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Abstract

Over the last decades, the evolution of acquisition techniques yields the generalization of
detailed 3D objects, represented as huge point sets composed of millions of vertices. The
complexity of the involved data often requires to analyze them for the extraction and char-
acterization of pertinent structures, which are potentially defined at multiple scales. Among
the wide variety of methods proposed to analyze digital signals, the scale-space analysis is
today a standard for the study of 2D curves and images. However, its adaptation to 3D data
leads to instabilities and requires connectivity information, which is not directly available
when dealing with point sets.

In this thesis, we present a new multi-scale analysis framework that we call the Growing
Least Squares (GLS). It consists of a robust local geometric descriptor that can be evaluated
on point sets at multiple scales using an efficient second-order fitting procedure. We propose
to analytically differentiate this descriptor to extract continuously the pertinent structures
in scale-space. We show that this representation and the associated toolbox define an effi-
cient way to analyze 3D objects represented as point sets at multiple scales. To this end, we
demonstrate its relevance in various application scenarios.

A challenging application is the analysis of acquired 3D objects coming from the Cultural
Heritage field. In this thesis, we study a real-world dataset composed of the fragments of
the statues that were surrounding the legendary Alexandria Lighthouse. In particular, we
focus on the problem of fractured object reassembly, consisting of few fragments (up to about
ten), but with missing parts due to erosion or deterioration. We propose a semi-automatic
formalism to combine both the archaeologist’s knowledge and the accuracy of geometric
matching algorithms during the reassembly process. We use it to design two systems, and
we show their efficiency in concrete cases.






Résumé

Depuis quelques années, I’évolution des techniques d’acquisition a entrainé une généralisa-
tion de I'utilisation d’objets 3D tres dense, représentés par des nuages de points de plusieurs
millions de sommets. Au vu de la complexité de ces données, il est souvent nécessaire de les
analyser pour en extraire les structures les plus pertinentes, potentiellement définies a plu-
sieurs échelles. Parmi les nombreuses méthodes traditionnellement utilisées pour analyser
des signaux numériques, 'analyse dite scale-space est aujourd’hui un standard pour I'étude
des courbes et des images. Cependant, son adaptation aux données 3D pose des problemes
d’instabilité et nécessite une information de connectivité, qui n’est pas directement définie
dans les cas des nuages de points.

Dans cette theése, nous présentons une suite d’outils mathématiques pour 'analyse des ob-
jets 3D, sous le nom de Growing Least Squares (GLS). Nous proposons de représenter la
géométrie décrite par un nuage de points via une primitive du second ordre ajustée par une
minimisation aux moindres carrés, et cela a pour plusieurs échelles. Cette description est
ensuite derivée analytiquement pour extraire de maniére continue les structures les plus
pertinentes a la fois en espace et en échelle. Nous montrons par plusieurs exemples et com-
paraisons que cette représentation et les outils associés définissent une solution efficace
pour 'analyse des nuages de points a plusieurs échelles.

Un défi intéressant est 'analyse d’objets 3D acquis dans le cadre de 1’étude du patrimoine
culturel. Dans cette thése, nous nous étudions les données générées par l’acquisition des
fragments des statues entourant par le passé le Phare d’Alexandrie, Septieme Merveille
du Monde. Plus précisément, nous nous intéressons au réassemblage d’objets fracturés en
peu de fragments (une dizaine), mais avec de nombreuses parties manquantes ou forte-
ment dégradées par 'action du temps. Nous proposons un formalisme pour la conception
de systemes d’assemblage virtuel semi-automatiques, permettant de combiner a la fois les
connaissances des archéologues et la précision des algorithmes d’assemblage. Nous présen-
tons deux systémes basés sur cette conception, et nous montrons leur efficacité dans des cas
concrets.
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Chapter 1

Introduction

Scope of this research

Over the last decades, the evolution of acquisition techniques greatly simplified the digiti-
zation of surfaces of 3D objects. Starting from laser scans that produce range images from
a given point of view, devices have been improved to move around the target (or to move the
target in front of the device) to acquire all the sides of the object. Other methods, purely
optical such as photogrammetry or shape-from-shading, reconstruct 3D objects by taking
as input only sets of photos (see Figure 1.1 for an example). These evolutions provide more
and more accessible approaches that can now be widely used by non-expert people without
requiring expensive devices. Most often, the digitization is used to acquire accurately ge-
ometric details on the surface, producing data that contains various relevant information,
from coarse structures to fine geometric details. However, the obtained data may also con-
tain noise, due to variations in acquisition accuracy, and artifacts may appear (for example
outliers and holes).

Figure 1.1: Photogrammetry reconstruction. Recent reconstruction tech-
niques are able to reconstruct 3D objects consisting of millions of points by tak-
ing as input images of the real object from different points of view (shown as blue
pyramids). Image generated with [DA12].

The ease of acquisition leads to a generalization of the use of 3D objects in various appli-
cation fields, with different objectives, such as visualization, comprehension and analysis
of object properties, matching, and retrieval. In addition to these final usages, the 3D data
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are usually stored, transmitted and edited. The process involved in these different tasks
should be scalable, which means it should handle any kind of data, independently of their
complexity (within reasonable limits). Most often, the processing involves an intermediate
step to compress or summarize the data. This step may produce an alternative data repre-
sentation that facilitates the task to accomplish, associated with tools to analyze the object
(e.g. noise detection, multi-scale feature extraction, and element comparison), or to edit it
(e.g. noise removal, deformations, and hole filling).

The idea of the work presented in this thesis is to design an analysis method that is adapted
to the different uses presented above, by respecting the 4 following criteria:

e It should take as input the acquisition data directly: the majority of acquisition
techniques produce point sets, usually with noise, missing data, or acquisition arti-
facts: the analysis should be able to analyze them without any preliminary conversion
preprocess.

e It should have a good description power: 3D objects usually contain various
structures and patterns, defined at multiple scales (e.g. ridges and valleys, planar
and constant curvature surfaces, or edges): the analysis should be able to characterize
and disambiguate them.

e It should be evaluated locally: depending on the processing task, the 3D data
might be analyzed in a preprocess on the entire object, or on the fly at specific loca-
tions: the analysis should have a local evaluation to support both approaches.

e It should be versatile: we do not make any assumption on the application context
and on the process that might use the analysis: the latter should be parameter-less,
and it should produce a generic output associated with dedicated analysis and editing
tools.

An acquired object is usually represented as a point set. One may be tempted to use remesh-
ing techniques to convert the point set to a mesh, in order to use the wide variety of mesh-
based analysis methods. However, in practice, this conversion step often takes a lot of
time to treat the large amount of samples, and it even fails in some cases due to the input
complexity. Furthermore, the remeshing process generates new additional connectivity in-
formation, and for efficiency reasons, it may require data simplification. According to our
first criterion, this should be avoided to avoid an erroneous analysis.

The second criterion, the description power, is related to the potential richness of the ac-
quired object’s geometry, composed of numerous complex features defined at multiple scales.
Consider for instance a relief ridge pitted with small cavities, as shown in Figure 1.2: the
highlighted area inside one of the small pits belongs to a concave feature at a small scale,
and to a convex feature at a larger scale. The analysis must be able to detect both of them,
and furthermore, it has to describe them sufficiently accurately to disambiguate them. An-
other point is that we do not want to be restricted by any assumption on the object that will
be analyzed, thus the analysis must describe a majority of shapes (such as ridges, valleys,
edges, or planar areas) in arbitrary configurations.

The third criterion is related to the way the analysis is computed. For example, suppose
that we want to compute slices on the bust shown in Figure 1.2, in order to perform some
measurements. A solution could be to reconstruct a closed surface, which represents the
entire object, and then compute its intersection with a slice plane. This approach may
require extensive computation to reconstruct the entire surface. A better solution is to



Figure 1.2: Introduction to feature extraction on an acquired 3D object.
We display the curvature of the object as color on its surface, at a fine (left) and
medium (right) scale. The highlighted area, inside one of the small pits, belongs
respectively to a concave feature (in orange) and to a convex feature (in cyan).

reconstruct the surface only at locations where the plane hits the surface, which requires a
reconstruction method that can be evaluated at specific locations.

Last but not least, the fourth criterion is that we do not want to propose an analysis method
that is restricted to a specific application. Indeed, for example, it seems more promising
to use one and the same analysis to compute slices on the object, to guide a reassembly
process with other fragments, to use geometry-aware visualization techniques, or to define
advanced feature selection tools. In this sense, the analysis should be parameter-less as far
as possible along the pipeline. In the last resort, its output should be manipulated by tools,
this time dedicated to a specific application.

We propose to illustrate the relevance of the aforementioned criteria through the reassem-
bly of fractured objects. In particular, we deal with a real-world dataset composed of the
fragments of the colossal statues that were surrounding the legendary Alexandria Light-
house. Its specificity is that the fragments have been submerged under water level hun-
dreds of years ago, and that they are now strongly eroded. For example, the features that
could be used to guide the matching have often been faded and are thus hard to perceive.
However, researchers in archeology are trained to detect the crucial features, thanks to their
high-level knowledge and experience. Another difficulty is that most often, as in Alexan-
dria, archeological fragments are too heavy to be manipulated by hand. A solution is to
acquire them, and then let the experts align their virtual representations by means of ef-
ficient user interaction technique. However, even for archaeologists, it is quite difficult to
obtain an accurate alignment because of interaction difficulties, position ambiguities, or
surface interpenetrations. In the light of these observations, we propose to combine both
the archaeologists’ skills and the accuracy provided by the geometry processing during the
reassembly process, by using a semi-automatic reassembly formalism. Hence, we under-
stand the virtual reassembly as a permanent interplay between the user and the geometric
analysis, via an efficient user interaction.
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Thesis organization

The research presented in this thesis focuses on the elaboration of fundamental tools for
the analysis of 3D objects. In Chapter 2, we present the theoretical background required to
design such an analysis method.

In Chapter 3, we present concrete solutions that have been proposed before to character-
ize the geometry of 3D objects and to extract relevant information at multiple scales. We
propose a classification of these methods, and we compare them regarding the aforemen-
tioned requirements. We then describe concrete guidelines for the elaboration of a suitable
solution.

According to these guidelines, in Chapter 4, we provide a formal definition of our new anal-
ysis framework. We compare it to previous work, and we show how to use it in some appli-
cation scenarios.

We focus more in-depth in Chapter 5 on the challenging virtual reassembly of broken objects
with strongly deteriorated fragments. After analyzing some specific related work, we advo-
cate for a semi-automatic solution that we formalize by a user-integrating semi-automatic
interaction loop. We also present two new practical implementations of this formalism for
pairwise matching, one based on tangible interaction, and the other one based on multi-
touch interaction.



2.1

Chapter 2

Background

In this chapter, we present the theoretical and fundamental notions required for the anal-
ysis of the geometric properties of 3D objects. In Section 2.1, we start by defining the
meaning of a 3D object in our context and the different ways to represent it. Then, in Sec-
tion 2.2, we show how to analyze continuous 3D objects using differential geometry. Even
though these concepts might seem familiar to some readers, this chapter also introduces
the mathematical notations that will be used throughout this manuscript.

Representation of 3D objects

2.1.1 Definitions

One of the main objectives of this work is to analyze 3D objects that are considered as the
digital representation of free-form physical objects. Before going further, it is necessary to
ask the following questions:

1. How to properly represent the shape of a 3D object?
2. How to ensure that this digital representation refers to a correct physical object?

The three-dimensional representation of a solid' object can be defined in three ways: by
considering a) the volume ¥ C R3 that is inside the object, b) the complement outside vol-
ume ¥ and c) the surface & that defines the boundary between the inside and outside. In
practice, the solution b) is often not feasible: R3 is an infinite space, like ¥. Represent-
ing explicitly this infinite space with a discrete representation may not be possible. Any
representation should rather be linked to the definition of ¥ that can be used directly. In
Computer Graphics, both the volume ¥ and surface & representations are used. For the
latter, it is necessary to ensure that & defines the boundary of a volume ¥ by studying the
properties of the surface &.

A surface & is the boundary of a well-defined closed volume if the following three criteria
are respected. First, the surface has to be orientable: it has to define an inside and out-
side, and thus enclose a volume (see examples of orientable and non-orientable surfaces
in Figure 2.1). Second, it has to be closed: the presence of holes introduces ambiguities
between inside and outside. Third, it has to be a 2D manifold: each point on the surface
must define a boundary between the inside and the outside. If the volume is degenerated
into a point, a line, or a plane, its surface is locally not orientable and thus non-manifold.
A surface with auto-intersections is also considered as non-manifold. Finally, if all these
criteria are respected, the surface well represents a volume ¥ and the associated 3D ob-
ject: it can be called an orientable continuous 2D manifold embedded in R3 [BKP'10]. The

'The term solid means that we does not consider a potential empty space enclosed in the object that cannot
be reached from the outside. For example, we ignore the empty space contained in a soccer ball, but we consider
the volume contained in a hot air balloon as part of the outside volume.
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Figure 2.1: Examples of parametric surfaces. Left: the Knot surface is the
only 2D-manifold of these examples. Middle and right: the Klein Bottle and the
Mobius strip are non-orientable. The Klein bottle also contains self-intersections,
whereas the Mobius strip is a bounded surface of genus 1 with only one edge.

term continuous refers to the definition of smooth surfaces with well defined derivatives.
See, for example, the parametric 2D-manifold Knot surface in Figure 2.1. In practice, it is
also necessary to deal with 2D manifolds with boundaries, for example surfaces with small
holes, which can be easily filled to represent a volume. Common acquisition techniques
often produce this kind of objects with holes that still refer to 3D objects.

In the next sections, for the sake of explanation and a better understanding, some examples
are given for 2D objects that are defined by an area .o/ C R? and a 1D-manifold boundary
curve. So in the following, we use the terms 3D surface and 2D curve to refer, respectively,
to the surface of a 3D object and to the boundary of a 2D object. In both cases, we use the
term ambient space (or embedding space) to refer to the space that contains the boundary
(i.e. R? or R® in our case), whereas the term embedded space (or parameter space) refers to
the manifold subspace (in our case included in R"!). For an example, see Figure 2.2.

Figure 2.2: Ambient and embedded space. A 3D sphere is defined in an am-
bient space in R®, and defines an embedded space in R?. The relation between
both spaces is usually represented as a map. In this example, we use a spherical
mapping to associate to each position [x,y,z]! € R3 a parameter space coordinate
[u,v] € R2.

3D objects have to be analyzed in various applications, which all define specific constraints
concerning acquisition techniques, memory requirements, processing, and scalability. In the
next sections, we present two categories of representations and the associated properties:
the explicit and the implicit representations. In a last section, we also introduce the discrete
volumetric representation, that is used in some previous work.



2.1.2 Explicit representations

Explicit representations define the object boundary explicitly using either a parametric def-
inition or by considering boundary samples, such as a set of points. In this case, the points
do not define a closed surface as described above, but they are sufficient to characterize it
in many applications (e.g. display or analysis).

Parametric surfaces A surface can be defined by a function that associates a position
in a parameter space to a position in the ambient space. For instance, let us consider the
following 2D parametric function

c:[0,27] - R%,u— [’”cf’su}, 2.1)
rsinu

that defines a circle of radius r. Walking along the object’s boundary is done by varying

the parameter u. For the sampling of this circle, in order to obtain the required sampling

in object space, an adapted discretization of the parameter space has to be found. The

association of multiple parametric patches, such as NURBS, is commonly used in modeling

software to generate free-form surfaces (e.g. manufactured objects).

Unorganized point set The minimalistic sample to characterize 3D surfaces is the triplet
[x,5,%] T e R3 (respectively [x,¥] T e R2 for 2D curves), called point or vertex, that defines
a position on the boundary in the ambient space. Even though a point set does not strictly
define a continuous closed surface, it is usually sufficient to represent it and analyze its
properties. The positions can be characterized by some attributes, such as a color, or a nor-
mal vector n that defines the orientation of the local surface. Many analysis methods and
processing algorithms require in addition a normal vector for each sample. However, the na-
tive output of most acquisition techniques, such as photogrammetry and laser scanning, are
unorganized point sets without normal vectors. There are a variety of methods that have
been proposed to robustly estimate them [AB98, PKG03, MN03, DG06, DLS05, LSK'10,
BM12]; they define oriented point sets as {(q;,n;); q;,n; € R3, ||n;]| = 1}. The unorganized
point sets can be directly and efficiently rendered using splatting [LW85, ZPvBGO01], and
they are usually organized in spatial data structures that are adapted to specific queries.
For instance, BSP trees [FKIN80] are used for visibility tests and kd-trees [Ben75] for near-
est neighbor queries.

Polygonal mesh Connectivity information can be associated to the vertex positions in
order to create piecewise continuous surfaces. In this case, the object boundary is defined
by a set of faces, composed of points and edges. These pieces of surface, which locally
approximate the underlying surface, can be defined as triangles, quads, or more complex
polygons. They can be used to map properties on the object, for example textures or vec-
tor fields, using local coordinates (usually called UV or texture coordinates). There are
different data structures and algorithms that have been proposed to move on the surface
defined by meshes [Dij59, Wei85]. Note that for unorganized point sets, due to the missing
parametrization, moving on the surface is quite difficult.

Furthermore, using polygons as basic primitive for rendering (and especially triangles or
quads) is very efficient because of the existing dedicated pipelines on GPUs. Meshes are
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usually generated by modeling tools, or by estimating the connectivity of unorganized point
sets.

A complete and up-to-date survey on polygonal mesh representations, their generation, and
their processing can be found in [BKP"10]. We also refer to [KB04] for a discussion on point
set and mesh representations for 3D object processing and rendering.

In this thesis, we focus on the analysis of acquired data. In order to avoid a preprocessing
step to reconstruct a fully connected mesh (which may fail in some cases and take a lot of
time), we strive to design methods that can directly operate on unorganized point sets as
input.

2.1.3 Implicit representations

Implicit representations define a surface as the 0-isocontour
& = {p € R% f(p) = 0} (2.2)

of a given scalar field f : R"™ — R. The scalar field f is often chosen to represent the signed
distance to the given surface. They are commonly used to simulate physical phenomena
(e.g. water and smoke simulations [MST10, CM11], object deformations [BEB12]), or as
input for volume rendering [HLSRO8]. They can be expressed in different ways, either
using analytical functions, or by using reconstruction methods.

Figure 2.3: 2D scalar fields and implicit curves. 2D implicit curves (in black) in
R? are defined as the O-isocontour of an implicit scalar field, displayed in color on a
plane as well as on a height field in R® (the transparent shape). Left: A univariate
scalar field produces a straight line in the 2D domain. Right: A bivariate quadratic
scalar field defines a 2D circle.

Analytical implicit surfaces Analytical definitions are commonly used in 3D model-
ing [B1i82, BS91] for designing organic 3D objects, or for simulating fluid interaction. In
this context, complex shapes are obtained by the composition of basic primitives. In our
context, we are more interested by algebraic varieties that implicitly define curves or sur-
faces as the 0-set of a polynomial scalar field. For example, the explicitly defined 2D circle
with radius r that we presented in Equation 2.1 can be defined by the following scalar field

f.iR2 >R, (x,y) = x2+y?—r2 (2.3)



The boundary & is then defined as & = {[x, y ] "' e€R2; f.(x, y) = 0}. See Figure 2.3 for an
example of a 2D line and a 2D circle.

Reconstruction methods The interesting properties of implicit surfaces motivated the
development of methods that generate these scalar fields from explicit samples, usually
from unstructured point set with or without normals. The idea is to find the best scalar field
that interpolates or approximates the input samples while respecting some constraints on
the O-isosurface properties. For instance, this includes constraints on positions, gradient
directions or magnitudes, or total curvature variation. Many techniques seek for a global
solution of this problem. We can cite for instance techniques based on signed distance func-
tion estimation [HDD"92], radial basis functions [Fra82, CBCT01], level sets [ZOMKOO],
Poisson reconstruction [KBHO06], or non-oriented variational formulation [CSADO04]. Using
these approaches to design local descriptors requires a preprocessing step to compute the
global solution, that is not compatible with our requirements: we want to characterize lo-
cal geometric properties at random positions regardless of the object complexity. By using
partition of unity [OBA™*03], the global formulations can be turned into set of regional and
independent problems: the object is split in several parts which are reconstructed indepen-
dently and then merged to obtain the final object. However, this requires to evaluate and
to blend with neighboring regions that again do not fulfill our random access requirement.
A last class of methods are Point Set Surfaces [AK04] (PSS) that directly define implicit
surfaces from point sets using Moving Least Squares [Lev98] (MLS) approximations.

Moving Least Squares MLS surfaces are defined by a purely local approach as follows:
given an evaluation position p, a weighted neighborhood of points 2, is collected with re-
spect to a weighting function with support size t. Then, a primitive is fitted on this neigh-
borhood through a least squares minimization of a robust norm, e.g. L;. The evaluation
point can then be projected onto the local surface approximation, where a new weighted
neighborhood is collected from this new position, leading to a new fit and a new projected
position. These steps are repeated until convergence [Lev03], and define a projection oper-
ator [AAO4]. The reconstruction of smooth surfaces is achieved by moving the evaluation
point, hence the name Moving Least Squares. The continuity of the resulting surface de-
pends on the continuity of the weighting function [Lev98]. Furthermore, the approximation
can be controlled by the support size t to produce smooth surfaces even in the presence of
noise.

Concerning the primitive that is used to fit the neighborhoods, the first proposed methods
express it relatively to a fitted reference plane, then fit a polynomial by linear minimization
of the squared distance between the samples and the surface [Lev03, ABCO'03]. This pro-
cedure is not valid when fold-overs occur, because the neighborhood cannot be represented
as a height function with respect to the reference plane. As a consequence, it is more robust
to only consider the plane, fitted using normal information [AA04]. However, approximation
problems still appear at large scales and with complex shapes. More recently, Guennebaud
and Gross have proposed a fast algebraic hyper-sphere fitting procedure for oriented point
sets [GGO7], robust to sparse sampling, high curvature, and close sheet configurations. In-
dependently of the fitted primitive, sharp features can also be supported using non-linear
regression [OGGO09].

We refer to [Blo97] for a more general introduction to implicit surfaces and to [Reu03, GP07]
for a more in-depth presentation of the point set reconstruction.
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2.1.4 Volumetric representations

The discretization of implicit functions is usually done by filling a regular grid that splits the
ambient space into small sub-volumes, called voxels (for vol-ume el-ements). This concept
reminds on 2D images that are defined by regular pixel grids. There are some surface
analysis methods that are based on these representations (see Section 3.1) as extensions
of 2D image algorithms. Unfortunately, voxel grids require a large amount of memory
compared to other representations. Moreover, the strong impact of the choice of the grid
properties (for example the cell size and orientation) make voxel grids complex to use in
practice. Except specific applications that really need the volumetric information (such as
medical imaging or simulation), common processing pipelines first convert a voxel grid to
an explicit surface representation [NY06] prior to further processing. We refer to [BKP'10]
for an overview of the conversion process from voxels to explicit surfaces.

