are required

I [Scott&Smirnov, PoP’11] Gyrokinetic field theory provides general
conservation equations

Important results obtained in the present work

1. A local conservation equation for toroidal angular momentum is
derived analytically (from the equations implemented in GK codes)

2. This result is verified numerically with the Gysela code

⇒ Gyrokinetic codes provide an accurate description of toroidal
momentum transport [J. Abiteboul et al., PoP 2011]
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Toroidal canonical momentum
d
dt

(
∂L
∂q̇i

)
= ∂L

∂qi

I Tokamak geometry with reasonable assumptions
⇒ 3 motion invariants for particles (equilibrium motion)

I Energy (equilibrium : constant electric potential)
I Assuming slow variations of B : Adiabatic invariant µ
I Axisymmetric magnetic geometry ⇒ third invariant...

...Toroidal canonical angular momentum : Pϕ = ∂L/∂ϕ̇

I for gyrokinetics ⇒ gyrocenter canonical angular momentum
I P̄ϕ = ∂L̄/∂ϕ̇
I P̄ϕ = Pϕ+ small terms in gyrokinetic ordering

I P̄ϕ is an exact invariant of unperturbed gyrocenter motion

I When is P̄ϕ not an invariant ? Breaking of axisymmetry
I non-axisymmetric B (e.g. due to finite number of coils)
I turbulence (electrostatic) : dt P̄ϕ = −e∂ϕφ̄

Jeremie Abiteboul - PhD defense October 30, 2012 10 / 27



Toroidal canonical momentum
d
dt

(
∂L
∂q̇i

)
= ∂L

∂qi

I Tokamak geometry with reasonable assumptions
⇒ 3 motion invariants for particles (equilibrium motion)

I Energy (equilibrium : constant electric potential)
I Assuming slow variations of B : Adiabatic invariant µ
I Axisymmetric magnetic geometry ⇒ third invariant...

...Toroidal canonical angular momentum : Pϕ = ∂L/∂ϕ̇

I for gyrokinetics ⇒ gyrocenter canonical angular momentum
I P̄ϕ = ∂L̄/∂ϕ̇
I P̄ϕ = Pϕ+ small terms in gyrokinetic ordering

I P̄ϕ is an exact invariant of unperturbed gyrocenter motion

I When is P̄ϕ not an invariant ? Breaking of axisymmetry
I non-axisymmetric B (e.g. due to finite number of coils)
I turbulence (electrostatic) : dt P̄ϕ = −e∂ϕφ̄

Jeremie Abiteboul - PhD defense October 30, 2012 10 / 27



Toroidal canonical momentum
d
dt

(
∂L
∂q̇i

)
= ∂L

∂qi

I Tokamak geometry with reasonable assumptions
⇒ 3 motion invariants for particles (equilibrium motion)

I Energy (equilibrium : constant electric potential)
I Assuming slow variations of B : Adiabatic invariant µ
I Axisymmetric magnetic geometry ⇒ third invariant...

...Toroidal canonical angular momentum : Pϕ = ∂L/∂ϕ̇

I for gyrokinetics ⇒ gyrocenter canonical angular momentum
I P̄ϕ = ∂L̄/∂ϕ̇
I P̄ϕ = Pϕ+ small terms in gyrokinetic ordering

I P̄ϕ is an exact invariant of unperturbed gyrocenter motion

I When is P̄ϕ not an invariant ? Breaking of axisymmetry
I non-axisymmetric B (e.g. due to finite number of coils)
I turbulence (electrostatic) : dt P̄ϕ = −e∂ϕφ̄

Jeremie Abiteboul - PhD defense October 30, 2012 10 / 27



Local conservation equation

I Global conserved quantity :
∫
P̄ϕd

3xd3v

I More interesting → local (radial) conservation law ?
Gyrocenter toroidal angular momentum

