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Abstract

This document presents a series of elements for approaching the task of segmenting mouth

structures in facial images, particularly focused in frames from video sequences. Each stage is

treated separately in different Chapters, starting from image pre-processing and going up to

segmentation labeling post-processing, discussing the technique selection and development in

every case. The methodological approach suggests the use of a color based pixel classification

strategy as the basis of the mouth structure segmentation scheme, complemented by a smart

pre-processing and a later label refinement.

The main contribution of this work, along with the segmentation methodology itself, is based

in the development of a color-independent label refinement technique. The technique, which

is similar to a linear low pass filter in the segmentation labeling space followed by a non-

linear selection operation, improves the image labeling iteratively by filling small gaps and

eliminating spurious regions resulting from a prior pixel classification stage. Results presented

in this document suggest that the refiner is complementary to image pre-processing, hence

achieving a cumulative effect in segmentation quality.

At the end, the segmentation methodology comprised by input color transformation, pre-

processing, pixel classification and label refinement, is put to test in the case of mouth gesture

detection in images aimed to command three degrees of freedom of an endoscope holder.

Keywords: Image segmentation, lips segmentation, gesture classification, human-machine

interface.
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Résumé étendu

Ce travail présente une nouvelle méthodologie pour la reconnaissance automatique des gestes

de la bouche visant à l’élaboration d’IHM pour la commande d’endoscope. Cette méthodologie

comprend des étapes communes à la plupart des systèmes de vision artificielle, comme le

traitement d’image et la segmentation, ainsi qu’une méthode pour l’amélioration progres-

sive de l’étiquetage obtenu grâce à la segmentation. Contrairement aux autres approches, la

méthodologie est conçue pour fonctionner avec poses statiques, qui ne comprennent pas les

mouvements de la tête. Beaucoup d’intérêt est porté aux tâches de segmentation d’images,

car cela s’est avéré être l’étape la plus importante dans la reconnaissance des gestes.

En bref, les principales contributions de cette recherche sont les suivantes:

• La conception et la mise en œuvre d’un algorithme de raffinement d’étiquettes qui

dépend d’une première segmentation/pixel étiquetage et de deux paramètres corrélés.

Le raffineur améliore la précision de la segmentation indiqué dans l’étiquetage de sortie

pour les images de la bouche, il apporte également une amélioration acceptable lors de

l’utilisation d’images naturelles.

• La définition de deux méthodes de segmentation pour les structures de la bouche dans les

images; l’une fondée sur les propriétés de couleur des pixels, et l’autre sur des éléments de

la texture locale, celles-ci se complètent pour obtenir une segmentation rapide et précise

de la structure initiale. La palette de couleurs s’avère particulièrement importante dans

la structure de séparation, tandis que la texture est excellente pour la séparation des

couleurs de la bouche par rapport au fond.

• La dérivation d’une procédure basée sur la texture pour l’automatisation de la sélection

des paramètres pour la technique de raffinement de segmentation discutée dans la

première contribution.

• Une version améliorée de l’algorithme d’approximation bouche contour présenté dans

l’ouvrage de Eveno et al. [1, 2], ce qui réduit le nombre d’itérations nécessaires pour la

convergence et l’erreur d’approximation finale.

• La découverte de l’utilité de la composant de couleur CIE a∗ statistiquement normalisée,

dans la différenciation lèvres et la langue de la peau, permettant l’utilisation des valeurs

seuils constantes pour effectuer la comparaison.

Le contenu de ce document suit les étapes du processus de reconnaissance bouche geste.

Tout d’abord, le Chapitre 2 introduit une bibliographie sur la segmentation de la structure

de la bouche dans les images, et décrit les bases de données et les mesures de performances
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utilisées dans les expériences. Le Chapitre 3 traite des représentations de couleurs et plusieurs

techniques de traitement d’image qui permettent de mettre en évidence les différences entre

les structures de la bouche, tout en améliorant l’uniformité à l’intérieur de chaque structure.

La modélisation stochastique et les techniques de classification, communes dans la reconnais-

sance des formes et d’exploration de données, sont utilisées pour obtenir des résultats rapides

en matière d’étiquetage (segmentation de point de départ). Une nouvelle technique pour le

post-traitement des images d’étiquettes résultant de la segmentation initiale par le biais d’un

raffinement itératif des étiquettes est présentée dans le Chapitre 4. Le processus est également

testé avec des images naturelles, afin d’établir une idée plus complète du comportement du

raffineur. Le Chapitre 5 présente une étude sur l’utilisation de descripteurs locaux de texture

afin d’améliorer la segmentation de la structure de la bouche. Le Chapitre 6 introduit une

version modifiée de l’algorithme automatique d’extraction du contours des lèvres, initialement

traité dans le travail par Eveno et al. [1, 2], conçu pour trouver la région d’intérêt de la bouche.

Le Chapitre 7 propose une nouvelle méthodologie pour la reconnaissance des mouvements de

la bouche, en utilisant les techniques traitées dans les chapitres précédents. Une illustration du

travail proposé dans le cas spécifique de commande porte endoscope pour le système chirurgi-

cal Da Vinci est présentée. Finalement, les conclusions de ce travail sont montrées au Chapitre

8, des questions ouvertes et des travaux futurs sont discutés dans le Chapitre 9.

Mots-clés: segmentation, segmentation de lèvres, classement de gestes, interface human-

machine.
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Resumen extendido

En éste trabajo se presenta una nueva metodoloǵıa para el reconocimiento automático de

gestos de la boca orientada al desarrollo de una interfaz hombre-máquina para el comando

de endoscopios. Dicha metodoloǵıa comprende etapas comunes a la mayoŕıa de sistemas de

visión artificial, como lo son el tratamiento de la imagen y la segmentación, además de un

método para el mejoramiento progresivo del etiquetado resultante de la segmentación inicial.

A diferencia de otras aproximaciones, la metodoloǵıa propuesta se adecua a gestos bucales y

que no implican movimientos de la cabeza. A lo largo del documento se presta especial interés

a la etapa de segmentación, ya que es ésta la que presenta mayores retos en el reconocimiento

de gestos.

En resumen, las contribuciones principales de este trabajo son:

• El diseño y la implementación de un algoritmo de refinamiento de etiquetas que depende

de una segmentación y etiquetado inicial, y de dos parámetros intŕınsecos al algoritmo.

La estrategia produce una mejora en el etiquetado de las regiones en imágenes faciales

centradas en la región de la boca, mostrando también un rendimiento aceptable para

imágenes naturales.

• La propuesta de dos métodos de segmentación de las estructuras de la boca en imágenes:

uno basado en la clasificación de los ṕıxeles por su color, y otro que incluye además

algunas caracteŕısticas locales de textura. El segundo método mostró ser particularmente

útil para separar la boca del fondo, mientras que el primero es fuerte en la clasificación

de las estructuras visibles de la boca entre śı.

• La derivación de un procedimiento basado en caracteŕısticas locales de textura en las

imágenes para la selección automática de los parámetros del algoritmo de refinamiento.

• Una versión mejorada del algoritmo de aproximación del contorno externo de la boca

presentado por Eveno y otros [1, 2], en la cual se reducen tanto el número de iteraciones

necesarias para alcanzar la convergencia como el error final de aproximación.

• Se notó la utilidad de la componente CIEa∗ normalizada estad́ısticamente dentro de la

región de interés de la boca, para la clasificación rápida de los labios y la boca a través

del uso de comparación con un umbral fijo.

El contenido del documento se presenta como sigue: primero, en el Caṕıtulo 2 se introduce

el tema de segmentación de las estructuras de la boca, y se brinda una breve descripción de

las técnicas de medida de rendimiento utilizadas y de la base de datos generada para este

trabajo. Seguidamente, en el Caṕıtulo 3 son tratadas algunas representaciones de color y

su potencial en la tarea de clasificación de estructuras de la boca por comparación, y en el

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



10

modelado estocástico de la distribución de color de cada una de ellas. En el Caṕıtulo 4 se

presenta una nueva técnica de refinamiento progresivo de las etiquetas resultantes de pro-

cesos de clasificación/segmentación. Su comportamiento es también estudiado en el caso

de uso de segmentación de imágenes naturales y de segmentación de las estructuras de la

boca en imágenes faciales. El Caṕıtulo 5 muestra un estudio acerca del uso de un grupo de

caracteŕısticas locales de textura para el enriquecimiento de la segmentación de la boca en

imágenes. En el Caṕıtulo 6 se introduce una versión modificada del algoritmo de aproximación

del contorno externo de los labios presentado por Eveno y otros [1, 2]. El Caṕıtulo 7 contiene

la aplicación de la metodoloǵıa de segmentación de estructuras de la boca y reconocimiento

de gestos en la tarea de generar comandos para una interfaz hombre-máquina para la ma-

nipulación de robots porta-endoscopios, en particular orientado al sistema de ciruǵıa asistida

DaVinci. Finalmente, las conclusiones de este trabajo y el trabajo futuro se presentan en los

Caṕıtulos 8 y 9, respectivamente.

Palabras clave: Segmentación, segmentación de labios, clasificación de gestos, interfaz

hombre-máquina.
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1 Introduction

Vision based human machine interfaces have gained great interest in recent years. The in-

creasing computational capabilities available in mainstream PCs and embedded systems such

as mobile phones, digital cameras, tablets, etc., enable the massive deployment of a wide

variety of applications using techniques hitherto constrained to specialized equipment. In ex-

ample, it is not uncommon to see device unlocking systems based on face recognition, voice

recognition and digital prints, among others, embedded in rather simple devices.

Nevertheless, security and consumer based products are not the only fields that have profited

from the visual recognition race. Medical applications have taken advantage of this technologi-

cal leap, translated in the arising of high performing data analysis and visualization techniques.

These techniques interact in real-time with the working environment both in patient-wise and

surgeon-wise levels, empowering sophisticated assessment systems and command interfaces.

Visual assessment human machine interfaces in surgical environments can be clearly exemplified

by the use of the visible tip of surgical instruments, as well as other visual cues, in order to servo

endoscope holders. This approach presents acceptable results if the endoscope movement is

meant to be coupled with those carried out by the instruments, but its applicability seems to be

limited if such movements should be independent from each other. In that case, commanding

the holder requires the use of additional elements such as joysticks, pedals, buttons, etc.

Wearable marks in the head of the surgeon have also been used to estimate the desired

endoscope pose by measuring the relative pose of the surgeon face.

In a previous work [3, 4], several approaches for solving the endoscope holder command were

discussed, highlighting the fact that mouth gestures could be regarded as a feasible alternative

to prior approaches in tackling such task. The authors used a small subset of easily identifiable

gestures conveying both mouth poses and head movements, in order to control three degrees of

freedom (upwards-downwards, left-right, zoom in-zoom out). The approach presents a feasible

solution whenever movements of surgeon’s head are admissible during the intervention, but

is not usable otherwise. This fact poses an important limitation since modern tools such

as the DaVinci surgical system impose strict constraints regarding the surgeon pose during

intervention.

In this work, a novel methodology for automatic mouth gesture recognition aimed towards the

development of endoscope holder command HMIs is presented. The methodology comprises

common stages in most artificial vision systems, such as image pre-processing and segmen-

tation, along with a least treated one which is label post-processing or refinement. Unlike

previous approaches, the methodology is designed to work with mouth poses that do not in-

clude head movements. Much interest is given to image segmentation related tasks, since it

has proven to be the most challenging stage in the gesture recognition streamline.

Briefly, the main contributions of this research are:

• The design and implementation of a label refinement algorithm that depends on an
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20 1 Introduction

initial segmentation/pixel labeling and two correlated parameters. The refiner improves

the segmentation accuracy shown in the output labeling for mouth images, also bringing

an acceptable improvement when using natural images.

• The statement of two segmentation schemes for mouth structures in images, one utterly

based in pixel color properties, and other including some local texture elements, which

complements each other in obtaining a fast and accurate initial structure segmentation.

The color-only scheme proves to be particularly accurate for structure from structure

separation, while the texture and color scheme excels at mouth from background dis-

tinction.

• The derivation of a texture based procedure for automating the parameter selection for

the segmentation refinement technique discussed in the first contribution.

• An improved version of the mouth contour approximation algorithm presented in the

work by Eveno et al. [1, 2], which reduces both the number of iterations needed for

convergence and the final approximation error.

• The discovery of the usefulness of the CIEa∗ color component statistically normalized in

differentiating lips and tongue from skin, enabling the use of constant threshold values

in such comparison.

The outline of this document follow the stages that conform the mouth gesture recognition

process. First, Chapter 2 introduces a review on mouth structure segmentation in images,

and describes the databases and accuracy measurements used throughout the remainder of

the document. Chapter 3 explores several color representations and pre-processing techniques

that help in highlighting the differences between mouth structures, while improving the uni-

formity within each structure. Stochastic modeling and classification techniques, common

in pattern recognition and data mining, are used to obtain fast labeling results usable as a

starting point segmentation. A novel technique for post-processing the label images resulting

from the initial segmentation through iterative label refinement is presented in Chapter 4. The

method is also tested with natural images, in order to establish a broader idea of the refiner’s

behavior. Chapter 5 presents a study on the use of local texture descriptors in order to enhance

mouth structure segmentation, following the methodological approach in Chapter 3. Chap-

ter 6 presents a modified version of the automatic lip contour extraction algorithm originally

introduced in the work by Eveno et al. [1, 2], aimed to find the mouth’s region of interest.

Chapter 7 proposes a new methodology for mouth gesture recognition in images using most of

the elements treated in previous Chapters. It exemplifies the proposed workflow in the specific

case of endoscope holder command for the DaVinci surgical system. Finally, the conclusions

of this work are drawn in Chapter 8, and some open issues and future work are discussed in

Chapter 9.
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2 Mouth structure segmentation in

images

The main goal of this Chapter is to serve as an extended introduction to the document. It

presents the topic of mouth structures segmentation in images, giving insights on how this

task has been addressed in the past, and how such task is approached in this work.

The Chapter can be split in two main parts. The first part, which is identified as Section 2.1,

contains a synthesis on how the challenge of automatic mouth structure segmentation has

been addressed in the past. The second part, denoted as Section 2.2, introduces a series

of performance measurement tools that serve as a basis to present the results contained

in the remaining chapters, as well as a brief description of the databases used to obtain the

aforementioned results. The later is a common reference throughout the rest of this document.

2.1 Previous work

One major step in automatic object recognition in images and scene perception is image

segmentation. In this step, all pixels in the image are classified according to their color,

local texture, etc., preserving local compactness and connectedness. As in any other image

segmentation task, the techniques that can be used to deal with the task may be approached

from a taxonomic point of view regarding their inherent abstraction level. Figure 2.1 shows

one of those possible approaches for the specific challenge of mouth structure segmentation,

and used more specifically in lip segmentation. It is noteworthy that some techniques may

overlap in more than one category (as in the case of active appearance models and Fuzzy

C-Means).

Mouth structure segmentation

Pixel color classification

Basic color thresholding
Color distributionmodeling
Fuzzy C-Means
Implicit color transformations
Other...

Mouth contour extraction

Polynomial approximation
Active contours
Jumping snakes
Active shape models
Other...

Region growing,  other
region-based approaches

Region growing
Shape-constrained FCM
Shape modeling & fitting
Active appearance models
Other... 

Figure 2.1: Mouth structure segmentation in images: taxonomic diagram.
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22 2 Mouth structure segmentation in images

Texture and region based approaches conform the basis of high level segmentation algorithms,

while color and highly localized texture features and moments are more common to low level

segmentation approaches. In high level segmentation strategies, like watershed or region

growing-based segmentation, the most time-consuming tasks derive from these region con-

straints [5]. Thereby, region constraints are usually excluded at some extent when developing

in favor of speed over quality.

Now, the possibilities narrow down when restraining the application to mouth segmentation in

images. For instance, tongue and teeth segmentation have seen their development enclosed

in rather punctual applications whose solution usually imply the use of specific illumination

and acquisition hardware. For instance, works like [6, 7, 8, 9] exploit the inherent highlighting

generated by hyperspectral or infra-red lighting in order to facilitate tongue segmentation for

upwards and downwards tongue gestures. Using that configuration, tongue appears clearly

highlighted from lips. Kondo et al. [10] used range imagery and X-ray images in order to

perform teeth segmentation and reconstruction as three dimensional surfaces. Lai & Lin [11]

also used X-ray images for teeth segmentation.

In the other hand, most of previous work on mouth structure segmentation in images has

been focused in segmenting the lip region from skin, leaving aside the remaining visible mouth

structures (namely teeth, gums and tongue). Therefore, the remaining of this Section focuses

in exploring several approaches that arose to cope with such challenge.

2.1.1 Lip segmentation based on pixel color classification

Pixel-based segmentation encompasses pixel classification using region color distribution mod-

els. Commonly, those models are linear and non-linear approximations of the region separation

boundaries, reducing the classification problem to comparing the input feature vectors against

a set of thresholds. The thresholds define region boundaries in the feature space, conforming

models of the regions’ color distribution by themselves.

Thresholds can be set statically, taking into account any prior knowledge about the contents

of the image, or they can also be dynamically adjusted to achieve a proper segmentation

of the image. Dynamical threshold selection rely in either local statistics, like in the case

of adaptive thresholding [5], or global statistics usually based in the image histogram, like

in Otsu’s technique [12]. In most cases, these techniques manage to maximize interclass

variances while minimizing intraclass variances.

Succeeding pixel color based lip segmentation requires a proper input representation of the

data. Thereupon, several approaches for finding appropriate color representations are treated.

Color representations used in mouth structure segmentation

The first step in solving a segmentation task is to find an adequate input representation

which helps highlighting the existent differences among regions. Those representations can be

classified in two different categories. The first category is composed by general purpose color

transformations that prove to be helpful in the specific application; and the second comprises

color transformations which are specifically designed aiming towards the application through

the use of linear and non-linear transformations. In this Section, some approaches explored in

both categories are treated briefly.
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2.1 Previous work 23

The lip region and skin are very similar in terms of color [13]. For this reason many different

color transformations have been developed.

Some linear transformations of the RGB color space have led into fair results in term of color

separability between lips and skin. For example, Guan [14, 15], and Morán & Pinto [16] made

use of the Discrete Hartley transform (DHT) in order to improve color representation of the

lip region. The component C3 of the DHT transformation properly highlights lip area for

subjects with pale skin and no beard, as shown in Figure 2.3d. Chiou & Hwang [17] used

the Karhunen–Loève Transform in order to find the best color projection for linear dimension

reduction.

Hue-based transformations are also used in lip segmentation. The pseudo hue transformation,

proposed in the work of Hurlbert & Poggio [18], exhibits the difference between lips and

skin under controlled conditions, as seen in Figure 2.3b. The pseudo hue transformation

focuses in the relation between red and green information of each pixel, and is defined as

pH = R/(R + G). It leads into a result that appears very similar to the one achieved using

hue transformation, but its calculation implies less computational reckoning, and therefore

was a preferred alternative in some work [19, 1, 20]. Particularly, a normalized version of

this representation was used in the development of a new color transformation, called the

Chromatic Curve Map[1]. As with hue, pseudo hue cannot separate properly the lips’ color

from the beard and the shadows. Pseudo-hue may generate unstable results when the image

has been acquired under low illumination, or in dark areas; this effect is mainly due to a lower

signal to noise ratio (SNR).

Chromaticity color space, introduced in 1931 by the CIE (Commission Internationale de

l’Éclairage), have been used in order to remove the influences of varying lighting conditions, so

that the lip region can be described in a uniform color space. Using a chromatic representation

of color, the green values of lip pixels are higher than that of the skin pixels. Ma et al. [21]

reported that in situations with strong/dim lights, skin and lip pixels are better separated in

chromatic space than in the pseudo-hue plane. In order to address changes in lighting, in

[22] the color distribution for each facial organ on the chromaticity color space was modeled.

Chrominance transformations (Y CbCr, Y CbCg) have also been used in lip segmentation [23].

The use of pixel based, perceptual non-linear transformations, which presents a better color

constancy over small intensity variations, has been a major trend in the late 90s. Two well-

known perceptual color transformations, presented by the CIE, are the CIEL ∗ a ∗ b∗ and

CIELu′v′. The principle behind these transformations is the compensation of natural logarith-

mic behavior of the sensor. Work like [24, 25, 26] made use of these color representations in

order to facilitate the lip segmentation process in images. Like in Y ′CbCr, L∗a∗b∗ and Lu′v′

representations theoretically isolate the effect of lighting and color in separated components1.

In Gómez et al. [27], a combination of three different color representations is used. The

resulting space enables the algorithm to be more selective, leading into a decrease of spurious

regions segmentation. The authors perform a clipping of the region of interest (RoI) in order

to discard the nostril region, as shown in Figure 2.2.

One major disadvantage of the pixel based techniques is the lack of connectivity or shape

constrains in its methods. In order to deal with that problem, Lucey et al. [28] proposed

1Sensor operating noise and lighting response, as well as lens-related chromatic distortions increase the
correlation between intensity and color.
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24 2 Mouth structure segmentation in images

Figure 2.2: Example of mouth segmentation presented in [27]
.

a segmentation algorithm based on dynamic binarization technique that takes into account

local information in the image. The first step in Lucey’s method is to represent the image in

a constrained version of the R/G ratio. Then, an entropy function that measures the uncer-

tainty between classes (background and lips) is minimized, in terms of membership function

parameters. After that, a second calculation based in neighboring region information is used

to relax the threshold selection. Despite of the threshold adaptation, a later post-processing

is needed in order to eliminate spurious regions.

Optimal color transformation design using Linear Discriminant Analysis

Skin, lip and tongue color tends to overlap greatly in every color representation treated in the

previous Section. This task has proven to be uneasy even when using the so-called chromatic

constant transformations–which try to make the lighting effect in color negligible, due to

factors such as noise, sensor sensitivity, etc..

However, it is possible to search for optimal solutions to mouth structure classification. The

simplest way to perform this optimization comprise the calculation of a set of linear com-

binations of the input features, each one aimed to distinguish a structure from the others.

Notice that following this approaches one obtains a reduction in the feature space if the in-

put representation dimension surpasses the number of desired output classes, and if only one

projection is computed per each class. Another approach, which comprises the calculation of

more elaborated color models for each mouth structure is discussed in the next section.

A common approach of linear optimization for classification, a technique which can also be

used for dimensional reduction, is the Fisher Linear Discriminant Analysis (FLDA). The FLDA

is carried out by finding a projection matrix or vector (for multiclass or bi-class problems,

respectively) which transforms the input space into another space with reduced dimensionality,

aiming to maximize the inter-classes covariance while minimizing the intra-class covariance of

the data. Conversely, the goal of FLDA can be translated into maximizing

S(w) =
wTΣBw

wTΣWw
(2.1)

where w is the projection vector, ΣB represents the inter-class covariance matrix, and ΣW
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represents the intra-class covariance matrix.

In the case where only two classes are considered, the closed solution for maximizing S(w) is

reduced to

w ∝ (ΣClass1 + ΣClass2)
−1(µClass1 − µClass2) (2.2)

where µ stands for the class mean. Special care should be taken in the case where (ΣClass1 +

ΣClass2) is close to singularity, in which case the pseudo inverse of (ΣClass1 + ΣClass2) should

be used. Once w is computed, each input feature can be easily rated by studying its associated

element in the projection vector, or the corresponding eigenvalue in Σ−1W ΣB. Hence, the data

can be classified by projecting each input pattern (denoted by xi) and comparing the result

with a given threshold, as seen in (2.3).

x′i = xTi w (2.3)

One common choice for the threshold is obtained by averaging the position of the two class

means in the projected space. In our tests, thresholds are computed taking into account the

class standard deviations in the projected space, ensuring that the threshold will be at the

same Mahalanobis distance from both class means (as in (2.4)).

th =
(µTClass1w)σ′Class2 + (µTClass2w)σ′Class1

σ′Class1 + σ′Class2
(2.4)

Multi-class LDA can be extended by generalizing the objective function in (2.1), or by configur-

ing an “one against the rest” scheme and then finding a projection for each cluster individually.

In example, LDA has been applied in order to project common color spaces, like RGB, into

specifically designed spaces oriented to perform the lip enhancement. Zhang et al. [29] made

use of LDA in order to find an optimal linear separation for lip color and skin color, using as

input space the green and blue color components. Kaucic & Blake [30] used the FLD to find

the best linear separation in RGB, for a given image set; this strategy was also followed by

Rongben et al. [31], and Wakasugi et al. [32]. In all those approaches, the authors report

competitive performance in lip region segmentation if compared with previous works.

