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INTRODUCTION

Current research on Natural Language Processing (NLP) aims at converting
any natural form of language data into information that can be manipulated by
artificial intelligent systems. Nowadays, there are many successful applications
in this field, such as Machine Translation (MT), Information Extraction (IE),
Search Engine (SE), Human Computer Interface (HCI) with Automatic Speech
Recognition (ASR), Text to Speech (TTS). . .

There is a variety of data forms that need to be processed. Among them,
texts are a very important part because they implicitly encode most of our
knowledge about languages. How to successfully learn from this knowledge
source is a crucial question. Language modeling was brought in so as to par-
tially answer this question. The purpose of a language model is in general to
capture and to model regularities of language, thereby capturing morpholog-
ical, syntactical and distributional properties of a given language. Ideally, it
must be able to assess the likeliness of any sentence in a given context.

Over the last decades, due to the quick and consistent evolution of the
available data for many languages, in most tasks, the statistical approach to lan-
guage modeling almost swept out deterministic (grammar-based) approaches.
On the one hand, statistical models can implicitly embed linguistic knowledge
by handling a large quantity of data. On the other hand, formal and explicit
models of syntax and semantic can only take into account a limited amount of
evidence. This implies that their integration in large scale NLP applications
seems to be rather ineffective when compared with statistical models. More-
over, formal linguistic models require manually annotated data. This kind
of resources is very expensive, and in most of the case, their generalization
to different languages or applications is quite limited. For example, Part-Of-
Speech (POS) tagged texts are only available for newspaper texts and therefore,
this valuable knowledge source can not readily be used in speech recognition
applications. Another example is semantic networks (WordNet), which are
only available for a few languages. On the contrary, statistical language models
only require raw training material that can be nowadays easily harvested1.
The most successful approaches to date are based on n-gram assumption and
the adjustment of statistics from the training data by applying smoothing and
back-off techniques, notably Kneser-Ney technique proposed in 1995 (Kneser
and Ney, 1995; Chen and Goodman, 1998), some twenty years ago.

However, it should be emphasized that in spite of their prevalence, conven-
tional n-gram based language models still suffer from several limitations that
could be intuitively overcome by consulting human expert knowledge. One
critical limitation is that, ignoring all linguistic properties, they treat each word
as one discrete symbol with no relation with the others. For example, assume

1Of course, training texts must be carefully selected and processed, and how to design a well suited
training corpus is still a complex task



the training data contains the following sentence: “Alice is the only girl that Bob
loves”, it should help the model to capture the likeliness of a new sentence
such as: “Carole is the only woman that Bob loves”. The reason is that “Alice”
and “Carole” are very similar, likewise for the two words “girl” and “woman”.
Unfortunately, conventional n-gram based language models cannot readily use
this information. Another point is that, even with a huge amount of data, the
data sparsity issue always has an important impact, so the optimal value of n
in the n-gram assumption is often 4 or 5, equivalent to the implication that
words only depend on the 3 or 4 previous words. Using only up to 4 previous
words is insufficient in practice. To illustrate, an example can be taken from the
quote of Turing (1950): “Nevertheless I believe that at the end of the century the use
of words and general educated opinion will have altered so much that one will be able
to speak of machines thinking without expecting to be contradicted.”. We see that the
word “the” in “the use of words” mostly depends on “I believe that”. However,
even 6-gram language models fail to capture this dependency.

Using word similarities in language modeling to remedy the data sparsity
issue has long been shown to be helpful. Many ideas can be examined in
this way. There are several tasks in NLP such as POS Tagging that try to
cluster words into categories distinguished based on human analysis. Their
output categories can then be served as relevant sources of information for
several approaches to statistical language modeling (Jelinek, 1990; Niesler, 1997;
Chelba and Jelinek, 2000; Oparin et al., 2008). In general, these approaches
can be viewed as an effort to take advantage of word similarities as words in
the same categories tend to exhibit the same distribution in similar contexts.
But their embedded information seems to be too global because the number
of categories is limited; this might be because word classes distinction are
derived from human linguistic knowledge, which have many ambiguities,
redundancies and are not well defined for each particular task. Other methods
instead, suggest getting word classes automatically. A canonical example is the
class-based approach proposed in (Brown et al., 1992). But word clusterings
obtained in this way is at an expensive cost and remaining “hard” as each
vocabulary word is often assigned to only one class. Furthermore, for large
scale tasks, their achievements are often limited.

Recently, one of the most successful attempt that tries to directly learn word
similarities is to use distributed word representations (Bengio, Ducharme, and
Vincent, 2000) in language modeling, where distributionally words, which have
semantic and syntactic similarities, are expected to be represented as neighbors
in a continuous space. These representations and the associated objective
function (the likelihood of the training data) are jointly learned using a multi-
layer neural network architecture. In this way, word similarities are learned
automatically. Moreover, unlike standard n-gram word based models, in this
approach, language models can efficiently take into account longer contexts
in order to mitigate the data sparsity problem. This approach has shown
significant and consistent improvements when applied to ASR (Schwenk, 2007;



Emami and Mangu, 2007; Kuo et al., 2010) and Statistical Machine Translation
(SMT) tasks (Schwenk, Dchelotte, and Gauvain, 2006). Therefore, continuous
space language models have become increasingly used. These successes have
revitalized the research on neuronal architectures for language models, and
given rise to several new proposals.

A major difficulty with the continuous space neural network based ap-
proach remains the computational burden, which does not scale well to the
massive corpora that are nowadays available. For this reason, the first contribu-
tion of this dissertation is the definition of a neural architecture which makes
them well suited for large scale frameworks where significant improvements
in both ASR and SMT are reported. Furthermore, several insightful analyses
on their performances, their pros and cons, their induced word space repre-
sentation are also provided. Then, the second contribution is the successful
adoption of the continuous space neural network into a machine translation
framework. New translation models are proposed and reported to achieve
significant improvements over state-of-the-art baseline systems.

The structure of this dissertation is organized as follows. First, in Chapter 1,
we briefly present the principles of language modeling along with its most
successful approaches to date, some ideas about their advantages and their
weaknesses in order to assess the impact and the contribution of the continuous
space neural network language model approach. In Chapter 2, our new pro-
posed architecture to continuous space neural network language models, called
Structured OUtput Layer (SOUL), is proposed. In this chapter, we provide an
overview of this approach, whereas Chapter 3 is dedicated to a comprehensive
investigation of the SOUL architecture. Word embeddings induced from SOUL
NNLMs are further analyzed in Chapter 4. In Chapter 5, we continue with a
study on their possibility of taking into account long contexts. Their extension
to translation models is finally investigated in Chapter 6.
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In this chapter, we describe the basic knowledge of Language Modeling
along with its state-of-the-art approaches in order to draw the general context
of our research. Since there exist many efforts to summarize the current re-
search in language modeling such as the work of Rosenfeld (2000), or more
experimentally, the work of Mikolov et al. (2011a), our goal here is rather to
focus on analyzing the relation between approaches based on a continuous
word space representation, the main subject of our study, and the other ones.

The content of this chapter is structured as follows. Section 1.1 is devoted to
the definition of language models, their role in Natural Language Processing
(NLP), notably in two tasks: Automatic Speech Recognition (ASR) and Sta-
tistical Machine Translation (SMT). They are the two main frameworks that
we later use to conduct our experiments. Their evaluation metrics are then
described in detail in Section 1.2, one derives from the information theory
(perplexity) and two are defined with respect to an application (Word Error
Rate for ASR and Bilingual Evaluation Understudy for SMT) . After that, we
continue with the description of the most successful approaches to language
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modeling in Section 1.3, from the smoothing techniques to more sophisticated
approaches which try to take into account information such as word classes,
syntactic, semantic knowledge . . . Their advantages and their drawbacks are
discussed in order to analyze why it is very hard to consistently and signifi-
cantly bring improvements over state-of-the-art language models which are
still based on smoothing and back-off techniques that exist from twenty years
ago. We finish this chapter by sketching out a recent promising approach based
on a continuous word space representation in Section 1.4, from which our work
directly inherits.

1.1 Introduction

Language Models (LMs) are an indispensable source of knowledge in many
applications of NLP. They encompass a prior knowledge about the regularity
of a text, measuring how fluent and likely it is to be spoken or written so as to
lead artificial systems to generate texts that can be comprehensible by human.

A statistical language model aims at computing the likeliness of all possible
word strings. Mathematically, by considering natural language as a stochastic
process, it is formulated as a probability distribution P(wL

1 ) over sequences of
words wL

1 in V+ where wL
1 is a shorthand for w1, w2, . . . , wL and V is a finite

vocabulary. For example, it should assign a much larger probability for “Let
music be the food of love” than “Let music be the foot of dove” because intuitively,
the former is more likely to occur than the latter in current English.

Trying to directly estimate the probability of a whole string is not tractable.
This probability is therefore usually factorized in a left-to-right manner as:

P(wL
1 ) = P(w1|<s>)

L

∏
l=2

P(wl|<s>wl−1
1 ) (1.1)

=
L

∏
l=1

P(wl|hl), (1.2)

where a token <s> (or sometimes <w0>) is used to represent the beginning of
the string and hl is a history used to predict wl, the lth word. In this equation,
we also consider a special token </s> as the last word wL of wL

1 . Note that,
the latter token is introduced to make the sum of probability over all possible
strings equal to 1.

This factorization seems to make the task easier because now, instead of es-
timating one complicated distribution over word strings, we have to deal with
many more, but simpler, distributions involved in predicting the next word
w given each history h, P(w|h). But regarding the requirement of modeling
the distributions of many discrete random variables (words in a sequence),
this problem remains challenging, especially in real-world NLP applications
where V typically contains several thousands to millions of words. As a result,
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in the following sections, we will see that, in most approaches, some further
simplifying assumptions need to be imposed.

For an ASR system, the place of the language model can be defined from the
point of view of a noisy channel system (Shannon, 1948) where an acoustic signal
(X) is considered as the output signal of a source message W being passed
through a noisy channel. The goal is to recover the original message from
the noisy data, or equivalently to solve the problem defined by the following
formula:

Ŵ = argmax
W

P(W|X) (1.3)

= argmax
W

P(X|W)× P(W)

P(X)
(1.4)

= argmax
W

P(X|W)× P(W) (1.5)

Here, Bayes rule is applied to decompose the original task into two different
ones which involve an acoustic model, the first term P(X|W), for the acoustic
likelihood and a language model, the second term P(W), for the prior distribution
over sentences1. As can be seen from the previous example, due to the acoustic
similarity, the two sentences “Let music be the food of love” and “Let music be the
foot of dove” if viewed as candidates of an ASR system will be almost impossibly
distinguished without the evidence provided from the language model.

In practice, because of having different output spaces, the scale of the
language model and that of the other model cannot be compared. Consequently,
we need to introduce weights to reconcile the two components of Equation (1.5):

Ŵ = argmax
W

P(X|W)λX|W × P(W)λW (1.6)

For an SMT system, in the simplest case, we follow the same scene keeping
in mind that now X is used to present a source text in a foreign language
that we need to translate and the first term P(X|W) is given by a translation
model. In fact, for this application, there are often more than two models to be
mixed, therefore, the Bayes equation is replaced by a log-linear generalization
of Equation (1.5):

Ŵ = argmax
W

[
exp

(
F

∑
i=1

λi fi(W, X)

)]
, (1.7)

where fi is used to define feature functions of W and X, each of them being
associated with one model used by the system. Language models are consid-
ered as one feature function which takes only output words as arguments to

1In general, the term “word string” should be used instead of “sentence” but since W is often restricted
to be a sentence, from now, when there is no confusion, we prefer to use “sentence”.
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capture the fluency of a sentence. In a well-defined system, language models
often take a relatively great weight, meaning that they have a great influence
on the final performance.

Motivations leading to the log-linear model are more from practical than
mathematical inspiration. Models in Equation (1.6) have different degree of
confidence since they are based on several assumptions which are not fully
correct but necessary to make them tractable. Instead of jointly optimizing
all parameters of all models, it is more straightforward to train each model
separately and then use weights to arbitrate their contribution. Moreover,
viewed in this way, it is easier to naturally include additional models from
different approaches regardless of their information overlap. One extreme case
is the work of Chiang, Knight, and Wang (2009) where about ten thousand
features were used. In practice, adjusting the weights on development data
always leads to better results.

To find the optimal weights, there exist several algorithms. For example,
within the SMT framework, in case of using few features, we can use Minimum
Error Rate Training (MERT) introduced in (Och, 2003). For a larger number of
features, it seems preferable to use Margin Infused Relaxed Algorithm (MIRA)
from (Watanabe, Asahara, and Matsumoto, 2007), its refinement in (Chiang,
Marton, and Resnik, 2008; Chiang, Knight, and Wang, 2009) or recently, its
batch-mode presented in (Cherry and Foster, 2012). Another alternative is to
use Pair Wise Ranking Optimization (PRO) introduced in (Hopkins and May,
2011).

1.2 Evaluation Metrics

In this section, we present three ways to assess the performance of language
models. The first one is a system-independent method based on information
theory. Following this approach, it requires only a test text that is taken from
the same source of the training data. The other ones are actually two metrics
dedicated to specific applications, namely Automatic Speech Recognition (ASR)
and Statistical Machine Translation (SMT). Following these more practical
approaches, we can evaluate the direct contribution of language models to
finalized tasks, which gives a clearer view of their actual quality.

1.2.1 Perplexity

This method uses perplexity as a metric. Basically, it assesses the quality of a
language model based on the average likelihood of unseen data D according
to the model:

perplexity(D, P) = exp(−∑L
l=1 log P(wl|hl)

L
), (1.8)

where L is used to denote the number of words in the unseen data D and
P(wl|hl) is given by the language model. The exponential term is in fact
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the negative of the average likelihood. It can be interpreted as the empirical
estimate cross entropy between the unknown distribution P̄(w|h) from which
the test data is drawn and the language model:

cross_entropy(P̄, P) = −∑
w,h

P̄(w, h) log P(w|h) (1.9)

Equation (1.8) can also be rewritten in order to interpret perplexity as a
geometric average (branching factor) of predictions given by this language
model:

perplexity(D, P) =
L

∏
l=1

P(wl|hl)
− 1

L (1.10)

A lower perplexity implies smaller geometric average, corresponding to the
fact that the language model fits (or predicts) better the data. One advantage
is that its computation is straightforward and efficient without access to any
application. For this reason, perplexity is usually used for both tuning and
shallow evaluations. It also has theoretically elegant properties as its logarithm
is an upper bound on the number of bits per word expected in compressing
a text and actually used in predicting the performance of text compression
methods.

On the downside, perplexity depends not only on the language model but
also on the data D and on the underlying vocabulary. So comparisons are
only meaningful when the same data and the same vocabulary are used. Fur-
thermore, the correlation between the perplexity and the performance of most
tasks is not obvious. Observed improvements of perplexity do not necessarily
lead to better application results. In (Rosenfeld, 2000), the author claimed that
in an ASR system, a 5% perplexity reduction is not significant at all, whereas
10− 20% is noteworthy and more than 30% is significant. Another weakness
is that perplexity cannot be used to evaluate un-normalized language model2
that can evidently be useful in the application point of view, for example, a
stupid back-off model (Brants et al., 2007). For these reasons, there have been
some attempts trying to find other metrics that remain task-independent but
are more correlated with application results. For example, in (Chen, Beeferman,
and Rosenfeld, 1998), the authors proposed another measure that is easily
calculated but better predicts ASR performance than perplexity. An adaptation
of the Shannon game (Shannon, 1951) to evaluate language models of differ-
ent vocabularies was studied in (Bimbot et al., 2001). Another example can
be taken from (Zweig and Burges, 2012) where Microsoft Research Sentence
Completion Challenge for advancing language modeling was introduced as
a possible new metric. Despite many efforts, perplexity hitherto remains the
main metric for language model development.

2where the output distributions are not proper and not guaranteed to sum to one
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1.2.2 Word Error Rate

For ASR applications, the straightforward way to evaluate the contribution of
a language model is through Word Error Rate (WER). In order to calculate this
score, we need to compare the hypothesis of the speech recognizer with the
reference (the correct transcript produced by humans). WER is then defined
as the edit distance between the reference and the decoder hypothesis, which
is measured as the minimum number of substitutions, deletions or insertions
necessary to convert one string into another:

WER =
S + D + I

L
100%, (1.11)

where L is a total number of words in the manual transcription text, S is a total
number of substitutions, D is a total number of deletions and I is a number of
insertions demanded.

The first weakness is that WER is computationally expensive because it
involves an entire decoding. Moreover, it is speech recognizer and task depen-
dent. Apart from language model, there is a great number of other factors that
affect speech recognition performance such as the language model weight, the
word penalty, the search algorithm, the integration of the language model and
the acoustic model . . . restricting the comparison between language models
is only meaningful when evaluated with the same system or in contrastive
experiments.

1.2.3 Bilingual Evaluation Understudy

For machine translation applications, there are several evaluation metrics simi-
lar to WER. But unlike in ASR tasks where the use of WER is dominant, there
are a lot of metrics proposed for SMT tasks such as BLEU, TER, METEOR,
NIST . . . but the evaluation problem remains so that: “More has been written
about MT evaluation over the past 50 years than about MT itself” (Lopez, 2008).
For this reason, MT evaluation remains an important concern, as illustrated
for instance by the shared task in Workshop on Statistical Machine Transla-
tion (WMT). Most metrics show some correlations with human judgment but
they are never satisfying, especially when dealing with systems from very dif-
ferent approaches. Within the scope of this dissertation, Bilingual Evaluation
Understudy (BLEU) is always used as it is often considered as a criterion to
tune and to evaluate translation systems and has proved to work quite well
with statistical based systems.

Introduced by (Papineni et al., 2002), BLEU measures the similarity of n-
gram count vectors of the reference translations and the candidate translation
predicted by a translation system. n-grams of different orders are counted and
then interpolated. The typical maximum order of n-gram is 4. Because BLEU
is based on precision and the formulation of recall is not trivial over multiple
references, brevity penalty (BP) is introduced to lower the strong bias towards
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short sentences. BP is calculated as follows:

BP =

{
1 if c > r
exp(1− r

c ) otherwise
, (1.12)

where r is the effective length of the reference (calculated as the sum of the
single reference which is closest to the hypothesis translation) and c is the
length of hypothesis. If we use pi and λi to denote the precision score of i-
grams in the test corpus and its associated weight respectively, BLEU can then
be computed as:

BP× exp

(
n

∑
i=1

λi log pi

)
(1.13)

In practice, all weights are equal to 1
n . As BLEU is a precision measure,

higher values of BLEU indicate better results.
For a sake of clarify, here is an example in the case of one sentence taken

from the original article on BLEU. Suppose that we have 3 references:

1. It is a guide to action that ensures that the military will forever heed Party
commands

2. It is the guiding principle which guarantees the military forces always
being under the command of the Party

3. It is the practical guide for the army always to heed the directions of the
party

and 2 hypotheses:

1. It is to insure the troops forever hearing the activity guidebook that party
direct

2. It is a guide to action which ensures that the military always obeys the
command of the party

From the point of view of human judgments, the second hypothesis is certainly
better. It is also preferred according to BLEU metric as it has more identical
n-grams (in bold), they are longer and furthermore, its length is closer to those
of the references.

Though BLEU has frequently been reported as having a good correlation
with human judgments, the use of BLEU is recommended to be restricted from
“tracking, broad, incremental changes to a single system, comparing systems
which employ similar translation strategies” (Callison-Burch, Osborne, and
Koehn, 2006). In this paper, BLEU scores were shown not to correspond to
the scores of human evaluations: The system which was considered as the
best by human was ranked at the 6th by BLEU. Finally, it is worth noticing
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that BLEU reported here are from systems following the same phrased based
approach, therefore, escaped from this issue. Final conclusions drawn from
BLEU scores often go in the same line as those from other usual evaluation
metrics for machine translation.

1.3 State-of-the-art Language Models

Many approaches have been proposed over the last decades, most of them
trying to maximize the log-likelihood (analog to minimize the perplexity) of
the training data with some constraints and smoothing techniques in order to
guarantee the generalization to the new unseen data, i.e., to prevent overfitting.
We are going to first examine the most widely used n-gram language models.
An n-gram model relies on a Markovian assumption that each word depends
only on n− 1 previous words:

P(wL
1 ) ≈

L

∏
l=1

P(wl|wl−1
l−n+1), (1.14)

letting negative and null indices for wi represent a start symbol (<s>) to
simplify the notations.

It is natural to use n− 1 to denote the order of language models because it
is the order of a Markov model reflected by this equation. Unfortunately, in the
literature, authors always use n instead, so do we hereafter.

For a better view, the general form of the conditional probability, P(w|h),
is modified to become P(wn|wn−1

1 ), where w = wn stands for the predicted
word and h = wn−1

1 stands for its history comprising the n− 1 previous words.
To estimate this probability, we can simply use the number of occurrences of
sequences of words (n-grams) in some training data. Let c(wn

1) denote the
number of times that this n-gram occurs, estimated probability can be derived
as follows:

PMLE(wn|wn−1
1 ) =

c(wn
1)

c(wn−1
1 )

(1.15)

This is the maximum likelihood estimate (MLE) of the n-gram probability
on the training data. Note that, if during testing, we meet a history which is
not seen in the training data, meaning that the denominator of the equation is
null, we are obliged to use the MLE of a smaller order.

Despite the use of the n-gram assumption, MLE remains unreliable and
tends to underestimate the probability of very rare n-grams, which are hardly
observed even in huge corpora. It is a direct consequence of the Zipf’s law
stating that the frequency of any word is inversely proportional to its rank in
the frequency table (Zipf, 1932). Moreover, it assigns null probability to a great
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number of plausible n-grams which is problematic in most applications. As a
result, several smoothing techniques were proposed to address these issues.
Some of them will be briefly described in the next sections.

1.3.1 Smoothing Techniques

Conventional smoothing techniques, such as Kneser-Ney and Witten-Bell, use
lower order distributions to provide a more reliable estimate, especially for the
probability of rare n-grams. (Chen and Goodman, 1998) provides an empirical
overview and (Teh, 2006) gives a Bayesian interpretation for these methods.
These techniques aim at smoothing the MLE distributions in two steps: (i)
discounting a probability mass for observed n-grams; (ii) redistributing this
mass to unseen events. Generally, distributions are adjusted in such a way
that small probabilities are increased and high probabilities are diminished to
prevent zero probabilities and improve the model prediction accuracy. They
are divided into two types: interpolated and back-off that differ crucially in the
way of determining the probabilities for observed n-grams: While the former
uses lower order distributions, the latter does not.

According to (Kneser and Ney, 1995), back-off smoothing techniques can
be described using the following equation:

P(wn|wn−1
1 ) =

{
α(wn|wn−1

1 ) if c(wn
1) > 0

γ(wn−1
1 )β(wn|wn−1

2 ) otherwise
(1.16)

So if an n-gram occurs at least one time in the training data, we simply
use α(wn|wn−1

1 ) while in the other case, we use the information from its lower
order gram β(wn|wn−1

2 ) with γ(wn−1
1 ), a normalization factor. α(wn|wn−1

1 ) is
expected to not contain any information of lower order distributions.

On the other hand, interpolated smoothing techniques can be represented
using the following equation:

P(wn|wn−1
1 ) = κ(wn−1

1 )PMLE(wn|wn−1
1 ) + (1− κ(wn−1

1 ))P(wn|wn−1
2 ), (1.17)

where κ(wn−1
1 ) ∈ [0, 1] is an interpolation weight depending on each n-gram

wn−1
1 .

Note that if we set:

γ(wn−1
1 ) = 1− κ(wn−1

1 ), (1.18)

and then:

α(wn|wn−1
1 ) = κ(wn−1

1 )PMLE(wn|wn−1
1 ) + γ(wn−1

1 )P(wn|wn−1
2 ), (1.19)

we will see that interpolated models can be described in a similar way for
back-off models as in Equation (1.16). The difference is that the computation of
α(wn|wn−1), in this case, needs to invoke lower order information P(wn|wn−1

2 ).
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In general, a back-off equation (1.16) can represent both types of language
models based on back-off and interpolated smoothing techniques. As a con-
sequence, the term back-off language model is often used as a general name for
conventional n-gram language models with smoothing.

1.3.1.1 Absolute discounting

Absolute discounting introduced in (Ney, Essen, and Kneser, 1994) can be
considered as an interpolated smoothing technique where the higher-order
distribution is created by discounting each nonzero count by a constant amount,
0 ≤ dc ≤ 1. Its formulation is similar to Equation (1.17):

P(wn|wn−1
1 ) =

max{c(wn
1)− dc, 0}

∑wn c(wn
1)

+ (1− κ(wn−1
1 ))P(wn|wn−1

2 ) (1.20)

To satisfy a normalization requirement, we must have:

κ(wn−1
1 ) = 1− dc

∑wn c(wn
1)

N1+(wn−1
1 •), (1.21)

where N1+(wn−1
1 •) is used to define the number of word types preceded by

wn−1
1 :

N1+(wn−1
1 •) = |wn : c(wn

1) > 0| (1.22)

According to the original article, dc can be set through deleted estimation
on the training data to be equal to n1

n1+2n2
where nc is the number of n-gram

types with exactly c occurrences. As this is a recursive equation, we need to
define the 0th order distribution as a uniform distribution. It implies that the
first order distribution is proportional to the word frequencies in the corpus.

1.3.1.2 Interpolated Kneser-Ney smoothing

Interpolated Kneser-Ney smoothing technique (Kneser and Ney, 1995) has
been widely reported to achieve state-of-the-art performance. It is an extension
of absolute discounting, having the same form as Equation (1.20).

To describe it, two notations are required. First, we use N1+(•wn
2) to define

the number of word types preceding wn
2 :

N1+(•wn
2) = |w1 : c(wn

1)) > 0|, (1.23)

and N1+(•wn−1
2 •) stands for the number of word type pairs that have wn−1

2
inbetween:

N1+(•wn−1
2 •) = |(w1, wn) : c(wn

1) > 0| = ∑
wn

N1+(•wn
2) (1.24)
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Compared to the absolute discounting, the modification is made at the
computation of the first order distribution where:

P(wn) =
N1+(•wn)

N1+(••)
(1.25)

Using this technique, conditional probabilities can be all explicitly estimated
without using the recursive equation because the previous equation can be
generalized to higher orders:

P(wn|wn−1
1 ) =

N1+(•wn
2)

N1+(•wn−1
2 •)

(1.26)

The main motivation leading to this approach is explained from an analysis
of Chen and Goodman (1998). The authors stated that “a lower-order distribution
is a significant factor in the combined model only when few or no counts are present
in the higher-order distribution. Consequently, they should be optimized to perform
well in these situations”. In particular, unigram probabilities are useful just in
case we have to estimate the probabilities of an unseen bigram. To make this
idea clearer, we can take an example from the same article. Suppose that in
the training data, the word “Francisco” occurs much more often than the word
“information”. At the same time, it follows a single history “San” while the
latter is preceded by a large number of different words. Now, if we need to
assign the probabilities to two unseen bigrams “useful Francisco” and “useful
information”, that of the latter should be higher as intuitively, there are more
chances that the word “information” is used after a novel history. Following
the absolute discounting approach, they will be incorrectly estimated because
they will be proportional to unigram probabilities, and we have assumed that
the unigram probability of “Francisco” is larger. It suggests that unigram
probability of a word shouldn’t be proportional to the number of occurrences
but instead to the number of different words observed in its history: the “count
of counts” N1+ factors.

The modified interpolated Kneser-Ney smoothing technique, proposed in (Chen
and Goodman, 1998), is another version where the discount (dc) depends on
the number of occurrences of n-grams:

P(wn|wn−1
1 ) =

c(wn
1)− dc(c(wn

1)), 0
∑wn c(wn

1)
+ (1− κ(wn−1

1 ))P(wn|wn−1
2 ), (1.27)

where:

dc(c) =


0 if c = 0
dc1 if c = 1
dc2 if c = 2
dc3+ if c ≥ 3

(1.28)
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Now, the normalization term, 1− κ(wn−1
1 ), is computed as follows:

1− κ(wn−1
1 ) =

dc1 N1(wn−1
1 •) + dc2 N2(wn−1

1 •) + dc3+ N3+(wn−1
1 •)

∑wn c(wn
1)

, (1.29)

where

Ni(wn−1
1 •) = |wn : c(wn

1) = i|, (1.30)

Ni+(wn−1
1 •) = |wn : c(wn

1) ≥ i| (1.31)

Estimates for optimal dcs can be directly computed from the statistic of the
training data as follows:

y =
n1

n1 + 2n2
,

dc1 = 1− 2y
n2

n1
,

dc2 = 2− 3y
n3

n2
,

dc3+ = 3− 4y
n4

n3
, (1.32)

where nc is again, the number of n-grams with exactly c occurrences.
In many cases, this version is reported to perform better than the original

one. Recently, an extended version with more sophisticated ways of estimating
discounting parameters is proposed in (Andres-Ferrer, Sundermeyer, and Ney,
2012).

1.3.1.3 Stupid back-off

Stupid back-off introduced in (Brants et al., 2007) is motivated by the require-
ment to train language models on extremely large corpora (up to 2 trillion
tokens). Instead of applying any discounting, it directly uses the relative
frequencies:

Scr(wn|wn−1
1 ) =

{
PMLE(wn|wn−1

1 ) if c(wn
1) > 0

γ Scr(wn|wn−1
2 ) otherwise

, (1.33)

where γ is a back-off factor that is practically set to 0.4. As no normalization is
done, these are not probabilities but scores. With data of such large order of
magnitude, the lack of normalization does not seem to cause any degradation
on the system performance. Concretely, the performance of stupid back-off
models has been shown to approach that of Kneser-Ney when trained on data
of more than 8 billions of tokens within a phrase-based machine translation
framework. It probably demonstrates that the choice of smoothing technique
has a little influence when the training data reaches billions of tokens.
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In summary, even with more sophisticated smoothing techniques, the main
weakness of word based n-gram language models is that they always rely
on a discrete representation of the vocabulary, where each word is associated
with a discrete index. In this model, the morphological, syntactic and seman-
tic relationships which structure the lexicon are completely ignored, which
has a negative impact on the generalization performance of the model. As
seen later, this is the main motivation leading to the continuous space based
approach for language modeling, which aims at encoding all those abstract
word relationships into a unique continuous space. Apart from that, various
approaches have been proposed to overcome this limitation, notably the use
of word classes (Brown et al., 1992; Niesler, 1997), of explicit integration of
morphological information in random forest models (Xu and Jelinek, 2004;
Oparin et al., 2008), of exponential models (Lau, Rosenfeld, and Roukos, 1993;
Rosenfeld, 1996; Chen, 2009b), of topic or semantic based models (Bellegarda,
1998; Gildea and Hofmann, 1999; Mrva and Woodland, 2004), of factored mod-
els (Bilmes and Kirchhoff, 2003) or of generalized back-off strategies (Bilmes
et al., 1997) . . . Several of these extensions, which are related to the work of this
thesis, are briefly described in the next sections.

1.3.2 Class-based Language Models

As an attempt to make use of the similarity between words, class-based lan-
guage models were introduced in (Brown et al., 1992) and then, deeply investi-
gated in (Niesler, 1997). First, words are clustered into classes. The generaliza-
tion is then achieved based on the assumption that the prediction for rare or
unseen word n-grams can be made more accurate by taking into consideration
the richer statistics of their associated (less sparse) class n-grams. In general,
the mapping from words to classes can be many-to-one or many-to-many, cor-
responding respectively to hard and sort clusterings. Soft clustering requires
a marginalization over all possible classes in the calculation of the n-gram
probabilities, which is intractable in most cases. Therefore, in practice, words
are often supposed further to belong to only one class.

There are two major issues in the class-based approach. The first one
concerns the way of using word classes in estimating word probabilities. Let ki
be the class of word wi, then several ways could be followed, for example, as
in the original approach:

P(wn|wn−1
1 ) = P(wn|kn)P(kn|kn−1

1 ), (1.34)

or a more complex way as in (Goodman, 2001b; Emami and Jelinek, 2005):

P(wn|wn−1
1 ) = P(wn|kn

1 , wn−1
1 )P(kn|kn−1

1 , wn−1
1 ) (1.35)

For the former model structure, using maximum likelihood estimation,
the first term P(wn|kn) is the number of times that the word in class kn is
wn in the training text. By converting words in the training text into their
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associated classes and then considering each class as a new word unit, the
second term is estimated using conventional smoothing techniques such as
Kneser-Ney smoothing. As a result, after determining a class for each word, the
estimation of the two probabilities in Equation (1.34) is straightforward. For
more complicated structures such as defined by Equation (1.35), more sophisti-
cated estimations need to be employed (see (Goodman, 2001b), Section 1.3.7 or
Section 1.3.8 for more details).

The other issue with this approach is how to automatically induce these
classes as the quality of clustering has an important effect on final results. Con-
cretely, it should maximize the log-likelihood of the training data. Considering
a history to contain solely a previous word, this log-likelihood can be written
as follows:

L(Dtrain) = ∑
wn−1wn

c(wn−1wn) log P(wn|wn−1)

= ∑
wn−1wn

c(wn−1wn) log P(wn|kn)P(kn|kn−1)

= ∑
wn−1wn

c(wn−1wn) log
c(wn)

c(kn)

c(kn−1kn)

c(kn−1)

= ∑
kn−1kn

c(kn−1kn) log c(kn−1kn)− ∑
kn−1

c(kn−1) log c(kn−1)

−∑
kn

c(kn) log c(kn) + ∑
wn

c(wn) log c(wn), (1.36)

where c represents the count in the training set.
As the last term does not depend on word classes, the optimal clustering

is the one that maximizes the remaining summation, i.e., the average mutual
information of adjacent classes. Though, finding this clustering is impractical
due to high computational cost. As a result, an incremental method based on a
greedy algorithm, called an exchange algorithm is often used. It was improved
further in (Kneser and Ney, 1993). The main idea is that, at each iteration,
each word in the vocabulary is moved tentatively to all the classes and finally
assigned to the class that results in the highest log-likelihood measure. After
several iterations, the algorithm converges to a local optimum. The resulting
classes can somehow group together word with similar properties, even though
it only takes bigram information into account. The extension to a larger order
(trigram) was proposed in (Martin, Liermann, and Ney, 1998).

