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Summary of thesis

The thesis which follows after this summary consists of two parts. The first part is devoted to

the theoretical study of a problem of quantum electron transport in the presence of oscillating

in time perturbations (AC bias, AC gate voltage, etc.). The second part concerns peculiar

transport signatures caused by the presence of spin-orbit interaction in graphene with and

without external magnetic field applied perpendicular to its plane. Let us briefly review below

the key points of the thesis.

Part I

Problem statement and objectives

Demands of a rapidly changing computer engineering market necessitate the use of advanced

theoretical approaches developed in physics. Nowadays, simulations of quantum transport in

nanodevices has become more than just a tool to describe theoretical models. In the first part

of this thesis we address the problem of quantum electronic transport in presence of varying

in time fields. One can think, for example, of a device with an AC bias applied or a gate with

oscillating voltage placed on top. So far, this problem has not got considerable attention and

commonly used simulations are done for the case of stationary electrochemical potential and/or

temperature gradients.

Pioneer works made in this direction were written by M. Büttiker and co-workers using the

scattering matrix formalism [1, 2, 3, 4, 5, 6, 7]. Though, the general scheme of tackling the

problem of dynamical (AC) transport was formulated, it was rather an important qualitative

step than a practical prescription. Another set of works, taking an alternative path, are based

on (non-equilibrium) Green’s functions and are mainly due to the group of H. Guo and a few

others [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. This method is very powerful (and is

actually used in this thesis), however no general framework existed so far, which could be served

as a recipe to solve problems arising from the presence of various oscillating perturbations.

In this thesis we attempt to cover this gap and formulate a set of practical rules and

steps one needs to follow in order to attack this problem. We develop a systematic approach
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Figure 1: Multiterminal system with M = 4 leads influenced by an external (a) or an internal (b)

perturbation. Red shaded region represents the part of the system affected by the perturbation.

that expresses finite frequency observables in terms of the stationary Green’s function of the

system, i.e. the natural output of most DC numerical codes. Our framework allows to extend the

simulations capabilities of existing codes to a large class of observables including, for instance,

AC conductance, quantum capacitance, quantum pumping, spin pumping or photo-assisted

shot noise. The theory is based on the Keldysh formalism and we provide explicit links with

the alternative scattering approach.

Considering two types of perturbations, external (in the leads) or internal (inside the device

region), see Fig. 1, we derive a systematic expansion of any (AC) observable in powers of

perturbation amplitude or in powers of modulation frequency (adiabatic limit). In the former,

we develop a set of diagrammatic rules allowing to calculate a contribution of arbitrary order

(and interpret it in terms of a series of photon absorption/emission processes), while in the

latter we derive the adiabatic limit and explain how to calculate systematic corrections to it.

Below we demonstrate how our formalism applies to calculation of the AC (linear) conductance

and compare it to the scattering approach.

AC conductance: scattering approach

In order to calculate the AC conductance of a multiterminal system, we consider first an AC

bias applied to one of the contacts, say β (β = 1̄ on Fig. 1a). It means that the electrochemical

potential in lead β is oscillating as µβ(t) = µ+ eVac cosωt, where µ is the equilibrium chemical

potential (we assume it to be the same in all leads for simplicity – no DC bias). Then, there

will be time-dependent currents generated in all the contacts in response to this perturbation.

Each of these currents contains various harmonics,

Iα(t) = Re
∞∑
l=0

Iα(lω)e−ilωt. (1)

7



However if one is interested in the (linear) AC conductance, this means that the sought quantity

is Υαβ(ω) ≡ dIα(ω)/(dVac). Büttiker and co-workers have found that this quantity can be

expressed in terms of an equilibrium scattering matrix Sαβ(E). At low frequencies it reads

[1, 5, 6],

Υe
αβ(ω) = Υe

αβ(0)− iωedNαβ

dVac
, (2)

where Υe
αβ(0) is the stationary conductance matrix element, and the quantity

dNαβ

dVac
= − e

4πi

∫
dE

(
− ∂f
∂E

)
Tr

[
S†αβ

dSαβ(E)

dE
−
dS†αβ(E)

dE
Sαβ(E)

]
(3)

is the density of particles emitted at contact α as a consequence of perturbing the electro-

chemical potential in lead β. Here f(E) is a Fermi function and the superscript e is added to

emphasize that this is the response function to an external perturbation.

There are two major requirements which must be satisfied in order for the theory to be

correct: current conservation (Kirchhoff’s law) and gauge invariance, which imply that,

M∑
α=1

Υαβ(ω) =
M∑
β=1

Υαβ(ω) = 0. (4)

Equation (2) does not meet these requirements, which means that it cannot describe the full

response of the system to the AC bias. Indeed, the contribution which is still missing comes

from a displacement current. It is instructive to consider a continuity equation,

M∑
α=1

Υe
αβ(ω)− iωdQ(ω)

dVac
= 0, (5)

where Q(ω) is a Fourier transform of the total charge in the scattering region 0̄ (see Fig. 1).

The fact that elements of the conductance matrix (2) do not add up to zero signifies that

there is a non-zero density of injected charge oscillating inside the scattering region. In reality

this charge density cannot pileup because the systems adjusts so that to restore its charge

neutrality. In our case it means that we have to consider the (oscillating) potential U(r, ω)

created by the injected charge, which modifies currents in all the contacts. This contribution is

the displacement current and it refers to the case of internal perturbation, depicted on Fig. 1b.

In terms of the scattering matrix this contribution is given by [1, 5, 6],

dI iα(ω)

dVac
= ieω

∫
d3r

δNα

δU(r)

dU(r, ω)

dVac
, (6)

where the superscript i stands for internal and the quantity

δNα

δU(r)
=

1

4πi

∫
dE

(
− ∂f
∂E

)∑
γ

Tr

[
S†αγ(E)

(
δSαγ(E)

δU(r)

)
−

(
δS†αγ(E)

δU(r)

)
Sαγ(E)

]
(7)
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is the density of particles, that are emitted at contact α if we perturb the scalar potential locally

at point r (in the scattering region 0̄). The induced oscillating potential profile is calculated

from the Poisson equation [1, 6],

∆
dU(r, ω, β)

dVac
= −e

ε

[
dn(r, β)

dVac
+

∫
d3r′Π(r, r′)

dU(r′, ω, β)

dVac

]
, (8)

where Π(r, r′) is the so-called Lindhard function determining the change of the electron density

at point r in response to a perturbation at point r′. This function has to be calculated separately

and cannot be in general expressed via a scattering matrix. The first quantity in the brackets in

Eq.(8) is the density of injected charge as a consequence of oscillating electrochemical potential

in lead β, which is given by [1, 6],

dn(r, β)

dVac
=

1

4πi

∫
dE

(
− ∂f
∂E

)∑
α

Tr

[
S†αβ(E)

(
δSαβ(E)

δU(r)

)
−

(
δS†αβ(E)

δU(r)

)
Sαβ(E)

]
. (9)

Finally, putting all together, the full AC conductance satisfying Eq.(4) reads,

Υαβ(ω) = Υe
αβ(ω) +

dI iα(ω)

dVac
. (10)

As one can clearly see, the scattering approach has a few weak sides. First of all, the

internal response (6) and the induced charge density (9), necessary to calculate the full response

function (10), depend on a functional derivative of the scattering matrix with respect to the

scalar potential profile in the system, which cannot be found in general. Second, the Lindhard

function, entering the Poisson equation (8), is an unknown function of coordinates and one has

to make additional assumptions to do any calculation. Third, the theory was built relying on

smallness of both the perturbation amplitude and the perturbation frequency. Nevertheless, the

scattering theory presented above is an important step in understanding the main aspects of

finite frequency phenomena in electron transport, though it does not give a general prescription

how to do calculations in practice.

Our theory: Green’s function approach

In this thesis, making use of the Keldysh formalism, we were able to express any AC observable

in terms of stationary Green’s functions, which are a raw output of a variety of numerical

codes existing on a market [22]. Thus, being intrinsically adapted for numerical simulations,

our theory can be used to calculate the AC conductance, for example, of a system with arbitrary

shape and number of contacts.

Let us give expressions for the quantities needed to calculate the AC conductance. First of

all, we note that in our approach the system (see Fig. 1) is described by a quadratic tight-binding

9



Hamiltonian,

Ĥ =
∑
n,m

Hnmc
†
ncm, (11)

where c†n (cn) is a usual creation (destruction) operator on site n. We start again from the

response to the external AC bias in lead β. Then, the corresponding response function is given

by

Υe
αβ(ω) =

e2

h

∫
dETr

[
ΓαG2ΓβG

†
0 − iδα,β

(
G2 − G

†
0

)
Γα

] f(E)− f(E + ~ω)

~ω
, (12)

with Γα = Im(Σr
α), where Σr

α is the (retarded) self-energy of lead α, and with the (stationary)

Green’s function defined as

Gl(E) ≡

(
E +

~ωl
2
−H0̄0̄ −

M∑
α=1

Σr
α

)−1

. (13)

Here H0̄0̄ is the scattering region sub-block of the full Hamiltonian matrix. Equations (12) and

(13), as well as other expressions given below, are written for the sake of simplicity in the wide-

band limit (self-energies of the leads are assumed independent of energy). General expressions

can be found in the first part of the thesis and in the corresponding Appendix.

As was pointed out in the previous section, Eq.(12) does not describe the full response of

the system. So, we have to include the displacement part of the current, which in terms of

Green’s functions has the form,

dI iα(ω)

dVac
=
∑
j

dIα(ω)

dVjj

dU(j, ω)

dVac
, (14)

where U(j, ω) is a discretized version of the induced potential U(r, ω), and the quantity

dIα(ω)

dVjj
=
ie2

h

∫
dE (f(E)− f(E + ~ω))

[
G
†
0ΓαG2

]
jj
, (15)

describes a current response in lead α in consequence of the local perturbation at site j. In

order to complete the theory it is necessary to give expressions for the induced charge density

and the Lindhard function, which enter the Poisson equation (8), determining the potential

U(j, ω). Again, these quantities are conveniently expressed via the stationary Green’s functions

as,

dn(j, β)

dVac
=

e

hω

∫
dE (f(E)− f(E + ~ω))

[
G2ΓβG

†
0

]
jj
, (16)

Π(ω, j, j′) = − ie
2π

∫
dE

{
(f(E)− f(E + ~ω)) [G2]jj′

[
G
†
0

]
j′j

+f(E + ~ω)
[
G
†
2

]
jj′

[
G
†
0

]
j′j
− f(E) [G2]jj′ [G0]j′j

}
.

(17)
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From this short demonstration one can immediately see the advantages of the Green’s

function approach. The quantities which were inaccessible in general (like functional derivative

of a scattering matrix) or even undefined (Lindhard function) in the scattering theory are

expressed in terms of Green’s functions. Another advantage is that the Green’s function (13)

as well as leads self-energies are a raw output of many numerical codes based on a recursive

algorithm, which makes our formalism a practical (numerical) tool.

In practice, however, one often combines the two approaches by solving simple toy models

with the help of the scattering theory and then using these results to get insight into numerical

simulations performed with Green’s functions. Therefore, these methods complement each other

and constitute a complete theoretical tool for investigating finite-frequency phenomena.

Part II

Problem statement and objectives

Graphene, a one-atom thick planar sheet of carbon atoms, is a hot topic nowadays and a

lot of researchers believe that its unique properties can be used to make a revolution in the

nanoelectronic device engineering. Some of the main features which made it famous are: (i)

linear spectrum of low-energy excitations described by a massless relativistic Dirac equation; (ii)

very high carrier mobility; (iii) anomalous quantization of quantum Hall steps in the transverse

part of conductivity tensor, which can be observed at room temperatures.

In the second part of the thesis we studied influence of spin-orbital effects on electronic and

transport properties of graphene. In seminal works by C. L. Kane and E. J. Mele [23, 24] it was

found that a special type of spin-orbit interaction (which preserves a Sz component of spin)

is capable of inducing a topological order in graphene. The latter results in appearance of a

bulk energy gap with gapless (spin-filtered) excitations on the boundaries of a finite graphene

structure, which are robust to a large class of perturbations and disorder. This property of

the edge states relies on presence of a time-reversal symmetry, which forbids backscattering.

Another interesting property of the edge states is that at a given sample boundary spin-up and

spin-down electrons counterpropagate and thus support net spin current with no net charge

current at the same time, see Fig. 3a. The latter feature has got a name Quantum Spin Hall

(QSH) effect. Though the Kane-Mele model supports a variety of interesting effects, it has

not been realized in reality yet. The reason for this is the fact that spin-orbit interaction in

pristine graphene is too small [25] to be observed experimentally. In this thesis we elaborate a

recent proposal how to overcome this issue and propose a way to see a transition between two

(topologically) different quantum Hall (QH) and quantum spin Hall phases in the same setup.

The latter is a unique situation being possible owing to the relativistic spectrum of graphene.
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Figure 2: (a): Upper inset: schematic of our setup, a 4-terminal graphene cross with armchair

edges. The different colors correspond to an actual calculation of the current density for spin-

up electrons upon injection from contact 0. The existence of an edge state is manifest. Main

figure: Scaling of the transmissions Tj0 from contact 0 for various couplings λso and adatom

densities nad, plotted as a function of the effective SO coupling strength λeff
so = λsonad. Dashed

(black) lines correspond to “longitudinal” transmission T20 and dotted lines correspond to

“Hall” transmissions T10 (red) and T30 (green). The two sets of curves correspond to an energy

E = 0 (open symbols), and E = 0.05 (filled symbols). Different symbol shapes correspond to

different values of SO coupling. (b): View from top of an adatom (blue circle) residing on a

graphene’s surface.

Quantum spin Hall phase in graphene

As was mentioned above, the work presented in this thesis was motivated by a recent proposal

to enhance the spin-orbit interaction in graphene by depositing heavy atoms (with strong

intra-atomic spin-orbit interaction: In or Tl, for example) on its surface [26], see Fig. 2b. We

elaborated further this idea and studied in details the experimentally relevant case of random

distribution of the adatoms. Our findings can be summarized as follows: (i) even when the

distribution of adatoms is arbitrary, a perfectly homogeneous QSH phase (described by the

Kane-Mele model) emerges with a spin-orbit coupling constant renormalized by a density of

adatoms; (ii) varying the density of adatoms allows for controlling the spin-orbit energy gap

and the width of the edge states, which might potentially be used for efficient thermopower

generation with a tunable target temperature (see Sec. 8.2.2 for details) [27]. On Fig. 2 we

present an example of calculation of DC transmission coefficients between the contacts of a 4-

terminal graphene cross. Varying the strength of spin-orbit coupling λso and/or adatom density

12
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Figure 3: Cartoon of a 4-terminal conductor in a) QSH phase and b) QH phase. Blue solid and

red dashed lines represent edge states for spin-up and spin-down electrons, respectively.

nad, we plot transmission amplitudes as a function of the effective parameter λeff = nadλso

assuming the current is injected at lead 0. One can see that the results are perfectly rescaled

and the Hall transmissions T10 and T30 tend to unity, while the direct transmission T20 gets

exponentially suppressed, as the effective parameter λeff increases. This is a signature of the

emerging QSH phase characterized by the spin-filtered edge states, see Fig. 3a. We tested its

robustness to various types of disorder and found it extremely stable with no signature of

the spatial inhomogeneities of the adatom configuration (see Sec. 8.2 for details). Moreover, a

simple rescaling of the spin-orbit coupling parameter allows us to account for the behavior of

the inhomogeneous system using a homogeneous model introduced by Kane and Mele [23, 24].

Transition between quantum Hall and quantum spin Hall phases

The second part of our work concerns the behavior of the QSH phase in graphene (induced by

adatoms, for example) in presence of a strong magnetic field applied perpendicular to graphene’s

surface. It is not obvious what exactly is going to happen because the presence of a magnetic

field implies that the time-reversal symmetry protecting the edges states is explicitly broken.

Consider a 4-terminal graphene cross for two situations: (i) in a QSH phase (λso 6= 0, B = 0,

see Fig. 3a); and (ii) in a QH phase (λso = 0, B 6= 0, see Fig. 3b). In strong enough magnetic

fields one expects to see the picture corresponding to the QH phase. However, in order to go

from QSH edge states to QH edge states one has to reverse the direction of motion of one of

the spin species, referred to as “unhappy” spin below (red dashed lines on Fig. 3). In our work,

we studied in details how this transition happens.

In order to get an insight into this problem, we performed band structure calculations for

three different cases: the two mentioned above, and applying both spin-orbit coupling and

magnetic field together (see Fig. 4). The band structures of a graphene ribbon in the QSH and

QH phases are quite different. In the QH phase, the perpendicular magnetic field gives rise

13



c)

d)

QH

QH
QSH

QSH

a)

QH

b)

x

y

Figure 4: Band structure of a (semi-metallic armchair) graphene ribbon in the a) QH and b)

QSH phase. When both magnetic field and SO coupling are present c), the resulting band

structure leads to a QSH phase for |EF | < ∆so (shaded region) and a QH phase for |EF | >
∆so. Compared to the pure QH and QSH cases, the spin degeneracy is lifted (blue thick and

red dashed lines), which is particularly prominent in the lowest band which consists of spin-

polarized branches at E = ±∆so. As the Fermi energy crosses the SO gap, the localization of

the “unhappy” spin (red dashed) shifts from one edge to the other, while it is fully localized in

the bulk when EF = ∆so. This is illustrated in the corresponding current-density plots d). On

the other hand, the “happy” spin (thick blue) gets increasingly localized on the same edge as

the Fermi energy crosses the transition region (not shown).

to Landau levels εn = ±(~vF/lB)
√

2|n|, with lB =
√
~/(eB), which become dispersive close

to the edges of the graphene ribbon (Fig. 4a). When the Fermi level is placed between two of

these Landau levels, transport is characterized by spin-degenerate edge states as in Fig. 3b,

which propagate in a direction imposed by the sign of the magnetic field. In the QSH phase,

the band structure consists of hyperbolic bands above the QSH gap, ∆so = 3
√

3λso, and a pair

of linearly dispersing ones below it (Fig. 4b). These linear bands correspond to spin-polarized

states, localized at the edges of the graphene ribbon (see Section 7.2). When both magnetic

field and spin-orbit coupling are present, the band structure can be summarized in very simple

terms (see Fig. 4c): for Fermi energies inside the spin-orbit gap |EF | < ∆so (shaded region),

the system is in the QSH phase, with opposite spin channels on a given edge propagating in
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Figure 5: Topological heterojunction, with QSH edge states on the left and QH edge states on

the right. This junction can be experimentally achieved by applying a top gate (grey shaded

region) on the right half of the sample. While one of the spin species (thick blue) can propagate

through this junction, the other one (red dashed) cannot and therefore gives rise to a chiral

state, localized at the interface between QH and QSH phases, which connects both edges.

opposite directions, while for energies |EF | > ∆so, the system is in the QH phase, with opposite

spin channels on a given edge propagating in the same direction. Hence for a given value of

∆so, the transition between the two phases is governed solely by the Fermi energy and does

not depend at all on the value of the magnetic field (neglecting Zeeman splitting, which is

very small in graphene). This quite remarkable result is a direct consequence of the existence in

graphene of a B-independent zero-energy Landau level: as soon as ∆so 6= 0, the spin degeneracy

of the zero-energy Landau level is lifted, as opposed to all other Landau levels which remain

spin degenerate [28]. This lifting leads to a QSH phase in the corresponding spin-orbit gap.

In order to check these arguments, we performed a transmission calculation in a 4-terminal

Z-shaped setup schematically depicted on Fig. 5. We placed a top gate on the right half of

the sample, which controlled the position of the Fermi level locally there. By an appropriate

choice of gate voltage Vg it is possible to make a heterojunction between the QH and QSH

phases. The “unhappy” spin (red dashed line) being injected from lead 0 cannot penetrate

the QH phase region and thus creates a chiral state at the interface between two phase. The

results of the corresponding calculations are given on Fig. 6. While the Fermi energy in the

right half remains below the value of ∆so, transport characteristics remain unaffected by the

gate (left inset of Fig. 6). However, as soon as the Fermi energy in the right half crosses the

QSH gap, it gives rise to a QSH-QH junction characterized by a topological state at its interface

(see right inset of Fig. 6). This chiral state propagates along the interface until it reaches the

opposite edge, and then gets partially transmitted in lead 2, partially transmitted in lead 3,

with proportions which depend on the microscopic details of the model (Fermi energies, the
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Figure 6: Heterostructure in a 4 terminal Z-shape sample as depicted in Fig. 5. Transmission

probabilities from lead 0, where the current is injected, to outgoing leads 1 (dotted lines), 2

(dashed lines) and 3 (full lines) as a function of the top gate voltage Vg. When Vg < (∆so−EF ),

such that left and right regions are in the QSH phase, current is perfectly transmitted by the

QSH edge states, as shown in the current-density plot in the left inset. When Vg is high enough

(Vg > (∆so −EF )) that the right part of the sample enters the QH phase, a QSH-QH junction

is created, which is characterized by a chiral state propagating along the interface. This is

illustrated in the current-density plot shown in the right inset. The red curves correspond to an

abrupt voltage change across the junction region while the blue curves correspond to a smooth

transition.

length of the interface, the smoothness of the potential step, the amount of disorder, etc.). This

system constitutes a very efficient spin-polarized charge-current switching mechanism, as the

current in lead 1 (respectively 2) can be reversibly switched from one (respectively zero) to zero

(respectively non-zero) while simultaneously being spin-polarized (see Fig. 6).

In summary, we showed that the transition between QSH and QH phases in graphene is

independent of the value of the magnetic field (neglecting the weak effect of Zeeman splitting)

and can be crossed simply by tuning the value of the Fermi energy across the spin-orbit gap.

This unique property owes to existence of the zero-energy Landau level (n = 0) in graphene.

In a heterojunction, one of the spin species gives rise to a chiral state propagating along the

interface between QSH and QH phases. The nature of this special state is a fascinating issue

which is still to be investigated. The tunable transition between the QSH and QH topological

phases could serve as a spin-polarized charge-current switch with potentially extremely high,

topologically protected, on/off ratios.
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Résumé de thèse

La thèse à la suite de ce résumé est constituée de deux parties. La première est dédiée à l’étude

du transport électronique quantique en présence de perturbations oscillantes dans le temps

(tension AC, tension de grille AC, etc.). La seconde partie traite des signatures particulières

du transport résultant de la présence d’un couplage spin-orbite dans le graphène avec ou sans

l’application d’un champ magnétique extérieur transverse. Nous passons brièvement en revue

les points clés de la thèse dans ce qui suit.

Partie I

Etablissement du problème et objectifs

Les évolutions rapides du marché de l’ingénierie informatique forcent le recours à des approches

théoriques avancées en physique. Aujourd’hui les simulations de transport quantique dans les

objets de tailles nanoscopiques sont devenues bien plus qu’un outil d’illustration des modèles

théoriques. Dans la première partie de cette thèse nous traitons du transport électronique

quantique en présence de perturbations dépendantes du temps. On peut penser, par exemple, à

un objet sur lequel est appliquée une tension AC ou bien une tension de grille. Jusqu’à présent

ce problème n’a pas retenu une grande attention et les simulations sont communément réalisées

pour des potentiels électrochimiques et/ou des gradients de température stationnaires.

Les premiers travaux empruntant cette voie ont été écrits par M. Büttiker et ses collabo-

rateurs en ayant recours au formalisme des matrices de diffusion [1, 2, 3, 4, 5, 6, 7]. Malgré

une volonté affichée de s’attaquer au problème du transport AC, les résultats ont constitué

davantage en un profond saut qualitatif qu’en un progrès à usage pratique. D’autres travaux

majoritairement dus au groupe de H. Guo et à quelques autres [8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21] prennent un chemin différent en usant des fonctions de Green hors équilibre.

Ce formalisme (utilisé dans cette thèse) est très puissant, cependant jusqu’à maintenant il

manquait un cadre théorique lui permettant d’être utilisé comme une recette dans l’étude de

problèmes faisant intervenir différents types de perturbations oscillantes.

Dans cette thèse nous comblons cette lacune. Nous formulons un ensemble de règles pra-
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Figure 7: Système multi-terminal avec M = 4 contacts sur lequel est appliqué une perturbation

externe (a) ou interne (b). La région en rouge représente la partie du système affectée par la

perturbation.

tiques et d’étapes à suivre pour le traitement de ce problème. Nous développons une ap-

proche systématique pour exprimer des observables à fréquence finie en termes de fonctions de

Green stationnaires du système, c’est-à-dire des quantités calculées par la majorité des codes

numériques DC. Notre formalisme permet d’étendre les possibilités des codes existants à une

large variété d’observables telles que la conductance AC, la capacité quantiques, le pompage

quantique, le pompage de spin ou encore le bruit de grenaille photo-assisté. La théorie est basée

sur le formalisme de Keldysh et nous présentons des liens explicites avec le formalisme alternatif

des matrices de diffusion.

Nous considérons deux types de perturbations: externe (dans les contacts) ou interne (à

l’intérieur de la région centrale du système), voir Fig. 7. Nous dérivons alors un développement

systématique de n’importe quelle observable (AC) en puissance de l’amplitude de la pertur-

bation ou en puissance de la fréquence (limite adiabatique). Pour le premier développement

nous proposons un ensemble de règles diagrammatiques permettant le calcul de la contribution

d’un ordre quelconque et son interprétation par une série de processus d’absorption/émission

de photons. Pour le second nous dérivons la limite adiabatique et nous expliquons comment y

apporter des corrections systématiques.

Nous allons maintenant démontrer comment notre formalisme s’applique au calcul de la

conductance (AC) et le comparons à l’approche des matrices de diffusion.

Conductance AC : approche des matrices de diffusion

Afin de calculer la conductance AC d’un système multi-terminal, on considère d’abord une

tension AC appliquée à l’un des contacts, prenons le contact β (β = 1̄ on Fig. 7a). Ceci implique

que le potentiel électrochimique du contact β oscille de la façon suivante µβ(t) = µ+eVac cosωt,

où µ est le potentiel chimique à l’équilibre (on suppose que c’est le même dans tous les contacts,
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aucune tension DC n’est appliquée). Des courants dépendants du temps sont alors générés

dans tous les contacts en réponse à la perturbation. Chacun de ces courants contient diverses

harmoniques,

Iα(t) = Re
∞∑
l=0

Iα(lω)e−ilωt. (18)

Cependant si l’on est intéressé par la conductance AC (linéaire), cela implique que la quantité

recherchée est Υαβ(ω) ≡ dIα(ω)/(dVac). Büttiker et ses collaborateurs ont trouvé que celle-ci

peut-être exprimée en termes de matrices de diffusion à l’équilibre Sαβ(E). A basse fréquence

elle s’écrit [1, 5, 6],

Υe
αβ(ω) = Υe

αβ(0)− iωedNαβ

dVac
, (19)

où Υe
αβ(0) est l’élément de matrice de la conductance stationnaire, et la quantité

dNαβ

dVac
= − e

4πi

∫
dE

(
− ∂f
∂E

)
Tr

[
S†αβ

dSαβ(E)

dE
−
dS†αβ(E)

dE
Sαβ(E)

]
(20)

est la densité de particules émises du contact α en réponse à la variation du potentiel électrochimique

du contact β. Ici f(E) est une fonction de Fermi et l’exposant e est ajouté pour souligner que

c’est la fonction de réponse à une perturbation externe.

La théorie doit satisfaire deux conditions afin d’être correcte: la conservation du courant

(loi de Kirchhoff) et l’invariance de jauge, ce qui implique que,

M∑
α=1

Υαβ(ω) =
M∑
β=1

Υαβ(ω) = 0. (21)

L’équation (19) ne remplit pas ces conditions ce qui signifie qu’elle ne peut pas décrire la réponse

totale du système à la perturbation AC. En effet la contribution manquante vient d’un courant

de déplacement. Considérons l’équation de continuité suivante,

M∑
α=1

Υe
αβ(ω)− iωdQ(ω)

dVac
= 0, (22)

où Q(ω) est la transformée de Fourier de la charge total dans la région 0̄ (voir Fig. 7). Le fait que

la somme des éléments de la matrice de conductance (19) ne s’annule pas signifie qu’il y a une

densité non nulle de charge injectée oscillant à l’intérieur de la région centrale. En réalité cette

densité de charge ne peut pas s’accumuler parce que le système s’ajuste de façon à restaurer

sa neutralité électrique. Dans notre cas cela signifie que nous devons considérer le potentiel

oscillant U(r, ω) créé par la charge injectée, ce qui modifie les courants dans tous les contacts.

Cette contribution est le courant de déplacement et elle est assimilable à une perturbation

interne décrite en Fig. 7b. En termes de matrices de diffusion elle est donnée par [1, 5, 6],
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dI iα(ω)

dVac
= ieω

∫
d3r

δNα

δU(r)

dU(r, ω)

dVac
, (23)

où l’exposant i signifie interne, et la quantité

δNα

δU(r)
=

1

4πi

∫
dE

(
− ∂f
∂E

)∑
γ

Tr

[
S†αγ(E)

(
δSαγ(E)

δU(r)

)
−

(
δS†αγ(E)

δU(r)

)
Sαγ(E)

]
(24)

est la densité de particules émises au contact α si l’on perturbe le potentiel scalaire localement

au point r (dans la région centrale 0̄). Le profile du potentiel oscillant induit est calculé par

l’équation de Poisson [1, 6],

∆
dU(r, ω, β)

dVac
= −e

ε

[
dn(r, β)

dVac
+

∫
d3r′Π(r, r′)

dU(r′, ω, β)

dVac

]
, (25)

où Π(r, r′) est la fonction de Lindhard déterminant le changement de densité électronique au

point r en réponse à une perturbation au point r′. Cette fonction doit être calculée séparément

et ne peut pas en général être exprimée via des matrices de diffusion. La première quantité entre

les parenthèses de l’équation (25) est la densité de charge injectée par l’oscillation du potentiel

électrochimique du contact β, et est donnée par [1, 6],

dn(r, β)

dVac
=

1

4πi

∫
dE

(
− ∂f
∂E

)∑
α

Tr

[
S†αβ(E)

(
δSαβ(E)

δU(r)

)
−

(
δS†αβ(E)

δU(r)

)
Sαβ(E)

]
. (26)

Enfin, en rassemblant ces résultats la conductance AC complète satisfaisant l’équation (21)

s’écrit,

Υαβ(ω) = Υe
αβ(ω) +

dI iα(ω)

dVac
. (27)

Comme on peut clairement le voir, l’approche par matrice de diffusion a quelques faiblesses.

Premièrement la réponse interne (23) et la densité de charge induite (26), nécessaires au calcul

de la fonction de réponse complète (27), dépendent d’une dérivée fonctionnelle de la matrice de

diffusion par rapport au profile du potentiel scalaire dans le système, qui ne peut pas être trouvé

en général. Deuxièmement, la fonction de Lindhard, présente dans l’équation de Poisson (25),

est une fonction inconnue des coordonnées et nécessite des hypothèses supplémentaires pour être

calculée. Troisièmement, la théorie a été construite en reposant sur le faible ordre de grandeur

de l’amplitude de la perturbation et de sa fréquence. La théorie de la diffusion présentée ci-

dessus ne fournit pas de guide général pour faire des calculs en pratique. Néanmoins elle est une

étape qualitative importante pour la compréhension des aspects principaux des phénomènes à

fréquence finie dans le transport électronique.
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Notre théorie: l’approche par fonctions de Green

Dans cette thèse, nous avons utilisé le formalisme de Keldysh afin d’exprimer n’importe quelle

observable AC en termes de fonctions de Green. Ces dernières représentent le résultat brut

d’une grande variété de codes numériques existants [22]. Ainsi, étant intrinsèquement adaptée

pour les simulations numériques, notre théorie peut être utilisée, par exemple, pour le calcul de

la conductance AC d’un système ayant une forme et un nombre de contacts arbitraires.

Nous donnons maintenant des expressions pour les quantités utiles au calcul de la conduc-

tance AC. Tout d’abord on remarque que dans notre approche le système (voir Fig. 7) est décrit

par un Hamiltonien de liaisons fortes quadratique,

Ĥ =
∑
n,m

Hnmc
†
ncm, (28)

où c†n (cn) est l’opérateur usuel de création (d’annihilation) au site n. On commence par la

réponse à une tension externe AC imposée au contact β. Alors la fonction de réponse corre-

spondante est donnée par

Υe
αβ(ω) =

e2

h

∫
dETr

[
ΓαG2ΓβG

†
0 − iδα,β

(
G2 − G

†
0

)
Γα

] f(E)− f(E + ~ω)

~ω
, (29)

avec Γα = Im(Σr
α), où Σr

α est la self-énergie (retardée) du contact α, et avec la fonction de

Green (stationnaire) définie par

Gl(E) ≡

(
E +

~ωl
2
−H0̄0̄ −

M∑
α=1

Σr
α

)−1

. (30)

Ici H0̄0̄ est le sous-bloc de la matrice de l’Hamiltonien complet correspondant à la région

centrale. Les équations (29) et (30), ainsi que d’autres expressions données ci-après, sont écrites

par souci de simplicité dans l’approximation de la large bande (les self-énergies des contacts

sont supposées indépendantes de l’énergie). Les expressions générales peuvent être trouvées

dans la première partie du manuscrit et dans l’annexe correspondant.