Zhang et al. [29] uses FLDA in order to find a linear transformation that maximizes the

difference between the color in the skin and lips. After that, it performs an automatic threshold

selection based in preserving the histogram area occupied by the lips’ region. Kim et al. [33]

proposes the use of manually annotated data in order to train a fuzzy inference system, which

is used as a confidence index for automatic threshold selection.

Color distribution modeling in images

Modeling lip/skin color separation using optimal linear techniques like FLDA implies the as-

sumption that a linear model is able to map pixel classification sufficiently. Nevertheless,

such overlap appears to have a non linear solution aiming towards structure color classifica-

tion. Hence, non-linear modeling approaches appear as a natural way to cope with these

limitations.

In Loaiza et al. [34] the use of feed-forward artificial neural networks (FFNNs) in order to model
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26 2 Mouth structure segmentation in images

such difference is proposed. The network was trained using a wide set of color representations

used for skin and lip color segmentation tasks as the input, and the desired class as the output.

As in the case of FLDA/LDA, a set of manually labeled color patterns is needed in order to

train the network. The results of the paper reported slightly better results by using the ANN

approach rather than linear approaches in lips highlighting. A similar approach was followed by

Dargham et al. [35]. In both cases, the black-box modeling given by the connections among

the neural units provide a model set whose structure lacks of a direct physical interpretation.

Moreover, neural networks usually comprise a parameter set that grows linearly in terms of the

input feature space dimension, and the number-of and size-of intermediate or hidden layers.

Another approach, which is very common in pattern recognition and data mining, comprises

the extension of linear approaches through the use of the kernel trick. In this case, the space

is augmented with linear and non-linear combinations of typical input features in order to find

linear solutions to non-linear separation problems.

A rather used tool in statistical modeling of data is Mixture Modeling. In particular, a well

known and widely used alternative, the Gaussian Mixtures (GMs), has been used in classifiers,

density estimators and function approximators [36]. For instance, the GM approximation of

the probability distribution of a d−dimensional random variable X with realizations x can be

described by

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.5)

where πk is the mixing proportion, and holds for a) 0 < πk < 1 ∀k ∈ 1, ..., K, and b)∑K
k=1 πk = 1; and N (·|µk,Σk) is the d−dimensional Gaussian function with mean µk and

covariance matrix Σk.

One common approach to estimate the parameter set in a mixture model is based on the

Expectation-Maximization (EM) algorithm [37]. The goal in the EM formulation is, given z

the unknown and y the known observations of X, to find the vector of parameters such

that the Ez[f(y, z|θ)|y] reaches its maximum; which, for mathematical facilities, turns into

maximizing the term Q(θ) in (2.6), in terms of θ.

Q(θ) = Ez[log(f(y, z|θ))|y] (2.6)

A more detailed description of Gaussian mixtures is presented in Section 3.2.

Gaussian Mixtures have been used extensively in lip segmentation. One straightforward use of

them is to model the color distribution of skin and lips, in order to maximize its separability,

as in Basu et al. [38, 39, 40] and Sadeghi et al. [41, 42]. In the later, a Sobol-based sampling

is used in order to reduce the computational load of the EM algorithm. The same technique

was used by Bouvier et al. [43] for estimating skin color distribution of the images.

Shape constraints can be also codified in generating the GMM. In Kelly et al. [44], a spatial

model of the lips conformed by a set of four Gaussian functions is introduced. The model

is adjusted with the information provided in a video sequence, using a set of five different

constraints which enables the update of rotational, translational and prismatic deviations in

the model (the later allows a non-rigid approximation of the data). In Gacon et al.[45], a
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method for dynamic lip color characterization and lip segmentation is proposed. The method

is based in statistical Gaussian models of the face color. The method is able to model both

static and dynamic features of pixel color and mouth shape, and it was reported that the

technique could compensate illumination changes and quick movements of the mouth.

GMMs have been also used for lip contour representation. Bregler & Omohundro [46] presented

a technique which uses a high dimensional modeling using GMMs, and a later re-projection

the model in the image space. The projection is used to constrain an active contour model

that approximates the lips’ outer contour. Chan [47] used a GMM with color and shape

information, in order to model the lip contours.

Implicit color transformations

In cases in which there is no prior labeling information available, it is still possible to com-

pensate some lighting related issues in the images by taking into account image statistics as

regularization or normalization factors. Those transformations that imply the inclusion of such

measures are called implicit color transformations.

Lucey et al. [48] combine chromatic representations with features which consider the localized

second order statistics present in adjacent pixels, and then perform segmentation as a classi-

fication problem. They found that results were not improved by using those features. On the

contrary, the outer mouth contour was degraded.

Implicit color transformations take into account image statistics as normalizing or stabilizing

factors. Those transformations are somehow capable to compensate small changes in illumi-

nation for each image, and thus increasing constancy in threshold selection over a variable

image set. Two remarkable implicit, non-linear transformations, are the Mouth Map, by Hsu

et al. [49], and the Chromatic Curve Map, by Eveno et al. [1]. The first one is intended

to adjust the overall color compensation in function of the color values in the whole image,

based in the traditional Y CbCr color space representation. The transformation is described

in (2.7).

MouthMap(x, y) = Cr(x, y)2
(
Cr(x, y)2 − ηCr(x, y)

Cb(x, y)

)2

(2.7)

with

η = 0.95
1
N

∑
(x,y)∈FG Cr(x, y)2

1
N

∑
(x,y)∈FG

Cr(x, y)

Cb(x, y)

(2.8)

where N stands for the total number of pixels in the image, and FG is the set of all possible

pixel locations in the image. The second one, uses the normalized pseudo-hue representation

in order to compute a parabolic approximation of the local chromatic curvature in each pixel.

The value of the Chromatic Curve Map at each pixel of the image can be computed as the

higher-order coefficient of the 2nd order polynomial that passes through three points, whose

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



28 2 Mouth structure segmentation in images

positions are expressed in (2.9).

p1(x, y) =

(
−αk(x, y)

B(x, y) + βk(x, y)

)
p2(x, y) =

(
0

G(x, y)

)
p3(x, y) =

(
1

γk(x, y)

)
(2.9)

here, k(x, y) is the normalized pseudo hue at the pixel (x, y). The authors chose the values

of α, β and γ by sweeping the parameters’ space. An example of images represented using

the Curve Map can be seen in Figure 2.3c.

(a) Original images.

(b) Pseudo hue images (shown with contrast enhancement).

(c) Curve map [1].

(d) C3 images [14].

Figure 2.3: Effect of color transformation in mouth images.

The two transformations reported lip enhancement for subjects with white skin and without

beard. However, their accuracy decreases when dark skin or beard are present. Also, the

reckoning inherent in implicit transformations make them less suitable in real–time applications.
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Another non-linear implicit transformation, proposed by Liévin & Luthon [50], is the LUX

Color Space (Logarithmic hUe eXtension). LUX components are given in (2.10).

L = (R + 1)0.3(G+ 1)0.6(B + 1)0.6 − 1

U =

{
M
2

(
R+1
L+1

)
if R < L,

M − M
2

(
L+1
R+1

)
otherwise

X =

{
M
2

(
B+1
L+1

)
if B < L,

M − M
2

(
L+1
B+1

)
otherwise

(2.10)

where M is the dynamic range of gray levels, equal to 256 for 8-bit coding. Since the hue of

the face skin is mainly red, for face and lip segmentation consideration of the U component

is enough. Related to Cr or H components the U transformation gains in contrast, but it is

also insensitive to illumination variations.

A well-performing implicit transformation aimed for lip segmentation in RoI clipped facial

images is the normalized a∗ component presented in [4]. This technique is addressed in detail

in Section 3.1.3.

The use of implicit transformation has also a few drawbacks, mostly derived from image un-

certainty. In example, the transformations discussed before in this Section fail in highlighting

the lip region when skin color varies considerably if compared to the one used in their de-

velopment. Also, the presence of specific æsthetic or prosthetic elements in the image, as

well as the presence of beards or mustache, modifies the relative relationship between lip and

skin color in terms of image statistic. Thereby, implicit methods may outperform typical color

transformations whenever the image statistics fits a pre-defined range.

Notice that implicit color transformations are designed for images which exhibit similar color

characteristics. The behavior of an implicit transformation on an image that escapes from

the design set is unpredictable. Hence, this kind of technique are not advised when image

statistics cannot be safely asserted in a certain design range, or if its contents are undefined.

2.1.2 Mouth segmentation derived from contour extraction

Lip could be interpreted as a deformable object, whose shape or contours can be approximated

by one or many parametric curves. Then, it might seem evident that one must first look for the

mouth contour before trying to segment its inner structures. In this Section, some techniques

that have been used in outer lip contour approximation in images in lip segmentation are briefly

discussed.

Polynomials can be used as lip contour approximation, notably between second and fifth

degrees. For instance, in Stillittano & Caplier [51] four cubics are used to represent mouth

contour starting from a series of detected contour points, two in the upper lip and two in

the lower lip. The keypoints are extracted using the Jumping Snakes technique presented by

Eveno et al. [1, 20, 2]. The authors reported some issues due to the presence of gums or

tongue.

Nevertheless, as stated in [52], low order polynomials (up to fourth degree) are not suitable

for anthropometric applications since they lack in mapping capabilities for certain features;

in the other hand, high order polynomials may exhibit undesired behavior on ill-conditioned
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zones. For that reason, most of the work that use polynomials to approximate the lip contour

are intended for lipreading applications.

Werda et al. [53] adjust the outer contour of the mouth by using three quadratic functions:

two for the upper lip and one for the lower lip. The adjustment is performed after a binarization

process in the RnGnBn color space where the lighting effect is reduced. Each component of the

RGB space is transformed to the new RnGnBn by An=255*A/Y, with Y the intensity value.

The final representation contains a strong geometric parametric model, whose parameters

enable the contour to be deformed into a constrained set of possible shapes. In [54] three or

four parabolas are used to extract mouth features for the closed and open mouth respectively.

Rao & Mesereau [55] used linear operators in order to find the horizontal contour of lips, and

then they approximate that contours with two parabolas. Delmas et al. [56] extract from the

first frame of a video sequence, the inner and outer lip contour by using two quartics and three

parabolas. The polynomials are defined by the corners and vertical extrema of the mouth,

which are found by using [57].

Active contours or snakes are computer-generated curves that move within images to find

object boundaries. In this case, the inner and outer contour of the mouth. They are often

used in computer vision and image analysis to detect and locate objects, and to describe their

shape. An active contour can be defined as a curve v(u, t) = (x(u, t), y(u, t)), u ∈ [0, 1], with

t being the temporal position of the point in the sequence, that moves in the space of the

image [58]. Evolution of the curve is controlled by the energy function in (2.11).

Eac =

∫ 1

0

Eint(v(u)) + Eim(v(u)) + Eext(v(u))du (2.11)

Eint represents the internal energy of the curve, and controls the properties of stretching

and bending of the curve. Eim is the image energy, and is related to properties in image

data. Eext is an external energy, and usually represents application-specific constraints in the

evolution of the curve. A technique called Gradient Vector Flow (GVF) was developed in order

to improve convergence and accuracy in representing high curvature regions in the contour

model [59, 60]. More information about the internal energy of the active contours is described

by (2.12) [61, 58].

Eint(v(u)) =
1

2

(
α(u)|v′(u)|2 + β(u)|v′′(u)|2

)
(2.12)

An example of outer lip contour extraction performed with active contours can be seen in

Figure 2.4.

Figure 2.4: Examples of outer contour parametrization by active contours.
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The generalized form of active contours was used in lip contour detection in the work of Lai &

Chan [62] Wakasugi et al. [32] use a B-spline curve as the initialization of an active contour.

Because the internal energy is related to the smoothness of the active contour, it is not consid-

ered since the B-spline representation maintains smoothness via implicit constraints. Okubo

& Watanabe [63] used active contours approximated in the optical flow between the images

in a sequence. In another approach, Ramos et al. [64] use an elliptic B-spline to approximate

the lip contour, after a chromaticity clustering segmentation process. Hernández et al. [58]

presented a simplified form of GVF for active contours, and applied it to mouth segmenta-

tion. A simplified parametrization of outer contour which uses fourth-order polynomials after

active contour’s convergence can be found in [52]. The outer mouth contour can be precisely

described using such technique, but it is highly dependent on a prior segmentation stage.

Wu et al. [65] proposed a method combining a GVF snake and a parabolic template as

external force, to improve outer lips extraction performance against random image noise and

lip reflections. The technique did not provide good results for the extraction of inner lips,

because the lips and the area inside the mouth are similar in color and texture. So, they

used two parabolas as inner lips. Morán & Pinto [16] used the GVF in order to constrain the

approximation of a parametric contour, bound by a set of landmarks, conforming an active

shape model. The landmarks are meant to converge in the lip’s inner and outer contour. Mouth

region bounding box is found by clipping on the horizontal and vertical axis in the perpendicular

projection of each axis. The GVF is computed in the C3 + U color space over time, where

U represents the u component in CIELUV perceptual color space. Another approach that

uses GVF is the one presented in [66]. In this case, the Viola-Jones face detector [67] is used

to detect the face bounding box and the mouth bounding box. After that, a formulation of

active contours using the level set method without re-initialization is implemented, in order to

perform the model tuning.

In Eveno et al. [20], the authors carried out the lip contour representation by searching a set

of key points in the horizontal and vertical intensity projections of the mouth region, and then

approximating a set of polynomials to the resulting points. The point search and fine-tuning

is controlled by a special image gradient called hybrid edges, based in both luminance and

pseudo hue. This work evolved into a new approach, called Jumping Snakes [68, 2, 69]. This

method allows lip contour detection just by giving an arbitrary point above the lip region in

the image. At each iteration, a new pair of nodes are added at both corners of the model.

Seyedarabi et al. [70] uses a two-step scheme of active contours in order to approximate lip’s

outer contour. First, a Canny operator is used in the image, and a high threshold is used for

upper lip contour extraction. Once converged, a second lower threshold is used to deflate a

deformable model that stops in the lower lip outer contour. Beaumesnil & Luthon [71, 72]

presented a real-time 3D active contour based technique for mouth segmentation, in which a

3D model of the face is fitted directly to the image.

2.1.3 Shape or region constrained methods for lip segmentation

Color enhancement is a good first step in segmenting lips from skin, as well as other facial

features. But, as shown in the previous Section, changing color representation is not enough

to segment the different structures present in facial images, particularly in the mouth region.
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Regions with shadows, beards, gums and tongue often overlap in color with the lips. There-

fore, it is needed to include some other constraints in the problem of representing the image

information, which allows to separate properly the mouth, and more specifically, the lips. One

can cope with that problem by either including shape constraints in the segmentation, testing

local connectivity in small spatial neighborhoods, or by trying to adjust the image contour

information to a specific parameterizable template.

In this section, some alternatives to the first two categories–shape constraints and region based

methods–which have been used to solve the lip segmentation problem are treated. Since most

segmentation problems can be seen as classification and labeling problems, some of them have

their roots in statistical classification methods and pattern recognition strategies.

Shape-Constrained Fuzzy C-Means

Fuzzy C-means (FCM) is a common clustering technique used in image segmentation. It was

posted first in the mid 60s, and introduced in pattern recognition in the late 60s [73]. The

FCM basics are summarized in the text by Bezdek [74, 73].

FCM segmentation is founded in the principle of feature dissimilarity, as follows: given X =

{x1,1,x1,2, . . . ,xN,M} a set of features that corresponds to an image I of size N ×M , each

xr,s ∈ Rq being the vector of features of the correspondent pixel in I, and C the number

of fuzzy clusters in the image, the goal is to find a set V = {v1,v2, . . . ,vC} of C different

centroids vi ∈ Rq, and a matrix U with size M × N × C which is a fuzzy partition of X,

such that minimizes the cost function J(U ,V ) in (2.13).

J(U ,V ) =
N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sDi,r,s (2.13)

subject to

C−1∑
i=0

ui,r,s = 1, ∀(r, s) ∈ I (2.14)

Di,r,s is a term that reflects the distance between the feature vector xr,s and the centroid vi;

ui,r,s represents each element in the fuzzy partition U . The feature set X is usually composed

by different color representations. The optimum solution of the cost function can be referred

as Jm(U,V ), and is a stationary point at which the gradient of Jm equals to zero. For the

case of the partial derivative of Jm with respect to U and setting it to zero, a closed-form

expression of umi,r,s can be found as [75]

umi,r,s =

[
C−1∑
j=0

(
Di,r,s

Dj,r,s

) 1
m−1

]−1
(2.15)

Commonly, the fuzzy partition U is compared with a threshold, in order to obtain a crisp set

of disjoint regions in the source image. In such case, the FCM scheme acts as a combination

of color representation and binarization algorithm.

Liew et al. [76] uses FCM in order to obtain the mouth’s probability map from the basic
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CIELu′v′ color representation. This map is used to facilitate the mouth’s contour extraction,

which is done by fitting a deformable template. Gordan et al. [77], report a modified version of

the FCM algorithm which includes not only luminance information but also spatial information

about the pixels in the image.

Segmentation techniques based in pixel color classification (like those treated in this section)

suffer from the effects of noise or high color variations inside regions, usually producing spurious

regions and gaps. FCM is, per se, a classification technique, and thus it can be arranged along

with pixel classification techniques treated before. However, its formulation has been modified

in order to include shape-based constrains. Leung, Wang & Lau [24, 75] introduced a modified

version of a FCM-based unsupervised lip color segmentation engine which consider elliptical

shape constraints in its formulation.

The introduction of an elliptical constrain in the cost function leads to formulation in (2.16)

[24, 75, 78, 79]:

Jm(U,V, p) =
N∑
r=1

M∑
s=1

C−1∑
i=0

umi,r,s(d
2
i,r,s + αf(i, r, s,p)) (2.16)

The term d2i,r,s is the same as Di,r,s in (2.13). The term p = {xc, yc, w, h, θ} is the set of

parameters that describes the aspect and position of the constraining ellipse. The expression

in (2.16) can be splatted in two parts, where the first one is conformed by typical FCM terms,

and the second is p-dependent, as shown in (2.17).

Jm(U,V, p) = Jm1(U,V ) + Jm2(U,p)

Jm1(U,V ) =
N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sd
2
i,r,s

Jm2(U,p) = α
N∑
r=1

M∑
s=1

C−1∑
i=0

ui,r,sf(i, r, s,p) (2.17)

The elliptical geometric constrain has proven to be effective in eliminating the effect of spurious

regions with similar features than those present in the lip area [75, 78].

Despite of the improvement in FCM by the introduction of geometrical terms, there are

some problems associated with complex backgrounds (i.e., the presence of beards). In this

case, a multi-class shape-guided FCM variant (MS-FCM) can be used [80]. The method’s

formulation establishes a set of constraining functions gi,BKG which helps in modeling complex

backgrounds. The cost function of FCM can be stated as follows [80]

J =
N∑
r=1

M∑
s=1

um0,r,sd
2
0,r,s +

N∑
r=1

M∑
s=1

C−1∑
i=1

umi,r,sd
2
i,r,s

+
N∑
r=1

M∑
s=1

f(u0,r,s)gOBJ(r, s)

+
N∑
r=1

M∑
s=1

C−1∑
i=1

f(ui,r,s)gi,BKG(r, s) (2.18)
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subject to condition in (2.14). The functions gOBJ and gi,BKG are usually selected so they

have a sigmoid shape, and include geometrical constrains like the one presented in [75, 78].

The authors reported the method to be more reliable in segmentation with presence of beards,

compared with traditional FCM and with the work of Zhang & Mersereau [19].

This approach achieves better results than the traditional FCM, fundamentally improving

the spurious region generation and filling small gaps. This improvement is somehow limited

to almost symmetric mouth poses, in which lip shape can be closely defined by an ellipse.

Moreover, ill-conditioned results may be obtained if the ellipse is not correctly initialized.

Other techniques used in shape or region lip segmentation

In the work by Goswami et al.[81], an automatic lip segmentation method based on two

different statistical estimators is presented: a Minimum Covariance Determinant Estimator

and a non-robust estimator. Both estimators are used to model skin color in images. The lip

region is found as the largest non-skin connected region. The authors present a significant

improvement over the results reported in [20]. This method uses the assumption that the skin

region could be detected more easily than lips. Mpiperis et al. [82] introduced an algorithm

which classifies lip color features using Maximum Likelihood criterion, assuming Gaussian

probability distributions for the color of the skin and the lips. They also compensate gestures

by using a geodesic face representation. Lie et al. [83] uses a set of morphological image

operations in temporal difference images, in order to highlight the lip area.

Artificial intelligence has also been used in lip segmentation. Mitsukura et al. [84, 85] use two

previously trained feed forward neural networks in order to model skin and lip color. Shape

constraints are included in the weights of the lip detection neural network. Once a mouth

candidate is detected, a test of skin is performed in its neighborhood, using the skin detector

network. After that, a lip detection neural network is used in order to select the mouth region.

In another work, the same authors presented a second scheme [86] based in evolutionary

computation for lip modeling.

Active Shape Models (ASMs) and Active Appearance Models (AAMs)

ASMs are statistical shape models of objects, which iteratively deform to fit to an example of

the object in a new image. They do not conform to what one may interpret as a segmentation

technique, but they are nevertheless widely used in object detection and classification in images.

The goal using ASMs is to approximate a set of points in the image (usually provided by the

acquired object’s contour information) by a point distribution model, composed by the mean

shape of the object model x̄ plus a linear combination of the main modes of variation of the

shape P , as shown in (2.19).

x = x̄ + Pb (2.19)

b is a vector of weights related to each of the main modes. The matrix P is obtained from a

set of training shapes of the object, as the t main eigenvectors of the covariance of the shapes’

point position. x is represented in an object frame scale and rotation, and thus, the measured
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data should be adjusted in order to be approximated by such model. Further information in

how ASMs are trained can be found in [87, 88].

In the work of Caplier [89], a method for automatic lip detection and tracking is presented.

The method makes use of an automatic landmark initialization, previously presented in [90].

Those landmarks serve to select and adapt an Active Model Shape (ASM) which describes

the mouth gesture. Kalman filtering is used in order to speed up the algorithm’s convergence

through time.

In Shdaifat et al. [91] an ASM is used for lip detection and tracking in video sequences, the lip

boundaries are model by five Bézier curves. In [92], a modified ASM algorithm is employed to

search the mouth contour. The modification consist in the use both local gray intensity and

texture information on each landmark point. In cases where it is possible that landmark points

are incorrect (for example when the lip boundary is not clear), it is better to characterize the

distribution of the shape parameter b by a Gaussian mixture rather than by single Gaussian.

Jang et al. [93] developed a method for locating lip based on ASM and using a Gaussian

mixture to represent the distribution of the shape parameter. In Jiang et al. [94], a mixture

of deterministic particle filter model and stochastic ASM model is used, in order to improve

convergence and accuracy in lip tracking. Jian et al. [95] used an approach called radial

vector, which is similar to ASMs, but with an implicit labeling of model data. The authors

performed the training of their model using particle filtering.

AAMs are a generalization of the ASMs approach, which include not only shape information

in the statistical model, but also texture information [96]. The basic formulation of the AAM

can be seen in (2.20).

x = x̄ +Qsc

g = ḡ +Qgc (2.20)

The term g represents the texture information contained in the model frame; ḡ represents the

mean texture of the model, and Qs and Qg are the matrices of the main modes of variation in

shape and texture, respectively; and c is the set of the appearance model parameters. Further

information on how AAMs are trained can be found in [96].

An interesting work, in the context of lipreading, is that presented by Matthews et al. [97].

A comparison of three methods for representing lip image sequences for speech recognition

is made. The first is an ASM lip contour tracker. The second is the ASM extension into

an AAM. The last is a multi-scale spatial analysis (MSA) technique. The experiment was

performed under identical conditions and using the same data. Like it was expected, better

results were obtained when used AAM. Of course, an AAM is an improved ASM with the

addition of appearance or texture. The work of Gacon et al. for detection of the mouth

contour is based on an ASM but introducing two appearance models. One for the appearance

corresponding to skin, lips, teeth or inner mouth, and a second for the mouth corners [98, 99].

In a posterior work [99], they focus on the detection of the inner mouth contour, by replacing

the cost function used to fit the appearance model. In the previous work it was based on

the difference with the real appearance and on the flow of a gradient operator through the

curves of the shape. In the last work they used a criterion based on the response of Gaussian

local descriptors predicted by using a nonlinear neural network. As an iterative method, AAM

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



36 2 Mouth structure segmentation in images

relies on the initialization of shape and could suffer of the local minimum problem. Two

possible solutions to this problem are to improve the shape initialization, or to model the

local texture. The last solution may result in high computation complexity. Li and Hi [100]

propose a AAM based mouth contour extraction algorithm. To reduce the local minimum

problem, the algorithm first uses a texture-constrained shape prediction method to perform

initialization, an then characterizes the local texture model with classifiers obtained by using

Real AdaBoost [101]. Turkmani & Hilton [102] also use AAMs in talking sequences, in order

to properly locate inner and outer mouth contours. They extended the basic AAM in order to

avoid falling into local minimum, and also to eliminate the need of model reinitialization.