The major issue with this algorithm is it is greedy, which means that the
final clustering is only locally optimal. Therefore, in (Emami and Jelinek, 2005),
the authors proposed to combine models with different clusterings. They
are obtained by randomizing the various design parameters: the choice of
clustering data, the choice of words to be clustered, the initialization, and
the number of classes. This method is very similar to a random forest based
approach for language modeling as will be seen later in Section 1.3.6.
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The idea of using word clustering to mitigate the data sparsity problem
is helpful. However, in practice, the final results have been mixed at best.
While for small settings, good improvements in perplexity in combination with
other n-gram based models have been found, it has been rare that class-based
language models have significantly improved results. Another disadvantage
that hinders the practical use of class-based language models is that, given
the quantity of data available nowadays, the computational complexity of the
clustering algorithm becomes important: its learning time can be counted in
days. Compared to an approach which is based on a continuous word space
representation, the main subject studied in this dissertation, the word clustering
of class-based language models is too severe, even in the complicated case
where several random clusterings are taken into account. Furthermore, the
word clustering in the class-based approach is learned separately, not directly
to maximize the word probabilities. As a consequence, it is not guaranteed that
an intuitively good word clustering will lead to a better performance.

1.3.3 Structured Language Models

Structured Language Models (SLMs) (Chelba and Jelinek, 2000; Roark, 2001;
Filimonov and Harper, 2009) are one of the first successful attempts to introduce
syntactic information into statistical language models. The main idea is to use
the syntactic structure (a binary parse tree) when predicting the next word so
as to filter out irrelevant history words and to focus on the important ones.
In practice, as represented in Figure 1.1 in case of trigrams, to predict the last
word “after”, in lieu of using the two previous words “of cents” as would
n-gram based LMs, SLMs use the two last exposed headwords (heads of phrases)
according to the parse tree: “contract” and “ended” which are intuitively,
stronger predictors. Compared to standard n-gram LMs, an advantage of
SLMs is that they can use long distance information.

The algorithm proceeds as follows: from left to right, the syntactic structure
of a sentence is incrementally built. As for each sentence, there is not a unique
possible parse tree T, SLMs need to estimate the joint probability P(wL

0 , T) and
then induce the probability of the sentence by marginalizing out the variable T.
SLMs consist of three modules:

• WORD-PREDICTOR predicts the next word given context words and
their associated POS tags.

• TAGGER predicts the POS tag of the next word given this word, context
words and their associated POS tags.

• CONSTRUCTOR grows the existing parse tree of context words with the
next word and its POS tag.

This approach has been shown to achieve improvements both in terms of
perplexity and WER for ASR systems via word lattice rescoring, over small
scale baseline systems (Chelba and Jelinek, 2000). Incorporating neural network
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Figure 1.1: Example for structured language models. This figure is borrowed
from (Chelba and Jelinek, 2000).

architectures into the SLM framework was investigated in (Emami and Mangu,
2007). The idea of using exposed headwords is also used in (Khudanpur and
Wu, 2000) with maximum entropy models, or in neural network based mod-
els (Kuo et al., 2009). Recently, the advantage of modeling long-dependencies
of SLMs over standard n-gram LMs has been again demonstrated in (Rastrow,
Khudanpur, and Dredze, 2012). The local context issue is partially overcome in
the continuous space neural network approach where long range dependencies
are captured, but in an usual way, i.e., by increasing the model order, to at least
7 for the above example. In the neural network framework, the relevance of
predictors in the context of the n− 1 previous words can somehow be learned
automatically (see Chapter 5 for more details). The major issue with SLMs is
the introduction of other complex random variables (the binary parse tree) into
the framework and the attempt to estimate the joint distributions that make
models more complex. There are three conditional probabilistic submodels
that need to be learned. For this reason, the application of SLMs in large scale
tasks is usually to be too expensive.

1.3.4 Similarity based Language Models

In (Dagan, Pereira, and Lee, 1994; Dagan, Lee, and Pereira, 1999), a general
method for using word similarity in language modeling was proposed. It is
based on the assumption that if two words w1 and w′1 are similar, then w′1 can
provide information for the estimation of the probability of unseen word pairs
containing w1. Let Sim(w1, w′1) denote a similarity measure for a word pair
(w1, w′1), N(w1) denote the neighbors, i.e., the most similar words of w1, then
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the probability of a bigram is defined as follows:

Psim(w2|w1) = ∑
w′1∈N(w1)

Sim(w1, w′1)
∑w′′1

Sim(w1, w′′1 )
P(w2|w′1), (1.37)

where P(w2|w′1) is computed using any appropriate smoothing technique.
Word similarity measures can be derived from the statistics of a training

corpus, using for instance, Kullback-Leibler (KL) divergence:

Dis(w1||w′1) = ∑
w2

P(w2|w1) log
P(w2|w1)

P(w2|w′1)
(1.38)

This term is well defined only when P(w2|w′1) > 0 whenever P(w2|w1) > 0.
This assumption holds for all smoothing methods. The similarity measure is
then defined as an exponential function of the KL distance:

Sim(w1, w′1) = e−a Dis(w1||w′1), (1.39)

where β is introduced to control the relative contribution of neighbor words:
with a large a, the closest words get more weight; when a decreases, distant
words get more influence.

For a particular choice of Dis, we define also N(w1) as the most k nearest
words whose distance to w1 is smaller than a threshold s. The hyper-parameters
a, s and k are tuned experimentally.

Compared to class-based approach, they share the same intuition of using
similar events to make the estimation of other events more accurate. However,
while class-based methods have a good probabilistic interpretation, similarity
based methods are justified only empirically. It can be considered as one
attempt to use the similarity between words in a more flexible way, i.e., without
the definition of class. In (Dagan, Lee, and Pereira, 1999), this approach was
shown to achieve a modest improvement in a small experiment restricted
to bigram probability estimation. Its extended version for longer context is
possible but needs to be further investigated. For reference, , there are some
recent studies on this approach such as the work of Gosme and Lepage (2011);
Gillot and Cerisara (2011). As shown later, trying to take into account the
similarity between words is also a main motivation of the continuous space
based approach. However, their ways of considering the similarity between
words are very different in two main points: continuous space neural network
language models have a probabilistic interpretation and the similarity between
words is learned automatically by optimizing the log-likelihood probabilities
of the training data. Another advantage with the continuous space based
approach is that it can consider much longer contexts.

1.3.5 Topic and semantic based Language Models

There are several attempts that try to introduce semantic information in lan-
guage modeling. Among them, topic based approach which was proposed
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in (Gildea and Hofmann, 1999) can be taken as one salient example. In princi-
ple, topic based language models aim at handling global dependencies between
words, for instance, at the document level. Suppose that the training corpus is
a set of documents, topics are introduced as latent variables in a framework
where the probability of a word w given a document d is decomposed as
follows:

P(w|d) = ∑
t

P(w|t)P(t|d) (1.40)

Here t is interpreted as a topic and a d, a document defines a mixture of
unigram distributions.

Suppose that we have a vocabulary containing V words and B documents.
From the training corpus, we compute a co-occurrence matrix C ∈ RV×B by
keeping track of which word is found in what document: each element C(i, j)
or C(wi, dj) is the number of times the word wi occurs in dj. Then, we can
use an Expectation-Maximization (EM) algorithm to fit the set of parameters
θ implied by P(w|t) and P(t|d) so as to maximize the log-likelihood of the
training data:

L(θ, C) = ∑
w

∑
d

C(w, d) log ∑
t

P(w|t)P(t|d) (1.41)

The E-step computes the expectation of latent variables as:

P(t|w, d) =
P(w|t)P(t|d)

∑t′ P(w|t′)P(t′|d) (1.42)

and then, The M-step adusts the parameters of the model:

P(w|t) = ∑d C(w, d)P(t|w, d)
∑w′ ∑d C(w′, d)P(t|w′, d)

(1.43)

P(t|d) = ∑w C(w, d)P(t|w, d)
∑t′ ∑w C(w, d)P(t′|w, d)

(1.44)

When testing, to compute the probability of a word w given a history h,
we need to consider the history as a pseudo-document, replacing d by h in
Equation (1.40). Not like in n-gram approaches, h can be used in a more general
way, to represent any possible type of causal contexts, i.e., from the last n− 1
words as in n-gram based approaches, to the current sentence, or even to the
current document. While the first term P(w|t) is already available and should
be reasonably kept unchanged, the second term P(t|h) needs to be determined
to reflect the topic distributions in current documents. A single step of an
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online version of the EM algorithm (suggested in (Gildea and Hofmann, 1999)
and extended further in (Mrva and Woodland, 2004)) is applied:

P(t|h1) = P(t) = ∑
w

∑
d

C(w, d)P(t|d) (1.45)

P(t|hl) =
1

1 + a
(P(wl|t)P(t|hl−1)

cs(l)

∑t′ (P(wl|t′)P(t′|hl−1)cs(l)
+

l − 1 + a
i + a

P(t|hl−1), (1.46)

where h1 (hl) stands for the context used to predict word w1 (wl).
In this equation, cs(i) is the confidence score, used to take into account the

reliability of words recognized from speech decoder. a is used to emphasize
the prior topic distribution at the beginning (the first a words) because at this
time, there is not enough information to accurately determine the topic of the
document.

Because of they consider documents (or histories) as “bag of words”, thus
ignoring the information of word orders and syntax, topic based models should
not be considered as an alternative but rather as complementary to conven-
tional n-gram models. There are several ways of combining them. The best one
seems to be a unigram rescaling method (Gildea and Hofmann, 1999) where:

P(w|h) ∝ Pn(w|h) ∗
Pt(w|h)
Pu(w)

, (1.47)

where Pn and Pt are given respectively by the conventional n-gram model and
the topic based model respectively. Pu is obtained from the unigram distribu-
tion. The main idea is that we should use a unigram probability to penalize
the use of the topic based model when predicting common words because they
often occur with almost equal frequency in all documents, meaning that their
behavior is not well captured by the topic based model.

This approach is actually an application of Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann, 1999) based method as described in (Mrva and
Woodland, 2004). The first idea of using the document information in language
modeling can be traced back to (Bellegarda, 1998) where the semantic links
between words and document are captured by using Latent Semantic Analysis
(LSA) (Deerwester et al., 1990). LSA is an information retrieval method that tries
to learn the semantic relationships between words and documents in a corpus.
Words and documents are represented as vectors in a space of large dimension.
First, a word-document matrix G is constructed based on the statistics of the
co-occurrences between words and documents (of the co-occurrence matrix C).
Then, the singular value decomposition (SVD) of the matrix is computed:

G ≈ Ĝ = RSBT (1.48)

Word and document representations are respectively the left singular vec-
tors of G (in R ∈ RV×M) and the right singular vectors of G (in B ∈ RB×M)
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forming a space of dimension M. If two words tend to occur in the same kind
of documents, they are close in this space. However, because the informa-
tion encoded in the word space does not contain syntactic and word order
information, the definition of word similarity is different from those of other
approaches, e.g., class-based, continuous space based . . . Two close documents
often have a similar semantic content. As a consequence, words and docu-
ments having a strong semantic relationship are also expected to be close. The
similarity measures in each case are defined differently, so on for the distance.
For example, the similarity Sim and the distance Dis between words wi and wj
can be defined as follows:

Sim(wi, wj) = cos(Ri,:S, Rj,:S), (1.49)

Dis(wi, wj) = arccos Sim(wi, wj), (1.50)

where Ri,: and Rj,: are the ith, jth line vectors of R.
To use these similarities in inference, the history is considered again as a

pseudo-document, being projected in the document space. The probabilities
are then induced by normalizing the distance between words and this pseudo-
document.

To summarize, topic based and LSA based approaches both focus on using
semantic information. By considering a more general context, usually back to
the first word of a test document to guess the topic (the domain) information
of the text, they can be also considered as adaptation methods for language
modeling. Little improvements in terms of perplexity were observed when
combining them with standard n-gram based language models in small tasks.
Unfortunately, they did not translate into improvements in real world appli-
cations. Another issue is that in many cases, the document information of a
corpus is not available or ill-defined. Another topic adaptation approach for
language modeling was also investigated in (Chen, Seymore, and Rosenfeld,
1998), but with the use of another model structure, an unnormalized exponen-
tial models. Recently, following the same direction, (Chien and Chueh, 2011)
introduces an extension, namely, Dirichlet Class Language Models. Based on
Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan, 2003; Griffiths and
Steyvers, 2004), a more advanced method for document modeling, they are
shown to achieve gains over the LSA based language model in a small speech
recognition task. Note that, in Section 4.3, according to the results on a word
relatedness task, the word space of continuous space neural network language
models is shown to encode some semantic information and is significantly
better than that induced from LSA methods.

1.3.6 Random Forest Language Models

Introduced for the first time in (Xu and Jelinek, 2004), Random Forest Language
Models (RFLMs) are a set of Decision Tree Language Models (DTLMs) includ-
ing randomization in the tree-growing algorithm. The underlying idea of using



1.3. State-of-the-art Language Models 23

several decision trees (DTs) is that each DT constructed in this way is only
locally optimal, hence; a collection of them would be closer to global optimum,
i.e., generalizing better to unseen data. Combination is performed through the
interpolation of all DTLMs with equal weights. The optimal number of DTs is
large, from 50 to 100 trees are often needed to form a sufficiently rich forest.

A decision tree as proposed in (Breiman et al., 1984) is a kind of classifier.
Its application for language modeling is first proposed in (Bahl et al., 1989) and
further studied in (Potamianos and Jelinek, 1998). A DT is a tree consisting
of nodes. At each node, we assign one question to partition this node into
several subnodes (its children). In the context of language modeling, each
node corresponds to a cluster of histories and each question is asked to divide
this cluster into several subsets. At the end, the set of histories is divided into
classes; each of them corresponds to a leaf of the tree. Histories of the same
class (in the same leaf) share the same distribution over words. There are two
major problems with this technique that need to be addressed: question design
at nodes or the construction of a tree and probability smoothing technique at
leaves or data fragmentation issues.

As DTLMs are often restricted to consider binary trees, at each node, the
n-gram set is divided into two subsets using any possible “yes/no” question
(predictor). These questions are asked about information encoded in the history,
from simple word based such as: “The first previous word is an element of the
following set {w1, w2; . . .}?” to more complicated linguistically oriented: “Is the
POS tag for the second previous word is NOUN?”. All n-grams which answer
“yes” will proceed to one branch going out of a node and the other n-grams
will follow the other branch.

The construction of deterministic DTLMs is not globally optimal since it
is based on a greedy approach to reduce the uncertainty about the event to
be predicted, using principles that are analog to entropy reduction. At first,
all histories are pooled together to create a node called root. A number of
splitting steps is then applied. At each step, a current leaf of the tree is chosen;
its set of histories is divided into two subsets. This leaf becomes an internal
node; two new leaves (its children) are then added to handle these new subsets.
The splitting criterion is to maximize the log-likelihood of the training data,
therefore, the needed information at each stage is only statistics associated with
the node of interest. Ideally, the likelihood increase of all possible questions at
each node should be estimated so as to be able to select the best question for
each node. Expensive calculation makes it unfeasible and a greedy approach
must be followed as in the class-based approach.

Suppose that the original n-gram set at one node is separated into two
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subsets (S, S̄), the log-likelihood under this split can be formulated as:

L(S) = ∑
w

[
c(w, S) log

c(w, S)
C(S)

+ c(w, S̄) log
c(w, S̄)

c(S̄)

]
= ∑

w
[c(w, S) log c(w, S) + c(w, S̄) log c(w, S̄)]

− c(S) log c(S)− c(S̄) log c(S̄), (1.51)

where c(S) represents the number of occurrences of an event S observed in the
training data. This quantity measures the goodness of a question locally for
this node. In practice, ranking all possible questions at each node is impossible
so the splitting method based on a fast exchange algorithm (Martin, Liermann,
and Ney, 1998) (used also in class-based frameworks) is applied. In principle,
the n-gram set of the node can be considered as a set of disjoint basic elements.
They have one special property that we can always combine any subset of
basic elements to form a question. The set of histories is initially divided into
two subsets of basic elements: (itself, ∅). The best subsets are then induced
by iteratively moving elements from one set into the other in such a way that
the likelihood increases, until no move is found to satisfy this criterion. The
gain on held-out data is finally used as a critical measure to decide whether
this split is finally retained.

It is worth noticing that a conventional n-gram based language model can
be interpreted as one special case of DTLM. For example, a DT with a question
about one individual word at each node is a bigram model.

Even though building random forests from multiple local optimal deter-
ministic DTLMs can potentially yield some improvements, more achievements
will be expected if randomization is introduced in the construction, in order to
create a more flexible structure, a randomized DT. There are two basic sources
for that. Firstly, the initialization of node splitting can be accomplished ran-
domly, i.e., using two randomize subsets (S, S̄) instead of (itself, ∅). Secondly,
predictor selection can also be made random but with care if a question with
low predicting power is picked in one of the top nodes, this may result in early
tree-growing stop, leading to a very shallow final tree. Therefore, the s% (to be
tuned) worse questions according to the measure defined by Equation (1.51)
are excluded. All good enough questions remaining after filtering have equal
opportunities to be selected.

Once the construction of the tree is finished, it is possible that some n-grams
of a certain leaf will have zero probability. Smoothing is therefore necessary.
One can benefit from upper node distributions for smoothing, or instead,
discount DT probabilities according to basic smoothing techniques such as
Kneser-Ney. Another smoothing technique based on a recursive equation on
the tree structure was also proposed in (Oparin, Lamel, and Gauvain, 2010b).

Due to the fact that RFLMs in theory can take many different questions, this
approach is claimed to be a promising model to incorporate multiple knowl-
edge sources. In the literature, they have been reported to achieve significant
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improvements when combined with conventional n-gram based models on
small and medium size tasks, especially for inflectional languages such as
Czech or Russian with the use of morphological features (Oparin et al., 2008).
Their main weakness is that the number of nodes grows quickly with the con-
text length, the corpus size and the number of possible questions. This method
is therefore very memory and time consuming with high computational de-
mand. For large scale tasks, several simplifications are required, resulting in
smaller or even no significant achievements (Oparin, Lamel, and Gauvain,
2010b). Compared to RFLMs, continuous space based language models can
reconcile several sources of information in a simpler and more flexible way as
shown in Chapter 4 where their word space representation is demonstrated to
efficiently group together words which have similar morphological information
(lemma, inflection, POS tag . . . ).

1.3.7 Exponential Language Models

An exponential language model, or equivalently maximum entropy language
model, is proposed in (Lau, Rosenfeld, and Roukos, 1993; Rosenfeld, 1994). It
consists of a set of feature functions F = { fi(w, h)} and of an equal number of
weights Λ = {λi} where the conditional probability distributions are defined
as:

P(w|h) = exp(∑F
i=1 λi fi(w, h))

Z(h)
, (1.52)

where Z(h) is a normalization factor that is computed as follows:

Z(h) = ∑
w

exp(
F

∑
i=1

λi fi(w, h)) (1.53)

We can introduce in F arbitrary feature functions of the word-history pair
(w, h). A history h is not restricted to the n− 1 previous words as in n-gram
approaches but can run from the first word of a document to the last previous
word of the predicted word. Therefore, there are a lot of feature functions that
can be used: usual n-grams, caching or skipping n-grams, word triggers (long
distance word pairs) . . . as shown in the study of Rosenfeld (1994). Particularly,
the models that take word triggers as features are often called trigger based
language models.

As usual, exponential models are trained by maximizing the log-likelihood
of the training data Dtrain, equivalently to maximize:

∑
w,h∈Dtrain

Ptrain(w|h) log P(w|h) (1.54)

In this equation, Ptrain is the empirical distribution estimated on the training
data, being computed as follows:

Ptrain(w|h) =
c(w, h)

∑w′ c(w′, h)
, (1.55)
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where c stands for the count in the training data.
Calculating partial derivatives of this equation implies that exponential

models have to satisfy the constraint that the expectation of each feature is
equal to its empirical expectation:

∑
w,h∈Dtrain

P(w|h) fi(w, h) = ∑
w,h∈Dtrain

Ptrain(w|h) fi(w, h) (1.56)

In practice, to avoid overfitting, a regularization term is always added (Chen
and Rosenfeld, 2000). The objective function was demonstrated to be convex, so
the parameters Λ can straightforwardly be estimated using a gradient descent
or any other iterative algorithm. However, the training procedure is often slow,
because it is done through many iterations, and furthermore, at each iteration,
for each example in the training data, the calculation of the normalization term
Z, which involves the summation over all words in the vocabulary, is required.
For the same reason, inference is also very time consuming within, for instance,
an ASR system.

As summing over all words in the vocabulary is very expensive, it is very
hard to train such kind of model in large scale frameworks where a usual
vocabulary has at least several thousand words. In (Goodman, 2001a), the
author proposed an efficient method to drastically reduce the computational
time. Inspired by class-based technique, the main idea is to factorize the
computation of the normalization factor into two cheaper ones. Suppose that
each word w belongs to only one class k in K, the conditional probability can
be computed in a different way:

P(w|h) = ∑
k′

P(w, k′|h)

= ∑
k′

P(w|k′, h)P(k′|h)

= P(w|k, h)P(k|h) (1.57)

Note that the above assumption about the number of classes for words
implies that P(w|k′, h) = 0 with all k′ other than k. The two resulting terms
have the same form as P(w|h) in Equation (1.52) and hence can be computed
using the same exponential formula. Estimating their normalization factors
requires to sum over all words w in class k for the first term and over all possible
classes k for the second term. In general, these two numbers can be chosen to
be much smaller than the vocabulary size, implying that the complexity of the
proposed exponential class-based language model is much cheaper than the
original one. As the continuous space language models are shown to have the
same problem, in Chapter 2, based on this idea, we propose a new structure
for this type of model in order to speed-up the computational time.

Despite that exponential models are based on well-defined and theoretical
supports, their results in large scale frameworks are somehow limited. It may
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be due to the fact that most of features (usual or skip n-gram indicators) are sim-
ilar to the input of conventional back-off models, so that combining both does
not necessarily lead to improvements. Another problem with this approach
is that when dealing with a large corpus over a large vocabulary, the use of a
sufficient context size is impossible because the number of potential features
(and parameters) becomes too large to handle. The function of exponential
models is analogous in form to continuous space neural network models. The
main difference is that the features of the former are discrete, chosen at the
beginning and kept unchanged during training whereas those of the latter are
continuous and learned automatically.

1.3.8 Model M

Recently, the Model Ms have been proposed and shown to achieve state-of-
the-art performances (Chen, 2009b). This is a type of exponential class-based
language model, but is based on a different way of using class information to
shrink the model size. In (Chen, 2009a), the cross-entropy on the test data was
shown to be linear in the size of the model:

Htest ≈ Htrain
γ

Ntrain

F

∑
i=1
|λi|, (1.58)

whereH stands for a cross-entropy, Ntrain is the number of events (n-grams) in
the training data, F is the number of parameters and γ is a constant independent
of domain, training set size and model type.

Therefore, by decreasing their size, one can hope to obtain models that can
achieve a better generalization. This is carried out by introducing new features
based on a heuristic from (Chen, 2009b): "Identify groups of features which will
tends to have similar λi values. For each such feature group, add a new feature to the
model that is the sum of the original features". The set of potentially satisfying
features are induced from word classes.

Replacing the general history h in Equation (1.57) by the n − 1 previous
words as Model M follows the standard n-gram based approach, we have:

P(wn|wn−1
1 ) = P(wn|wn−1

1 , kn)P(kn|wn−1
1 ) (1.59)

Model M is then obtained by setting:

P(wn|wn−1
1 , kn) = Pe(wn|wn−1

1 , kn), (1.60)

P(kn|wn−1
1 ) = Pe(kn|kn−1

1 , wn−1
1 ), (1.61)

where Pe(z|y) is used to denote the output of an exponential model whose
feature functions are restricted to be indicator functions of any suffix of yz. For
example, the features of Pe(wn|wn−1, kn) are of the form wn, knwn or wn−1knwn.
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The first term of Equation (1.59) is therefore estimated using an exponential
model which uses features from kn and wn

1 . The second term of Equation (1.59)
is estimated using an exponential model which uses features from kn

1 and wn−1
1 .

Note that, in the left hand side of Equation (1.61), the use of wn−1
1 to repre-

sent a history is enough as it already represents all context information. On
the contrary, in the right hand side, kn−1

1 is introduced to emphasize that this
exponential model explicitly takes the word classes as features. The goal is that,
by grouping features of similar n-grams (having the similar predicted word wn
in the same class kn or having the similar history words wn−1

1 in the same set
kn−1

1 ), the model size can be reduced, leading to improvements as claimed by
the above heuristic.

The quality of word classes has an important influence on the performance
of the resulting model. Similarly to the clustering problem in class-based
approaches, finding the optimal word classes in the likelihood framework of
Model Ms is impractical due to its high computational demand. In the original
work, the algorithm of Brown et al. (1992) was used. Recently, a modified
version of this clustering algorithm that is specifically tailored to Model M was
developed in (Chen and Chu, 2010). Firstly, it modifies the objective function
by replacing the conditional bigram probability in Equation (1.36) by a joint
probability, then adding the same term but of the order 3:

Ljoint(Dtrain) = ∑
wn−1wn

c(wn−1wn) log P(wn−1wn)

+ ∑
wn−2wn−1wn

c(wn−2wn−1wn) log P(wn−2wn−1wn) (1.62)

This term was shown to improve the quality of the word clustering used
by Model M. Moreover, as Model M uses n-gram word contexts when predict-
ing words and classes, n-gram features seem to be useful for class induction.
Therefore, it is logical to use word n-gram probabilities and to back-off to class
n-gram probabilities only for n-grams that do not occur in the training data. In
this way, instead of using training set likelihood as a criterion, word classes are
found by maximizing the test likelihood estimated using one type of smoothing
techniques.

In large scale ASR tasks (Chen, 2009b; Chen et al., 2009), via lattice rescoring,
model M has been shown to consistently achieve significant improvements
over back-off language models. Essentially, model M differs from other expo-
nential approaches in the way that it can take into consideration the similarity
between words in both the context and prediction sides. This is done by using
features induced not only from words but also from word classes. Similarly to
exponential language models, their major weakness is the training complexity
because of the enormous number of features which are not only defined over
word n-grams but also over class n-grams.

In summary, all the sophisticated approaches to language modeling that
have been described so far are based on statistics of discrete symbols, and have
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to deal with the data sparsity problem even in the presence of very large training
corpora. This particular problem also referred to as the curse of dimensionality is
used to describe the fact that with the higher dimensionality of the input space,
one always needs much more data in order to make the learning reliable. In
language modeling, the input space is often estimated through the vocabulary
size (denoted by |V| or V). For example, if V =10,000, even using the n-gram
assumption with n = 4, the number of possible n-grams in theory is 1016

and hence the number of free parameters that needs to be trained is of the
same order. There is never enough data to guarantee that all possible n-grams
are seen at least once in this case. In practice, as a consequence of the Zipf’s
law (Zipf, 1932), the available corpora are usually limited to several billion (109)
words with a lot of repeated n-grams. This illustrates why the data sparsity
problem remains challenging even with the use of smoothing techniques, word
classes . . . The number of free parameters is still too large. The information for
less frequent n-grams is still difficult to capture, leading to an underestimation
of their probabilities.

1.4 Continuous Space Language Models

As shown in the previous sections, approaches to language modeling related to
considering words as discrete symbols all suffer from the data sparsity problem.
One of the most successful alternatives to date which aims to use distributed
word representations to remedy this issue was introduced in (Bengio, Ducharme,
and Vincent, 2000), where distributionally similar words are represented as
neighbors in a continuous space. This turns n-grams distributions into smooth
functions of the word representations. More concretely, each word in the
vocabulary is mapped into a real-valued vector and the conditional probability
distributions are then expressed as a (parameterized) smooth function of these
feature vectors.

The similarity between words in a continuous space, if successfully learned,
can generalize from the observation of frequent n-grams to similar instances of
less frequent (or even unseen) n-grams, thereby reducing the sparsity issues
that plague conventional maximum likelihood estimation. The underlying
idea is that if “similar” word sequences have similar representations; a small
difference between their representations will only imply a small variance in the
estimated probability thanks to the smoothing property of functions. Moreover,
when one example is encountered in the training step, the model will try to
learn not only information about this example but also about similar ones.
For example, in the training data, we have seen this sentence: “Alice is the
only girl that Bob loves”. It should help to predict the probability of the new
sentence which we assume, doesn’t occur in the training set: “Carole is the only
woman that Bob loves” as long as the continuous representations for the couple
of words (“Alice”, “Carole”) are close and likewise for (“girl”, “woman”). To
achieve this goal, the choice of the mapping plays a crucial role, since it needs
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to successfully encode similarity relationships between words. Moreover, the
smoothness assumption needs to be fulfilled by the distributed representations
induced from the mapping as it serves as an input of the function estimation.

In (Emami, 2006), the author asserts that from the point of view of the
curse of dimensionality, by mapping random variables from the original high-
dimensional discrete space (V) into a low dimensional but continuous one, “the
estimation problem is not as severely crippled by the curse of dimensionality associated
with high-dimensional discrete random variables”. In most of the case, even for
large scale tasks, continuous space language models have fewer parameters
than discrete ones. Their number of free parameters is typically in the order of
|MV| (where M is the dimension of a continuous space that is always much
smaller than V), therefore being almost linear in the vocabulary size. For
comparison, the number of discrete n-gram word-based language models is
in theory in order of Vn, in practice much smaller, in order of the number of
n-gram types in the training data that is proportional to the number of running
words in the training data.

The important advantage of the continuous space based approach is that
the representations of words in a continuous space are learned automatically.
In the original article (Bengio, Ducharme, and Vincent, 2000), the projection
of words into a continuous space and the associated probability estimates
were jointly carried out in a multi-layer neural network architecture. This
idea was inspired from other words, such as (Hinton, 1986; Elman, 1990;
Paccanaro and Hinton, 2001) where distributed representation for discrete
symbols were used within a neural network framework. Applying neural
networks in language modeling was also investigated in several articles such
as (Nakamura et al., 1990; Miikkulainen and Dyer, 1991; Schmidhuber and Heil,
1996; Xu and Rudnicky, 2000). However, in (Bengio, Ducharme, and Vincent,
2000), it was the first time that the idea of using neural network language
models was pushed to a large scale. We will call from now all models based on
this approach as Neural Network Language Models (NNLMs for short). The
formalism of neural networks allows us to express them in a unified framework,
where, crucially, word representations are learned in conjunction with the other
model parameters. The choice of the mapping is completely ignored since the
word representations are learned automatically for a particular estimation task.

This approach has shown significant and consistent improvements when
applied to automatic speech recognition (Schwenk, 2007; Emami and Mangu,
2007; Kuo et al., 2010) and machine translation tasks (Schwenk, Dchelotte,
and Gauvain, 2006). Hence, continuous space language models have become
increasingly used. These successes have revitalized the research on neuronal
architectures for language models, and given rise to several new proposals (see,
for instance, (Mnih and Hinton, 2007; Mnih and Hinton, 2008; Collobert and
Weston, 2008; Mikolov et al., 2010)). A major difficulty with these approaches
remains the complexity of training, which does not scale well to the massive
corpora that are nowadays available. Practical solutions to this problem are
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discussed in (Schwenk, 2007), which introduces a number of optimizations
and tricks to make training tractable. Even then, training a neuronal language
model typically takes days.

The remaining of this section is organized as follows. In Section 1.4.1, five
types of neural network language models are described. Then, the training
algorithm for feed-forward models is presented in Section 1.4.2. The model
complexity in terms of the number of parameters and the computational time
is analyzed in Section 1.4.3. The way to introduce the score of NNLMs into
practical tasks (ASR, SMT) is finally described in Section 1.4.4.

1.4.1 Current Approaches

Here, we are going to describe several variations of continuous space language
models considered in our study and discuss the various issues associated with
the training of such models, as well as their most common remedies. Let us
first introduce some notations in Table 1.1.

1.4.1.1 Standard Feed-forward Models

In the following, we will consider words as indices in a finite dictionary of
size V ; depending on the context, w will either refer to the word or to its index
in the dictionary. A word w can also be represented by a 1-of-V coding vector
v in a high-dimensional discrete space RV in which all components are null
except the wth which is 1. In the standard approach of (Bengio, Ducharme,
and Vincent, 2000), the feed-forward network which will be referred to as
standard NNLM, takes as input the n− 1 word history wn−1

1 and delivers an
estimate of the probability P(wn|wn−1

1 ) as its output. It consists of three layers
as represented in Figure 1.2.

The input layer builds a continuous representation of the history by mapping
each word into its real-valued representation. This mapping is defined by
RTv, where R ∈ RV×M is a projection matrix and M is the dimension of the
continuous projection word space. The output of this layer is a vector i of
(n− 1)M real numbers obtained by concatenating the representations of the
context words.

i = {RTv1; RTv2; . . . ; RTvn−1} (1.63)

The projection matrix R is shared along all positions in the history vector
and is learned automatically.