Differential analysis

Independently of the chosen representation, 3D objects have geometric properties that are
involved in various processing tasks such as analysis, editing, similarity detection, and
matching. In this section, we introduce fundamental notions of differential geometry anal-
ysis. For the sake of clarity, we will first consider the case of 2D curves, and then extend
them to 3D surfaces. Our objective is to define quantities on smooth surfaces (i.e. with
well defined derivatives) that are invariant to the surface parametrization. This section is
inspired by the Chapter 3 of [BKP"10]. We also refer to [BJ86, CG10] for more details on
this topic.

2.2.1 Differential analysis for parametric manifolds
First-order differential analysis

The position of a given element u of the parametric space on a 2D curve can be expressed
as a parametric function (generalization of Eq. 2.1) as

c:0Q— Rz, u— |:X(Z)i| (2.4)

where Q2 C R is the parameter domain of c.

The tangent vector is the first derivative of c¢. In mechanics, it corresponds to the velocity
vector (see Figure 2.4), and it is defined as ¢’ : @ = R%,u — [x'(w), y'(w)] T

This first-order invariant defines the distance between two points u; and u, in the embed-
ded space. The length [ of the path going from u; to u; can be computed as

us
l:Q—>R,(u1,uz)—>J le’@Wll&u. (2.5)
Uy

[ is an intrinsic property of the curve, called the curve length, that defines its intrinsic
metric.
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In the case of a 3D surface, the differentiation of s requires the definition of partial deriva-
tives. Consider the parametric definition of a 2D manifold

x(u,v)
s:Q-R3 (wv)— | ywv) |, (2.6)
z(u,v)

where s is continuously defined. The parametric space has 2 dimensions spanned by the
tangent vectors s, = % ands, = %. The manifold is assumed to have a regular parametriza-
tion, that means: s, x s, # 0.

In order to compute the distance between elements on the surface in arbitrary directions,
it is necessary to define the directional derivatives. Considering a 2D direction vector w
in parametric space, it is possible to define the Jacobian matrix J to obtain the associated
tangent vector s, = Jw where

ox  ox
ou ov
oy by
J=1| 3. 3 :[su sv]. 2.7
oz bz
ou ov

The matrix J encodes the impact of the parametrization on angular and distance measures,
and consequently on area measures. This can be illustrated by the fact that the squared
length of a vector is equal to the dot product with itself. The dot product is also related to
the cosine of the angle between the two vectors. Now, let us consider the squared length of
the tangent vector s, :

lIswll* = sy, 8w = (W) (Jw) =w' Gw,

where G is the metric tensor, also named first fundamental form* of s:

. E F s's, sls,
G=JJ= = . (2.8)
F G T T
sT's, s's,

The first fundamental form can thus be used to compute the length between the elements
following a given path. Using eigen decomposition, it is also possible to compute the two or-
thogonal anisotropy directions (eigenvectors), and the associated anisotropy degrees (eigen-
values). In other words, the first fundamental form defines intrinsic properties of a surface,
which are, as shown in Section 3.4.1, related to specific invariance properties.

Second-order differential analysis

Let us go back to a 2D curve c(u). The second derivative ¢ ”(u) measures the variations of
the tangent vector, that is called, in mechanics, the acceleration. For example, consider a
solid that moves in a 2D space, with an arbitrary constant velocity. When the solid moves on
a straight line, there is no speed variation and its acceleration vector is null. Now suppose
that a force is applied to the solid. We must ignore any component in the tangent direction
(because we suppose that the tangent vector has a constant norm), so we should consider

1A common notation for the first fundamental form is I. In this thesis, we prefer to use G to avoid confusion
with the Identity Matrix.
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this force as a vector orthogonal to the tangent direction. If it has a small norm, the solid
should change its direction a bit: the greater the norm, the more the solid’s trajectory is
deviated. In geometry, we call this norm the curvature k : Q@ — R,u — ||¢ ”(u)||. Figure 2.4
gives an example with a circular trajectory. As the acceleration vector is oriented in an
orthogonal direction to the tangent vector, we have the relation:

¢’ (u) = k(wWn(u) (2.9)

where the unitary vector n is called the normal vector. If x(u) is positive or negative, the
solid turns in one direction or in the other. By convention, the normal vector is directed
to the outside of the object, so a negative value characterize the concavities, and positive
values the convexities. In practice, this definition is valid even if the tangent vector has a
variable norm along the curve.

5
5_f(t1)

Figure 2.4: Intuition on curvature: acceleration vector. In mechanics, the

2
variation of the velocity % of a given object is called the acceleration vector %. In
geometry, the norm of this acceleration vector is called the curvature.

In case of 2D manifolds, the unit normal vector n, orthogonal to the surface, is defined as

n= % On a surface, we can measure the curvature at a location [u, v]” in any direction

w=[u,,v,] T by measuring the curvature of a curve going through the evaluation point in

the direction w and lying on the surface. Since the normal vector is defined regardless this
2

direction, we first have to measure if the variation of the tangent vector % in the direction

w is aligned with this normal by considering the relation

——— n=w'Ilw, (2.10)

where II is the second fundamental form defined as

T T
e f sfn sT'n

II= f = R (2.11)
g sin s'n
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with the partial derivatives

_ 525 _ 525 _ 525 (2.12)

Suu = su?? Suv = Sudv’ Sw = 5vZ

We can see that the relation in Equation 2.10 is equal to 0 when the tangent variation
vector is null or when it is orthogonal to n, which means in both cases that the surface is a
plane. When the tangent vector variations are oriented in the same direction as the normal
vector (i.e., concavity), the computed value is negative, and on the opposite direction (i.e.,
convexity), it is positive. We thus have a similar behavior to the curvature of 2D curves,
but not exactly: the measure is still related to the norm of the tangent vector, which may
not be unitary. In order to compute the normal curvature x,, in the direction w, we have to
normalize this relation by the surface metric (see Equation 2.8):

wiIw  eu) +2fu,v, +gv)
w' Gw  Eu +2Fu,v, +Gv2’

K (W) = (2.13)

planes normal
of principal vector
curvatures

tangent
plane

© Eric Gaba, user Sting,
Wikimedia Commons

Figure 2.5: Curvature Tensor. Illustration of the curvature tensor for a saddle
point p: the normal curvature k,(t) in direction t is expressed as a combination of
the principal curvatures k1, x5, oriented in t{, t, (defining a tangent plane). Image
courtesy of Eric Gaba.

It can be seen in Equation 2.10 that «, has two extremal values k; and k5, called principal
curvatures that are defined in the orthogonal directions w; and w,!. Hence, any value «,,
can be expressed as a linear combination of k; and k5. A simple example is to consider the
case of an isotropic point with k; = ky = k,, and thus |[|w;|| = ||w,]|| = ||w]|| for any direction
w. In all cases, a common way to represent k, is to build the curvature tensor C = PDP™!
with P = [w,w,,n] and D = diag[x, K5, 0] (see Figure 2.5). It is also possible to compute
the mean curvature H (represented by the green sphere in Figure 2.6) as
Kyt Ky

H=—— 2.14
5 (2.14)

Equation 2.10 is based on a dot product, that is itself based on a cosine function, which has extrema in
orthogonal directions. See also Euler’s theorem for a more formal justification [Eul67].
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and the Gaussian curvature G as
G:K1K2. (215)

Given a scalar function g defined on a manifold &, one can define the Laplace-Beltrami
operator Ay as
Ayg = diVVg = &uut &vv> (2.16)

where the gradient of g is defined as Vg = [g,, g, ] " This constitutes a common tool for
the analysis of surfaces. For instance, when applied to the surface coordinates, this operator
measures its variations, and it is related to the unsigned mean curvature: A, g = —2Hn.

It can be shown that the Gaussian curvature can be computed directly from the first funda-
mental form [BJ86]. The Gaussian curvature defines an intrinsic property of the surface,
like the Laplace-Beltrami operator. The other properties (k1, k5, H) that are linked to the
second fundamental form are extrinsic in that they measure the way the surface is embed-
ded in space. For example, consider a non-elastic paper sheet, with a straight line drawn
between two points 10 centimeters apart. Folding the paper again and again does not
change the length of the drawn line since it is related to the intrinsic properties of the sheet
which are not altered by non-elastic transformations, as for example folding. On the other
hand, the Euclidean distance between the two points is changed by folding, as well as the
curvature or other extrinsic properties.

K1 = a K1 = a K1 = a ki = 0 K1 = -a
Ky = kg = 0 Ky = -a Ky = -a Ky = -a
G = o G =0 G = -a* G =0 G = o
H = a H:%a H = 0 g = 14 H = -a

Figure 2.6: Mean and Gaussian Curvature for the point p. H is represented as
a green sphere and characterizes the mean of the tangent vector variation without
considering the anisotropy direction. G represents the Gaussian curvature.

2.2.2 Differential properties of implicit surfaces

The implicit formulation does not offer the parametrization needed to express differential
properties such as tangent vectors and curvature. In this subsection, we present the closed-
form formula to compute the normal vector n, the principal, mean and Gaussian curvatures,
and the Laplace-Beltrami (LB) operator for a surface expressed a the 0-isolevel of a given
scalar-field f (p), where p € R®. A more in-depth presentation of these formula can be found
in [Gol05] for curvatures, and for the LB operator, as well as its relations with the standard
parametric formulation in [BCOS01]. We denote by f, the first partial derivatives of f.
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Normal vector By construction, the scalar field has a gradient vector orthogonal to the
T
surface, defined as Vf = [ Jrsfys fZJ . The normal vector is thus defined as
Vf

n(f)= SZik (2.17)

Curvature In order to compute the mean and Gaussian curvatures, we need to define the
Hessian matrix H formed by the second-order partial derivatives of f

frx fxy frz
H= fyx fyy fyz > (2.18)
fax fzy oz

and its adjugate H* as

fyyfzz _fyzfzy fyzfzx _fyxfzz fyxfzy _fyyfzx
H = fxzfzy _fxyfzz fxxfzz _fxzfzx fxyfzx _fxxfzy . (2.19)
fxyfyz _fxzfyy fyxfxz _fxxfyz fxxfyy _fxyfyx

We can now define the Gaussian curvature

VfH VfT
YRy (2.20)
IVAI
and the mean curvature
VFH VT —||VF|*> Tr(H
H = —aivagry= Y VT IVFIP TeC) .91
2|V £l
3
where Tr(H) = Y. h;; is the trace of the Hessian matrix.
i=1
The principal curvatures «; and x, can be deduced from G and H as
= 2 _
ki=H++VH*—-G, (2.22)

kKo=H—+VH?—-G.

Laplace-Beltrami With the implicit formulation, the LB operator can be defined for any
scalar function h(x,y,z). Its gradient on the O-isosurface Vh; can be computed as the
projection of Vh on the surface as

Vh; =(I—nn")Vh (2.23)

The Laplace-Beltrami operator (already defined in Eq. 2.16 for the parametric representa-
tion) is then defined as

_ div (Vhy IVFI)
d M
When f is an Euclidean scalar field (i.e. the value of the scalar field represents the Eu-
clidean distance to the O-isosurface), the gradient is unitary by construction for any coordi-
nate. In this case, we denote the associated function f, yielding to the simplified implicit
LB operator

(2.24)

Athdiv Vhf‘. (2.25)
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Chapter 3

Multi-scale shape analysis

In the previous chapter, we have introduced common representations of 3D objects, as well
as the differential analysis of their continuously defined surfaces . This chapter focuses
on the practical methods that have been proposed to analyze discrete 3D surfaces s. As
explained in the introduction, this analysis is a preliminary step for various processing
tasks in Computer Graphics. The chapter is divided into 4 sections, starting from general
concepts and finishing by the description of specific methods and their comparison.

More precisely, in Section 3.1, we present an analysis pipeline shared by the majority of
previous work. In Section 3.2, we present previous methods that define geometric descrip-
tors as approximations or alternatives to differential quantities on non-smooth surfaces. In
Section 3.3, we present methods for detecting relevant features in the geometric descrip-
tions. We propose a classification of these approaches in order to compare them with each
other. A final discussion in Section 3.4 summarizes advantages and limitations of previous
work, thus motivating the technical choices for the design of our analysis framework.

Analysis pipeline

We call a geometric descriptor a value (or a set of values) that characterizes the object ge-
ometry for a given position p on the surface. The mean curvature is probably the simplest
example. Geometric descriptors are often designed as discrete estimations of differential
properties, discrete integration of surface properties, statistical neighborhood analysis, dif-
fusion procedures, or regressions.

These descriptors can also be computed at different scales t. The motivation is to be able
to measure properties that characterize geometries, starting from small patterns or surface
macro-structures, to the overall object shape. Figure 3.1 shows 4 different ways to compute
geometric descriptors at multiple scales. First, differential properties (or some approxima-
tions) can be computed on smoothed versions of the surface (Figure 3.1(a)): the more the
object is smoothed, the coarser is the considered scale. Most of the geometric descriptors
need to collect neighboring points to be computed. In this case, a distance threshold used
to collect neighbors defines the scale, and can be expressed as geodesic (Figure 3.1(b)) of
Euclidean (Figure 3.1(c)) distances. When dealing with polygonal meshes with a uniform
sampling, such geodesic neighborhoods can be approximated by collecting the points in a n-
ring, where n represents the number of edges between the evaluation point and the current
ring. Finally, some approaches consider the volume defined by the intersection between
the object interior volume and a ball B,(p) centered at the evaluation point with radius ¢t
(Figure 3.1(d)). We present in Section 3.2 the previous work that is the most relevant in our
application case to compute such descriptors. We emphasis that we focus on local descrip-
tors only, in opposite to global descriptors [ZH99, MDTKO06] that build a unique description
for the entire object and do not consider local properties.

17
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a) b) c) d)

Figure 3.1: Multi-scale neighborhood collection approaches. (a) iterative
smoothing, (b) n-ring, (c) Euclidean point, and (d) Euclidean volume/surface. Top
to bottom: fine to coarse scales.

Once a dense geometric description has been computed on the surface (i.e., for all points q; of
the object), it is often desired to extract the relevant structures that characterize the object.
This is addressed by what we call feature detectors, which usually analyze the variation or
the distribution of the geometric descriptors along the object, possibly at multiple scales. We
present these methods in Section 3.3.

Even though a lot of different analysis approaches have been proposed in the past years,
they usually all rely on the same overall pipeline. First, they compute a geometric descrip-
tor for each sample of the object, which is used in a second step to detect the relevant fea-
tures. These features are then used for various applications, such as modeling, matching, or
remeshing. Obviously, some pipeline variants have been proposed for specific contexts. For
example, some approaches compute a first geometric descriptor, use it to extract features,
then compute another descriptor to characterize them. In the following section, we present
these descriptors and detectors as independently as possible from the application, in order
to be able to compare them.

We also analyze the invariance properties of the proposed analysis pipelines, with respect
to: @) the metric used to collect neighborhood information, b) the way to describe geometry,
and c) the feature extraction method. This is fundamental for the design of the analysis
pipeline, since the invariance of each step impacts the entire pipeline due to the sensitivity
to transformations. For example, using intrinsic metrics associated to extrinsic descriptions
is sensitive to isometric transformations.

Also note that in our application context, we want to be able to use our analysis for shape
matching. As shown in Figure 3.2, this implies that the analysis approach has to handle
bounded surfaces.
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Figure 3.2: Shape matching involves bounded surfaces. In this example, the
two fragments (left) have been matched using their contact surface, shown in red
in the right image (for the bottom fragment). The geometry description used for
the matching is performed only on the bounded surface, and it does not take into
account unrelated features.

Geometric descriptors

3D object analysis is a topic that is widely studied in Computer Graphics, Computer Vision,
and Computational Geometry. In the last decades, a lot of methods have been proposed to
characterize 3D objects with different objectives and limitations. In this section, we present
the descriptors that we consider most relevant to our application and research context.
When it is possible, we refer the interested reader to more exhaustive surveys.

In the following subsections, we propose a classification of the geometric descriptors into
5 categories based on different mathematical tools: estimation of differential operators,
neighborhood integration, statistical analysis, diffusion methods, and regression. In or-
der to produce a flexible analysis, the descriptors have to be evaluable at arbitrary scales
and positions. Hence, we focus on multi-scale methods, and not on multi-resolution meth-
ods [KBS00] such as wavelets [SLR"12]. The latter are rather tailored for the data sum-
marization at multiple resolutions for compression or editing purposes. Moreover, they
characterize the global properties of the shape and not the local geometric details [OT03],
and they might not be able to detect the relevance of the analyzed data. For this reason,
multi-scale methods are preferred because they analyze each scale independently in order
to produce stable descriptors of the relevant data, even though this involves some redun-
dant computations.

We are particularly interested in descriptors that characterize the surface of an object,
and not its global volumetric properties [LZSCO09, RBBK10, BS12, LKF12, GL12]: partial
shape matching involves surfaces with boundaries, as shown in Figure 3.2.

3.2.1 Differential operator approximations

The first category of geometric descriptors is based on the estimation of differential values
on discrete surfaces. Differential approximations require the surface to be C!-continuous (to
compute the metric), or C2-continuous (to compute the curvature). Since surfaces defined
by discrete samples are not continuous, most of the methods presented below are based on
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the discrete Laplace-Beltrami operator [Tau95, MDSB02, BS07] for triangle meshes (noted
LB for convenience in the following), defined for any function g on the surface. Note that
when g is defined as the point coordinates q;, Ag is related to the mean curvature. We refer
to [HPW06, WMKGO07] for an in-depth analysis of the LB approximation properties.

Differential approximations are sensitive to position noise, and they cannot distinguish
between noise and features due to their purely local nature. To this end, they have to
be evaluable at multiple scales, which is achieved by smoothing the signal using a given
operator and then applying the LB operator. In the case of the Gaussian smoothing operator
G, where o is the Gaussian standard deviation, this pipeline can be simplified to the
convolution of Laplacian of Gaussian kernel (LoG)

A(G,®g)=(AG,)®g=LoG®g. (3.1)

This approach has been recently employed for voxel grids [WNK06, FBMB10, GW11] and
meshes [ZHDQO8].

Another common solution is to use the Difference of Gaussians (DoG) to approximate the
LB operator (see Figure 3.3). This has first been proposed for images [MHS80], then for
curves [MMS86], and more recently for meshes [MKY01, ZBVH09, MFK*10] and voxel
grids [SAS07, FBMB10]. It works in two steps: first, smoothing the data at two scales, and
second, approximating the curvature at a point by the distance between its two smoothed
locations. More formally, the DoG operator is applied to the surface s as

DoG, = (G,, ®s) — (G, ®s). (3.2)

Both the LoG and the DoG method do not require any parametrization as long as the
smoothing operator is well defined.

Figure 3.3: Estimation of mean curvature using DoG. Top: 3 levels of smooth-
ing. Bottom: estimation of the mean curvature H using DoG in order to measure
planar (white) and curved (blue) areas at different scales.
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It is also possible to estimate curvature-like information more directly on polygonal meshes
without the LB operator. For example, the mean curvature can be estimated form the aver-
age normal [IJ85, LGO05], using simplex angles [HID95], or as the ratio between the geodesic
and the Euclidean distance [GSCOO07]. For a more detailed comparison of curvature esti-
mators on triangle meshes, we refer the interested reader to the surveys [Pet02, GG06]. We
will show in Section 3.2.5 that curvature-like values can also be estimated directly on point
sets [CP03, CCSLT09, ZLCZ09] using regression techniques.

Irrespectively to the differential value estimation, the approaches presented above directly
depend on the smoothing operator that might fail for some configurations. In order to avoid
them, smoothing is replaced in the following with neighborhood collection approaches pre-
sented in Section 3.1.

3.2.2 Neighborhood integration

In practice, the approaches presented above are quite sensitive to noise: they are based
on discrete samples to estimate the values that are in fact related to a continuous surface.
Some methods regularize the estimated values by integrating the information contained
in the area or volume neighborhood, defined as the intersection of the surface s and an
Euclidean ball B,(p) of radius t centered around p (see Figure 3.1 (d) ).
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Figure 3.4: Integral Invariants. Neighborhood types generated from the inter-
section of the Euclidean ball and the surface s. From left to right: ball neigh-
borhood, spherical patch, surface patch, and spherical intersection. Image taken
from [PHYKO5].

A first type of approach is based on the Integral Invariants [PHYK05, GMGP05, YLHPO06,
MCH*06, PWHY09] that can be defined both for 2D curves and 3D surfaces. The key idea
is to integrate the properties of various neighborhood types shown in Figure 3.4, such as
the volume V,(p) defined by the intersection of the ball and the surface, the associated
enclosing surface SA,(p) (for Spherical Area), the intersecting surface PA,(p) (for Paich
Area), and the associated bounding 3D curve C,(p). For each of these neighborhoods, the
authors present ways to approximate differential quantities, such as for example the mean
curvature. Walter et al. propose a descriptor called SUSAN3D [WALO8], which can be seen
as an extension of a 2D descriptor related to the volume invariant V,(p).
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A second type of approach uses geometrical moments [CGR'04, X1.06, XL.08] that charac-

terize statistical properties of the geometry. A moment M,g, is computed as

Mgp, = J J f x*yPz"p(x,y,2) 6x 8y 6z, (3.3)

where p is a density function that encodes the intersection between the Euclidean ball and
the surface. This formulation provides a robust characterization at multiple orders of the
surface.

In practice, all these integration methods can be complex to use due to the high compu-
tational cost, especially at coarse scales where a large neighborhood has to be taken into
account. Indeed, good approximations of the integrals require fine discretizations of vol-
umes and surfaces as well as good estimations of intersections that might be complex to
obtain for free-form surfaces.

3.2.3 Neighborhood distribution

Independently of the practical difficulties due to the estimation of differential quantities, a
main limitation of these methods is that they cannot precisely characterize complex shapes.
For example, a junction of 3 ridges, called a T-junction, may involve three different direc-
tions that cannot be described by the surface metric or the curvature tensor. Furthermore,
some properties, like the surface roughness, have no particular differential meaning. In
this subsection, we present techniques that represent the neighborhood as statistical dis-
tributions, by considering a surface patch PA,(p), a spherical intersection C,(p), or other
custom neighborhoods.