Other Parametric Approaches

Moghaddam & Safabakhsh [103] presented a fast algorithm for outer contour extraction which

uses Self Organizing Maps (SOMs). In Khan et al. [104], a scheme of specially parametrized

active contours–called level set representation–is used. The convergence to the lips’ contour

is achieved in a color representation obtained from the output of a support vector machine,

trained to enhance the lip-skin difference from basic RGB. Chang et al. [105] also used

the level set representation in order to approximate the lip contour, introducing additional

shape constraints. Xie et al. [106] presented a method for lip segmentation which relies in

mixing ASMs and cumulative projections, in order to improve the overall robustness in contour

detection. In [107], the same principle behind Eigenfaces is used in order to detect and classify

the gestures through mouth contour characterization. In the work of Basu et al. [38, 39, 40],

a triangular 3D mesh model is registered to the face in the images. It uses finite element

models in order to constrain the possible movements of the face and, thus, predicting the

possible next states of the mouth. Mirhosseini et al. [108, 109] used a deformable template

basis with shape constrains for outer lip contour tracking. The algorithm is able to adjust the

number of control points in the template using hierarchical rules.

2.1.4 Performance measurement in mouth segmentation tasks

Most of lip detection and parametrization algorithms are created in order to supply valuable

information to higher level processes like audio-visual speech recognition [25]. In that sense,

much of the work in measuring detection quality is guided to reflect the application’s specific

performance rather than image segmentation, focusing most of the time in determining contour

error rather than segmentation error. However, some measures have been tested in order to

measure at which extent an algorithm is performing properly in lip segmentation.

Even when some of these measures can be somehow comparable, there is a concurrent lack of

generalization in the reported results. In some cases, the measures are taken based on a limited

set of images which have a selected condition such as specific lighting, presence/absence of

shadows, presence/absence of beards, etc. In spite of this, a brief comparison between some

of the methods is shown in Table 2.1.

It can be noticed that most of the measurement methods can be classified in two sets: a

contour-based measurement, and a region based measurement. Measurements belonging to

the first category quantify features such as point-to-point distances, model-to-point distances
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Table 2.1: Methods for lip segmentation: measurement and comparison.
Method Type of Measurement Test Data Compared against
FCMS - Wang et.
al. [24]

Inner and Outer Lip Error
(ILE & OLE).

Detailed results for two im-
ages.

FCM.

Liew et. al. [110]

• Overlap between re-
gions.

• Segmentation error.

70 test images taken from
XM2VTS [111] and AR
[112] databases.

The method itself.

FCMS - Leung et.
al. [75]

• ILE & OLE, as in
[24].

• Segmentation error.

Detailed results reported for
three images; brief results
for 27.

FCM, CT[1],
LL[113], ZM[19]

MS-FCMS - Wang
et. al. [80]

Same as [75].
Detailed results reported for
three images.

FCM, LL[113],
ZM[19]

RoHiLTA - Xie et.
al. [106]

Annotated contour model
error.

150 images taken from AV-
CONDIG database (cited in
[106]); 50 of them with
beard or shadows.

The method itself.

CT - Eveno et. al.
[1]

Segmentation error.
Detailed results reported for
three images.

The method itself.

Eveno et. al. [2]

• Normalized tracking
error.

• Normalized human
error.

Results reported for 11 se-
quences (300 images); sev-
eral annotations per image,
performed by different sub-
jects.

The method itself.

Hammal et. al. [69] Same as [2]. Same as in [2]. The method itself.

Bouvier et. al. [43] Same as [2].
Results reported for 12 se-
quences (450 images).

Eveno’s work[2];
Gacon’s work[45].

Guan [14]
Segmentation error as in
[110].

Detailed results reported for
four images; brief results for
35 images.

FCM, CGC.

Khan et. al. [104] Quality of segmentation.
Results reported for 122 im-
ages.

The method itself.
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38 2 Mouth structure segmentation in images

and model deviations2. In the other hand, region-based measurements usually derive from

computations extracted from the confusion matrix; common measures include the true positive

rate (TPR, also known as sensitivity) and true negative rate (TNR, also known as specificity);

othre measurements such as the Dice or Jaccard indexes can also be extracted from the

confusion matrix. In [114] the authors present a contour-based measurement developed to

counter the inconsistency exhibited by TPR and TNR under scale changes. Its computation

requires several manually annotated versions of each image, which are not always available,

to obtain significant results. Also, small global deviations in contour location are reflected by

non-negligible increases in error.

2.2 Experimental workflow

The challenge of segmenting mouth structures for mouth gesture detection is addressed in

depth through the course of this document, following the guideline given in Figure 2.5. This

Section contains a detailed description on how each one of those steps is treated in this

document.

Mouth structure
segmentation

Region 
characterization

Video 
acquisition

Gesture 
recognition

Image pre-processing,
Input color
representation,
dimension reduction.

Pixel color distribution
modeling, pixel color
classification.

Segmentation
refinement.

Texture information.

Figure 2.5: Mouth gesture detection in video sequences, as addressed in this work.

In the previous Section, it is shown how input color representation is exploited in order to

highlight mouth structures among them, notably focused in lip/skin separation challenge. Each

of the components that has been used traditionally to enhance such differences has its particular

advantages and disadvantages that condition the level of accomplishment one may get by using

it. Thus, in this work the individual discriminant capability of each component is measured

using a “one against the rest” evaluation scheme per each mouth structure separately. Then,

FLDA is used in order to find a three-some set of projection vectors that enables an input space

dimension reduction prior to pixel color modeling of mouth regions. Results on comparing the

mapping capabilities of the FLDA reduced input space against the full featured input space

are exposed in Chapter 3.

2A clear example of contour based error measurement is presented in [2].
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Besides input representation, image pre-processing plays a key role in image segmentation.

Pre-processing improves compactedness of color distributions while increasing the signal-to-

noise ratio. In this work, two classical approaches for general-purpose image pre-processing are

tested: linear low pass Gaussian filters and non-linear statistical Median filters. Once again,

results regarding such experiments are presented throughout Chapter 3.

In the document, image segmentation basis restricts to the field of pixel color classification

using statistical modeling, namely K-Means and Gaussian mixture based. Their performance

and mapping capabilities are tested in the task of mouth structure segmentation in images

by direct comparison with Feed forward neural networks, using a scheme which resembles

those in [34] and [35]. All of these approaches exploit the potential advantages resulting from

using the selected input color transformations altogether. Several combinations regarding pre-

processing and input space dimension reduction are tested, including brief yet clear conclusions

regarding the experiments.

Once the segmentation benchmark is established, the resulting label images are post-processed

using a new segmentation refinement strategy which is introduced in this Thesis. The strategy

uses a perceptual unit array that process the input label iteratively, generated an increasingly

improved version of the original labeling. The technique, as well as the results obtained by its

application in part of the databases, are presented in Chapter 4.

The use of texture descriptors are introduced in Chapter 5, first as input features complimentary

to color in the color distribution modeling engine, and then as a tool to automatize the

segmentation refinement process. Performance is measured for both variations in terms of

computational complexity and error reduction.

Aiming to settle down the previously discussed individual results, overall performance is tested

in a mouth gesture detection application. The results of this experiment are presented and

discussed in Chapter 7. As in the previous Chapters, both computational complexity and error

measurements are provided.

It is noteworthy that in this experimental workflow lip contour tracking is excluded. The main

reason for which tracking is not taken into account is that even in 50 frame-per-sec video

sequences there are very rapid mouth movements which cannot be accurately followed by

the techniques, and in some cases, mouth structures disappear completely from one frame to

another, as shown in Figure 2.6. Mouth segmentation is assumed to happen at every frame

in the sequences instead.

2.2.1 Database description

Aiming to establish a common base for comparison against work presented in literature, two

well known databases were used. The first one, identified as BSDS300 [114], contains a set

of training and testing images in both color and grayscale. Each image has at least one

corresponding manually annotated ground truth. This database is particularly used in illustra-

tive examples in Chapter 3, and for general purpose segmentation refinement measurement in

Chapter 4.

The second database, named Color FERET (Facial Recognition Technology) database [115,

116], contain facial images taken from several subjects covering a wide variety of skin colors,

poses and illuminations. Since this database has no associated ground truth, an image subset
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(a) Tongue up to rest transition.

(b) Tongue right to rest transition.

(c) Teeth display to rest transition.

Figure 2.6: Examples of consecutive images in facial video sequences. Sequences were grabbed
at 50fps.
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was randomly selected and a manually annotated ground truth was established. These images

are mainly used in pixel color distribution modeling robustness measurement in Chapter 3.

Besides the aforementioned databases, a proprietary database was constructed. The database

is referred as “Own”, and its contents is described subsequently.

The “Own” database

The first portion of the database contains images and sequences of five subjects speaking to the

camera a pre-defined set of phrases and commands. This database was initially acquired for the

work in [4, 117]. Data was acquired using a JVC video camera working at a native resolution

of 720x480 pixels, at a frame rate of 25fps. There was no particular illumination setup, neither

to control or compensate ambient lighting. Therefore, varying illumination conditions may be

found. Particularly, most of the database present upper-left lighting, generating shadows in

the right side of the faces, and under the nostrils and the lower lip.

The last portion of this database is conformed by video sequences of 16 subjects, male and

female, imitating three different combinations of mouth gestures. All considered mouth ges-

tures are clustered in seven different groups: resting mouth position (R), open mouth (O),

close mouth showing the teeth (Th), tongue up (TU), tongue down (TD), tongue left (TL)

and tongue right (TR). The gesture combinations are identified as follows:

• Init (initialization sequence): R - Th - R - O - R - TH - R - O - Th - R.

• CCWS (counter-clockwise square): R - TR - R - TU - R - TL - R - TD - R.

• CWLDC (clockwise left-down cube3): R - TL - R - Th - R - TU - R - O - R - TR - R -

TD - R - Th - R - TL - R - O - R - TU - R.

Video sequences were acquired in format YUV4:2:2 with a resolution of 658x492 pixels, and

at frame rates of 12 and 50 fps. The acquisition setup comprised two diffused, unbalanced

spotlights, and a Basler scout scA640-70fc video camera. Environmental lighting was com-

pensated but uncontrolled, by the means of the spotlights. Daytime related lighting variations

were allowed. Some sample images extracted from this database can be seen in Figure 2.6.

2.2.2 Error, quality and performance measurement

In spite of the reasons exposed in [114] that instruct to avoid region based confusion matrix

based measures in favor of boundary based measures, the former is still the most common

benchmark in image segmentation tasks4. In this work, Sensitivity and specificity are exten-

sively used for rating classification and segmentation performance 5. Sensitivity, also known

as True Positive Rate (TPR), can be denoted by

TPR = p(A∗|A)/p(A) (2.21)

3The actual shape described by the sequence does not match exactly a left-down cube.
4The technique in [114] was developed for the specific task of image segmentation evaluation and is not

extendable to any classification problem; moreover, it requires several ground truth annotations per image.
This fact makes it unsuitable when a large image set is to be tested.

5Both measurements are used in balanced classification tasks. For unbalanced classes, Dice index and
Balanced Error Rate are used.
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where p(A∗|A) is the probability of a pixel being correctly labeled as to belong to class A,

whilst p(A) is the probability of the class A.

Now let B = AC , therefore p(B) = p(AC) = 1 − p(A). The True Negative Rate (TNR),

also known as specificity, can be defined in terms of class probabilities as follows:

TPR = p(B∗|B)/p(B) (2.22)

where p(B∗|B) is the probability for a pixel being correctly classified as to belong to AC .

Prior information about the application may help in determining risk factors which weight

the responsibility of TPR and TNR in data analysis. Nevertheless, in cases when risk does

not sets a compromise between the former measures, it is helpful to establish a composite

measure that unifies the effect of sensitivity and specificity in one value6. One way to accom-

plish this is by using the Distance to Optimal, or DTO (see Figure 2.7). The DTO is the

euclidean two dimensional distance between the point (TPR, TNR) and the optimal value

(1, 1). Conversely, this definition translates to

DTO =
√

(1− TPR)2 + (1− TNR)2 (2.23)

1

T
P
R

1-TNR

ROC Curve
DTO

0

Figure 2.7: Geometrical interpretation of DTO using the Receiver Operating Characteristic
(ROC) curve.

Notice that DTO values range in the interval [0,
√

2], with zero being the optimal value. In

that sense, DTO can be viewed as a non normalized measure of error rather than a performance

measure. Absolute class confusion, given by p(A∗|AC) = 1, generates DTO =
√

2; uniform

random selection like a coin flip, given by p(A∗|A) = p(A∗|AC), leads to DTO = 1.

In multiclass problems both A and AC may be seen as super-classes that may contain data

from more than one class. As in example, the “one against the rest” evaluation scheme

confronts data from one class against data from all the remaining classes.

Whenever possible, algorithm complexity is presented using the asymptotic notation O(·)
6When risk factor is taken into account, one may want to favor TPR over TNR or viceversa. In example,

it is preferable to diagnose more false positives than false negatives in epidemiology and disease control.
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with the center point being replaced by an order relationship. In some cases, Tables with

parametrized computation times are provided.

2.2.3 Ground truth establishment

For each image database used in this work a subset of images was randomly selected, and

manually annotated. Some of them were annotated by more than one evaluator in order to

establish human variability. Every segmented image contains labeling information for Lips,

Teeth and Tongue, as well as a mouth region of interest (RoI).

Also, the video sequence frames in the second part of the “Own” database are associated

with one of the gestures in the set described in Section 2.2.1. As in the later case, one of

the sequences was annotated by more than one evaluator in order to measure human-related

variability in label selection.

Human perception is a definitive factor in ground truth establishment, and thus it cannot be ne-

glected as a topic of exploration. Thereupon, the next issue discusses human-related variability

and consistency in manual image segmentation and gesture detection in video sequences.

Image segmentation ground truth variability

Manually annotated ground truth in image segmentation tends to vary from one evaluator to

another. It is seldom taken into account the variability in the appraised segmented images. In

this work, two measures are used in order to establish how consistent or variable the evaluators’

advise tends to be for the “Own” database.

The first measure, denoted simply as hv, reflects the consistency evidenced among evaluators

for a given region in the image, regarding all the pixels that have been chosen as to belong to

such region. hv can be defined as

hv = p(x ∈ ∩A)/p(x ∈ ∪A) (2.24)

where p(∩A) stands for the probability of a given pixel x to be selected as to belong to region

A by all subjects, and p(∪A) represents the probability of a given pixel x to be selected as to

belong to region A by at least one subject. A second measure, identified as hm, reflects the

level of overlap in human perception among regions. The measure is defined by

hm = p(x ∈ ∩A|x ∈ ∪B)/min(p(x ∈ ∩A), p(x ∈ ∩B)) (2.25)

where p(A|∪B) represents the conditional probability of a given pixel x to be selected as to

belong to region A by at least one subject while being selected as to belong to a region B by

one or more different subjects for every pair of disjoint classes A and B.. The two measures

account a reflection of consistency in ground truth selection in pixel classification.

Table 2.2 indicates the value of hv for the “Own” database, for a total of five evaluators who

provided three annotations to the same image each (the image can be seen in Figure 2.8).

Table 2.3 is the analogous of Table 2.2 for hm. It can be concluded that the task of manually

stating the boundaries between mouth structures in images is not straightforward, as the

consistency in region selection remained below 70% in average. In example, from all pixels
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(a) Original image. (b) Lip segmentation.

(c) Teeth segmentation. (d) Tongue segmentation.

Figure 2.8: Human variation in manual ground-truth establishment. Darker regions mean
higher consistency in pixel labeling selection; white represents the background.

labeled as to belong to Lip region by any evaluator, only the 69.4% were selected as to belong

to such region by all of them. A similar analysis can be derived from the Table for Teeth and

Tongue, for whom the measure achieved 65.2% and 64.67% respectively.

Table 2.2: Human variability measurement in manual mouth structure segmentation, measured
using hv.

Lips Teeth Tongue
hv 0.6940 (69.4%) 0.6520 (65.2%) 0.6467 (64.7%)

Table 2.3 can be used to interpret how much each of the structures can be interpreted by a

human evaluator as to belong to a different one. The measures do not include the degree

of confusion between the regions and the background; this, however, can be deduced by the

combined results of Tables 2.2 and 2.3.

Table 2.3: Human variability measurement in manual mouth structure segmentation, measured
using hm.

Lips, Teeth Lips, Tongue Teeth, Tongue
hm 0.0386 (3.86%) 0.0080 (0.8%) 0.0254 (2.54%)

The values presented in the Tables should be taken into account when interpreting the results
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in mouth structure segmentation provided in the following Chapters.

Gesture detection ground truth variability in video sequences

There is a noticeable difference in the way humans perceive gestures, mostly in transitional

video segments in which one gesture is slowly transforming into another. Thus, it is important

to establish how consistent human perception proves to be when segmenting gestures in video

sequences.

In this test, one CWLDC sequence taken from the last portion of the “Own” database was

provided to five evaluators. The evaluators were asked to establish the frame ranges in which

a given gesture from the set described in Section 2.2.1 is a clear match. The results of

the experiment were measured using the aforementioned hv measure, and are presented in

Table 2.4. In the test, hm equals to zero for every gesture combination. Average hv equals

0.9355, which indicates high consistency among evaluators.

Table 2.4: Human variability measurement of gesture classification in video sequences.

Tongue up Tongue down Tongue left Tongue right Open Teeth
hv 0.9534 0.9955 0.9087 0.9494 0.9171 0.8890

2.3 Summary

This Chapter serves as an extended introduction, treating concisely but sufficiently the topic

of mouth structures segmentation, as well as giving a methodological background concerning

the tests and measurements used in the remainder of the document.

Mouth structure segmentation techniques are approached in a rather taxonomic manner, de-

spite all possible methodological combinations and the sometimes weakly defined limits be-

tween categories, following the scheme in Figure 2.1. In most cases, special notices about

benefits and drawbacks of the techniques are exposed. Special focus is given to color dis-

tribution modeling through linear optimization using FLDA and non-linear modeling using

mixtures of Gaussians.

The second part of the Chapter contains the description of the databases selected for training

and testing purposes in this work, and the basic methodological background needed to unveil

the results presented in the remaining of the document. Human-related ground truth variation

is also treated from an objective point of view, and presented accompanying the database

description.

The measures presented in Tables 2.2 and 2.3 give important notice about the fact that

human factor introduces a level of uncertainty in ground truth establishment that cannot

be neglected or isolated when interpreting automatic segmentation results. A relatively low

consistency in ground truth consistency evidenced in Section 2.2.3 makes contour based error

and performance measurements, like the ones in [1, 2, 114], unsuitable for mouth structure

segmentation.
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3 Pixel color classification for mouth

segmentation

In the previous Chapter, several approaches for segmenting mouth structures in images were

discussed. Those approaches are categorized in pixel color classification techniques, region

based techniques and contour based techniques.

Region based segmentation techniques usually give good results when compared against color

classification and contour detection. They, however, include a series of incremental updates

and local connectivity tests which make them relatively expensive in machine time, and quite

hard to parallelize. Shape constraints help improving their accuracy when working with a

restrained set of mouth poses, but resulting in a loss of robustness.

Contour-based techniques, in the other hand, are fast segmentation techniques which may out-

perform other approaches in both quality and speed. They base their operation in maximizing

the gradient flow through a contour located in the image. Their convergence is conditioned

to the gradient flow function, which is often prone to suffer from local minima problems.

The remaining alternative, pixel color classification, is usually fast and leads to good results

when image lighting could be predicted at some extent and, therefore, compensated. Poor

results may be obtained for images acquired under varying lighting conditions, even when using

the so called chromatic invariant color transformations. Despite such evident disadvantage,

pixel color classification is more appropriate in cases in which pose may vary considerably

among images, and when scale of the features in the image is unknown.

RGB image Label imageImage
Pre-Processing

Color
Representation

Model-based
Color Classif.

Figure 3.1: Image segmentation scheme based in pixel color classification.

In this Chapter, pixel color classification based mouth structure segmentation is treated. Fig-

ure 3.1 shows the basic sequence followed in pixel color based segmentation, in the same order

they are addressed in the Chapter1.

The remainder of this Chapter is organized as follows: Section 3.1 treats the application of

optimal linear modeling of class separation for mouth structures using Fisher Linear Discrim-

inant Analysis (FLDA), as well as the effect of linear and non-linear pre-processing in such

process. An alternative for fast and coarse lips segmentation is also introduced. Section 3.2

discuss the use of Gaussian mixtures for modeling mouth structure color distributions. Impor-

tant results are also presented in this Section, which are used as a benchmark in the majority

1Color representation and pre-processing stages may be freely interchanged.
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48 3 Pixel color classification for mouth segmentation

of the remaining tests in the document. A brief summary and final notes are presented in

Section 3.3.

3.1 Color representations for mouth segmentation

It has been reported in literature that skin and lip color distribution overlap considerably [27].

Figure 3.2 shows that such issue extends to all visible mouth structures, making them difficult

to classify.
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Figure 3.2: RGB distribution of mouth structures.

Nonetheless, it is also proven that combinations of ‘weak’ features - even linear - may lead to

highly discriminant representations [118]2.

In this work, twelve color components, which are common in skin and lip segmentation tasks,

are used for pixel color classification: Red, Green, Blue, Hue, Saturation, Value (defined as

max(R,G,B)), CIEL∗, CIEa∗, CIEb∗, CIEu′, CIEv′ and Pseudo-hue3. Any linear combination

of the base twelve components is avoided, as they do not provide extra information for the

analysis4.

3.1.1 Discriminant analysis of commonly-used color representations

In order to prove the effectiveness of the FLDA in selecting a good input color representation

for mouth structure pixel classification a data set containing annotated pixel color data was

selected. The data come from sixteen facial images randomly selected from the last portion of

the “Own” database, acquired under compensated lighting conditions, aiming to preserve the

same head pose but not the same gesture. Image color is treated using the Grey-edge color

constancy method described in [119].

Each pixel is represented using twelve color representations which are commonly used in litera-

ture. Since component distribution and value range may differ greatly from one component to

2One approach to find optimal linear transformations in the sense of linear separability among classes is
achieved through Fisher Linear Discriminant Analysis. This method is described in Section 3.1.1.

3In lip/skin segmentation, Hue component is usually rotated by 30◦ in order to concentrate reddish hue in a
compact range.

4The restriction excludes color representations such as Y CbCr, and the C3 component of the Discrete
Hartley Transform.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



3.1 Color representations for mouth segmentation 49

Table 3.1: Normalization factors and individual discrimination capabilities in mouth structure
segmentation for several color representations.

Reg. Parameters Ind. Class. Capability (DTO)
Mean Std. Dev. Lip Teeth Tongue

Red 0.5676 0.1982 0.6890 0.6976 0.8291
Green 0.4568 0.1861 0.7201 0.7548 0.8750
Blue 0.4427 0.1837 0.7010 0.7549 0.8378
Hue 0.4044 0.4200 0.5603 0.9161 0.5921
Saturation 0.2650 0.1269 0.7605 0.8134 0.8320
Value 0.5718 0.2008 0.6852 0.6956 0.8174
CIE L∗ 51.2836 18.6664 0.7069 0.8895 0.6549
CIE a∗ 11.2164 9.4382 0.5800 0.5787 0.8469
CIE b∗ 6.6904 7.5667 0.7050 0.7837 0.8356
CIE u′ 0.2410 0.0246 0.8232 0.9102 0.7461
CIE v′ 0.4951 0.0119 0.6489 0.6566 0.9624
Pseudo-hue 0.5600 0.0456 0.7957 0.9324 0.7572

another, each one of them was normalized using the mean and standard deviations consigned

in the first two columns of Table 3.1. A benchmark for pixel classification was also established

using the “one against the rest” approach [120] for each input component, measuring DTO

for lip, teeth and tongue regions; the results of the experiment are shown in the last three

columns of Table 3.1. In the table, the best components’ DTO for classifying each region is

presented in bold.

The projection spaces given by wLip, wTeeth and wTongue will, from now on, be used as the

preferred color representation in further tests.