The hidden layer introduces a nonlinear transform, where the output layer
activation values are defined by

h = f
(

Whi + bh
)

, (1.64)
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notation meaning
a, b, c. . . vectors
ai, bi, ci. . . the ith component of the vector
A, B, C. . . matrices
Ai,j, Bi,j, Ci,j. . . the cell (i, j) of the matrix
A:,j, B:,j, C:,j. . . the column j of the matrix
Ai,:, Bi,:, Ci,:. . . the line i of the matrix
w a word; its index in the dictionary
V context vocabulary or general vocabulary; the vocabulary

size
M projection dimension
n model order
R ∈ RV×M projection space
v ∈ RV 1-of-V coding vector for words in the vocabulary (all null

except the wth (= 1)
i ∈ R(n−1)M input layer
f a nonlinear function (sigmoid or tangent hyperbolic)
H hidden layer size
Wh ∈ RH×(n−1)M weight matrix between the input layer and the hidden

layer
bh ∈ RH bias vector for the hidden layer
h ∈ RH hidden layer
Vo output vocabulary; output vocabulary size
Wo ∈ RVo×H weight matrix between the hidden layer and the output

layer
bo ∈ RVo

bias vector at the output layer
o ∈ RVo

output layer (before softmax function)
p ∈ {0, 1}Vo

output layer (after softmax function)

Table 1.1: Notations

where i is the input vector, Wh ∈ RH×(n−1)M and bh ∈ RH are the parameters
(weights and biases) of this layer. We use here f to denote a nonlinear function.
For instance, it can be tangent hyperbolic, tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) or sigmoid

function, sigm(x) = 1
1+exp(−x) . The vector h ∈ RH can be considered as a more

abstract representation of the context than i.

The output layer consists of V nodes, each node is associated with one word
in the vocabulary. Its activation values can be computed using the following
equation:

o = Woh + bo, (1.65)
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Figure 1.2: Feed-forward neural network language model architecture.

where Wo ∈ RVo×H and bo ∈ RVo
are respectively the projection matrix and

the bias term associated with this layer. Here, we use Vo rather than V to
denote the output vocabulary because in general, the output and the input
vocabularies can be different.

Then we can estimate the desired probability, thanks to the softmax function:

pi =
exp(oi)

∑j exp(oj)
(1.66)

The ith component of p corresponds to the estimated probability of the ith

word of the vocabulary given the input history vector P(wn = i|wn−1
1 ).

For later use, we note here that in general, we use the term softmax layer
to denote a layer that takes a hidden vector h as input to compute its output
vector p, a probability distribution.

The standard model has two hyper-parameters (the dimension of the projec-
tion space, M and the size of the hidden layer, H) that define the architecture
of the neural network. It has a set of free parameters Θ that need to be learned
from the data: the projection matrix R, the weight matrix Wh, the bias vector
bh, the weight matrix Wo and the bias vector bo.

In this model, the projection matrices R and Wo play similar roles as they
define maps between the vocabulary and the hidden representation. The fact
that R assigns similar representations to history words w1 and w2 implies that
these words can be exchanged with little impact on the resulting probability
distribution. Likewise, the similarity of two lines in Wo is an indication that
the corresponding words tend to have a similar behavior, i.e., tend to have
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a similar probability of occurrence in all contexts. In the remainder, we will
therefore refer to R as the matrix representing the input (context) space, and to
Wo as the matrix for the output (prediction) space.

1.4.1.2 Log-bilinear Models

The work reported in (Mnih and Hinton, 2007) describes another parameteriza-
tion of the architecture introduced in the previous section. This parameteriza-
tion is based on Factored Restricted Boltzmann Machine. According to (Mnih
and Hinton, 2007), this model, termed the log-bilinear language model (LBL),
achieves, for large vocabulary tasks, better generalization in terms of perplexity
than the standard model, even if the reasons beyond this improvement remain
unclear. In this section, we will describe this model and show how it relates to
the standard model. The LBL model estimates the n-gram parameters by:

P(wn|wn−1
1 ) =

exp(−E(wn; wn−1
1 ))

∑w exp(−E(w; wn−1
1 ))

(1.67)

In this equation, E is an energy function defined as:

E(wn; wn−1
1 ) = −

(
n−1

∑
j=1

vj
TRWj

T

)
RTvn − br

TRTvn − bv
Tvn

= −vn
TR

(
n−1

∑
j=1

WjRTvj + br

)
− vn

Tbv, (1.68)

where R is the projection matrix introduced above, vj are the 1-of-V coding
vector for the jth previous words and vn is the coding vector for wn; Wj ∈
RM×M is a combination matrix and br and bv denote bias vectors. All these
parameters need to be learned during training.

Equation (1.68) can be rewritten using the notations introduced for the
standard model. We then rename br and bv respectively bh and bo. We also
denote i the concatenation of the (n− 1) vectors RTvj; likewise Wh denotes the
H× (n− 1)M matrix obtained by concatenating row-wise the (n− 1) matrices
Wj. With these new notations, the computing procedure reflected by Equations
(1.67) and (1.68) can be reformulated as:

h = Whi + bh, (1.69)
o = Rh + bo, (1.70)

pi =
exp(oi)

∑j exp(oj)
(1.71)

This formulation highlights the similarity between the LBL model and the
standard model. These two models differ only by the activation function of
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their hidden layer (linear for the LBL model and nonlinear for the standard
model) and by their definition of the output space: for the LBL model, the
input space and the output space are the same (R = Wo). H must therefore be
equal to M. Moreover, there is only one vocabulary V = Vo. On the contrary,
in the standard model, the output space is defined independently from the
input space. This restriction drastically reduces the number of free parameters
of the LBL model.

It is finally noteworthy to outline the similarity of this model with standard
maximum entropy language models that are described in Section 1.3.7. Let
x denote the binary vector formed by stacking the (n− 1) 1-of-V encodings
of the history words; then the conditional probability distributions estimated
in the model are proportional to exp(F(x)), where F is an affine transform of
x. The main difference with maximum entropy language models are thus the
restricted form of the feature functions, which only test one history word, and
the particular representation of F, which is defined as:

F(x) = RWhR′Tv + Rbh + bo, (1.72)

where, as before, R′ is formed by concatenating (n− 1) copies of the projection
matrix R.

1.4.1.3 Hierarchical Log-bilinear Models
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Figure 1.3: Hierarchical log-bilinear model architecture.

According to (Morin and Bengio, 2005), it is possible to replace the output
layer of NNLMs by a hierarchical structure obtained from the expert knowledge
(WordNet). However, this approach degrade the performance. In (Mnih and
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Hinton, 2008), the authors proposed to adopt this strategy to LBL models. The
resulting model as depicted in Figure 1.3 is called hierarchical log-bilinear model
(HLBL). The output layer is structured by grouping words using a binary tree.
It is constructed automatically from the training data.

First, each predicted word wn is represented as a leaf in the tree. We denote
the sequence of nodes from the root to its leaf by xU

0 = x0x1 . . . xU where x0
is the root and U is the depth of the tree. The path from the root to its leaf is
associated with an array of binary values ζU

1 = ζ1ζ2 . . . ζU. We use xu = ζu+1
to represent the events that at node xu, we turn left (if ζi+1 = 1) or we go to the
right (otherwise).

For each node x in the tree, we can compute the probability of going to
the left using one output node of a neural network. First, we compute the
hidden layer of the neural network h from the indices of history words in the
same way as with the standard NNLM and the LBL. Then, we use the sigmoid
function to compute the following probability:

P(x = 1|wn−1
1 ) = sigm(qxTh + bx), (1.73)

where qx and bx are in fact the weight vector and the bias value associated with
node x. This equation assumes that each node can be predicted independently
of the others.

Now, the probability of word wn given its history wn−1
1 is first decomposed

using its binary code to be:

P(wn|wn−1
1 ) = P(ζ1|wn−1

1 )
U

∏
u=2

P(ζu|wn−1
1 , ζu−1

1 ) (1.74)

As ζu−1
1 is used to encode a path in the tree, from the root to node xu−1, this

node xu−1 can be used to represent ζu−1
1 . Each conditional probability in the

previous equation is then computed as follows3:

P(ζu|wn−1
1 , ζu−1

1 ) = P(ζu|wn−1
1 , xu−1)

= P(xu−1 = ζu|wn−1
1 )

= sigm(qxu−1 Th + bxu−1) (1.75)

With this type of model, we use a tree structured representation of words,
therefore, a softmax function is not required and the computational time is
significantly reduced: the multiclass prediction of the softmax is replaced by
a bunch of binary predictors. Compared to LBL models, the output word
space no longer exists. This work can be considered as an extension of the
idea of factoring the probability for exponential models to multiple levels
(Section 1.3.7). Using a binary tree to factorize the computation, for each
example, the computational time is linear to log2(V o) in place of V o. The

3To deal with the first term, node x0, the root of the tree, is used in the following equation.
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resulting speed-up in training reported in (Mnih and Hinton, 2008) is thus
significant: a factor greater than 250 but at the price of a 13% perplexity increase.
The reason of this loss may be due to the recursive binary structure. If one
word is poorly clustered, this error affects all the internal nodes (or clusters)
which lead to this word. This is typically the case for rare words that represent
most of the vocabulary. Therefore an error in one word may have a significant
impact on the whole system.

1.4.1.4 Recurrent Models
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Figure 1.4: Recurrent neural network language model architecture.

Recurrent neural network language models (RNNLMs) are based on a more
complex architecture, an Elman network (Elman, 1990), designed to recursively
handle an arbitrary number of context words. Described for the first time
in (Mikolov et al., 2010), they were shown experimentally to outperform both
standard back-off LMs and feed-forward NNLMs in terms of perplexity on
a small task. In (Mikolov et al., 2011a), the experimental results for a small
ASR task showed that RNNLMs significantly outperform a large number of
advanced language modeling techniques, including class-based, cache, expo-
nential LMs, feed forward NNLMs . . . both in terms of perplexity and WER.

The key aspect of this architecture as reflected in Figure 1.4 is that the hidden
layer hl for predicting the lth word wl in a text is computed from both a numeric
representation of the previous word wl−1 (RTvl−1 as in the standard model)
and from the hidden layer for the previous word (hl−1) using the following
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recursive equation:

hl = f (Whl−1 + RTvl−1) (1.76)

The hidden layer thus acts as a representation of the context history that
iteratively accumulates an unbounded number of previous words representa-
tions.
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Figure 1.5: Unfolded recurrent neural network language model architecture.

To better understand the behavior of RNNLMs, we unfold their architecture
as shown in Figure 1.5. Starting with <s>, the first word of a document, we
use the initial value h0 of the hidden layer and the representation of <s>
to calculate h1. To predict wl, we repeat this operation until we reach hl,
using this value to compute the values of the output layer as in feed forward
NNLMs. As usual, RTvi associates each context word vi to one feature vector
(the corresponding row in R). This vector now plays the role of a bias vector
at subsequent hidden layers. The first part (before the output layer) is thus
structured in a series of layers. In case of predicting wl, the relation between
the hidden layer hl and the first previous word wl−1 is at level 1 (with a direct
connection), the second previous word wl−2 is at level 2 (through the previous
hidden layer hl−1) and so on.

For inference, we compute the probabilities of a test text exactly in this
fashion, proceeding recursively from the beginning of the text. For each word,
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we need to accomplish the operation of Equation (1.76) to compute the hidden
layer.

Recurrent models are trained in the same way as feed-forward NNLMs,
with the stochastic back propagation algorithm (described in detail in Sec-
tion 1.4.2). In (Mikolov et al., 2010), at each training step, by restricting the
error to be propagated through hn−1, the links between the current hidden
layer and other context words and histories further than l − 1 positions are
ignored. Therefore, it is possible to update Rvn−1, the representation of wn,
and W, the weight matrix between hidden layers, only in order to capture the
relation between two consecutive positions. By using Back-Propagation Through
Time (BPTT) (Rumelhart, Hinton, and Williams, 1986), in (Mikolov et al., 2011b),
the authors showed that it is better to propagate the error back to a deeper level
than 1, at least to hl−4. It means that the recurrent architecture is in fact not as
compact as reflected by Figure 1.4 because the parameters W and R are actually
learned so as to capture the relation between multiple word positions as is
better illustrated in Figure 1.5. Therefore, RNNLMs differ from feed-forward
NNLMs crucially in the way they modify the relation between the hidden
layer and word representations, somehow deeper. That is the reason why in
Chapter 5, we propose to use an approximate version of RNNLMs to speed up
the training procedure.

Significant improvements in ASR using these models were reported in
(Mikolov et al., 2011c; Mikolov et al., 2011b). However, similar to feed-forward
networks, training and inference procedures are very expensive (the complex-
ity of NNLMs are analyzed below, in Section 1.4.3). To speed up, the authors
propose a hierarchical architecture similar to the exponential and HLBL models,
based however on a simple unigram clustering. For large scale tasks (≈ 400M
training words), advanced training strategies were investigated in (Mikolov
et al., 2011b). The data was divided into paragraphs, filtered and then sorted:
the most in-domain data was thus placed at the end of each epoch. Moreover,
the hidden layer size was decreased by simulating a maximum entropy model
using a hash function on n-gram features. This part represents direct connec-
tions between the discrete 1-of-V vectors representations of context words and
the output layer. By sharing the prediction task, the work of the hidden layer is
made simpler, and can thus be handled with a smaller number of hidden units.
Note that, this approach reintroduces into the model discrete features which
are somehow a main weakness of conventional back-off LMs as compared to
NNLMs. In fact, this strategy can be viewed as an effort to directly combine the
two approaches (back-off and neural network LMs), instead of using a more
direct approach through linear interpolation. Training simultaneously two
different models is computationally very demanding for large vocabularies,
even with the help of hashing techniques.
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1.4.1.5 Ranking Language Models

In (Collobert and Weston, 2008; Collobert et al., 2011), the authors proposed
to use a unified neural network architecture to do several natural language
processing tasks including a model implementing a different approach to
language modeling, namely a ranking language model. Instead of estimating
distributions of n-grams, inspired by pairwise-ranking approach, the goal
of this new type of language model is to provide scores that describe the
acceptability of a piece of text. The other tasks are:

• Part of Speech (POS): Label each word with a unique tag that indicates its
syntactic role, e.g., plural noun, adverb . . .

• Chunking (shallow parsing): Label segments of a sentence with syntactic
constituents: noun or verb phrases (NP or VP) . . . tags are: begin-chunk
(B-NP), inside-chunk tag (I-NP) . . .

• Named Entity Recognition (NER): Label atomic elements in the sentence
into “semantic” categories: “PERSON” or “LOCATION” . . .

• Semantic Role Labeling (SRL): Give a semantic role to a syntactic con-
stituent of a sentence, e.g., “[John]ARG0 [ate]REL [the apple]ARG1”

The main goal of this proposition is to learn internal word representations
from mostly unlabeled training data through ranking language models, which
can then deliver useful information for other tasks. Most importantly, these
representations are automatically learned thus avoiding task-specific engineer-
ing, disregarding a lot of prior knowledge. The same algorithm, i.e., stochastic
gradient descent with back propagation was carried out following ranking
criterion for the particular language model.

Note that, all tasks except language model use annotated training data.
Existing approaches are often based on the use of task-specific ad-hoc, hand-
crafted, engineering features derived from output of preexisting systems which
the authors of (Collobert and Weston, 2008) claim to be complex and slow. The
second goal is therefore, to try to use as few features of this type as possible,
notably, to efficiently take into account learned word representations. To
achieve this goal, similar neural network architectures are used for all tasks.
There are two approaches: window which means that models can take as input
features from several neighbors of the current word; sentence which means that
the input features are from the entire current sentence.

Window based neural networks, as depicted in the left side of Figure 1.6,
consist of three main parts. At the beginning, features are created by projecting
discrete variables such as surface word form, word-stemming, upper or lower
case, prefix, suffix . . . into their own continuous space. As with NNLMs, all the
representations for each value of each discrete feature are learned simultane-
ously with the other parameters of the models so as to maximize their objective
function. A hidden layer with nonlinear activation (HardTanh which is similar
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to tanh) is then added. At the output, there is a layer whose size is equal to
number of output tags except for the ranking language model for which is only
one node (as seen later). Finally, a normalization softmax function is applied.

Figure 1.6: Window (left) and sentence (right) approaches. This figure is borrowed
from (Collobert et al., 2011).

The window approach fails to do SRL, the most complex task. Therefore,
the authors need to use sentence based neural networks (the right part of
Figure 1.6). They are more complicated as they integrate features are from
the words of the whole sentence. Now, the word needed to be tagged can no
longer implicitly be recognized as the middle word of the window. A solution
is to provide for each word in the sentence a special feature that encodes their
relative position with respect to the word of interest. After projecting discrete
features into their spaces, there is a convolution layer dealing with several
sliding windows. Letting z be the size of features after the convolution layer
for each window, x be the number of windows, we can use a matrix X ∈ Rz×x

to represent the output of the convolution layer. It is worth noticing that x
depends on arbitrary sentence lengths. Therefore, a Max Over Time operation is
applied for each element i:

ymax
i = max [Xi,:] , (1.77)

yargmax
i = argmax [Xi,:] (1.78)

Note that, the output vector ymax ∈ Rz with a fixed length is fit to apply
subsequent standard layers. By counting the number of times the index of each
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window occurs in yargmax, we can rank windows in terms of their importance
to the prediction. Thus, selecting the most useful features is another capacity
of the max layer. As in the window approach, some other layers are added to
finally obtain a score vectors of tags.

The global systems are processed similarly to Hidden Markov Models
(HMMs) where the emission scores are estimated with a sentence based neural
network. They also have initial scores and transition scores (to be learned
separately) in order to capture the relation between two consecutive tags. For
inference, Viterbi algorithm is typically used.

sat

on

the

R

R

R

shared projection space

off Wh → [f(x’)] f(x)

Figure 1.7: Ranking neural network language model architecture.

We consider now in detail ranking language models (represented on Fig-
ure 1.7) that are directly related to our work. Based on pair-wise ranking
approach, they use the window-based approach in order to score the accept-
ability of a piece of text by positive and negative examples. Positive examples
are obtained from the training corpus, whereas negative examples are artifi-
cially created by replacing the central word by any another word, drawn from
a uniform distribution. In the figure, “sat on the” is the positive example, “sat
off the” is the negative example obtained by substituting “on” by “off”.

To avoid the expensive softmax function, they use a simple objective func-
tion:

max
[
0, 1− Scr(x) + Scr(x′)

]
, (1.79)

where Scr is the output of neural network, x, x′ are respectively positive and
negative examples which only differ in the middle word. The main goal is to
separate positive and negative examples by giving a larger score for positive
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ones with a limit of difference, which is 1. Each training example is a couple of
positive example and its associated negative instance.

The experimental results suggest that word embeddings (word represen-
tations) when learned with ranking language models have some meaning.
Words that are similar are usually grouped together. Conversely, models for
other tasks when trained separately cannot provide any comprehensible rep-
resentations. Using the word embeddings of the ranking language models as
initialization values for word embeddings of other tasks significantly increased
the system performance. In all tasks, the final neural network models achieve
equivalent or even better results in comparison with other state-of-the-art
systems.

1.4.2 Training algorithm

Training the neural network language models introduced above can be achieved
by maximizing some objection functions such as the log-likelihood L of the
parameters Θ in the case of NNLMs, RNNLMs and the pair-wise ranking
score in the case of ranking models. This optimization is usually performed
using stochastic back-propagation as in (Bengio, Ducharme, and Vincent, 2000).
Learning starts with a random initialization of the parameters under a uniform
distribution4 and converges to a local maximum of the log-likelihood function.
Moreover, to prevent overfitting, an early stopping strategy is usually adopted:
the likelihood of a validation set is computed after each epoch, and the training
procedure is halted if it stops increasing.

To make things clearer, we briefly present here the typical approach for
training a feed-forward neural network language model using the stochastic
gradient descent algorithm (Algorithm 1). It is worth noticing that the training
for the other types of neural network models is also straightforward and obeys
the same principles. In order to have more details about our implementation,
the reader is invited to go to Appendix D.

1.4.2.1 An overview of training

The objective function considered here is as follows:

L(Θ) = ∑
l

log P(wl|wl−1
l−n+1)− µ×R(Wo, Wh), (1.80)

whereR(Wo, Wh) is a regularization term, typically the L2-norm of the weights
of the hidden and output layers (the summation over square of each element
of Wo and Wh) and µ ≥ 0 is the weight decay factor. Regularization is used to
avoid overfitting. The weight decay factor is only used when updating weights
(Wo and Wh).

4Originally, the biases of the output layer are initialized with unigram distribution of words estimated
from the training data. The results of our experiments show that it is not so important.
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Algorithm 1 Training procedure for feed-forward NNLMs

for Each epoch do
Randomizing the order of n-gram examples
for Each n-gram example do

Updating the parameters
end for
if Validation perplexity increases then

Stop
end if

end for

1.4.2.2 The update step

Each parameter updating step consists of two passes: the forward pass and the
backward pass. During the forward pass, the inference from the input layer to
the output layer is carried out. At the end of this pass, the first term in the
objective function for an n-gram example wn

1 is the output estimate of model
and hence, computed using softmax function:

log P(wn|wn−1
1 ) = log pw (1.81)

= log
(

exp(ow)

∑i exp(oi)

)
(1.82)

= ow − log

(
∑

i
oi

)
, (1.83)

where w is the index of wn in V .
To construct the backward pass, we denote the derivative of log P(wn|wn−1

1 )
with respect to a variable λ ∈ Θ by ∆:

∆λ =
∂ log P(wn|wn−1

1 )

∂λ
(1.84)

All derivatives are computed following the stochastic back-propagation algo-
rithm, i.e., from the output layer to the input layer.

At the output layer: We have:

∆oi =

{
1− pi if i = w
−pi otherwise

(1.85)

At the hidden layer: From the inference equation for the output layer:

o = Woh + bo (1.86)
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This implies that:

∆bo = ∆o, (1.87)

∆Wo = ∆ohT , (1.88)

∆h = WoT∆o (1.89)

At the input layer: The inference equation for the hidden layer:

h = f (Whi + bh) (1.90)

implies that:

∆[Whi + bh] = f ′(h)∆h, (1.91)

∆bh = ∆(Whi + bh), (1.92)

∆Wh = ∆(Whi + bh)iT , (1.93)

∆i = WhT
∆(Whi + bh), (1.94)

where f ′ is the derivative function of f :

f ′(x) =

{
1− tanh(x)2 if f = tanh
sigm(x)− sigm(x)2 if f = sigm

(1.95)

After computing all derivatives, each parameter λ is then updated using a
learning rate parameter ξ > 0:

λ =

{
λ + ξ(∆λ− µ′λ) if λ ∈ Wo or Wh

λ + ξ∆λ otherwise
(1.96)

Note that µ′ = 2µ ≥ 0. In experimental setups, the value of the weight
decay factor is thought to be the value of µ′.

While the value of µ′ is fixed in the training step, the value of ξ is in fact a
function of the number of examples that have been seen. There are two usual
ways to update the learning rate. The first one is:

ξ =
ξ0

1 + νNe
, (1.97)

where Ne is the number of already seen examples, ξ0 > 0 is the initial value
of ξ which, in most setup descriptions, is usually referred to the learning rate,
ν > 0 is the learning rate decay. The second way to update ξ is to use validation
data. At the first time, the learning rate is fixed to ξ0. After each epoch, if the
perplexity of validation data is decreased, we keep it the same rate, otherwise,
we start to divide it by 2 for each remaining epoch.
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In practice, the choice of the learning rate and the weight decay factor needs
to be optimized for each task. It depends not only on the size of the data but
also on the model structure. Following the first approach, we need to choose
three hyper-parameters (ξ0: learning rate, ν: learning rate decay and µ′: weight
decay factor) while with the second one, there are only two (ξ0: learning rate
and µ′: weight decay factor)5. Within the language model framework, the final
results obtained using these two methods are very similar. For more details,
the readers are encouraged to go to Appendix D.

1.4.3 Model complexity

In comparison to n-gram back-off language models, the number of parameters
for NNLMs is in general smaller. Conversely, to compute the probability for
each event, where back-off models need only some table look-up operations,
NNLMs need to perform an expensive sequence of several mathematical vector-
matrix or matrix-matrix operations. Moreover, the difference is even more
sensible important during the learning phase: For a back-off model, the training
algorithm requires to go through the training data just once to count n-grams,
whereas for an NNLM, several passes through the training data are needed; at
each epoch, doing a forward (inference) and a backward pass for each example.
The main problem with NNLMs, as compared to other approaches is therefore
their computational complexity. We will present here a complexity analysis
for standard NNLMs without forgetting to say that all resulting equations and
conclusions can be easily generalized for other types of NNLMs without any
problem.

1.4.3.1 Number of parameters

There are three main parts:

• The input layer: its number of parameters is related to the dimension of
the projection space: M×V.

• The hidden layer: it consists of two parts: (n− 1)×M× H for weights
Wh, H for biases bh.

• The output layer: there are two parts: H ×Vo for the weight matrix Wo,
Vo for the bias bo.

It results in a total number of free parameters for NNLMs:

M×V + ((n− 1)×M + 1)× H + (H + 1)×Vo (1.98)

It should be noted that the total number of parameters grows linearly with
both the number of words in the vocabulary and with the context length.

5From now, when the second approach is followed, the learning rate decay is marked “not used”.
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1.4.3.2 Computational issues

According to (Schwenk, 2007), for standard feed-forward NNLMs, the number
of floating point operations needed to predict the label of a single example is:

((n− 1)×M + 1)× H + (H + 1)×Vo (1.99)

A number of operations required for processing one instance during training
(backward and forward passes) is larger but of the same order. The first term
of the sum corresponds to the computation of the hidden layer and the second
one to the computation of the output layer. The projection of the context words
amounts to selecting one row of the projection matrix R, as the words are
represented with a 1-of-V coding vector. We can therefore assume that the
computation complexity of the first layer is performed in constant time.

Most of the computation time is thus spent in the output layer, which
implies that the computing time grows linearly with the output vocabulary
size. Training these models for large scale tasks is therefore challenging, and a
number of simplifications and tricks have been introduced to make training
and inference tractable (Schwenk and Gauvain, 2002; Schwenk, 2007).

Shortlist The most important computational effort of NNLMs is at the output
layer where most of the calculation is carried out. A simple method to reduce
the complexity is thus to reduce the size of the output vocabulary (Schwenk,
2007): rather than estimating the probability P(wn|wn−1

1 ) for all words in the
vocabulary, we only estimate it for the most frequent words of the training
set (in the so-called shortlist, a subset of the vocabulary). In this case, two
vocabularies are considered, corresponding respectively to the input vocabu-
lary V used to define the history; and to the output vocabulary V o. However, this
method fails to deliver any probability estimate for words outside of the output
vocabulary, meaning that a fall-back strategy needs to be defined for those
words. In practice, shortlist based NNLMs are combined with a conventional
n-gram model as described in (Schwenk, 2007). The output estimation must
be normalized with a standard back-off LM in order to make predictions for
words which are not in the shortlist. The probability normalization formula
with a shortlist model is:

P(w|h) =
{

P̂N(w|h)× γ(h) if w ∈ shortlist
P̂B(w|h) otherwise

, (1.100)

where w is the word to be predicted and h its n− 1 word history, P̂N is the
probability of an in-shortlist word calculated with the shortlist NNLM, P̂B is the
probability assigned by the standard back-off n-gram LM. The scaling factor
γ(h) depends on the history h and is defined as:

γ(h) = ∑
w ∈ shortlist

P̂B(w|h) (1.101)
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As both P̂N and P̂B are normalized to sum to one, the “combined” condi-
tional distribution P is also normalized.

Note that, in (Park et al., 2010), the authors proposed another normalization
way based on the introduction of an additional output layer node to estimate
the probability mass of out-of-shortlist words.

Data resampling The training time is linear in the number of examples in
the training data as shown in the main procedure (Algorithm 1). Training
NNLMs on very large corpora, which, nowadays, comprise billions of word
tokens, cannot be performed exhaustively and requires to adopt resampling
strategies, whereby, at each epoch, the system is trained with only a small
random subset of the training data. This approach enables to effectively esti-
mate neural language models on very large corpora; it has also been observed
empirically that resampling the training data can increase the generalization
performance (Schwenk, 2007) since there may be an added noise to the learning
procedure as a result of the difference of training examples for each epoch. It
should be noted that as large corpora are always composed of several parts
that differ in genre, field, source . . . their resampling rates needs to be properly
distinguished according to their relevance to a task. For example, within an
ASR framework, the resampling rate should be chosen to be much larger for
text transcripts than for texts which are crawled from the web. This choice has
a great impact on the final results.

Bunch mode Additional speed-ups can be obtained by propagating several
examples at once through the network (Schwenk and Gauvain, 2004). This
“bunch mode” as it was originally called or “mini-batch” allows using matrix-
matrix operations rather than vector-matrix operations to reduce both inference
and training time. Matrix operations are thought to be more easily accelerated
on advanced CPU architectures, such as with multi-threading using optimized
mathematical library. If we use bs, the “block size” to represent the number
of examples used for each update, significant speed-up improvement up to
ten times can be observed with bs = 128, though this modification doesn’t
yield any reduction of the number of floating point operations. Taking the
computation between the input layer and the hidden layer as an example, this
method turns the matrix-vector operation of Equation (1.64) into matrix-matrix
operations as follows:

H = f
(

WhI + Bh
)

, (1.102)

where each column of I ∈ R(n−1)M×bs is an input vector i of one example,
Bh ∈ RH×bs is created by duplicating the bias vector Bh for each column of the
matrix. Each column of the resulting matrix, H ∈ RH×bs, is a hidden vector h
of the associated example.

Recently, using optimal library for graphical cards has been shown to make
NNLM systems even faster (Schwenk, Rousseau, and Attik, 2012).



1.4. Continuous Space Language Models 49

Context grouping During inference, as probabilities of n-grams having the
same context can be calculated at once, it is better to first create a list of all
n-grams, grouping n-grams with the same history, forwarding through a neural
network only once for each history.

1.4.4 NNLMs in action

The integration of NNLMs for large-scale tasks (both ASR and SMT) is far from
easy, given the computational cost of computing n-gram probabilities, a task
that is performed repeatedly during the search of the best hypothesis. One
solution is to resort to a two-pass approach: the first pass uses a conventional
back-off n-gram model to produce a set of most likely solutions; in the second
pass, the NNLMs probabilities are in turn computed and then incorporated
into a system and, as a result, the hypotheses are accordingly reordered.

There are two typical ways of combining several language models. The
usual way is through linear interpolation where the optimal weights of lan-
guage models are obtained by minimizing the perplexity of a validation data.
The original scores of an original language model are replaced by the new
interpolated scores. It is reasonable to update the interpolation coefficients
between models to better capture the interaction between them. For ASR, as
we have few models (usually two: a language model and an acoustic model),
their weights are unchanged. On the contrary, within the SMT framework, the
weights of log-linear models are re-optimized as the other feature weights with
appropriate algorithms, such as Minimum Error Rate Training (MERT) (Och,
2003). For SMT, there exists an alternative procedure, which is to consider the
output of NNLMs as a new type of model, adding them as new scores and
re-optimizing the weights of log-linear models to rerank the original hypothe-
ses. The interaction between different types of language models is directly
optimized with respect to the application metrics.

A set of the most likely solutions can in fact take two forms: m-best list and
word lattice. The first one is a list of m best output hypotheses with respect
to a baseline system. The second representation is a graph where each arc
corresponds to a subpart of a hypothesis and is weights by is partial score.
When rescoring the lattice with a language model of a higher order, we need
to add nodes and arcs to guarantee that all arcs starting from the same node
have the same context information. This technique is called “lattice expansion”
that can augment drastically the size of the lattice especially, when the new
n-gram order is much larger than the original one. To fit the lattice into memory,
some pruning techniques often need to be applied. They sometimes hurt the
performance of the system significantly as some potential good hypotheses
according to the new set of features have been already discarded. Lattice is
a more compact representation as it contains a larger number of hypotheses,
hence lattice rescoring tends to give a better improvement than m-best rescoring.
When Maximum A Posteriori (MAP) decoding is used with m large enough,
there are no significant difference between the two paradigms. Still, in an
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ASR framework where consensus decoding is always used, the difference is
non-negligible. Based on these considerations, we will mostly use lattice in
ASR experiments and on the other hand, prefer m-best rescoring in SMT tasks.

1.5 Summary

In Table 1.2, we present a brief summary of all state-of-the-art approaches
for language modeling that have been presented so far. The information
displayed in this table is from a practical point of view. The second column
feature is used to show which features are taken into account by each model.
While some features are induced directly from the text data (words, prefixes,
documents, word triggers . . . ), others are obtained from external tools (POS
Tagger for tags . . . ) or being learned (exchange algorithm for classes, EM for
hidden topics in topic based models . . . ). The third column prob interp reports
whether that models have a probabilistic interpretation or are only empirically
motivated. The use of word order is represented in the fourth column word
order where “yes (flexible)” means that it is considered in the implicit or more
general fashion. The next column word similarity is used to show that models
can take into account the similarity between words or not. While “hard” means
a hard clustering (words are assigned for one class), “soft” is used to represent
a soft clustering, meaning that the similarity between words is defined and
measured without class definition. The column context shows the practical
limit of the context size that models can consider (reported in most articles).
Note that, “whole sentence” (“whole document”) means that the context is all
words from the first word of the current sentence (document) to the previous
word. Recurrent neural networks can in theory make use of information
from complete document but in practice, it seems to be not true or at least
needs to be further investigated. We therefore need to be cautious with our
interpretation of “whole sentence”. The seventh column local? reports whether
the construction of models has a local or global extrema. If it converges to local
extrema, it may be useful to combine several models to achieve better results.
For example, with n-gram class-based LMs, the interpolation of several models
with different random clusterings brings some improvements. It should be
noted that random forests use it already as they are in fact a sets of many
(locally optimized) random decision trees. Finally, the last column inference
complexity reports the relative measure of each model complexity with three
degrees (“fast”, “slow” and “very slow”).

