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Introduction

The recent years have witnessed a revolution in condensed matter physics. It consisted
in discovering a wealth of new phases of matter that are not distinguished by broken
symmetries, but from the topology of the wave-functions describing the system [[I]-3].
The tremendous work from recent years has a starting point in the theoretical proposal
of two-dimensional Z, topological insulators (the quantum spin Hall insulators) [#, 5]
and the rapid experimental discovery in HgTe/CdTe quantum wells [6]. Soon after, it
was understood that the 2D quantum spin Hall insulator is but an instance of possible
topological insulators and superconductors. Venerable phenomena such as the Shock-
ley surface states [[7]], the topological excitations in the Su-Schrieffer-Heeger polymer
chain [8], the integer quantum Hall effect [9], and many others, were all put together as
pieces of a greater picture; these phenomena crucially depend on the presence of edge
states that are manifestations of topological phases in a gapped bulk.

The topological insulators and superconductors share the same intriguing feature:
the presence of robust edge states in the bulk gap. For example, the edge states are not re-
moved under the action of weak disorder which does not close the bulk gap. Hence the
persistence of these states cannot be attributed to the point group symmetries, which can
be destroyed in the presence of disorder. In the absence of point group symmetries, one
is left with at least two basic discrete symmetries: time-reversal symmetry (TRS) and
charge conjugation or particle-hole symmetry (PHS). They form the basis for the clas-
sification of non-interacting gapped Hamiltonians in arbitrary dimensions [[10]. This
allowed to group the Hamiltonians into ten classes in each spatial dimension.

More precisely, the time-reversal and charge conjugation acting on a Hamiltonian
matrix, in a basis of creation and annihilation operators, are represented by the anti-
unitary operators, ¥ and €, that can square to £1 [[11]. Then, counting also the possibil-
ity that the system is not invariant under these symmetries, there are 9 possible classes. A
third chiral or sublattice symmetry (SLS) is represented by a unitary operator & = €.
The value of & is entirely determined by the behavior of € and ¥, except in the partic-
ular case where SLS is a symmetry of the system when both TRS and PHS are broken.
This case raises the number of symmetry classes to 10 [11]. The resulting classification

is represented in Tab. [I]



INTRODUCTION

’ System | Cartan nomenclature || TRS [ PHS [ SLS [ d=1|d=2|d=3|
standard A (unitary) 0 0 0 - 7
(Wigner-Dyson) Al (orthogonal) +1 0 0 - - -
AII (symplectic) -1 0 0 - Zs Zio
chiral AIII (chiral unit.) 0 0 1 Z Z
(sublattice) BDI (chiral orthog.) || +1 | +1 1 Z - -
CII (chiral sympl.) -1 | -1 1 7 Zio
BdG D 0 +1 0 Lo Z -
C 0 -1 0 - / -
DIII —1 +1 1 Zo Zo 7
CI +1 -1 1 - - Z

Table 1: Classification of free fermionic gapped Hamiltonians as a function of sym-
metries: TRS, PHS and SLS. The dimensionality is denoted by d. The present thesis
touches almost exclusively models belonging to the classes marked in red. (Table taken

from Ref. [[13].)

Furthermore, not all gapped ground states for a given class are identical. Five classes
in every dimension have gapped ground states that are divided into topological sectors.
The Hamiltonians in these classes form the topological insulators and superconduc-
tors [11-]14]. Note from Tab. [I] that they have associated a descriptor, Z or Z,. This
denotes the topological invariant that describes the ground state of the system and is
used throughout to identify the type of topological insulator (superconductor). The in-
variant counts how many distinct gapped phases are in a specific class: only two, Z,, or
a numerable infinity of phases, Z. Always one of the gapped phases is trivial in the sense
that it can be adiabatically connected to the vacuum. Passing from a gapped phase to an-
other requires closing the bulk gap [[12]]. Connecting two topologically distinct gapped
phases of topological insulators (superconductors) creates an interface where edge states
appear. This general result is called the bulk-boundary correspondence [[13, 16] and is
the basis of the physics grown around the subject of topological insulators (supercon-
ductors). The robust edge states are a consequence of connecting ground states with
different values of the topological invariant. Adding a weak perturbation that obeys the
symmetries specific to a class, cannot destroy these states.

From a practical perspective the robustness of edge states constitutes a central moti-
vation to study the topological materials. For example in 2D and 3D, the edges harbor
quantized metallic states that are robust with respect to disorder and could carry cur-
rent without dissipation. A prime example are the integer quantum Hall edge states.
They belong to a 2D Z insulator in class A that is described by an integer topological
invariant, the first Chern number C. Weak disorder does not destroy the edge states
and, furthermore, they are quantized; they carry current and have a Hall conductance

proportional to C [17-19].

There are five non-interacting topological insulators and superconductors in each

2



INTRODUCTION

dimension. Nevertheless, not all of them have found an experimental realization. This
poses a continuous challenge to condensed matter physics; from the experimental point
of view, it is to find or engineer systems that will support topological phases of matter
and, of course, to detect these exotic states of matter. The theoretician needs to pro-
pose possible candidates, imagine detection schemes and good quantities to measure.
Furthermore, the road ahead is not entirely mapped. At the moment, it still remains to
have a systematical view of the topological matter in the context of interacting systems.
Already the classification schemes for free Hamiltonians need to be revised in this new

light [20-22].

In this thesis

The present thesis will not dwell on the abstract matters concerning the classification
of topological insulators and superconductors. It is applied entirely to non-interacting
topological insulators and superconductors as the ones classified in Tab. [I. The table
should be used to pinpoint the object of the present study in a more general context.

The thesis is divided into two parts. Each one will receive a more detailed introduc-
tion at its respective beginning. It suffices here to draw the main directions of research.

The first part of the thesis is focused mostly on 2D topological insulators in class
A. The most famous inhabitant was already named: the integer quantum Hall effect
(IQHE). Here TRS is broken through an external magnetic field. However, a differ-
ent possibility exists, that was first illustrated by Haldane [23]. Theoretically the IQHE
physics can arise in the absence of an external field, by adding fluxes at the scale smaller
that the cell size, but which cancel overall. Thus TRS is still broken, and one could ex-
pect dissipationless current at zero magnetic field. Such a model did not have an exper-
imental fulfillment, but was central in imagining the first Z, insulator in graphene [4].
Due to its connection to IQHE, the Z insulator was named quantum anomalous Hall
(QAH) insulator. The topological invariant characterizing the 2D QAH insulators re-
mains a Chern number.

The present study focuses mostly on minimal two-band models of QAH insulators
and investigates the conditions for the production of bands with high Chern number.
The nontrivial aspect of the research is that the high Chern number is not obtained by
multiplying the bands, but by creating a single band with a high Chern number. This is
reflected as usual in a multiplication of the edge channels.

Chap. [I] is concerned entirely with the bulk characterization of QAH insulators in
a tight-binding formulation. It is shown how one can simplify the treatment of these
models to the study of systems with Dirac points. Subsequently, producinghigher Chern
number reduces in this case to the requirement that the nodes in the dispersion for gap-
less models are multiplied through addition of hopping terms between distant sites. The
theory is first put to test in the context of an endogenous artificial model with five Chern
phases, and, secondly, by modifying the QAH Haldane model.

Chap. Pl contends mostly with numerical and analytical solutions for edge-state wave

3



INTRODUCTION

functions in a model with Chern |[C| = 2. Moreover, a few extensions to four-band
models are analyzed using the methods developed in the previous chapter, and their
topological phase diagram is determined.

The second part of the thesis is centered around the study of Majorana fermions in
a spin-orbit coupled semiconducting wire in the proximity of an s-wave superconduc-
tor [24, 25]. This physical system realizes a one-dimensional topological superconduc-
tor in class D (see Tab. [[]) that supports particular edge states: the Majorana fermions.
An introduction to these fascinating (quasi)particles is offered in Chap. .

In Chap. [ the system is reconsidered in the presence of Dresselhaus spin-orbit inter-
action. It is shown that the spin of the electronic degrees of freedom of the zero-energy
edge modes responds to ratio between the Rashba and Dresselhaus spin-orbit coupling.
There is an opposite spin-polarization of the edge modes, in a direction transverse to a
magnetic field, which could be accessible through tunneling spectroscopy. The follow-
ing chapter (f) considers hybrid structures of the types: superconductor-normal and
superconductor-normal metal-superconductor built upon the aforementioned system.
Furthermore, it investigates ring geometries, under the action of a uniform supercon-
ducting phase gradient, which in certain condition can be mapped to a SNS heterostruc-
ture. The central interest lies in the extended nature of Majorana fermions that develop
in the normal part of the heterostructures.

Finally, Chap. § changes gears and touches upon Majorana fermions in a two-band
tight-binding BDI class superconductor. The interest lies in the fact that the system is
described by aZ topological invariant and supports several Majorana fermions at its edge
(see Tab.[D)). It is important to note the connection with the Z insulators treated in the
first part. The same mechanism, i.e. addition of coupling terms between distant sites, is
responsible for creating multiple zero modes. Conclusion and possible perspectives are
contained in the final chapter.
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Chapter 1

Quantum anomalous Hall phases ina
two-dimensional Chern insulator

1.1 Introduction

The quantum spin Hall (QSH) insulator that debuted the recent excitement in the
field of topological insulators (and superconductors) [I-3] has one important precur-
sor which is the subject of the first part of this thesis. It is the quantum anomalous Hall
(QAH) insulator that received a first theoretical realization in the work of Haldane [23].
It is a Z insulator that has chiral edge states similar to those of integer quantum Hall ef-
fect (IQHE) with the crucial difference that they exist in zero magnetic field. A QAH
insulator in two dimensions exists only in class A, which lacks TRS, PHS or the sublat-
tice symmetry (see Tab. [I]). It will be also referred in the following as a Chern insulator
due to the fact that it is described by a Chern topological invariant C. Because it requires
no particular discrete symmetry, one expects that edge state of this system are extremely
robust, similarly to the ones in IQHE [9]. Furthermore, it acquires a quantized Hall
conductivity proportional to the Chern index, oy = C x €?/h.

The Haldane tight-binding model is treated in more detail in Sec. [[.4. It sufhces to
say that it describes spinless electrons and the TRS is broken through currents induced
at a scale smaller that the cell size. More generally, in a spinful system such physics could
be caused by magnetic ordering in the presence of spin-orbit interaction [23, 2§]. Theo-
retical proposals to realize QAH invoke effects of disorder in metallic ferromagnets [26]
or magnetic doping of QSH insulators [27]. However, to this moment, there is no indis-
putable physical realization of the QAH insulator, and only recently experimentalists
claim detection in magnetic topological insulators [28]. By contrast, the QSH effect
was ostensibly investigated in HgTe/CdTe quantum wells [6]. The birth of the QSH
insulator is related to the insight that combininga QAH insulator with its time reversal
copy produces a time-reversal invariant (TRI) Z, insulator that can have spin-polarized
chiral edge states [4].



1.2 BULK CHARACTERIZATION OF A CHERN INSULATOR

The question that drives the first part of the thesis is how to determine efliciently the
topological invariant for the case of a two-band non-interacting Chern insulator (sce
Sec. [[.2)). Moreover, how can one multiply the topological phases in the system while
keeping only two bands? Equivalently, how can there be a single band with alarge Chern
number? Note that without the two-band constraint, the answer must follow the same
lines of the IQHE; the number of edge channels is multiplied by having more bands [29,
30]. The search for bands with high Chern numbers in QAH insulators has recently
intersected with the study of flat band topological models in which it is expected to
encounter fractional quantum Hall effect [31-33]. In this context, the search for high
Chern numbers was motivated by the need to discover physics above the lowest Landau
level [B4-37].

The short general answer that is elaborated in the present thesis claims: a single band
can increase its Chern number by adding distant-site hoppings in the system [38]. (The
same question was answered in the context of flat-band topological models by showing
that a multi-band system can be projected to a two-band model with effective distant-
neighbor hoppings [37].) In particular, these questions are given a more concrete an-
swer by building a model with five Chern phases in Sec. [[.3 and by creating high Chern
phases in the Haldane model in Sec. [[.4. This question can be seen as a bridge to the
second part of the thesis, where couplings between distant sites can produce several
Majorana modes at a single edge. There the time-reversal and chiral symmetries ensure
that they do not hybridize to form regular electronic states (see Chap. [§). The second
chapter treats mostly the edge physics in a model QAH insulator. There the question is
how to determine analytically and numerically the edge states in a model with |C| = 2.
Finally, the chapter contains two extensions that show ways in which the analytical de-
termination of the Chern number can be used in cases of four-band models. Sec. 2.3
treats a four-band TRI Zy model. Here the edge states from |C| = 2 are gapped by TRI
one-particle perturbation. In Sec. 2.4 the Chern number is used to predict new metallic
states that appear in a “striped” topological insulator.

1.2 Bulk characterization of a Chern insulator

1.2.1 Topological invariant
Chern number for a class A insulator in 2D

This subsection contains a description of the topological invariant that characterizes a
two-dimensional Z topological insulator in class A. This insulating system has no chiral
symmetry or any of the anti-unitary symmetries: TRS and PHS. Subsequently it is char-
acterized by a Chern number. The main argument advanced here is that the topological
invariant can receive a discrete formulation that allows to draw a direct parallel with the
physics of Dirac fermions. The discrete formulation of the topological invariant has the
added interest that gives an eflicient way to compute and discriminate the topologically

8



1. QAH PHASES IN A 2D CHERN INSULATOR

insulating phases of a two-band insulators.
The tight-binding Hamiltonian for a free fermion theory is written in a site basis

H=3 elij(il+ 3 tli) il (1.1)

The on-site energy is given by ; and the hopping integrals between different neighbor
sites are given by ¢;;. In the following, only systems without disorder are considered.
Therefore the system is invariant under a translation with a Bravais lattice vector. A
Fourier transform allows to express the Hamiltonian in reciprocal space

H=Y" 1l k) (K|, (12)

keBZ

where |k) are Bloch states. Because there are no anti-unitary symmetries imposed, the
Hamiltonian H is generally a matrix in Herm(n), the set of n x n Hermitian matrices
with complex coeflicients. There are n bands that can be due to the presence of differ-
ent orbitals per site and nonequivalent atoms in a unit cell. Note that the variable k is
continuous and the Brillouin zone is a manifold, a torus 7. To each point in the BZ,
H (k) associates a value, and therefore it is a mapping from the torus to the parameter
space of H

H:T? — Herm(n). (1.3)

Topology enters the discussion with the following question: when are two Hamil-
tonians A equivalent? They are equivalent if the functions can be smoothly deformed
into each other. From a topological point of view they are homotopically equivalent.

The Chern number indexes the classes of homotopically equivalent functions . For
the multiband system it can be defined using the notion of projector on the occupied
bands. If there is a gap between the valence and conduction band, then the phases are
indexed by

C=— [ Te(dP A PdP), (1.4)
21 Jaz
where P is the projector on the occupied bands [39].

A non-zero Chern number can be understood as an obstruction to a global gauge
choice for the wave function on the BZ. Physically this phenomenon is directly related
to the quantization of the Hall conductivity o = C x €?/h, where C corresponds to the
number of edge states [[I7, #0].

In the following, the focus is almost entirely on two-band band translation invariant
Hamiltonians (n = 2). Hence the momentum space Hamiltonian can generally be
decomposed in a basis of Pauli matrices

H=> huk)- o, (1.5)

pu=0



1.2 BULK CHARACTERIZATION OF A CHERN INSULATOR

The o Pauli matrices are not given a physical interpretation for the moment. They might
refer to a space of two orbitals on a site or two nonequivalent sites in the unit cell. The
term hyoy just shifts identically the energy bands and does not modify the topology of
the Hamiltonian. It is neglected in the following, and therefore the Hamiltonian reads

H(k) = h(k) - o. (1.6)

This form is reminiscent of a Zeeman Hamiltonian for a spin 1/2 particle in a magnetic
field, except that the “field” h(k) is defined in momentum space. There are two energy
bands given by

E. = £h|. (1.7)

For an insulating system, there is always a gap between the bands. Therefore the
three vector components of h(k) never vanish simultaneously, when k varies in the BZ.

Then it follows that the unit vector Hamiltonian h

h = h/|h| (1.8)
is well defined. Under the simplification of having only two bands, the Chern number
will index phases of h

h: T2 S2 (1.9)

from the BZ to the Bloch sphere. The bands of h correspond to a flattening of the bands
pertaining to the original Hamiltonian. This adiabatic flattening preserves the gap and
thus preserves the topology for the Hamiltonian [[12]. This observation amounts to say

that the target space of h, i.e. R\{(0, 0, 0)}, is homotopic equivalent to S?. Then h can
be thought of as a composition h = proj o h, where

proj : R*\{(0,0,0)} — S (1.10)

is the central projection to the unit sphere.

All functions h that can be smoothly transformed into each other, while preserving
the spectral gap, form a homotopy class. In Z insulators there is a integer index dis-
tinguishing the different phases (i.e. the different homotopy classes) of h, the Chern
number C. A different way to express this idea is to say that the homotopy group of
the mapping h is the group of integers Z. Without elaborating on these issues that go
beyond the scope of the present section, it is noteworthy to point out that Chern num-
bers index mappings between d-spheres, here 5 — S%, and the homotopy group is
7(54,5%) = 74(S?) = Z. However, the homotopy group of the torus is equivalent to
that of the sphere,

m(T?,5%) = my(S?) = Z. (1.11)

10



1. QAH PHASES IN A 2D CHERN INSULATOR

Then TKNN numbers used to index the integer Hall phases [[I7, #1] are indeed Chern
numbers [42]].

These considerations extend to the case of the n-band systems with nondegenerate
bands where the topological invariant is given by a vector of Chern number of dimen-
sionn — 1

mo(Herm(n)) = @Z. (1.12)

Each band hasan associated invariant, such that the sum of Chern numbers for the entire
system is zero. The n — 1 dimension of the vector follows because the invariant for any
one of the bands is entirely determined by the sum of the other invariants [42].

Chern number as a finite sum

Let us come back to the two-band case in order to find a workable formula for the topo-
logical invariant. The projector on the occupied band in terms of h reads
1 .

Pzi(ao—h-a). (1.13)

The substitution of P in Eq. ([[.4) yiclds immediately the expression for the first Chern
number for the occupied band
c—L [ akh. (O, b x B3, h). (1.14)
47T BZ ’

The above formula shows that the Chern number is a winding number that counts
how many times does the surface traced by h wrap around the origin (0,0,0) when k
varies in the BZ [#3]. The only practical difficulty in determining the Chern number
lies in performing the integration in Eq. ([[.14)). The main point of this section is that
C can be computed using a discrete summation by determining directly the Brouwer

degree of the map h [#4, &3] (defined below).

The condition to calculate the degree of h are met: 72 and S? are orientable man-
ifolds without boundary and have the same dimension, 77 is compact and S is con-
nected. In the general case, for a point k in 77 one defines the derivative map between
tangent vector spaces

dh(k) : TT* — T.S2. (1.15)

Letsgn dﬂ(k) stand for the sign of the corresponding Jacobian atk. Then Chern number
C is equal to the Brouwer degree of h at a regular point z on the unit sphere

c= Y sgndhk). (1.16)

keh—1(z)

11



1.2 BULK CHARACTERIZATION OF A CHERN INSULATOR

The Chern number can be computed also in terms of h in the following way. For
convenience, let M denote the image of the BZ through h

h(T?) = M c R*\{(0,0,0)}. (1.17)
Consider the set Y = M N proj ' (z). Then one has

C= Z Z sgn[(Ox, h x 9, h) - n], (1.18)
)

yEY keh—1(y

where the n is the unit vector towards z. This expression is just the generalization of the
calculation of the winding number for a closed curve in 2D wrapping around a point
p [49, 46].

The formula in Eq. (T.18) can be further simplified by an appropriate choice of the
point z. The central projection proj maps any intersection point between M and a ray
originating at (0, 0,0) to z. If this ray does not cross the surface M traced by h, then it
follows that the surface does not wrap around the origin and the Chern number is zero.
For a point z on S?, one can immediately obtain a set of points on M that project to z
through proj. Since the expression ([[.16) does not depend on z, the choice of the latter
can be guided by convenience. For instance, one can consider z lying at a coordinate
axis. Let us choose for example the o3-axis which intersects M in a set of points. This
is equivalent to say that the components on the other axes are zero. Said differently, the
intersection of M with the o3-axis are images of the band touchings originating from
the simplified Hamiltonian oy h; 4+ 02hy. Consequently, instead of integrating over the
entire BZ, one only needs to consider the band touchings of the simplified Hamiltonian.
Note that if hg is also zero at these points, then the system is not in a gapped phase.

It only remains to account for the orientation of the surface at the intersection points
with o3-axis. This can be done by studying the projection of the surface normal vector
on the o3-axis (O, h x 0, h)3. When h3 > 0, assume that the orientation is (41) when
the sign of the projection is positive and, (—1), when the sign is negative; the converse
is true when h3 < 0. Then finding the Chern number amounts to a computation of a
finite sum. Since the entire o3-axis was considered, instead of a ray, the sum yields twice
the value of the Chern number.

The above argument can be generalized and summarized in the following formula
for Chern numbers describing 2-band systems

1
C = 5 Z sgn (9, h x O;,,h) sgn(h;). (1.19)

keD;

where i is an arbitrary axis chosen in (pseudo-)spin space. Therefore the integral over
momenta k in the BZ becomes a finite sum over k in the set of Dirac points D; for
Hamiltonians H [h; = 0] (where H is the original Hamiltonian h- o). Note that division
by two is required because the entire axis was considered, instead of a ray originating in

(0,0,0).

12



1. QAH PHASES IN A 2D CHERN INSULATOR

Kz

Fig. 1.1: An example of a discrete calculation of a Chern number. The topological invari-
ant is calculated at single point z on the Bloch sphere. Here it has two preimage points

on the BZ, P, and P,. Under h, a basis at P, changes orientation when going to z. Then
at z there are two topological charges canceling to give a zero Chern number.

Discussion

The topological invariant for an insulating system was connected to a simpler analy-
sis for gapless two-band system that possess Dirac points. Once the Dirac points were
identified, it is immediate to compute their chirality x

xXi(r) = sgn[ (9, h x 8kyh)i]|n. (1.20)

The quantity y indicates if the Berry phase gained by the wave function around the Dirac
point is £. Subsequently the system is gapped by h;, which is the so called mass term.
Then mass sign h; and the chirality x; are sufficient to determine the Chern number C
which indexes the insulating phase of the Hamiltonian. Note that due to the general
arguments made above, there is no intrinsic meaning for the mass term and any compo-
nent of h can play the mass role.

There isan important caveat to the above formula that needs to be addressed: itis not
always true that preimage points for the intersections of axis with the Bloch sphere are
Dirac points for the gapless systems. They can correspond to nonlinear band touchings
such that the sign of the Jacobian at the band touching & is not defined. This situation
arises when the band touching is due to a merging of Dirac points. Then the first deriva-
tives of h vanish, leading to x = sgn[0]. Note that these cases correspond to a folding
of the manifold M exactly on the spin axes (see Fig. [[.2)). However the Eq. ([.19) re-
mains useful. The first solution to maintaining its pertinence, is to choose a different
axis in order to avoid the diabolical points where M folds. The second solution, which
is illustrated in Sec. [[.4, consists in determining C from an analysis of chiralities pertain-
ing to converging Dirac points. The idea rests on the fact that the merging solutions
requires tuning the convergence of multiple Dirac points and it is generally unstable to
perturbations. Then a small perturbation in the parameters of the Hamiltonian (a per-
turbation that does not cause a topological transition) splits the merging point into a set

13



1.2 BULK CHARACTERIZATION OF A CHERN INSULATOR

M

________

Fig. 1.2: Examples of situations that arise when computing the Chern number C asa finite
sum. Here the privileged axis is 03 and therefore hyoy + hao is a gapless Hamiltonian.
The surface traced by the full h, M, has a fold at 03-axis, such that the preimage of z gives
a band touching with quadratic dispersion for the gapless model. This is an example of
a diabolical point on the Bloch sphere that must be avoided in order to determine the
insulating phases of the full model, using Eq. (I.19). At the other pole, there is the usual
case of a well-behaved point w, that has a Dirac point as a preimage. When there are
only Dirac points as preimages of z and w, the topological invariant is resolved as a sum
over their chiralities using the finite sum formula.

of Dirac points. Furthermore, it was shown that the topological charge associated to a
band touching with higher dispersion is conserved and equals the sum over the chirali-
ties of the Dirac points [47, 48]. Then the diabolical points can be treated as limit cases
for the same system close to the merging point and with multiple Dirac fermions.

Let us suppose for the moment that the privileged axis is o3 and the poles have only
Dirac points as preimages in BZ. There are a few interesting consequences that ensue.

The sum over the chiralities of Dirac points is always zero. This is seen by adding a
large constant mass term such that there is zero Chern number. Equivalently the Bloch
sphere is translated on the o3 axis such that the origin (0, 0, 0) is no longer included in
the sphere. Then the sign of the mass can be factored out, and under the constraint
C = 0, the sum over chiralities must yield zero.

Also note that in order to get a nonzero Chern number, the mass term must change
its sign at least once. This gives a meaning to the requirement of “inverted gap” in order
to have nontrivial phases.

14



1. QAH PHASES IN A 2D CHERN INSULATOR

There is an equal number of Dirac fermions with y = 1 as those with y = —1,
because the sum over chiralities is zero,. It follows that there is always an even number
of Dirac fermions. This affirmation agrees with the predicted doubling of fermions on
a lattice [49]. However, an odd number of Dirac fermions are permitted when the full
Hamiltonian h is considered. This is the case at an interface between two Z insulators
where the Chern number changes by an odd integer.

Finally, for a given model there is always a limit to the largest possible Chern phase
and it manifestly depends on the minimum number of Dirac points. Let us suppose
that the number is 2n because there is an even number of Dirac fermions (n € Z). Then
the largest Chern number phase has |C| = n and it corresponds to gapping all Dirac
fermions with a mass term that changes sign between the Dirac points. More precisely,
the product between the chirality of a Dirac fermions and the sign of the mass that
gaps must remain constant. This observation opens the road to the present chapter that
essentially explores the notion of creating large Chern topological phases in model Z
insulators in class A.

1.2.2  Examples

The efficiency of Eq. ([[.19) to discriminate the topological phases is exemplified here on
a couple of popular models of topological insulators: the Haldane model [23] and the
Bernevig-Hughes-Zhang [5] (BHZ) “spin up” Hamiltonian for the Hgle/CdTe quan-

tum wells. They will be treated at a formal level, only as an illustration of the technique.