Statistical analysis of C,(p)

In the following, the neighborhood is parametrized along the arc-length ¢ of the boundary
curve C,(p) from a reference position and the current neighbor. We recall that this neigh-
borhood collection is usually approximated by n-rings when dealing with meshes.

A first type of information that can be expressed as distribution is the position of the neigh-
bor points q; surrounding p. Chua and Jarvis proposed the point signature [CJ97], which
considers a plane defined by p and the associated normal vector n. Then, they measure
height values between the surface s and the plane along C,(p), in order to build a 2D curve
h(£). Even though the point signature seems to be adapted to characterize Tjunctions or
other complex anisotropic features, this representation is sensitive to the estimation of the
reference plane and to position noise.

In order to reduce the sensitivity to position noise, some approaches focus on the analysis of
normal vectors that can be robustly estimated even in the presence of noise [AB98, PKGO03,
MNO03, DG06, DLS05, LSK™10, BM12]. Stein and Medioni [SM92] proposed to analyze the
local normal defined as the normal vector of the current neighbor expressed relatively to n
in a given tangent direction. Then, they build their descriptor in a similar way as the point
signature, but by considering the local normal coordinates.
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Statistical analysis of PA,(p)

The main limitation of considering the spherical intersection curve C,(p) is that it contains
only features that are across the neighborhood boundary, but completely ignores the ones
that are enclosed in the Euclidean ball B,(p). This is addressed by considering the spherical
patch PA,(p), that can be analyzed in ambient space, yielding an extrinsic characterization,
or directly on the surface s.

An extrinsic analysis of PA,(p) can be achieved using the Shape Context [BMP02, KNKO03,
FHK" 04, WNKO06], which is essentially a 3D distribution of the neighbor positions q; (see
Figure 3.5). A main limitation of this approach is the difficulty to find efficient and generic
parameters to construct the histogram. A variant is to represent the neighborhood by spher-
ical harmonics summarized using Principal Component Analysis (PCA) [FS06].

"

N

Figure 3.5: Shape Context. The volume neighborhood is segmented into a 3D
histogram. Image taken from [FHK'04].

In order to measure properties directly on the surface, it is possible to build a curvature
map [GGGZO05], which is an image where polar coordinates r, 0 of the neighbors are mapped
to image coordinates u,v. For each pixel, Yamani et al. measure a curvature value [YF99,
YF02], while Zelinka and Garland use an association of position, normals, and tangent
vectors [ZG04]. In [GGGZO05], Gatzke et al. propose a comparison of these approaches. The
major problem of these methods is that they usually do not offer a summarization of the
neighborhood, and thus they can be memory-consuming when dealing with huge datasets
at multiple scales. In [LGO05], Li and Guskov summarize images using a re-parametrization
step based on Discrete Cosine and Fourier Transforms.

In practice, the distribution analysis parameters can be very difficult to adjust: the relation
between each parameter and their impact on the efficiency of the description is seldom in-
tuitive. An alternative is to consider the approach proposed in [LVJ05, LLKR07, CCFMO08],
which uses DoG to compute per-vertex curvature, and then defines mesh saliency at a given
scale using a linear combination of the neighborhood curvature values. This approach de-
tects specific features with respect to perceptual notions, and thus it may not be adapted to
all application cases.
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Statistical analysis of custom neighborhoods

Another statistical descriptor is the spin image proposed in [JH99, DK12]. The idea is
to build a view-dependent image of the object that associates to each pixel a measure of
density, which is related to the number of points projected to each pixel. In this approach,
the size of the neighborhood is defined by considering points that have a normal forming
an angle with n inferior to a given threshold. This method works with point sets having a
regular sampling: the variation of the visible density in the spin image is thus due to the
variations of the local surface orientation after projection, which is related to the curvature.
These approaches can be complex to use in some cases, in particular when there is no
assumption on the viewing parameters. Furthermore, the neighborhood is defined by an
angle threshold that could be hard to manipulate in case of a multi-scale analysis.

3.2.4 Diffusion maps

Recently, a class of approaches inspired by diffusion maps [CL0O6] emerged. These tech-
niques were initially conceived for shape retrieval, or, more generally, for similarity detec-
tion under isometric deformations. The key idea is to characterize a 3D objects by consider-
ing its intrinsic properties. The surface metric can be seen as a diffusion flow on the surface:

_og(p, 1)

5t (3.4)

Ag(p,t) =
also known as heat diffusion equation. Here, g is a scalar function defined on the surface
that varies with respect to the time t. Intuitively, since the surface variation is related to
the Laplace-Beltrami (LB) operator, the speed of diffusion directly depends on the surface
metric. Hence, it is possible to define a function k,(p;,p3) that measures the amount of
heat transferred from p; to p, during a time period [t : t], given an initial heat source
at p; that stops to emit heat at the initial time ty. k; is related to the intrinsic surfaces
properties: the diffusion speed varies with respect to the metric defined on the surface. We
call it the diffusion distance

The first approach that exploits this diffusion distance to design a geometric descriptor is the
average diffusion distance [IGGV08] that measures the average of k,(p, q;) over a region £,
where q;, p € Z. The main problem of this approach is the link between the evaluation point
descriptor and its region: when the segmentation changes, the descriptor becomes invalid.
This limitation is by-passed by the Heat Kernel Signature (HKS) [SOGO09]. The idea is to
consider the multi-scale profile generated as k,(t) = k.(p, p), which encodes the remaining
energy at a time t after a unitary heat impulsion at t; (see Figure 3.6 for an example on
the dragon model). However, the initial HKS method suffers from normalization issues:
for each time t, the values of kp(t) have to be normalized by the maximum value on the
whole object. This limitation is overcome by the Scale-Invariant Heat Kernel Signature (SI-
HKS) [BK10, LBB11], which removes the dependency between k,(t) and the scale factor s
by using an s-dependent time shift. These methods motivated various studies on diffusion
geometry [BB11, BBGO11, FW11, WBBP12]. Note also the recent work of Liang et al. that
approximates the LB operator on point-sets using MLS [LLWZ12], and the extension of
Zobel et al. to compute HKS on first-order tensor fields [ZRH11].

All these methods provide an elegant way to compute intrinsic surface descriptors, and
they redefine the notion of scale by a time interval. Although this concept is well suited to



25

R | ¢ scaled HKS

[~ 5™ log(f)

] -1 0 1 2 3 4 5 [

Figure 3.6: Heat Kernal Signature. Left: dragon model. Right: scaled HKS at
points 1, 2, 3, and 4. All four signatures are close at low values for t, while high
values for t separate the points on the front claws from those on back. Image taken
from [SOGO09].

the initial problem (shape retrieval), it can be complex to adapt to shape matching: using
a time parameter is not intuitive, and more importantly, the spatial region surrounding
p may have different sizes depending on local surface curvature properties. It is rather
difficult to set this parameter in practice. Furthermore, solving the Heat Diffusion equa-
tion can be time consuming with complex 3D objects because it requires solving an eigen-
decomposition of the LB matrix, an n X n matrix containing weights for discretizing the LB
operator [SOGO09]. Usually, only the largest eigenvalues and eigenvectors can be computed
in a reasonable amount of time. Since the eigen-decomposition characterizes the geometry
from coarse (high eigenvalues) to fine scales (low eigenvalues), these methods are adapted
to characterize coarse features and not small geometric details.

3.2.5 Regression

The previously discussed approaches are based on a direct analysis of explicit samples,
such as point sets [BMP02], meshes [WMKGO07], and Voronoi diagrams [LLWZ12]. In this
subsection, we focus on regression-based approaches that use an intermediate continuous
surface patch that approximates the local surface to characterize its properties. The meth-
ods presented in this subsection that use least square fitting approaches, are efficient and
robust to the input representations. We can distinguish two kinds of approaches, depending
on the order of the fitted primitive: first-order or second-order.

First-order primitive

Using plane fitting to characterize the geometry has been proposed in [PKG03]. The key
idea is to analyze the eigen-decomposition of a covariance matrix representing the neigh-
borhood, hence the name Covariance Analysis (CA). The 3x3 covariance matrix Moy that
represents a weighted neighborhood surrounding p can be built as

— T —
1 | a@-p wo O 9~ P
MCOV = . , (3.5)

k _ - _
2o%i | q—P 0wy Q% — P



26 Chapter 3 - Multi-scale shape analysis

where ||q; — pll < t,w; € [0,1]. Pauly et al. propose in [PKG03] to measure the surface
variation using an eigen-decomposition of M-,y . The idea is to measure if the input points
vary only in the two directions that define the fitted plane, using the ratio

Ao

— 0 A <A <A, 3.6
Ao+ A+, 0= =72 (3.6)

o(p)=
where A; are eigenvalues of My,. The surface is assumed to be without noise, so this
value is related to the mean curvature. Similar approaches compute anisotropy using
Mcoy [MBO10] or normal variation [LGO05]. [MOG11] also use a covariance analysis, but
with an alternative definition of the neighborhood using Voronoi cells. However, the latter
approaches measure first-order quantities (normals) and estimate second-order quantities
by comparisons. The main problem is that they cannot distinguish between variation due
to noise and due to curvature. Hence, they require a specific tuning to handle non-smooth
surfaces [MOG11].

Second-order primitive

As explained in Section 2.1.3, a second-order continuous surface patch can be estimated by
first finding a planar parametrization of the neighborhood, then by expressing it as height-
field, and finally by using a linear regression [FJ89, BSF02, CP03, GCO06, CPG09] to fit a
bivariate quadric as

q(u,v) = au® + bv? + cuv + du + hv, 3.7

where u,v are vertex coordinates expressed in the support plane (see Figure 3.7). The
curvature tensor C is obtained by differentiating this function g (see Section 2.2.1). Mian
et al. [MBO10] also proposed a descriptor based on the averaging of H, k; and k, over the
parametric patch.

/ / .\\'\,

Figure 3.7: Quadric fitting on the neighborhood expressed as a height
field. From left to right: evaluation point, neighborhood, reference plane, quadric.
Image taken from [CPGO09].

As said before, a limitation of considering the curvature tensor as a descriptor is that it only
defines two directions of anisotropy, and thus it cannot characterize complex shapes such as
Tjunctions. In [ABG"12], Ammann et al. address it by analyzing the second-order curves
fitted in multiple tangent directions instead of a second-order surface patch.

The main limitation of these approaches is due to the two-step fitting procedure: when the
plane fitting fails, or when the neighborhood cannot be represented as a height field, the
second fitted primitive is invalid. Moreover, plane fitting is not robust when the geometry
represents complex shapes [GGO07]. These issues can be fixed by using non-linear fitting
of 3D quadrics [DB02, Pet02], but in practice using non-linear procedures is unstable, and
they have a high computational cost.
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Figure 3.8: Curve fitting on the neighborhood expressed as a height field.
2D curves are fitted in multiple directions and then combined to describe the ge-
ometry. Image taken from [ABG"12].

Feature detectors

In this section, we introduce the notion of features together with some methods to detect
them. We call a feature a point or a set of points that contains a relevant information
for a given processing. In the literature, these points are called features, pertinents, or
salients’. In the following, we use both feature and pertinent points with the same meaning
interchangeably.

Feature detectors are often used as an intermediate step between a generic geometry char-
acterization and a given specific process. They analyze results at one or multiple scales, and
if possible, with one single descriptor. Using feature detectors produces two different types
of output: 1) a dense characterization that associates a pertinence measure for each input
sample, or 2) a sparse extraction of feature points depending on the inter-relation between
samples.

Regarding these concepts, we present three types of feature detectors (illustrated in Figure
3.9):

a) Space-varying detectors detect features at a given scale and select a subset of samples
with respect to the descriptor’s spatial variation. They can possibly be evaluated at
multiple scales, but each scale is analyzed individually.

b) Scale-varying detectors consider each sample independently within a scale interval, and
they produce a dense multi-scale pertinence characterization in function of the descrip-
tor’s variation when scale changes.

¢) Scale-space detectors extract features as a set of scale/position pairs by considering the
descriptor’s variation both in scale and in space.

We denote by g(p, t) the function that associates a descriptor value to a position p at a given
scale t.

1Salient point: this term should be used carefully. Indeed, it originates from neuroscience and refers to
elements that attract human attention in the visual field. Thus, the term saliency detection in Computer
Graphics should be used only when it is based on perceptual studies.
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Figure 3.9: Feature detector working space. Scale-space representation of a
1D domain (2D curve), parametrized by the arc-length. We propose three types of
feature detectors (a) Space-varying detectors that identify features at a given scale
and select a subset of samples, (b) Scale-varying detectors that consider each sam-
ple independently within a scale interval and produce a dense multi-scale char-
acterization, and (c) Scale-space detectors that extract features as a set of pairs
scale/position.

3.3.1 Space-varying detectors

Here we consider the category of feature detector that takes into account the descriptor at
a single scale. Of course, it is possible to consider geometric descriptors computed at var-
ious scales, but each of them are treated independently. As space-varying detectors work
in the spatial domain, they can check the coherency between descriptors and thus extract
features as sets of points (shown as a rectangular selection in Figure 3.9 (a) ). We distin-
guish between three classes of space-varying feature detectors. In the first class, features
are detected as individual points, while in the two other classes, features are sets of points
that are similar with respect to a given criterion: they belong to a same primitive, or they
are linked to the same transformation. In the following, we denote by t, an arbitrary scale
used for the feature extraction.

Spatial extrema This first class detects features as individual points. The idea is very
simple: the feature detector extracts points that are spatial extrema of g(p,t,), or where
values are below or above a given threshold. Extrema detection is used in [WBO01] for the
selection of salient points. In [SOGO09], the extraction is done for a given arbitrary large
scale in order to consider global structures instead of small geometric details. The detection
of points belonging to crest lines is a common feature used in rendering and segmentation:
it is performed by finding the extrema of k; [TG95, PAT00, Pet02]. In [TF95, Pet02], in order
to select feature points, an adaptive threshold for the Gaussian curvature G is defined with
respect to the mean curvature H. Another quite different and specific approach, proposed
in [GMGPO05], is based on Shape Contexts and selects feature points with most populated
bins.

Primitive clustering This second class combines both the descriptor response and the
relations between the evaluation points for the detection of features as sets of points. It
is often used for segmentation. The idea is to find the set of points that best describes an
underlying feature. For example, Gal and Cohen-Or [GCOO06] proposed a region-growing
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approach that selects feature regions by adding points that maximize a saliency grade func-
tion. Some more complex approaches, such as [ZZWC12], use a Laplacian matrix for vari-
ational segmentation: the error metric used to decide whether to add or not a point to a
cluster depends on the dihedral angles that measure concavities and convexities.

Transformation clustering This third class uses clustering under transformations in
order to select representative sets of points, by considering clusters either in transforma-
tion space [MGPO6] (usually for symmetry detection), or in the spatial domain according
to specific transformations. For example, the area projection transform proposed by [GL12]
detects radial symmetry axes or points: at each scale, the surface is projected along its nor-
mal direction at a given distance. The relevant points in R are detected as the center of
clusters formed by projected points, as shown in Figure 3.10.

V

Figure 3.10: Area projection transform. Left: clusters corresponding to fine
features are detected by a small projection distance R,. Right: clusters corre-
sponding to the global shape are detected by a larger projection distance, and then
applied to a smoothed version of the object (other methods to handle coarse scales
are proposed in the original paper). Image taken from [GL12].

Space-varying feature detectors extract features by analyzing spatial relations between
points according to a geometric descriptor at a single scale. Their main limitation is that
they require the users to choose a correct scale value: the analysis can fail when the surface
is not described at the right scale.

3.3.2 Scale-varying detectors

This second type of feature detectors is based on multi-scale geometric descriptors. The main
idea is to characterize the geometry at multiple scales in order to generate a profile gp(t) =
g(p, t) for each point. This profile is then summarized to reduce its memory consumption
and to speed-up the comparison (for example, by comparing one scalar value instead of an
array of scalars). We can distinguish two classes of scale-varying approaches depending
on the ways the profile is summarized. The first class integrates descriptor values for the
entire scale interval, and the second class extracts a pertinent scale, sometimes within a
confidence interval, that is used as description.

Integration This class of approaches is represented as black arrows in Figure 3.9. It
can be seen as a statistical analysis of the geometric descriptor response at multiple scales,
since measures like mean and variance are involved. Hence, in [HFG"06], the authors
describe surface roughness and sharpness, respectively given by the an integration of the



30 Chapter 3 - Multi-scale shape analysis

Integral Invariant V,(p), and by a measure of the variation of normals and positions in the
scale interval. In the mesh saliency framework [LVJ05, LLKR07, CCFMO08], the authors
use non-linear normalization to combine saliency values at different scales. The main limi-
tation is that combining values at multiple scales without taking into account the notion of
pertinence may merge completely different features to an irrelevant description.

Persistent scale This class of approaches uses gp(t) to extract persistent scales (the
blue circle in Figure 3.9) by considering the way the descriptor changes during scale vari-
ation. Lindeberg proposes to extract a scale that corresponds to the strongest local maxi-
mum [Lin98] from the multi-scale signature. This approach is also used in [PKG03, MBO10].
Furthermore, [PKG03] propose to measure a pertinence associated to this extremum (the
blue rectangles around the circles in Figure 3.9), by counting the number of scales that
correspond to a descriptor value greater than a given threshold. The extrema detection re-
quires a dense scale sampling to avoid to miss the pertinent scale. Furthermore, considering
only one pertinent scale may not be sufficient to characterize complex surfaces.

3.3.3 Scale-space detectors

This last type of approaches combines the geometric descriptor analysis of both spatial and
scale variation in order to detect features. Except the multi-scale extension of area projec-
tion transform [GL12], they are all based on the scale-space theory [Lin94], which defines
the scale-space, a way to represent multi-scale descriptions, and the scale-space analysis to
extract from this description a set of pertinent features. A scale-space can be filled with var-
ious descriptors. The most common and efficient construction is to consider the curvature
scale-space, filled by computing the mean curvature at multiple scales using DoG. Once this
is done, it is possible to compute the 0-crossings of the curvature by extracting, along the
parametrization and for a given scale, the points where the curvature sign is changing. Us-
ing the mean curvature, these points are inflexion points. It is also possible to detect other
kinds of feature by considering curvature y-derivatives (for more details, see [Lin94]). Once
this is done, the pertinent points can be detected by tracking these 0-crossings when scale
varies, and extract the scale-space position where they annihilate, as shown in Figure 3.9
(green circles).

Even though this theory can be applied in various dimensions, it is best adapted to 2D
curves that offer a regular one-dimensional parametrization space. The extension to 2D
images yields the apparition of spurious 0-crossings due to the two-dimensional parameter
space [Lin94, Rom09]. In this case, it is possible to detect features in the same way as the
Scale Invariant Feature Transform (SIFT) algorithm [Low99] that extracts feature points
as both scale and space 0-crossings (the two isolated green circles in Figure 3.9).

The scale-space can be adapted in two ways to deal with 3D objects: by considering voxel
grids [SAS07, FBMB10] (and thus a three-dimensional parameter space) or local parame-
trizations on surfaces based on mesh connectivity [ZBVH09, MFK' 10, DK12], which is the
counterpart to image analysis. Some ameliorations have been proposed to improve surface
smoothing [ZHL'09], or to use extrema of LoG both with voxels [WNK06, GW11] and sur-
faces [ZHDQO8]. Also note the recent work of [FW11] that uses the HKS to fill scale-space.
Independently of the filling method, these approaches produce a sparse characterization of
the shape. As shown in [Lin94], the 0-crossing can be unstable regarding noise or smooth
input variation.
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We also refer the interested reader to the recent work on Homological Persistence [F1.99,
Rob99, ELZ02, EH10] based on the Morse theory [Mil65, For98, RGH'10], that measures
the importance of so-called critical-points with respect to topological structures. This ap-
proach has been used in various applications [CCL03, LBM 06, GDN"07, BWP*10], and
it has also been combined with scale-space analysis in [RKG'11]. We believe that its ro-
bustness to noise and outliers make it relevant to treat and analyze multi-scale geometric
properties of manifolds, and it is part of our future work.

Discussion of previous work

In this chapter, we have presented some methods that are potentially usable in our context
of shape matching for the characterization of 3D objects at multiple scales. In this section,
we discuss more in-depth three concrete topics linked to our application: the meaning of
similarity, the scale invariance, and the robustness to topological changes. These notions
are then used to analyze previous work, and to motivate the work presented in the next
chapter.

3.4.1 Application context
Similarity detection

Most of the time, objects are analyzed in order to detect similarities, for example for shape
retrieval or matching. However in both cases, this term may refer to different meanings.
For example, on the one hand, one might want to study whether two 3D surfaces repre-
sent the same human being, while on the other hand, one might want to decide whether
two pieces of surfaces match exactly [VKZHCO11]. Independently of the application, a ge-
ometry analysis is most of the time used to characterize the surface and extract features.
Then, a specific process exploits this description to perform various processing tasks: ex-
traction of symmetry axes [MGPO6], retrieval in databases [BBGO11], or fragment match-
ing [HFG'06]. It is also possible to look for self-similarities, and detect coherent or regular
structures or patterns on objects [MBB10, IT11a]. We identified two different meanings of
similarity depending on the application.

In a first application class, for example for shape retrieval, two different geometries repre-
senting the same object have to be similar even though they correspond to different poses.
In this case, a natural choice is to consider the intrinsic properties [SOG09, MBB10, BK10]
that characterize the surface in a pose-invariant manner. More precisely, in the case of iso-
metric deformations, the description has to be isometry-invariant. Otherwise, we have less
guarantees on distance preservation, and the descriptions and their comparisons have to be
almost isometry-invariant (or e-isometry invariant, where € is a tolerance threshold). This
is for instance the case in the registration of scans of deformable objects.

In the second class, for example for shape matching, the detection of similar surfaces has to
take into account both the object shape and the geometry details [HFG106, IT11a]. Consid-
ering only intrinsic properties would not be pertinent since they might be similar even for
incompatible surfaces. Hence, in this case, it is more relevant to focus on extrinsic proper-
ties.
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Scale-invariance

The scale-invariance qualifies an analysis of a 3D object that provides a stable result inde-
pendently of an arbitrary scale factor applied to the object. For example, extracting perti-
nent points of a given 3D object and its upscaled version should produce the same results.
In practice, this is a difficult task because it often requires to define some thresholds that
are strongly dependent on the evaluation scale.

A straightforward solution is to normalize the description values by a factor that depends on
the size of the entire object. For instance, one can use the length of the object’s bounding box
diagonal as an approximation of the object size. Unfortunately, this approach introduces a
dependency between the characterization of the surface and the size of the entire object,
and this is not always desirable. Consider for example the comparison of two objects, the
first one representing a human body, and the other one representing a finger of this human
body. Even though the finger is locally exactly the same as the one on the complete body
object, it is easy to see that the large difference of the bounding box size produces quite
different normalizations and thus different descriptors.

