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Résumé

Dans cette these nous étudions différents problemes de graphes et multigraphes arétes-
coloriés tels que la connexité propre, la coloration forte d’arétes et les chaines et cycles
hamiltoniens propres. Enfin, nous améliorons 1’algorithme connu O(n*) pour décider du
comportement d'un graphe sous opérateur biclique, en étudiant les bicliques dans les

graphes sans faux jumeaux. Plus précisément,

e Nous étudions d’abord le nombre k-connexité-propre des graphes, noté pc,(G), ¢’est
a dire le nombre minimum de couleurs nécessaires pour colorer les arétes d'un graphe
de facon a ce qu’entre chaque paire de sommets, ils existent k chemins propres
intérieurement sommet-disjoints. Nous prouvons plusieurs bornes supérieures pour
pci(G). Nous énongons quelques conjectures pour les graphes généraux et bipartis

et nous les prouvons dans le cas ou k = 1.

e Nous étudions l'existence de chaines et de cycles hamiltoniens propres dans les
multigraphes arétes-coloriés. Nous établissons des conditions suffisantes, en fonction
de plusieurs parametres tels que le nombre d’arétes, le degré arc-en-ciel, la connexité,

ete.

e Nous montrons que l'indice chromatique fort est linéaire au degré maximum pour
tout graphe k-dégénéré ou, k est fixe. En corollaire, notre résultat conduit a une
amélioration des constantes et donne également un algorithme plus simple et plus ef-
ficace pour cette famille de graphes. De plus, nous considérons les graphes planaires
extérieurs. Nous donnons une formule pour trouver l'indice chromatique fort exact
pour les graphes bipartis planaires extérieurs. Nous améliorons également la borne

supérieure pour les graphes planaires extérieurs généraux.

e Enfin, nous étudions les bicliques dans les graphes sans faux jumeaux et nous
présentons ensuite un algorithme O(n + m) pour reconnaitre les graphes conver-

gents et divergents en améliorant 'algorithme O(n?).

Mots clés: graphes arétes-coloriés, connexité propre, chaines et cycles hamiltoniens

propres, coloration forte d’arétes, opérateur biclique.
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Abstract

In this thesis, we study different problems in edge-colored graphs and edge-colored
multigraphs, such as proper connection, strong edge colorings, and proper hamiltonian
paths and cycles. Finally, we improve the known O(n*) algorithm to decide the behavior
of a graph under the biclique operator, by studying bicliques in graphs without false-twin

vertices. In particular,

e We first study the k-proper-connection number of graphs, this is, the minimum
number of colors needed to color the edges of a graph such that between any pair of
vertices there exist k internally vertex-disjoint proper paths. We denote this number
pcx(G). We prove several upper bounds for peg(G). We state some conjectures for

general and bipartite graphs, and we prove all of them for the case k = 1.

e Then, we study the existence of proper hamiltonian paths and proper hamiltonian
cycles in edge-colored multigraphs. We establish sufficient conditions, depending on
several parameters such as the number of edges, the rainbow degree, the connectivity,

etc.

e Later, we show that the strong chromatic index is linear in the maximum degree
for any k-degenerate graph where k is fixed. As a corollary, our result leads to
considerable improvement of the constants and also gives an easier and more efficient
algorithm for this familly of graphs. Next, we consider outerplanar graphs. We give
a formula to find exact strong chromatic index for bipartite outerplanar graphs.

We also improve the upper bound for general outerplanar graphs from the 3A — 3
bound.

e Finally, we study bicliques in graphs without false-twin vertices and then we present
an O(n+m) algorithm to recognize convergent and divergent graphs improving the

O(n*) known algorithm.

Keywords: edge-colored graphs, proper connection, proper hamiltonian paths and cy-

cles, strong edge-colorings, iterated biclique graph.
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Chapter 1
Introduction

In this thesis we consider edge-colorings and edge-colored graphs. An edge-coloring of a
graph, is an assignment of colors to the edges of the graph. A proper edge-coloring of
a graph is an edge-coloring such that adjacent edges have different colors. The natural
question is to ask about the minimum number of colors needed in order to color a graph
G properly. This number is called chromatic index and denoted by x'(G). By Vizing’s
Theorem [107] we know that this number is either A(G) or A(G) + 1. For several classes
of graphs we know exactly the value of x'(G), as for example bipartite graphs which
have chromatic index equal to A(G). Edge-colorings are interesting not only because of
the mathematical point of view, but also because of the many applications they have in
real life, for example in scheduling problems and in frequency assignment for fiber optic
networks, etc. Therefore, many different types of edge-colorings have been studied over
the years. We can cite some of them as strong edge-colorings [6, 23, 33, 35, 45, 61, 62,
81, 85, 99, 100, 104, 105, 112], list edge-colorings [21, 51, 56, 63, 72, 71, 111, 113, 115],
interval edge-colorings [7, 64, 92, 93], etc.

An edge-colored graph is a graph that its edges have been colored somehow with ¢
different colors. Here, the natural question to ask is, given an edge-colored graph, how can
we find (if possible) or guarantee the existence of some subgraphs with certain properties.
For example, how to find or guarantee the existence of a hamiltonian cycle that is properly
colored. Lot of research has been done in this subject, not only for proper hamiltonian
cycles, but also for proper hamiltonian paths, proper trees, proper cycles, rainbow trees,
rainbow paths, rainbow cliques, monochromatic cliques, monochromatic cycles, etc. Refer
for example to [1, 2, 3, 5, 10, 12, 15, 17, 34, 47, 59, 65, 83, 94, 95, 102, 108, 114] to find
some results on the subject.

This thesis is organized as follows. In chapter two, we give basic definitions and
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notation. In chapter three, we study the proper connection of graphs. In chapter
four, we study strong edge-colorings of graphs, in particular in k-degenerate graphs and
outerplanar graphs. In chapter five and chapter six, we study sufficient conditions in
edge-colored multigraphs to guarantee the existence of proper hamiltonian paths and cy-
cles, respectively, depending of various parameters such as number of edges, connectivity,
rainbow degree, etc. In chapter seven, we present a work that started at the beggining
of my PhD thesis when I was in Argentina (with Dr. Marina Groshaus as advisor) and
finished here in France. This work is the extension of my master thesis and involves
several results in bicliques of graphs, in particular, a linear time algorithm to recognize
convergent and divergent graphs under the biclique operator. Finally, in chapter eight,
we present the conclusions of our work.

In what follows we present an introduction of the different problems that we have
studied in this thesis. The idea is to introduce them by giving some references to the

literature such that the reader can find about their history and applications.

1.1 Proper connection of graphs

Recent works like [49, 108] have considered properly colored subgraphs as opposed to
looking at the entire graph. There is even a survey of work concerning alternating cycles
[10]. Here alternating means the colors of the edges alternate as you traverse the cycle
thus making it properly colored. The problem of finding an alternating cycle is precisely
the problem of finding a properly colored cycle when only two colors are available.

Similarly, some researchers have considered rainbow colored subgraphs (meaning that
every edge has a distinct color). A graph is rainbow connected if any two vertices are
connected by a path whose edges have distinct colors. The rainbow connection number,
rc(@), as defined in [32], is the minimum number of colors that are needed in order to make
G rainbow connected. The rainbow connection number was studied in [27, 31, 37, 69].
Motivated by this, we extend the rainbow connection definition to a proper connection
one saying that a graph is k-proper connected if any two vertices are connected by k-
vertex disjoint paths whose adjacent edges have distinct colors. And define the k-proper
connection number, pc,(G), as the minimum number of colors that are needed in order to
make G k-proper connected.

About the computational complexity of the problem, there are no results so far. How-

ever, there are several results for the rainbow connection problem. We present some of
them. Deciding if r¢(G) = 2 or re(G) = k, for any fixed k > 2, is N P-Complete [2§]
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and [78] respectively. Checking whether the given coloring makes G rainbow connected
is N P-complete [28]. But, the problem is polynomial for complete graphs, trees, paths,
cycles and wheels [32].

In this thesis we first study pcx(G) for bipartite graphs. We prove exact values of
pex(G) for different bipartite complete graphs and trees. Then, we state the general
conjecture that says that if G is 2k-connected and bipartite with k > 1, then pex(G) = 2.
We prove that, if true, the conjecture is the best possible since we show a family of
2k — 1-connected bipartite graphs with pc(G) > 2. Finally, we prove this conjecture for
k=1

Later, we study pci(G) in general graphs, starting with the simplest case k = 1, i.e.,
pc(G). We prove several exact values for pc(G) as for example for complete graphs, paths,
cycles, etc. Then, we prove the main result of the section, this is, if G'is 2-connected, then
pc(G) < 3. This improves Vizing’s trivial bound of A + 1. We show also that this bound
is tight since we present a family of 2-connected graphs with pc(G) = 3. Then we present
a bound for pc(G) for just connected graphs that uses the maximum degree of a vertex
that is an endpoint of a bridge. We state also a general conjecture for pci(G) based on
the conjecture for bipartite graphs and the result for 2-connected graphs. This is, if G is
2k-connected with k& > 1, then pci(G) < 3. We remark that we proved this conjecture for
k = 1. Then, we prove a stronger result for pci(G) for complete graphs of order n > 2k.

Finally, we prove a result concerning the minimum degree of the graph, this is, if G is
a connected non-complete graph of order n > 68 and 6(G) > % then pc(G) = 2.

All our results lead to efficient algorithms to find such colorings.

We remark that many of the conditions assumed for proper connection are much
weaker than those needed to produce upper bounds on the rainbow connection number
re(G). This can be explained by the fact that it takes far fewer colors to make a path

properly colored than are needed to make it rainbow colored.

1.2 Strong edge-colorings

A strong edge-coloring of a graph G is an edge-coloring such that any two vertices belong-
ing to distinct edges with the same color are not adjacent. The strong chromatic index,
X%(G), is the minimum number of colors in a strong edge-coloring of G.

The strong edge-coloring has a long history and has lead to many well known con-
jectures. Some of the many unsolved conjectures include x,(G) < 5A?/4 for all graphs,

X4(G) < A? for bipartite graphs, and y4(G) < 9 for 3-regular planar graphs (see the open
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problems pages of Douglas West [109] for more details).

Molloy and Reed [85] proved a conjecture by Erdés and Nesettil (see [45]) that for
large A, there is a positive constant ¢ such that x.(G) < (2 — ¢)A?. Mahdian [81] proved
that for a Cy-free graph G, x4(G) < (2+ 0(1))A%/In A.

For integers 0 < ¢ < k < m, S,,(k,{) is the bipartite graph with vertex set {x C
[m]: |x] = k or £} and a k-subset x is adjacent to an ¢-subset y if y C z. Quinn and
Benjamin [16] proved that Sy, (k,¢) has strong chromatic index (,™,). The ©-graph ©(G)
of a partial cube G (distance-invariant subgraph of some n-cube), is the intersection graph
of the equivalence classes of the Djokovié-Winkler relation © defined on the edges of G
such that zy and uv are in relation © if d(x,u)+d(y,v) # d(x,v)+d(y,u). Sumenjak [68]
showed that the strong chromatic index of a tree-like partial cube graph G is at most the
chromatic number of O(G).

Faudree, Gyarfas, Schelp and Tuza [46] proved that for graphs where all cycle lengths
are multiples of four, x,(G) < A% They mention that this result probably could be
improved to a linear function of the maximum degree. Brualdi and Quinn [23] improved
the upper bound to x%(G) < af for such graphs, where o and /3 are the maximum degrees
of the respective partitions. Nakprasit [88] proved that if G is bipartite and the maximum
degree of one partite set is at most 2, then y/(G) < 2A. Bounds for outerplanar graphs
were given recently in [60]. A recent work ([66]) gives an algorithm to find the strong
chromatic index of any maximal outerplanar graph, but notice that when you extend the
graph to maximal outerplanar, the maximum degree and the chromatic index can increase.
Also, Chang and Narayanan [29] proved that y/(G) < 10A—10 for any 2-degenerate graph
G, X.(G) < 8A — 6 for chordless graphs and proposed, as a conjecture, that there exists
an absolute constant ¢ such that for any k-degenerate graph G, x4(G) < ck*A. Thus for
fixed k, x%(G) is linear in A.

About the complexity, the strong edge-coloring problem is N P-complete [82]. Tt is
also N P-complete for 4,5 or 6 colors in some subclasses of planar graphs of maximum
degree 3 [60]. However, is polynomial for some classes of graphs as paths, trees, cycles,
chordal graphs [26], graphs of bounded tree-width [103], etc.

One known application of strong edge-colorings is the following: to find a minimum
strong edge-coloring (x%(G)) is equivalent to computing an interference-free channel as-
signment with the fewest channels [14].

In this thesis, we will be focused in improving bounds for k-degenerate graphs and
outerplanar graphs. In particular, we prove that if G is k-degenerate graph, then x.(G) <
(4k — 1)A — 2k* — k + 1 that improves the conjecture since x(G) is linear in A and k.
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This result implies the two following ones. If G is 2-degenerate graph, then x.(G) <
7TA — 9 and if G is chordless, then x.(G) < 5A — 5, improving both known results.
Then we show an O(n+ kAm) algorithm to find a coloring for k-degenerate graphs using
(4k — 1)A — 2k* — k + 1 colors.

Then, for strong edge-colorings in outerplanar graphs, we define a puffer graph or an n-
puffer as a graph obtained by adding some (possibly empty) pendant edges to each vertex
of an n-cycle or adding a common neighbour to two consecutive vertices of the n-cycle.
We remark that since the graph is outerplanar, at most one such vertex can be added.
We prove several exact and upper bounds for y/(G) in puffer graphs. Using these results
we prove the following: if G is an outerplanar graph, then x.(G) = max{max,,cp d(u) +
d(v) — 1, maxgep X5(H)}, where P is the set of all induced puffer subgraphs of G. If G
is also bipartite, then x,(G) = max{maxy,ecp d(u) + d(v) — 1, maxyuecp(c,) d(u) + d(v)}
where CYy is the set of all cycles of length 4 in GG. Observe that for outerplanar graphs
we obtain an upper bound for x(G), while for bipartite outerplanar graphs we have the

exact value of x.(G).

1.3 Proper hamiltonian paths and cycles in edge-

colored multigraphs

The research on long colored cycles and paths for edge-colored graphs has given interesting
results. Refer to [10, 11, 65] for surveys on related results. From the point of view
of applicability, problems arising in molecular biology are often modeled using colored
graphs, i.e., graphs with colored edges and/or vertices [95]. Given such an edge-colored
graph, original problems translate to extracting subgraphs colored in a specified pattern.
The most natural pattern in such a context is that of a proper coloring, i.e., adjacent
edges have different colors.

Clearly, the proper hamiltonian path and proper hamiltonian cycle problems are N P-
complete in the general case. It is polynomial to find a proper hamiltonian path in c-edge-
colored complete graphs, ¢ > 2 [47]. Tt is also polynomial to find a proper hamiltonian
cycle in 2-edge-colored complete graphs [13]. It is still open to determine the computa-
tional complexity for proper hamiltonian cycles, ¢ > 3 [17]. Many other partial results
for edge-colored multigraphs can be found in the survey by Bang-Jensen and Gutin [10].

In this thesis we consider sufficient conditions involving various parameters as the

number of edges, rainbow degree, etc., in order to guarantee the existence of properly
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edge-colored hamiltonian paths and cycles in edge-colored multigraphs. Since, very often
the extremal graphs for 2-edge-colored multigraphs are different than those for c-edge-
colored multigraphs, ¢ > 3, we consider our results separately for these two cases. This
division is natural since in 2-edge-colored multigraphs proper paths and proper cycles are
just alternating, and therefore, the bounds are different.

For proper hamiltonian paths in 2-edge-colored multigraphs we present two main re-
sults. The first one involves the number of edges, and the second one involves the number
of edges and the rainbow degree. We show that both results are tight. Then, for proper
hamiltonian paths in c-edge-colored multigraphs, ¢ > 3, we show that this problem can
be reduced to the existence of proper hamiltonian paths in 3-edge-colored multigraphs
and then we present three main results. The first one involves the number of edges. The
second one, the number of edges and the connectivity of the graph. The last one, the
number of edges and the rainbow degree. Again, all results are the best possible.

About proper hamiltonian cycles in 2-edge-colored multigraphs we prove two tight re-
sults involving same parameters as for proper hamiltonian paths. Then, for c-edge-colored
multigraphs, ¢ > 3, we show, as for paths, that looking at 3-edge-colored multigraphs is
enough and then we prove two main results. The first one involves the number of edges.
The second one, the number of edges and the rainbow degree. We show that both results
are the best possible. Finally, we state a conjecture involving the number of edges, the
rainbow degree and the 2-connectivity of the graph.

Results involving only degree conditions can be found in [2].

1.4 Bicliques in graphs

Intersection graphs of certain special subgraphs of a general graph have been studied
extensively. Let us mention for example the case of line graphs (which are the intersection
graphs of the edges of a graph), interval graphs (defined as the intersection graphs of
intervals of the real line), and, in particular, clique graphs (defined below) [20, 22, 43, 50,
52, 79, 84].

The clique graph of G, denoted by K (G), is the intersection graph of the family of all
maximal cliques of G.

Clique graphs were introduced by Hamelink in [57] and characterized by Roberts and
Spencer in [101]. It was proved in [4] that the clique graph recognition problem is NP-
complete.

As the clique graph construct can be thought of as an operator between graphs, the
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iterated clique graph K*(G) is the graph obtained by applying the clique operator k
successive times. It was introduced by Hedetniemi and Slater in [58]. Much work has
been done on the scope of the clique operator, looking at the different possible behaviors.
The associated problem is deciding whether an input graph converges, diverges, or is
periodic under the clique operator, when k grows to infinity. In general, it is not clear
that the problem is decidable. However, partial characterizations have been given for
convergent, divergent and periodic graphs, restricted to some classes of graphs. Some of
these lead to polynomial time recognition algorithms. For the clique-Helly graph class,
graphs which converge to the trivial graph have been characterized in [9]. Cographs, Pj-
tidy graphs, and circular-arc graphs are examples of classes where the different behaviors
are characterized [36, 73]. Divergent graphs were also considered. For example, in [89],
families of divergent graphs are shown. Periodic graphs were studied in [43, 77]. In
particular, it is proved that for every integer ¢, there exist graphs with period i and
convergent graphs which converge in ¢ steps. More results about iterated clique graph
can be found in [44, 48, 74, 75, 76, 96].

The biclique graph of a graph G, denoted by K B(G), is the intersection graph of the
family of all maximal bicliques of G. It was defined and characterized in [54]. However, no
polynomial time algorithm is known for recognizing biclique graphs. As for clique graphs,
the biclique graph construct can be viewed as an operator K B between graphs.

The iterated biclique graph K B*(G), i.e., the graph obtained by applying iteratively
the biclique operator KB k times to G was introduced and all possible behaviors were
characterized in [53]. It was proven that a graph G is either divergent or convergent,
but it is never periodic (with period bigger than 1). In addition, they were given general
characterizations for convergent and divergent graphs. These results are based on the fact
that if a graph G contains a clique of size at least 5, then K B(G) contains a clique of
larger size. Therefore, G diverges. Similarly, if G' contains the so-called gem or rocket
as an induced subgraph, then K B(G) contains a clique of size 5, and again, G diverges.
Otherwise, it is shown that, after removing false-twin vertices of K B((G), the resulting
graph is a clique on at most 4 vertices, in which case, G converges. Moreover, it was
proved that if a graph G converges, it converges to the graphs K; or K3, and it does so
in at most 3 steps. These results are very different from the ones known for the clique
operator. These characterizations leaded to an O(n?') time algorithm for deciding if a
given graph converges or diverges under the biclique operator.

Bicliques have applications in various fields, for example, biology: protein-protein

interaction networks [24], social networks: web community discovery [70], genetics [8],
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medicine [87], information theory [55]. More applications (including some of these) can
be found in [80]

In this thesis we continue this work. Using the characterization above and other results
we prove that if G has at least 7 bicliques, then GG diverges under the biclique operator,
i.e., almost every graph is divergent under the biclique operator. Later, based on those
results we obtain the main theorem that leads to a linear time algorithm for deciding if
a given graph converges or diverges under the biclique operator. Motivated by the fact
that false-twin vertices belong to exactly the same bicliques and the successive deletion of
them does not change neither the number of bicliques of the graph nor the structure of the
biclique graph (and therefore does not change its behavior under the biclique operator),
we study this particular class. We prove that given a graph GG with no false-twin vertices,
if G has at least 13 vertices then GG has at least 7 bicliques. Later, we study more general
structural properties of bicliques in false-twin free graphs. We prove several small results
that imply the following: If G is a Kjs-free graph of order n > 4 without false-twin
vertices, then G has at least [§] bicliques. We also state a similiar conjecture but for
general graphs without false-twin vertices. Finally, we present several results that would

help to prove that conjecture.



Chapter 2
Definitions and Notation

In this chapter we introduce the main definitions and notation needed to understand
this thesis. We begin by the general notions of graph theory, then about edge-colored
graphs and multigraphs, and finally about bicliques in graphs. We use the notation and
terminology given by Bondy and Murty in [19]. However, the reader is warned that there

may be some differences.

2.1 General graphs

A graph is an ordered pair G = (V(G), E(G)), where V(G) is a non-empty finite set and
E(G) is a set of unordered pairs vw with v,w € V(G) and v # w. The set V(G) or
simply V, is the vertex set of G and its elements are called vertices of G. The set E(G)
or simply £ is the edge set of G and its elements are called edges of GG. Given an edge
e = vw, the vertices v and w are called endpoints of e. The order of GG is the number of
vertices of G. We denote, as usual, n = |V (G)| and m = |E(G)|, unless otherwise stated.
The unique graph of order 1 is called the trivial graph. We remark that in our graph
definition vv ¢ E(G) for v € V(G), vw € E(G) if and only if wv € E(G) for v,w € V(G)
and [{vw € E(G)|v,w € V(G)}| < 1. Under these conditions we refer to these graphs as
loopless, undirected and simple respectively.

A vertex v is adjacent to a vertex w when vw € E(G). We also say in that case
that v is a neighbor of w. A vertex v is incident to an edge e when v is an endpoint
of e. Two distinct edges e and f are adjacent if they have a common endpoint. The
neighborhood of a vertex v, denoted Ng(v), is the set of all neighbors of v, and the

complement neighborhood of a vertex v, denoted Ng(v), is the set of all non-neighbors of



Chapter 2. Definitions and Notation 10

v. The degree of a vertex v is the cardinality of the set Ng(v) and it is denoted dg(v). The
minimun and maximum values among the degrees of all vertices are denoted §(G) and
A(G) respectively. If §(G) = A(G) then G is a regular graph. The closed neighborhood
of v is the set Ng[v] = Ng(v) U{v}. If Ng[v] = V(G) then v is an universal vertex while
if Ng(v) = 0 then v is an isolated vertex. We will omit the subscripts in N and d when
there is no ambiguity about G. Two vertices v and w are true-twins, or simply twins,
when N[v] = N[w]. We refer to v and w as false-twins when N(v) = N(w).

A graph H is a subgraph of the graph G if V(H) C V(G) and E(H) C E(G). If
also E(H) = {vw € E(G)|v,w € V(H)}, then H is an induced subgraph of G. For each
S C V(@), the subgraph of G induced by S is the unique induced subgraph of G whose
vertex set is S. We denote by G[S] the subgraph of G induced by V. A subgraph of G
whose vertex set is V(G) is called a spanning subgraph. For each S C V(G), we denote
by G — S the subgraph of G induced by V(G) — S. If S = {v}, we write shortly G — v.
Similarly, for each F' C E(G), we denote by G — F' the spanning subgraph of G with edge
set E(G) — F. If F = {e}, we write shortly G — e. A graph is k-degenerate, if every
subgraph has a vertex of degree at most k.

Two graphs G and H are isomorphic if there is a one-to-one mapping f between V(G)
and V(H) such that vw € E(G) if and only if f(v)f(w) € E(H). The mapping f is
referred to as an isomorphism between GG and H. For a graph H, the graph G is H — free
if no induced subgraph of G is isomorphic to H.

The complement of a graph G, denoted by G, is the graph that has the same vertices
as G and such that two vertices are adjacent in G if and only if they are not adjacent in
G.

A walk in a graph G is a sequence vy ... v, of vertices such that v; is adjacent to v;,q,
for every 1 < i < k. Such a walk is said to be a walk between v; and vy (or joining vy
with vy). The vertices v; and v;;; are said to be consecutive in the walk and v;v;,4 is
said to be an edge of the walk. The length of the walk is the number k — 1 of edges of
the walk. A closed walk is a walk that joins a vertex with itself. A path is a walk formed
by pairwise distinct vertices and it is denoted by P.. A cycle is a closed walk v; ... v v;
where k£ > 3 and v; ... vy is a path. We denote it by Ck. A hamiltonian path (cycle) is a
path (cycle) containing all vertices of the graph.

A graph is connected if it contains a path between any two of its vertices. A dis-
connected graph is a graph that is not connected. A connected component, or simply a
component, is a maximal connected subgraph. A graph is k-connected if for any set S of

k — 1 vertices, G — S is connected. The connection number of a graph is the minimum
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value k that there exists a set of vertices S of size k such that G — S is disconnected and
for every set of vertices S’ of size k — 1, G — 5’ remains connected. We denote it by x(G).
Similarly, A graph is k-edge-connected if for any set F' of k — 1 edges, G — F' is connected.
A vertex v of a connected graph G such that G — v is disconnected is called cut vertex,
similarly a set of vertices S of a connected graph G such that G — S is disconnected is
called cut set. A edge e of a connected graph G such that G — e is disconnected is called
bridge.

A forest is a graph without cycles. A tree is a connected graph without cycles. A leaf
of a tree is a vertex of degree 1.

The distance of two vertices v and w in a graph G, denoted by dg (v, w), is the minimum
among the lengths of all the paths between v and w. The distance of v and w is infinity
when there is no path joining v with w. The max, ey d(u,v) is called the diameter of G.

A chord of a cycle is an edge that joins two non-consecutive vertices of the cycle.
Those cycles that have no chords are called chordless. A graph is chordless if every cycle
is chordless.

A cligue in a graph G is a set of pairwise adjacent vertices. An independent set is a
set of pairwise non-adjacent vertices. The complete graph of order n is denoted by K,
and K3 is referred to as a triangle.