Table 3.2 contains the FLDA projection vectors for Lip, Teeth and Tongue regions, computed

using the “one against the rest” approach. Classification performances in the projected spaces,

measured using DTO, are shown in Table 3.3. Training performance was tested using the

same amount of data for both the testing class and “the rest”; such quantity was limited to

cover the 30% of the total number of elements contained in the class subset which has the

less elements (around 6000). Testing performance, in the other hand, was measured using

all the input patterns contained in the selected image set. Its noteworthy that all regions

are much more easily classifiable using the FLDA projection space than any of the original

input representations; this can be effectively seen by comparing DTO measures in Tables 3.1

and 3.3. Mean DTO obtained using FLDA based projection and thresholding for the three

regions was 0.2726 (average DTO in Table 3.3, corresponding to an 80% in combined TPR

and TNR).

Features set covariance of the data, represented using the color spaces in Table 3.2, is shown

in Figure 3.3. In the figure, white blocks represent positive values while black blocks represent

negative values. Magnitudes are proportional to block area. Notice a high correlation between

the red, green, blue, value, and CIEb∗ components; also notice the high correlation between

hue and CIEL∗ and CIEa∗. Covariance matrices are seldom used as feature selection tools;

however, it has been proved that two or more variables that appear to be correlated may reach
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50 3 Pixel color classification for mouth segmentation

Table 3.2: FLDA projection vectors and comparison thresholds for mouth structure classifica-
tion.

wLip wTeeth wTongue

Red -14.9876 16.2401 -9.9318
Green 30.9664 -10.6025 17.7132
Blue -16.7017 -1.1409 -3.9080
Hue 0.1505 -0.0264 -0.0903
Saturation -1.0330 -0.5130 0.3971
Value 4.6850 0.4752 -1.2842
CIE L∗ -4.6476 -3.9766 -3.0053
CIE a∗ 9.5569 -8.4148 6.7015
CIE b∗ -4.8199 -1.2962 0.2016
CIE u′ -2.3136 6.2434 -1.5410
CIE v′ 2.1365 -1.0480 -0.5272
Pseudo-Hue 1.7660 -4.6361 0.6532

Threshold 0.7788 0.6908 0.6714

Table 3.3: Projection classification performance, using the “one against the rest” approach.

Lips Teeth Tongue

DTO 0.2844 0.2258 0.3228
σDTO 0.0018 0.0012 0.0021
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higher classification performances when used altogether.
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Figure 3.3: Covariance matrix codified in blocks. White blocks represent positive values, while
black blocks represent negative values. Element magnitude in the matrix is repre-
sented proportionally regarding block area.

3.1.2 Effect of image pre-processing in FLDA

Digital image quality suffer the influence of several factors that distort the scene realization

made by the sensor. Those distortions can be reflected in changes of relative shape and size

of the objects in the image (like barrel distortion), chromatic changes due to lens phasing or

sensor noise, etc.. Hence, techniques have been developed aimed to cope with each one of

those problems. Shape and chromatic distortion correction usually requires an accurate lens

model, or at least some key points in the image that help in establishing color and shape

references. However, noise reduction can be achieved without prior knowledge about the

acquisition setup5.

The most common approach for tackling with noise reduction problem is the application of

low pass linear and non-linear spatial filtering [5]. In this work, Gaussian linear low pass filters

and non-linear stochastic Median filters are used.

The median filter is O(n) regarding the total number of pixels in the image, and typically

O(n2 log n) regarding filter’s mask width6.

Particularly, separable linear filters can be computed by decomposing the 2-D/2-D convolution

operation with two 2-D/1-D convolution operations, using a vertical and a horizontal kernel.

Hence, separable linear filters are O(n) regarding the number of pixels of the input image,

5Nevertheless, the availability of prior information about the acquisition configuration would lead to better
results in noise reduction.

6The computational complexity of the median filter varies depending the complexity of the implementation
of the underlying sorting algorithm.
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and O(n) regarding mask width (unlike non-separable filters, which are O(n2) regarding mask

width). Specialized CPU and GPU operations are able to handle per cycle floating point

addition-multiplication operations, which dramatically improve computational time for mask

widths equaling or below the floating point register size.

Figure 3.4 exposes the effect of filtering in pixel color classification, measured using mean

DTO averaged over Lip, Teeth and Tongue. The experiment was conducted using the one-

against all FLDA configuration for the regions. The analysis was repeated 50 times, each time

using around 6000 input patterns from every region, as well as the background. The patterns

were randomly selected from 16 images, for whom a manually annotated RoI is provided, each

one corresponding to a different subject7.

In 3.4a, the blue dashed line represents the base mean DTO measurement, with a value of

0.2726. The red solid line with round markers show the mean DTO obtained for patterns

selected from filtered images using separable, centered Gaussian low pass filters, varying in

each case the mask size. The solid black line with inverse triangle markers represent the same

measure for a median filter whose mask size was varied alike. Notice that mean DTO tends

to lower as the mask size increase. This trend stops when the filter’s cut frequency surpasses

the size of certain features in the image, like teeth, mouth corners, etc.; in that case, these

structures get excessively blurred by the filter’s softening effect, effectively worsening the DTO

(see median filter behavior for mask widths above 11 pixels, or Gaussian filter behavior for

mask widths above 25 pixels). DTO variation throughout trials remained stable for mask

widths below 23 pixels for both Gaussian and median filters, as shown in Figure 3.4b. In that

range, its value turn around 0.036 and 0.046. Following the results in the figure, a good

quality/performance compromise can be achieved by choosing a 9 × 9 Gaussian filter. Using

that selection, an improvement above 18% in DTO can be expected8.

It is noteworthy that image filtering is a scale-variant operation, hence being affected by feature

size in pixels. Results obtained using filtering should be accompanied with detailed descriptions

about the acquisition process and a feature size indicator. In this test, mouth width is used

as scale indicator; mouth width ranges between 138 and 216 pixels, with mean and standard

deviation of 170.88 and 20 pixels, respectively. For all testing purposes, noise is assumed to

have a Gaussian distribution, and to be spatially and chromatically uncorrelated.

3.1.3 Case study: the normalized a∗ component

In some cases, the computational complexity implied in computing several input color represen-

tations for pixel color classification cannot be afforded (this can be true notably for high-speed

color classification). In this Section, a simpler alternative for lip and teeth segmentation in

images is presented. The technique, based in the CIEa∗ color representation, was developed

as a part of a methodology for mouth gesture detection in images in video [4].

The a∗ distribution for lip and skin regions tends to vary from one image to another–though at

some extent disjoint among them, making it unsuitable for segmentation with static threshold

7Only eight images were taken into account in each turn, allowing a greater variation in DTO among turns.
8Such improvement can be obtained if the same specific testing conditions are used (“one against the rest”

scheme, equal number of patterns for all classes). The improvement is measured using (DTObase −
DTOimproved)/DTObase.
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(a) Color classification performance, measured using
DTO (lower is better).
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Figure 3.4: Effect of pre-processing in mouth structure color classification.
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54 3 Pixel color classification for mouth segmentation

selection. That variability decays when the color distribution of the mouth region and its

immediate surroundings in normalized, as shown in the following experiment. First, a set

of twenty facial images taken from our facial image database were used. The images were

manually segmented in order to facilitate threshold establishment and error measurement.

A rectangular ROI was manually established for each image used in the test. The ROI encloses

all mouth structures, extended by around a 10% of the mouth width at each side. In order to

set a benchmark, an optimal threshold was computed for each image represented in the a∗ color

component by minimizing the classification error using the training data. The experiment was

repeated using a normalized a∗ color representation of the input patterns (see Algorithm 1),

with and without RoI selection. Table 3.4 shows the result of the experiment.

Algorithm 1 RGB to a∗ color transformation.

Require: P (Training data, in RGB), L (labeling information associated to P ), N (number
of elements in P ), RoI.

Ensure: A′ = a′1, a
′
2, , a

′
N (normalized a∗ representation of P ).

for i = 0 to N do
ai ← a∗ representation of pi;

end for
a←

(∑N
i=1 ai

)
/N ;

σ2
a ←

(∑N
i=1(a− ai)2

)
/N ;

for i = 0 to N do
a′i ← (ai − a)/

√
σ2
a;

end for

Table 3.4: Mean threshold and threshold variances for the training data set.

Base component Mean (th) Variance (σ2
th)

a∗ 4.9286 2.95202
Normalized a∗ w/o RoI 1.4634 0.2301
Normalized a∗ with RoI 0.6320 0.2016

Notice that threshold variance decays when ROI is set up prior to threshold selection. If RoI

is not initialized, the a* component behavior is close to that of the standard a* component.

Computing the later is a fully-parallel operation at pixel level, while the former requires serial

calculations (specifically in the mean and variance calculation).

In the second test, the threshold set was averaged for both a∗ and normalized a∗ component,

and they were later used to segment the test image set. Table 3.5 shows the results of this

experiment, in terms of TPR, TNR and DTO. Notice that TPR value dropped drastically

when the a∗ component was normalized without caring about the RoI clipping. The corre-

sponding decay in segmentation quality is exemplified in Figures 3.5c and 3.5g. The best

compromise, reflected with the lowest mean DTO and a relatively small DTO deviation, was

obtained using the normalized a∗ component.

Evidence of the stability gain in threshold selection using the normalized a∗ images is reflected

in the segmentation process, as seen in Figures 3.5d and 3.5h. The relatively small threshold
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Table 3.5: Lips-skin segmentation performance.

Base component TPR σTPR TNR σTNR DTO σDTO
a∗ 0.9244 0.0597 0.6033 0.3129 0.4140 0.3019
Normalized a∗ w/o RoI 0.0427 0.0392 0.9998 0.0004 0.9573 0.0392
Normalized a∗ with RoI 0.7013 0.0725 0.9769 0.0032 0.2996 0.0725

deviation for normalized a∗ color representations using RoI clipping indicates that threshold

value can be safely chosen to be 0.632 for a wide range of facial images, expecting a mean

TPR, TNR and DTO conforming to those in Table 3.5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Comparison of pixel color based lip segmentation: a, e) original images; b, f)
lip segmentation using the a∗ color representation, with th = 4.9286; c, g) lip
segmentation using the normalized a∗ color representation without RoI clipping,
with th = 1.4634; d, h) lip segmentation using the normalized a∗ representation
with RoI clipping, with th = 0.632.

The a∗ component normalization introduces important changes in computational complexity

when compared to computing plain a∗. Notably, calculating the mean and variance of the

data inside the RoI is only partially parallelizable. In a massive-parallel SIMD9 platform,

computational complexity associated with a∗ color representation can be downscaled from

O(n) to O(1), regarding the number of pixels in the image. In the other hand, the normalized

version of the a∗ color representation can only be reduced from O(n) to O(log(n)), regarding

the total number of pixels inside the RoI. It is also noteworthy that the normalization can

become an important source of error if the RoI is nor properly selected, as suggested by the

results in Table 3.5.

9Acronym for Single-Instruction, Multiple-Data.
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3.2 Gaussian mixtures in color distribution modeling

The assumption is that a good approximation of p(x) can be obtained through a weighted

superposition of K Gaussians probability densities, as in

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.1)

where N (µk,Σk) is a µk-centered Gaussian with covariance matrix given by Σk. The values

of πk indicates the responsibility of the kth Gaussian in representing the data distribution. The

best fit to the input data, determined by the parameter set Θ = {π,µ,Σ}, can be found by

maximizing the log likelihood function

ln p(X|π,µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.2)

Detailed information on how to perform the maximization of (3.2) can be found in Sec-

tion 3.2.2. Initial values for the parameter set are usually obtained through the K-Means

algorithm discussed in the next Section.

Gaussian mixture models can be used to model pixel color distributions in both supervised

and unsupervised manners. In the first case more than one GMM shall be used, each one

approximating the color distribution of the data belonging to a particular class. In unsupervised

color distribution modeling one makes the assumption of no prior knowledge about the classes

present in the image, and one GMM is used to approximate the image color histogram. In this

case, classes may be assigned to subsets in the mixture (down to one Gaussian per class).

When GMMs are used to model class color distributions, new input patterns may be classified

by looking for the model that generates the highest probability in the data.

3.2.1 The K-Means algorithm

The K-Means algorithm is a statistic modeling technique which aims to represent a data set

distribution by the means of a centroid set. Each centroid in the feature space gather a subset

of data points through the use of a distance measurement. This principle can be coded in

the cost function depicted in (3.6). This function is also known as distortion measure, and

quantifies the dispersion from a given data X = {x1, . . . ,xN} regarding the centroid set

M = {µ1, . . . ,µK}.

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 (3.3)

The value of rnk is used to associate each pattern or data point xn with a centroid µk. In basic
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K-Means, this coefficient is constrained to codify a hard class assignment for each pattern:

rnk =

{
1 if k = argminj‖xn − µj‖2
0 otherwise

(3.4)

The problem of fitting a K-Mean model to a data set can be regarded as to find a set of K

centroid locations in the feature space given a data set. Due to the constrained form of rnk,

the problem of minimizing J in terms of µk present a closed-form solution

µk =

∑
n rnkxn∑
n rnk

(3.5)

It can be seen that µk becomes the mean of the patterns associated with the kth−cluster

(hence the name of K-Means). Convergence is achieved by alternating iteratively the steps

in (3.4) and (3.5) until a stop criterion(a) is(are) met [121]. Since xn is an euclidean variable

and rnk is also established in an euclidean space, the approximated cluster shape is either

symmetric, circular, spheric or Hyper-spheric, for the case of higher-dimensional data. The

floating parameter K is a pre-set in the algorithm, although its value can be refined during

optimization like in the ISODATA algorithm [122]. Some extensions of the K-Means algorithm,

such as the K-Medoids algorithm, use other dissimilarity measures rather than the euclidean

distance in the distortion measure formulation, transforming (3.6) into

J̃ =
N∑
n=1

K∑
k=1

rnkV(xn,µk) (3.6)

It is possible to use K-Means modeling in order to approximate color distribution in both

supervised and unsupervised manner. In the first case, the labeling information associated

to the training data can be used in order to approximate a whole K-Means model for each

class, thus obtaining as much models as labels are in the prior. Once converged, new data are

classified by associating them to the model for which the euclidean distance is minimal. For

unsupervised color modeling, only one model suffices to approximate the color distribution of

the image, and the efforts are usually concentrated in establishing a proper value for K.

3.2.2 Gaussian mixture model estimation using

Expectation-Maximization

A K-Means model can be regarded as a particular case of a Gaussian mixture where all

covariance matrices equal to αI. Therefore, posterior parameter tunning is needed for mixtures

initialized using K-Means in order to take benefit from Gaussian approximation potential.

The optimization of the likelihood function in (3.2) can be carried using the Expectation-

Maximization method. In the expectation (E) step, current parameter values are used to

evaluate the posterior probabilities given by (3.7). In turn, the maximization (M) step use

such posterior probabilities in order to update the means, covariances and mixing coefficients,

according to (3.8), (3.9) and (3.10). Iterative alternation between E and M steps ensures

parameter convergence while maximizing the likelihood function, as shown in [123].
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A summary of the expectation-maximization method applied to Gaussian mixtures extracted

from [123] is shown in Algorithm 2.

Algorithm 2 Expectation-Maximization for Gaussian Mixtures (taken from [123]).

1. Initialize the means µk, covariances σk and mixing coefficients πk, and evaluate the
initial value of the log likelihood.

2. E Step. Evaluate the responsibilities using the current parameter values

γ(znk)←
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

(3.7)

3. M Step. Re-estimate the parameters using the current responsibilities

µnew
k ← 1

Nk

N∑
n=1

γ(znk)xn (3.8)

Σnew
k ← 1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (3.9)

πnew
k ← Nk

N
(3.10)

with

Nk ←
N∑
n=1

γ(znk) (3.11)

4. Evaluate the log likelihood

ln p(X|µ,Σ,π)←
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.12)

and check for convergence of either parameters or the log likelihood. If the conver-
gence criterion is not satisfied return to step 2.

3.2.3 Case study: Color distribution modeling of natural images

Figure 3.6 shows the effect of grouping pixels by color using the K-Means algorithm, and then

representing each cluster by its corresponding centroid. This approach can be used for color

compression or image segmentation [123].

Figure 3.7 shows the analogous effect evidenced in Figure 3.6, this time using Gaussian mix-

tures.

Gaussian mixture based classification imposes the calculation of (3.1) for every new input

pattern. Unlike the K-Means evaluation, this operation is of order O(n2) regarding the

input pattern dimension. Hence, it is always desirable to reduce the input representation
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(a) Original image. (b) Compressed image
with K=4.

(c) Compressed image
with K=8.

(d) Compressed image
with K=16.

Figure 3.6: Example of image color compression using K-Means pixel color modeling.

(a) Original image. (b) Compressed image
with K=4.

(c) Compressed image
with K=8.

(d) Compressed image
with K=16.

Figure 3.7: Example of image color compression using Gaussian Mixture based pixel color
modeling.
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space (feature space) before carrying out the modeling process. Evaluating a D-dimensional

Gaussian mixture with K Gaussians is approximately 2D ∼ 3D times more expensive than

evaluating a D-dimensional K-Means model with K centroids.

3.2.4 Mouth structure segmentation using K-Means and Gaussian

mixtures

In this Section, K-Means modeling and Gaussian mixture modeling is put to test in the task

of mouth structure segmentation. The feature space is comprised by the same twelve color

representations enunciated in Section 3.1.1, contrasted with the three FLDA vector projections

obtained in the same Section. Those representations serve to conform a 12-dimensional input

feature space in the first case and a three-dimensional input feature space in the second case.

For the tests, a set of 16 images taken from the last portion of the “Own” database, coming

from 16 different subjects, was used. The images were selected covering most of the gestures

described in Section 2.2.1, in a way that pixels of every structure are contained in at least six

of them10.

Also, in order to establish the effect of pre-processing in color modeling of mouth structures,

the configuration selected in Section 3.1.1 is used. Each test image was represented using four

combinations: 12-feature non-filtered, 12-feature filtered, 3-feature non-filtered and 3-feature

filtered. The 3-feature representations are obtained by projecting the 12-dimensional data

using the FLDA vectors in Table 3.2.

As a special notice, mind that using three features instead of twelve reduces the number of

parameters of each K-Means centroid from twelve to three, and those of each Gaussian from

91 to ten11. These numbers should be multiplied by the number of centroids (in the case of

K-Means) or Gaussians used for a given model.

First of all, a proper value for the parameter K, which controls the number of clusters, should

be established. The easiest way to obtain such value is carried out by sweeping the parameter’s

value over a range of possibilities, measuring classification performance in each case. In order

to improve result significance several models were trained for each parameter combination,

and then the classification results were averaged.

Table 3.6 exposes K-Means color classification performance for mouth structures. The results

include the combination of three and twelve dimensional input feature spaces with and without

pre-processing filtering, using data from within RoI and the whole image. In all cases, filtered

versions show improvements in averaged DTO regarding the unfiltered versions. Notice that

averaged DTO is bigger in value for Lips and Teeth regions when using data inside RoI

than in the case of data coming from the whole image. This effect is due to an decrease in

TNR, indicating a higher overlap between those regions’ models and the background color

model in mouth surroundings. The mean averaged DTO for the three regions was 0.3712 for

12-dimensional feature input vectors, and 0.3953 for 3-dimensional feature input vectors.

10Unlike Teeth and Tongue regions, Lip region is present in the 16 test images.
11Total parameter count is 157 for 12-dimensional Gaussians and 13 for 3-dimensional Gaussians. However,

due to symmetry in the corresponding covariance matrices, the actual number of parameters is reduced to
91 and 10 respectively. Further reduction can be achieved if using non-rotated Gaussians, where only 25
and 7 parameters are needed.
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Table 3.6: K-Means based pixel color classification: performance measurement using DTO.
Upwards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.4170 0.4275 0.5873 0.4423 0.4174 0.6214
Filt. 0.2722 (↑) 0.3243 (↑) 0.4936 (↑) 0.3167 (↑) 0.2894 (↑) 0.5074 (↑)

Clipped
Unfilt. 0.5055 0.4878 0.5220 0.5265 0.4580 0.5656
Filt. 0.3407 (↑) 0.3632 (↑) 0.4599 (↑) 0.3718 (↑) 0.3289 (↑) 0.4852 (↑)

Analogously, Table 3.7 presents the results of mouth structure segmentation using Gaussian

mixture model based color classification instead of K-Means. Once again, filtered versions

show improvements in averaged DTO regarding the unfiltered versions. Mean averaged DTO

for the three regions was 0.3621 for 12-dimensional feature input vectors and 0.3565 for three-

dimensional input feature vectors, besting in both cases the results obtained using K-Means

by a narrow margin. Figure 3.9 illustrates some results from the experiment conducted for

both K-Means and Gaussian mixtures using two sample images.

Table 3.7: Gaussian mixture based pixel color classification: performance measurement using
DTO. Upwards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.4977 0.4195 0.5302 0.5153 0.4192 0.5698
Filt. 0.2911 (↑) 0.2959 (↑) 0.4673 (↑) 0.3276 (↑) 0.2849 (↑) 0.4738 (↑)

Clipped
Unfilt. 0.4876 0.4728 0.5228 0.5106 0.4454 0.5643
Filt. 0.3103 (↑) 0.3335 (↑) 0.4244 (↑) 0.3397 (↑) 0.2851 (↑) 0.4446 (↑)

A summary of the accuracy obtained after carrying out the experiment can be seen in Fig-

ure 3.8. Notice that both sides of the Figure exhibit great similarity for most combinations;

however, DTO achieves lower values for training data than for testing data. One can con-

clude that model overfitting has not been reached up to K = 30 since there is no noticeable

increase in DTO for any of the modeling engines. As expected, the best results were obtained

for Gaussian mixture modeling using three and twelve input features. DTO value starts to

settle for K > 20; thereby, K value is set up at 20 for the rest of the tests in the Chapter12.

Gaussian mixtures modeling capability was compared against that of feed-forward artificial

neural networks (FFNNs), in the task of mouth structure color distribution modeling (as

in [34, 35]). In the case of 12-feature input vectors a FFNN with one hidden layer with 428

neural units and four output units was used; for 3-feature input vectors, a FFNN with one

hidden layer with 100 units and four outputs was used. Both network architectures were

selected to match approximately the number of parameters of the corresponding GMM.

The networks were trained using the resilient backpropagation algorithm [124] using the same

training data as in the case of GMM approximation. Results of this experiment are presented in

Table 3.8. Notice that FFNNs perform a better color classification for 12-dimensional feature

12Having twenty Gaussians per model implies the estimation of 1820 parameters for 12-dimensional feature
input vectors, and 200 parameters for three-dimensional feature input vectors.
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(a) Training mean DTO for lips, teeth and tongue.
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(b) Testing mean DTO for lips, teeth and tongue.

Figure 3.8: Training and testing DTO measured for each mouth structure, regarding the num-
ber of centroids or Gaussians per model.

Table 3.8: FFNN based pixel color classification: performance measurement using DTO. Up-
wards arrows indicate improvement.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

Whole
Unfilt. 0.5335 0.4843 0.4875 0.5037 0.5118 0.5020
Filt. 0.4151 (↑) 0.3545 (↑) 0.3995 (↑) 0.3687 (↑) 0.4601 (↑) 0.5049 (↓)

Clipped
Unfilt. 0.4919 0.4326 0.5115 0.5184 0.4197 0.5468
Filt. 0.3363 (↑) 0.2939 (↑) 0.4134 (↑) 0.3886 (↑) 0.3139 (↑) 0.5126 (↑)

input vectors than the one obtained with Gaussian mixtures; however, Gaussian mixtures

outperform FFNNs using three dimensional feature input vectors.

In order to test the robustness of the GMMs, the structure classification was repeated using

images from the FERET database and the second portion of the “Own” database. Mind that

the images from the FERET database contain all the head and neck of the subjects, and in

some cases the upper part of the torso, thus the mouth region is a very small portion in the

images (around 5% of the pixels in the image). Color models were not re-trained neither

adapted for the new data. Results of this experiment can be seen in Table 3.9.

Table 3.9: Robustness test - Color FERET database. Values measure DTO.
12 Features 3 Features

Lip Teeth Tongue Avg. Lip Teeth Tongue Avg.