In this chapter, we examined almost all recent state-of-the-art approaches in
language modeling. In spite of having many drawbacks, n-gram word based
language models remain an essential component in NLP, mainly because of
their simplicity that make them scale well with the huge quantity of data which
is available nowadays. More sophisticated and promising approaches often
suffer from their complexity. In many cases, they are shown to significantly
outperform n-gram word based approach in small or even medium tasks but
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their results are discouraged within large scale frameworks.
In summary, there are four main directions. The first one is based on linguis-

tically motivated idea which try to “put back language into language modeling”
as claimed by Jelinek (1995), e.g., structured language models, random forest
language models . . . The second one aims at using longer contexts, up to the
first word of the document such as trigger language models, pLSA or LSA
based language models . . . Another direction is to make models more compact
by using a more complicated architecture, e.g., exponential or structured lan-
guage models . . . in order to to tackle the data sparsity problem. Using the
similarity between words such as n-gram class-based or similarity based lan-
guage models is also a possible direction. Among state-of-the-art approaches,
continuous space neural networks have been shown to be very promising
since it more or less benefits from ideas of all directions6. The main problem
with this approach concerns the computation complexity. In the next chapters,
we will show that by reducing efficiently their complexity, continuous space
neural network models can actually learn some useful knowledge to signifi-
cantly improve system performances in large scale tasks. Furthermore, their
achievement is not restricted to language modeling: they will be demonstrated
to be also useful for other NLP tasks.

6There may be a hesitation for the second direction. In fact, following n-gram assumption but not
like n-gram word based language models, NNLMs can take into account longer contexts. As shown in
Chapter 5, in practice, the use of 10-gram NNLMs is almost sufficient as context words that are too far
seems not to be very helpful.
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STRUCTURED OUTPUT LAYER
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A major difficulty with the neural network approach is the complexity
of inference and training, which mainly depends on the size of the output
vocabulary, i.e., of the number of words that have to be predicted. Using the
standard feed-forward model presented in Section 1.4 of Chapter 1 makes
handling of large vocabularies, consisting of hundreds of thousands of words,
unfeasible due to a prohibitive growth in the computation time. To work
around this problem, shortlist technique for NNLMs, based on a simplification
applied to the output size, was proposed in (Schwenk and Gauvain, 2002).
By restricting the output vocabulary to a shortlist, a set that contains several
thousands of frequent words, the training and inference are made possible,
while a large part of the probabilities for n-grams ending with in-shortlist
words can still be estimated by neural network, whereas the other probabilities
are estimated with conventional back-off models. For more details on this
technique, the reader is referred to Section 1.4.3.2.

To completely overcome this obstacle, we introduced the Structured OUtput
Layer (SOUL) neural network language modeling approach in (Le et al., 2011b).
It is based on a tree representation of the output vocabulary. Following (Morin
and Bengio, 2005; Emami, 2006; Mnih and Hinton, 2008), the SOUL model com-
bines the neural network approach with the class-based approach (described in
Section 1.3.2). Structuring the output layer and using word class information
make the estimation of distribution over vocabularies of arbitrary size com-
putationally feasible. As a result, all the vocabulary words, and not just the
words in the shortlist, can benefit from the improved prediction capabilities of
the NNLMs.

This chapter provides an overview of the SOUL model along with the main
experimental results. A more detailed description and analyses for the SOUL
structure is given in Chapter 3. The structure of this chapter is organized as
follows. In Section 2.1, we introduce the SOUL architecture. Then, Section 2.2
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and Section 2.3 are devoted to sketch out a training algorithm well adapted
to this architecture and its enhanced version proposed to better deal with less
frequent words. Experimental results both in large scale ASR and SMT tasks
with significant improvements are finally reported in Section 2.4.

2.1 SOUL Structure

The main idea leading to the SOUL approach is first motivated by the effort
to generalize all approaches which aim to reduce the complexity of NNLMs
by using a hierarchical structure for the output vocabulary. From the general
structure, the SOUL structure is designed as a tradeoff between the complexity
and the performance of models. In this section, we will first present the general
form of the hierarchical structure. The SOUL structure will then be introduced.

2.1.1 A general hierarchical structure

Following the n-gram approach, NNLMs aim to predict word wn given its
history wn−1

1 . To factorize the conditional word probability, the output vocab-
ulary is structured in a clustering tree, where every word is associated to a
unique path from the root node to a leaf node. Let U denote the tree depth, the
maximal path length in the clustering tree is therefore U + 1. For each path
associated to a word in the vocabulary which has number of nodes smaller
than U + 1, we add artificially a sequence of “false” nodes so as to guarantee
that all leaves are at the same depth. The sequence xU

0 (wn) = x0, . . . , xU , where
xu ∈ Π (the set of nodes of the tree), can then be used to encode the path
for word wn in this tree. In this sequence, x0 is the root of the tree, xu with
u = 1, . . . , U − 1 are the classes assigned to wn at level u and xU is the leaf
associated with wn, comprising just the word itself. The probability of wn given
its history wn−1

1 can then be computed as:

P(wn|wn−1
1 ) = P(xU

0 (wn)|wn−1
1 )

= P(x0|wn−1
1 )×

U

∏
u=1

P(xu|wn−1
1 , xu−1

0 ) (2.1)

In this equation, the first term can be omitted as it is equal to 1. Each class
conditional distribution P(xu|wn−1

1 , xu−1
0 ) is estimated using a softmax layer of

the neural network, which is associated to node xu−1
1, since we assume a tree

structure:

P(xu|wn−1
1 , xu−1

0 = P(xu|wn−1
1 , xu−1),

and the first term wn−1
1 is introduced as the input of the neural network.

1A neural network now has several softmax layers at the output part.
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Note that for “false” nodes, the softmax layer is not required as they are
single children, hence, the conditional probabilities of these nodes are all 1.
These nodes are only introduced in order to simplify the description for the
general hierarchical structure. As defined in Section 1.4.1.1, a softmax layer
takes as input the hidden layer and computes the values of the output layer,
then producing a normalized distribution after applying the softmax function.

If another false node xU+1 is added as the last node for all paths in the
tree, we can see that the factorization in Equation (2.1) for a node sequence is
similar to the one used in Equation (1.1) for a word string. x0 has the same role
as <s>, likewise for xU+1 and </s>. The node vocabulary is Π. The main
difference is that the clustering tree defines a restricted amount of possible
node sequences. Therefore, the conditional probabilities for (sub)sequences of
nodes which cannot be induced from the tree is null. In NNLMs, the others are
estimated using normalized distributions provided by softmax layers. Because
Equation (1.1) well reflects a normal distribution, it can easily be shown that by
using Equation (2.1), the output distributions estimated by NNLMs also satisfy
the sum to one condition.

As described in Section 1.3.7, exponential language models have the same
computational problem of the softmax in the output layer and hence, a solution
based on clustering words into classes was also proposed in (Goodman, 2001a).
In this approach, two models are trained separately: one that predicts the
class probability given the history; and one that predicts a word given its class
and its history. A significant speed-up can be obtained since the required
computations for both models are drastically reduced: for the first model, the
summation implied in the normalization ranges over the number of different
classes, whereas for the second model it involves only the words in the given
class.

The idea of clustering the vocabulary words was introduced for NNLMs
in (Morin and Bengio, 2005), where the author tried to derive a binary hierar-
chical clustering from the WordNet semantic hierarchy. Alternative solutions
that do not rely on external linguistic resources were proposed in (Emami,
2006; Mnih and Hinton, 2008) for Log-BiLinear (LBL) models. This type of
model, called Hierarchical Log-BiLinear (HLBL), has been described in detail
in Section 1.4.1.3. The output vocabulary is clustered and represented as a
binary tree. Each internal node of the tree holds a word cluster which is fur-
ther divided into two subclusters and so on, until the leaves, each of which
corresponds to a vocabulary word. This approach results in a two order of
magnitude speed-up on a small data set (1 million words of the Brown corpus)
with a vocabulary of 10k words. However, a significant increase in perplexity
is observed relative to a standard NNLM. Because each “sigmoid” node of the
output layer is equivalent to a softmax layer of 2 nodes, the model structure in
this approach is in fact a particular case of our more general proposal.

Factorization of the output layer was also used for RNNLMs (see Sec-
tion 1.4.1.4 for more details). Proposed in (Mikolov et al., 2011c), this approach



58 Chapter 2. Structured Output Layer

does not use any relationships between words since it is based on the distribu-
tion of unigram probabilities. Another active direction of research dealing with
different clustering methods is connected to the recently proposed Model M
and their subsequent enhancements (Chen and Chu, 2010; Emami and Chen,
2011) (see Section 1.3.8).

2.1.2 A SOUL structure

On the one hand, it can be seen that much of the previous work focused on
reducing the computational complexity, with less emphasis on improving the
accuracy of speech recognition or machine translation systems. Particularly, in
the HLBL approach, the resulting binary clustering tree is deep (i.e., has many
levels), and thus faces a data fragmentation problem. This problem is well
known for decision trees, especially for language modeling tasks (Potamianos
and Jelinek, 1998; Xu and Jelinek, 2007). Moreover, if a word is assigned to a
wrong class at some level in a decision tree, this error affects all the internal
nodes (or clusters) leading to this word. This is typically the case for rare words
that represent a large fraction of the vocabulary. Thus an error in one word
may have a significant impact on the whole system. So in the SOUL structure,
by relaxing the constraint of the binary structure to make the tree shallower, it
is expected that this shortcoming will be overcome.

On the other hand, as shortlist based NNLMs (see Section 1.4.3.2) have been
shown to consistently achieve state-of-the-art performances, it is intuitively
guaranteed that we will not have any degradation on the system performance
if we grow the SOUL structure from the shortlist one. As a result, in the SOUL
structure, we propose to keep the in-shortlist (most frequent) words special, as
they are not clustered, each of them represents a class on its own at the first
level. Only the remaining words, called out-of-shortlist (OOS) words, are first
clustered into top classes (at the first level, the same level as the in-shortlist
words), then subclasses (at the deeper levels).

An example of the SOUL architecture is displayed in the right part of
Figure 2.1. The output part of the model is made of two main parts:

1. The main softmax layer estimates P(x1|wn−1
1 ), the class probability and the

probability of in-shortlist words;

2. The remaining softmax layers estimate P(xu|wn−1
1 , xu−1

0 ), u = 2 . . . (U), the
subclass probabilities;

Note that above, we only provide an overview. For deep investigations on
the SOUL architecture design, the reader is invited to go to Chapter 3.

2.2 Training algorithm

Given a clustering tree, a SOUL NNLM can be trained using the stochastic gra-
dient descend (SGD) algorithm as is done for standard feed-forward NNLMs
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Figure 2.1: SOUL neural network language model architecture. In this example, the
main softmax layer has two parts: one for the shortlist of 2 words (a and b)
and one for 2 top classes for the other words. At the level 2, each top class
is divided into 3 subclasses. Three words c, d and e have their associated
leaves at the level 3. To compute the probability for each word, we make a
product over the probabilities in the path (from the root to its leaf), e.g., the
probability assigned to e is 0.12 = 0.4× 0.6× 0.5; to a is 0.1 = 0.1.
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(see Section 1.4.2). The presence of several softmax layers at the output side of
SOUL NNLMs only leads to a little modification of the derivatives and of the
equations, as shown in Appendix C. In the original article, in order to obtain
the clustering tree from an estimate of the continuous space, we proposed a
sophisticated training scheme for SOUL NNLMs that can now be summarized
in the three main steps of the Algorithm 2. Note that the word clustering tree
can also be obtained from other algorithms, so the reader is referred to Sec-
tion 3.1 of Chapter 3 for the comparison between three clustering algorithms:
the SOUL clustering, the Brown clustering (Brown et al., 1992) and the unigram
clustering (Mikolov et al., 2011c).

Algorithm 2 SOUL training scheme

Step 1, shortlist pre-training provides a first estimate of the continuous space by
training a shortlist NNLM.
Step 2, word clustering derives a clustering tree from the information in the contin-
uous space.
Step 3, full training trains a SOUL NNLM with the tree structure induced in Step 2
and with the parameters initialized using the parameters obtained at Step 1.

We outline here the way we carry out each step. The reader is encouraged
to go to Chapter 3 for more analyses on the SOUL configuration, e.g., the
clustering algorithm described in detail along with its hyper-parameters, the
size of the shortlist, the number of top classes . . .

At Step 1 : To create a first estimate of the continuous space, we train an
NNLM with a shortlist comprising the most frequent words as the output
vocabulary. As only a sufficiently good word space is required, the model is
trained for a few iterations, not necessarily until convergence.

At Step 2 : As words input to an NNLM are represented in 1-of-V coding with
1 corresponding to a word’s vocabulary index and all other elements set to zero,
each line in the projection matrix R corresponds to a continuous representation
of a particular word. A recursive clustering algorithm is therefore applied to
the representations of OOS words in this continuous space in order to obtain a
hierarchical structure.

At Step 3 : By adding the part for OOS words induced at Step 2 to the output
part of the model obtained at Step 1, a SOUL NNLM with a whole vocabulary
on the output side is created. Initializing with the parameters obtained at
Step 1, this model is then trained until convergence following the classical SGD
algorithm.
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2.3 Enhanced training algorithm

A new training scheme for the class part of SOUL NNLMs used to deal with
OOS words was proposed in (Le et al., 2011a). It makes a better use of avail-
able data during training, trying to provide more robust parameter estimates
for large vocabulary tasks. Application of this scheme results in additional
improvements in perplexity and system performance.

The main reason for proposing this new scheme comes from the limitation
of resampling techniques, described in Section 1.4.3.2. Resampling of train-
ing data is conventionally used as it is computationally unfeasible to train an
NNLM on the same amount of data as is used a conventional n-gram language
models. Usually, at each epoch, training examples up to several million words
are randomly selected. When dealing with large vocabularies, the number of
parameters at the output part of SOUL NNLMs is much larger than that of
shortlist based NNLMs. As a result, using the same number of resampled exam-
ples as for shortlist based NNLMs to train SOUL NNLMs may be insufficient
to obtain robust parameter estimates.

To make it clearer, let us consider again the output part of SOUL NNLMs.
It comprises of two parts: the first one which contains the main softmax
layer which directly models the probabilities of the most frequent in-shortlist
words and top classes for OOS words; the second one which is composed
of the remaining softmax layers used to deal with OOS words as displayed
in Figure 2.1. The parameters related to the first part are updated for all
training examples since they cover the most frequent (in-shortlist) words and
the top (most general) classes for the less frequent (OOS) words. The n-grams
ending with in-shortlist words are used to update the parameters only of the
main softmax layer, leaving the other layers intact. The parameters of the
other layers are updated with the n-grams ending in an OOS word and only
those layers leading to the leaf with this particular word are activated and
the corresponding parameters updated. A shortlist usually covers a large
part of training examples so that the updates of the parameters related to the
second part are less frequent. Moreover, when such an update occurs, it is only
performed for a small subset of the parameters corresponding to a particular
path in the clustering tree. At the same time, the number of parameters of this
second part is much larger2. As a result, the two parts of the SOUL output
layer are not equally well trained.

A modified SOUL training scheme (Algorithm 3) based on the separate
training of the OOS part is therefore proposed. This scheme adds an additional
step to the training procedure. This additional Step 3 is similar to Step 1, but is
carried out only for OOS words. At this step the n-grams ending with shortlist
words are skipped and the parameters associated with shortlist words are

2If we denote the number of shortlist words by V s, the number of top classes by V x1 , the number of
parameters of the first part is (H + 1)× (V s + V x1 ) and of the second parts is larger than (H + 1)× (V −
V s − V x1 ).
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Algorithm 3 Enhanced SOUL training scheme

Step 1, shortlist pre-training provides a first estimate of the continuous space by
training a shortlist NNLM.
Step 2, word clustering derives a clustering tree from the information in the contin-
uous space.
Step 3, OOS pre-training trains an NNLM with OOS words as output.
Step 4, full training trains a SOUL NNLM with the tree structure induced in Step
2 and with the parameters initialized using the parameters obtained at Step 3 and
Step 1.

temporarily fixed, reducing the size of the main softmax layer to the number
of top classes only. As explained above, the softmax in this layer is triggered
for each training example, which, in turn, requires summation over all nodes
in this layer. Thus, any reduction in the size of the main softmax layer results
in a significant speed-up. Since the number of OOS occurrences represents
only a relatively small proportion of the training data, the number of training
examples processed through this layer can be easily increased by the factor of
10. Finally, it should be noted that the parameters obtained at Step 3 are used to
initialize the parameters associated with the OOS words at Step 4 in the same
way as the parameters obtained at Step 1 are used for the shortlist part of the
main softmax layer.

2.4 Experimental evaluation

The advantages of new proposed SOUL NNLMs have been empirically demon-
strated in various contexts, both for ASR and SMT large scale tasks with
different languages (Mandarin, Arabic, French, English . . . ). In this section,
we summarize our several recent experimental results reported in several
publications (Le et al., 2011b; Le et al., 2011a; Allauzen et al., 2011).

2.4.1 Automatic Speech Recognition

In this section, Mandarin and Arabic data are used to evaluate the SOUL
NNLM accuracy via ASR experiments. Well-tuned ASR systems developed
for the GALE program (with error rates around 10%) serve as the very strong
baselines (see (Oparin, Lamel, and Gauvain, 2010a) for the Mandarin configu-
ration and (Lamel, Messaoudi, and Gauvain, 2009) for the Arabic one). In the
configurations, even an absolute improvement of 0.1% WER has been shown to
be very hard to achieve. Moreover, with training data of about several billion
words, most state-of-the-art approaches to language modeling (except shortlist
NNLMs) fail to bring improvements over robust conventional n-gram word
based language models. Via lattice rescoring, the SOUL models are shown to
achieve consistent improvements over classical shortlist NNLMs both in terms
of perplexity and recognition accuracy for these two languages, even though
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that are quite different in terms of their internal structure and recognition
vocabulary size. An enhanced training scheme is shown to achieve additional
improvements in the Arabic task.

2.4.1.1 ASR Setup

Mandarin To segment Mandarin phrases in words, we make use of the simple
longest-match segmentation algorithm based on 56,052 word vocabulary used
in previous LIMSI Mandarin ASR systems (Luo, Lamel, and Gauvain, 2009).
However, character error rate (CER) is conventionally used to evaluate final
recognition performance for Mandarin.

The GALE dev09 and eval09 sets are used in this study to evaluate the
performance of different models. This data consists of broadcast news and
broadcast conversations. A subset of dev09 called dev09s was also defined. It
constitutes about a half of dev09 data. More details concerning the experimental
setup, acoustic models and decoding process of the baseline LIMSI Mandarin
ASR system can be found in (Oparin, Lamel, and Gauvain, 2010a).

The first part language model is trained on 3.2 billion word tokens (after
segmentation) of Mandarin data thus providing the system with a robust LM.
The baseline LM is a word-based 4-gram LM. Individual LMs are first built
for each of the 48 Mandarin corpora that are available by the end of the year
2009. These models are smoothed according to the interpolated Kneser-Ney
discount scheme. No cut-offs nor pruning are applied thus making the LMs to
take into account all the available information. These individual models are
subsequently linearly interpolated with interpolation weights tuned on dev09
data. As the number of individual models is not very large, this particular
choice of a training set does not result in a bias to this data.

For shortlist based neural networks, we follow the algorithm presented in
(Schwenk, 2007) with two configurations for the size of the shortlist (8k and
12k). For SOUL NNLMs, we follow exactly the 3 step algorithm as presented in
Section 2.2. For each epoch, each NNLM is trained on about 25M words after
resampling of the training data. For each test configuration, four NNLMs of
the same type are trained and interpolated. They differ in the dimension of the
shared context space, size of the hidden layer and training data resampling
rate. For all our experiments, the learning rate of different NNLMs is 5× 10−3,
the learning weight decay is 5× 10−8 and the weight decay is 3× 10−5. The
configuration parameters are summarized in Table 2.1.

State-of-the-art n-gram language models are rarely of an order larger than
4. Our previous experiments on very large setups indicated that the gain
obtained when increasing the n-gram order from 4 to 5 is almost negligible
while the size of models increases drastically. Handling such models is thus
quite impractical and can hardly be done without pruning. However, this
is not the case for NNLMs, due to the different nature of these models. The
increase in context length at the input layer results in only at most linear
growth in complexity (Schwenk, 2007). Thus training NNLM with longer
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parameter shortlist based NNLM SOUL NNLM
training data size ≈ 3200M
vocabulary size 56,052
number of models 4
order (n) 4 or 6
projection space (M) 300, 250, 200, 220
hidden layer size (H) 500, 450, 500, 430
nonlinear activation tanh
shortlist size 8k or 12k 8k
number of top classes - 4k
number of examples/epoch ≈ 25M
number of epochs (shortlist) ≈ 10 3
number of epochs (all words) - ≈ 10
learning rate 5× 10−3

learning rate decay 5× 10−8

weight decay 3× 10−5

block size 128

Table 2.1: Mandarin: NNLM configurations.

contexts is still feasible. As our aim is to improve the performance of the
Mandarin ASR system, we also investigated the increase in context length from
3 (that corresponds to 4-grams) to 5 for different NNLMs, while keeping the
same 4-gram back-off LM at the output layer for standard shortlist NNLMs.
Combining models of different order remains a valid thing to do with the
back-off scheme used for NNLMs with shortlists, described in Section 1.4.3.2.

Arabic A challenging Arabic GALE task characterized by a vocabulary of
about 300k entries is chosen to evaluate the SOUL NNLM performance for
large vocabularies. State-of-the-art LIMSI Arabic ASR system (presented in
(Lamel, Messaoudi, and Gauvain, 2009)) is used to perform speech recognition
experiments.

Arabic is a highly inflective and morphologically rich language. In order
to deal with its peculiarities, decomposition of words in its morphological
constituents was shown to improve speech recognition results (Lamel, Mes-
saoudi, and Gauvain, 2008; Diehl et al., 2009). There are several approaches
to Arabic word decomposition. In this study we use one of the most popular
tools up-to-date, namely MADA: Morphological Analysis and Disambiguation
for Arabic (Roth et al., 2008).

Language model training data consist of about 1.7 billion words before
morphological decomposition. The recognition vocabulary contains 296,772
entries. Altogether, 32 interpolated Kneser-Ney 4-gram LMs for different text
corpora are trained on MADA-decomposed units (about 2 billion in total)
without pruning nor cut-offs. These models are further interpolated to create
the final LM that serves as a robust baseline model. Lattices generated with
this model are subsequently rescored with NNLMs.
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Three NNLMs are trained with different resampling parameters, sizes of
context (200, 300, 400) and hidden layers (500, 400, 300) for each n-gram order.
These models are interpolated in order to obtain final NNLMs. Resampling
is performed with a bias towards using corpora containing broadcast news
(bn) and broadcast conversations (bc) data as target data. Up to 30M words
data are used at each NNLM iteration of shortlist-based and standard SOUL
NNLMs. For enhanced SOUL NNLMs, the resampling rate is augmented 10
times at Step 3. It results in about 30M n-gram examples used to train the
output part that deals with OOS words. All training parameters for the SOUL
NNLMs are kept the same as for the shortlist NNLMs. Thus it can be argued
that the difference in performance is due to the use of the whole vocabulary at
the output layer. These configurations are summarized in Table 2.2.

parameter shortlist based NNLM SOUL NNLM
training data size ≈ 2000M
vocabulary size 296,772
number of models 3
order (n) 4 or 6
projection space (M) 200, 300, 400
hidden layer size (H) 500, 400, 300
nonlinear activation tanh
shortlist size 8k or 12k 8k
number of top classes - 4k
number of examples/epoch ≈ 30M
number of epochs (shortlist) ≈ 15 5
number of epochs (OOS) - 10
number of epochs (all words) - ≈ 15
learning rate 5× 10−3

learning rate decay 5× 10−8

weight decay 3× 10−5

block size 128

Table 2.2: Arabic: NNLM configurations.

Three GALE validation and evaluation sets are used to evaluate the per-
formance of different models, namely dev09s, eval10ns and dev10c. These sets
consist of 23,576, 45,629 and 52,181 MADA decomposed units respectively.

2.4.1.2 Results

Mandarin Perplexity and recognition accuracy for different models are re-
ported in Table 2.3. Perplexity results are on dev09 and CER results are on
dev09s and eval09.

The row +4-gram 8k shortlist NNLM corresponds to the results when the
baseline 4-gram model is interpolated with the baseline NNLMs that make use
of a shortlist of 8k most frequent words and take into account a context of the
same length. The row +6-gram 8k shortlist NNLM reports results related to
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the interpolation of the baseline 4-gram LM with the longer context NNLMs.
Training a baseline 6-gram LM on 3.2 billion words is unfeasible without
severe cut-offs and, according to our experience with 5-gram LMs, only minor
improvements over 4-grams can be achieved.

We try the longer context neural network setup with the shortlist increased
up to 12k most frequent words. Results obtained with this setup are reported
in the rows +4-gram 12k shortlist NNLM and +6-gram 12k shortlist NNLM in
Table 2.3. Finally, results obtained with the whole-vocabulary SOUL NNLMs
are represented in rows 4 and 7.

model ppl CER
dev09 dev09s eval09

4-gram baseline 211 9.8 8.9
+4-gram 8k shortlist NNLM 187 9.5 8.6
+4-gram 12k shortlist NNLM 185 9.4 8.6
+4-gram SOUL NNLM 180 9.3 8.5
+6-gram 8k shortlist NNLM 177 9.4 8.5
+6-gram 12k shortlist NNLM 172 9.3 8.5
+6-gram SOUL NNLM 162 9.1 8.3

Table 2.3: Mandarin: Perplexity and CER (in %) for language models.

The results presented in this study suggest several conclusions. Contrary
to classical back-off n-gram LMs, increasing the NNLM context length signifi-
cantly improves the results both in terms of perplexity and CER, without any
major impact on the training and probability computation time. This is true
for all NNLMs, which all improve the Kneser-Ney baseline LM trained on
large amounts of data. This again shows the capability of NNLMs to better
overcome data sparsity issues.

The gains achieved with SOUL NNLMs correspond to a relative improve-
ment of 23% in perplexity and 7− 9% in CER. SOUL NNLMs also outperform
shortlist NNLMs due to the fact they predict all words from the vocabulary (as
other parameters are kept the same). The most significant improvement with
SOUL models is obtained for the longer context (6-gram) NNLMs configura-
tion.

Arabic Perplexity and WER results are presented in Tables 2.4 and 2.5 re-
spectively. The first row in the tables corresponds to the 4-gram baseline
Kneser-Ney LM. For the shortlist-based NNLMs, 12k most frequent words
form the shortlist. Six-gram NNLMs are trained in order to verify possible
improvements from using longer context as opposed to the usual 4-gram setup.

Perplexity results in Table 2.4 are given both when using only NNLMs
(columns alone) and for the cases NNLMs are interpolated with the baseline
4-gram LM (columns int.). Models marked as “SOUL” are conventional SOUL
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NNLMs, while “SOUL+” corresponds to the SOUL NNLMs that make use of
the enhanced training scheme (Algorithm 3). The latter uses more data to train
the OOS part of output layers.

Table 2.4: Arabic: Perplexity for different language models.

LM type dev09s eval10ns dev10c
alone int. alone int. alone int.

4-gram baseline 312 239 256
4-gram 12k shortlist NNLM 324 276 247 213 256 224
4-gram SOUL NNLM 293 256 225 200 231 208
4-gram SOUL+ NNLM 277 250 214 195 221 204
6-gram 12k shortlist NNLM 302 263 228 202 236 210
6-gram SOUL NNLM 255 231 196 180 200 186
6-gram SOUL+ NNLM 245 227 189 177 194 183

Using longer context brings improvements both for shortlist and SOUL
NNLMs. The ability of neural network LMs to improve performance with
the increase of context goes in line with results obtained with RNNLMs (see
Section 1.4.1.4). The latter can be regarded as a special case of neural networks
taking into account all the history seen before the predicted word. Further
comparison with RNNLMs are carried out in Chapter 5.

Perplexity results show that SOUL NNLMs (both 4-gram and 6-gram) out-
perform the baseline 4-gram LM trained on much bigger data. SOUL NNLMs
also consistently outperform shortlist NNLMs of the same orders on all the test
sets. Relative improvements of about 10% for stand-alone NNLMs and 7% for
interpolated models are observed for 4-gram NNLMs on different test sets. For
longer context 6-gram NNLMs, the gains from using SOUL NNLMs are even
larger, about 15% and 12% in alone and interpolated scenarios respectively.

Only minor gains in perplexity are achieved with the enhanced SOUL
NNLM training scheme as compared to standard SOUL NNLMs. This suggests
that using 10 times more data to train OOS part of SOUL NNLMs does not
have much influence on model performances in this task.

Table 2.5: Arabic: WER (in %) for different language models.

LM type dev09s eval10ns dev10c
4-gram baseline 14.8 9.6 14.5
+ 4-gram 12k shortlist NNLM 14.4 9.1 14.2
+ 4-gram SOUL NNLM 14.3 9.0 14.0
+ 4-gram SOUL+ NNLM 14.1 9.1 14.0
+ 6-gram 12k shortlist NNLM 14.3 9.1 14.2
+ 6-gram SOUL NNLM 14.0 8.9 14.0
+ 6-gram SOUL+ NNLM 14.0 8.9 13.9
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Results in Table 2.5 show that the improvements in perplexity obtained
with SOUL NNLMs over shortlist NNLMs carry over to speech recognition
experiments. The interpolation weights for language models are tuned on
GALE Phase 5 validation data and are given in Table 2.6. They show that the
SOUL NNLMs obtain higher interpolation weights as compared to the shortlist
NNLMs.

As can be seen in Table 2.5, using SOUL NNLMs results in better recog-
nition performances as compared to shortlist NNLMs both for 4-gram and
6-gram cases. The gains from using 6-gram NNLMs are smaller than could
be expected as the lattices have to be pruned before rescoring with 6-grams
for computational reasons. The effect of pruning is most notable on dev10c set.
This set contains some large lattices that need more severe pruning. However,
as 6-gram shortlist NNLMs show no improvement with pruned lattices over
4-gram NNLMs, 6-gram SOUL NNLMs still improve the results.

Because the Arabic vocabulary is 6 times larger than the Mandarin one,
larger gains could be expected from using SOUL NNLMs, as they estimate
probabilities for all n-grams and not only for those ending with an in-shortlist
word. However, similar gains are observed. This might be due to the fact that
in both cases, a relatively high coverage is achieved with shortlists. Shortlists
are formed on the basis of all training data before resampling. For 12k shortlists
used in Mandarin and Arabic NNLMs, coverage on the basis of all training
data is 95% and 90% respectively. The overall coverage shows that though
Arabic vocabulary is several times larger than the Mandarin one, the shortlist
coverage is only 5% lower. As training data is resampled at each epoch with the
emphasis on sources containing target bn and bc data, the number of calls to an
NNLM (i.e., coverage at each epoch) changes. The same is valid for validation
data due to the fact it consists only of bn and bc data and the general vocabulary
may have different coverage. We check the coverage on validation and test
data and observe no significant difference as compared to the overall coverage.
The shortlist coverage statistics shows that similar size shortlists do relatively
well in terms of data coverage even for models with much larger vocabularies.

Finally, enhanced SOUL NNLMs bring slight improvements over standard
SOUL NNLMs on some data sets and NNLM configurations (4-gram NNLM
on dev09s and 6-gram NNLM on dev10c).

Table 2.6: Arabic: The weights for neural network language model when interpolated
with the baseline n-gram model.

LM type interpolation weight
4-gram 12k shortlist NNLM 0.50
4-gram SOUL NNLM 0.68
4-gram SOUL+ NNLM 0.72
6-gram 12k shortlist NNLM 0.55
6-gram SOUL NNLM 0.74
6-gram SOUL+ NNLM 0.75
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2.4.2 Machine Translation

Results presented in this section are taken from the LIMSI submissions to
the WMT 2011 English to French and English to German shared transla-
tion tasks (Allauzen et al., 2011). The baseline system is built using n-code,
our open source Statistical Machine Translation system based on bilingual
n-grams (Crego, Yvon, and Mariño, 2011). The use of SOUL NNLMs of large
order to rescore m-best lists provided by baseline systems has been shown to
achieve significant and consistent improvements.

2.4.2.1 MT Setup

We only provide here a very short overview of the task; all the necessary
details regarding this evaluation campaign are available on the official Web
site3. Simply note that our parallel training data includes a large Web corpus,
referred to as the GigaWord parallel corpus. After various preprocessing and
filtering steps, the total amount of training data is approximately 12 million
sentence pairs for the bilingual part, and about 2.5 billion of words for the
monolingual part.

To create a baseline conventional language model, we assume that the test
set consists in a selection of news texts from the end of 2010 to the beginning
of 2011. This assumption is based on what was done for the 2010 evaluation.
Thus, for each language, we build a development corpus in order to optimize
the vocabulary and the target language model.