Comme cela a été souligné dans la partie précédente, l’équation (29) ne décrit pas la réponse

totale du système. Ainsi nous devons inclure le courant de déplacement qui en termes de

fonctions de Green prend la forme,

dI iα(ω)

dVac
=
∑
j

dIα(ω)

dVjj

dU(j, ω)

dVac
, (31)

où U(j, ω) est une version discrétisée du potentiel induit U(r, ω), et la quantité

dIα(ω)

dVjj
=
ie2

h

∫
dE (f(E)− f(E + ~ω))

[
G
†
0ΓαG2

]
jj
, (32)
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décrit un courant de réponse au contact α correspondant à une perturbation locale au site

j. Afin de compléter la théorie il est nécessaire de donner les expressions de la densité de

charge induite et de la fonction de Lindhard qui entrent dans l’équation de Poisson (25). Ces

grandeurs déterminent alors le potentiel U(j, ω). Encore une fois ces dernières sont exprimées

via les fonctions de Green stationnaires comme suit,

dn(j, β)

dVac
=

e

hω

∫
dE (f(E)− f(E + ~ω))

[
G2ΓβG

†
0

]
jj
, (33)

Π(ω, j, j′) = − ie
2π

∫
dE

{
(f(E)− f(E + ~ω)) [G2]jj′

[
G
†
0

]
j′j

+f(E + ~ω)
[
G
†
2

]
jj′

[
G
†
0

]
j′j
− f(E) [G2]jj′ [G0]j′j

}
.

(34)

De par cette courte démonstration nous pouvons immédiatement voir les avantages de

l’approche par fonctions de Green. Les quantités qui sont en général inaccessibles (comme

la dérivée fonctionnelle de la matrice de diffusion) ou même non définies (comme la fonction de

Lindhard) dans la théorie de la diffusion sont ici exprimées en termes de fonctions de Green.

Un autre avantage est que la fonction de Green (30) ainsi que les self-énergies des contacts sont

le résultat brut de nombreux codes numériques basés sur un algorithme récursif. Cela fait de

notre formalisme un outil (numérique) pratique.

Cependant, en pratique on combine les deux approches en résolvant des modèles simples à

l’aide de la théorie de la diffusion et on utilise ces résultats pour comprendre les simulations

numériques réalisées avec les fonctions de Green. En conséquence, ces méthodes se complètent

l’une l’autre et forment un outil théorique pour étudier les phénomènes à fréquence finie.

Partie II

Etablissement du problème et objectifs

Le graphène, cette feuille plane d’atomes de carbone d’épaisseur atomique, est aujourd’hui un

sujet bouillonnant et de nombreux chercheurs estiment que ses propriétés peuvent être utilisées

pour révolutionner la micro/nano électronique. Les principales caractéristiques qui ont rendues

ce matériau célèbre sont: (i) un spectre linéaire d’excitations à basse énergie décrit par l’équation

de Dirac relativiste sans masse; (ii) une mobilité des porteurs très élevée; (iii) quantification

anormale de l’effet Hall dans la partie transverse du tenseur de conductivité pouvant être

observée à température ambiante.

Dans la seconde partie de la thèse nous avons étudié l’influence du coulage spin-orbite sur

les propriétés électroniques et de transport dans le graphène. Il a été trouvé par C. L. Kane et
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E. J. Mele, dans des travaux qui ont fait date [23, 24], qu’un type particulier d’interaction spin-

orbite (qui préserve la composante Sz du spin) est capable d’induire un ordre topologique dans le

graphène. Cet ordre fait apparâıtre un gap dans le spectre d’excitations se trouvant à l’intérieur

du matériau, et des excitations sans gap (filtrées par le spin) aux bords d’une structure finie de

graphène. Ces états de bord sont robustes vis-à-vis d’une large gamme de perturbations et au

désordre. Cela est dû à la présence d’une symétrie par renversement du temps qui interdit toute

rétrodiffusion. Une autre propriété intéressante de ces états est qu’à un bord d’un échantillon

donné les spins up et les spins down se propagent en sens opposés. Ainsi on a un courant de

spin sans courant de charge, voir Fig. 9a. Ce phénomène s’appelle l’effet Hall quantique de spin

(QSH). Bien que de nombreux effets intéressants sortent du modèle de Kane et Mele aucune

réalisation concrète n’a encore vu le jour. Une raison pour cela est que le couplage spin-orbite

dans le graphène natif est trop faible [25] pour être observé expérimentalement. Dans cette thèse

nous détaillons une proposition récente permettant de surmonter cet écueil. Nous proposons un

moyen d’observer dans une seule expérience une transition entre les phases topologiquement

différentes d’effet Hall quantique (QH) et d’effet Hall quantique de spin. Cela est rendu possible

grâce au spectre relativiste du graphène.

Phase de Hall quantique de spin dans le graphène

Comme indiqué au-dessus, le travail présenté dans cette thèse a été motivé par une proposition

récente visant à accrôıtre le couplage spin-orbite dans le graphène. Ce résultat est obtenu après

le dépôt d’atomes lourds (avec une forte interaction spin-orbite intra-atomique: In ou Tl par

exemple) en surface [26], voir Fig. 8b. Nos conclusions se résument ainsi: (i) même lorsque la

distribution d’atomes ajoutés est arbitraire, une phase QSH parfaitement homogène (décrite

par le modèle de Kane-Mele) émerge avec une constante de couplage spin-orbite renormalisée

par la densité d’atomes ajoutés; (ii) varier la densité d’atomes ajoutés autorise le contrôle du

gap d’énergie créé par le couplage spin-orbite et la largeur des états de bord, ce qui pour-

rait permettre la création d’un thermocouple efficace à température ajustable (voir Sec. 8.2.2

pour les détails) [27]. En Fig. 8 nous présentons un exemple de calcul DC de coefficients de

transmission entre les contacts d’une croix de graphène à quatre terminaux. On varie la force

du couplage spin-orbite λso et/ou la densité d’atomes ajoutés nad et on trace les amplitudes

de transmission en fonction du paramètre effectif λeff = nadλso en supposant que le courant

est injecté au terminal 0. On peut voir que les résultats se tracent très bien en fonction du

paramètre effectif et que les transmissions de Hall T10 et T30 tendent vers l’unité, alors que

la transmission directe T20 disparâıt exponentiellement à mesure que le paramètre effectif λeff

augmente. C’est une signature de la phase QSH qui émerge, caractérisée par les états de bords

filtrés en spin, voir Fig. 9a. Nous avons testé sa robustesse à divers types de désordre et l’avons

trouvée extrêmement stable sans signe de l’inhomogénéité spatiale de la configuration d’atomes
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Figure 8: (a): Insert en haut: schéma de notre dispositif, une croix de graphène à quatre ter-

minaux avec des bords de type fauteuil. Les différentes couleurs correspondent à un calcul de

la densité de courant pour les électrons de spin up après injection au contact 0. L’existence

d’un état de bord est manifeste. Figure principale: tracé de la transmission Tj0 à partir du con-

tact 0 pour plusieurs couplages λso et densités d’atomes ajoutés nad, en fonction du couplage

spin-orbite effectif λeff
so = λsonad. Les courbes en tirets noirs correspondent à la transmission

“longitudinale” T20 et les courbes en pointillés correspondent aux transmissions de “Hall” T10

(rouge) et T30 (vert). Les deux groupes de courbes correspondent à aux énergies E = 0 (sym-

boles vides), et E = 0.05 (symboles pleins). Les différentes formes de symboles correspondent à

différentes valeurs de couplage spin-orbite. (b): Vue de dessus d’un atome ajouté (cercle bleu)

à un plan de graphène.

ajoutés (voir Sec. 8.2 pour les détails). De plus un simple changement d’échelle du paramètre de

couplage spin-orbite permet d’expliquer le comportement du système inhomogène en utilisant

le modèle homogène introduit par Kane et Mele [23, 24].

Transition entre les phases de Hall quantique et quantique de spin

La seconde partie de notre travail traite du comportement de la phase QSH dans le graphène

(induite par l’ajout d’atomes par exemple) en présence d’un fort champ magnétique appliqué

perpendiculairement au plan de ce dernier. Ce qui va se produire n’est pas évident parce que

la présence d’un champ magnétique brise explicitement la symétrie par renversement du temps

qui protège les états de bord. Considérons une croix de graphène à quatre terminaux dans les

deux situations suivantes: (i) dans une phase QSH (λso 6= 0, B = 0, voir Fig. 9a); et (ii) dans

une phase QH (λso = 0, B 6= 0, voir Fig. 9b). Pour un champ magnétique suffisamment fort on

24



2

31

0

2

31

0

QSH QH

a) b) B

Figure 9: Schéma d’un conducteur à quatre terminaux en a) phase QSH et en b) phase QH.

Les traits bleus solides et rouges en tirets représentent les états de bord pour les électrons de

spins up et down respectivement.

s’attend à voir le schéma correspondant à la phase QH. Cependant, pour passer des états de

bord de type QSH à ceux de type QH, on doit inverser le sens de propagation d’une des deux

espèces de spin. On appellera celle-ci spin “insatisfait” dans la suite (lignes en tirets rouges en

Fig. 9). Dans notre travail, nous avons étudié cette transition en détails.

Afin de développer l’intuition sur ce problème nous avons effectué des calculs de structures

de bandes dans trois cas différents: les deux cas décrits ci-dessus ainsi que le cas où l’on applique

ensemble un couplage spin-orbite et un champ magnétique (voir Fig. 10). La structure de bandes

d’un ruban de graphène dans la phase QSH est assez différente de celle calculée en phase QH.

Dans la phase QH le champ magnétique transverse donne lieu à l’apparition de niveaux de

Landau εn = ±(~vF/lB)
√

2|n|, avec lB =
√
~/(eB), qui deviennent dispersifs proche des bords

du ruban (Fig. 10a). Lorsque le niveau de Fermi est placé entre deux niveaux de Landau, le

transport est caractérisé par des états de bords dégénérés en spin, comme indiqué en Fig. 9b,

qui se propagent dans un sens imposé par le signe du champ magnétique. Dans la phase QSH, la

structure de bande consiste en des bandes hyperboliques au-dessus du gap QSH, ∆so = 3
√

3λso,

et une paire de bandes dispersives en-dessous (Fig. 10b). Ces bandes linéaires correspondent à

des états polarisés en spin localisés aux bords du ruban de graphène (voir Section 7.2). Lorsque

sont présents à la fois le champ magnétique et le couplage spin-orbite, la structure de bande

se résume en des termes simples (voir Fig. 10c). Pour des énergies de Fermi à l’intérieur du

gap spin-orbite telles que |EF | < ∆so (région ombragée), le système est dans la phase QSH

avec des canaux de spins opposés se propageant en sens inverses. Pour des énergies telles que

|EF | > ∆so, le système est dans la phase QH avec des canaux de spins opposés se propageant

sur un bord donné dans le même sens. Ainsi pour une valeur donnée de ∆so, la transition entre

les phases est gouvernée uniquement par l’énergie de Fermi et ne dépend pas du tout de la

valeur du champ magnétique (en négligeant la levée de dégénérescence Zeeman, très faible dans
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Figure 10: Structure de bandes d’un ruban de graphène (fauteuil semi-métallique) en a) phase

QH et en b) phase QSH. Lorsque sont présents à la fois le champ magnétique et le couplage

spin-orbite c), la structure de bandes résultante conduit à une phase QSH pour |EF | < ∆so

(région ombragée), et à une phase QH pour |EF | > ∆so. En comparaison avec les cas QH et

QSH purs, la dégénérescence en spin est levée (lignes bleues épaisses et tirets rouges). Cela est

particulièrement visible dans la bande la plus basse qui consiste en des branches polarisées en

spin à E = ±∆so. A mesure que l’énergie de Fermi traverse le gap spin-orbite, la localisation du

spin “insatisfait” (tirets rouges) se déplace d’un bord à un autre, tandis qu’il est complètement

localisé à l’intérieur du système quand EF = ∆so. Ceci est illustré dans les tracés de densité de

courant en d). D’autre part le spin “satisfait” (bleu épais) devient de plus en plus localisé sur

le même bord à mesure que l’énergie de Fermi traverse la région de transition (non présentée).

le graphène). Ce résultat assez remarquable est une conséquence directe de l’existence dans le

graphène d’un niveau de Landau à énergie nulle indépendant du champ magnétique: dès que

∆so 6= 0 la dégénérescence en spin du niveau de Landau à énergie nulle est levée, contrairement

aux autres niveaux de Landau qui restent dégénérés en spin [28]. Cette levée de dégénérescence

conduit à une phase QSH dans le gap spin-orbite correspondant.

In order to check these arguments, we performed a transmission calculation in a 4-terminal

Z-shaped setup schematically depicted on Fig. 11. We placed a top gate on the right half of the

sample, which controlled the position of the Fermi level locally there. By an appropriate choice

of gate voltage Vg it is possible to make a heterojunction between the QH and QSH phases. The
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Figure 11: Hétérojonction topologique avec des états de bord QSH sur la gauche et des états

de bord QH sur la droite. Cette jonction peut être réalisée expérimentalement en appliquant

une grille au-dessus de la partie droite de l’échantillon (zone grisée). Tandis qu’un type de spin

(bleu épais) peut se propager à travers la jonction, l’autre ne le peut pas et donne lieu à un état

chiral localisé à l’interface entre les phases QSH et QH connectant les deux bords du système.

“unhappy” spin (red dashed line) being injected from lead 0 cannot penetrate the QH phase

region and thus creates a chiral state at the interface between two phase. The results of the

corresponding calculations are given on Fig. 12.

Afin de vérifier ces arguments nous avons réalisé un calcul de transmission dans un système

en forme de Z à quatre terminaux schématisé en Fig. 11. Nous avons placé une grille au-dessus

de la moitié droite de l’échantillon, celle-ci contrôlant la position du niveau de Fermi localement.

Il est possible de faire une hétérojonction entre les phases QH et QSH par un choix approprié

de la tension de grille Vg. Le spin “insatisfait” (ligne en tirets rouges) injecté au contact 0 ne

peut pas pénétrer la région QH et créé ainsi un état chiral à l’interface entre les deux phases.

Les résultats des calculs sont donnés en Fig. 12. Tant que l’énergie de Fermi dans la partie

droite reste inférieure à la valeur de ∆so, les caractéristiques du transport restent non affectées

par la grille (insert de gauche en Fig. 12) Cependant, dès que l’énergie de Fermi de la partie

droite croise le gap QSH il apparâıt une jonction QSH-QH caractérisée par un état topologique

à l’interface (voir insert de droite en Fig. 12). Cet état chiral se propage le long de l’interface

jusqu’au bord opposé, puis est partiellement transmis dans les contacts 2 et 3 en des proportions

qui dépendent des détails microscopiques du modèle (énergies de Fermi, longueur de l’interface,

aspect plus ou moins lisse de la marche de potentiel, quantité de désordre, etc.). Ce système

constitue un commutateur très efficace de courant de charges polarisé en spin. En effet le courant

au contact 1 (respectivement 2) peut passer de un (respectivement zéro) à zéro (respectivement

une valeur non nulle) tout en étant polarisé en spin simultanément (voir Fig. 12).

En résumé, nous avons montré que la transition entre les phases QSH et QH dans le graphène
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Figure 12: Hétérostructure dans un système en forme de Z à quatre terminaux comme décrit

en Fig. 11. Probabilités de transmission du contact 0, d’où le courant est injecté, aux contacts

1 (courbes en pointillés), 2 (courbes en tirets) et 3 (lignes pleines) en fonction de la tension de

grille Vg. Lorsque Vg < (∆so−EF ), de sorte que les régions gauche et droite sont en phase QSH,

le courant est parfaitement transmis par les états de bord QSH comme indiqué par le tracé de

densité de courant dans l’insert à gauche. Lorsque Vg est suffisamment grand (Vg > (∆so−EF )),

de sorte que la partie droite entre dans une phase QH, une jonction QSH-QH est créée et est

caractérisée par un état chiral se propageant le long de l’interface. Ceci est illustré par le graphe

de densité de courant en insert à droite. Les courbes rouges correspondent à un changement

de tension abrupte à travers la jonction, tandis que les courbes bleues correspondent à une

transition douce.

est indépendante de la valeur du champ magnétique (en négligeant le faible effet de la levée

de dégénérescence Zeeman), et qu’elle peut être franchie simplement en ajustant l’énergie de

Fermi à l’intérieur du gap spin-orbite. Cette propriété unique est permise par l’existence de

niveaux de Landau d’énergie nulle (n = 0) dans le graphène. Dans une hétérojonction un type

de spin provoque l’apparition d’un état chiral le long de l’interface entre les phases QSH et

QH. La nature de cet état particulier est une question fascinante qui reste encore à étudier. La

transition ajustable entre les phases topologiques QSH et QH pourrait servir de commutateur

de courant de charges polarisé en spin avec potentiellement de très bons ratios on/off protégés

topologiquement.
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Part I

Non-equilibrium quantum transport at

the nanoscale
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Rapidly changing market of electronic devices sets up a lot of challenges for the manufac-

turing and design technologies. Modern computers are built on integrated circuits which allow

for more than 2.5 billion components put on a single chip. Gordon Moore in 1965 formulated

a hypothesis, now called Moore’s law, which says that the number of transistors squeezed on a

single integrated circuit doubles every two years. Of course there is a natural limitation to this

trend, which is the atomic scale. But before we reach this limit, we face another complication.

As the density of integrated circuits continues to increase, there is a resulting need to shrink the

dimensions of the individual devices of which they are comprised, see Fig. 13. As semiconduc-

Figure 13: Scaling of successive generations of MOSFETs into the nanoscale regime and emerg-

ing nanoelectronic devices.

tor feature sizes shrink into the nanometer scale regime, device behavior becomes increasingly

complicated as new physical phenomena at short dimensions occur, and limitations in material

properties are reached. At this stage classical circuit theory is not capable to describe physics

of nanoscale devices and quantum effects like tunnelling, size quantization, interference, and

correlations become important. Microscopic details of shape and atomic structure play a cru-

cial role in understanding the physical phenomena. All this motivates active searches for both

alternative materials (graphene, for example) and innovative manufacturing technologies. On

the theory side, quantum transport at the nanoscale has already become a mature branch of
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condensed matter physics. Impetuous increase of computer power resources conjugated with

the progress in device fabrication, stimulated development of powerful numerical techniques,

like Quantum Monte Carlo, Dynamical Mean Field Theory, Numerical Renormalization Group,

etc. These methods are now standard and in some cases are the only ones, which capture and

reproduce behavior of nanoscale samples (Kondo effect, for example).

In this part of the thesis, we will present a general framework for calculating transport

properties of small conductors out of equilibrium. In our case, ingredients which drive a system

out of equilibrium are finite (stationary) bias and/or time-dependent perturbation (AC bias,

oscillating gate voltage, time-dependent magnetic field, etc.). Since the case of time-independent

bias is a well established and solved problem, particular emphasis of this work is on dynamical

effects due to time-dependent fields.

There are two complementary approaches to coherent quantum transport, namely the scat-

tering matrix and Non Equilibrium Green’s function (NEGF) formalisms. Let us consider that

our physical setup consists of (semi-infinite) leads and a scattering region. Within the scat-

tering matrix approach we do not take into account internal details of the scattering region

and treat it as a ”black box”. One searches for a solution in the basis of the leads, which play

a role of waveguides, as a combination of incoming and outgoing waves. In contrast to this,

NEGF approach considers all the details of the scattering region, while the leads play a role

of boundary conditions. The scattering matrix approach allows for analytical solutions but for

a very limited range of problems, where physical system has a regular shape. When it comes

to numerical calculations, this method is more involved than its alternatives. On the contrary,

NEGF approach is completely general and can be applied to a system of arbitrary geometry

and with an arbitrary number of leads. This is because NEGF is more numerically oriented

and turns out to be very powerful for simulations of nanoscale devices. The only necessary

ingredient in this theory is a knowledge of equilibrium (retarded) Green’s function. However it

is not an issue because there exist very fast and efficient recursive techniques [29, 30, 22], which

give everything we need as a standard output.

In our work we elaborate a NEGF-based theory of quantum transport in presence of finite

frequency oscillating perturbations. In the literature there exist some pieces of information

regarding this problem, but as far as we know, a general theory has not been built yet. We

attempt to provide a rather general and simple framework to generalize existing results and give

recipes for calculating new observables (photon-assisted shot noise, charge and spin pumping,

etc.). Such a framework has been built within the scattering matrix formalism by M. Büttiker

in the early 90’s [1, 2, 3, 4, 5, 6, 7]. But, as we mentioned before, it is limited to regular system

shapes and low frequencies. We generalize the results obtained by Büttiker and express all the

quantities in terms of (stationary) Green’s functions, which are obtained as a standard output

of efficient numerical codes [29, 30, 22].
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This part of the thesis is organised as follows. In Chapter 1 we briefly discuss the main

characteristic length scales which govern the behavior of electrons’ motion in conductors. Then,

we define various physical regimes of electron transport, which are observed at certain relations

between these length scales. This Chapter ends with a discussion of theoretical approaches used

for describing electron transport at different levels of complexity. Chapter 2 is devoted to the

overview of the problem of stationary (DC) electron transport in the presence of electrochemical

potential (and/or temperature) gradients. Here we consider two complementary approaches

to this problem: scattering matrix (or Landauer-Büttiker) theory and the (non-equilibrium)

Green’s function theory. In Chapter 3 we define the problem of electron transfer in the presence

of oscillating in time (AC) perturbations. Section 3.2 is dedicated to the review of the scattering

matrix formalism, developed by M. Büttiker and co-workers, for tackling this problem and

discuss its main weak sides for practical use. Then follows Section 3.3, where we summarize

the main practical results of our (alternative) approach based on the knowledge of stationary

Green’s functions. Namely, in the form of a short ”cookbook” we present a rather long list of AC

observables, each of which (such as AC conductance or photocurrent) is related to the integral

(over energy) of the trace of a product of stationary (DC) Green’s functions. In Section 3.4 we

provide some technical details explaining how to evaluate the energy integrals in practice, and,

as an application of our theory, consider two examples of calculating the AC conductance: a

quantum point contact and a Mach-Zehnder interferometer in the quantum Hall regime.

Finally, the full machinary used to derive the expressions of Section 3.3 is developed in

Chapter 4. It provides a set of simple rules allowing to derive any new expression beyond

those given explicitly in this thesis. Section 4.1 briefly introduces the necessary notations and

main results of the Keldysh formalism. Section 4.2 focuses on the particular case where the

perturbation is periodic in time. We then proceed with developing systematic perturbative

expansions around two distinct limits: first we provide a diagrammatic technique to expand the

results in powers of the amplitude of the perturbation. Second, we expand around the adiabatic

limit where the frequency of the AC perturbation is very small. These expansions are presented

in Section 4.3 (perturbation applied inside the system) and Section4.4 (perturbation in the

electrodes). Section 4.5 concludes this Chapter and the first part of the thesis.
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Chapter 1

Introduction

In this chapter we will give a general idea of the possible transport regimes in small conductors.

Introducing the main length scales, such as the Fermi wavelength λF , elastic mean free path

le, localization length ξ, and phase coherence length lφ, we can distinguish between different

behaviors (or regimes) of a physical system, from a purely ballistic to diffusive and even localized

depending on how these scales compare to the system dimensions. For example, in the coherent

ballistic regime, electrons experience no scattering on a disorder behaving like electromagnetic

waves in a waveguide and analogues to most optical phenomena can be observed [31, 32, 33,

34, 35, 36, 37, 38, 39, 40]. In this case, the geometry of a sample plays very important role as

the only possible scattering process occurs at the boundaries. In the diffusive regime, electrons

undergo a lot of random scatterings on impurities and imperfections of a lattice performing a

random walk while travelling through the sample. This case brings us to a classical limit, when

leading order effects are given by the Drude model. However, if system sizes are smaller than

the phase coherence length, traces of quantum interference can be observed as corrections to the

classical picture. These include weak localization and antilocalization corrections and universal

conductance fluctuations. Even more, when phase coherence is preserved but disorder in a

system is quite strong, one can see the very intriguing phenomenon of Anderson localization,

when the resistance of the sample grows exponentially with its length demonstrating strongly

non-Ohmic behavior.

Finally, we will also briefly discuss a hierarchy of approaches to the problem of electron

transport and see which of them are applicable in certain transport regimes.

1.1 Regimes of electron transport

In this thesis we are primarily interested in two-dimensional or quasi one-dimensional con-

ductors. So, let us consider a conductor of length L and width W connected to two electron

reservoirs. Electronic motion inside the conductor strongly depends on the relation between
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the conductor dimensions and characteristic length scales, which are defined by the micro-

scopic processes occuring when an electron traverses from the left reservoir to the right one.

Thus, one can discriminate between several transport regimes (see below). Now we are going to

define the characteristic length scales of the system and discuss how various relations between

them affect the electron dynamics.

In the absence of a magnetic field there are four major length scales which govern the elec-

tron motion through the system. First of all, it is the wavelength of an electron, λF , which is

also called Fermi wavelength since at low temperature only electrons close to the Fermi surface

contribute to all physical observables. Another aspect which introduces an important length

scale is the fact that real samples always contain disorder: impurities or lattice imperfections.

Then, we can introduce the average length travelled by the electron between two successive

scatterings, the (elastic) mean free path, le, where the subscript means that the scattering is

elastic and can only change the direction of electron momentum without changing its energy

(disorder is static). Another important length scale is called phase relaxation length lφ. This

length characterizes processes which randomize the phase of the electronic wave. These include

inelastic scattering with dynamic quasiparticles, like phonons for example, and collisions be-

tween electrons. The former lead to energy relaxation and by this destroy information about

the initial electron phase, while the latter do not change the total momentum of the electronic

subsystem but destroy the phase coherence of individual carriers. So, lφ is the average distance

an electron travels before loosing its phase coherence. It should be noted that impurities can

also lead to phase breaking processes provided they have an internal degree of freedom (spin,

for example) which can change a state of the impurity in the scattering process. Finally, if the

conductor maintains phase coherence (its size is smaller than lφ), then in the presence of dis-

order interference caused by multiple scattering events may lead to an exponential localization

of the electron wave function on a scale ξ called the localization length. This scale becomes

important when the conductor length becomes comparable to it.

Having defined the main length scales we can discuss the transport regimes which arise from

the competition between the former. One of the smallest scales is the Fermi wavelength λF . If we

assume that electrons occupy the states within a Fermi sphere up to some maximal momentum

kF , then in 2D we have λF = 2π/kF =
√

2π/n, where n is the electron density. In metals because

of a high electron density we typically have λF ∼ 1Å, however in semiconductors it can be up to

a few hundreds of nanometers (for example, λF = 35 nm for electron density n ' 5×1011/cm2).

In this thesis we are interested in quantum effects on the electron transport resulting from

an interference of phase coherent electrons. This branch of condensed matter physics is called

mesoscopic physics. So, in what follows we implicitly assume that the conductors under interest

are phase coherent, i.e. L,W < lφ. One should note that this is a typical case in low temperature

experiments as phase breaking processes become considerably suppressed at high temperatures,
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where lφ ∝ T−p (p > 0). On the other hand if we deal with a system of a size bigger than lφ,

we can divide it into coherent subparts, inside of which the transport is coherent, and then

simply apply a law of adding resistors in parallel and/or in series to find the resistance of the

whole sample. So, in order to classify various regimes, we will use L = min(L,W, lφ). It is also

important to remember that the localization length ξ � le because multiple electron scatterings

are needed to produce a localized state of an electron. For example, in a quasi one-dimensional

wire of finite width, we typically have ξ/le ' 2W/λF .

Ballistic regime (L� le � ξ). Here we can neglect the disorder effects and the resistance

does not depend on the sample length as in the case of Ohm’s law. The resistance comes from

the contact resistance due to connection to the reservoirs. A particle propagates through the

conductor bouncing off the boundaries.

Diffusive regime (le � L � ξ). An electron when travelling through the conductor

undergoes a big number of (elastic) scatterings relaxing the momentum and its motion resembles

a random walk. The leading order contribution to the resistance is given by the Drude model,

while interference effects (like weak localization (WL) or universal conductance fluctuations

(UCF)) give corrections to it. The resistance thus (to leading order) grows linearly with length

recovering the Ohm’s law.

Localized regime (le � ξ � L). In this case as a consequence of both a strong disorder

and a destructive interference the electron wave function is exponentially localized in space.

Then, as was show by Anderson [41], the resistance demonstrates strongly non-Ohmic behavior

and grows exponentially with the conductor length.

In this thesis we mainly focused on the applications of our theory to ballistic samples at low

temperature. However, it is straightforward to extend it to a broader class of systems because

the formalism developed is rather general.

1.2 Approaches to electron transport

In this small section we will briefly mention various theoretical approaches to the problem of

electron transport. We summarize them in a table in the order of increasing complexity, see

Fig. 1.1. Semiclassical approaches, like drift-diffusion equations or Boltzmann equation, can be

used to describe satisfactory effects happening on a level of the Drude model, i.e. they do not

take into account interference effects. These can be used to describe leading order effects in the

diffusive regime. If one wants to look at the interference corrections or describe the ballistic or

localized regime, it is necessary to use one of the quantum approaches.

In this thesis we will use the Green’s function approach, more specifically the Keldysh non-

equilibrium Green’s function (NEGF) formalism [43, 44, 45, 46, 47], which is rather general

and can be applied at least in principle to any transport regime. We will explicitly neglect the
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Exact Difficult
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Figure 1.1: Hierarchy of approaches to the electron transport. Adapted from [42].

electron-electron interactions and thus the theory developed in the thesis is accurate up to a

one-particle approach. Applied to ballistic transport problems, it is equivalent to an alternative

scattering matrix formalism [48, 49, 50, 51, 45], which is basically a solution to a one-particle

Schrödinger equation.

In the next chapter we will review these two approaches and their application to a stationary

(DC) electron transport.
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Chapter 2

Stationary electron transport

In this chapter we address the problem of stationary electron transport. It is a common situation

for a case when various subparts of a system are in a local thermal equilibrium. Then, gradients

of temperature or electrochemical potential give rise to a directed flux of heat or charge in

the system according to laws of thermodynamics. This problem is rather old and has been

described at different levels by the approaches from Fig. 1.1. However for a particular case of

phase coherent systems, there are two major approaches which will be discussed in the two

subsequent sections: scattering matrix approach and the Green’s function approach. They rely

on two distinct but complementary points of view on the problem. Imagine a mesoscopic system

connected to multiple semi-infinite leads, see Fig. 2.1.

Within the scattering formalism we search for reflected and transmitted electronic waves in

the leads resulting from scattering of an incident wave on the sample. By doing this it is not

required to know any information about the sample itself, we treat it as a black box which only

reacts in response to the incoming waves in the form of the scattered ones.

On the other hand, with the Green’s function approach one takes a different point of view.

By ”integrating out” the leads, the otherwise infinite problem gets reduced to the size of the

sample. Thus, one takes into account all the microscopic details of the mesoscopic sample while

the effect of the leads enters the formalism through the so-called self-energies, which play a role

of boundary conditions.

Each of these methods has its advantages and weak sides as we will see below. However in

most cases they are equivalent and give the same results, while the choice between one method

or the other depends on convenience and a specific problem at hand.

2.1 Scattering matrix approach

This section is devoted to a method, which proved to be very useful in describing small coherent

conductors in a ballistic regime. Its main ingredient is a knowledge of the so-called scattering
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ΨR
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ΨL
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ΨL
out

ΨR
out

Figure 2.1: Mesoscopic sample connected to two semi-infinite ideal leads. By arrows we denote

incoming and outgoing waves in the left and right contacts.

matrix and it is essentially a rather general solution to a Schrödinger equation. Below we will

introduce the scattering matrix and discuss the main idea and advantage of describing electron

transport in terms of this quantity.

2.1.1 Scattering matrix and the Landauer-Büttiker formula

Imagine that we have a mesoscopic system connected to external reservoirs via perfect leads,

see Fig. 2.1. Under perfect leads we imply semi-infinite contacts of a regular shape with a

translational symmetry. In the scattering approach we do not care about the internal details of

the sample and we treat it as a ”black box”. On the other hand, what is important is to know

the system response to an incoming electron wave. So, we are normally working in the basis of

the leads and are searching for transmitted and reflected waves inside them resulting from the

incident wave scattering on the mesoscopic system. One can thus classify the waves in the whole

system into two categories: ”incoming” and ”outgoing” with respect to the mesoscopic sample.

It is instructive to consider a simple case when the leads on Fig. 2.1 are one-dimensional and

described by a simple Schrödinger equation,

− ~2

2m

d2

dx2
Ψ(x) = EΨ(x). (2.1)

Let’s also assume that the mesoscopic system to which they are connected is just a piece of

the same one-dimensional lead. So, the whole system is just an infinite one-dimensional wire.