K-Means
Whole 0.6239 0.8613 0.9835 0.8229 0.6580 0.9431 0.9287 0.8433

Clipped 0.6385 0.7664 0.9910 0.7986 0.6620 0.9315 0.9397 0.8444

GMM
Whole 0.6299 0.8512 0.9263 0.8025 0.6483 0.8566 0.9487 0.8179

Clipped 0.6442 0.7689 0.9591 0.7907 0.6302 0.7904 1.0274 0.8160

FFNN
Whole 0.4918 0.8903 0.9855 0.7892 0.8570 0.9969 0.7263 0.8601

Clipped 0.5072 0.8642 0.9867 0.7860 0.8574 0.9641 0.8877 0.9030

From Table 3.9, it can be concluded that pixel color classification error increased significantly

by using a completely new database. This effect can be issued to variable lighting conditions

present in the FERET database and the increased size and color variability of the background,
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(q) (r)

Figure 3.9: K-Means based and Gaussian mixture based pixel color classification examples.
K-Means based: 3.9a, 3.9b Original images; 3.9c, 3.9d result using a 12-feature
input space; 3.9e, 3.9f result using a 12-feature filtered input space; 3.9g, 3.9h
result using a 3-feature input space; 3.9i, 3.9j result using a 3-feature filtered input
space. GM based: 3.9k, 3.9l result using a 12-feature input space; 3.9m, 3.9n
result using a 12-feature filtered input space; 3.9o, 3.9p result using a 3-feature
input space; 3.9q, 3.9r result using a 3-feature filtered input space.
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64 3 Pixel color classification for mouth segmentation

among other factors. TNR decreased considerably using the new data, which reflects neg-

atively in DTO. As in the previous tests, FFNN bested Gaussian mixtures and K-Means

by a narrow margin for 12-dimensional feature input vectors, and Gaussian mixtures bested

K-Means and FFNN for three dimensional feature input vectors.

3.3 Summary

This Chapter presents a study in pixel color classification of mouth structures in facial images.

The first part of the Chapter focuses in studying the individual and conjoint discriminant

capabilities of several color components that have been used to tackle the aforementioned

task. In the second part of the Chapter, these representations are used as features in stochastic

modeling engines trained to model the color distributions of each visible mouth structure in

the images.

Neural networks proved higher accuracy in color distribution modeling when using a 12-

dimensional input feature vector than Gaussian mixtures. This effect is reversed when only

three features were used. There is a considerable reduction in computational complexity when

downscaling from 12 features to three; at the same time, a barely noticeable decrease in accu-

racy was obtained by performing that change. Thereby, results presented in following chapters

will be referred to a three-dimensional feature Gaussian mixture model. The models use the

configuration described in Section 3.2.4.

From the tests conducted over “Own” database and Color FERET database, it can be con-

cluded that changes among databases can produce higher variations in color classification

performance than changes among subjects in the same database. The tests clearly illustrate

the complexity of isolating the influence of issues related to acquisition set-up from the final

color register in the images.

As a side contribution of the study conducted in this Chapter, a fast alternative for coarse

lip/skin segmentation based in pixel classification is introduced in Section 3.1.3. The segmen-

tation technique is based in the use of the CIEa∗ color component, with its value normalized

using the values inside the mouth’s region of interest (RoI). Classification results proved to be

better than those obtained using other color components commonly used in lip/skin segmen-

tation through pixel color thresholding.
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4 A perceptual approach to

segmentation refinement

Image segmentation produces label images that can be used in higher level processes in per-

ception. Human-like interpretation of the scene is possible when an accurate region detection

and characterization is available. When segmenting with pixel-color based techniques, which

lack of region and task specific constraints (like connectedness tests), regions usually present

jagged borders and holes, and may vary considerably in size and shape, as seen in Figure 4.1.

(a) Original image. (b) Pixel color classification of mouth
structures.

Figure 4.1: Example of pixel color classification based image segmentation. Notice the presence
of jagged region borders, unconnected spurious regions and small holes and gaps.

There are some techniques that can be applied to label images in order to refine the labeling.

For instance, localized application of binary morphological operations may improve region

definition by smoothing jagged areas around the borders or filling small gaps between regions1.

Nonetheless, applying these techniques involve setting up a wide variety of parameters that

condition their behavior, like structuring element selection (shape and size), operation ordering

(erosion, dilation, combinations of them), etc.. The varying nature of such parameters makes

morphological operation selection a task in which tuning for the best results is commonly

carried out by the means of heuristic searches or by following guidelines stated in the state of

the art. Having all those possible parameter combinations also means that it is impractical

to predict or characterize the final output for every combination of operations and structuring

elements.

In this Chapter, a new technique for segmentation refinement is proposed. The technique was

designed aiming to be both easily understandable, as well as predictable through time, based on

a simplistic analogy to the first stage of the human visual perception system. Being predictable

1Given that Gray-scale morphological operations are based in ordering relationships that cannot be easily
extended to classes, they are not applicable to segmentation refinement straightforwardly.
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66 4 A perceptual approach to segmentation refinement

through time means that one may expect a predictable result when iteratively applying the

refinement to an input labeling until convergence is achieved; therefore, the insights of the

infinite-time behavior of the refiner are discussed thoroughly. The fundamentals of the method

are stated in Section 4.1. Section 4.2 treats topics such as parameter selection and infinite

behavior of the refiner through parameter study cases. Sections 4.3 and 4.4 provide some

results obtained in segmentation refinement of natural images and mouth structures in images,

respectively. Finally, a brief summary of this Chapter in given in Section 4.5.

4.1 Segmentation refinement using perceptual arrays

Image segmentation based in thresholding or pixel color classification gives fast results but

compromising in segmentation quality. As discussed before, problems such as jagged edges

and small holes or unconnected regions are common results of this kind of image segmentation.

Therefore, their usage is usually accompanied by image pre-processing and output labeling

refinement. In this section, a biologically inspired method for tackling segmentation refinement

is proposed.

According to [125, 126], human nervous system may be viewed as a three-stage system with

forward and backward propagation, where a set of receptors transform the input stimuli and

propagate them through a complex neural net (the brain), ultimately generating a response

through the effectors (please refer to Fig. 4.2). Similarly, the proposed segmentation scheme

uses a set of color classifiers that transform visual color information coming from the scene

into segmentation labels, thus taking the role of receptors, and a segmentation refiner who

acts as the neural net and the effector, in the case where the desired output corresponds to a

label image2.

Receptors Neural
net

Stimulus ResponseEffectors

Pixel color
classifier

Refiner

Proposed segmentation strategy

Input image Labeled segm.
image

Figure 4.2: Segmentation methodology diagram and the dual block diagram representation of
nervous system according to [125].

The refinement technique comprises a layer of organized units with forward, backward and

lateral connections. From now on, this layer will be referred as a perceptual array, and its layout

mimics the cone and rod distribution in human retina. Each unit in the array is connected

with one unique input pixel class labeling, thus equaling the total number of patterns in the

input array. The effect of the feedback connections is controlled by the joint influence of two

2Explicit feedback is avoided in the segmentation scheme (upper part of Figure 4.2) due to parameter tuning
and color modeling being carried out off-line.
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4.1 Segmentation refinement using perceptual arrays 67

parameters: σ, which determines the size of the unit’s perceptual field (set of neighboring

units), as well as its associated weighting function; and α, which sets the proportion between

the lateral and forward influence in the unit output.

The behavior of the perceptual layer is summarized in Equation (4.1). In the equation, P 0

stands for the input pattern set, and P k and P k+1 represent the layer output at iterations k

and k + 1, respectively.

P k+1 = W
(
αP 0 + (1− α)(P k ∗Gσ)

)
, (4.1)

It is noteworthy that P 0, P k and P k+1 represent the class labeling for every pixel in the input

image rather than its color or intensity representation. The “Winner” function, denoted by

W , is a non-linear operator that generates a “winning” array or vector with the same size of

its argument. In the case of pixel labeling, the “Winner” function will select the class which

most likely correspond to a given pixel based in an input vector whose component codify the

class rating associated to each class. A formal definition of the “Winner” function for vector

is explained in Section 4.2, (please refer to formulation in Equation (4.3)). The operator · ∗ ·
stands for the spatial convolution operation, and Gσ is a centered bi-dimensional Gaussian

window with variance σ2.

It can be immediately noticed the analogy between a low-pass filter-like behavior and that of

each iteration of the refiner, where the corresponding smoothing factor is controlled by the

combination of parameters (α, σ). Nevertheless, the actual enhancement potential of the

method is met when the process is recalled to convergence; that is, when the calculation of

Equation (4.1) is repeated until one or more stop criteria are met, as shown in Algorithm 3.

Common criteria are a maximum number of iterations, and a minimum number of label changes

between consecutive values of P k. The computational complexity of each refiner iteration is

O(n) regarding the number of pixels in the image; particularly, its reckoning is slightly higher

than the one associated with a linear filter with a window width and height equaling 5σ. This

relationship can be established since most of the area contained by a Gaussian function is

bound inside the domain range (µ− 2.5σ, µ+ 2.5σ)3.

Algorithm 3 Segmentation refinement.

Require: P 0, α, σ, Stop criterion(a).
Ensure: P k

k ← 0
while Stop criterion(a) is(are) NOT met, do
P k+1 ← W

(
αP 0 + (1− α)(P k ∗Gσ)

)
k ← k + 1

end while

Thanks to symmetry in Gσ, and bounding its size to match that of the image (that is, N ×M

3The area contained by a Gaussian function inside the domain range (µ− 2.5σ, µ+2.5σ) is slightly greater
than 0.987, which corresponds to a 98.7% of the total area of the curve.
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68 4 A perceptual approach to segmentation refinement

elements), the pixel-wise form of Equation (4.1) can be expressed as

pk+1
i,j = w

(
αp0

i,j + (1− α)

(∑
u,v

pku,vgu,v,σ(i, j)

))
, (4.2)

with u, v varying to cover the image size. Gσ(i, j) is a bi-dimensional Gaussian window with

variance σ2 centered at (i, j), and gu,v,σ(i, j) represents the element (u, v) in Gσ(i, j). Notice

that pi,j represents a label vector resulting from a prior pixel classification, not the actual color

or intensity of the pixel.

Figure 4.3 shows the pixel-wise principle of the technique. In the diagram, the combination

(α = 0.25, σ = 0.6) is used. Each color in the colored squares represent a particular class

labeling, while gray-shaded squares represent the values of Gσ, centered at i, j. The output

block holds the color which corresponds to the winning class, as obtained by using the “Winner”

operation.

Gσ(i,j)
sum[P(0)oGσ(i,j)]

pij(0)

1-α

α

Winner

P(0)

pij(1)

Sum

Select

Figure 4.3: Refinement process example diagram for α = 0.25 and σ = 0.6 (3x3 pixels percep-
tual field size). Colored squares represent class labeling, while gray-shaded squares
represent weights.

Figure 4.4 exemplifies the refiner behavior after an image segmentation based in color classi-

fication. The analysis is focused in the detail in Figures 4.4d and 4.4e, where two phenomena

can be regarded: neighborhoods with high variability in the input labeling do not produce

changes in such labeling along iterations, as seen in the subject’s right hand; and a clear soft-

ener effect in the bright side (left) of the subject’s leaf headband. The former is an uncommon

behavior that mimics the one of a high pass spatial filter applied to the labeling information.

The later, a smoothing effect produced by the refiner, tends to blur or even eliminate small

features through iterations depending on the perceptual field size and the weight of the lateral

effect. Figure 4.5 shows the effect of varying the refiner parameters when the input is a label

facial image with an initial mouth structure segmentation.

4.2 Special cases and infinite behavior of the refiner

In order to clarify the insights of the refinement process some definitions will be stated. First,

let I be a given input image, with size N ×M pixels. Each element qi,j ∈ I is a vector

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



4.2 Special cases and infinite behavior of the refiner 69

(a) Original image, taken
from the Berkeley image
database [114].

(b) Label image generated us-
ing K-Means with k=8.

(c) Figure 4.4b after refine-
ment.

(d) Detail of 4.4a. (e) Corresponding detail in
4.4b.

(f) Detail on 4.4b after refine-
ment.

Figure 4.4: Effect of segmentation refinement in a K-Means based color classification.

(a) Original image. (b) Initial classification image,
coded in grayscale.

(c) Result of the refinement pro-
cess for (σ = 4.0, α = 0.4).

(d) Result of the refinement pro-
cess for (σ = 4.0, α = 0.1).

Figure 4.5: Example of segmentation refinement using a mouth image.
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70 4 A perceptual approach to segmentation refinement

containing the intensity and/or color information of the pixel referred by indexes (i, j). Let

P0 be a vector array with size N ×M , containing an initial classification of the information in

I. Each element p0
i,j codifies the class label assigned to the input pattern qi,j. Any possible

value for p0
i,j lies in the set composed by the column vectors of the identity matrix of order C;

C standing for the total number of detected classes.

Now, let w(p) = (w1, w2, . . . , wC)> be a function from RC to RC , defined by its elements as

wj(p) =


1, ∃!j : j = argmaxi{pi}
indeterminable, ∃j1, j2, j1 6= j2 : j1, j2 = argmaxi{pi}
0, otherwise

. (4.3)

From now on, w(p) can be referred as the “Winner” vector resulting from p; in the same

way, W (P ) can be referred as the “Winner” array resulting from vector array P . Namely

speaking, the “Winner” vector w(p) contains zeros in all but one of its components; that

component holds a value equal to one, and corresponds to the same component that holds

the maximum value in the input vector p. If the result of argmaxi{pi} is not unique, w(p)

becomes indeterminable4.

With these priors in mind, it follows that the expressions in Equations (4.1) and (4.2) lead to

valid class labels for any value of k if α is bound to [0, 1] and σ keeps its value in the range

[0,∞). The stationary behavior of the refiner can be predicted if constraints for α and σ are

imposed. In this section, some of those variations are studied.

First, let P ′k = P k − {pki,j} be a labeling vector set constructed as the array P k minus the

element at location (i, j); then, one can reformulate Equation (4.2) by splitting it as

pk+1
i,j = w

(
αp0

i,j + (1− α)gi,j,σ(i, j)pki,j + (1− α)(
∑

u,v p′ku,vgu,v,σ(i, j))
)
, (4.4)

Intuitively, big values of σ lead to small values of gi,j,σ(i, j); particularly, σ →∞ =⇒ gi,j →
1/(nm)+, and σ → 0 =⇒ gi,j → 1. The splat version presented in Equation (4.4), which

seems clearer to interpret than the original expression in Equation (4.2), is used as a basis for

studying the effect of the parameter set (α, σ) in conditioning the refiner behavior.

Case 1: σ →∞, α = 0

In this case the Gaussian window given by Gσ(i, j) flattens completely, turning formulation

in (4.4) into

pk+1
i,j ≈ w

(∑
u,v

pku,v
nm

)
= mode(P k), (4.5)

for any location (i, j) in the image. Particularly, when k = 1, p1
i,j = mode(P 0). This

generalizes to any value of k > 0, as no further changes are produced, and therefore can be

regarded as a degenerated case of parameter selection.

4In order to reduce the influence of indeterminable values in refiner computation, indeterminable pk+1 are
forced to keep their older value; that is, pk.
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4.2 Special cases and infinite behavior of the refiner 71

Case 2: σ = 0, α = 0

In this case, gi,j = 1 and
∑

u,v p′ku,vgu,v,σ(i, j) = 0. Thus, the expression in Equation (4.4)

becomes

pk+1
i,j = w

(
pki,j
)
. (4.6)

This particular case leads to no changes between consecutive arrays P k and P k+1, therefore

making P k = P 0 for any value of k. No changes between consecutive labeling arrays mean

no refinement at all, thus the combination (σ = 0, α = 0) is another degenerated case of

parameter selection for the refiner.

Case 3: Every pku,v ∈ P ′k equals the mode, while pki,j does not

In this case, formulation in Equation (4.4) can be safely changed by

pk+1
i,j = w

(
αp0

i,j + (1− α)gi,jp
k
i,j + (1− α)(1− gi,j)mode(P ′k)

)
. (4.7)

By setting k = 0,

p1
i,j = w

(
(α + (1− α)gi,j)p

0
i,j + (1− α)(1− gi,j)mode(P ′0)

)
. (4.8)

As both p0
i,j and mode(P ′0) are vectors from the identity matrix of order C, the value of p1

i,j

is given by

p1
i,j =


p0
i,j, α + gi,j − αgi,j > 1/2

ind, α + gi,j − αgi,j = 1/2

mode(P ′0), otherwise

. (4.9)

This is the most favorable case for producing changes between p0
i,j and p1

i,j, as the elements

in P ′0 do not compete each other but collaborate in introducing that change. In order to

ensure that p1
i,j = p0

i,j first condition in Equation (4.9) should be attained. Regardless the

value of p1
i,j, no further changes in the labeling are be expected, and then

pki,j =


p0
i,j, α + gi,j − αgi,j > 1/2

ind, α + gi,j − αgi,j = 1/2

mode(P ′0), otherwise

. (4.10)

The derived condition α + gi,j − αgi,j > 1/2 is clearly established as necessary in order to

avoid any change in the labeling; moreover, if the indetermination resulting from the “Winner”

function is resolved by avoiding changes, the condition can be extended to α+gi,j−αgi,j ≥ 1/2.

Hence, a necessary condition for valid parameter selection is given by

α + gi,j − αgi,j < 1/2, (4.11)

subject to avoid the already discussed degenerated parameter combinations.

Notice that the previous analytic study reveals a series of necessary but not sufficient conditions
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72 4 A perceptual approach to segmentation refinement

for the refiner to work properly in label images. Hence, Figure 4.6 shows the result of an

empirical study of the effect of σ and α in the refiner behavior through iterations, measured

using the number of changes detected between consecutive labeling arrays. Notice that small

values of α usually lead to a constant decay through time in the effect of the input P0 over

the output Pk+1. It is important to note that such behavior is consistent with the dual

alertness-encoding factors in the stimuli-repetition effects theory presented in [127].
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Figure 4.6: Refiner evolution through iteration for diverse parameter combinations.

4.3 Unsupervised natural image segmentation refinement

In order to clarify the effect of label refinement in pixel color based image segmentation a

set of tests using natural images were carried out. In the tests, no prior knowledge about
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the images is assumed, therefore leading to the application of unsupervised segmentation ap-

proaches. The data source selected for the experiment is the “test” subset of the Berekeley’s

database (BSDS300) [114], which comprises a hundred images along with corresponding man-

ual annotations or ground truths. The BSDS300 database contain more than one ground truth

image per source image; hence, TPR, TNR and DTO measures obtained using this database

represent mean values rather than absolutes.

Three different techniques were selected to generate the reference segmentation measures: K-

Means, Gaussian mixtures and Fuzzy C-Means. In the case of Gaussian mixtures, K-Means

and Expectation-Maximization were used to initialize and fine tune the parameter set, like in

Chapter 3.

4.3.1 Refiner parameter set-up

First of all, refiner parameters should be set in proper values for the dataset. One intuitive

way of tuning σ and α is by minimizing DTO(α, σ). Since it is impossible to predict DTO’s

behavior within a natural image set, a sub-optimal solution can be found by sweeping the

parameter space and computing the corresponding DTO value for each combination. Bounded

limits for studying parameter influence over refining performance can be established using

conditions in (4.10). In all case, the refiner stop criterion was set to either (a) reaching 25

iterations, or (b) obtaining no changes between consecutive label images.

Figure 4.7 exposes the effect of parameter variation in refinement performance, measured using

the DTO, for images in the BSDS300 database. In the figure, darker shades mean lower DTO

values and higher performance. The dashed white line shows local minima path of DTO in

the parameter space. The lowest DTO value was obtained for (α = 0.05, σ = 1); this specific

combination creates a relatively small perceptual field for each unit (5× 5 pixels in size), and

favors changes between iterations. There is a noticeable drop in performance for σ > 5, which

corresponds to perceptual fields with more than 25 × 25 pixels in size. This effect is quite

similar to the one evidenced from the usage of relatively big windows for Gaussian filters and

Median filters in image pre-processing, as seen in Section 3.1.2 (reader may refer particularly

to Figure 3.4). It can be concluded that important regions in the image are lost once that

perceptual field size is surpassed.

4.3.2 Pixel color classification tuning

The three methods share one parameter which controls the desired number of clusters. Its value

was swept from three to eight, and the best fit in terms of DTO for each technique in each

image was selected. Then, the mean values for TPR, TNR and DTO were computed, along

with their associated deviations, as seen in Table 4.1. In the table, upwards arrows indicate

improvement, which in the case of DTO, σTPR, σTNR, OS and σOS correspond to values

closing to zero. Notice that in most of the cases TPR and OS profit from the refinement

process; however, this behavior does not hold for the other measures. Summarizing, the

average changes obtained by using the refiner were: an increase of 4.85% in TPR, a decrease

of 2.97% in TNR, and a decrease of 3.3% in DTO.

High values in OS and σOS were obtained using the three segmentation techniques. This
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Figure 4.7: Influence of σ and α in segmentation refinement performance for BSDS300
database. Darker areas represent lower DTO values.

Table 4.1: Refinement applied to unsupervised segmentation of BSDS300 image database.
Upwards arrows in right side of the table indicate improvement, whereas downwards
arrows indicate worsening.

K-Means GMMs FCM

TPR
Base 0.4373 0.4368 0.4273
Refined 0.4628 (↑) 0.4425 (↑) 0.4590 (↑)

σTPR
Base 0.0869 0.0790 0.0901
Refined 0.0793 (↑) 0.0826 (↓) 0.0810 (↑)

TNR
Base 0.9734 0.9350 0.9767
Refined 0.9519 (↓) 0.8923 (↓) 0.9559 (↓)

σTNR
Base 0.0273 0.0497 0.0217
Refined 0.0389 (↓) 0.0744 (↓) 0.0382 (↓)

DTO
Base 0.5633 0.5669 0.5732
Refined 0.5393 (↑) 0.5678 (↓) 0.5428 (↑)

OS
Base 6400.3 3007.1 6998.8
Refined 968.35 (↑) 450.62 (↑) 1026.8 (↑)

σOS
Base 5010.7 1980.8 5116.6
Refined 792.33 (↑) 322.26 (↑) 789.21 (↑)
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behavior is very common in pixel color based segmentation since it usually produces spurious

unconnected regions and gaps. Figure 4.8 illustrates how the refinement process cope with

the aforementioned problem. A quick comparison between the figure pairs 4.8a and 4.8d,

4.8b and 4.8e and 4.8c and 4.8f demonstrates the smoothing effect of the refiner, and a

proper elimination of small spurious features.

(a) Resulting label image
from Fig. 4.4d, using
K-Means with K=6.

(b) Resulting label image
from Fig. 4.4d, using
GMM with K=6.

(c) Resulting label image
from Fig. 4.4d, using
FCM with C=6.

(d) Figure 4.8a after refine-
ment.

(e) Figure 4.8b after refine-
ment.

(f) Figure 4.8c after refine-
ment.

Figure 4.8: Example of K-Means, Gaussian mixtures and Fuzzy C-Means pixel color segmen-
tation. Refined results were obtained with (α = 0.05, σ = 1.0).

4.4 Mouth structures segmentation refinement

In this work, particular attention is given to mouth structure segmentation in images. There-

fore, important notice on refiner’s performance in mouth segmentation refinement is given

in this Section. The experiment was conducted using sixteen images chosen from different

subjects from the “Own” database, provided that each image has one corresponding manu-

ally annotated ground truth image. The label images used as the refiner input are the same

that resulted from experiment in Section 3.2.4. Segmentation error, reflected by DTO, was

computed using all of the sixteen images (including those five used for model training).

Following the same guideline proposed in natural images segmentation in Section 4.3.1, refiner

parameters were tuned through a parameter sweep. From the experiment, the combination

which led to better results in terms of average DTO was (σ = 1.0, α = 0.1). Given this

parameter selection, a good approximation for the inner term of Equation (4.1) can be achieved

using a Gaussian window of five pixels width per five pixels height.
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Table 4.2 contains the mouth structure segmentation average DTO measurements presented

in Table 3.6, along with the corresponding average DTO obtained after the refinement. The

Table is composed by measurements taken from all possible combinations of: 12-dimensional

and 3-dimensional feature input vectors; whole image data and RoI clipped data; filtered and

unfiltered; refined and unrefined segmentation labeling.

Table 4.2: Refinement results of K-Means based pixel classification.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

W
h

ol
e Unfilt.

Unref. 0.4170 0.4275 0.5873 0.4423 0.4174 0.6214
Ref. 0.3172 (↑) 0.3478 (↑) 0.6282 (↓) 0.4507 (↓) 0.4185 (↓) 0.4630 (↑)

Filt.
Unref. 0.2722 0.3243 0.4936 0.3167 0.2894 0.5074
Ref. 0.2443 (↑) 0.2958 (↑) 0.4992 (↓) 0.3154 (↑) 0.3326 (↓) 0.4436 (↑)

C
lip

p
ed Unfilt.