To estimate such large baseline n-gram LMs, a vocabulary is first defined
for each language by including all tokens observed in the Europarl and News-
Commentary corpora. For French, this vocabulary is then expanded with all
words that occur more than 5 times in the French-English GigaWord corpus,
and with the most frequent proper names taken from the monolingual news
data of 2010 and 2011. As for German, since the amount of training data is
smaller, the vocabulary is expanded with the most frequent words observed
in the monolingual news data of 2010 and 2011. This procedure results in a
vocabulary containing around 500k words in each language.

For French, all the training data allowed in the constrained task are divided
into 7 sets based on dates or genres. On each set, a standard 4-gram LM is
estimated from the 500k words vocabulary using absolute discounting interpo-
lated with lower order models (Kneser and Ney, 1995; Chen and Goodman,
1998). All LMs except the one trained on the news corpora from 2010-2011 are
first linearly interpolated. The associated coefficients are estimated so as to
minimize the perplexity evaluated on dev2010-2011. The resulting LM and the
2010-2011 LM are finally interpolated with newstest2008 as validation data. This
procedure aims to avoid overestimating the weight associated to the 2010-2011
LM.

3http://www.statmt.org/wmt11

http://www.statmt.org/wmt11
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For German, as we have a smaller quantity of data, all the training data are
concatenated. From that, one LM is trained using a Kneser-Ney smoothing
technique.

For SOUL NNLMs, we train four interpolated models that use a hidden
layer of 300 units and a projection word space of 400 dimensions. The 5000
most frequent words form a shortlist. They differ in the resampling rates that
prefer different parts of data. As mentioned erlier, the order of a continuous
n-gram model such as SOUL NNLMs can be increased at a small (linear)
computational cost. We therefore try different configurations (4, 6 and 10-gram)
in order to verify the benefit of using larger orders for SOUL NNLMs. In Table
2.7, we show the chosen configuration parameters in more details4

SOUL LM scores are introduced as a new score in the SMT pipeline by
rescoring the m-best list generated by the decoder, and the associated weight
was tuned with MERT algorithm (Och, 2003).

parameter SOUL NNLM
training data size ≈ 2500M (French); ≈ 360M (German)
vocabulary size ≈ 500,000
number of models 4
order (n) 4, 6 or 10
projection space (M) 400
hidden layer size (H) 300
nonlinear activation sigmoid
shortlist size 5000
number of top classes 5000
number of examples/epoch ≈ 50M
number of epochs (shortlist) 3
number of epochs (OOS) 5
number of epochs (all words) 15
learning rate 1× 10−2

learning rate decay not used
weight decay 3× 10−5

block size 32

Table 2.7: WMT 2011: NNLM configurations.

2.4.2.2 Results

The experimental results are reported in terms of BLEU and TER using the
newstest2010 corpus as evaluation set. These automatic metrics are computed
using the scripts provided by NIST after a detokenization step. We summarize
in Table 2.8 our experiments with SOUL NNLMs of orders 4, 6, and 10.

4The learning rate is larger than the one used in the previous ASR experiments because we use another
nonlinear activation function, sigmoid in lieu of tanh. The learning rate decay is marked not used because
we follow the second training regime presented in Section 1.4.2.2.
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We observe for the English-French task: a BLEU improvement of 0.3, as
well as a similar trend in TER, when introducing 4-gram SOUL NNLMs; an
additional BLEU improvement of 0.3 when increasing the order from 4 to
6; and a less important gain with the 10-gram SOUL NNLM. In the end, the
use of a 10-gram SOUL NNLMs achieves a 0.7 BLEU improvement and a TER
decrease of 0.8. The results on the English-German task show the same trend
with a 0.5 BLEU point improvement.

model en2fr en2de
BLEU TER BLEU TER

baseline 28.1 56.0 16.3 66.0
+ 4-gram SOUL NNLM 28.4 55.5 16.5 64.9
+ 6-gram SOUL NNLM 28.7 55.3 16.7 64.9
+ 10-gram SOUL NNLM 28.8 55.2 16.8 64.6

Table 2.8: WMT 2011: Translation results from English to French (en2fr) and English
to German (en2de) measured on newstest2010 with SOUL NNLMs.

2.5 Summary

The SOUL neural network approach to language modeling combines two tech-
niques that were proved to improve both ASR and SMT system performances
for large-scale tasks, namely neural network and class-based language models.
This approach allows us to train neural network LMs with full vocabularies
without confining their power to predicting words from limited shortlists.

Large scale and well-tuned GALE Mandarin and Arabic ASR systems with
error rate of about 10% are chosen to evaluate SOUL NNLMs. In these systems,
robust baseline language models are trained on very large data, of several
billion words. In a GALE Mandarin ASR system, SOUL NNLMs outperform
standard shortlist NNLMs for all test configurations. The performance of the
SOUL structure on a larger vocabulary containing approximately 300k entries is
studied using Arabic GALE task. As for Mandarin, the results on Arabic show
that SOUL NNLMs consistently outperform conventional shortlist NNLMs
both in terms of perplexity (up to 15% relative improvement) and recognition
error rate (up to 0.3% absolute improvement). Despite the fact that the Arabic
vocabulary is 6 times larger than the Mandarin one, using SOUL NNLMs bring
only similar gains. This suggests that improvements from using full vocabulary
SOUL NNLMs, while being consistent, are not proportional to the vocabulary
size.

An enhanced training scheme is evaluated using this Arabic ASR task. The
new method assumes separate training of the part related to in-shortlist words
(as each of these forms a separate class itself without subclustering) and the
class part that deals with all other words from the vocabulary. One order of
magnitude more data is used to train the OOS part of SOUL NNLMs without
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any drastic increase in computational charge and training time. However, only
minor improvements in perplexity and WER are observed.

To conclude, consistent perplexity and speech recognition improvements
over both conventional n-gram baselines and shortlist NNLMs on the GALE
Mandarin and Arabic STT tasks make the SOUL NNLM an alternative to the
shortlist approach to neural network language modeling. The application of
the SOUL NNLM is not confined to speech recognition but can be used for
other language technology tasks. For instance, the conclusions drawn from our
machine translation results for the WMT 2011 evaluation are along in the same
lines as those from ASR evaluations.
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In the previous chapter, a novel output structure for neural network lan-
guage models, SOUL, have been presented. Though this new approach has
been shown to significantly outperform the NNLMs using shortlist at the out-
put, the impact of its various configuration parameter remains to be analyzed.
This chapter is thus meant to study the SOUL configuration in more details.
Most of the work here is published in (Le et al., 2013).

We first compare different ways of performing word clustering in order
to show that our method based on the context word space induces a good
hierarchical structure at a small computational cost. We then investigate the
impact of different configuration parameters of a SOUL tree clustering, such
as the size of the shortlist, the number of top classes in the main softmax layer
and the depth of the tree. The main goal is to demonstrate that, following
the enhanced SOUL training scheme, the configuration of the output part
can be adjusted to significantly reduce the computational time without any
degradation of the system performance.

Finally, we relate and discuss our attempts to introduce Deep learning into
the SOUL NNLM approach. Deep learning is one of the most active research
areas in Machine Learning nowadays. It aims at modeling complex relation-
ships by extracting multiple levels of representation from the data. Inspired by
the architecture of the human brain which processes information in a hierarchi-
cal fashion with multiple levels of data representations and transformations,
the concept of deep neural networks having several hidden layers was intro-
duced (Utgoff and Stracuzzi, 2002; Bengio and LeCun, 2007). However, due
to some practical training issues, deep architectures were often outperformed
by shallow ones with a smaller number of hidden layers. The reader is referred
to (Bengio, 2009) for more details about the deep and shallow architectures.
The introduction of deep learning architectures based on Deep Belief Networks
with a more sophisticated learning algorithm (Hinton, Osindero, and Teh, 2006)
can be considered as a breakthrough. The main idea is to pre-train the network
on a layer by layer basis in an unsupervised way, using Restricted Bolzmann
Machines (RBM) in order to increase the generalization capacity. Deep learning
has been recently applied with success in many fields, especially in the domain
of image processing (Hinton, Osindero, and Teh, 2006) or recently in acoustic
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modeling (Seide, Li, and Yu, 2011; Mohamed, Dahl, and Hinton, 2012) and in
NNLMs (Arisoy et al., 2012), albeit within a small scale framework. Using
another hidden layer in NNLMs was proposed in (Mikolov et al., 2011b) under
the name of a “compression layer”. The goal of this layer is to decrease the
size of the second hidden layer that is directly connected to the output softmax
layers and hence to reduce the computational time rather than to improve the
overall accuracy. Following these ideas, the SOUL NNLM structure has been
modified to include additional layers. The deeper structure will be shown to
bring additional improvements.

The remaining of this chapter is organized as follows. In Section 3.1, we
make a comparison between several ways to perform word clustering. Then,
Section 3.2 is devoted to investigate various configurations of the tree structure
at the output side of SOUL NNLMs. Models with more than one hidden layer
are finally examined in Section 3.3. Note that all experiments are carried out
on the same Mandarin setup as in Section 2.4.1.1, they all rely on an enhanced
SOUL training scheme presented earlier (refer to Algorithm 3 in Section 2.3).

3.1 Word clustering algorithms

In the ASR experiments presented in the previous chapter, at Step 2 of both Al-
gorithm 2 and Algorithm 3, the hierarchical word clustering of SOUL NNLMs
was automatically derived from the continuous word space obtained at Step
1. This word clustering algorithm, referred to as NNLM, is described in more
details as follows.

At Step 1, to create a first estimate of the continuous space, we train an
NNLM with a shortlist comprising the 8k most frequent words as the output
vocabulary, using the one vector initialization method introduced in (Le et al.,
2010) (see Section 4.1.3.3). Only a few iterations (3) are required as the learning
of word features converges quickly.

At Step 2, as words input to an NNLM are represented in 1-of-V coding with
1 corresponding to a word’s vocabulary index and all other elements set to zero,
each line in the projection matrix R corresponds to a continuous representation
of a particular word. Our word clustering method is then applied to the
representations of less frequent words in the context space represented by
matrix R. This method is based on the relationship between the two word
spaces defined in the standard NNLM (Le et al., 2010): the context (input) and
prediction (output) spaces (see Chapter 4 for an analysis of this relationship).
As we cluster only less frequent words according to their prediction role, ideally
we have to use the prediction space at Step 2. In practice, the context space is
used instead because the relationships encoded in the context space for less
frequent words have been reported to be very similar to that in the prediction
space.

The dimensionality of this representation is reduced using the principal com-
ponent analysis (PCA). The size of the context space after the dimensionality
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reduction is a tradeoff between the loss of information and the computational
demands of a K-means clustering. The value of 10 is practically reasonable.
Such low dimensional context space makes the subsequent K-means clustering
computationally cheap.

The K-means clustering procedure splits a word class only if the number
of words in this class is above an empirically determined threshold s = 1000.
Each class containing more than s words is thus divided in K = |

√
s + 1|

subclasses. The value of this threshold allows us to tune the depth of the
clustering tree: small values result in a deep hierarchical structure while a very
large value generates a flat tree. The K-means algorithm starts with 4k top
classes. Each subclass is recursively divided. However, in practice, the one
vector initialization used at Step 1 implies that very rare words are represented
by very similar or identical feature vectors. In that particular case, the rare
words are then naturally grouped in the same class by the first K-means step,
and a recursive subdivision is therefore not well suited. The class for rare
words is therefore randomly divided.

The method above is not the only way to induce the output word structure,
and many other word clustering algorithms have been proposed in the liter-
ature. For instance, one can use directly output word classes from Brown’s
algorithm described in Section 1.3.2. Another possibility is to apply the fac-
torization of the output layer as has been done for RNNLMs (Mikolov et al.,
2011c). This approach, referred to as Unigram, is simpler than ours, since it
is based on the unigram distribution that does not reveal any relationships
between words.

For the experiments in this section, we rather follow the enhanced SOUL
training scheme with 4 steps (Algorithm 3) than the original one (Algorithm 2)
used in Section 2.4.1.1. The former adds an additional step to better deal with
less frequent words. So, after carrying out Step 1 and Step 2, an NNLM that
takes the OOS words as output is trained until convergence at Step 3. Finally,
at Step 4, a full-vocabulary NNLM is trained. This model has the hierarchical
structure at the output part and its parameters are initialized by the parameters
of models obtained at the previous steps.

Using Brown and Unigram clusterings, models can be directly trained with
Step 4. This scenario is referred to as single-step in Table 3.1, where the results
obtained with different word clustering schemes are reported. The original
enhanced SOUL clustering procedure with all the training steps is referred to as
SOUL. In this SOUL scenario, neural networks based on Brown and Unigram
clusterings also benefit from the information obtained during Step 1 and Step
3 (e.g., using more data to estimate probabilities of OOS words). The original
clustering method based on word similarity in the continuous space in the
neural network is referred to as NNLM; its perplexities are reported in the last
row. It should be noted that both Brown and Unigram approaches provide
hierarchical structures, just as the original NNLM method.

Several conclusions can be drawn from the results in Table 3.1. First, models
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Table 3.1: Stand-alone SOUL NNLM perplexity with different word clusterings on the
Mandarin dev09_M set.

clustering type 4-gram 6-gram
single-step SOUL single-step SOUL

Unigram 259 248 229 222
Brown 253 245 225 218
NNLM - 245 - 220

with NNLM clustering slightly outperform Brown and Unigram clusterings
if the latter are computed in the single-step setting. However, the perplexity
results in single-step and SOUL columns should not be directly compared, as
all the NNLMs in the latter scenario benefit from the pre-training of neural
network parameters in Step 1 and Step 3, as it was mentioned above. Results
for the SOUL scenario suggest that taking advantage of the SOUL training
approach brings additional improvements for the models based on the Brown
and Unigram clustering methods. At the same time, there is no significant
difference in perplexity between the three methods in the SOUL scenario. This
implies that the way less frequent words are assigned to classes is not very
important when the complete SOUL NNLM training is performed.

3.2 Tree clustering configuration

In this section, we investigate the impact of the clustering algorithm: the size
of the shortlist, the number of top classes, and the depth of the tree. In these
experiments, one model with 300 nodes in the projection layer for each history
word and 500 nodes in the hidden layer is trained for each configuration. The
model is trained according to the enhanced SOUL training scheme. At Step 3,
we train an NNLM with OOS words until convergence (after 5 epochs). Except
for the configuration parameters of tree structures and the hyper-parameters
mentioned above, the others are kept as presented in Table 2.1.

Results with NNLMs trained using different sizes for the shortlist are pre-
sented in Table 3.2. The shortlist column corresponds to different sizes of the
shortlist, top classes reports the number of top classes of the main softmax layer,
depth is the depth of the SOUL clustering tree, alone is used to refer to the cases
when only NNLMs are used and int. when NNLMs are interpolated with the
baseline n-gram model.

One conclusion that can be drawn by looking at Table 3.2 is that the flat
full-vocabulary NNLM, while being computationally very expensive, does
similarly or slightly worse than the others. The reason is that, to predict the
less frequent words, the shortlist NNLMs back-off to normalized Kneser-Ney
estimates, whereas the SOUL NNLMs benefit from the generalization of the
clustering tree. The SOUL NNLMs also deliver top results with a relatively
small shortlist (8k). This may be important in order to save computation time
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Table 3.2: Perplexity for LMs with different shortlist sizes on the Mandarin dev09_M
set.

model ppl training time (days)
shortlist top classes depth alone int.

4-gram Kneser-Ney
- - - 211 -

6-gram shortlist NNLMs
8k - - 222 178 2.4

12k - - 222 175 3.5
25k - - 223 171 7.1

6-gram SOUL NNLMs
8k 4k 3 220 169 3.1

12k 4k 3 219 168 5.6
25k 4k 3 219 168 7.0

flat full-vocabulary 6-gram NNLMs
all (56k) 0 1 226 171 14.7

and resources, as it is not necessary to train SOUL NNLMs with large shortlists.
For example, running similar experiments with shortlists equal or close to the
vocabulary size is hardly feasible on larger vocabulary setups1, e.g., Arabic
with 300k vocabulary entries, because of prohibitive training costs.

Table 3.3 reports the perplexity for Mandarin 6-gram SOUL NNLMs with
different numbers of top classes in the main softmax layer, SOUL NNLMs with
clustering trees of different depths and SOUL NNLMs without shortlist where
all words are clustered.

From the first five rows, it can be seen that the number of top classes (from
128 to 4k) does not have much influence on the final perplexity. The results from
the next three rows imply the same conclusion for the depth of the clustering
tree. On the one hand, training with a flat tree is slow and it yields a higher
perplexity. On the other hand, there is small difference between clustering
trees of depth two and three. This can be explained by the fact that clustering
mostly concern rare words; there is thus little point to perform a deep and fine-
grained clustering. However, deeper clustering trees are expected to provide
training speed-ups for larger vocabulary tasks as it results in more numerous
but smaller softmax layers2. The benefit of using the shortlist part in the SOUL
architecture is also confirmed as the perplexities reported in the last two rows
are larger than the others. It suggests that in the SOUL architecture, frequent
words should be treated differently than rarer words.

156k Mandarin vocabulary size can be considered as very moderate
2A similar experiment on Arabic shows that a three-level tree indeed provides gains in training time

as opposed to the two-level one (5.8 days vs. 6.2 days).
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Table 3.3: Perplexity for 6-gram SOUL NNLMs with different number of top classes
and clustering tree depths on the Mandarin dev09_M set.

model ppl training time
shortlist top classes depth alone int. (days)

SOUL NNLMs with different numbers of top classes
8k 128 3 221 169 2.4
8k 256 3 218 168 3.5
8k 1k 3 220 169 3.6
8k 2k 3 220 169 2.7
8k 4k 3 220 169 3.1

SOUL NNLMs with different clustering tree depths
all 0 1 226 171 14.7
8k 4k 2 220 169 3.0
8k 4k 3 220 169 3.1

SOUL NNLMs without shortlist part
0 4k 2 242 176 2.2
0 4k 3 240 176 2.4

3.3 Towards deeper structure

In previous experiments on the Mandarin ASR task, though SOUL NNLMs
were shown to be able to handle vocabularies of arbitrary sizes and to outper-
form shortlist based NNLMs, from the computational point of view, they are as
time consuming as the latter. This issue hinders the use of neural network with
deeper structures. Therefore, in this section, we first estimate the complexity of
SOUL NNLMs in order to show that the size of the shortlist and the number of
top classes can be tuned to significantly reduce the computational time. The
shallow structure issue is then discussed. As deeper NNLMs can be trained in
a reasonable time with the new configuration, experiments are carried out in
order to investigate SOUL NNLMs with deep structures. Some conclusions are
finally drawn from the experimental results.

Complexity issue In the experiments presented so far, SOUL NNLMs use a
shortlist of 8k words and 4k top classes for OOS words, which makes a total
of 12k units in the main softmax layer. This choice was mainly meant to allow
for a fair comparison with shortlist NNLMs. Because the time complexity is
dominated by the main softmax layer size, the computational cost is similar
to a 12k shortlist NNLM. This cost can be roughly estimated by counting
F, the number of floating point operations (Flops) needed, as indicated in
Equation (1.99), where Vo now denotes the size of the main softmax layer:

F = ((n− 1)×M + 1)× H + (H + 1)×Vo

The most important factors are (n− 1)×M× H and H × Vo. Assuming
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that Vo � (n− 1)M, the cost can be considered to be linear in Vo. However,
this assumption does not really stand in our experiments due to the use of large
values for M (500) and n (6). The value of Vo has nevertheless an important
influence on the complexity. Consequently, a non-trivial tradeoff must be
found for a shortlist NNLM: Vo needs to be limited for tractability purpose,
and, at the same time, Vo must be large enough to ensure a vocabulary size that
implies a sufficient n-gram coverage. On the contrary, the SOUL NNLM can
predict all possible n-grams and the shortlist is used at the first training step
mainly to bootstrap the model and to build the clustering tree for the output
structure. As a result, there is no evidence that such a large main softmax layer
is necessary for the SOUL NNLM and its size should be tuned as a tradeoff
between training time and recognition results.

Shallow structure issue concerns the number of hidden layers. With the hier-
archical output structure of the SOUL NNLM, the hidden layer is a complex
and highly-varying function of the input layer as it provides input not only
for one but for thousands of softmax layers. For example, each Mandarin
SOUL NNLM with a shortlist of 8k words and 4k top classes setup has three
thousands output softmax layers. To enforce the model capacity, we can either
increase the size of the hidden layer or modify the connections between the
hidden and the input layers. The latter alternative seems preferable as using
a large hidden layer drastically increases the number of parameter and slows
down the system. Deep neural networks with several hidden layers usually
need to be pre-trained in an unsupervised or a semi-supervised way following
a rather complex procedure (Bengio, 2009) to avoid the convergence to poor
local extrema, leading to a weak generalization capacity. As adapting the same
techniques for NNLMs is not straightforward, in the present study, the pre-
training steps are ignored. For that reason, it can be considered as a first step
towards tuning language modeling into deep learning. Several architectures of
the SOUL NNLM are considered: only one hidden layer; two hidden layers
with a large first layer and three hidden layers.

Experimental results Again, the GALE Mandarin ASR setting is used to eval-
uate the performance of different models. Following the enhanced SOUL
training scheme, each NNLM is trained on average with 25M example/epoch
after resampling the training data. For each test configuration, three 6-gram
NNLMs are trained and interpolated. The order of NNLMs is 6 as using longer
context with NNLMs has been shown to be useful for this data. Each of these
three NNLMs differs in training data resampling. For all experiments, the
nonlinear activation of hidden layers is sigmoid, the projection dimension is
set to 500. All parameters are summarized in Table 3.4.

Experiments are first performed in order to examine the size of the output
structure. Two configurations are considered. The first one, which was used
in our previous work has a main softmax layer of 12k units (8k as the number
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parameter SOUL NNLM
training data size ≈ 3200M
vocabulary size 56,052
number of models 3
order (n) 6
projection space (M) 500
nonlinear activation sigmoid
number of examples/epoch ≈ 25M
number of epochs (shortlist) 3
number of epochs (OOS) 5
number of epochs (all words) 10
learning rate 1× 10−2

learning rate decay not used
weight decay 3× 10−5

block size 32

Table 3.4: SOUL NNLM configurations.

of words in the shortlist and 4k as the number of top classes for OOS words).
The second configuration is much smaller with 4k units in the main softmax
layer (2k for the shortlist and 2k for the OOS words). These configurations are
compared for two SOUL models: the model with one hidden layer consisting
of 500 nodes and another one of two hidden layers consisting of 1000 and 500
nodes.

The perplexity and CER results are presented in Table 3.5. Training times
are reported in the third column and are computed as an average number of
hours needed to train three NNLMs following the enhanced SOUL training
scheme. Perplexity results are reported for dev09 and CER results are on dev09s
and eval09. The first row corresponds to the results obtained with the baseline
4-gram model. The other rows report on the results obtained when rescoring
of lattices generated with the baseline system with the 6-gram SOUL NNLMs
differing in main softmax sizes and hidden structures as shown in the first and
the second columns.

It can be seen in Table 3.5 that the results obtained with one and two hidden
layer NNLMs with different sizes of the main softmax layer (12k vs. 4k) do not
expose clear and systematic tendencies. The small differences suggest that the
main softmax layer size can actually be reduced at least by a factor of 3 without
any influence on the performance. In this way, the computational time can be
reduced efficiently since the models with the larger output are approximately
two times slower. These results also confirm that the choice of the size for the
output structure has a little influence on the final results.

Another peculiarity of the SOUL NNLM that is investigated in this study is
the structure of the hidden part of NNLMs. NNLMs with different numbers
or different sizes of hidden layers are trained using the same configuration of
the main softmax layer (2k− 2k). In all cases, the size of the last hidden layer



3.3. Towards deeper structure 81

model training time (h) ppl CER
main softmax layer hidden layers dev09 dev09s eval09

4-gram back-off
- - - 211 9.8 8.9

Adding 6-gram SOUL NNLM
12k 500 120 159 9.0 8.2
4k 500 55 160 9.1 8.3
12k 1000− 500 145 152 9.0 8.2
4k 1000− 500 80 152 9.0 8.1

Table 3.5: Perplexity and CER (in %) for SOUL NNLMs with different numbers of
hidden layers and different main softmax layer sizes.

is fixed to 500. Table 3.6 reports the final results with the same notation as in
Table 3.5. In all cases, SOUL NNLMs are interpolated with the baseline 4-gram
back-off LM.

Adding another hidden layer of 1000 nodes is useful as the NNLMs with
two hidden layers of 1000− 500 achieves 5% of perplexity reduction over the
models with only one hidden layer (the first and the second rows). It is worth
noticing that, as shown in Table 3.5, the same improvement of perplexity is
observed with the larger main softmax layer. Unfortunately, the perplexity
improvements do not translate into consistent CER improvements (while 0.2%
of absolute CER reduction is achieved with the main softmax layer of 4k nodes,
no gain of CER is found with the larger one). The output structure using the
smaller main softmax layer is more compact, because words are clustered in a
much smaller number of classes. So the CER results seem suggest that models
with more complex output can benefit more from the deep structure.

Moreover, adding one additional hidden layer of 1000 nodes or increasing
twice the first hidden layer size, from 1000 to 2000 (the third and the fourth
rows) yields no improvement. In terms of training time, the former method
is faster (100 compared to 120 hours). These results confirm the difficulty of
training a neural network of more than two hidden layers without pre-training.
In this case, there is no improvement from using more than one additional
hidden layer of 1000 nodes.

hidden layers training time (h) ppl CER
dev09 dev09s eval09

500 55 160 9.1 8.3
1000− 500 80 152 9.0 8.1
2000− 500 120 150 9.0 8.1

1000− 1000− 500 100 151 9.0 8.1

Table 3.6: Perplexity and CER (in %) for SOUL NNLM with deep hidden structures.
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3.4 Summary

In this chapter, a GALE Mandarin ASR framework is chosen to carry out
experiments. A well-tuned LIMSI Mandarin ASR system is served as a baseline.
In this system, a robust 4-gram Kneser-Ney discounted LM with a vocabulary
of 56k words is trained on about 3.2 billion corpora (without pruning nor
cut-offs). In the first section, the experimental results show that, in terms
of perplexity, when the complete SOUL NNLM training is performed, there
is no significant difference between three word clustering methods, namely
NNLM, Brown and Unigam. However, the SOUL NNLM training regime
is important as it is shown to bring additional improvements with all word
clustering methods.

In Section 3.2, investigation of SOUL NNLM configurations on this setting
leads to several conclusions about the characteristics of the SOUL architecture.
First, frequent words should be treated separately from the rarer words, even
though the size of the shortlist is better kept small as there is no significant
difference in terms of perplexity between the shortlists of 8k, 12k, 25k or 56k
words. Second, with the shortlist of 8k, the number of top classes for OOS
words (from 128 to 4k) and the depth of the clustering tree (from 1 to 3 levels)
do not have much influence on perplexity. The use of clustering tree itself is
important since it provides faster training and better perplexities as compared
to flat NNLMs.

In our previous work, significant gains were reported with SOUL NNLMs
over shortlist based NNLMs for this GALE Mandarin ASR task. However,
the computational costs were the same due to the similar size of the main
softmax layer of both types. Several refinements of the structure of SOUL
NNLMs are therefore proposed. Following the recently proposed enhanced
SOUL training scheme, it is shown that by reducing the size of the output
structure (from 8k to 2k words in the shortlist and from 4k to 2k top classes for
the OOS words), the inference and training times can be drastically reduced
without any impact on recognition performance. The resulting SOUL NNLMs
achieve better performances and are two times faster than the shortlist based
ones.

The limits of shallow neural network architectures are finally investigated.
The experimental results indicate that, using one large additional hidden layer
leads to 5% reduction in perplexity. On the contrary, using more hidden layers
does not bring additional improvements. It may point to the fact that the lack
of pre-training prevents deep models from escaping poor local extrema. It thus
looks promising to investigate advanced techniques for deep learning similar
to the ones presented in (Hinton, Osindero, and Teh, 2006; Bengio, 2009) as a
future work. Our study here can therefore be considered as one step towards
the deep learning architecture in language modeling.
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The representation of words in a continuous space allows NNLMs to take
into account the similarity between words. This characteristic is often claimed
to be the main advantage of NNLMs, as compared to standard back-off LMs.
However, only a few analyses on the impact of word spaces on the system
performance are available in the literature. In (Collobert and Weston, 2008),
useful information encoded in the word space of ranking NNLMs (presented
in Section 1.4.1.5) was reported. However, the opposite conclusion is often
drawn for standard, feed-forward NNLMs. In the same article, the authors
suggested that, compared to standard NNLMs, by using the complete context
of a word (before and after) to predict its relevance, ranking LMs can learn
much better word spaces. Another example can be taken from (Emami, 2006)
where the author found a similar fact by claiming that “It also seems that the
feature vectors obtained after training are only suited for use with the corresponding
neural net” (page 50). As such, it raises a crucial question: “If NNLMs are not
able to learn word spaces, at least as we intuitively want, where do their improvements
come from?”.

To address this issue, Section 4.1 of this chapter is hence devoted to the em-
pirical study on the impact of word spaces on system performances. This study
is based on different ways of viewing the information in word spaces induced
from two neural network structures for statistical language modeling: the
standard models of Bengio, Ducharme, and Vincent (2000) and the LBL models
of Mnih and Hinton (2007) (described in Section 1.4.1.1 and Section 1.4.1.2
respectively). The main purpose is to better understand the differences be-
tween these models, especially in terms of the word representations that they
induce. These results highlight the impact of parameter initialization of word
spaces. Based on this study, we will then show that by better learning the
relationship between words, improvements of both the speed and the predic-
tion capacity of the standard NNLMs can be achieved. First, a method called
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re-initialization is investigated. Basically, it allows the model to escape from the
local extremum the standard model converges to. While this method yields
a significant improvement, the underlying assumption about the structure of
the model does not meet the requirement of large vocabularies. We therefore
introduce a different initialization strategy, called one vector initialization. Exper-
imental results show that these novel training strategies can give a better sense
to word spaces. For reference, most part of this work was published in (Le
et al., 2010). In Section 4.2, several word spaces provided by SOUL NNLMs will
then be qualitatively analyzed by exploring word neighbors of some random
words.

Finally, in Section 4.3, we will briefly analyze the preliminary results for
word relatedness measure, another task related to the semantic similarity
between words. In this task, the output word embeddings of NNLMs are
considered as a useful source of information. By comparing to other state-
of-the-art approaches, we will show that SOUL NNLMs can effectively learn
some syntactic and semantic information of words.

4.1 Two spaces study

For all the experiments in this section, 4-gram language models are train on a
large monolingual corpus containing all the English texts in the parallel data of
the Arabic to English NIST 2009 constrained task1. It consists of 176 millions of
word tokens with 532,557 different word types as the size of the vocabulary.
The perplexity is computed with respect to the 2006 NIST test data, which is
used here as our validation data. The use of a back-off 4-gram model estimated
with the modified Knesser-Ney smoothing on the training data achieves a
perplexity of 141 on the validation data.

4.1.1 Convergence study

As shown in Section 1.4.1.2, the main difference between standard NNLMs
and LBLs is that, while NNLMs have two different word spaces (context and
prediction), in LBLs, they are bound to be the same (see Figure 4.1). As a result,
by comparing the two sorts of NNLMs, we can have some intuitive views
on the relation between two spaces. In order to do that, we train them in the
same setting: we choose to consider a small vocabulary comprising the 10,000
most frequent words. The same vocabulary is used to constrain the words
occurring in the history and the words to be predicted, meanings that the input
and output vocabularies are identical. To make a fair comparison, the size of
the hidden layer, which is also the dimension of the prediction space, and the
dimension of the context space are equally set to 200 (M = H = 200).

Figure 4.2 displays the perplexity convergence curve measured on the
validation data for the standard and LBL models. We observe that the LBL

1http://www.itl.nist.gov/iad/mig/tests/mt/2009

http://www.itl.nist.gov/iad/mig/tests/mt/2009
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Figure 4.1: Feed-forward NNLM and LBL architectures.

model converges faster than the standard model: the latter needs 13 epochs to
reach the stopping criteria, while the former only needs 6 epochs. However,
upon convergence, the standard model reaches a lower perplexity than the
LBL model. The convergence perplexities after combination with the standard
back-off model2 are also provided in Table 4.2 (in the first two rows).

With a smaller number of parameters, the LBL model cannot capture as
many characteristics of the data as the standard model, but it converges faster.
This difference in convergence can be explained by the scarcity of the up-
dates made in the projection matrix R in the standard model: during back-
propagation, only those weights that are associated with words in the history
are updated. By contrast, each training sample updates all the weights in the
prediction matrix Wh.

4.1.2 Word representation analysis

To deepen our understanding of these distributed representations, we propose
to further analyze the induced word embeddings by examining, for some ran-
domly selected words, the five nearest neighbors (according to the Euclidean
distance) in the context space and in the prediction space of the two models.
Results are presented in Table 4.1.

2as done with shortlist NNLMs, described by Equation (1.100) in Section 1.4.3.2.
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Figure 4.2: Convergence rate of the standard and the LBL models evaluated by the
evolution of the perplexity on a validation set.

If we first look at the standard model, the global picture is that, for frequent
words (is, are, and, to a lesser extent, have), both spaces seem to define meaning-
ful neighborhoods, corresponding to semantic and syntactic similarities; this
is less true for rarer words, where we see a greater discrepancy between the
context and prediction spaces. For instance, the date 1947 seems to be randomly
associated in the context space, while the 5 nearest words in the prediction
space form a consistent set of dates. The same trend is also observed for the
proper name Castro. Our interpretation is that, for less frequent words, the
projection vectors are hardly ever updated and remain close to their original
random initialization, thus hindering the emergence of meaningful clusters.