Another solution is to normalize the description by the evaluation scale. The side effect is
that two different features on the same object may have the same normalized descriptor
at different scales, and thus they cannot be distinguished. In this case, it is necessary to
compare the normalized descriptors only at the same evaluation scale. Furthermore, some
methods define scale in another space than the description, and so the normalization cannot
be coherent (for example Euclidean distances and distribution properties).

Topological changes

In practice, it is far from evident to use only intrinsic properties for shape retrieval when
dealing with acquired data. Isometric or e-isometric deformations applied on physical ob-
jects may produce topological changes on the acquired 3D object, and this invalidates lo-
cal similarities based on intrinsic properties. This is illustrated in Figure 3.11 at the ex-
ample of a human hand in three different poses. In a general context, without specific
post-processing, the acquisition produces 3D objects with different topology in pose (a) com-
pared to poses (b) and (c). We can imagine building a Self-Similarity Transformation Space
(SSTS) that associates to each pose a similarity value for a given neighborhood collection
at a specific position with a given descriptor. Figure 3.11 (bottom row) illustrates this theo-
retical space for the specific position A at poses that are morphed from (a) to (b) and then
to (¢). The higher the value, the more similar is the pose compared to the initial position
(in our case (a)). On the one hand, using a geodesic or a diffusion collection may detect
pose (a) to be different different to poses (b) and (c) because of the topological change, and
introduce a discontinuity in the self-similarity measure. On the other hand, Euclidean col-
lection may detect poses (a) and (b) to be similar, because of the small variation in ambient
space (Euclidean distances and curvature). Hence, using diffusion with these objects in a
context of shape retrieval requires using topologically robust surface metrics to avoid false
negatives [BBK*10].
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Figure 3.11: Neighborhood collection and topological changes. Top: human
hand with three different poses. In a general context, the acquisition might pro-
duce 3D objects with different topology in pose (a) versus poses (b) and (c). Bottom:
theoretical evolution of the similarity value at a specific position A between the in-
put pose (a) and a morphing to (b) and (c) using geodesic/diffusion or Euclidean
neighborhoods.

3.4.2 Geometric descriptors
Requirements

The discussion of previous work established several requirements that our method must
match. Concerning the mathematical properties of 3D surfaces, the method should be re-
lated to the First or Second Fundamental Form in order to be able to capture local prop-
erties. However, shape matching refers to non-deformable objects that should be charac-
terized by the way they are embedded in space, and hence an extrinsic characterization is
preferable. As we want to characterize all scales, ranging from fine geometric details to
overall shape properties, the proposed method must be usable with multi-scale neighbor-
hood collection and smoothing. Another requirement is the usability: the analysis should
work directly on acquired data, usually point sets, and should have as few parameters as
possible to adjust in order to be usable by non-expert users.

Limitations of previous work

Among all presented methods to describe the geometry, only a few match our criteria. Dis-
crete differential operators (Section 3.2.1) usually refer to the discrete Laplace-Beltrami
(LB) operator which has been applied for meshes [Tau95, MDSB02, HPW06, WMKGO07,
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BS07], and recently for point-sets [LLWZ12]. A common use is to compute this intrinsic
operator to approximate the curvature. In our context, we strive for an extrinsic charac-
terization, and thus approximating the LB operator to estimate the mean curvature (or
an equivalent) seems to be hazardous. Direct methods that compute curvature have also
been presented, but they usually rely on the connectivity of mesh representations, and they
may be sensible to noise [Pet02, GG06]. Integration methods (see Section 3.2.2) produce
more robust descriptors, but in practice, they are unusable at multiple scales with large
objects due to the high computational cost, especially when dealing with point sets (due to
the necessary step to approximate the surfaces or volumes and then compute intersections).
However, in both cases, the use of differential quantities, such as the curvature, is not suffi-
cient to characterize complex and anisotropic shapes, like T-junctions or sharp edges. This
limitation could be overcome using distribution analysis (see Section 3.2.3), but in prac-
tice this algorithm involves a variety of parameters that makes it complex to use. Hence,
considering all these criteria, only two types of methods remain. First, diffusion methods
(see Section 3.2.4) use the LB matrix to define multi-scale descriptors. Even though the
proposed methods focus on the intrinsic characterizations of the shape, it might be possible
to differentiate these descriptors and produce extrinsic invariants. However, although this
topic seems to be promising, these methods can hardly be adapted to our context since we
want to work directly with point sets. Hence, regression-based methods (see Section 3.2.5)
seems to be the more adapted: they deal with point sets, they are fully local and thus easily
parallelizable, and they might lead to a continuous evaluation both in scale and space. The
main limitations are due to the fitting process that often involves a plane primitive that is
itself sensible to fold-overs and that might be unstable with complex shapes [GGO07].

Another important topic is related to the unicity of the description with respect to shape
variation. Indeed, there are some methods that first use a given descriptor to character-
ize the geometry, and then they extract features, but for the description, instead of using
the latter descriptor, these methods use a different invariant [HFG*06, GC0O06, WNKO06,
SAS07, ZHDQO0S8, ZBVH09, FBMB10, IT11b, MFK*10, MBO10, GW11, DK12]. This second
step is either based on a 3D extension of the SIFT descriptor, or on a geometric descriptor
that is specific to the application case and that might be hard to adapt for other contexts.
This is usually due to the lack of description power of the descriptors used for the feature
detection, which implies to use a more robust descriptor to characterize extracted complex
features. Moreover, these methods might lead to redundant computations between the two
descriptions.

3.4.3 Feature detectors
Requirements

Considering the feature detectors, we have presented three types: space-varying, scale-
varying, and scale-space approaches. In our context, we want our method to handle huge
and dense 3D objects with relevant information at multiple scales. For example, consider
the illustration of a 2D curve in Figure 3.12 that is defined as a circle with a displacement
pattern. This simple object contains few levels of detail: the pattern is regular on the object
and refers to a single scale.



35

Scale

Space

Figure 3.12: Example of a multi-scale object. Left: a 2D curve (in black)
composed of a circle and a regular displacement pattern. Right: the scale-space
locations that contain relevant information. The circle primitives that can be as-
sociated to each of these locations are shown as overlay on the 2D curve.

Limitations of previous work

When we consider space-varying approaches (see Section 3.3.1), the feature extraction pro-
duces different results with respect to the scale level used to compute the geometric de-
scriptor. Setting this critical parameter requires additional knowledge about the object’s
properties and meaning. On the other hand, when the scale parameter is well chosen and
corresponds to the displacement pattern, analyzing the spatial descriptor variation might
produce a sufficiently dense shape characterization. Scale-varying approaches (see Sec-
tion 3.3.2) can be used to automatically detect pertinent scales. In this case, the geometric
descriptors are summarized by a single scalar value to allow for automatic scale extraction
and potentially pertinence measures. These approaches are thus less scale dependent: they
still require the specification of a scale range: this can be achieved with a provided fac-
tor of the object’s bounding box (the descriptor may not be sensitive to these parameters).
However, these methods process each sample independently, and thus they cannot ensure
any spatial continuity or coherence despite a dense feature extraction. Furthermore, they
also refer to a single scalar description that might not be compatible with some descrip-
tors. The last type of feature detectors (see Section 3.3.3) analyzes both spatial and scale
variations in order to produce a coherent bi-lateral extraction. However, they are based on
the detection of 0-crossings in scale-space (with or without tracking) that have been proved
unstable [Lin94]. Furthermore, these approaches produce a sparse characterization that is
not sufficient in some applications as, for example, shape matching.

3.4.4 Design of our approach

All these limitations motivate the elaboration of a new geometric descriptor associated to
a new dense multi-scale feature detector. In the next chapter, we present our new unified
framework with a second-order regression-based descriptor and continuous feature extrac-
tion that is coherent in scale and space. We compare the descriptor to previous work in
terms of robustness and the capacity to represent complex shapes. Moreover, we compare
the feature extraction to scale-space analysis (with and without the tracking of 0-crossings)
in terms of robustness to noise and to input variation, and to the capacity to detect various
features.
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4.1

Chapter 4

Growing least squares

In this chapter, we present the core theoretical contribution of this thesis: the elaboration
of fundamental tools for the analysis of 3D objects represented by unorganized point sets.
The objective is to define a unified framework to analyze 3D objects at multiple scales (Sec-
tion 4.1). In particular, we address two theoretical topics. First, we define a new robust
geometric descriptor that characterizes the geometry at three differential orders using an
efficient algebraic hyper-sphere fitting procedure. Second, we propose a new scale-space
analysis that continuously extracts features, even complex and anisotropic ones, as an al-
ternative to state of the art approaches [Lin98, Low99]. In the two following sections, we
discuss more in-depth the technical choices for the design of our analysis framework. We
compare with previous work both our descriptor (Section 4.2) and our analysis (Section 4.3).
Finally, in the last section, we present some results and promising preliminary directions
for future work (Section 4.4).

Framework

In this section, we present the core of our method in a general manner by considering an
ambient space of dimension d (with codimension 1). Note that we tested our framework for
2D curves (d = 2) and 3D surfaces (d = 3).

The key idea of our approach is to perform the scale-space analysis of 2D curves and 3D
surfaces by means of continuous algebraic fits. More specifically, we propose to build a
scale-space through least-square fits of a low-degree algebraic surface onto neighborhoods
of continuously increasing sizes. In some sense, this can be seen as an adaptation of the
Moving Least Squares formalism [Lev98] to continuously varying scales, hence the name
"Growing Least Squares" (GLS). The use of an algebraic surface ensures robust fits even at
large scales and yields a rich geometric descriptor with only a few parameters, called in the
following the GLS descriptor. The continuity of the fitting process through scales provides
for a stable and elegant analysis of geometric variations, under the name GLS analysis.

4.1.1 Scale-space via local regression

The first step of our approach is to characterize any point p of a manifold at any scale t by
a low-degree algebraic surface that best approximates its neighborhood #;. In a discrete
setting, our manifold is described by a set of points q; € RY, and the neighborhood P,
consists of the set of data points contained in a ball of radius t centered at p: &, = {q;;||q; —
pll < t}. Inspired by recent work on MLS reconstruction [GGO07], we use algebraic hyper-
spheres which have the advantage of being easy to fit in a robust manner, while providing
second-order information with a minimal number of parameters. To this end, we assume
that each point q; is equipped with a normal n; € RY. In case normals are not provided,

Related publication: [MGB*12]
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{5 sy(x) =0}

Figure 4.1: Fitting and reparametrization. The weight function (in green)
around a point p is defined in a neighborhood of size t (dashed green line). The
points q; and normals n; that belong to this neighborhood are fitted by an algebraic
hyper-sphere s,; its 0-isosurface is shown in black, and its scalar field with a color
code. This sphere is reparametrized by three geometric parameters: the mean
curvature k, the offset 7, and the gradient direction ) at p.

we refer to normal estimations methods, as done in previous work [AB98, PKG03, MNO03,
DG06, DLS05, LSK*10, BM12].

Fitting. An algebraic sphere is implicitly defined as the O-isosurface of the following
scalar field (see Figure 4.1):

s¢(x) = [1x' xTx]-u, (4.1)

where u e R4*2 u= [uc v ug] T is the vector of the constant, linear, and quadratic parame-
ters. In order to fit such a sphere to a set of neighborhood points #?;, we use the fast fitting
technique of Guennebaud et al. [GGGO08]. First, u, and u, are computed by minimizing
Zi w;(0)[|Vsy(q;) — 0|2, where q; € @, and w; is a scale-dependent weight function:

~ (llai-pl> )
wi(t) = | =5 —-1]. (4.2)

Second, the constant coefficient u, is obtained by minimizing in a least square sense the
algebraic distance to the samples: Zi w;(t)]Is4(q;)]|?. This minimization expresses the fitted
primitive in a global frame. In order to be translation invariant, we define the neighborhood
in a centered basis by defining q; = q; — p.

As shown in [GGGO08], the two above-mentioned minimizations yield closed-form formula
that can be re-expressed as

1 ZwiaiTni - ZwiqiT D win;
! 23 wi@/q — 2w Lwiq;
u o= Wm - 2u YW, (4.3)
U = —UZZW@- - uqzwiﬁfﬁi

where W; is the normalized weight of the sample q;: W; = w; /Y., jWj.
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Normalization. Contrary to [GG07, GGGO08], our goal is not to reconstruct a surface from
a point set, but instead to analyze the underlying shape at multiple scales. To this end, we
want to assign a unique and meaningful geometric descriptor for any choice of the point p
and the scale t. A straightforward solution would be to use the center ¢ and radius r of
the hyper-sphere. Unfortunately, this leads to degenerated cases when the surface is locally
planar: in particular, ¢ becomes undefined.

We thus rather consider the scalar field itself s, as a geometric descriptor. However, there
exists an infinity of scalar fields (based on scalar multiples of u) that correspond to the
same hyper-sphere. To solve this issue and consistently pick a unique solution, we use
Pratt’s normalization [Pra87]: its basic idea is to constrain the scalar field to have a unitary
gradient vector on the O-isosurface, yielding:

a=[a 0,0, = u/y/llul?—4uu, (4.4)

This choice has the additional advantage to make algebraic distances near-Euclidean for
points close to the 0-isosurface.

Reparametrization. After the normalization, we obtain a scalar field s; for which a ge-
ometric interpretation is far from evident. First, @i, and i, do not correspond to any mea-
surable physical quantity. Second, all d + 2 parameters are still interdependent, since
the normalization binds them together with: ||{||* — 4u.a, = 1. We propose an alterna-
tive parametrization of the scalar field (illustrated in Figure 4.1). Intuitively, its param-
eters consist of: the algebraic offset distance v between the evaluation point p and the
O-isosurface; the unit normal 7 of the scalar field at p; and the signed curvature k of the
hyper-sphere. When the fitting degenerates to a plane, T represents the distance from the
origin to the plane, 1 its normal, and k vanishes (see Figures 4.3 and 4.4 for 2D and 3D
illustrations, respectively).

Formally, the geometric parameters are given by:

Vsa(p)
=g~ ; =— = 2il .. 4.5
oS TTR “.5
In practice, since we use a centered basis, we compute T as:
T=s3(0)=[100]-a=1,, (4.6)
and 7 as:
,
=—) 4.7)
[Tl

1, being the gradient of the scalar field at the center of the basis.

As said before, thanks to Pratt’s normalization, the offset T provides a close approximation
to the Euclidean distance between p and the 0O-isosurface. The normal parameter 7 provides
the direction to the point on the hyper-sphere that is closest to p. The curvature parameter
simply corresponds to the inverse of the hyper-sphere radius r, and has the advantage of
behaving continuously when passing through a locally planar surface, while r tends towards
infinity.

Note that with these parameters, the scalar field can no longer be expressed as a linear
combination of monomials, but it can be retrieved by

5a(X) =520, (0 = 7+ (1+ 2060 (X = B) + S (x )’ 48)
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Fitness. Once reparametrized, the scalar field fitted from &, yields a univocal geometric
descriptor, invariant to rigid transformations. However, a given geometric descriptor can
be associated to a space of generator neighborhoods. Considering the sphere as a whole
instead of, for instance, local curvature only, already permits to significantly reduce the size
of these spaces. It is interesting to remark that they can be further reduced by looking at
the fitness ¢ that shows how close the q; are to the fitted scalar field s,. We define this
additional parameter by ¢ = Y. w;(t)Vsy(q;)-n;/ >, w;(t), where w; is the same weighting
function as before. Using the fitting equations (Eq. 4.3), it can be shown that for this fitting
procedure, ¢ boils down to Pratt’s norm for u: ¢ = |ju||? —4u.u,. Note that by construction,
¢ is dimension-less, scale-invariant, and varies in the [0, 1] range, with ¢ = 1 meaning a
perfect alignment between the fitted scalar field and the input normals. As illustrated in
Figure 4.2, this typically permits to disambiguate between surfaces that locally have the
same geometric description, but depart from a pure algebraic sphere.

O e

=091 p=1 ¢ =0.86
Figure 4.2: The fitness parameter ¢ helps disambiguate two identical fits, e.g., a
smooth versus a bumped neighborhood (left), or a flat versus a saddle configuration
(right).

The chain of operations described in this section augments an arbitrary point p at an ar-
bitrary scale t with a geometric descriptor that characterizes the data points q; € &, as
illustrated in Figure 4.3(a-b) for a 2D curve, and Figure 4.4(a-b) for a 3D surface. It thus
describes an elegant method for building a fully continuous scale-space from sampled man-
ifolds in arbitrary dimensions, providing meaningful surface information in the form of the
T, N and k geometric parameters, and a fitness parameter ¢ that further helps disam-
biguate similar descriptors. Another handy property of our geometric descriptor is that
negating its parameters yields the complement descriptor, which is equivalent to the de-
scriptor of the same surface with an opposite orientation. One may be tempted to use it to
only track O-crossings of the curvature k for instance, as in previous work. Instead, we show
in the next section that the scale-space analysis can also be performed in a fully continuous
manner.



41

dl,Z w/o p—
d1,2 w/ p—

dl,Z w/o p—
dip W o—

E: ﬁ : dl,Z w/o @Y—
P wv; F dip W p—
f t rn £ t ' f

(a) (b) (c)

Figure 4.3: 2D analysis of a sinus curve. Top: the analysis of a synthetic 2D
curve composed of two sinusoids of different frequencies is illustrated at three
different points. We show their geometric descriptor at two scales t;, t,. Bottom:
(a) the geometric descriptor parameters are visualized for all scales with one point
per row. In (b), we display their geometric variations and fitness: note that the
third point has a more stable structure at small scales since the magnitude of the
high-frequency component is low at its location. In (c), we depict the dissimilarity
measures for all pairs of points. Observe how the use of the fitness parameter helps
disambiguate between the two types of inflexion points at intermediate scales. In

all plots, the scale sampling is quadratic.
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Figure 4.4: 3D analysis of a golfball object. Top: the analysis of a synthetic 3D
golfball object is illustrated at three different points: a concavity p;, an edge p,,
and a junction p3. This is shown at a small scale t; in (left), where we see that
the three points (with their neighborhoods in blue) have quite dissimilar geometric
descriptors (the fitted sphere is shown in transparent green). However, at medium
and large scales t, and t5 (middle and right), all three points converge to the same
global sphere. Bottom: this is best depicted in (a), where we display the geometric
parameters (except for 1), and in (b), where all three points converge together. In
all plots, the scale sampling is quadratic.
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4.1.2 Continuous scale-space analysis

The main purpose of analyzing a spatial signal in scale-space is to track its variations at in-
creasing scales to discover its geometric structure. A classical approach consists in tracking
invariants in the form of O-crossings of a spatial derivative of the signal, and then find lo-
cations in scale-space where they get annihilated [Lin94]. Another approach is to extract O-
crossings of both spatial and scale derivatives (named SIFT-like approaches below) [Low99],
or to extract topological stabilities [RKG™11].

As mentioned in Section 3.3.2, the tracking of O-crossings leads to many shortcomings,
especially when trying to deal with manifolds. Most importantly, it restricts the analysis to
a subset of locations in scale-space while requiring a parametrization.

We propose a different approach to discover the multi-scale structure of a manifold. Our
key insight is to observe that, in general, a pertinent scale for p is one where its geometric
descriptor exhibits minimal variation when the neighborhood size increases. This suggests
that, at such scales, the parameters of our descriptor do not crucially depend on scale, but
rather indicate stable geometric properties of the manifold. In this section, we focus on the
derivation of such a general geometric variation. We will show its relevance in Section 4.3
and how it could be exploited in Chapter 5.

One may think that the curvature parameter x is the one mostly involved in geometric
variations. Figure 4.5 shows counter examples where either 7 or 1 have significant influ-
ence. We thus compute the variations of all 3 geometric parameters and combine them in a
natural fashion to yield a geometric variation function v(p, t) that describes the scale-space
structure of the input manifold.

<
— - \\ /_\ Tl
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Figure 4.5: Variations of 1) (left) and 7 (right). Left: hyper-spheres fitted for
the black point of a dense 2D curve (in black) with various support sizes (shown as
dashed spheres). The three configurations yield planes with different orientations
represented by 1) (shown in blue, green, and red). Right: At a large scale, two
evaluation points are characterized by similar fitted spheres (in gray), but with
different values of 7, which captures the offset due to the bump.

Scale derivatives. The variation of the geometric descriptor parameters that we are look-
ing for are simply given by their partial derivatives along the scale dimension at (p, t): ‘;—:,
Z—?, and %. We emphasize that we are interested in the fitted hyper-sphere geometric vari-
ations only, hence the fitness ¢ does not play a role here. Since we make use of a local
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regression that is both continuous and given in closed-form, these derivatives are easily
computed analytically, provided the weight functions themselves are differentiable. Their
computation does not yield any difficulty, and simply involves differentiating the chain of
equations presented in Section 4.1.1, i.e. from top to bottom: weighting (Eq. 4.2), fitting (Eq.
4.3), normalization (Eq. 4.4) and reparametrization (Eq. 4.5). These steps are described in
Appendix A.

Geometric variation. The geometric variation function v(p, t) is obtained by a weighted
squared sum of these partial derivatives. In order not to introduce any bias, a special care
has to be taken in the choice of these weights. In particular, we propose the following
weighting scheme:

t) = ot 2+ tén 2+ t25K : (4.9)
V(p:) = Qa, (a) ﬁv(a) YV( E) s .

which has the fundamental advantages to yield a dimension-less and scale-invariant mea-
sure. Indeed, let us for instance choose meters m for the unit of length. Thanks to our
intuitive reparametrization of Section 4.1.1, we have T in m, the unit-less 1, and « in m.
Moreover, by construction it is reasonable to expect to have T to be mostly comprised in
[—t,t], k in [—%, %], while [|n]| = 1. Therefore, a reasonable choice is to scale the pa-
rameters (7,1,k) by (1/t,1,t), respectively, in order to get scale-invariant and unit-less
quantities of the same order of magnitude. Finally, in order to compensate for the differen-
tiation over the scale t that is in m, it is natural to multiply by the scale t, thus leading to
the scaling factors (1, t, t?) of Equation 4.9. We propose to use a, = f8, =y, = 1 in order
to naturally give equal importance to each parameter, and we plan to study these weighing

parameters in future work.