Haldane model

Let us start by considering the paradigmatic Haldane model [23]. A more detailed anal-
ysis is undertaken in Sec. [[.4. Here suffices to observe that it can be seen as a modifica-
tion on the graphene tight-binding system. The latter lives on a hexagonal lattice built
out of two inter-penetrating triangular sub-lattices with A and B atoms. It is usually ap-
proximated as having only nearest-neighbor (NN) electron hopping with the hopping
integral ¢;. The Haldane model contains also next-nearest-neighbor (NNN) hopping
t2, such that when the hopping is performed clockwise in the unit cell the electron gains
a phase ¢. However, the overall phase on the unit cell is zero; there is no net magnetic
flux. Let the vectors (ay, as, a3) describe the displacements from B atoms to NN A atoms
and b; = 1¢;;,(a; —ay) vectors relating NNN sites (see Fig. [[.3). The time-reversal sym-
metry and particle-hole symmetry is broken by the presence of the flux ¢. It also has
an on-site energy £/ that has a sign alternating between the A and B sites. This term
destroys the chiral symmetry of the lattice and therefore according to the classification
of non-interacting, gapped, fermion systems, the Haldane model has insulating phases

described by a Chern number.
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The Bloch Hamiltonian reads

3
H(k) = Z {2t; cos(¢) cos(k - b;)og + t1[cos(k - a;)oq + sin(k - a;) o]
i=1
M . .

+ [? — 2ty sin(e) sin(k - b;)] o3} (1.21)
The term o3hs is chosen as the mass
term, and therefore the gapless submodel
is the graphene Hamiltonian (M — 0
and &, — 0). The Dirac points in
graphene are positioned at time-reversed
points Kand K’ = —KonBZ, where K =

(375, 0). The chirality of the Dirac points

is readily determined from Eq. ([[.20)
Y(£K) = +1. (1.22)

In order to calculate the Chern num-
ber, one must also consider the mass sign

at the Dirac points, My = h3(£K),
My = M F 3V/3tysin(¢).  (1.23)
Therefore, using Eq. ([[.19) one recovers

Haldane result for the Chern number

Fig. 1.3: Schematic representation of the

C — l(sgn/\/l_ —sgnM,). (1.24) Haldane model. The A (B) sites are repre-

2 sented by white (black) bullets, o (»). Along

The transition from a topological in- the dashed lines an electron gains a phase ¢

Sulator toa normal insulator is marked by in thC direction Of thC 1‘€d arrows. The vec-

a semi-metal state, where the gap closes tors a and b are the NN and, respectively,
at least at one Dirac point when M = NNN displacement vectors.

+3+/3ty sin(¢). In the normal insulating phase Dirac points have identical associated

mass sign, such that C vanishes.

BHZ model

The Chern number calculation can be exemplified in the case of the recently discovered
Zs insulators such as the 2D Hgle/CdTe quantum wells [5]. The low energy Bloch
Hamiltonian is written in a basis of four states |E1,m; = 1/2), |Hl,m; = 3/2),
|E1,m; = —1/2),|H1,m; = —3/2) and it has the form

i = (H ék) - (O_k)) . (1.25)
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Dirac points ~ (0,0)  (w,0) (0,7) (mr) C
mass hs M M—-4B M —-—4B M —8B
chirality + - - +

M <0

M € (0,4B)
M € (4B,8B)
M > 8B

|+ +
|+ +
|

0
_l’_
0

+ + +

Table 1.1: Chern phases for a “spin-up” BHZ model as a function of system parameters,
with B > 0.

The system respects time reversal symmetry and realizes a Z, topological insulator. How-
ever it is assembled out of two Chern insulators: H (k) and its time reversed copy, in-
dexed by C and —C. If there are no interblock matrix elements, the topological invariant
can be determined as a spin Chern number, expressed as C mod 2 [50].

Therefore it is enough to pick one Chern insulator, and illustrate the computation

of C[H (k)].

H(k) = Asin(k,)o1 + Asin(ky)os + [M — 2B(2 — cos(k,) — cos(ky))]os,
(1.26)

where A, B, M are material parameters. Let us consider again the surface traced by h
and choose 073 as a special axis. The points where the o3-axis pierces the surface are given
by the condition that h; and hy vanish simultaneously. That determines four “Dirac
points” (g, 4,) € {(0,0), (0,), (,0), (r, 7)}.

The chirality of each Dirac point is given by Eq. (.20)

x(q) = sgn[cos(g;) cos(gy)] (1.27)

evaluated at all Dirac points. The mass term hg has the following expression at the Dirac
points, h3(0,0) = M, h3(0,7) = hy(m,0) = M — 2B and hs(m,7) = M — 4B.

The Chern number can then be easily computed for different values of M and B
by summing over the Dirac points. The results for the case B > 0 are summarized in
Tab. [I.1].

From Tab. it follows that as M varies between 0 and 8B, the Chern insulator
H (k) exhibits two topologically nontrivial phases with C = 1. When M is outside the
(0, 8B) region there is only a trivial insulator phase. Therefore nontrivial Chern phases
will yield also nontrivial Z, (QSH) phases.
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1.3 Model building of a topological insulator with large
Chern phases

1.3.1 General discussion

The objective of the present section is to explore in more detail the question of how to
imagine two-band topological insulators with high Chern number. It is argued that un-
derstanding the topological invariant as a finite sum in addition to the symmetry con-
straints is sufficient to produce Hamiltonians with large Chern phases. In particular,
following theoretical considerations, a simple model which can be tuned through five
insulating phases, C € {0, +1, £2} is produced step by step.

Note that when more than two bands are allowed, high Chern phases can ensue
readily by having each occupied band contributing to the overall conductance. This is
indeed the case of the integer quantum Hall effect where the larges Hall conductance
is given by the number of bands. However the question posed here is how to create a
single band with a high Chern number. Arguably, there is a gain in theoretical control
of this situation, with all the insulating phases determined analytically.

The answer to the central question was already mentioned briefly in the previous
section. It comes down to the way a Z insulator was understood by decomposing it into
a gapless model with Dirac fermions and a mass term that gaps them [38].

For a system with translation symmetry, the application of Bloch theorem allows to
write a general Hamiltonian in k-space

H=h-o, (1.28)

where the identity koo was dropped out because it does not weigh on the topological
properties of the model. The Pauli matrices represent a pseudo-spin degree of freedom
due to the presence of two orbitals on a site or two sites in the unit cell.

To fix ideas, the h3(k)os is chosen as the mass term throughout the section. Hence
the gapless model Hy, reads

ng = h1<k>0'1 + hQ(k)O’Q. (129)
The Chern number from Eq. ([[.19) reads

1
C= 3 Z sgn (Ok,h x d;,h) sgn(hs). (1.30)

keker Hyo

The kernel of H;5 contains all the values of k for which hy and hs vanish simultaneously.
They are band touchings of the the gapless model Hi, and, in general, they are Dirac
points with chirality given by x = sgn (9, h x 9, h) 5

Then a necessary condition to obtain a Chern insulator with large Chern phases is
to create multiple Dirac points. The largest Chern phase can be obtained by tuning a
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1. QAH PHASES IN A 2D CHERN INSULATOR

mass term such that the product of the chirality and the gapping term is constant for all
Dirac points. Therefore, if there are 2n Dirac points the largest Chern number is n.
Because h is periodic on BZ, the components /; can be Fourier analyzed to give

hi(k) = ) + Z cgfl),n cos(k- (ma; +nay)) + Z sffzn sin(k - (ma; +nay)), (1.31)

m,n

where m and n are integers and never both equal to zero. The vectors a; and a, are the
Bravais lattice vectors are . Adding coefhicients s and ¢ corresponds to adding hopping
terms between orbitals. Then multiplying the Dirac points for H;, requires produc-
ing distant-neighbor hopping terms which contain sinusoidal components that oscillate
faster and faster as m and n grow. That results in an energy dispersion which acquires
more nodes when distant-neighbor hoppings are included.

The requirement of distant-neighbor hopping terms to produce large Chern phases
poses a problem from a physical point of view. The wave functions in the tight-binding
model are localized and presence of distant-neighbor interaction can be usually neglect-
ed. However it was already shown that low-energy models of multi-band system can be
mapped to two-band systems with large Chern number [37]. Regardless of the physical
realization, the inclusion of higher harmonics (or distant-neighbor hopping terms) is
the unavoidable requirement to producing a large topological invariant.

To complete the discussion it is necessary to examine the symmetries, or lack thereof,
for the Z topological insulator in two dimensions. In order to have a Chern insulator
in class A it is necessary to break the time reversal, the particle-hole and the chiral (or
sublattice) symmetries (see Tab. [I)).

The symmetries can impose gneral constraints on the components of h to the effect
of a vanishing Chern number. For example, the TRS and the PHS are represented by
anti-unitary operators that will relate opposite momenta on the BZ. Therefore they will
impose parity constraints on the components of h. A rule of thumb to eliminate these
symmetries is to mix odd and even functions in an arbitrary component of h. The sub-
lattice symmetry is represented by an unitary Hermitian operator & and it is broken
by adding hopping terms between the equivalent sites (orbitals). This corresponds to
destroying the bipartite nature of the system [51].

Let us elaborate on the example of the TRS. For spinless electron models considered
here, the time-reversal operator does not act on orbital or site space an hence it is simply
the complex conjugation K required to reverse the momentum direction. Demanding
time-reversal invariance and Hermiticity yields

hi(k) = hi(=k),
ha(k) = —ha(—k), (1.32)
hs(k) = hy(—k).

Hence in a TRI system the Chern number vanishes because the integrand in equa-
tion ([[.14)) is an odd function of k,

h- (9. h x 9, h) = 0. (1.33)
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Generally, if a symmetry imposes that either exactly one of the components of h is
an odd function, or that all components are odd, then the Chern vanishes under the
same argument as above. The PHS will not be of concern in the following because by
construction there are no superconducting pairing terms.

1.3.2 A model with five Chern phases

The objective is to create a toy model of a spinless Chern insulator with |C| = 2. It is
shown here that the model can be created with at most nearest-neighbor hopping terms.
Such amodel serves asa proof of principle for the form of an insulator with alarge Chern
number and it will be of use later, when the interest shifts to the investigation of edge
solutions in a Z insulator.

First a gapless model with four Dirac points is proposed as a prerequisite. Secondly,
the Dirac points are gapped by a mass term that can be locally tuned so that the Hamilto-
nian passes through all possible Chern phases {0, +1, £2}. The geometrical engineering
of the insulators takes place in momentum space. At the end of the section, a real-space
implementation of the model on a triangular lattice is discussed.

Topological phases for momentum space Hamiltonian

Let us start with the gapless model that serves as a template for the construction of the
insulator. To have |C| = 2, it is necessary to have four Dirac points. One of the most

simple model has only NN hopping (m < 1orn < 1) in the Fourier series ([.31)).
Choosing even functions h; and hy, it follows that
H12 = hl(k)O'l + hQ(k)UQ
= 2t1[cos(k)o1 + cos(ky)o2). (1.34)

The energy dispersion reads

E = +2t \/cos2(kx) + cos?(ky), (1.35)

with four Dirac points at q = (£7/2, +7/2).

Note that to have time reversal invariance in a spinless model, 7, must be an odd
function. Hence the choice cos(k,) ensures that the TRS is broken.

The chirality coresponding to Dirac points is given by the sign of the Jacobian

x(q) = sgn[sin(g,) sin(g,)]. (1.36)

This determines the chirality x of the four Dirac points as summarized in Tab. [I.2].
Note that the points at q and —q have the same chirality. They will be referred in
the following as a pair of Dirac points.
To obtain a Chern insulator one needs to add a mass term. As one can see from Eq.

(L30), the Chern index depends on both the chiralities of the Dirac points and the sign

20



1. QAH PHASES IN A 2D CHERN INSULATOR

Dirac points  (5,%) (5,-%) (—3,%) (—5.,—
X + - - +

IR

)

Table 1.2: Chirality y of the four different Dirac points.

of the mass term in their vicinity. Let us add a mass term of the form h3(q)os. Since hy
is a periodic function on the BZ, in the general case, its zeros form a set of closed lines
on the two-dimensional torus. The first condition in order to gap the initial system is
that these lines must not pass through the Dirac points. Thus the lines of zeros delimit
regions, R; and R,, where the mass term has the same sign. For a proper choice of the
gap term, it is somewhat simpler to see the problem from a geometrical point of view.
In order to maximize |C|, one needs that the lines of zeros separate the pairs of Dirac
points such that a pair of points of a given chirality are contained in a region of positive
mass, while pair of points of opposite chirality are contained in a region of negative mass
region. In short, each pair of Dirac points are placed in regions where the mass term has
different values. On the contrary, if a pair of Dirac points is “broken” (such that one is
in region R and the other in region R,), then the topological charges will cancel out
as can be directly inferred from Eq. ([[.30).

Let us first realize topological phases with C' = £2, where each pair of Dirac points
is in a different region R. The chirality is an even function; hence keeping the product
of chirality and mass sign constant is accomplished by an even function hs. A simple
solution is the periodic function

hs o cos(ky + ky) (1.37)

with lines of zeros given by k, = —k, + 247, The regions R; and R, for this term are

represented in Fig. [[.4(a). The mass term is negative in region R and positive in region
Rs. The lowest Chern number C = —2 is obtained for this model. Let us consider that
the term corresponds to a hopping term with an amplitude ¢;. Hence, the insulating
Hamiltonian with |C| = 2 reads

H(l)(k) = 2ty cos(k;)o1 + 2ty cos(ky)oa + 2ty cos(ky + ky)os. (1.38)
The Chern number is readily determined
C = —2sgnlty]. (1.39)

Intuitively this is understood as a double covering of the Bloch sphere by h") due to the
fact that cos(k, + k) has twice the frequency of cos(k ).

The Hamiltonian in Eq. (1.38) lacks trivial insulating phases or Chern phases with
C = =£1. To produce a trivial phase with C = 0, it suffices to add a large, “staggered
potential” mos, such that all Dirac points are gapped identically. Then because the sum
over chiralities is zero, C vanishes. Note that since Pauli matrices can act on any degree
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Fig. 1.4: Different mass terms, hs, gap differently the Dirac points on the BZ to the effect
of changing the Chern number. The solid circles represent Dirac points of the initial
gapless system; the corresponding chiralities are marked by the signs within. Dashed
lines are the zeroes of the mass term, while Ry and R, denote regions with opposite
sign for the mass term. (a) hy = cos(k, + k). The mass term changes its sign an odd
number of times between Dirac points of different chirality, therefore C = +2. (b)
hs = sin(k,) + sin(k,). Phases with C' = %1 are possible after the remaining Dirac
points, ©, are identically gapped.

of freedom, the term “staggered” could for instance refer to the fact that two sites in a
cell or two orbitals on a site have an associated £m constant energy.

Therefore the Hamiltonian changes from H® to H® = H®Y + may3, and, conse-
quently, the Chern number becomes

C® = sgn[—m — 2ty] + sgn[m — 2t,). (1.40)

Hence, for alarge energy m, |m| > 2|t5|, the system enters a trivial phase and a transition
between a C = £2 phase to aC = 0 phase takes place.

To create Chern phases with C = £1, it is necessary to gap, with the same gap sign,
a pair of Dirac points, while a second pair has its respective mass changing sign between
the Dirac points. Because the chirality is an even function, the mass term has to be an
odd function in order to get an odd function for the product between chirality and mass
sign. The simplest choice would be to add the term proportional to sin(k,) + sin(k;).
The mass for one pair of Dirac points is unchanged, while, for the pair (q, —q) withq =
(m/2,7/2), the mass changes. If only sin(k,) + sin(k, ) is present in the mass term, then
the system is not an insulator, because there are band touchings at q = +(7/2, —7/2)
(see Fig.[I4(b)). However adding small even functions in the mass gaps identically these
Dirac points and C = +1 phases follow.
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4,
2,
g 0
9
41 0 1
2 1 0 1 )
I3

Fig. 1.5: Phase diagram of the system for ¢, = 1. Each region is denoted by the corre-
sponding Chern number and represents an insulating topological phase. The bound-
aries of the regions represent topological transitions where the system becomes gapless.

Adding all terms together gives the following complete Bloch Hamiltonian for a
model that has Chern phases in the set {0, +1, +-2}

H = 2t; cos(ky)o1 + 2ty cos(ky) oo+ [m—+2ts cos(ky, +ky) +2t3(sin(k, ) +sin(k,))]os.
(1.41)

There are four free parameters (m, ¢y, t2,13) in the model. Let us assume that all

parameters are real. All the phases can be reached by varying (m, t2, t3) while keeping ¢,
fixed. The Chern number for the final model reads

C = sgn(—m — 2t,) + %[sgn(m — 2ty + 4t3) + sgn(m — 2ty — 4t3)]. (1.42)

The expression for C yields immediately the phase diagram associated with the sys-
tem described by the Hamiltonian in Eq. ([:41)). Note that the parameter ¢; does not
enter in the determination of the phases, but manifestly needs to be finite in order to
have non-vanishing oy and o5, components in the model. The formula ([.42) can be il-
lustrated by the phase diagram in the Fig. ([.5). This diagram contains only four phases
of the model; the phase with C = 2 needs ¢, < 0.

Direct space realization

Until now the system was described abstractly in momentum space. However it will be
of future interest to investigate the structure of its edge and therefore it is necessary to
propose a lattice implementation for the model.
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Fig. 1.6: Direct space realization of the model ([.41)), see Eq. ([[.43). (i, j) denotes lattice
sites. The Bravais lattice vectors are denoted by a; 5, and e (o) represents orbitals with
energy m (—m). The vertical axis represents the on-site energy difference between the
two nonequivalent orbitals. Black lines represent ¢; hoppings, blue lines, t2 hoppings,
and red lines, ¢ hoppings. An arrow on a link indicates that an electron hopping in the
corresponding direction gains a 7/2 phase. Similarly a double line indicates a 7 phase
gain.

The system could be realized on a triangular lattice with two orbitals on each site.
The parameters are interpreted as k., = k - a; » with a; and a,, the two Bravais vectors.
Then the Pauli matrices are operating in the space of two orbitals A and B with energy
+m.

The Hamiltonian ([[.41]) can be rewritten in direct space

m . .
H = Z |:C;[j50-30ij + CIJrlj(tlo-l + Zth'g)Cij + C;-errl(th'g + Zt30’3)07;j
ij
—f- C;-r+1j+1t20'30ij —I— HC:| s (143)

where the Fourier transformation for the annihilation operator reads

1 —iker;;
x = Wi Zcije kerij (1.44)

rij;
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The position of sites on the lattice is given by r;; = 7a; + ja,, with a; and a, as Bravais
vectors making an angle 27 /3 between them (see Fig ([[.4)). The lattice constant was set
toone, a = 1.

The model is represented in Fig. [[.§. On each site there are two different orbitals
with energy +m. The Hamiltonian ([[.43) describes through ¢-terms the overlap be-
tween (non)equivalent orbitals.

Note that there is no net flux perpendicular to the two dimensional plane. But the
TRS is broken, because for certain closed paths involving the hopping term ¢, 05, for the
electron moving between two nonequivalent orbitals there is a gain of a phase £7/2.
However for each path with a phase gain of 7/2 there is one with —7/2 and therefore
there is no net magnetic flux over the entire cell. Such a system realizes a IQHE in the
absence of absence of an external magnetic field. Therefore it realizes a Chern insulator
in the same class with the Haldane model [23].
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1.4 Large Chern phases in the Haldane model

The first theorized Chern insulator is the Haldane model. It consists of a simple tight-
binding model for spinless electrons on a hexagonal lattice.

The model can be understood as an underlying NN (nearest-neighbor) graphene
with additional mass terms that gap the system. First there is an on-site energy M
on the two nonequivalent atoms in the unit cell, A and B. This term breaks inversion
symmetry and creates a gap. Secondly, there are N2 (next-nearest-neighbor) hoppings
where an electron gains a phase ¢. This term breaks TRS and is also called the Haldane
mass term. The Hamiltonian of the system reads

H= ZMmcIncm + Z tict c, + Z ety c, . (1.45)
m (m,n) ((m,n))

The sum runs over all the sites on the hexagonal lattice, and (. . .) represent nearest neigh-
bors and ((...)) next-nearest neighbors. The hopping integrals are denoted by ¢;. The
index of the hopping integral signifies the order of the (non)equivalent neighbors. The
phase for a clockwise hopping from n to m is ¢,,,, = ¢ and, —¢, for anticlockwise hop-
ping. The on-site energy is M,, = M, when m denotes an A atom, and — M, in case of a
B atom.

Due to the mass terms (M and ¢5), the system is generally a band insulator. Note that
throughout the chapter, a system is considered an insulator if its bands can be flattened
such that the Fermi surface rests in the gap (and not as usually, i.c. if the Fermi energy
is between the conductance and valence band). The essential feature of the model rests
in the fact that there is no net magnetic flux per unit cell. Therefore such a model can
be envisaged in zero external magnetic field. However, one can find paths in real space
where the electron gains a phase.

Even though there is no net magnetic field, Haldane showed that there are Chern
numbers that index the insulating phases of the Hamiltonian. When the system is im-
plemented on a finite geometry, there will be charge transported on the edge channels.
More precisely there will be a quantized conductance that is proportional to the Chern
number C. The conductivity is given similarly to the integer quantum Hall effect by
oy = €*/h x C. In this way, the model is a realization of a Hall effect without an exter-
nal magnetic field.

Although it was only a theoretical model, its importance for the evolution of the
subject of topological insulators cannot be understated. The first proposal for QSHE in
graphene is inspired directly from the Haldane model [4, 52]. The spin-orbit interaction
opens a gap in graphene and each spin realizes a copy Haldane with opposite Chern
number. Therefore it was predicted that the gapped graphene could host chiral and
spin resolved edge states.

Returning from QSH insulator to the original Haldane model, note that the maxi-
mum Chern number is |C| = 1, and thus there can be at most one edge state. In contrast,
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in the IQHE, one can increase the number of edge states by filling more Landau levels.
Then a natural way to increase the edge conductance in the Haldane model, would be
to create a multi-band system from a stack of two dimensional Haldane models, such
that the edge states of every layer have the same chirality.

However, there is an alternative route to augment the number of possible edge chan-
nels. The system can be decomposed in a gapless model and a mass term. Generally the
band touchings of the gapless model are Dirac fermions. Then a necessary condition to
have a Chern number |C| = n is to have 2n Dirac points. The Chern number will be
determined entirely from the chirality of the Dirac fermions and the sign of the mass
term that gaps them.

The Haldane model is a particularly interesting platform on which to test this idea
because it is decomposed in an underlying graphene model and a mass term that contains
the phase ¢ dependence.

First subsection focuses on the study of a graphene-like model with distant-neighbor-
hopping integrals included. The solution for all Dirac points are studied up to N7
(nextx6-nearest-neighbor-hopping) graphene. Their evolution in parameter space has
particular points that are called super-mergings where all Dirac points meet to create
a band touching with higher than linear dispersion relation. These are unstable points
that are characterized however by a small topological charge.

Second subsection considers gapping the Dirac fermions by the mass term. This
will have the effect of creating topological insulating phases with large Chern num-
ber. It is equivalent to say that more edge channels can be created for the finite sys-
tem. At the topological transitions between the phases the system becomes metallic
and the exchange in Chern number can be seen in the number of Dirac fermions that

are formed.[53]

1.4.1 Distant-neighbor hopping in graphene

To analyze the topological properties of the model it is advantageous to go in momen-
tum space where the topological index is readily defined. The two-band Bloch Hamil-
tonian is developed in a basis of Pauli matrices o in the AB site space

3
H= Z huo. (1.46)
©n=0

For addressing the topological properties, one can throw away the term hyoy that breaks
particle-hole symmetry and shifts (topologically) trivially the bands. Let us also choose
the Bravais lattice vectors a; and as, with a; = (‘/7?:, %)a and a; = ( — ‘/T?’, %)a; a is the
lattice constant and it is set to one in the following. Then the Hamiltonian reads
H =t1[1 + cos(k-a;) + cos(k - as)]oy + t1[sin(k - a;) + sin(k - a2)]o9
+ [M — 2ty sin @[sin(k - ap) — sin(k - a;) + sin(k - (a; — ay))]os. (1.47)
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physical  chemical

hopping distance  distance neighbors gn
t1 1 1 3 1+ e*ik‘a1 + e*ik»ag
t3 2 2 3 2cos(a; — ag) + e~k (a1taz)
ta V7 2 6 gikar | gikay | o—2ikar | o—2ikay | gik(a1—2a3) | ik (az—2a1)
tr V13 3 6 cos(2k - (a3 —az)) + e~ *21 cos(2k - a3) + e~ 32 cos(2k - a1 )

Table 1.3: Hopping terms between AB atoms. The physical distance is counted in units
oflattice constant a. The chemical distance is the smallest number of bonds passed when
hopping between two sites. In the column “neighbors” it is counted the number of sites
situated at the same physical distance from the central site.

The underlying graphene-like model contains only the %, (k) and A, (k) terms. The
Dirac points of the model are obtained from the zeros of the function f (k) = hy(k)o; —
ihs(k)oa. The Dirac points are positioned in the BZ at K) = (i%, 0). The interest is
to keep the system two-band and to simultaneously increase the number of Dirac points.
The claim is that this can be realized by including distant-neighbor-hopping terms.

Let us generalize the graphene model by including Nn (nextx (n — 1) nearest neigh-
bor) hopping terms. The AA and BB terms will contribute only to the identity term
hoog. Because they will not have an impact on the topological index, they are dropped
out from the Hamiltonian. By contrast, the hopping between different sites, AB, con-
tributes to Ay (k) and Ry (k) terms.

The Hamiltonian reads

i= (0 ') (1.48)

with

flk) = tgn(k). (1.49)

The contributions g, from the distant-neighbor hoppings are tabulated to first or-
ders in Tab. [[.3. Here are treated cases up to N7 graphene for which one can obtain
fairly straightforward analytical solutions for the Dirac points. Therefore the only hop-
ping terms that appear in f are ¢y, t3, {4 and ¢7. In the following the hopping integrals
are considered in units of ¢1, such that there are 3 free parameters left for determining
the position of Dirac points.

To determine the position of the zeroes, one can keep on the high symmetry line
between K and K'. Under the TRS of the model and C3 symmetry of the I' point, all
the other solutions readily follow. One of the lines KK’ lies at k, = 0. Then the equation
f(k) = 0 depends only on the parameter k.. If cos(v/3k,/2) is denoted by z, it follows
that the band touchings are given by the equation
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Fig. 1.7: The possible hoppings in graphene N9 model. From a central B atom, the
neighbors are arranged in concentric circles. Hopping integrals between distant sites
is denoted by ¢; where i grows with the distance to the neighbor.

Eq. (I.50) has always a solution at & = —1/2. It corresponds to the regular K and K’
points in the NN graphene. This solution due to the symmetry of the hexagonal lattice
is general and exists for any distant-neighbor-hopping model as long as it respects the
original symmetries of the lattice. Therefore there will always be band touchings at these
points in the graphene-like model.

If all solutions are real and distinct, then they correspond to Dirac points. However,
if a solution has a multiplicity higher than one, then they describe points with nonlinear
dispersion. In fact one can think of them as mergings of Dirac fermions. They will pose
some conceptual problem for our method as the chirality

x(k) = sgn(dy,h x 0, h)s| (1.51)

K'/’
is not defined at the merging points. These are points where the first derivatives vanish
and y = sgn(0) is not well-defined. However the topological charge of the merging
points is just the sum of the chiralities for the Dirac points that are converging to it.
This fast calculation of charge associated to a band touching will be referred to as the
sum rule [48].

Note that equation ([I.50) has the number of free parameters equal to the order of
the equation. This indicates that there might be a solution maximally degenerate. This
unique point in parameter space is called a super-merging.

Let us suppose for the moment that all solutions are distinct, such that they repre-
sent Dirac points. The spectrum is symmetric under rotations with 27 /3 around the
center I' of the Brillouin zone. Therefore for each solution near one of the points, two
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more follow around the central one. Under the TRS, a mirror triplet is sure to exist at
the opposite corner of the BZ. In conclusion, each x # —1/2 solution carries 6 band
touchings. Let us treat in detail the cases with more distant hoppings.