A graph G is bipartite when there is a partition of V(&) into two non-empty sets V3, V3
of V(G) such that both V; and V; are independent sets. The partition V;, V3 is called a
bipartition of V(G), and we denote it by Vi, V5 . If each vertex in V] is adjacent to all the
vertices in V5 , then G is a complete bipartite graph. The complete bipartite graph with
bipartition V'1, V2 is denoted by K|y 1| va|-

A matching in a graph is a set of pairwise non-adjacent edges. Given a graph of order
n, for n even, a perfect matching is a matching M of G such that |M| = § and for n
odd, an almost perfect matching is a matching M of G such that |M| = 2%, A path or
cycle is said to be compatible with a matching M if the edges of the path or the cycle
are alternatively in M and not in M. We assume that, if the path is not hamiltonian, it
starts and ends with edges in M. An induced matching M in G is a matching such that
G[V(M)] = M. That is, the subgraph of G induced by the vertices of M is M itself.

A graph G is outerplanar, if it has a planar embedding in which all vertices are incident
to the infinite face. We define a special outerplanar graph and we call it puffer graph or
an n-puffer as a graph obtained by adding some (possibly empty) pendant edges to each
vertex of an n-cycle or adding a common neighbour to two consecutive vertices of the n-

cycle. Notice that since the graph is outerplanar, at most one such vertex can be added.
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Depending on whether the parity of the cycle is even or odd, they are respectively called
even puffer and odd puffer.

2.2 Edge-colored graphs

Let C = {1,2,--- ,c} be a set of ¢ > 2 colors. A c-edge-coloring of a graph G is a
mapping between C' and E(G) such that each of the ¢ colors if assigned to at least one
edge of G. A proper c-edge-coloring is a c-edge-coloring such that every pair of adjacent
edges have different colors. The smallest positive integer ¢ such that G admits a proper
c-edge-coloring is known as the chromatic index of G and is denoted x'(G). A color class
(in an edge-coloring) is the set of all edges which receive the same color.

If H is a subgraph of G, then N (v) denotes the set of vertices of H adjacent to v with
an edge of color i. Whenever H is isomorphic to G, we write N*(z) instead of Nj(v).
The colored i-degree of a vertex v, denoted by d‘(v), is the cardinality of N%(v). The
rainbow degree of a vertex v, denoted by rd(v), is the number of different colors on the
edges incident to v. The rainbow degree of a graph, denoted by rd(G), is the minimum
rainbow degree among all vertices of G. An edge with endpoints v and w is denoted by
vw, and its color by c(vw). A vertex is monochromatic if it has all its incident edges of
the same color.

A path or cycle in an edge-colored graph is said to be properly edge-colored (or proper),
if every two adjacent edges differ in color. A proper hamiltonian path (cycle) is a proper
path (cycle) containing all vertices of the graph. An edge-colored graph G is k-proper
connected if any two vertices are connected by k internally pairwise vertex-disjoint proper
paths. We define the k-proper connection number of a k-connected graph G, denoted by
pck (@), as the smallest number of colors that are needed in order to make G k-proper
connected. Similarly, An edge-colored graph G is k-proper edge-connected if any two
vertices are connected by k internally pairwise edge-disjoint proper paths. We define the
k-proper edge-connection number of a k-edge-connected graph G, denoted by pecy(G), as
the smallest number of colors that are needed in order to make G k-proper edge-connected.
An edge-colored graph is connected if the underlying non-colored graph is connected.

Given a colored path P = vyvs ... v, 105 between any two vertices vy, v, we denote by
start(P) the color of the first edge in the path, i.e. ¢(v1v7), and by end(P) the last color,
ie. c(vs_qvs). If P is just the edge vivg then start(P) = end(P) = c(vivs).

A proper edge-coloring is a strong edge-coloring, if every color class is an induced

matching in G. In other words, the distance between any two edges having the same color
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is at least two. The minimum positive integer k£ such that G admits a strong k-edge-

coloring is called the strong chromatic index of G denoted x.(G).

2.3 Edge-colored multigraphs

A multigraph is a loopless, undirected graph, i.e., the condition of being simple is dropped
(several edges between the same pair of vertices are allowed). Let C' = {1,2,--- , ¢} be a
set of ¢ > 2 colors. A c-edge-coloring of a multigraph is an edge-coloring such that every
edge is colored with one color and no two parallel edges joining the same pair of vertices
have the same color. We denoted it by G*°.

A rainbow complete multigraph is the one having all possible colored edges between
any pair of vertices.

We use two families of multigraphs without proper hamiltonian paths. First, let H ,f Jt3
denote a 2-edge-colored multigraph on 2k + 3 vertices, k > 1, defined as follows. Consider
a complete red graph on k vertices and join it with red edges to an independent set on
k+ 3 vertices. Finally, superpose a complete blue graph on 2k + 3 vertices. For the second
family, let H , ., denote a c-edge-colored multigraph on 2k + 2 vertices, k > 1 and ¢ > 3.
Consider a rainbow complete graph on k vertices and join it with edges of all possible
colors to an independent set on k + 2 vertices.

Finally we use two families of multigraphs without proper hamiltonian cycles. Let
H ,f 142 denote a 2-edge-colored multigraph on 2k 4 2 vertices, &k > 2. Consider a complete
red graph on k vertices and join it with red edges to an independent set on k + 2 vertices.
Finally, superpose a complete blue graph on 2k + 2 vertices. Let Hy ; , denote a c-edge-
colored multigraph on 2k + 1 vertices, £ > 2 and ¢ > 3. Consider a rainbow complete
graph on k vertices and join it with edges of all possible colors to an independent set on
k + 1 vertices.

2.4 Bicliques in graphs

A biclique is a maximal complete bipartite induced subgraph of G. A diamond is a
complete graph with 4 vertices minus an edge. A gem is an induced path with 4 vertices
plus an universal vertex. A rocket is a complete graph with 4 vertices and a vertex
adjacent to two of them.

Given a family of sets A, the intersection graph of A has as vertices the set of A

and the edges correspond to the pairs of sets from A with a non-empty intersection. We
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remark that any graph is an intersection graph [106].

The clique graph of G, denoted by K(G), is the intersection graph of the family of
all maximal cliques of G. The biclique graph of a graph G, denoted by KB(G), is the
intersection graph of the family of all maximal bicliques of G.

Let F' be any graph operator. Given a graph G, the iterated graph under the operator
F* is defined iteratively as follows: F°(G) = G and for k > 1, F*(G) = FF-1(F(G)). We
say that a graph G diverges under the operator F' whenever limy,_,o |V (F¥(G))| = co. We
say that a graph G converges under the operator F' whenever lim,_,o, F*(G) = F™(G)
for some m. We say that a graph G is periodic under the operator F' whenever F*(G) =
F*3(@) for some k, s, s > 2.

The iterated biclique graph K B¥(G), is the graph obtained by applying iteratively the
biclique operator KB k times to G.

In the thesis we will use the terms convergent or divergent meaning convergent or
divergent under the biclique operator K B.

By convention, we arbitrarily say that the trivial graph K is convergent under the
biclique operator (observe that this remark is needed, since the graph K; does not contain

bicliques).



Chapter 3
Proper Connection of Graphs

This chapter is organized as follows: In Section 3.1 we study pcg(G) for bipartite graphs.
We state a conjecture, prove several small results and finally we prove the conjecture for
k = 1, that is, for pc(G). In Section 3.2, we study pc(G) for general graphs and prove
non-trivial bounds, improving Vizing’s trivial bound of A + 1. Then, motivated by both
of these sections, we state a conjecture regarding pcy(G) for general graphs. In Section 3.3

we prove a bound concerning the minimum degree of G.

3.1 Bipartite graphs

In this section, we study proper connection numbers in bipartite graphs. We state a
general conjecture for pcy,(G) where G is a bipartite graph with some specific connectivity
that depends on k. Following that, we show that this conjecture is best possible in the
sense of connectivity. Later, we prove some results for specific classes of graphs such
as complete bipartite graphs with lower connectivity assumptions than that which is
required for the conjecture. Then, we prove that the conjecture is true for complete
bipartite graphs. Finally, we study the case £ = 1 and obtain results for trees and other
graphs depending on their connectivity. We end the section by obtaining, as main result,
the proof of the conjecture for the special case k = 1 and some corollaries stemming from
it.

Conjecture 3.1.1. If G is a 2k-connected bipartite graph with k > 1, then pcp(G) = 2.

If true, Conjecture 3.1.1 is the best possible in the sense of connectivity. In the
following we present a family of bipartite graphs which are (2k — 1)-connected with the

property that pcg(G) > 2. It is also clear that we cannot exchange the vertex connectivity

15
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for edge connectivity since it is easy to find graphs with connectivity 1 which have edge
connectivity 2k.

Consider the complete bipartite graph G = K, , with p =2k —1 (k > 1) and ¢ > 27
where G = VUW, V = {v1,v,...,v,} and W = {wy, ws, ..., w,}. Clearly, G is (2k —1)-
connected. We will show that pc,(G) > 2.

Proposition 3.1.2. Let p=2k—1 (k>1) and g > 2°. Then pci(K,,) > 2.

Proof. Suppose that pci(G) = 2 and consider a k-proper connected coloring of G with
2 colors. For each vertex w; € W, there exists a p-tuple C; = (c1,¢a,...,¢,) so that
c(vjw;) = ¢; for 1 < j < p. Therefore, each vertex w; € W has 2P different ways of
coloring its incident edges using 2 colors. Since ¢ > 2P, there exist at least two vertices
w;,w; € W such that C; = C;. As pci(G) = 2, there exist k internally disjoint proper
paths in G between w;, w;. Using this, we will arrive to a contradiction. First, observe that
one of these paths between w;, w; (say P) must have only one intermediate vertex v, € V'
since otherwise, if all the paths have at least two intermediate vertices in V', we would
have |V| > 2k, which is a contradiction. Hence, as C; = C; we have c¢(vjw;) = c¢(vw;) and

therefore the path P is not properly colored, leading to a contradiction. O
Based on the previous result we prove the following.

Theorem 3.1.3. Let G = K,, 3 then

2 if3<n<6
pea(G) = 3 if 7<n<8
[/n] ifn>9

Proof. 1t is easy to check that pce(G) = 2 for 3 < n < 6 and pcy(G) = 3 for 7 < n < 8.
Now let n > 9. We will give a 2-proper coloring of G using ¢ = [/n] colors and we will
also show that this is the best possible. Consider the bipartition of G = V U W such that
V| =nand |W|=3. Let V = {vy,...,v,} and W = {wy, we, ws}. For each vertex v; € V|
we consider a 3-tuple C; = (cq, ¢z, ¢3) so that c(v;w;) = ¢; for 1 < j < 3. Therefore, each
vertex v; € V has ¢ different ways of coloring its incident edges using ¢ colors. We then
color the edges of G as follows. If ¢ > 4 then we color the edges of (¢ — 1)? vertices of
V' with all the different triples of ¢ — 1 colors and, for the remaining vertices, we choose
different triples but this time using the ¢ color. If ¢ = 3, we just choose different triples
of colors but starting with the ¢! colorings with all three colors different. By this coloring
we have that for each pair of vertices v;, v; € V we have that C; # Cj forall 1 <i # j < n.
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Before proving that this coloring is 2-proper, it is easy to see that G' cannot be colored
to make it 2-proper connected using fewer than ¢ colors by following the same argument
as in Proposition 3.1.2. That is, if we use fewer than ¢ colors, there must exist at least
two vertices v;,v; € V such that C; = C}, a contradiction.

Now consider two vertices v;, v; € V' and we would like show the existence of 2-proper
paths between them. Since C; # C;, we know that at least one of the three colors is
different. If two or three are different, then we have 2-proper paths of the form v;wyv;
and v;wv; such that c(v,wyg) # c(vjwy) and c(v;w;) # c(v;w;). Suppose now that exactly
one of the three colors is different, say c¢; without losing generality, then v;w;v; is a proper
path. For the second path, there exists a vertex v, € V such that, by construction of
the coloring, c(v;ws) # c(vpws), c(vjws) # c(vyws) and c(vpwe) # c(vyws). Therefore
V;WVEW3Y; is a proper path between v; and v;.

Next consider w;, w; € W, it is clear that there exist two vertices vy, v; € V' such that
C and C) have both colors different to w;,w;. Therefore w;vyw; and w;v;w; are proper
paths. Finally, we consider the case where v; € V and w; € W. The edge v;w; provides a
trivial proper path. For the second path, simply choose other appropriate vertices v, € V'
and w; € W such that v;wv,w, results in a proper path. These vertices exist by the

constructed coloring of G. As no cases are left, the theorem holds. O

Now we prove the conjecture for complete bipartite graphs.
Theorem 3.1.4. Let G = K,,,,, m > n > 2k for k> 1. Then pcy(G) = 2

Proof. Take the bipartition of G = AU B. Then split each set A and B into the sets
A1, Ay, By, By such that |A;|,|B;| > k for i = 1,2. This is clearly possible since |A|, |B| >
2k. Now color the graph in the following way. Put c(vw) =1 for all v € A; and w € By,
and for all v € Ay and w € Bs. Finally put color 2 to the rest of the edges, that is,
c(vw) = 2 for all v € Ay and w € By, and for all v € Ay and w € B; (see Figure 3.1).
Now we prove that this coloring produces k proper paths between each pair of vertices of
G. First, consider two vertices v,w € A; (an identical argument holds for pairs in other
sets). Since the cardinality of each set is at least k, we form k proper paths vbjasbow
choosing by € By,as € As and by € By. If v € A; and w € A, (similarly for v € B and
w € Bs) we have at least 2k proper paths formed as vbw for each choice of b € B. The
final case is when v € A; and w € B; (that is, v and w are adjacent). Here we have at
least k + 1 proper paths, as follows. One path is simply the edge vw while the k that
remain are of the form vbyasw for each choice of by € By and ay, € Ay. This completes
the proof. n
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Figure 3.1: Coloring of K, 5. Normal edges represent color 1 and bold edges color 2.

Now we will study the case k = 1, that is pc(G). By Konig’s Bipartite Theorem [67]
we have that the edge chromatic number is A for bipartite graphs and therefore A is a
trivial upper bound for pc(G) for any bipartite graph G. Then, we obtain this trivial

corollary.
Corollary 3.1.5. If G is a tree then pc(G) = A.

The following theorem is the main result of the section. It improves upon the upper
bound of A by Konig to the best possible whenever the graph is bipartite and 2-edge-

connected.

Theorem 3.1.6. Let G be a graph. If G is bipartite and 2-connected then pc(G) = 2
and there exists a 2-coloring of G that makes it proper connected with the following strong
property. For any pair of vertices v,w there exists two paths Py, Py between them (not
necessarily disjoint) such that start(Py) # start(P,) and end(Py) # end(FPz).

Given a 2-connected graph G, let G be an instance of the graph G \ P where P is
the set of internal vertices of the last ear of an ear decomposition of a G. Similarly, if
the graph is 2-edge-connected, there is a (closed) ear decomposition in which an ear may
attach to the previous structure at a single vertex. Therefore, using the same argument,

one could easily show the result also holds for a 2-edge-connected graph G.

Proof. Suppose G is 2-connected and bipartite and consider a spanning minimally 2-

connected subgraph (meaning that the removal of any edge would leave G 1-connected).
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For the sake of simplicity, we call this subgraph G. This proof is by induction on the
number of ears in an ear decomposition of G. The base case of this induction is when G
is simply an even cycle and we alternate colors on the edges.

Let P be the last ear added where the ends u and v of P are in G; and all internal
vertices of P are in G \ GG;. Since G is minimally 2-edge-connected, we know that the
length of P is at least 2. By induction on the number of ears, we obtain a 2-coloring of G
so that GG; has the strong property. Color P with alternating colors. Let C' be the proper
cycle of G such that C' = PP’ where P’ is the appropriate proper path in G; between u
and v. Clearly this path exists, since in G; we have the strong property.

Finally we show that this coloring of G is proper connected with the strong property.
Every pair of vertices in C' has the strong property since C' is an alternating even cycle.
Also, by induction, every pair of vertices in (G; has the strong property. Let x € G\ C
and let y € P. The pair zu has the strong property so there exists a path @, from x to u
so that xQ,uPy forms a proper path (/. Similarly the pair xv has the strong property
so there exists a path @), from x to v so that xQ,vPy is a proper path Q. Since C is a
proper cycle, @), and (! must have different colors on the edges incident to y. Note also
that, since G is bipartite, the parity of the length of @)/, is the same as the parity of the
length of Q. Hence, @', and @’ must also have different colors on the edges incident to

x. This shows that x and y have the strong property, thereby completing the proof. [
As a result of Theorem 3.1.6 we obtain the following corollary.

Corollary 3.1.7. Let G be a graph. If G is 3-connected, then pc(G) = 2 and there exists
a 2-edge-coloring of G that makes it proper connected with the following strong property.

For any pair of vertices v,w there exist two paths Py, Py between them (not necessarily
disjoint) such that start(Py) # start(P) and end(Py) # end(P;).

Proof. By [91], any 3-connected graph has a spanning 2-connected bipartite subgraph.
Then the result holds by Theorem 3.1.6 O]

3.2 (General graphs

We begin this section by studying pc(G) for a general graph G. We show some easy
results for specific classes such as complete graphs and cycles. Following this, we prove a
result analogous to that obtained in the previous section for 2-connected graphs but using

3 colors instead of 2. We also show that this bound is sharp by presenting a 2-connected
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graph for which 2 colors are not enough to make it proper connected. As a main result
of the section, we state an upper bound for pc(G) for general graphs that can be possibly
reached as we saw in the previous section. Based on the results of 2-connected graphs we
extend Conjecture 3.1.1 to general graphs and finally we prove this for complete graphs.

By Vizing’s Theorem [107], we have that the edge chromatic number of any graph is
at most A + 1 and therefore A + 1 is a trivial upper bound for pe(G) for any graph G.

First we present some easy results.
Fact 3.2.0.1. A graph G has pc(G) = 1 if and only if G is complete.

By using alternating colors, it is easy to see that any path of length at least 2 and
any cycle of length at least 4 has proper connection number 2. Also it is clear that the

addition of an edge to G' cannot increase pcg(G).

Fact 3.2.0.2. Forn > 3, pc(P,) = 2 and if n > 4, pc(Cy,) = 2. Furthermore, pcy is

monotone decreasing with respect to edge addition.
We present now the following proposition.
Proposition 3.2.1. If pc(G) = 2 then pc(G Uwv) = 2 as long as d(v) > 2.

Proof. Let u,w be two neighbors of v in GG. Since we have assumed there is a 2-coloring
of G so that G is properly connected, there is a properly colored path P from u to w in
G. Color the edge uv so that c(uv) # start(P) and color vw so that c(vw) # end(P).
Since every vertex of G has a properly colored path to a vertex of P, every vertex has a

properly colored path to v through either u or w, thereby completing the proof. O

The following theorem improves the Vizing’s A + 1 upper bound whenever the graph

is 2-connected. This result is a natural extension of Theorem 3.1.6.

Theorem 3.2.2. Let G be a graph. If G is 2-connected, then pc(G) < 3 and there ezists
a 3-edge-coloring of G that makes it proper connected with the following strong property.

For any pair of vertices v,w there exist two paths Py, Py between them (not necessarily
disjoint) such that start(Py) # start(Ps) and end(P;) # end(P,).

As in Theorem 3.1.6, we note that an edge-connected version of this result is immediate

from the proof.

Proof. Suppose G is a 2-connected graph and consider a spanning minimally 2-connected

subgraph (meaning that the removal of any edge would leave G 1-connected). For the
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sake of simplicity, we call this subgraph . This proof is by induction on the number of
ears in an ear decomposition of G. The base case of this induction is when G is simply a
cycle and we properly color the edges with at most 3 colors.

Let P be the last ear added in an ear decomposition of G and let GG; be the graph after
removal of the internal vertices of P. Since G is assumed to be minimally 2-connected,
we know that P has at least one internal vertex. Let u and v be the vertices of PN Gy so
P = uujus ... uyv.

By induction, there is a 3-coloring of G; which is proper connected with the strong
property. Color the edges of (G; as such.

Within this coloring, there exist two paths P; and P, from u to v such that start(P;) #
start(P,) and end(Py) # end(P). If possible, we properly color the path P so that
c(uuy) ¢ {start(Py),start(Py)} and c(u,v) ¢ {end(P;),end(P2)}. Note that this is
always possible if either P has at least 2 internal vertices or {start(P;),start(P)} U
{end(Py),end(P2)} = {1,2,3}. It will become clear that this is the easier case so
we assume this is not the case, namely that P has only one internal vertex z and
{start(Py), start(P2)} U {end(Py),end(P,)} = {1,2}.

Color the edge zu with color 3 and xv with color 2 (supposing that end(P) = 2). We
will show that this coloring of G is proper connected with the strong property. For any
pair of vertices in G, there is a pair of proper paths connecting them with the strong
property by induction. Since PU P; forms a proper cycle, any pair of vertices in this cycle
also have the desired paths. Let y € G; \ P, and note that our goal is to find two proper
paths from x to y with the strong property.

Since y and u are both in Gy, there exist a pair of paths P,, and P,, starting at y
and ending at u with the strong property. Similarly, there exist two paths P, and P,,
starting at y and ending at v with the strong property. Since these paths have the strong
property, we know that ()1 = zuP,,y (note that the implied orientation on P,, is reversed
when traversing the path from u to y) is a proper path for some i € {1,2} (suppose i = 1)
and similarly Q, = v P,y is a proper path for some j € {1,2} (suppose j = 1). These
paths form the desired pair if end(Q1) # end(Q2) so suppose start(P,,) = start(P,,).

Next consider walk Ry = zuPyvP,,y and the path Ry = (). If Ry is a path, then R;
and Ry are the desired pair of paths since end(Py) # c(zv) = end(P,,), meaning that R;
is a proper walk. Hence, suppose R; is not a path and let z be the vertex closest to y on
P,, which is in P, N P,,. Now if the path R| = xuP,2P,,y is a proper path, then R} and
Ry are the desired pair of paths so we may assume that end(uP;z) = start(zP,,y).

Finally we show that the paths S} = zvP2P,,y and Sy = )1 = xulF,,y are proper
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paths from x to y with the strong property. Certainly, as noted above, S, is a proper path.
Also, S is a proper path since P; is proper so end(vP z) # end(uPyz) = start(zP,,y).
Finally since end(zP,,y) = start(P,,) # start(P,,) = start(P,,), we see that S, and Sy
have the strong property. O

It is important to mention that there exist 2-connected graphs with pc(G) = 3 and
therefore the bound obtained by Theorem 3.2.2 is reached. Now we give an example (see

Fig. 3.2) of such a graph and prove why two colors are not enough.

Figure 3.2: Smallest 2-connected graph with pc(G) = 3

Proposition 3.2.3. Any graph G consisting of an even cycle with the addition of three
ears creating disjoint odd cycles such that each uninterupted segment has at least 4 edges
has pc(G) = 3.

The assumption that each uninterupted segment has length at least 4 is mostly for
convenience. Note that the graph G (in Figure 3.2) does not satisfy this condition but it

can still be shown that pc(G) = 3 by a similar argument.

Proof. By Theorem 3.2.2, we know that pc(G) < 3 so it suffices to show that pc(G) # 2.

Suppose we have a 2-coloring of G which is properly connected. Label the segments of G
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as in Figure 3.2. Note that we may assume there are no three edges in a row of the same
color within an uninterupted segment since we could switch the color of the middle edge
(making that subsegment alternating) without disturbing the proper connectivity.

We would first like to show the segments A, B and C' are all alternating. If two of
these segments are not alternating, suppose A and B, then any vertex in D cannot be
properly connected to any vertex of C' so this is clearly not the case. This means that at
most one segment, suppose A, is non-alternating. Suppose the edges uv and vw have the
same color for some u,v,w € A (see Figure 3.3). There must exist a proper path from u
to w so suppose there is such a path using the segments FCEBD. Since the following
argument does not rely on the parity of this path, this assumption, as opposed to using

any of D', E' or F’, does not lose any generality.

FI DI

(o B

o=

= 0=

Figure 3.3: Placement of vertices 1.

Let z be a vertex in the interior of B. We already know there is a proper path from
x to v using D. Since D U D’ forms an odd cycle, there can be no proper path from x
to v through D’. Let y € E’. In order for y to have a proper path to w, it must use the
segments BD (as opposed to BD') and similarly to reach w, it must use C'F' (as opposed
to C'F'). Since E U E’ forms an odd cycle, and yet y can reach both u and w, we know
that the edges on either side of y must have the same color. This holds for all y € F’,
clearly a contradiction. Therefore we know that A, B and C are all alternating segments.

Next we would like to show that at least one of D or D’ must be alternating (and
similarly at least one of E or E’ and one of F or F’). Suppose D and D’ are both non-
alternating. Let v be an interior vertex in D which has two edges of the same color and

let y be a vertex of D' with two edges of the same color. Let u and w be the neighbors
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of v and let x and z be the neighbors of y (see Figure 3.4). Clearly there can be at most
one pair (in this case D and D’) in which neither segment is alternating since there must
be an alternating path from u to w and it must pass through the other segments. Also,
there can be no other pairs of adjacent monochromatic edges within D and D’ since u, v
and w (likewise =,y and z) must have alternating paths out of the segment and we have
assumed that there are no three edges of the same color in a row. Note that, in the figure,

possibly x =a, u =a, z =0 or w =b.

Figure 3.4: Placement of vertices 2.

Let Q = DUD' and let a and b be the vertices in DND’'NA and DN D’'N B respectively.
If we let ¢ € C, then each of u,w,z and z must have an alternating path to ¢. Suppose
the edge of A incident to a has color 1. Then both edges incident to a in () must have
color 2. This means that both edges of () which are incident to a must be the same color
(and similarly both edges of @ incident to b must have the same color). Therefore, there
are exactly 4 vertices in () for which both edges of () have the same color. Unless x = a
(or possibly z = b, u = a or w = b), this means that @ is even, a contradiction. Suppose
x = a so, in order for z # b to have a proper path to w, we must also have w = b, meaning
that u # a and z so again () is even for a contradiction. Hence, we know that at least
one of D or D' must be alternating (and similarly for the other odd ears). Without loss
of generality, suppose D, E and F are all alternating.