The function v(p, t) is one of the the key contributions of this framework. It provides a
continuous description of pertinent scales for any point p, and it is robust to small changes
in the input. This is to contrast with previous approaches that rely on the annihilation
of extremal points (0-crossings) and may lead to altogether different structures when the
input changes slightly, as shown in Section 4.3.1. Most importantly, our approach is the
first to identify multiple pertinent scales for individual points on manifolds, as shown in the
examples in Figures 4.3(c) and 4.4(d) for the 2D and the 3D case, respectively. This opens
the door to many new applications, for which we outline a few examples in Section 4.4.

4.1.3 Pairwise dissimilarity in scale-space

For a variety of applications, it is also interesting to compare a pair of arbitrary scale-space
locations (pg, t,) and (pp, tp). In this context, it is crucial to provide a measure that is in-
variant to similarity transformations. Invariance to translation is readily available because
the geometric parameters are defined relative to their fitted points. Since our descriptor is
isotropic, invariance to rotation is achieved by aligning the respective unit normals 1, and
7p, which amounts to ignore these parameters. Finally, scale invariance is obtained us-
ing the weights derived in the previous paragraph, and we thus define the dimension-less
dissimilarity function d, , by

2
T Tp
da,b = (t_a - ty ) + (taKa - tbe)z + ((Pa - @b)Z (4.10)
a
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Here, the fitting errors ¢, and ¢} help disambiguate between similar descriptors that may
correspond to different surfaces. Recall that this dissimilarity function d, j; is dimension-
less, scale-invariant, and of the same order of magnitude as the other quantities since it
varies between 0 and 1.

In practice, we propose to use a per-scale dissimilarity function dp’q to compare arbitrary
positions p and q at scale t = t; = t5:

(o TQ)Z

2
dpq(t) = - + t2 (K‘p — Kq) + (pp — (pq)2 (4.11)

This definition is more adapted to usual application cases, and it is illustrated in Fig-
ure 4.3(d), where we compare three pairs of points at multiple scales. We present some
other examples in Section 4.2, where we combine geometric variation and dissimilarity
measurements at multiple scales.

Multi-scale dissimilarity. The ability to evaluate local surface similarities is the cor-
nerstone of many matching or registration techniques. However, the notion of multi-scale
similarity hides an important question: which scales should actually be taken into account?
One may think that taking all scales at once is a natural solution. However, as shown in
Figure 4.6(a), this might not always be the case, at least for some applications. The question
becomes delicate as soon as multiple scales are nested in a same object: one may want to
find similarities at the smallest of these scales, or perhaps in other situations at the largest
scale.

Our approach permits to make this choice in a continuous manner. For example, consider
the following simple picking tool: the user selects a point on a surface, and the system
finds all similar points on the same object, given a rough scale prior. The basic idea is
to combine the global prior with the local geometric variation to compute a per-scale dis-
similarity, which is then integrated over the scales t; to yield a multi-scale dissimilarity
Dpq= D dp q(ti)h(t;), where h is a normalized weighting function over scales that defines
the global prior. In our example, we use a simple box filter for h.

Figure 4.6(b-c) visualizes Dp,q as a function of q (in blue) for a given point p (in red) lo-
cated both on a small ridge and on the 'Ll of the GLS acronym. By varying the global prior,
our method identifies unambiguously either one detail layer or the other. Although our
approach is based on an isotropic regression, this result demonstrates that anisotropic fea-
tures at pertinent scales are properly extracted, even junctions and corners. This is due
to the fact that an anisotropic feature can be considered as a set of isotropic descriptors at
different locations. We address this topic in more details in Section 4.4.2. Moreover, this
is done irrespective of the shape of the base surface, since the letters GLS are extracted
similarly on different locations of the torus.
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Figure 4.6: Multi-scale similarity. Top and middle rows: For a selected point
(in red), similar points are selected (in green) via our dissimilarity measure. The
similarity is computed for each vertex and interpolated per fragment during the
rendering. Bottom row: the type of selected feature depends on a user-controlled
global prior (shown as a blue box), which is locally refined by our geometric vari-
ation. In (a), all scales are selected. In (b), only the fine displacement pattern
emerges. In (c), the large-scale GLS letters are properly segmented (GLS torus:
500k pts, 20 scales, 42sec).

4.2 Comparison with previous work: GLS Descriptor

In this section, we demonstrate the benefits of our scale-space construction and compare
it to standard approaches. We first compare our mean curvature estimation with Discrete
Curvature (DC) estimation for triangle meshes [MDSB02] and with two-step quadric fit-
ting for point sets [FJ89, BSF02, CP03, GCO06, CPG09]. Then, we only consider methods
that, like ours, avoid fold-over issues, do not require any parametrization and provide valid
approximations of curvature at all scales: DoG mean curvature estimation [ZBVH09] and
Covariance Analysis (CA) [PKGO03].

Most of the comparisons of this section are done on 2D curves for two reasons, 1) we want
to visualize the different scale-spaces in a comprehensive manner, and 2) we want to allow
for comparisons with DoG and O-crossings. We depict curvature as color in scale-space or
directly on 3D objects, in orange for concavities and blue for convexities.
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4.2.1 Multi-scale mean curvature

An important property of our method is that is based on the estimation of differential quan-
tities at multiple scales (such as curvature). In this section, we compare our curvature
measure k with previous methods in order to highlight its stability and relevance in critical
cases.

Two-step quadric fitting. In a first test, shown in Figure 4.7, we compare our method
to quadric fitting [FJ89, BSF02, CP03, GCO06, CPG09], which estimates curvature using
a two-step fitting procedure: first, estimating a plane, and then, fitting a quadric on the
generated height data. This method is commonly used to characterize point sets at multiple
scales. In order to have comparable estimations, the fit is performed on 2D data (a 1D
manifold with only one curvature value) and without fold-overs (which would invalidate
the height profile assumption). In practice, we use a first-order regression to compute the
reference plane, and then we use a linear least square minimization on the resulting height
data to get a polynomial representation of the quadric as f (u) = au?+ bu+c. The curvature

is computed as k¢ (u) = —2a
(1-i-(2¢1u-i-b)2)E
discontinuity A
0.5
-k
0 '[:\\ ______________
N —tﬁ_—_’—"‘:;— -
—0.5} |
0 t; t 2 t

Figure 4.7: Estimation of curvature on a 2D curve. Top: fitted plane and the
associated neighborhood used to compute curvature at scales t; and t,. Bottom:
comparison of the curvature profiles between the two-step fitting (black curve)
and our method (dashed curve), for a point close to an inflexion point, by using a
constant weighting function.

Figure 4.7 shows curvature profiles for a point p close to an inflexion point. At small scales
(ranging from O to t;), we can expect that the curvature values are close to O due to smooth
variations of curvature in space. We can see that our descriptor gives a better result by
producing small and stable values in this scale interval, probably because it takes into ac-
count the normal during the fitting procedure. The variation of k¢ can also be explained by
various orientation changes for the fitted plane in the interval. At t;, the apparition of a
discontinuity in the neighborhood produces a jump in k¢, resulting in additional instabili-
ties in the fitting of the quadric. Note that we use the same weighing function for the plane,
the quadric, and the hyper-sphere fitting. At coarse scales (after t,), both methods produce
similar values, although k converges more quickly to 0, corresponding to a hypothetical
global plane.
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This simple example shows that two-step quadric fitting cannot be used to compute cur-
vature at multiple scales for inter-scale comparison, because there is no warranty that a
variation of measured curvature corresponds to a transition between different features at
multiple scales on the geometry. Indeed, quadric fitting is not robust enough and generates
false variations on near-planar areas. Another limitation is that it is not possible to directly
use the quadric parameters as descriptor, in contrast to our method, because it is expressed
in a basis that is potentially varying in scale and space. At the opposite, our method is
expressed in a local basis centered at the evaluation point.

Discrete Curvature. In a second test, we compare k to Discrete Curvature (DC), which
uses connectivity information to compute mean curvature'. As input, we use a mesh of
the slightly noisy Isis model that was generated using photogrammetry, and that contains
macro structures representing the grain of the rock (see Figure 4.8, left).

DC and « both detect similar coarse and fine features, and even sharp edges and smooth
regions. Nevertheless, our method produces a smooth curvature function on the surface,
whereas DC produces some artifacts because of the variation of the connectivity informa-
tion (valence, holes). Note also the sharp curvature changes on smooth features (at the
Isis’ chin). Different results would be achieved by using different smoothing operators and
mesh-based curvature estimators. In any case, our approach is much easier to use since it
does not involve a separated smoothing operator, since it does not require any connectivity
information.

DoG and Covariance Analysis In a third test, we compare x to DoG and Covariance
Analysis (CA) by comparing the scalar-valued scale-space obtained using the three meth-
ods. All our visualizations of the scale-space for 2D curves use the arc-length ¢ and the
scale t for the horizontal and vertical axis, respectively. Figure 4.9 (a) compares our ap-
proach to DoG and CA for the same smooth sinus-like curve as Figure 4.3. In this example,
all methods manage to identify the two signals, although CA cannot distinguish between
concavities and convexities, and DoG fails to capture important variations at curve bor-
ders. A more complex example (Figure 4.9 (b) ) shows that the different methods exhibit
more different behaviors. In particular, DoG does not reach convergence at large scales: it
keeps on introducing meaningless structures. In contrast, our curvature x produces a much
smoother and more coherent scale-space, converging at large scales, with a good description
power, even though it does not rely on input point connectivity.

We use Meshlab 1.3.0 [Cig12] and the plugin Discrete Curvatures.
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Figure 4.8: Estimation of curvature on an acquired 3D surface at medium
scale. Left: 3D object generated using photogrammetry, with noise and impor-
tant macro-structures, colored using k¥ computed at medium scale (t = 15). Right:
Smoothed version (Laplacian smoothing with 15 iterations), colored using Dis-
crete Curvature (DC). Both methods detect similar features (e.g. sharp edges,

anisotropy), while DC produces artifacts depending on vertex valence (a) and non-
smooth transitions between planar and curved areas (b).
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Figure 4.9: Curvature scale-spaces. From top to bottom: DoG, ours, and CA.
In (a), we show curvatures for the sinus-based function shown on top. In (b), we
show curvatures for the symmetric curve shown on the right. Compared to DoG,
our approach exhibits less noise at small scales and a better convergence at large
scales. CA does not make any difference between convex and concave regions,
which are merged.
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4.2.2 Robustness to noise

In this section we first compare x to CA and DoG on noisy 2D curves. Then, we show the
stability of our descriptor and some similarity queries on noisy 3D objects.

Curvature estimation Figure 4.10 compares our approach to DoG and CA for a smooth
2D curve that is locally corrupted by noise only on positions (A), both on normals and po-
sitions (B), and on normals only (C). We display k and DoG 0-crossings, as well as the
0-crossings of CA variation (measured along scale) in order to highlight the impact of noise.
Considering CA, we observe that the position noise produces 0-crossings at small scales

DoG

@ O
(a) (b) (c) (d)
Figure 4.10: Robustness to noise: 2D curve. Left: Input 2D curve corrupted
with noise on positions (A), both positions and normals (B), and normals only (C).
The source code to generate this curve is given in Appendix B. Right: Scale-spaces
filled with Difference of Gaussian, k, and Covariance Analysis (from top to bot-
tom). For DOG and «, the black curves represent the 0-crossing, and for CA, they
represent the O-crossing of its variation in scale.

and influences the descriptor at large scales. The DoG is also sensitive to position noise and
produces very noisy curvatures from fine to medium scales, but it well detects coarse fea-
tures. Both methods are insensitive to normal noise because the normals are not taken into
account in the computation. In contrast, our method is not very sensitive to position noise,
while normal noise has an influence at small scales. The small orange areas at fine scales
(visible with position noise) correspond to undefined fitting due to an insufficient number of
points in the neighborhood.

K is robust to position noise when the normals are well defined. In practical cases, this can
be achieved by using a robust normal estimation. On the contrary, both DoG and CA are
sensitive to position noise and require a smoothing step to deal with noisy acquired data.

Descriptor stability In Figure 4.11, we show an example of the robustness to noise of
our descriptor for a 3D surface. We generate a random displacement on the vertex positions
and recompute the normal vectors (we use a random noise of a magnitude of 0.2% of the
object size!), and then we compare the results with the original surface. The curvature is

We use Meshlab 1.3.0 [Cig12] and the plugin Random vertex displacement.
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displayed as vertex color for a small scale (t = 1% of the object size): we observe that the
results are similar in both cases, and that the fine features are well characterized. A close-
up area focuses on a flat anisotropic part that is well captured in both cases. Considering
the descriptor profiles, we can see that the three components present some variations at
fine scales due to noise, but produce quite similar profiles at medium and large scales.

These two last examples show that noise at small scales has only a small impact on the
GLS descriptor at large scales, even with normal perturbation.

T ).
0 V 0 N ( )
0.10 | | -0.04 \ : ,:E(Cl;)

- - - - 0
0 10 20 O 10 20 0 10 20

Figure 4.11: Robustness to noise: 3D surface. Top left: original Gargoyle mesh.
Top right: corrupted version: application of a uniform random vertex displacement
of magnitude 0.1% of the bounding box, with normal re-estimation. The color code
represents the curvatures « at scale t = 1.7. Bottom: the descriptor profiles for
points (a) (clean) and (b) (noisy). For 1, we show the variation of the dot product
with the original normal.

Comparison with previous work: GLS Analysis

In this section, we discuss the benefit of our scale-space analysis and compare it to other
approaches, such as 0-crossing tracking (ZCT) [Lin94] and SIFT point extraction [Low99].
As explained in Chapter 3, ZCT is effective with 2D curves but becomes unstable in higher
dimensions. Consequently, and for the sake of a fair comparison, we compare our method on
2D curves. Concerning SIFT, we extract pertinent points as the extrema of an 8-neighborhood
in scale-space. We compare the methods in terms of robustness to input variation. We also
propose a study of the relationship between our geometric variation v and curvature O-
crossings.
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4.3.1 Stability to input variation

In Figure 4.12, we compare our analysis to ZCT and SIFT at a curve where we introduced
input changes of different sizes in order to point out an important limitation of previous
methods.

DN e B /7\ﬁ
e e ol it b

e ————

Figure 4.12: Stability to input variation. From top to bottom. First row: a
convex bump with a gradually varying magnitude is added to the left side of a
simple open curve. Second row: DoG scale-space with O-crossings (in red) and
SIFT points (in black). Third row: k scale-space with O-crossings (in red) and
SIFT points (in black). Bottom row: geometric variation v scale-space.

First, k¥ produces a more stable scale-space for ZCT than DoG. Lots of instabilities are
due to vertical O-crossing profiles that reach the top of the scale-space or annihilate at
medium scales. This behavior is well attenuated because of the natural convergence of our
descriptor to a global sphere at coarse scales. Furthermore, there is no reason to identify
a precise location as a representative of such a large scale, because this scale corresponds
to an extremely smoothed version of the shape. SIFT extraction also benefits from this
behavior and does not produce invalid points at coarse scales in contrast to DoG scale-space
analysis. It is also more stable at small and medium scales: in our example, the extracted
set differs less from one input to another (concerning k). A last advantage of using k is that
it reduces oscillations at planar areas that would generate a large set of invalid SIFT points
(we refer to Section 4.2.1 for more details on this topic).

Let us now consider the behavior of ZCT and SIFT in comparison with v. When the input
curve is modified so that one of its bumps is slightly more prominent, then the correspond-
ing set of O-crossings and SIFT points changes abruptly, suggesting that the structure of
the curve has changed in similar respects. On the contrary, our geometric variation scale-
space evolves continuously to reflect the more subtle structure change implied by this slight
modification. In particular, intermediate scales around the bump region are no longer con-
sidered persistent when the more prominent bump appears: increasing the amplitude of
the bump has the effect of “breaking the structure” of the slope on the left side of the curve.
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4.3.2 Relationship to O-crossing

Figure 4.13 shows a layering of O-crossings on top of our geometric variation scale-space.
There are three types of differential invariants: O-crossings of k (in red) its spatial deriva-
tive k¥’ (in green), and SIFT points (in black). For convenience, we denote the corresponding
scale-space points C and C’, respectively. First, note that all annihilation events for both C
and C’ occur in regions of low geometric variation, but there are other such regions which
are never reached by either C or C’. For example, we show in blue in Figure 4.13 a small
convexity and a planar area at coarser scales that are not detected by SIFT. This suggests
that the tracking of extrema actually leads to a subset of pertinent scale-space locations
according to v. It is also interesting to note that the points in C (respectively C’) seem to
be attracted towards regions of high (respectively low) variation, a tendency that we plan
to study in future work.

Figure 4.13: Relationship to O-crossings. The geometric variation v for the
last curve in Figure 4.12 is displayed with O-crossings of k (in red), its curvilin-
ear derivative x’ (in green), and its SIFT points (in black) layed on top. For each
extracted point, we show a circle on top of the input curve with a radius corre-
sponding to the associated value of v; a cross represents the smallest points. In
blue, we represent some features and the associated scale-space locations that are
not detected by SIFT.

Our second observation concerns the SIFT points. As they are extracted as pairs of position
and scale, they can be associated to a geometric variation value. Figure 4.13(top) shows
these points as circles with a radius proportional to v. A human observer may judge that
the relevance of each feature point seems to be coherent with the values of v. We also
remark that, most of the time, a pertinent scale associated to a given location is preceded
by low values of v followed by high values of v, which characterizes the transition from one
feature to another. We plan to analyze this behavior more in-depth in future work in order
to extract pertinent scales (see Section 4.4.3).
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Results and perspectives

In this section, we present concrete application scenarios of our GLS framework as well
as qualitative and quantitative results. In particular, we first present performance and
implementation details. Then, we present some case-studies focusing on the characteriza-
tion of complex features (anisotropy and saddle points) and on the extraction of pertinent
scales. For each of these topics, we present previous work and their limitations that moti-
vate our proposal for a more robust analysis. Finally, we present preliminary studies and
results of our framework for further applications, such as expressive rendering and surface
reconstruction.

4.4.1 Performances and implementation details

Implementation details In our system, a compute-intensive process is the neighborhood
collection for a given evaluation point, since the fitting at scale t is performed by collecting
all the neighbors within the distance t of the current point. In order to speed-up the neigh-
bor queries, we compute a kd-tree on the CPU in a preprocess. We then transfer and use it
on the GPU for an efficient parallel computation of the descriptor at multiple locations. This
makes the complexity of our algorithm quadratic with respect to t for a 3D surface in worst
cases. We implemented our approach both on the CPU (with multi-threading on all 8 cores
of an Intel I7 3.40Ghz) and on the GPU (using CUDA on an NVidia GTX 580). As expected,
the GPU implementation outperforms the CPU version. For example, in Figure 4.19(c), the
analysis takes only 6.3s on the GPU versus 221s on the CPU. We show in Table 4.14 the
reported timings corresponding to our CUDA implementation for the models used in this
chapter, which include the computation time for both the descriptor and its scale derivative.
Since we use a maximum scale size that depends on the bounding box diagonal length, the
timings are strongly dependent on the object density. Finally, transferring the descriptor
values from the GPU to the CPU takes a negligible time (0.015329 seconds for the Isis
headpiece model).

Object Figure(s) Nb vert. | Nb scales | Time (s)
Armadillo 4.16,4.19 173k 20 6.3
Isis bust 1 1.1,1.2,4.15, 4.22 246k 20 15.3

Gargoyle 4.11,4.20 250k 50 16.77
Golfball 4.4,4.22 491k 20 16.21
Headstone 4.18 554k 20 27.66

Torus 4.6 583k 20 41.82

Isis bust 2 3.3,4.8 861k 20 61.4
Isis headpiece 4.17 2698k 20 822

Figure 4.14: Computation timings. We computed the descriptor value for all
points at multiple scales on the GPU. The fine scales was chosen according to the
point set density (in order to select around 10 neighbors), and the coarse scale is
33% of the object’s bounding box diagonal.

The actual bottleneck of our approach is the neighborhood search at successive scales. We
believe that a huge speed-up could be achieved by iteratively smoothing the object and/or
using an adaptive sampling of the input point cloud for the computation of the larger
scales [PKGO6].
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4.4.2 Description of complex shapes

As detailled in Section 4.1, our description is based on the fitting of an algebraic hyper-
sphere, which is a purely isotropic primitive. In this section, we show that this description
can be used to detect anisotropic features and saddle-like points by taking advantage of
multiple scales. Moreover, we show that this description can be used for similarities queries.

Anisotropy A first way to detect anisotropy is to understand anisotropic features as a
set of isotropic descriptors disposed along paths on the surface. For an example, see the
similarity query for a point on an anisotropic feature of an acquired 3D object in Figure 4.15.
In the top left image, we show the curvature value that gives an intuition of the object’s
shape. In the middle and right images, we show the result of the similarity query, and we
emphasize the anisotropic feature and the underlying path that characterizes it. At the
bottom, we show three fitted hyper-spheres that stay similar all along the path. The small
variation of k in the middle image (the bigger sphere) is due to a local stretch of the feature.

This example shows that our descriptor can be used to detect anisotropic features even
though the descriptor itself is isotropic.

Figure 4.15: Anisotropy detection with the isotropic descriptor. Top: sim-
ilarity query for the selected vertex (in red). From left to right: curvature, query
result, and zoom on the anisotropic feature. The dashed curve represents the path
that characterizes the feature. Bottom: isotropic primitives that describe the fea-
ture.

Saddle points Another type of feature that our descriptor cannot capture directly by it-
self are saddle and saddle-like points. These points have principal curvatures with opposite
sign corresponding to a negative Gaussian curvature. Our purely isotropic descriptor can-
not characterize these points, since the mean curvature is not sufficient to disambiguate
these saddle points. For example, a perfect saddle point has a mean curvature value equal
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to 0, like a planar surface. The fitness parameter cannot be used neither in this case, be-

cause it is also purely isotropic by definition.
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Figure 4.16: Saddle-like ambiguity Top: given a saddle-like point (A-red), simi-
lar points are identified and shown in green. Bottom: given the saddle point A and
a convexity point (B-blue), we show the profiles of the curvature k (left), and the

geometric variation v (right).

However, in practice, it is rare to have perfect saddle points on 3D objects (with exactly
opposed principal curvatures), especially with acquired data, since the probability to have
a point sample exactly at the saddle center is very small. For example, in Figure 4.16, we
show some results of a similarity query with our descriptor for a saddle-like point on the
Armadillo model. It can be observed that similar saddle-like points are correctly selected
without any false positive. This is because the multi-scale profile of this point characterizes
the properties of the surrounding shape. In comparison with the saddle-like point, we also
show the profile of k and v for a convex feature at a nearby point B located on the extremity
of finger. On the one hand, at coarse scales, both descriptors are similar (t > 0.1) and
refer to the hand of the Armadillo. On the other hand, at small scales, the saddle-like
point produces a specific profile. This specific profile was used to identify all the similar

saddle-like points (shown in green in the figure).
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Perspectives The two previous examples have shown that our hyper-sphere descriptor
can be used to disambiguate different complex shapes. Of course, we have to define and
perform more formal studies besides these examples. More precisely, we want to address
more in-depth the analysis of the descriptor space variation.