By contrast, the similarities in the (unique) projection space of the LBL
remain consistent for all frequency ranges, and are very similar to the prediction
space of the standard model. This seems to validate our hypothesis that in the
standard model, the prediction space is learned much faster than the context
space and corroborates our interpretation of the impact of the scarce updates
of rare words. Another possible explanation is that there is only rather indirect
relation between the context space and the objective function: the context space
is learned only indirectly by back-propagation. As a result, due to the random
initialization of the parameters and to the sparsity of counts, many vectors in R
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might be blocked in some local maxima, meaning that similar vectors cannot be
grouped in any consistent way and that the induced similarity is more “loose”.

Table 4.1: The 5 nearest neighbors in the word spaces of the standard and LBL language
models.

word/ model space 5 nearest neighbors
frequency
is standard context was are were be been
900,350 standard prediction was has would had will

LBL both was reveals proves are ON
are standard context were is was be been
478,440 standard prediction were could will have can

LBL both were is was FOR ON
have standard context had has of also the
465,417 standard prediction are were provide remain will

LBL both had has Have were embrace
meeting standard context meetings conference them 10 talks
150,317 standard prediction undertaking seminar meetings gathering

project
LBL both meetings summit gathering festival hear-

ing
Imam standard context PCN rebellion 116. Cuba 49
787 standard prediction Castro Sen Nacional Al- Ross

LBL both Salah Khaled Al- Muhammad Khalid
1947 standard context 36 Mercosur definite 2002-2003 era
774 standard prediction 1965 1945 1968 1964 1975

LBL both 1965 1976 1964 1968 1975
Castro standard context exclusively 12. Boucher Zeng Kelly
768 standard prediction Singh Clark da Obasanjo Ross

LBL both Clark Singh Sabri Rafsanjani Sen

4.1.3 Learning techniques

In the previous section, we observed that slightly better results can be obtained
with the standard rather than with the LBL model. The latter is however much
faster to train and seems to induce better projection matrices. Both effects can
be attributed to the particular parameterization of this model, which uses the
same projection matrix both for the context and for the prediction spaces. In
this section, we propose several new learning regimes that allow us to improve
the standard model in terms of both speed and prediction capacity. All these
improvements rely on the idea of sharing word representations. While this
idea is not new (see for instance (Collobert and Weston, 2008)), our analysis
enables to better understand their impact on the convergence rate.
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4.1.3.1 Re-initialization

The experiments reported in the previous section suggest that it is possible to
improve the performance of the standard model by building a better context
space. We therefore introduce a new learning regime, called re-initialization
which aims to improve the context space by plugging in the information on
word neighborhoods that emerges in the prediction space. One possible imple-
mentation of this idea is as follows:

Algorithm 4 Re-initialization

Train a standard model until convergence
Use the prediction space of this model to initialize the context space of a new model;
the prediction space is chosen randomly
Train this new model

The evolution of the perplexity with respect to training epochs for this new
method is plotted on Figure 4.3, where we only represent the evolution of the
perplexity during the third training step. As can be seen, at convergence, the
perplexity of the new model is about 10% smaller than the perplexity of the
standard model.
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Figure 4.3: Evolution of the perplexity on a validation set for various initialization
regimes.
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This result can be explained by considering the re-initialization as a form
of annealing technique: re-initializing the context space allows escaping from
the local extrema the standard model converges to. The fact that the prediction
space provides a good initialization of the context space also confirms our
analysis that one difficulty with the standard model is the estimation of the
context space parameters.

4.1.3.2 Iterative re-initialization

The re-initialization policy introduced in the previous section significantly
reduces the perplexity, at the expense of a longer training time, as it requires to
successively train two models. As we now know that, the parameters of the
prediction space are faster to converge, we introduce a second training regime
called iterative re-initialization which aims to take advantage of this property.
We summarize this new training regime as follows:

Algorithm 5 Iterative re-initialization
repeat

Train the model for one epoch
Use the prediction space parameters to reinitialize the context space

until Convergence

This regime yields a model that is somewhat in-between the standard
and LBL models as it adds a relationship between the two representation
spaces, which is lacking in the former model. This relationship is however
not expressed through the tying of the corresponding parameters; instead
we let the prediction space guide the convergence of the context space. As a
consequence, we hope that it can converge as quickly as the one of the LBL
model without degrading its prediction capacity.

The results plotted on Figure 4.3 show that this indeed the case: using this
training regime, we obtained a perplexity similar to the one of the standard
model, while at the same time reducing the total training time by more than a
half, which is of great practical interest3.

Figure 4.4 displays the perplexity convergence curve measured on the
training data for the standard learning regime as well as for the re-initialization
and iterative re-initialization. These results show the same trend as for the
perplexity measured on the validation data, and suggest a regularization effect
of the re-initialization schemes rather than allowing the models to escape local
optima.

4.1.3.3 One vector initialization

The new training regimes introduced above outperform the standard training
regime both in terms of perplexity and of training time. However, exchanging

3Each epoch lasts approximately 8 hours on a 3GHz Xeon processor.
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Figure 4.4: Evolution of the perplexity on the training data for various initialization
regimes.

information between the context and prediction spaces is only possible when
the same vocabulary is used in both spaces. This configuration of standard
NNLMs4 is not realistic for very large-scale tasks because increasing the num-
ber of predicted word types is much more computationally demanding than
increasing the number of types in the context vocabulary. Thus, the practical
requirement to use shortlists, as indicated in Section 1.4.3.2 leads to the fact
that, the former vocabulary is typically order of magnitudes larger than the
latter, which means that the re-initialization strategies can no longer be directly
used.

It is nonetheless possible to continue drawing some inspiration from the
observations made in Section 4.1.2, and, crucially, to question the random
initialization strategy. As discussed above, this strategy may explain why the
neighborhoods in the induced context space for the less frequent types are
difficult to interpret. As a straightforward alternative, we consider a different
initialization strategy where all the words in the context vocabulary are initially
projected onto the same (random) point in the context space. The intuition

4They are NNLMs without SOUL structure at the output. Here, we do not consider SOUL NNLMs
because they have only one word space: a context one (see Chapter 2 for more details).
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is that, it will be easier to build meaningful neighborhoods, especially for
rare types, if all words are initially considered similar and only diverge if
there is sufficient evidence in the training data to suggest that they should be
distinguished. This model is termed the one vector initialization model.

To validate this approach, we compare the convergence of a standard model
trained (with the standard learning regime) with the one vector initialization
regime. The context vocabulary is defined by the 532,557 words occurring in
the training data and the prediction vocabulary by the 10,000 most frequent
words. The other parameters are the same as in the previous experiments.
Based on the curves displayed on Figure 4.5, we can observe that the model
obtained with the one vector initialization regime outperforms the model
trained with a random initialization. Moreover, the latter reaches convergence
in only 14 epochs, while the learning regime we propose only needs 9 epochs.
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Figure 4.5: Evolution of the perplexity on a validation set for all-10,000 standard and
one vector initialization models.

To illustrate the impact of our initialization scheme, we also use a principal
component analysis to represent the induced word representations in a two
dimensional space. Figure 4.6 represents the vectors associated with numbers5

5are all the words consisting only of digits, with an optional sign, point or comma such as: 1947; 0,001;
-8,2.
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Table 4.2: Summary of the perplexity (ppl) results measured on the same validation set
with the different continuous space language models. For all of them, the
probabilities are combined with a back-off n-gram model.

Vc size model # epochs ppl
10000 log bilinear 6 239

standard 13 227
iterative reinitialization 6 223

reinitialization 11 211
all standard 14 276

one vector initialization 9 260

in red, while all the other words are represented in blue. Two different models
are used: the standard model on the left, and the one vector initialization model
on the right. We can observe that, for the standard model, most red points are
scattered all over a large portion of the representation space. On the opposite,
for the one vector initialization model, points associated with numbers are
much more concentrated: this is simply because all the points are originally
identical, and the training aims to spread the point around this starting point.
We also create the nearest neighbor lists reported in Table 4.3, in a manner
similar to Table 4.1. Clearly, the new method seems to yield more meaningful
neighborhoods in the context space.

(a) with the standard model (b) with the one vector initialization
model

Figure 4.6: Comparison of the word embeddings in the context space for numbers (red
points).

4.2 Word representation analysis for SOUL NNLMs

As done in Section 4.1.2, the similarity between words in the projection space of
SOUL NNLMs can also be analyzed by finding the nearest neighbors of words
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Table 4.3: The 5 nearest neighbors in the context space of the standard and one vector
initialization language models.

word/ model 5 nearest neighbors
frequency
is standard was are were been remains
900,350 one vector init. was are be were been
conducted standard undertaken launched $270,900 Mufamadi 6.44-

km-long
18,388 one vector init. pursued conducts commissioned initiated exe-

cuted
Cambodian standard Shyorongi $3,192,700 Zairian depreciations

teachers’
2381 one vector init. Danish Latvian Estonian Belarussian

Bangladeshi
automatically standard MSSD Sarvodaya $676,603,059 Kissana 2,652,627
1528 one vector init. routinely occasionally invariably inadvertently

seldom
Tosevski standard $12.3 Action,3 Kassouma 3536 Applique
34 one vector init. Shafei Garvalov Dostiev Bourloyannis-Vrailas

Grandi
October-12 standard 39,572 anti-Hutu $12,852,200 non-contracting

Party’s
8 one vector init. March-26 April-11 October-1 June-30 August4
3727th standard Raqu Tatsei Ayatallah Mesyats Langlois
1 one vector init. 4160th 3651st 3487th 3378th 3558th

according to the Euclidean distance. In this section, we pick one of SOUL
NNLMs developed for an Arabic ASR task which was presented in Chapter 2,
as well as a model for English which uses data from the WMT evaluation
campaign 2012 to evaluate resulting word spaces. French, German or Spanish
native speakers are invited to go to Appendix B to have the similar analyses on
their-own native languages.

For Arabic, Table 4.4 includes some words with close concepts or sharing
similar functions, that are close in the SOUL projection space. Words in the
first column are the words for which “similar” words are determined (labeled
nearest neighbors). The nearest neighbors are presented first with more distant
words near the end of the lists. The Arabic words are MADA-decomposed
units represented with a slightly modified MADA (Roth et al., 2008) notation
used at LIMSI along with English glosses. The indices (m) and (f) stand for the
grammatical markers for gender (masculine/feminine), an information that
is encoded in Arabic words. For English, Table 4.7 is built in the similar way,
with random words selected among the 10,0006 most frequent words.

6This number is chosen just to guarantee that the created list will be not filled with rare words due to
the uniform selection, which makes the analysis more difficult.
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Table 4.4: Examples of nearest MADA-decomposed Arabic words according to the
SOUL NNLM projection space.

word nearest neighbors
Aldwlp AlHwmp - bnwknA - mWsstnA - jAmctkm - mSArfhA - bldytnA -

nqAbth - vwrtnA - cAlqDyp - cAlclAqAt - mSArfnA - dwltkm -
Aldwylp - wzArthA - mHAkmnA

country district - our banks - our institutions - your universities - its
banks(f) - our town - syndicate - our war - about affair - about
relations - our banks - your country - small country - its ministry(f)
- our tribunals

AlmADy AlmADyp - AlHAly - AlmADyyn - AlmnSrmyn - mggAk -
mWxrA - ywmgAk - jwkAnwfytX - AlmADyn - mZAhry -
EwAxrh - mwskwfytX - AlfAetyn - cAmgAk - mgAk

past(m) past(f) - present - previous(pl) - previous(pl) - since - late - that day
- Dzukanovitch - previous(pl) - demonstrators - last - Mouskovitch
- previous(pl) - that year - since

jAC yjyC - EtY - yEty - wAtY - mAjAC - mAwrd - yEtyAn - jACA -
tEtY - jAChA - jACtA - Astwqfny - AstcjlwA - ycksh - wkAn - yje -
ytbdY

arrived will arrive - come - he will come - and come - he didn’t
come - destination - they will come - they arrived - she will
come - smb/smth(m) came/happened to her - smb/smth(f)
came/happened to her - I stopped (because of smth.) - they hur-
ried up - he met - he was - he will arrive - it/he will start

Intrnt mwdm - blwtwv - HAswbyp - myJAhyrtz - lAbtwb - AlwAb -
kwmywnykyXnz - HwAsb - brmjyp - Abswn - nAfyJytr - mdmjA
- AllAbtwb - HAswby - mdmj - AlHAswbyp - byksl

Internet modem - bluetooth - computer - megahertz - laptop - web - com-
munications - computers - programming - Epson - navigator -
compact(f) - laptop - my - computer - compact(m) - computer -
pixel

In many cases, we observe that words with semantic or grammatical simi-
larities also have similar representations in the projection space. Thus, neural
networks following SOUL training scheme seem to capture some of the simi-
larities that exist between words.

4.3 Word relatedness task

There exist other tasks that can be used to evaluate the quality of word space
in more direct fashions. For example, in (Turian, Ratinov, and Bengio, 2010),
word spaces obtained using different methods: Brown clustering (Section
1.3.2), HLBL models (Section 1.4.1.3) and ranking NNLMs (Section 1.4.1.5)
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were compared together in NER and chunking tasks. Here, we use another
task aiming at learning word semantic similarity from text data. Given a list of
word pairs, one needs to assign to each pair a score that measures the similarity
(or more exactly speaking, the relatedness) of its words. This task provides
useful information for more sophisticated tasks such as information retrieval,
word sense disambiguation, text clustering among others. The performance
of a method is evaluated based on the correlation between its provided scores
and the available average of human judgments. For example, a couple of
words: “love” and “sex” has a score of 6.77/10 according to human judgments
in WordSim-353. In the literature, the Spearman’s rank order correlation is
usually used (the larger is the better). In order to easily compare our method
to others, we use the two data sets: WordSim-353 (Finkelstein et al., 2001) and
MTurk-287 (Radinsky et al., 2011) on which the results for most state-of-the-art
approaches are available.

4.3.1 State-of-the-art approaches

Most current approaches rely upon the use of various linguistic resources: large
sets of documents for corpus-based approaches; lexical databases in thesaurus-
based approaches. Each word is represented as a vector in a high dimension
space. The similarity of each pair of words is then often measured as the
cosine similarity of their vectors in the space, though other measures are also
available. For example, in corpus-based approaches, Latent Semantic Analysis
(LSA) (described at the end of Section 1.3.5) or Explicit Semantic Analysis
(ESA) (Gabrilovich and Markovitch, 2007) use the context words, documents,
topics or concepts of words; Temporal Semantic Analysis (TSA) (Radinsky
et al., 2011) is based on the study on patterns of word usage over time. For
reference, in (Yih and Qazvinian, 2012), the authors give an outline of the
state-of-the-art approaches and propose a method to incorporate some of them
to yield better results. In summary, most existing methods use information
from more advanced and sophisticated knowledge sources compared to raw
text data, which is the only source of information that NNLMs learn from.

Recently, in (Huang et al., 2012), several neural network architectures that
can automatically learn word space (see Figure 4.7) have been investigated.
The goal is to score the relevance of the word in the context. The first type of
model is similar to the ranking NNLMs described in Section 1.4.1.5, but the
target word is used instead of the middle word. The training is performed so
as to increase the score of a positive n-gram example (obtained from the text)
and to decrease the score of the corresponding negative example (obtained
by replacing the last word by another word in the vocabulary drawn from
the uniform distribution). The model referred to as ranking LM is represented
in the left part of Figure 4.7; and delivers a local score scorel. The authors
also proposed another architecture which has an additional part used to deal
with the global context (in the right part of Figure 4.7). This part provides a
global score, scoreg, which is a function of the word representation and of the
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representation of its document, computed as the average values of all words
occurring in the document. In this new model, the final score is obtained by
summing the local and global scores. Moreover, in order to capture homonymy
and polysemy, the authors proposed to use multiple vectors to represent a
word. Therefore, for each word in the original vocabulary, its occurrences are
automatically assigned to one label using the K-means clustering algorithm
applied to the vector representation of their contexts7. After that, each word
occurrence is re-labeled with its cluster tag. Considering each original word
and its label as new word type, we use the new corpus to learn multiple
representations of the words in the original vocabulary. The similarity score
between two words is then computed as the average cosine similarity of all
possible pairs of their vector representations. We call multiple vectors the model
that takes into account the global context information and that makes use of
multiple word representations. We use multiple vectors wo stop words to refer to
the same model when trained without stop words8. The proposed models were
shown to achieve a comparable result on the WordSim-353 task (see Table 4.5).

Taking directly the final induced word space of NNLMs without any modi-
fication neither on their architecture nor on their training fashion, we will show
that they can also yield promising results on this particular task.

Figure 4.7: Neural network architecture described in (Huang et al., 2012). The word
bank is the word that needs to be discriminated using its left context words
and its document. This figure is borrowed from (Huang et al., 2012).

4.3.2 Experimental evaluation

The two data sets WordSim-353 and MTurk-287 are used to evaluate system
performances. Training data is the Wikipedia snapshot up to Nov 2010, de-
scribed in (Shaoul and Westbury, 2010). This corpus is further segmented into
sentences, lowercased and then tokenized using the scripts from the Moses
machine translation toolkit (Koehn et al., 2007). All sentences that are too short

7They are computed as a weighted average of the context words’ vectors.
8The most frequent words which are considered to be less informative, e.g., is, the, a, an . . . )
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(containing less than 5 words) or too long (having more than 100 words) are
filtered. The resulting data set contains about 50 million sentences and about
1.1 billion words. Two sets of 2500 randomly selected sentences are excluded
to form a validation data and a test data. The remaining part is used as training
data. The vocabulary contains the 688,017 words which occur more than 10
times in the corpus.

We decide to consider several configurations for SOUL NNLMs. All models
are trained following the SOUL enhanced learning algorithm (Algorithm 3 pre-
sented in Section 2.3) in two cases: with or without reinitializing the projection
space at the beginning of each step. The order of models is 10, the shortlist size
end the number of top classes are both set to 2000. We use one hidden layer
and fix its size to be equal to the dimension of the word space. The number
of epochs for all steps is 2, as using a larger value does not bring significant
improvements.

Table 4.5: Word relatedness evaluation of state-of-the-art approaches on the WordSim-
353 and MTurk-287 data sets. Performance is presented as Spearman’s
rank order correlation coefficient ×100. (i) means that this result was taken
from (Huang et al., 2012), (ii) from (Gabrilovich and Markovitch, 2007) and
(iii) from (Radinsky et al., 2011).

model WordSim-353 MTurk-287
LSA (ii) 56 -
ESA (ii) 75 59
TSA (iii) 80 63

ranking LM (i) 55 -
multiple vectors (i) 64 -

multiple vectors wo stop words (i) 71 -

For reference, state-of-the-art results are represented in Table 4.5. Note that
the dimension of the word space used by these neural networks is 50. The
final results of our NNLMs are shown in Table 4.6. The column step denotes
which step of Algorithm 3 the model is taken. Recall that models at Step 1 are
trained with n-grams that end with in-shortlist words. Models at Step 3 only
deal with n-grams ending with OOS words. Models at Step 4 are trained with
all possible n-grams as they take the whole vocabulary as output.

The first three rows of Table 4.6 report the experimental results in the case
where the same data resampling rate is used at all steps. Moreover, to make
a fair comparison, we reinitialize the projection space at the beginning of the
training phase for Step 3 and Step 4. These results indicate that the word space
obtained from the model of Step 3 is clearly better. This fact suggests that
n-grams which end with less frequent words carry a rich information.

With the same dimension of the word space (50), the performance of SOUL
NNLMs is similar to the one of ranking NNLMs. Despite the different con-
figurations from different articles that hinders a totally fair comparison, they
clarify the assertion, claimed in (Collobert and Weston, 2008), that ranking
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Table 4.6: Word relatedness evaluation of NNLMs with different configurations on
the WordSim-353 and MTurk-287 data sets. Performance is presented as
Spearman’s rank order correlation coefficient ×100.

dimension step resampling rate activation WordSim-353 MTurk-287
reinitializing space at each step

50 1 15% sigmoid 39 39
50 3 15% sigmoid 52 53
50 4 15% sigmoid 48 46

normal training
50 1 15% sigmoid 39 39
50 3 15% sigmoid 52 52
50 4 15% sigmoid 54 53

more data
50 3 50% sigmoid 57 57

larger space
200 3 50% sigmoid 62 62

linear activation
200 3 50% linear 70 65

NNLMs with their more simple structure and their use of negative examples
make the learning of word space easier. In fact, the word embeddings learned
from normal NNLMs are not worst at all and they work at least as well as the
one induced from ranking LMs for this task.

The three following rows are the results of Step 1, Step 3 and Step 4 using
the normal training scheme, meaning that their projection space benefits from
the learning of the previous steps. We add the result of Step 1 only for reference
as it is the same as in the first row. By comparing rows 3 and 5, we see that the
result of Step 4 is significantly improved. On the contrary, the result of Step 3 is
almost unchanged (rows 2 and 4). It again demonstrates that the information
learned at Step 3 is the most important.

The next row reports the result of Step 3 with more data, using a resampling
rate of 50%. With the same rate, we cannot train models of Step 1 and Step 4
due to the memory and time problems. It should be noted that with this con-
figuration, we use a comparable number of training examples after resampling
(130 millions/epoch) as for the previous configurations of Step 1 and of Step 4.
So with the same training time, the capacity of using much higher resampling
rate is an advantage of Step 3. A large gain (5 points) indicates that more data
is actually better. At this level and with 2 epochs, resampling is nearly not
used, so this result is on top of its performance.

The jump from 57 to 62 when increasing the projection dimension of SOUL
NNLM from 50 to 200 demonstrates that for this task, 50 is not sufficient, at
least for SOUL NNLMs. On the contrary, other experimental results, which are
not reported here, indicate that word spaces with a dimension higher than 200
does not achieve better results.
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At the hidden layer, using linear activation is better than using sigmoid
activation (the last two rows) in spite of its worse performance on perplexity
(3004 compared to 28409) maybe because its linear relation between the target
function and the word space favors the use of cosine similarity. It seems to
indicate that for more complex word spaces induced by nonlinear models,
more complicated similarity measures should be investigated.

As a final conclusion, the best results of SOUL NNLMs (the last row) on the
two data sets are very competitive with the best reported results despite the
fact that, unlike most other approaches, they only use local information from
the raw texts.

4.4 Summary

In this chapter, we first carefully analyze the impact of word spaces induced by
standard and LBL models on the performance to demonstrate that, unlike in
the original article (Mnih and Hinton, 2007), LBLs do not outperform standard
ones. In standard NNLMs, there are two word spaces used to represent the two
different roles of a word (context and prediction) plays in language modeling.
Moreover, thanks to their similarity, the faster convergence of the prediction
space can enforce the convergence of the context space. Three new methods for
training NNLMs are proposed and shown to be efficient. This work highlights
the impact of the initialization and the training scheme for NNLMs. Both our
experimental results and our new training methods are closely related to the
pre-training techniques introduced by (Hinton, Osindero, and Teh, 2006).

Following the SOUL approach, the induced word spaces of NNLMs are
then proved to essentially encode some loose semantic and syntactic word
similarities in a variety of languages. The word embeddings provided by
SOUL NNLMs are also interesting for other NLP tasks. The promising results
obtained in our attempts at the word relatedness measure task show that SOUL
NNLMs perform not only well in its normal task but could also be helpful in
other semantic NLP tasks.

9They are quite large because at Step 3, the models only predict OOS (less frequent) words.
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Table 4.7: Examples of nearest neighbors according to the SOUL NNLM projection
space for English.

word nearest neighbors
defendant plaintiff - accuser - co-accused - co-conspirator - perpetrator -

petitioner - co-defendant - defendants - interrogator
type types - kind - kinds - pervasiveness - overabundance - multi-

plicity - blob - LOTS - troves
adjusted unadjusted - adjusting - pro-forma - Adjusted - Segment - rec-

onciles - adjusts - LTM - Diluted
Parker Wilcox - Udrih - Pondexter - Gaither - Dykes - Foye - Delfino -

Felton - Humphries
Eds EDS - EDs - Eds. - FIX - UPDATE - HT - dateline - NOTE -

CORRECT
critics detractors - skeptics - opponents - sceptics - admirers - cynics -

backers - proponents - purists
% percent - thirds - 10pc - fifths - cent - four-fifths - one-fifth -

two-fifths - one-third
responsibilities prerogatives - accountabilities - competencies - competences -

endeavors - deliverables - inadequacies - dilemmas - certifica-
tions

seminar symposium - workshop - Seminar - Symposium - webinar -
expo - exposition - seminars - treatise

pricing franchising - cashflow - provisioning - repricing - retailing -
customization - sourcing - mis-selling - tracability

Johannesburg Pretoria - Maputo - Bloemfontein - Durban - Luanda - Bul-
awayo - Polokwane - Dili - Brasilia

Sen. Senator - Sens. - Sen - Congressman - senator - Assemblyman -
Congresswoman - Rep. - Chairwoman

writing penning - composing - write - co-writing - authoring - faxing -
collating - coauthoring - rereading

deliver delivering - delivers - delivered - peddle - furnishes - distribute
- proffering - impart - hand-delivered

triumph triumphing - triumphed - rebirth - triumphs - romp - immortal-
ity - hegemony - fervour - slip-up

Lions Springboks - Wallabies - Waratahs - Boks - Cheetahs - Bucca-
neers - Dragons - Brumbies - Crusaders

criticised criticized - lambasted - faulted - rebuked - castigated - chastised
- criticising - criticise - derided

assurance reassurances - assurances - reassurance - inference - proviso -
certainty - contentions - pretence - affirmation

actively energetically - diligently - proactively - avidly - constructively -
earnestly - intensively - collaboratively - meaningfully

AVENUE Contemporaries - Appetizers - Cantina - SE1 - $5.20 - Westtown
- WC2 - MATEO - Suffern
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A difference between conventional and neural network language models
that has often been overlooked is the ability of the latter to fare with extended
contexts (Schwenk and Koehn, 2008; Emami, Zitouni, and Mangu, 2008); in
comparison, standard n-gram LMs rarely use values of n above 4 or 5, mainly
because of data sparsity issues and the lack of generalization of the standard
maximum likelihood estimates, notwithstanding the complexity of the compu-
tations incurred by the smoothing procedures (see however (Brants et al., 2007)
for an attempt to build very large models with a simple smoothing scheme).

There have been many attempts to increase the context beyond a couple of
history words (see e.g., (Rosenfeld, 2000) for a review), notably by trying to take
into account syntactic information that better reflect the “distance” between
words (Chelba and Jelinek, 2000; Collins, Roark, and Saraclar, 2005; Schwartz
et al., 2011). One such interesting proposal avoids the n-gram assumption by
globally estimating the probability of a sentence (Rosenfeld, Chen, and Zhu,
2001). This approach relies on a maximum entropy model which incorporates
arbitrary features. No significant improvements were however observed with
this model, a fact that can be attributed to two main causes: first, the partition
function which acts as a normalizer cannot be computed exactly as it involves
a sum over all the possible sentences; second, it seems that data sparsity issues
for this model are also adversely affecting the performance.

The recent attempt of Mikolov et al. (2011c) to resuscitate recurrent neural
network architectures goes one step further in that direction, as a recurrent
network simulates an unbounded history size, whereby the memory of all the
previous words accumulates in the form of activation patterns on the hidden
layer. RNNLMs (described in detail in Section 1.4.1.4) have been proved to
outperform feed-forward NNLMs on small and medium tasks. However, this
approach cannot handle large training corpora as easily as n-gram models,
which makes it difficult to perform a fair comparison between these two archi-
tectures and to assess the real benefits of using very long contexts. To make the
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comparison feasible, we will try to adapt efficient training techniques devel-
oped for n-gram NNLMs, notably SOUL NNLMs, to the case of RNNLMs.

This chapter contains two main contributions. We first analyze the architec-
ture of NNLMs and propose a slightly modified version of n-gram NNLMs that
aims at quantitatively estimating the influence of context words both in terms of
their position and their part-of-speech information. We then propose a compar-
ison between the feed-forward and recurrent NNLMs to assess whether long
range dependencies have a significant impact on statistical language modeling,
considering history sizes ranging from 3 words to an unbounded number of
words (in a recurrent architecture). To make this comparison fair, we introduce
an extension of the SOUL model that approximates the recurrent architecture
with a limited history. With this extension, the associated training procedure
can benefit from all the speed-ups and tricks of standard feed-forward NNLMs
(e.g., mini-batch and resampling), that make it able to handle large training
corpora. Furthermore, we show that this approximation can be effectively used
to bootstrap the training of a “true” recurrent architecture. The experimental
setup is based on a large scale machine translation task. An abridged version
of this chapter has been presented as (Le, Allauzen, and Yvon, 2012b).

The remaining of this chapter is structured as follows. First, Section 5.1
is devoted to present a measure of the influence of each context position in
the prediction based on a max variation of NNLMs. Then, in Section 5.2, we
analyze the difference between n-gram and recurrent architectures for NNLMs.
Based on the discussion on efficient issues, a new structure, pseudo RNNLMs,
is introduced in order to speed-up the training procedure for RNNLMs. These
types of NNLMs are finally empirically compared in a large scale machine
translation framework.

5.1 The usefulness of remote words

In principle, as described in Section 1.4.1.1, the architecture of n-gram feed-
forward NNLMs can be divided into three parts. The first one is the input
part (ending at the input layer) which aims at representing the context of the
prediction in a continuous space. The second one is the hidden part which
consists of several nonlinear layers. The output part is a set of softmax layers
which compute the probability of all possible successor words given the context.
In this section, we will propose a new type of NNLM based on the modification
of the hidden part. This new type is then used to measure the importance of
context words.

It is worth noticing that to make the later comparison between n-gram and
recurrent NNLMs clearer, hereafter, we change the notation of n-grams, from
wn

1 to w−1
−(n−1)w, so the history wn−1

1 becomes w−1
−(n−1), wi represents the ith

previous word and the predicted word wn becomes w. Therefore, the role
of NNLMs is to estimate the probability P(w|w−1

−(n−1)). As RNNLMs do not



5.1. The usefulness of remote words 103

follow the n-gram assumption and can make use of all history words, their role
is to estimate the probability P(w|w−1

− inf), where w− inf is misused to represent
the first word of the context.

5.1.1 Max NNLMs

In an n-gram feed-forward NNLM, the n− 1 previous words are projected in
the shared continuous space and their representations are then concatenated to
form a single input vector i, as illustrated in the left part of Figure 5.1:

i = {RTv−(n−1); RTv−(n−2); . . . ; RTv−1}, (5.1)

where v−i ∈ RV is the 1-of-V coding vector of the ith previous word and
R ∈ RV×M, the projection matrix. A nonlinear transformation is then applied
to compute the first hidden layer h as follows:

h = f
(

Whi + b
)

, (5.2)

with f stands for the nonlinear function and Wh ∈ RH×(n−1)M. Note that in
general, we can use more than one hidden layer.

Conventional n-gram back-off LMs are usually limited to small values of
n, and using n greater that 4 or 5 does not seem to be of much use. Indeed,
previous experiments using very large speech recognition systems indicated
that the gain obtained by increasing the n-gram order from 4 to 5 is almost
negligible, whereas the model size increases drastically. While using long
context seems to be very impractical with back-off LMs, the situation is quite
different for NNLMs due to their specific architecture. In fact, increasing the
context length for an NNLM mainly implies to expend the projection layer
with one supplementary projection vector, which can furthermore be computed
very easily through a look-up operation. The overall complexity of NNLMs
thus only grows linearly with n in the worst case (Schwenk, 2007).

In order to better investigate the impact of each context position in the
prediction, we introduce a slight modification of this architecture in a manner
analog to the proposal of Collobert and Weston (2008) (see Section 1.4.1.5 for
more details). In this variation, the computation of the hidden layer defined by
Equation (5.2) is replaced by:

h = f
(

max
i

[
Wh

i RTv−i

]
+ b

)
, (5.3)

where Wh
i ∈ RH×M is the submatrix of Wh ∈ RH×(n−1)M comprising the

columns related to the ith history word, and the max function is to be under-
stood component-wise. The transpose of a product Wh

i RT ∈ RH×V can then
be considered as defining the projection space for the ith position. After the
projection of all the context words into these spaces, the max function selects,
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Figure 5.1: Standard and max neural network language model architectures. After max
operation, at the hidden layer, for each element (node), the value (in red) is
selected (the bias vector is ignored for simplification).

for each dimension k, among the n− 1 values ([Wh
i RTv−i]k) the most active

one, which we also assume to be the most relevant value for the prediction.
More formally, the selection vector a is computed using the component-wise

argmax as follows:

a = argmax
i

[
Wh

i RTv−i

]
(5.4)

Then, by counting the number of times the index of each position occurs in
this vector, we can rank the context words in terms of their importance to the
prediction. For a sake of clarify, the new architecture is depicted in the right
part of Figure 5.1.

Note that in (Collobert and Weston, 2008), the max hidden layer was pro-
posed mainly to model a variable number of input features. Our motivation
for using this variant is different: we mostly aim to analyze the influence of
context words based on the selection rates implicitly performed through this
function.

5.1.2 Experimental evaluation

We now turn to the experimental part, starting with a description of the ex-
perimental setup. We will then present an attempt to quantify the relative
importance of history words in terms of position and POS-tag information.