Unref. 0.5055 0.4878 0.5220 0.5265 0.4580 0.5656
Ref. 0.3600 (↑) 0.3285 (↑) 0.6540 (↓) 0.4728 (↑) 0.3908 (↑) 0.5142 (↑)

Filt.
Unref. 0.3407 0.3632 0.4599 0.3718 0.3289 0.4852
Ref. 0.2978 (↑) 0·2561 (↑) 0.5109 (↓) 0.3519 (↑) 0.2978 (↑) 0.4706 (↑)

Despite increases in some of DTO measurements occur, average DTO went from 0.3712 to

0.3549 for filtered 12-dimensional feature input vectors after refinement, reflecting a gain in

classification accuracy of 1.56%. Similarly, this measurement decayed from 0.3953 to 0.3734

for filtered 3-dimensional feature input vectors after refinement, meaning a gain in classification

accuracy of 3.62%. DTO for unfiltered inputs improved from 0.4482 to 0.4455, leading

to an average gain in classification accuracy of 5.75%. The gain in average segmentation

accuracy from unfiltered unrefined to filtered refined is 14.77% for 12-dimensional feature

input vectors, and 14.5% for 3-dimensional feature input vectors. It can be thereupon deduced

that image pre-processing and label refinement effects on segmentation accuracy are notably

complementary when using K-Means pixel color classification.

Table 4.3 contains the mouth structure segmentation average DTO measurements presented

in Table 3.7, along with the corresponding average DTO obtained after the refinement. Im-

provement in DTO measurements is more consistent than in the case of K-Means based

classification, with average DTO going from 0.3537 to 0.3441 for filtered 12-dimensional

feature input vectors after refinement, reflecting a gain in classification accuracy of 0.91%.

This measurement went from 0.3593 to 0.3320 for filtered 3-dimensional feature input vectors

after refinement, meaning a gain in classification accuracy of 2.59%. The gain in average

segmentation accuracy from unfiltered unrefined to filtered refined is 17.56%. Particularly

good results were obtained for 3-dimensional feature input vectors with pre-processing and

refinement, closing to the accuracy of 12-dimensional feature input vectors case.

Figure 4.9 extend the example in Figure 3.9. The Figure illustrates the effect of segmentation

refinement when segmenting using K-Means color classification and Gaussian based color clas-

sification. The joint effect of image pre-processing and refinement can be seen in Figures 4.9e

and 4.9i.
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Table 4.3: Refinement results of Gaussian mixture based pixel classification.

12 Features 3 Features
Lip Teeth Tongue Lip Teeth Tongue

W
h

ol
e Unfilt.

Unref. 0.4977 0.4195 0.5302 0.5153 0.4192 0.5698
Ref. 0.4230 (↑) 0.3324 (↑) 0.5116 (↑) 0.4241 (↑) 0.3829 (↑) 0.4497 (↑)

Filt.
Unref. 0.2911 0.2959 0.4673 0.3276 0.2849 0.4738
Ref. 0.2622 (↑) 0.2618 (↑) 0.4741 (↓) 0.2865 (↑) 0.3064 (↓) 0.4019 (↑)

C
lip

p
ed Unfilt.

Unref. 0.4876 0.4728 0.5228 0.5106 0.4454 0.5643
Ref. 0.4450 (↑) 0.3244 (↑) 0.5444 (↓) 0.4484 (↑) 0.3546 (↑) 0.4983 (↑)

Filt.
Unref. 0.3103 0.3335 0.4244 0.3397 0.2851 0.4446
Ref. 0.3064 (↑) 0.2469 (↑) 0.4788 (↓) 0.3207 (↑) 0.2511 (↑) 0.4242 (↑)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Segmentation refinement on K-Means based and Gaussian mixture based pixel
color classification examples. 4.9a: Original image. 4.9b: K-Means based clas-
sification, K = 3. 4.9c: K-Means based classification, K = 3, filtered. 4.9d:
Refined version of 4.9b. 4.9e: Refined version of 4.9c. 4.9f: Gaussian mixture
based classification, K = 3. 4.9g: Gaussian mixture based classification, K = 3,
filtered. 4.9h: Refined version of 4.9f. 4.9i: Refined version of 4.9g.
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4.5 Summary

In this Chapter, a new technique for refining the label image resulting from segmentation is

presented. The method, inspired in a simplistic model of the human visual perceptual system,

improves iteratively the label image by smoothing region boundaries, filling small gaps inside

or between regions, and eliminating small spurious regions.

The refiner is composed by a layer of perceptual units (one per pixel), each of them connected

to one unique input label pattern, and to neighboring units’ output. Two parameters, which

are proven to be at some extent correlated in Sections 4.2 and 4.3.1, control the compromise

between input labeling and field effect through iterations. The technique mimics the smoothing

effect of low pass filters applied to labeling information, and its computational cost per iteration

is also around the same as the one of such kind of filters. Refiner’s behavior is analyzed in

depth in Section 4.2, and numerical results are also provided in Sections 4.3 and 4.4.

In most cases, the refiner improves the output labeling resulting from unsupervised pixel color

based segmentation of natural images. In the case of supervised mouth structures segmenta-

tion, the benefit is clearer by improving the results in all cases. The improvement is at some

extent cumulative with the one obtained by the means of image pre-processing, thus proving

to be complementary techniques. Individually, linear filtering and segmentation refinement

increase segmentation accuracy by 5 to 10% approximately (reflected in DTO), while the

combined effect of both techniques lead to an increment of 15% approximately. It is notewor-

thy that the computational complexity of each refinement iteration is comparable with that

of the linear filter, and that the refiner usually takes between five and fifteen iterations to

converge.
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5 Texture in mouth structure

segmentation

According to Shapiro & Stockman [128], local image texture can be defined in terms of local

image statistic or structural behavior. From the first point of view, texture is regarded as basic

image structures or neighborhoods in which some statistic or spectral measurements remain

constant, or at least very similar, all along the textured region. The latter, closely related

to human interpretation, sees texture as patterns which repeat themselves throughout some

areas in the image preserving their appearance among occurrences. This approach to texture

definition can be difficult to express in terms of measurable image features, despite of being

easier to understand, thus the first definition is more commonly found in fields like image

processing and artificial vision.

Texture features can be classified in two main categories: the first category, often identified

as low-level texture features, encompasses the use of raw color or intensity data extracted

from windows or pixel sets in the image. Then, texture is implicitly represented by the con-

catenation of that raw information provided by the pixels. The second category, referred as

high level texture features, is based in local statistic measurements (i.e., moments), non-linear

transformations or spectral information, extracted from the pixels and their corresponding

neighborhoods.

Throughout this Chapter, texture descriptors are used in every stage of the proposed mouth

segmentation scheme, discussing the benefits and disadvantages in every case. Particularly,

Figure 5.1 shows how texture can interact within the stages involved in the proposed mouth

structure segmentation scheme (as in Figure 2.5). These interactions are studied through this

Chapter, discussing their usefulness in improving the initial color based pixel segmentation.

First, a brief introduction on low-level and high-level texture feature representation is presented

in Sections 5.1 and 5.2, respectively. Then, in Section 5.3 the use of scale (a high level texture

descriptor) in image preprocessing is discussed through an example, in the particular task of

improving color definition and compactedness for pixel color classification of mouth structures.

Section 5.4 shows a comparison between color and color+texture based pixel classification

for mouth structure segmentation, using both low-level and high-level texture descriptors.

Section 5.5 introduces the use of scale as a tool to automatize segmentation refinement,

and studies the effect of this process in refined mouth structure segmentation based in pixel

color/color+texture classification. Finally, a brief discussion on the topics explored in this

Chapter is presented in Section 5.6.
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Image pre-processing,
Input color
representation,
dimension reduction.

Pixel color and texture 
dist. modeling, pixel
classification.

Automatic 
segmentation
refinement.

Texture information.

Figure 5.1: Mouth structure segmentation and refinement scheme, highlighting the alternative
use of texture at each stage.

5.1 Low-level texture description

The simplest way to represent texture encompasses use of raw intensity and color data inside

the supposed texture elements or units (usually referred as texels). Raw image data can be

concatenated conforming feature vectors that can be used as texture indicators, like in the

example in Figure 5.2. In this case, the pixel of interest is identified by the number five, and

texture is encoded using the information contained on its immediate surroundings.

1
1
1
2
2

9
9

...

Input
window

Concatenated 
feature vector

2

987

654

31

Figure 5.2: Low level feature vector conformation using RGB input and a 3x3 window.

In the example, the RGB information contained in a 3× 3 pixels window is concatenated in a

vector, which results in a 27-dimensional texture descriptor. It can be intuitively seen that pixel

class modeling using a high-dimensional feature set suffers from the Hughes effect1, meaning

that great amounts of training data are needed in order to obtain a representative model for

1In other contexts, the Hughes effect or Hughes phenomenon is commonly referred as the Dimensionality
curse.
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each class. This limitation is usually overcome using dimension reduction techniques such as

Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA) [29, 30].

An example of mouth structure pixel classification in a bi-dimensional space conformed by

the two principal components from an original low-level feature set is shown in Figure 5.3.

The original input space encompasses color information contained inside pixel neighborhoods

(windows of 3 × 3 pixels each) concatenated in a large feature vector like in Figure 5.2,

using twelve color representations per pixel. Therefore, the original feature dimension is 108

components. After PCA, more than 99% of the input data variance was represented by the

first two principal components.

Figure 5.3: Mouth structure color distribution represented using first two principal components,
which cover approximately 99.65% of data variance.

Notice that pre-defining the texture window size implies the assumption that texture can be

properly described by the information contained inside that window. It also implies that the

window has a size such that no relevant object features or objects are completely contained

by it (therefore masked by the texture descriptors).

Low-level texture descriptors are commonly used in face detection, subject recognition, eyes

and mouth detection, etc.. Techniques such as Eigenfaces [129], which is based in low-level

texture description, proved to be effective in tackling automatic object recognition tasks.

Nevertheless, their use pose some constraints like the availability of a large enough amount of

annotated training data, the disallowance of considerable variations in pose, and a mandatory

object scale standardization prior to classification.
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5.2 High-level texture description

Low level texture description imposes a series of limitations, suffering notably from issues

related to changes in scale, rotation, projection and shear. In cases in which texture preserves

appearance features like local variability, orientation, etc., but varying in the aforementioned

ones, a different approach is needed to texture characterization. Texture measurements based

in more elaborated image analysis and complex transformations are grouped in a new category

which is usually referred as high-level texture descriptors.

Under uncontrolled scale and rotation conditions, new texture samples can only be matched

with base patterns or classes if it can be closely represented by them. Hence, it seems that

a more adequate way to quantify texture should rely in the extraction of indexes that prove

robustness against the aforementioned issues. One possibility is to define texture in terms of

its local spectral behavior, codifying periodic or quasi-periodic elements using frequency bands

and amplitudes.

Another possibility sees texture in terms of its local statistical behavior, considering mainly

local first and second moments on the intensity and/or orientation. In those cases, texture

patterns may be regarded as patches of information that retain their statistical behavior both

locally and all throughout the textured region. Texture statistics are computed inside small

windows, and continuity among patches is then measured in terms of continuity in their

statistics. Clear examples of this kind of features are local anisotropy and contrast, both

treated in Section 5.2.2.

Regardless the approach to texture concept, a texture patch is defined as a structural element

inside the image, and is defined inside pre-defined pixel neighborhoods. A key issue in texture

analysis is the estimation of the neighborhood size, as texture features may vary considerably

depending on that size. In order to establish the size of the window of interest or neighborhood

for each pixel in the image, a notion of local integration scale must be introduced. A common

approach to estimate the local integration scale, based in local image statistics, is treated in

the following Section.

5.2.1 Integration scale

The integration scale, artificial scale or simply scale (denoted as σS
2), is a measurement that

reflects the variability in the local orientation inside an arbitrarily small window in the image.

According to [130], one way to make scale notion concrete is to define it to be the width of

the Gaussian window within which the gradient vectors of the image are pooled.

The integration scale is closely related to the statistical properties of the region surrounding the

pixel, and its selection is not always straightforward. In [130] the authors present a technique

for the implicit calculation of σS using an auxiliary quantity often referred to as polarity.

Polarity is a measure of the extent to which the gradient vectors in a certain neighborhood

all point in the same direction. Its value closes to one if the local orientation inside the

neighborhood is uniform, and decreases when local orientation is sparse. Intuitively, once a

proper scale value is achieved no further significant changes will be detected in local polarity.

2For any image location (x, y) the corresponding integration scale is denoted as σS(x, y).
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For any image location or pixel (x, y), polarity can be computed as

polσ(x, y) =
|E+ − E−|
E+ + E−

(5.1)

with

E+ =
∑

x,y|∇IT n̂>0

Gσ(x, y) ◦ (∇IT n̂) (5.2)

E− = −
∑

x,y|∇IT n̂≤0

Gσ(x, y) ◦ (∇IT n̂) (5.3)

where I denotes the image intensity value, n̂ represents the main direction of∇I at pixel (x, y)3,

Gσ(x, y) is a Gaussian window centered at point (x, y), and the ◦ operator denotes the

Hadamard matrix product.

Once the polarity images are computed, σS(x, y) is selected as the smallest value such that

∂polσS(x, y)

∂σS(x, y)
≤ th (5.4)

In [130], a threshold value of 2% (th = 0.02) is suggested. Since one cannot have the partial

derivative directly, the authors swept the value of σS starting from 1.0 to 3.5 with steps of

0.5, stopping once the condition was met or the maximum value was reached. This allows

them to limit the window size up to 10 pixels approximately4.

The scale can be regarded as a texture descriptor by itself, but is more commonly used for

computing features derived from the scale-based second moment matrix. Two well known

features extracted from the second moment matrix are local anisotropy and contrast, both

treated in the following Section.

5.2.2 Scale based features for image segmentation

Given the intensity (I) component of an image, the second moment matrix (MσS(x, y)) can

be computed as in Equation (5.5).

MσS(x, y) = GσS(x, y) ∗ (∇I)(∇I)T (5.5)

where GσS(x, y) is a Gaussian kernel centered at (x, y) with a variance of σS
2. It is noteworthy

that ∗ in Equation (5.5) does not represent an actual convolution since the operating window

size and its corresponding weights depend on the value of σS(x, y).

3The main direction n̂ can be set as the unitary vector whose direction follows the main eigenvector of the
second moment matrix inside the integration window generated by Gσ.

4Assuming that window width is approximately three times σS , covering around the 87% of the area enclosed
by the Gaussian function. In this work, window sizes are computed as five times σS , thus covering almost
a 99% of the area enclosed by the Gaussian function. This, however, increases computation time.
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Local image contrast (c(x, y)) and local anisotropy (a(x, y)) can be obtained from the eigen-

values of Mσ(x, y)–denoted by λ1(x, y) and λ2(x, y), with λ1(x, y) ≥ λ2(x, y))–as in Equa-

tions (5.6) and (5.7).

c(x, y) = 2(
√
λ1(x, y) + λ2(x, y))3 (5.6)

a(x, y) = 1− λ2(x, y)

λ1(x, y)
(5.7)

Figure 5.4 shows local anisotropy and contrast for test image in 5.4a. It can be easily noted

that anisotropy take high values in relatively smooth regions, while contrast is higher in areas

where local variation rises.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Local anisotropy and contrast. a) Original image; b) gray-coded local anisotropy
(white: 1.0, black: 0.0); c) gray-coded local contrast (white: 1.0, black: 0.0); d),
e), f) detail from a), b) and c), respectively.

5.3 Scale based image filtering for mouth structure

classification

Since the integration scale reflects the extent at which orientation varies inside a window, its

value can be used to setup anisotropic image pre-processing. If local scale can be estimated

properly, a Gaussian filter whose deviation correspond to the pixel scale will theoretically

smooth noise and localized orientation variation while preserving color, thus improving region

color compactness.

In order to measure the extent of such pre-processing, a test base encompassing sixteen

manually annotated images was selected. Each image was processed using a scale-variant

Gaussian filter and a fixed scale Gaussian filter with σ = 1.8, corresponding to a window size

of 9× 9 pixels. For training and testing purposes, ten thousand pixels were randomly chosen
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from each structure in the whole image set (lips, teeth, tongue and background), totaling forty

thousand pixels. The pixels were equally distributed for training and testing.

Table 5.1 presents the pixel color classification performance before and after a scale-variant

Gaussian filtering. Notice that the filter helps improving TPR, TNR and DTO for lips and

tongue, while producing an adverse effect in the teeth region. The average improvement

obtained for each region during training was 1.85% in DTO for all structures, with a stan-

dard deviation of 6.64%; using the testing database, the average improvement was 1.66% in

DTO for all structures, with a standard deviation of 7.03%. The measured averaged changes

in DTO are several times smaller than their corresponding deviations, which is inconclusive

regarding the effect of the scale-based filtering process in mouth structure color classification.

It is noteworthy that computing the scale implies complex calculations, including several se-

quential steps for each pixel in the image. Furthermore, fixed-scale filtering generated a clearer

improvement in classification accuracy, as shown in Sections 3.1.2 and 3.2.4.

Table 5.1: Color classification performance using scale-based filtering.
Training Testing

TPR TNR DTO TPR TNR DTO

L
ip

s RGB
Unfilt. 0.3774 0.9448 0.625 0.383 0.9426 0.6197
Filt. 0.4274 (↑) 0.9457 (↑) 0.5752 (↑) 0.4166 (↑) 0.9456 (↑) 0.5859 (↑)

12-C
Unfilt. 0.648 0.9463 0.3561 0.6242 0.9439 0.3799
Filt. 0.6748 (↑) 0.9501 (↑) 0.329 (↑) 0.6592 (↑) 0.9503 (↑) 0.3444 (↑)

T
ee

th RGB
Unfilt. 0.7686 0.9767 0.2326 0.7698 0.9764 0.2314
Filt. 0.6798 (↓) 0.9709 (↓) 0.3215 (↓) 0.6786 (↓) 0.9694 (↓) 0.3228 (↓)

12-C
Unfilt. 0.8292 0.9742 0.1727 0.8294 0.9741 0.1726
Filt. 0.8026 (↓) 0.9673 (↓) 0.2001 (↓) 0.787 (↓) 0.9669 (↓) 0.2156 (↓)

T
on

gu
e RGB

Unfilt. 0.7454 0.9235 0.2658 0.7388 0.9266 0.2713
Filt. 0.8428 (↑) 0.9391 (↑) 0.1686 (↑) 0.8304 (↑) 0.9408 (↑) 0.1796 (↑)

12-C
Unfilt. 0.8558 0.9432 0.155 0.8368 0.9382 0.1745
Filt. 0.9086 (↑) 0.9546 (↑) 0.1021 (↑) 0.9112 (↑) 0.9507 (↑) 0.1016 (↑)

Figure 5.5 presents a sample image filtered using fixed-scale and scale-variant Gaussian filters.

Typical uniform smoothing obtained from fixed-scale filters is evidenced in Figure 5.5b. Notice

that fixed-scale filtering affects negatively region features that are below its integration scale–

in this case corresponding to approximately 1.8 pixels–by blurring them excessively, as in

the case of region borders. Nevertheless, the filter stabilizes color inside regions, making

them more compact and less prone to generate unconnected spurious regions after pixel color

classification. This advantage is lost at some extent when using scale-variant filtering, as

some localized lighting effects persist after the smoothing effect of the filter. By dissecting

Figures 5.5c and 5.5d one can identify where the filter has effectively softened region color

(i.e., near lip corners) and where it has preserved localized features that may lead to pixel

misclassification (i.e., region borders with high color variability and specular light reflections

like those found in the teeth).

Despite exposing a better behavior in preserving region borders, scale-variant filtering does not

remove specular noise or highly variable texture hatching. It can also be noticed that the lack

of continuity in scale among neighboring pixels introduces artifacts, easily identifiable at teeth

and around some region borders.
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86 5 Texture in mouth structure segmentation

(a) Original image. (b) Filtered image obtained using a 9× 9 Gaus-
sian filter.

(c) Filtered image obtained using a scale-variant
Gaussian filter.

(d) Image scale, codified using grayscale (White:
10 pixels, Black: 1 pixel).

Figure 5.5: Example of scale-variant Gaussian filtering vs. fixed-scale Gaussian filtering.
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5.4 Texture features in mouth structure classification 87

5.4 Texture features in mouth structure classification

Texture descriptors can be used along with pixel color features to model the pixel distribution

for each mouth structure. In order to expose the effect of using texture in that task, a mouth

classification experiment was set up following the basic guideline stated in Section 3.2.4.

There, 16 facial images from 16 subjects were chosen from the “Own” database, and a subset

of pixels was extracted from each structure pixel data, totaling six thousand data points per

structure for training the models and the whole image data for testing.

Table 5.2 shows the accuracy of pixel classification using color and texture features in a

Gaussian mixture classification engine, using four different setups. The first combination,

identified as LLTF-27, encompasses the use of low level texture features, particularly the first

two principal components extracted from a concatenated version of the color information

contained in windows with 3 × 3 pixels in size, like in Figure 5.2. The suffix “27” is used to

denote the number of Gaussians in the distribution model corresponding to each structure.

This number is chosen to match as close as possible the total number of parameters of the

reference classification configuration chosen in Section 3.2.4: three dimensional input vector

resulting from color-based LDA space reduction, twenty Gaussians per model. The second

combination, referred as HLTF-27, uses local anisotropy and contrast in order to conform the

input vectors, and like in the previous case, 27 Gaussians are chosen to model each mouth

structure’s pixel distribution. The third combination, called CATF-5, makes use of the color

and texture information in order to conform the input vectors (seven features in total), and

uses five Gaussians to model each pixel distribution. Finally, combination CATF-20 follows

the same scheme as in CATF-5, only changing the total number of Gaussians used to model

pixel distribution. While CATF-5 configuration was selected as a close match in number of

parameters to the reference configuration, CATF-20 surpasses greatly that number.

Table 5.2: Pixel classification accuracy measured using DTO.

Lips Teeth Tongue Backg. Mean

Whole

Base 0.6767 0.6763 0.3175 0.6893 0.4950
LLTF-27 0.8697 0.4131 0.8033 0.5538 0.6600
HLTF-27 0.8581 0.5323 0.6902 0.3737 0.6136
CATF-5 0.8993 0.2894 0.6006 0.2431 0.5081
CATF-20 0.8662 0.3635 0.5908 0.2537 0.5185

Clipped

Base 0.6893 0.3389 0.6468 0.3459 0.5052
LLTF-27 0.8722 0.4294 0.7179 0.5530 0.6431
HLTF-27 0.8760 0.5712 0.6952 0.5519 0.6736
CATF-5 0.9001 0.3177 0.6051 0.3092 0.5330
CATF20 0.8682 0.3796 0.6018 0.3302 0.5450

From the Table, it is noteworthy that background-associated DTO is lower (therefore better)

for mixtures of color and texture features in the input vector, thus concentrating most of

classification error among mouth structures. Hence, it is safe to advise the use of color

and texture for tasks in which the main goal is to separate the mouth as a whole from the

background. In the case of inner mouth structures separation, the best results were obtained
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using feature vectors derived utterly from color.

Another important effect that can be observed from the Table lies in the fact that classification

accuracy in structure from “the rest” classification dropped when increasing the number of

modeling Gaussians from five to twenty (CATF-5 vs. CATF-20). This result indicates that,

in the latter, the number of parameters introduces model overfitting. Specifically, this effect

can be evidenced clearly in a tongue-related DTO increase. Figure 5.6 shows eight image

labelings resulting from two RoI clipped input images, sweeping over the combinations studied

in Table 5.2. Figure 5.6 summarizes the effect obtained by either using texture-only features

in pixel classification, or using color and texture feature combinations. Notice that mouth

from background distinction is both perceptually and numerically superior when both color

and texture are used together.

(a) RoI clipped original images.

(b) Low-level texture feature based pixel classifica-
tion.

(c) High-level texture feature based pixel classifica-
tion.

(d) Color and texture feature based pixel classifica-
tion, using five Gaussians per model.

(e) Color and texture feature based pixel classifica-
tion, using twenty Gaussians per model.

Figure 5.6: Mouth structure pixel classification using texture and color features.

5.5 Automatic scale-based refiner parameter estimation

In the previous Chapter a method for segmentation refinement through iterative label updates

was introduced. This method relies in the usage of two parameters that control the integration

window size and the probability for a label to change due to the neighboring labels. The first

parameter, which was denoted by σ, can be directly related to the integration scale studied in

the previous Section, as they both intend to reflect the size of the smallest window inside whom
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the local orientation is pooled5. Hence, this Section shows the behavior of the segmentation

refinement process if σ is set after the value of the local integration scale. The experiment

was conducted using the same basis as in Section 5.4, renaming it from “Base” to GMM-20,

and applying both constant scale and variant scale segmentation refinement to the whole set

.