L̄ϕ(r) =

∫
dθdϕd3v P̄ϕ

= particle angular momentum + small terms in gyrokinetic ordering

I From the gyrokinetic equation, we derive a local equation

∂tL̄ϕ +∇rΠr
ϕ +∇rTr

ϕ = J

I Describes the radial transport of toroidal momentum

I Exact local conservation equation (i.e. derived from gyrokinetic model
with no additional assumptions) [J. Abiteboul et al., PoP 2011]
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Physical interpretation of the momentum

fluxes

∂tL̄ϕ +∇rΠr
ϕ +∇rTr

ϕ = J

(L̄ϕ ∼ RVϕ)

I Πr
ϕ ∼

〈
RṼϕṼr

〉
: Reynolds stress

I Tr
ϕ ∼

〈
nm
B2 R ErEϕ

〉
: Polarization stress [McDevitt et al., PRL’09]

I J : radial current of gyrocenters (J ∼ 0 with adiabatic electrons)

interpreted as exchange of momentum between field and particles
using the equation for polarization σ ∼ Er :

∂tσ = −J
⇒ ∂t

(
L̄ϕ + σ

)
+∇rΠr

ϕ +∇rTr
ϕ = 0

no source term for total toroidal momentum (field+particles)
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Numerical test of the conservation law

I using gyrokinetic code Gysela (conservative GK equations)
with new diagnostics implemented for momentum transport studies
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[J. Abiteboul et al., Physics of Plasmas 2011]

I Conservation equation recovered numerically
despite strong variations (both radially and in time)

I Dominant contribution : Reynolds stress
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General structure of toroidal momentum

transport by turbulence : ∂tVϕ +∇Π = 0

I Radial transport governed by Reynolds stress Πr
ϕ ∼

〈
RṼϕṼr

〉

I Can be split into three components (e.g. [Diamond NF 2009])

Πr
ϕ = −χϕ

∂vϕ
∂r

+ Vvϕ + Πr
ϕ
res

I Diffusive transport with χϕ/χi = Pr ∼ 1 [Mattor PoF 1988]

I Convective (or “pinch”) contribution [Peeters PRL 2007 ; Hahm PoP 2007]

I Residual stress [Diamond PoP 2008 ; Peeters PoP 2009]

I in flux-driven, full-f simulations
→ not trivial to separate between these contributions
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Initial turbulent front generates

dipolar rotation
I Initialize a simulation with vanishing toroidal rotation

(→ no diffusive or convective momentum transport)

I Initial turbulent burst ⇒ generates “dipolar” rotation
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I Generated by the turbulent Reynolds stress (residual stress)

I Dipolar structure consistent with global momentum conservation
[Scott&Smirnov Phys. Plasmas 2010, Abiteboul et al. Phys. Plasmas 2011]

→ no net rotation can be generated inside the simulation domain
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The front corresponds to a cycle in Heat

Flux & Reynolds stress

I Plot the turbulent heat flux and Reynolds stress for all radii

I Arrows correspond to increasing radius

I Reynolds stress front propagates earlier than the heat flux front

I Estimated delay between the fronts is ' 600ω−1c

(front propagation velocity is ∼ ρ∗vT ∼ 10 km/s for ITER)
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Role of edge flows in determining core

toroidal rotation ?
I Local conservation ⇒ no net rotation generation in the core

I How is the core plasma influenced by SOL flows ? [Gunn, JNM 2007]

I Change position of the plasma
→ modify SOL flows

I Clear effect on core rotation

other experimental results :
[LaBombard NF 2004,

Hennequin EPS 2010]
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Impact of boundary conditions on core

toroidal rotation
Numerically : corresponds to the issue of boundary conditions

I in Gysela replace no-slip (V = 0)
boundary with V‖(rmax) = ±0.1vth

I mimicks rotation at the top of the
pedestal in H-mode

I clear effect on mean rotation in
the core → r/a = 0.6

I no modification for r/a < 0.6 0.4 0.5 0.6 0.7 0.8
Normalized radius r/a
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∥/
v t
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I Purely diffusive – convective transport ⇒ Vcore ∝ Vedge

→ confirms the presence of residual Reynolds stress

[Abiteboul et al., submitted to PPCF]
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Large-scale avalanches transport heat and

momentum in the steady-state regime

I Fronts are propagating in both directions (heat flux is always positive)

I Avalanches transport both heat and momentum (propagation v . ρ∗vT )