Our next goal is to show that Q = AUBUCU D U E U F forms an alternating
cycle (with the possible replacement of D with D', E with E' or F' with F”). As we have
shown, the only places where we can have a problem is at the intersections so let a and b
be (as before) the end-vertices of D (the same argument may be applied for E or F') and

suppose a is between two edges of the same colors (suppose color 1) on Q. Let u,v,w
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be the neighbors of a with u € A, v € D' and w € D so we have assumed the edges au
and aw both have color 1 (see Figure 3.5 where the darker edges represent edges that
must have color 1). In order for an alternating path to get from u to w, we must either
use D' U D or @ (with the possible replacements noted above). If the path uses D', then
D U D’ forms an alternating (and hence even) cycle, a contradiction. Hence, we may
assume there is an alternating path from u to w through BECF A (recall again that E
may be replaced with £’ or F' with F” in this argument).

Uu a w

Figure 3.5: Placement of vertices 3.

Let © € E'. There is an alternating path from u to z and from w to z. Since E U E’
forms an odd cycle but = has an alternating path through B (to get to w) and through
C and A (to get to u), we know that & must have two edges of the same color within FE’.
Since x was chosen arbitrarily, this is clearly a contradiction. This means that () is an
alternating (and hence even) cycle.

Now we simply consider one vertex in each of D', E' and F’. Since these ears form odd
cycles, there exists a vertex in each segment from which (and to which) an alternating
path can only go one direction on (). By the pigeon hole principle, at least two of them
must go the same direction, meaning there is no alternating path between them. This

completes the proof of Proposition 3.2.3. n

If the diameter is small, then the proper connection number is also small. More

formally, we get the following result.
Theorem 3.2.4. If diam(G) =2 and G is 2-connected, then pc(G) = 2.

Proof. If G is 3-connected, Corollary 3.1.7 implies that pc(G) = 2 so we may assume
k(G) = 2. Let C = {c1,c2} be a (minimum) 2-cut of G and let Hy,..., H; be the
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components of G\ C. Order components so that there is an integer 0 < s < ¢ such
that every vertex of H; is adjacent to both ¢; and ¢y for ¢ > s. Note that if s = 0, we
have all edges from C to G \ C' so G contains a spanning 2-connected bipartite graph
and by Theorem 3.1.6, pc(G) = 2. For each component H; with ¢ < s, define subsets
H;1 = N(c1) N H; and H,; 5 = N(cz) N H;. Since each component is connected and C' is
a minimum cut, there must be an edge from H;; to H;». Let e; = v;;v;2 be one such
edge in each component H;. Define the graph Go = G[C' U (;_,{vi1,vi2})]. This graph
is 2-connected and bipartite so pc(Gy) = 2 and notice that |Gy| = 2 + 2s. Let Gy be
a subgraph of GG obtained by adding a vertex to Gy which has at least 2 edges into Gj.
Furthermore, let G; be a subgraph of G obtained by adding a vertex to G;_; which has
at least 2 edges into G;_1. By Proposition 3.2.1, pc(G;) = 2 for all i. We claim that there
exists such a sequence of subgraphs of G' such that G,,_(212) is a spanning subgraph of
G. In order to prove this, suppose that G; is the largest such subgraph of G and suppose
there exists a vertex v € G\ G;. Certainly every vertex which is adjacent to both ¢; and
¢z is in (. This means v € H; for some 1 < j < s. Since H; is connected, there exists a
path from v;; to v within H;. Let w be the first vertex on this path which is not in G;.
Since diam(G) = 2, we know that w must be adjacent to at least one vertex of C'. This
means that dg, (w) > 2 so we may set G;;11 = G; Uw for a contradiction. This completes
the proof. O

Finally we prove an upper bound for pc(G) for general graphs which is best possible

as we saw before.

Theorem 3.2.5. Let G be a connected graph. Consider &(G) as the mazximum degree of
a vertex which is an endpoint of a bridge in G. Then pc(G) < A(G) if A(G) > 3 and
pc(G) < 3 otherwise.

Proof. Let By, Bs,... B, be the blocks of G with at least 3 vertices. For each block of B;

we have the following cases.

e B; is bipartite or 3-connected: Then by Theorem 3.1.6 and Corollary 3.1.7, B; can

be colored with 2 colors having the strong property. We color B; in such a way.

e x(B;) = 2: Then by Theorem 3.2.2, B; can be colored with 3 colors having the

strong property. We color B; in such a way.

It is easy to see that GG is proper connected if there are no more uncolored edges in G

since each B; has the strong property. Thus, suppose that there remain uncolored edges
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in G. It is clear that these edges induce a forest F' in G. We color them as follows. Take
one of the blocks, say B;, which contains a vertex v € B; which is incident with some
uncolored edges. Clearly, v is an endpoint of a bridge in G. We color these uncolored
edges incident to v with different colors starting with color rdpg, (v) + 1. Then, we have
that rdg(v) < A(G). We do the same for the rest of the vertices incident to bridges in
By. Then, we extend our coloring for each tree going out from B; in a Breadth First
Search (BFS) way, coloring its edges with different colors (observe from Corollary 3.1.5
that rdg(w) < A(G) < A for cach vertex w in the interior of a tree) until we reach
the rest of the blocks. And finally, for each of these blocks (in this order), we repeat
the previous step. Before proving that this coloring makes G proper connected, it is
important to mention that, if we reach a block B; with some color ¢ > rdp,(w) + 1, and
the corresponding vertex, say w, of B; has more than c—rdpg, (w) uncolored incident edges,
then, when we color these edges, we do not repeat color ¢. Also, it is important to remark
that, by coloring F' in this way, we have that in any path that traverses some block from
one tree in F' to another, at least one of the colors before or after traversing the block is
not used in the block.

We now prove that G is proper connected. Let v,w be vertices of G. It is clear
that if both belong to the same block B;, then there exists a proper path between them
and the same happens if they belong to the same tree outside the blocks. If v € B;,
w € B; and B; N B; = {u}, then there exist two paths P, P, between v and u in B;,
and two paths Ps, Py between v and w in B; with the strong property. Suppose without
losing generality that end(P;) # start(Ps;) and end(Py) # start(P;), then we obtain the
paths P, P; and PP, between v and w. It is clear that start(P,Ps) # start(PyP,) and
end(P1P3) # end(P2Py) since start(P1P;) = start(Py) # start(P,) = start(P,Py) and
end(P,Ps) = end(Ps) # end(P;) = end(PyP;). Therefore, these paths are proper. Now,
if B; N B; = 0 and there is a tree T in F such that B;NT = {u,} and B; NT = {us},
we form a proper path between v and w as follows. Let P, be the unique (proper) path
in the tree T" between u; and us. Let P, be the proper path in B; between v and wu,
such that end(P,) # start(Py). This path exists since we have the strong property in
cach block. Analogously, let P; be the proper path in B; between us and w such that
end(Py) # start(Ps). Finally the path P = P, P, P; is proper between v and w. The same
idea applies if v is in a block B; and w is in a tree 7" in F' such that B; N T = {u}.

The idea also applies in the case that v is in a tree T; in F, w is in a tree T in F
and there is a block B such that T; N B = {uy} and 7; N B = {uy}. Finally, the result

holds by induction on the number of trees and blocks between vertices v and w using
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the remark stated before to guarantee the paths always traverse the blocks. Therefore,
pe(G) < A(G) if A(G) > 3 and pe(G) < 3 otherwise. O

To end the section, based on the Theorem 3.2.2 and the previous section, we extend

the Conjecture 3.1.1 to general graphs.
Conjecture 3.2.6. If G is a 2k-connected graph with k > 1, then pci(G) < 3.

This conjecture is proved for £k = 1 in Theorem 3.2.2. Now we prove a stronger result

for complete graphs.
Theorem 3.2.7. Let G =K,, n>4, and k > 1. If n > 2k then pc,(G) = 2

Proof. e Case n =2p for p > 2

Take a hamiltonian cycle C' = vjvs...v9, of G and alternate colors on the edges
using colors 1 and 2 starting with color 1. Color the rest of the edges using color 1.
It is clear that there are p > k edges with color 2. We will prove that this coloring
gives us k proper paths between each pair of vertices of G. Take two vertices v, w
such that c¢(vw) = 2. This edge colored with color 2 is one proper path between v
and w. Now, since there are at least other p — 1 > k — 1 edges colored with color
2 and the rest of the edges are colored with color 1, we have at least k — 1 proper
paths between v and w using these edges. That is, for each vertices v/, w’ such that

c(v'w'") = 2 we form the proper path vv'w'w. The case where ¢(vw) = 1 is similar.

e Casen =2p—1 for p > 2:

Take a hamiltonian cycle C' = v1vy ... v9,—1 of G and alternate colors on the edges
using colors 1 and 2 starting with color 1. We have p edges with color 1 and
p — 1 edges with color 2 so far since c¢(v1v2) = 1 and ¢(v1v2—1) = 1. Now, put
c(vovgp_1) = 2, c(v1v3) = 2, ¢(v1v2p—2) = 2 and for each edge with color 2, different
from wvovs and wvg,_ov9,_1, choose one of the endpoints, say v/, and put c¢(v1v’) = 2
(see Fig. 3.6). Finally, color the rest of the edges with color 1. We now show that
this coloring gives k proper paths between each pair of vertices v and w of G. First,
take v = vy and w = v, (or similarly taking w = vg,_1). We have the edge v,v, and
the path v3vg,_1v2. Now since n = 2p — 1 > 2k we have at least (p —1) —2 >k —2
edges in the cycle C' with color 2 different from vovs3 and vep_ov2,—1 and therefore we
form the following k& — 2 proper paths between v; and vy of the form v;v'v, where

v" is an endpoint of each of these edges such that c(v1v') = 2. Now take v = v;
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and w = v (analog taking w = vy, ). This case is similar to the previous except
changing the second formed path to vyv9v3. Suppose now that v = v; and w = w’
with w' & {va, v3,v9,_2,v9,-1}. We take the edge v;w’ and now, since there are at
least i(p — 1) — 1 > k — 1 edges in the cycle C' with color 2 with endpoints different
from v, we form the following & — 1 proper paths between v; and w’ of the form
v1v'w’ where v is an endpoint of each of these edges such that ¢(v1v") = 2. The rest
of the cases are similar to those described before in the case n = 2p forming most

of the proper paths with length 3.

Figure 3.6: Coloring of K73. Normal edges represent color 1 and bold edges color 2.

3.3 Minimum degree

In this section, we prove a result concerning minimum degrees. For this, we will make use

of the following theorems.
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Theorem 3.3.1 ([40]). Let G be a graph with n vertices. If §(G) > ”T_l, then G has a
hamiltonian path. Moreover, if 6(G) > n/2, then G has a hamiltonian cycle. Also, if
6(G) > 2, then G is hamilton-connected.

Theorem 3.3.2 ([110]). Let G be a graph with n vertices. If 6(G) > "2 then G is
panconnected meaning that, between any pair of vertices in G, there is a path of every

length from 2 up ton — 1.

Theorem 3.3.3 ([90]). Let G be a 3-connected graph with n vertices and §(G) > n/4+2.

Then, for any longest cycle C' in G, every component of G — C' has at most two vertices.

Theorem 3.3.4 ([42]). Let G be a connected graph with n vertices and §(G) > n/3. Then
one of the following holds:

(i) G contains a hamiltonian path.
(ii) For any longest cycle C' of G, G — C' has no edge.
Also we use the following easy fact as a matter of course.

Fact 3.3.4.1. Every 2-connected graph G with §(G) > 2 is either hamiltonian or contains
a cycle C with at least 26(G) vertices.

For this statement, we use the following notation. For a path P = vjvs - - - vy, we let
endpoints(P) = {vy, v}

Lemma 3.3.5. The following graphs H;, for (i =1,2,...,6), have pc(H;) = 2.

(1) The graph H, obtained from a path P with |P| > 2 and m > 0 isolated vertices

V1, ..., U by joining each v; for (i < m) within P with at least two edges.

(2) The graph Hy obtained from a path P with |P| > 1 and even cycle C by identifying
exactly one vertex (i.e., |[PNC|=1).

(8) The graph Hj obtained from Hs and m > 0 isolated vertices vy, ..., v, by joining
each v; for (i < m) with at least two edges to either P — C or C' — P in H,.

(4) The graph Hy obtained from an even cycle C' and two paths Py and Py by identifying
an end of each path to a vertex of C. As in Hs, we may also join vertices each with

at least 2 edges to either a path P; or C.
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(5) The graph Hs obtained from the union of two disjoint cycles which are connected
by two disjoint paths to form a 2-connected graph. Furthermore, we may also add

vertices each with at least 2 edges to this structure.

(6) The graph Hg obtained from Hs by removing an edge from one of the cycles. Again

we may add vertices each with at least 2 edges to this structure.

Proof. One can easily get a 2-coloring of H; which forces pc(H;) = 2 for i = 1,2,...,6.
For example, as for Hy, by Fact 3.2.0.2 and Proposition 3.2.1, there is a 2-coloring of H;
that is properly connected. O

We are now ready to prove our main result.

Theorem 3.3.6. If G is a connected non-complete graph with n > 68 vertices and 6(G) >
n/4, then pc(G) = 2.

Proof. 1If k(G) > 3, then by Corollary 3.1.7, we have pc(G) = 2. So we may assume that
k(G) =1 or 2. We divide the proof into two cases according to the value of k(G).

Case 1: k(G) = 1.

Let v be a cutvertex of G and let C,...,C,; be the components of G \ v such that
|Ch] < ... < |Cy]. By the minimum degree condition, we see that { = 2 or 3 and
|Cy| > n/4. We further divide the proof into two subcases:

Subcase 1.1: ¢ = 2.

In this case note that |Cy| < (n — 1)/2 and, by the minimum degree condition, |Cy| <
3n/4 — 1. Utilizing Theorem 3.3.1 and the minimum degree condition, it is easy to check
that ({v}UC)) contains a hamiltonian path P; such that v € endpoints(Py). If k(Cy) > 3,
then let C' be a longest cycle of (5. Since G is connected, there is a path P’ from v to
C. Now H = P, U P"U C satisfies the conditions of Hs in Lemma 3.3.5. This means
that pc(H) = 2. By Theorem 3.3.3, every component of Cy \ C' has at most 2 vertices.
By the minimum degree condition and since we assume n > 12, for each x € Cy \ H, we
have |E(z, H)| > 7 — 1 > 2. Hence, (¢ contains a spanning subgraph which satisfies the
properties of Hy in Lemma 3.3.5 so pc(G) = 2. Thus we may assume that x(C2) = 1 or
2. Let S be a cutset in Cy with 1 < |S| < 2. By the minimum degree condition, it is easy
to check that there are exactly two components Cyy, Cos with |Coy| < |Cas| in Cy — S.
Note that n/4 — |S| < |Cy| < |Caa| < (3n/4—1) — |S| — (n/4 — |S]) = n/2 — 1 because
(@) > n/4 and [Cy| < Bn/4—1—|5])/2 = 3n/8 — (|S| +1)/2 < 3n/8 — 1. Hence
by Theorem 3.3.1, Cy; contains a hamiltonian cycle C%;. Since §(Cos) > n/4 — 3, Coy is
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either hamiltonian or contains a cycle C%, with |C,| > n/2 — 6. Now take a path P, with
v € endpoints(Ps) so that

(1) P, contains a longer segment of Cj; for each j = 1,2, and subject to condition (1),

(2) | P, is as large as possible.

By the choice of P, note that P, NS # (). Let P be a path joining P, and P, at the
common vertex v. Then, utilizing P and the assumption 6(G) > n/4, we will find a
spanning subgraph which has a property of H; in Lemma 3.3.5. In order to show this,
we need only show that each vertex in G \ P has at least 2 edges to P. As previously
discussed, we know that all vertices in C have at least 2 edges to P, so we need only check
vertices © € Cy \ Py. If & € Cy; then since |P N Cy| > |Co]/2 and |Cy| < 3n/8 — 1, by
the minimum degree condition, = has at least n/4 — 3n/16 > 2 edges to P since n > 32.
For x € Cy, we know |Ca| < n/2 — 2 and either Cy, is hamiltonian or contains a cycle
of length at least n/2 — 6. In either case, the same arguments easily show that = has at
least 2 edges to P, meaning that pc(G) = 2.

Subcase 1.2: ¢ = 3.

In this case, by the minimum degree condition, we see that n/4 < |C}] < (n—1)/3 <
|C3] < n/2—1, and |Cy| < 3n/8 — 1/2. Hence by Theorem 3.3.1, each C; with ¢ = 1,2
is hamilton-connected. Also, by the minimum degree condition and since n > 36, we
see that §(C;) > (|C;i] + 2)/2 for i = 1,2 so for any vertex z € C;, C; — z is hamilton-
connected. By Theorem 3.3.1, (5 is hamiltonian so it contains a spanning path P with
v € endpoints(P). If |E(v,C;)| > 2 holds for i = 1 or 2 (suppose i = 1), then we can
find an even cycle C' in Cy U v such that v € C' and |Cy| < |C] < |Cy| + 1. Using a
hamiltonian path of C; ending at v, together with the path P and the even cycle C', we
can easily find a spanning subgraph which satisfies the property of Hs in Lemma 3.3.5,
and hence pc(G) = 2. Thus we may assume that |E(v,Cy)| = |E(v,Cy)| = 1. This implies
|Cy| > n/4 4+ 1, because there is a vertex of C; which is not adjacent to v. Then we get
|C3] <n/2—3s00(C3) >n/4—12>(|Cs|+1)/2. If |C5] is odd, then by Theorem 3.3.1,
(5 is hamiltonian connected. Hence, we can find an even cycle using all of ('3 and v and a
single path through v using all of 'y and C2. This provides a spanning subgraph satisfying
the properties of H in Lemma 3.3.5. If |Cy| is even, then 6(Cy) > [1SHE] = 1G22 4 1y

2 2
Theorem 3.3.2, (5 is panconnected. Thus we can find an even cycle through vU C'3 which

avoids exactly 1 vertex of C3 again easily providing a subgraph satisfying the conditions

of Hz in Lemma 3.3.5. This shows that pc(G) = 2 and completes the proof of this case.
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Case 2: k(G) = 2.

Let v and v be a minimum cutset of G. Again we let C, Cy, ..., be the components of
G\ {u,v} with |C;| < |Cj| for i < j and break the rest of the argument into cases based
on the value of ¢. Note that, since 6(G) > n/4, we have 2 < ¢ < 4.

Subcase 2.1: (=4

Since 6(G) > n/4, we know that n/4 — 1 < |Cy| < (n —2)/4 < |C4| < n/4+ 1. This
means that 6(C;) > |C;| — 2 for all i. The graph G is 2-connected so there are two
independent edges from {u, v} to each component C;. With n > 26, we see that |C;| > 6
so the minimum degree condition 6(C;) > |C;| — 2 implies, by Theorem 3.3.2, that each
component C; is panconnected. This means that, if |C3 U Cy]| is even, we may find a cycle
through {u, v} UC3UCy using all the vertices, and if |C3UCy] is odd, we may find a similar
cycle which misses exactly one vertex w € Cy. This cycle, along with a spanning path of
uw U C} Uy and possibly w provides a spanning subgraph of G satisfying the properties
of Hy from Lemma 3.3.5, meaning that pc(G) = 2.

Subcase 2.2: (=3

Since §(G) > n/4, we have n/4 —1 < |Cy| < |Cy] < (5n —4)/12 and 6(C;) > n/4 —2 so
i(C;) > 3|C—5|+1 —2 fori =1,2. Since n > 23, this implies that 6(C;) > # fori=1,2s0
C} and C5 are both hamiltonian-connected by Theorem 3.3.1. This means we may create
a single cycle Djp using all of C7 U Cy. If k(C3) > 2, then let D3 be a longest cycle in
Cs. Since §(Cs) > § — 2, we know |Ds| > min{|Cs|, § —4}. In either case every vertex of
Cj5 has at least 2 edges to H3. Now since G is 2-connected, there exist two disjoint paths
from D5 to D3 meaning there is a spanning subgraph of G satisfying the conditions of
the graph Hs. By Lemma 3.3.5, we have pc(G) = 2. If k(C3) = 1, then by Theorem 3.3.4,
there is a spanning path P of C3. The vertices v and v must each have at least one edge
to P so P U Dy, forms a spanning subgraph of G satisfying the conditions of the graph
Hg in Lemma 3.3.5. Hence, pc(G) = 2.

Subcase 2.3: (=2

If '} and Cy are both 3-connected, then by Corollary 3.1.7, there is a 2-coloring of each
with that strong property. Along with these colorings, we also color all edges between
{u,v} and C; with color i. This coloring clearly shows that PC(G) = 2 so we may
assume that at least one component C; has 1 < x(C;) < 2. Next we will suppose that
1 < k(C;) < 2 for both ¢ = 1,2. In this case, by the minimum degree condition and
the fact that G is 2-connected, we may easily show that each component is hamiltonian
connected (since n is large) so G is hamiltonian. This means pc(G) = 2.

Finally, if we suppose C] is 3-connected while 1 < k(Cy) < 2, each possible case
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contains a large (almost spanning) subgraph with the properties of Hy from Lemma3.3.5,

meaning that pc(G) = 2. This completes the proof of Theorem 3.3.6. [

The minimum degree condition is best possible. To see this, we construct the following
graph. Let G; be a complete graph with n/4 vertices for i = 1,2,3,4, and take a vertex
v; € G; for each 1 < i < 4. Let G be a graph obtained from Gy UGy U G3U G4 by joining
v; and v; with an edge for each 2 < 57 < 4. Then the resulting graph G is connected and
it has 6(G) =n/4 — 1 and pc(G) = 3.



Chapter 4
Strong Edge-Colorings

This chapter is organized as follows: In Section 4.1 we improve known bounds for strong
edge-colorings in k-degenerate graphs and chordless graphs. Then we give a polynomial
time algorithm to find such colorings. In Section 4.2, we improve known bounds for

outerplanar graphs and also, we give polynomial time algorithms to find the colorings.

4.1 k-degenerate graphs

In this section, we prove the general result for k-degenerate graphs. In the following, a
vertex of degree k is called a k-verter. Vertices of degree at most k£ and at least k, are
respectively called k™ -vertex and k*-verter. An edge incident to a l-vertex is called a
pendant edge. We may use partial coloring or partial strong edge-coloring to denote a
strong edge-coloring of a subset of the edges of G. Given a partial coloring, the colored
degree of a vertex x denoted cd(x), is the number of colored edges incident to x. The

following easy lemma from [29] shows a nice structural property of k-degenerate graphs.

Lemma 4.1.1 ([29]). If G is a k-degenerate graph, then there is some v € V(G) such
that at least max{1,d(v) — k} of its neighbors are k~-vertices.

This implies the following facts.
Fact 4.1.1.1.

(1) We can construct any k-degenerate graph from the trivial graph, by adding edges pq
such that at most k neighbors of p have degree more than k, and degree of q is at

most k (in the present graph after adding e).

35
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(2) There is an ordering of edges, such that we can construct any k-degenerate graph
from the empty graph, by adding edges in that order where each edge added satisfies

the above property in the current graph.
Now, we state the main theorem of the section.
Theorem 4.1.2. Let G be k-degenerate, k > 2. Then, X.(g) < (4k — 1)A — 2k* — k + 1.

Proof. We use induction on the number of colored edges of a partial coloring of GG. Let
B={1,2,...,(4k — 1)A — 2k? — k + 1} be the set of colors. We assume that, there is
a partial strong edge-coloring of ¢ edges added according to the order given above, such

that the coloring satisfies the following.

(1) The partial coloring is a strong edge-coloring of the colored subgraph, and draws its

colors from B.

(2) For every edge e incident to a vertex of colored degree at most k — 1, having the
color say ¢, no edge f at a distance at most one in the original graph is colored c.
Note that, while the distance can be through a non-colored edge, both e and f are

part of the partial coloring.

Base cases can be easily verified. We now extend the coloring to ¢ + 1 edges and show
that the induction hypothesis still holds. Since we add edges according to the order given
by Fact 4.1.1.1.(2), we have an uncolored edge e = vw such that,

(1) At most k neighbors of v have high colored degree (> k).
(2) Colored degrees of all other neighbors of v except w are at most & and ed(w) < k—1.

Lemma 4.1.3. Let e = vw be an edge chosen to be colored according to the degeneracy
order given by Fact 4.1.1.1.(2). The number of colored edges within distance 1 from e is
at most (4k — 1)A — 2k* — k.

For any vertex x, let a(x) denote the number of colored edges xy with cd(y) > k + 1.
Similarly, let (x) be the number of uncolored edges zy with cd(y) > k.

Proof. Consider the vertex v. By the choice of e, we have a(v) 4+ 8(v) < k. If not, once
cd(v) becomes k, (which definitely happens in the coloring process since we have more
than k£ — «(v) uncolored edges), the remaining uncolored edges incident to v violate the

degeneracy order as both endpoints of these edges have colored degree at least k. Thus,
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if ed(v) > k, then B(v) = 0. Therefore, in the degeneracy ordering (Lemma 4.1.1) this
will not happen. See Figure 4.1 for an illustration. Thus the number of colored edges at

distance 1 from e through vertex v can be at most

a(V)A+ B)(A—-1)+ (d(v) — (a(v) + B(v)) = 1)k <EA+ (A -k —-1)k

o
ljﬁif‘q%

Figure 4.1: Local structure of a partial coloring when edge vw is selected. The dotted
edges are yet to be colored and the shaded vertices potentially have colored degree more
than k.

Now, consider w. Since cd(w) < k — 1, a(w) < k — 1 and similar to the previous
case, we have that a(w) + f(w) < k. The number of colored edges at distance 1 from e
through vertex w is at most a(w)A+ f(w)(A—1)+ (d(w) — (a(w) + f(w)) — 1) (k—1) <
(k—1DA+A -1+ (A—k—1)(k—1). Summing up, the maximum number of colored
edges within distance 1 from e is upper bounded by kA + (A —k—1)k+ (k—1)A+ A —
1+ (A—-k—1)(k—1)=(4k — 1)A — 2k* — k. O

Now, since B has strictly more colors, we can always find one color from B to color
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the edge e such that the partial coloring remains a strong edge-coloring. We only need to

verify that the second condition of the induction hypothesis holds after the coloring.
This follows easily, since we ensure that the color selected for e is different from the

colors used at any edges incident to any neighbor of v and w. Thus, we can use induction

and the result follows.