Table 5.3 shows the result of comparing three different refinement combinations. The identifier

GMM-20 represents mouth structure pixel classification results using three color features as

input in color models obtained using twenty Gaussians per structure, following the scheme used

in Chapter 3. GMMR-20, GMMCR-20 and GMMVR-20 points the accuracy obtained using

fixed-scale fixed-proportion refinement, variable-scale fixed-proportion refinement and variable-

scale variable-proportion refinement, respectively. It is noteworthy that despite that the first

combination, denoted by GMMR-20, presents the best mean accuracy in structure segmenta-

tion, the variable-scale related combinations improve mouth from background distinction for

data sampled inside the whole image and the RoI.

Table 5.3: Variations on label refinement of color-based mouth structure segmentation, mea-
sured using DTO.

Lips Teeth Tongue Backg. Mean

Whole

GMM-20 0.6767 0.3095 0.6763 0.3175 0.4950
GMMR-20 0.6639 0.2858 0.6626 0.3081 0.4801

GMMCR-20 0.6774 0.2794 0.6998 0.2840 0.4851
GMMVR-20 0.6726 0.2991 0.7075 0.2889 0.4920

Clipped

GMM-20 0.6893 0.3389 0.6468 0.3459 0.5052
GMMR-20 0.6774 0.3200 0.6299 0.3387 0.4915

GMMCR-20 0.6872 0.3310 0.6764 0.3091 0.5009
GMMVR-20 0.6827 0.3431 0.6858 0.3160 0.5069

Table 5.4 presents a comparison between color and color + texture based based mouth struc-

ture classification.

In both Tables, the compromise in accuracy favors mouth from background distinction over

structure from structure distinction.

5.6 Summary

In this Chapter, the usage of texture features in mouth structure segmentation is evaluated.

Since texture indexes can be used at each stage in the process, the evaluation extends to

image pre-processing, pixel classification and segmentation refinement.

As shown in Chapter 3, image pre-processing proved to benefit pixel color classification, notably

through the use of fixed-scale low pass linear filters. Particularly, the use of a 9× 9 Gaussian

filter improved pixel classification DTO for all mouth structures. In this Chapter, the Gaussian

filter’s size was made variable in terms of local scale, using the measured integration scale for

5This is particularly true if color and intensity variations can be associated with label changes in the segmented
image.
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90 5 Texture in mouth structure segmentation

(a) RoI clipped original images. (b) Mouth structure classification using color fea-
tures, refined with fixed parameters.

(c) Mouth structure classification using color fea-
tures, refined with variable integration scale.

(d) Mouth structure classification using color fea-
tures, refined with variable proportion and inte-
gration scale.

(e) Mouth structure classification using color and
texture features, refined with fixed parameters.

(f) Mouth structure classification using color and
texture features, refined with variable integra-
tion scale.

(g) Mouth structure classification using color and
texture features, refined with variable propor-
tion and integration scale.

Figure 5.7: Refinement approaches in color and color+texture based mouth structure classifi-
cation.
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Table 5.4: Effect of scale-based label refinement in structure segmentation accuracy using
color and color+texture models.

Lips Teeth Tongue Backg. Mean

Whole

GMM-20 0.6767 0.3095 0.6763 0.3175 0.4950
GMMCR-20 0.6774 0.2794 0.6998 0.2840 0.4851
GMMVR-20 0.6726 0.2991 0.7075 0.2889 0.4920

CATF-5 0.8993 0.2894 0.6006 0.2431 0.5081
CATFCR-5 0.9584 0.2373 0.6551 0.2231 0.5185
CATFVR-5 0.9427 0.2620 0.6486 0.2305 0.5209

Clipped

GMM-20 0.6893 0.3389 0.6468 0.3459 0.5052
GMMCR-20 0.6872 0.3310 0.6764 0.3091 0.5009
GMMVR-20 0.6827 0.3431 0.6858 0.3160 0.5069

CATF-5 0.9001 0.3177 0.6051 0.3092 0.5330
CATFCR-5 0.9587 0.2976 0.6545 0.2775 0.5471
CATFVR-5 0.9430 0.3115 0.6491 0.2872 0.5477

every pixel. Results of image filtering with the scale variable filter expose a clear retention

of structure borders while smoothing the color information within each region. Nevertheless,

features such as specular noises and strongly variable textures (like the bright hatched pattern

in the lips) also remain after filtering. Hence, pixel classification performance was not clearly

improved by the scale-variant filtering, as opposed to the fixed scale version. This fact makes

it advisable to use a fixed-scale filter over a scale variant version.

In the next stage of the segmentation process, texture descriptors are used as part of the

feature vector fed to the pixel classification engine. Texture is characterized using a reduced

set of low-level features, and two more features derived from the integration scale, known as

local contrast and anisotropy. The augmented feature set show a considerable improvement

in mouth from background distinction, but the addition of the texture features raised the

confusion between lips and tongue regions. The results of the conducted tests indicate that a

good practice can be derived from the mixed use of texture and color features for initial mouth

selection, and then the use of color-only features for structure from structure classification.

Finally, the integration scale was used to set up automatically the scale parameter σ for

segmentation refinement. As in the case of the scale-variant filtering, the lack of continuity

in the scale among neighboring pixels led to refinement results exhibiting poorer results than

those obtained with the presets found in the previous Chapter.

At the end, texture proved to be particularly helpful in pixel color classification for mouth from

background distinction, but its usage is bound to the quality/performance compromise for

every particular application. However, its use in pre-processing and segmentation refinement

in the task mouth structure classification can be safely avoided.
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6 An active contour based alternative

for RoI clipping

In recent years, lip contour extraction has regained attention from research community, mainly

due to its great potential in human machine interface and communication systems devel-

opment. Most of the lip contour extraction techniques have been designed for audio-visual

speech recognition (AVSR) [2, 131], and in some cases extended to speaker identification. In

this task only a few landmarks suffice to estimate key features, as in the case of MPEG-4

facial animation parameters [117].

Over-specialization of lip contour extraction methods for the task of AVSR makes them in-

appropriate in cases where mouth appearance may change subjected to pose changes and/or

specific lip malformations. This also excludes them when an accurate description of the whole

mouth contour is needed, rolling them out for general gesture detection or accurate mouth

structures segmentation.

Indeed, mouth gestures cannot be solely described by the outer contour of the mouth. There

is always a set of gestures that can match the same mouth contour, even though they may

differ in the type of structures visible in the images, as well as their aspect, size and position.

Thereby, features extracted from the different structures should be taken into account for

precise gesture characterization.

The considerable overlap between lip and skin color distributions slanted mouth segmenta-

tion towards lip region segmentation. Elaborated methods, like those presented in [35, 105],

seem to cope with some limitations of color-based techniques. Nevertheless, their associated

computational complexity make them unsuitable for real time applications.

Even when the refinement algorithm proposed in Chapter 4 is able to correct most of the

problems introduced by pixel-based color segmentation, some spurious regions may remain in

the refinement output. In this section, the use of an outer lip contour extraction method aimed

to constrain the Region of Interest (RoI) is proposed. The technique is based in the work of

Eveno et al. [2], with the modification introduced in [132]. This technique is aimed to be a

in-place alternative for the stages discussed in Subsections 7.3.4 and 7.3.5 in the segmentation

streamline presented in Section 7.3.

6.1 Upper lip contour approximation

The core of the upper lip contour approximation in Eveno’s technique is the gradient flow

value of the Pseudo-hue color component minus the Luminance. Denoted as ϕ, its value aids

in selecting those points that should be added to or trimmed from the snake. The gradient
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94 6 An active contour based alternative for RoI clipping

flow passing through the line segment |pi−1pi|, denoted ϕi, is given by

ϕi =


∫
pipi+1

[∇(ph− L))] · dnl

|pipi+1|
, i ∈ [1, N ]∫

pi−1pi

[∇(ph− L))] · dnr

|pi−1pi|
, i ∈ [N + 2, 2N + 1]

, (6.1)

where 2N + 1 is the total number of points in the snake, N + 1 stands for the seed point

index in the snake points set; ph represent the Pseudo-hue component values of the pixels

in the line segment; L the corresponding Luminance value; and dnl and dnr are normalized

vectors which lie perpendicular to line segments conformed by the points located at left or

right side of the seed and the seed itself. According to [2], a seed point is chosen slightly over

the upper lip, and then points are iteratively added at left and right sides of the seed. This

process occurs subject to a constrained flow maximization rule, while preserving a constant

horizontal distance in pixels (denoted as ∆).

In this Chapter, an alternative approach for seed updating, point addition and trimming are

used. This modified methodology is described in depth in [132], and proposes a continuous

point addition until a noticeable decrease in flow is obtained. Gradient flow usually increases

in value when approaching mouth corners, and then decreases rapidly when points are added

outside mouth contour. Points should be added until their associated ϕ decay below the

minimum value of ϕ closest to the seed (this can be seen in Figure 6.1). Points are added

preserving the line segment size, instead of preserving a constant horizontal distance, thus

producing better results in near vertical contour approximation.
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(a) Gradient flow plot.

(b) Detected mouth contour, showing trimmed
points in black.

Figure 6.1: Gradient flow based point trimming.

Seed update is performed by maximizing the gradient flow passing through both seeds associ-

ated left and right line segments, ensuring that overall line segment size is kept bounded. The
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goal can be translated into maximizing the objective function

ϕN+1 =

∫
pNpN+1

[∇(ph− L))] · dn−
|pNpN+1|

+

∫
pN+1pN+2

[∇(ph− L))] · dn+

|pN+1pN+2|
(6.2)

subject to

|pNpN+1| < γ, and

|pN+1pN+2| < γ
, (6.3)

where pN+1 is the seed, ϕN+1 is the gradient flow associated to point pN+1, dn− and dn+

are the normalized gradient vectors of left and right line segments, and γ is a parameter

that controls the average line segment length. The value of γ should lie inside the range

(∆, 2∆ − 5]. Smaller γ values will lead to smoother lip contour, but it increases the fitting

error around corners in cupids arc. This method also ensures that seed final position lies closer

to the actual lip contour, contrasting with [2]. Therefore, the seed position can be treated

like any other snake point in further procedures.

6.2 Lower lip contour approximation

Lower lip contour approximation is performed following the same principle as for the upper lip

contour, but in this case flow is computed using only the gradient of Pseudo-hue component.

Therefore, the formulation in Equation (6.1) changes into

ϕi =


∫
pipi+1

(∇ph)] · dnl

|pipi+1|
, i ∈ [1, N ]∫

pi−1pi

(∇ph)] · dnr

|pi−1pi|
, i ∈ [N + 2, 2N + 1]

. (6.4)

Usually, only one or two iterations suffice in order to achieve full convergence. Similarly, the

seed update follows the formulation in (6.2), substituting ∇(ph− L) with ∇ph.

6.3 Automatic parameter selection

The initial value of ∆, as well as the location of upper and lower seeds, can be obtained by

using the bounding box of the mouth as an initial RoI. Upper and lower seed initial position

is computed by choosing the closest points labeled with “Lip” to the mid-points of upper and

lower RoI boundaries. Then, the average of each pair of mid-point and closest “Lip” point is

used as a seed.

An acceptable value for ∆ can be chosen by dividing the RoI width by 4N , whenever that

operation leads to a value bigger than five pixels. Otherwise, decreasing the value of N is

recommended. When ∆ is chosen to be smaller than five pixels the flow through each line

segment is highly unstable thus introducing undesired local minima in (6.1) and (6.2).
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Once the outer lip contour extraction algorithm has converged, contour points can be used

in order to conform a restricted RoI for mouth structures segmentation. The effect of this

process can be seen in Figure 6.2.

(a) (b)

Figure 6.2: Lip contour based RoI clipping. (a) Lip contour approximation; (b) mouth structure
segmentation after RoI clipping.

The computational complexity associated to the contour approximation technique has an

order O(n), regarding the total number of contour points. This is usually much less than

the complexity associated in computing the Pseudo-hue and Luminance transforms–both of

them needed for contour approximation, whose order is O(n) regarding the total number of

pixels in the image. This makes the technique much faster than the streamline conformed

by the texture-based clipping with a later convex hull based region trimming, both discussed

previously in this Chapter.

6.4 Tests and results

Images were selected from three different databases: the FERET database [115, 116], widely

used in subject identification and gesture detection researches, and briefly treated in Chapter 2.

A second database, conformed by facial images extracted from video sequences of children who

have been operated for cleft lip and/or palate (from now on denoted as CLP); and a database

comprised by facial images extracted from video sequences taken from different subjects during

speech with uncontrolled lighting conditions (from now on denoted as “Other”). The FERET

images were clipped in order to contain information primarily from the lower face. The image

set used in the experiments contains 24 images from FERET database, 5 from CLP database,

and 16 from “Other” database. Every image in the dataset was manually annotated in order

to be used as ground truth.

In the first experiment, Gaussian mixtures were trained in a supervised manner in order to

model the color distribution of each class. The image pixels were represented using feature

vectors containing RGB, L*a*b* and Pseudo-hue color values. Four Gaussians were used in

each mixture. Results for pixel classification performance can be seen in the confusion matrices

in Table 6.1. The best results were achieved using the “Other” database images. This can

be explained by the fact that the intra-class variation is lower than in FERET or CLP, as is

the overlapping between classes. An illustrative example using one image from CLP and one

image from “Other” is provided in Figure 6.3.

From the Table, it is noteworthy that overall classification performance improves greatly for
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Table 6.1: Pixel classification performance for three databases, measured using DTO.

Lips Teeth Tongue Backg.

F
E

R
E

T Class. 0.2154 0.2309 0.6923 0.4258
Ref. 0.1895 0.1944 0.6723 0.3683
C. RoI 0.1992 0.0580 0.6711 0.2198

“O
th

er
” Class. 0.3368 0.1372 0.1418 0.1132

Ref. 0.2921 0.1040 0.0904 0.0506
C. RoI 0.3602 0.1457 0.1448 0.0777

C
L

P

Class. 0.1885 0.3016 N.A. 0.4719
Ref. 0.1629 0.3108 N.A. 0.4684
C. RoI 0.0283 0.1205 N.A. 0.0242

FERET and CLP images when contour based RoI clipping is used; however, the performance

actually dropped for “Other” images. This effect is due to control points intruding inside the

lips, thus over-cutting regions that should have been preserved. The impossibility to detect

when a control point gets inside the mouth area makes the technique prone to rejection for fully

automated systems, and therefore is not recommended nor included in the main streamline of

the proposed gesture detection methodology. The technique is nevertheless advisable for semi-

automatic systems where a human operator gives the seed points location manually. Other

limitations of this technique are treated in the following notes.

Gradient flow related issues

The basis of the contour approximation algorithm is the local gradient flow, as computed in

Equation 6.1. The possibility of a contour approximation method converging to a true contour

depends in the quality of the gradient, and in turn the gradient depends on image quality.

There are several factors that impact gradient quality, most notably image noise. This challenge

is tackled by the means of image pre-processing algorithms like filters and morphological

operations. Unfortunately, coping with noise usually imply a negative affectation in border

region definition, causing an excessive contour smoothing and softening textures. In some

cases, image artifacts such as specular reflections and motion blurring are spread through their

neighboring regions in the image, compromising region quality.

Figure 6.4 shows the effect of using a strong filter along with the gradient flow calculation for

lip contour approximation. Notice how region borders get deflected from their initial position

by the excessive image smoothing, hence affecting the location of the approximated contour.

Figure 6.5, in the other hand, shows how poor filtering causes the contour approximation

algorithm to get stuck outside the actual lip contour. This effect is caused by high fluctuations

in the gradient flow due to image noise.

Tracking issues

Tracking is usually much less complex in computational effort than region based segmentation,

achieving in some cases comparable results. Hence, lip contour detection and tracking has
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 6.3: Behavior of the contour extraction methodology. (a), (f): original images. (b), (g):
initial pixel color classification using GMMs. (c), (h): refined pixel classification.
(d), (i): detected RoI and outer lip contour. (e), (j): final segmentation with
contour-based RoI clipping.

(a) Base image. (b) Local gradient approximation
near the left mouth corner.

Figure 6.4: Contour approximation behavior under a excesively smoothed local color distribu-
tion.
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(a) Base image. (b) Local gradient approximation
near the left mouth corner.

Figure 6.5: Contour approximation behavior under highly variable local color distribution.

been a preferred choice for some authors in order to cope with continuous video tasks (i.e.,

audio visual speech recognition).

Nevertheless, tracking is not always a better choice over image segmentation when processing

video sequences. For instance, landmark detection algorithms tend to fail when there are

non negligible changes among consecutive images in the sequence. Moreover, it is difficult in

some cases to determine automatically whether a landmark has been properly tracked or not

from one frame to the next. This proved to be particularly true in our tests, where subjects

performed movements that change considerably mouth appearance at speeds close to that of

the sensor.

Figure 6.6 shows a clear example of this situation using two consecutive frames from a sequence

acquired at 50fps. Notice how the subject is able to change from a clear tongue pointing

downwards gesture to a rest gesture from one frame to the next.

(a) Base frame. (b) Next frame.

Figure 6.6: Gesture change between consecutive frames in a 50fps facial video sequence.

6.5 Summary

In this Chapter, a modification to the algorithm introduced in [1, 2] is proposed. The method

encompasses the progressive update of two active contours–one for the upper lip, the other

for the lower lip–which encloses tightly the mouth region.
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The foundation of the algorithm is an iterative maximization of the gradient flow through a

series of line segments conformed by the points in the active contour. The proposed modifica-

tion performs a two-way propagation of the update mechanism, thus taking the most benefit

from re-computed contour point location. This novel approach reduces both the number of

iterations needed to achieve full contour convergence while reducing the approximation error.

The technique exhibit great accuracy for outer lip contour extraction when image conditions

permit a proper gradient flow extraction. This, however, cannot be guaranteed for every facial

image in a video sequence, since image noise cannot be estimated precisely nor compensated

without compromising border definition. Also, common image artifacts such as specular reflec-

tions also compromise the local gradient behavior in the base color representations. Current

difficulties in detecting whether or not the contour has properly reached the mouth contour

presents the method as a usable precise alternative for assisted mouth RoI delimitation, but

not as an advisable alternative for fully automatic outer lip contour detection.
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in facial video sequences

In this Chapter, a novel approach to mouth gesture recognition based in the mouth structures

visible in the images is proposed. The methodology takes into account the basic scheme

presented at the beginning of this document. Figure 7.1 presents a clear flowchart summarizing

the proposed mouth gesture recognition proposal. This diagram is an updated version of the

experimental workflow shown in Figure 2.5, and later modified in Figure 5.1. It covers the whole

streamline, emphasizing in the actual sub-processes suggested by the proposed methodology

at every stage. Unlike prior diagrams, the region characterization stage and the gesture

recognition stage are highlighted, as they are briefly treated in this Chapter. Also, numbers

enclosed by parenthesis in the Figure indicate the Chapters inside the document which contain

the most information regarding the corresponding topic.

* Gaussian 9x9 filtering (3).
* 12-Color repr. extraction (3).
* LDA-based simplification (3). 
* Color-based RoI clipping (6).

* Color classification
using a 3-D GMM (3).

* Constant-scale segmen-
tation refinement (4).

* Color and Texture
classification using a
5-D GMM (5).
* Mouth from background
classification (5).

Mouth structure
segmentation

Region 
characterization (6)

Video 
acquisition (2)

Gesture 
recognition (6)

Figure 7.1: Proposed gesture recognition methodology, illustrated with an update to Fig-
ure 2.5. Numbers enclosed by parenthesis denote Chapters in this document.

7.1 Problem statement

Current approaches for facial gesture recognition cover fields like virtual avatar animation, se-

curity, and with less accuracy, automatic visual speech recognition. Human-machine interfaces

based in actual mouth gestures has captured less attention, and typical applications focus in

camera autoshoot systems, awareness detection, etc. The scope of this Chapter is related to
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mouth-gesture based human-machine interfaces design; particularly, a study case encompass-

ing the laparoscope movement assessment in robotic surgery is treated, stepping into each

stage in automatic gesture recognition in video images.

7.1.1 Motivation

The DaVinci robotic surgical system [133] is a tele-operated system composed of three parts:

a control console, a surgical arm cart, and a conventional monitor cart with vision system. The

control console could be placed on one side of the operating room, or even in an adjoining room.

A camera and robot-assisted instruments are controlled by the surgeon from this console with

hand manipulators and foot pedals. The surgical arm cart consists of three or four arms with

an endoscope and two or three surgical tools. The vision system provides three-dimensional

imaging by using a stereo endoscope. Figure 7.2 illustrate the typical set-up of the system.

Figure 7.2: DaVinci surgical system set-up. Taken from Intuitive Surgical R© homepage.

The surgical instruments and the camera, which are carried by the arms, are operated by

the manipulation of two master controls on the surgeon’s console. The surgeon has a visual

feedback of the intervention area by the means of an endoscope connected to a stereoscopic

viewer. In order to have a better view of the intervention area, the surgeon is forced to

leave the joystick-based control of the instruments by pushing a pedal, hence enabling the

camera command. In order to take back the instrument control, the surgeon must leave the

camera by performing a similar sequence of movements. That swapping between camera and

instrument command introduces small delays in surgery time, and in some cases affecting

the surgeons concentration. Even when endoscope movements are not as frequent as tool

movements (there can be more than fifteen minutes between two endoscope movements in a

common intervention), it is desirable to perform both tool and endoscope movements at the

same time.
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Table 7.1: Approaches for endoscope holder robot command.
Voice Command Joystick Face movements Tool-guided Pedal

Automation level Assisted Assisted Assisted Automatic Assisted
Response time Considerable Negligible Negligible Negligible Negligible
Expected Precision Medium High Medium High Medium
Tremor Absent Present Absent Present Absent
Speed Slow Variable Variable Slow Slow
Hands-free Yes No Yes Yes Yes
Feet-free Yes Yes Yes Yes No

In the past twenty to thirty years, several approaches for automatic or assisted endoscope holder

command have been developed. Table 7.1 presents briefly a summary of common approaches

used to cope with the aforementioned task. Endoscope movements are not very frequent

during intervention; however, current approaches based in spoken commands, joysticks, etc.,

do not comply with both time and accuracy constraints at the same time. In the other hand,

tool-based guidance systems are aimed towards tool tracking and following, thus introducing

tremor and making it impossible to decouple the endoscope movements from those of the tool

(which is desirable in some cases).

The current benchmark holder is the speech-based system, which use a reduced set of voice

commands in order to lead the endoscope movements [134]. Using voice commands, the

surgeon is able to decouple tool and endoscope movements and to avoid introducing tremor

in the movements, while escaping from the stress generated with more invasive command

techniques. Nevertheless, voice commands take some time to be processed which is reflected

in a noticeable time lag between thinking in the movement and actually performing it1; also,

speech-based systems usually command endoscope movements at pre-defined speeds [117].

Since the console is usually located at least three meters far from the patient, there is no

inherent need of covering the surgeon’s mouth, and then mouth gestures can be used to

command the endoscope. They can also be seen an interpreted at a speed corresponding to

the camera’s grabbing frame rate. Hence, mouth gestures arise as a natural alternative to

existing interfaces.

7.1.2 Previous work

In a first approach, combinations of three distinguishable mouth gestures and bi-axial head

movements were used in order to command three degrees of freedom of a robot [135, 27]. The

gesture set was composed by resting position, wide open mouth and tightly closed mouth hiding

part of the lips. Results from this first approximation led us to propose two new alternatives

for the endoscopic camera command. The first one, a mouth gesture based approach that

uses a set of basic mouth movements in order to drive the robot movements. The second one,

a voice command based system which detects a small set of command words, like in [136].

1In a simple study presented in [117], an english voice command set was measured to range between 200ms
and 700ms in duration–the time needed to utter them properly, with an average of 500ms.
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7.1.3 Limitations and constraints

Non-permanent access to the system led to relax the data acquisition process to lab-based video

sequences, somehow compliant with the lighting and pose conditions given by the physical

examination of the DaVinci console. Since sequences were acquired under several daylight

conditions, no hardware-based color calibration was to be performed prior to data acquisition.

Following the advise from an expert in assisted surgery using the DaVinci system, the mouth

gesture set was constrained to contain seven possibilities: resting mouth position (R), wide

open mouth (OM), closed mouth showing teeth (Th), open mouth with tongue pointing up

(TU), open mouth with tongue pointing down (TD), open mouth with tongue pointing left

(TL), and open mouth with tongue pointing right (TR). An example of the gesture set can

be seen in Figure 7.3.

(a) (b) (c)

(d) (e) (f)

Figure 7.3: Selected mouth gesture set (rest position excluded).