I Strong correlation between heat flux and Reynolds stress (> 0.6)

Jeremie Abiteboul - PhD defense October 30, 2012 19 / 27



Similar statistics for turbulent heat flux and

Reynolds stress
I Statistical distributions for : flux - <flux>t

I In the steady-state regime, approx. 7.104 points for each distribution
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I Similar distributions when normalizing to standard deviation
I Strongly non-Gaussian statistics, large tails in the distributions

Heat flux : skewness ' 0.8, kurtosis ' 1.7
Reynolds stress : skewness ' 0.8, kurtosis ' 1.5

I Results compared with XGC1 simulations
[Ku, Abiteboul, Diamond et al, Nucl.Fus. 2012]
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Symmetry breaking mechanisms responsible

for intrinsic rotation generation
I Several mechanisms proposed for symmetry breaking :

I up-down asymmetry of magnetic configuration [Camenen PRL’09]
I radial electric field shear E ′r [Dominguez PoF’94 ;Gürcan PoP’07]
I turbulence intensity gradient I ′ [Gürcan PoP’10]

I Correlation of the mechanisms with the Reynolds stress

I Strong correlation locally for the considered symmetry breakers.
similar results with various codes in [Kwon 2011 ; Ku, Abiteboul et al. 2012]
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Brief overview of theoretical predictions

Er − VϕBθ + VθBϕ = ∇P/Zne (radial force balance)

I Axisymmetry → degeneracy between Er and VϕBθ
I Non-axisymmetric B → neoclassical friction on Vϕ

Derivation based on extremum of entropy
production rate

V neo
ϕ = kT

∂rT

eBθ

⇒ counter-current toroidal rotation
where kT depends on ripple amplitude and
mode number, collisionality, aspect ratio etc.
[e.g. Garbet et al., Phys. Plasmas 2010]

I kT can only be estimated analytically in a number of limit cases

Gyrokinetic simulations are necessary as

I Several regimes coexist on a single flux-surface
I Competition between neoclassical friction and turbulence ?
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I Competition between neoclassical friction and turbulence ?
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Choice of toroidal field ripple perturbation

for the simulations δB = δ cos(Nϕ)
I Tore Supra ripple experiments : δ : 0.5%→ 5% with N = 18

I local trapping may play a role for large ripple amplitude
I elsewhere, δ

ε � (Nq)−3/2 and ν∗ � Nq
(
δ
ε

)2
⇒ “ripple-plateau collisional” regime : kT = 1.67, damping rate ∝ Nδ2

[Fenzi, Nuc.Fus. 2011]

I Gysela simulations (constant δ) :
δ : 0.5%→ 2% with N = 8

I for δ = 0.5% : small trapping region
elsewhere ripple-plateau collisional
⇒ similar to experiments

I increase δ → more local trapping
(+ ripple-plateau weakly collisional
regime ?)

I Bottom-line : no theoretical prediction in global geometry but
counter-current rotation, damping rate increases with δ

Jeremie Abiteboul - PhD defense October 30, 2012 23 / 27



Choice of toroidal field ripple perturbation

for the simulations δB = δ cos(Nϕ)
I Tore Supra ripple experiments : δ : 0.5%→ 5% with N = 18

I local trapping may play a role for large ripple amplitude
I elsewhere, δ

ε � (Nq)−3/2 and ν∗ � Nq
(
δ
ε

)2
⇒ “ripple-plateau collisional” regime : kT = 1.67, damping rate ∝ Nδ2

[Fenzi, Nuc.Fus. 2011]

I Gysela simulations (constant δ) :
δ : 0.5%→ 2% with N = 8

I for δ = 0.5% : small trapping region
elsewhere ripple-plateau collisional
⇒ similar to experiments

I increase δ → more local trapping
(+ ripple-plateau weakly collisional
regime ?)