O
By substituting k£ = 2, as a corollary to the above, we get
Corollary 4.1.4. If G is 2-degenerate, then x.(G) < TA —9.

which improves the earlier upper bound. We also improve the bounds for chordless

graphs as follows.
Theorem 4.1.5. If G is chordless, then x.(G) < 5A — 5.

Proof. We know that, every minimally 2-connected graph is 2-degenerate, and their min-
imum degree is 2 [18]. A result from Plummer [97] states that a minimally 2-connected
graph does not contain chords (chordless) and every 2-connected chordless graph is min-
imally 2-connected. Using the results from Plummer [97] and Dirac [41], the following

lemma has been shown in [29, 86]

Lemma 4.1.6 ([86]). Every chordless graph G contains some vertex x such that at least

d(x) — 1 of its neighbors are 2~ -vertices.

The rest of the proof uses essentially the same arguments as for the above proof of
k-degenerate graphs. The only difference is that, we can always find a vertex having
at most one high degree neighbor. Thus, for each newly added edge, the maximum
number of unavailable colors is A + 2(A —2) + A+ A — 2 < 5A — 6. Thus, setting
B=1{1,2,...,5A — 5}, the induction steps goes through and the result follows. ]

4.1.1 Algorithmic aspects

In this section, we sketch an algorithm to color any k —degenerate graph with (4k—1)A —
2k% — k +1 colors. The algorithm follows from the proof arguments of Theorem 4.1.2. As
in the case of the proof, the algorithm consists of two phases. The first phase, where we
compute an ordering of the edges according to which the edges are selected for coloring,

and the second phase, where the actual coloring takes place.
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First, we identify the sets of vertices Sy, Sa,...,Se, such that S; N.S; = 0, Ulesi =
V(G), and for all v € S;, we have d(v) < k in the graph G — U_|'S;. Finding these sets
can be done in O(n + m) operations as follows. We assume that the adjacency list of the
input graph is given. It is easy to see that we can find the set Sy in O(n) time. Then we
can update the degrees of all vertices in G— .5 just looking at the neighbors of the vertices
in S;. While doing this update, if a vertex in G — S; has degree lower than or equal to k,
we add it to Sy. This can be done in ) ¢ d(v). We proceed similarly with S, to find S,
and so on until we find the ¢ sets. It follows that finding the sets S;, 1 < i < £, can be done
in O(n+>_,c d(v)) = O(n+m). Now, we explain how to compute the required ordering
of edges using the sets S;. Let us denote by E(X,Y") the set of edges having one endpoint
in the set X and the other in set Y. Observe that the desired ordering is given by the
edges E(S;,S), E(S;,UZ1S:), E(Si_1,S1-1), E(Si_1,UZ2S)), E(Si—2,Si_2), ..., E(S3, Ss),
E(Ss,51), E(S1,51). It is easy to check that this ordering verifies Fact 4.1.1.1.(2). The
ordering can be computed easily by checking for each edge the sets where the endpoints
belong, which can be done in O(m).

Using the above ordering, we can color the edges using the (4k — 1)A — 2k* — k + 1
colors. Associated to each vertex, we keep a boolean array of size (4k —1)A —2k? —k+1,
where the index corresponds to color. Initially, all the entries are initialised to 0. Every
time we color an edge e = uw, we select the first color available to both u and v, and then
we update the entries corresponding to this color from 0 to 1 for all the neighbors of u
and v (in order to guarantee the strong edge coloring condition). We can find an available
color in O(kA) time. The update operation need to be applied to at most d(u) + d(v)
vertices, and can be done in O(d(u) + d(v)) = O(A) time. Since we do this for each edge
in the ordering, we obtain the complexity O(kAm).

Finally, the total complexity of the algorithm is bounded by O(n + kAm).

4.2 QOuterplanar graphs

In this section, we give the exact value of x.(G) for bipartite outerplanar graphs and
we also improve the known bound for the general outerplanar case. We introduce some
more definitions and notation. A block is a maximal connected component without a cut-
vertex. A block decomposition of a graph G is a partition of GG into its blocks. Notice that,
each component is either a maximally 2-connected subgraph or a single edge. We define
an end block of a graph as a 2-connected block that contains a unique cut-vertex which

separates it from all the other 2-connected blocks (if exists). Notice that this definition
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of end block differs from the standard notion in order to address some specific issues.
An earin G to a subgraph H is a simple path P on at least three vertices with end-
points in H such that (1). none of the internal vertices of P are contained in H, and
(2). P forms an induced cycle with H. An ear decomposition of a 2-connected subgraph
is a partition of its edges into a sequence of ears, where the first ear is an induced cycle.
It is easily seen that, for a 2-connected outerplanar graph, there is an ear decomposition
where each ear contains at least one internal vertex and the endpoints of every ear are
adjacent in the preceding graph (if not, the outerplanarity property is affected). Further,
notice that, when the graph is bipartite outerplanar, any added ear has an even number
of internal vertices. Any such ear (which forms an induced cycle) together with the edges
incident to it forms a puffer graph we defined earlier. Thus, we first show an upper bound

for the puffer graphs.

4.2.1 Puffer graphs

Note that, to compute the strong chromatic index we suppose that the puffer graph only
has pendant edges (no common neighbors forming a triangle) since we can always split
any common neighbor of adjacent vertices of the cycle to two pendant edges which does
not affect the upper bound.

The following lemma gives bounds for the puffer graphs.

Lemma 4.2.1. Let G be a puffer graph. Let C be its cycle, then we have the following
according to the cycle length |C)|.

(1) X,(G) = d(u) + d(v) + d(w) — 3 if |C| =3, u,v,w € C.
(2) X,(G) = maxyuepc) d(u) + d(v), if |C| = 4.
(3) Xi(G) =5 if G = Cs.

(4) X5(G) = max,cc d(u) + 2 if |C| =5 and either only a single vertex or exactly two

vertices at distance 2 have pendant edges.

(5) X,(G) = maxywepc) d(u) + d(v) — 1 if |C| = 5, at least one vertex has at most 1

pendant edge, and not in cases 3) and 4).

(6) If |C| = 5 and every vertex has at least 2 pendant edges, let u,v be the vertices

where the maxy, ,, cp(c) d(u1) + d(ve) is reached and let x,y and z be the rest of the
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vertices. Call n = (d($)+d(y)+d(2_d(“)_d(v)_31. Then,

(G < du) +d(w) — 1 if d(u) +d(v) > d(z) + d(y) + d(z) — 3
S | d(w) +d(v) — 1+, otherwise

(7) If G = Cy, k > 6, then

V(@) = 3 if k = 0(mod3)

4 otherwise

(8) X4(G) = maxypepe)yd(u) +d(v) =1 if G # C, |C| > 6 and even.

(9) Let u,v be the vertices where the maxy,, cpc)d(u1) + d(vs) is reached and let
x,y and z be the consecutive vertices of C' not considering u and v where the
ming, s, ssec d(51) + d(s2) + d(s3) is attained. Let n = [d(x)+d(y)+d(2_d(“)_d(”)_31.

Then, if G # C7 and |C| > 9 is odd,

d(u) +d(v) — 1 if d(u) +d(v) > d(z) + d(y) + d(z) — 3

X5(G) < ‘
d(u) + d(v) — 1 +n otherwise

And same bounds plus 1 if |C| =T7.

Proof. The proof is trivial for statements 1) through 4). Statement 5) can also be easily
verified.

For 6) we note that every vertex of the cycle has at least 2 pendant edges. Let uvzyz
be the vertices of the (5 in a cyclic order. We color the cycle with colors 1 to 5 starting
at the edge uv. Then we color one uncolored incident edge of each vertex with the only
possible color among the used ones (keeping the strong coloring property). Thus we have
d(u) 4+ d(v) — 6 uncolored edges incident to u and v, and d(z) + d(y) + d(z) — 9 uncolored
edges incident to x,y and z. Suppose that d(u) + d(v) — 6 > d(z) + d(y) + d(z) — 9, i.e.,
d(u) +d(v) > d(z) + d(y) + d(z) — 3. We use d(u) — 3 new colors to color the uncolored
edges at u and d(v) — 3 new colors for the ones at v. We remark that this is the only
possibility to keep the strong coloring property. Clearly, d(z) < d(u) and d(z) < d(v).
We color the uncolored edges at x and z respectively from the set of colors used at v and
v respectively. Since d(z)+d(y) +d(z) —3 < d(u) 4 d(v), we notice that there are enough
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colors left to color the edges incident to y. Since we use only d(u) 4+ d(v) — 1 colors, the
bound is optimal in this case.

Now, suppose that d(u)+d(v) < d(z)+d(y)+d(z)—3. As before, we color the d(u)—3
edges at u and the d(v) — 3 edges at v with new colors. Now, we introduce an additional
n new colors, and color as many edges incident to both = and z (one can verify that both
x and z have at least n uncolored edges in this case). Then for the remaining edges at x
we use at most d(x) — 3 —n colors used at u and for the ones at z use at most d(z) —3—1n
colors used at v. As before, it is not difficult to see that we have enough colors left to
color the edges incident to y.

For statement 7), we color the cycle in the following way. If & = 0(mod3) we use
colors 1,2 and 3 repeatedly for the cycle and we are done. If £ = 1(mod3), we color one
edge with color 4 and then repeatedly with colors 1,2 and 3. Finally, if ¥ = 2(mod3), we
color the first 5 edges with colors 4, 1,2, 3,4 and then repeatedly with colors 1,2 and 3.

For 8), let C' = v1vv3. .. V9w be the even cycle of the puffer graph for £ > 3. Let
u,v € C be two adjacent vertices which attain maw,,u,cpcyd(u1) + d(uz). We use a total
of d(u) + d(v) — 1 colors to color the whole graph. First, we use at most 5 colors for
the edges of the cycle as follows. Color the edges of the cycle vive, vovs, ... Vop_4V9_3
repeatedly with colors 1,2 and 3. Then color the edges v1v9r and wvop_3v9,_o With color
4. If the edge v _5v9r_4 have color 2 then change the color of the edge vyvsg to color 5.
Now color the edges vor_1v9; With the same color as vov3 and the edge vor_ov9r 1 With the
same color as v9r_5vo;_4. Observe that the cycle is strong edge-colored with the property
that for every odd vertex on it, there are two available colors to use on their uncolored
incident edges among the 5 already used colors (to see this, notice that both edges of
the cycle at distance 1 from these vertices are always colored the same). So, color those
uncolored edges (if there are) incident to the odd vertices of the cycle with these two
available colors.

To color the rest of the uncolored edges, first suppose without loss of generality that u €
C'is an odd numbered vertex. Now, introduce a set of new colors A, where |A| = d(u) —4,
and for each odd vertex on the cycle, color its uncolored incident edges with colors from A
using the least permissible color. Then do the same for each even vertex on the cycle using
another set of new colors B, where |B| = d(v) — 2. Finally, suppose that for some vertex
v; on the cycle we have some uncolored edges left after using all the colors from its set. We
assume without loss of generality that ¢ is even. Since we have uncolored edges at v;, this
means that d(v;) > d(v). Observe that d(v;) +d(viy1) < d(u) +d(v) and d(v;) +d(vi—q) <
d(u)+d(v). This implies that maz{d(v;11), d(v;_1)} < d(u)+d(v)—d(v;) and therefore we
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have used at most d(u)+d(v) — d(v;) colors from B to color the edges incident to v;1; and
v;_1. It follows that we may use the remaining d(v) — (d(u) 4+ d(v) — d(v;)) = d(v;) — d(u)
colors from B to color the edges incident to v;. Same argument follows when there
is an odd vertex with its degree greater than d(u). We remark that in total we use
|A| + |B| + 5 = d(u) + d(v) — 1 colors to give this strong edge-coloring which is optimal
since d(u) + d(v) — 1 is also a lower bound.

Finally, we show 9). Let C' = v1v03 . .. v95_1v; be the odd cycle of the puffer graph for
k > 4. First, we use at most 5 colors for the edges on the cycle in the following manner.
Without lose of generality suppose that v; = z, v, = y and v3 = 2. Start to color
the edges on the cycle from the edge viv, with colors 1,2 and 3 repeatedly till the edge
Vok_7Vor_g. Lhen, color the edges vor_1v7 with color 3, vop_ov9r_1 With color 2, vop_gUor_5
and vgy,_3U9,_o with color 4 and voy_ 493 with color 3. Now, if the edge vor_gvor_7 (V107
in the special case when k = 4) has color 3 then use color 5 for the edges vor_gvor_7 (v1v7
for k = 4) and vor_5v9,_4, otherwise color the edge voy_5v9r_4 With the same color as the
edge vop_gvak_7 (viv7 for k = 4).

Observe that the cycle is strong edge-colored with the property that, if we consider
vertices vy, vy as a single vertex (say vg) (to emulate the even case), for every alternate
vertex on the cycle (originally numbered even) (except for one in the case of k = 4) there
are two available colors to use on their uncolored incident edges among the 5 already used
colors. Now, color those uncolored edges (if there are) incident to the even vertices of the
cycle with these available colors. In the special case of k = 4, one of the vertices have
only one available color and therefore we will need one new color more.

Suppose without loss of generality that u has d(u) — 4 uncolored edges. First, if
d(u) + d(v) > d(z) + d(y) + d(z) — 3, introduce two sets of new colors A and B of sizes
d(u) — 4 and d(v) — 2 respectively. Now, color the rest of the edges as in 8), considering
x and y as a single vertex. Clearly, this leads to a strong edge-coloring of G following
same arguments as in 6) and 8). We use d(u) + d(v) colors if k =4, and d(u) + d(v) — 1
colors otherwise. Second, suppose that d(u) + d(v) < d(x) + d(y) + d(z) — 3. We use
(as defined earlier) new colors to color a subset of 1 edges incident to each of v; and vs.
Again, it is easily seen that d(v; = ) and d(vs = z) are at least n using the assumed
inequalities. Finally to color the rest of the edges, we proceed as in the first case. As
before, the coloring is strong by 6) and 8). We use d(u) + d(v) + n colors if k = 4, and
d(u) 4+ d(v) — 1 +n colors otherwise. O

Theorem 4.2.2. Let G be an outerplanar graph. Then x.(G) = max{max,,ecp d(u) +
d(v) — 1, maxyep X4(H)}, where P is the set of all induced puffer subgraphs of G. If G is
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also bipartite, then

X4(G) = max{maxd(u) + d(v) — 1, max d(u)+d(v)}

weE w€FE(Cy)
where Cy is the set of all cycles of length 4 in G.

Proof. We observe that given an ear decomposition of an outerplanar graph, every ear
together with the edges incident to it forms a puffer graph. Adding ears in the order, a new
ear joins two adjacent vertices. Since only the edges incident to 2 adjacent vertices of the
new ear are precolored, we note that we can simply extend the coloring to the new puffer
graph (as the precolored edges all get distinct colors in both cases). The upper bound for
outerplanar graphs is now clear by maximising over all puffer graphs and over all pairs of
adjacent vertices (the latter is a trivial lower bound). When the graph is bipartite, this

gives the exact value as the upper bound matches the trivial lower bound. O

The proof itself gives the algorithm to obtain such a coloring, and it is easy to see that

it takes sub-quadratic time.



Chapter 5

Proper Hamiltonian Paths in
Edge-Colored Multigraphs

This chapter is organized as follows: In Section 5.1 we present some preliminary results
that will be useful for the main results. In Section 5.2 we study proper hamiltonian paths
in 2-edge-colored multigraphs. Finally, in Section 5.3 we study proper hamiltonian paths
in c-edge-colored multigraphs, for ¢ > 3. We remark that this division is because of
proper hamiltonian paths in 2-edge-colored multigraphs are just alternating paths in 2

colors, therefore the results are different of those for ¢ > 3 colors.

5.1 Preliminary results

Lemma 5.1.1. Let G be a simple non-colored graph on n > 14 wvertices. If m >

(n—3)(n—4)
2

M| > [#52].

+ 4 and for every vertexr x, d(x) > 1, then G has a matching M of size

Proof. We can assume that the graph is connected, otherwise it is easy to see that the
only possible case to analyze is when GG has two components, the first one is two adjacent
vertices and the other has n — 2 vertices and at least (71_3)2& + 3 edges. Then, the result
follows from a theorem in [25].

Let G be a graph of order n. Let M be a maximum matching in G and let U be the
set of unmatched vertices. We shall prove that |U| < 2 by contradiction.

Since M is a maximum matching, neither we can add any new edge to M nor we can
replace a set of edges in M in order to obtain a new matching in G' which is larger than
M.

45
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Necessarily, U is an independent set since otherwise you could add a new edge to M
to have a new matching that is larger which contradicts M being maximum. First, let us
deal with the case where GG has odd order.

We shall prove the result depending on the maximum matching between the indepen-
dent set U = {uy, ug, uz} and the induced subgraph G — U.

We will count the number of edges in E(G), i.e., those edges which cannot be present
in E(G) because otherwise the matching M would not be maximum.

Since m = |E(G)| > w + 4, then |E(G)| < 3n — 10.

Let us study the odd case. For n even, the proof runs parallel.

Since the graph is connected, we shall prove the result depending on the size of a
maximum matching M between the independent set U = {uy, us,u3} and the induced
subgraph G — U.

Case 1: If ]]TJ/ | = 1, there is a unique vertex in N (U) and therefore that there are at
least three vertices, uy, ug, us, of degree 1 in V(G). This leads to a contradiction since the
number of edges in E(G) would be at most (”_3)2& + 3 (the edges which are present in
a complete graph on n — 3 vertices and three more which connect the vertices of degree
one to the complete graph), which contradicts the hypothesis of the lemma.

Case 2: If |]\7| = 2, then there are two vertices vy,vo € G — U, v; # vg, such that
U1, U9, uzvy € E(G) and N ({ug,us}) C {v1,v2}, since otherwise we would have a
larger matching between the sets U and G — U. And therefore, all edges of type usv and
uzv, for any v € G — U — {vy, 12}, are in E(G). Also, {uy,us,us} is an independent set,
so there are at least 3 more edges in F(G).

Since M is a perfect matching in G — U, the vertices v; and vy are extremities of
some edge in M. If vivy € M, then we can replace v1vy by uiv; and usvy contradicting
that M is maximum. Thus, there exist wy,ws € G — U — {v1,v2}, wy # wy, such that
viWwy, Vowe € M.

Necessarily, wiw, € E(G). Otherwise we can replace {vywy, vows } by {uqvy, usve, wiws }
and obtain a larger matching.

The edge ujw, is also in F(G) because otherwise we can replace vowy in M by ujw,
and usve in order to get a larger matching.

So far we have at least 2(n —5) + 3+ 1+ 1 =2n — 5 edges in E(G).

There are ”7_7 edges, eq, €, ..., €nt, in M —{vywy, vawy }. We shall study the conditions

n—7

given by the possible connections between the edges e;, for i = 1,...,"5*, and the set

{wi,ws}. Necessarily, |N, ({wi,w2})| < 2, Vi = 1,2,...,%7. Otherwise, we can find

a matching of size two, say {fi, fi2}, connecting e; and {w;,wy} and we can replace
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{ei, viwy, vaws} by {uyvy, usva, fi, fie}. We can assure then that there are at least n —7

new edges in E(G). By adding up these edges to the 2n — 5 edges we have obtained

before, we already count 3n — 12 edges in E(G).
We shall study two different subcases.

First of all, if N(v1) N {ug, us, we} = 0, then 3 new edges are shown to be in E(G). By

adding up these new edges to the ones we have counted previously, we have 3n —12+3 =

3n — 9 edges in E(G). This number is larger than 3n — 10, which was the maximum

number of edges in F(G) allowed from the lemma’s hypothesis and the result follows.

Otherwise, if N(vi) N {ug,us,wa} # O, then uyw; € E(G) because, if for example
uyv; € E(G), we can replace vyw; in M by {ujwi, usv;}, so one more edge is in E(G).
Now if ugvy or uzvy are in E(G) then all edges of type uyv, for any v € G—U —{vy, v}, are
in E(G) since [M| = 2. Therefore both uyv; and uzv; are missing, or n—5—2 = n—7 (since
we have already counted ujw; and ujwsy) edges are missing. In the first case we arrive to
3n—9, a contradiction, in the second case we have that 3n—114+n—7 =4n—18 > 3n—10
and again a contradiction.

Case 3: If |M | = 3, then there are three distinct vertices vy, v9,v3 € G — U, such
that wv; € E(G) for i = 1,2, 3. Since there is a perfect matching in G — U, the vertices
v1, V2 and vz are extremities of some edge in M. If v;v; € M, then we can replace v;v; by
u;v; and w;v; contradicting that M is maximum. Thus, there exist three distinct vertices
wy, we, w3 € G — U — {vy,v9,v3}, such that vywy, vowsy, vyws € M.

Necessarily, wyw; € E(G) for all i, j = 1,2, 3. Otherwise we can replace v;w; and v;w;
by u;v;, u;0; and wyw; and obtain a larger matching. In the same way, u;w; € E(G) for
all 4,7 =1,2,3, i # j, because otherwise we can replace v;w; by {u;v;,u;v;}. Since U is
an independent set, thus there are at least 3 + 3 + 6 = 12 edges in E(G).

If uyw; € E(G) then N(v;) N {u;,w;} =0 for j # i. Otherwise, if for example u;v; €

E(G), we can replace v;w; in M by w;w; and ujv;. Thus, there are 3 more edges in E(G).

Now, there are ®52 edges, ey, €y, ..., €n-9, in M — {v1wy, vaws, v3ws}. We shall study
2

2
the conditions given by the possible connections between the edges ¢;, for i =1, ..., ”T_g,
and the sets U = {uy,us,us} and W = {wy, wq, w3}. Necessarily |N,, (W)| < 3,V i =
1,2,..., ”T’g. Otherwise, we can find a matching of size two, say {f;;, fic}, j. k € {1,2,3},
connecting e; and {w;, wy }, and we can replace {e;, v;w;, viwg} by {u;v;, ugvk, fi;, fix}-
Also [N, (U)| <3, Vi=1,2,..., ”T_g. Otherwise, we can find a matching of size two, say
{9ij, gir}, j,k € {1,2,3}, connecting e; and {u;, u;}, and we can replace e; by { gi;, gir}.
We can assure then that there are at least 2 -3+ 22 = 3n — 27 new edges in E(G).

By adding up these edges to the 15 edges we have obtained before, we already count
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3n — 12 edges in E(G).

Recall that we have denoted p; and g; the extremities of e;. Without loss of generality,
let us assume that if [N, (u;)| =1,V i=1,2,...,%2 and j = 1,2,3, then N, (u;) = p;.
Thus either |[N,, (U)| < 1 or N, (U) = 0 for all i = 1,2,3. Otherwise we can find a
matching of size 2 between U and e; and we again can find a larger matching.

Now, for n > 15, there are at least 3 edges in M — {vjw, vowsq, vyws}. If N, (U) = 0,
then 3 more edges are in £(G) and by adding up these new edges to the 3n — 12 that have
already found and the result follows. If |N,, (U)| = 1, then either there exists j # i such
that N, (U) # N, (U) or N, (U) = N, (U) for all i # j. In the first case ¢;q; € E(G)
and either pyu; or pigo is in E(G). We again have 3 new edges in E(G) and the proof is
finished. In the later case all edges connecting the edges in M — {vjwy, vows, v3ws} and

U have a common vertex, say u;. Again, at least 3 more edges are in F(G).

Just one case is left to be studied: if N, (U) = 0, then ¢;q; € E(G) for all i = 1,2,3

and we also get 3 new edges in E(G).
The proof is now finished. O

Lemma 5.1.2. Let G¢ be a 2-edge-colored multigraph on n > 14 vertices. Suppose that for
every vertex x in G, rd(z) = 2. If m > (n—3)(n—4)4+3n—2, then G has two matchings
M" and M® on colors, say red and blue, such that |M"| = |2] and |M"| > ["52].

Proof. Let us denote E"(G) and E°(G®) the set of edges colored in red and blue, of sizes
|E"(G°)| = m" and |E®(G€)| = m®, respectively. Observe that, as for every vertex x in
G°, rd(z) = 2, we have that d’(x) > 1 for i € {r,b}. Observe also that m’ > ("_?’éﬂ +4
for ¢ € {r, b}, since this threshold is tight when the multigraph is complete on one of the
colors.

Let us see the case when n is odd. By Lemma 5.1.1, there exist two matchings M"
and M?" size ”T_l, so the result follows straightforward.

Let us see now the case when n is even. Then, again by Lemma 5.1.1, there exist two
matchings, M" and M?, of size at least anz We shall prove the result by contradiction.
Let us consider the monochromatic subgraphs in color r and b and suppose that |M"| =
|M*) =22 Let U = {uy,us} denote the independent set of unmatched vertices in M".
The vertices u; and uy are connected to the edges in M". We claim that there exist two
distinct vertices vy, ve in V(G) — {uy, us} such that ujvy, ugve € E"(G°). Otherwise, if
N” ({uy,us}) = vy, this vertex is the extremity of some edge viw; in M" and then we
distinguish two cases. First, if N” (w;) = v;, we have three distinct vertices of degree one

which leads us to a contradiction with the total number of edges. Second, there exists
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wy € N7 (wy) — {v1} and vy, such that vaws € M". Then we can replace {vjwy, vows}
by {ujvy, wiwy}. After this permutation, we have a new matching on same size but wu;
is replaced by vy. So, as we claimed, there always exist two distinct vertices vy, vs in
V(G) — {uy,us} such that ujvy, usvy € E"(G°) (uz and vy are those vertices in the case
we have just seen).

Now, the edge vjvy is not in M", since otherwise, we can replace it by {ujvy, ugvs}
and get a larger matching in color r, contradicting that M" is maximum.

So, there are two vertices w; and wy in V(G) — {uy, us, v1,v9} such that vywy, vewsy €
MT7. Observe that there can be at most two edges connecting the endpoints of any edge
in M" to the set {uy,us}, i.e., there are at least two missing edges for each edge in M",
in total 2"7_2. Similarly, for w; and ws, we have same constraints and therefore, this also
means two missing edges for each edge in M" — {vywq, vawsy}, in total 2”7_6. Otherwise,
suppose that there is an edge vsws with three edges between its endpoints to the vertices
wy and wsq, so we can replace viw; and vewy by say wivz, wows, viu; and veus to obtain
a perfect matching. Finally, as u; and us are independent, the edge ujus is missing. If
we sum up these numbers, there are at least (n —2) + (n — 6) + 1 = 2n — 7 missing edges
in color red.