N3 Graphene

The N3 graphene was already investigated in Ref. [54]. Here the presence of a strong
t3 hopping integral was shown to produce three more satellite points “orbiting” around

cach regular Dirac point. Solving Eq. ([[.50) gives a possible band touching near K:
K = %3 arccos <t32_ 1) X (1,0). (1.52)

t3

The solution is real only when ¢3 obeys

ty — 1
2t

€ (—1,1). (1.53)

Then for a large hopping t; € (—o0, —1) U (1/3, 00), these satellites appear and move
along the high-symmetry lines between the regular Dirac points with the variation of
t3. Due to the TRI (time reversal invariance) and C5 symmetry of the spectrum it is
enough to follow the motion of a single satellite Dirac point in the BZ. Choosing the
one in Eq. ([.52), it is seen in Fig. [[.§ that when 3 varies from —oo to —1 the satellite
points appear at mid distance (point ) between K(K') points and the center I" of the
BZ, and move to annihilate at I'. When ¢5 varies from % to oo, the satellite Dirac points
appear at M point and vanish at X.

It is noteworthy that during the evolution of a satellite point, there is a particular
value of ¢3 for which the satellite points merge with the regular Dirac points at K(K’).
At t; = 1/2, there are three Dirac points merging with the associated regular Dirac
points to form a point with quadratic dispersion. A merging point, where all satellites
collide into the central Dirac point, is called a super-merging. It will be shown that up
to N7 graphene the super-merging is unique.

The remaining satellites can be obtained by applying rotations of 2 /3 around K and
K'. For example, there are two satellites around K, denoted for notation simplicity also

by k

K = arccos (ts_l) X <— é,ﬂ:l). (1.54)
2t 3

3

Under time-reversal symmetry there are additional Dirac points at k' = —k.
The chirality y of a Dirac point placed at k on BZ is readily determined by comput-
ing the sign of the Jacobian

X(#) = sgn (9, h x 9, h)s| (1.55)

P
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Fig. 1.8: In blue we represent the evolution of a satellite point in BZ, when ¢ varies from
—o0 to —1 and in red, when it varies from 1/3 to oc.

Diracpoints K 3xk K 3 xk
X 1 -1 -1 1

Table 1.4: Chirality of the Dirac points in N3 graphene.

The symmetries of the system allow one to readily reduce the problem to that of finding
the chirality of only two Dirac points: aregular one and asatellite Dirac point associated
to it. If one is placed at , then its time reversed partner exists at —« and has opposite
chirality. Satellite Dirac points that are obtained under a rotation by 27/3 around T
share the same chirality.

As mentioned before, there are notable exceptions where formula ([[.51)) fails for
t5 tuned at the merging of satellite points at K). This is because the merging point
has a quadratic dispersion and the formula is undefined. However, near the merging
point three satellite points of a given chirality converge to a regular Dirac point of op-
posite chirality. Such a scenario was treated before [47, 48] and was shown to yield a
band touching point with quadratic dispersion in both directions. The chirality sum-
mation rule #-(1 — 3) is still applicable and indicates that the merging point at K
is characterized by a chirality £2. Comparable cases are also encountered in bilayer
graphene [47, 53, 56].

The topological charge —2 of the band touching at K can be equally read by expand-

ing in small momenta (g, g,) around the merging point
k=K-+q. (1.56)

In this case, the function f in the effective Hamiltonian at in K-valley is proportional
to 2%, with z = ¢, + ig,. The power indicates a Berry phase of —27 picked by a fermion
making one counter-clockwise revolution around the merging point K. The other merg-
ing point is at K’ and will have a topological charge 2.
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Super-merging
graphene A et f(K+q) charge

NN 1 0 0 0 z 1
N3 1 1/2 0 0 22 —2
N4 1 2/5 1/5 0 272 1
N7 1 7/12 1/4 1/12 23z —2

Table 1.5: Super-merging characteristics at K. The function f from the effective low-
energy Hamiltonian Hegr = 5fo + H.c. is written as a function of small momenta
z = ¢, + iq, and up to a multiplicative constant which is neglected.

N4 Graphene
In the case of N4 graphene, there are two additional solutions possible at
1
e =——[ts+ (12 + 8t2 + dtsty — 4t,)"Y7. (1.57)
4

Therefore the maximum number of satellites around K can grow up to six. The depen-
dence on two parameters makes it harder to find the existence conditions for the satel-
lites. It is however easy to determine the parameters for which there is a super-merging
solution. Imposing a triply degenerate solution, = —1/2 in Eq. [[.50, it follows that
the super-mergings develop at

P 1.58
By perturbing the parameters around the super-merging points, one can see in Fig.
a regular Dirac point and the two triplets of satellites associated to it.
Expanding the Hamiltonian in small momenta q around K reveals that the super-
merging has a cubic dispersion,

ferr(K + q) o< 222 (1.59)

Note that although the dispersion is cubic, the power counting gives a topological charge
of one. This indicates that the Berry phase gained by an electron is only 7. This is due
to the fact that the super-merging is due to two sets of satellites with different chiral-
ity. Then the sum rule yields accordingly the chirality of the band touching at K :
1-34+3=1.

N7 Graphene and beyond

In N7 gaphene the position of the additional band touchings is given by a cubic equa-
tion. It is therefore harder to analyze the solution that follows. Though it easier to visu-
alize it from the super-merging point, which can be determined from the condition that
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i
N

T 2 ) m

Fig. 1.9: The zero lines of by (in green) and h; (in red) in N4 graphene. A small pertur-
bation (40.001) of ¢4 at the merging point t3 = 2/5, t4 = 1/5 creates 6 Dirac points
around the stable Dirac points K. In the inset there is a zoom around K. The Dirac
points are represented by full circles, o; there is a central K Dirac point in black, and 2
sets of satellite Dirac points, in blue and red.

x = —1/2is four time degenerate solution to the equation ([[.50). The super-merging is
unique at

7 1 1

13’ ty = e tr = IBE (1.60)

t3 =
such that a perturbation will produce a maximum of 9 Dirac points around a regular
Dirac point. The effective Hamiltonian shows now a quartic dispersion near K

Jeer(K 4 q) o 2°2. (1.61)

Again, although there is a high-order dispersion, the low topological charge is explained
by the alternating chirality for the 3 sets of satellite Dirac points near the super-merging.

There are no longer unique super-merging points for graphene Nm, with m > 7.
This is due to the fact that already band touchings in N8 graphene have an equation that
remains cubic in z. Therefore there is no single unique choice of parameters for which
the solution # = —1/2 has multiplicity four. Therefore, even if a more distant-neighbor
hopping will add one order to the equation, the order of the equation will never match
again the number of coefhicients.

Factoring out the trivial solution at # = —1/2, the equation for Dirac points in N8

graphene reads

8(t7 +t8)l’3 +4(t4 - t8)$2 + 2(t3 - 4t7 - 3t8)ZE +1-— t3 - 2t4 + 2t7 + 3t8 =0 (162)
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hopping physical distance chemical distance
t V3 2
ts 3 4
te 2v/3 4

Table 1.6: First hopping integrals between equivalent sites.

There are still super-merging points possible, but they are no longer unique. Note that
it is possible to have partial merging points where there are solutions with high multi-
plicity. Regardless, as the order of the polynomial grows and the space of parameters
becomes larger, we conjecture that it will always be possible to find solutions that are all
real and smaller than one in absolute value. That will lead to a multiplication of triplets
of satellite Dirac points.

1.4.2 Phases of the Haldane model

The original Haldane model is built on the hexagonal lattice for NN graphene by adding
N2 hopping t5, such that when hopping is performed clockwise in the unit cell an elec-
tron gains a phase ¢. It is enough to consider the mass term h30;3 and throw away the
identity term, which just breaks the particle-hole symmetry and shifts (topologically)
trivially the bands.

The mass term, h3os, which breaks time reversal and inversion symmetry, reads

hs = M — 2ty sin ¢[sin(k - a5) — sin(k - a;) + sin(k - (a; — ay))]. (1.63)
When hopping between distant sites is allowed, the generalized mass term reads
hs = M = 2t" sin(ng)[sin(nk - a5) — sin(nk - a;)
+ sin(;k (a1 — 2y))], (1.64)

where n is an integer that indicates that hopping takes place between AA or BB sites
situated at a distance of nv/3a. Only the first two terms in this expression are consid-
ered in the following; they correspond to a maximal two-unit-cell hopping. The term
containing the hopping integral t; multiplies the identity Pauli matrix and is neglected
in the following. Interesting for the topology of the problems are hoppings along the
links where the electrons gain the phase ¢. The first two components of the mass term
which have this property are the ¢, and ¢ terms.

Gapping 2n Dirac points can yield Chern number phases . In the following subsec-
tions, cases where different mass term gaps the system are studied for different underly-
ing graphene models.
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e —71'/2 0 7T/2 &
¢

Fig. 1.10: Phase diagram for the Haldane Hamiltonian as a function of the on-site en-
ergy M, divided by the hopping integral ¢5, and the flux ¢. The topologically nontrivial
insulating phases are color-identified and have the topological index denoted inside the
respective regions. The topologically insulating regions, C = 0, are white.

Haldane ¢, model

NN graphene with a hopping ¢, constitutes the original Haldane model. The phase di-
agram is obtained by observing that h; changes sign between the Dirac points (K") of
graphene. Therefore the Hamiltonian exhibits three topological phases; a trivial insu-

lating phase and two |C| = =1 QAH phases. Eq. ([[.30) yields in this case
C= %(sgnj\/br —sgnM_), (1.65)

where My = M F 3/3tysin ¢ is the mass term at K, and K respectively. The phase
diagram is represented in Fig. [[.I0. The lines M, = 0 represent topological transition
lines where the bulk gap closes at least at one of the K and K’ points.

Larger Chern phases become possible when the underlying model is N3 graphene.
The mass term has the same sign for a regular Dirac point and its satellites, and opposite
sign at the time reversed points. Therefore, when the satellites exist, the gapped phases
will be indexed by Chern number, |C| = 2.

Momentum k) locates any satellite point of K" and, manifestly, the expression for
x (k")) holds in the range of existence of satellite points.

Let us define the mass at the regular Dirac points My = M ( F (2% 0)) The mass

3v/3’
at the satellite Dirac points is denoted by m..(_), if it is associated to the regular Dirac

point K’ (K). Then it follows from Eq. (T.30) and Tab. [[4 that

C = - |(sgnM_ — sgn M) — 3(sgnm_ — sgnm )|, (1.66)

N | —
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=T 771"/2 0 W/Q 7r
¢

Fig. 1.11: Phase diagram for the N3 Haldane Hamiltonian. The hopping parameters are
to = 1/3 and t3 = 0.35 in units of ;.

where the mass of the Dirac points reads

M:I: =M F 3\/§t2 sin ¢,

2
t3 2t5

Eq. ([.66) yields the phase diagram for the system when all eight Dirac points are present.
When there are no satellite Dirac points (¢3 € (—1,1/3)), the topology of the system is
in fact identical to the original system ¢3 = 0 and therefore it has the phase diagram rep-
resented in Fig. [.I0. When ¢; is varied to go outside the region (—1,1/3), two phases
of higher Chern number develop around the M = 0 line. A typical phase diagram for
the case where satellite Dirac points exist is represented in Fig. [[.T1. For example, from
Egs. (.67), it follows that at M = 0 a regular Dirac point and its satellites will have the
same mass. Therefore the Chern number reduces to C = sgn M — sgnM_. This yields
topological phases indexed by £2. By increasing | M |, one crosses a transition line where
the Haldane mass of all satellite points in the system becomes identical, while it remains
different for the regular Dirac points. This transition is given by

This region extends up to the the last topological transition line given by My = 0. In
this region the Chern number reduces again to the original case (t3 = 0) with C =
1/2(sgnM_ —sgnM_ ). When M is increased even further, all Dirac points are gapped
identically and therefore this is the topologically trivial region.

Note that the C = %1 phases completely vanish at the merging point t; = 1/2, and
the phase C = +2 would have maximal area delimited by M = +3+/3t; sin ¢. Then, at
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3
1 2

Fig. 1.12: Energy dispersion for the Haldane ¢, model on N3 graphene at a topological
transition between two QAH phases (at ¢ = 7/2 and ¢, = 1/3). (a) Topological tran-
sition between C = —2 and C = 0 phases at the merging point between the regular K’
and its three satellites k' in N3 graphene. The energy dispersion in N3 Haldane shows
a quadratic band touching at K’ for M = /3,3 = 0.5. (b) Topological transition be-
tween C = 1 and C = —2 phases. Three Dirac cones form at the satellite points of K’
for t; = 0.35 and M ~ 0.95, indicating a change of the Chern number by 3 units at the
topological transition.

the topological transition from |C| = 2 phase to the trivial insulator, there is a quadratic
band touching that is represented in Fig. [[.12)(a).

The phase diagram in N3 Haldane model (see Fig. [[.11]) has the nice feature that it
accommodates lines of transition where Chern number changes by 3 units. This is real-
ized by the formation of three Dirac points at the topological transition. These band
touchings come from the vanishing of the Haldane mass at the three satellite Dirac
points previously found in N3 graphene. For example, let us take parameters t; = 1,
ty = 1/3 and t5 = 0.35 from the phase diagram in Fig. [[.11]. Then fixing ¢ = 7 /2, there
are two transition points between C = —2 and C = 1 phases near K or K'. In particular,
near K/, the Dirac points form at the satellites where m . = 0. The energy dispersion at
the topological transition is illustrated in Fig. [.12(b).

Similarly, one can take as underlying model the N4 graphene model which contains
the t3 hopping. In Fig. [[.13 are represent the QAH phases that can appear for a partic-

ular choice of parameters.

Haldane ts model

The existence of 2n Dirac points for a submodel containing only two sigma matrices
allows in principle to build topological insulators with Chern phases C = n. The N3
graphene model with eight Dirac points can present a large Chern number, C = £4. To
actualize all possible topological phases it is sufficient to add a ts mass term. It has the
effect to produce oscillations in the phase-dependent Haldane mass, such that the term
changes sign between a regular graphene Dirac point and its satellites in N3 graphene.
As expected, all phases are attainable under this modification of the Hamiltonian.
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Fig. 1.13: Phase diagram showing the existence of 2 sets of satellite Dirac points. The
parametersaret; = 1,t5 = 1/3t3 = 0.59and t; = 0.4.

The mass term becomes

hs = M — 2ty sin ¢)[sin(k - a3) — sin(k - a;) + sin(k - (a; — a))]
— 2tgsin(2¢)[sin(2k - ay) — sin(2k - a;) + sin(2k - (a; — ay))]. (1.69)

The new phase diagram is computed by considering the mass term (IT6Y) at the eight
N3 graphene Dirac points. Then the topological transition lines are given by the zeroes
of the new mass terms, M/, , m/, , expressed as a function of the previous mass terms from

Eq. (L.67)

' = My + 3V/3tgsin 2¢
m!. = my F 2te sin 2¢(2 sin 2k — sin4k), (1.70)

where k = arccos[(t3 — 1)/(2t3)] holds in the domain of existence for satellite Dirac
points in N3 graphene.

The dependence of the mass term on sin 2¢ allows large Chern number phases, |C| =
+4. Because the mass can now change sign not only between a regular Dirac point and
its time-revered partner, but also between the regular one and its satellites (see Fig. [[.19).
Therefore, when system parameters are varied, N6 Haldane model can present all Chern
phases between —4 and 4. A phase diagram that illustrates this point is represented in

Fig. [.T4(a).
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T2 ) 0 ) T T —7/2 0 /2 7

Fig. 1.14: (a) All QAH phases possible for N3 graphene become available in Haldane ¢4
model. Phase diagram for the choice t; = 1, = 1/3,¢3 = 0.35, and t4 = 0.26. (b)
Haldane model from N4 graphene with a tg mass term. Hopping integrals are ¢; = 1,
ty = 1/3,t3 = 0.43, £, = 0.3, 15 = 0.35and t7 = 1/3.

| %%

— —7/2 0 7r‘/2 T

Fig. 1.15: A Dirac point that is represented by e (o) has chirality + (—). The colored lines
represent lines of zeros for hy (green), s (red), and the mass term h; (blue). The regular
Dirac points placed at ( + 3477%, 0) are gapped by a Haldane mass that has opposite sign.
Also the mass term changes sign between the regular Dirac point and its satellites. For
parameters t; = 1,y = 1/3,¢3 = 0.35, ¢t = 0.26, M = 0 and ¢ = 7/8 the phase is
C=—4.

Let us consider shortly the case of N4 and N7 graphene with ¢ mass term. There are

two new free parameters ¢4 and t7. The parameters space becomes quite large to describe
analytically the dynamics of the Dirac points and to track at the same time the sign of the
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1.5 D1scuUssION

mass at the Dirac points. The general thesis remains however correct: larger and larger
QAH phases become possible. In the case of N4 graphene there is a maximum of six
Dirac points near a K point; for N7 graphene there are nine possible Dirac points. This
indicates that with a proper mass term one can have the largest Chern phases |C| = 7
(in N4 graphene) or |C| = 10 (in N7 graphene). In Fig. [[.14(b), it is represented a case
with large C = 5 phases.

1.5 Discussion

The polynomial whose zeroes determines the position of the Dirac fermions becomes
quickly of too high degree for analytical prehension. Nevertheless, what transpired here
is that truly the topological phases with high Chern number can be indeed induced
through addition of distant-neighbor hopping. As a side result, a model for graphene
was studied and was shown that adding distant-neighbor hoppings increases the num-
ber of Dirac points. They move under a variation of parameters and there are unique
super-merging points in parameter space where all additional Dirac points merge with
the K and K’ from the regular graphene. They form points with a high-order energy
dispersion. However, the absolute value of the topological charge associated to the
super-merging never grows larger than two because the satellite points always come in
triplets with opposite charges. Unfortunately the study is mostly academic and serves as
a proof of principle. The degree of control required to realize the super-mergings and the
presence of extreme distant-neighbor hopping remain rather problematic. However it
would be possible to find multi-layer materials which are be mapped to two-band mod-
els with effective-long range hopping. These systems could use the methods developed
in this chapter to analytically chart their topological phase diagram [37].
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Chapter 2

Edge states in a Chern two insulator

The present chapter focuses on the toy model from Sec. [[.3. It was shown previously
that this model supports topological phases with Chern number |C| = 2. The phase
diagram of the system was determined by considering only bulk properties. When the
system is realized on a finite geometry, there will be edges where the system connects
with a trivially gapped phase, here the vacuum. As a consequence there will be edge
states equal in number to the Chern index [[15].

The question posed here is what quantum number differentiates the two edge states
that can appear in the model. Here it is shown through different numerical and analyt-
ical techniques that it is a valley number that demarcates the edge (Secs. 2.1 and 2.2).
Moreover, the model is extended by adding spin degrees of freedom, such that it is con-
verted in a time-reversal invariant Z, insulator. The edge states from the |C| = 2 phase
are explicitly gapped by one-particle TRI perturbations (Sec. £.3). This confirms that
even Chern numbers produce trivial Z, phases [52,57,58]. In the final Sec. 2.4, there are
an infinite number of interfaces engineered between two alternating topological phases
of the same Hamiltonian. It is possible to deduce the topological phase of overall model
from knowledge of the Chern number of the constituent stripes.

The momentum space Hamiltonian of the model reads

H = 2ty cos(ky)o1 +2t; cos(ky)oa+ [m+ 2ty cos(k, + k) + 2t5(sin(k, ) +sin(k,))]os
(2.1)

with a topological invariant given by
C = sgn(—m — 2ty) + %[sgn(m — 2ty + 4t3) + sgn(m — 2ty — 4t3)). (2.2)

The Hamiltonian (2.1)) is implemented on a cylinder and, subsequently, edge states form
at the bottom and top sides of the cylinder where the lattice terminates abruptly. The
following sections investigate the edge state wave functions and their respective energy
dispersion.
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2.1 NUMERICAL EXPERIMENTS

2.1 Numerical experiments

-2
B 8
1 / 0 \ 1
-2 -1 0 1 2
l3

Fig.2.1: Zig-zagedge energy dispersion when the bulk Hamiltonian is in different Chern
phases. The simulation is done for the system on a cylinder with height of 40 sites and
circumference of 180 sites. The number of edge states is 2 x |C| because there are two
edges. Energy dispersions for (a) t; = 0.4 (C = —2), (b) ¢t3 = 0.85 (topological phase
transition at closing bulk gap), (c) t3 = 1.6 (C = —1). The other parameters are t; = 1,
to = 1,m = —1.4. (d) The representation of chosen points on the phase diagram.

ky

The finite geometry chosen for the numerical study is a cylinder. It is constructed out
of a patch of the lattice having the shape of a parallelogram with Bravais vectors a; and
ay as edges. Subsequently the edges parallel to a, are glued together to obtain the the
final cylindrical shape. Because translational invariance is maintained in the direction
parallel toay, k, remains a good quantum number. Therefore, one can fix k, and consider
the resulting one-dimensional problem. Let us write the one-particle solutions of the
corresponding stationary Schrédinger equation as

a:7] Z% Ck j (2‘3)
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2. EDGE STATES IN A CHERN TWO INSULATOR

where j denotes the layers of sites in a, direction, and ¢; is a spinor due to the fact that
there are two orbitals in the problem.
Then for a given quasi-momentum k,, the Schrodinger equation reads

T14); + Tothjin + Thiyjo1 = By, (24)
where

'y = mos + 2ty cos(k,)oy + 2t5sin(k,)os,

[y = tiog + (tae™ — it3)os. (2.5)

The cylinder has the edges at j = 1 and j = L,. There are hard wall boundary con-
ditions, to the effect that the amplitudes vy, ¥1,+1 must vanish. The energy dispersion
as a function of k, is obtained by numerically solving Eq. (2:4)) for the given boundary
conditions and for different choices of the parameters (see Fig. 2.1). In our numerical
experiments the cylinder circumference is L, = 180 sites and with height L,, = 40 sites.
All the energies are measured in units of ¢;.

The bulk-edge correspondence is illustrated by sampling several regions of the phase
diagram in Fig. [75. In non-trivial topological regions, edge states appear around the
ends of the cylinder. The number of edge states at a given end equals the absolute value
of the Chern number. For example, three sets of parameter values along the constant
m = —1.4 line are taken such that the transition between the C = —1andC = —2
phases is explored (see Fig. 2.1(d)).

While the bulk remains insulating there are states crossing the gap. These are the
edge states and their total number is 2 x |C| since the cylinder has two edges. Note that
the edge states at zero energy, cross the gap at k, = £m/2. At any topological transition
the bulk closes at least in one of the special points k, = £7/2. A transition changing
the Chern number by two requires that the gap closes at both points, while for a change
of one, only one Dirac cone forms.

2.2 Analytical solution

A greater insight into the model is gained by solving Eq. (2.4) analytically. In this way,
the gapless states are clearly identified as edge states and their penetration length into the
bulk is determined. The edge state dispersion law can be found cither by directly solv-
ing the Schrédinger equation or indirectly by studying the bulk Hamiltonian through
amethod described in Ref. [59]. Both approaches are explored in the general setting of
the model and are exemplified for a particular choice of parameters corresponding to

the phase C = —2.

2.2.1 Edge states from bulk Hamiltonian

As it was elegantly proved in Ref. [59], the condition of existence and edge state dis-
persion can, under certain provisions, be found from a simple analysis of bulk Bloch
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2.2 ANALYTICAL SOLUTION

Hamiltonians. The method developed by the authors applies when an infinite ribbon
or a cylinder is cut out of the infinite 2D system. The direction of the cut must follow a
Bravais lattice vector. In this case the momentum parallel to the cut k| is conserved and
the system splits into a set of 1D Hamiltonians describing the motion of the electron
between the layers of sites parallel to the cut. The final prerequisite to apply the method
is that there are only nearest-neighbor layer hopping terms. Eq. (2:4) shows that it is
indeed the case in the present model with k| = k,.

The key information about the edge states can be revealed by studying the curves
traced by h as a function of £, with fixed k. For the case with only nearest-neighbor
layer hopping allowed, these curves are planar (actually they are ellipses). Therefore, h
can be decomposed in two parts, h; perpendicular to the ellipse plane and h the in-
plane component. Each component yields some important piece of information about
the edge states. Namely, the edge state with a given kj exists if and only if the ellipse
traced by Ay encloses the projection of the origin onto the plane of the ellipse. The energy
of the state is equal to £|h, |.

In the present case kj = k, and k, = k. This yields

hy = (0, 2t1 cos(ky), 2t5 cos(k,) cos(ky, ) +2(t5 —to sin(k,)) sin(ky) +m+ 2t sin(k,)).
(2.6)

For a fixed k,, the equation (2.6) describes an ellipse parametrized by &, € [0, 27). The
condition that the ellipse encloses the origin reads

|m + 2t3sin(k,)| < 2|t — to sin(k,)|- (2.7)

This equation determines the range in k, where edge states exist. The energy of the state
is £2¢; cos(k;).

Although the edge dispersion is determined, it still remains to resolve the wave-
function for the edges states. Also the existence condition for |C| = 2 phase must allow
four edge states, and therefore it is left to find the extension in &, for each edge solution
separately. These limitations of the above method demand a more applied study of the
edge states.

2.2.2  Edge states from the Schrodinger equation

The equation characterizing the wave function amplitudes for the edge states have the
form of a recurrence relation. Then one can find a solution using the method of the
generating functions. Here the solution follows closely the method used in Ref. [60].
It involves determining the energy dispersion by studying the poles of the generating
function associated to the edge states. Subsequently, this is followed by constructing
the eigenvectors of the Schrédinger equation yielding localized wave functions at two
edges of the cylinder. It is shown that the solutions always cross at specific points in the
BZ and, subsequently, can have an associated “valley” quantum number.
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2. EDGE STATES IN A CHERN TWO INSULATOR

Let us write the Schrédinger equation for the edge states, complete with the bound-
ary conditions. For the moment, assume that there is only one edge and the other one
is pushed to infinity. That is enough to find the energy dispersion and “spinor” wave
function for the edge states.

The Schroddinger equation from Eq. (2.4)) with explicit boundary condition at the
edge, j = 1, reads

0= (D) — E)j + Doty +Thiby 1, j > 1,
0= (I'y — E)¢1 + Lot (2.8)

where

'y = mos + 2ty cos(k,)oy + 2t5sin(k,)os,
FQ = t10'2 + (thik“” - it3)0’3. (29)

Multiply the j® equation by 27, where z is a complex number. Summing the equa-
tions it follows that

o0

> 2 Dy + (D1 — E)tbjar + Dothjpo] = 0. (2.10)
=1
Let us introduce the generating function

oo

G(z) =Y #7'y;. (2.11)

=1

Then using the boundary condition in Eq. (2.10), it follows that the Schrodinger

equation reads
[2°Ty + 2(T'y — E) + D3] G(z) = Tl (2.12)

Edge states exist only if its poles have all a modulus greater than one [60]. Ifall poles
of the generating function have modulus less then one, then they correspond to wave
function amplitudes that grow in the bulk. For an exponentially localized function at
the edge, all poles must be greater than one.