I Bottom-line : no theoretical prediction in global geometry but
counter-current rotation, damping rate increases with δ

Jeremie Abiteboul - PhD defense October 30, 2012 23 / 27



Turbulent simulations including toroidal field

ripple in Gysela
I Ripple implemented as perturbation to the Hamiltonian δH = µ δB‖

‖Beq + δB‖ '
(
B2
eq + 2Beq · δB

)1/2 ' Beq + beq · δB
I ρ∗ = 1/150, ν∗ = 0.2

, ripple = δ cos(Nϕ) with δ = 10−2, N = 8

I → modes with low m and n = N, 2N, 3N... in FFT of δΦ
(resolution in ϕ limits the ripple mode number accessible in the simulations)
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Competition between turbulent and neoclas-

sical momentum transport

I Time evolution of the neoclassical ion heat diffusivity
I Modification of neoclassical equilibrium ⇒ rapid transient
I Neoclassical diffusivity increases with δ

I Competition between turbulent and neoclassical momentum transport
I δ = 5.10−3 : no measurable effect of TF ripple on mean V‖
I higher ripple : neoclassical friction competes with turbulence

I Results consistent with Tore Supra ripple experiments [Fenzi, NF 2011]
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Outline

1 Introduction and motivations

2 Conservation of toroidal angular momentum in gyrokinetics

3 Intrinsic rotation generated by electrostatic turbulence

4 Neoclassical toroidal rotation in the presence of ripple

5 Conclusions
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Key mechanisms responsible for toroidal

momentum transport

  

source profiles transport sink

energy Pressure ∇P

I (turbulence)

Er

neoclassical

turbulent

edge

Vϕ ∇Vϕ

ext. torque

int. torque

--symmetry
breaking

I Turbulence generates toroidal rotation in the absence of sources

I Neoclassical ripple-driven rotation can compete with this effect

I The resulting profile depends on boundary conditions (edge flows)
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Main results of the thesis work

I Numerical developments for the Gysela code
[Abiteboul et al., ESAIM : Proceedings 2011]

I Analytical derivation of a local momentum conservation equation
+ Numerical test of this conservation [Abiteboul et al., Phys.Plasmas 2011]

I Statistical analysis of turbulent heat and momentum transport
[Abiteboul et al., 2011 IAEA-TM Theory of Plasma Instabilities, oral presentation]

+ Comparisons with XGC1p code [Ku, Abiteboul et al., Nuc.Fus. 2012]

I Study on the impact of boundary conditions on core rotation
[Abiteboul et al., submitted to Plas.Phys.Control.Fus.]

I Simulations including turbulent and neoclassical momentum transport
[Abiteboul et al., 2012 EU-US TTF workshop, oral presentation]
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No-slip boundary conditions lead to net

toroidal rotation
I No-slip conditions ⇒ V‖ = 0 but no condition on the flux
I The ad hoc diffusion dissipates momentum transported to the edge
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[Ku et al., Nuc.Fus. 2012]

I Leads to net rotation ⇒ role of boundary conditions ?
I Rotation profile develops on time-scale ∼ confinement time

(usually > simulation time for small ρ∗)
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Statistical analysis : Reynolds stress vs. ∂tLϕ
I in terms of statistics : ∂tLϕ ∼ ∇Πr

ϕ

I Very different statistics for ∂tLϕ and Πr
ϕ
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Reynolds stress : skewness ' 0.8, kurtosis ' 1.5
∂tLϕ : skewness ' 0.1, kurtosis ' 0.5

I Possible interpretation : large Πr
ϕ events have larger radial extent

I Open issue : local vs. flux-surface averaged fluxes ?
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Gyro-Bohm scaling of turbulent transport is

recovered
I Do the large-scale avalanches break the gyro-Bohm scaling ?
I Heat transport : gyro-Bohm scaling for small values of ρ∗

[McMillan PRL 2010, Villard PPCF 2010, Sarazin NF 2011]

gyro-Bohm estimates for the
Reynolds stress :

Πr
ϕ

Rv2T
∝ ρ2∗

∂Πr
ϕ

Rv2T/a
∝ ρ∗
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I Scaling obtained from estimate of RMS fluctuations
I Slightly “worse” than gyro-Bohm scaling obtained ∝ ρ0.7∗
→ Needs to be confirmed with additional simulations (other codes ?)

I Interpretation ? Meso-scale size of the avalanches [Dif-Pradalier PRE 2010]
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