The tasks considered in our experiments are derived from the shared trans-
lation track of WMT 2011 (translation from English to French), the same as
in Section 2.4.2 where SOUL NNLMs were evaluated. For language model,
the training data consist of 2.5 billion words with a vocabulary of about 500k
words. Throughout this study, we will consider a 10-gram max NNLM. It is
trained following the enhanced SOUL training scheme as described in Chap-
ter 2: the dimension of the projection word space is 500; the size of two hidden
layers are respectively 1000 and 500; the shortlist contains 2000 words; and the
nonlinearity is introduced with the sigmoid function. Resampling rates are
set in order to guarantee that after selecting, there are 75% of in-domain data
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(monolingual News data 2008-2011) and 25% of the other data. At each epoch,
the model parameters are updated using approximately 50 million words for
the last training step and about 140 million words for the previous ones. All
parameters are shown in the left column of Table 5.1.

parameter SOUL NNLM (pseudo and true )
RNNLM

training data size ≈ 2500M
vocabulary size ≈ 500,000
number of models 1
order (n) 4, 6, 8, 10 10 and BPTT = 9
projection space (M) 500
hidden layer size (H) 1000− 500
nonlinear activation sigmoid
shortlist size 2000
number of top classes 2000
number of examples/epoch (shortlist) ≈ 140M
number of examples/epoch (OOS) ≈ 140M
number of examples/epoch (all words) ≈ 50M
number of epochs (shortlist) 2
number of epochs (OOS) 2
number of epochs (all words) 8 6 and 3
learning rate 1× 10−2 5× 10−2 and 2× 10−3

learning rate decay not used
weight decay 3× 10−5

block size 128 32

Table 5.1: NNLM configurations. In the second column, in case of having two parame-
ters in one row, the first is for the pseudo RNNLM, the second is for the true
RNNLM. Note that learning rates are different because they are empirically
tuned for each type of model.

We first analyze the influence of each context word with respect to their
distance from the predicted word and to their POS tag. The quantitative
analysis relies on the variant of the n-gram architecture based on Equation
(5.3). Using this architecture, it is possible to keep track of the most important
context word for each prediction.

Figure 5.2 represents the selection rate with respect to the word position
in the context: on this graph, we represent the percentage of coordinates in
the input layer that are selected for each position in the history. As expected,
the influence of a context word decreases with its position, with the previous
word being by large the most important one. Very remote words (at a distance
between 7 and 9) have almost the same, weak, influence, with a selection rate
around 2.5%. This is consistent with the perplexity results of n-gram NNLMs
as a function of n, which are reported in Table 5.3: the difference between all
orders from 4-gram to 8-gram are significant, while the difference between
8-gram and 10-gram is negligible.

This result goes in line with the conclusions in (Rosenfeld, 1994) where
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Figure 5.2: Average selection rate per word position for the max-based NNLM, com-
puted on the test set (newstest2009,2010,2011). On x-axis, the number k
represents the kth previous word.

the authors tried to measure the average mutual information between wi and
word wi−d in the Brown Corpus: “As expected, we found perplexity to be low
for d = 1, and to increase significantly as we moved through d = 2, 3, 4 and 5. For
d = 6 . . . 10, training-set perplexity remained at about the same level. . . . We concluded
that significant information exists in the last 5 words of the history.” (page 16). The
main difference is that in this approach, the influence of each context word
was measured separately from the other, we instead, use solely one model to
measure all influences at once.

We now analyze the influence by main syntactic category. The POS-tag
information is generated using the TreeTagger (Schmid, 1994); subtypes of a
main tag are merged together so as to reduce the total number of categories.
For example, all the tags for verbs are merged into the same VER class. Adding
the special token <s> (start of sentence), the final tagset contains 17 tags (see
Table 5.2).

The average selection rates for each tag are listed in Figure 5.3: for each
category, we display (in bars) the average number of components that corre-
spond to a word in that category when this word is in previous position. Rare
tags (INT, ABK, ABR and SENT) seem to provide a very useful information
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and have very high selection rates. Conversely, DET, PUN and PRP words
occur relatively frequently and belong to the less selective group. The two most
frequent tags (NOM and VER) have a medium selection rate (approximately
0.5).
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Figure 5.3: Average selection rate of max function of the first previous word in
terms of word POS-tag information, computed on the test set (new-
stest2009,2010,2011). The green line represents the distribution of oc-
currences of each tag.

5.2 N-gram and recurrent NNLMs in comparison

In this section, we are going to present a different view on RNNLM structures
so as to clarify the main difference between standard feed-forward (or n-gram)
and recurrent NNLMs. Pseudo RNNLMs are then proposed and introduced
in the training algorithm for RNNLMs. Experimental results on a large scale
machine translation task are finally reported.

5.2.1 Pseudo RNNLMs

As described in Section 5.1, the architecture of n-gram feed-forward NNLMs
consist of the input, the hidden and the output parts. For RNNLMs, following
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tag meaning example
ABR abreviation etc FC FMI
ABK other abreviation ONG BCE CE
ADJ adjective officielles alimentaire mondial
ADV adverb contrairement assez alors
DET article; une les la

possessive pronoun ma ta
INT interjection oui adieu tic-tac

KON conjunction que et comme
NAM proper name Javier Mercure Pauline
NOM noun surprise inflation crise
NUM numeral deux cent premier
PRO pronoun cette il je
PRP preposition; de en dans

preposition plus article au du aux des
PUN punctuation; : , -

punctuation citation "
SENT sentence tag ? . !
SYM symbol %
VER verb ont fasse parlent
<s> start of sentence

Table 5.2: List of grouped tags from TreeTagger.

their description in Section 1.4.1.4, we need to specify more formally the input
layer in order to make a comparison with the standard approach. So let us
formalize here the definition of the input layer:

The input layer is the first layer of the neural network language model which
can be considered as a function of all continuous representation of the context
words.1

Recurrent networks are designed to recursively handle an arbitrary number
of context words. Their hidden layer is computed as follows:

h = f (Wh−1 + RTv−1)

In Figure 5.4, their original architecture is depicted in the top right, to be
compared to the standard n-gram architecture, in the top left. Thanks to the
unfolded representation (the botom right of Figure 5.4), which is also described
in detail in Section 1.4.1.4, we can see that the hidden layer h can also be
considered as the input layer with respect to the above definition. To predict

1This means that at the input layer, the projection (or look-up) of context words in the continuous
space has been already computed.
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the word w, h is constructed as the function of continuous representations of all
words in the context (from the first word of the current sentence <s> to w−1).
Note that originally, the context of RNNLMs can contain all past words, up to
the first word of the document but we restrict it here to the current sentence,
so as to make our later approximation feasible. In general, in RNNLMs, we
can also add some layers between h and the output layer. In this case, their
structure is divided into three parts as with feed-forward models. The first part
is up to h, unfortunately called the input layer from now. The hidden part is
formed by the additional layers. The output part is the same, as before a set of
softmax layers.

In the bottom left of Figure 5.4, we show our pseudo architecture of RNNLMs
that differs from the feed-forward architecture (in the top left) in its input part.
We use the same deep architecture to model the relation between the input
word presentations and the input layer as in RNNLMs (the part in the rectangle
of the unfolded representation in this figure). However, we explicitly restrict
the context to the n− 1 previous words. For instance, in this figure, while the
input layer (h) of a RNNLM takes all words in the context (from <s> to w−1),
the trigram approximation is restricted to take only words w−2 and w−1 into
account.

5.2.2 Efficiency issues

Training a standard NNLM can be achieved by maximizing the log-likelihood
of the parameters on some training corpus following the stochastic back-
propagation (SBP) algorithm as suggested in (Bengio, Ducharme, and Vin-
cent, 2000). RNNLMs are usually trained using a variant of SBP called the
Back-Propagation Through Time (BPTT) (Rumelhart, Hinton, and Williams, 1986;
Mikolov et al., 2011b). In Section 1.4.2, we described a general way of training
NNLMs. For feed-forward NNLMs, there exist some methods that can drasti-
cally reduce the overall training time, reducing from weeks to days. However,
adapting these methods to RNNLMs is not straightforward. An efficient train-
ing scheme for SOUL NNLMs was introduced in Section 2.3 (Algorithm 3).
Adapting it to RNNLMs is not trivial either. Several techniques are therefore
proposed in this section to address these issues. Note that some other possible
speed-up techniques for RNNLMs were discussed in Section 1.4.1.4. We also
apply some of these ideas in a similar way except for the use of a direct connec-
tion between the input and output layers, because it hinders the comparison
between feed-forward and recurrent NNLMs.

Reducing the training data Our usual approach for training large scale models
is based on n-gram level resampling. In this approach, a different subset of the
training data is used for each training epoch. This is not directly compatible
with RNNLMs as usual RNNLMs make use of the entire context, from the
current word position all the way back to the beginning of the document,
meaning that the contexts have to be presented in the right order. However,



110 Chapter 5. Measuring the Influence of Long Range Dependencies

w-1

w-2

R

R

Wo

output layer

(with softmax function)

.2

.1

.1

.3

.1

.1

.1
hidden layerinput layer

Wh

i

w-1

R

Wo

output layer

(with softmax function)

.2

.1

.1

.3

.1

.1

.1

W

hh-1

w-1

w-2

R

Wo

output layer

(with softmax function)

.2

.1

.1

.3

.1

.1

.1

W

W

R

iinit

Wh

hidden layerinput layer

i-1

i

w-1

w-2

w-3

R

Wo

.2

.1

.1

.3

.1

.1

.1

W

W

W

R

R

<s>

W

R

hinit

h-3

h-2

h-1

h

output layer

(with softmax function)

unfold

Figure 5.4: Approximation of the RNNLM to the feed-forward NNLM in case of trigram.
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obtained by copying only the part in the rectangle of the unfolded RNNLM,
then adding one hidden layer. In the experiments below, we use long-context
models with 10-gram.
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by restricting the context to sentences, data resampling can be carried out
at the sentence level. This means that the input layer is reinitialized at the
beginning of each sentence so as to “forget” the memory of the previous
sentences. A similar proposal is made in (Mikolov et al., 2011c), where temporal
dependencies are limited to the level of paragraph. Another useful trick, which
is also adopted here, is to use different sampling rates for the various subparts
of the data, thus boosting the use of in-domain versus out-of-domain data.

Bunch mode Bunch mode training processes sentences by batches of several
examples, thus enabling matrix operation that are performed very efficiently by
existing numerical library such as BLAS. After resampling, the training data is
divided into several sentence flows which are processed simultaneously. While
the number of examples per batch can be as high as 128 without any visible
loss of performance for n-gram NNLMs, we found, after some preliminary
experiments, that the value of 32 seems to yield a good trade-off between the
computing time and the performance for RNNLMs. Using such batches, the
training time can be reduced by a factor of 8 at the price of a slight loss (less
than 2%) in perplexity.

SOUL training scheme The enhanced SOUL training scheme (Algorithm 3)
integrates several steps used to deal with the fact that the output vocabulary is
split in two subparts: very frequent words are in the so-called shortlist, and are
handled differently from the less frequent ones. This setting cannot be easily
reproduced with RNNLMs because it requires to first consider a restricted
output vocabulary (the shortlist at Step 1 and out-of-shortlist (OOS) words at
Step 3), that is then extended to include the complete prediction vocabulary.
In practice, we need to efficiently train a model which takes as input the full
vocabulary and as output a different vocabulary. Let us consider the following
training sentence:

It is the practical guide for the army always to heed the directions of the party

In this example, we assume that the words in bold are not in the output
vocabulary. We process this sentence from the beginning without any problem
until we meet the out of output vocabulary word guide. We cannot update
the parameters with this example but we need to keep going on, so as not
to waste the remaining examples. As a result, we have to ignore the update
(the backward pass) but nevertheless doing the forward pass in order to have
new values of the model parameters for a new example, meaning that we
have to do 3 additional forward passes for this sentence. During Step 1 of the
SOUL training scheme, the output vocabulary contains only in-shortlist words.
Therefore, the number of “wasted” forward passes is equal to the number of
OOS words in the training data. As the OOS words are less frequent words,
this quantity does not slow down significantly the training procedure. On the
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contrary, at Step 3, the output vocabulary only contains OOS words, so the
training time is drastically increased because now, it is equal to the number
of shortlist words in the training data, which is very large as a consequence
of the Zipf’s law (Zipf, 1932). Moreover, from a practical point of view, by
resampling at the sentence level, at Step 1 and Step 3, instead of keeping only
useful n-grams into memory, we have to handle whole sentences that contain
also useless n-grams. It therefore increases the size of resampling data which
can then cause memory problems.

By contrast, by bounding the recurrence to a dozen or so previous words,
we obtain an n-gram version of RNNLMs (the pseudo architecture introduced
in Section 5.2.1). The SOUL training scheme can be adopted for this new kind
of model. After that, the parameter values of the final pseudo model are then
plugged into a truly recurrent architecture. We then train the true RNNLM
for several epochs until convergence. The proposed training procedure is
summarized in Algorithm 6. This model is finally used for inference. It is worth
noticing that our proposed pseudo recurrent architecture is just a convenient
intermediate model that is used to efficiently train a RNNLM. Intuitively, when
n is large, the pseudo RNNLM is considered as a good approximate version
of a RNNLM. In the light of the results reported below, we content ourselves
with n = 10.

Algorithm 6 Recurrent training scheme

Step 1, shortlist pre-training provides a first estimate of the continuous space by
training a shortlist pseudo RNNLM.
Step 2, word clustering derives a clustering tree from the information in the contin-
uous space.
Step 3, OOS pre-training trains a pseudo RNNLM with OOS words as output.
Step 4, full pseudo training trains a pseudo RNNLM with the tree structure induced
in Step 2 and with the parameters initialized using the parameters obtained at Step
3 and Step 1.
Step 5, full recurrent training Use the parameters of a pseudo RNNLM to initialize
the parameters of a true RNNLM. Train this model until convergence

5.2.3 MT Experimental evaluation

The same setup is used as that presented in Section 5.1.2. Note that the robust
baseline target n-gram language model is built as the interpolation of submod-
els LMs trained on different parts of the training data. All standard n-gram
NNLMs are trained with the same configuration parameters as with the max
NNLM. For the RNNLM, the parameter that limits the back-propagation of
errors through time was set to 9 (see (Mikolov et al., 2010) for details). This pa-
rameter can be considered to play a role that is similar to the history size in our
pseudo RNNLM: a value of 9 in the recurrent setting is equivalent to n = 10.
All configuration parameters are listed in Table 5.1.
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For the machine translation task, as usual, we carry out m-best rescoring:
the NNLMs probability of each hypothesis was computed and the list was
accordingly reordered. The NNLM weights were optimized as the other feature
weights using MERT (Och, 2003). For all our experiments, the size of the lists is
300.

To clarify the impact of the language model order in translation perfor-
mance, we consider three different ways to use NNLMs. In the first setting,
the NNLM is used alone and all the scores provided by the MT system are
ignored. In the second setting (replace), the NNLM score replace the score of
the standard back-off LM. Finally, the score of the NNLM can be added in the
linear combination (add). In the last two settings, the weights used for m-best
reranking are retuned with MERT.

model ppl BLEU
alone replace add

baseline 90 29.4 31.3 -
4-gram 92 29.8 31.1 31.5
6-gram 82 30.2 31.6 31.8
8-gram 78 30.6 31.6 31.8
10-gram 77 30.5 31.7 31.8
recurrent 81 30.4 31.6 31.8

Table 5.3: Results for the English to French task obtained with the baseline sys-
tem and with various NNLMs. Perplexity (ppl) is computed on new-
stest2009,2010,2011 while BLEU is on the test set (newstest2010).

Table 5.3 summarizes the BLEU scores obtained on the newstest2010 test set.
BLEU improvements are observed with feed-forward NNLMs using a value
of n = 8 with respect to the baseline (n = 4). A further increase from 8 to 10
only provides a very small BLEU improvement. These results strengthen the
assumption made in Section 5.2.2, there seems to be very little information
in remote words (above n = 8)2. It is also interesting to see that the 4-gram
NNLM achieves a comparable perplexity to the conventional 4-gram model,
yet delivers a small BLEU increase in the alone condition.

Surprisingly3, on this task, recurrent models seem to be comparable with
8-gram NNLMs which use a shorter context. The reason may be the deep
architecture of recurrent model that makes it hard to be trained on a large
scale task. Nevertheless, it is proved that with the pseudo recurrent model, it
is feasible to train a recurrent model on a large task. With 10% of perplexity
reduction as compared to a back-off model, it yields comparable performances
as the one described in (Mikolov et al., 2011b), despite having a smaller number
of parameters (see Table 5.4). To the best of our knowledge, it is the first

2At least for these data.
3Personal communication with T. Mikolov: on the Wall-Street Journal data set (a small task), the

recurrent model described in (Mikolov et al., 2011c) outperforms the 10-gram NNLM.
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time that a RNNLM is trained on such large data set (2.5 billion words) in a
reasonable time (about 11 days).

model number of parameters
baseline 1,159,079,500
4-gram NNLM 496,225,231
6-gram NNLM 497,225,231
8-gram NNLM 498,225,231
10-gram NNLM 499,225,231
RNNLM 495,475,231

Table 5.4: The number of parameters of language models.

5.3 Summary

In this chapter, we have investigated several types of NNLMs along with
conventional LM in order to assess the influence of long range dependencies in
the language modeling task: from recurrent model that can recursively handle
an arbitrary number of context words to n-gram NNLMs with n varying
between 4 and 10.

Our contributions are two-fold. First, by using the new methodology of
NNLMs with max hidden layer, experimental results with the data derived
from the WMT 2011 machine translation task show that the influence of word
further than 9 can be neglected. Therefore, the n-gram assumption with n ≈ 10
appears to be well-founded. Then, by introducing the pseudo RNNLM and
restricting the context of RNNLMs to the current sentence, RNNLMs can bene-
fit from the advanced training schemes and their training time can be divided
by a factor 8 without significant loss on the performances. We compared n-
gram NNLMs and RNNLMs within a large scale MT task, with monolingual
data containing ≈ 2.5 billion words. Experimental results show that using
long range dependencies (n = 10) with a SOUL language model significantly
outperforms conventional LMs. In this setting, the use of a recurrent neural ar-
chitecture does not yield any improvements over an n-gram neural architecture,
both in terms of perplexity and BLEU.

Our conclusion is that the main issue of the n-gram model does not seem
to be the conditional independence assumptions, but the use of too small
values for n. All these results also suggest that in the future, novel methods for
language modeling must take into account long range dependencies.
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The unreliability of conventional maximum likelihood estimates hinders
the performance of existing phrase-based translation models which neverthe-
less remain the state-of-the-art approach in machine translation. For lack of
sufficient training data, most models only consider a small amount of con-
text. To address this data sparsity issues faced by translation model, several
remedies were proposed in the literature. Smoothing is obviously one possibil-
ity (Foster, Kuhn, and Johnson, 2006). Another one is to use factored language
models, introduced in (Bilmes and Kirchhoff, 2003), then adapted for translation
models in (Koehn and Hoang, 2007; Crego and Yvon, 2010). Such approaches
require using external linguistic analysis tools which are error prone; moreover,
they did not seem to bring clear improvements, even when translating into
morphologically rich languages.

Following a different direction, there exist also some attempts that try to use
continuous spaces on machine translation. To the best of our knowledge, the
first work is (Schwenk, R. Costa-jussa, and R. Fonollosa, 2007), where the au-
thors introduced the model referred here to as the standard n-gram translation
model in Section 6.2.1. This model is a bilingual extension of the continuous
space language model studied in the previous chapters where the basic unit
is the tuple (or equivalently the phrase pair). The resulting vocabulary being
too large to be handled by neural networks without a structured output layer,
the authors had thus to restrict the set of the predicted units to a 8k shortlist.
Moreover, in (Zamora-Martinez, Castro-Bleda, and Schwenk, 2010), the authors
propose a tighter integration of a continuous space model within an n-gram
based MT approach both for the tuple and target LMs. A different approach,
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described in (Sarikaya et al., 2008), divides the problem in two parts: first the
continuous representation is obtained by an adaptation of the Latent Semantic
Analysis (LSA) (Deerwester et al., 1990); then a Gaussian mixture model is
learned using this continuous representation and included in a hidden Markov
model. One problem with this approach is the separation between the train-
ing of the continuous representation on the one hand, and the training of the
translation model on the other hand.

Based on the same idea, we explore several continuous space translation
models, where translation probabilities are estimated using a continuous repre-
sentation of the translation units in lieu of standard discrete representations. In
order to handle a large set of translation units, these representations and the
associated estimates are jointly computed using a multi-layer neural network
and the SOUL architecture. In small scale and large scale machine translation
experiments, we will show that the resulting models can effectively be trained
and used on top of a phrased based translation system, delivering significant
improvements in performance. For reference, most of the work was published
in (Le, Allauzen, and Yvon, 2012a).

The content of this chapter is structured as follows. In Section 6.1, we
briefly describe a phrase-based statistical machine translation system. After
that, several variations of translation models are presented and analyzed in
Section 6.2. The experimental results for both small and large scale tasks are
finally reported in Section 6.3.

6.1 Phrase-based statistical machine translation

The phrase-based approach to statistical machine translation (SMT) is based on
the following inference rule, which, given a source sentence s, selects the target
sentence t and the underlying alignment a maximizing the following term:

P(t, a|s) = 1
Z(s)

exp
( F

∑
i=1

λi fi(s, t, a)
)

, (6.1)

where F feature functions ( fi) are weighted by a set of coefficients (λi), and Z is
a normalizing factor. The phrase-based approach differs from other approaches
by the hidden variables of the translation process: the segmentation of a parallel
sentence pair into phrase pairs and the associated phrase alignments.

This formulation was introduced in (Zens, Och, and Ney, 2002) as an exten-
sion of the word based models (Brown et al., 1993), then later motivated within
a discriminative framework (Och and Ney, 2004). One motivation for integrat-
ing more feature functions was to improve the estimation of the translation
model P(t|s), which was initially based on relative frequencies, thus yielding
poor estimates.

This is because the units of phrase-based models are phrase pairs, made of
a source and a target phrase; such units are viewed as the events of discrete
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random variables. The resulting representations of phrases (or words) thus
entirely ignore the morphological, syntactic and semantic relationships that
exist among those units in both languages. This lack of structure hinders the
generalization power of the model and reduces its ability to adapt to other
domains. Another consequence is that phrase-based models usually consider a
very restricted context1.

This is a general issue in statistical NLP and many possible remedies have
been proposed in the literature. They are often inherited directly from the
methods for language modeling which are described in Chapter 1, such as, the
way of using smoothing techniques, of introducing linguistically enriched, or
more abstract, representations of words, phrases. Among them, the technique
based on the representation in a continuous space with neural networks is not
an exception. In the context of SMT, (Schwenk, R. Costa-jussa, and R. Fonollosa,
2007) is the first attempt to estimate translation probabilities in a continuous
space. However, because of the proposed shortlist based neural architecture
(see Section 1.4.3.2 for more details), the authors only consider a very restricted
set of translation units, and therefore report only a slight impact on translation
performance. Our proposed SOUL structure, which is introduced in Chapter 2
seems especially relevant, as it is able, through the use of class-based models,
to handle arbitrarily large vocabularies and opens the way to enhanced neural
translation models.

In the next sections, we are going to explore various neural architectures for
n-gram translation models that consider three different ways to factor the joint
probability P(s, t) differing by the units (respectively phrase pairs, phrases or
words) that are projected in continuous spaces. While these decompositions are
theoretically straightforward, they were not considered in the past because of
data sparsity issues and of the resulting weaknesses of conventional maximum
likelihood estimates. Our main contribution is then to show that such joint dis-
tributions can be efficiently computed by neural networks, even for very long
context sizes; and that their use yields significant performance improvements.
These models are evaluated in an m-best rescoring step using the framework
of phrased based systems.

6.2 Variations on the n-gram approach

In the n-gram based approach (Casacuberta and Vidal, 2004; Mariño et al.,
2006; Crego and Mariño, 2006), translation is divided in two steps: a source
reordering step and a translation step. Source reordering is based on a set of
learned rewrite rules that non-deterministically reorder the input words so as
to match the target order thereby generating a lattice of possible reorderings.
Translation then amounts to finding the most likely path in this lattice using an

1Typically a small number of preceding phrase pairs for the n-gram based approach (Crego and
Mariño, 2006), or no context at all, for the standard approach of Koehn et al. (2007).
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n-gram translation model2 of bilingual units.

6.2.1 The standard n-gram translation model

N-gram translation models (TMs) rely on a specific decomposition of the joint
probability P(s, t), where s is a sequence of I reordered source words (s1, . . . , sI)
and t contains J target words (t1, . . . , tJ). This sentence pair is further assumed
to be decomposed into a sequence of L bilingual units called tuples defining
a joint segmentation: (s, t) = u1, . . . , uL. In the approach of Mariño et al.
(2006), this segmentation is a by-product of source reordering, and ultimately
derives from initial word and phrase alignments. In this framework, the
basic translation units are tuples, which are the analogous of phrase pairs, and
represent a matching u = (s, t) between a source s and a target t phrase (see
Figure 6.1). Using the n-gram assumption, the joint probability of a segmented
sentence pair decomposes as:

P(s, t) =
L

∏
i=1

P(ui|ui−1, . . . , ui−n+1) (6.2)

A first issue with this model is that the elementary units are bilingual pairs,
which means that the underlying vocabulary, hence the number of parameters,
can be quite large, even for small translation tasks. Due to data sparsity issues,
such models are bound to face severe estimation problems. Another problem
with Equation (6.2) is that the source and target sides play symmetric roles,
whereas the source side is known and the target side must be predicted.

 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

S :   .... 

T :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Figure 6.1: Extract of a French-English sentence pair segmented in bilingual units. The
original (org) French sentence appears at the top of the figure, just above the
reordered source s and target t. The pair (s, t) decomposes into a sequence
of L bilingual units (tuples) u1, . . . , uL. Each tuple ui contains a source and
a target phrase: si and ti.

2Like in the standard phrase-based approach, the translation process also involves additional feature
functions that are presented below.
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6.2.2 A factored n-gram translation model

To overcome some of these issues, the n-gram probability in Equation (6.2) can
be factored by decomposing tuples in two (source and target) parts:

P(ui|ui−1, . . . , ui−n+1) =

P(ti|si, si−1, ti−1, . . . , si−n+1, ti−n+1)

× P(si|si−1, ti−1, . . . , si−n+1, ti−n+1)

(6.3)

Equation (6.3) involves two models: the first term represents a TM, the
second term is best viewed as a reordering model since it define a probability
for the reordered source sequence. In this formulation, the TM only predicts
the target phrase, given its source and target contexts.

Another strength of this formulation is that the elementary events now
correspond either to source or to target phrases, but never to pairs of such
phrases. The underlying vocabulary is thus obtained as the union, rather
than the cross product, of phrase inventories. Finally note that the n-gram
probability P(ui|ui−1, . . . , ui−n+1) could also factor as:

P(si|ti, si−1, ti−1, . . . , si−n+1, ti−n+1)

× P(ti|si−1, ti−1, . . . , si−n+1, ti−n+1)
(6.4)

A formulation that we denote later as an inverse variation factored n-gram
TM.

6.2.3 A word factored translation model

A more radical way to address the data sparsity issues is to take (source and
target) words as the basic units of the n-gram TM. This may seem to be a
step backwards, since the transition from word (Brown et al., 1993) to phrase-
based models (Zens, Och, and Ney, 2002) is considered as one of the main
recent improvement in MT. One important motivation for considering phrases
rather than words was to capture local context in translation and reordering.
It should then be stressed that the decomposition of phrases in words is only
re-introduced here as a way to mitigate the parameter estimation problems.
Translation units are still pairs of phrases, derived from a bilingual segmentation
in tuples synchronizing the source and target n-gram streams, as defined by
Equation (6.3). In fact, the estimation policy described in Chapter 2 will actually
allow us to design n-gram models with longer contexts than is typically possible
in the conventional n-gram approach.

Let sk
i denote the kth word of source tuple si. Considering again the example

of Figure 6.1, s1
11 is to the source word nobel, s4

11 is to the source word paix, and
similarly t2

11 is the target word peace. We finally denote hn−1(tk
i ) the sequence

made of the n − 1 words preceding tk
i in the target sentence: in Figure 6.1,



122 Chapter 6. Continuous Space Neural Network Translation Models

h3(t2
11) thus refers to the three context words receive the nobel associated with

the target word peace. Using these notations, Equation (6.3) is rewritten as:

P(s, t) =
L

∏
i=1

[ |ti|

∏
k=1

P
(
tk
i |hn−1(tk

i ), hn−1(s1
i+1)

)
×
|si|

∏
k=1

P
(
sk

i |hn−1(t1
i ), hn−1(sk

i )
)] (6.5)

This decomposition relies on the n-gram assumption, this time at the word level.
Therefore, this model estimates the joint probability of a sentence pair using
two sliding windows of length n, one for each language; however, the moves
of these windows remain synchronized by the tuple segmentation. Moreover,
the context is not limited to the current phrase, and continues to include words
in adjacent phrases. Using the example of Figure 6.1, the contribution of the
target phrase t11 = nobel, peace to P(s, t) using a trigram model is:

P
(
nobel|[receive, the], [la, paix]

)
×P
(
peace|[the, nobel], [la, paix]

)
.

Likewise, the contribution of the source phrase s11 =nobel, de, la, paix is:

P
(
nobel|[receive, the], [recevoir,le]

)
× P

(
de|[receive, the], [le,nobel]

)
× P

(
la|[receive, the], [nobel, de]

)
× P

(
paix|[receive, the], [de,la]

)
.

A positive effect of this new formulation is that the involved vocabularies
only contain words, and are thus much smaller. These models are thus less
bound to be affected by data sparsity issues. While the TM defined by Equa-
tion (6.5) derives from Equation (6.3), an inverse variation can be equivalently
derived from Equation (6.4).

6.2.4 Translation modeling with SOUL

In the previous section, we defined three different n-gram translation models,
based respectively on Equations (6.2), (6.3) and (6.5). As discussed above, a
major issue with such models is to reliably estimate their parameters, the num-
ber of which grows exponentially with the order of the model. This problem is
aggravated in NLP, due to well-known data sparsity issues. In this work, we
take advantage of the neural network architecture for language modeling, the
SOUL model, which was introduced in Chapter 2. It thus becomes possible to
handle large vocabulary language modeling tasks, a solution that we adapt
here to machine translation.
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In fact, using the SOUL architecture, it is possible to estimate n-gram dis-
tributions for any kind of discrete random variables over, for instance sets of
phrases or sets of tuples. The SOUL architecture can thus readily be used as
a replacement for the standard n-gram TM described in Section 6.2.1. This is
because all the random variables are events over the same set of tuples.

Adopting this architecture for the other n-gram TM respectively described
by Equations (6.3) and (6.5) is less straightforward, as they involve two different
languages and thus two different vocabularies: the predicted unit is a target
phrase (resp. word), whereas the context is made of both source and target
phrases (resp. words). A subsequent modification of the SOUL architecture
is proposed to make up for “mixed” contexts: rather than projecting all the
context words or phrases into the same continuous space (using the matrix R,
see Figure 2.1), we use two different projection matrices, one for each language.
The input layer is thus composed of two vectors in two different spaces; these
two representations are then combined through the hidden layer, the other
layers remaining unchanged.

6.3 Experimental evaluation

We now turn to an experimental comparison of the models introduced in
Section 6.2. We first describe the tasks and data that are used, before presenting
our n-gram based system and baseline setup. Our results are finally presented
and discussed. In order to introduce new scores of translation models, again,
we resort to a two pass approach: the first pass uses a conventional back-off
language model to produce an m-best list; in the second pass, the probability
of a SOUL model is computed for each hypothesis, added as a new feature and
the m-best list is accordingly reordered3. In all the following experiments, we
used 10 as the fixed order of SOUL models, and used 300 as the size of m-best
list.

6.3.1 Tasks and corpora

The two tasks considered in our experiments are adapted from the text trans-
lation track of IWSLT4 2011 from English to French (the "TED" talk task): a
small data scenario where the only training data is a small in-domain corpus;
and a large scale condition using all the available training data. Here, we only
provide a short overview of the task; all the necessary details regarding this
evaluation campaign are on the official website5.

The in-domain training data consists of 107,058 sentence pairs, whereas for
the large scale task, all the data available for the WMT 2011 evaluation (the
same used to evaluate SOUL NNLMs in Section 2.4.2) are added. For the latter

3The probability estimated with the SOUL model is added as a new feature to the score of an hypothesis
given by Equation (6.1). The coefficients are retuned before the reranking step.

4International Workshop on Spoken Language Translation
5http://iwslt2011.org

http://iwslt2011.org
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task, the parallel data includes a large Web corpus, referred to as the GigaWord
parallel corpus. This corpus is very noisy and is accordingly filtered using a
simple perplexity criterion as explained in (Allauzen et al., 2011).

The total amount of training data is approximately 11.5 million sentence
pairs for the bilingual part, and about 2.5 billions of words for the monolingual
part. As the provided validation data is quite small, development and test set
are inverted, and we finally use a validation set of 1664 sentences, and a test set
of 934 sentences. Table 6.1 provides the sizes of the different vocabularies. The
n-gram TMs are estimated over a training corpus composed of tuple sequences.
Tuples are extracted from the word-aligned parallel data6 in such a way that a
unique segmentation of the bilingual corpus is achieved, allowing to directly
estimate bilingual n-gram models (see (Crego and Mariño, 2006) for details).

model vocabulary size
small task large task
src trg src trg

standard 317k 8847k
phrase factored 96k 131k 4262k 3972k
word factored 45k 53k 505k 492k

Table 6.1: Vocabulary sizes for the English to French tasks obtained with various SOUL
translation (TM) models. For the factored models, sizes are indicated for both
source (src) and target (trg) sides.