The generating function is given by

G(z) = [2’Ty + 2(Ty — E) 4+ Ty 1Ty (2.13)

Let us denote for convenience a = 2t; cos(ky), 8 = m + 2tz sin(k), v = toei*s — it3

and 'y = (22 ). The generating function reads

G(z) = N(2)/D(2),

N(z) = ( (71— it1ds) + 2((E + B)d1 + ads) + 761 — itid )
(= 1 +itiga) + 2((E — B)d2 + agr) — yo + ity )
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2.2 ANALYTICAL SOLUTION

The denominator D(z) is a polynomial of order four in z. Therefore it has four generally
complex roots. It has the property that if 2 is a solution, then also 1/27 is a solution. Let
us assume that z; 5 are solutions with |21 5| < 1. Then a localized edge solution exists,
if the roots z 5 are simplified with the roots of the numerator. That is equivalent to
say that the two components of N(z) are linearly dependent and both proportional to
(z — 21)(z — 22).

Therefore the coeflicient of 2% and 2° are proportional, yielding the energy indepen-
dent relation between the components

(Y = )(¢1 —¢3) = 0. (2.14)
The solution * =  is unacceptable because the Viete relations require
‘212’2’ =1. (215)

This goes against the premise that both have modulus smaller than one. Therefore it
leaves to impose ¢; = ¢3. Hence the edge states ¢; can be chosen to be proportional to
eigenstates of oy

k) = % (ill) | (2.16)

The energy of the edge state can be determined by returning in N(z) and applying
again the linear dependence condition with the constraint that ¢; = %¢,. This yields
the energy dispersion for edges localized at j = 1

Ei = 42t cos(k,), for|z+). (2.17)

Letus create another edgeat j = N. The system is now a cylinder with bottomat j =
landtopatj = N. There are hard wall boundary conditions for the wave functions, and
hence there are vanishing amplitudes ¢y and ¢y +1. The edge states localized at N will
be similarly eigenstates of oy with respective energies, E, = +2¢; cos(kz). However,
it remains to determine in the following the decay of the edge wave function in the
bulk, and their extension in momentum space. The latter is addressed when assessing the
existence conditions for the solutions. Because the number of edge solutions depends
on the Chern phase, there are solutions that must vanish when model parameters are
varied.

To construct the edge wave function use the Ansatz

(VHES zt). (2.18)

Note that the equation in the bulk of the cylinder reads

22Ty + 2(T) — Ey) + Dhjjat) = (8) (2.19)
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2. EDGE STATES IN A CHERN TWO INSULATOR

For the |2+), and, respectively, |z —) it follows that

22(Fity + toe™ —itz) + z[m + 2ty sin(k,)] + (Fity + toe”* 4it3) = 0. (2.20)

Note that if z; and z; are solutions for the equation corresponding to eigenstates
|z+), then 1/} and 1/25 are solutions for the equation corresponding to |z—).

Then at each edge there can be at most two solutions one corresponding to |z+) and
one to |x—). However to construct the wave function solution is necessary to apply the
boundary condition. This is exemplified in the following for a solution corresponding
to |z+) that is localized at the bottom edge, j = 1.

Because there are two eigenmodes 2 5 associated to a “spinor”, the wave function
reads

;= (c12] + co2?)|a+), (2.21)

where ¢ 5 are coefficients. The boundary condition, ¢/ = (0,0), constrains the coeffi-
cients ¢y = ¢y = —c;. The coefficients ¢, _ correspond to |z+) eigenstates. They are
fixed by applying boundary conditions at the edges of the cylinder, but they are not of
concern here.

Thus if there is an edge state solution, its form and energy are

6" = ey (o] — ) a+), E = 2t cos(ky),

W — o (I g, E = —2t; cos(ks), (2.22)

J

where the index b () denotes an edge state localized near the bottom (top) of the cylin-
der. The eigenmodes are determined from the quadratic Eq. (£.20)

—b+Vb? — 4dac

212 = (2.23)
2a
with
a = —ity + toe™* — its,
b=m + 2tysin(k,),
c = —it) + tge Fe 4 it (2.24)

It is manifest that the model can have zero, one or two solutions at an edge. For
concreteness, let us examine the states localized at cylinder’s bottom (j = 1). If the

eigenmodes |z o] = 1, then the solutions (2.22)) describe extended bulk solutions. There

are no edge solutions, if for any &,

|21] <1 <z, or
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v

- -t/2 0 /2 T

Fig. 2.2: Energy spectrum as a function of momentum k, on a cylindrical geometry
(height 40 sites and circumference 180 sites). Two edge states located near j = 1 are
represented in blue, and two at j = 40 in green. The position and chirality of the edges
is schematically represented in the inset.

In this case all solutions (2.22)) diverge for j > 1. Manifestly, the same conclusions apply
to the top edge.

Edge solutions can exist when both z; and 2 are simultaneously smaller or greater
than one. Note however that it is not possible to encounter a localized solution ¢ and
¥~ in the same range of k,. This is because if one is localized, then the other one has
diverging cigenmodes 2. This indicates that if ¢/*? is a localized solution in a given &,
range, then ¥ is a localized top solution.

Hence there are a maximum of two wave function solutions for a given edge. For
C = 1, only one of the solutions 1)** holds in the BZ and the other is diverging away
from the edge. For C = 2, both solutions 1)*" are possible in distinct ranges of k.

Note that the energy dispersion always crosses the zero energy at k, = £7/2. At
a given edge, if there are two solutions, then they are associated either to k, = /2 or
k, = —m /2. This answers the question: what quantum number distinguishes the edge
state solutions for |C| = 2? Any edge state can be indexed a “valley” quantum number
+K corresponding to a zero crossing at £ /2.

The existence conditions and the respective valid edge wave functions are given by
the following inequalities:

|Zl‘ < 17 |22‘ < 17 w;b and¢;t7
|21 > 1, |20] > 1, 7" and 1. (2.26)

Let us illustrate the above results for a special pointt; = 1,5 = 1,t3 = 0,m = 0
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2. EDGE STATES IN A CHERN TWO INSULATOR

of the phase diagram in Fig. [[.3. This point corresponds to the “center” of the C = —
phase and is characterized by the largest gap and flattest bands for the spectrum of the
bulk states. One can expect two edge states at either end of the cylinder. The eigenmodes

z are determined from Eq. (2.20)
NEiro et

21,2 = +3 it @ikx (227)
The penetration length for the edge states is given by
§=—1/In(|z12]),
1 (2.28)

~ In[1 + sin(k,)] — In[1 — sin(k,)]’

In this case the edge states have maximal extension and cover the entire BZ, because
the existence condition (2.24) is always respected except at points k, = 0 and k, = 7.
At these particular points the edge states enter the bulk.

The above arguments allow to readily obtain the four edge state solutions in the C =
—2 phase for t; = t; = 1and m = t3 = 0. The wave functions and the respective
energies read

_Kb =i (1= (=1))pl|z+), E = 2cos(k,), ky € (—m,0),
—c_(1—(=1))pi|z=), E=—2cos(k,)  ky€(0,m),
=i (1= (=1D))p)|z+), E =2cos(k,), k., € (0,7),

@D Kt =c_(1—(=1)))pi|z=), E=—-2cos(k,), Fkye(—m0). (229)

The indices ¢ and b indicate whether the edge states live close to the top (j = L) or the
bottom (j = 1) part of the cylinder. The index £K designates edges states crossing the
zero energy at /2 or, equivalently in this case, whether the solutions extended in the
right, respectively left, half of the ([—, 71]) BZ. The coefficients ¢4 are normalization
coefhicients which are not of interest here. The edge states’” energy dispersion (2.29) are
plotted in Fig. £.2] together with the numerical solution in order to show their perfect
agreement.

2.3 Extension: Edges in a Z insulator

The class A topological insulator that was constructed in the previous subsections can be
casily transformed into a Z, topological insulator in the symplectic class AIl by imposing
time-reversal symmetry (see Tab.[l)). In the following, spin degrees of freedom are added
and a QSH model is created from two copies of the Z insulator. The object of the present
subsection is to follow the fate of the two chiral edge sates obtained at the interface of
|C| = 2 phases with the vacuum. Crucially, these states are not robust with respect to
arbitrary one-particle, time-reversal invariant perturbations.
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2.3 EXTENSION: EDGES IN A Z5 INSULATOR

The most straightforward route to create the Z, insulator is the one taken in Ref. [4].
A TRI model is constructed from a Z insulator model and its time-reversal copy, with
opposite Chern number. If there are no terms coupling the two models, then any edge
state predicted from one of the models will have a partner with opposite chirality from
the other one. Let us add spin flavor and ensure that the spin s3 Pauli matrix commutes
with the Hamiltonian. Each of the spinless Z model, now represents a polarized spin
up, respectively down model, and each edge state is spin polarized.

Suppose that the spin up component is described by Eq. ([[.41]), while the spin down

one represents its time reversed copy. This yields the following 4-band Hamiltonian:

H(k) = 2ty cos(ky)o1 + 2t; cos(ky)oass
+ [m + 2ty cos(k, + ky)]os + 2ts[sin(k,) + sin(k,)]o3ss, (2.30)

where s Pauli matrices represent electronic spin, and o, the orbital degrees of freedom.

Because the spin Hamiltonian is created from two copies of the spinless Hamilto-
nian, with no spin mixing terms, the conditions for the energy gap are not changed.
That means the previously found insulating phases remain insulating for the four-band
model.

On a cylindrical geometry, there are edge states forming around the edges of the
cylinder. Because there are no spin mixing terms, the energy spectrum is trivially ob-
tained by “doubling” the spectra already found for the spinless Hamiltonian. More pre-
cisely it is obtained from the union of the spinless (now spin up) Hamiltonian spectrum
and its reflection about k, = 0 under TRS. Therefore the number of edge states will also
double such that each original edge state will get a Kramers partner.

Although every previously nontrivial Chern phase will show edge states in the spin-
ful model, not all of them are robust. Indeed, the QSH insulator constructed from of
the spinless model with |C| = 2 allows one-particle TRI perturbations that destroys the
edge states [6, 61]].

A small TRI perturbation gaps the edge states at the crossing point k, = £m/2.
Hence it is sufficient to analyze the system near the crossings to find such a perturba-
tion. The low-lying edge states are described by an effective Hamiltonian, obtained by
linearizing the solutions (2.29) near crossings k,, = £m/2. Atagiven edge, for the phase
with |C| = 2, this yields:

Heff(Qm) - \Ij;r(RTUQSC\IIKRT + \I/J[_Kjﬁvqgc\P—KRT
— \IJT_KLi’qu\If,KLJ, — \PI(LLUqI\DKLJM (231)

where Fermi velocity reads v = 2¢,. The indices of the fermionic creation and annihila-
tion operators UT and W describe the valley (+K), the direction of motion (L or R) and
that of spin (1 or }). Note also that the first two terms in Hg describe the dynamics of
spin up electrons, and therefore correspond to the original 2-band Hamiltonian, while
the spin down terms stem from of time reversal operator T; SUgpyT ' = ¥_gy, . The
locking between the direction of the spin and that of motion means that Hg describes

a helical liquid [61].
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2. EDGE STATES IN A CHERN TWO INSULATOR

The edge states above are not robust because one can create the following one-particle,
TRI, local perturbation that will gap the edge helical liquid in Eq. (2.31)) (local meaning

there is no inter-edge scattering)
\III(RT\I/KI«L — \IIT—KRT\I/—KLi + H.c.. (232)

Itis possible to build many perturbations at the tight-binding level yielding the above
form at low energy. It is noteworthy to observe that they all break the spin s3 symmetry.
An example of TRS perturbation in the tight-binding formulation is

t4 Sin(l{?m)UgSl. (233)

For the phases with |C| = %1 no one-particle, local, TRI perturbation can result
in backscattering of the edge states. The above example agrees with the statement that
models with an even number of Kramers pairs of edge states are Z-trivial [62]].

2.4 Extension: Stripes of a Z insulator

There are still ways in which the Chern number computed analytically for a two-band
model continues to be useful in multiband systems. Among the more simple ones is the
“striped” topological insulator explored in the following.

Generally when two insulating phases with different Chern number are put in con-
tact, there are edge modes that form between the phases. Consider now that one creates
stripes from the same system with width of the order of the length of the unit cell. There
are only two type of stripes, differentiated by parameter values (m, ¢;). A new 2D system
is constructed by alternating the two stripes, thus creating interfaces everywhere in the
volume.

The natural supposition would be that if the parameters are associated with different
Chern phases then there are edge states forming everywhere in the model. This turns
out to be correct; the system becomes metallic with transport everywhere in the bulk in
the direction of the edges. Let us study in more detail how the phases can be determined
from an analysis of the phase diagram for each stripe Hamiltonian separately.

The model |C| = 2 insulator in Eq. (IZZ0) is considered again. To simplify the prob-
lem, eliminate the |C| = 1 phase by forcing t; = 0. Then the Hamiltonian reads

H = 2t; cos(ky)o1 + 2ty cos(ky) oo+ [m+2ts cos(ky, +ky) +2t5(sin(k, ) +sin(k,))]os.
(2.34)

The Chern number that indexes the insulating phases reads
C = sgn[—m — 2t5] + sgn[m — 2t,). (2.35)

In order to create the stripes, an alternating value for ¢, is introduced between two
adjacent unit cells. In Fig. 2.3 are represented two of the cells and the striped model
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3 F

Fig. 2.3: The stripe model with alternating ¢, and ¢, hopping term. The red contour in-
dicates the original unit cell. After the addition of ¢}, the unit cell doubles its volume
to the blue contour. The two orbitals with different on-site energy +m are not repre-
sented; the Pauli matrices o indicate the hopping integrals between orbitals along the
three directions in the model.

which is obtained by repeating to infinity the pattern. The change is equivalent to dou-
bling the size of the unit cell, which now contains ¢, and ¢, hopping terms. Hence in
the stripe model there are four orbitals in the unit cell. A new set of of Pauli matrices 7
are introduced to denote a “cell” degree of freedom.

Then the new Hamiltonian in momentum space reads

k.
H = 2t cos (;) o171 + 2ty cos(ky) oo

k., k.,
+ |:m + (tg + t/Q) COosS (? + l{?y):| 03Ty + (tg - t/Q) COS (? + l{?y) 03T3.
(2.36)

Therefore the energy dispersion reads

E=a*+b 4+ 2y/(a® + b2)c2, (2.37)

with

a =2t \/C052<kx/2) + cos?(ky), b=m+ (t2 + t5) cos(k. /2 + ky),
c = (ty — th) cos* (k. /2 + ky)). (2.38)

Note that because the unit cell is doubled, the Brillouin zone shrinks by a factor
of two. However, here k, was rescaled such it continues to run from 7 to —7. Due
to the folding of the BZ there are trivial solutions where the energy goes to zero, i.c.
(ky, ky) € {(0,£7/2), (m,£7/2)}. These points correspond to the edges of the metallic
region. They correspond to m = £2t, and m = £2t},. But this lines in parameter space
correspond exactly to the topological transitions between the topological phases for the
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Fig. 2.4: (a) Superimposed phase diagram for each of the two stripe-Hamiltonian (one
with t5, the other with ¢}) gives the complete phase diagram for the system. The Chern
numbers index the (non)trivial phases according to Eq. £.33. In grey is represented the
metallic phase, where Chern number is exchanged at every stripe edge in the model. (b)
Numerical Chern number calculation for the green line on the phase diagram (a), with
(t2 = 0.5,¢y = 1) and m varying in [—3, 3]. When the line crosses the metallic phase the
Chern number is not defined; here this is seen as C taking fractional values between the

well-defined C = 0 and C = —2 phases.

bulk Hamiltonian corresponding to the two stripes (see Eq. (2.35)). This solution in-
dicates that, in order to determine the phase diagram of the model, it sufhces to know
the phase diagram for the two submodels.

When the two stripes are in the same connected topological phase, then no edge
state are expected to appear between them. Therefore the overall system stays in the same
gapped topological phase. Nevertheless, for disconnected phases described by the same
index (for example, separated by a different phase), edge states might appear, rendering
the system metallic. In every case where a Chern number is exchanged at the interface,
edge channels will form, rendering the system metallic. Then the phase diagram can can

be scen by superposing the phase diagrams for the submodels (see Fig. 2.4(a))

The above result is first tested by numerically computing the energy spectrum. This
confirms the presence of metallic phases in the exact window predicted by the superposi-
tion argument that brought the diagram in Fig. E-4(a). A more discerning investigation
involves computing the Chern number for different parameters of the Hamiltonian.

At half-filling, there are two occupied (indexed by n) and two unoccupied bands
(indexed by n’). Then the Chern number is determined numerically [[17, G1]

c— L1 / kO, (k). (2.39)
BZ

:27T
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in terms of Berry curvature, Q,,, for the occupied bands

—_9 Z Z Im Uac nn/ Uy));n]’ (240)

where (v;)n is expectation value of the velocity operator between one occupied and
one unoccupied band

n occ. n/ unocc.

(V) = (| Vi, H|n'). (2.41)

For example, ¢, and ¢} are fixed, and m is varied in Fig. .4(b) to yield the expected
values for the Chern number. Note that the Chern number is not well-defined in the
metallic region. This is reflected in spurious fractional values between well-defined in-
teger values (in the Fig. 4(b),C = 0 and C = —2).

In conclusion, the four-band model phases can be entirely determined from the orig-
inal two-band model. This is not a surprise as the striped topological insulators is ob-
tained from doubling the original model. In the case of the Z, insulator, the doubling
of the model kept all the gaps in the original model. However, in the striped topological
insulators, if a edge state forms between two stripes as a consequence of disconnected
topological phases, then the entire 2D model becomes metallic.

2.5 Discussion

The analytical methods in studying the edge states in topological insulators need further
development. The encompassing generality in the description of bulk phases contrasts
the short-sightedness of edge state investigations. For example, both methods used to
compute the edge state solution took advantage of the fact that the 1D Schrédinger
equation that describes the system connects only near-neighbor sites in the direction
transverse to the edge. This is an artifact of the specific way in which the edge was cut.
An open question remains how to adequately describe generic edge states in topological
insulators. The decomposition effected in Chap. [I] of two-band models into gapless
system plus a mass term gives hope that this could be used to describe such generic states.
In perspective, it would take an extension of methods developed to study general edge
states in graphene [63, 64] by considering now the role of the mass term.

A final word of caution is in order. Edge states can also exist between zones with
identical Chern number. For example, in topologically #rivial gapped graphene, edge
states form at a domain wall due to a change in the on-site energy [65, 6G]. The same
effect was observed in simulations carried in Sec. 2.4, and led to the apparition of metal-
lic phases when the stripes are created out of dlsconnected topological phases with the
same Chern number. This surprising effect needs further investigation to check the ro-
bustness of the edge states. Moreover it adds a new level of difficulty in describing the
physics of the edge states, because it drastically amends the rule of thumb that equals
the number of edge solutions to the variation of the Chern number across an interface.
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Chapter

Introduction

This introductory chapter contains a primer to Majorana fermions. First they are pre-
sented as real solutions to the Dirac equation. Secondly they emerge as quasiparticles
in different condensed matter realizations. Among these, two one-dimensional systems
are particularly relevant in the context of this thesis and therefore are presented in more
detail: the Kitaev model [67] and the spin-coupled semiconducting wire supporting
Majorana fermions in proximity of an s-wave superconductor [24, 23]. Finally, the
chapter also includes a presentation of the concept of Majorana polarization as an order
parameter to describe a topological transition.

3.1 Majorana fermion primer

3.1.1 Dirac equation and the Majorana condition

A fermionic particle that is its own antiparticle is a Majorana fermion [68]. For a so-
lution, U, to the Dirac equation, it is possible to define the antiparticle solution, ¥,
obtained under the charge conjugation operation. When the two are equal, they corre-
spond to a Majorana particle.

Let us detail the charge conjugation operation by following Ref. [69]. The three-
dimensional Dirac equation for a spin-1/2 particle in the presence of an electromagnetic

field A, reads

(iT*(9, — ieA,) —m)¥ = 0. (3.1)
The Greek indices run over the spatial (1,2, 3) and temporal (0) components, while the
Roman indices run only over the spatial ones. The I's are the 4 x 4 Dirac matrices and
are conventionally chosen as

F020'0®7'3, Fj:i0j®72, (32)
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where o and 7 are the usual 2 x 2 Pauli matrices. The I" matrices obey the Clifford algebra

{I T} = 2n, (3.3)

with 7, the Minkowski metric tensor, diag(1, —1, —1, —1).

The charge conjugate solution ¥, will obey the same Dirac equation (B.1)), but with
opposite charge —e. That allows one to define the charge conjugation operator €, that
yields the equation

C@E* (0, —ied,) —m)¥ = (il'*(0, +ieA,) — m)CV,
0, (3.4)

where €U = .. Note that the operator € is anti-unitary and therefore must contain
the complex conjugation operator K. It must also contain the only imaginary I" matrix
such that [€, i['*] = 0. Hence the charge conjugation operator can be represented up to

a global phase by
¢ =1I?K. (3.5)

Let us now consider the fulfilled Majorana condition, that a particle is identical to
its antiparticle

U, =¢U =, (3.6)

Crucially this condition is Lorentz invariant and it is therefore valid in any reference
frame [[70]. Moreover, it is immediate from equation (B.)) that only a neutral spin-1/2
fermion can obey the condition, e = 0. Therefore both ¥ and V.. are solutions to the
same Dirac equation

(Z'F'U“au - m)\Il(c) = 0. (37)

The original Dirac spinor ¥ is a complex four-component spinor. Hence it is de-
scribed by eight free real parameters. Under the Majorana condition four are fixed. For
example, if the Dirac spinor is written as U7 = (¢7, xT), with ¢ and x two-component
spinors, then the under Majorana condition

v= () (33)

Because ¢ is generally complex, a Majorana fermion has only four real components. Un-
der a unitary transformation one can obtain purely real Majorana fermions, where each
of its four components is real. This happens in a Majorana representation, where all the
I" matrices, not only I'?, are imaginary. Here the charge conjugation becomes complex
conjugation and Majorana condition emerges as a strict reality condition

U — ¢ (3.9)
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A possible choice for a Majorana basis is
FOIO'2®7'1, Fl :’é03®70, FQI —i02®72, ng—i01®70, (310)

with I's that continue to obey the Clifford algebra.

Although Majorana particles are theoretically valid solutions to the Dirac equation,
they have never been found among the fundamental particle. To this moment the neu-
trino remains an open possibility as a massive Majorana particle.

3.1.2 Particle-hole symmetry

In recent years, the idea of a Majorana fermion was resurrected in the context of con-
densed matter where it could be realized as a quasiparticle in a superconductor [[71].
Intuitively it is natural to search in a superconductor because quasiparticle excitations
contain both particle and hole degrees of freedom. A hole is simply the “antiparticle”
of an electron.

In the language of creation and annihilation operators, the charge conjugation op-
eration discussed previously is simply the operation of taking the Hermitian conjugate.
That follows because creating an electron is identical to destroying a hole with opposite
momentum.

At mean field level, the Hamiltonian for a superconductor in the second quantifica-
tion reads [[13]

H:%ﬁ%a (3.11)

with CT = (c', ¢) and ¢ is a row (or column, depending on context) vector comprising
the annihilation operators at all the lattice sites in a superconductor, eventually with a
spin index (¢4 or ¢). The “first-quantized” Bogoliubov-de Gennes Hamiltonian reads

(Hy A
W= ( N —Ha) , (3.12)

where A is the matrix containing the superconducting order parameters. The action of
the charge conjugation transformation is to convert a particle into a hole and vice versa

Cee =l (3.13)
The Hamiltonian exhibits the charge conjugation symmetry
(€, H] = 0. (3.14)

Together with the Hermiticity of #, it is sufficient to determine the consequences of
charge conjugation symmetry on the BdG Hamiltonian,

CHE ! = Hm = —H", (3.15)

59



3.1 MAJORANA FERMION PRIMER

where 7 are the usual Pauli matrices acting in particle-hole space. This allows to define
a particle-hole symmetry represented by an anti-unitary operator € that anticommutes
with the Hamiltonian. Note that it is not a proper symmetry, due to the anticommuta-
tion

{¢H} =0, with¢ =nK, (3.16)

and K the complex conjugation operator. The consequence of this property is that any
cigenstate of the BAG Hamiltonian has a particle-hole conjugate with opposite energy.
That is, the presence of the PHS immediately reflects itself as redundancy in the solu-
tions to the BAG equations. For example, take the Schrodinger equation

HY = BV, U = (4" 0T), (3.17)

where u (v) stands for the particle (hole) component of the wave function. The solutions
describe the quasiparticles excitations above the BCS ground state. Then if (u”, vT) is
the solution with energy F, then (v, u') is the particle-hole conjugate with energy —E.
In contrast, a quasiparticle solution isa Majorana fermion if it is equal to its own particle-
hole conjugate (anti-quasiparticle), ar the same energy. This implies that a Majorana
fermion can be realized only at zero energy.

A solution to the mean-field equation can also be represented by a quasiparticle cre-
ation operator

’}/JTE = ZUJ}EC;‘ + V5 ECj, (318)

J

where j runs over all the sites (orbitals, and spins) in the superconductor. Then the
particle-hole and Majorana conditions can also be concisely expressed as

Al ., PHS condition,

VE = (3.19)

vh,  Majorana condition.

Trivially both conditions are satisfied at zero energy for u; o = v7,,.
It is not always possible to impose the Majorana conditions for the zero modes in
superconductors. In a spin-singlet superconductor, an excitation has the structure [[/2]

’YL - Z ujvacj}a + V5 —aCj,—as (320)
J

where « is a spin index 1 / |. Now j runs only over the site and orbital degrees of
freedom. The Majorana condition reads 7}, = ~,, and the quasiparticle and the anti-
quasiparticle contain different electron and hole creation operators. Hence, no mat-
ter the value of the coherence factors (ujq, vjq), it is not possible to create a Majorana
fermion.
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In conclusion, a spin-singlet superconductor does not allow naturally the forma-
tion of Majorana fermions. Nevertheless, there are ways to create Majorana fermions
using spin-singlet superconductivity in concert with different ingredients that will be
enumerated afterwards. However up to now, the presence of superconductivity stands
out as a necessary condition for finding Majorana fermions in condensed matter. The
mechanism involves always finding a quasiparticle that is its own antiparticle.

By inverting the relation (B.20), one can express the regular creation and annihila-
tion operators in terms of Majorana fermions. This decomposition is generally available
and resembles the representation of a complex number using two real numbers, its imag-
inary and real parts. Throughout this thesis the following representation of a creation
operator is used

i0/2
=S (o — i), (3.21)
V2
where the angle 6 is an arbitrary degree of freedom in defining the Majorana fermions.
Therefore the Majorana fermions obey the Clifford algebra

{va,78} = 0.5, (3.22)

where ¢4 p is the Kronecker symbol and A, B are Majorana indices, 1 or 2. Moreover,
unlike complex fermions, Majoranas do not square to zero, but 7{, = 3.

Let us couple two Majorana fermions, 7, and ;. Working in the basis of the eigen-
states of 1 and 7, the coupling 2i7,7y, will act as a Pauli 05 matrix with eigenvalues
+1 [73]. The occupation number of the fermionic operator created from the Majoranas

then reads

1
cle = 5 + i7172. (3.23)

Therefore the occupation number c¢'c is either 0 or 1. In the limit of a very weak cou-
pling £ between the Majorana fermions (for example they can be located far away), they
can still create a nonlocal fermionic state that is either full or empty. For vanishing cou-
pling, £ — 0, the ground state is effectively degenerate, and it costs € to fill or empty the
fermionic state. Therefore if the system contains N, and N+, Majoranas, the ground
state degeneracy will then be 2V. Systems with such a highly degenerate state were pro-
posed in Ref. [71], where the Majorana fermions are trapped in vortex cores of 2D p+ip
superconductor. Moreover, interchanging the Majorana fermions through a continu-
ous adiabatic process generates a different ground state wave function that depends on
the precise trajectory taken by the vortices. This dependence on the topology of paths
taken by the vortices indicates the non-Abelian character of the ground state.