Now consider a small bias V applied between the leads. We are interested in the conductance

of such a structure. It is well-known that because of the Pauli principle only electrons near the

Fermi surface contribute to the current. Then, the energy gain of the particles moving due to

the applied bias is given by,

eV =
1

2
m(vF + δv)2 − 1

2
mv2

F = mvF δv +
1

2
m(δv)2. (2.2)
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If the bias is small, we can neglect the second term and find the current through the system

as I = enδv, where n = kF/(2π) (spin not included) is the electron density in 1D. Thus, we

obtain

I = e
kF
π

eV

mvF
=
e2

h
V, (2.3)

where we have used mvF = ~kF . Then the conductance reads

G =
I

V
=
e2

h
. (2.4)

It is a rather important conclusion which tells us that the conductance of a one-dimensional

wire without scatterers is a universal constant. We can generalize it on a case of a quasi one-

dimensional wire of a finite width W . Then one has to solve a 2D Schrödinger equation with

corresponding boundary conditions,

− ~2

2m

(
d2

dx2
+

d2

dy2

)
Ψ(x, y) = EΨ(x, y), (2.5)

Ψ(x, y = 0) = Ψ(x, y = W ) = 0. (2.6)

This brings us to the concept of transverse channels or modes, since the wavenubmer in y-

direction gets quantized due to confinement. Thus, the eigenvalue problem leads to the solution

of the form,

Φ±n (x, y) = C sin(qny)e±ikxx, E =
~2

2m

(
k2
x + q2

n

)
, (2.7)

qn =
nπ

W
, n = 1 . . . N, (2.8)

where the maximal number of channels N = int(kW/π), k =
√

2mE/~. If we deal with a

perfect wire, i.e. if there is no disorder in it which might cause backscattering and mode-mixing,

then each transverse channel at a given integer n is independent of the others and completely

equivalent to the one-dimensional wire discussed above. In this case the conductance at a given

energy is simply given by the number of open transverse modes times the conductance quantum

(2.4). One should note that the normalization constant C in Eq.(2.7) is chosen so that each

channel carried unit flux and thus contributed a single conductance quantum to the overall

conductance of the wire.

Now we are prepared to discuss a general case of arbitrary system connected to ideal leads,

Fig. 2.1. In order to describe a response of a mesoscopic system to the incident waves, we can

write down the electronic wave function at each side of the system in the form,

ΨL(x, y) = Ψin
L + Ψout

L =

NL∑
n=1

[
cinn,LΦ+

n (x, y) + coutn,LΦ−n (x, y)
]
, (2.9)

ΨR(x, y) = Ψin
R + Ψout

R =

NR∑
n=1

[
cinn,RΦ−n (x, y) + coutn,RΦ+

n (x, y)
]
. (2.10)
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Here the concept of the scattering matrix is introduced. It is a matrix, which provides a relation

between the coefficients cinn,L/R of the incoming waves and the coefficients coutn,L/R of the outgoing

ones. If we introduce vectors cin/out =
(
c
in/out
1,L , . . . , c

in/out
NL,L

, c
in/out
1,R , . . . , c

in/out
NR,R

)T

, then one can

write

cout = Scin, (2.11)

where S is a NT ×NT (NT = NL +NR – total number of modes) scattering matrix, which can

be conveniently decomposed into sub-blocks as

S =

(
r t′

t r′

)
. (2.12)

Here, if we imagine a wave incident on the system from the left, the NL×NL matrix r describes

the reflected wave exiting through the left lead, and the NR × NR matrix t describes the

transmitted wave in the right lead. Similarly, r′ and t′ describe reflection and transmission for

waves coming from the right lead.

Now we consider main properties of the scattering matrix. First of all, current conservation

leads to the conclusion that S is unitary. Indeed, the flux incoming on the system must be equal

to the outgoing flux,

cin†cin = cout†cout. (2.13)

Then, using the definition (2.11), we come to

S†S = SS† = 1. (2.14)

Another useful property of the scattering matrix is the Onsager reciprocity relation, which holds

irrespectively of a system under consideration in the presence of local thermal equilibrium at

small bias (linear regime). When the system is in the external magnetic field B, then under

reversing the field direction scattering matrix gets transposed

[S]−B =
[
ST
]
B
. (2.15)

Though Onsager relations are rather general and may be derived from the thermodynamic

arguments, one can demonstrate that Eq.(2.15) holds from a very simple consideration [45]. In

the presence of a magnetic field, using the minimal coupling substitution (−i~∇ → −i~∇+eA,

where [∇×A] = B) in the Schrödinger equation it straightforward to find that [Ψ∗(x, y)]−B =

[Ψ(x, y)]B [45]. In other words, if we know a solution for the magnetic field B, it is enough to

take its complex conjugate to find the solution at −B. But taking complex conjugate transforms

incoming waves into outgoing ones and vice versa (see Eq.(2.7)). Therefore, we can write(
cin
)∗

= [S]−B
(
cout
)∗
. (2.16)
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Then, combining Eq.(2.16) with the definition (2.11) one finds

[S∗]−B =
[
S−1

]
B
. (2.17)

Finally, the unitarity condition (2.14) ensures that S−1 = S†, which immediately yields Eq.(2.15).

The scattering matrix formalism is useful for studying electron transport in coherent sys-

tems because as soon as we know the scattering matrix of a problem, we can directly find

the conductance between any pair of the leads connected to a mesoscopic system using the

Landauer-Büttiker approach [48, 49, 50, 51, 45]. Within this approach, if we have a mesoscopic

sample connected to M semi-infinite leads, then the current flowing into the lead α can be

found from

Iα =
e

h

∫
dE

M∑
β=1

[Tαβfβ(E)− Tβα(E)fα(E)] , (2.18)

where Tαβ is a transmission coefficient from lead β to lead α at a given energy, fα(E) is a

Fermi-Dirac distribution in lead α, and e > 0 is the elementary charge. Since we expect to see

no net current at (global) equilibrium (fα(E) ≡ f(E) for α = 1, . . . ,M) we deduce that

M∑
β=1

Tαβ(E) =
M∑
β=1

Tβα(E) = Nα(E), (2.19)

where Nα(E) is the number of open channels in the lead α. The last equality is a simple sum rule

which follows from the fact that we perform a summation of transmissions over all recipient

electrodes provided we inject particles through the lead α. Therefore since we assume ideal

semi-infinite leads, this quantity is simply given by the number of open modes in the source

lead at energy E (see discussion after Eq.(2.7)) [45]. Exploiting these properties we finally get

Iα =
e

h

∫
dE

M∑
β=1

Tαβ(E) [fβ(E)− fα(E)] = − e
h

∫
dE

M∑
β=1

[Nα(E)δαβ − Tαβ(E)] fβ(E). (2.20)

If we imagine that the bias applied between the contacts is small, then the current can be

expressed via the conductance matrix as1

Iα =
M∑
β=1

Υαβ(Vβ − Vα) =
M∑
β=1

ΥαβVβ, (2.21)

Υαβ =
e2

h

∫
dETαβ(E)

(
− ∂f
∂E

)
, (2.22)

Υαβ = −e
2

h

∫
dE [Nα(E)δαβ − Tαβ(E)]

(
− ∂f
∂E

)
. (2.23)

1We use Υαβ instead of Gαβ to clearly distinguish the conductance matrix from various types of Green’s

functions introduced in the thesis.
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As one can see the only ingredient necessary to find the transport properties of a multiterminal

system is the matrix of transmission coefficients between the contacts. The point is that it is

directly related to the scattering matrix via

Tαβ(E) =
∑
n∈α

∑
m∈β

τnm(E), τnm(E) = |Snm(E)|2 , (2.24)

where the double summation runs over all open channels in the ”source” lead β and all open

channels in the ”drain” α; τnm(E) is a transmission probability between the mode m in lead β

and the mode n in lead α.

Onsager relation (2.15) for the scattering matrix leads to the following symmetry of the

conductance matrix elements,

[Υαβ]B = [Υβα]−B . (2.25)

In the end, we note that in a case when a mesoscopic sample can be decomposed into several

parts, for each of which we know a scattering matrix, the scattering matrix for the whole sys-

tem can be easily found by combining the scattering matrices of the individual parts [45]. By

doing this one takes into account all Feynman paths consisting of all possible successive reflec-

tions/transmissions between the parts of the system before the wave gets finally transmitted

or reflected into the contacts.

To conclude, it is necessary to say that the scattering approach considered in this section is

particularly useful when it is possible to do the calculation of a scattering matrix analytically

since the results are very intuitive and allow for a simple physical interpretation. However when

a system has a nonregular shape, disorder, or when it is necessary to consider various types of

particle-particle interactions, this approach is not efficient in practice. In this case a standard

method to choose is based on Green’s functions. We will discuss it in the next section.

2.2 Green’s function approach

In this section we recall the main idea behind the use of the so-called Green’s functions in

describing stationary electron transport in multiterminal devices. The main advantage of this

method is that it is rather general, can be fairly easily extended to take into account multiple

ingredients (like disorder, electric and magnetic fields, electron-phonon and electron-electron in-

teractions, etc.), and is much more numerically oriented than the scattering approach described

in the previous section. The latter feature is very important since, at present, the computer

power resources available are enough to simulate realistic devices in a couple of hours or days.

This stimulated a big progress in this direction and nowadays computer-assisted science is a

mature field of research.
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2.2.1 Definition of a retarded Green’s function

Let us start with a definition of a typical model system. Imagine a system which consists of

a central part, which we will call a scattering or device region, connected to M semi-infinite

leads, see Fig. 2.2. The leads are assumed to have a translational symmetry so that one can

0

1

2

3

4

Figure 2.2: Sketch of a multi terminal mesocopic system connected to M = 4 leads. Numbers

with a bar on top denote the parts of our system, i.e. 0̄ for the device region and 1̄...4̄ for the

leads.

single out a unit layer in each of them, which is infinitely repeated. The system in total is kept

out of equilibrium (but in a stationary state) by assuming a local thermal equilibrium in the

contacts with fixed temperatures and chemical potentials. The goal is to find currents flowing

through the contacts in response to the gradients of chemical potential and/or temperature.

In order to simulate such a device it is common to use a tight-binding model with a Hamil-

tonian

Ĥ =
∑
n,m

Hnmc
†
ncm, (2.26)

where c†n (cn) is a usual creation (destruction) operator on site n. The site index n is very

generic and includes all the degrees of freedom present in the system (spatial, momentum,

spin, electron/hole, orbital, etc.). This kind of Hamiltonian can be obtained in various ways,

via a discretization of a usual Schödinger equation on a lattice or by using an appropriate

localized basis set (Wannier functions) in a procedure of the second quantization. In any case

Eq.(2.26) is the most general form of the model Hamiltonian if one neglects interactions between

the particles. Then, in terms of the (infinite) H matrix the retarded Green’s function can be
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defined as

G(E) = (E + iε−H)−1 , (2.27)

where ε is an infinitely small positive number. This is one of the two basic quantities one needs

to know to solve a stationary transport problem. One should note that even if we defined the

retarded Green’s function in Eq. (2.27), it is impossible to find an inverse of the infinite matrix.

To resolve this issue, there is one important step in this formalism, namely integrating out the

leads. We will outline it further.

2.2.2 Integrating out the leads: self-energy

We will enumerate different parts of the system by numbers with a bar on top: 0̄ for the device

region and 1̄, . . . , M̄ for the leads (see Fig. 2.2). For convenience it is useful to introduce a

notation Am̄m̄′ , which refers to the corresponding sub-block of the full infinite matrix A. Let us

split the full Hamiltonian matrix as follows

H = H + V =


H0̄0̄ 0 0 . . . 0

0 H1̄1̄ 0 . . . 0

0 0
. . . . . . 0

0 0 0 . . . HM̄M̄

+


0 H0̄1̄ . . . H0̄M̄

H1̄0̄ 0 . . . 0
... 0 . . . 0

HM̄ 0̄ 0 . . . 0

 , (2.28)

where H consists of the Hamiltonian matrices of the device region and the leads when they are

decoupled, and V is the coupling between them. If we define the Green’s function calculated

via Eq.(2.27) with H as g, then we can write

(E −H)G(E) = 1, (2.29)

(E −H) g(E) = 1, (2.30)

where 1 is a unit matrix. Now inserting the splitting (2.28) into Eq.(2.29) and using Eq.(2.30)

we come to the Dyson equation,

G = g + gV G. (2.31)

Since we are interested in a current flowing through the device, we need to calculate explicitly

the G0̄0̄ sub-block of the full Green’s function. This can done using the Dyson equation (2.31).

Thus, one obtains for the retarded Green’s function inside the device region

G0̄0̄(E) =

(
E −H0̄0̄ −

M∑
m=1

Σr(m;E)

)−1

, (2.32)

where H0̄0̄ is the Hamiltonian matrix projected inside the device region (see Fig. 2.2) and

Σr(m;E) is the (retarded) self-energy due to the presence of the lead m. The latter is given by,

Σr(m;E) = H0̄m̄(E + iε−Hm̄m̄)−1Hm̄0̄. (2.33)
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In contrast to the general definition (2.27), the quantities in equations (2.32) and (2.33) are

finite size matrices. As we will see below, knowledge of these quantities is all we need to calculate

the DC conductance of a mesoscopic system.

2.2.3 Meir-Wingreen formula for current

As soon as one knows the retarded Green’s function of the device and self-energies of the

leads, it is possible to make use of the Landauer formalism outlined in the previous chapter.

Thus, it is necessary to find an expression for the transmission matrix Tmm′(E) between any

pair of contacts (see Eq.(2.20)). Since initially we assumed the leads to be kept at different

temperatures and chemical potentials, the problem of electron transport is essentially non

equilibrium. In order to treat it properly one has to apply the non equilibrium Green’s function

(NEGF) formalism [43, 46, 47]. This is the central method used in the thesis and it will be

addressed in the subsequent chapters. What one has to know for the moment is that using

NEGF it is quite straightforward to show that any element of the transmission matrix can be

expressed via G0̄0̄(E) and Σr(m;E). Then we can finally write down the Meir-Wingreen formula

for the current [52, 45],

Im =
e

h

∫
dE

M∑
m′=1

(fm′ − fm) Tr
[
G0̄0̄Γm′G

†
0̄0̄

Γm

]
, (2.34)

where the Fermi function fm(E) = 1/(e−(E−µm)/kTm + 1), and we have introduced a standard

broadening matrix

Γm(E) = i
[
Σr(m;E)− Σr†(m;E)

]
. (2.35)

At small bias we can express the current via the conductance matrix (as in Eq.(2.21))2,

Im =
∑
m′

Υmm′(Vm′ − Vm) =
∑
m′

Υmm′Vm′ , (2.36)

Υmm′ =
e2

h

∫
dE

(
− ∂f
∂E

)
Tr
[
G0̄0̄Γm′G

†
0̄0̄

Γm

]
, (2.37)

Υmm′ =
e2

h

∫
dE

(
− ∂f
∂E

)
Tr
[
G0̄0̄Γm′G

†
0̄0̄

Γm − iδmm′
(
G0̄0̄ − G

†
0̄0̄

)
Γm

]
. (2.38)

As we pointed out in the beginning of this section, the Green’s function formalism is a

powerful numerical tool. Indeed, equations (2.32) and (2.33) are the typical raw output of, say,

recursive Green’s function techniques [29, 30, 53, 22, 54, 55]. So, a calculation of conductance

or current noise is a trivial task with such tools at hand. In the next paragraph we will briefly

2In order to write Eq.(2.38) we used the relation: G0̄0̄ − G
†
0̄0̄

= G>
0̄0̄
− G<

0̄0̄
= −i

∑
m′ G0̄0̄Γm′G

†
0̄0̄

, where G<
0̄0̄

and G>
0̄0̄

are the lesser and greater Green’s functions inside the device region (see Section 4.1).
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review one of them based on a ”knitting algorithm” developed in Ref.[22]. This package called

KNIT3 was used to perform all the numerical calculations presented in this thesis.

2.2.4 The KNIT package

KNIT is a numerical tool for solving tight-binding problems with quadratic Hamiltonians as in

Eq.(2.26). It implements an attempt to make a solver which would not depend on a problem ge-

ometry or topology. All earlier existing codes were written for specific problems with a concrete

geometry and thus had to be considerably modified in order to adapt to different problems.

First great advantage of KNIT is that one can build a system site by site (just like one knits

some clothes) and thus simulate any geometry, which makes this package rather flexible. Second

advantage is that KNIT is a library compatible with a Python scripting language. The latter is

quite spread in the scientific community because of its simplicity but yet powerful capabilities.

The input of a typical KNIT calculation is a quantum system connected to semi-infinite

periodic electrodes, as on Fig. 2.2. In practice, one has to provide a tight-biding model that

describes the finite quantum region of interest as well as a description of the electrodes. For

the latter it is necessary to provide a tight-binding model for a unit layer and the inter-layer

coupling, which defines the direction in which this layer should be repeatedly translated to form

an electrode. The bare output of KNIT are various elements of the retarded Green’s function of

the system (device region) and the self-energies of all leads. This is enough to calculate a variety

of observables, like conductance, current noise, (local) density of states, density of particles on

a given site of the system, current density maps, etc. KNIT calculates any sub-block of the

Green’s function matrix on demand:

a) between the leads-system interface sites (to study global transport properties of the sys-

tem, such as conductance, shot noise, etc.)

b) at a given site inside the system (to study single particle density)

c) between neighbouring sites inside the system (to study local current density and build

current density maps)

For b) and c) KNIT calculates both a retarded and lesser (see Chapter 4.1) Green’s functions

of the system.

It is instructive to consider a very simple example of a KNIT script, which creates a two

terminal system and calculates its conductance as a function of energy. On Fig. 2.3 one can see

a 20 lines piece of code which does it. Let us discuss in details various parts of this script:

1. First, the hopping matrix t, the on-site energy matrix V, and the energy E at which

transport through our mesoscopic system is studied are defined in lines 1-3;

3For more details, visit http://inac.cea.fr/Pisp/xavier.waintal/KNIT.php.
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1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

t=knit.scalarM(1.)
V=knit.scalarM(0.)
E=-0.5
MyA=knit.rectangle([8,4],[0,3],t,v)
MyB=knit.rectangle([3,7],[5,0],t,v)
MyA.coller(MyB)

interface_contact1=knit.rectangle([1,4],[0,3],t,V)
interface_contact2=knit.rectangle([3,1],[5,0],t,V)
lead1=knit.unreservoirN(interface_contact1,t)
lead2=knit.unreservoirN(interface_contact2,t)

MySystemWithLeads=knit.systemtotal(MyA,lead1)
MySystemWithLeads.addlead(lead2)
system.visu2D(MySystemWithLeads, s+".MySystem")

for i in range(10):
E=(float(i)/10)*2.-1.99
G_MATRIX=obs.conductance_matrix(MySystemWithLeads,E)
print E,G_MATRIX[1,0]

Hopping matrix

On-site energy matrix

Size of the block: 8x4

Position of the block: x=0; y=3

Gluing B on top of A

System with 1 lead

Adding the second lead

Visualization

Calculation...
Printing results on the screen

Interface parts as
rectangular blocks...

Figure 2.3: Python script, which uses KNIT to construct a simple two terminal system and

calculate its conductance as a function of energy.

2. Second, in lines 4-6 we build rectangular blocks A and B and construct a system of a

required geometry by ”gluing” them together, as illustrated in Fig. 2.4a;

3. In lines 8-11 the interface contacts (unit layers) of the leads are created and then infinitely

repeated (with the inter-layer coupling t) to form the leads themselves;

4. Then, we create the total system (see Fig. 2.4b) by attaching the leads to a system defined

in the step 2 (lines 13-14), and plot it, saving the image in *.eps, and *.pdf files (line 15);

5. Finally, we make a loop on 10 different values of energy E, calculate the conductance

matrix of the constructed system at these values and print the results on the screen, see

Fig. 2.5.

We note that in the last step, the conductance matrix was calculated with a predefined function

obs.conductance matrix, which implements exactly Eq.(2.38). This was just a simple example

of a DC conductance calculation for a system in two dimensions. Of course, one can imagine

more practical applications of this tool as has been done in Refs.[22, 56, 57, 58, 59, 27, 60].

And, in principle, any physical problem which may be modeled by a quadratic tight-binding

Hamiltonian can be solved using KNIT4.

4An improved version of the KNIT package, called ”kwant”, is now being finished in the group of X. Waintal.
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MyAlead1

lead2

MyA

(a) (b)

Figure 2.4: (a): System MyA constructed by gluing two rectangular blocks together. (b): Total

system with attached leads. Red fading out circles are used to depict semi-infinite leads.

Figure 2.5: Results of a conductance calculation for MyA printed on a user’s screen.

2.3 Summary

We have considered two complementary approaches to the coherent quantum electron transport:

scattering matrix formalism and the Green’s function formalism. They implement different

points of view on the problem. The scattering approach is based on the idea of arbitrary system

connected to semi-infinite ideal contacts. Then one looks for the asymptotic wave solutions

generated in the contacts as a result of scattering of the incident wave on the system. This

theory relies on the knowledge of the scattering matrix, which provides a relation between the

amplitudes of the incoming and outgoing waves in the system. Provided this quantity is known,

one can get access to such observables as the linear conductance or current noise, for example.

The main advantage of this method is its simplicity and intuitive interpretation of the results.

However, though it is very general, only the simplest models can be solved explicitly.

It implements a much more efficient algorithm for finding the Green’s functions and self-energies and thus

demonstrates much better performance. For more details, please contact: xavier.waintal@cea.fr.
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In the cases when it is impossible to find an analytical answer and numerical simulations

are needed, the alternative, Green’s function, method turns out to be much more powerful.

In contrast to the scattering approach, it takes into account all the microscopic details of the

system while the presence of the leads enters the formalism via the self-energies. The basic

object one needs to know is the (retarded) Green’s function. Though in some trivial cases

it is possible to make analytical calculations with this approach, it is perfectly designed for

numerical simulations. The latter is its main advantage since systems of arbitrarily complex

shape with such ingredients as disorder, external fields and various types of interactions can

be, in principle, considered.
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Chapter 3

Dynamical electron transport at finite

frequency

In this chapter we will consider a problem of a non-equilibrium electron transport in the presence

of oscillating in time perturbations, as, for example, AC bias, AC gate voltage, time-dependent

magnteic field, etc. This problem is not completely new and obtained considerable attention

in early 90’s in the group of M. Büttiker. The theory was built from the scattering matrix

point of view for the case of small low-frequency perturbations. Later, in the beginning of the

first decade of the 21st century, the interest to this problem was revived in the pioneer works

by H. Guo and a few others [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. This time

the theory was based on the NEGF formalism. However, even after these attempts there was

no general framework of how to address a transport problem with time-periodic fields. Pieces

of the results derived so far are diffused in literature and lack generality, which makes them

hardly usable for a wider community of researchers. On the other hand, there is a new tide

of interest to this problem from an experimental point of view nowadays. This stimulated us

to try to generalize the results of both scattering and Green’s function approaches and give

general practical recipes to the wide community of researchers familiar with stationary problems

discussed in the previous chapter.

In the beginning of the chapter we define the problem and discuss four important limits

which will be elaborated further. Next, a brief review of the scattering matrix-based results will

be given. Then, we will present (without derivation) a ”dictionary” of the results obtained with

the help of our theory in the wide-band limit (see below). Finally, to conclude this chapter we

discuss technical aspects of the calculations based on our formalism and three model examples

for the dynamical (AC) conductance in a nanowire, a quantum point contact, and a Mach-

Zehnder electronic interferometer.
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Figure 3.1: Multiterminal system with M = 4 leads influenced by an external (a) or an in-

ternal (b) perturbation. Red shaded region represents the part of the system affected by the

perturbation.

3.1 Definition of the problem

We consider a general multiterminal system consisting of a scattering region (central part)

and semi-infinite leads (see Fig. 3.1). The latter are kept at local thermal equilibrium with

corresponding temperatures and chemical potentials. We assume now that a time-dependent

perturbation (AC bias or AC gate voltage, for example) is applied to the system. General form

of the perturbation we consider takes the form

Ŵ = [cosωt]
∑
nm

Wnmc
†
ncm, (3.1)

where W is a rather arbitrary (Hermitian) matrix. Obviously, there are two distinct ways to

affect our system: by perturbing the scattering region 0̄ or the contacts 1̄ . . . M̄ . Though Eq.(3.1)

is rather generic and may described many types of excitations, we will, for concreteness, specify

the form of matrix W for these two cases.

Imagine that the perturbation is applied to one of the contacts (see Fig. 3.1a), however the

generalization to arbitrary number of contacts is straightforward. Then, we will assume that

W = eVac1m̄′ , (3.2)

where 1m̄′ is the identity matrix inside the contact m̄′. This is the case of an AC bias, though

one could in principle always find a basis in which W is diagonal. Various physical observables,

which can be calculated in this case will be given in the next sections. Formally we call them

a response to an external perturbation.

For the complementary case of a perturbation applied to the device region (see Fig. 3.1b),

we will consider

W = eVacW0̄0̄, (3.3)
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where the matrix block W0̄0̄ can take an arbitrary form inside the device region, allowing one

to include many types of perturbation such as electric gates (when W0̄0̄ is a unity matrix for

the perturbed region), for example. This case will be referred to as a response to an internal

perturbation.

As we will see below, there are two important limits for each of the two cases. Namely, one

can either assume that the amplitude eVac of the perturbation is much smaller than all other

energy scales while the frequency ω is arbitrary and vice versa. In the first limit, we will do a

systematic expansion in powers of amplitude while in the second one (adiabatic) – in powers

of frequency.

Before moving directly to the results of our theory, we are going to review in the next

section the alternative theory developed by Büttiker and co-workers [7] based on the scattering

approach. Afterwards, the two approaches will be compared.

3.2 Scattering matrix theory of finite-frequency electron

transport

In order to understand why the presence of oscillating potentials complicates the theory, let us

first discuss the stationary case. Imagine there is no time-dependent perturbation, Vac = 0. Then

we already know that at small bias the current is given by Eq.(2.21). One can immediately make

two important conclusions. First, due to the current conservation, the sum of the currents in all

electrodes should be equal to zero. In other words, this is simply the Kirchhoff’s law. Second,

the system must be gauge invariant meaning that any constant shift of all chemical potentials

in the leads has no effect on the current. As a consequence of these two properties we find that

the rows and columns of a conductance matrix must add up to zero,

M∑
α=1

Υαβ =
M∑
β=1

Υαβ = 0. (3.4)

Any physically correct theory of stationary transport has to satisfy these relations [61]. Like in

Section 2.1, we use here Greek letters instead of Latin letters to enumerate leads in order to

avoid confusion with the transverse channels numbers.

Now let us come back to the non-stationary case (Vac 6= 0). Our starting point will be a

situation when electrochemical potentials in the electrodes may oscillate, i.e. the case of external

perturbation. Then, at not too high frequencies the system under interest remains locally charge

neutral at all times [5]. Thus, we expect that current conservation and gauge invariance must

all also be satisfied in this case. If we express the current at electrode α as

Iα(ω) =
∑
β

Υαβ(ω)Vβ(ω), (3.5)
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then the dynamical conductance matrix elements must also satisfy Eq.(3.4). We remind that

according to our convention, an external perturbation is given by equations (3.1) and (3.2).

Therefore, we conclude that Vβ(ω) = Vac if lead β is affected by the perturbation, and Vβ(ω) = 0

otherwise.

3.2.1 Response to an external perturbation

As was first found by Büttiker [1, 5, 6, 7], if we calculate a response to an external pertur-

bation only (assuming for simplicity that there was no bias in the system before applying the

perturbation), then the AC conductance elements read

Υe
αβ(ω) ≡ dIeα(ω)

dVac
= −e

2

h

∫
dETr

[
1αδαβ − S†αβ(E)Sαβ(E + ~ω)

] f(E)− f(E + ~ω)

~ω
, (3.6)

where f(E) is a Fermi function (equal in all leads at zero DC bias), S(E) is a stationary

scattering matrix, and trace is taken over the transverse channels. The unit matrix 1α has

dimensions equal to the number of transverse channels below the Fermi level in lead α. The

idea behind is rather simple: according to the (first order) time-dependent perturbation theory

[62], a particle with energy E when travelling in the presence of a time-dependent perturbation

can be promoted to energies E ± ~ω by gaining/loosing a modulation quantum. This intuitive

picture will be used below to interpret various terms in the retarded Green’s function (see

Chapter 4).

As the theory was initially built for the low-frequency limit, it is enough to take into account

the leading in frequency term in the expansion of Eq.(3.6)

Υe
αβ(ω) = Υe

αβ(0)− iωedNαβ

dVac
, (3.7)

where Υe
αβ(0) is the stationary conductance matrix element (2.23), and the quantity

dNαβ

dVac
= − e

4πi

∫
dE

(
− ∂f
∂E

)
Tr

[
S†αβ

dSαβ(E)

dE
−
dS†αβ(E)

dE
Sαβ(E)

]
(3.8)

is the density of particles emitted at contact α as a consequence of perturbing the electrochem-

ical potential in lead β. The first term in the right-hand side of Eq.(3.7) describes a purely

adiabatic response, when the current follows the slow oscillation of the potential. At the same

time the second term is the correction to it which contributes to the non-adiabatic component

of the current oscillating out of phase with the voltage1. We will see below, that departure from

adiabaticity results in polarization of the device, which produces displacement currents. Now,

if one takes a sum of elements in the columns or rows of the conductance matrix (3.7), it turns

1The current at frequency ω as a function of time is given by: Iα(ω, t) = Re
[
Υαβ(ω)e−iωt

]
Vac.
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out that it does not vanish. The elements of the adiabatic part, Υe
αβ(0), add up to zero and

it is the second term in the right-hand side of Eq.(3.7), which violates Eq.(3.4). At the first

glance one could think that the theory is completely wrong because Eq.(3.4) are the general

requirements to be satisfied. However, in fact, it only means that there is an essential ingredient

missing.

To understand it better, we propose to consider a system of equations of classical electro-

dynamics:

j = jp +
∂D

∂t
, (3.9)

D = εE, E = −∇φ(r), (3.10)

divD = ρ, (3.11)

divjp +
∂ρ

∂t
= 0. (3.12)

Here, E and D are the electric field and the electric induction, j and jp are the full current density

and particle current density, while ρ and φ(r) are the density of electric charge and the scalar

potential, respectively. For systems of finite size these equations must also be supplemented by

the appropriate boundary conditions. Eq.(3.9) tells us that in the presence of time-dependent

fields the total current density is a sum of the density of moving charges (particle current)

and the displacement current. The latter originates either due to changing in time electric

field or because of a time-dependent polarization of a material. The effect of polarization is

incorporated into the permittivity ε (in linear materials). If we substitute Eq.(3.9) to Eq.(3.12)

and use Eq.(3.11), one readily sees that

divj = 0, (3.13)

which means that the total current density has neither sources nor sinks and is therefore con-

served. On the other hand, in accordance with the continuity equation (3.12), the particle

current density jp alone is not necessarily divergenceless and is thus not conserved in general.

To avoid confusion one has to remember that the experimentally measurable quantity is the

total current, so the fact that the particle current alone is not conserved is irrelevant. Equations

(3.10) and (3.11) combined together lead to the Poisson equation, which represents electron-

electron interactions. It is crucial to ensure the conservation of the total current. Thus, if one

wants to build a description which might be relevant for experiments, it is necessary to include

interactions at least at some mean-field level. We will show a simple scheme to do it below.

Finally, it is worth saying that in the stationary limit we neglect the terms containing time

derivatives in equations (3.9) and (3.12) and deduce that conservation of the particle density

automatically guarantees conservation of the total current density.

From this rather long discussion we have to learn that in the stationary case it is enough to

calculate the particle currents in all the contacts of the system to verify that they add up to zero.
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So, when searching for the stationary linear conductance matrix, one does not need to know

the actual potential profile in the system (but for non-linear effects in the I-V characteristics it

becomes important, see Ref.[63]), only the global difference of chemical potentials plays a role.

However, when time-dependent fields are present, besides the particle current one has to take

into account the displacement part as well. And only the sum of the two when added up for all

contacts vanishes. What we found above in Eq.(3.7) is the particle part of the total current. In

order to understand what is the displacement part, we come back to our multiterminal system

(Fig. 3.1) and write down the continuity equation for it,

M∑
α=1

Iα(t) +
dQ

dt
= 0, (3.14)

where Q(t) is a total charge in the scattering region 0̄. The fact that the particle currents do

not add up to zero in this context means that there is a varying in time charge piled up in

the device region. Indeed, performing a Fourier transform in this equation, and then taking a

derivative with respect to the oscillating voltage in the perturbed lead, Vβ(ω) ≡ Vac, we finally

get
M∑
α=1

Υe
αβ(ω)− iωdQ(ω)

dVac
= 0. (3.15)

Then, since
∑

α Υe
αβ(0) = 0, the role of the second term in the right-hand side of Eq.(3.7)

becomes obvious. If the system cannot respond adiabatically to the oscillation of the chemical

potential, then the non-adiabatic part of the current creates an extra charge density oscillating

with frequency ω in the device region (charge entering the leads out of phase relative to the AC

bias leaves in the scattering region a charge of opposite sign, polarizing the system). It would

not be an issue if electrons were non-interacting in reality and can in principle be considered as

a toy model. But they do interact and to complete our description we note that the oscillating

charge inside the device creates an oscillating voltage, which this time is internal according to

our classification (see Fig. 3.1b). Thus, one needs to calculate the response to it as well.