Same reasoning can be done with the matching M’ to obtain 2n — 7 blue missing
edges. So, the total number of missing edges in colors red and blue is 4n — 14. Since the
complement of G has edge set of size less than or equal to 3n — 10, for n > 6 we have

contradiction. and therefore, the result holds. O

Lemma 5.1.3. Let G¢, ¢ > 2 be a connected c-edge-colored multigraph. Suppose that G¢
contains a proper path P = x1y122Y2 . . . TpYp, P = 2, such that each edge x;y; is red. If G¢
does not contain a proper cycle C' with vertex set {x1,y1, T2, Y2, ..., Tp, Yp}, then there are

at least (¢ — 1)(2p — 2) missing edges in G°.

Proof. Let P = z1y122y> . . . Y, be a proper path, p > 2, such that each edge z;y; is red.
Let blue be another color.
The blue edge 1y, can not be in G¢, otherwise C' = x1y; ... xpy,x; is a proper cycle.
Suppose that the blue edges x;z; are present in G¢, for : = 2,...,p. Then, the blue
edges y;_1y, can not be in G¢, otherwise we have the proper cycle C' = z12; ... yp¥i—1 ... 21
that contradicts our hypothesis. Therefore for each edge y;_1x; in the path, either the
blue edge zyz; or the blue edge y;_1y, is missing. So there are % blue missing edges.
Now, suppose that the blue edges x,y; are present in G¢, for i = 3,...,p — 2. Then,

the blue edges x;41y, cannot be in G° at same time as x;¥i+1, Yi—1%Titv2 O Yi—1Yit1,
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x;T;12, otherwise we have the following proper cycles: 19,2 Yiv1Tit1Yp - - - TivaYi—1 - .. T1
O T1YiTiTit2 - - - YpTit1Yi+1Yi—1 - - - 1. The minimum in this case corresponds to one miss-

ing edge x;+1y, for each edge y;_;x; in the path, for i = 2,...,p — 1. Therefore, there are

2p—6

5— blue missing edges.

For the moment we have 2p — 3 blue missing edges. To obtain the last missing edge
suppose that the blue edge xoy, is present in G°. Then, it can not be at same time with
T1Y2, Y123 OF T1T3, Y1Y2, otherwise we obtain the proper cycles C' = 1y, ... Zayp . . . T3Y121
or C' = x3...YpT2 ... Y2y121. The minimum in this case corresponds to one missing edge
Z2yp. We remark that the blue edges x2y,, y192 and y;23 were not counted before. The
edges r1x3 and x1y, were supposed to exist, otherwise, to obtain the last missing edge we
consider the symmetric case, i.e., using the blue edge y,_1z; (if exists).

In total there are % + @ + 2 = (2p — 2) blue missing edges in G°. As we have
¢ — 1 colors different from red, that gives us (¢ — 1)(2p — 2) missing edges as desired.

Note that this number of missing edges is the same as in the simplest case, this is, if

all edges different from red x,z; and zyy;, for ¢ = 2, ..., p are not present in G°. O]

Lemma 5.1.4. Let G° be a connected c-edge-colored multigraph, ¢ > 2. Let M be a
matching of G° in one color, say red, of size |M| > [252]. Let P = z1y122Ys - . . TpYp,
p > 2, be a longest proper path compatible with M. Then we have the following cases:

e (1) niseven, M| =145 and2p <n

— (1a) If there is no proper cycle C such that V(C) = V(P), then there are at
least (n — 2+ pn — 2p*)(c — 1) missing edges in G¢ different from red and the
minimum value of this function is (2n —4)(c — 1) for p = %52,

— (1b) If there is a proper cycle C such that V(C) = V(P), then there are at
least (2pn—4p?)(c—1) missing edges in G different from red and the minimum

value of this function is (2n — 4)(c — 1) for p = 252.

e (2)nisodd, [M|=" and 2p <n—1

— (2a) If there is no proper cycle C' such that V(C') = V(P), then there are at
least (n — 3 — p+ pn — 2p?)(c — 1) missing edges in G¢ different from red and

the minimum value of this function is (2n — 6)(c — 1) for p = "5=.

— (2b) If there is a proper cycle C' such that V(C) = V(P), then there are at

least (2pn — 2p — 4p?®)(c — 1) missing edges in G different from red and the
n—3

minimum value of this function is (2n —6)(c — 1) for p = 5=,
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e (3)nis even, M| ="52 and 2p <n — 2

— (3a) If there is no proper cycle C' such that V(C) = V(P), then there are at
least (n — 4 — 2p+ pn — 2p?)(c — 1) missing edges in G¢ different from red and
the minimum value of this function is (2n — 8)(c — 1) for p = %52,

— (3b) If there is a proper cycle C' such that V(C) = V(P), then there are at
least (2pn — 4p — 4p?)(c — 1) missing edges in G¢ different from red and the
minimum value of this function is (2n — 8)(c — 1) for p = 2.

Proof. Before starting the proof, we remark that the edges z1y; and z,y, are of color red.

Otherwise, we can easily extend the path by adding an edge of the matching to P.

Suppose first that n is even and 2p < n. Since M has size 3 there are 220 yed edges

2
n—2 :

5. Suppose there is no proper
C cycle such that V(C) = V(P). Let blue be an another color. By Lemma 5.1.3 there are

(2p—2) blue missing edges. As the path is maximum, we cannot extend P having an edge

outside P. Let us denote these edges by e; fori=1,...,

e; neither at the beginning nor at the end of it, then there are no blue edges between the

n—2p
2

we cannot add any edge e; in-between the path then there at most 2 blue edges between

vertices x1,y, and the edges e;. Therefore, there are 4

blue missing edges. Finally, As

the edges e; and the edges y;x;.1, 7 =1,...,p — 1. So, there are 2”_721”% blue missing
edges different from red. Adding up and simplifying all these numbers and having ¢ — 1
colors different from red, we arrive that there are (n — 2 + pn — 2p?)(c — 1) missing edges
in G¢ different from red. If we search the minimum value of this function we arrive to
(2n —4)(c — 1) for p = 252 and case (1a) holds. Now if there is a proper cycle C' such
that V(C) = V(P) then there cannot exist any edge at all different from red between all
vertices of C' and the edges e; and therefore there are 22-222p(c — 1) = (2pn — 4p*)(c — 1)
missing edges different from red. Again, minimizing the function we obtain the same

result as above and case (1b) holds.

Suppose now that n is odd, M = “T_l and 2p < n — 1, or n is even, M = "T_Q and
2p < n — 2. In both cases, same arguments as before apply just replacing n with n — 1 or
n — 2 respectively, in the number of missing edges. This is because we have n — 1 matched
vertices and one non-matched vertex for the first case and n — 2 matched vertices and two

non-matched vertices for the second one. O]

Lemma 5.1.5. Let G be a connected non-colored simple graph on n vertices, n > 9. If
m > W + 3, then G has a matching M of size |M| = |3 ].
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Proof. By a theorem in [25], a 2-connected graph on n > 10 vertices and m > (71—2)2&4_5
edges, has a hamiltonian cycle. So, if we add a new vertex v to GG, joined to all its vertices,
we have that G+ {v} has m > (”72)2& +3+n= % +5 edges. Therefore, G+ {v}
has a hamiltonian cycle, i.e., G has a hamiltonian path and this implies that there exists

a matching M in G of size |[M| = [ F]. O

5.2 2-edge-colored multigraphs

In this section we study the existence of proper hamiltonian paths in 2-edge-colored
multigraphs. We present two main results. The first one involves the number of edges,
and the second one involves the number of edges and the rainbow degree. Both results

are tight.

Theorem 5.2.1. Let G° be a 2-edge-colored multigraph on n > 8 wvertices. If m >
(n—2)(n—3)+2(n—2)+2, then G has a proper hamiltonian path.

Proof. The proof is by induction on n. For n = 8,9, by a tedious analysis, the result
can be shown. Suppose now that n > 10. Observe that E(G¢) < 2n — 4. By a Theorem
of [2], if for every vertex v € G° we have that d"(v) > [%] and d’(v) > [%1], then
G has a proper hamiltonian path. Suppose then than there exists a vertex v such that

d'(v) < ["H] - 1.

Suppose first that there exist two neighbors of v, say u and w, such that c(vu) = r
and c(vw) = b. We construct then a new multigraph G’ by replacing the vertices v, u
and w with a new vertex z such that N"(z) = Nge_y, , 1 (w) and Nb(z) = NGe tpuwy (W)
We remark that Ng._, ,(w) and Ng._(, 1 (u) cannot be both empty at the same time,
otherwise E(G¢) > n—3+n—3+n— ([2] - 1) > 2n — 4. A contradiction in the
total number of edges. So, by this we remove at most n — 1 blue edges and [%H] — 1
red edges from v, n — 3 red edges from u, n — 3 blue edges from w, and one red and
one blue between u and w. Therefore G’ has at least (n —2)(n —3) +2(n —2) + 2 —
(n—1)—([1] - 1) = (n = 3) — (n — 3) — 2 edges. This number is greater or equal
than (n —4)(n — 5) + 2(n — 4) + 2, i.e., the number of edges required to have a proper
hamiltonian path in a graph on n — 2 vertices. So, by the inductive hypothesis G’ has a
proper hamiltonian path P. Finally, as we have chosen the appropriate edges to remove
at v and w it is easy to extend P to a proper hamiltonian path for G°.

Suppose now that there does not exist two neighbors of v, say u and w, such that

c(vu) = r and c(vw) = b. So, we have two possible cases. First case is when v has one
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only neighbor w in both colors. It is easy to observe that G° — v has (n — 2)(n — 3) +
2(n —2) = (n — 1)(n — 2) edges, i.e., it is a rainbow complete multigraph. Therefore,
we have any possible proper hamiltonian path, in particular the one that starts at w
and then we easily extend the path to G°. For the second case, v has just neighbors in
one color, say b. Observe that for every vertex w # v, w has a red neighbor different
of v. Otherwise, if there is a vertex w without red neighbors, we have that E(G¢) >
n—14+4mn—2>2n—4, a contradiction. Now, suppose first that v has at most n — 2 blue
neighbors. So, take a neighbor w of v and remove all its blue incident edges. Remove
then v from G¢ and call this graph G™. In G’¢, w is monochromatic in red, and G’ has
at least (n —2)(n —3) +2(n —2) +2 — (n — 2) — (n — 2) edges. This number is exactly
(n—3)(n—4)+2(n—3)+2, i.e., the number of edges required to have a proper hamiltonian
path in a graph on n — 1 vertices. Then, by inductive hyphothesis in G’® we obtain a
proper hamiltonian path that clearly starts at w since it was monochromatic. Therefore
we have a proper hamiltonian path for G¢. Finally, if v has n — 1 blue neighbors, suppose
that one neighbor w of v has at most n — 3 blue neighbors, then we proceed as before, we
remove v from the graph and we remove all blue incident edges to w. This graph G’® has
at least (n—2)(n—3)+2(n—2)+2—(n—1)—(n—3) = (n—3)(n—4)+2(n—3) +2 edges.
Again we obtain a proper hamiltonian path for G’* and therefore a proper hamiltonian
path for G¢ (since w is monochromatic in red). Now, every vertex w has n — 2 neighbors,
i.e., the graph G° — v is complete in blue. Call this graph G’°. Now, G’ has at least
(n—2)(n—3)+2(n—2)+2—(n—1)=n?—4n + 5 edges and since this is bigger than
(n—3)(n—4) +2(n — 3) + 2 by inductive hypothesis we have a proper hamiltonian path
in G'. Now, if n — 1 is odd, one of the extremities of the path is red and therefore we
trivially add v to the path. If n — 1 is even, both extremities have the same color. If they

are red we are done. Otherwise, remove all the blue edges from G’¢, this new (red) graph

(n—1)(n—2) _ (n—2)(n—3)
5 = 5 + 1 edges therefore

by a theorem in [25], it has a hamiltonian path P. Now, since G’ is complete in blue we

has n — 1 vertices and at least n? — 4n + 5 —

can use those blue edges along with P to form a proper hamiltonian P’ for G that starts
and ends with color red. Finally, we can trivially add v to P'.

Since we covered all cases, the proof is finished. n

Theorem 5.2.1 is the best possible for n > 8. In fact, consider a rainbow complete
2-edge-colored multigraph on n — 2 vertices for n odd. Add two new vertices x; and x».
Then add the red edge ;x5 and all red edges between {x1, 22} and the complete graph.
Although the resulting graph has (n — 1)(n — 2) + 2(n — 2) 4+ 1 edges, it has no proper
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hamiltonian path, since at least one of the vertices x; or x5 cannot be attached to any
such path. Indeed, for n odd, the first and last edge of any proper hamiltonian path must
differ in colors. If n = 5,7, Theorem 5.2.1 does not hold for the graphs H,§7k+3, k=1,2.

Theorem 5.2.2. Let G° be a 2-edge-colored multigraph on n > 14 vertices. Suppose that
for every vertex x in G¢, rd(x) = 2. If m > (n—3)(n—4)+3n — 2, then G° has a proper

hamaltonian path.

Proof. Let us suppose that G¢ has not a proper hamiltonian path. We will show that
E(G¢) has more than 3n — 10 edges, i.e., G¢ has less than (n — 3)(n — 4) + 3n — 2 edges,
contradicting the hypothesis of the theorem.

We distinguish between two cases depending on the parity of n.

e Case A: n is even. By Lemma 5.1.2, G¢ has two matchings M", M?, such that
|M"| =% and |[M®*| > 222, Take the longest proper paths, say, P = 214122y . . . T,y
and P’ = ziyixhy, ... xly,, compatibles with M" and M?, respectively. Observe
that as the length of P (P’) is odd then both its first and last edges are on the
same color. It follows that, since |[M"| = %, c(x1y1) = c(xpyp) = r. Otherwise, we
can easily extend P by adding an edge of M". It follows that the edges x;y; are
red, i = 1,...,p. Similarly, we may suppose that c(zyy;) = c(z},y,,) = b. Indeed if
c(zhyl) = c(zy,,) = r, then either z} or y/, is the endpoint of an edge of M® — P’
and therefore to obtain a path longer that P’ compatible with M?, a contradiction
to the definition of P’.

Notice now that if 2p = n or 2p’ = n, then we are finished. In addition, if 2p < n —2
or 2p' < n—2, then by Lemma 5.1.4, there are at least 2n —4 blue missing edges and
2n—8 red ones. This gives a total of 4n—12 > 3n—10 missing edges, a contradiction.

Consequently, in what follows we may suppose that 2p = 2p' =n — 2.

Suppose first that there exists a proper cycle C' in G¢ such that V(C) = V(P). Let
e be the red edge of M" in G¢ — C. If there exists a blue edge, say €', between an
endpoint of e and C, we can easily obtain a proper hamiltonian path considering
e, e’ and a segment of C' of length n — 3 in the appropriate direction. Otherwise, as
the graph is connected, all edges between the endpoints of e and C' are red. Now,
as rd(G°) = 2, there must exist a blue edge, say €', parallel to e and therefore we

can obtain a proper hamiltonian path just as before but starting with e’

Next suppose that there exists no proper cycle C' in G¢ such that V(C) = V(P).

By Lemma 5.1.4, there are at least 2n — 4 blue missing edges. Consider now the
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path P" and let vy, w; be the vertices in G¢ — P’. It is clear that if there exists
a blue edge joining v; and w;, then by symmetry on the colors there are at least
2n — 4 red missing edges. This gives a total of 4n — 8 missing edges, a contradiction.
Otherwise, assume that there is no blue edge between v; and w;. In this case
we will count red missing edges assuming that we cannot extend P’ to a proper
hamiltonian path. If there exists no cycle C" in G¢ such that V(C’) = V(P’) then
by Lemma 5.1.3 there are 2p' — 2 = n — 4 red missing edges. By summing up,
we obtain 2n —4 4+ n —4 = 3n — 8 > 3n — 10 missing edges, a contradiction.
Finally, assume that there exists a proper cycle C’ in G¢ such that V/(C’) = V(P').
Set C' = cicy...copcy where c(cicip1) = 7 for i = 1,3,...,2p" — 1. If there are 3
or more red edges between {vy,w;} and {¢;, ¢}, for some i = 1,3,...,2p" — 1,
then either the edges vic; and wyc;11, or vic;1 and wyc; are red. Suppose vi¢; and
wici1 are red. In this case, the path viyjx;... .y, 2 ,w; is a hamiltonian one.
Otherwise, if there are no 3 or more red edges between {v,w;} and {¢;, ¢;41}, for
all i = 1,3,...,2p" — 1, then there are 221’/772 = n — 4 red missing edges. If we
sum up we obtain a total of 2n —4 4+ n —4 = 3n — 8 > 3n — 10 missing edges, a

contradiction.

e Case B: n is odd. By Lemma 5.1.2, G¢ has two matchings M", M?®, such that
IM"| = |M°| = ”T_l As in Case A, we consider the longest proper paths P and
P’ compatibles with the matchings M" and M? respectively. Suppose first that
2p <n—1and 2p' <n—1. By Lemma 5.1.4, there are at least 2n — 6 blue missing
edges and 2n — 6 red ones. We obtain a total of 4n — 12 > 3n — 10 missing edges, a

contradiction.

Suppose next 2p = 2p' = n — 1 (the cases where 2p < n — 1 and 2p' = n — 1,
or 2p = n — 1 and 2p' < n — 1 are similar). In the rest of the proof, because of
symmetry, we will consider only the path P since same arguments may be applied
as well for P’. In this case we will count blue missing edges assuming that we cannot
extend P to a proper hamiltonian path. Now, let v be the unique vertex in G¢ — P.
It is clear that if there is a proper cycle C' in G¢ such that V(C') = V(P), we can
trivially obtain a proper hamiltonian path since the graph is connected, i.e., there
is at least one edge between v and C'. So, as there is no proper cycle C' in G¢ such
that V(C) = V(P), we have by Lemma 5.1.3, that there are 2p —2 = n — 3 blue
missing edges. If there exists a blue edge between x; and z;, for some i = 2,... p,

then it cannot exist the blue edge vy;_1, otherwise we obtain the proper hamiltonian
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path vy;—1 ... 212;...y,. We can complete the argument in a similar way, if both
edges ypy; and vxp1, @ =1,...,p — 1 exist in G° and are on color blue. Note that
since there is no proper cycle C' in G¢ such that V(C) = V(P), we cannot have at
the same time the blue edges z1z; and y,y;—1, ¢ = 2,...,p. Therefore, there are
% = ”7_3 blue missing edges. If we make the sum and multiply it by two (since
the same number of red missing edges is obtained with P’), we conclude that there

are 2(n — 3+ 52) = 3n — 9 missing edges, a contradiction.
Since we covered all the cases, the theorem is proved. O

Theorem 5.2.2 is the best possible for n > 14. Indeed, for n odd, n > 14, consider
a complete blue graph, say A, on n — 3 vertices. Add 3 new vertices vy, v9,v3 and join
them to a vertex v in A with blue edges. Finally, superpose the obtained graph with a
complete red graph on n vertices. Although the resulting 2-edge-colored multigraph has
(n—3)(n —4)+ 3n — 3 edges, it has no proper hamiltonian path since one of the vertices
v1, Vg, v3 cannot belong to such a path. For n = 7,9,11,13, it is easy to see that the

graphs Hp .5, k= 2,3,4,5, are exceptions for Theorem 5.2.2.

5.3 c-edge-colored multigraphs, ¢ > 3

Finally, in this section we study the existence of proper hamiltonian paths in c-edge-
colored multigraphs, for ¢ > 3. We present three main results. The first one involves the
total number of edges. The second one, the total number of edges and the connectivity
of the graph. The last one, the total number of edges and the rainbow degree. All results
are best possible.

First, we will present a result that allows us to consider just the case ¢ = 3.

Lemma 5.3.1. Let G¢ be a c-edge-colored connected multigraph on n vertices, ¢ > 3 and
m > ¢ f(n) + 1 edges. There exists one color ¢; such that if we color its edges with
another used color and we delete parallel edges with the same color, then the resulting
(c — 1)-edge-colored multigraph is connected and has m’ > (¢ — 1) f(n) + 1 edges, such
that if G=' has a proper hamiltonian path then G¢ has one too. Moreover, if rd(G¢) = k,
then rd(G™Y) =k —1 for1 <k <c.

Proof. Let ¢; denote the color i, for i = 1,...,¢, in G° and denote by |¢;| the number
of edges with color i. Let ¢; be the color with less number of edges. Color the edges

on color ¢; with another used color, say ¢;, and delete (if necessary) parallel edges with
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that color. Call this graph G“7'. By this, we delete at most |¢;| edges. It is clear that
this graph is connected since we delete just parallel edges. Also, if is G¢~! has a proper
hamiltonian path, then, this path is also proper hamiltonian in G but maybe with some
edges on color ¢; (in the case that they have been recolored with ¢;). Observe also that
if rd(G°) = k then rd = (G') = k — 1 since only the color ¢; disappeared. We will
show now that m’ > (¢ — 1) f(n) + 1. We have two cases. First, if |¢;| > f(n), then
clearly m’ > (¢ — 1) f(n) + 1 edges since for all i, |¢;| > f(n). For the second case, we
have that |c;| < f(n). Now, m = >77_ [ci| > ¢ f(n) + 1 and therefore 27, ., |ci| >
c f(n)—|e;|+1 = (c—1) f(n)+ f(n)—|c;|+1. This last expression is greater or equal than
(¢c—1) f(n)+1since f(n)—|c¢;| > 0. Finally, we have that G*! has m’ > (¢—1) f(n)+1
edges as desired. O

Theorem 5.3.2. Let G° be a c-edge-colored multigraph on n vertices, n > 2 and ¢ > 3.
Ifm > 6(71%)("_2) + 1, then G has a proper hamiltonian path.

3(n—1)(n—2)
2

cases n < 7 can be checked by exhaustive methods. Assume so, n > 8. Since there exists

Proof. By Lemma 5.3.1 we can assume that ¢ = 3 and m > + 1. Furthermore,
one color, say red, such that the number of red edges are at least % + 1 then by a
theorem in [25], there is a hamiltonian red path and therefore a perfect or almost perfect
matching M". Take the longest proper path P = z1y122y> . . . 2y, compatible with M".
So we have that, ¢(z;y;) =r fori=1,...,p. Asm > w +1, |[E(G°)| < 3n — 4.
Now, we will distinguish between two cases depending on the parity of n.

Case A: n even. Clearly |[M"| = %. By contradiction suppose that 2p < n, otherwise
we are finished. Assume first that there is no proper cycle C'in G° such that V(P) = V(C).
By Lemma 5.1.4, there are at least 2(n — 2 + pn — 2p?) missing edges different from red
and therefore the inequality 2(n—2+pn—2p?) < 3n—4 must be satisfied. This inequality
does not hold for n > 8. Therefore, we have a contradiction with the number of edges of
G°. Assume next that there is a proper cycle C' in G° such that V(P) = V(C'). Again by
Lemma 5.1.4, 2(2pn — 4p*) < 3n — 4 must be satisfied, and as before this is never possible
for n > 8.

Case B: n odd. Clearly |[M"| = L.

Assume first that there is a proper cycle C'in G° such that V(P) = V(C). If 2p =n—1
then we can obtain a proper hamiltonian path by just taking any edge between the only
vertex outside C' and C' and then following C' in the appropriate direction. Otherwise by
Lemma 5.1.4 there are 2(2pn — 2p — 4p?) missing edges different from red and therefore
2(2pn — 2p — 4p*) < 3n — 4 must hold and this never happens for n > 9.
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Assume next that there is no proper cycle C' in G¢ such that V(P) = V(C). If
2p < n —1 the again by Lemma 5.1.4 the inequality 2(n — 2+ pn — 2p?) < 3n — 4 must be
satisfied. However this is not possible for n > 9. It remains to handle the case 2p = n— 1.
Let v be the unique vertex of G — P. We have the following cases depending on the
degree and neighbors of v.

Subcase B1: All edges incident to v are in the same color, say red. We have these
situations. First, d(v) < n— 2, consider the G°— {v} and delete from a neighbor of v, say
w, all edges in two colors in order to have w monochromatic not in red. Call this graph
G'. Observe that we can always do this since, it is impossible to have 2 monochromatic
vertices. So, by this, we delete at most n—2+n—2+n—2 = 3n—6 edges. It is easy to see
that the graph G’ on n — 1 vertices has at least (71—1)# +1—(3n—-6) = w +1,
then, by even case, we have a proper hamiltonian path P’ in G’*. Since w is monochromatic
not in red, w is either in the beginning or in the end of P’ and therefore it is trivial to
add v to P’ in order to find a proper hamiltonian path in G¢. If this does not hold,

we have that d(v) = n — 1. Therefore the graph G¢ — {v} on n — 1 vertices has at least

(n—1)(n—2)
2

in G'. Now, if the path either starts or ends with a color different from red, we trivially

+1—(n—1) > %2("73) +1, then, again, we have a proper hamiltonian path P’

add v to the path. If not, both of them finish with red. Now, if we can take any parallel
edge of these without losing the property of being properly colored we have again that it
is easy to add v to the path. Otherwise, we have, without losing generality, the degree in
some color, say c¢; of the first vertex of the path, say w, is at most n — 3. So, we are in
the same case as the first one, since we take the graph G¢ — {v} and we delete from w
the edges in that color ¢; and in another color in order to have w monochromatic not in
red. By this, we delete n —1+n—2+4n —3 = 3n — 6 edges and finally, the result follows
exactly as in the first situation.

Subcase B2: There exist two distinct edges incident to v, say vz and vy, such that
c(vr) = ¢1 # ¢o = c(vy). Assume first that © = y. This case is analog to the last one
just taking the graph G¢ — {v} and deleting from w edges in the appropriate two colors
in order to have it monochromatic. By this we delete 3 4+ 2(n — 2) = 2n 4 1 edges and we
have that ("_1)2&4—1—(271—1—1) > W_Q)zﬂ—l—lfornz?.