One of the main interest in finding Majorana fermions lies in using the highly de-
generate ground state to store information. Then computations can be realized on it by
taking advantage of its non-Abelian character and the protection of Majorana fermions.
The catalog of operations on the ground state form a representation of the braid group
[74]. The goal of this research is to finally realize a topological quantum computer [[/3].
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3.2 Condensed matter realizations

3.2.1 Opverview

The reader is referred to excellent reviews that provide a good panorama of the research
on Majorana fermions in condensed matter systems [75,76]. Here it suffices to mention
a few milestone in the evolution of the field.

As seen before, in condensed matter physics Majorana fermions can be realized as
quasiparticles in spinless or triplet-pairing superconductors. They are possible as zero
energy excitations in systems with particle-hole symmetry.

Naturally they were first proposed in 2D p + ip superconductors [71]], where they
could be realized as bound modes in the vortices of the superconductor. A 1D variation
was soon after treated by Kitaev [67]], where Majorana states in a spinless tight-binding
model appear as bound states at the ends of the wire. Different proposals followed these
two paths: boundary states in p-wave superconductors or Caroli-de Gennes-Matricon
states [[/7], where the Majorana fermion appear when a a magnetic flux penetrates a type
II p-wave superconductor. Other materials in which Majorana fermions are thought to
appear are 2D electron gases in the fractional Hall regime at 5/2 filling factor [[78], and
two-dimensional strontium ruthenate, Sr,RuO, [79] (and [80] for experiments). They
were also proposed to form in p-superfluids in ultracold atom gases [81, 82]

The problem with the 2D p-wave superconductors is that they are rare materials.
Moreover, for the case of Majorana states bound to vortices, there are more excited states
within the bulk gap rendering fragile the protection of the zero modes [76].

A revolution of the field came when it was realized that one can replace the p-wave
superconductors with s-wave superconductors and one can have an effective p-wave su-
perconducting pairing mediated through s-wave pairing. The first example was pro-
posed in Ref. [83]. There Majorana end states appear in a 2D topological insulator
deposited on an ordinary s-wave superconductor. The chiral edge states in the topo-
logical insulator can be coupled through the s-wave pairing such that inside the gap
one can have a pair of Fermi points (or more precisely an odd number in half the BZ)
and an effective p-wave pairing. Numerous proposals have followed which are using
topological insulators and superconductors as a basic setup for creating Majorana excita-
tions 84, 85]. Some of the experiments following the theoretical proposals are reported
in Ref. [84].

Nevertheless, topological insulators remain exotic materials. More recently, propos-
als have emerged where topological insulators are replaced by regular semiconducting
wires with a strong-spin orbit coupling under a magnetic field [24, 25, 87]. They are
one of the main subjects of the thesis and they will be described in more detail in the
next sections. Several articles expanded on this direction, in semiconducting quantum
wells [88], or in multiband spin-orbit coupled wires [89, 90]. Experiments in these
directions were pursued by several groups [91, 92]. There are also variations to these
systems which dispense with the spin-orbit coupling [93, 94].

Let us finally note the prediction of Majorana fermions in non-centrosymmetric su-
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Fig. 3.1: Two topological phases of the Kitaev model. The red and blue denote two
Majorana fermions that compose a regular complex fermion, represented in black. (a)
Trivial phase where the Majoranas are coupled inside each site. (b) Nontrivial phase
where Majorana in adjacent sites hybridize to form a complex electron. Unpaired zero
modes are left at the end of the wire.

perconductors [95, 96] and or in ultracold atomic gases with s-wave superconductiv-
ity [97].

For the detection of the Majorana modes the principal directions are: interferome-
try [98, 99], measuring nonlocal tunneling [100, [01], fractional Josephson effect [67,
102], the detection of zero bias conductance peak [103, [104], etc.

3.2.2 Kitaevmodel

The present thesis is limited to the study of phenomena related to Majorana fermions
arising in one dimensional systems. The following Kitaev model inescapably arises as
a paradigm for 1D systems supporting Majorana fermions. Therefore it is worthy to
probe it in more detail.

The model was proposed in Ref. [67)] and it is captured by the tight-binding Hamil-

tonian
N
H = Z 1/2 — c ¢ )+ (— tc}cﬁl + Acjcjy + Heel), (3.24)
7j=1

where j runs over all the sites N of a finite lattice. Itisa 1D toy model describing spinless
electrons that experience a superconducting pairing A, treated at the mean-field level;
is the chemical potential and ¢ is the hopping strength. It was argued that such system
can present Majorana, zero energy states bound at the two ends of the wire. This work
was motivated by the search of a qubit that is protected with respect to perturbations.
The qubit is formed by the two entangled Majorana states. Nevertheless, the interest in
the following will be centered on the conditions and the description of the topological
phase.

The Majorana fermions exist as quasiparticle excitations and that explains the need
for superconductivity. The system is spinless, yielding essentially a p-wave superconduc-
tor, with the quasiparticles v obeying the reality (Majorana) condition v = ~f. More-
over the system has a bulk gap that protects eventual zero energy modes.
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Through a gauge transformation, the phase of the superconducting parameter can be
absorbed in the definition of the creation and annihilation operators. For A = |Ale™?
the complex superconducting, the new operators are chosen such that

;e = ¢;. (3.25)

Then, without loss of generality, A is chosen here to be a real positive quantity.
Any fermionic Hamiltonian supports a rewriting in terms of Majorana fermions:

N = (CT + C),

SRS

Yo = —(c" = ¢). (3.26)
Thus any complex fermion is formally split into two Majorana fermions.
Then the Hamiltonian has the form

N
H=iY pydrd + [(A=t)vid™ + (A + ). (3.27)
j=1

The resulting tight-binding Hamiltonian can present bound states that consist in having
a zero mode Majorana fermion trapped at each edge. For example, a limit case follows
for 1 = 0 and A = ¢, when the Hamiltonian reduces to

N
H = 2it Z Mt (3.28)
=1

and Majorana fermions are coupled only between neighboringsites. Then two unpaired
Majorana fermions remain at the ends of the chain, 7§ and 2" (see Fig. B.J(b)). They
are completely localized at the extremity sites and have zero energy as they are decou-
pled from the Hamiltonian. However there will be a residual interaction between the
end modes, rapidly decreasing with the length a NV of the wire O(e=*V/¢), where ¢ is the
superconducting coherence length and @ = 1, the lattice constant. Note that in the
absence of the hopping ¢ and the superconducting pairings A, the Hamiltonian cou-
ples only Majoranas on the same site. This latter limit case represents a trivially gapped
system, an atomic insulator.

The zero modes, protected by the bulk gap and the PHS, subsist at zero energy when
parameters begin to vary from the values set above. They will start to extend, but they
will remain Majorana fermions. The topological phase can be empirically tracked by
knowing where the bulk gap closes in parameter space and if there are such exotic bound
states in between two bulk closings.

The topological phase was characterized by a Z, topological invariant denoted by M
in Ref. [67]. If the wire supports Majorana fermions, then M = —1, and, if the system
is in a trivial gapped phase, then M = 1. When the bulk gap closes, M is undefined.
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Any free fermionic Hamiltonian can be written in the basis of Majorana fermions as

2. m . n
H=3 ; Am 795 (3:29)

where A is a real, anti-symmetric matrix (due to the anticommutation of Majorana fer-
mions). The way to characterize the topological properties of the system involves (anti)-
periodizing the system in a ring form. Then the topological invariant was shown [67]
to be given by

M(H) = sgn(PflAP|PflA%), (3.30)

where AP* represents the system with periodic, respectively antiperiodic, boundary con-
ditions and Pf denotes the Pfaffian of the matrix.

There is an alternative way to characterize the topology of the system. Note that the
system is time-reversal invariant in the class of chiral one-dimensional BDI systems (see
Tab. [[[). As such, the system equally supports a characterization by a winding number
w.

The system is made infinite such that there is translational invariance. Hence mo-
mentum k remains a good quantum number. The Hamiltonian is Fourier transformed

in momentum space, so that in the basis Cf = (cl, c_, ) it reads

1
_ T
H= Ek e, (3.31)

The BdG Hamiltonian without the constant 3~ ; 11/2 takes the form

[ —p—2tcosk —2iAsink
H= ( 2iAsink  p+2tcosk)’ (3.32)

The bulk energy dispersion reads

E, = j:\/(,u + 2t cos k)2 + 4|A|2 sin? k. (3.33)

Therefore the bulk gap closes for k = 0 and p = —2¢, or k = mand p1 = 2t.
The Hamiltonian can be expanded in a basis of particle-hole Pauli matrices 7

H == h27‘2 + h3’7‘3, (334)

with hy = 2Asink and hy = —pu — 2t cosk. Note that the system obeys the TRS,
represented by the operator of complex conjugation K and the chiral symmetry, repre-

sented by the operator 7. Also note that the unit vector Hamiltonian, h, is a mapping

65



3.2 CONDENSED MATTER REALIZATIONS

from the one dimensional torus 7" to the circle S*. Therefore the behavior of h can be

characterized by a winding number w (see also Sec. 6.1.2)

1
w=—7 Z sgn[h3Oxhs),

ke{0,7}

= S (sgnl2 — ] + sgnl2t + ). (335)

where the sum was performed over the nodes of the dispersion (k = 0 and k = 7). The
winding number is either zero, for |;1| > 2|t|, and there are no edge states inside the gap,
or one, for |y < 2|t|, and it is a Majorana bound state inside the gap.

This allows to relate the winding number to the M topological index:

—1 2\t
Lo ful>2f,
where M = 1 denotes that the trivial strong-pairing phase and M = —1, the weak-

pairing phase (the topological phase) [76].

Note that because the system is described by a Z invariant, it could sustain multi-
ple Majorana modes at a given edge. The fact that there there are only two topolog-
ical phases is entirely due to the fact that it involves only nearest-neighbor couplings.
Chap. [f treats an extension of the Kitaev model in the BDI class, with distant-neighbor
couplings, which exemplifies a case with winding number higher that one, |w| = 2 and
two Majorana modes at a given edge.

A different evaluation of the topological invariant M is given by [24, 67]

M = (—1)/m=v(0) (3.37)

where v(k) is the number of negative eigenvalues of 7{ at the & point. Here [0, 7] is half
the BZ and then v(7) — v(0) is the number (mod 2) of Fermi points in half-BZ. This
definition relies on the existence of the PHS symmetry that ensures that the other half
of the BZ has the same number of Fermi points.

Therefore the conditions to have Majorana fermions in the system are, up to now:
havinga spinless or spin-triplet superconductor, a bulk gap, and an odd number of Fermi

points in half the BZ.

3.2.3 1D spin-coupled semiconducting wire in proximity to an s-wave
superconductor

The Kitaev toy model needs to be implemented in a more realistic setting. Among dif-

ferent proposals a special attention is given in the present thesis to one which uses a 1D

spin-coupled semiconducting wire in the proximity to an s-wave superconductor and
under the effect of a magnetic field to realize Majorana end modes [24, 25]. Such model
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v vy vy vy B

Fig. 3.2: Schematic setup for a 1D system supporting Majorana fermions. Semiconduct-
ing wire (black) with strong spin-orbit coupling deposited on a s-wave superconductor
(blue). A magnetic field B, acts in z direction, perpendicular to the wire.

has received a lot of attention in the experimental community due to the use of the sim-
plest ingredients. Instead unconventional superconductors, it needs the more available
s-wave singlet superconductors. Moreover, by using semiconductors, instead of topo-
logical insulators, it can take advantage of the tremendous experimental know-how in
the fabrication and manipulation of semiconducting wires.

The race to experimentally discover Majorana fermions was purportedly ended when
azero-bias conductance signature was detected in a superconductor-normal system that
is based on the aforementioned model [91]]. However, recent doubts have been raised,
claiming that a robust zero-bias signature can be due to the presence of disorder [[103,
106] or Kondo resonances [[107].

In the present section, the system and its phases will be presented more on a phe-
nomenological level. The next chapter treats a direct extension of the model when a
Dresselhaus spin-orbit coupling is included. That will be the place for a more detailed
analytical and numerical treatment.

The system is described by the Hamiltonian (see also [108])

2
H = /dx [W (2p_m — i+ apoy + Bzag)w + (A, + Heel) |, (3.38)

where o are the Pauli spin matrices. This Hamiltonian models a 1D semiconducting
wire extended in the 2-direction at chemical potential 2 (see Fig. B.3). The wire experi-
ences a proximity effect due to the presence of the s-wave superconductor. These leads
to superconducting correlations inside the wire, which are expressed at mean-field level
by the presence of the superconducting parameter A. There is also Rashba spin-orbit
coupling & which tends to align the spins in the y-direction. Finally there is a magnetic
field B, perpendicular to the spin-orbit field. All these elements are necessary to repro-
duce at low energy the Kitaev model. First it is necessary to lift the spin degeneracy to
allow for the possibility of an odd number of Fermi points. Let us see how this happens

by studying the bulk energy dispersion.

Due to the presence of the anomalous pairings 141, one can write the Hamiltonian
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in a BdG form

1
H = E/qﬂmfdx, Ut = (]9l vy, —n),

2
H= (2p—m —p+ ozpaz) 73+ B.og — Ay, (3.39)

where 7 are the Pauli matrices in particle-hole space. By squaring twice the Hamiltonian
H it follows that the bulk energy reads

B2 = & 4 o%p? 4 B2 4+ A £ 20’ + B2 4 ABY)V, (3.40)

with §, = p?/2m — p. Due to the particle-hole symmetry, any state at energy E has a
counterpart at —E. Also any state with momentum p has a counterpart with the same
energy and opposite momentum. Because of this redundancy, it suffices to analyze the
first quadrant (E > 0 and p > 0) of the dispersion in Eq. (3.:40). Without loss of
generality £ can be set to zero in the following.

For vanishing magnetic field and superconducting correlations, B, = A = 0, the
spin y states |y+) are good cigenstates of the system. Hence the spin-orbit coupling
yields two shifted parabolas for the dispersion for the two spins (see Fig. B.3(a)). How-
ever the system still needs to be gapped. The superconducting gap is not sufficient to
generate Majorana fermions. This is because the system remains time-reversal invariant
and therefore the gaps at p = 0 and p = pp (Fermi momentum) are identical. Then for
every energy, there will be an even number of Fermi points for p € [0, o). Therefore it
is necessary to break the time reversal invariance by adding a magnetic field B,, which
gaps the system at p = 0 (see Fig. B.3(b)).

Note that there are two gaps in the system. One at Fermi momentum, which is pro-
portional to the induced gap A(pr) ox A,andagapatp = 0, A(0) = B, —/(n?> + A?).
Crucially the gap at p = 0 can change its sign. When the Zeeman energy dominates the
superconducting gap, the gap at p = 0 and the gap at pp are of of opposite type. This is
the condition for the presence of Majorana fermions

B2 > 12+ A2 (3.41)

The above condition is obtained rigorously from an analysis of topological invariants
in the next chapter. It suffices to say that if |[A| < |B,| there is a range of 1 for which
the system is in the topological phase. This quantity can be changed by gating and one
wishes to have a window as large as possible in the chemical potential. However the
Zeeman field cannot be increased ad /ib as it tends to destroy the Cooper pairs by polar-
izing the electrons in z-direction. Moreover, the breaking of the time reversal symmetry
makes the system susceptible to disorder, which in turn can close the bulk gap [[109]. A
large SOC is needed to combat the effect of the magnetic field by enforcing the anti-
alignment of electron spin with opposite momentum. However, the downside is that a
large SOC suppresses the electron mobility [76, 110].
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Fig. 3.3: A representation of the energy dispersion in the first quadrant for different
values of magnetic field B, and induced superconducting gap A. The mass m and the
Rashba SOC « are set to 1, the chemical potential 4 = 0. (a) Shifted parabolas due
to the SOC. The energy eigenstates have a clear spin direction: blue 1 and red |. (b)
Nonvanishing magnetic field opens a gap at momentum p = 0 allowing the possibility
of an odd number of Fermi points. (c) Topological transition at p = 0 between two
gapped phases, A = 0.3 nontrivial, A = 0.5 trivial, through closing of the gap when

B, = \/A? + 112, corresponding to A = 0.4.

Finally, it is necessary to clarify how can an s-wave superconducting pairing A medi-
ate p-superconductivity. For that one works in the window provided by the topological
condition in Eq. (B.41) [24]. Assuming that the superconducting parameter A is very
small in comparison to B,, one can diagonalize the Hamiltonian (B.3§) to yield energy

Ey =¢, £/ B2+ a?p?, (3.42)
and the two eigenvectors are
1 (B, + /B2 + a?p?
=— 7" 7 4
vem g (BEVE T, (3.43)

where N, are chosen to normalize the spinors. The Fermi energy is between the two
bands. Then the Hamiltonian with the superconducting pairing term can be projected
on the lower band, and then one has access to the physics at the Fermi momentum. The
Hamiltonian projected on the occupied band reads

H = [ dp Bt o)) + [A-(p)o- ()~ (-p) + Hoc].
iapA

N

The effective pairing is an odd function in the momentum p, pairing particles in the same

band with opposite momentum. Thus one has effective p-wave symmetry for spinless
electrons induced through an s-wave superconducting pairing.

A (p) = (3.44)
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3.3 MAJORANA POLARIZATION

3.3 Majorana polarization

This final introductory section advances the notion of Majorana polarization [[111]. The
concept tries to answer the need for a /ocal order parameter that can adequately describe
the topological transition from a trivial gapped phase to a Majorana supporting gapped
state. It will be used in the next chapters as a means to identify zero modes in spinful
topological superconductors as Majorana states.

In short, the Majorana polarization amounts to having a measure of the degree of
anomalous triplet pairing in the system. As it was shown in the previous sections, this
unconventional pairing can be effectively produced even in semiconducting systems in
proximity to a spin-singlet superconductor. Here superconductivity is treated only at
the mean field level. If at the Fermi energy the system is effectively a triplet superconduc-
tor and there are zero modes protected by a bulk gap, then they are Majorana fermions.
In this sense, Majorana polarization is an necessary (but not sufficient) condition for
having Majorana fermions.

The Hamiltonian for a spinful 1D superconductor (or in proximity to a supercon-
ductor) is given by

= [ dsrmy, W) = 0l(o),v](0). 6, (o), ~0,(0), (3.45)

where 1, is a creation operator for an electron with spin . The Bogolibov-de Gennes
equation at a particular point in a 1D system reads

HO(z) = E®(z), @ = (up,uy, vy, vp)* (3.46)

with u, v amplitudes for the electron, respectively hole, components of the wave func-
tion.

The BAG equation is a matrix equation where there are four degrees of freedom: spin
1, J, particle and hole. Generally there are four eigenvectors and eigenvalues solutions
to Eq. (3:36).

In this particular basis the PHS operator, which anticommutes with the Hamilto-
nian, is represented by o7 K. Throughout o are the Pauli matrices in the spin space and
7 in the particle-hole space. Under the action of the particle-hole operator the wave-
function transforms as

0979®*(E) = ®(—E). (3.47)
Then the Majorana condition reads

One can compute locally the overlap between any eigenvector and its particle hole con-
jugate at the same energy to see how close the wave function respects the Majorana con-
dition. However, the particle hole operator is defined up to a phase which is not easily
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determined in practical situations. Hence the focus is on the real part of the overlap
®Toyme " ®*, which is generally a complex number. Let us consider this quantity as a
vector that can be decomposed on the “Majorana” z-axis (6 = 0) and y-axis (6 = 7/2).
Then to identify the Majorana fermions one can take the real and imaginary parts of
the overlap as polarizations along the two axis. The Majorana z- and y-polarizations are

defined as
Py, (z) = Re[®T (2) 0y ®* ()],
Py, () = Im[®" (2) 0272 0*()]. (3.49)

The Majorana polarization vector is then defined as the absolute value of the Majorana
polarization vector

Pu(x) = |(Pu,, Pu,)l- (3.50)

Here the normalization from a Majorana solution is conventionally chosen such that
the overlap integrated over the region where the zero mode is extended reads

/deM(x) = %, (3.51)

which echoes the particular squaring of a Majorana fermion, 7> = 3.
Explicitly, in terms of the wave function components, the Majorana polarization
components are

Py, = 2Re[u v} — ugvy],
Py, = 2Imfuyv) — upvf]. (3.52)

Note that the definitions involve pairing of electrons and holes with the same spin, in-
dicating a spin-triplet pairing in the model. Then a different way to think about the
Majorana polarization is to see it as a measure of spin-triplet pairing in the model. Note
that it is possible to have non-zero Majorana polarization, but a Majorana fermion exists
only when its Majorana density integrates to 1/2 (see Eq. 3.51) In the 1D spinful system
that will happen at zero energy.

It is well suited to compare the Majorana polarization with usual operators used to
investigate the local structure of wave function. Let us neglect for the moment the hole
degrees of freedom. Then one can define familiar concepts as the local electronic density
of states operator /() and the local spin polarization operator S(z) at a given energy £
as

T0+T3

p(z, E) = Z Ul () (ao ® 5 )ﬁ/n(:v)é(E —E,), (3.53)

and

70+T3

S(z,E) = Z Tl (2) (a’ ® T) U, (x)d(FE — E,) (3.54)
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where n indexes the eigenvalue and the respective eigenfunction. Note that S has a vec-
tor structure with components in z, y and z-spin direction.
In analogy the Majorana polarization operators can be defined from Eq. (B.52)

Py, (z,E) Zqﬁ 2)os @ 10, (2)6(E — Ey), (3.55)

Y

Py (z,E) Z Ul (2)oy @ 0, (2)8(E — E,). (3.56)

Note again that an electron (or hole) will always have zero Majorana polarization.
Eq. (B-52) shows that the same is the case with wave functions with spin-singlet pairing
ofthe type (uy, 0, vy, 0). This brings more support to the idea that Majorana polarization
measures a degree of spin-triplet pairing in the system.

Majorana polarization and density are not physical quantities that one can measure,
but they can be used to give a picture of Majorana excitations at zero energy. Two zero
modes with opposite Majorana polarizations provide a clear illustration to the fact that
they are modes that can be “combined” to form a Majorana unpolarized electron (or
hole). Two Majorana modes with the same polarization can coexist nearby, but tend to
hybridize and form regular electronic states if their polarization is opposite. A rotation
of Majorana polarization might be due to the variation of physical parameters as spin-
obit coupling or the superconducting phase. These cases can pose a problem as the angle
of rotation can be locally dependent and difficult to interpret. Then the absolute value
of the polarization vector, the Majorana density (.50) would be more suited to identify
a wave function as Majorana.
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Chapter I

Topological semiconducting wire with Rashba

and Dresselhaus spin-orbit coupling

This chapter reconsiders the 1D spin-orbit coupled semiconducting wire from Ref. [24,
25] with an additional Dresselhaus spin-orbit interaction. The wire supports Majorana
modes that present a particular spin texture. The electronic degrees of freedom of the
Majorana fermions have a transverse polarization to the magnetic field that is entirely de-
termined by the direction of the spin-orbit coupling vector. They are always opposite at
the two ends of the semiconducting wire. Already Majorana modes for two dimensional
spin-triplet topological superconductors has been shown to exhibit an Ising-like spin
density that may allow their detection via coupling to a magnetic impurity [112, [13].
In the same vein it is suggested that the spin texture in the 1D superconductor might be
detected in a spin-polarized scanning tunneling microscopy experiment.

Furthermore, the Majorana polarization defined in Sec. 3.3 is shown to be a good
order parameter to describe the topological transition in the model.

4.1 Model Hamiltonian

Let us consider a semiconducting wire oriented along the z-direction, and in proximity
to an s-wave superconductor. Due to bulk inversion asymmetry, semiconducting wires
can exhibit along with the Rashba SO interaction analyzed in Refs. [25, 87, [10§], a
Dresselhaus SO interaction [[114].

In the present case, Dresselhaus SOI to first order in momentum p in the 2-direction
along the wire takes the form Spoy. The coupling 5 can be of the same order of magni-
tude with the Rashba SOC (~ 0.1 ¢V A) [115]. The Hamiltonian describing the system

reads

H= /da: |:1/JT (% — p+ apoy + Bpoy + B203)1/) + (A, + Hee) |, (4.1)
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4.1 MODEL HAMILTONIAN

The Pauli matrices o represent spin. The identity matrices and the spin index for the
fermionic field are implied when absent. The chemical potential is denoted by y, B, is
the Zeeman field, A is the induced superconducting pairing and « (3) characterizes the
magnitude of the Rashba (Dresselhaus) SO interaction.

Let us consider for the moment a purely real superconducting parameter A. Due to
the presence of superconducting correlations, the Hamiltonian can be equally casted in
a Bogoliubov-de Gennes form

1
H = §/dx\I/TH\IJ, Ut = (o], 9y, —y),
2

H= (Lt aps 6y |+ By — A, (42)

Pauli matrices 7 act in the particle-hole space. The products of Pauli matrices that live
in different spaces should be understood as a tensor products. The BAG representation
is particularly useful as it allows diagonalization of the Hamiltonian in a basis of quasi-
particle excitations.

The spin-orbit interaction tends to orient the spins in (x, y) plane with an in-plane
direction n,,, while the magnetic field remains perpendicular to the plane. Both Dres-
selhaus and Rashba SOI tend to split the energy bands for states with opposite spins
In,,+) and |n,,—). For vanishing B, and A, |n,,£) are good eigenstates of the Hamil-
tonian

Hing,£) =&, + Va? + (2plng, L), (4.3)

where £, = % — UL

The magnetic field has the effect to open a gap at zero momentum. When the Fermi
energy is in this gap the system becomes effectively “spinless”. Finally, when supercon-
ducting proximity effect is considered, and close to Fermi energy, the system can be
mapped to the Kitaev model. The s-wave pairing A has the effect of opening gaps at
Fermi momentum and to mediate p-wave pairing for the spinless model.

The presence of the Dresselhaus term only trivially modifies the spectrum for the
translation invariant system [23]. The energy obtained by squaring twice the BAG Hamil-
tonian reads

E? =&+ (o’ + fA)p* + B2 + A £2[E2(a” + B2)p® + B2 + A*B2)'2. (44)

A numerical analysis requires implementing the BdG Hamiltonian in Eq. ((.2) ona
lattice. Throughout the section, the lattice constant a and % are set to 1. The quantities
can be expressed in energy units of t = % The usual substitutions

/dm — LZ, P(x) — %cj, O (z) — %7 (4.5)
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4. TOPOLOGICAL SEMICONDUCTING...

where L is the size of the system, allow to write the direct space lattice BdAG Hamilto-
nian:

1 . ,
H = ZCJ[@ — M)Tg + BZO'3 — ATl]Cj — 5 C;(t + 109 + ZﬁOj)TngJrl +H.c ,

J

Cj = (C;{"P CL{, Cjl, _CjT)' (46)

The lattice Hamiltonian reproduces the continuum Hamiltonian at low energy.

4.2 Topological invariant

The computation of the topological invariant can be carried out exactly in the case of
the lattice Hamiltonian. The calculation will show that the topological condition is not
influenced by the Dresselhaus SOC §.