3.2.2 Response to an internal perturbation

Since the internal oscillating potential U(r, t) is induced, according to the discussion above,

by the initially applied external potential of the form (3.2), it will in general have a form of

Eq.(3.3). In this paragraph we use a continuous coordinate r instead of site indices to describe

the spatial dependence of the induced time-dependent potential. Then, Büttiker and co-workers

found [1, 5, 6] that the current response in a contact α due to the internal perturbation is given

by,
dI iα(ω)

dVac
= ieω

∫
d3r

δNα

δU(r)

dU(r, ω)

dVac
, (3.16)
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where the superscript i stands for internal and the quantity

δNα

δU(r)
=
∑
β

δNαβ

δU(r)
=

1

4πi

∫
dE

(
− ∂f
∂E

)∑
β

Tr

[
S†αβ(E)

(
δSαβ(E)

δU(r)

)
−

(
δS†αβ(E)

δU(r)

)
Sαβ(E)

]
(3.17)

is the density of particles, that are emitted at contact α if we perturb the scalar potential

profile locally at point r (in the device region 0̄). It is closely related to Eq.(3.8) summed over

the source leads, β, because if we perturb all the points in the device region, it is equivalent to

simultaneously perturbing all the contacts instead (with the potential of the opposite sign). In

the original works [1, 5, 6] the quantity (3.17) was given the name emissivity. Like Eq.(3.7),

formula (3.16) holds when the frequency of the perturbation is low. In this case one can say

that a particle traversing the system experiences the instantaneous potential and thus Eq.(3.17)

is written in a quasi-stationary limit via the functional derivatives δSαβ(E)/(δU(r)) of the

(stationary) scattering matrix with respect to the (stationary) scalar potential in the system.

3.2.3 The total response

As we have obtained both the response to the external AC bias (particle conductance) in

Eq.(3.7) and the induced internal potential (displacement conductance), Eq.(3.16), we can

write down the total dynamical conductance, which satisfies properties (3.4) as

Υαβ(ω) = Υe
αβ(ω) +

dI iα(ω)

dVac
. (3.18)

The only element of the ”puzzle” which is still missing is how to find the induced potential

dU(r, ω)/(dVac), which is necessary to determine the displacement term. However, this issue

can be resolved since we are interested in low frequencies so that this quantity can be found in

the quasi-stationary approximation. In this case, the potential we are searching for has to be

calculated from the Poisson equation2 [1, 6],

∆
dU(r, ω, β)

dVac
= −e

ε

[
dn(r, β)

dVac
+

∫
d3r′Π(r, r′)

dU(r′, ω, β)

dVac

]
, (3.19)

where the right-hand side is the density of charge at point r which consists of two parts. The

first term in the brackets is the density of particles injected inside the device at point r as a

consequence of the external perturbation in lead β. This density induces the internal potential

we are looking for, which in turn additionally changes the density of particles at r as described

by the second term in the brackets. The so-called Lindhard function Π(r, r′) provides a density

response at point r due to a potential change at point r′. It cannot be calculated in general

2We add an additional lead index to the potential U(r, ω, β) to show that it is induced by the external

perturbation of lead β.
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within the scattering approach, so one needs to do it separately [1, 64]. Büttiker and co-workers

have found [1, 6, 63] that the density of particles induced at point r by the perturbation of

lead β can be also expressed via the functional derivative of the scattering matrix and thus it

is closely related to the emissivity (see Eq.(3.17)),

dn(r, β)

dVac
=
∑
α

δNαβ

δU(r)

=
1

4πi

∫
dE

(
− ∂f
∂E

)∑
α

Tr

[
S†αβ(E)

(
δSαβ(E)

δU(r)

)
−

(
δS†αβ(E)

δU(r)

)
Sαβ(E)

]
. (3.20)

Indeed, if one uses the Onsager reciprocal relation (2.15), it is straightforward to see that for a

non-zero magnetic field B, [
dn(r, β)

dVac

]
B

=

[
δNβ

δU(r)

]
−B

. (3.21)

In fact, in the original papers the quantity in the left-hand side was given the name injectivity.

We complete our discussion of the scattering theory of dynamical quantum transport by a

simple particular case, where one does not have to solve Eq.(3.19) to find the induced potential

and therefore one can manage without knowledge of the Lindhard function. Let us assume that

we have a system made of a good metal which effectively screens any charge accumulation over

a Thomas-Fermi screening length. In this approximation, if we argue that the injected charge

due to varying in time potential in the contact β induces the internal potential U(r, ω, β), then

in turn this internal potential generates a density, which compensates completely the injected

charge [5],
dn(r, β)

dVac
dVac −

∑
α

δNα

δU(r)
dU(r, ω, β) = 0. (3.22)

Then, in the absence of a magnetic field using equation (3.21) we find

dU(r, ω, β)

dVac
=

[
δNβ/(δU(r))∑
α δNα/(δU(r))

]
B=0

. (3.23)

This result can be used in Eq.(3.16) to find the full dynamic conductance matrix (3.18). Then,

taking into account the fact that perturbing all the points inside the device is equivalent to

perturbing the contacts instead (see discussion after Eq.(3.17)), one can explicitly see that

Eq.(3.4) is satisfied, i.e. the total current is conserved and gauge invariant.

To summarize, in this section we have recalled the scattering matrix theory of AC electron

transport and found the formal expression for the dynamical conductance. Even though the

theory is in principle complete, it is inapplicable to most physical problems except for the

simplest ones, like, for example, a single level between the contacts [2, 4, 5]. Indeed, as we

have seen from the discussion above, to find the full dynamical response of the system, one

needs to calculate the functional derivative of the scattering matrix with respect to the change
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in the potential profile. Besides, one has to calculate somehow the Lindhard function as well.

Nevertheless, the theory is quite intuitive and may be served to give an insight into essential

points one has to to pay attention to in order to build a physically correct theory of AC quantum

transport with the help of other theoretical approaches. In the next section we will see how this

problem can be solved using the NEGF formalism.

3.3 Green’s function theory of the AC electron trans-

port: the cookbook

In this section we are going to present without derivation3 the main formulas one needs to know

in order to solve a problem of the quantum transport at finite frequency with the help of Green’s

functions. We already saw in the previous section how this can be done in the framework of

the scattering theory and what follows below is the alternative approach. It might be of great

interest to the experimentalists and theorists familiar with the stationary problem of electron

transport because we express all the (AC) observables in terms of the stationary (DC) Green’s

functions (see Section 2.2). And since the stationary problem is very well understood and many

numerical tools for solving it exist on the market, our theory makes it possible to extend their

capabilities to the AC regime.

The section is organised as follows. We start from a discussion of the response to the external

perturbation as we did in the previous section. Then, we present the expressions one has to

know to calculate the response to the internal perturbation – necessary ingredient in the current-

conserving theory. In the end we give an expression for the total response and provide a self-

consistent scheme which has to be employed in order to do the full calculation. Finally, we

briefly discuss how the results presented in this section can be related to the scattering approach

considered in the previous section.

Before we start, let us make several remarks. (i) As we have seen in the Section 2.2, in

the Green’s function formalism the observables (electric current, for example) are typically

expressed via the Green’s function of the device region, G0̄0̄. So, in order to present the results

in a compact and convenient way, for the rest of the thesis we introduce a notation,

Gl(E) ≡ G0̄0̄(E +
~ωl
2

). (3.24)

(ii) The expressions presented in this section are given in the so-called wide-band limit

(WBL), where the energy dependence of the electrodes (retarded self-energies) is neglected.

This is a situation relevant for massive metallic contacts with a high density of states. The most

general (but cumbersome) expressions without this approximation are given in Appendix A.

3The formalism necessary to derive the results of this section will be given in the next chapter.
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3.3.1 Response to an external perturbation

Let us start with the case when one of the contacts, say m′, is affected by the time-dependent

perturbation of the form given in equations (3.1) and (3.2). We assume for simplicity that

before applying it, there was no (DC) bias in the system, so that all chemical potentials in the

leads are equal. We are going to give a list of observables which comprise the response of the

system to such a perturbation.

The first important observable is the current Im(t) flowing through contact m. It can be

decomposed according to different harmonics of the perturbation as

Im(t) = Re
∞∑
l=0

Im(lω)e−ilωt. (3.25)

Then, the AC conductance matrix [7, 9] can be written as follows (compare with Eq.(3.6)):

Υe
mm′(ω) ≡ dIm(1ω)

dVac
=
e2

h

∫
dETr

[
ΓmG2Γm′G

†
0 − iδm,m′

(
G2 − G

†
0

)
Γm

] f(E)− f(E + ~ω)

~ω
,

(3.26)

where we added the superscript e to emphasize that this is the response function to an external

perturbation. Note that at small frequency (adiabatic limit) it simply reduces to the Meir-

Wingreen formula4 (2.38).

If we consider a zero-frequency component of the current, i.e. the effect of rectification, we

find that in the WBL it vanishes:
d2Im(0ω)

dV 2
ac

= 0. (3.27)

However this is not the case in general, as seen in Eq.(A.4) in Appendix A. This qualitative

difference calls for one important remark. Suppose that the ”electrodes” are made of two parts:

a very wide metallic part (WBL is justified) followed by a narrower region (WBL breaks down)

which is itself connected to the device region. At the quantum mechanical level, the position of

the leads is totally arbitrary and simply corresponds to which degrees of freedom are integrated

out. Therefore at this level, the physics is unaffected by the position (in the wide region or in

the narrower one) where one chooses to divide the total system into the device region and the

leads. The fact that Eq.(A.4) gives a non zero result (leads are in the narrower region) or a

vanishing one (leads are in the wide region, where the WBL applies) therefore indicates that the

difference between the two cases takes place at the statistical physics level, i.e. upon assuming

that the electrodes always remain at thermal equilibrium. The correct choice between the two

above mentioned possibilities depends on the inelastic mean free path: when almost no inelastic

collisions take place in the narrower region, the electrodes should be considered to be in the

4One should remember that there are two common ways to write down the current in terms of the conductance

matrix, see Eq.(2.21). They are related: Υmm′ = Υmm′ −
(∑

m′′ Υmm′′
)
δmm′ .
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wide region and the rectification effect vanishes. At higher temperature, the inelastic mean free

path decreases, and the narrower region eventually becomes thermalized, which leads to a non

zero rectification effect.

Another interesting limit is the adiabatic limit when the frequency ω is very small while

the amplitude of the perturbation Vac can remain arbitrarily large. To zeroth order in ~ω, the

current (for m 6= m′) is simply given by a trivial extension of the DC result (see also Eq.(3.26)),

Iadm (t) =
e

h

∫
dE

(
− ∂f
∂E

)
Tr
[
G0Γm′G

†
0Γm

]
eVac cosωt. (3.28)

This expression is linear in Vac in the WBL. However, in general (see Eq.(A.5)) adiabatic

current contains all higher orders in amplitude as well. More interestingly, the first correction

to adiabaticity reads,

δIadm (t) =
ieω

4π

∫
dE

(
− ∂f
∂E

)
Tr

[
G0Γm′

∂G†0
∂E

Γm −
∂G0

∂E
Γm′G

†
0Γm

]
eVac sinωt. (3.29)

Note that while the adiabatic current follows exactly the slow changes of voltage, the correction

to it is out of phase.

Another important observable, which we need to construct the current-conserving theory,

is the electronic density n(i, t) = 〈c†i (t)ci(t)〉 on site i whose decomposition in harmonics reads

n(i, t) = neq(i) + Re
∞∑
l=0

n(i, lω,m′)e−ilωt, (3.30)

where neq(i) is the stationnary density in the absence of the time dependent potential. We refer

to the response function dn(i, 1ω,m′)/dVac as the generalized injectivity. It is a straightforward

generalization of the injectivity defined in Refs.[1, 6, 20] at small frequency (see Eq.(3.20)), and

can be expressed as

dn(i, 1ω,m′)

dVac
=

e

hω

∫
dE (f(E)− f(E + ~ω))

[
G2Γm′G

†
0

]
ii
. (3.31)

This is the extra density injected into the device region at site i in consequence of the finite-

frequency perturbation. Since the system overall has to stay charge neutral, it is allowed to

have only dipoles in the system. As we saw in the previous section, in order to tackle this

problem one has to take into account the displacement part of the current as well. The injected

dynamical charge creates an oscillating internal potential, which in turn modifies currents in

the contacts. So, we move on to discuss the response to an internal perturbation.

3.3.2 Response to an internal perturbation

We assume now a perturbation of the form given by equations (3.1) and (3.3) affecting the

device region. For the moment, let us suppose that the leads are kept at equilibrium with
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the chemical potentials equal. We will combine the responses to both the external and the

internal perturbations afterwards. Keeping in mind the expansion (3.25) of the current in various

harmonics, we give a list of some useful observables.

First, the linear in Vac current response in the lead m is given by the expression (compare

with Eq.(3.16)),

dIm(1ω)

dVac
=
ie2

h

∫
dE (f(E)− f(E + ~ω)) Tr

[
G
†
0ΓmG2W

]
, (3.32)

where W ≡W0̄0̄ (see Eq.(3.3)). One has to specify the distribution W of the internal potential

to calculate this quantity.

Second, let us consider the rectification effect, i.e. the zero-frequency component of the

current. Obviously, it contains only even orders in Vac (because sign of Vac is just a phase shift

in Eq.(3.1)). Thus, the leading order contribution reads,

d2Im(0ω)

dV 2
ac

=
e3

4h

∫
dE

{
(f(E)− f(E + ~ω)) Tr

[
G0WG2ΓG†2WG

†
0Γm

]
− (f(E − ~ω)− f(E)) Tr

[
G0WG−2ΓG†−2WG

†
0Γm

]}
, (3.33)

where Γ =
∑

m Γm is the sum of the broadening matrices of all leads.

Another quantity one might be interested in is the generation of the second harmonics of

the current, which is (to the leading order in Vac) given by

d2Im(2ω)

dV 2
ac

=
ie3

2h

∫
dE

{
(f(E)− f(E + ~ω)) Tr

[
G2WG

†
0WG

†
−2Γm

]
+ (f(E − ~ω)− f(E)) Tr

[
G2WG0WG

†
−2Γm

]}
. (3.34)

Let us consider a particularly interesting case of the current generated upon perturbing

the onsite potential on site i (i.e. Wkl = eViiδikδil in Eq.(3.1)). We will call the AC response

function for this case the (generalized) emissivity [1, 6, 20] and it reads (see Eq.(3.32)),

dIm(1ω)

dVii
=
ie2

h

∫
dE (f(E)− f(E + ~ω))

[
G
†
0ΓmG2

]
ii
. (3.35)

Note that the emissivity (3.17) defined by Büttiker has a meaning of the number of particles

(rather than the current) being emitted into the lead m as a consequence of an internal per-

turbation. Thus, to come back to the original definition one has to multiply Eq.(3.35) on both

sides by 1/(ieω)5. Then its relation to the introduced above injectivity, Eq.(3.31), will become

obvious.

5Consider the continuity equation:
∑
m Im(t) + dQ/(dt) = 0. In our case we have an internal perturbation
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Finally, we introduce the frequency-dependent Lindhard function [1, 6, 20] that relates a

change of density on site j to the onsite energy perturbation on site j′,

Π(1ω, j, j′) ≡ dn(j, 1ω)

dVj′j′
= − ie

2π

∫
dE

{
(f(E)− f(E + ~ω)) [G2]jj′

[
G
†
0

]
j′j

(3.36)

+ f(E + ~ω)
[
G
†
2

]
jj′

[
G
†
0

]
j′j
− f(E) [G2]jj′ [G0]j′j

}
,

where we implied an expansion similar to Eq.(3.30) for the electronic density on site j. It is

worth saying that this expression is general and does not rely on the WBL.

3.3.3 The total response

Now we have all the ingredients to discuss the total response of the system. First, like in the

scattering approach, let us assume that we apply an external perturbation. As a result, we

obtain the dynamical conductance matrix Υe
mm′(ω), which for the interacting system cannot be

considered as a full response since it violates the current conservation and the gauge invariance,∑
m

Υe
mm′ 6= 0

∑
m′

Υe
mm′ 6= 0. (3.37)

It means that there is a dynamical charge pileup in the device region (which must be screened

by other parts of the system via capacitances, for example, to restore charge neutrality). This

charge induces the internal potential, U(r, 1ω,m′)6, of the same frequency, which in turn creates

additional (displacement) currents in the contacts. In order to have a result which satisfies

current conservation and is gauge invariant at the same time, we have to consider the two

contributions together yielding the full AC current response in the leads as,

Υmm′(ω) = Υe
mm′(ω) +

∫
d3r

δIm(1ω)

δU(r)

dU(r, 1ω,m′)

dVac
, (3.38)

where we exploited Eq.(3.35) to right the second term on the right-hand side, and wrote formally

the continuous variable r instead of the site index to compare this result to Eq.(3.18).

Finally, one has to solve the Poisson equation in order to find the induced potential distri-

bution (see also Eq.(3.19)),

∆
dU(r, 1ω,m′)

dVac
= −e

ε

[
dn(r, 1ω,m′)

dVac
+

∫
d3r′Π(1ω, r, r′)

dU(r′, 1ω,m′)

dVac

]
, (3.39)

and, as a result, the charge Q in the device region is partitioned between the leads. Assuming, that we know

the partition, Q(t) =
∑
m qm(t), we may write Im(t) = −dqm/(dt). Then, doing an expansion in harmonics for

the current, Eq.(3.25), and the charge qm(t) = enm(t) (similar to Eq.(3.30)) we arrive to: Im(ω) = iωenm(ω).

Then, the emissivity defined by Büttiker is dnm(ω)/(dVii) = (1/(ieω))dIm(ω)/(dVii).
6We add the additional lead index m′, which signifies that this potential is induced by the external pertur-

bation of lead m′.
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(3.38) Converged 
with U(r,ω)

Figure 3.2: General scheme for calculating the full AC conductance matrix. Yellow shaded region

denotes the Poisson equation self-consistent loop for evaluating the induced internal potential.

where ε is the dielectric constant, and we used equations (3.31) and (3.36).

Let us now summarize the obtained results. On Fig. 3.2 we depict the general scheme one

has to follow to find the full dynamical (AC) conductance of a multiterminal system, which

satisfies two fundamental properties: current conservation and gauge invariance. First, starting

from the response to the external potential, one calculates the ”bare” conductance matrix

Υe
mm′(ω), Eq.(3.26), and at the same time finds the extra charge density injected into the

device, Eq.(3.31). Second, one has to solve the Poisson equation (3.39) self-consistently (yellow

shaded region on Fid. 3.2) to find the distribution of the internal potential induced by the

injected charge. As soon as it is done, one proceeds by evaluating the internal response to this

potential and finds the displacement current (using the emissivity (3.35)), which together with

the external response yields the full conductance matrix (3.38).

To conclude, we have found analogs to all the expressions entering the Büttiker’s theory

of the dynamical AC transport7, described in Section 3.2. The advantage of our approach

7In the WBL, the equivalent expressions in the scattering formalism are simply obtained by using the formal

substitution:
√

ΓnG0

√
Γm → −iSnm(E) − i1δnm, which immediately yields Eq.(3.6). This is known as the

Fisher-Lee relation [65, 45]. Finding a mapping between the two formalisms beyond the WBL requires solving

the scattering problem in presence of the oscillating field via the Floquet approach. For more details on this

approach and its relation to the NEGF see Ref.[66].
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is that these quantities can be easily calculated because they are expressed in terms of the

stationary Green’s functions and self-energies. In contrast to this, the scattering formulas involve

functional derivatives of the scattering matrix with respect to the scalar potential in the system,

which cannot be found in general. Therefore, existing numerical tools, like the KNIT package

mentioned in Sec. 2.2.4, by using the Green’s function theory presented above, can be directly

extended to provide access to the dynamical AC observables.

3.4 Applications

In this section we apply the formalism presented in the previous section on three practical

examples: the AC conductance of a simple one dimensional chain, a quantum point contact

(QPC) and an electronic Mach-Zehnder (MZ) interferometer in the quantum Hall regime. These

examples, of increasing complexity, are chosen to illustrate how the numerical calculations can

be performed in practice and how the AC physics can provide insights absent in DC. The

stationary Green’s function Gl at the root of the AC expressions was obtained with the knitting

algorithm described in Ref.[22].

3.4.1 Technical details on the numerical integration

We start with the AC conductance of a simple one dimensional chain described by the Hamil-

tonian,

H = 2−
∞∑

n=−∞

(
c†n+1cn + h.c.

)
(3.40)

(the constant 2 serves to offset the bottom of the band to E = 0). The device region is of size L

so that we suppose that the system stays in thermal equilibrium for n ≤ 0 (left lead, region 1̄)

and n > L (right lead, region 2̄). We consider the AC conductance, which is given by Eq.(A.1).

It can be written as the sum of three terms,

Υ21(ω) = −e
2

h

∫
dE

~ω
Tr [(f(E)− f(E + ~ω))Aar21 − f(E)Arr21 + f(E + ~ω)Aaa21 ] , (3.41)

with

Aar21 = Tr
[
Λar

2 (E;E + ~ω)G2Λra
1 (E + ~ω;E)G†0

]
, (3.42)

Arr21 = Tr
[
Λrr

2 (E;E + ~ω)G2Λrr
1 (E + ~ω;E)G0

]
, (3.43)

Aaa21 = Tr
[
Λaa

2 (E;E + ~ω)G†2Λaa
1 (E + ~ω;E)G†0

]
, (3.44)

where

Λcb
m(E;E ′) = Σc(m;E)− Σb(m;E ′). (3.45)
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Figure 3.3: Real (left panels) and imaginary (right panels) parts of the integrands appearing in

Eq.(3.41) as a function of energy close to the band edge E = 0. The frequency was chosen to

be ~ω = 0.1. There are pronounced peaks at energies E = 0 and E = −~ω. Upper panels: Aar21.

Lower panels: Arr21 (black solid line) and Aaa21 (red dashed line).

(here c, b ∈ {a, r} stands for the retarded or advanced self energy). The three terms (3.42),

(3.43) and (3.44) are direct outputs of recursive Green’s function like techniques so that the

main numerical difficulty lies in the evaluation of the integral over energies.

For a single site L = 1 device, the (onsite) Green’s function of the system can be easily

obtained [67],

G0(E) =


− 1√

(E−2)2−4
, forE ≤ 0,

1

i
√

4−(E−2)2
, for|E| < 4,

1√
(E−2)2−4

, forE ≥ 4.

(3.46)

We find that it contains square root singularities 1/
√
E − E0 which appear on the edges of the

band (or more generally in quasi 1D system, whenever there is an opening/closing of a new
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conducting channel). Typical plots of the integrands are shown in Fig. 3.3. These singularities

are integrable but may require a very fine discretization mesh. In practice, we find that ad-

vanced integration routines, such as QUAD which is used in this thesis [68] can handle these

singularities properly. Alternatively, one can locate and remove them by proper changes of the

integration variable [69].

The AC conductance of the one dimensional wire is shown in Fig. 3.4 for two lengths

L = 40 and L = 200. We find that the calculation performed keeping only the ”WBL-like”

term Aar21 (this is the only surviving term in the WBL) in Eq.(3.41), is equivalent to using

Eq.(3.6), derived within the scattering approach [7], in the large L limit. In order to compare

the two approaches, we integrated numerically (assuming zero temperature) Eq.(3.6) using the

actual dispersion relation of the Hamiltonian (3.40), E(k) = 2 − 2 cos k, and S21 = exp(ikL)

(perfect transmission). To understand why both formalisms coincide when L → ∞, note that

terms Arr21 and Aaa21 typically oscillate as exp [±i (k(E + ~ω) + k(E))L] ∝ exp [±2ikFL] (kF :

Fermi momentum) so they quickly vanish when kFL � 1 and only the (WBL) term Aar21 ∝
exp [i (k(E + ~ω)− k(E))L] remains (in agreement with Refs.[7, 61] where the fast oscillating

terms are neglected in the derivation of the current operator).

3.4.2 Quantum Point Contact

We continue with a quasi one-dimensional wire of width W and length L connected to two

reservoirs. AC bias is applied to the source lead (S) and we are interested in the current

response in the drain (D), see Fig. 3.5. The Hamiltonian is the direct extension of Eq.(3.40)

to the quasi 1D geometry. The dispersion relation for this discrete model is (in units of the

hopping constant)

En(k) = εn + 2− 2 cos k, (3.47)

wich corresponds, in the continuum limit, k → 0, to

En(k) = εn + k2, (3.48)

where the transverse energy εn = 2−2 cos (nπ/(W + 1)) , n = 1 . . .W , and k is the longitudinal

momentum. The integer n defines the quantized values of the transverse momentum and thereby

enumerates the conducting channels.

We focus on the regime where only the first (n = 1) channel is open and use the corre-

sponding transverse energy ε1 as our reference energy. In the scattering matrix approach, the

system is described by its transmission matrix SDS(E) = exp(ikL): a wave packet is entirely

transmitted and only acquires a (energy dependent) phase. Then, equation (3.6) reads

ΥDS =
e2

h

∫ EF

EF−~ω

dE

~ω
exp {iL [k(E + ~ω)− k(E)]} . (3.49)
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Figure 3.4: Absolute value of the AC left-to-right conductance for the one-dimensional wire of

length L = 40 (black circles) and L = 200 (red rectangles). Symbols: numerical calculation

with the Green’s function formalism, Eq.(3.41) (keeping only the Aar21 term), lines: scattering

approach Eq.(3.6) (see text for details). We find a visible difference between the two approaches

for the small size L = 40 that disappears when L increases. Fermi energy is EF = 0.17.

In the continuum limit, when ~ω � EF it can be further simplified using Eq.(3.48) into

ΥDS =
e2

h
eiωτ

sin
(

~ω2τ
4EF

)
(

~ω2τ
4EF

) , (3.50)

where τ = L/vF is the time of flight from the source lead to the drain (see lower inset on

Fig. 3.5). From this simple calculation we notice that the AC conductance gives access to two

characteristic time (or energy) scales of the system. Indeed, the numerical results of Fig. 3.5

indicate that the absolute value of the AC conductance and its phase can be very well described

by this simple scaling law up to moderately large frequencies. The scaling parameters arising

in this case allow for the extraction of the time of flight and the longitudinal Fermi energy. We

note that, as the Fermi energy EF and thus the velocity vF that enter the previous expression

are counted from ε1 (i.e. they are in fact the longitudinal Fermi energy and velocity), one can

actually slow down the electrons to bring these times and energy scales into an experimentally

accessible window (GHz range).
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Figure 3.5: Rescaled amplitude and phase (upper inset) of the two terminal AC conductance

ΥDS = |ΥDS|eiφAC for a quasi one-dimensional wire of width W = 10. Lower inset: schematic

picture of the setup. Fermi energy is chosen to have only one propagating mode. The parameters

are: EF = 0.68ε2, L = 100 (black circles), EF = 0.79ε2, L = 150 (blue rectangles), EF = 0.79ε2,

L = 200 (green triangles), where ε2 is the energy of the second mode opening (see Eq.(3.47)).

Different symbols correspond to the numerical integration of Eq.(3.41), while the lines are

calculated with the help of Eq.(3.49) exploiting the full tight-binding dispersion relation (3.47).

Red dashed line is the analytical fit using Eq.(3.50). All the lengths are in units of the lattice

constant.

A practical way to implement an effective quasi-one dimensional wire is through a quantum

point contact (QPC) formed by confining an electron gas with electrostatic gates placed on top

of a semiconducting heterostucture. We use the following model for the electric potential (see

lower inset of Fig. 3.6a for a color plot of the potential seen by the electrons),

V (x, y) = VgΦx(x− x0)Φy(y − y0),

Φx(x) =
1

2

[
tanh

(
x+ ηx
ξx

)
+ tanh

(
−x− ηx

ξx

)]
, (3.51)

Φy(y) =
1

2

[
2−tanh

(
y + ηy
ξy

)
−tanh

(
−y − ηy

ξy

)]
, (3.52)

where the parameters ξx, ξy control the steepness of the potential (they are chosen so that to

suppress backscattering – adiabatic regime), and (x0,y0) determines the position of the center of
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Figure 3.6: Quantum Point Contact. (a) Absolute value of the AC conductance as a function

of driving frequency for different values of Vg depicted on the upper inset. Upper inset: dc

conductance as a function of Vg. The lower inset represents actual potential profile in the

device forming the QPC. (b),(c) Extracted time of flight as a function of QPC length, 2ηx, (see

Eq.(3.51)) and Vg, respectively. Fermi energy in the calculations was EF = 1.2 providing 4 open

channels in the leads, while only one being transmitted through the QPC. Other parameters:

ξx = ηx/2, ξy = 3ηy/2, and ηy = 2.

the QPC. The effective length (width) of the QPC is 2ηx (2ηy). In this case the dispersion rela-

tion in the gated region may be considered similar to Eq.(3.49) except that now the transverse

energy εn is determined not only by the width, but also depends on the parameters of the QPC

(ηy, ξy, Vg, etc.). In our calculations we controlled the value of Vg (keeping other parameters

fixed) to have only one open channel (at a given EF ) in the gated region (see upper inset on

Fig. 3.6a). The results of the numerical simulations of the AC conductance for this system are

given in Fig. 3.6. Fig. 3.6a shows the absolute value of the AC conductance as a function of

the driving frequency. Different symbols are calculated numerically via Eq.(3.41) for different
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values of the gate voltage Vg (hence of the effective longitudinal velocities), as shown in the

upper inset. The fitting lines are obtained from the scattering matrix formalism, Eq.(3.49),

making use of the dispersion relation (3.47). Again, the transverse energy of the open mode,

ε1(ηy, ξy, Vg, ...), was chosen as the energy reference. Comparing the two approaches, we see that

the closer we are to the edge of the propagating mode (various symbols on the upper inset of

Fig. 3.6a), the worse is the fit given by Eq.(3.49). This is due to the fact that the scattering

matrix formula is applicable when the Fermi velocity is a smooth slowly varying function of

energy[61], which breaks down near the band bottom (EF ≈ ε1).

From the slope of the phase of the AC conductance (φ = ωτ , curves similar to the inset

of Fig. 3.5, not shown) we can extract the effective time of flight τ of the electrons through

the QPC, see Figs. 3.6b,c. We find that τ scales linearly with the QPC length 2ηx (ballistic

transport) while it increases as we tune Vg towards the closing of the propagating mode (the

velocity vanishes when the mode becomes evanescent, EF < ε1).

3.4.3 Screening

Note that the above calculations did not take screening into account. We presented only the re-

sults referring to the particle part of the current omitting the displacement part. As was already

discussed in Sec. 3.2, this is correct as soon as one considers the non-interacting electrons.

Consider now the case of a quasi one-dimensional wire discussed above. In order to account

for the interactions, at least in the simplest approximation, one could assume that the induced

charge density inside the wire, which is to be screened, creates a homogeneous oscillating po-

tential. Then, if we replace our setup by the one depicted on Fig. 3.7 (assuming there is a

metallic top gate at some distance from the wire), it is possible to find the displacement part

as a function of a single parameter C – capacitance between the wire and the gate. It was done

in Refs.[2, 7] and the result for the AC conductance matrix reads (see also Eq.(3.38))

Υscr
nm(ω) = Υnm(ω)−

∑
k Υnk(ω)

∑
l Υlm(ω)∑

kl Υkl(ω)− iωC
, (3.53)

where Υnm(ω) is the particle current contribution (3.26). Examining this expression one can

single out two limiting cases: (i) C =∞, which corresponds to the non-interacting case discussed

above (see Fig. 3.5); and (ii) C = 0, which refers to the case of infinitely strong interaction

between electrons, forbidding any charge accumulation in the wire. These cases are compared

on Fig. 3.7, where we plot real (upper plot) and imaginary (lower plot) parts of the source-to-

drain conductance for the non-interacting (blue) and the strongly interacting (red) cases. One

can see that even in the presence of screening there are still oscillations in the source-to-drain

conductance with a period characterized by the time of flight (just as in the non-interacting

case, see Eq.(3.50)), which allow for the measurement of the latter [2].
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Figure 3.7: Real (upper plot) and imaginary (lower plot) parts of the source-to-drain conduc-

tance for two limiting cases: non-interacting electrons (C = ∞ in Eq.(3.53)) – blue lines; and

strongly interacting electrons (C = 0 in Eq.(3.53)) – red lines. On the right side of the figure:

schematic picture of a setup used to obtain Eq.(3.53).

Situation becomes more complicated if we consider the case of a point contact. The advan-

tage of the quasi one-dimensional wire is that we dealt with a perfectly transmitting channel.

Contrary to this, in order to correctly describe the interacting limit for a QPC, it is necessary

to take into account both transmitted and reflected waves [70, 71, 72]. Then, it turns out that

the real and imaginary parts of the source-to-drain conductance also oscillate with frequency,

however the oscillation period is different compared to the non-interacting case (see Fig. 3.6)

[71, 72]. In fact, it is determined by the mean time of flight of the open (transmitted) chan-

nels and a contribution coming from the closed (reflected) channels. Moreover, in order to find

the displacement conductance at least in the crudest approximation, one needs minimum two

capacitances C1 and C2 at each side of the QPC [7, 70]. This is still a subject of subsequent

research.

3.4.4 Mach-Zehnder interferometer

We close this section with a discussion of the AC response of an electronic MZ interferometer

in the quantum Hall regime [31, 32, 33, 34, 35, 36, 37, 73]. The setup consists of the two-

dimensional electron gas confined in a finite geometry, connected to three reservoirs: source
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(S), drain (D) and internal drain (D’). Fig. 3.8a presents the sample together with a schematic

of the two interfering edge states. The additional electrode (D’) is necessary to avoid multiple
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Vcos tω

+
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a)

Figure 3.8: Mach-Zehnder interferometer. (a) Cartoon of the system with the interfering paths

represented by the solid and dashed white lines. Length of the sample L = 80, width of the

system W = Wh + 22, where Wh is the width of the hole. The system is in the quantum Hall

regime at filling factor ν = 1. The two QPCs were chosen to be semi-transparent T1,2 = 1
2
.