As shown in Figure 4.15, anisotropic features may be described by considering successive
unique descriptors disposed along a path. We propose to analyze the variation of our de-
scriptor in space in order to be able to detect such paths and to characterize anisotropic
features. In the same way that we measure variations when scale varies, we propose to
differentiate our descriptor in space (see the Appendix A for more details). The first step
is to differentiate our weighting function (defined in Equation 4.2) using partial spatial
derivatives .,
sw,  —4x(@)(1=2)

5x (t)= n , (4.12)

where x(q;) is the x coordinate of the current point q; expressed in the centered basis.
Using a similar definition for the other coordinates, we differentiate each parameter and
thus build the 3x5 ! Jacobian matrix

5t st ot
aﬁx aﬁy aéz

~ on on on
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where a, f and y are user-specified weighting factors. Note that in contrast to the similarity
measure that discards the parameter 1 (see Equation 4.10), the differentiation is performed
in the same local frame, which leaves the comparison with 7 valid.

The meaning of these derivatives is one of the first topics that we want to address in fu-
ture work. Indeed, we differentiate in space 7, 1, and k that characterize the surface at,
respectively, first, second, and third orders. As said previously, T represents the distance
from the evaluation point to the fitted surface. When the evaluation location is moved, T
can be seen as an approximation of a height function to the implicit surface, which plays the
role of a smoothed base surface. Hence, 67 seems to represent the gradient of this height
function on the surface . The value 61 measures the variation of a fitted normal vector,
representing an approximation of the normal curvature. The last parameter 6k measures
an approximation of the mean curvature variation, an information that is usually used in
scale-space analysis [Lin94], or for screen-space curve extraction [VVC"11]. The third order
differentiation of the surface is also studied in [KSTO08] to extract demarcating curves on
the analyzed object. It is also interesting to see that our formulation provides three differ-
ent approximations of the mean curvature: x, the mean of the normal curvatures 67, and
the second-order differentiation of the APSS implicit surface [GGO7]. It would be interest-
ing to compare the associated properties with respect to other mean curvature estimation
techniques [FJ89, ZBVHO09].

We also propose to use our spatial differentiation to build a hyper-sphere variation tensor
T;(t) that measures the variations of our descriptor on the surface as follows:

T;(t) = ()" 3:(0). (4.14)

We recall that 7 is a 3D vector while T and x are both scalar values.
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Figure 4.17: Hyper-sphere variation surface flow. Left: the Isis headpiece
3D object consisting of 2.7 millions points. Right: zoomed area, with flows gen-
erated from the hyper-sphere variation tensor (see Eq. 4.14) with first (blue) and
second (red) eigenvectors, the length corresponding to the associated eigenvalues.
From top to bottom: we use different values of [a, 8,y] in order to measure the
contribution of each spatial derivatives 5—;, 5—2 8% and their uniform combination
(respectively [1,0,0], [0,1,0], [0,0,1] and [1,1,1]).

5x’ 6%
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We project this tensor on the surface and then perform an eigen-decomposition. This defines
an oriented surface flow that associates to each position on the surface a vector in the
direction of the strongest variation (first eigenvector of T;(t)), with a length corresponding
to the associated eigenvalue. By adjusting the factors a, 3, and y in Equation 4.13, it is
possible to generate a flow for each parameter individually, or for a combination of these
parameters (the blue lines in Figure 4.17). We also show the second eigenvector in this
figure (in red), which indicates local ambiguities when both eigenvalues are similar. We can
see that each parameter produces quite different flows, and that their combination should
be investigated more deeply.

The second topic that we plan to address is the definition of the family of shapes that can
be characterized by our framework. We have shown that different shapes produce quite
different signatures when we consider both the descriptor itself and its variations (in scale
and in space). We have also shown in our preliminary studies that non-spherical shapes
can be disambiguated by our framework. In the future, we want to analyze these signatures
formally and experimentally. This analysis is necessary to better understand the robustness
properties of our descriptor for the analysis of complex shapes, noise, and deformations.

Finally, we also plan to work on the potential applications that might benefit from our anal-
ysis. We believe that the versatility of our approach is clearly an advantage in various ap-
plication cases. For example, in Cultural Heritage, our multi-scale similarity measure may
be used to detect engraved patterns on surfaces given the geometry of a potential engraving
tool, while the associated flow characterizes the underlying engraved drawing, as shown in
Figure 4.18. We also propose to use our descriptor in the context of shape retrieval. Indeed,
the approximation of principal curvatures using the spatial derivatives of 1) could be used to
compute approximations of the Gaussian Curvature, which is an intrinsic shape descriptor.
This measure could be used directly in classical shape retrieval methods [TCF09, BBGO11].
In this case, we have to take care that using an Euclidean neighborhood collection implies
sensitivity to non-rigid transformations. In contrast, isometry invariance requires to define
a geodesic distance for PSS [RDSKO06] and its derivatives in order to compute 6 7.

4.4.3 Pertinence detection

In order to deal with complex manifolds, many geometry processing applications rely on a
preliminary feature extraction step that identifies a subset of salient points to consider for
further processing.

Continuous pertinence detection in space Instead of relying on individual points, we
propose the continuous feature function f, (p) = f v(p, t)dt, where v is a smooth remapping
of v that disregards too strong geometric variations (we use a tanh function to this end).
The intuition behind this formula is that points for which f, is small are subject to nearly
no geometric variations across scales (e.g., f = 0 on a sphere), whereas points with a high
f indicate that the geometric descriptor has important variations and thus might refer to
pertinent points, as explained above.

This is illustrated on complex curves and surfaces in Figure 4.19 using a color gradient.
Note how the most pronounced features (in red) may correspond to different concave and/or
convex regions. This is desirable because there is often no a priori on the sign of the curva-
tures of features. Note also that regions with repetitive small details are not considered as
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Figure 4.18: Characterization of engraved text. Top: the geometric descriptor
characterizes the geometry of the potentially used engraving tool. Middle: result
of the similarity detection - the geometric descriptor is coherent along the path.
Bottom: the flow defined by 6« is orthogonal to the shape of the engraved text. In
all images, the path shown as dashed curve has been extracted manually.



62 Chapter 4 - Growing least squares

7,=0 k"\) -~ -

(a) (b) 5k pts, 1000k scales, 3s (c) 173k pts, 20 scales, 6.3s

Figure 4.19: Continuous features are displayed using a color gradient (a), on
a symmetric 2D closed curve (b), and on 2 variants of the Armadillo 3D object
(c). Features of varying shapes and sizes (in red) are properly selected in all the
examples.

important, whereas isolated or more prominent shape details emerge as key features of the
object.

Influence of noise As shown in Section 4.2.2, our descriptor produces robust profiles
even in presence of noise. In Figure 4.20, we show a similar test with profiles of v and f,,.
Unsurprisingly, v is impacted only at small scales and stays stable at medium and coarse
scales. On the contrary, the continuous pertinence variation is a bit disturbed, and some
regions have low values despite the presence of noise: the red area becomes green in the
figure, as can be seen at the wings. This means that the presence of noise reduces the total
amount of descriptor variation when scale varies. This counterintuitive behavior can be
explained by observing the v profiles in Figure 4.20 (bottom row). We can observe a local
maximum around the scale t; that corresponds to the transition between two successive
features (in this example from the circular small pattern to the global wing shape). In
case of noise, this transition between successive features is smoothed, which reduces the
value of the local maximum, and as a consequence the quantity measured by our pertinence
measure.

Perspectives This sensitivity to noise indicates that our continuous pertinence measure
is not well designed to be sufficiently robust. We propose to still analyze the v profile in
order to detect stable intervals followed by a local maximum that characterizes the transi-
tion to a feature at coarser scales. This phenomenon seems to be a common rule: we can
observe it in all profiles of v of this document, as for example in Figures 4.3, 4.4, 4.16 and
4.20. The position of the major SIFT points in Figure 4.13 seems also to be coherent with
this definition, because they are all followed by a local maximum of v at coarser scales.

We propose to detect this phenomenon by convolving the multi-scale profile of v with a
Gaussian kernel, and we obtain v, (t) = G, ® V(t), where v is a normalization function that
maps v into the range [0 : 1]. Then, we detect a pertinent scale as the maximum of

w() =1 —=7,(t —A)) . v,(t+A,), (4.15)
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Figure 4.20: Robustness to noise: v. Top: continuous feature detection. Bottom:
multi-scale profile of v for the points A (clean object, red curve) and B (noisy object,
blue curve). Note the bump at t;.

where A, is an offset value. For example, we show this automatic scale detection for differ-
ent points on the synthetic golfball object, and on the acquired Isis headpiece in Figure 4.22.
In our first experiments, small values of o (0.1 in the figure) produce strong maxima of u(t)
that are easily detectable automatically. The value of this maximum seems to be an in-
teresting criterion for the classification of pertinent scales. In our example, the detected
scales seem to be visually coherent with each feature’s scale. However, we highlight the
fact that, in practice, the detected scale is usually a little bit greater than the “real” scale
of the feature. This is due to our weighting function that continuously introduces new fea-
tures in the neighborhood when the scale varies. Hence, neighbor points that are close to
the neighborhood edge should have a small weight and thus a small influence on the fit: our
weighting function contains 90% of its energy in [0 : 0.6] (see Figure 4.21). Therefore, the
“real” pertinent scale should be in the interval [0.6tu : tu]’ where t, is the extracted scale.
Regarding our experiment, its exact location also clearly depends on the strongest variation
between the two successive features: important transitions are detected earlier than small
ones (by earlier we mean with smaller values of t). We also emphasis that our fitting proce-
dure involves normal vectors, which incorporates information of their local neighborhood,
and thus rely on a neighborhood size slightly larger than t.

1

0.8

0.6

0.4 e

0.2

10%
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 4.21: Weighting function. 90% of its energy is in the interval [0 : 0.6].
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Figure 4.22: Pertinent scale detection using u. Right: pertinent scale detection
(vertical bar) using strongest maxima of the function u (in blue) applied to the
geometric variation v (in black). Left: we show on the 3D object the weighting
function (in blue) and the fitted primitive (in green) for the detected scale.
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A more formal analysis of these behaviors is an interesting future work. We also plan
to analyze a special effect produced by our fit: the drift. The fact that we use a fitting
procedure allows our primitive to drift from the initial evaluation position to a feature in the
neighborhood. This behavior is clearly an advantage of our framework, because it produces
similar descriptor values for points at different locations but referring to the same feature
for a given scale interval. It can be seen as a snapping effect: the primitive snaps as long as
possible to a feature when the evaluation position of the scale varies, and then the position
changes radically to a new one. For scale variations, it produces the pattern detected in
the Equation 4.15. Considering space variations, we can see them as sort of scale offsets,
as illustrated in Figure 4.23: the farthest a point from the center of the feature, the earlier
(in scale) it is detected: we call this effect a drift. We show an illustration of this drift
in Figure 4.23 by adding the detected pertinent scales as an overlay on the v scale-space
(shown as a black curve). In future work, we plan to analyze its effect and the ways to take
it into account in our multi-scale similarity metric.

Figure 4.23: Drift effect. Left: input 2D curve with three points that characterize
the boundaries (red and blue) and the center (green) of the feature. Right: v
scale-space. The black curve represents potential pertinent scales detected using
Equation 4.15. These pertinent scales are drifting in scale-space.

We are also aware that our pertinence measure has to be connected to the Homological
Persistence, and we plan to study more in-depth the relationship between topological stabil-
ities and our descriptor variations, characterized by the aforementioned derivatives, both
in scale and space.

4.4.4 Other applications

Expressive rendering Among the wide variety of methods proposed to render a 3D ob-
ject, we can distinguish the expressive rendering approaches. The idea is to express in-
formation about the 3D scene through the rendering, such as the object geometric proper-
ties [Ver10].

Expressive rendering is usually based on the understanding of how the perceived charac-
teristics of a 3D scene (such as shading, color, or silhouettes) influence our perception of
their properties (such as lights, materials, or shapes), in order to improve their perception.
The development of these approaches often requires to compute the object’s properties in
screen-space from a given viewpoint. Our fitting procedure can be adapted to compute a
screen-space GLS descriptor, denoted by [ %, 1),k ]. In Figure 4.24, we show X that is com-
puted using the Modo raytracing engine [Lux12]. We fit our primitive with a fixed neigh-
borhood size in screen-space (about 25 pixels). Depending on the zoom factor, we identify
coarse (left) to fine (right) features.
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Figure 4.24: Multi-scale screen space mean curvature estimation. Visual-
ization of K, the curvature screen-space variant of our descriptor. We use a con-
stant scale of about 25 pixels. The detected features depend only on the viewpoint.

In future work, we plan to use our pertinent scale detection to select the best screen-space
neighborhood size for each pixel with respect to a given viewpoint. The associated de-
scription can then be used as input for expressive rendering in order to highlight specific
features. For example, & can be used with Radiance Scaling [VPB*10], a state-of-the-art
method that uses a screen-space curvature estimation for surface enhancement.

Adaptive bandwidth for surface reconstruction When a point sampled manifold is
corrupted with spatially varying noise as shown in Figure 4.25, it is not appropriate to
reconstruct the signal at a single global scale. Instead, we must find a spatially vary-
ing scale that is locally adapted to the amplitude of the noise, also called adaptive band-
width [WSS09]. However, care must be taken not to over-estimate this minimum scale,
otherwise pertinent manifold structures may disappear.

Thanks to our geometric variation v, we can fill a scale-space for the study of 2D curves.
We propose to use it to adaptively estimate the appropriate bandwidth: intuitively, we only
have to find the smallest pertinent scale for each point p. As a proof of concept, we propose a
simple top-down heuristic that works well for smooth objects as follows. We detect the noise
in a coarse-to-fine fashion: for each point we select the first scale where dv/dt is greater
than a given threshold (we use 0.01 in this example) and use it as local bandwidth. We
then regularize the result with a spatial smoothing defined along the curve. The resulting
adaptive bandwidth is used as a variable support size to reconstruct a smooth curve, shown
in orange in Figure 4.25 for different types of noise.

We will study the extension of this method to more complex objects in future work. A first
promising test might be to use the pertinent scale heuristic proposed in Equation 4.15, in
order to select the first pertinent scale that is locally coherent on the object.
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Figure 4.25: Adaptive bandwidth: (a) 2D point set corrupted with noise on:
normals and positions (A), positions (B), and normals (C). D is without noise. The
reconstructed curve (shown in orange) is obtained using an adaptive bandwidth
extracted from our continuous scale-space representation, shown in (b) as a black
curve.

Conclusion

We have presented a novel approach to scale-space analysis based on local regression that
automatically and robustly characterizes the stable structure of 2D curves and 3D surfaces
in a continuous manner. A strength of this approach is that it is entirely independent of
any targeted application. Indeed, our continuous geometric variation scale-space may be
interpreted and processed differently by different types of applications, as demonstrated in
Section 4.4. Our solution considerably improves previous work by defining a new geometry
descriptor and a novel alternative to multi-scale feature detectors.

First of all, our descriptor can be evaluated fully continuously in both space and scale, it
is robust to noise (Figures 4.10, 4.11 and 4.20), it does not require any parametrization or
connectivity, and it naturally deals with manifold borders (see Figure 4.8). Designed as a
reparametrization of a fitted algebraic hyper-sphere, it approximates differential invariants
at 3 different orders, yielding a robust extrinsic shape characterization. We compared our
descriptor to previous work in Section 4.2. The DoG method could be adapted to handle
point sets and manifold borders using local regression [LLWZ12]. However, DoG would still
have to be applied to data points with geodesic neighborhoods, which are not extrinsic, often
difficult to obtain, and it would provide only curvature measurements. Our approach iden-
tifies a more complete geometric descriptor while only requiring an Euclidean neighborhood
with a reasonable number of point samples (at least about 5 in 2D and 12 in 3D). Quadric
fitting is another alternative to compute curvature, but it is not adapted to scale-space anal-
ysis since it requires a local planar parametrization which is not globally coherent and not
robust to fold-overs (see Section 4.2.1). In contrast, our method avoids these shortcomings
by employing a direct second-order fitting procedure.

Secondly, we presented a new alternative to classical scale-space analysis based on the
analytical differentiation of our descriptor when scale varies. This continuous evaluation
avoids many shortcomings of pure O-crossing tracking, a state of the art tool based on a
discrete detection of stabilities in scale-space (see Section 4.3). The resulting geometric
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variation can be evaluated continuously and efficiently during the fitting procedure, it is
robust and evolves continuously when the input changes, and it is able to detect multiple
pertinent scales for a given evaluation point. This measure can be used to compare points
and to detect underlying features at multiple scale ranges (see Figures 4.6, 4.15, 4.16), or
to extract continuous feature areas on the object (see Figure 4.19).

A limitation of our approach comes from the choice of an isotropic regression: surface
anisotropy is not explicitly identified. However, as shown in Section 4.4.2, our method
is able to detect indirectly complex anisotropic structures or saddle-like shapes. Indeed,
anisotropic features can be understood as a set of isotropic descriptors disposed along paths
on the surface, while saddle-like shapes are disambiguated by their specific multi-scale
descriptor profile. In future work, we plan to study spatial variations of our geometric de-
scriptor, in a way similar to what is classically done with MLS (see preliminary results in
Section 4.4.2). This would permit to explicitly identify direction fields on manifolds and the
scales at which they are pertinent. We also plan to study the different shape types that
can be characterized using both the spatial and scale variation. Our pipeline can also be
tuned to measure intrinsic surface properties that are crucial for some applications. In this
chapter, we have only considered shape geometry, and we ignored additional information
such as color attributes. In future work, we plan to extend our weight functions to reject
neighbor points with dissimilar attributes, yielding a non-linear version of our continuous
scale-space analysis. We have also observed oscillations in v for input manifolds with regu-
lar structures (see Figures 4.3 and 4.4). For some applications, the oscillations might lead
to false positives, which could be detected through a frequential analysis of v. We have also
identified a drift effect due to our fitting procedure. More globally, we plan to study deeply
the meaning of each of our descriptor’s parameters as well as their derivatives in order to
anticipate such behaviors. Finally, we believe that these fundamental studies could lead to
the development of new analysis tools adapted to various application cases.



Chapter 5

Semi-automatic matching

In the previous chapter, we have presented the elaboration and the study of theoretical
tools for the multi-scale analysis of 3D objects. The work presented in this chapter was
done in a concrete application-oriented research context: Cultural Heritage (CH). Together
with researchers in archaeology, we especially focused on the problem of fractured object
reassembly consisting of few fragments (up to about ten), but with missing parts due to
erosion or deterioration.

We start by presenting the scope of this research in Section 5.1. More precisely, we recall
previous work on 3D surface registration, being a key ingredient of many pairwise fragment
matching algorithms. We then present concrete existing systems that have been proposed to
reassemble archaeological objects. We finish this section by presenting our concrete dataset
composed of fragments of the statues surrounding the legendary Alexandria lighthouse in
Egypt, and we show that our waterworn data introduces specific constraints that require
adapted matching procedures.

In order to address this reassembly problem, we have elaborated a theoretical semi-automatic
formalism. The key idea is to design reassembly systems that combine both the expert user
knowledge and the matching algorithms’ speed and accuracy. The efficiency of the method
is determined by both the geometry analysis and the robustness of the geometric matching,
while its versatility is based on the knowledge of the final expert users and their possi-
bilities to guide the reassembly. To this end, as the user takes into account additional
information that is not easily representable as input for algorithms (e.g. historical texts or
iconographies), he or she should be able to control in real-time the reassembly process using
a dedicated interaction technique. This concept gives the user the possibility to test various
hypotheses and to guide a digital reassembly process that is similar to manual reassembly
methods, which are still used in CH.

In Section 5.2, we present our formalism for semi-automatic matching, using a real-time
interaction loop between the user and the system. Then, we validate the feasibility of this
formalism by two practical implementations for pairwise matching, one based on tangible
interaction, and the other one based on multi-touch interaction. In order to produce setups
that correspond to the requirements of the experts, we developed both implementations in
close collaboration with researchers in archaeology and specialists of digitalization and vir-
tual restoration of CH content. We also collaborated with researchers in human-computer
interaction (HCI), and more precisely 3D user interaction (3DUI), for the design of appro-
priate interaction techniques. Considering the matching itself, we have adapted standard
approaches to our context.

In Section 5.3, we present the results of informal studies of both implementations for the
pairwise reassembly, and we conclude with preliminary work on the possibilities to combine
our semi-automatic formalism with our multi-scale geometry analysis. Indeed, the versa-
tility of the latter makes it usable during all steps of the involved pipeline. For example, it

Related publications: [MRB09, MRS09, MRS10, RMG'11]
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provides the user with high-level information about the object’s geometry at multiple scales,
and it indicates relationships between surface points during the matching. We show how
to use our multi-scale geometry analysis in order to help the user in selection tasks, to pre-
process input data for matching algorithms, and to highlight features that can make sense
for the user.

All this work is a part of a complete pipeline that we put up, ranging from the fragment
digitalization to their virtual reassembly. We also manufactured one of these reassembled
objects for a temporary museum exhibition in Paris: an Isis statue that once was at the
entrance of the Alexandria lighthouse.

Scope

5.1.1 3D surface registration

The registration of 3D surfaces has originally been studied for the alignment of partial
views of a same object generated by range scans. The basic idea is to compute a trans-
formation (rotation and then translation) to align both sheets of surfaces by minimizing
a given energy. Today, the majority of fragment matching systems uses registration algo-
rithms to align the fragments’ contact surfaces (see Section 5.1.2), and in particular, the
Iterative Closest Point (ICP) algorithm [BM92]. The idea is to iteratively minimize the
Euclidean distance between two surfaces, by considering pairs of points that associate to
each element in a range image its closest point in the other range image. The original ICP
version was designed for fully overlapping surfaces, without noise and with exact corre-
spondences between the two objects. There are some variants that have been proposed to
deal with partially overlapping surfaces with different sampling [TL94, BS97, CSSK02], or
to produce more robust solutions using color information [GRB94, UGR04], or geometric de-
scriptors under the name Iterative Corresponding Point [RL01, Jos02] (we use this meaning
for ICP in the following). The improvement of hardware and acquisition procedures also
yielded the apparition of multi-view registration [CM91, BDL95, MSY96, DWJM98, Pul99]
and real-time ICP variants [RHHLO02].