Any one-particle fermionic Hamiltonian supports a representation in a Majorana
basis [67]. Let us consider on-site real quasiparticle excitation operators (the Majoranas)

; 1
’780)4 - _(Cj,a + C;a),

-5

_ T
W= i = ) (47
The Majorana fermions obey the anti-commutation relation

{75 %(g”%} = 0ij0ap0 4B, (4.8)

where, (4, j), (o, 3),and (A, B) are site, spin, and respectively Majorana indices. Then in

the Majorana basis I'7 = ( ﬁ‘), yg), vﬁ), 7§j )) the lattice version of Hamiltonian (B.1))
1s written

J %]

where A; j 1s an anti-symmetric real matrix. The constant term does not affect the Hamil-
tonian topology and can be neglected. The matrix A;; encodes only on-site and nearest-
neighbor hopping terms. Therefore one can express the Hamiltonian in a small number
of 4 x 4 block matrices, A(i — j), which contain only spin and Majorana indices. Note
that due to anti-symmetry

Al —j)=—A( —0)T. (4.10)
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Then, without the constant term, the Hamiltonian reads

1
H=3 > [ITAO)T; + 207, A1)y,
J

A(0) = isa((t — p) + B,o3) + iAsi09,
A(l) = —%[32(# + aoy) —ifoy). (4.11)

The Pauli matrices s are pseudo-spin matrices representing the Majorana (1, 2) degree
of freedom. Note that the matrices A(0) and A(1) are real.

If H has a gap, then one can determine if zero-energy Majorana fermions live at the
edge of the 1D system by computinga topological index. A. Kitaev has proved [67] that
they can exist only when the Majorana number M is negative

M(H) = sgn(PLA(0)])(PHA(r))). (4.12)

Here A is the Fourier transform of A;; computed at two exceptional points 0 and 7 in
the BZ. In the present case, with only on-site and NN terms

A(0/m) = A(0) £ [A(1) — AT(1)]. (4.13)

Note that both spin-orbit coupling terms are symmetric in Majorana and spin indices,
and therefore they drop out from the topological index.
Then the topological invariant reads

M(H) = sgn(i? — B2 + |AP)sgn((2t - p)* — B2+ |AP). (4.14)

The conditions for the existence of the topological phase supporting Majorana fermions
are unaffected by the Dresselhaus SO interactions. As expected from the experimental
considerations, the bandwidth ¢ is much larger than the other parameters of the sys-
tem, (A, B,, o). Hence the second term is always positive, and thus a topological phase
continues to exist for

B > A? 4+ 12 (4.15)

It is interesting to note however that Majorana bound states can exist even in the ab-
sence of the Rashba term, when only Dresselhaus SO interactions are present. Dressel-
haus term has a similar effect as the Rashba term in removing the spin degeneracy of the
energy bands.

4.3 Majorana wave function solutions

To directly see the effect of the Dresselhaus SOC it is opportune to study the wave func-
tions for the Majorana fermions. It has been shown that Majorana bound states can
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Fig. 4.1: Majorana fermions, represented in red, form at the interface with the topologi-
cally trivial states when the chemical potential creates a domain wall.

arise at the interface between trivial and topological regions of a one-dimensional wire
by considering for example a position-dependent chemical potential [23]]. Similarly, a
model wire is divided here in three regions with variable chemical potential. The chemi-
cal potential can be changed through gating such that it takes the value 4; in the central
region [0, L] and j outside

/’L%<B,3_A27 LIZ‘E[O,LL
pa > B2 — A% x¢10,L] (4.16)

Hence a topological region is formed in the central region and Majorana fermions are
expected at the boundary with the outer, trivially gapped regions.

The infinite system exhibits gaps at p = 0 and a superconducting gap at the Fermi
momentum pr # 0. The gap at zero momentum is A — /B2 — 2, while the gap at pp is
the induced superconducting gap A. To solve the system analytically, one assumes that
chemical potentials 1 5 are chosen such that the gap at p = 0 is much smaller than the
superconducting gap. Equivalently, if the induced gap A is close in magnitude to the
Zeceman energy, it is necessary only a small change in the chemical potential to switch a
region from a trivially gapped phase to a topologically nontrivial phase. Hence the low
energy solutions can be obtained by linearizing the BdG Hamiltonian (4.2)) in p.

H = (apoy+ fpor) T3+ B.os — A1 — Z Nj[e(x@j—l))+9(($_L)<2j—1))]737
jef{o,1}

(4.17)

where 0 is the Heaviside step function.

The Majorana wave function is determined by searching for zero energy solutions
bound to the ends of the topological region. If the length of the topological region is
very large, L > 1, the localized Majorana states are found independently at the two
ends. They have the form of four component spinors, and the amplitude of the wave
function must decay away from the interface. For example, the Ansatz for the localized
function at z = 01is ¢ ox e**017, with wave vectors ko1 > 0 and 0, 1, denoting the
left (topologically trivial), respectively, the right (topologically nontrivial) side of the
interface.

The allowed wave vectors for the complete system are obtained by solving for the
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zero energy eigenvalues at each interface

. AL, /B—p;
ki = Ny j€{0,1}. (4.18)

The complete solutions are formed by matching the wave functions across each in-
terface. Near the interfaces, z = 0, L the wave functions are given by

Ky (g )ekr e, x>0,
Yz~ 0) = N ] N 419
I s e e + (- o], <o, 41
and
Rug (e ), r <L,
Y L =
DT s 0k m e 0 (1= e e8] oo L
(4.20)
The spin-orbit vector is
o _ (a+if) (4.21)

VT

and the angles ¢; are defined as

¢ :%(,/HWBZH 1=/ B.). (4.22)

The Majorana eigenvectors are given by

w; ()" = (cos p;e™, — sin ¢, sin ;e cos ¢;),
uy(p;)" = (cos p;e™ sin ¢, — sin p;e™ cos ¢;),
usz ()" = —(cos qu ,sin ¢;, sin quew, —cos ¢;), (4.23)
wy ()" = (= cos g™, sin ¢, sin pje™ | cos ¢;).

Note that the obtained wave functions are indeed Majorana fermions respecting the
reality condition through the phase choice (¢ + ) /2 for the complex coefhicient . The
magnitude of « is determined from the normalization conditions of the wave functions
and is of the order of (\/B2 — 12 — A/~/a? + 52)/2,

The wave functions allow one to compute the spin polarization of the Majorana wave
function and read directly the influence of the Dresselhaus SOC. The spin polarization
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is recorded here only for the electronic degrees of freedom in the Majorana wave func-
tion. It is computed by taking the zero energy expectation value

s0) = o10) (o P Joto) (4:24)

For the Majorana wave functions from Egs. (.19) and (4.20) exactly at the interface,
x = 0, L, it follows that

K2 . .
s(0) = T( — sin(2¢1) cos ¥, sin(2¢y) sin ¥, cos(2¢1)>,
s(L) = @ ( sin(2¢;) cos v, — sin(2¢; ) sin 9, cos(2¢1)> : (4.25)

The above results show that the wave functions have the same spin polarization in z-
direction, which is due to the action of the Zeeman field B,. However, they have equal
in magnitude, but opposite transverse spin polarizations. In fact, the direction of the

spin polarization at both interfaces is given entirely by the relative weight of the Rashba
and Dresselhaus SOC

s2_ B (4.26)

S1 «

The Majorana polarization vectors for the Majorana wave functions are also readily
available, Pys = (Puy, , Pus,)

Py (0) = =Py (L) = —|k[*(cos ¥, sin ¥ cos(2¢1)). (4.27)

They are also opposite for the two end Majorana fermions. This arguably allows us to
call the two modes as “different” Majoranas. When the two modes are brought together,
they form a regular fermion with zero Majorana polarization.

For fixed parameters i, A and B., Py, is proportional to s, while Py, is propor-
tional to s;. Thus, when only Rashba/Dresselhaus SOC is present, the total transverse
spin polarization is proportional to the Majorana polarization, with a proportionality
constant which depends on the chemical potential potential and the applied Zeeman
field. When both components of the SOC are present, the Majorana polarization and
the transverse spin polarization vectors are no longer collinear.

Eq. (B.24) indicates that the local spin density for the Majorana electronic degrees
of freedom should rotate in transverse direction under the influence of the Dresselhaus
term. It is important to stress that there is no transverse polarization of the system. This
statement remains true if one considers the entire Majorana function or if one puts to-
gether an electron from its “fractionalized” components at the two ends.
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4.4 Numerical study

The numerical study supports the analytical study undertaken in the previous section.
The model BAG Hamiltonian is given in Eq. (£.4), and is implemented in a 100-site
system.

As mentioned before, the spin-orbit couplings for the physical system can be ex-
pected to be of order 0.1V A (h = 1) or & ~ 8 ~ 10* m/s. Hence the spin-orbit cou-
pling energy, ma?, is of the order 1 K. The Zeeman energy can be of the order ~ 100 K,
while the superconducting proximity effect can create gaps of order A ~ 1 — 10 K. The
hopping strength ¢ = - is of the order of the bandwidth ~ 10* K [76, 108, 115]. In
the numerical 51mulatlons the lattice constant a and the reduced Planck constant /4 are
dimensionless and equal to one, @ = h = 1. All the physical quantities are measured in
units of the hopping strength ¢ = 1. Due to finite size effects on the 100-site system, it
is hard to visualize the physics of the Majorana system for small B, and A with respect
to the hopping strength ¢. Therefore, B,, A, «v are artificially enhanced in the following,
while maintaining them smaller than ¢. The reference values for the rest of the simula-
tionsare A = 0.3, B, = 0.4,a = 0.2 and px = 0, and any deviation from these values is
explicitly noted.

Exact diagonalization of BdG Hamiltonian in Eq. (4.6) provides the local density
of states, and the local spin-polarized density of states along the z, y, and z directions.
For example the local (site n) electronic i-spin polarization density at a given energy £

is defined here as

AN
By =Y ui? <a ® 2 ; TZ) VO§(E — B)), (4.28)
j=1

where N is the number of sites in the system, E; is the j© eigenvalue of H and U is

the site n component of the j™ eigenvector, \I/L(j ) = (u%) : ufl f : vfff : nT) Similarly, it is

possible to compute the local Majorana polarizations as a lattice version of Egs. (3.52)
Z 2Re[ul)vr?) — uDv5(E — E). (4.29)

The Dirac delta functions are implemented as Gaussians of width ~ 10~ *hvg/a.

The z and =z components of the spin polarization, as well as the Majorana polariza-
tion, in a system without Dresselhaus SOC, are represented in Fig. f.2. The analytical
solution correctly predicts that there is no y-spin polarization, while the zero bound
states have opposite electronic z-spin polarization at the two ends. Due to the Zeeman
magnetic field, both end modes are identically z-spin polarized. The zero-energy Majo-
rana wavefunctions are extended over a small number of edge sites, and exhibit strongly
damped spatial oscillations.
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Fig. 4.2: The spin polarization along (a) the z and (b) z directions, and (c) the Majorana po-
larization Py, as a function of energy and position, A = 0.3, B, = 0.4, « = 0.2, 3 = 0 and
pw=0.

Note that the analytical result in Eq. (f23) predicts that the z-polarization vanishes
for pu; = 0,

cos(2¢;) = 0. (4.30)

This is not the case seen in the numerical simulations, where there is a appreciable z-
spin polarization of Majorana modes (sce Fig. f.2(a)). However the analytic result was
obtained by neglecting the kinetic term in the Hamiltonian from Eq. f.1. To leading
order, the quadratic term contributes with an effective p

<p2> ~ O<<A - Bz)2)7 (431)

which creates a negative effective potential in qualitative accord with the numerical re-
sults. Moreover, this effective chemical potential is responsible for the spatial (quickly
damped) oscillations of the spin polarization observed numerically. Although these os-
cillations are not captured by the continuum limit calculations, for any site ¢ the ratio
s2.;/s1,; depends only on the spin-orbit couplings in agreement with Eq. (4.23).

Fig. .3 exemplifies the case where only Dresselhaus SOC is present. The local den-
sity of states reveals that zero modes bound at the ends of the wire continue to be present
(see Fig. .3(a)). Majorana and spin polarization support the analytical findings. The
modes are entirely polarized on the y-direction, i.e. orthogonal to the case o # 0 and
8 = 0. For example, a plot of the Majorana polarization Py, identifies the zero modes
as Majorana states in Fig. {.3(b).

The numerical results for the Majorana polarization presented in Fig. ft.2] also follow
closely Eq. (f.27). The values of the Majorana polarization are always opposite at the two
ends of the wire. When the Dresselhaus term is non-vanishing, the modes gain a Py,
component. Without Dresselhaus SOC, Py, is proportional in this case to the z-spin
polarization. However, in general there is a crucial difference from the spin-polarization.
The Majorana polarization vector rotates in the transverse direction from site to site.
When both the Rashba and Dresselhaus SOC components are present, the Majorana
polarization in Eq. (4.27) depends on the cos(2¢; ) and, subsequently, the ratio Py, / Py,
can vary on the end sites over which the Majorana mode is extended, in contrast to the
spin case. The precession of Majorana polarization makes it more favorable to register
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Fig. 4.3: (a) Local density of states and (b) Majorana polarization Py, at A = 0.3, B, =
0.4, =0, =0, and 8 = 0.2. Majorana bound states are present at the ends of a wire
containing only Dresselhaus SOC.
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Fig. 4.4: (a) Lowest-energy eigenvalues and the half-wire integral of the Majorana polarization
Py, (inset) as a function of B.. (b) Majorana polarization Py, of the lowest-energy state as a
function of position and B,. Parameters: A = 0.3, 4 =0, 5 = 0,and o = 0.2

the Majorana polarization density (3.50) and prove that it is 0.5 for a zero energy mode
bound at the wire extremities.
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Fig. 4.5: (a) The lowest-energy eigenvalues and the half-wire Majorana polarization Py,
integral (inset) are plotted as a function of y. In the second panel the Majorana polar-
ization Py, of the lowest-energy state is plotted as a function of position and p. The
parameters considered are A = 0.3, B, = 0.4, « = 0.2,and 5 = 0.

In the following, the claim that Majorana polarization is a good order parameter to
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characterize the topological transition receives more numerical support. This is done
by varying each of the parameters (A, B,, i) to drive the system in a trivial phase. In
Fig.[t.4(a), B, is varied and it is shown that the system becomes trivially gapped (no Ma-
jorana bound states) for B, < A. The inset describes the dependence of the half-wire
integral of the Majorana polarization for one of the lowest-energy states as a function of
B, (an integral of 0.5 is equivalent to a “full” Majorana state). The Majorana polariza-
tion decreases smoothly to zero below the critical value of B,. The same phenomenon
can be observed in Fig. t.4(b), where the spatial distribution of the Majorana polariza-
tion is plotted as a function of B,. The transition becomes sharper for an increasing
system size. The same qualitative features are obtained when A and y are varied across
the topological transition. For example, the variation of the chemical potential is repre-

sented in Fig. (.5,

Discussion

The present chapter has shown that the Majorana polarization (and density) is a good
local order parameter to identify the topological transition at B2 = A? + p2. Further-
more, it was shown that there is a spin texture in the transverse plane to the magnetic
field and it depends on the relative strength of Dresselhaus and Rashba spin-orbit cou-
pling. The electronic degrees of freedom of the Majorana wave function at the two ends
of the wire are polarized in opposite directions on the transverse plane. This could be in
principle detected through a contact to an impurity [112, 113]. However it is necessary
to detail such claim. How is it possible to have access only to the electronic part of the
wave function?

Note that the system remains spin unpolarized at zero energy, and that could be re-
alized only if there is a compensation for the spin polarizations at the two extremities of
the wire. Then the explanation for the registered spin-texture must invoke a conserva-
tion of the polarization in the transverse direction. However, it remains in perspective
to understand in more detail the physical reasons for this particular spin-texture.
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Chapter 5

Extended Majorana states in Josephson

junctions

The one-dimensional topological superconductor supporting Majorana fermions was
shown in the previous chapters to admit a pertinent implementation in a heterostruc-
ture constructed from a spin-orbit coupled semiconducting wire in proximity to an s-
wave superconductor. Detection schemes of Majorana fermions often require building
on this basic structure. In particular, for transport measurements, the heterostructure
can be connected to a normal metal region, thus forming a “superconductor”-normal
metal (SN) junction. They were recently investigated experimentally in Ref. [91]] and
a zero-bias conductance peak thought to be associated with Majorana fermions [[103,
104, 116-118] was detected through tunneling spectroscopy. A different system can be
constructed by coupling two topological superconductors through a normal metal such
that Majorana fermions form in the normal region. The presence of Majorana fermions
in these “superconductor”-normal metal-“superconductor” (SNS) junctions gives rise
to a fractional Josephson current with a 47 periodicity [67, 102, 119-121].

In the present chapter, several models for one-dimensional SN and SNS junctions
are investigated numerically. The interest lies in following the behavior of the Majo-
rana states in these new geometries. The essential property acquired by the Majorana
fermions due to the coupling to a normal metal is that they can become extended states
(see Sec.p.J and Refs. [76,[118, 122, 123]) In the case of the SNS junction, this has the
particular effect that the normal region supports two extended Majoranas (see Sec.5.3).
This happens only at a phase difference 7 between the two superconductors; otherwise
the Majorana states hybridize and form Andreev bound states at higher energies. The
two extended Majorana fermions are recognized by reading a total integrated Majorana
polarization of one over the normal region. Finally, in Sec.5.4.2}, the formation of Majo-
rana fermions is studied in linear and ring geometries under a uniform superconducting
phase gradient.[? | The ring geometry is of particular interest as the twisting of the phase
allows the formation zero energy bound states in a normal region, similar to the regular
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Qs R
T s s

Fig. 5.1: Schematic representations of (a) superconductor-normal and (b) supercon-
ductor-normal-superconductor junctions. They are created by having the spin-orbit
coupled semiconducting wire added on top of an s-wave superconductor (S). A per-
pendicular magnetic field B, acts on the wire.

SNS junction.

5.1 Superconductor—normal junctions

Let us consider first the SN junction that is schematically represented in Fig. B.1(a). The
system consists of a spin-orbit coupled semiconducting wire in proximity to an s-wave
superconductor. However, the wire sits only partially on the superconductor. There-
fore it is assumed that the superconducting proximity effect does not affect the entire
wire. This is modeled by having a constant induced gap A only on N sites. A variation
considered subsequently is that of a decaying induced gap, which can be associated to a
penetration length of Cooper pairs in the normal region.

The Hamiltonian of the system is an amendment to the model in Eq. (§.6) with
chemical potential /i, induced gap A, magnetic field B, and only the Rashba spin-orbit
coupling o

L
. 1 .
H =Y Cl[(t—p)rs+ B.os — An6(N — j)|C; — 5 [CI(t + iaos)T3C)41 + Hee,

j=1
Cj = (C;['T’ c;[i’ Cjls _CjT)’ (51)

where L is the total number of sites in the system and N, the sites with induced gap. In
numerical simulations, the system size L is 100 sites and IV is 80 sites. Hence the normal
region extends over the last 20 sites. Unless explicitly specified, the model parameters
are chosen the same as in Sec. B4, B, = 04, A = 0.3, « = 0.2 and u = 0, thus
placing the system under the topological condition (B.41)). The lattice constant a and
the reduced Planck constant /i are set to one; all parameters are expressed in units where
the hopping strength is one, t = 1. In contrast to Sec. f.4, the delta-function entering
the definition of LDOS and Majorana polarization are implemented as Gaussians of
width ~ 10™°hvr /.

The condition to have a Majorana fermions remains the same as the one in Eq. (B.41))

B2 > A? + 12 (5.2)

The crucial difference is that the right Majorana fermion from the topological super-
conductor extend uniformly over all sites of the normal region. The integrated Ma-
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Fig. 5.2: Resperesentation of the Majorana density as a function of (a) the chemical po-
tential 2 and (b) the magnetic field B,. The topological transition where the Majorana
fermion states disappear at 1. ~ 0.26 and B, = 0.3.

jorana density (.50) (for lattice version (4.29)) over the normal region is represented
in Fig. p.2. The fact that it yields the 1/2 indicates that there is exactly one Majorana
fermion extended over the normal region. Furthermore, the topological condition is
verified by varying the parameters of the system. Fig. 5.2/(a) exemplifies the variation of
the chemical potential g, while Fig. B.2(b), the variation of the magnetic field B,. In
both cases the topological transition takes place at the values predicted from Eq. (B.41);
when the other parameters are fixed, the critical chemical potential is y. ~ 0.26 and the
critical Zeeman field is (B,). = 0.3.
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Fig. 5.3: Representation of the zero-energy LDOS dependence on the hopping strength
tsn between the superconducting and normal region. A localized Majorana fermion
extends in the normal region when increasing coupling to the bulk value ¢ = 1.

The extended nature of the Majorana fermions can be visualized by varying smoothly
the coupling t s between the normal and superconducting region. When the coupling
is very weak, the superconducting region is effectively connected on the right side to
a trivial insulator. Hence Majorana fermions remain localized at the end of the super-
conducting region. However, increasing the coupling ¢ s leads to extended zero energy
modes. This situation is illustrated in Fig. 5.3 by recording the zero-energy local density
of states in the normal region as a function of tgy.
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Fig. 5.4: Low-energy Majorana z-polarization illustrates the increasing localization of
right Majorana fermions with the growth of the superconducting region by ramping up
the penetration length &,. (a) &, = 50, (b) &, = 100, () &, = 200.

Let us finally consider a smooth decay of the superconducting gap into the normal
region. For a small penetration length &, of Cooper pairs into the normal region, the
system supports, as before, extended Majorana fermions. When the penetration length
becomes large, the topological superconducting region is prolonged into the normal
region. Therefore the Majorana fermions become more and more localized with the
diminishing normal region. In Fig. is presented a limit case of the above situation.
The wire is connected to a p-wave superconductor only at its left edge and Cooper pairs
enter into the wire by proximity effect. In the same basis as before, the Hamiltonian that
models the wire reads

L
, 1 ,
H = ZO}[(t—M)Tg—FBZUg—Ae_J/gp]Cj—5 O;(t+20(o’2)T3Cj+1+H.C. . (53)

j=1

Fig.p.4 illustrates cases with an increasing penetration length. Note that the penetration
length can be seen as an estimate of the size of the topological superconducting region
in the wire. As the penetration length grows, the normal region diminishes and the
Majorana fermions become more and more localized on the right side. Note again that
Majorana fermions at the two ends of the wire have opposite Majorana z-polarization,
but the extension of the right Majorana does not weigh on the fact that the integral
Majorana polarization in the normal region yields 1/2. Hence the “normal region” hosts
a single Majorana fermion of variable extension.

The following sections are mostly centered on the exploration of Majorana fermions
in SNS junctions. The presence of Majoranas in the normal region is crucially displayed
in the fractional Josephson effect. The essential features of this particular phenomena
are presented next.

5.2 Fractional Josephson effect

A Josephson junction is created by bringing into proximity two superconductors (see
Fig. B.3). Between them can either be a weak metallic link, or an insulating barrier.
However, Cooper pairs can tunnel between the two superconductors. This gives rise
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Fig. 5.5: Schematic picture of a Josephson junction. Without loss of generality, one can
consider that the superconducting parameter has equal absolute value in the two super-
conductors. The left superconductor is conventionally considered real, while there is a
superconducting phase ¢ in the right wire. In the middle there is an insulating barrier
or a metallic region.

to the Josephson current, that depends on the phase difference between the supercon-
ductors. Here the focus is on the DC Josephson effect [[124], in which there is no volt-
age difference across the junction and the phase between superconductors is considered
fixed. This results in a direct current dependent on the phase difference ¢

Iy o sin(g). (5.4)

The remarkable feature of the one dimensional systems supporting Majorana fermions
is the presence of a fractional DC Josephson effect. The tunneling between the super-
conducting islands takes place by fusing Majorana fermions that are close on the left and
right side of the junction [67,[102]]. This leads to tunneling events involving single elec-
trons instead of Cooper pairs. The resulting current-phase relation has the distinctive
4r-periodicity

Iy o sin(¢/2). (5.5)

To understand this relation, consider a junction created using the Kitaev model [76,
121]]. The junction is modeled by the Hamiltonian

H=H,+ Hg+ Hr, (5.6)

where Hj, represents the Kitaev model (3.24) describing the left wire, with real super-
conducting order parameter, and, respectively, Hp, the Kitaev model for the right wire,
with a generally complex superconducting parameter, having a phase ¢, A — Ae'® (see
Fig.B.3). A short junction will have the tunneling Hamiltonian Hy given by

Hp = —Tche, + Hee., (5.7)

where I is the coupling between the superconducting islands. The operators c}r_z /1, cot-
respond to the fermion creation operators on the right and, respectively, on the left side
of the junction.

Let us suppose that left and right wires are in a topological phase, || < 2|t|. Then for
wires placed far away from each other, there are zero energy Majorana fermions pinned
at the extremities of the two wires. When a junction is formed by bringing together the
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two wires, the two end Majorana fermions can couple. Furthermore, at low energy, the
physics is entirely determined by the two end Majoranas. This is because the wires are
assumed long enough that the influence from opposite end Majorana fermions remains
negligible. Moreover, all the other states are energetically separated from the Majorana
fermions by the bulk superconducting gap.

To understand the physics of the Josephson junction it is sufficient to treat a limit
case, when the Majorana fermions are completely localized at one extremity site (see

Sec..2.7)) for p = 0 and A = ¢t. Then at low energy one uses Egs. (3.26) to obtain

1
E%,

cp — %’yleid’/? (5.8)

cr, —

Note that in the above low-energy substitution, the missing Majorana fermions from the
decomposition of a complex fermion hybridize with the Majorana fermions from adja-
cent sites to create bulk states. Therefore the low-energy Hamiltonian of the junction
reads

Hege = —iI" cos(¢/2) 717,

= —g cos(¢/2)(2c'c — 1). (5.9)

The second equality is obtained by using Eq. (B.23); the effective Hamiltonian was writ-
ten as a function of the occupation number c'c of the electronic state due to the fusion
of the Majorana fermions ; and 7,.

As explained in Ref. [7G], one notes that the occupation number is trivially a con-
served quantity because it commutes with Heg. Therefore an occupied state has energy
E = -T'/2at¢ = 0and goesto E = I'/2 at ¢ = 2. The phase ¢ needs to increase
by another 27 for a state to come back at the original energy. This is the 47-periodicity
of the energy spectrum characteristic to the fractional Josephson effect. As announced,
the 47-periodicity reflects itself also in the Josephson current

O(H. r .
I; x <8¢ff> = 5 sin (%) (5.10)

Note that at ¢ = 7/2 there are two degenerate zero energy states: the Majorana
fermions. At this angle there is a pair of Majorana fermions trapped at the junction.
Away from ¢ = 7 /2, the energy states are lifted from zero and become Andreev bound
states inside the superconducting gap. The rest of the chapter is devoted to various in-
carnations of the fractional Josephson effect in long junctions.
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Fig. 5.6: A different view of fractional Josephson effect. An SNS junction is created
by connecting two topological superconducting regions with Majorana fermions at ex-
tremities. The right region can have a complex phase. When the wires are connected
through a metallic section, two central Majorana fermions extend inside and hybridize.
However two central Majorana fermions are identical at ¢ = 7w and do not hybridize.