Assume next that z # y. We will prove the result by induction. If we cannot attach v
to the path P we have that there are 4 missing edges in colors different from red between v
and the vertices x4, y,. Also, we have at most 2 edges different from red between v and the
edges y;z;11 of the path. Therefore there are 2”7_3 missing edges. Adding up all this, we

conclude that the degree of v in colors different from red is at most n—3. So, if we replace
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the three vertices v, z,y to a new one, say v/, such that N (v') = Nélcf{v’x’y} (y), Ne(v') =
Néi_{v’%y}(x) and N%(v') = Né";_{v%y}(m) N Néi_{ux’y} (y). So, by this we delete at most
b5n — 10 edges. Now, it is easy to see that the new 3-edge-colored multigraph on n — 2
vertices, say G, has at least ("_I)QM—H— (5n—10) > %—H, for n > 5, therefore,
by inductive hypothesis, we have a proper hamiltonian path P’ in G’. Now, because of
the way we have chosen the edges to delete at x and y, it is easy to obtain from P’ a
proper hamiltonian path for G°.

Since we covered all the cases, the theorem is proved. O

Theorem 5.3.2 is the best possible. Indeed, consider a rainbow complete graph on n—1
vertices with ¢ colors and add a new isolated vertex z. The resulting graph, although it
has c(n_léﬂ edges, contains no proper hamiltonian path since it is not connected.

Notice that in the above theorem there is no condition guaranteeing the connectivity

of the underlying graph. Next result adds this condition.

Theorem 5.3.3. Let G° be a connected c-edge-colored multigraph on n vertices, n > 9

¢(n—2)(n—3) c . .
and ¢ > 3. If m > =—5—= +n, then G° has a proper hamiltonian path.

Proof. By Lemma 5.3.1 it is enough to prove the theorem for ¢ = 3.
The proof is by induction on n. The cases n = 9,10 can be shown by a tedious case
analysis. We have two cases, depending on whether GG¢ contains a monochromatic vertex
or not.
Case a: There exists a monochromatic vertex in G¢. Let x be a monochromatic
vertex. Let y be a neighbor of z. If y is also monochromatic then the graph G — {z,y}
has n — 2 vertices and at least w +n—(2n—-3) = w

it is almost rainbow complete and therefore it has a proper hamiltonian cycle. Then, it

—n + 3 edges, i.e.,

is easy to add x and y to the cycle to obtain a proper hamiltonian path in G°.

Suppose then that y is not monochromatic and that xy is of color b.

Let us replace the vertices z and y by a new vertex, say z, such that N°(z) = N"(2) =0
and N9(z) = N9(y) (or N°(2) = N9(z) =0 and N"(2) = N"(y)).

Observe that, if the resulting multigraph on n — 1 vertices is connected, (we show this
later) and has enough edges for the induction hypothesis to hold, by induction it contains
a proper hamiltonian path. Since z is monochromatic, it can only be the endpoint of the
path. Therefore, using the blue edge xy, we can extend the path to a proper hamiltonian
one in the initial multigraph.

We now count the maximum number of edges that may be deleted by the contraction.

We delete all the edges incident to z, which is at most n — 1, and the edges of color b
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and say g (or r) incident to y, at most 2(n — 2). This gives us a total of 3n — 5 edges.
We now show that we can choose = and y for the contraction process, such that we delete
at most 3“722& +n— 3%2(”*4) —n+ 1= 3n — 8 edges, necessary for the induction
hypothesis to hold.

We have the following cases, depending on d°(z). First of all, note that if d°(x) < n—4,
we delete at most n—4+2(n—2) = 3n—8 edges from x and any selected neighbor y of z and
we are done. Further, from a theorem in [2], if d’(z) > [2]Vz € V(G®—{x});i € {r,g,b},
then G — {z} has a proper hamiltonian cycle. This would imply a proper hamiltonian
path in G. Thus, we may assume that there exists some vertex w € G¢ — {x} such that
d'(w) < [%] for some i € {r, g, b}.

Case d’(x) = n — 1. Observe that w € N®(z). In this case, the contraction process
deletes n — 1 edges from z, and at most n — 2+ 2 — 1 from w, much less than 3n — 8 for
n > 10.

Case d’(x) = n — 2. Let w be the only vertex not adjacent to z. Now, if there is a
vertex y adjacent to z such that dr_(y) < 2n — 6 or dif__(y) < 2n — 6. We choose
x and y for the contraction process. Otherwise, for all y adjacent to = we have that
Azl (y) >2n —5and dgf__(y) > 2n — 5. Therefore, by the theorem in [2], G¢ — {z, 2}
has a proper hamiltonian cycle. Now, since d°(z) = n — 2 it is easy to add x and w to the

cycle to form a proper hamiltonian path for G°.

Case d’(x) = n — 3. If there is a vertex y adjacent to z such that d2__(y) < 2n — 5
or dg?_,(y) < 2n —5. We choose = and y for the contraction process. Otherwise, for all
y adjacent to = we have that d2__(y) > 2n — 4 and dp?__(y) > 2n — 4, i.c., the graph
G¢ — x is raibow complete and therefore, it has a proper hamiltonian cycle. Finally, we
trivially add z to the cycle to form a proper hamiltonian path for G°.

Case b: There is no monochromatic vertex in G¢. First suppose that there exists a
vertex  such that |[N(x)| = 1. Pick z and some vertex y € N(x), for the contraction. We
delete at most 3 edges at x and 2n — 4 at y, which guarantees the induction hypothesis.

In what follows, we suppose that [N(xz)| = 2 for all z € G°. We describe another
contraction process, but now between 3 vertices. Consider a vertex x, y,z € N(x) and
suppose that c¢(zy) = b and c¢(xz) = r # c(xy). For the contraction, replace x, y and
z by a new vertex say s, such that N"(s) = N/ (y), N°(s) = N&. (z) and
N(s) = Neee_ (33 (W) OV NGe_ (441 (2)-

If the resulting multigraph has a proper hamiltonian path, it is easy to obtain a proper

Cf{xvyvz} f{x,y,z}

hamiltonian path for the initial graph since we chose the appropriate edges to delete at



Chapter 5. Proper Hamiltonian Paths in Edge-Colored Multigraphs 61

y and z. Let us count now the maximum number of edges that may be deleted in the
contraction process.

We now need to select z, y and z so that we delete at most SW +n— (3("74)2&%—
n —2) = 6n — 19 edges, necessary for the induction hypothesis to hold.

Since we delete at most 3n — 6 edges incident to y and 2z in G — x, if the degree of z
is at most 6n — 19 — (3n — 6) = 3n — 13, the hypothesis holds. If not, we show that there
exist x,y and z such that the total number of deleted edges in the contraction process is
less than or equal to 6n — 19.

In what follows we show how to find the desired triplet. We have two cases, depending
on the parity of n.

Let E' be the set of edges in color i and suppose that the color b maximizes |E"|.
The monochromatic subgraph in color b has at least m® > (”_2)2& + [%] edges. We
distinguish two possibilities. If this subgraph is connected, then by Lemma 5.1.5 there is
a perfect matching for n even and almost perfect matching for n odd. Otherwise, there

is a matching of size TQ for n even and ”T_l if n is odd. Let M? denote the maximum

matching in E°.

e n is even. Let P = z1y122y2 ... 2y, be the longest proper path compatible with
M?P. Tt is easy to check that |P| > 4, otherwise there are not enough edges in G°.
Suppose now that there is a proper cycle C' such that V(C) = V(P). We have the

following cases.

(1) |M°| = %. By Lemma 5.1.4, we can check that |P| > n—2, otherwise there is a
contradiction with the total number of edges of the graph. Now, if |P| =n—2,
we trivially add the edge of the matching outside the path since P also defines a
proper cycle and the graph is connected. If |P| = n, P is a proper hamiltonian

path and we are done.

(2) |M" = 252, By Lemma 5.1.4, we can check that |P| > n — 4, otherwise, as
before, there is a contradiction with the number of edges of the graph. Suppose
first that |P| = n — 4. Let zy be the edge of the matching outside P. Clearly,
there are no edges in color g or r between zy and the cycle otherwise we would
have a longest proper path compatible with the matching. Then, we have that
d"9(z) < 6 and therefore d(z) < 6 4+n —1 < 3n — 13. So we take z with
any two neighbors in different colors for the contraction process and we are

done. Suppose now that |P| = n — 2. Let z,y be the unmatched vertices.
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For every edge y;x;11 on the cycle we can have at most 4 edges in colors r
and g between their endpoints and the vertices z,y. Otherwise, we can add =
and y to the cycle in order to obtain a proper hamiltonian path. Therefore,
without losing of generality d™9(x) < 2”7_2 + 2. Same observation applies for
the blue edges x;y;. This is, we can have at most 2 blue edges between their
endpoints and the vertices z,y. Then d’(x) < "T_z — 1. Summing up we have

d(z) <n+ "772 —1 < 3n—13. Thus, we can take x for the contraction process.

Let us suppose now that there is no proper cycle C' such that V(C) = V(P).

Consider the following cases as we did before.

(1)

|M°| = %. By Lemma 5.1.4 we can check that |P| > n —4. If P is hamiltonian
we are done. Otherwise, there is at least one edge in M\ (P N M?). Clearly,
there are no edges in color r and ¢ from the extremities of P to the edges in
M®\ (P N M°. Now, for each each edge outside the matching, there are at
most 4 edges between their endpoints and the endpoints of the edges y;z;41,
otherwise we can obtain a longer path. Therefore, taking the vertex, say =,
outside P with minimum degree, we have that d"9(x) < 2258 + 6, for |P| =
n—4, and d"9(z) < 2251 4+ 2, for |P| = n — 2. In both cases, if we consider

d°(z) =n — 1, we get d(z) < 3n — 13 and we take it for the contraction.

|M?| = %52 For |P| = n — 4 the proof is similar as previous case. Suppose
then that |P| = n — 2. Let v,w be the unmatched vertices. We try to add
these vertices to the path either at the extremities or between vertices y;, ;1.
Suppose first that we cannot add any of them. Then d™9(v) < 2252 + 2.
Summing up this with at most n—2 blue edges we obtain d(v) < 2n—4 < 3n—13
and we take v for the contraction. Suppose last that we can add v but we
cannot add w. If v was added at one extremity of the path we obtain that
dw) <224 +14n—2=2n-5 < 3n—11. If v was added between the path,
we have d(w) <2258 +2+4n—2=2n—6 < 3n — 11. In both cases we can

take w for the contraction.

e n is odd and therefore |M°| > "T_l Let P = x1y122y2 - . . 2py, be the longest proper

path compatible with M?°. It is easy to check that |P| > 4, otherwise there are not

enough edges in G°. Then we distinguish two cases:

(1)

There is a proper cycle C' such that V(C') = V(P). By Lemma 5.1.4 we can
check that |P| > n — 5. If |[P| = n — 1 we are done since is trivial to add
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the unmatched vertex to the cycle to obtain a proper hamiltonian path. If
n—5 < |P| <mn—3, as in the even case, we can use for the contraction any
vertex incident to any edge of the matching outside the path, since there are
no red and green edges at all between the edges of the matching outside the
path and the path.

(2) There is no proper cycle C' such that V(C) = V(P). Again, by Lemma 5.1.4
we can check that |P| > n — 5. This case is also similar to the even case.
For n — 5 < |P| < n — 3, we try to extend P with the edges of the matching
outside the path. Since this is not possible we can chose one matched vertex
outside the path to do the contraction. For |P| = n — 1, we try to extend P
with the unique unmatched vertex. If this is not possible, we can use it for the

contraction and we are done.

Since we cover all cases, we can always find three appropriate vertices to make the
contraction process. We now check the connectivity of the resulting multigraph after the

contraction of 2 and of 3 vertices.

e We contract two vertices x, y, where x is monochromatic and y is a neighbor of z, to
a vertex s. Suppose that the graph is disconnected. It can be easily shown that the
graph has two components with 1 vertex and n — 2 vertices respectively. Otherwise,
there is a contradiction on the total number of edges of the graph. Observe first
that the isolated vertex cannot be s unless the x and y are both monochromatic,
but this case was solved independently. Then, as we have the choice at y of which
colors to delete, s cannot be isolated and therefore this case cannot occur. Suppose
now that a vertex z is the isolated vertex. Now, as we delete at most 3n — 8 edges
for the contraction process, we have at least 3n — 1 edges in E(G¢). Then, since the
graph is disconnected, there are no edges between both components and therefore
3n — 9 more edges in E£(G¢). Summing up we obtain 6n — 10 edges in E(G¢). A

contradiction.

e We contract three vertices z,y, z to a vertex s. Suppose that the graph is discon-
nected. Again, this graph has exactly two components with 1 vertex and n — 3
vertices respectively. If the isolated vertex z is not s we have 3n — 12 edges in E(G°)
since there are no edges between both components. Now, in the contraction process
we deleted at most 6n — 19 edges, therefore there are 3n -+ 1 more edges in in F(G¢).

Again, if we sum up we obtain 6n — 11 edges in E(G¢). Another contradiction.
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Suppose finally that z = s. As we deleted at most 6n — 19 edges, the new graph has
at least w +n—6n+19 = w +n—2 edges in the component of n—3
vertices. As we will see in next chapter, this component has a proper hamiltonian
cycle (Theorem 6.2.2) and therefore it is trivial to add the three contracted vertices

to obtain a proper hamiltonian path for the initial graph.
Now as the connectivity is proved the theorem holds. O

Theorem 5.3.3 is the best possible. Indeed, consider a rainbow complete graph on
n — 2 vertices with ¢ colors and add two new vertices x and y. Add now the edge xy
and also all edges between y and the complete graph, all on a same color. The resulting
graph, although it has cm_%ﬂ + n — 1 edges, it contains no proper hamiltonian path,

as x cannot belong to such a path.

Theorem 5.3.4. Let G¢ be a c-edge-colored multigraph on n vertices, n > 11 and ¢ > 3.
Assume that for every vertex x of G¢, rd(x) =c. If m > w +2c+1, then G¢ has
a proper hamiltonian path.

Proof. By Lemma 5.3.1 it is enough to prove the theorem for ¢ = 3. Asm > W +7

then E(G¢) < 6n — 16. The proof will be done by construction of a proper hamiltonian
path or, if it is not possible, by a reduction to Theorem 5.3.3, i.e., to a connected 3-

edge-colored multigraph on n’ > 9 vertices and m’ > w + n' that has a proper
hamiltonian path. We will do this reduction by contracting 2 or 3 vertices depending on

if there exists a vertex x in G¢, such that |N"9%(z)| = 1 or not.

e There exists a vertex x € G¢ such that [N™9°(x)| = 1. Let y be the neighbor of z. We
replace z and y by a new vertex s, such that N"(s) = N"(y) and N®(s) = N9(s) = 0.
Clearly, we delete 3 edges between x and y and at most 2(n — 2) edges in color b
and ¢ incident to y. This gives us a total of 2n — 1 deleted edges. For the reduction
hypothesis we can delete at most w +7— w —n+1=2n-1
edges. Observe that the resulting multigraph on n — 1 vertices is connected since
as rd(x) = 3, we can choose at y which two colors to delete, therefore since the
original graph is connected it is impossible that in all 3 possible choices the graph
after contraction would be disconnected. So, as we deleted 2n — 1 edges and the
graph is connected, by Theorem 5.3.3, it has a proper hamiltonian path. Now, since
s is monochromatic, it can only be the endpoint of the path. We can replace back
s with x and y using the edge xy in color b and find the proper hamiltonian path
for the initial multigraph.
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e There is no vertex x € G¢, such that |[N"9%(z)| = 1. Let us suppose that there are 3

vertices x, y and z, such that zy is in color b, and xz in color . Then, we replace z,

y and z by a new vertex s, such that N"(s) = Nge_(,, 1 (y), Nb(s) = Ngc_{m7y7z}(z)
and N9(s) = Ng. (. A (y) N NGe (., 4(2). Clearly, we delete at most 3(n — 1)
edges incident to x, n — 3 edges in b incident to y, n — 3 edges in r incident to z,
n — 3 in color g incident to y and z, and 3 edges between y and z. In total we delete
at most 6n — 9 edges. Only w +7— w

be deleted to make the reduction. Therefore, we need to find a vertex x such that

—n—+2=>5n—12 edges can

its total degree is less than or equal to 2n — 6.

Suppose without losing generality that |E°| > |E"| > |EY|, then |E®| > w +
3. Since the subgraph in color b is connected because of the rainbow degree of the
vertices, we have by Lemma 5.1.5 that there is a matching M? such that [M®| = £ for
n even and |Mb] = ”T_l for n odd. Let P = z1y122Y2 . .. ¥ - . . TpY, be the longest
proper path compatible with M®. The proof is divided in two cases depending on
the parity of n.

(1) n is even.

— There is a proper cycle C' such that V(C') = V(P). By Lemma 5.1.4 we can
check that |P| > n—2, otherwise we have a contradiction with the number
of edges. This case is trivial since, either P is a proper hamiltonian path
or we can add the unique edge of the matching outside P directly to the

cycle to obtain a proper hamiltonian path since the graph is connected.

— There is no proper cycle C' such that V(C) = V(P). By Lemma 5.1.4 we
can check that |[P| > n — 4. Let = be the vertex in M\ (M’ N P) with
minimum degree. Clearly, there cannot be edges in colors r and g between
MP\ (M°N P) and the extremities of P. Also, there can be at most 4
edges in colors 7 and ¢ from each edge in M®\ (M’ N P) and the edges
yi—1x; in P. Then, we can conclude that there are at most 2% edges in
color r and g, between z and the vertices in P.

Suppose now that there is one parallel edge in color r or g between the
blue edge of the matching xy, then using edges zx;, yy; or yx;, xy; in color
b, we can add the edge zy in color r or g into P. Since this contradicts
our hypothesis we can conclude that there are 2 missing edges in color b
from xy to each edge x;; in P. Now, since there are % edges x;y; we
conclude that the vertex z has d’(z) < 2 + (n —2p — 1). In total we
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have that d(z) < 3(n—2p — 1)+ 2 + (2p — 2) = 3n — 3p — 5, and for
|P| = n — 2, this is less than or equal to 2n — 6 and we can make the
contraction with z. If |P| = n — 4 there are 6n — 20 missing edges in
colors r and g. Suppose now that there are no edges in colors r and ¢
between z and y, and the other edge of the matching outside the path. We
obtain then, 4 missing edges more in colors r and g and therefore 6n — 16.
Observe now that if we can replace the edges xy and the other edge of the
matching outside P, say uv, in M® by zu and yv, then there are missing
the 4 parallel edges in color r and g, obtaining 6n — 12. A contradiction.
Otherwise if not, there are 2 more missing edges and we obtain 6n — 14.
Again a contradiction. Finally, if |P| = n — 2 and there are no parallel
edges in r and ¢ at zy, we have that d(z) < 2n—>5 and d(y) < 2n—5. We
can use one of these vertices unless both inequalities become equalities. In
this case we try to replace the edges z;y; in P by z;xy; and x;yy;, i # j.
Suppose that we have the edges xx; in colors r and g, xy; in color b, yz;
in colors r and g, and yy; in color b. Then we have a proper hamiltonian
path P' = zyy1 ... 2;2yi%iq1 - .. TjyY; - . . Tpyp. Otherwise at least one of
those edges is missing and therefore either d(z) < 2n —6 or d(y) < 2n —6

as desired.
(2) n is odd.

— There is a proper cycle C such that V(C') = V(P). By Lemma 5.1.4 we can
check that |P| > n — 5. The case |P| =n — 1 is trivial. Clearly, there are
no edges in colors r and g between M®\ (M°N P) and P. Therefore taking
any vertex z in M®\ (M®N P) we obtain that d(z) <4+n—1=n+3,
for |[Pl=n—3,and d(z) <8+n—1=n+7, for |P| =n—5. In both
cases, this is less than 2n — 6 so we can do the contraction with x.

— There is no proper cycle C such that V(C) = V(P). By Lemma 5.1.4 we
can check that |P| > n—7. Suppose first |P| < n—1. Let zy and uv be two
edges in M°\ (M®N P) where x has the minimum degree. There cannot be
edges in colors r and ¢ to the extremities of P and there can be only 4 edges
in colors 7 and g between M°\ (M°NP) and y;_12; in P. Suppose now that
there exists an edge zy in color r or g, then we can use the edges in color
b between xy and x;y; to extend P. Since it is not possible we conclude

that there are only 22 + (n —2p — 1) edges in color b at z. For |[P|=n—7
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and |P| = n — 5, we have a contradiction in the total number of edges. If
|P| =n—3, thend(z) < Z+(2p—2)+3(n—2p—1) =3n—3p—5<2n—6
and we use z for the contraction.

Suppose there are no parallel edges in colors r and g at the edges in M?\
(M® N P). If |P| = n — 7 then there are 6 missing edges. Now, if we
can replace the three blue edges in M°\ (M° N P) to another different
three blue edges, we are, either in the previous case or there are 6 more
parallel missing edges and by Lemma 5.1.4 there are 8n — 48 — 6 — 6 =
8n — 36 > 6n — 16 missing edges. A contradiction. Otherwise there are
at least 5 missing edges in color b and again by Lemma 5.1.4 there are
8n — 48 — 6 — 5 = 8n — 37 missing edges. Again a contradiction.

If |P| = n — 5 there are 4 parallel edges r and g missing at the edges
in M°\ (M®N P) and by Lemma 5.1.4 there are 6n — 26 more missing
edges in color r and g. Therefore 6n — 22. Now, if we cannot replace
the blue edges ry and uv with the blue edges zu, yv there are at least
2 missing edges in color b, otherwise we would miss more parallel edges.
Also, there are 4 more missing edges in color b between the extremities of
the edges in M?\ (M®N P) and the unmatched vertex, since otherwise we
can construct 4 different matchings and therefore 8 more missing edges.
In conclusion we have at least 6 missing edges in color b and 6n — 22 in
colors r and g, that gives us a total of 6n — 16 missing edges. To find the
last one to get a contradiction suppose that there are the parallel edges
x1y; and z,y, in colors r and g, then we can make a proper cycle of length
n—1: 21y1 . .. xpypvyzuz,, if We also have the edges, y,v and uz; in color
b, zu and yv in color r or g. Now, as it is trivial to attach the unmatched
vertex to the proper cycle there is at least one of those edges missing and
therefore a contradiction.

If |P| = n — 3, we have as before that d2’(z) < n — 5. As always, there
are no parallel edges to the edge xy in colors r and g. Now, if there are
no edges between xy and the unmatched vertex z in color r and g, then
d(x) < 2n — 6 as desired for the contraction. Otherwise, if there are edges
in colors r and ¢ to the vertex z, then there cannot be the edges in color
b parallel to them since we could replace zy by one of those and thus
come back to the previous case. Therefore, we have that d(z) < 2n —5

and d(y) < 2n — 5. Then, we can choose for the contraction, either x
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or y, unless both inequalities become equalities. Now, if we suppose that
c(xz) = r, we contract the three vertices x,y and z such that we delete at
most 2n — 5 edges at x, n — 3 blue edges at y, n — 3 red edges at z, n — 3
green edges with common enpoints at y and z and 2 edges, one red and one
green between y and z. We remark that the blue edge yz is not present.
By this, we delete at most 5n — 12 edges, i.e., the required number for the
contraction.

Finally, suppose that |P| = n — 1. Let z be the unmatched vertex. Then,
for same reasons as before, d"9(z) < n — 3. If we suppose that there are
edges in color r and g between z and y;, then there cannot be the edges
x;2z in color b, otherwise a hamiltonian path can be found. Suppose there
are no such edges then, by Lemma 5.1.3, either z; or y, have degree in
colors r and g at most n — 3. If there is at least one of the edges zy; or
zx, in color b, then we can replace z by either x; or y,. In both cases, we
arrive that d(xz1) < 2n —6 or d(y,) < 2n — 6, otherwise d(z) < 2n — 6 and

the contraction can be done.

Since all cases were covered, there always exists a vertex z such that d"9%(z) <
2n — 6 and the contraction can be done. Therefore by Theorem 5.3.3 we obtain a proper
hamiltonian path in this new graph. Then, it is simple to extend this path to a proper
hamiltonian one in the initial graph because of the choice of the edges to delete at the
contracted vertices.

We will check now the connectivity of the resulting multigraph after the contraction of
3 vertices. Suppose we contract three vertices x, y, z to a vertex s. Suppose that the graph
is disconnected. This graph has exactly two components with 1 vertex and n — 3 vertices
respectively. If the isolated vertex z is not s we have 3n— 12 edges in E(G€) since there are
no edges between both components. Now, in the contraction process we deleted at most
5n — 12 edges, therefore there are 4n — 6 more edges in in E(G¢). Summing up we obtain
7n — 18 edges in E(G*). A contradiction. Suppose finally that z = s. As we deleted at
most 5Hn —12 edges, the new graph has at least w+7—5n+ 12 = w+n—2
edges in the component of n — 3 vertices. As in the previous theorem, this component has
a proper hamiltonian cycle (Theorem 6.2.2) and therefore, it is trivial to add the three
contracted vertex to obtain a proper hamiltonian path for the initial graph.

Now as the connectivity is proved the theorem holds. O]

Theorem 5.3.4 is the best possible for n > 11. In fact, consider a rainbow complete
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multigraph, say A, on n — 2 vertices. Add 2 new vertices vy, vs and then join them to

a vertex v of A with all possible colors. The resulting c-edge-colored multigraph has
¢(n—2)(n—3)
2

HE yy9, k= 2,3, are exceptions for Theorem 5.3.4.

+ 2c¢ edges and clearly has no proper hamiltonian path. If n = 6,8, the graphs



Chapter 6

Proper Hamiltonian Cycles in
Edge-Colored Multigraphs

As in Chapter 5, we divide this chapter in two sections. In Section 6.1 we study proper
hamiltonian cycles in 2-edge-colored multigraphs and in Section 6.2 we study proper
hamiltonian cycles in c-edge-colored multigraphs, for ¢ > 3. Again, this division is
because, since proper cycles in 2-edge-colored multigraphs are just alternating, proper

hamiltonian cycles only can exist if n is even (condition not required when ¢ > 3).

6.1 2-edge-colored multigraphs

In this section we study the existence of proper hamiltonian cycles in 2-edge-colored
multigraphs. We present two main results. The first one involes the number of edges and
the second one, the rainbow degree and the number of edges. Both results are tight.