(b) Transmission characteristics of the QPCs. The blue dot corresponds to the Fermi energy at

which QPC is half transparent.

loops of the electron edge states and the corresponding Fabry-Perot physics. The system is put

in a strong magnetic field driving the system into the quantum Hall regime. We considered

the case with a filling factor ν = 1 (single edge channel). The QPCs are defined by two pairs

of gates in the lower arm of the interferometer and play a role of the beam splitters. The

interfering paths are shown by the solid and dashed lines on Fig. 3.8a. We put an additional

Aharonov-Bohm (AB) flux ϕAB through the hole of the interferometer that allows to change

the relative phase between the paths without changing the edge states. We calculated the AC

conductance as a function of the AB flux ϕAB and frequency ω as shown in Fig. 3.9.

We start with simple analytical considerations using the scattering matrix approach. Let us

assume, for simplicity, that both QPCs are characterized by energy independent transmission

probabilities T1,2 (and corresponding reflection probabilities are R1,2 = 1 − T1,2). We describe

the QPCs by their scattering matrices, which can be parametrized as follows(
i
√
Rk

√
Tk√

Tk i
√
Rk

)
, k = 1, 2. (3.54)

The source-to-drain transmission amplitude SDS then consists of the contributions from two

paths, path a (solid line on Fig. 3.8a) which is a consequence of two sequential transmissions
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Figure 3.9: Mach-Zehnder interferometer. (a) AB oscillations of AC conductance as a function

of magnetic flux through the hole. Black circles, red rectangles, and blue diamonds correspond

to the driving frequency ~ω = 0.003, 0.007, 0.01 respectively. Width of the hole Wh = 45.

(b) ωϑ as a function of frequency for different values of Wh extracted with Eq.(3.60) (see

text for details). From bottom up Wh = 30, 35, 40, 45. (c) Function |Ξ(ω)|, see Eq.(3.62), as a

function of frequency. Black circles and red diamonds correspond to Wh = 35, 45 respectively.

(d) Respective phase of the AC conductance φAC = ωτ as a function of frequency. In plots

(a) and (c) all the symbols were calculated with the Green’s function formalism, Eq.(3.41),

modeling the QPCs with Eq.(3.51). The connecting lines are the corresponding analytical fits,

Eq.(3.60), with parameters calculated from the Green’s function-based numerics.

through the QPCs and path b (dashed line) arising from sequential reflections

SDS(E) =
√
T1T2e

iψa(E) −
√
R1R2e

iψb(E). (3.55)

Traversing either path, an electron acquires a phase ψa,b. The phase itself contains two contri-

butions, the AB phase caused by the magnetic flux through the hole and a dynamical phase of
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the propagating plain wave along the path,

ψx(E) = k(E)Lx + ϕx, x = {a, b}, (3.56)

ϕAB = ϕb − ϕa, (3.57)

where k is the longitudinal wave number of the edge state and Lx is a length of the corresponding

path. In order to calculate the AC conductance we need to specify the energy dependence of

the phase phactors in Eq.(3.55). We note that by varying energy we modify only the dynamical

part of the phase, while the AB flux is unaffected. Thus, we make the following ansatz

ψx(E) ≈ ψx(EF ) + λx(E − EF ), (3.58)

λx = Lx
∂k

∂E
(EF ), x = {a, b}. (3.59)

Actual value of ψx(EF ) and λx depends on the boundary conditions defining the geometry of

the setup. Assuming we know the edge state dispersion relation, we can relate the latter to the

group velocity of the edge state vg at the Fermi level via λx = Lx/(~vg).
At this stage we are prepared to calculate the AC conductance with equations (3.6), (3.55),

and (3.58). The scattering formula is valid when ~ω � EF and we will use it to carry out the

integration in energy. Let’s assume, for simplicity, that the QPCs are tuned to half transparency

T1,2 = 1/2. Then, after a straightforward calculation we obtain

ΥDS(ω, ϕAB) =
1

2
eiωτ

[
cos

ωϑ

2
−

sin ωϑ
2

ωϑ
2

cos (ψb(EF )− ψa(EF ))

]
, (3.60)

τ =
Lb + La

2vg
, ϑ =

Lb − La
vg

. (3.61)

We have two time scales naturally appeared, namely the average time of flight τ and the relative

time ϑ, coming from the asymmetry between the paths.

Now we turn to our numerical results (see Fig. 3.9) and compare them to the simple formula

(3.60). On Fig. 3.8b we plot the DC characteristics of the QPCs considered in our modelling. The

Fermi level is fixed at a half transparency value. We remind that in order to obtain Eq.(3.60) we

assumed that the transmission characteristics of the QPCs are energy independent. However, as

one can see from Fig. 3.8b, in our sample detuning from the assumed value becomes important

for ~ω ' 0.01 and is of the order ∆T1,2 ' 0.15. Next, Fig. 3.9a represents the plots of the AB

oscillations of the AC conductance as a function of flux for three different values of driving

frequency. Symbols of different types on the Figure represent the Green’s function based calcu-

lation, Eq.(3.41), while the solid lines are corresponding fits according to Eq.(3.60). This fit is

obtained as follows: (i) we perform a DC calculation (which corresponds to ω → 0 in Eq.(3.60))

and find φ0 ≡ arccos(ΥDS(0, π)−ΥDS(0, 0)), which corresponds to the phase offset at zero flux

ϕAB = 0, see Fig.(3.9)a; (ii) we compute the phase ωϑ = 2 arccos |ΥDS(ω, π) + ΥDS(ω, 0)| at
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small ω; (iii) finally, we plot Eq.(3.60) using the extracted ϑ and ψb(EF )−ψa(EF ) = φ0 +ϕAB.

We see that this formula describes quite well the numerical data, especially at low frequencies.

However when the driving frequency is increased deviation of the numerical data from the fit

becomes more pronounced. A more detailed analysis shows that these deviations can be ac-

counted for by including the quadratic term in energy, which we have neglected in Eq.(3.58). In

Fig. 3.9b we plot the extracted ωϑ as a function of driving frequency. Various plots correspond

to the samples with a different width of the hole in the interferometer. Varying this width, we

modify the length of the upper path (dashed line in Fig. 3.8a). Extracting the corresponding

slopes, i.e. ϑ, for each sample, we are able to calculate the velocity of the edge state vg owing

to Eq.(3.61). For the parameters chosen in our calculation, B ' 20T and the lattice constant

a0 ' 1nm, we have obtained the velocity vg ' 0.7a0t~−1 (which corresponds to vg ' 106m/s),

where t = ~2/(2ma2
0) is a hopping parameter of the tight-binding model [45] used to simulate

the setup, m – effective mass.

In Figs. 3.9c,d we present the AC conductance calculations as a function of frequency. On

Fig. 3.9c, using the source-to-drain conductance ΥDS(ω, ϕAB), we plot the function

Ξ(ω) =

∣∣∣∣ΥDS(ω, π)−ΥDS(ω, 0)

ΥDS(0, π)−ΥDS(0, 0)

∣∣∣∣ , (3.62)

which for a simple case of Eq.(3.60) reduces to sin(ωϑ/2)/(ωϑ/2). Again, the symbols cor-

respond to the Green’s function calculations, while the lines are given by the analytical fit,

Eq.(3.60), using the calculated before values of ωϑ (see Fig. 3.9b). Black circles and red di-

amonds represent calculations with various values of the hole width (allowing to change the

length difference between the paths). We notice that for the frequencies ~ω . 0.02, the nu-

merical data is very well fit by Eq.(3.60), while at higher values of ~ω this is no longer true.

There are two reasons for this. First, at high enough frequencies detuning of the QPCs from the

half transparency value becomes significant (see Fig. 3.8b) and we cannot neglect the energy

dependence of the transmission/reflection amplitudes. Second, due to the dispersion of the edge

state, there is always a contribution from the quadratic term neglected in the expansion (3.58),

which becomes important at high frequencies.

Finally, we plot the frequency dependence of the phase of the AC conductance (see Fig. 3.9d)

varying the hole width in order to extract the second time scale, τ according to Eq.(3.60). We

find again the value of the group velocity vg ' 0.72a0t~−1, which is consistent with the previous

result.

To conclude, we have analyzed the AC response of the MZ electronic interferometer and

found that the non-equilibrium dynamics makes it possible to address the internal time scales

of the setup via transport measurements.
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Chapter 4

The Green’s function formalism at

finite frequency

In this chapter we provide the details necessary to derive the expressions given in Section 3.3 and

Appendix A as well as systematic tools to derive other observables. The formalism developed

in this chapter is based on the Non Equilibrium Green’s Function formalism (NEGF). In Sec-

tion 4.1 we briefly review its time-dependent version [13, 14, 8, 11] and define the main quantity

we are interested in – electric current – in terms of Green’s functions. Then, in Section 4.2 we

explain how to take advantage of the fact the perturbation is periodic in time and introduce the

form of Fourier transform we use to transform various quantities from time to energy domain.

In Sections 4.3 and 4.4 we consider the cases of internal and external perturbations, repsec-

tively. For each of them we investigate two limiting cases: limit of small perturbation amplitude

(eVac) and the adiabatic limit (ω → 0). In the former we develop a systematic expansion of

the (retarded) Green’s function in powers of eVac and give the corresponding Feynman rules

to construct arbitrary order correction (any diagram can be interpreted as a sequence of pho-

ton absorbtion/emission processes). In the latter we introduce generating functions, which are

convenient quantities to work with when the frequency of the perturbation is small. Any ob-

servable can be expressed in terms of them (as the adibatic current and the correction to it,

see Appendix A).

4.1 Time dependent NEGF formalism in a nut shell

Our starting point is a general time-dependent quadratic Hamiltonian for our system:

Ĥ(t) =
∑
n,m

Hnm(t)c†ncm. (4.1)

We do not include electron-electron interactions besides some mean field treatment as was

discussed in Sec. 3.3.3.
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The basic objects that will be manipulated in this chapter are various sorts of Green’s

Functions (GFs). The retarded Gr
nm(t, t′), advanced Ga

nm(t, t′), lesser G<
nm(t, t′) and greater

G>
nm(t, t′) Green’s functions are defined as,

Gr
nm(t, t′) = − i

~
θ(t− t′)〈{cn(t), c†m(t′)}〉 , (4.2)

Ga
nm(t, t′) =

i

~
θ(t′ − t)〈{cn(t), c†m(t′)}〉 , (4.3)

G<
nm(t, t′) =

i

~
〈c†m(t′), cn(t)〉 , (4.4)

G>
nm(t, t′) = − i

~
〈cn(t), c†m(t′)〉. (4.5)

where c†n(t) (cn(t)) corresponds to c†n (cn) in the Heisenberg representation. The retarded and

lesser/greater GFs satisfy the following equations of motion [46, 47],(
i~
∂

∂t
−H(t)

)
Gr(t, t′) = δ(t− t′) , (4.6)(

i~
∂

∂t
−H(t)

)
Gκ(t, t′) = 0, κ =<,> . (4.7)

Table 4.1 summarizes the various Green’s functions introduced so far, as well as the one needed

later for the AC formalism.

4.1.1 Dyson equation

It is often convenient to split the full Hamiltonian (4.1) into a sum of an ”unperturbed part”

H and a perturbation V(t):

H = H + V(t). (4.8)

This splitting can (and will) be done in several different ways, dictated by convenience. For

instance, V can be a time-dependent potential, or a hopping element between the device and

the leads, or a sum of the previous two, etc. Introducing gr(t, t′) and g<(t, t′), the unperturbed

Green’s functions associated to H, one can derive the Dyson equations [52, 44, 46, 47], which

relate the full GFs to the unperturbed ones. They read,

Gr = gr + gr ∗ V ∗Gr , (4.9)

Gr = gr + Gr ∗ V ∗ gr. (4.10)

Gκ = gκ + gr ∗ V ∗Gκ + gκ ∗ V ∗Ga, κ =<,> , (4.11)

Gκ = gκ + Gr ∗ V ∗ gκ + Gκ ∗ V ∗ ga, κ =<,> , (4.12)

where the symbol ∗ stands for convolution with respect to time and matrix product with respect

to the site indices:

(A ∗B)ij(t, t
′) =

∑
k

∫
dt
′′
Aik(t, t

′′
)Bkj(t

′′
, t′), (4.13)
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Table 4.1: Summary of notations.

Type of GFa Description

gκ(t, t′) GF of the system when the leads and the

scattering region are decoupled, see Eq.(4.8).

gκ(t, t′) GF of the device sub-block for a system with

decoupled leads. gκ(t, t′) ≡ gκ0̄0̄(t, t′)

Gκ(t, t′) GF of the system described by the full

Hamiltonian (4.1).

Gκ(t, t′) GF of the device sub-block, see Eq.(4.16).

Gκ(t, t′) ≡ Gκ
0̄0̄(t, t′)

Gκ
l (E) GF of the device sub-block with l photons

emitted/absorbed, see Eq.(4.29).

G
(n)
l (E) n-th order in Vac of the device sub-block GF

with l photons emitted/absorbed, see Eq.(4.38).

Gl(E) Retarded equilibrium GF of the system at

energy E + ~ωl
2

, see Eqs.(2.32) and (3.24).

a κ = r, a,<,>

and V should be understood as δ(t− t′)V(t) in a convolution.

4.1.2 Integrating out the electrodes

From now on we restrict V(t) to the matrix elements that couple the leads to the system plus

(possibly) a time dependent potential in the device region. Then from Eqs.(4.9) and (4.11) one

arrives at

Gr = gr + gr ∗ (Σr + V ) ∗Gr, (4.14)

and

Gκ = gκ + gr ∗ V ∗Gκ + gr ∗ Σr ∗Gκ + gr ∗ Σκ ∗Ga + gκ ∗ V ∗Ga + gκ ∗ Σa ∗Ga, κ =<,> ,

(4.15)

where we have introduced special notations for the (0̄0̄) device sub-block (see Fig. 2.2),

H ≡ H0̄0̄, V = V0̄0̄, G
κ ≡ Gκ

0̄0̄, g
κ ≡ gκ0̄0̄, ... (4.16)
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and also the self-energies Σκ defined as

Σκ(m) = V0̄m̄ ∗ gκm̄m̄ ∗ Vm̄0̄,

Σκ =
M∑
m=1

Σκ(m), κ = r, a,<,> .
(4.17)

Utilizing Eq.(4.6), equation (4.14) can be rewritten in terms of an effective equation of motion,(
i~
∂

∂t
−H

)
Gr(t, t′)− (Σr + V ) ∗Gr = δ(t− t′), (4.18)

while the lesser and greater GFs (4.15) with the help of Eqs.(4.6)-(4.7) and (4.18) are simplified

to,

Gκ = Gr ∗ Σκ ∗Ga, κ =<,> . (4.19)

In the absence of time-dependent perturbations in the Hamiltonian (4.8), the Fourrier trans-

form of the self-energies Σ<(m) and Σ>(m) are given by the fluctuation-dissipation theorem

which results in [45, 46, 47],

Σ<(m;E) = ifm(E)Γm(E), (4.20)

Σ>(m;E) = −i(1− fm(E))Γm(E), (4.21)

with Γm defined in Eq.(2.35).

4.1.3 Expression for the current

The current associated with the m-th lead is found using the approach of [52, 13, 14, 44], i.e.

calculating the change of the number of particles in the lead due to connection with the device

region and thereby with other leads too. So, the expression for the current reads

Im = −e〈dN̂m

dt
〉, N̂m =

∑
α∈m̄

c†α(t)cα(t). (4.22)

Taking into account the definition (4.4), Eq.(4.22) transforms into

Im(t) = e
∑
i∈0̄,
α∈m̄

(Vαi(t)G
<
iα(t, t)− Viα(t)G<

αi(t, t)) . (4.23)

Let us introduce auxiliary quantity,

J(m; t, t′) = e
∑
i∈0̄,
α∈m̄

(Vαi(t
′)G<

iα(t, t′)− Viα(t)G<
αi(t, t

′)) ≡ eTr
(
G<

0̄m̄ ∗ Vm̄0̄ − V0̄m̄ ∗G<
m̄0̄

)
. (4.24)
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Exploiting Eqs.(4.11) and (4.12), one can get

G<
m̄0̄ = grm̄m̄ ∗ Vm̄0̄ ∗G<

0̄0̄ + g<m̄m̄ ∗ Vm̄0̄ ∗Ga
0̄0̄, (4.25)

G<
0̄m̄ = Gr

0̄0̄ ∗ V0̄m̄ ∗ g<m̄m̄ + G<
0̄0̄ ∗ V0̄m̄ ∗ gam̄m̄. (4.26)

Substituting expressions (4.25) and (4.26) into Eq.(4.24), we come to

J(m; t, t′) = eTr (Gr ∗ Σ<(m) +G< ∗ Σa(m)− Σr(m) ∗G< − Σ<(m) ∗Ga) . (4.27)

Having this, we can easily find our expression for the current, since

Im(t) = J(m; t, t). (4.28)

4.2 Effect of a periodic potential

We now use explicitly the fact that the perturbation (3.1) is periodic in time. We introduce

the Wigner coordinates {τ = t − t′, T = (t + t′)/2} and notice that the GF is periodic in T ,

Gr(τ, T ) → Gr(τ, T + 2π/ω). Thus it is possible to expand the GF into a Fourier series with

respect to T and into a Fourier integral with respect to τ

Gr(τ, T ) =

∫
dE

2π~

∞∑
l=−∞

e−
i
~Eτe−iωlTGr

l (E). (4.29)

We will use extensivley the fact that when C(t, t′) = A ∗ B is a convolution of two quantities,

one gets,

Cl(E) =
∑

l1+l2=l

Al1(E +
~ωl2

2
)Bl2(E −

~ωl1
2

). (4.30)

For instance, the currents reads,

Im(t) =

∫
dE

2π~

∞∑
l=−∞

e−iωltJl(m;E), (4.31)

where using Eq.(4.30) for each term in Eq.(4.27) we arrive at

Jl(m;E) = e
∑

l1+l2=l

Tr

[
Gr
l1

(E +
~ωl2

2
)Σ<

l2
(m;E − ~ωl1

2
) +G<

l1
(E +

~ωl2
2

)Σa
l2

(m;E − ~ωl1
2

)

−Σr
l1

(m;E +
~ωl2

2
)G<

l2
(E − ~ωl1

2
)− Σ<

l1
(m;E +

~ωl2
2

)Ga
l2

(E − ~ωl1
2

)

]
.

(4.32)
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This is the main starting point of all the subsequent derivations. We still have to supplement

it by three equations. First, using Eqs.(4.19) and (4.30) it is straightforward to find

G<
l (E) =

M∑
m′=1

∑
l1+l2+l3=l

Gr
l1

(E +
~ωl2

2
+

~ωl3
2

)·

Σ<
l2

(m′;E − ~ωl1
2

+
~ωl3

2
)Ga

l3
(E − ~ωl1

2
− ~ωl2

2
). (4.33)

Second, if we consider the definition of the advanced and the retarded GFs and a symmetry of

the transformation (4.29), we easily get

Ga
l (E) =

[
Gr
−l(E)

]†
. (4.34)

Finally, with the two previous expressions and Eq.(4.32) one can deduce

Jl(m;E) = [J−l(m;E)]†. (4.35)

In the next sections we develop a systematic way to calculate the current (4.31), i.e. to

express the GF elements Gr
l (E) in terms of known quantities. We consider two types of pertur-

bations: internal perturbation (in the device region) and external perturbation (in the contacts).

4.3 Perturbation in the device region

In this section we consider the case when the perturbation is applied inside the scattering

region. Therefore we assume that the leads are at local thermal equilibrium and unaffected by

the perturbation. This implies that V in Eq.(4.18) is given by Eqs.(3.1) and (3.3). Performing

the transformation (4.29) in the Eq.(4.18) we get(
E +

~ωl
2
−H − Σr(E +

~ωl
2

)

)
Gr
l (E)− eVac

W

2
Gr
l−1(E − ~ω

2
)− eVac

W

2
Gr
l+1(E +

~ω
2

) = δl,0.

(4.36)

or equivalently,

Gr
l (E)− eVacGl(E)

W

2

(
Gr
l−1(E − ~ω

2
) +Gr

l+1(E +
~ω
2

)

)
= δl,0G0(E). (4.37)

In the two following paragraphs we explore two complementary limits: small perturbation am-

plitude (eVac) and adiabatic limit (ω → 0).
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4.3.1 Limit of a small perturbation amplitude

Let us assume that the perturbation amplitude is much smaller than all characteristic energy

scales in the system, e.g. hopping constant between sites. Then we can solve Eq.(4.36) iteratively

in powers of eVac. The solution takes form

Gr
l (E) =

∞∑
n=0

(eVac)
nG

(n)
l (E), (4.38)

G
(n)
l (E) = Gl(E)

W

2

(
G

(n−1)
l−1 (E − ~ω

2
) +G

(n−1)
l+1 (E +

~ω
2

)

)
, (4.39)

for n ≥ 1 and

G
(0)
l (E) = δl,0Gl(E). (4.40)

This equation can be solved iteratively. It is instructive to write down explicitly the first and

second order contributions,

G
(1)
l (E) =δl,1G1(E)

W

2
G−1(E) + δl,−1G−1(E)

W

2
G1(E), (4.41)

G
(2)
l (E) =δl,2G2(E)

W

2
G0(E)

W

2
G−2(E) + δl,−2G−2(E)

W

2
G0(E)

W

2
G2(E)

+δl,0

(
G0(E)

W

2
G−2(E)

W

2
G0(E) + G0(E)

W

2
G2(E)

W

2
G0(E)

)
. (4.42)

The structure of the two previous equations suggests the following simple diagrammatic repre-

sentation of an arbitrary order contribution (see Fig. 4.1). The diagrams are made by horizontal

propagating lines [Gl(E)] separated by ”photon absorption/mission” vertical wavy lines [W/2].

In order to build G
(n)
l (E) one has to remember the following ”Feynman rules”,

• To get the contributions of order n, draw n wavy lines pointing up or down in all possible

configurations (there are 2n diagrams).

• Each diagram of order n gives a contribution to G
(n)
l (E) where l is the difference between

the number of up wavy lines and down wavy lines.

• Read the diagram from left to right. Starting from Gl(E), each wavy line corresponds to

a factor W/2 followed by another Gl′(E) with l′ decreased by 2 (up wavy line, a ”photon”

is emitted) or increased by 2 (down wavy line, ”photon” absorbed). Repeat until the end

of the diagram.
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Figure 4.1: First and second order diagrams. Numbers over the straight lines correspond to

the index l for Gl. Direction of the wavy line tells us whether the absorbtion or emission of a

photon takes place. Each diagram corresponds directly to one term in Eqs.(4.41)-(4.42).

4.3.2 Adiabatic limit and beyond

We now turn to a very different limit where the driving frequency (and not the amplitude) is

the small parameter of the problem. When the perturbation varies slowly the system follows

adiabatically. We introduce the generating function F as,

F (z, E) ≡
∞∑

l=−∞

zlGl(E +
~ωl
2

). (4.43)

A closed equation for F can be obtained by expanding the self energy,

Σr(E + ~ωl) = Σr(E) +
∞∑
n=1

1

n!
(~ωl)n

∂nΣr

∂En
. (4.44)

Assuming that we work around the wide band limit and using Eq.(4.36) (evaluated at energy

E + ~ωl/2), we obtain up to first order in the derivative of Σr(E),

F + ~ωzFad
[
1− ∂Σr

∂E

]
∂F

∂z
= Fad (4.45)

with

Fad =
1

E −H − Σr(E)− eVacW2
(
z + 1

z

) . (4.46)

83



Note that Fad corresponds to the adiabatic limit: when one evaluates F for a given time T (see

Eq.(4.29)), Fad(e
−iωT , E) corresponds to the stationary retarded Green’s function at energy E

for the potential at time T , i.e. assuming that at a given time T , the potential varies so slowly

that it can be considered as constant. Higher order terms can be obtained straightforwardly

and correspond to higher derivatives of F . For instance, to second order, one should add the

following to the left hand side of Eq.(4.45)

− (~ω)2

2
Fad(z)

∂2Σr

∂E2

[
z2∂

2F

∂z2
+ z

∂F

∂z

]
. (4.47)

Equation (4.45) allows for a systematic calculation of F (and therefore the Gl), for instance by

expanding it in powers of ~ω. To first order we get,

F (e−iωT ) = Fad(e
−iωT )− i~Fad(e−iωT )

[
1− ∂Σr

∂E

]
∂Fad
∂T

. (4.48)

And higher orders are obtained straightforwardly. We emphasize that in the adiabatic limit

the processes contain a (arbitrary) large number of absorbed/emitted photons, hence the role

of the generating function which reflects the idea of working in an instantaneous basis being

”natural” in this case1. The resulting observables (the adiabatic current and the correction to

it) are given in the cookbook section 3.3 and in Appendix A.

4.4 Perturbation in the leads

The formalism developed above can be extended to homogeneous perturbations in the leads.

The algebra is very similar with one notable exception: multiple absorption/emission processes

are now allowed. We suppose (for definitness) that a bias voltage Vac cosωt is applied to lead

m̄′, see Eq.(3.2).

4.4.1 Equation of motion

It is convenient to change the basis in the lead affected by the perturbation in order to move

to a frame where the lead is stationary. The AC voltage then gives rise to a time-dependent

phase factor in the coupling matrix between the lead and the device. This is easily seen with

the help of the unitary transformation

Û = exp

[
i

~

∫ t

0

dt′eVac cos(ωt′)N̂

]
, N̂ =

∑
i∈σm

c†αcα. (4.49)

1Note that if instead of Wigner coordinates in Eq.(4.29) we use T = t and τ = t − t′ (see Ref.[66] and

references therein), then Eq.(4.43) is transformed as: F (z, E) =
∑∞
l=−∞ zlGl(E). If we take z = exp(−iωT ) and

compare this to Eq.(4.29), we see that the generating function is nothing else than a Fourier transform of the

Green’s function with respect to the time difference τ only.
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The Hamiltonian after the transformation refers to the old one,

H′ = Û HÛ † − i~ Û ∂Û
†

∂t
.

Then, it consists of

H′(t) = H + V(t), (4.50)

where H is the Hamiltonian of the leads and device (when they are decoupled) and,

V(t) =
M∑
m=1

∑
α∈m̄,i∈0̄

(Vαie
ieVac
~ω sinωtc†αci + Viαe

− ieVac~ω sinωtc†icα) (4.51)

is the new coupling between them. By doing this change of basis we are back to the situation

where the leads are kept at (local) thermal equilibrium, whereas the effect of the perturbation

is completely transferred to the coupling matrix between the latter and the scattering region.

As a result, the self energies of lead m̄′ now acquire an additional phase factor,

Σκ(m′; t, t′) = Σκ(m′; t− t′)e−
ieVac
~ω (sinωt−sinωt′), κ = r, a,<, (4.52)

where Σκ(m′; t− t′) is the equilibrium self-energy (in the absence of the AC field). Expanding

the phase factor in Eq.(4.52) in terms of Bessel functions,

e−
ieVac
~ω sinωt =

+∞∑
n=−∞

Jn

(
eVac
~ω

)
e−iωnt,

the transformation (4.29) applied to the (perturbed) self-energy (4.52) gives

Σκ
l (m

′;E) =
∞∑

n=−∞

Jl+n

(
eVac
~ω

)
Jn

(
eVac
~ω

)
Σκ

(
m′;E − ~ωl

2
− ~ωn

)
. (4.53)

Finally, the equation of motion has the form(
E +

~ωl
2
−H −

M∑
m6=m′

Σr(m;E +
~ωl
2

)

)
Gr
l (E)

−
∞∑

l1=−∞

Σr
l1

(
m′;E +

~ω
2

(l − l1)

)
Gr
l−l1

(
E − ~ωl1

2

)
= δl,0. (4.54)

This equation is the starting point for the approximation schemes considered below.

4.4.2 Limit of a small perturbation amplitude

Let us now expand Gr
l (E) in powers of (eVac/~ω)� 1,

Gr
l (E) =

∞∑
n=0

(
eVac
~ω

)n
G

(n)
l (E). (4.55)
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The first order result can be obtained by a direct expansion of Eq.(4.53),

Σκ
l (m

′;E) = Σκ(m′;E)δl,0 +
eVac
2~ω

[
Σκ(m′;E − ~ω

2
)− Σκ(m′;E +

~ω
2

)

]
δl,1

+
eVac
2~ω

[
Σκ(m′;E − ~ω

2
)− Σκ(m′;E +

~ω
2

)

]
δl,−1 +O

(
e2V 2

ac

)
, κ = r, a,<, (4.56)

where we used the power series representation of Bessel functions. Utilizing the notation intro-

duced in Eq.(3.45), we obtain

G
(0)
l (E) =

(
1

2

)0

δl,0G0, (4.57)

G
(1)
l (E) =

(
1

2

)1 [
δl,−1G−1Λrr

m′(E −
~ω
2

;E +
~ω
2

)G1 + δl,1G1Λrr
m′(E −

~ω
2

;E +
~ω
2

)G−1

]
.

(4.58)

which is similar to expressions (4.40) and (4.41).

In analogy with the case of internal perturbations, a systematic diagrammatic expansion

can be constructed. The set of rules to obtain all the contributions to G
(n)
l (E) is given by,

• Draw all diagrams with 1 ≤ p ≤ n wavy lines. Contrary to the previous case, the wavy

lines now point both up and down (see Fig. 4.2, for example), reflecting the possibility

of multiple absorption and emission processes. Each wavy line i is associated with two

positive integers nai and nei (nei + nai ≥ 1) that correspond to the two types of processes.

We have

n =

p∑
i=1

(nei + nai ), (4.59)

l =

p∑
i=1

(nei − nai ). (4.60)

• Read the diagram from left to right. Starting from Gl(E), each wavy line corresponds to a

factor T lnai ,nei (see below) followed by another Gl′(E) with l′ = l+2(nai −nei ) (nei ”photons”

are emitted and nai are absorbed). Repeat until the end of the diagram.

• The ”vertex” is defined as

T lnai ,nei =
1

2n
e
i+n

a
i

1

nei !n
a
i !

∆
nei+n

a
i

m′

(
E +

~ω
2

[l + nai − nei ]
)
, (4.61)

with the matrix ∆q
m′(E) given by

∆q
m′(E) =

q−1∑
i=0

(−1)i

(
q − 1

i

)
Λrr
m′

(
E + (2i− q)~ω

2
;E + (2i+ 2− q)~ω

2

)
, (4.62)
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Figure 4.2: Example of a diagram that contributes to G
(12)
4 (E). Each diagram is characterized by

the set of upper and lower numbers which correspond respectively to the number of emitted and

absorbed photons. The numbers along the horizontal line are calculated from the diagrammatic

rules.

where

(
q

i

)
is the binomial coefficient. As an example, Fig. 4.2 corresponds to one contribution

to the 12-th order with l = 4, namely G
(12)
4 (E). Using the above rules, this diagram gives,

G
(12)
4 (E) = G4T

4
1,3G0T

0
2,0G4T

4
1,5G−4, (4.63)

where, according to Eq.(4.61),

T 4
1,3 =

1

243!
[Λrr

m′ (E − ~ω;E)− 3Λrr
m′ (E;E + ~ω) + 3Λrr

m′ (E + ~ω;E + 2~ω)

−Λrr
m′ (E + 2~ω;E + 3~ω)] , (4.64)

T 0
2,0 =

1

222!
[Λrr

m′ (E;E + ~ω)− Λrr
m′ (E + ~ω;E + 2~ω)] , (4.65)

T 4
1,5 =

1

265!
[Λrr

m′ (E − 3~ω;E − 2~ω)− 5Λrr
m′ (E − 2~ω;E − ~ω) + 10Λrr

m′ (E − ~ω;E)

−10Λrr
m′ (E;E + ~ω) + 5Λrr

m′ (E + ~ω;E + 2~ω)− Λrr
m′ (E + 2~ω;E + 3~ω)] . (4.66)

We see that in contrast to the case when the perturbation was inside the scattering region,

multiple-photon absorption/emission processes are allowed. This fact can be also understood

from the concept of the sidebands (with energy shifted with respect to the Fermi level by an

amount ±n~ω) which have been introduced in the context of AC scattering theory [12, 74, 17].

4.4.3 Adiabatic limit and beyond

Finally, we consider the adiabatic limit following a similar procedure to the one presented in

Section 4.3.2. The procedure is very similar except for the expansion of the self energy of the
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lead under AC perturbation. The general expansion of Eq.(4.53) reads,

Σr
l1

(
m′;E +

~ω
2

(l − l1)

)
=
∞∑
k=0

1

k!

(
~ω
2

)k
∂kΣr(m′;E)

∂Ek

×
∞∑

n=−∞

(l − 2l1 − 2n)kJl1+n

(
eVac
~ω

)
Jn

(
eVac
~ω

)
. (4.67)

which, using the following two identities for Bessel functions,

∞∑
n=−∞

Jn+l(x)Jn(x) = δl,0, (4.68)

2n

x
Jn(x) = Jn−1(x) + Jn−1(x), (4.69)

allows to obtain the self energy to any value of k. Restricting to first order, we get

Σr
l1

(
m′;E +

~ω
2

(l − l1)

)
≈δl1,0

[
Σr(m′;E) +

~ωl
2

∂Σr(m′;E)

∂E

]
− eVac

2
(δl1,1 + δl1,−1)

∂Σr(m′;E)

∂E
. (4.70)

This expansion corresponds to the wide-band limit (k = 0) [13, 9] and its first correction (k = 1).