5.3 Superconductor-normal-superconductor junction

The SNS junction considered here is schematically presented in Fig. 5.1/(b). The wire is
placed on two s-wave superconducting islands. Due to the proximity effect, these two
outer regions of the wire are mapped to topological superconductors. Conventionally,
the left region has a real superconducting order parameter, while the right region has
a complex superconducting order parameter with a phase ¢. The central region of the
wire does not experience the superconducting proximity effect and forms the normal
region of the junction.

The main purpose of the chapter is to illustrate the Josephson effect in this geometry.
Taken separately, each superconducting region supports Majorana fermions at its ends.
When they are connected through the normal region, the two end Majorana fermions
can become extended in the normal region. This phenomenon takes place at a phase
difference ¢ = 7 between the superconducting islands. For different values, the two
central Majorana fermions form extended Andreev states at energies lower than the bulk
superconducting gap.

Here the Majorana polarization is used to illustrate the fact that Majorana fermions
at the junction are of the same type for ¢ = 7. This suggests a different way to look at the
Josephson effect. A rotation of the phase 7 in a superconducting region manifests itself
as a change 71 — —72 and 75 — 7. Therefore, at ¢ = 7, the two Majorana fermions
at the junction are of same type and do not couple (sce Fig. .G). For any other value in
0, 2] there is a hybridization into Andreev bound states. An analysis of the Majorana
polarization captures this result, because a rotation with ¢ produces a rotation of the
polarization vector (Pay,, Pys,). At ¢ = 0 the vector has only a Py, component (see
Chap. ). A change of phase by 7 rotates the polarization vector by 7. Hence at ¢ = m
there are two zero modes with the same Majorana polarization in the junction, and,
subsequently, the normal region will read a Majorana density of one.

In the numerical study, a L = 100 site system is considered. The model parame-
ters are chosen as in the previous section. The induced superconducting parameter A is
modeled as a Heaviside step function. Ifa smooth decay is considered instead, then only
the extension of Majorana fermions in the normal region is affected. The Hamiltonian
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Fig. 5.7: (a) Majorana polarization density view of the fractional Josephson effect. At
angle ¢ = 7 there are two Majorana fermions forming in the junction. (b) Density of
states in the normal region at ¢ = 7. Robust Majorana modes are present in the junction
with the variation of p. The critical chemical potential where the Majorana modes are

destroyed is predicted by the topological condition (B.41), 1. ~ 0.26.
that models the system in Fig. B.1(b) reads

L
1 :
H= Z C’;[(t — )73 + B,o3|C; — 3 {C’;(t +ia09)13C;41 + Hec.

j=1
Ny L

=Y CIAC; = ) cladec, (5.11)
j=1 j=Na2

where the normal region extends between Ny and N,. During the simulations the nor-
mal region has 20 sites, N; = 40 and N, = 60.

The physics of the fractional Josephson effect is verified by having a wire that respects
the topological condition, B? > A?+ ;2. In Fig. p.7|(a) is represented the Majorana po-
larization density integrated over the normal region as a function of the superconduct-
ing phase. This illustrates two essential properties: there are two Majorana fermions in
the junction (the density reaches the value one) and they exist only when the phase is
equal to 7. Additionally, the Majorana fermions that form at the junction are robust
when changing the parameters of the model. This means that the topological condition
for the existence of Majorana fermions remains valid. For example, in Fig. 5.7(b), the
chemical potential y is varied. Consequently, the Majorana fermions in the junction
survive until reaching the critical chemical potential determined from the topological
condition (B.41)), u. ~ 0.26.

Finally, the Majorana polarization picture of the fractional Josephson effect is de-
tailed in Fig. 5.8, For azero phase difference between the superconductingislands, there
are no Majorana fermions forming in the junction. Majorana fermions remain at the ex-
tremities of the wire because the system sits in a topological phase (B.41)). The would-be
Majorana states in the normal region hybridize and appear as Andreev bound states at
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Fig. 5.8: Majorana z-polarization, Py, at (a) ¢ = 0 and at (b) ¢ = 7. The Majorana
polarization rotates with the phase. At ¢ = 7 there are two extended Majorana fermion
forming in the normal region. (c) Majorana polarization Py, (red) and Py, (blue) for
the Majorana fermion trapped at the right extremity.

energies lower than the superconducting bulk gap (see Fig. p.7(a)). When the phase
varies from ¢ = 0, the Majorana fermion at the right end of the wire responds by ro-
tating its polarization vector. The Andreev states get gradually closer to zero energy as
the phase approaches ¢ = 7 and additionally change their polarization. At ¢ = 7 the
Andreev states fuse to create extended Majorana fermions with the same polarization
(see Fig. B.7(b)). Hence an integrated Majorana density of 1 (i.e. 2 Majorana fermions)
is recorded in the normal region. In Fig. p.7(c) is represented the rotation of the polar-
ization vector for the right end Majorana fermion. It was checked in Ref. [122] that the
Andreev bound states, when approaching zero energy, gradually gain a Majorana polar-
ization to compensate the change in polarization of the right end zero-bound energy
state.

5.4 Ring with a uniform phase gradient

This section develops the previous numerical study of the SNS junction to ring geome-
tries as the one schematically illustrated in Fig.5.9(a). The spin-coupled semiconducting
wire is fashioned into a ring and placed flat on an s-wave superconductor. One section
of the wire does not touch the superconductor and, considering that it does not experi-
ence the superconducting proximity effect, forms the “normal” region of the ring. The
rest of the ring realizes a topological superconductor. Even if the the wire parameters are
chosen such that it falls under the topological condition (B.41]), there will be no Majo-
rana fermions at the interface between the normal and superconducting region. This is
because the would-be Majorana fermions forming at the two ends of the superconduct-
ing region communicate through the normal region and are lifted from zero energy.
Nevertheless Majorana fermions could still form if the phase of the superconductor is
allowed to vary along the wire.

In Ref. [125], it was shown that supercurrents in the bulk of the superconductor
could be used in principle to manipulate the Majorana fermions. More precisely, it has
been shown that a constant spatial gradient in the phase of the superconducting param-
eter can drive the system from a topological phase supporting Majorana fermions to a
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Fig. 5.9: (a) Ring geometry where a uniform phase gradient varies the phase of the in-
duced superconducting parameter from 0 to ¢ in the superconducting region S. The
normal region (N) in the wire is represented by a dashed line. (b) Variation of the su-
perconducting phase in a topological SC wire: the phase ¢ is set to zero in the left region,
and a constant gradient is considered to be induced in the central region by bulk super-
currents (in red) such as that the phase ¢ reaches a value of 7 in the left region of the
wire.

trivial phase without zero-energy bound modes. This is the necessary ingredient to form
Majorana fermions in the ring geometry.

Before tackling the ring geometry, it is instructive to investigate first the linear geom-
etry in order to understand the action of the uniform superconducting phase gradient.
This study was carried out in Ref. [[125] and it is illustrated here in the context of a one-
dimensional tight-binding model. The linear geometry is identical to the one treated in
Sec. with the essential adjustment that the superconducting phase is allow to twist
along the wire via a uniform phase gradient. One can also fashion a tripartite system
where the gradient acts only on the central region of the wire. A typical spatial depen-
dence of the phase is presented in Fig. p.9(b); there are two outer regions of constant
phase, with a central region uniform experiencing a phase twist. The main interest lies
in finding whether the uniform phase variation may give rise to similar physics to the one
observed in the SNS junction. The question is if through the action of the phase gra-
dient alone it is possible to bring the central region in a “normal phase”. In the second
subsection, the ring geometry with a uniform phase gradient in Fig. p.9(b) is investigated
in order to identify the Majorana fermions in the normal region.

5.4.1 Constant phase gradient in a wire

Consider the system present in the previous sections with the same model parameters.
The system is composed of three parts with a central region that experiences the uniform
phase gradient V¢ and is modeled by the Hamiltonian

L
" 1 :
H= Z C’;[(t — )73+ B.os — Ae™"%)C; — 3 C]T (t+iaoy)73C; 11 +H.e.|. (5.12)

J=1
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Note that the phase of the superconducting parameter, ¢;, is site-dependent. In the
central region of the wire (between sites Ny and N,) there is a phase gradient V¢ which
acts by increasing the phase, ¢; = ¢;_1 + V.

Before launching into a numerical analysis of the tight-binding Hamiltonian in
Eq. (5.12)), it is worthy to consider the effect of the constant phase gradient on the topo-
logical invariant. Itis not entirely surprising that the gradient of the superconducting pa-
rameter can make the system switch between a topological trivial and nontrivial phase.
For a uniform gradient, this can be readily understood in the limit of an infinite wire. As
shown in Ref. [I125], the phase of the pairing term can be gauged away, with the effect of
adding a gradient-dependent correction to the canonical momentum and of renormal-
izing the hopping parameter and the spin-orbit coupling. For an infinite tight-binding
wire, the condition to have a topological phase, computed using the method presented

in Sec. 4.2, yields

{ [u—;(VW] 2—“2<Z¢)2 —V3+A|2} x{ [u—%—é(%)ﬂ Q—QZ(ZW —V3+\A|2} <0,

(5.13)

When the bandwidth ¢ is larger than the other parameters of the system, the second
term of the product is always positive. Thus, for a zero chemical potential s, the critical
phase gradient is the exact lattice analogue of the continuum expression determined in

Ref. [125]:

(V). = 2\/5{ (%)2 + [# + (%ﬂ 1/2}1/2. (5.14)

A phase gradient has a Cooper pair-breaking effect and can close the superconducting
gap at the Fermi momentum. This leads to a second critical value for the phase gradi-
ent (V) above which the bulk gap closes and the system enters a gapless regime (sce
Fig. 5.10). Its exact value is determined by numerically studying the closing of the gap
for an infinite system that experiences a uniform phase gradient V¢. The study is carried
here on a momentum space Bogoliubov-de Gennes Hamiltonian

1
5 Y CIHCy,  Ci = (chychysconpy i),
k

H
H (t-/ﬁ)Tg‘i‘BZUg— |A’T1 (515)
— [t cos(k) + asin(k)os] cos(Vp/2)13 — [tsin(k) — a cos(k)os] sin(V/2).

For the system parameters (B, = 0.4,A = 0.3,a = 0.2, u = 0), the gradient for which
the system enters the gapless phase is (V) =~ 0.27, while the topological condition
determines a critical phase gradient (V¢),. ~ 1.57.

Let us denote the central region which experiences the uniform phase gradient as
GR. The wire starts in a topological phase at zero gradient and hence it supports two
Majorana fermions at its extremities. The question to be tested is whether new Majorana
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Fig. 5.10: Phase diagram of the spin-orbit coupled semiconducting wire in proximity to
asuperconductor, under a phase gradient V¢ (taken from Ref. [123]]). B is the magnetic
field (B.), A the induced superconducting parameter, 1 the chemical potential and u the
spin-orbit coupling constant (c). The system presents gapped topological phases (TP)
which support Majorana fermions and trivial phases without Majorana fermions. There
are also gapless phases (GLP) (manifestly devoid of Majorana fermions). Central to the
present study is the fact that starting from a topological phase (TP) at zero gradient it
is impossible to enter a trivially gapped state through the action of the gradient alone;
the gradient pushes the system into a gapless (nontopologial) phase.

fermions can form at the interface of the GR with the outer regions, or extended in the
GR as in an SNS junction. Note that the above considerations allow us to eliminate
the first possibility. Because (V). > (V@)4, the system enters first a gapless regime,
so there is no boundary to a trivially gapped phase at the edges of the GR. Inspecting
the phase diagram in Fig. p.I( indicates that this result is general in nature. Always
an increasing phase gradient pushes the system from a topologically gapped phase to a
gapless regime and therefore no localized Majorana bound states are expected.

If the transition takes place to a gapless phase, then it still remains open the possi-
bility that Majorana fermions could form as extended states in GR. However the gra-
dient has a particle-hole breaking effect[[76, [125] and, moreover, losing the protection
of the bulk gap leads to the destruction of Majorana fermions even for phase gradient
values above (V¢).. In Fig. p.11/(a) the phase gradient over the 20 central sites is 7/20,
smaller than the (V¢)y value and the GR remains topologically gapped. There is an
unique topological phase in the system and hence there are only two Majorana states
which form at the wire ends. Because of the relative phase ¢ = 7 between the two outer
regions, the Majorana fermions have identical Majorana polarizations. Increasing the
gradient has the effect to push the system in a gapless regime and to drastically diminish
the gap to the first excited states in the GR, however no Majorana fermions form in the

GR.
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Fig. 5.11: (a) The phase of the superconducting parameter is twisted by 7 over 20 central
sites. The central regions remains topologically nontrivial and Majorana fermions with
the same polarization form only at the ends of the wire. (b) Phase gain of 117 over 11
sites. Two Majorana fermions form in the GR having an opposite polarization with
respect to the end modes.

Nevertheless, there is one special case in which Majorana fermions can form in the
GR. This situation arises when the GR is constructed as a series of Josephson junctions
with a phase increase of (2n+1)m between two neighboring sites, with n being an integer.
The GR must consist of an odd number of sites, to ensure a relative phase difference
(2n'+1)7 between the left and right regions. Then extended Majorana fermions form in
the GR. This situation is exemplified in Fig. 5.11/(b): two extended Majorana fermions
form for a phase difference of ¢ = 117 over an 11-site GR. Integrating the Majorana
polarization over the central region yields a total value of one, showing that only two
Majorana states form in this region. This limit case is the only one where Majorana
fermions are formed as extended states in the GR. Naturally it is difficult to expect that
such strong gradient and such particular conditions can be found in a physical system.

It is noteworty to point the general fact that the system is invariant under a change
of 27 in the phase gradient. Hence for an N-site GR, there is a 27N periodicity in the
total relative phase ¢ between the left and right ends of the wire. In the special case
when the gradient is over an odd number of sites with Majorana fermions forming at

V¢ = (2n + 1), the periodicity in the total phase is 47N (see in Fig. p.12(a)).

5.4.2 Ringwith a uniform phase gradient

Let us investigate the presence of Majorana fermions in the ring geometry from
Fig. 5.9(b). The phase of the superconducting phase is twisted with a phase gradient
V¢. The question is under what conditions do Majorana fermions form in the normal
region.
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Fig. 5.12: (a) Evolution of the first two positive eigenvalues with the phase difference
¢ for a 11-site GR. The constant zero-energy mode corresponds to an end Majorana
state. The energy of the other mode evolves with ¢ and reaches zero only when thereis a
(2n + 1) phase difference between two neighboring sites (this happens here forn = 0
and n = 1, corresponding to ¢ = 117 and respectively ¢ = 337). (b) Evolution of the
lowest-energy modes with the phase difference ¢. Note the shift ¢ from the expected
formation of Majorana fermions at 7.

The tight-binding Hamiltonian describing the system reads

1 :
H = Z {C]T[(t - M)T3 + BZO'g]Cj - 5 [Cj(t + Za02)730j+1 + HC} }

Jjeo

— ) ClAein ;. (5.16)

The first sum runs over the entire ring (), while the second sum runs over the supercon-
ducting region between the sites N; and N. In the superconducting region the phase
grows under a uniform gradient ¢; = ¢;_; + V¢.

While no Majorana states are formed at ¢ = 0, for peculiar values of the phase dif-
ference accumulated over the superconducting region, and for phase gradients that are
not too large, Majorana fermions can form in the normal region. This can be seen in
Fig. B.12(b), where are plotted the low-energy cigenvalues as a function of the total
phase difference. In principle, when the accumulated phase is 7, the would-be Majo-
rana states are of opposite type and could exist as extended modes in the normal region.
Nevertheless, note that in simulations the Majorana fermions form at a phase difference
slightly larger than 7 (see Fig.5.12(b)). Such deviation from 7 can be attributed to finite
size effects and to the communication of the zero modes through the superconducting
region.[67] In numerical simulation, Majorana fermions form at = + §¢ and the shift d¢
decreases with system size. The Majorana polarization is plotted at this particular value
in Fig. p.13(a). Integration of the polarization shows that the two zero energy modes
have the same polarization, which is adding up to a value of one.

This 2(7+0¢) periodicity in the formation of Majorana fermions is preserved for gra-
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Fig. 5.13: (a) Majorana polarization as a function of energy and position for a ring with
a total phase difference of m + d¢. The system is periodic with site first and last site
equivalent. Extended Majorana modes form over the entire normal region. (b) First
two positive eigenvalues for a decreasing GR length. The total phase difference is kept
at ¢ = m, while the number of sites is varied. Close to the critical value of the gradient
(V) g = 0.27 = 11.6, the system passes into a gapless regime. Due to finite-size effects
the numerical analysis recovers this transition at a smaller value than the expected 11 or
12 sites.

dients smaller than the critical gapless transition gradient (V¢), = 0.27, correspond-
ing to a total phase difference of ¢ ~ 21.67. As described above, larger gradients are
predicted to drive the GR to a gapless regime. However, numerical simulations indi-
cate that while larger gradient values do seem indeed to take the system into the gapless
phase, Majorana fermions may still form for peculiar gradient values; at this point we
do not understand the origin of this phenomenon.

Another way to illustrate the evolution of the system with the value of the phase gra-
dient is to fix the total phase gain ¢ = 7, and to study the behavior of the low-energy
modes with the number of sites in the GR (a larger number of sites is equivalent to a
smaller phase gradient). As it has been illustrated in Fig. B.12(b), due to finite size ef-
fects, one has an minigap for the would-be Majorana states; the energy gap for this mode
becomes smaller and smaller with increasing the number of sites. When the number of
sites is reduced, the constraint of constant total phase ¢ drives the system to larger and
larger gradients. Thus it is possible to attain the critical value of the phase gradient that
signals the passing of the system into the gapless phase. For an infinite system this is
(V@) g =~ 0.27, corresponding to 7/11.6. Thus a phase transition is expected when GR
reaches the size of 11 — 12 sites. Indeed a crossing of the bands and lifting of the low-
energy modes happens for a size of the GR of about 9 sites (see Fig. 5.13(b)).

5.5 Discussion

The present chapter has studied the behavior of Majorana modes in several SN and SNS
junction constructed from semiconducting spin-coupled wires in proximity to an s-
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wave superconductor. Throughout, it was shown that coupling Majorana modes to a
normal metal can lead to extended Majorana modes in the latter. The extension of the
modes is controlled by the penetration length £, of superconductivity in the normal re-
gion. Increasing the penetration length leads to a reduction of the normal region. In
the limit of a penetration length larger than the normal region size, the system becomes
effectively a topological superconductor with localized Majorana fermions.

In the context of SN junction, it was shown how Majorana polarization can be used
to illustrate the physics of the fractional Josephson effect. The superconducting phase
leads to a rotation of Majorana polarization. In this manner, the extended Majorana
fermions forming at a phase difference ¢ = 7 have the same polarization and do not
hybridize to form Andreev bound states.

Finally, cases with a uniform gradient in the induced superconducting phase were
treated in linear and ring geometries. In the linear case, a topological superconductor in
a nontrivial phase had a central region subjected to a uniform gradient. However it was
impossible to induce Majorana fermions at the interfaces with the outer regions. The
central region could not be turned into a trivially gapped phase due to the fact that the
system always enters first into a gapless regime. Hence the possibility to have localized
Majorana fermions at the interface is excluded. Moreover, the gradient has a Cooper
pair-breaking effect and without the protection of the bulk gap there are no extended
Majorana fermions in the “normal” region. Extended modes were shown to exist only
in the case where the total phase gain is an odd multiple of 7 and, simultaneously, the
gradient changes by 7 from site to site. Then the system behaves as a series of short
Josephson junction each at phase difference ¢ = 7.

In the case of the ring geometry carrying a “normal” region, it was shown that the
uniform gradient can twist the phase in the topological superconducting region such
that its two ends have a difference of 7. Then the system maps to a regular SNS junction
and extended Majorana modes form in the normal section. Finite size effects produce
a shift §¢ from the ideal value ¢ = . It remains in the future to investigate the pres-
ence of Majorana fermions at higher gradient values above the transition into the gapless
regime; these are not predicted by the theory and do not seem to arise with the period-
icity 2(m + d¢).
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Chapter 6

Multiple Majorana fermions in a two-band

model

The spin-coupled semiconducting wire studied in the previous chapters supports Z,
topological phases, where Majorana modes appear due to proximity effect to an s-wave
superconductor. The index Z, means the Majorana fermions are essentially solitary zero
bound modes living at the interface of the wire with the vacuum. They are lifted from
zero energy through coupling with another Majorana fermion and they form a regu-
lar complex fermion. Is it possible to have multiple Majorana living in proximity to
cach other in a 1D wire? This question has recently received a clear positive answer. In
Ref. [126] it was shown that in the class of chiral topological superconductors BDI, one
can in principle have a system described by a Z topological invariant (see Tab. [[)). There-
fore multiple Majorana fermions could be accommodated at the ends of a wire. The
possibility was made more concrete when a simple two-band tight-binding supercon-
ducting model for spinless fermions in the BDI class was shown to hold two Majorana
modes [[127].

In the present chapter the model proposed in Ref. [127] is treated as an ideal model
on par with the Kitaev model. It is actually an extension of Kitaev model with the cru-
cial modification that there are next-nearest-neighbor hoppings and superconducting
parings in the model. Through simple arguments it is shown here that this is generally
a sufficient condition to allow for multiple Majorana fermions localized at an edge.

Furthermore, here are investigated the specific signature due to presence of mul-
tiple Majorana fermions. For once the presence of several Majorana fermions at one
edge of the superconducting wire opens several Andreev transport channels in SN junc-
tions and therefore the conductance can reach the value 2¢? /h x Q with Q € Z [[128].
However, the focus here is on the question whether the fractional Josephson effect, for
Josephson junction connecting wires which support multiple Majoranas, survives and
the anomalous 47-periodicity of the phase/current dependence is maintained.[[129]

Finally, the possibility to create new Majorana modes through the addition of a uni-
form superconducting phase gradient in the central region of the 1D wire is explored.
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6.1 TOPOLOGICAL PROPERTIES OF A TWO-BAND BDI TOPOLOGICAL
SUPERCONDUCTOR

The gradient can locally push the system in a non-trivial Z, phase, while the rest of
the system remains a topologically trivial Z, (but nontrivial Z). Then new Majorana
fermions form at the interfaces with the uniform gradient region, while multiple Majo-
rana modes can subsist at the end of the wire.

Before analyzing the properties of H, let us provide some general symmetry argu-
ments which explain why a general 1D Hamiltonian can sustain phases with more than
one Majorana end states.

6.1 Topological properties of a two-band BDI topological
superconductor

6.1.1 Symmetry constraints

A 1D superconducting system can have multiple Majorana bound states at its ends when
the system exhibits particle-hole symmetry and, crucially is also time-reversal invariant
(TRI) [[126, 127]. For the two-band Bogoliubov-de Gennes (BdG) Hamiltonian pre-
sented here, this can be seen from the following simple argument. A general two-band
BdG Hamiltonian H obeys PHS by construction, and can be written in the particle hole
basis as

H:h'T, (61)

where 7s are the Pauli matrices in the particle-hole space. Note that under PHS symme-
try the components of the vector Hamiltonian h observe

hi(k) = —hi(=Fk),

ha(k) = —ha(—Fk),

ha(k) = ha(—k). (62)
The time reversal operator for spinless fermions is just the complex conjugation operator.
Hence, if the system is TRI, the components of h obey the following constraints:

h1<k) = hl(_k)v

hao(k) = —ha(—Fk),

hs(k) = hs(—Fk). (6.3)

Particle-hole and time-reversal symmetries impose the chiral symmetry represented by
the operator 7; which anti-commutes with the Hamiltonian

{H, 7'1} = 0. (64)

If H obeys all these symmetries, then it follows that 4; must vanish. Hence H has only
two remaining components and, therefore, h defines a mapping from the Brillouin Zone
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(BZ) to the Bloch “circle”

~

h:T"— st (6.5)

Hence the mapping is characterized by a winding number w which is an integer [[126].
Therefore a two-band BdG Hamiltonian belongs to the topological BDI class charac-
terized by a Z topological invariant [[11-[13].

6.1.2 Winding number of a circuit and role of distant site couplings

The form of the winding number will give an insight to how can one increase the number
of Majorana fermions by adding distant-site coupling terms in the Hamiltonian. Let us
clarify the computation of the winding number of a closed curve around the origin in
the 2D plane; the curve is a mapping f : T — R*\{0}. By components the curve reads
f(t) = (z(t),y(t)). Let ¢t parametrize this curve with ¢ € [0, 27). Then the winding
number w of the curve around the origin in R reads

1 2w

w=— dt
21 Jo 72

o r? =2 + ¢ (6.6)

The winding number can be computed using the Brouwer degree of a curve [¢#5].
In the case that the kernel of function x(t) has a finite number of points ¢, the winding
number reduces to

w = —% Z sgn[(t)y(?)]. (6.7)

tekerx

An equivalent formula for the winding number can be produced where now one uses a
sum over the zeros of y(t).

In the case of a general TRI, BAG Hamiltonian presented in the previous subsection,
the winding number is

w = —% S sgnlOuhahs). (6.8)

keker ho

Note from the symmetry constraints that the kernel of h, contains at least the special BZ
points 0 and 7. To create more Majorana bound states at one end, the winding number
must satisfy |w| > 1. This implies that ker 2, must contain other points than 0 and 7.
This can happen by enlarging the unit cell through the addition of hopping and super-
conducting pair terms coupling distant sites. Then new nodes in the energy dispersion
develop for k € [0, 7] and can lead to higher winding number. Hence the presence of
higher-order hopping or pairing terms is a sufhcient condition to have multiple Majo-
rana bound states at the ends of a 1D wire.
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6.2 MODEL HAMILTONIAN AND PHASE DIAGRAM

Fig. 6.1: Phase diagram for the Hamiltonian in Eq. (6.9). The insulating phases are sep-
arated by black lines. Each insulating phase is characterized by a winding number w in
red. The number of Majorana fermions bound at one end is given by |w|.

6.2 Model Hamiltonian and phase diagram

The model proposed in Ref. [[127] is a two-band tight-binding model for spinless elec-

trons. The Hamiltonian reads
H = Z 1—2cczu /\1(ccz+1—|—ccz+1—|—Hc)
— No(cl_qcim + C,L»ch_l + H.¢)], (6.9)

where \; corresponds both to the nearest-neighbor (NN) hopping amplitude and to
the nearest-neighbor superconducting gap while A\, denotes the next-nearest-neighbor
(NNN) hopping amplitude and next-nearest-neighbor superconducting gap. In what
follows, \; is assumed positive. The chemical potential 1 is set to one in the following.
When Ay = 0, the Hamiltonian in Eq. (6.9) corresponds to the Kitaev model [67].

The phase diagram of H has been established in Ref. [127]. Here we recover this
phase diagram in a different manner, by using Eq. (6.8) to unambiguously characterize
cach topological phase in the (A1, A2) plane. This phase diagram is drawn for complete-
ness in Fig. 6.1

The phase diagram associated with H is characterized by phases with w = 0,1, 2.
Indeed, for Ay > 1+ A\jor Ay < —land Ay < 1 — Ay, H can sustain a phase with two
Majorana zero modes localized at each wire end [[127].
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6.3 Transportin SN junctions

Before analyzing the physics of Josephson junctions made with wires supporting several
Majorana fermions, let us focus on an SN junction for a superconductor described by
the Hamiltonian H in Eq. (6.9). For a junction between a wire with one Majorana end
state and a normal metal, it has been predicted that the differential conductance exhibits
a zero-bias peak of height 2¢? /1 [103, [104]. A similar question for a junction between
a topological superconducting wire characterized by a topological index w > 1 and a
normal metal has been recently addressed in Ref. [[128]. The authors have shown that
for such junctions the conductance G can reach a value of G = |w| x 2¢?/h. This pre-
diction is checked here by considering a junction between a wire described by Eq. (6.9)
supporting 4 Majorana fermions, 2 at each of its extremities, and a normal wire.