Lemma below is established in view of Theorem 6.1.2

Lemma 6.1.1. Assume that G¢ contains a proper cycle C, of length at most n — 2 and
that there exists a red edge xy in G° — C. If d%(z) + d%(y) > |C|, then G° has a proper
cycle of length |C| + 2 containing xy.

Proof. Set C' = x1y129Ys . . . x5ysx1, Where x;; are the red edges of C, ¢ = 1,2,...,s.

Then d?xiyyi}(x) +d?zi7yi}(y) < 2, otherwise if d?xi’yi}(m) +d?xi,y¢}<y) > 3, then we have that

the cycle z1y122y2 . .. 2yYy; . . . T.ysz1 is the desired one. It follows that ), d?wi,yi}(‘r) +

b
d{%‘,yi}
the proof. O

(y) < 2@ = |C|, a contradiction to the hypothesis of the lemma. This completes

70
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Now we can prove the following theorem.

Theorem 6.1.2. Let G¢ be a 2-edge-colored multigraph on n vertices, n > 4. If m >
(n—1)(n—2)4n, then G° has a proper hamiltonian cycle if n is even, and a proper cycle

of length n — 1 otherwise.

Proof. Let red and blue be the two colors of G¢. The proof is by induction on n. The
theorem is true for small values of n, say n = 2,3,4. Let us suppose that n > 5 and
that the theorem is true until n — 1. We will prove it for n. By a Theorem of [2], if for
every vertex  we have that d"(z) > [%] and d°(z) > [%}], then G° has a proper
hamiltonian cycle for n even and a proper cycle of length n — 1 for n odd. Let us suppose
therefore that for some vertex, say x, and for some color, say red, d"(z) < ’—"TH-‘ — 1.
Notice now that d"(z) > 0 and d°(z) > 0, otherwise, for example if d"(x) = 0, then
m<nn-1)—(n—-1)=(n-1)%* < (n—1)(n — 2) + n, a contradiction. Similarly
d"(x) + d°(z) > 3, otherwise, if d"(z) + d°(z) < 2, then m < n(n — 1) — 2n + 4 =
n? —3n+4 < (n—1)(n —2) + n, again a contradiction. Thus we may conclude that
there are two distinct neighbors, say y and z, of = such that ¢(xy) = r and ¢(zz) = b in
G°. Replace now the vertices x,%, 2 by a new vertex s such that N°(s) = Nbc,{x,y,z} (y)
and N"(s) = Nge_,, 1(2). The obtained graph, say G’, has n — 2 vertices and at least
(n=1n-2)+n—[(n—1)+ 2] —1+2(n—2)] =n* — 12 +8 > n® — 6n + 8 edges,
i.e., the number of edges needed for the inductive hypothesis in a graph on n — 1 vertices.
So, G’ has a proper hamiltonian cycle for n — 2 even and a proper cycle of length n — 3
otherwise. If G’ has a proper hamiltonian cycle then coming back to G¢ we may easily
find a proper hamiltonian cycle in G°. Assume now that n —2 (and thus n) is odd. Let C'
be a proper cycle of length n—3 in G'. If s belongs to C', then as previously we may easily
find a proper cycle of length n — 1 in G°. Assume therefore that s does not belong to C.
By Lemma 6.1.1, if d%(z) + d%(y) > |C| or dix(z) + d7(z) > |C|) then we may integrate
the edge zy (respectively zz) in C' in order to obtain a cycle of length n — 1. Assume
therefore that d%b(x) + d%(y) < |C| and df.(z) + di(z) < |C|. But then the number of
edges of G°is at most n(n —1) —(n—3)—(n—-3)=n*>-3n+6 < (n—1)(n —2) +n,

again a contradiction. This completes the argument and the proof. ]

Theorem 6.1.2 is the best possible for n > 4. Consider a rainbow complete 2-edge-
colored multigraph on n — 1 vertices (n even). Add one new vertex xz. Then add all
possible edges in one color, say red, between = and the complete graph. Clearly, the
resulting graph has m > (n — 1)(n — 2) +n — 1 edges and it has no proper hamiltonian

cycle since x has just color red incident to it.
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Theorem 6.1.3. Let G¢ be a 2-edge-colored multigraph on n wvertices, n > 9. Assume
that for every vertex x of G¢, rd(x) = 2. If m > (n —2)(n — 3) +2(n — 2) + 4, then G°

has a proper hamiltonian cycle if n is even, and a proper cycle of length n — 1 otherwise.

Proof. The proof is by induction on n. For n = 9,10, by inspection the result holds.
Suppose now that n > 11. Observe that F(G¢) < 2n — 6. By a Theorem of [2], if for
every vertex v € G° we have that d"(v) > [%+] and d”(v) > [*5], then G° has a proper
hamiltonian cycle if n is even, and a proper cycle of length n — 1 otherwise. Suppose then
than there exists a vertex v such that d"(v) < [254] — 1.

Clearly, v has two different neighbors u and w such that c¢(vu) = b and c(vw) = 7.
Otherwise, if v has just one neighbor in both colors, then E(G¢) = 2n — 4 > 2n — 6,
a contradiction. We construct a new multigraph G’® by replacing the vertices v, u and
w with a new vertex z such that N"(2) = Nge g, ., (v) and N(z) = Néetyuuy (W)-
Suppose first that d"(v) < 2 and that in G’ there exists a vertex x with rd(z) < 2.
Therefore in G¢ either d"(x) < 2 or d®(x) < 2. This vertex clearly cannont be v. Observe
first that in both cases E(G¢) = 2n — 6, and this happens when both v and = have their
colored degrees exactly 2, otherwise we have a contradiction on the total number of edges.
So GG¢ must have all possible edges but those edges already missing at v and x. We have

the following cases now, depending on the vertex x.

e = = u, therefore d"(u) = 2, u is adjacent in red to v and to w. Now, since G*—{v,u}
is rainbow complete it has a proper hamiltonian cycle if n is even and a proper cycle
of length n — 3 otherwise. Take an blue edge x5 of that cycle. Now, since v and u
have all possible blue edges, we just add the red edge vu to the cycle joining v with
x1 and u with x5 in blue and removing the edge z;x5. Like this we obtain a proper

hamiltonian cycle if n is even, and a proper cycle of length n — 1 otherwise.

e v = w, therefore d°(w) = 2, w is adjacent in blue to v and to u. Again, since
G°¢ — {v,w} is rainbow complete it has a proper hamiltonian cycle if n is even and
a proper cycle of length n — 3 otherwise. For n odd, we can choose the proper cycle
of length n — 3 such that there is the second vertex z such that z is adjacent to v
in red. Let y be the vertex in the cycle adjacent to z in color red. So, we add the
blue edge vw to the cycle joining v to z, w to y both in red, and removing the edge
zy. Observe that this is always possible since w is adjacent in red to every vertex.
Then we obtain the desired proper hamiltonian cycle for n even, or the proper cycle
of length n — 1 for n odd.
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e © # uand x # w. Suppose first that d"(x) = 2 then, z is adjacent to v and w in red.
In this case, we proceed exactly as in the first case, adding the red edge vx to the
proper hamiltonian cycle (or proper cycle of length n — 3) that exists in G — {v, x}.
Suppose now d°(z) = 2 then, z is adjacent to v and u in blue. Here, we repeat the
argument as in the second case, adding the blue edge vz to the proper hamiltonian
cycle (or proper cycle of length n — 3) that exists in G¢ — {v, x}, choosing again the

cycle that contains the second vertex z such that z is adjacent to v in red.

The last case that we have to consider is when in the new graph G’¢ every vertex x has
rd(z) = 2. We can see that this graph has at least (n —2)(n —3) +2(n —2) +4 — (n —
1) — ([®1] = 1) — (n — 3) — (n — 3) — 2 edges. This number, for n > 11, is greater or
equal than (n—4)(n—5)+2(n—4)+4, i.e., the number of edges needed to have a proper
hamiltonian cycle or a proper cycle of length n — 3 (n odd) in G*. So by the inductive
hypothesis we obtain such a cycle. For n even, it is easy to obtain a proper hamiltonian
cycle for G, since we deleted the appropriate edges at v and w. For n odd, if the new
vertex z is on the cycle of length n — 3, it is exactly the same as for the even case to
obtain a proper cycle of length n — 1 for G¢. Now, if the vertex z is not on the proper
cycle, let z1y120s . . . zryrr1 With 2k = n — 3 be the proper cycle. Suppose without losing
generality that the edges z;y; are red and the edges y;x;,1 are blue. If we cannot add
neither the blue edge vu nor the red edge vw to the cycle, then we have at most 2 red
edges between the endpoints of the edge vu and the endpoints of the edges x;y; and at
most 2 blue edges between the endpoints of the edge vw and the endpoints of the edges
YiTir1. So, since the length of the cycle is n — 3, there are %3 + "T’?’ = 2n — 6 edges is
E(G¢). Therefore, we have all possible edges in G¢ but those missing ones. In particular
we have the red edge uv and the red edge uw. Now, if there is a blue edge from v to
some vertex x; (y;) of the cycle, we extend the proper cycle to a proper cycle of length
n — 1 with the red edge uv adding the blue edge vz; (vy;), the blue edge uy; 1 (ux;y1)
and removing the blue edge x;; 1 (y;z;41) from the cycle. The blue edge uy; 1 (ux;i1)
clearly exists since u has all possible blue incident edges. If there is no blue edge from v
to some vertex x; (y;) of the cycle, we have that there exists a blue edge from w to some
vertex x; (y;) of the cycle. Otherwise, we have that d°(v) = 2 and d°(w) = 2, and we have
covered that case before. Finally, we extend the proper cycle to a proper one of length
n — 1 exactly as we did to add the red edge uv but now with the red edge uw.

The proof is now complete. O

Theorem 6.1.3 is the best possible for n > 9. Indeed, for n even, consider a complete
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blue graph, say A, on n—2 vertices. Add 2 new vertices vy, vs and join them to a vertex v
in A with blue edges. Finally, superpose the obtained graph with a complete red graph on
n vertices. Although the resulting 2-edge-colored multigraph has (n—2)(n—3)+2(n—2)+3
edges, it has no proper hamiltonian cycle since there is not a perfect blue matching because
vy and vy are only adjacent in blue to v. We remark that for n = 8, the graph Hl%,k+27

k =3, has (n —2)(n — 3) + 2(n — 2) + 4 edges but no proper hamiltonian cycle.

6.2 c-edge-colored multigraphs, ¢ > 3

In this section we study the existence of proper hamiltonian cycles in 3-edge-colored
multigraphs. We present two main results. The first one involes the number of edges
and the second one, the rainbow degree and the number of edges. Both results are tight.
Finally, we state a conjecture involving the rainbow degree, the number of edges and the
connectivity.

First, we will present a similar result to that for proper hamiltonian paths, that allows
us to consider just the case ¢ = 3. We omit the proof since is exactly the same as for

paths.

Lemma 6.2.1. Let G¢ be a c-edge-colored connected multigraph on n vertices, ¢ > 4 and
m > ¢ f(n) + 1 edges. There exists one color ¢; such that if we color its edges with
another used color and we delete parallel edges with the same color, then the resulting
(¢ — 1)-edge-colored multigraph is connected and has m' > (¢ — 1) f(n) + 1 edges, such
that if G°* has a proper hamiltonian cycle then G¢ has one too. Moreover, if rd(G¢) = k,
then rd(Ge™Y) =k —1 for1 <k <c.

Theorem 6.2.2. Let G° be a c-edge-colored multigraph on n vertices, n > 4 and ¢ > 3.

Ifm > w + n, then G¢ has a proper hamiltonian cycle.

Proof. By Lemma 6.2.1 it is enough to prove the theorem for ¢ = 3. So we have that
m > w + n. We prove the theorem by induction on n. For n = 4 the theorem is
easily checked. Suppose then that n > 5. We take two vertices v and w such that they
are adjacent in all colors 7, b and g. It can be checked that two vertices like these always
exists otherwise, if every pair of vertices have at most two edges between, the number of
edges would be less than the hypothesis.

Observe first that d(v),d(w) < 3n — 5. Otherwise, if d(v) > 3n — 4 we can remove

v from G? obtaining a graph with number of edges at least w +n—-3Mn-1)=
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w +n—-3> w + 1 and therefore by Theorem 5.3.2 we have a proper
hamiltonian path in G® — v. Then, since d(v) > 3n — 4 we can easily connect v to the
endpoints of the path in an appropriate way in order to obtain a proper hamiltonian cycle.
So, we can assume that d(v),d(w) < 3n — 5.

Now we will contract v and w to a single vertex to apply the inductive hypothesis in
this new graph on n — 1 vertices. For that, we have to show that this graph has at least
w +n — 1. For this we can check that the difference between these two functions
is 3n — 5 edges, that is, the maximum number of edges that we are allowed to delete in
the contraction process. So, suppose that we contract v, w to a new vertex z such that
N"(z) = N"(v) — w, N°(z) = N°(w) — v and N9(z) = N9(v) N N9(w). Like this, since
d(v),d(w) < 3n — 5 we delete at most 3n — 5 edges as desired.

Finally, it is easy to see, once we obtain a proper hamiltonian cycle in the contracted

graph, how to obtain a proper hamiltonian cycle in the original graph. O

Theorem 6.2.2 is the best possible for n > 4. Consider a rainbow complete c-edge-
colored multigraph on n — 1 vertices. Add one new vertex z. Then add all possible edges
in one color, say red, between = and the complete graph. Clearly, the resulting graph has

¢(n—1)(n—2)
2

m > +n—1 edges and it has no proper hamiltonian cycle since x has just color

red incident to it.

Theorem 6.2.3. Let G° be a c-edge-colored multigraph on n vertices, n > 4 and ¢ > 3.
Assume that for every vertex x of G¢, rd(x) = c. If m > w +c+ 1, then G° has

a proper hamiltonian cycle.

Proof. By Lemma 6.2.1 it is enough to prove the theorem for ¢ = 3. So we have that

m > 3(n—1)(n—2)
— 2

induction on n. For n = 4,5 the theorem is easily checked. Suppose then that n > 7. We

+ 4 and for every vertex x of G®, rd(z) = 3. We prove the theorem by

take two vertices v and w such that they are adjacent in all colors r,b and g. It can be
checked that two vertices like these always exists otherwise, if every pair of vertices have
at most two edges between, the number of edges would be less than the hypothesis.
Observe first that d(v),d(w) < 3n — 5. Otherwise, if d(v) > 3n — 4 we can remove
v from G? obtaining a graph with at least 3(”%)("_2) +4-3n-1) = w +1
edges. This is exactly the number of edges needed by Theorem 5.3.2 to have a proper
hamiltonian path in G® — v. Therefore, since d(v) > 3n — 4 we can easily connect v to
the endpoints of the path in an appropriate way in order to obtain a proper hamiltonian

cycle. So, we can assume that d(v),d(w) < 3n — 5.
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Now we will contract v and w to a single vertex to apply the inductive hypothesis in
this new graph on n — 1 vertices. For that, we have to show that this graph has at least
w + 4 edges and for every vertex x, rd(x) = 3. For this we can check that the
difference between these two functions is 3n — 6 edges, that is, the maximum number of
edges that we are allowed to delete in the contraction process. So, suppose that we contract
v,w to a new vertex z in a trivial way such that N"(z) = N"(v) — w, N*(2) = N*(w) — v
and NY9(z) = N9(v) N N9(w). Like this, since d(v),d(w) < 3n—5 we delete at most 3n —5
edges. So we need to delete one edge less to apply the inductive hyphotesis. Clearly,
if either d(v) < 3n — 6 or d(w) < 3n — 6, we can choose the colors to delete in order
to remove 3n — 6 edges as desired. Suppose then that d(v) = d(w) = 3n — 5. Remove
now v from the graph. As before we have a proper hamiltonian path P = v1vy...v,_1 in
G? — v where w = v; for some i. Now we extend this path with v to a proper hamiltonian
cycle. If we cannot trivially extend it adding v properly to the endpoints, we have that v
(without losing generality) has the three colors to v; and just one color to v,,_; where this
color is the same as in the edge v,_2v,_1 in P (say r). Therefore since d(v) =3n—5, v is
fully connected to all vertices but v,_1. We can suppose that w # vy, otherwise it is easy
to see how to extend P with v to a cycle using the fact that d(w) = 3n — 5. Now, suppose
that v,_; has an edge to w = v; with color b (similar with g). If wv;,; is b we have the
proper hamiltonian cycle v, _jwv;_1...v100;41...0,-1. Otherwise, if v;_jw is b we have
the following one: v, _jwvy ...v;_10V;41...v,_1. We can conclude that w is adjacent to
Un—1 only in 7 and fully connected to the other vertices. Finally, since rd(v,_1) = 3,
there exists a vertex v; adjacent to v,_; with some color different than 7. As we have
just done, we can always find a proper hamiltonian cycle in this situation considering
different cases when j < i and i < j. Finally, either d(v) < 3n — 6 or d(w) < 3n — 6. So
we can therefore contract v, w to a vertex z removing at most 3n — 6 in order to obtain

—3(”*2%(”’3) + 4. The problem now is that in this new

a graph on n — 1 with at least
graph, the rainbow degree condition may be not respected anymore since we can have
vertices (at most 2) with just one color incident to them. Suppose then, that there exists
a vertex ¥ € G* and a color, say r, such that d"(z) = 1. We show this case independently
on the rest of the proof. Let z be the only neighbor of x with color r and let y # 2
be another neighbor of x in another color, say b. Clearly y must exist otherwise the
number of edges on the graph would be less than the hypothesis. Now we contract the
vertices z,y and z to a new vertex w in order to apply Theorem 6.2.2 to a graph on
n — 2 vertices. For this, we can check that we can delete at most 5n — 9 edges. If we

contract them in a trivial way such that N"(w) = Nga_r, , 1(y), Nb(w) = Ng3_{x7y 4(2)
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and N9(w) = Né3_{x7y7z}(z) N Nég_{zyyvz}(y) we remove at most 5n — 7 edges, so we need
to delete two edges less to apply Theorem 6.2.2. Observe that if we do not have colors b
and g between x and z we obtain these two edges and therefore we remove 5n — 9 edges
as desired. So, we have at least two colors between x and z, r and, say b. Now consider
the graph G® — {z,z}. We can check that by Theorem 5.3.2, the graph has a proper
hamiltonian path P = vv,...v,_o. We can suppose also that y = v; (or y = v,,_9), since
otherwise if x is not adjacent to any of v, v, 5 in colors b or g we find the two edges less
to delete for the contraction. We have the following cases now. Suppose first that there
are exactly colors r and b between x and z. So, we need to find one more edge in order
to arrive to bn — 9. Therefore, x should be adjacent to both y = v; and v,_5 in colors b
and g, otherwise we obtain the last edge to get 5n — 9. Now, if z is adjacent to v; in both
colors b and g, we easily obtain a proper hamiltonian cycle otherwise we obtain the edge
less to delete. Suppose last that there are the three colors r,b and g between x and z.
Therefore, x should be adjacent without losing generality to v; in at least color b and to
Un_2 in colors b and g, otherwise we obtain two edges less to get 5n —9. If x is adjacent to
vy just in color b, as before, if z is adjacent to v; in both colors b and g we are done since
either we have a proper hamiltonian cycle or we obtain the 5n — 9 edges. If x is adjacent
to v; in colors b and g, depending on the color of vyvy, if 2 is adjacent to vy in two colors
we obtain again a proper hamiltonian cycle. Otherwise, two edges are missing between 2
and v;. As we covered all cases, we can then contract =,y and z as we described above.
Finally, it is easy to see once we obtain a proper hamiltonian cycle in the contracted
graph (when we contract 2 or 3 vertices) how to obtain a proper hamiltonian cycle in the

whole graph. [

Theorem 6.2.3 is the best possible for n > 4. Consider a rainbow complete c-edge-
colored multigraph on n — 1 vertices. Add one new vertex x. Then, add all possible edges
in all colors between x and one vertex of the complete graph. Clearly, the resulting graph
has m > w + ¢ edges, every vertex has rainbow degree ¢ but it has no proper
hamiltonian cycle since it is not 2-connected.

Finally, we state a conjecture for the existence of proper hamiltonian cycles involving

not also the rainbow degree and the number of edges, but also the connectivity.

Conjecture 6.2.4. Let G¢ be a 2-connected c-edge-colored multigraph on n vertices, n >
10 and ¢ > 3. Assume that for every vertex x of G¢, rd(z) = c. If m > W—ch%— 1,

then G° has a proper hamiltonian cycle.

If true, Conjecture 6.2.4 is the best possible for n > 10. For this, consider a rainbow
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complete c-edge-colored multigraph on n — 2 vertices. Add two new vertices z; and x».
Consider two vertices of the complete graph y; and y,. Finally, add all possible edges in

all colors between x; and y;, x; and s, x5 and y;, and x5 and ys. The resulting graph
¢(n—2)(n—3)
2

However, this graph has no proper hamiltonian cycle since one of the vertices x; or x-

has m > + 4c edges, it is 2-connected and every vertex has rainbow degree c.

cannot be together in a proper hamiltonian cycle. If n = 7,9, the graphs Hp ., k = 3,4,

are exceptions for Conjecture 6.2.4.



Chapter 7

Bicliques and Graphs Without

False-Twins Vertices

This chapter is organized as follows: In Section 7.1 we present known results about the
convergence and divergence of the biclique operator, along with the O(n?) algorithm.
In Section 7.2 We prove several results that imply a linear time algorithm for deciding
the behavior of a graph under the biclique operator. Finally, in Section 7.3 we study
structural properties of bicliques in false-twin free graphs. We assume, unless we clarify,

that all graphs in this chapter are connected.

7.1 Preliminary results

We start with this easy observation.

Observation 7.1.1 ([53]). If G is and induced subgraph of H, then K B(G) is a subgraph
(not necessarily induced) of KB(H).

The following proposition is central for characterize convergent and divergent graphs

under the biclique operator.

Proposition 7.1.2 ([53]). Let G be a graph that contains K, as a subgraph, for some
n Z 4. Then, Kgn_4 g KB(G) or K(n,g)(n,g) g KBQ(G)

As in [53], consider all maximal sets of false-twin vertices 7, ...Zy and let {z1, 2, ..., 21 }
be the set of respresentative vertices such that z; € Z;. The graph obtained by the deletion
of all vertices of Z; \ {z}, for i = 1...k is denoted Tw(G). Observe that Tw(G) has no

false-twin vertices.

79
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Next result remarks that we can delete false-twin vertices of the graph, since if two
vertices are false-twins, they belong exactly to the same bicliques. Therefore, the deletion
of one of them does not change neither the number of the bicliques of the graph nor the

structure of its biclique graph.
Proposition 7.1.3 ([53]). For any graph G, we have KB(G) = KB(Tw(G)).
Next theorem characterize the behavior of a graph under the biclique operator.

Theorem 7.1.4 ([53]). If KB(G) contains either K5 or the gem or the rocket as an
induced subgraph, then G is divergent. Otherwise, G converges to K1 or Ks in at most 3

steps.

Notice that, differently than the clique operator, a graph is never periodic under the
biclique operator (with period bigger than 1). We remark the importance of the graph
K5 to decide the behavior of a graph under the biclique operator, since we have that
K B(gem) = K5 and K5 C K B(house).

As a corollary of Theorem 7.1.4 the next useful result was obtained.

Corollary 7.1.5 ([53]). A graph G is convergent if and only if Tw(K B(G)) has at most
four vertices. Moreover, Tw(KB(G)) = K,, forn=1,...,4.

Note that if some vertex lies in five bicliques, then K B(G) contains a K5 and then G
diverges. Therefore, Corollary 7.1.5 gives a polynomial time algorithm to test convergence
of G: if some vertex lies in five bicliques, answer that G is divergent. Else, the computa-
tion of KB(G) and Tw(K B(G)) is polynomial (we remark however, that the number of
bicliques of a graph can be exponential [98]). If Tw(K B(G)) has at most four vertices,
answer that GG is convergent, otherwise, answer that G is divergent.

Constructing KB(G) takes O(n') time, since for the case that is done, the input
graph G has at most 2n bicliques and generating each biclique is O(n?) [38, 39]. To build
Tw(KB(G)) can be done in O(n?) time. Therefore, the algorithm runs in O(n*) time.

7.2 Linear time algorithm

In this section we give a linear time algorithm for deciding whether a given graph is
divergent or convergent under the biclique operator.

Motivated by Theorem 7.1.4 and Corollary 7.1.5, we study the structure of biclique
graphs with false-twin vertices, in order to find conditions to have K5 as a subgraph that

will guarantee the divergence of the graph.
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We obtain the following two lemmas.

Lemma 7.2.1. Let G = KB(H) for some graph H. Let by, by be false-twin vertices of
G and By, By their associated bicliques in H. Suppose that there are no edges between
vertices of By and vertices of By. Then there exists a vertex v € H such that v is adjacent

to every vertex of By and By. Furthermore, G contains a Ks as induced subgraph.

Proof. Let by, by be false-twin vertices of G and By, B, their associated bicliques in H, such
that there are no edges between vertices of B and vertices of By. Since G is connected,
take the shortest path from some vertex of By to By. Let w be the first vertex in the path
such that w ¢ B;. Clearly, w ¢ By. Let v € B; be a vertex adjacent to w. Suppose that
there exists a vertex x € Bj such that x is not adjacent to w. Then consider the following
alternatives:

Case 1: zv € E(H). Then, {x,v,w} is contained in some biclique B, B # B
and B # By, that does not intersect Bj since there is no edge between B; and By. A
contradiction, because b; and by are false-twin vertices.

Case 2: zv ¢ E(H). Then there exists a vertex y € B; adjacent to v and z. If y
is adjacent to w, similar to Case 1, we have that {z,y,w} is contained in a biclique B,
B # B; and B # Bs, that does not intersect Bs, a contradiction. Now, if y is not adjacent
to w, {y,v,w} is contained in a biclique B, B # By and B # By, that does not intersect
B,, a contradiction.

Then for all x € By, x is adjacent to w.

Suppose now that there is no vertex z in By adjacent to w. Then there is a P5 starting
at v that is contained in a biclique B, B # B; and B # Bs, that does not intersect Bs
leading to a contradiction. Then, let z € By be a vertex adjacent to w. Now, the same
argument as in case v € By holds for z € By. Then for all z € By, z is adjacent to w.