It is expected to be very accurate in metallic leads, for instance. At this level, we introduce

again the generating function F (z), Eq.(4.43), and obtain the same equation (4.45) as for the

internal perturbation case provided one replaces W by [−∂Σr(m′;E)/∂E]. The corresponding

results can hence be adapted to this case straightforwardly. Note that beyond this first order

(k ≥ 2 in Eq.(4.67)) a closed equation can also be obtained, but this simple replacement rule

does not apply anymore.

4.5 Conclusions

Numerical simulations of quantum transport has become an ubiquitous tool for mesoscopic

physics and are more and more commonly used to help the design of nanoelectronic devices.

On the other hand there is a general trend of mesoscopic physics and microelectronics towards

GHz or even higher frequencies, so that developing a general framework to tackle finite fre-

quency transport is becoming of increasing importance. In this chapter we have developed the

corresponding formalism allowing to derive a large set of formulas that express AC observables

in terms of numerically accessible quantities. We provide systematic rules to construct other

expressions that we did not give explicitly. Hence, our formalism can either be used as a recipe

book for extending DC numerical tools to AC, or as a starting point for further developments.
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Part II

Quantum transport in a

graphene-based topological insulator
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During the last decade both exotic states of matter and low-dimensional nanostructures

gained considerable attention because of a big progress in device fabrication and characteri-

zation techniques. Small nano- and mesoscale structures are used to observe various quantum

interference and many-body effects, which are invisible at the macroscale. Conventional quan-

tum dots and nanowires as well as all commercial electronic devices are made of semiconducting

materials, such as Si, Ge, GaAs, etc. However, a lot of effort has been put into discovering al-

ternative materials which could open up new avenues in nanoelectronics.

In this part of the thesis we will discuss electronic and transport properties of a real two-

dimensional material, graphene, which only recently was discovered experimentally [75, 76],

though theoretical works existed long before it [77, 78, 79, 80]. In 2010 Nobel Prize in Physics

was awarded to Andre Geim and Konstantin Novoselov from the University of Manchester (UK)

”for groundbreaking experiments regarding the two-dimensional material graphene”. Graphene

is a mono-atomic layer of graphite. It owes its fascinating properties to its hexagonal lattice

structure. In six corners of the Brillouin zone, the so-called K points, valence band and conduc-

tion band touch each other making graphene a zero gap semiconductor. It turns out that in the

vicinity of the K points low-energy excitations in graphene are massless Dirac quasiparticles

[76]. This feature made graphene a hot topic since its discovery, and now it is a mature branch

of condensed matter research. The second feature which made it one of the leading subjects

nowadays is the (anomalous) quantum Hall effect. In contrast to conventional two-dimensional

electron gases (2DEG) in semiconducting heterostructures, where Landau level sequence is

εn ∝ (n + 1/2), Landau levels in graphene are not equidistant and do not have 1/2 offset,

εgrn ∝ ±
√
n. Thus, Hall plateaus in graphene appear at half integer filling factors [76]. This

is a direct consequence of relativistic nature of its low-energy excitations. At the same time,

longitudinal conductivity has a phase shift π in the Shubnikov-de Haas oscillations compared

to 2DEG, which is the manifestation of a non-zero Berry’s phase [76].

Topological insulators (TIs) are materials which are insulating in the bulk but posses con-

ducting states on their surfaces/edges depending on the dimensionality [81, 23, 24, 82, 83, 84].

These states at the boundaries are said to be protected by the time-reversal symmetry (TRS)

preventing them from backscattering, which makes TIs particularly interesting. Existence of

the metallic surface states is a consequence of a bulk band structure topology. They cannot be

eliminated by any smooth perturbation of the Hamiltonian unless the TRS is broken. Whereas

examples of three-dimensional TIs have been found to abound in Nature, two-dimensional sys-

tems having similar properties are so far limited to HgTe/CdTe heterostructures which only a

few experimental groups in the world can synthesize.

In the following chapters we will see how properties of graphene are modified in the presence

of spin-orbit (SO) interaction [25]. SO interaction is a tiny effect in pristine graphene, while it

would open a way to much richer physical phenomena (such as the quantum spin Hall effect
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[23], for example), if there was a way to substantially enhance it. There was a proposal for

possible solution to this problem [26]. Namely, we will see that a certain type of heavy atoms

when deposited on graphene’s surface could give rise to a significant SO coupling.

It turns out that graphene might become a TI provided a large enough SO coupling is in-

duced [24, 23]. In the topologically non-trivial phase graphene structure with edges possesses

spin filtered edge states at its boundaries. At a given edge, there is a pair of states counter-

propagating each other. Thus, there is no net charge current along the edge, but a non-zero

spin current. This effect is called the quantum spin Hall effect in literature [23].

This part of the thesis is organized as follows. First, in Chapter 5 we give a general introduc-

tion to graphene. Starting from the crystal structure we build the simplest tight-binding model

capturing its main properties. Further in this Chapter we derive a continuous effective model

valid in the vicinity of K points. Finally, in Secction 5.3 we recall briefly the main properties of

graphene ribbons. Then, in Chapter 6 we discuss properties of graphene in a strong magnetic

field. We derive the spectrum of Landau levels and then review main features of the quantum

Hall effect in graphene ribbons. Chapter 7 is devoted to the effects of spin-orbital interactions in

graphene. Starting from a microscopic model of SO coupling in pristine graphene, we recall the

Kane-Mele model of the quantum spin Hall effect [23]. At the root of understanding the latter

are the topological properties of graphene in the presence of SO interaction, which are discussed

in the end of this Chapter. The material presented in the last two Chapters contains our orig-

inal work, which was published in Refs.[27, 60]. More specifically, in Chapter 8 we review the

proposal of Weeks et al. [26] to enhance the SO coupling in graphene by functionalizing it with

a certain type of adatoms. This follows by a detailed discussion of experimentally relevant case

of randomly deposited atoms on the graphene’s surface. We find that the non-uniformly cov-

ered graphene can be mapped onto the fully covered case by simply renormalizing the strength

of the SO interaction by the density of adatoms. In Chapter 9 we investigate the properties

of the topological (quantum spin Hall) phase in graphene in the external magnetic field. One

could think that the topological order is broken in this case, however we find that due to the

relativistic nature of quasiparticles in graphene, one can observe features of both quantum Hall

and quantum spin Hall effects by simply varying the Fermi level. Finally, we use this feature

by investigating a heterojunction between the QH and QSH phases in a 4-terminal geometry.

Here, one part of the system is kept in the QSH phase, while another one, thanks to the electric

gate, can be in one of the two: QH or QSH. Whenever two distinct phases meet, there is a chiral

state at the interface, which is quite similar to the interface states in the n-n′ and n-p junctions

in graphene. This Chapter (and the second part of the thesis) ends up with conclusions 9.5
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Chapter 5

Introduction to the physics of graphene

In this chapter we’ll give a general introduction to the physics of graphene. We will show that

the peculiar lattice structure is responsible for the remarkable properties of this material. At

first we will introduce a tight-binding model describing electronic properties of graphene. It

turns out that the low-energy physics of graphene (in the vicinity of K points) is well described

within the first nearest neighbors approximation. This is the case we are interested in. However

it is necessary to take into account influence of up to the third nearest neighbors in the tight-

binding Hamiltonian to get good agreement with ab initio simulations in other parts of the

Brillouin zone. Secondly, we demonstrate that at low energies an effective continuous model

can be introduced and quasiparticles in graphene are described by a massless Dirac equation

with linear dispersion. At the end of this chapter we discuss electronic properties of graphene

ribbons, quasi-one-dimensional strips of graphene.

5.1 Crystal lattice and band structure

In order to understand the crystallographic structure of graphene and carbon-based materials in

general, it is useful to review the basic chemical bonding properties of carbon atoms. The carbon

atom possesses 6 electrons, which, in the atomic ground state, are in the configuration 1s22s22p2,

i.e. 2 electrons fill the inner shell 1s, which is close to the nucleus and which is irrelevant for

chemical reactions, whereas 4 electrons occupy the outer shell of 2s and 2p orbitals. Because

the 2p orbitals (2px, 2py, and 2pz) are roughly 4 eV higher in energy than the 2s orbital, it is

energetically favorable to put 2 electrons in the 2s orbital and only 2 of them in the 2p orbitals

(see Fig. 5.1). It turns out, however, that in the presence of other atoms, such as e.g. H, O, or

other C atoms, it is favorable to excite one electron from the 2s to the third 2p orbital, in order

to form covalent bonds with the other atoms.

In the excited state, we therefore have four equivalent quantum-mechanical states, |2s〉,
|2px〉, |2py〉, and |2pz〉. A quantum-mechanical superposition of the state |2s〉 with n |2pj〉
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Figure 5.1: Electronic configurations for carbon in the ground state (left) and in the excited

state (right). Adapted from [85].

states is called spn hybridization. The sp1 hybridization plays, e.g., an important role in the

context of organic chemistry (such as the formation of acetylene) and the sp3 hybridization

gives rise to the formation of diamonds, a particular 3D form of carbon. Here, however, we

are interested in the planar sp2 hybridization, which is the basic ingredient for the graphitic

allotropes. In this case |2s〉 states hybridize with |2px〉 and |2py〉 forming the so-called σ bonds.

They lie in one plane and are responsible for strong coupling between the neighboring carbon

atoms. The non-hybridized |2pz〉 orbitals lie in the perpendicular plane and give rise to the

weak coupling between the σ-bonded layers. In literature this type of bonds is called π bonds.

Graphene is a two-dimensional one atom thick planar sheet of sp2-bonded carbon atoms

densely packed in a honeycomb lattice, see Fig. 5.2. Since honeycomb lattice is not a Bravais

lattice, it consists of two triangular Bravais lattices shifted with respect to each other. Primitive

translation vectors on each sublattice are (see Fig. 5.2),

a1 =
√

3ac−c

(
1

0

)
, a2 =

√
3ac−c
2

(
1√
3

)
. (5.1)

The reciprocal space is spanned by the vectors

b1 =
2π

3ac−c

(√
3

−1

)
, b2 =

4π

3ac−c

(
0

1

)
. (5.2)

Thus, an elementary cell of graphene consists of two nonequivalent atoms denoted as A

and B in literature and referred to as pseudospin. It means that the wave function of a Bloch
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Figure 5.2: Honeycomb lattice and its Brillouin zone. (a): Lattice structure of graphene, made

out of two interpenetrating triangular lattices (a1 and a2 are the lattice unit vectors; and δi,

i = 1, 2, 3 are the nearest neighbor vectors); (b): corresponding Brillouin zone. b1 and b2 are

reciprocal unit vectors. Big letters K,Γ,M denote high symmetry points in the Brillouin zone.

The Dirac cones are located at the K and K’ points, see Fig. 5.6.

electron is a spinor having two components. We also define the nearest neighbor vectors δi,

which will be used further in this section,

δ1 =
ac−c

2

(
−
√

3

−1

)
, δ2 =

ac−c
2

(√
3

−1

)
, δ3 = ac−c

(
0

1

)
. (5.3)

As was shown by first principles calculations [80], the energy bands coming from σ bonds

lie much higher in energy than those from π bonds (see Fig. 5.3). This means that for energies

|E| . 3 eV it is enough to take into account only π bonds, i.e. |2pz〉 orbitals. They define

completely the band structure and electronic properties of graphene. Thus, we will elaborate a

tight-binding model on a honeycomb lattice with one orbital per site.

If |φ(r)〉 is the normalized orbital |2pz〉 wave function for an isolated carbon atom, then the

wave function of graphene has the form

|Ψ〉 = CA|ψA〉+ CB|ψB〉, (5.4)

where

|ψA〉 =
1

N

∑
A

eik·RA|φ(r−RA)〉, (5.5)

and

|ψB〉 =
1

N

∑
B

eik·RB |φ(r−RB)〉. (5.6)
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Figure 5.3: Band structure of graphene from ab initio calculations. One can clearly see that

at low energies, electronic properties of graphene are determined by the π bands (thick lines).

Adapted from [86].

The summations are performed over all lattice points belonging to A or B sublattices, N is

the number of unit cells in a graphene sheet. Coefficients CA,B are to be determined from the

Schrödinger equation for the full wave function,

H|Ψ〉 = E|Ψ〉. (5.7)

Carrying out a simple derivation, we come to the following secular equation [87, 88],∣∣∣∣∣ HAA(k)− E(k)SAA HAB(k)− E(k)SAB

H∗AB(k)− E(k)S∗AB HAA(k)− E(k)SAA

∣∣∣∣∣ = 0, (5.8)

where Hij = 〈ψi|H|ψj〉 – Hamiltonian matrix elements, Sij = 〈ψi|ψj〉 – elements of the overlap

matrix. To write down Eq.(5.8) we have used the equivalence of the A and B atoms. Now this

is time to make assumptions and approximations. The band structure of graphene has been

studied extensively both within TB model and by means of ab initio simulations [77, 79, 86, 89,

87, 90]. The simplest model that works well at low energies is the first nearest neighbor tight-

binding model. We will describe it here. Let us assume that the orbitals on neighboring sites

weakly overlap and we can take into account only matrix elements of the Hamiltonian between

the orbitals residing on the same lattice point or on the nearest surrounding (the smallest

circle around atom 0 on Fig. 5.4). Another simplification we are going to use is to neglect

the overlap matrix elements between A and B atoms, taking Sij = δi,j. Thus, the remaining
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Figure 5.4: A piece of graphene. Arrows indicate the lattice unit vectors. Dashed circles are

used to show the first, second and third coordination spheres of a carbon atom A0 (denoted by

0 and belongs to the A sublattice). The atom A0 is surrounded by three first nearest neighbors

B1i, six second nearest neighbors A2i, and three third nearest neighbors B3i.

non-zero parameters that we keep are the following,

HAB =
1

N

∑
A,B

eik·(RB−RA)〈φ(r−RA)|H|φ(r−RB)〉 = −t
(
eik·δ1 + eik·δ2 + eik·δ3

)
, (5.9)

HAA =
1

N

∑
A,A′

eik·(RA′−RA)〈φ(r−RA)|H|φ(r−RA′)〉 = ε, (5.10)

where we have introduced the parameters ε and t defined as

ε = 〈φ(r−RA)|H|φ(r−RA), (5.11)

t = −〈φ(r−RA)|H|φ(r−RA − δi)〉, i = 1, 2, 3. (5.12)

Thus, the band structure of bulk graphene accroding to Eq.(5.8) is given by

E(k) = ε± t|f(k)|, (5.13)

f(k) = eik·δ1 + eik·δ2 + eik·δ3 . (5.14)

Now we use the fact that δ2 − δ1 = a1 and δ3 − δ1 = a2 (see Fig. 5.4) to write down

E(k) = ε± t

√
1 + 4 cos

√
3ac−ckx

2
cos

3ac−cky
2

+ 4 cos2

√
3ac−ckx

2
. (5.15)
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Figure 5.5: Ab initio and nearest-neighbor tight-binding dispersions of graphene. (a): The ab

initio calculation of the graphene electronic bands is shown by the full lines. The dashed lines

represent the tight-binding dispersion (5.15) with ε = 0 and t = 2.7 eV. (b): Difference ∆E

between the ab initio and tight-binding band structures. Adapted from [87].

Still we have to find the parameters ε and t. The way to find them is to do first principles

caluclations and then do a mapping of those results onto our simplified model at high symmetry

points (K, M , Γ). Since we are interested in the low-energy properties, we do a mapping at the

K point and the results of both ab initio and our effective descriptions are depicted on Fig. 5.5.

Thus we find that ε = 0 and t = 2.7 eV [87]. To summarize our findings it is convenient to write

down the built above effective model in the second quantized form. So, the simplest model of

graphene is defined by the nearest neighbor tight-binding Hamiltonian,

Ĥ = −t
∑
〈i,j〉
i 6=j

c†icj, (5.16)

where ci and c†i are creation and annihilation operators of an electron on a lattice site Ri

(i = A or B); 〈i, j〉 means that the hopping is allowed only to the nearest neighbors (small

circle around site 0 on Fig. 5.4). Now let us show the full tight-binding spectrum of graphene

(5.15) in the first Brillouin zone, see Fig. 5.6. We notice that the spectrum is symmetric with

respect to the plane E = 0, which is the Fermi level. There are six zero energy (K) points (only

two of them are non-equivalent) in the Brillouin zone, where the valence and the conduction

bands touch each other. Thus, graphene is a zero gap semiconductor, which is the reason of its

fascinating properties. In the next section we will construct an effective continuous model of
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Figure 5.6: (a): Three-dimensional band structure of graphene, see Eq.(5.15). At six corners

of the Brillouin zone (K points) the conduction band and the valence band touch each other.

(b): Zoom into low energy dispersion at one of the K points shows the electron-hole symmetric

Dirac cone structure. Adapted from [91]

graphene in the vicinity of its K points and show that it is described by a massless relativistic

Dirac equation. Graphene gained its popularity during the last decade thanks to this feature.

In the derivation above we considered that the effects from overlapping between neighboring

orbitals as well as the next nearest hopping are negligible. However if one wants to get a much

better agreement with the ab initio results, it is necessary to consider the terms up to third

nearest neighbors when constructing an effective tight-binding model as well as non-zero overlap

between |2pz〉 orbitals on different lattice points [87, 88, 92, 85]. In that case the spectrum looses

the electron-hole symmetry and the chemical potential has a non-zero offset [92].

5.2 Low-energy (Dirac) effective description

Now we will build an effective model of graphene in the vicinity of zero-energy points. To do

this, we first choose two non-equivalent K points that we will call K and K’ in the following

sections. Parts of the Brillouin zone around these points are called valleys. We will use this

term further. They are defined as,

K =
4π

3
√

3ac−c

(
1

0

)
, K′ = −K. (5.17)
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Then, we expand the energy dispersion (5.15) (with ε = 0) in the vicinity of K and K’ making

the substitution

k = ±K + q, |qx,yac−c| � 0. (5.18)

Omitting straightforward steps, we write down the final result

E(q) = ±~vF
√
q2
x + q2

y, vF =
3ac−ct

2~
. (5.19)

The quantity vF has a dimension of velocity and is called Dirac velocity. It is analogous to the

speed of light in the relativistic Dirac spectrum, however it is estimated to be 300 times smaller

[76]. Now we are going to find the effective Hamiltonian characterized by the spectrum (5.19).

From the previous section we know that the Hamiltonian matrix Hij (see equations (5.9)

and (5.10)) has the form, (
0 −tf(k)

−tf ∗(k) 0

)
, (5.20)

where f(k) is defined in Eq.(5.14). Now, we can do the expansion of it around K and K’.

Utilizing Eq.(5.3) and keeping only linear terms in qx,yac−c brings us to [85]

f±(q) ' e∓i
2π
3 (1 + iq·δ1) + e±i

2π
3 (1 + iq·δ2) + 1 + iq·δ3 = −3ac−c

2
(±qx − iqy), (5.21)

where upper (lower) sign corresponds to K (K’). Then, the Hamiltonian can be written as,

H(q) = ~vF (ξqxσx + qyσy), (5.22)

where ξ = ± is a valley index, distinguishes between K and K’; σx,y,z are Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (5.23)

If we quantize the expression (5.22) substituting ~qx,y → p̂x,y = −i~∂x,y, we obtain the operator

we were seeking for,

Ĥ = vF (τzσxp̂x + σyp̂y), (5.24)

where we have used another type of Pauli matrices τx,y,z to denote the valley degree of freedom,

i.e. the two K points. It has a form of a Dirac equation for massless relativistic particles with

linear dispersion relation (5.19).

In particle physics, one defines the helicity of a particle as the projection of its spin onto

the direction of propagation (momentum) [93],

ηq =
q·σ
|q|

, (5.25)
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Figure 5.7: Relation between band index λ = ξη, valley index ξ, and helicity η in graphene.

Adapted from [85].

which is a Hermitian and unitary operator with the eigenvalues η = ±1, ηq|η = ±〉 = ±|η =

±〉. Note that in our case the role of spin σ plays the pseudospin or a sublattice degree of

freedom [85]. In the absence of a mass term, the helicity operator commutes with the Dirac

Hamiltonian, and the helicity is therefore a good quantum number. The helicity is preserved

in elastic scattering processes induced by impurity potentials that vary smoothly on the lattice

scale. In this case, intervalley scattering is suppressed and the helicity is thus conserved [85],

see Fig. 5.7. This effect gives rise to the absence of backscattering in graphene [94] and is at

the origin of Klein tunneling, according to which a massless Dirac particle is fully transmitted,

under normal incidence, through a high electrostatic barrier without being reflected [95].

In the end let us briefly discuss the corrections to our theory. When deriving equation

(5.22), we kept only linear terms in the expansion of f(k). Although most of the fundamental

properties of graphene are captured within the effective model obtained at first order in the

expansion, it might be useful to take into account second-order terms. These corrections include

the next nearest neighbor hopping corrections and off-diagonal second-order contributions from

the expansion of f(k). The latter yield the so-called trigonal warping, which consists of an

anisotropy in the energy dispersion around the Dirac points [85].
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5.3 Graphene ribbons

In this section we discuss electronic properties of graphene ribbons, i.e. strips of graphene cut

out of the 2D structure in a certain direction. In literature they commonly discuss two major

types of edges, armchair and zigzag [96, 97, 92] (see Fig. 5.8). Any other type of edge can be

thought of as a combination of those. In order to classify armchair graphene ribbons it is useful

to characterize them by an integer M , counting the number of dimer lines (A-B pairs) along

the width. Zigzag ribbons are characterized by the number N of zigzag lines (bold lines on

Fig. 5.8b).

We will work in the continuous limit obtained in the previous section, though a full tight-

binding description has been extensively studied in literature [97, 98, 89]. Band structure of the

ribbons depends drastically on the type of the edge and on its width. We will see that zigzag

ribbons are always semimetallic, i.e. they have no energy gap in their spectrum, while armchair

ribbons can be both semiconducting and semimetallic. The latter is controlled by the width.

Let us formulate an eigenvalue problem to find the band structure and corresponding eigen-

states of graphene ribbons. So, we have to solve the Schrödinger equation

HΦ(r) = EΦ(r), (5.26)

where for clarity we write down explicitly the Hamiltonian (5.24) in the valley space,

H = −i~vF

(
σx∂x + σy∂y 0

0 −σx∂x + σy∂y

)
, (5.27)

and

Φ(r) = [ΦK(r),ΦK′(r)]T = [ΦA(r),ΦB(r),Φ′A(r),Φ′B(r)]
T
. (5.28)

Here ΦK(′) is a spinor with two components Φ
(′)
A,B standing for scalar wavefunctions with different

pseudospin or sublattice subscript, which is reminiscent of the initial tight-binding model (see

Sec. 5.1). The total wavefunction containing the fast oscillations from the K-points is then

Ψ(r) =

(
ΨA(r)

ΨB(r)

)
= eiK·r

(
ΦA(r)

ΦB(r)

)
+ eiK

′·r
(

Φ′A(r)

Φ′B(r)

)
. (5.29)

5.3.1 Armchair ribbons

We consider an armchair nanoribbon which is infinitely extended along the y-direction, see

Fig. 5.8a. In order to find the band structure and wave functions we have to solve equation

(5.26) supplemented by the appropriate boundary conditions. If we consider hard wall (or

Dirichlet) boundary conditions we come to [97, 99]

Ψ(r) = 0 for x = 0 and x = W. (5.30)
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Figure 5.8: Sketch of graphene ribbons of width W with (a) armchair edges and (b) zigzag edges.

M and N are integers characterizing the ribbon width. Row of non-existing atoms (dashed

circles) with numbers 0 and (a) M + 1 and (b) N + 1 are shown to reflect corresponding

boundary conditions. Red dashed rectangle represents a unit cell of the ribbon.

They follow from the corresponding hard wall boundary conditions of a discrete model. The

wave function must vanish on the rows of non-existing atoms depicted by dashed lines on

Fig. 5.8a. They contain atoms of both sublattices, which means that armchair boundary con-

dictions (5.30) mix solutions from both valleys. Now we utilize the Bloch ansatz

Φ(r) = eikyyφ(x), (5.31)

and obtain the equations

− i~vF (∂x + ky)φB(x) = EφA(x), (5.32)

− i~vF (∂x − ky)φA(x) = EφB(x), (5.33)

− i~vF (−∂x + ky)φ
′
B(x) = Eφ′A(x), (5.34)

− i~vF (−∂x − ky)φ′A(x) = Eφ′B(x). (5.35)
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Grouping the first two and the last two equations together we find

(k2
y − ∂2

x)φ
(′)
B (x) =

(
E

~vF

)2

φ
(′)
B (x). (5.36)

We look for a solution as a combination of incoming and outgoing waves in the x-direction,

φB(x) = Aeiqnx +Be−iqnx, φ′B(x) = Ceiqnx +De−iqnx. (5.37)

Thus we can deduce the band spectrum of a ribbon,

E = ±~vF
√
q2
n + k2

y, (5.38)

where quantization of the transverse wave number qn is found by satisfying the boundary

conditions (5.30),

qn =
nπ

W
−K, n ∈ Z (5.39)

Here K = 4π/(3
√

3ac−c) is the x-component of K point. Therefore one has a semimetallic

ribbon when there is a state qn = 0. This happens when ribbon width satisfies the relation,

4W

3
√

3ac−c
∈ N. (5.40)

For the eigenstates we find that B = C = 0 and A = −D. Using equations (5.32) and (5.34) to

determine other components, we finally write (up to a normalization constant)

φ(x) ∝
[
~vF (qn − iky)

E
eiqnx, eiqnx,−~vF (qn − iky)

E
eiqnx,−eiqnx

]T

, (5.41)

Ψ(r) ∝ eikyy sin[(qn +K)x]

[
~vF (qn − iky)

E
, 1

]T

. (5.42)

In the end of this paragraph we present a full tight-binding spectrum of armchair ribbons

and the corresponding density of states [97], see Fig. 5.9. On this figure ribbons with M = 4

and M = 30 dimers are semiconducting and do not satisfy the condition (5.40), while M = 5

is semimetallic with a linearly dispersing mode at zero energy. In terms of the number M of

dimer lines (see Fig. 5.8a), we say that the ribbon is semimetallic if M = 3p−1 (p – integer) or

semiconducting otherwise [97]. There is also an interesting feature on Fig. 5.9b, namely there

are dispersionless modes at energies E = ±1.

5.3.2 Zigzag ribbons

Now we examine electronic properties of zigzag ribbons, Fig. 5.8b. From the figure we can

deduce that the appropriate boundary conditions are

ΨA(y = 0) = ΨB(y = W ) = 0, (5.43)
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Figure 5.9: Energy band structure E(ky) and density of states D(E) of armchair ribbons of

various widths: (a) M = 4, (b): M = 5, and (c): M = 30. Energy is calculated in units of

the hopping constant t, and the (dimensionless) wave number ky is in units of 3ac−c/2 (see

Eq.(5.15)). Adapted from [97].

which can be met satisfying the conditions [96, 92]

ΦA(y = 0) = Φ′A(y = 0) = ΦB(y = W ) = Φ′B(y = W ) = 0. (5.44)

Zigzag ribbons have infinite length along x-direction, therefore we use the Bloch ansatz

Φ(r) = eikxxφ(y). (5.45)

This leads to the Dirac equations

~vF (kx − ∂y)φB(y) = EφA(y), (5.46)

~vF (kx + ∂y)φA(y) = EφB(y), (5.47)

−~vF (kx + ∂y)φ
′
B(y) = Eφ′A(y), (5.48)

−~vF (kx − ∂y)φ′A(y) = Eφ′B(y). (5.49)

It enables us to find the equations for φA(y) and φ′A(y),

(k2
x − ∂2

y)φ
(′)
A (y) =

(
E

~vF

)2

φ
(′)
A (y). (5.50)

We look for a solution in the from of plane waves by analogy with the case of armchair ribbons,

φA = Aeizy +Be−izy, φ′A = Ceizy +De−izy. (5.51)

This yields the spectrum, E = ±~vF
√
k2
x + z2, where, as we will see further, z can be either

real or imaginary. Boundary conditions at y = 0 imply that B = −A and D = −C. Thus, we

can see that the valleys are decoupled in zigzag ribbons, and equations (5.47) and (5.49) yield

ΦK/K′ ∝ eikxx
[
sin(zy),

~vF (ξkx sin(zy) + z cos(zy))

E

]T

, (5.52)
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Figure 5.10: Energy band structure E(kx) and density of states D(E) of zigzag ribbons of

various widths: (a) N = 4, (b): N = 5, and (c): N = 30. Energy is calculated in units of

the hopping constant t, and the (dimensionless) wave number kx is in units of
√

3ac−c/2 (see

Eq.(5.15)). Adapted from [97].

where ξ = +1 in the valley of K point and ξ = −1 for the K’. The boundary conditions (5.44)

for B parts of the wavefunction provide an equation that determines the allowed values for z,

kx = − ξz

tan(zW )
. (5.53)

Thus the transverse quantum number is coupled to the longitudinal momentum, as in 2DEG

waveguides in the presence of a magnetic field. In order to write equation (5.52) in a symmetric

way, we take a square of the quantization condition (5.53) and use the relation k2
x = E2/(~vF )2−

z2 to obtain (
E

~vF

)2

=
z2

sin2(zW )
. (5.54)

Using equations (5.53) and (5.54) in equation (5.52) leads to

ΦK/K′ ∝ eikxx [sin(zy), s(z, E) sin{z(W − y)}]T (5.55)

with s(z, E) = sign[Ez/ sin(zW )]. The transcendental equation (5.54) has real solutions z ∈ R
only for |E| ≥ ~vF/W . These states correspond to bulk states: they are extended over the

whole width of the ribbon. For |E| < ~vF/W there are only imaginary solutions iz ∈ R,

corresponding to the so-called edge states [96, 97], which are exponentially localized at the

edges and live predominantly on one sublattice at each side, as can be seen from equation

(5.55).

In order to see explicitly how the states in a zigzag ribbon divide into extended and localized

we present a full tight-binding spectrum in the whole Brillouin zone and the corresponding

density of states, see Fig. 5.10. We clearly see on Fig. 5.10c that for |kx| > 2π/3 there are
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flat bands at zero energy. They are dispersionless and correspond to the edge states mentioned

above. They give a high peak in the density of states. Since zigzag edges do not mix valleys,

as was pointed out above, we can see contributions from both K points in the spectrum. We

can also notice that these peculiar edge states, which become dispersive at |kx| < 2π/3, ensure

that zigzag graphene ribbons are always semimetallic irrespective of their width [97].
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Chapter 6

Quantum Hall effect in graphene

In this chapter we discuss general properties of graphene in presence of a strong magnetic field.

It turns out that the honeycomb lattice structure of graphene leads to important consequences

for spectrum and charge transfer when magnetic field is applied. We know that graphene at low

energies is described by a massless Dirac equation. This fact singles out graphene if compared to

conventional 2D electron gases (2DEG). Specifically, the quantum Hall (QH) effect in graphene

demonstrates an unusual sequence of Hall plateaus occuring at half-integer filling factors in

contrast to 2DEG. This is a direct consequence of a relativistic nature of low-energy excitations.

Existence of such anomalous QH effect can be also viewed as a manifestation of a non-zero Berry

phase π at each of the Dirac cones. One particular feature of the spectrum is the existence of

a zero-energy Landau level (LL), which is independent of the value of a magnetic field and has

occupancy twice smaller than any other LL. This zero-energy LL is responsible for half-integer

filling factors in the QH measurements [76].

Besides bulk graphene, we will also briefly discuss the spectrum of armchair and zigzag

nanoribbons in presence of a magnetic field.