The low-energy properties of such a system are determined by the coupling of the
two end Majorana fermions with the normal metal. This coupling can be captured by
a 2 x 2 hybridization matrix I'. In order to compute the low-bias transport proper-
ties of this junction, one can directly use the S-matrix formalism developed by Flens-
berg [[104], and noting that the two wave-functions for the Majorana fermions are or-
thogonal [[127], such that there is no inter-Majorana coupling term.

The resulting expression for current can be written as [[104]

e

h

where M (w) = Tr[GF(w)I'GA(w)I'(w)], and GE(w) = 2[wl + 2iT]~! denotes the re-
tarded Green’s function. The differential conductance becomes

I /de(w)[f(—w FeV) = flw— eV, (6.10)

ar ¢ df(—w+eV) df(w—eV)
which at 7" = 0 reduces to
dl  2¢e?

Taking an explicit trace over the transmission matrix, it follows that

dl 8¢ 8det(T")? + (eV)?Tr(I'?)

AV~ h [(eV)?2 — 4det(D)]2 + [2eVTe(T)]2’ (6.13)
which at zero bias becomes
dl 4e?

The zero-bias value of the differential conductance is thus the double of that ex-
pected for a junction with a single Majorana fermion at the interface. This is consistent
with each interface Majorana contributing a 2¢? /1 to the total conductance.
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6.4 Josephson junctions

In this section, it is analyzed how the Jospehson effect is affected by the presence of sev-
eral Majorana zero modes. In particular, only short Josephson junctions are considered
between two wires which can sustain several Majorana end states. The model Hamilto-
nian reads

H=H;+ Hp+ Hry. (6.15)

The Hamiltonian for the left wire, Hy, is described by the Hamiltonian H in Eq. (6.9)
characterized by parameters (A\l', ). The right wire is characterized by Hp, which is
obtained from H;, by changing (¢! c} — ¢ c} ¢'?)in Eq. (6.9). Note that the same variable
phase ¢ is attached to the NN and NNN pairing terms. The second wire is characterized

by the parameters (Aff, A%). The tunneling Hamiltonian can be modeled as
Hr = —(Abelen g + Mely_engn + Hee), (6.16)

where the junction is made between site N (last of H) and N + 1, (first of Hg). By
convention the hopping/pairing of the tunneling Hamiltonian are taken identical to
the ones in the left wire.

Each wire is labeled by a topological index w* = 0,1, 2 with & = L, R. The absolute
value of the winding number indicates the number of Majorana fermions at one end in
cach wire, taken separately. It is useful to think about the junction as formed by bringing
adiabatically the wires together. The low-energy physics of the junction reduces to an
analysis of the coupling of the several Majorana modes across the junction, as presented
in Fig. .2, In the figure are illustrated the various w’ — w® junctions that are being
treated in the following: the 1 —1,1 —2and 2 — 2 junctions. The numerical simulations
are made on a 100-site system with the junction at site 50.

Before analyzing the Josephson effect in junctions made from wires supporting mul-
tiple Majorana fermions, one may ask if a complex superconducting order parameter in
a topological superconducting wire can have an effect on its phase diagram. However,
while Hp(¢) is generically complex, an uniform phase ¢ can be gauged away, yielding a
real Hamiltonian and the same phase diagram as the one depicted in Fig. B.1.

6.4.1 'Thel — 1Josephson junction

Let us consider first a Josephson junction between two wires with a topological index
w® = 1. This type of junction has been extensively studied and the model is checked
here that it is consistent with the known physics. The model parameters are chosen as
(AT, A9) = (1,1). Our numerical results for the dependence of the energy levels of this
junction with the phase difference recover a 47 periodicity consistent with the anoma-

lous Josephson effect (see Fig. [6.3(a)).
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Fig. 6.2: To form Josephson junctions, wires characterized by winding numbers 1 — 1,
1 — 2 and 2 — 2 are brought into contact. Without loss of generality, the left-hand
side superconductor has real order parameters, while on the right-hand side they have
a superconducting phase ¢. The low-energy Hamiltonian is assumed to contain only
phase-dependent coupling terms between the Majorana fermions.
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Fig. 6.3: (a) The dependence of the lowest-energy eigenvalues on the superconducting
phase difference between the two wires. (b) The eigenvalue spectrum for three different
values of ¢ = 0,7/2, m. The system exhibits four zero-energy modes at ¢ = 7. Model
parametersare A\; = 1 and Ay = 1

In Fig. 6.3(b) it is plotted the eigenvalue spectrum of the junction for ¢ = 0, 7/2, .
Only for ¢ = 7 one recovers four zero-energy eigenvalues which corresponds to four
Majorana fermions: one at each extremity and two at the junction.

The 47-periodicity can be understood from a simple effective low energy Hamilto-
nian following Kitaev [67]. The overlap between the wave functions of the two Majo-
rana fermions at the extremities with the Majorana fermions at the interface is neglected.
The simplest low-energy effective Hamiltonian reads [24, 67,102, 119-[121], 130, 131].

Hyg' = ityy cos(9/2) 7172, (6.17)

where 7, is a Majorana fermion at the right end of the first wire, and 75, a Majorana
fermion localized at the left end of the second wire. Here ¢4 is the effective tunneling
amplitude (see Fig.[6.2]). One can check that the cosine behavior reproduces well the low
energy spectrum. It is worth emphasizing that ivy;, is trivially a conserved quantity of

1-1
Heff :
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Fig. 6.4: (a) The dependence of the lowest-energy eigenvalues on the SC phase difference
between the two wires. The energy branches are labeled using the occupation number
representation for the two-fermion states formed from fusing four Majoranas across the
junction. At low energy the two energy branches are linearly ficted: E57% £ E*72 =
(dy £d_)|¢ — w|/2 and the value off coefficients d. is displayed. (b) The eigenvalue
spectrum for three different values of ¢ = 0,7/2, 7. The system exhibits eight zero-
energy modes at ¢ = 7.

6.4.2 'The 2 — 2 Josephson junction

Let us now consider a junction between two superconducting wires characterized by
winding numbers w® = 2.

Analysis of the spectrum

The eigenvalue spectrum for a 2 — 2 junction is computed numerically. The result is
shown in Fig.[p.4(b). The first important thing to note is that the anomalous 47-periodicity
still holds. The only difference is that there are now four Majorana fermions forming at
the junction when the phase difference is ¢ = 7. At each extremity of the system there
are also two Majorana fermions which subsist for any value of ¢, making the ground
state eight-fold degenerate at ¢ = 7 (see Fig. [6.4(b)).

A low-energy Hamiltonian capable to describe the numerical results presented in
Fig. must involve four Majorana fermions. Let us denote by 71,72 the Majorana
fermions on the left side of the junction and by 73,74 the Majorana fermions on the
right side of the junction. A general Hamiltonian involving the four Majoranas can be
written as

o . ¢
H2:? = iv1(tisys + ti474) cos % + iy2(ta3y3 + taaya) cos 2

+ it34’73’74 sin Cb + itlz’}/l’}/z sin ¢ (618)

The phase dependence of HZ;? is fixed by enforcing a 27-periodicity together with
the constraint that for ¢ = 0 there is no direct coupling between ~; and 7, nor between
73 and 4. The cos(¢/2) is required by gauge invariance. Here are formally included
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some direct-tunneling terms between the Majorana fermions on the same side of the
junctions (12 and #34), which may be non-zero when ¢ # 0, 7 (this explains the sin(¢)).
However, one can argue that such terms must be less significant since they are the result
ofhigher-order hopping processes between the two superconductors. In fact these terms
turn out to be negligible for the description of the low-energy spectrum.

Contrary to the 1—1 junction, where there was an obvious quantity commuting with
the Hamiltonian for all values of ¢, for the 2 — 2 junction this is not obvious for ¢ # .
In the later case, there are four Majorana fermions fusing to form two regular fermions
cy. This can be seen from the spectral decomposition of the effective Hamiltonian

HZ” = By (2c e, — 1) + B*?(2cl e — 1), (6.19)
where

E3? = dycos(¢/2), (6.20)

with dy = ﬁi\/ b+ Vb2 — 4a? with a = tyytez — tistag and b = 135 + 12, + 125 + 13,.
Note thateven if the fo5 term in Eq. (6.18) was neglected, the form of the ¢ fermions
as a function of the original Majorana fermions remains complicated. For example, un-
der the reasonable assumption that the coupling strength between Majorana fermions
situated at the same distance across the junction is identical, ¢15 = t14, if follows that

1[+’+(+')] ith

Cy = —F—= Y+ im + g3+ i), Wi

V2 + 293
1

gy = T[tzg —tiu \/4t§3 + (t1a — t23)?]. (6.21)
13

However the Hamiltonian and the occupation numbers of the two fermions ny. = cl.c,.
trivially commute among each other. The occupation numbers for the two fermions are
conserved and one can use Eq. (6.19) to label the energy branches in the occupation
number representation of the two-particle states, [nn_) (see Fig.[6.4). The value of E3
can be found numerically from a linear fit at low energy near ¢ = 7 in Fig. [6.4. Most
importantly, the 47 periodicity of the DC Josephson effect is maintained.

Analysis of the Majorana polarization

A useful tool to analyze the behavior of Majorana fermions is the Majorana polarization,
a local topological order parameter introduced in Ref. [111]] and related to the degree
of anomalous pairing in a 1D topological wire.

The existence of a Majorana fermion is recorded as a zero-energy Majorana polar-
ization density of 0.5. A Majorana fermion can have a z- and y-Majorana polarization.
When the Hamiltonian is real at ¢ = 0 and ¢ = 7, the y-Majorana polarization Py,
is 0. When the superconducting parameter acquires a phase, the polarization along the
y-direction is generally nonzero.
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Polarizations

2.0 L 1 L
0 /2 3m/2 27

s A

Fig. 6.5: Zero-energy Majorana polarization integrated over the 40 sites around the junc-
tion. Four Majorana states form at the junction for ¢ = 7 yielding a z-Majorana polar-
ization of 2, and compensating the Majorana polarization of the four end bound state.

Here, similar to Ref. [[122]], the end Majorana fermions respond to the variation of ¢
by rotating their Majorana polarization. This is due to the superconducting parameter
becoming complex. However at ¢ = 7 the superconducting parameter becomes real
again and the zero-energy end states have the same Majorana polarization. For this par-
ticular value of the phase, four new Majorana fermions form at the junction, two in each
wire, their z-Majorana polarization compensating the Majorana polarization of the end

modes (see Fig. p.5).

6.4.3 'The 1l — 2 Josephson junction

In the following, the focus is on the remaining 1 — 2 junction. This is a particularly
interesting problem since two distinct topological sectors are brought into contact viaa
Josephson junction.

Analysis of the spectrum

The physics of this junction is expected to be dominated by three interacting Majorana
fermions localized at the interface. One can show that for a winding number difference
of one between the right side and the left side of the junction, one Majorana mode is
bound at the interface for any choice of ¢. Moreover, at ¢ = 7 the system is six-fold
degenerate with three zero energy Majorana in the junction region (see Fig. [6.4(b)).

Let~; denote the Majorana fermion on the left side of the junction, and by 45, 3 the
Majorana fermions on the right side. The gauge invariance of the Hamiltonian suggests
that the phase-dependent couplings between v, and 7,3 are proportional to cos(¢/2)
to compensate the sign change. A low-energy Hamiltonian describing the Majorana
coupling in the 1 — 2 system can thus be written as

_ , o .
Hgfo = i71(t1272 + t137y3) cos 5 + il937y27y3 Sin @. (6.22)
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Fig. 6.6: (a) The dependence of the lowest-energy eigenvalues on the superconducting
phase difference between the two wires. The dotted line indicate the fit of the lowest-
energy numerical eigenvalue with the analytical form in £ from Eq. (6:23). The fit
parameter is a = +/t%, + t1;/4. (b) The cigenvalue spectrum for three different values
of ¢ = 0,7/2, 7. The system exhibits six zero-energy modes at ¢ = 7.

This Hamiltonian has three zero-energy eigenstates at ¢ = 7. For a phase difference of
¢ # m, the effective Hamiltonian (6.22) has one zero cigenvalue (required by the anti-
symmetry of the 3 x 3 matrix) and two non-zero eigenvalues. The constant zero-energy
state, which is a Majorana edge state bound at the interface between two topologically
nonequivalent regions, is the result of the difference of one unity between the topolog-
ical indices of the two regions.

Similar to the 2 — 2 junction, if the last term of Eq. (6.22)) is neglected, the form for

the two eigenvalues becomes
EL = +2acos(¢/2). (6.23)

The hopping dependent parameter a = $+/t%, + t1; can be determined from a low-
energy fit of the numerical dispersion presented in Fig. 6.G(a). Note that taking into
account also the term o3 improves the quality of the fit, especially in the vicinity of
the superconducting gap. Note also that, while the fit is accurate up to energies close
to the superconducting gap, the effective Hamiltonian H, e1f;2 is exclusively a low-energy
effective Hamiltonian and should not be expected to recover the full dependence of the
energy eigenvalues on the superconducting phase difference.

Analysis of the Majorana polarization

In the left-side wire, described by a winding number w = 1, the superconducting pa-
rameter is chosen to be real and the single Majorana fermion at the left end is always
fully z-polarized. For the right-hand side wire, at the right end there are two Majo-
rana fermions that respond to the twisting of the phase ¢ by gaining a y-polarization; in
Fig.[6.7)(a) it is presented the behavior of the 2- and y-polarizations of these modes.
Let us now analyze what happens at the junction between the two wires. At ¢ = 7
it is expected to have 3 Majorana fermions. For any other ¢ there is always at least one
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(b)

Polarizations
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Fig. 6.7: (a) The Majorana polarization of the right-end Majorana fermions integrated
over the last 30 sites. Note the oscillatory behavior of the z- (red) and y- (blue) Ma-
joran polarization components with a total constant Majorana density of 2 x 0.5, cor-
responding to two rotating Majorana modes. (b) Zero-energy density of states inte-
grated over the 40 sites around the junction point. (c) Zero-energy Majorana polar-
ization integrated over the 40 sites around the junction. The z—polarization (red) and
the y—polarization (blue). Three Majorana fermions having the same polarization are
supported at the junction for ¢ = 7.

Majorana fermion stuck at the interface between the two topologically nonequivalent
regions. This can be seen by plotting the zero-energy density of states, as well as the
zero-energy Majorana polarization, integrated over the 40 sites around the junction. In
Fig.6.7(b) it is plotted the integrated zero-energy density of states. Note that for ¢ # 7
the density of states is constant and equal to 0.5 corresponding to a single Majorana
mode bound at the junction. The sharp jump between 0.5 and 1.5 at ¢ = 7 describes
the contribution of the two extra Majorana modes which reach zero energy at ¢ = =
(these two extra zero-energy states appearing at ¢ = 7 can also be seen in the spectrum
described in Fig. [6.4(b)). This is also confirmed by a plot of the zero-energy Majorana
polarization, integrated over the 40 sites around the junction, in Fig. [6.7(c); the jump
in the z-Majorana polarization at ¢ = 7 can be understood as coming from the two
Majorana modes that develop at zero energy. Thus, at ¢ = 7 there are three Majorana
fermions at the two extremities of the wire (one at the left end and two at the right
end), fully 2-polarized in the positive direction. These fermions are compensated by
three Majorana fermions which form in the junction which are fully z-polarized in the
opposite direction.

6.5 Wireswithaninhomogencoussuperconducting phase

As it was shown in Ref. [[127], the system exhibits two Majorana modes at each end,
provided that the time-reversal and chiral symmetries are not broken, namely as long as
the system remains in the BDI class [[12, 13]. Breaking time-reversal symmetry leads to
the removal of the protection for two Majorana fermions since the system now belongs
to the D symmetry class (see Tab. [I[). Then the system can return to the more typical
state with at most one Majorana fermion at each end.

Here it is explored a different way to break TRS, i.c. by adding a constant phase
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Fig. 6.8: A constant phase gradient over 40 sites twists the superconducting phase from 0
to . (a) Schematic picture of the setup. Supercurrent in the bulk change the supercon-
ductor phase ¢ in the (black) wire from 0 to 7. (b) The constant phase gradient removes
four MBS in the middle region, leaving two MBS at each end, both z-polarized. (c)
Majorana modes form at the ends of a 40 site central region driven in a nontrivial Z,

phase by a phase gradient V¢ = 2.

gradient. Let us take a wire characterized by the topological index w = 2. Instead of
an abrupt change in the superconducting phase, consider a long junction comprising a
region in which the phase can vary smoothly with a constant phase gradient. On the
left side of this long junction, the superconducting phase is assumed to be constant and
equal to 0 while on the right side it is supposed to be constant and equal to ¢ = 7.
The phase of the central region is supposed to vary smoothly from 0 to 7; such a uni-
form phase gradient can be induced for example by the presence of supercurrents in
the bulk of the superconductor. This situation is schematically depicted in Fig. 6.8(a).
The phase gradient can be used to manipulate the creation or destruction of Majorana
fermions [[129]].

Due to the phase gradient, the BdG Hamiltonian gains a TRS-breaking h; (k) odd

componcnt:

hi(k) = A1 sin(k) sin(Vg/2) + A sin(2k) sin(V¢)
ho(k) = =y sin(k) sin(V¢/2) — Ay sin(2k) cos(V ) (6.24)
hs(k) = 2 — 2\ cos(k) cos(Vp/2) — 2X; cos(2k) cos(V o),

where the gradient V¢ is the change of phase over one site. Note that a phase gradi-
ent also creates a non-vanishing hy component that multiplies the identity Pauli matrix.
Although it is neglected in the following, it indicates the breaking of PHS and the ten-
dency of the gradient to destroy Cooper pairs. This poses a conceptual problem: how
are the Majorana fermions protected in case of a broken PHS? In fact numerical simu-
lations show spurious zero modes that appear when the phase gradient is present.

Let us neglect for the moment the breaking PHS, as hy < hs when the gradient is
small. The system is no longer characterized by a winding number w but instead by the
Kitaev Z, invariant [67]. Analyzing the topological invariant reveals that the system is
in a topologically nontrivial phase if the condition

|1 — Aycos(Vo)| < |\ cos(Vo/2)] (6.25)
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Energy

Phase gradient V¢

Fig. 6.9: Illustration of the first negative and the first two positive eigenvalues in a 100-
site superconducting wire subjected in its entirety to a phase gradient that varies from
0 to 27. Uniform disorder with a magnitude of ~ 10% of the hopping strength X
removes spurious zero modes leaving zero Majorana modes in the windows predicted

by the topological condition (6.23)) (marked with dashed lines). A; = 1and Ay = —1.5.

is satisfied. Note that at vanishing phase gradient, one recovers the phase diagram in
Fig. [6.1], with the only change that w = 2 and w = 0 are both trivial Z, phases.

Therefore adding a small phase gradient removes the Majorana fermions at the ends
of the central region. This is due to the fact that locally both sides of the region are
topologically Z trivial. However, at both ends of the wire, in the regions without a phase
gradient, two Majorana modes continue to be present because they are locally protected
by the time reversal symmetry.

In contrast, one can drive the central region to a topologically Z, nontrivial state,
by increasing the phase gradient. This happens when the inequality (6.29) is verified.
Then the central region is connected to two Zs trivial regions and one Majorana fermion
forms at cach interface. The pair of Majorana fermions persist at the ends of the wire (see
Fig. b.§(c))-

Due to the twist of the phase by 7, the two Majoranas at the ends are both 2-Majorana
polarized in the same direction.

It is noteworthy to realize that the validity of the topological invariant can be ques-
tioned in the case where PHS is broken. However one can see that the topological in-
variant continues to hold true. In numerical simulations, a 100-site system, originally in
the w = 2 topological phase, is subjected in its entirety to a uniform superconducting
phase gradient wire. In Fig. 6.9 one can see that when the gradient is added the system
becomes a trivial Z, topological insulator, marked by the loss of the four-fold degener-
acy near V¢ = 0. Spurious modes near zero energy are removed by disorder, and two
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robust Majorana modes develop in the window predicted by the topological invariant.
At this moment, we lack an explanation of the origin of the spurious zero modes, or for
the perplexing effectiveness of the Z, topological invariant in the absence of the PHS
symmetry. These problems deserve further research.

6.6 Discussion

The study of the Josephson effect between wires supporting multiple Majorana fermions
has revealed that the 47 anomalous periodicity is maintained in junctions characterized
by a sharp change of the superconducting phase. Moreover, a smooth phase gradient
can be used to destroy the Z phase and to create Majorana fermions at the interface be-
tween trivial and nontrivial Z, phases. Also a connection was made between the work
on topological insulators with large Chern number and BDI class topological supercon-
ductors. For the two-band models studied, it was shown that a sufficient condition to
create multiple zero-energy bound states at the edges of system is to add coupling terms
between distant sites. Let us finally remark that the Z Majorana modes that appear
in these system should be fragile when considered in realistic systems as the spin-orbit
coupled semiconducting wire due to the necessity of time-reversal symmetry. The real-
ization of Majorana fermions was shown to depend crucially on the presence of a time-
reversal breaking magnetic fields that will naturally act to destroy the high Z phases.
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Conclusion and Perspectives

Topological insulators and superconductors form a class of materials with a bulk gap in
the energy spectrum, inhabited by exotic edge states. A topological invariant character-
izes the bulk properties of these systems and it is subsequently reflected in the number
of the edge states.

In the first part of the thesis, the investigation was centered around two-dimensional
tight-binding topological insulators indexed by a Chern number. They are quantum
anomalous Hall insulators that support an arbitrary number of edge states. However,
large Chern number or, equivalently, multiple edge states are usually created by fashion-
ing multiband systems. It was shown here that it is possible to vary the Chern number
in simple two-band models by adding distant-neighbor hopping terms.

The key of the entire study lies in understanding that the topological invariant admits
a discrete formulation. This allows to see an insulator as a “sum” of a gapless system with
Dirac points plus a mass term. Crudely, the topological invariant reduces to a finite
sum over the Dirac points weighed by the sign of the mass term. Therefore a necessary
condition to increase the number of topological phases is to multiply the nodes in the
energy dispersion. This can be realized by having hopping terms between distant sites.
The consequences are explored in two models: a new artificial model with five Chern
phases and also by adding distant-neighbor hopping in the Haldane model. The method
allows one to obtain complete topological phase diagrams for the models.

There are two directions in which to extend the present study. The first consists in
generalizing to multiband systems. Already two four-band model extensions are dis-
cussed: a Z, insulator built from two Chern insulators and a “striped” Z topological in-
sulator that can have large metallic phases. The second direction is to search for possible
physical realizations of the model. The existence of extreme distant-neighbor hopping
terms remains rather problematic; however multiband systems might effectively map to
such models [37].

While the bulk admits general methods to easily discriminate between the topologi-
cal phases, the edge-state investigations get quickly mired in details associated to the par-
ticular geometry of the edges. Moreover, the fact that there could be several edge states
at an interface adds a new layer of difficulty to analytically finding the wave-function so-

117



CONCLUSIONS AND PERSPECTIVES

lutions. Chap. Pl contains a detailed analysis of a situation in which there are at most two
edge states at an interface. In perspective, one needs to generalize to edges of different
geometries. Most importantly, one has to clarify the nature of edge states which form
between topologically gapped phases with the same Chern number. Conceivably, the
decomposition of a topological insulator in a gapless model plus a mass term could be
used to extend previous studies of edge states in gapless systems [63, 64] to topological
insulators.

The second part of the thesis revolves around the subject of Majorana fermions real-
ized as quasiparticles in one-dimensional topological superconductors. There is a deep
analogy to the previous study of topological insulators. The Majorana fermions are the
“edge states” of topological superconductor and can be predicted from a knowledge of
some bulk properties. They are predicted to emerge in a variety of condensed matter
systems (see Sec. B.2.1). However, Chaps. f] and fj are focused on a particular theoreti-
cal proposal distinguished by the simplicity of its ingredients. The Majorana fermions
are predicted to appear as zero-energy excitations in a 1D spin-orbit coupled semicon-
ducting wire under the effect of a magnetic field and in proximity to an s-wave super-
conductor [24, 25]. In Chap. i, a Dresselhaus spin-orbit coupling term was added and
it was shown that there is a spin texture to the electronic degrees of freedom that form
the Majorana quasiparticle. They are spin-polarized in opposite direction in a transverse
plane to the magnetic field. The exact direction is determined by the relative weights of
Rashba and Dresselhaus spin-orbit couplings. This information could be used to detect
Majorana fermions through the coupling to magnetic impurities. Nevertheless, it still
remains to explicit this idea in the form of a complete experimental proposal.

Chap. f continued the study to superconductor-normal metal and long supercon-
ductor-normal metal-superconductor (SNS) junctions built from the semiconducting
wire. The Majorana fermions can form as extended states into the normal part of the sys-
tem. It was shown that the extension of the modes can depend on the coupling between
the normal and superconducting regions and also that leaking of Cooper pairs into the
normal metal can further localize the Majorana modes. In the SNS junction the Majo-
rana fermions form only at phase difference 7 between the two superconductors, oth-
erwise would-be Majorana fermions hybridize to form extended Andreev bound states
in the normal region. This phenomenon is a salient feature of the fractional Josephson
effect. An order parameter, the Majorana polarization, introduced in Sec. 3.3is used to
investigate the extended zero-energy states in the junction. Finally, the study turned to
aringdivided in two regions: a normal metal region and a topological superconducting
one with a superconducting phase gradient. The system can be mapped in this case to
an SNS junction and again Majorana fermions arise in the normal region when the total
phase twist is close to . It is crucial for future studies to understand in more detail the
action of the gradient. The phase gradient has a Cooper pair-breaking effect which can
lead to gapless phases in the superconductor. These are large-gradient phases devoid of
Majorana fermions. However there are peculiar values where Majorana fermions still
form in the normal region. These events are not predicted by the theory and pose an
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open question for future studies.

The final Chap. { treats a particular model where the presence of time-reversal and
chiral symmetries allows the formation of multiple Majorana fermions at the same edge
of a wire [[127]. It is shown that distant-neighbor pairing terms play the same role as
in the 2D Z topological insulators studied before: they facilitates the increase of the
topological invariant and the multiplication of edge states. Moreover, the presence of
several Majorana fermions allows to construct SNS junctions between wires in differ-
ent topologically nontrivial phases. The fractional Josephson effect still characterizes
the system and it maintains its signature 47-periodicity. Furthermore, the multiple Ma-
jorana modes can be destroyed by the addition of a phase gradient, which can transform
the Z insulator into a Zj insulator with at most one Majorana fermion at an edge. The
presence of a phase gradient poses some serious problems; because gradient tends to
break the Cooper pairs, the presence of protected zero modes at high gradient values
remains to be properly explained.

In perspective, this analysis needs to be carried over to more realistic spinful systems
to assess the viability of phases with multiple Majorana. For instance, the spin-coupled
semiconducting wire studied before does not seem to be a good candidate, because the
magnetic field breaks the TRS necessary to have the Z insulator. A natural candidate
to realize topological Z superconductors would be a heterostructure involving time-
reversal invariant QSH insulators instead [83].
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