Finally, let v,v" be adjacent vertices in B; and let z, 2 be adjacent vertices in Bs.
Since v, v, z, 2’ are adjacent to w, then {v,w,z}, {v/,w, z}, {v,w, 2’} and {v',w,2'} are
contained in four bicliques B3, By, Bs and Bg such that B; # Bj, for 1 <i # j < 6. So,
as B;N B; # 0, for 1 <i# j <5, K5 is an induced subgraph of G. O

Lemma 7.2.2. Let G = KB(H) for some graph H. Let by, by, b3 be false-twin vertices
of G and let By, By, B3 be their associated bicliques in H. Suppose that for any pair of
bicliques B;, B;, 1 < i@ # j < 3, there is an edge between some vertex of B; and some

vertex of Bj. Then, K5 is an induced subgraph of G.

Proof. Let by, by, bg be the false-twin vertices of G and By, By, B3 their associated bicliques
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in H such that for any pair of bicliques B;, Bj, 1 < i # j < 3, there is an edge between
some vertex of B; and some vertex of B;. We have the following cases:

Case 1: There is a K3 with one vertex in each biclique. Let u € By, v € By, w € Bs
be the K3. Now, uv, uw and uw are contained in 3 different bicliques of H. Since the
biclique that contains uv has to intersect B3 there exists a vertex z € Bs adjacent to v
and not adjacent to u. Consider the cases:

Case 1.1: zw ¢ E(H). Since the biclique that contains uw has to intersect By there
exists a vertex x € By adjacent to w and not adjacent to u. Now we have more cases:

Case 1.1.1: a2v € E(H), xz € E(H). Then we have that H contains the gem
{u,v,z,z,w} as induced subgraph and therefore there is a K5 in G.

Case 1.1.2: xv € E(H), xz ¢ E(H). As By is a biclique, then there exists a vertex
u’ € By adjacent to u. Now, it is easy to see that if we add any number of edges from v’
to the other vertices we form 4 bicliques mutually intersecting and taking B, By or Bs
we obtain a K5 in G.

Case 1.1.3: zv ¢ E(H), vz ¢ E(H). Then we have that {u,v, z}, {w,v, 2}, {v,w, z}
and {u,w,z} are contained in 4 different intersecting bicliques and therefore, counting
one of the bicliques By, By or By we have that K5 is in G.

Case 1.1.4: v ¢ E(H), xz € E(H). As B, is a biclique there exists a vertex 2’ € By
adjacent to x and v such that z’ has to be also adjacent to w or z or both since BoN B3 = ().
If 2’ is adjacent to w we have two cases. First, if 2’ is not adjacent to u then H contains
the gem {u,w,v,z, 2’} as induced subgraph and therefore G contains a K. Second, if 2’
is adjacent to u, the same set of vertices induces a house in H and so Kj is present in
G. Now, if 2’ is adjacent to z and not adjacent to w we have this four sets contained in
different bicliques mutually intersecting, {v,z, 2, w}, {z,z,w,v}, {v, z,u} and {u,w,x}.
Finally, taking one of By, By or Bs, GG contains a Kj.

Case 1.2: zw € E(H). Since By is a biclique there exists a vertex v’ € By adjacent
to u. It is easy to see that if we add any number of edges from v’ to the other vertices we
form 4 bicliques mutually intersecting and taking B;, By or Bs we obtain a K5 in G.

We covered all the cases when a K3 is in H.

Case 2: There is an induced C, in H with two vertices in By, one in By and one in
Bs. Let u,z € By, v € By, w € Bs be the Cy, that is uz, uv,vw,zw € E(H). As By is a
biclique there exists a vertex v' € By adjacent to v, such that v' does not extend the Cj.
Then, v' cannot be adjacent to x and not adjacent to u and w. We have the following
cases:

Case 2.1: if v/ is adjacent to x and w or adjacent to u and w we have a triangle and



Chapter 7. Bicliques and Graphs Without False-Twins Vertices 83

we already covered that case.

Case 2.2: v/ is only adjacent to u and x. Now as Bjs is a biclique there exists a vertex
w’ € Bz adjacent to w such that w’ does not extend the Cy. Then, it is easy to see that if
we add any number of edges from w’ to the other vertices we obtain either four mutually
intersecting bicliques or a triangle. Therefore a K is present in G.

Case 2.3: v/ is only adjacent to w. As Bj is a biclique there exists a vertex ' € By
adjacent to x such that 2’ does not extend the Cy. As in the previous case, we can see that
adding any number of edges from 2’ to the other vertices we obtain either four mutually
intersecting bicliques or a triangle. So, a K5 in G.

Case 2.4: ¢’ is not adjacent to any one of the other vertices (only to v). Now, as
Bs is a biclique there exists a vertex w’ € Bs adjacent to w such that does not extend
the Cy. Then w' cannot be adjacent to any vertex different of v' because if that happens
we are in one of the cases 2.1, 2.2 or 2.3. So, if w' is adjacent to v’ we have that the
sets {u, z, v, w}, {v, v, w,w'}, {u,v,v, w} and {z,w,w’, v} are contained in four different
bicliques and they are mutually intersecting, so G contains a K5. Now, w’ is only adjacent
to w. As Bj is a biclique there exists a vertex =’ € By adjacent to x such that does not
extend the C;. As we saw before, 2’ can be only adjacent to v and w’. In each one of
the cases we have that the sets {u, z, v, w}, {v, v, w,u}, {w,w' x,v} and {z, 2’ w,u} are
contained in four different bicliques and they are mutually intersecting, and therefore K
is a subgraph of G.

We covered all the cases when a Cj is in H with all of the vertices in the bicliques By,
B,y and Bs. Now we have the last case.

Case 3: There is an induced C}, k > 5 in H with vertice in the bicliques B;, By and
Bs. This case is easy since C} has k bicliques an each of them has to intersect the three
bicliques B;, By and Bs. So Kj is a subgraph of G.

Since we covered all cases the proof is done.

O

Next, we present the main theorem of this section. This theorem shows that almost
every graph is divergent under the biclique operator. Also, it helps us two obtain the

result that will imply the linear time algorithm.

Theorem 7.2.3. Let G be a graph. If G has at least 7 bicliques, then G diverges under

the biclique operator.

Proof. By way of contradiction, suppose that G has at least 7 bicliques and G converges
under the biclique operator. By Corollary 7.1.5, Tw(KB(G)) = K, for n = 1,...,4.
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Consider the following cases.

Case n = 1. Then KB(G) = K, is a contradiction since G has at least 7 bicliques.

Case n = 2. Then KB(G) = K, or K B(G) is bipartite with more than two vertices.
In the first case, G has only 2 bicliques and therefore a contradiction. If KB(G) is
bipartite with more than two vertices K B(G) is not a biclique graph [54] and that leads
to a contradiction.

Case n = 3. Since G has at least 7 bicliques, it follows that in K B(G) there exists
a set of false-twin vertices of size at least three. Consider the bicliques B, Bs, B3 of
G associated to the three false-twin vertices. If there is a pair of bicliques B;, B; such
that there is no edge between any vertex of B; and any vertex of Bj, by Lemma 7.2.1,
it follows that K3 is an induced subgraph of K B(G). Otherwise, for every two pair of
bicliques B;, B; there is an edge between some vertex of B; and some vertex of B; and by
Lemma 7.2.2, K B(G) contains K3 as an induced subgraph. In any case, by Theorem 7.1.4,
G diverges under the biclique operator, a contradiction.

Case n = 4. There are two alternatives. Suppose that K B(G) has a set of false-twin
vertices of size at least three. Then, following the proof of the case n = 3, we arrive
to a contradiction. Otherwise, there are only two possible graphs isomorphic to K B(G)
(KB(G) has 7 or 8 vertices, and it has no set of three false-twin vertices). By inspection,
using the characterization given in [54], we prove that these two graphs are not biclique
graphs. We conclude that this case can not occur.

Since we covered all cases, G diverges under the biclique operator and the proof is
finished. O]

Based on last theorem and in the fact that K B(G) = KB(Tw(G)), it is interesting to
know when a graph without false-twin vertices has at least 7 bicliques. Next theorem an-
swers this question and, moreover, it gives us the linear time algorithm for the recognition

of divergent and convergent graphs under the biclique operator.

Theorem 7.2.4. Let G be a graph with no false-twin vertices. If G has at least 13 vertices
then G has at least T bicliques.

Proof. We prove the result by induction on n. For n = 13, by inspection of all graphs
without false-twin vertices, the result holds. Suppose now that n > 14. By a Theorem
in [30], there is a vertex v such that G — v has no false-twin vertices. Consider the graph
G' = G —wv. If G’ is connected, since it has at least 13 vertices, by inductive hypothesis, it
has at least 7 bicliques. Now, as G’ is an induced subgraph of GG, we conclude that G also

has at least 7 bicliques. Suppose now that G’ is not connected. Let G, G, ..., G, be the
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connected components of G’ on ny,na, ..., n, vertices respectively. Since G has no false-
twin vertices, it can be at most one G; such that n; = 1. If there is one component with
at least 13 vertices, then by inductive hypothesis, this component has at least 7 bicliques
and so does G. So, every component has at most 12 vertices. Now, by inspection we
can verify that every component G; (but maybe one with just 1 vertex) has at least [%]
bicliques. Also, since G’ is disconnected, v along with at least one vertex of each of the
s components is a biclique in G isomorphic to K7, that is lost in G’. Summing up and
assuming the worst case, this is, there exists one n, = 1 (suppose i = s) we obtain that

the number of bicliques of G is at least

(R []) =0

i=1
as we wanted to prove. Now the proof is complete. O

Theorem 7.2.4 implies that the number of convergent graphs without false-twin vertices
is finite since convergent graphs without false-twin vertices have at most 12 vertices. This
fact leads to the following linear time algorithm.

Algorithm: Given a graph G, build H = Tw(G). If H has at least 13 vertices, answer
“G diverges” and STOP. Otherwise, build Tw(KB(H)). If Tw(KB(H)) has at most 4
vertices answer “G converges” and STOP. Otherwise, answer “G diverges” and STOP.

The algorithm has O(n + m) time complexity. For this, observe that H can be built
in O(n +m) time by the known modular decomposition and if H has at most 12 vertices

any further operation takes O(1) time complexity.

7.3 Bicliques in false-twin free graphs

To finish this chapter and motivated by the fact that the amount of bicliques in graphs
without false-twin vertices is lower bounded, we will study this class of graphs more
extensively.

We start with the case when the graph is also K3-free.

Lemma 7.3.1. Let G be a Ks-free graph without false-twin vertices. Then every vertex

is contained in a biclique isomorphic to K, for some r > 1.

Proof. Let v be a vertex. If |[N(v)| = 1 then the result clearly follows. Suppose now
that |[N(v)| > 1. Now, since N(v) is an independent set, {v} U N(v) is contained in one
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biclique. If there is no vertex w such that N(v) C N(w) then {v} U N(v) is a biclique
isomorphic to K;,, r = |[N(v)|. Otherwise, let u be the vertex with maximum degree
among all vertices in N(v). Clearly, since G is K3-free and without false-twin vertices, if
there are two vertices of same maximum degree, they must have some different neighbors.
Therefore, {u}UN (u) is a biclique isomorphic to K ,, r = [N (u)| and contains the vertex

v as desired. O]
Based on last lemma, we obtain this immediat result.

Corollary 7.3.2. Let G be a graph without false-twin vertices. Let v be a verter such
that d(v) = A(G) and v does not belong to a Ks. Then {v} U N(v) is a biclique.

Now, we obtain the following important result that will help us to prove the main

theorem of the section.

Lemma 7.3.3. Let G be a Ks-free graph without false-twin vertices. Let v be a vertex
such that d(v) = k. Then v belongs to at least k different bicliques.

Proof. Let vy,vs,...,v; be the neighbors of v. Clearly they are an independent set.
Let x1,2,...,2, be the set of vertices adjacent to the vertices vy, v, ..., v;. Let G’ be
the subgraph induced by {v} U {vy,vq,..., v} U {x1,29,...,2,}. It is easy to see that
U1, V2, ...,V are not false-twins in G' and since G is Kj-free, v is not adjacent to any x;,
1 <j </l Now, foreach 1 <i <k, let S,, = {Ne(z;) : v; € Nov(x),1 < j <L} UN(v).
Let CI(Sy,) = Ngeg, S- Observe first that S,, # @ for all i since N(v) belongs to all
of them. Observe then that Cl(Sy;) U ({z; : Nev(xj) € S,,,1 < j <L }U{v}) isa
biclique in G’ and therefore a biclique in G. We show now that, for all ¢ # j we have
that CI(S,,) # CI(S,,), i.e., v belongs to k different bicliques in G. Suppose by contrary,
that C1(S,,) = CI(S,,). Now, since v; € CI(S,,), we have that v; € CI(S,,). Similarly,
v; € CI(Sy,). So, for all S € S,,, we have that v; € S. Also, for all S € S,,, we have that
v; € S. This is N(v;) = N(v;), a contradiction since G has no false-twin vertices. Now,
the result follows. O

As a corollary, we obtain the following.

Corollary 7.3.4. Let G be a K3-free graph without false-twin vertices. Suppose that there
1s a vertexr v such that the graph G — v has k sets of false-twin vertices. Then G — v has

at least k bicliques less than G.
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Proof. Observe first that, since G has no false-twin vertices, every set of false-twin vertices
in G — v has size exactly 2. Let v;,w; for 1 < ¢ < k the k sets of false-twin vertices,
such that v is adjacent to v;. Observe now that, since v; and w; are false-twins, they
belong to exactly the same bicliques but those bicliques containing the edge vv;. Consider
now the subgraph induced by the vertices {v} U {v1,vq,..., 05} U N(v1) U--- U N(vg).
Clearly, vy, vq, ..., v are not false-twins in this graph. Now, by Lemma 7.3.3, v belongs
to k different bicliques. Those bicliques are either bicliques or are contained in bigger
bicliques in G, but they do not contain any of the vertices w;. Now, after removing v,
these k bicliques are lost in G — v since any other biclique containing any v; contains also
w. ]

Combining last three results, we obtain the main theorem of the section. It gives a

tight lower bound for the number bicliques of a Kj3-free graph without false-twin vertices.

Theorem 7.3.5. Let G be a Ks-free graph of order n > 4 without false-twin vertices.
Then G has at least [ bicliques.

Proof. The proof is by induction on n. For n = 4 the result trivially holds. Suppose
n > 5. Now, by Lemma 7.3.1 there is a vertex v contained in a biclique isomorphic to
K, ,. Without losing of generality, we can suppose that v is the center, otherwise we take
its unique adjacent vertex in the biclique. Consider the graph G’ = G — v. We consider

the following two cases.

e (&' is disconnected. Let G1,Gs,...,G, be the connected components of G’ on
ni,ne,...,N vertices respectively. Since G has no false-twin vertices, it can be at
most one G; such that n; = 1. Suppose that there are ¢ components, G;,,G,,, ... .G
with k;,, k
has k;, + ki, + - - - + k;, bicliques less than G. Also, since G is disconnected, v along

7

ins - - - » Ki, pairs of false-twin vertices. So, by Lemma 7.3.4 we have that G’

with at least one vertex of each of the s components is a biclique in G isomorphic
to K7, that is lost in GG, and clearly different than the ones we have just counted.
Consider now for each G;; the graph Tw(G;;). Each of these graphs have n;, — k;,

= 2 then Tw(G;;) = K>, and therefore

vertices and no false-twin vertices. If n;, —k
-‘ bicliques. If n;; — k;; > 4, by inductive hy-

k. 9
i

2

it has 1 biclique, i.e., at least {

L5 ]W bicliques. Now, for all other G; without

pothesis, Tw(G;) has also at least [
false-twin vertices, if n; = 2, G; has, as before, 1 = [% ] biclique and for n; > 4, by

inductive hypothesis, G; has at least [%]. If we sum up everything (and suppose
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the worst case, this is, there exists one G;, say G, such that n, = 1) we have that

the number of bicliques of G is at least

as desired.

e Suppose now that G’ is connected. Suppose that in G’ there are k pairs of false-
twin vertices. As before, by Lemma 7.3.4, G’ has k bicliques less than G. Consider
now the graph Tw(G"). This graph has n — k — 1 > 4 vertices and no false-twin
vertices, therefore we can apply the inductive hypothesis. So, we have that Tw(G)
has at least ["’T’H_‘ bicliques. Therefore G has at least {”’T’H-‘ +k > [§] bicliques
as desired. Now suppose that G’ has no false-twin vertices. We have by inductive
hypothesis that it has at least [”7_11 bicliques. Finally, since the biclique isomorphic
to K1, with center at v is lost in G’ we conclude that G has at least [251] +1 > [2]

bicliques.
Since we covered all cases the proof is now complete. n

Notice that this result directly implies Theorem 7.2.4 for Kjs-free graphs. Also, we

obtain this direct corollary.

Corollary 7.3.6. Let T' be a tree of order n > 4 without false-twin vertices. Then T has

at least [ 5] bicliques.
Following Corollary 7.3.6 we obtain this immediat result.

Corollary 7.3.7. For [5] <k <n—2 andn > 4 there exists a tree T without false-twin

vertices of order n and k bicliques.
Now, we state the following conjecture that generalizes Theorem 7.3.5.

Conjecture 7.3.8. Let G be a graph without false-twin vertices of orden n. Then G has

at least [ 5] bicliques.
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We remark that we verified this conjecture for all graphs without false-twin vertices up
to 13 vertices. Note that this is exactly the basic step for the induction in Theorem 7.2.4.
We could prove the conjecture if similar results as we have for K3-free graphs are valid
for general graphs. In particular, if the following conjectures are true, we have a proof of
Conjecture 7.3.8

Conjecture 7.3.9. Let G be a graph without false-twin vertices. Then there exists at

least one biclique isomorphic either to K ,, r > 1, or to Ky, p > 2.

Conjecture 7.3.10. Let G be a graph without false-twin vertices. Let v be a vertex such
that d(v) = k. Then, if it has a neighbor of degree 1, v belongs to at least k — 2 different

bicliques, otherwise, to at least k — 1.

Conjecture 7.3.11. Let G be a graph without false-twin vertices. Suppose that there is
a vertex v such that the graph G — v has k sets of false-twin vertices. Then G — v has at

least k bicliques less than G.

Our main goal to prove Conjecture 7.3.8 was to prove that we always have a biclique
isomorphic either to Ky,, r > 1, or to Ky,, p > 2. Having this result, we can always
remove one or two vertices in order to obtain a graph with less bicliques than the original
and then obtain the result by induction as in Theorem 7.3.5.

Because of this we have the following results that guarantee the existence of a biclique

isomorphic either to K;,, r > 1, or to Ky ,, p > 2 for special classes of graphs.

Lemma 7.3.12. Let G be a graph without false-twin vertices. Let vivavsvy be an induced
Cy. If no vertex of the Cy belongs to a K3 then are there two bicliques isomorphic to K .,

and K ,,, for some ri,ry > 1.

Proof. Since GG has no false-twin vertices There exist without losing of generality, one
vertex u; adjacent to v; not adjacent to the others v; and another vertex us, adjacent to
vy not adjacent to all others v;. Clearly u; # us because any of vy, vy, v3 and vy belongs
to a K3. Now, if {v1} U {u1,ve,v4} and {ve} U {ug, v1,v3} are in bicliques isomorphic to
K,,, and K;,,, we are done. Otherwise there are vertices w; # ws that extend them
respectively. This is w; is not adjacent to v; but adjacent to uy, vy and v4, and ws is not
adjacent to vy but adjacent to us, vy and vs. We have then that, if {v;} U {uq, va, vy, wo}
and {va} U {ug,v1,vs, wo} are in bicliques isomorphic to K;,, and Ki,,, we are done.
Otherwise, as before, we have two vertices z; # 2, that extend them. But then we have

that {vy} U {uy,ve, v4, ws, 20} and {vo} U {ug, v1,v3, we, 21} are contained in two different
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bicliques. If they are not isomorphic to K ,, and K ,, we have again two different vertices
that extend them. Finally, since G is finite, at some point we will have no more vertices
to extend them and therefore the result holds. O

Lemma 7.3.13. Let G be a graph without false-twin vertices. Let v be a verter such
that v does not belong to an induced Cy. Then v belongs to a biclique isomorphic to K .,
r>1.

Lemma 7.3.14. Let G be a graph without false-twin vertices. Let v be an universal vertex.

Then v belongs to a biclique isomorphic to K;,, r > 1.
Notice that last lemma is also true when the graph has false-twin vertices.

Lemma 7.3.15. Let G be a graph without false-twin vertices. Let v be a vertex such that

N(v) = K,, p > 1 then v belongs to a biclique isomorphic to K;,, r > 1.

Lemma 7.3.16. Let G be a graph without false-twin vertices. If G has a K,, p > 1, as

a cut-set, then there exists a biclique isomorphic to Ky,, r > 1.

Lemma 7.3.17. Let G be a graph without false-twin vertices. Let v, w be two non-adjacent
vertices such that G — {v,w} is disconnected. Then, there exists a biclique isomorphic
esther to Ky,, v > 1, or to Koy, p > 2

To finish this chapter, we present the following results about the structure of graphs

without false-twin vertices.

Lemma 7.3.18. Let G be a graph without false-twin vertices. If G has a K3 as a subgraph

then there is no vertex that belongs to all bicliques.

Lemma 7.3.19. Let G be a graph without false-twin vertices. There are at most two
vertices v, w that belong to all bicliques and they must be adjacent. Moreover, for every

other verter u, u is adjacent to v if and only if u is not adjacent to w.

Lemma 7.3.20. Let G be a graph without false-twin vertices. For every biclique B there

exists at most one vertex that belongs only to B.

Lemma 7.3.21. Let G be a graph without false-twin vertices. Let v a vertex such that
d(v) > 2. Then v belongs to at least 2 different bicliques.

From last lemma, we obtain this immediat result.
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Corollary 7.3.22. Let G be a graph without false-twin vertices. There are at least [%]

vertices that belong to at least 2 bicliques.

Lemma 7.3.23. Let G be a graph without false-twin vertices, G # K. If there are two

vertices of degree one, they belong to different bicliques.



Chapter 8
Conclusions and Perspectives

In the present thesis, we studied different problems in edge-colorings and in edge-colored
multigraphs. In particular, we studied the proper connection number of graphs, strong
edge-colorings in k-degenerate and outerplanar graphs, and proper hamiltonian paths and
cycles in edge-colored multigraphs. Finally, we studied properties of bicliques of graphs
and, in particular, we gave a linear time algorithm to recognize convergent and divergent

graphs under the biclique operator

8.1 Contribution summary

In Chapter 3 we studied proper connection in graphs. We proved several upper bounds for
per(G). We stated some conjectures for general and bipartite graphs, Conjectures 3.2.6
and 3.1.1 respectively, and we proved them for the case when k = 1. In particular, we
proved a variety of conditions on G which imply pc(G) = 2. We can remark that, from
Theorem 3.3.6, it is clear that if G is 2-connected and §(G) > %, then pe(G) = 2. We
believe that this degree condition can be greatly improved in the 2-connected case. In

particular, we propose the following conjecture.
Conjecture 8.1.1. If K(G) =2 and 6(G) > 3, then pc(G) = 2.

By the proof of Theorem 3.2.2 and the standard ear decomposition of a 2-connected
graph, it is easy to produce a linear-time algorithm to 3-color any 2-connected graph to
be proper connected with the strong property. Also since there is an O(n + m) algorithm
for finding a block decomposition of a graph G with x(G) = 1 on n vertices with m edges,
we can find an O(n+m) algorithm to produce a proper connected coloring of such graphs.

Therefore, in practice, these colorings are not difficult to find.

92
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In Chapter 4, we showed that the strong chromatic index is linear in the maximum
degree for any k-degenerate graph where k is fixed. This is an extension of the results
due to Chang and Narayanan [29] where they prove the same for 2-degenerate graphs. As
a corollary, our result leaded to considerable improvement of the constants and also gave
an easier and more efficient algorithm. We also gave a sketch of the algorithm.

Further, we considered outerplanar graphs. We gave a formula to find exact strong
chromatic index for bipartite outerplanar graphs. We also improved the upper bound for
the general outerplanar graphs from the 3A — 3 stated in [60].

A recent work [66] gives an algorithm to find the strong chromatic index of any maximal
outerplanar graph, but notice that when you extend the graph to maximal outerplanar,
the maximum degree and the index can increase. We provided an algorithm to color
any outerplanar graph with number of colors close to optimum and bipartite outerplanar
graphs with optimum colors.

In some special cases of the general outerplanar graph, (where we use 1 extra colors),
we were not able to show the optimality of the bounds. We believe that it is very close
to the exact bound within an additive factor of a small constant. It would be interesting
to prove if our bounds are optimal and if not, to find a way to close the gap.

In Chapters 5 and 6, we studied the existence of proper hamiltonian paths and proper
hamiltonian cycles, respectively, in edge-colored multigraphs depending on the number of
edges, the rainbow degree and the connectivity. Here, the notable fact is that the proofs
were sometimes long and tedious despite the lower bounds for the edges in the considered
multigraphs were really high. Finally, we stated Conjecture 6.2.4 that guarantees the
existence of a proper hamiltonian cycle in a 2-connected edge-colored multigraph with
bounded number of edges and fixed rainbow degree.

It should be also interesting to study similar conditions for other patterns such as
trees, etc.

In Chapter 7 we studied different structural properties of bicliques in graphs without
false-twin vertices and then, we applied them to the study of the iterated biclique operator.
There exists an O(n?) time algorithm to decide if a given graph converges or diverges under
the biclique operator and the possible behaviors have been characterized. We proved that
graphs with at least 7 bicliques are divergent under the biclique operator. Furthermore,
we proved that this sufficient condition implies that graphs with no false-twin vertices
that are convergent, have at most 12 vertices, and therefore, there is a finite number of
them. We also proposed a linear time algorithm to decide the behavior of a graph under

the biclique operator. It is worth mentioning that no polynomial time algorithm is known
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for deciding the behavior of a graph under the clique operator. Finally, we proved a lower
bound of the number of bicliques in Kj3-free graphs without false-twin vertices and we
stated Conjecture 7.3.8 for a similiar result for the general case, i.e., the condition of the
graph being K3-free is dropped. We proposed several results and conjectures that might

help to solve the general one.
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