6.1 Graphene in a strong magnetic field

In order to desribe Dirac quasiparticles in graphene in the magnetic field one has to replace the

canonical momentum p by the gauge-invariant kinetic momentum

p→ Π = p + eA(r), (6.1)

where A(r) is the vector potential that generates the magnetic field B = ∇×A(r). The kinetic

momentum is proportional to the electron velocity v, which must naturally be gauge invariant

because it is a physical quantity. Note that throughout the text we use a gauge (see below),

which ensures a uniform magnetic field B = Bez is perpendicular to the xy-plane of graphene.
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Remember that we used a canonical quantization to obtain operator (5.24). According to

this procedure the components of position operator r̂ and the associated canonical momentum p̂

satisfy the commutation relations [x̂, p̂x] = [ŷ, p̂y] = i~ and [x̂, ŷ] = [p̂x, p̂y] = [x̂, p̂y] = [ŷ, p̂x] =

0. As a consequence of these relations, the components of the kinetic momentum Π̂ no longer

commute. They satisfy the relation,

[Π̂x, Π̂y] = −ie~
(
∂Ay
∂x
− ∂Ax

∂y

)
= −i~

2

l2B
, (6.2)

where lB – magnetic length, a length scale introduced by the magnetic field,

lB =
~
eB

. (6.3)

For the quantum-mechanical solution of the Hamiltonian (5.24) after substitution (6.1), it is

convenient to use the pair of conjugate operators Π̂x and Π̂y to introduce ladder operators in

the same manner as in the quantum-mechanical treatment of the one-dimensional harmonic

oscillator. These ladder operators play the role of a complex gauge-invariant momentum (or

velocity), and they read [85],

â =
lB√
2~

(Π̂x − iΠ̂y), â† =
lB√
2~

(Π̂x + iΠ̂y), (6.4)

where we have chosen the appropriate normalization so as to obtain the usual commutation

relation

[â, â†] = 1. (6.5)

Now we invert the expressions (6.4),

Π̂x =
~√
2lB

(â+ â†), Π̂y =
i~√
2lB

(â− â†) (6.6)

and plug Eq.(6.6) into our Dirac Hamiltonian. In terms of the ladder operators the Hamiltonian

reads

H =

(
HK 0

0 HK′

)
with

HK =

√
2~vF
lB

(
0 â

â† 0

)
, HK′ = −

√
2~vF
lB

(
0 â†

â 0

)
(6.7)

for the states around K and K’ points, respectively. One remarks the occurrence of a charac-

teristic frequency

ωc =

√
2vF
lB

, (6.8)
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which plays the role of the cyclotron frequency in the relativistic case. We look for a spinor

solution for each K point,

ΦK(r) =

(
ΦA(r)

ΦB(r)

)
, ΦK′(r) =

(
Φ′A(r)

Φ′B(r)

)
. (6.9)

Thus we have to solve the system of equations,

~ωcâΦB(r) = EΦA(r) and ~ωcâ†ΦA(r) = EΦB(r), (6.10)

which yields

â†âΦB(r) =

(
E

~ωc

)2

ΦB(r) (6.11)

for the second spinor component. One may therefore identify, up to a numerical factor, the

second spinor component ΦB(r) with the eigenstate |n〉 of the usual number operator â†â, with

â†â|n〉 = n|n〉 in terms of the integer n ≥ 0. Furthermore, one observes that the spectrum is

[78, 85]

Eλ,n = λ~ωc
√
n, (6.12)

where we have introduced another quantum number λ = ±1 to label states with positive and

negative energies, respectively (it is analogous to the band index λ on Fig. 5.7 from the previous

chapter). Equation (6.12) represents the relativistic LLs that disperse as λ
√
Bn as a function

of the magnetic field, unlike conventional 2DEGs, where LLs disperse linearly with B. As soon

as we know the second component of the spinor, we can easily find the first one using Eq.(6.10)

because of the usual equations for the ladder operators,

â†|n〉 =
√
n+ 1|n+ 1〉 and â|n〉 =

√
n|n− 1〉, (6.13)

where the last one holds for n > 0. Knowing the solution for K point it is straighforward to

find it for the K’ point (see Eq.(6.7)). So, for any n 6= 0, we can write down

Φn
K =

1√
2

(
λ|n− 1〉
|n〉

)
, Φn

K′ =
1√
2

(
|n〉

−λ|n− 1〉

)
. (6.14)

Special attention deserves the zero-energy (n = 0) LL because it stands out from the others.

Indeed, when n = 0 the first (second) component in ΦK (ΦK′) is zero because

â|n = 0〉 = 0. (6.15)

In this case we obtain the spinors,

Φn=0
K =

1√
2

(
0

|n = 0〉

)
, Φn=0

K′ =
1√
2

(
|n = 0〉

0

)
. (6.16)
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Figure 6.1: Quantum Hall effect in graphene as a function of charge-carrier concentration. The

peak at ν = 0 shows that in high magnetic fields there appears a LL at zero energy where no

states exist in zero field. The field draws electronic states for this level from both conduction

and valence bands [76, 92]. The dashed lines indicate plateaus in σxy = ±(4e2/h)(n + 1/2).

Adapted from [76].

This observation is rather important since only one component in each valley is non-vanishing,

which means that the states in the zero-energy LL belong to sublattice A (B) for the K’ (K)

point. It implies that |n = 0〉 LL has an occupancy twice smaller than any other LL [76], which

is responsible for the anomalies observed in the quantum Hall effect. This particular Landau

level structure has been observed by many different experimental probes, from Shubnikov–de

Haas oscillations in single layer graphene [76, 100] to infrared spectroscopy [101] and to scanning

tunneling spectroscopy [102] on a graphite surface.

In order to see clearly why graphene spectrum is special compared to 2DEG, we present

here the experimental data (see Fig. 6.1) obtained by Novoselov et al. in their seminal work

[76]. The figure represents QH measurements in graphene. One can see a sequence of plateaus

in the Hall conductivity occuring at half-integer filling factors. On top of that the degeneracy of

all LLs is 4-fold (spin and valley degrees of freedom) in contrast with 2DEGs. In 2DEG, the QH

plateaus occur at σ2DEG
xy = (2e2/h)n (n ≥ 0). Note however that from another perspective the

fractional shift in the Hall conductivity of graphene can be viewed as the direct manifestation
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of Berry’s phase acquired by Dirac fermions moving in the magnetic field [76]. Indeed, if we use

a quasiclassical quantization condition for closed orbits in resiprocal space, we obtain [91]

S(E) = πq2
F =

2πeB

~

(
n+

1

2
− γ

2π

)
, (6.17)

where S(E) is a k-space surface enclosed by an orbit of energy E, qF is the absolute value of

the Fermi momentum; γ is a Berry’s phase. The latter is a consequence of the band structure

topology and manifests itself as a phase factor in a wave function if we change particle momen-

tum around a loop in k-space. There is a simple way to see this. We already know (see Sec. 5.2)

that for Dirac quasiparticles in graphene, helicity ηq is a good quantum number, meaning that

for a fixed energy around K (or K’) point, ηq is conserved. By definition it means that the

quasiparticle pseudospin is linked to the axis determined by the electron momentum. Thus, ro-

tation around a closed loop in k-space can be also viewed as a rotation of a pseudospin around

z-axis. In this case the wave function is transformed as,

Ψ→ e2π i
2
σzΨ = eiπΨ (6.18)

and we deduce that the Berry phase is γ = π. This immediately gives our relativistic LL

spectrum if we remember that E = λ~vF qF and use quantization rule (6.17). In 2DEG γ = 0

resulting in a usual 1/2 offset in the LL spectrum.

These experiments confirm the picture of relativistic quasiparticles responsible for the QH

effect in graphene and make graphene special as a ”playground” for investigating relativistic

effects with simple room-temperature measurements.

6.2 QH effect in graphene ribbons

In this section we briefly discuss the electronic properties of graphene ribbons in a (strong)

magnetic field. Each type of ribbons (zigzag and armchair) has a translation invariant direction.

For the coordinate system chosen on Fig. 5.8, armchair ribbons posess translation symmetry in

y-direction, while zigzag ribbons are invariant along x-axis. In the previous section we assumed

that the magnetic field was applied perpendicular to the plane of the ribbons. We may use

symmetries of the ribbons when choosing a gauge. Thus, it is convenient to use a Landau gauge

of the form A(r) = (0, Bx, 0) for armchair and A(r) = (−By, 0, 0) for zigzag ribbons.

Having fixed the gauge it is straightforward to find an explicit form of the LL eigenstates

|n〉. To do this, we write down explicitly the number operator â†â and notice that it coincides

exactly with the Hamiltonian for a harmonic oscillator if we use a Bloch ansatz

ΦB(r) = eikxxφB(y) for zigzag, (6.19)

ΦB(r) = eikyyφB(x) for armchair, (6.20)
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and analogous expressions for Φ′A. Then we come to the equation[
∂2

∂ξ2
+ ξ2

]
φB = (ε2 + 1)φB, (6.21)

where ε = ElB/(~vF ) and a dimensionless parameter ξ = x/lB + kylB for armchair and ξ =

y/lB − kxlB for zigzag. In the case of graphene (infinitely large ribbons), the relativistic LL

spectrum is found from the condition ε2 = 2n and the eigenstates are those of a harmonic

oscillator,

φn =

√
1

2nn!
e−

ξ2

2 Hn(ξ), (6.22)

where Hn(ξ) is a Hermite polynomial.

As we can see, the electron wave function is localized around yc = kxl
2
B in zigzag and

xc = −kyl2B in armchair ribbons. Thus, if we plot the band structure (see Fig. 6.2), electron

momentum also defines an actual position of this state in real space within the width of the

ribbon. On Fig. 6.2 we plot typical band structure of graphene ribbons in presence of a magnetic

field. As in the case without magnetic field, one can observe on Fig. 6.2b contribution from

both valleys in a zigzag ribbon because they are decoupled in contrast to armchair ribbons. The

flat parts of the spectrum correspond to the graphene LL quantization (6.12). For these values

of the wave number, the electronic states are localized in the bulk of the ribbon. However, they

become dispersive as we reach the ribbon edges (kylB = 0 ⇔ x = 0 and kylB ' −8 ⇔ x = W

on Fig. 6.2a, for example) [103, 104]. In this case each LL (except n = 0) contributes a pair of

chiral edge states (propagating clockwise or counterclockwise depending on the magnetic field

direction) on the boundaries of the ribbon. The peculiar zero-energy LL gives rise to only one

edge channel. Indeed, if we fix the value of Fermi energy µ and do a measurement of left-to-right

transmission we can see that the number of (right moving) edge states taking part in charge

transfer is 2n+ 1, where n is the highest occupied LL (n = 1 on Fig. 6.2). Therefore, the Hall

conductivity is given by

σxy =
2e2

h
(2n+ 1) =

4e2

h

(
n+

1

2

)
, (6.23)

just like in the experiments (see Fig. 6.1) discussed above.

To calculate the band structures on Fig. 6.2, we use the tight-binding Hamiltonian,

H = t
∑
〈i,j〉

eiφijc†icj, (6.24)

where in order to incorporate the magnetic field we utilize the Peierls phase φij = (e/~)
∫ rj
ri

A·dr
taking into account the contribution from the magnetic flux threading the lattice [45]. This

approach remains valid as soon as the lattice spacing ac−c and the magnetic length lB satisfy

lB � ac−c.
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Figure 6.2: (a): Spectrum of an armchair graphene ribbon with M = 80 in a strong magnetic

field, lB ' 8ac−c (adapted from [60]). (b): Spetrum of a zigzag ribbon with N = 400 and a

magnetic length lB ' 43ac−c (adapted from [92]). For both ribbons we can see the LL sequence

in the bulk of the ribbon (flat regions), while these states become dispersive at the edges. Blue

dashed lines denote the postion of a Fermi level µ. At the chosen value of µ the highest occupied

LL in both ribbons is n = 1.
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Chapter 7

Graphene with spin-orbit coupling

In this chapter we discuss the electronic and transport properties of graphene in the presence of

spin-orbit (SO) interaction. There exist a lot of literature addressing this problem [105, 106, 25,

107, 108, 109]. Various types of SO coupling emerge as a consequence of interplay between intra-

atomic SO coupling and the effects of curvature and/or external electric field [25]. However,

SO interaction in graphene is supposed to be weak, due to the low atomic number Z = 6 of

carbon. Indeed, though these effects are always present, estimates show that the SO interaction

in graphene is too small to be visible and is therefore neglected in most theoretical works.

However, various interesting phenomena could emerge in its presence as, for example, a

quantum spin Hall (QSH) effect [23]. In graphene, there are two general types of SO coupling,

Rashba SO interaction which does not conserve z-projection of spin Sz, and intrinsic SO cou-

pling – diagonal in spin space. Both terms when taken into account in graphene are responsible

for a gap opening. However, they compete with each other, which can be understood as fol-

lows. Intrinsic SO coupling, Hint = ∆soσzτzsz (here σz, τz, sz are Pauli matrices describing the

sublattice, valley, and spin degrees of freedom respectively), is responsible for the QSH effect

as was argued in Refs.[23, 24]. It induces a “negative gap” for an electron with a given spin

projection in one of two graphene valleys. And this is the reason of existence of a helical edge

state on the boundary of a confined graphene structure with vacuum (trivial insulator), where

the gap is assumed infinite positive, since the gap has to vanish if we traverse the boundary. If

it happens we say that graphene is in a topologically non-trivial phase (or QSH phase, further).

In contrast to this, Rashba SO coupling induces a trivial (positive) gap in graphene destroying

the QSH phase [23, 24].

In the following section we will briefly review various types of SO interaction and corre-

sponding mechanisms responsible for their existence. Then, we will discuss the model of the

QSH effect proposed by Kane and Mele [23, 24] and present in a continuous limit expressions

for the wave function and the spectrum of the edge states. Various types of graphene edges,

like zigzag, armchair, or mixed and their influence on the QSH phase will also be discussed.
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7.1 Spin-orbit interaction in graphene

There were numerous works on microscopic description of SO interaction in graphene [25, 106,

107]. Effective low-energy expressions both in tight-binding and continuous limits were obtained

and we will briefly discuss them in this section. As we know from a microscopic description of

graphene, electronic bands forming its band structure come from the outer shell electrons of

carbon atoms and are of two types: σ and π [25]. The simplest model of graphene neglects σ

bands as they exist at much higher energies (in absolute value) than the π bands (see Fig. 7.1).

However, since we want to study the influence of SO interaction, which is a small relativistic

correction to Hamiltonian, it is necessary to include both types of bands [25].

The orbitals corresponding to the σ bands of graphene are made by linear combinations of

the 2s, 2px and 2py atomic orbitals, whereas the orbitals of the π bands are just the pz orbitals.

We consider the following Hamiltonian [25]:

H = HSO + Hatom + Hπ + Hσ , (7.1)

where the atomic Hamiltonian in the absence of spin orbit coupling is:

Hatom =
∑
κ

(
εp

∑
i=x,y,z;s′=↑,↓

cκ,†is′ c
κ
is′ + εs

∑
s;s′=↑,↓

cκ,†s,s′c
κ
s,s′

)
. (7.2)

where εp,s denote the atomic energy for the 2p and 2s atomic orbitals of carbon, the operators

cκi;s′ and cκs;s′ refer to pz, px, py and s atomic orbitals of atom κ respectively, and s′ =↑, ↓ denote

the electronic spin. HSO refers to the atomic spin-orbit coupling occuring at the carbon atoms

and the terms Hπ,Hσ describe the π and σ bands. We use the nearest neighbor hopping model

between the pz orbitals for Hπ, using one parameter Vppπ (it is equivalent to t in Eq.(5.16)).

The rest of the intra-atomic hoppings are the nearest neighbor interactions Vppσ, Vspσ and Vssσ

between the atomic orbitals s, px, py of the σ band. For more details on the model of Hσ see

Ref.[25]. The results will be presented in terms of the following parameters:

V1 =
εs − εp

3

V2 =
2Vppσ + 2

√
2Vspσ + Vssσ
3

. (7.3)

The band structure for graphene is shown in Fig. (7.1).

7.1.1 Intra-atomic SO interaction

In a crystal, intra-atomic SO coupling arises from an interaction between electrons and atomic

nuclei. It is given by expression HSO = ∆~L~s [25, 62, 110] where ~L and ~s are, the total atomic
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Figure 7.1: Black (full) curves: σ bands. Red (dashed) curves: π bands. The dotted and solid

green arrows depict contributions to the up and down spins at the A sublattice in Eq.(7.4)

respectively. The opposite contributions can be defined for the B sublattice. These interband

transitions are equivalent to the processes depicted in Fig. 7.3, giving rise to the intra-atomic

SO coupling. Adapted from [25].

angular momentum operator and total electronic spin operator respectively, and ∆ is the intra-

atomic SO coupling constant. In the second quantized form we come to [25]

HSO = ∆
∑
κ

(
cκ,†z↑ c

κ
x↓ − c

κ,†
z↓ c

κ
x↑ + icκ,†z↑ c

κ
y↓ − ic

κ,†
z↓ c

κ
y↑ + icκ,†x↓ c

κ
y↓ − ic

κ,†
x↑ c

κ
y↑ + H.c.

)
, (7.4)

where the creation/annihilation operators cκ,†z,x,y;s′ and cκz,x,y;s′ refer to the corresponding pz, px

and py atomic orbitals of atom κ. The intra-atomic SO coupling Hamiltonian, Eq.(7.4), allows

for transitions between states of the π band (pz) near the K and K ′ points of the Brillouin zone,

with states from the σ bands (px,y) at the same points. These transitions imply a change of

the electronic degree of freedom, i.e. a “spin-flip” process (see Fig. 7.1). Next, we would like to

consider two posibilities: (i) a curved graphene surface, (ii) the effect of a perpendicular electric

field applied to flat graphene. In the latter case we will have to consider another intra-atomic

process besides the intra-atomic SO coupling, the atomic Stark effect [25].
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Figure 7.2: Sketch of the relevant orbitals, px and pz needed for the analysis of spin-orbit effects

in a curved nanotube. The arrows stand for the different hoppings described in the text (see

Eq.(7.5)). Adapted from [25].

7.1.2 Effects of curvature

In a curved graphene sheet, a hopping between the orbitals in the π and σ bands is induced

[105]. First, we will use a simple geometry to illustrate the effect of curvature between neigh-

bouring atoms. This geometry is schematically shown in the left upper corner of Fig. 7.2. More

specifically, we consider two atoms at the same height along the axis of the tube. In this geom-

etry we consider that the pz orbitals are oriented normal to the surface of the nanotube, the

px orbitals are oriented along the surface circumference and the py orbitals are parallel to the

nanotube axes. The curvature modifies the hopping between the two atoms compared to the

flat surface for the pz and px orbitals, but will not change, for this simple case, the hopping

between py orbitals. The (reduced) pz-px hopping Hamiltonian is the sum of three terms [25]:

Hcurv =
∑
s′

[
Vppπ cos2(θ) + Vppσ sin2(θ)

]
c1,†
zs′c

0
zs′ −

[
Vppπ sin2(θ) + Vppσ cos2(θ)

]
c1,†
xs′c

0
xs′

+Vspσ sin2(θ)c1,†
zs′c

0
ss′ + sin(θ) cos(θ) (Vppπ − Vppσ)

(
c1,†
zs′c

0
xs′ − c

1,†
xs′c

0
zs′

)
+ H.c. (7.5)

where 0 and 1 denote the two atoms considered and θ is the angle between the fixed z-axis

and the direction normal to the curved surface (see Fig. 7.2). The angle θ, in the limit when

the radius of curvature is much longer than the interatomic spacing, ac−c � R, is given by

θ ≈ ac−c/R. The previous discussion can be extended to the case of general curvature when
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the graphene sheet has two different curvature radii, R1 and R2 corresponding to the x and

y directions in the plane. In that case, the factor R−1 has to be replaced by R−1
1 + R−1

2 . The

hopping terms induced by (intrinsic) curvature discussed here break the isotropy of the lattice

and lead to an effective anisotropic coupling between the π and σ bands in momentum space.

7.1.3 Effect of an electric field

Now we discuss the atomic Stark effect due to a perpendicular electric field E. In this case, we

need to consider the |s〉 orbital of the σ bands at each site, and the associated hopping terms.

The Hamiltonian for this case includes the couplings [25]:

HE =
∑

κ=0,1;s′=↑,↓

(
λeEcκ,†s;s′c

κ
z;s′ + εsc

κ,†
s;s′c

κ
s;s′ + H.c.

)
+ Vspσ

∑
s′=↑,↓

(
axc

1,†
x;s′c

0
s;s′ + ayc

1,†
y;s′c

0
s;s′ + H.c.

)
(7.6)

where λ = 〈pz|ẑ|s〉 is an electric dipole transition which induces hybridization between the s

and pz orbitals and where ax and ay are the x and y components of the vector connecting the

carbon atoms 0 and 1. Note that this Hamiltonian mixes the states in the π band with states

in the σ bands, just like the term responsible for curvature effects described above.

7.1.4 Low-energy expressions for SO interactions

It is often enough to consider low-energy properties of graphene in the vicinity of Dirac points

(see Sec. 5.2). An effective mass model is then developed by writing the low-energy electronic

wavefunction as in Eq.(5.29). The effective Hamiltonian acts on the components of the enevelope

function (5.28).

The effective mass Hamiltonian for SO interaction can be found by the second order de-

generate perturbation theory treating the results of the previous subsections, Eqs.(7.4)–(7.6),

as a perturbation [25, 106]. We can summarize the results as follows. If we consider the ef-

fects of curvature and electric field, we notice that they basically induce the same type of SO

interaction, namely the Rashba-like SO interaction,

HR = λR(σxτzsy − σysx). (7.7)

Here ~σ, ~τ , and ~s are Pauli matrices describing sublattice (A/B), valley (K/K ′), and spin (↑ / ↓)
degrees of freedom, respectively. Effective coupling constant λR can be expressed via previously
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introduced parameters (7.3) in the limit V1 � V2 (widely separated σ bands) as [25]

λR = ∆E + ∆curv,

∆E '
√

2

3

∆λeE

V2

, (7.8)

∆curv '
∆(Vppσ − Vppπ)

2V1

(
ac−c
R1

+
ac−c
R2

)(
V1

V2

)2

.

Thus, we recovered the effective form for the Rashba-type interaction expected from group-

theoretical arguments by Kane and Mele in Ref. [23]. Even more importantly, this result shows

that this effective spin-orbit coupling for the π bands in graphene to first order in the intra-

atomic spin-orbit interaction ∆ is given by two terms:

• ∆E: Corresponds to processes due to the intra-atomic spin-orbit coupling and the intra-

atomic Stark effect between different orbitals of the π and σ bands, together with hopping

between neighboring atoms. The mixing between the π and σ orbitals occurs between the

pz and s atomic orbitals due to the Stark effect λ and between the pz and px,y due to the

atomic spin-orbit coupling ∆. This contribution is the equivalent, for graphene, to the

known Rashba spin-orbit interaction [111] and it vanishes at E =0.

• ∆curv: Corresponds to processes due to the intra-atomic spin-orbit coupling and the local

curvature of the graphene surface which couples the π and σ bands, together with hopping

between neighboring atoms. The mixing between the π and σ orbitals in this case occurs

between pz and px,y atomic orbitals both due to the atomic spin-orbit coupling ∆ and

due to the curvature. This process is very sensitive to deformations of the lattice along

the bond direction between the different atoms where the p part of the the sp2 orbitals is

important.

If we consider second order perturbation theory term quadratic in intra-atomic coupling

(7.4), then we obtain another type of SO interaction, the so-called intrinsic SO coupling [25],

HSO = ∆soσzτzsz. (7.9)

This term is completely determined from the symmetry properties of the honeycomb lattice and

is similar to the Dresselhaus SO interaction in semiconducting heterostructures [25, 112]. Pro-

cesses responsible for this type of SO coupling are depicted on Fig. 7.3. In terms of parameters

V1,2, V1 � V2 we have [25],

∆so '
3

4

∆2

V1

(
V1

V2

)4

. (7.10)
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Figure 7.3: Sketch of the processes leading to an effective intrinsic term in the π band of

graphene. Transitions drawn in red, and indicated by SO, are mediated by the intra-atomic

spin-orbit coupling. Adapted from [25].

As one can see in contrast to the previous case, this term conserves z-projection of spin. We

will see later that it is the intrinsic SO coupling term responsible for the quantum spin Hall

(QSH) effect in graphene.

In the end of this section let us give numerical estimates of typical values for obtained SO

interaction parameters. We summarize them in the Table 7.1 below. Estimates done by other

authors are in agreement with these results [25, 106, 107], confirming that the effect of SO

interaction in graphene is originally very weak.

Intrinsic coupling: ∆so
3
4

∆2

V1

(
V1
V2

)4

0.01K

Rashba coupling (E ≈ 50V/300nm): ∆E

√
2

3
∆λeE
V2

0.04K

Curvature coupling: ∆curv
∆(Vppσ−Vppπ)

2V1

(
ac−c
R1

+ ac−c
R2

)(
V1
V2

)2

0.1K

Table 7.1: Dependence on band structure parameters, curvature, and electric field of the spin

orbit couplings discussed in the text in the limit V1 � V2 (widely separated σ bands). The

parameters used are λ ≈ 0.264 Å [110], E ≈ 50 V/300 nm [23, 75], ∆ = 12 meV [113, 114],

Vspσ ∼ 4.2 eV, Vssσ ∼ −3.63 eV, Vppσ ∼ 5.38 eV and Vppπ ∼ −2.24 eV [115, 116], V1 = 2.47 eV,

V2 = 6.33 eV, and R ∼ 50− 100 nm. Adapted from [25].

7.2 Topological insulator in graphene: Kane-Mele model

In this section we will demonstarte how low-energy electronic and transport properties of

graphene change if we consider the effects of spin-orbit interaction. From the previous sec-
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tion we saw already which types of SO coupling could be present (in principle) in graphene,

see equations (7.7) and (7.9). If one takes them into account, then interesting phenomena, such

as the QSH effect, emerge. These effects were discovered in pioneer works by C. Kane and E.

Mele [23, 24], who emphasized the importance of spin-orbital effects in graphene (however, they

have not been observed experimentally yet due to small values of the SO coupling constants,

see Table 7.1). Let us briefly review the Kane-Mele model as this is a background for our recent

works [27, 60] discussed in the subsequent chapters.

In the continuous (Dirac) limit, graphene in presence of SO coupling is described by

H = H0 + HSO + HR, (7.11)

H0 = −i~vF (σxτz∂x + σy∂y),

where HSO and HR are defined in Eq.(7.7) and Eq.(7.9), while H0 is a usual graphene Hamil-

tonian (5.24). For λR = 0, ∆so leads to an energy gap 2∆so with E(q) = ±
√

(~vF q)2 + ∆2
so.

For 0 < λR < ∆so the energy gap 2(∆so − λR) remains finite. For λR > ∆so the gap closes,

and the electronic structure is that of a zero gap semiconductor with quadradically dispersing

bands [23]. In the following we will assume that λR < ∆so and analyze the properties of the

resulting gapped phase.

The gap generated by σzτzsz (see Eq.(7.9)) is different from the gap that would be generated

by the staggered sublattice potentials, σz or σzsz. The ground states in the presence of the latter

terms are adiabatically connected to simple insulating phases at strong coupling where the two

sublattices are decoupled [23]. In contrast, the gap parameter σzτzsz produces gaps with opposite

signs at the K and K ′ points. This has no simple strong coupling limit. To connect smoothly

between the states generated by σz and σzτzsz one must pass through a critical point where

the gap vanishes, separating ground states with distinct topological orders1.

Let us consider in more details the gapped phase in graphene (λR < ∆so), see Fig. 7.4. For

simplicity we will consider λR = 0 and ∆so > 0 since qualitatively it corresponds to the same

physical picture. It turns out that the topological order in the gapped phase results in existence

of gapless edge excitations in graphene with boundaries. As we know from Sec. 5.3, there are

two major types of edges in finite graphene structures, armchair and zigzag. Edge states exist

for both types of boundaries but are chatacterized by different length scales.

In order to plot the band structure, Fig. 7.4, in the full Brillouin zone, we employed a

tight-binding version of Hamiltonian (7.11), which has the form [24],

H = −t
∑
〈ij〉α

c†iαciα + iλso
∑
〈〈ij〉〉αβ

νijs
z
αβc
†
iαcjβ + iλR

∑
〈ij〉αβ

c†iα (sαβ × dij)z cjβ, (7.12)

1Consider the following Hamiltonian: H = H0 +H1(µ), where H1(µ) = µHSO+(1−µ)∆zσz. The parameter

µ varies in the interval [0, 1]. Then, there exists a critical value µc, at which the gap of Hamiltonian H vanishes.
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Δ    = 0 so Δ    ≠ 0so

Figure 7.4: Comparison of the three-dimensional band structure of graphene in the case with

(right) and without (left) the SO coupling. When the SO interaction is taken into account

a bulk gap appears. Obatined with the help of Eq.(7.12) with parameters values t = 2.7 eV,

λso = 0.1t (∆so = 3
√

3λso) and λR = 0.

where operator ciα annihilates an electron on site i with a spin projection α; single 〈〉 or double

〈〈〉〉 brackets denote first and second nearest-neighbors on the lattice, respectively2. s is a vector

of Pauli matrices in the spin space. The first term describes bare graphene first nearest-neighbors

hopping and does not depend on spin. The second term is the mirror symmetric intrinsic SO

coupling. In the tight-binding description this intrinsic SO coupling is represented by the second

nearest neighbors hopping term with a spin-dependent amplitude, λso = ∆so/(3
√

3). νij = ±1

if the electron makes a counterclockwise (clockwise) turn to get to the second neighbor (see

Fig. 7.5). The third term is the nearest neighbor Rashba term, which explicitly violates the

z → −z mirror symmetry, dij = (ri− rj)/|ri− rj| is a unit vector connecting the two sites. But

as we dicussed above, we proceed assuming λR = 0.

7.2.1 Topologically protected edge modes

In this pragraph we will consider armchair and zigzag nanoribbons with SO coupling. We will

summarize the main properties of the edge states in both ribbon types. To find analytical

solutions we use the continuous model (7.11) with eigenstates of the form (5.28)-(5.29).

2Note that this an effective Hamiltonian, which is written in terms of the creation/annihilation operators

for π orbitals only. The effect of σ orbitals is already taken into account in the corresponding SO coupling

constants.
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Figure 7.5: Single hexagon of graphene. Dashed arrows correspond to the second nearest neigh-

bors hopping giving rise to the intrinsic SO interaction (∼ λso in Eq.(7.12)). The direction of

hopping is important in this case. If an electron hops counterclockwise, like on the cartoon,

then νij = +1, otherwise νij = −1.

Armchair ribbons

Consider an armchair ribbon extending along the y-direction with boundaries at x = 0 and

x = W (see Fig. 5.8a). For simplicity, we consider that the ribbon is wide enough so that the

two opposite boundaries can be treated independently. Then, we can write down the solution

for envelope functions in a compact way,(
Φ

(′)
A (r)

Φ
(′)
B (r)

)
=

[
A(′)eikxx

(
1

~vF (±kx+iky)

E±ζ∆so

)
+B(′)e−ikxx

(
1

~vF (∓kx+iky)

E±ζ∆so

)]
eikyy, (7.13)

where upper (lower) sign corresponds to K (K ′) points, and ζ = ±1 distinguishes spin-up/spin-

down solutions. This expression can be trivially obtained from a stationary Schrödinger equation

with the Hamiltonian (7.11) (and λR = 0). Looking for a decaying solution for the edge states,

we substitute kx = iκ. To find an expression for κ one has to satisfy the armchair boundary

conditions (5.30). It is a straightforward calculation which in the end leads to a very simple

result. We will write the final expressions only.

For the upper boundary, x = 0 (see Fig. 5.8), we find: κ = ∆so/(~vF ), and the total wave

function,

Ψ(r) ∝ e−κxeikyy
(

1

iζ

)
sin Kx, (7.14)

where K = 4π/(3
√

3ac−c) is the x-coordinate of the K-point. The proportionality constant is

to be found from a normalization condition. The eigenvalue corresponding to this solution is

E = ζ~vFky. We immediately observe that at this boundary there is a pair of edge states

(with opposite spins, often referred to as Kramers doublet), which propagate in the opposite

directions (see Fig. 7.6). This is a feature of the QSH effect. The name comes from the fact

that there is no net charge current in a system with such a boundary, but there is a non-zero

spin current [23].
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Figure 7.6: (a): Spectrum of the (metallic) armchair ribbon with M = 80 dimer lines in width

in presence of the (intrinsic) SO coupling, λso = 0.02t (∆so = 0.1t), see Eq.(7.12). Linearly

dispersing bands crossing at zero energy come from the edge states. (b): Cartoon of an armchair

ribbon connected to two contacts. The blue solid (red dashed) arrows depict spin-up (spin-down)

edge states at each boundary. The dashed-dotted arrow shows that at a given energy the edge

states moving in the same direction are on the opposite boundaries of the ribbon and moreover

have opposite spin projections.

At the lower boundary, x = W , we come to the solution: κ = −∆so/(~vF ), and the total

wave function reads,

Ψ(r) ∝ eκ(x−W )eikyy
(

1

−iζ

)
sin Kx. (7.15)

In this case the corresponding eigenvalue is E = −ζ~vFky, which means that on the opposite

boundary (compared to x = 0), the direction of motion of electrons is reversed. Typical spec-

trum of an armchair ribbon in presence of the intrinsic SO coupling looks as on Fig. 7.6. A pair

of linear bands crossing at E = 0 correspond to the helical edge states we have just discussed.

The features of the edge states described above led to a very naive and misleading picture

of the QSH effect [82], according to which it can be looked at as two copies of a QH effect with

opposite directions of an effective magnetic field for opposite spin projections. As we will see

from the subsequent sections, this argument generally speaking is wrong.

To derive the results above we have assumed that the width of an armchair ribbon is much

bigger than a characteristic length scale of an edge state 1/κ. As we already know (see Section

5.3), armchair ribbons can be either metallic or semiconducting depending on their width.

For semiconducting ribbons, energy gap decays as 1/W and becomes small for wide ribbons.
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However if we consider ribbons of finite size, more detailed analysis shows that the QSH phase

emerges as soon as the spin-orbit gap becomes larger than the confinement gap, ∆so > ∆E(W ).

If this condition holds, it can be shown that the edge states (in semiconducting ribbons) have

also a small energy gap which in turn decays exponentially with width [117, 118]. The effect of

finite width also manifests itself on Fig. 7.6a, where the actual gap is slightly bigger than the

bulk value, 2∆so, due to confinement.