6.3.2 N-gram based translation system

The n-gram based system used here is based on an open source implemen-
tation described in (Crego, Yvon, and Mariño, 2011). In a nutshell, the TM
is implemented as a stochastic finite-state transducer trained using a n-gram
model of (source, target) pairs as described in Section 6.2.1. Training this
model requires to reorder source sentences so as to match the target word order.
This is performed by a non-deterministic finite-state reordering model, which
uses part-of-speech information generated by the TreeTagger (Schmid, 1994) to
generalize reordering patterns beyond lexical regularities.

In addition to the TM, fourteen feature functions are included: a target-
language model; four lexicon models; six lexicalized reordering models (Tillmann,
2004; Crego, Yvon, and Mariño, 2011); a distance-based distortion model; and
finally a word-bonus model and a tuple-bonus model. The four lexicon models
are similar to the ones used in standard phrase-based systems: two scores
correspond to the relative frequencies of the tuples and two lexical weights
are estimated from the automatically generated word alignments. The weights

6using MGIZA++ (Gao and Vogel, 2008), a multi-threaded version of GIZA++ (Och and Ney, 2003)
with default setting.
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associated to feature functions are optimally combined using MERT (Och, 2003).
All the results in BLEU are obtained as an average of 4 optimization runs7.

For the small task, the target LM is a standard 4-gram model estimated
with the Kneser-Ney discounting scheme interpolated with lower order mod-
els (Kneser and Ney, 1995; Chen and Goodman, 1998), while for the large task,
the target LM is obtained by linear interpolation of several 4-gram models
(see (Lavergne et al., 2011) for details).

As for the TM, all the available parallel corpora are simply pooled together
to train a trigram model. Results obtained with this large-scale system are
found to be comparable to some of the best official submissions.

6.3.3 Small task evaluation

Table 6.2 summarizes the results obtained with the baseline and different SOUL
models, TMs and a target LM. The first comparison concerns the standard
n-gram TM, defined by Equation (6.2), when estimated conventionally or as
a SOUL model. Adding the latter model yields a slight BLEU improvement
of 0.5 point over the baseline. When the SOUL TM is phrased factored as
defined in Equation (6.3) the gain is of 0.9 BLEU point instead. This difference
can be explained by the smaller vocabularies used in the latter model, and its
improved robustness to data sparsity issues. Additional gains are obtained
with the word factored TM defined by Equation (6.5): a BLEU improvement
of 0.8 point over the phrase factored TM and of 1.7 point over the baseline
are respectively achieved. We assume that the observed improvements can be
explained by the joint effect of a better smoothing.

model BLEU
dev test

baseline 31.4 25.8
adding a SOUL model

standard TM 32.0 26.3
phrase factored TM 32.7 26.7
word factored TM 33.6 27.5
target LM 32.6 26.9

Table 6.2: Results for the small English to French task obtained with the baseline system
and with various SOUL translation (TM) or target language (LM) models.

The comparison to the condition where we only use a SOUL target LM
is interesting as well. Here, the use of the word factored TM still yields to a
0.6 BLEU improvement. This result shows that there is an actual benefit in
smoothing the TM estimates, rather than only focus on the LM estimates.

Table 6.3 reports a comparison among the different components and varia-
tions of the word factored TM. In the upper part of the table, the model defined

7The standard deviations are below 0.1 and thus omitted in the reported results.
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model BLEU
dev test

adding a SOUL model
+ P
(
tk
i |hn−1(tk

i ), hn−1(s1
i+1)

)
32.6 26.9

+ P
(
sk

i |hn−1(t1
i ), hn−1(sk

i )
)

32.1 26.2
+ the combination of both 33.2 27.5
+ P
(
sk

i |hn−1(sk
i ), hn−1(t1

i+1)
)

31.7 26.1
+ P
(
tk
i |hn−1(s1

i ), hn−1(tk
i )
)

32.7 26.8
+ the combination of both 33.4 27.2

Table 6.3: Comparison of the different components and variations of the word factored
translation model.

by Equation (6.5) is evaluated component by component: the translation term
P
(
tk
i |hn−1(tk

i ), hn−1(s1
i+1)

)
, its distortion counterpart P

(
sk

i |hn−1(t1
i ), hn−1(sk

i )
)

and finally their combination, which yields the joint probability of the sentence
pair. Here, we observe that the best improvement is obtained with the transla-
tion term, which is 0.7 BLEU point better than the “distortion” term. Moreover,
the use of just a translation term only yields a BLEU score equal to the one
obtained with the SOUL target LM, and its combination with the distortion
term is decisive to attain the additional gain of 0.6 BLEU point. The lower part
of the table provides the same comparison, but for the variation of the word
factored TM. Besides a similar trend, we observe that this variation delivers
slightly lower results. This can be explained by the restricted context used by
the translation term which no longer includes the current source phrase or
word.

6.3.4 Large task evaluations

IWSLT 2011 For the large-scale setting, the training material increases drasti-
cally with the use of the additional out-of-domain data for the baseline models.
Results are summarized in Table 6.4. The first observation is the large increase
of BLEU (+2.4 points) for the baseline system over the small-scale baseline.
For this task, only the word factored TM is evaluated since it significantly
outperforms the others on the small task (see Section 6.3.3).

In a first scenario, we use a word factored TM, trained only on the small
in-domain corpus. Even though the training corpus of the baseline TM is one
hundred times larger than this small in-domain data, adding the SOUL TM
still yields a BLEU increase of 1.2 point8. In a second scenario, we increase
the training corpus for the SOUL, and include parts of the out-of-domain data
(the WMT part). The resulting BLEU score is here slightly worse than the one
obtained with just the in-domain TM, yet delivering improved results with the

8Note that the in-domain data was already included in the training corpus of the baseline TM.
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respect to the baseline.

model BLEU
dev test

baseline 33.7 28.2
adding a word factored SOUL TM

+ in-domain TM 35.2 29.4
+ out-of-domain TM 34.8 29.1
+ out-of-domain adapted TM 35.5 29.8

adding a SOUL LM
+ out-of-domain adapted LM 35.0 29.2

Table 6.4: Results for the large English to French translation task obtained by adding
various SOUL translation and language models (see text for details).

In a next attempt, we amend the training regime of the neural network. In a
first step, we train conventionally a SOUL model using the same out-of-domain
parallel data as before. We then “adapt” this model by running five additional
epochs of the back-propagation algorithm using the in-domain data. Using
this adapted model yields our best results to date with a BLEU improvement
of 1.6 points over the baseline results. Moreover, the gains obtained using this
simple domain adaptation strategy are respectively of +0.4 and +0.8 BLEU, as
compared with the small in-domain model and the large out-of-domain model.
These results show that the SOUL TM can scale efficiently and that its structure
is well suited for domain adaptation.

WMT 2012 Word factored SOUL translation models along with SOUL lan-
guage models are also used in LIMSI n-gram based translation systems par-
ticipated on the WMT 2012 evaluation campaign (see (Le et al., 2012a) for
more details about this configuration). They are shown to yield significant
improvements in all four directions: English-French (en-fr) pair and English-
German (en-de) pair. Note that for the first pair, in both directions, LIMSI
systems achieve the best results in terms of both BLEU and human evaluation
over 15 participating systems (Callison-Burch et al., 2012). These results are
summarized in Table 6.5.

Recently, we have tried to use Moses (Koehn et al., 2007) as a baseline system.
With the same quantity of data that we use for WMT 2012, word factored SOUL
translation models significantly improve the system performance as shown in
Table 6.6.

6.4 Summary

We have presented three ways to adopt our neural network architecture for
translation modeling. A first contribution was to produce the first large-scale
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direction system BLEU
newstest2011 newstest2012∗

en2fr baseline 32.0 28.9
+ SOUL (TM and LM) 33.4 29.9

fr2en baseline 30.2 30.4
+ SOUL (TM and LM) 31.1 31.5

en2de baseline 15.4 16.0
+ SOUL (TM and LM) 16.6 17.0

de2en baseline 21.8 22.9
+ SOUL (TM and LM) 22.8 23.9

Table 6.5: Experimental WMT 2012 results in terms of BLEU scores measured on two
test sets: newstest2011 and newstest2012. For newstest2012, the scores are
those provided by the organizers.

direction system BLEU
newstest2011

fr2en baseline Moses 29.5
+ SOUL TM 30.4

Table 6.6: Experimental WMT 2012 results in terms of BLEU scores measured on the
test set newstest2011 when Moses is used as baseline system.

neural translation model, implemented here in the framework of the n-gram
based models, taking advantage of a specific hierarchical architecture (SOUL).
By considering several decompositions of the joint probability of a sentence
pair, several bilingual translation models were presented and discussed.

As it turned out, using a factorization which clearly distinguishes the source
and target sides, and only involves word probabilities, proved an effective
remedy to data sparsity issues and provided significant improvements over the
baseline on the "TED" talk translation English to French tasks, adapted from
the IWSLT 2011 evaluation, in both small and large scale settings.

We also investigated various training regimes for these models in a cross
domain adaptation setting. Our results show that adapting an out-of-domain
SOUL TM is both an effective and very fast way to perform bilingual model
adaptation. Adding up all these novelties finally brought us a 1.6 BLEU point
improvement.

Moreover, this approach was also experimented within the systems we
submitted to the shared translation task of WMT 2012. The achievements in a
large scale setup and for different language pairs are in the same ballpark.

Finally, even though our proposed models were originally designed to work
only within the framework of n-gram based MT systems, using such models
in other systems is straightforward. Introducing them into Moses, another
conventional phrase-based system was shown to be also helpful.



CONCLUSION

Contributions

Having been used for several decades, n-gram models with smoothing tech-
niques are still a cornerstone of modern language modeling in NLP systems.
After a lot of experiments with these models in a variety of languages, genres,
data sets and applications, the vexing conclusion is that these models are still
very difficult to improve upon. Many different approaches have been discussed
in the literature; yet, very few of them have been shown to deliver consistent
performance gains, especially on large scale tasks. The reason behind is that,
most of them considers each word as one discrete symbol with no relation with
the others. This fact implies that they cannot take into account the similarity
between words which is an important way to tackle the widely known data
sparsity issue.

Continuous space neural network language models (NNLMs) have been
shown to be a promising alternative approach to language modeling by means
of their elegant property of treating words in a completely different way. Words
are projected in a continuous space and the similarity between them is taken
into account as the distance of their representations in this space. Their ad-
vantage is that the word representations along with the associated probability
estimates are learned discriminatively and automatically in a multi-layer neu-
ral network framework. Significant and consistent improvements are observed
when this type of model is applied to automatic speech recognition and ma-
chine translation tasks. Their major drawback remains the computational
complexity, which does not scale well to the huge quantity of data available
nowadays. Several speed-up techniques are therefore required (Schwenk, 2007).
These techniques, notably the use of shortlist, hinders a full analysis on their
behavior. They cannot be treated as independent language models due to the
fact that neural networks are only used to estimate the probabilities for n-grams
ending with in-shortlist word, whereas conventional n-gram language models
are still used to normalize these probabilities and provide the other ones.

The first contribution of this thesis is hence devoted to a new architecture ,
Structure OUtput Layer (SOUL) architecture, that makes them possible to be
used with all possible n-grams. This modification is shown to bring significant
improvements on large scale machine translation and automatic speech recog-
nition tasks in different languages. Several refinements of the structure for this
new kind of model are also proposed. The final version with a compact output
hierarchical structure and with two hidden layers is demonstrated to not only
drastically reduce the computational time but also yield additional gains in
terms of both intrinsic measure (perplexity) and extrinsic measure (BLEU for
SMT and WER for ASR).

Although the use of a continuous word space is a main idea, in practice,
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the quality of output word spaces is often overlooked. For this reason, several
further analyses are performed in Chapter 4. It is shown that in their original
architecture, there are actually two word spaces that encode two different
(context and prediction) roles. They are similar but not identical. By drawing
the neighborhoods of some random words, SOUL NNLMs are proved to be
able to induce context word spaces, which encode some semantic and syntactic
properties, in different languages. Their spaces are also evaluated on another
task, a word relatedness measure, and are shown to achieve comparable results
with state-of-the-art approaches. It means that the information taken from
NNLMs can be also useful for other NLP tasks.

The advantage of using longer contexts of NNLMs is deeply studied in
Chapter 5. Even though SOUL NNLMs can use longer context words than
conventional n-gram back-off LMs, there exists also a limitation for them, at
least in practice. In the machine translation evaluation of WMT 2011, history
words further than the 9 previous words seem to have a very little impact on
system performances. Max SOUL NNLMs, despite their degradation on the
performance, have been shown to provide a straightforward way to measure
the influence of context words. A new training scheme for recurrent neural
network language models (RNNLMs) is also proposed in this chapter. Experi-
ment results show that it is possible to train RNNLMs on a large scale machine
translation task1 to achieve comparable performances.

As finally shown, adopting SOUL architecture to n-gram translation models
brings large improvements over state-of-the-art systems for large scale machine
translation tasks adapted from IWSLT 2001 and WMT 2012 evaluations. It
demonstrates that the continuous space based approach is generally an effective
remedy to the data sparsity issue that should not be restricted to language
modeling.

Future work

Even though using more than two hidden layers in SOUL NNLMs is not yet
proved to be useful as seen in Section 3.3, following a deep learning approach
with more complicated techniques such as those presented in (Hinton, Osin-
dero, and Teh, 2006; Bengio, 2009) is a possible source of improvement. A
motivation for this idea is that the deep learning approach has been shown
to consistently achieve state-of-the-art results in many fields, notably in the
domain of image processing (Hinton, Osindero, and Teh, 2006), of acoustic
modeling (Seide, Li, and Yu, 2011; Mohamed, Dahl, and Hinton, 2012). . . In
general, it is necessary to find an effective way to deal with local optima of
neural networks. Replacing neural networks with other types of models that
could still make good use of continuous word space representation, is another
interesting direction.

1The training data for language models is about 2.5 billion words
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Avoiding the n-gram assumption is an interesting idea despite the fact that
the RNNLMs did not outperform NNLMs of a large order as demonstrated in
Chapter 5. Representing the whole context in a more sophisticated way similar
to the work related to Structured Language Model in (Emami, 2006) needs to be
examined. Another interesting way is presented in (Socher et al., 2011), where
variable-sized phrases can be represented in a continuous space thanks to the
introduction of the syntactic structure into the neural network architecture.

As NNLMs can be used to deal with many kind of objective function, an-
other source of improvement is to find a way to train NNLMs discriminatively,
i.e., by optimizing directly extrinsic objective functions for each task (BLEU for
SMT, WER for ASR . . . ), following, e.g., the work of Xu et al. (2012).

NNLMs with SOUL structure can actually be trained on data of several
billion words. However, pushing them to an extreme large scale order remains
challenging. Finding solutions to solve this issue is therefore an important
direction. It could be done by adopting data sampling techniques similar to
the work of Bengio and Senecal (2008) or by using more advanced parallel
programming techniques, e.g., using large clusters similar to the work in (Le
et al., 2012b), using graphics cards as done in (Schwenk, Rousseau, and Attik,
2012).

It remains expensive to use NNLMs in applications such as ASR and SMT.
Therefore, conventional back-off LMs are always required to efficiently build
the search space that will then be rescored with NNLMs. To achieve state-of-the-
art performances in a reasonable time, it is worth finding a tighter integration
of continuous space neural network models into SMT and ASR systems, for
example, the work of Lecorvé and Motlicek (2012). How to directly incorporate
the continuous features induced from the word representations of NNLMs and
the other discrete ones is therefore an interesting question. As a consequence,
the behavior of continuous space based LMs compared to discrete based ones
needs to be further analyzed as recently done in (Oparin et al., 2012).

As exploiting the knowledge encoded in continuous word spaces can po-
tentially bring improvements as suggested by preliminary results on word
relatedness task presented in Section 4.3, using similar structures for other NLP
tasks is also a promising direction.





APPENDIX A

ABBREVIATION

• ATLAS: Automatically Tuned Linear Al-
gebra Software

• ASR: Automatic Speech Recognition

• BLAS: Basic Linear Algebra Subpro-
grams

• BLEU: Bilingual Evaluation Under-
study

• BPTT: Back-Propagation Through Time

• CER: Character Error Rate

• DTLM: Decision Tree Language Model

• EM: Expectation-Maximization (algo-
rithm)

• ESA: Explicit Semantic Analysis

• GALE: Global Autonomous Language
Exploitation

• HCI: Human Computer Interface

• HLBL: Hierarchical Log Bi-Linear

• IE: Information Extraction

• IWSLT: International Workshop on Spo-
ken Language Translation

• LBL: Log Bi-Linear

• LDA: Latent Dirichlet Allocation

• LIMSI: Laboratoire d’Informatique
pour la Mécanique et les Sciences de
l’Ingénieur (Computer Sciences Labo-
ratory for Mechanics and Engineering
Sciences)

• LM: Language Model

• LSA: Latent Semantic Analysis

• NIST: National Institute of Standards
and Technology

• NLP: Natural Language Processing

• MAP: Maximum A Posteriori

• METEOR: Metric for Evaluation of
Translation with Explicit ORdering

• MERT: Mininum Error Rate Training

• MIRA: Infused Relaxed Algorithm

• MLE: Maximum Likelihood Estimate

• NNLM: Neural Network Language
Model

• MT: Machine Translation

• OOS: Out-Of-Shortlist

• PCA: Principal Component Analysis

• PLSA: Probabilistic Latent Semantic

• ppl: perplexity

• POS: Part-Of-Speech

• PRO: Pair Wise Ranking Optimization

• SE: Search Engine

• SGD: Stochastic Gradient Descend

• SMT: Statistical Machine Translation

• SRL: Semantic Role Labeling

• SLM: Structured Language Model

• SOUL: Structured OUtput Layer

• TER: Translation Error Rate

• TSA: Temporal Semantic Analysis

• TTS: Text to Speech

• RFLM: Random Forest Language Model

• RNNLM: Recurrent Neural Network
Language Model

• WER: Word Error Rate

• WMT: Wordshop on Machine Transla-
tion





APPENDIX B

WORD SPACE EXAMPLES FOR SOUL NNLMS

In this section, word space examples for SOUL NNLMs trained on data pro-
vided by WMT evaluation campaign 2012 are represented in the similar way
as in Section 4.2. Word similarity is analyzed by finding the nearest neighbors
according to the Euclidean distance in the projection space for random words
selected from the 10,000 most frequent words.
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Table B.1: Examples of nearest neighbors according to the SOUL NNLM projection
space for French.

word nearest neighbors
paroisse pensionnat - paroissiaux - paroissiales - paroissial - évêché -

archevêché - Paroisses - diocèse - hospice
biotechnologie nanotechnologie - photonique - bioinformatique - pro-

téomique - nanotechnologies - microélectronique - géoma-
tique - biotechnologies - microfinance

64 63 - 66 - 55 - 62 - 51 - 60 - 52 - 57 - 53
Renault VW - Michelin - Nissan - Mercedes-Benz - Safran - Faurecia

- Renault-Nissan - Volkswagen - Thalès
ouvre ouvrait - ouvrent - ouvrira - ouvrir - ouvrirait - ouvraient -

ouvrant - ouvriront - ouvrit
occupé occupées - occupa - occupée - occupés - occuperait - occu-

peront - bannie - occupons - assumées
espèces Espèces - essences - sous-espèces - sous-populations - plan-

tules - provenances - taxons - graminées - boutures
tuée assassinée - assassinés - égorgé - assassinées - égorgés - kid-

nappé - incendiée - massacrés - suicidée
fibres résines - cires - levures - teintures - filaments - Huiles - Fibres

- gélules - caoutchoucs
victime fuyard - malfaiteur - protagoniste - prisonnière - ravisseuse -

séquelle - colocataire - coaccusé - affligée
uranium plutonium - centrifugeuses - MOX - Yongbyon - atomiques -

Natanz - radioactifs - fissile - thorium
évolution décroissance - dynamisation - structuration - inflexion -

atonie - fléchissement - infléchissement - hétérogénéité -
réalignement

voulaient voudraient - veulent - souhaitaient - voulions - voulait -
veuillent - aimeraient - voulut - désiraient

Jeux paralympiques - Paralympiques - J.O. - Olympiques -
olympiques - Universiades - J0 - médaillées - anneaux

bienvenue Bienvenue - bienvenu - bienvenus - bienvenues - félicitation
- main-forte - liminaires - transposable - attitré

écrites lues - transcrites - manuscrites - documentées - archivées -
authentifiée - abrégés - authentifiées - manuscrite

Google Microsoft - Amazon - MySpace - Motorola - Skype - eBay -
YouTube - IBM - MSN

prévalence Prévalence - étiologie - fécondité - pathogenèse - séroposi-
tivité - séroprévalence - Incidence - VHC - vaccinale

350 300 - 260 - 950 - 150 - 550 - 370 - 380 - 320 - 650
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Table B.2: Examples of nearest neighbors according to the SOUL NNLM projection
space for German.

word nearest neighbors
Laptop Notebook - Fotoapparat - Digitalkamera - Navigations-

geräte - Blackberry - Walkman - MP3-Player - Webcam -
Anrufbeantworter

bürgerliche Bürgerliche - sozialliberale - pro-europäische - proeu-
ropäische - wirtschaftsliberale - sozial-liberale - bürger-
licher - christlich-demokratische - konservativ-liberale

New Lynndie - Serious - Alianza - südöstlichsten - wiedervere-
inten - Biscayne - unwichtiges - Connaught - säumiger

stimmt stimmen - stimmte - zutrifft - aufkommt - zusammen-
hängt - überrasche - bessert - misslingt - mutete

Kurve Startposition - Vorderrad - Sohle - Mittellinie - Diskus -
Piste - Drehzahl - Gaspedal - Boxengasse

vorgelegten ausgearbeiteten - eingebrachten - vorgestellten - vorzule-
genden - herausgegebenen - unterbreiteten - eingere-
ichten - erörterten - umgesetzten

lauten lauteten - ertönen - tönen - skandieren - zurufen - vers-
tummten - zeitigen - welken - dumpfen

Carl Corazza - Bertha - Othmar - Nathan - C.H. - Henrik -
Jens-Peter - Jewgeni - H.W.

Ausnahmezustand Kriegsrecht - Notstand - Nachrichtensperre - Be-
lagerungszustand - Notstandsgesetze - Demonstra-
tionsverbot - Kriegszustand - Ausgangssperren - Arrest

hab hättest - hast - habe - werd - brauch - Habe - kriege -
hattest - kriegst

schaden schadeten - misstrauen - nützen - gehorchen - verderben
- beschädigen - schädigen - entspringen - überfordern

gewannen siegten - unterlagen - errangen - festigten - gewann -
besiegten - vergaben - triumphierten - kassierten

Bruttoinlandsprodukt Wirtschaftsleistung - Bruttoinlandsproduktes - Brut-
tosozialprodukt - Bruttoinlandsprodukts - Lohnstück-
kosten - Bruttoinlandprodukts - Konsumausgaben -
Wirtschaftskraft - Volkseinkommen

Hindukusch Afghanistan-Krieg - Nil - Anbar - Gaddafi-Clan -
Georgien-Konflikt - Ostkongo - Osttürkei - Golan - Bun-
desheer

gestand gesteht - beteuerte - räumten - zugab - gestehe - leugnete
- mutmaßte - stöhnte - schwor

Wahnsinn Irrsinn - Schwachsinn - Größenwahn - Jammer - Jugend-
wahn - Selbstbetrug - ok - Donnerwetter - Blödsinn

Cockpit Bodenpersonal - Eurostar - Cockpits - Flugplan - Condor
- Schaltung - Germanwings - Motorraum - Fluglotse

blauen blaue - gelben - gestreiften - rosafarbenen - blütenweißen
- cremefarbenen - blauer - violetten - orangefarbenen

Gefühle Empfindungen - Regungen - Leidenschaften - Phantasien
- Fantasien - Emotionen - Instinkte - Schuldgefühle -
Charaktereigenschaften

deine Deine - deiner - Eure - eure - deinen - Deiner - euren -
Deinen - eurer
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Table B.3: Examples of nearest neighbors according to the SOUL NNLM projection
space for Spanish.

word nearest neighbors
afiliados agremiados - afiliadas - adheridos - afiliado - afiliada - adherentes

- adscritas - empadronados - cotizantes
tristeza angustia - desesperanza - desánimo - desilusión - amargura - asom-

bro - estupor - resignación - incredulidad
debatiendo discutiendo - examinando - debata - discutimos - debatimos -

debatamos - debatiremos - debatió - debaten
afirmado subrayado - recalcado - aseverado - remarcado - opinado - argu-

mentado - comentado - puntualizado - apostillado
bienes patrimonios - inmuebles - dineros - equipamientos - implementos

- tesoros - haberes - electrodomésticos - enseres
telefónicas telefónicos - pericias - hospitalarias - escritorios - juradas - billetera

- faxes - e-mails - golpizas
celebraron celebraban - celebraba - festejaron - celebrando - conmemoraron -

celebran - celebraran - conmemoran - celebrara
cómplices cómplice - victimarios - perpetradores - acompañantes - ejecutores

- homicidas - acompañante - subalternos - victimas
cenizas ceniza - Cenizas - deslave - sunami - brisa - nubosas - nevada -

vórtice - eruptiva
así asi - preliminarmente - asÍ - paulatinamente - instantáneamente -

seguidamente - Asi - sabiamente - enseguida
efectuó efectuaron - efectuaba - efectuaban - efectúa - realizaría - realizara

- efectuara - realizo - realizaran
naturaleza moralidad - luminosidad - índole - abstracción - singularidad -

textura - bondad - tipología - homogeneidad
explican comentan - subrayaron - subrayan - relatan - recalcan - asevera -

recalcaron - aclararon - resaltaron
vinculación nexo - vinculaciones - interlocución - interrelación - connivencia -

interacción - compatibilidad - afinidad - colusión
directo indirecto - expresivo - humorístico - separadamente - tiránico -

acrobático - vitalicio - reposado - eufórica
prestan prestarán - presten - prestaba - prestaban - prestarles - prestará -

prestaran - prestarle - prestaremos
Prado Valme - Casal - Barranco - Atienza - Cabezas - Alcázar - Martirio -

Eroski - Bermejales
Líbano Argelia - Tíbet - Zimbabue - Jordania - Chechenia - Golán - Darfur

- palestinas - OLP
serias gravísimas - tremendas - severas - consiguientes - obvias - excesi-

vas - auténticas - significativas - drásticas
autorización autorizaciones - anuencia - acreditación - requerimiento - notifi-

cación - salvoconducto - citación - papeleo - validación



APPENDIX C

DERIVATIVES OF THE SOUL OBJECTIVE FUNCTION

Remind that as described in Section 2.1, wn is used to denote the word to
be predicted. The sequence xU

0 (wn) = x0, . . . , xU is used to encode the path
for word wn in the clustering tree. x0 is the root of the tree, xu with u =
1, . . . , U − 1 are the class assigned to wn and xU is the leaf associated with wn.
The probability of wn given its history wn−1

1 can then be computed as:

P(wn|wn−1
1 ) =

U

∏
u=1

P(xu|wn−1
1 , xu−1) (C.1)

We introduce here ζU
1 (wn) = ζ1ζ2 . . . ζU where each component ζu is used

to denote the index of xu with respect to its father xu−1. The first part of the
objective function in Equation (1.80) for this example becomes:

log P(wn|wn−1
1 ) =

U

∑
u=1

log P(xu|wn−1
1 , xu−1) (C.2)

=
U

∑
u=1

log pxu−1
ζu

(C.3)

where pxu−1 stands for the output value of the softmax layer associated to node
xu−1, oxu−1 is its associated value before normalization.

At the output part, derivatives for each u are computed as follows:

∆oxu−1
i =

{
1− pxu−1

i if i = ζu

−pxu−1
i otherwise

(C.4)

Then, the derivatives for a softmax layer associated with node xu−1 are
computed as follows:

∆bxu−1 = ∆oxu−1 , (C.5)

∆Wxu−1 = ∆oxu−1 hT , (C.6)
(C.7)

where h is the last hidden layer, which directly connects to the output part,
bxu−1 and Wxu−1 are the parameters of the softmax layer.

The derivatives for h:

∆h =
U

∑
u=1

Wxu−1 T∆oxu−1 (C.8)

After that, the derivatives from the other hidden layers back to the input
layer are computed using the same equations as with feed-forward NNLMs
(see Section 1.4.2.2).
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IMPLEMENTATION ISSUES

For reference, all training times reported in this thesis are on a 8 x Intel(R)
Xeon(R) 1.86GHz server. Our implementation is in C++ to benefit from the
class concept. The preliminary idea for the source code architecture for neural
network (definitions of tensors, modules . . . ) is from Torch51 toolkit. Our
toolkit is also influenced by other toolkits for neural network language models:
CSLM2 and RNNLM3.

Real number precision Real number can be represented by 32bits (float) or
64bits (double). Using float is faster and doesn’t degrade the system perfor-
mance.

Bunch mode This method aims at propagating several examples at once
through the network. To implement that, there is a popular mathematical
library Basic Linear Algebra Subprograms (BLAS) which have optimized ver-
sions for several CPU architectures. For example, MKL4 for Intel processors
and ACML5 for AMD processors. There exists also Automatically Tuned Linear
Algebra Software (ATLAS)6 that can be used to complie BLAS library in a
nearly optimal adaptation fasion for each architecture. In our toolkit, we use
the C interface to the BLAS7.

Border effect We need to add n− 1 <s> at the beginning of the sentence. For
example, with the sentence “Let music be the food of love”, 4-gram NNLMs
estime the probabilities: P(Let|<s> <s> <s>) , P(music|<s> <s> Let),
P(be|<s> Let music), P(the| Let music be) . . .

Order When possible, the order of models, n, should be at least 6, 8 is adviced
and 10 is in most cases an upper-bound value.

Data resampling We carry out separately data resampling from the training
procedure. We randomly select n-grams from text files with respect to resam-
pling rates, charging all in memory and then shuffling them by exchanging
the positions of pairs of n-grams for a large number of times. The resulting
n-grams are saved to disk in binary format. It will then be read one by one by
the training procedure.

1http://torch5.sourceforge.net/index.html
2http://www-lium.univ-lemans.fr/cslm/
3http://www.fit.vutbr.cz/~imikolov/rnnlm/
4http://software.intel.com/en-us/articles/intel-mkl/
5http://developer.amd.com/libraries/acml/pages/default.aspx
6http://math-atlas.sourceforge.net
7http://www.netlib.org/blas/

http://torch5.sourceforge.net/index.html
http://www-lium.univ-lemans.fr/cslm/
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://software.intel.com/en-us/articles/intel-mkl/
http://developer.amd.com/libraries/acml/pages/default.aspx
http://math-atlas.sourceforge.net
http://www.netlib.org/blas/
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Resampling rates If we have several data sets from different sources, resam-
pling rates should be chosen to satisfy that, at each epoch, there are more
n-grams from in-domain data than from out-of-domain data. Conditional
back-off n-gram language models can be used to roughly determine which is
in-domain or out-of-domain. A particular example is for WMT evaluations
where we have an in-domain data set (News), other sets can be considered as
out-of-domain. In this case, for each epoch, there should be 75% in-domain
n-grams after resampling.

With the same total number of examples used in the training proceduce,
larger resampling rates with a smaller number of epochs often have a better
performance. For example, training models using a rate of 15% with 1 epoch is
better than 5% with 3 epochs.

Learning rate For the learning rate, the second technique presented at the end
of Section 1.4.2.2 is easier to use as it has less number of hyper-parameters
(the learning rate decay is not required). The learning rate depends on other
parameters: the dimension of projection space, the number, the size and the
activation type of hidden layers H, the number of seen examples for each epoch.
When using m = 500, H = 1000− 500 with sigmoid, a good learning rate is
ξ0 = 1× 10−2.

Weight decay µ′ = 3× 10−5 is a good value.

Block size Block size should be set to 128. Using greater value doesn’t make
systems run faster.

Context grouping To compute probabilities, for SOUL NNLMs, context group-
ing is also useful as all computation from the input to the main softmax layer
is shared by n-grams which have the same context.

Parameter initialization The initial values should be drawn from the uniform
distribution in [−10−2, 10−2].

Input part The projection dimension, M, should be set to 500. A larger value
seems not to be very useful.

Hidden part There should be two sigmoid hidden layers of 1000 and 500 units
(H = 1000− 500). Using more than two hidden layers without pre-training
using deep learning techniques is not helpful.

Output part The size of the shortlist and the number of top classes for OOS
words should be 2000 and 2000 respectively. The depth of the output structure
is 3: top classes with more than s = 1000 words should be divided into

√
s + 1

subclasses.
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Example Here is our configuration for the WMT 2012 evaluation:
10-gram, m = 500, H = 1000, 500, sigmoid, 2000 shortlist words and 2000

top classes.
Resampling rates are chosen to guarantee that models see 75% n-grams of

in-domain data (News) and 25% n-grams of the other data. After resampling,
there are 140 million examples for each epoch of Step 1, Step 3 and 50 million
examples for Step 4. Number of epochs is 2, 2, 10 for Step 1, 3, 4 respectively.

On a 8 x Intel(R) Xeon(R) 1.86GHz server, it takes about 10 days for train-
ing. The resulting models outperform conventional back-off n-gram language
models in all languages (English, French, German).
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