7.2 Acquisition system set up

Figure 7.4 presents an approximate lateral view of the acquisition set-up. The black circle

in the Figure represents the location of the spotlights, projected in the lateral view. In the

actual set-up, two light were positioned at the left and right sides of the camera, both of them

pointing slightly upwards towards the mouth. Ambient lighting was not completely controlled,

thus introducing a noticeable chromatic variation in the data2.

2The ambient light hit directly the left cheek of the subjects, thus generating a yellowish glow in this side of
the face. This is evidenced all throughout the database.
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Figure 7.4: Illustrative diagram of the acquisition set-up: lateral view approximation.

7.3 Mouth structure segmentation

According to the scheme presented in Figure 7.1, the first step in automatic mouth gesture

recognition in images encompasses a series of steps that lead to mouth structure segmentation.

The streamline is composed by an image pre-processing stage, a pixel-color classification

engine, a label refinement stage and a final region trimming stage.

The Section summarizes the combination of techniques which proved to be the fittest in the

results presented in Chapters 3 to 5, aiming towards a fast 3 and accurate mouth structure

segmentation. The following sections convey not only basic information about the techniques

but also information regarding parameter selection and special considerations. Also, a region

trimming method which has been specifically designed to work with our database is described

briefly (an alternative replacement for RoI clipping and region trimming is presented in Sec-

tion 6).

7.3.1 Pre-processing and initial RoI clipping

Based on the results obtained in Chapter 3, images were treated using a 9 × 9 Gaussian

low-pass filter in order to reduce noise effects without compromising excessively in terms of

quality. Image illumination was partially controlled in most of the database; hence, lighting

related issues were neglected in later processes.

There are approaches in literature for mouth RoI clipping, most of them based in simple

per-pixel color operations. In this work, RoI clipping is carried out by using per-row and per-

column color profiles. As an example, Figure 7.5 shows the result of detecting RoI based in the

Pseudo-Hue (ph) color representation of the input image. First, the skin region is segmented

using a simple comparison between the ph color representation of the image and a pre-defined

value (in this case, 0.46). Small gaps and holes are corrected by applying a morphological

opening operation followed by an erosion, both of them using a radial structuring element.

Once the face region is separated from the background, a column profile conformed by the

3Close to standard video frame rates.
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normalized summation of each row of the ph is computed4, as seen in the lower left part of the

Figure. The horizontal mouth axis (the red line in the lower right part of the figure) is chosen

to be located at the row that corresponds to the maximum value in the column profile, while

the closest minima in the upper and lower side of such axis determine the top and bottom

limits of the RoI.
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Figure 7.5: RoI clipping based in color profiles.

Then, the ph row profile corresponding to the main axis is used to determine the location of

the left-most and right-most margins of the RoI. Good choices for those limits are selected as

the closest local minima in the row profile which lie inwards between the two main maxima,

as seen in the upper right part of Figure 7.5. The two maxima correspond to those points in

the profile that separate background from skin. It is noteworthy that both the column profile

and the row profile are heavily smoothed in order to avoid falling in undesired local minima.

The methodology presented for RoI clipping is relatively fast (taking around 1ms per image),

and presents acceptable results for most of the subjects. However, its performance is not sus-

tainable for non-resting mouth positions, since presence of teeth generate serious variations in

the ph profiles. Hence, working with video sequences imply alternating between RoI detection

(carried out using the proposed methodology) and tracking.

4Notice that only data from inside the face region is taken into account in conforming the profiles.
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7.3.2 Mouth segmentation through pixel classification

Mouth structure segmentation is done by following the recommendations in Chapters 3 and 5,

where color-based pixel classification using Gaussian mixtures outperforms other approaches

in the compromise between computational reckoning and segmentation quality (measured

in terms of DTO). The pixel color classification based mouth segmentation methodology,

extracted from the best performing technique combination, encompasses the following stages:

• The basic scheme is comprised by representing pixel color in an augmented feature space

containing the basic RGB components, along with other nine enunciated in Section 3.1.

• Next, a three-fold FLDA projection is used in order to reduce the feature set dimension.

• The resulting three-dimensional feature vectors are fed to a pixel classifier which uses a

set of four previously trained Gaussian mixture models–one model per structure, three

Gaussians per model. Labels are assigned depending on how likely is every pixel to

belong to each class.

Since each pixel is treated independently, the segmentation process can be carried out in

parallel if the underlying platform supports it. Computational time is basically affected by

the complexity of the color transformations, and is comparable with the one resulting from

applying a 9 × 9 linear filter in the image, if executed in mainstream hardware. A deeper

insight on the computational complexity involved in computing the color transformations and

the pixel classification can be seen in Chapters 2 and 3.

7.3.3 Label refinement

Chapter 4 proved that the proposed refinement algorithm improves DTO in most cases for

pixel color based classification for mouth structure segmentation. Also, the refiner presents a

more consistent behavior if a fixed scale is selected for all the pixels in the image (as shown

in Chapter 5). Particularly, it has been proven that choosing σ ∈ [1.0, 2.0] leads to adequate

results in most cases. Particularly, σ was set to 1.0 for the tests whose results are presented

in the remainder of this Chapter. The refiner was set to iterate ten times in the label images.

7.3.4 Texture based mouth/background segmentation

As shown in Chapter 5, texture information complements color in mouth from background

distinction. Consequently, the use of texture and color classification is advised in order to

reduce the number of resulting spurious regions and undesired extensions in base regions,

commonly found in bare color pixel based classification.

Fifteen images from different subjects were randomly selected from the annotated part of the

database.

It is noteworthy that for the bi-class classification problem, both classes present the same

DTO. Hereby, the last two rows of the Table hold the same values.

The computing time inherent to texture features is, in general, higher than most linear and

non-linear filtering or morphological operation in the pixels. Due to this fact, texture features
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Table 7.2: Effect of Texture-and-color based segmentation masking,
measured using DTO.

Whole image Inside RoI
Base Masked Base Masked

Lips 0.8114 0.6210 0.4166 0.2966
Teeth 0.9825 0.9508 0.7315 0.5379
Tongue 0.8932 0.7133 0.5938 0.4994

Background 0.9138 0.7884 0.4264 0.2491

Mouth region 0.9138 0.7884 0.4264 0.2491

are used only once mouth ROI has already been approximated, thus reducing the computational

complexity of the masking process.

7.3.5 Region trimming using convex hulls

The last stage in the proposed segmentation methodology comprises the use of the biggest

connected lip region and tongue region in order to establish if a given labeled connected region

should be trimmed out or preserved. The assumption states that all preservable regions must

be contained inside the convex hull conformed by the lips and the tongue. This is particularly

true for unadorned mouths without prosthetic modifications, and if the camera is facing directly

to the subject.

Figure 7.6 shows an example of the texture based RoI clipping complemented by region trim-

ming. Notice that the texture based RoI clipping aids in removing some misclassified regions

along mouth contour, while the region trimming finally cuts down spurious regions that may

have outlived RoI clipping.

Table 7.3 shows DTO measures for the images in Figure 7.6. Notice that DTO associated

to background improved dramatically after the convex hull based region trimming, indicating

a huge improvement in mouth from background distinction. Despite lip and tongue regions

DTO don’t show numerical improvement after trimming, the overall appearance of the mouth

seems to be cleaner and well defined.

Table 7.3: Illustrative DTO comparison for RoI clipping and region trimming in Figure 7.6.

Lips Teeth Tongue Backg.
Base 0.2972 0.2199 0.4627 0.4405
Tex. Clip. 0.3235 0.2004 0.4837 0.3440
C. Hull trim. 0.3230 0.1479 0.4828 0.1662

7.4 Mouth gesture classification

The last portion of the recognition scheme encompasses the mouth region characterization and

posterior gesture detection. The remarkable results obtained in the previous stages, particularly
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(a) Original RoI clipped image. (b) Initial pixel color classifica-
tion after refinement.

(c) Texture-based clipping
mask.

(d) Refined color-based segmen-
tation after texture-based
clipping.

(e) Convex hull of the biggest lip
and tongue region.

(f) Resulting region trimming.

Figure 7.6: Example of the use of texture-and-color based segmentation masking, trimmed
using the convex hull of the biggest lip and tongue region.
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in determining the mouth boundaries and shape, are exploited in choosing rather simple and

fast region feature extraction and gesture classification techniques. In the remainder of this

Section both processes are discussed.

7.4.1 Region feature selection

Mouth region segmentation delivers a well delimited mouth region, which permits an easy

geometric characterization of the mouth area. Commonly used features that exploit geometric

properties of the regions are the Center of Mass (CoM) location, the mass (number of

pixels conforming the region), aspect ratio, tortuousness, circularity, etc. In this work, a

subset composed by eleven geometric measurements is used for region characterization. Those

features were selected so their computation does not imply significant increases in complexity,

yet subjectively conveying enough information to perform an adequate gesture classification

using the chosen gesture set. The measurements are computed using the convex hull of

a mouth in resting position as reference. The measurements are enunciated and described

briefly in Table 7.4.

7.4.2 Gesture classification

Once all region data is codified according the geometric feature set presented in the previous

Subsection, a set of bi-class classifiers based in FLDA is constructed. Each classifier is

chosen to maximize class distinction between each gesture and the rest of the data, producing

a set of seven projection vectors and seven comparison thresholds. Table 7.5 shows the frame

composition rates of the “Own” database regarding its gesture contents.

Once projected using the FLDA vectors, each resulting feature vector serves to classify a

particular gesture in a “One against the rest” scheme. The result of comparing the projected

feature vector with the seven thresholds can lead to a true for the pattern to belong to more

than one class. In those cases, the gesture is marked as “Undefined”, and for the test database

took a 2.33% of the total of frames.

Table 7.6 summarizes the classification results obtained using the proposed scheme. It should

be remarked that resulting DTOs for all gestures lie very close to the human variability

measured for the database, thus being located inside the error tolerance region.

Figure 7.7 shows the results of gesture classification for a CWDLC5 sequence. Each Subfigure

represents a different gesture, and the three signals in them presents the ground truth, the

gesture classification result and the classification error. From the Figures, it is noticeable that

a considerable amount of the detection errors is located in transitional areas where the subject

is changing his/her pose between two different gestures.

7.4.3 Gesture detection stabilization

Frame-based gesture classification brings results that can be physically unfeasible, like in exam-

ple, instant gesture changes directly from “TD” to “Th”. Nevertheless, temporal constraints

can be used in order to stabilize such undesired behavior.

5The CWDLC and CCWS sequences are described in Section 2.2.1.
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Table 7.4: Geometric feature set used for gesture classification.

Feature Description No. of ind.
Lip region CoM Location of the lip region CoM relative

to the resting mouth convex hull’s CoM
location.

2

Teeth region CoM Location of the teeth region CoM rela-
tive to the resting mouth convex hull’s
CoM location.

2

Tongue region CoM Location of the teeth region CoM rela-
tive to the resting mouth convex hull’s
CoM location.

2

Lip mass proportion Number of pixels inside the convex hull
classified as lip pixels, divided by the total
number of pixels lying inside the resting
mouth’s convex hull.

1

Teeth mass proportion Number of pixels inside the convex hull
classified as teeth pixels, divided by the
total number of pixels lying inside the
resting mouth’s convex hull.

1

Tongue mass proportion Number of pixels inside the convex hull
classified as tongue pixels, divided by the
total number of pixels lying inside the
resting mouth’s convex hull.

1

Free mass proportion Number of pixels inside the convex hull
classified as background, divided by the
total number of pixels lying inside the
mouth’s convex hull.

1

Normalized aspect ratio Convex hull aspect ratio divided by rest-
ing mouth’s aspect ratio.

1

TOTAL 11

Table 7.5: Frame composition rates of the “Own” database.

Rest T. Up T. Down T. Right T. Left Teeth Open Undef.

Init. 64.80 0 0 0 0 22.05 11.63 1.51
CCWS 60.57 7.37 8.97 7.25 9.09 0 0 6.76
CWDLC 56.95 4.24 3.76 4.24 7.9 7.66 7.53 7.74

Table 7.6: Gesture classification accuracy measured using DTO.

Rest T. Up T. Down T. Right T. Left Teeth Open

Init 0 N.A. N.A. N.A. N.A. 0.0058 0.0017
CCWS 0.0249 0.0053 0.0027 0.0013 0.0136 N.A. N.A.
CWDLC 0.0558 0.056 0.0088 0.0128 0.0286 0.0046 0.0078
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Resting position
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Tongue Down
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Tongue Right
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Showing the Teeth
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Wide OpenMouth

Figure 7.7: Example of gesture classification using the CWDLC sequence. For all Sub-
Figures, the topmost signal represents the ground truth, the medium signal rep-
resents the gesture detection result, and the bottommost signal show the instant
error. The horizontal axis presents the frame number.
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A first approach, presented in [4], makes use of a state machine which forbids changes between

detected states that may be result from misinterpretation. The technique was applied to a

reduced gesture set which included mixtures of head displacements and base gestures as

completely new gestures.

In this document, a simpler approach for stabilizing gesture classification is proposed. The

technique is based on a decision rule that verifies the existence of two consecutive detections

of the same gesture followed by an undefined gesture. In that case, the former is kept instead

of setting the output as “Undefined”.

Figure 7.8 shows the effect of using the aforementioned decision rule in order to stabilize gesture

detection. Notice that almost every “Undefined” gesture occurrence has been replaced with

a feasible gesture, and the actual resulting gesture sequence resembles closely the CWDLC

gesture sequence definition as stated in Section 2.2.1.

200 400 600 800 1000 1200 1400 1600 1800

Resting position

Tongue up

Tongue down

Tongue right

Tongue left

Showing teeth

Wide open mouth

Undefined

Resting position

Tongue up

Tongue down

Tongue right

Tongue left

Showing teeth

Wide open mouth

Undefined

Figure 7.8: Effect of temporal stabilization in gesture detection in a CWDLC example sequence.
The upper signal represents the initial gesture detection, and the lower signal
represents the stabilized detection. The varying levels in the vertical axis represent
the gesture, while the horizontal axis presents the frame number.

Despite of the inherent simplicity of the technique, the resulting gesture sequences corresponds

almost completely to the actual gesture match and duration in the sequences. It is noteworthy

that the use of such a simple rule for stabilization is possible due to a very accurate gesture

detection stage. Also, it should be noticed that using two past frames in making the decision

introduces a time lag that, in the worst case, corresponds to the time taken by two frames.

That time is, for NTSC and PAL video standards, much smaller than the time needed to

process a typical voice command [4].
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7.5 Summary

In this Chapter, a methodology for automatic mouth gesture detection in images is discussed.

The methodology is focused in detecting the gestures contained in the “Own” database de-

scribed in Chapter 2, which in turn are the result of a selection process aimed towards human

machine interface development for assisted surgery with the DaVinci surgical system.

The methodology, comprised by image pre-processing and segmentation, region feature ex-

traction and gesture classification, proved to exhibit high accuracy for the selected gesture set.

The results were further improved by the use of a gesture stabilization mechanism that forbids

sudden changes between gestures by correcting undefined gestures detection.

In the image segmentation stage, a new method for RoI clipping and region trimming was

discussed. The RoI clipping technique, along with the convex hull based region trimming,

improves dramatically the DTO measure for mouth from background distinction. These two

procedures are nevertheless non-advisable for any possible application since they were designed

having in mind images with frontal face poses with unadorned mouths and a compensated

lighting environment. Hence, those results may not hold for uncontrolled environments with

face deviations and aesthetic or prosthetic facial modifications.

The overall time spent to process each image ranges between 600ms and 1200ms. The

computational complexity indicators given throughout the document for the techniques used

in the gesture detection scheme leads to think that an optimal implementation of the suggested

methodology could achieve up to 6 frames per second in mainstream hardware. Although this

speed is not considered real-time if compared with standard video formats, it may be sufficient

for low speed appliances.
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8 Conclusion

This document is focused in the introduction of a methodology for automatic mouth gesture

recognition in images. The methodology comprise several stages from image pre-processing to

gesture classification, choosing in each stage feasible techniques aimed towards the obtention

of a good compromise between speed and recognition accuracy. Special attention is payed in

pixel color representation, region color modeling, image filtering, pixel color classification, label

segmentation refinement. Other topics such as the use of texture descriptors for mouth/skin

distinction and geometric region feature extraction are also treated briefly.

The methodology, comprised by image pre-processing and segmentation, region feature ex-

traction and gesture classification, exhibits high accuracy for the selected gesture set. The

results were further improved by the use of a gesture stabilization mechanism that forbids

sudden changes between gestures by correcting undefined gestures detection.

Color representation and modeling was carried out by starting with a 12-dimensional feature

space conformed using diverse color representations of the image pixel data. Then, stochastic

models of region color were approximated in order to characterize lips, tongue, teeth and back-

ground color using a subset of a proprietary database (widely referenced as “Own” throughout

the document). Measurements obtained in the conducted tests revealed that Neural Networks

exhibit higher accuracy in color distribution modeling when using a 12-dimensional input fea-

ture vector than Gaussian mixtures. This effect is reversed when only three features were

used. There is a considerable reduction in computational complexity when downscaling from

12 features to three; at the same time, a barely noticeable decrease in accuracy was obtained

by performing that change. Thereby, results presented in following chapters were referred to

a three-dimensional feature Gaussian mixture model. The models use the configuration de-

scribed in Section 3.2.4. High variations in color classification accuracy were detected when

using data provided by different databases, higher than those obtained by changing subjects

within the same database. The tests clearly illustrate the complexity of isolating the influence

of issues related to acquisition set-up from the final color register in the images. Complemen-

tary tests varying among different pre-processing combinations resulted in the selection of a

low pass Gaussian filter with a window size of 9× 9 pixels as the best performing one, using

as reference the average mouth size of the proprietary image database.

As a side contribution of the study conducted is a fast alternative for coarse lip/skin segmen-

tation based in pixel classification (Section 3.1.3). The segmentation technique is based in

the use of the CIEa∗ color component, with its value normalized using the values inside the

mouth’s region of interest (RoI). Classification results proved to be better than those obtained

using other color components commonly used in lip/skin segmentation through pixel color

thresholding.

The region color models enable a quick pixel color classification that can be used as a starting

point for mouth structures detection. However, the results obtained by classifying color gen-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0074/these.pdf 
© [J. Gómez-Mendoza], [2012], INSA de Lyon, tous droits réservés



116 8 Conclusion

erate label images with spurious regions and gaps within regions. Hence, a new segmentation

refinement technique is introduced. The refiner is composed by a layer of perceptual units (one

per pixel), each of them connected to one unique input label pattern, and to neighboring units’

output. Two parameters, which are proven to be at some extent correlated in Sections 4.2

and 4.3.1, control the compromise between input labeling and field effect through iterations.

The technique mimics the smoothing effect of low pass filters applied to labeling information,

and its computational cost per iteration is also about the same as the one of such kind of

filters. Refiner’s behavior is analyzed in depth in Section 4.2, and numerical results are also

provided in Sections 4.3 and 4.4.

In most cases, the refiner improves the output labeling resulting from unsupervised pixel color

based segmentation of natural images. In the case of supervised mouth structures segmenta-

tion, the benefit is clearer by improving the results in all cases. The improvement is at some

extent cumulative with the one obtained by the means of image pre-processing, thus proving

to be complementary techniques. Individually, linear filtering and segmentation refinement

increase segmentation accuracy by 5% to 10% approximately (reflected in DTO), while the

combined effect of both techniques lead to an increment of 15% approximately. It is notewor-

thy that the computational complexity of each refinement iteration is comparable with that

of the linear filter, and that the refiner usually takes between five and fifteen iterations to

converge.

Image pre-processing proved to benefit pixel color classification, notably through the use of

fixed-scale low pass linear filters (Chapters 3 and 4). Particularly, the use of a 9× 9 Gaussian

filter improved pixel classification DTO for all mouth structures. In this Chapter, the Gaussian

filter’s size was made variable in terms of local scale, using the measured integration scale for

every pixel. Results of image filtering with the scale variable filter expose a clear retention

of structure borders while smoothing the color information within each region. Nevertheless,

features such as specular noises and strongly variable textures (like the bright hatched pattern

in the lips) also remain after filtering. Hence, pixel classification performance was not clearly

improved by the scale-variant filtering, as opposed to the fixed scale version. This fact makes

it advisable to use a fixed-scale filter over a scale variant version.

In the next stage of the segmentation process, texture descriptors are used as part of the

feature vector fed to the pixel classification engine. Texture is characterized using a reduced

set of low-level features, and two more features derived from the integration scale, known as

local contrast and anisotropy. The augmented feature set show a considerable improvement

in mouth from background distinction, but the addition of the texture features raised the

confusion between lips and tongue regions. The results of the conducted tests indicate that a

good practice can be derived from the mixed use of texture and color features for initial mouth

selection, and then the use of color-only features for structure from structure classification.

Finally, the integration scale was used to set up automatically the scale parameter σ for

segmentation refinement. As in the case of the scale-variant filtering, the lack of continuity in

the scale among neighboring pixels led to refinement results exhibiting poorer results than those

obtained with the presets found in Chapter 4. At the end, texture proved to be particularly

helpful in pixel color classification for mouth from background distinction, but its usage is

bound to the quality/performance compromise for every particular application. However, its

use in pre-processing and segmentation refinement in mouth structure classification can be
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safely avoided.

In the image segmentation stage, a new method for RoI clipping and region trimming was

discussed. The RoI clipping technique, along with the convex hull based region trimming,

improves dramatically the DTO measure for mouth from background distinction. These two

procedures are nevertheless non-advisable for any possible application since they were designed

having in mind images with frontal face poses with unadorned mouths and a compensated

lighting environment. Hence, those results may not hold for uncontrolled environments with

face deviations and aesthetic or prosthetic facial modifications.

The overall time spent to proceed with the gesture recognition for each image varies between

600ms and 1200ms with the current implementation, which restricts its use to offline processing

systems. The computational complexity indicators given throughout the document for the

techniques used in the gesture detection scheme leads to think that an optimal implementation

of the suggested methodology could achieve up to 6 frames per second in mainstream hardware.

Although this speed is not considered real-time if compared with standard video formats, it

may be sufficient for low speed gesture detection applications. It is noteworthy that the

computational complexity is also associated to the size of the mouth in the image (in pixels),

and can henceforth be reduced by sacrificing in segmentation accuracy.
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9 Open issues and future work

Segmenting mouth structures for dark skin subjects is still the most challenging issue in mouth

segmentation. The color information contained in the zone between the lips and the skin

present high variability, low discriminance and higher noise levels than those found in brighter

skins. Most color representations fail completely to codify the difference between lips and skin,

while the others perform poorly. Thereupon, the need of a more robust color and/or texture

representation that enables an accurate lips-from-skin differentiation arises.

The modified version of the mouth contour extraction introduced in [1, 2] that is proposed

in this work exhibited an outstanding accuracy in outer lip contour approximation for images

acquired under controlled conditions. Nevertheless, its robustness is put to test under any

slight variation of these conditions that may increase noise or unstabilize the local gradient

approximation. This fact opens two derived tasks that must be tackled in order to improve

the contour approximation: first, the improvement of a local gradient approximation that

proves to be robust against a wider noise level range; and second, the generation of a measure

that codifies how fit the approximated contour points are to the actual location of the mouth

contour in the image. The first task can be tackled through the development of an adaptive

pre-processing filter that copes with noise while complying with preserving important features

in facial images. In the other hand, the second task can be tackled by mixing the contour

approximation method with a fast pixel classifier; in that way, the system would be able to

estimate how much of the information contained inside the approximated contour correspond

to mouth information, and how much of the mouth was left outside that contour.

The segmentation refinement technique proposed in this work proved to be complementary to

image pre-processing in improving mouth structure segmentation. The results do depend on

the refiner parameter selection, which in turn control the number of iterations needed for the

algorithm to converge. A first approximation to the automatic parameter selection by means

of local scale failed to perform better than static parameter selection, leaving a door open

for new automatic parameter selection strategies to emerge. Such strategies should arise to

improve both with final labeling accuracy and the number of iterations needed to achieve the

former goal.

One of the biggest limitations when working in image segmentation, and particularly in mouth

structure segmentation, is related to segmentation quality measurement. General purpose

measures such as those derived from the confusion matrix, do not express properly some

perceptual concepts such as shape conformance, overall shape definition, context conformance,

etc. In the other hand, humans fail dramatically when trying to adjust subjective perception

to machine-derived assessment, as evidenced in the human variability tests performed in the

“Own” database. Hence, human expertise is still an isolated source of information waiting

to be imbued in artificial vision solutions. This makes segmentation measure development an

important yet very open issue in artificial vision.
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