The main limitation of the ICP is its dependence on the relative initial pose of the input sur-
faces. Indeed, the iterative minimization finds a transformation that corresponds to a local
minima of a given energy that is close to the input position (in transformation space). Some
work has been proposed to find the initial pose automatically [SJG05, SDG07, PGBP10],
but the problem of local minima still remains: the algorithm’s convergence for successful
registration cannot be guaranteed without an a priori knowledge about the overlap area
and the object’s shape [BKW'08]. We propose to use this strong dependence to give the
user a lot of control on the matching process, as shown in Section 5.2.

More recently, some approaches have been proposed to find a global solution for the reg-
istration problem. For example, German et al. [GBPPO07] propose to automatically align
an acquired range image to a known 3D object in a reverse engineering context. Liebelt
et al. [LSSO08] use a voting procedure in transformation space by considering rendered
images of the object from different locations. Both approaches refer to a specific context
with associated knowledge, and can be hard to adapt to fragment matching. We refer to
the up-to-date survey of van Kaick et al. on shape correspondence [VKZHCO11] for a more
in-depth presentation on this topic.
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5.1.2 Archaeological object reassembly

The reassembly of digital fragments is a problem composed of two tasks: the rough align-
ment with the regularization of multiple pairwise relations, and the fine pairwise matching
of fragments. Whereas the latter is based on registration algorithms, the rough alignment
is usually achieved by graph optimization techniques. We briefly present this task in a
first paragraph, and then we present more in-depth the systems that have been proposed
to reassemble archaeological objects or monuments. Since this problem is complex, some
methods rely on specific data and simplifying heuristics. Nevertheless, some versatile ap-
proaches have been proposed for the digital reassembly of fractured objects in CH, using
manual, automatic, or semi-automatic concepts.

Rough alignment This step concerns the measurement and improvement of the global
coherence between pairwise fragment relations to reassemble objects. Based on graph op-
timization, these techniques are essential for the reassembly process, but they are not spe-
cific to this problem and are widely studied in other fields of Computer Science. Briefly,
the rough alignment minimizes errors on a graph that represents the fragments as nodes
and the matching relations as weighted edges, according to a provided metric. This can be
used as pre-processing [TFK'09], or directly during the pairwise matching process as a
local regularization (by using a subpart of the graph) [CWA 01, KKO01], global regulariza-
tion [CBR"11], or mixed approaches [ON12]. Usually, local approaches suffer from error
accumulation along the graph.

Pairwise matching problem simplification The pairwise matching of fractured frag-
ments is a complex topic, which requires to detect fractured surfaces on fragments, and
to find potential compatible contact surfaces on other objects and match them. In order
to tackle this complexity, several methods have been proposed to deal with specific data
by reducing the dimensionality of the problem. For example, planar and thin artifacts
(e.g. fresco fragments) can be considered only by their fractured surface, encoded as a
2D curve [Wol90, KKO1], or more robustly as a ribbon with thickness information. The
matching is then simplified to finding the optimal relative rotation [BTFN'08] between
fragments (see Figure 5.1). The information coming from the top face can also be used
to find more robust matches [KTNT05, CBR"11, FSTF"11]. Some other methods have
also been proposed to reconstruct broken potteries and other rotationally symmetric ob-
jects [CWAT01, WOC03, WC04, KS04].

3D pairwise matching The reassembly of 3D objects without an a priori knowledge has
been addressed in three different ways, depending on the user influence on the system.

A first approach presents the problem as an interaction task [RRCT07, RRC*10]. The au-
thors propose a bi-manual tangible interaction technique to manipulate two fragments with
their hands by using electromagnetically tracked props. This approach gives the user the
possibility to move and rotate both fragments (two times six degrees of freedom) in order
to find a coherent assembly. Some field studies with archaeologists have shown that this
virtual manual approach is well suited to the fragment reassembly task, and that it is co-
herent with the standard real world approach used by professionals [RRC*10]. Taking into
account the expert knowledge is crucial in order to avoid to produce geometrically coherent
reassemblies with no archaeological meaning. However, this purely manual approach can



72 Chapter 5 - Semi-automatic matching

Object 1

=5
&7

Object 2

Figure 5.1: 2.5D matching of planar thin artifacts. Left: a fresco fragment can
be considered as a 2D ribbon (in blue and green) defining the fractured surface
as heightfield (hence the name 2.5D). Right: the matching consists in finding a
rotation around the axis defined by the fresco plane, corresponding to a translation
in the ribbon domain. Visible patterns (in red on the left) can also be used to check
the top surface continuity between fragments.

only reasonably produce rough alignments because it is not associated to any automatic
geometry processing.

A second approach tackles the problem in an opposite direction by proposing a purely auto-
matic reassembly system [HFG'06]. The fragments are segmented, and fractured faces are
extracted by analyzing the surface roughness using integral invariants (see Section 3.2.2)
for pairwise matching. This approach seems promising since the reconstruction seems co-
herent, but it has been tested only on data with perfect matches (without missing data or
weatherworn effects) and with a small numbers of fragments, which is often not the case in
for many real datasets involved in Cultural Heritage.

In a third type of approach, the authors propose intermediate solutions based on semi-
automatic problem solving. The idea is to simplify the global process by letting the user
perform one of the following steps:

1. select the relevant fragments,
2. segment fragments, extract contact surfaces or features,
3. provide pairwise relations between fragments, surfaces, or features.

The high-level knowledge usually involved to perform these tasks, most of the time by the
archaeologists, can be hard to represent for the virtual reassembly without semi-automatic
approaches.

One instance of this approach is the method proposed by Oxholm et al. [ON12] to reassem-
ble thin artifacts that do not refer to fresco fragments or rotationally symmetric objects.
The user has to accept or reject an extracted 2D curve representing the fragment bound-
ary in order to ensure that it is a part of the currently reconstructed object, and in order
to avoid invalid segmentations (items 1 and 2). Another example is the method presented
in [TFK'09] for the digital anastylosis® of the Octagon monument in Turkey. The authors
present a complete system to acquire and reconstruct numerous fragments automatically.
Then, they provide the user with the possibility to specify the relations between the frag-
ments, and to provide a rough initial position for the matching (items 1 and 3). The effec-

tArchaeological term for the reassembly of ruined monuments or other artifacts from remaining fragments
in an archaeologically responsible way (with use of modern materials when needed), Definition by "http:
//en.wiktionary.org/wiki/anastylosis"


"http://en.wiktionary.org/wiki/anastylosis"
"http://en.wiktionary.org/wiki/anastylosis"

73

tiveness of the method described in this paper with an example on a real dataset validates
the process and confirms the efficiency of semi-automatic methods elaborated in collabora-
tion with archaeologists.

5.1.3 Application context

Archaeological context This work has been produced in collaboration with the archae-
ological research team of the CEAlex!, a research center that studies, besides others, the
Lighthouse of Alexandria, one of the Seven Wonders of the Ancient World. Badly damaged
by several earthquakes and submerged under the Mediterranean sea hundreds of years
ago, the fragments have been eroded by water and currents. Whereas some fragments are
today exhibited in museums, the majority might never be raised due to the required infras-
tructure and the cost of the operation. Concerning the few raised fragments, in Figure 5.2,
we show two parts of the colossal Isis statue, originally around 12 meters tall and weight-
ing tens of tons (5 tons for the small headpiece). Concerning the reassembly, the fragment
manipulation requires to use cranes or oxygen balloons underwater, so the archaeologists
generally rather work with underwater measurements and drawings to test their hypothe-
ses.

Acquisition By taking into account the different constraints, such as the size and the
weight of the fragments and the fact that they are underwater, we defined an acquisition
protocol in collaboration with ArcheoVision?, a French team specialized in the acquisition,
preservation and storage of Cultural Heritage content. In a preliminary mission, we went
to Egypt to see the acquisition sites and to design procedures and tools to acquire the
fragments. We were diving the underwater archeological site in order to understand the
involved difficulties: stacks of fragments weighting several tons, the complexity of their
manipulation and the necessity to put them in a clean area for proper acquisition (without
other fragments and composed of sand), lack of visibility and presence of floating objects
or fishes that disturb the acquisition. During our trip, we have started to adapt a pho-
togrammetry reconstruction method [FP10] with Patrick Reuter* and Bruno Dutailly’. We
used it to treat, during the night, the photographs taken during the day by Pascal Mora®,
guided by the archaeologist Isabelle Hairy®. In a week, 49 fragments, of which 27 are un-
derwater, have been photographed, and several fragments have been reconstructed in low
resolution. Back to France, the reconstruction method has been improved by Elric Delord”,
yielding the software SynAps [DA12] that is able to generate point sets with around one
million of points, with per-point color information. The resulting dataset have been used in
our experiments to test and design the interaction techniques, the geometric matching, and
the advanced visualization. Several archaeologists have also used our methods for other
research topics.

1Centre d’Etudes Alexandrines, USR 3134, Egypt.

2 Archeovision UPS SHS 3D 3551, France. archeovision.cnrs.fr

*Inria - Univ. Bordeaux - IOGS - CNRS, France. Contact

TPFT3D Archeovision UPS SHS 3D 3551 - LAPP - PACEA UMR5199, France. Contact
*PFT3D Archeovision UPS SHS 3D 3551 - ArcheoTransfert, France. Contact

$CEAlex USR 3134, Egypt. Contact

TPFT3D Archeovision UPS SHS 3D 3551, France. Contact


archeovision.cnrs.fr
mailto:preuter@labri.fr
mailto:b.dutailly@pacea.u-bordeaux1.fr
mailtopascal.mora@u-bordeaux3.fr
isabelle.hairy@cea.com.eg
mailto:elric.delord@gmail.com
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Figure 5.2: Fragments of statues surrounding the Lighthouse of Alexan-
dria. Top: illustration of the Colossal Statues surrounding the Pharos (illustra-
tion by Isabelle Hairy). Left: zoom of the colossal Isis statue, broken in three
fragments. Note the important erosion of each fragment that alter the fractured
surfaces and erase smallest details. Right: examples of some photographs of the
Isis fragments used for the photogrammetry reconstruction.
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Virtual reassembly For the virtual reassembly, on the one hand, the automatic ap-
proaches presented in Section 5.1.2 cannot be used due to the extrem degradation of the
fragments. An important fact is that the erosion is not uniform over the surface, and some
parts might be completely smoothed, while others still have fine patterns. This local surface
smoothness prevents from systematically using fine details or detecting fractured surfaces
via automatic processes. Another problem is that sharp edges are used to segment the
fragments and to extract the contact surfaces. In our case, it can be very hard to distin-
guish between small patterns and smoothed edges, which makes segmentation algorithms
unusable.

Some researchers in archeology are convinced that the lighthouse and the surrounding
statues have been conceived according to specific mathematical regularities (see for exam-
ple [Hai06]). These assumptions about the entire object can be crucial for the reassembly
process (such as dimensions and proportions), and lead to successful reassemblies even
though only a few fragments still remain.

The difficulties inherent to our dataset and the precise expert knowledge needed to re-
assemble the fragments induced us to use a semi-automatic approach for the matching.
The methods proposed in previous work cannot be directly used since they require per-
fect matches [ON12], or since they use specific heuristics adapted to the architectural con-
tent [TFK ' 09], such as for instance the detection of planar surfaces. In the next section, we
present a generic semi-automatic formalism and two concrete implementations, one based
on tangible user interaction (see Section 5.2.2) and multi-touch surface interaction (see Sec-
tion 5.2.3).

Semi-automatic matching

5.2.1 Semi-automatic formalism

The central idea of this formalism is to increase the efficiency of the reassembly process by
integrating real-time geometry-driven matching algorithms into the user interaction loop.
We call this idea the semi-automatic reassembly interaction loop (Figure 5.3), and there are
three involved prerequisites.

/ Interaction/ / Feedback
v

-
@ Geometric matching

-_—
Figure 5.3: The semi-automatic interaction loop. We propose to enforce the
standard interaction loop (dashed lines) by adding a real-time geometric matching
whose input is defined by the user via the interaction technique, and whose output
is the feedback to the user.
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Interaction First, we require an efficient interaction technique so that the expert user can
express prior knowledge on the matching input. It should allow him or her to remain
concentrated on the actual archaeological task and involved high-level knowledge,
without being distracted from difficulties to interact with the system.

Geometric matching Second, we require a geometric matching algorithm that computes
the locally optimal match with respect to the user-specified input. Of course, this
should be done in real-time to ensure interactivity. Moreover, the matching output has
to be coherent over time: in order to avoid annoying popping artifacts, slight changes
in the input should not affect the matching output, except in areas of transition to
different local best matches.

Feedback Third, we have to provide feedback from the geometric matching to make it easy
for a user to validate the match, or to refine the input. The information transmitted
to the user can be linked to the fragments’ properties (for a better comprehension of
the input) or to the matching result (for a better comprehension of the output).

This general principle makes it possible to use different approaches for each of the three
prerequisites. In the following, we show two independent implementations of our idea,
and the concrete choices that we have made for the interaction and feedback prerequisites.
In order to be able to compare both of them, we use an unique geometric matching kernel,
based on a real-time variant of the ICP, described in Section 5.2.4. For each implementation,
we present the way we transform the user commands to an ICP input.

5.2.2 Semi-automatic reassembly with tangible interaction

. Locally
Initial pose optimal
pose

Figure 5.4: The semi-automatic interaction loop for the tangible interac-
tion technique. (a) Specification of the initial pose using the bimanual tangible
user interface. (b) Real-time visualization of the initial pose. (c) Real-time geomet-
ric matching. (d) Visualization of both the locally optimal match and the global
matching error.

Interaction technique In this section, we propose a first solution for pairwise semi-
automatic reassembly where the expert user can directly specify the relative positions and
orientations of fragments that are used as input for the matching algorithm. For an efficient
user interaction of this two times six degrees of freedom task, we rely on previous work
dealing with bimanual tangible user interfaces [RRC"07]: as can be seen in Figure 5.5, in
each hand, the user manipulates an electromagnetically tracked prop (items 1 and 2), and
the translations and rotations are directly mapped to the corresponding virtual fragments



77

on the display (items 3 and 4). For each side, a foot pedal (items 5 and 6) is used to activate
the tracking of the props, like "clutching" a gear in a car. The involved semi-automatic
interaction loop is illustrated in Figure 5.4.

Figure 5.5: The bimanual tangible user interface.

Geometric Matching As explained in Section 5.1.1, the required input to the ICP is the
initial relative pose of each object. It is thus straightforward to use with the bimanual
tangible user interface by considering the poses specified by the user in real-time.

Feedback Once the locally optimal match with respect to the user-specified initial pose
has been determined, we have to provide feedback about it. We use a visual semi-transparent
3D representation of the matching result, as can be seen in Figure 5.6. Based on this visual
feedback, the user can evaluate whether the matching result is geometrically plausible and
coherent with his intent, and either validate the proposition, or specify a new initial pose.
As can be seen in Figure 5.6, we also provide a graphical indicator of the current ICP error;
we use the root mean square (RMS) error of the matching of the contact surfaces.

Note that with this visual feedback, the reassembly "snaps" to the locally best corresponding
match, like a magnet that sticks the fragments together. This information is provided as
long as the provided pose is within a distance threshold, and, of course, it changes when
the user-specified pose is closer to a different local minimum. A similar "snap" metaphor
has proven to be efficient in 2D vector graphics applications, where imaginary grid lines at
a coarse spacing help to precisely align 2D objects despite a roughly aligned input.
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Figure 5.6: Feedback of the tangible setup. The system informs the user about
the matching output by displaying a transparent view of the locally optimal match
according to the given initial position. It also provides quantitative information
about the match by displaying the error of the last ICP iteration.

5.2.3 Semi-automatic reassembly with multi-touch interaction

. Locally
Constraints optimal
pose

Figure 5.7: The semi-automatic interaction loop for the multi-touch inter-
action technique. The semi-automatic interaction loop for the multi-touch inter-
action. (a) Fragment selection (top window), fragment manipulation and specifica-
tion of the constraints (bottom right and left windows). (b) Real-time visualization
of the fragments and constrains (bottom right and left windows). (c) Real-time
geometric matching. (d) Visualisation of the best local match (result window).

Interaction technique In this section, we propose a second solution for the pairwise
semi-automatic reassembly using a multi-touch tactile interface. Instead of letting the ex-
pert user directly specify the relative positions and orientations of potential reassemblies,
we rather let him reason about corresponding vertex pairs of the fragments. This approach
has been elaborated in collaboration with Aurelie Cohel, during her PhD about 3D user
interaction. For an illustration of our solution, consider Figure 5.8.

ITnria - Univ. Bordeaux - CNRS, France. Contact
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Figure 5.8: Multi-touch interaction. Top: the selection window. Bottom left and
right: the manipulation windows. Bottom middle: the result window.

First, the expert user can browse through the set of acquired fragments and identify poten-
tial pairwise reassembly candidates (Figure 5.8, top). The selected fragments are displayed
in two separate manipulation windows (Figure 5.8, bottom left and right). Then, the user
specifies multiple reassembly constraints on the two fragments by tipping on corresponding
positions. The best match is calculated in real-time and shown in the visualization window,
thus providing feedback to the user (Figure 5.8, bottom middle). The constraints of both
fragments can be readjusted steadily and simultaneously thanks to the multi-touch tactile
interaction, and the best matching result is calculated on-the-fly. Again, the semi-automatic
reassembly interaction loop applies, as illustrated in Figure 5.7.

Geometric Matching The best geometric match has to be computed from the user-specified
reassembly constraints. Since the relative initial positions and orientations are not spec-
ified directly, we have integrated an intermediate step for their determination: the con-
straints are considered as pairs, and a rigid transformation can easily and efficiently be
calculated using quaternion-based minimization [BM92], when the user provide at least
three constraint pairs. Then, we use our optimized ICP variant in order to compute the
best local geometric match.

Feedback We provide two kinds of visual feedback to the user as is illustrated in Fig-
ure 5.8. First, the pairs of the associated areas of the two objects are recalled, so that the
user can continuously modify the constraints if necessary. Second, the result of the geo-
metric matching is displayed in a separate window. As a consequence, the user can inspect
simultaneously the contact surface, and see the pairwise constraints and the result of the
matching. Note that we could provide a graphical indicator of the local error of the ICP
algorithm as before.
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5.2.4 Real-time matching kernel

Since the 3D objects of the fragments are acquired either by range scanners or by pho-
togrammetry, they are usually defined as huge and noisy unstructured point sets. However,
the interaction loop involved in our semi-automatic matching algorithm (see Figure 5.3)
requires our algorithm to operate in real-time, and to robustly align the two surface sheets
even in the presence of noise.

According to Rusinkiewicz’s fast ICP variants [RLO1], an iteration is composed of six steps
that are likely to be optimized: data selection, pairwise vertex matching, weighting pairs,
rejecting pairs, computing an error, and minimizing the error. In the following, we show
how we optimize the first four steps for a more efficient reassembly. In particular, we will
focus on the vertex pair selection as well as on their weighting and rejection.

Efficient vertex pair selection For an efficient alignment of the two surface sheets, we
first downsample the vertices of the fragments to a few tens of thousands of vertices [TL94,
RLO1] in a preprocess. For further optimization, we only need to select the vertices that
are present on the potential contact surface, while rejecting all the others. In our semi-
automatic reassembly method, the relative initial positions and orientations of the two
fragments are directly specified by the user, or estimated from the reassembly constraints,
so that the potential contact surface is already roughly aligned. As a consequence, we can
consider that the vertices of both contact surface sheets are close to each other when their
distance is less than a user-specified threshold distance dr.

For the efficient detection of contact surfaces and closest vertex queries, we construct a
kd-tree for each of the two fragments in a preprocess. Furthermore, inspired by classical
collision detection algorithms [Lin93], we mix the kd-tree with a bounding sphere hierarchy:
for every node of the kd-tree, we determine a sphere that encloses all vertices of the child
nodes.

I

b, s

40 B8

Figure 5.9: Bounding sphere hierarchy. Left: The two bounding sphere hierar-
chies. Right: Determining the contact surface by conservative pruning of the two
hierarchies: even though dg- < dr, the sphere intersection does not detect it. By

increasing the sphere radii by %T, the intersection is successfully determined, but
more distant vertices are detected as well (dyc > dp).

Consequently, in the real-time interaction loop, for every user-specified initial pose, we can
efficiently determine all the vertices of the contact surface by intersecting the two hierar-
chies recursively (see the bold spheres b; and b; in Figure 5.9). This pruning is slightly
different compared to collision detection since we do not only want to obtain the sphere
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intersections, but also all vertices where the distance is less than d. Our solution is con-
servative: we increase the sphere radii by d?T to capture all necessary vertices, but also the
vertices at a distance greater than d; (see the dotted spheres in Figure 5.9).

In order to obtain the closest vertex pairs, for every vertex of the potential contact surface
of the first fragment, we efficiently determine the closest vertex of the second fragment by
using the kd-tree.

Vertex pair weighting and rejection Recall that once all the closest vertex pairs are
conservatively determined, we have to reject all the pairs with a distance d greater than dy
in order to consider only the contact surface. Moreover, we have to determine the influence
of each pair. Following Pulli [Pul99], we take into account normal coherence in addition to
vertex distance: pairs with normals of opposite direction should have a greater influence
(marked in green in Figure 5.10) compared to other neighboring pairs of the contact surface
(marked in yellow in Figure 5.10). Pairs where the dot product of the normals 7) is greater
than an orientation threshold o; should not be taken into account at all. The result is a
better convergence of the ICP algorithm.

Figure 5.10: Normal coherence. Illustration of the normal orientation of the
fractured surfaces. In the green area, compatible normals are oriented in opposite
directions, while the yellow area contains orthogonal normals that are rejected by
our weighting function.

For an efficient interaction, we must ensure that the locally optimal match evolves co-
herently over time. Indeed, when the user slightly changes the initial relative pose or
the paired constraints of the two fragments, the matching should only vary gradually in
order to prevent from popping artifacts when some vertex pairs oscillate around the dis-
tance threshold d; or the normal coherence threshold o;. Therefore, we propose to smooth
both the distance of the vertex pairs and their associated normals with a decay function
f(x) = (x2—1)2. This results in the weighting functions f; for the vertex distance d (Equa-
tion 5.1) and f, for the normal coherence (Equation 5.2). A zero weight corresponds to a
pair rejection.
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2 2
£i(d) = ((di) —1) if 0<d<dy 5.0
fald)=0 otherwise
149 )2 2
falm) = ((1_—”) - 1) if —lsn=-or (5.2)
fn(m)=0 otherwise

We combine both weighting criteria in the following separable weighting function where
a € [0;1] is a parameter that can be tuned by the user in order to use only normal filtering
(a = 0) or per-distance weighting (a = 1), while using a = 0.5 gives both criteria the same
influence .

e(_%) * e(_ﬁ)
Bf(d: 77:0‘) = e_1 (53)

Results and perspectives

We now show results for the choices that we made for each of the prerequisites of the semi-
automatic interaction loop: the interaction technique, the matching algorithm, and the
feedback provided to the user. All the results are based on informal user studies of both in-
teraction techniques, as well as on our own reassembly experience on a variety of fractured
objects. We also present perspectives for each topic that we plan to work on in the future.

5.3.1 Interaction

Results Concerning the bimanual tangible interaction, we have observed a good accep-
tance and an efficient manipulation after a short learning process. It allows the user to di-
rectly manipulate the fragments with tracked props. This direct and continuous metaphor
is invisible for the user, and so he or she can remain concentrated on the pairwise reassem-
bly. However, we identified two major drawbacks. First, the lack of haptic feedback and the
absence of collision detection is sometimes irritating during the fragment manipulation.
Second, the efficient interaction with tangible props is interrupted when the user has to
interact with the system for other tasks than the pairwise matching, such as the selection
of a new fragment out of the database, or the tuning of matching parameters.

This was our major motivation to find an alternative solution, and so we developed the
multi-touch interaction. Here, the interaction with the global interface (such as the frag-
ment selection and parameter tuning), and the pairwise specification of the assembly con-
straints are both based on the same input device. The user remains concentrated on
the task throughout the entire multi-piece reassembly, and not solely during the pairwise
matching. Moreover, multi-touch interaction enables fast selection [FWSB07]. However,
touch screens are considered imprecise for the selection of small targets [FWSB07]. In our
application, this limitation is overcome by the use of a geometric matching algorithm that
regularizes the rough constraint relations by an accurate registration.
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Let us now compare both interaction techniques. In the tangible interaction, the fragment
manipulation is natural because the user’s reassembly gestures are similar to their real-
world counterparts. The movements are continuous and aim faithful visualization, whereas
the “snapping” discretely emphasis the geometrically plausible user inputs through the
transparent object rendering. On the other hand, in the multi-touch technique, constraints
are set directly in a discrete manner, which avoids a lot of the gestures to get the objects
aligned. The assembly is updated continuously at each constraint readjustment and thus
provides a better precision.

Perspectives In future work, we plan to improve the proposed interaction techniques in
order to provide the user with more possibilities to input information for the matching pro-
cess. For example, in our dataset, waterworn fragments cannot match anymore due to the
eroded parts. We plan to add the possibility to define new constraints such as the continu-
ity between surfaces and features instead of only using the contact surface. This is easy
to set up with the multi-touch interaction. In a preliminary study on the Isis statue, we
have used our analysis to highlight anisotropic features on the fragments, as shown in Fig-
ure 5.11, left. In collaboration with archaeologists, we used this information, displayed as
color on each object, to visually align them (see Figure 5.11, middle). Once the reassembly
was validated and compared to its theoretical properties (e.g. the total height of the Isis
statue), we transmitted the reassembled 3D object to a french company [Neal2] special-
ized in digital object’s physical reproduction. They fabricated each fragment individually in
polystyrene with projected resin at scale 1 : 5, and then reproduced the material by painting
the surface. Once assembled and stabilized with a metallic support, the resulting reassem-
bled statue has been exhibited in the French National Maritime Museum (see Figure 5.11,
right). The temporary exhibition, named Phares® presents the history of lighthouses, and
especially the last results of the archaeological studies on the Alexandria Pharos thanks to
the fragment acquisitions and the virtual reassembly.

This first experiment validates the use of continuity constraints between fragments and
motivates us to further investigate their use for the reassembly. This work also offer in-
teresting opportunities from an acquisition technique point of view. Indeed, we now have
both the fabricated and digital versions of three acquired fragments, that we plan to use
as datasets to test the accuracy of the developed acquisition technique. Furthermore, the
process involved during this experiment for the reproduction of the material properties is
also interesting. Acquisition methods often produce a per-vertex color information, that can
be stored in a texture, which is usually sufficient to represent the object appearance when
dealing with digital representations. In the case of the fabrication of physical object, this
representation is not anymore sufficient, and requires the development of new methods to
acquire and reproduce materials.

Another interesting direction that we plan to work on is the development of a tool for ad-
vanced selection, which operates using our multi-scale analysis. With the current system,
when a user picks a point on the 3D object, it can refer to different structures at multiple
scales. An interactive tool that lists pertinent scales (see Section 4.4.3) and the associated
similar points around the selection should produce more accurate constraint definitions.
When the user selects a set of points, we can use the coherency between these points to
detect automatically the underlying feature. Another option is to use our descriptor varia-
tion flow to help the user extract an anisotropic feature as a 3D curve (see Section 4.4.2).

Exposition Phares (Lighthouses), from March 7th to November 4th 2012, in Paris, France
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Figure 5.11: Fragment reassembly using continuity constraints. Left: Defi-
nition of continuity constraints on features (dashed, in red) and surfaces (dashed,
in green). Middle: Virtual reassembly of the Isis statue. Right: Manufactured
statue (scale 1:5).
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Finally, a similar approach can be used to propose the user the structure on the second
object that can match a currently selected feature on the first one. This set of tools gives
an a priori indication of the fragments’ compatibilities, and helps define an accurate input
configuration for the matching, which we believe will improve its convergence.

5.3.2 Geometric matching

Results In this work we have focused on the definition of the interaction loop and on the
definition of concrete setups. We have adapted a standard ICP to operate in real-time and
ensure coherent matching output with respect to successive user inputs. However, our basic
implementation has difficulties to converge when objects interpenetrate at the initial pose
due to the high number of closest vertices that are not at the contact surface.

Note also that for every pair of fragments, there are three parameters that have to be
adjusted beforehand which confers flexibility to the technique. However, it can sometimes
be tedious to correctly choose these parameters, especially for noisy and eroded objects.
This is a direct consequence of using the ICP algorithm for matching, as it only takes into
account positions and normals.

Perspectives The difficulty of using this kind of parameters motivates the use of an ad-
vanced geometry analysis in order to adapt them automatically. In future work, we plan to
use our multi-scale analysis directly during the matching process. First, we may use it for
corresponding point selection and pair weighting in the ICP. Indeed, our multi-scale descrip-
tor can be used as criterion for the selection of corresponding points, while the multi-scale
dissimilarity measure (see Equation 4.11) seems to be a valid candidate for pairs weighting.
A second possibility is to use our multi-scale analysis with a multi-resolution variant of the
ICP [JHO2]. This can be used to perform an adaptive sampling of the points depending of
their detected pertinence (see Section 4.4.3), or this might help to choose the best scales for
the generation of the different resolutions.

Another interesting topic is the incorporation of continuity constraints in the matching
process. Indeed, most of the methods usually minimize the distance between points, which
is not feasible for some real dataset with missing parts, like ours. We plan to work on the
possibility to add curve and surface continuity constraints in our matching process. For
example, we plan to minimize high-order derivatives of the completed surface represented
by the pairwise assembly, most probably by using an implicit formulation that is compatible
with our analysis framework. We emphasis that the objective is not complete the missing
parts, as in [HT10], but to ensure the coherency and alignment between fragments while
letting the missing parts empty.

5.3.3 Feedback

Results Concerning the feedback provided to the user, the informal user study shows
that the visual feedback helps analyze the position of the best match and reason about its
plausibility. Moreover, the graphical indicator allows the user to rapidly detect whether
the local matching of the contact surfaces converges well. By a combination of both visual
feedbacks, the user has a complete understanding of the global and local coherence of the
matching.
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The multitouch setup uses multiple views to provide the user with the possibility to see,
at the same time, both the matching result and the contact surface with the specified con-
straints.

Anyway in both cases, the use of flat displays to manipulate relatively to each others mul-
tiple 3D objects introduces an ambiguity on their depths. This problem has been observed
many times in our experiments. Despite our experiments with immersive setups [MRBO09],
we rather plan to address this problem by adding visual indicators in the 3D scene, such as
drop shadows.

Perspectives For efficient pairwise matching, it is often important to study fine details
on the surface of the fragments, either for comparing the contact zone, or for identifying
continuities on the profile. In order to increase the perception of fine details, we use an
expressive rendering technique [VPBT10] to emphasize the curvature of the surface (see
Figure 5.12). In future work we plan to use our multi-scale analysis to adapt the curvature
scale on the surface, depending on the local pertinent scale, and moreover on the scale of
the user-selected features. This analysis can be expressed integrally in screen space during
the rendering, as shown in Section 4.4.4.

Figure 5.12: Detail enhancement. Top: classical lit sphere shading. Bottom:
Radiance Scaling [VPB™10].

In the case of eroded objects, we also plan to introduce a visualization of the probability of
alignment of preliminary selected features, in the same way that we display a transparent
matched object in the tangible setup. This could assist the user to check the continuity of
features between both fragments. We emphasis that the goal is not to perform a shape com-
pletion, because this is only possible by combining archaeological knowledge with geometric
reasoning. Finally, the local coherence could further be improved by showing multiple local
error indicators, for example directly on the surface, instead of only one global indicator.
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Conclusion

In this chapter, we have presented a semi-automatic interaction loop for the real-time re-
assembly of fractured archaeological objects. This interaction loop consists of an efficient
interaction technique, a real-time matching algorithm, and a way to provide the user with
a visual feedback about the best match and its associated error. We consider the user as
the key operator of our approach: his or her knowledge and capacity to integrate semantic
information in the reassembly process are used to increase the performance of the match-
ing. We presented two concrete solutions for the efficient interaction technique, one based
on bimanual user interaction, and the other one based on a multi-touch interface.

Our first results of informal user studies of both solutions show that they are capable of
assisting an expert user in real-time during the pairwise matching of downsampled 3D
fragments. Although our algorithm is optimized with spatial data structures, it could fur-
ther be accelerated by a better exploitation of the system resources (e.g. multithreading or
GPU computation).

In future work, we would like to address both the improvement of the user interaction, and
the efficiency of the geometric matching. Concerning the bimanual tangible interaction,
we will study the possibilities to integrate haptic feedback, and concerning the multi-touch
interaction, we strive to let the user specify higher order constraints. In order to improve
the geometric matching, we plan to integrate higher order derivatives and a multi-scale
matching technique in the semi-automatic reassembly process.

For reassembly problems with a large number of fragments, we also believe that an a pri-
ori analysis of the all the fragments for salient feature detection at different scales could
be used to identify potential matching candidates and their initial relative poses that can
then be validated and refined by expert users by means of visual feedback. This first selec-
tion could reduce the number of potential matching candidates and thus make sequential
fragment matching more efficient.

As a conclusion, this work on pairwise matching defines guidelines to elaborate semi-
automatic fragment matching systems. We strongly believe that its association with our
multi-scale analysis will yield to the development of efficient solutions for concrete applica-
tions with complex datasets.
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Chapter 6

Conclusion

In this thesis, we have presented a new analysis framework for the multi-scale geometric
analysis of 3D objects represented as point sets, and a semi-automatic formalism for the
digital reassembly of fractured objects from strongly deteriorated fragments.

Growing least squares

In Figure 6.1, we show a synthetic view of the multi-scale analysis framework presented
in Chapter 4, which works both on 2D curves and 3D surfaces. Starting from an algebraic
hyper-sphere fitting procedure, defined implicitly by a scalar field, we have proposed a ro-
bust geometric descriptor, composed of three parameters:

e The 7 parameter that encodes the offset between the evaluation point and the fitted
hyper-sphere,

e the 1) parameter that represents the direction of the scalar field gradient and that, in
practice, corresponds to the normal vector, and

e the kK parameter that is the mean curvature of the fitted surface at the evaluation
point.

The resulting descriptor characterizes the surface at three differential orders, providing a
more robust description than the standard curvature. We have shown that our approach is
more stable than previous curvature estimations, even in the presence of noise, for both 2D
curves and 3D objects.

We propose an alternative to standard scale-space analysis by analytically differentiating
our descriptor along the scale dimension. We then use the result to continuously capture
the fitted sphere stabilities both in scale and space, via our geometric variation v. We show
how to use this analysis to define a dissimilarity function d that compares descriptors at
multiple scales and at different locations. We exhibit the relevance of this comparison at
locations that belong to multiple features at different scales, by detecting independently
each of these features. Despite the use of an isotropic fitting procedure, we have shown the
potential of our method to disambiguate and extract even anisotropic features.

Our analysis is efficiently performed using massively parallel GPGPU programming. As a
consequence, it is able to analyze point sets consisting of millions of points in a few minutes.
It is also parameter-less, and may be evaluated either for the entire object, or at specific
locations if required.

We have also presented preliminary studies to extend our analysis framework (the dashed
items in Figure 6.1).

A first topic that we plan to pursue is the explicit extraction of pertinent scales for a given
location. Starting from our geometric variation v, we have defined a Gaussian convolution
operator u that produces a strong local maximum for scales being at the end of a stability
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Figure 6.1: Synthetic view of the GLS framework. In bold: items presented in
this thesis. Dashed: future work directions.

interval and followed by important variations. This behavior has been detected in all of our
experiments, and seems correlated with the scales detected by the SIFT method in the case
of the 2D curves analysis. We plan to study this behavior more deeply in future work, and
to use the convolution operator u in concrete application cases, such as finding an adaptive
bandwidth for surface reconstruction.

We have also observed that our fitting procedure involves a drift effect. This means that
it takes into account the strongest nearby feature. The result is that the description of
the features is drifting in scale-space: the farthest a point from the center of the feature,
the earlier (in scale) it is detected by u. This behavior strongly motivates a study of the
descriptor variations when the evaluation point is moved. A better comprehension of the
drift effect could help to anticipate it in order to produce a more robust point dissimilarity
measure.

In a way similar to the analysis of the scale variations of our descriptor, we plan to work on
its spatial differentiation in order to explicitly extract complex structures. We have shown
that the involved derivatives can be computed analytically. Starting from the partial deriva-
tives of 7, 1, and k, we have proposed to build variation flows, one for each parameter
independently, or by combining them. These variations are related to other differential
properties: a gradient function defined on the surface (using 67), the principal curvatures
(using 67m), and the mean curvature variation (using ).

Semi-automatic matching

The semi-automatic interaction loop presented in Chapter 5 defines the guidelines to elabo-
rate reassembly systems for objects that are broken into a few fragments. The key idea is to
combine archaeological knowledge and algorithmic accuracy. Starting from a standard in-
teraction loop, we give the user the possibility to define some input to guide the reassembly
by an adapted interaction technique. Then, a real-time geometric matching kernel com-
bines this information and its incorporated analysis to match the fragments. The system
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provides feedback generated from the output of the matching process to help refine the in-
put, or validate the reassembly. This concept has been elaborated in a close collaboration
with researchers in archeology.

We presented two implementations of this loop. A first implementation uses a tangible
interaction technique. The idea is to manipulate by hand two fragments using tracked
props, in order to define an input position for the matching process. We detect the potential
contact surface of each of the two fragments in function of their respective distance, by using
an acceleration technique inspired from collision detection. The second implementation is
based on the definition of reassembly constraints by using a multi-touch surface. These
constraints define both the relative input positions and the set of points that are taken as
input for the matching process, and their relation.

In both implementations of the system, we use the same matching kernel, based on a real-
time ICP variant. We combine both the normal and position criteria to filter the input
points, and we ensure temporal coherence by using a smooth weighting function. This is
required to avoid popping effects in case of slight changes of the user input. Considering
the feedback provided to the user, we display the aligned configuration in a dedicated visu-
alization window or with alpha-blending, respectively for the multi-touch and the tangible
setups. We also display the ICP error thanks to a dedicated graphical indicator. We have
shown the relevance of both the tangible and multi-touch setups by the results of informal
user studies, and by our own experiments.

We plan to improve our concrete implementations of this formalism by working on its three
components: the interaction technique, the matching, and the feedback.

The multi-touch setup has been developed in collaboration with HCI researchers. We plan
to perform more formal studies on its relevance, for example by trying to find answers to
the following questions:

e Is the multiview setup a good solution to manipulate two fragments at the same time?

e How to efficiently define multiple constraints, such as constraints on the continuity
and on the contact surface?

o Which metaphor should be used for the multi-scale feature selection?
We also plan to study the influence of haptic feedback for the tangible setup.

Considering the matching process, we plan to work on the integration of new constraints
in the minimization process. It is not relevant to consider pairwise distance minimization
between fragments, because the original contact surfaces have been eroded. A promising
direction is to add continuity constraints between surface sheets or features represented as
3D lines.

In order to improve the feedback provided to the user, we plan to add some local indicators in
the 3D scene, in order to highlight the fragments’ shapes, the user input (e.g. the selected
features and defined constraints), and the matching output (e.g. the local minimization
error).
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Future research directions

The perspectives brought by this thesis are exciting because they propose to combine, on the
one hand, a theoretical and general analysis framework, and on the other hand, practical
systems specifically designed for a given application field: Cultural Heritage.

We plan to integrate our multi-scale analysis framework in the interaction loop. Indeed,
we believe that our semi-automatic conception is naturally compatible with the GLS frame-
work: the parameter-less part of the framework generates a low level analysis that may
then assist the user to perform specific tasks involved in the matching process. For ex-
ample, our analysis toolbox could help to perform advanced multi-scale feature selection,
select adapted input samples or define continuity constraints for the reassembly of eroded
fragments. The matching algorithm itself may benefit from the analysis, for example by
using the descriptor during the corresponding point research, with respect to a local user-
specified evaluation scale. It may also be used as a basis to adaptively re-sample fragments
in a multi-resolution ICP scheme [Jos02]. The flexibility of this approach is that our anal-
ysis is associated with multiple tools, yielding new degrees of freedom to parametrize the
reassembly. A last topic is the improvement of the accuracy and the quantity of informa-
tion that can be transmitted from the system to the user. For example, we plan to use new
multi-scale expressive rendering techniques to help the user better understand the frag-
ment’s geometry [VPB110]. This could be done independently for each fragment, but we
believe that a challenging topic is to transmit information that characterizes the geometry
with respect to the current reassembly hypothesis.

Besides the fragment reassembly, we also plan to use our multi-scale analysis to help ar-
chaeologists analyze virtual objects. For example, they usually need to compute slices on
objects: our approach could be used to compute an adaptive bandwidth in order to recon-
struct the 2D slice with an implicit reconstruction [GG07]. Another interesting topic is
related to orthophotos generated from planar surfaces. We plan to extract engraved pat-
terns at multiple scales from our variation flow, and potentially characterize the shape of
the tool that was originally used for the engraving.

Our analysis can also be used in other application cases. For example, in some methods of
2D curves morphing, a first step is to find correspondences between the initial and the final
poses [BBA09]. We plan to use our multi-scale dissimilarity to define correspondences at
different scales, and thus provide a control on which features should be interpolated.

The MLS formulation is also an advantage for the development of point-based editing
tools [ZPKGO02]. We plan to use our GLS analysis to detect pertinent scales and adaptively
decompose a 3D object in multiple surface approximation layers, a powerful multi-scale
representation for point-based modelling [PKGO06].

Finally, we are convinced that the work presented in this thesis represents a unified and
versatile framework for the development of various powerful tools to analyze, edit, and
visualize point-based objects regardless of their complexity.
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Appendix A

GLS closed-form fitting
differentiation

In this appendix, we present the successive steps that are required to differentiate our
descriptor with respect to the scale t: differentiation of the weighting function (Eq. 4.2),
closed-form fitting formula (Eq. 4.3), normalization (Eq. 4.4) and reparametrization (Eq. 4.5).

Weighting
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st 8 t2 ’

Closed-form fitting formula

Starting from the Equation 4.3, we can define
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Normalization

5
L ug — 4u, % and thus differentiate

T
We can differentiate the Pratt norm as \/ 2% w -4

the Equation 4.4 as
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Reparametrization

We can now compute our descriptor. We can first differentiate Equation 4.6:

57_ (O)—6ﬁc (A.2)
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The, in order to compute 1, we have to differentiate Equation 4.7 to obtain:
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Finally, the last parameter derivative is given by:
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Appendix B

Noisy 2D curve generation

Source code used to generate 2D curves in Figures 4.10 and 4.25.

-

21

23

51

#!/usr/bin/env python

This 2D curve is disturbed using noise on
— positions,

— normals+positions,

— normals

Generated curve is printed as
X y nx ny

woon

__author__ = "Nicolas Mellado"

__email__ = "nicolas.mellado@inria. fr"

import random
import math as m

#parameters

nbElement = 1440

radius = 100

noiseMax = 0.10 * radius
normalNoiseMax = 0.2
sinusDispl = 0.12 * radius

# constants

pi = 3.14159265358979323846

pi2 = 2xpi

angleInRadian = 2.0xpi/float (nbElement)

coord = []

# generate inital shape
for i in range (nbElement):
angle = ixangleInRadian

# combinaison of a circle
x = m.cos(angle) x radius
y m. sin (angle) * radius
nx = m.cos(angle)
ny = m.sin(angle)

# and a sinus as displacement

displ = m.sin(4.xangle) * sinusDispl
X += nx *x (displ)
y += ny * (displ)

coord += [x,y]

# create noise: position, position+normals, normals

for i in range (nbElement—1):
# get coordinate back
x = coord[2xi]
y = coord[2xi+1]
nx coord[2*(i+1)+1] — coord[2xi+1]
ny — (coord[2%(i+1)] — coord[2xi] )

for noiseType in range (3):
#setup
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sift (3+noiseType) *((nbElement—1) / 4.0)
59 posNoise = noiseType > 0
normalNoise = noiseType < 2

# compute weight in function of current angle

63 angle = ixangleInRadian + sift
while angle >= pi2:
65 angle —= pi2
w = (angle—pi) / (pi)
67 w x= 4.0
69 # apply noise only where it’s needed

if(w<l and w >—1):
71 w=w=xw-—1
W=WHxW=HxW*xW*xW*x W * W * W

# displacement

75 if (posNoise):

noise = w * ( 2.0 * noiseMax * float(random.random()) — noiseMax)
77 X += nx * (noise)

y += ny * (noise)

79

# normal noise

81 if (normalNoise) :

nx += w * ( 2.0 * normalNoiseMax * float(random.random()) — normalNoiseMax)
83 ny += w % ( 2.0 x normalNoiseMax * float(random.random()) — normalNoiseMax)
85 nNorm = nxX*nx + Ny*ny

nx = nnorm
87 ny /= nnorm

print x, y, nx, ny
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