Zigzag ribbons

This case was studied by Kane and Mele [23] and in more details by Metalidis and Prada [119].

The tight-binding version of graphene Hamiltonian with intrinsic SO interaction (7.12) contains

the second nearest neighbors term. We remember from Section 5.3 that for zigzag ribbons the

wave function has to vanish only on either A or B sublattice sites at the boundary. However, as

spin-orbit coupling induces next-nearest neighbors hopping, the total wave function in our case

has to vanish on both the A and the B sublattice sites at the edge [119]. It turns out that this

results in appearance of two length scales which define the width of edge states. Qualitatively,

the solution has a form [119],

Ψ(r) = eikxx
[
αe−κ1y

(
ΦA(kx, κ1, sz)

ΦB(kx, κ1, sz)

)
+ βe−κ2y

(
ΦA(kx, κ2, sz)

ΦB(kx, κ2, sz)

)]
. (7.16)

It is interesting to note that in contrast to armchair ribbons, in zigzag ribbons, characteristic

length scales 1/κ1,2 depend on energy, see Fig. 7.7. As we can see, in zigzag ribbons, 1/κ2 blows

up when we reach the energies near the value of the SO gap. The edge state width increases

and we can no longer distinguish it from bulk states. That is why in the next chapters we

will concentrate on armchair ribbons. Typical spectrum of a zigzag ribbon with intrinsic SO

coupling is depicted on Fig. 7.8. The bulk bandgaps at the one dimensional projections of the

K and K’ points are clearly seen. In addition, two bands traverse the gap, connecting the K

and K’ points. The wave functions corresponding to these bands are localized at the edges of

the ribbon, see Eq.(7.16).

It is worth mentioning that in the case of irregular graphene edges (neither armchair nor

zigzag), the edge states still persist, and their width depends on energy as it does in zigzag

ribbons [119]. As we will see further, existence of the edge states is a bulk property and does

not depend on boundary conditions.

In the end of this chapter we would like to discuss the topological nature of the edge states.

It turns out that they are very robust to a big class of perturbations which conserve time-

reversal symmetry (TRS). There is a special number, a topological invariant Z2 [24, 23], which

is a characteristics of a bulk spectrum, that establishes the so-called bulk-edge correspondance

[120, 121]. It takes only two values, 0 and 1, distinguishing trivial insulating phase from a

topological phase. The latter posesses the edge states discussed above.
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Figure 7.7: Comparison of the topological edge state width of armchair (closed black circles)

and zigzag ribbons (solid red line for 1/κ2 and open blue circles for 1/κ1) as a function of Fermi

energy. The spin-orbit coupling is λso = 0.03t. The dominant 1/κ2 contribution in the zigzag

case is also plotted for different values of λso (0.01, 0.03, 0.06 for dashed, solid and dotted red

lines respectively). Adapted from [119].

7.2.2 Z2 topological order

Let us discuss the topological properties of graphene with SO interaction. In order to character-

ize the gapped phase considered above, Kane and Mele proposed a method based on calculating

the so-called Z2 topological invariant. It is a number characterizing the topology of a manifold

mapping a (bulk) Hamiltonian onto the Brillouin zone (a torus in 2D). SO interaction allows a

topological class of insulating band structures with TRS preserved [24, 23, 81]. In our case the

time-reversal operator, which must be antiunitary, has the form [81]

Θ = exp(iπSy/~)K, (7.17)

where Sy is the spin operator and K is complex conjugation. For spin 1/2 electrons, Θ has the

property Θ2 = −1. This leads to an important constraint, known as Kramers’ theorem, that

all eigenstates of a time-reversal invariant Hamiltonian are at least twofold degenerate. This

follows because if a non degenerate state |χ〉 existed then Θ|χ〉 = c|χ〉 for some constant c. This

would mean Θ2|χ〉 = |c|2|χ〉, which is not allowed because |c|2 6= −1. In the absence of spin
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Figure 7.8: One dimensional energy bands for a zigzag ribbon (shown in inset) modeled by

(7.12) with λso = 0.03t. The bands crossing the gap are spin filtered edge states. Adapted from

[23].

orbit interactions, Kramers’ degeneracy is simply the degeneracy between up and down spins.

In the presence of SO interactions, however, it has nontrivial consequences.

A time-reversal invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (7.18)

One can classify the equivalence classes of Hamiltonians satisfying this constraint that can

be smoothly deformed without closing the energy gap. In this case we can distinguish two

different situations, ν = 0 (trivial insulator) and ν = 1 (topological insulator) with ν being the

Z2 invariant. It can be understood as follows.

In Fig. 7.9 we show schematically plots of the electronic states associated with the edge

of a time-reversal invariant 2D insulator as a function of the crystal momentum along the

edge. Only half of the Brillouin zone 0 < kx < π/a is shown because TRS requires that the

other half −π/a < k < 0 is a mirror image. The shaded regions depict the bulk conduction

and valence bands separated by an energy gap. Depending on the details of the Hamiltonian

near the edge there may or may not be states bound to the edge inside the gap. If they

are present, however, then Kramers theorem requires they be twofold degenerate at the time-

reversal invariant momenta kx = 0 and kx = π/a (which is the same as −π/a). Away from
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Figure 7.9: Electronic dispersion between two boundary Kramers degenerate points Γa = 0 and

Γb = π/a. In (a) the number of surface states crossing the Fermi energy EF is even, whereas in

(b) it is odd. An odd number of crossings leads to topologically protected metallic boundary

states. Adapted from [81].

these special points, labeled Γa,b in Fig. 7.9, a spin orbit interaction will split the degeneracy.

There are two ways the states at kx = 0 and kx = π/a can connect. In Fig 7.9(a) they connect

pairwise. In this case the edge states can be eliminated by pushing all of the bound states out

of the gap. Between kx = 0 and kx = π/a, the bands intersect EF an even number of times.

In contrast, in Fig. 7.9b the edge states cannot be eliminated. The bands intersect EF an odd

number of times.

Which of these alternatives occurs depends on the topological class of the bulk band struc-

ture. Since each band intersecting EF at kx has a Kramers partner at −kx, the bulk-boundary

correspondence relates the number NK of Kramers pairs of edge modes intersecting EF to the

change in the Z2 invariants across the interface,

NK = ∆ν mod 2. (7.19)

There are several mathematical formulations of the Z2 invariant ν [24, 122, 83, 123, 124,

125, 126, 127, 128]. We describe here only one approach [122]. First, we define a unitary ma-

trix wmn(k) = 〈um(k)|Θ|un(−k)〉 built from the occupied Bloch functions |um(k)〉. Since Θ

is antiunitary and Θ2 = −1, wT (k) = −w(−k). There are four special points Λa in the

bulk 2D Brillouin zone where k and −k coincide, so w(Λa) is antisymmetric. The deter-

minant of an antisymmetric matrix is the square of its Pfaffian, which allows us to define

δa = Pf[w(Λa)]/
√

Det[w(Λa)] = ±1. Provided |um(k)〉 is chosen continuously throughout the

Brillouin zone (which is always possible), the branch of the square root can be specified globally,
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and the Z2 invariant is

(−1)ν =
4∏

a=1

δa. (7.20)

This formulation can be generalized to 3D topological insulators, and involves the 8 special

points in the 3D Brillouin zone.

It is important to note that even if the z-component of spin is not conserved (as for a

Rashba SO coupling, for example), as soon as the TRS is preserved one can always define a

pair of states constituting a Kramers’ doublet. In this case Sz is not a good quantum number

and these states do not have particular spin polarization.
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Chapter 8

Topological insulating phase in

functionalized graphene

In this chapter we will propose a way how non-trivial topological phase can be induced in

graphene. In previous chapter we saw that a certain type of spin-orbit interaction could turn

graphene into a topological insulator. In practice, however, estimates done in the previous works

[25] show that in a pristine graphene all types of SO coupling are extremely small to be visible.

Namely, estimated value of the intrinsic SO gap induced as a consequence of mixing between σ

and π orbitals due to intra-atomic SO coupling is ∼ 10 mK (see Table 7.1). Similarly, Rashba

SO interaction caused by a perpendicular electric field and a curvature of a graphene surface

are too small to be observed [25].

Here, we propose a model which could provide a way to observe the quantum spin Hall

effect in graphene in a controlled way even at quite high temperatures, ∼ 100 K. Elaborating

the initial idea by Weeks et al. [26] based on DFT calculations, we investigate the effective

low-energy model of graphene functionalized with a special type of adatoms. In their work

Weeks et al. have shown that Tl and In heavy atoms when deposited on a surface of graphene

induce locally strong intrinsic SO interaction while keeping small spin mixing perturbations.

Within this model we were able to show [27], that even at very low concentration of these

adatoms it is possible to observe a perfectly homogeneous QSH phase with a renormalized SO

coupling constant. We do multiterminal transport calculations which prove the validity of our

arguments. The effect of on-site Anderson disorder on the QSH phase was also considered. It

turns out that unrealistically big disorder strength is needed to destroy the phase, which proves

its topological nature. In the end of the chapter we discuss a possible application of the peculiar

transport characteristics of the QSH phase for thermopower applications.
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8.1 Initial proposal

Here we give a review of the seminal work by Weeks et al. [26] which motivated our further

research in this direction. Observing QSH effect in graphene is a difficult task since in a pristine

structure it is expected to happen in an extremely small energy window close to a Dirac point.

That is why it is obscured by the fluctuations in electrochemical potential or disorder (coming

from a substrate, for example) which create electron-hole puddles [129, 130] washing away the

effects we are interested in. So, in order to overcome this limitation one needs to enhance the

initially weak SO interaction in graphene. Specifically, in the work [26] the authors investigate

how graphene can ”inherit” strong spin-orbit coupling from a dilute concentration of heavy

adatoms (whose innate spin-orbit coupling strength can be on the electron-volt scale) deposited

randomly into the honeycomb lattice.

The basic principle underlying their proposal can be understood by considering processes

in which an electron from graphene tunnels onto an adatom – whereupon it ”feels” enormous

spin-orbit coupling – and then returns to the graphene sheet. Though the principle may seem

to be quite simple, presence of adatoms might create several competing effects. For instance,

adatoms often form local magnetic moments [131] which potentially spoil the time-reversal

symmetry protecting the QSH effect. Moreover, adatoms generically mediate both intrinsic

and Rashba spin-orbit coupling. The latter is believed to be detrimental to the QSH phase

[24, 23], and previous work has indeed established that certain kinds of adatoms do generate

substantial Rashba coupling in graphene that typically overwhelms the intrinsic contribution

[108, 109, 132]. The adatoms may also favor competing, ordinary insulating states depending

on their precise locations in the lattice. And finally, since spin-orbit coupling is generated non

uniformly in graphene, the stabilization of a QSH phase even in an otherwise ideal situation is

unclear a priori.

8.1.1 The setup

In order to investigate the influence of adatoms on electronic and transport properties of

graphene, Weeks et al. have used a mixture of numerical methods and symmetry-based ar-

guments. They considered three different occupations an adatom can in principle have when

deposited on the surface of graphene, see Fig. 8.1. If heavy adatoms are to stabilize a more

robust QSH phase in graphene, then, at a minimum, they should be nonmagnetic (to preserve

time-reversal symmetry) and modify the physics near the Dirac points primarily by inducing

large intrinsic spin-orbit coupling. The latter criterion leads us to focus on elements favoring the

”hollow” (H) position in the graphene sheet indicated in Fig. 8.1a. Compared to the ”bridge”

(B) and ”top” (T) positions, adatoms in the H position can most effectively mediate the spin-

dependent second-neighbor hoppings present in the Kane-Mele model, while simultaneously
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Figure 8.1: Adatoms in graphene. (a) Depending on the element, adatoms favor either the high-

symmetry ”bridge” (B), ”hollow” (H), or ”top” (T) position in the graphene sheet. (b) Detailed

view of an H position adatom, which is best suited for inducing the intrinsic spin-orbit coupling

necessary for stabilizing the topological phase. The desired spin-orbit terms mediated by the

adatom are illustrated in (c). Red and yellow bonds represent the induced second-neighbor

imaginary hopping, whose (positive) sign is indicated by the arrows for spin-up electrons. For

spin-down electrons the arrows are reversed. Adapted from [26].

avoiding larger competing effects such as local sublattice symmetry-breaking generated in the

T case.

Since H-position adatoms generically reside on one side of the graphene sheet, they will

clearly mediate Rashba spin-orbit coupling as well, leading to a potentially delicate competition.

If the adatoms’ outer-shell electrons derive from p orbitals, however, the induced intrinsic spin-

orbit terms always dominate over the induced Rashba interactions [26]. The latter arguments

define the choice of the H-position adatoms for further considerations.

8.1.2 Numerical DFT simulations and effective TB description

As a first step in understanding the multiadatom case, authors in [26] examined a periodic

system with one adatom residing in a large N × N supercell. This situation allowed them

to utilize density functional theory (DFT) to ascertain suitable heavy elements and obtain a

quantitative understanding of their effects on graphene. To ensure large spin-orbit coupling,

they focused on elements in rows five and six of the periodic table, including In, Sn, Sb, Te, I,
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La, Hf, Pt, Au, Hg, Tl, Pb and Bi. For each element, they calculated the total energy in the

three adsorption geometries shown in Fig. 8.1a along with the adatom’s spin moment. These

calculations reveal that two elements–indium (atomic number Z = 49) and thallium (Z = 81)–

satisfy the criteria of both favoring the high-symmetry H position and being nonmagnetic.

Furthermore, both elements exhibit partially filled p shells, ensuring that the Rashba coupling

they mediate in graphene is benign at the Dirac points.

For In and Tl heavy atoms Weeks et al. investigated thoroughly the band structure of

graphene with one such atom per 4 × 4 supercell, see Fig. 8.2. On Figs. 8.2a,d they plot the

band structure of graphene in the presence of adatoms assuming that there is no SO coupling.

Though the translational invariance of the lattice is reduced, we still see a Dirac cone in the

vicinity of zero-energy point. Other panels on Fig. 8.2 demonstrate the band structure with

non-zero SO coupling where we clearly see a gap opening. This proves that the gap originates

from the SO interaction and (as will be demonstrated below) has a non-trivial topological

nature. Authors have also considered dependence of the induced gap as a function of adatom

concentration (see Fig. 8.3), i.e. one adatom per 5× 5, 7× 7, and 10× 10 supercells.

Quite naturally, the gap decreases as one reduces the coverage, as does the Fermi level since

fewer electrons are donated to graphene at lower adatom concentrations. It is worth highlighting

that the gap decreases sublinearly and that a sizable ∆so ≈ 10 meV remains even with a mere

2.04% thallium concentration.

We move on to simplify the model further in order to investigate low-energy transport

properties of the insulating phase in graphene. Weeks et al. considered first a full tight-binding

model of functionalized graphene taking into account adatom’s degrees of freedom. But it turns

out that for the mentioned above In or Tl atoms (with partially filled p shells) it is possible to

integrate out these degrees of freedom and derive an effective model of graphene with second

nearest neighbors hopping in the vicinity of a Dirac point (encircled regions on Fig. 8.2),

H = Ht +
∑
I

δHI −
∑
r

δµrc
†
rcr. (8.1)

Here δµr represents a random on-site potential arising, e.g., from the substrate (and not the

adatoms), Ht is a usual first nearest neighbors Hamiltonian of graphene (5.16),

Ht = −t
∑
〈rr′〉

(c†rcr′ + H.c.). (8.2)

In the second term in Eq.(8.1), I labels the random plaquettes (hexagons) occupied by adatoms

and

δHI = −δµ
∑
r∈I

c†rcr + λso

∑
〈〈rr′〉〉∈I

(iνrr′c
†
rs
zcr′ + H.c.) + iλR

∑
r,r′∈I

c†r(s× drr′)zcr′ (8.3)
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Figure 8.2: Band structure and the adatom local density of states (LDOS). All data correspond

to one adatom in a 4×4 supercell, with the upper row corresponding to indium and the lower row

corresponding to thallium. The left panels in (a) and (d) correspond to the band structure and

LDOS computed using DFT without spin-orbit coupling. The horizontal dashed lines indicate

the Fermi level (EF ), which shifts due to electron-doping from the adatoms. Insets zoom in

on the band structure near the K point within an energy range −35 to 35meV, showing that

without spin-orbit interactions neither indium nor thallium open a gap at the Dirac points. The

central panels in (b) and (e) are the corresponding DFT results including spin-orbit coupling.

Remarkably, in the indium case a gap of 7 meV opens at the Dirac point, while with thallium

the gap is larger still at 21 meV. Finally, the right panels in (c) and (f) were obtained using the

tight-binding model taking into account the adatoms’ degrees of freedom [26]. Adapted from

[26].

with drr′ = (r− r′)/|r− r′|. The first term in δHI describes the chemical potential that screens

charge from the adatoms, while the last two terms capture the local intrinsic (λso) and Rashba

(λR) spin-orbit couplings induced by electrons hopping from graphene to an adatom and back.

s is a vector of Pauli matrices in the spin space, and νrr′ are signs that equal +1, if an electron

hops in the direction of the arrows in Fig. 8.1c, and −1 otherwise (see also Fig. 7.5). It is
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Figure 8.3: Coverage Effects. Spin-orbit-induced gap ∆so opened at the Dirac points and Fermi

level EF (measured relative to the center of the gap) for different indium and thallium adatom

coverages. The open and filled symbols represent data for indium and thallium, respectively.

Adapted from [26].

important to notice that, unlike the conventional nearest-neighbor Rashba term considered in

the Kane-Mele model (see Sec. 7.2) for pristine graphene [24], the adatom-generated Rashba

term connects all sites in the hexagon. Such a ”hexagon Rashba term” has the property of

vanishing at the Dirac points. The latter is crucial for choosing this certain type of adatoms

in order to induce a topological phase in graphene. The adatom also induces other symmetry-

allowed terms, such as further-neighbor spin-independent hoppings, which we disregard because

they either are weak or do not lead to qualitative changes in the results reported below [26].

8.1.3 Relation between the Kane-Mele model and adatoms’ effective

model

In this subsection we will show that the adatoms’ effective model can be adiabatically continued

to the Kane-Mele model [23, 24]. Since the Kane-Mele model is known to exhibit non-trivial

topological properties of the insualting phase, this means that the gap induced by the presence

of adatoms drives graphene to a topological insulator of the same kind. The latter is due to

the fact that the properties of a topological insulator can change only abruptly. The possibility

of adiabatic continuation from one model to another guarantees that a system is always in the

same phase characterized by a certain topological invariant (in our case Z2 [24], see Sec. 7.2.2).

In order to prove this statement, Weeks et al. considered a model described by the Hamilto-

nian H(λ) = (1− λ)HN×N + λHKM , which interpolates between the Hamiltonian of graphene

with one adatom per N × N supercell (λ = 0) and the Kane-Mele Hamiltonian (λ = 1). The
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Figure 8.4: Adiabatic continuity. Energy gap at the Dirac point as the Hamiltonian adiabatically

deforms from the periodic adatom Hamiltonian H4×4 at λ = 0 to the Kane-Mele model at λ = 1.

The solid blue and dashed red lines correspond to H4×4 evaluated with parameters appropriate

for indium and thallium, respectively. In both cases the gap remains finite as λ varies from 0 to

1, indicating that the Kane-Mele model and adatom Hamiltonian are adiabatically connected

and thus support the same quantum spin Hall phase. Adapted from [26].

authors considered the case N = 4, but the result is general of course as changing N means

changing the concentration of adatoms, which in turn can only vary the value of the SO gap

(see Fig. 8.3) while keeping it different from zero. Then, varying parameter λ we extract the

SO gap induced at the Dirac point, see Fig. 8.4. The curves on Fig. 8.4 illustrate that the

Dirac-point gap computed for H(λ) indeed remains finite for all λ between 0 to 1 with either

indium (solid blue line) or thallium (dashed red line) parameters put into H4×4. The QSH state

known to be supported by HKM and the insulating state stabilized by either type of adatom

are, consequently, the same topological phase of matter.

8.1.4 Transport properties of graphene with randomly distributed

adatoms

In the end of this section we briefly recall the results by Weeks et al. that motivated us to study

the model of functionalized graphene in more details. In their work authors considered a two

terminal setup, more specifically a graphene ribbon with a central region covered with adatoms

and clean semi-infinite parts attached to it, which play a role of contacts (see Fig. 8.5a).
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They investigate the robustness of the QSH phase in the presence of random adatoms and
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Figure 8.5: Transport. (a) Configuration used to determine the two-terminal conductance. Semi-

infinite clean graphene leads are connected to the sample, which has adatoms distributed ran-

domly across it. The length L of the system is set by the number of columns (indicated by

dotted rectangles). The width W is set by the number of dimer lines. (b) Conductance G as

a function of the Fermi energy EF , averaged over 40 independent random adatom realizations

at different concentrations ni = 0.1, 0.2, 0.3 for a system of size W = 80 and L = 40 with

λso = 0.1t. (c) Current distribution across a sample of size W = 40 and L = 20 at ni = 0.2,

λso = 0.1t and EF = 0.15eV . The magnitude of the current is represented by both the arrow

size and color. (d) Conductance for the largest simulated system size using realistic parameters

for thallium adatoms (λso = 0.02t and δµ = 0.1t) estimated from DFT data. Here W = 200,

L = 100, and the coverage is ni = 0.15. In all panels we take t = 2.7 eV. Adapted from [26].

disorder by simulating the classic two-terminal conductance measurement. Since zigzag edges

are known to support gapless edge states (of a qualitatively different kind) even in pristine

graphene [97, 133], to avoid complications we focus here on graphene strips with armchair

edges. However, the results reported below remain valid for arbitrary edge configurations, as

long as the bulk remains in the topological phase.
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First, they consider the simplest setup which takes into account only intrinsic SO coupling

λso and neglects the effects of disorder, δµr = 0, as well as other adatom’s terms, δµ = 0 and

λR = 0. Figure 8.5b illustrates the conductance for this case at several adatom concentrations

ni and model parameters indicated in the caption. A 2e2/h plateau with width proportional to

ni clearly emerges, strongly suggesting the onset of a bulk mobility gap and quantized ballistic

conduction by edge states. This picture is corroborated by Fig. 8.5c, which displays the current

distribution for EF = 0.15 eV across a smaller system size (chosen for clarity). These results

establish that, in principle, adatoms’ distribution need not be periodic to stabilize a QSH

phase. To make contact with their DFT results, Weeks et al. also considered a system with

λso = 0.02t and δµ = 0.1t, which would yield a similar bulk mobility gap to that seen in their

thallium simulations if the adatom coverages were the same. While finite-size effects prevent

them from studying the low-adatom coverages, Fig. 8.5d shows that, for ni = 0.15, a robust

conductance plateau indeed persists for these more realistic parameter values. They have also

studied the effects of the hexagon Rashba term and residual on-site potential disorder on the

stability of the QSH phase. Even a relatively large λR ∼ 2λso has a weak effect on the width

of the conductance plateau. With uncorrelated on-site disorder δµr , the topological phase is

also remarkably robust – δµr can fluctuate on the scale of t while degrading the plateau only

marginally. The topological phase is more sensitive, however, to correlated disorder which is

likely more relevant experimentally. In this case, the conductance plateau survives only when

δµr varies on a scale smaller roughly than the mobility gap for the clean case.

For one to observe the QSH phase experimentally, the chemical potential should therefore

fluctuate on scales smaller than the 10 meV gaps predicted by Weeks et al. in [26]. This should

be possible for certain substrates, as hexagonal boron nitride substrates [134] for example,

which show disorder energy scales as low as 15 K.

8.2 Quantum spin Hall phase induced by randomly de-

posited adatoms

As we have seen from the previous chapter, there is a possibility (in principle) to enhance SO

coupling in graphene by deposition of certain type of heavy atoms on its surface. In the work by

Weeks et al. [26], they proposed an effective low-energy model of such a setup, as was discussed

above. Two-terminal conductance simulations carried by the authors showed the signatures of

the QSH phase. However, they did not try to investigate the properties of the phase itself and

its dependence on the concentration of adatoms in finite-size samples.

In this chapter we present our recent work concerning this question [27]. We elaborate

in more details the model proposed by Weeks et al. in order to identify effective parameters

characterizing the QSH phase in a system with random distribution of adatoms. We make our
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study based on transport simulations as well. But it turns out that one needs to have more

than two terminals in order to extract more information about the QSH phase.

8.2.1 Parametric study of the QSH phase

Since the effects of disorder and Rashba SO coupling in most cases are not important if we

study effects at energies within the SO gap as was discussed above, we concentrate on the model

of graphene with intrinsic SO coupling only. This means that we take δµr = 0, δµ = 0, and

λR = 0 in Eq.(8.1). The nearest-neighbor hopping t = 2.7 eV will set the energy scale: hereafter

all energies are expressed in units of t while sizes are expressed in units of
√

3ac−c.

In order to monitor the existence of the QSH phase, we focus on the signature of the

associated edge modes on the conductance matrix of a multi-terminal sample. The latter is

given by the multi-terminal Landauer-Büttiker formula (see Sec. 2.2), which expresses the

current Iα flowing in the electrode α (see upper inset of Fig. 8.6 for a sketch of the sample) in

presence of a potential Vβ as

Iα =
e2

h

∑
β

TαβVβ , (8.4)

where Tαβ is the transmission coefficient between two electrodes. It can be computed numerically

from the knowledge of the retarded Green’s function G via the formula (α 6= β) [52, 45]

Tαβ = Tr[ΓαGΓβG
†] , (8.5)

with Γα = Im(Σα), where Σα is the self-energy of lead α, and with the Green’s function given

by the expression

G(E) = (E −H −
∑
α

Σα)−1 (8.6)

(with the Hamiltonian H in its first quantization form). In the QSH phase the transmission

between successive probes reads exactly Tα,α+1 = Tα,α−1 = 1, while all other transmission coeffi-

cients Tα,β (α 6= β) vanish. In the following, we will use this unique characterization of the QSH

phase in the 4-terminal cross geometry of Fig. 8.6. The 4-terminal geometry always provides

an unambiguous characterization of this phase, as opposed to the two-terminal conductance

where g2T = 2e2/h can be observed at the Dirac point independently of the presence of SO

interaction.

We also pay special attention to avoid the appearance of spurious effects in nano-ribbon

geometries. Structural boundary conditions of graphene are of two types: armchair and zigzag.

The latter features a zero-energy edge state, signatures of which have been shown to obscure

the appearance of the QSH edge state [119]. Therefore we will henceforth consider armchair-

terminated graphene systems in order to avoid confusion between different types of edge states.

Armchair ribbons are themselves divided into two families [96]: they can be either metallic or
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semiconducting depending on their width (see Sec. 5.3). In the following, we focus on metallic

armchair ribbons to avoid the competition between the SO-interaction-induced gap and the

finite-width-induced gap (see discussion in the end of Sec. 7.2.1). We use a cross-like geometry,

with a fixed aspect ratio (see inset of Fig. 8.6) and smallest width W at contacts 1 and 3: the

shape of the sample has been chosen such that most of the current is directly transmitted from

0 to 2 in the absence of SO interaction. The numerical calculations were performed using the

KNIT package which implements a generalization of the recursive Green function algorithm to

multi-terminal systems [22].

Fig. 8.6 shows the “longitudinal” T20 and “Hall” T10, T30 transmission coefficients as a

function of the strength of the SO interaction and for various concentrations nad of adatoms.

One observes, as expected, that upon increasing the strength of λso for a fixed concentration nad

of adatoms, one enters the QSH phase: the Hall coefficients tend to unity while the longitudinal

one vanishes. The upper inset shows the actual up spin current density inside the sample in the

QSH regime: we recover the expected edge state characteristics of the QSH phase, including an

exponential decay of the current as a function of the distance to the edge but also oscillations

with frequency |K| coming from the valley-mixing armchair boundary condition [119] (see

equations (7.14) and (7.15)). The crucial point shown in Fig. 8.6 is that all the results are

rescaled as a function of the effective SO interaction strength

λeff
so = λsonad . (8.7)

In other words, the QSH phase, while originating from a very inhomogeneous sample, is perfectly

described in each sample by an effective homogeneous phase with a uniform coverage but a

reduced SO strength. In this phase, each adatom occupying one of the plaquettes spreads

its coupling λso over a distance ξad = 1/
√
nad, resulting in a weaker effective SO interaction

strength λeff
so = λso/ξ

2
ad but a uniform effective full coverage nad = 1. The surprising occurrence

of this mean-field description in each disordered sample and down to very small concentrations

can be attributed to the large localization length ξ of the QSH edge states (see below). This

large value of ξ also explains why rather large values of λeff
so are required to observe perfect

”Hall” transmissions in the small samples considered in Figs. 8.6 and 8.7. In real, µm-sized

samples, the required value of λeff
so will be much smaller since deviations to perfect ”Hall” effect

are controlled by the ratio W/ξ between the width of the small arm W and the localization

length ξ (see Fig. 8.9 below).

We have found that the above effective homogeneous description is very robust and applies

for (i) a single realization of the adatom configuration, i.e. does not require disorder averaging,

(ii) various sizes from wide samples deep into the QSH phase down to narrow samples where

the edge states on both sides of the sample have a finite overlap, (iii) different energies, from the

Dirac point up to the SO-interaction-induced gap. To illustrate this robustness, we performed

some statistics and show in Fig. 8.7 how the transmission coefficients vary from one adatom
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Figure 8.6: Upper inset: schematic of our setup: a 4-terminal graphene cross with armchair

edges and width of the small arm W = 21.5. The different colors correspond to an actual calcu-

lation of the current density for spin-up electrons upon injection from contact 0. The existence

of an edge state is manifest. Main figure: Scaling of the transmissions Tj0 from contact 0 for

various couplings λso and adatom densities nad, plotted as a function of the effective SO cou-

pling strength λeff
so = λsonad. Dashed (black) lines correspond to “longitudinal” transmission T20

and dotted lines correspond to “Hall” transmissions T10 (red) and T30 (green). The two sets of

curves correspond to an energy E = 0 (open symbols), and E = 0.05 (filled symbols). Different

symbol shapes correspond to different values of SO coupling, respectively λso = 0.02 (circles),

0.05 (squares), 0.1 (diamonds) and 0.15 (triangles). Note that no averaging over adatom con-

figurations has been performed here.

configuration to another. The “envelope” curves displayed in Fig. 8.7 correspond to the average

transmission plus or minus one standard deviation (i.e. for a Gaussian distribution there is a

68% probability that the outcome will fall inside the envelope for a given adatom configuration).

At small SO coupling, the system is essentially ballistic with very small (Gaussian) fluctuations.

At large SO coupling, the system is deep in the QSH phase with small (log-normal) fluctuations

(the inset of Fig. 8.7 shows the actual probability distributions). We find that, in the crossover
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Figure 8.7: Statistics of the transmission coefficients T20 (lower curve, black) and T30 (upper

curve, red) when averaged over 2500 adatom configurations, as a function of the effective SO

coupling strength. The shaded regions represent one standard deviation from the mean value

which is indicated by white symbols (circles for T20 and squares for T30). The corresponding

density of probability for 3 points (green, cyan and violet filled circles, from left to right) are

given in the inset: as the SO coupling increases, the probability distribution P (T20) shifts from

a Gaussian (green and cyan) to a log-normal (violet). Fits are indicated by dashed lines. All

data points were generated for an energy E = 0, a fixed adatom density nad = 0.1, and the

same system sizes as in Fig. 8.6.

between these two limits, the fluctuations remain remarkably low for all values of the effective

SO coupling strength. Additionally, we saw no evidence for a breakdown of our mean-field

description, even down to very low adatom concentrations.

A celebrated property of a topological phase is its robustness with respect to the presence

of disorder. The persistence of this property in the present context can easily be checked by

142



0 0.005 0.01 0.015 0.02
λ

so
n

ad

0

0.2

0.4

0.6

0.8

1

T
j0

0 0.1 0.2 0.3
E

0

2

4

6

8

10

T
20

Figure 8.8: Transmission coefficients T20 (circles) and T30 (squares) as a function of the effective

SO coupling strength, for various values of onsite disorder: V = 0 (filled black), V = 0.4 (empty

red) and V = 0.8 (hashed magenta). No qualitative change is brought about by disorder,

although some deviation from the V = 0 curve in the crossover region between the metal

and the QSH phases starts to be visible at strong enough (V = 0.8) disorder. The data were

averaged over 50 distinct realizations of disorder and adatom configuration for each value of

λeff
so . The energy was kept at E = 0, and the system sizes as in Fig. 8.6. Inset: Longitudinal

transmission T20 as a function of energy for λeff
so = 0 (empty symbols) and λeff

so = 0.02 (filled

symbols). Circles are for V = 0 and triangles for a single disorder configuration with V = 0.8.

Disorder has no effect on T20 in the QSH phase (E < ∆so ≈ 0.1).

adding on-site disorder (on each site) to the Hamiltonian, following the standard prescription

Hdis =
∑
i,α

Vic
†
i,αci,α , (8.8)

where Vi is a disorder strength randomly distributed in the interval [−V/2, V/2]. The trans-

mission coefficients as a function of the effective spin-orbit coupling for several values of V are
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shown in Fig. 8.8. As expected for a topological phase, the presence of disorder provides no

qualitative (and hardly any quantitative) modification to the general picture described earlier.

Deviations from the “clean” (V = 0) case remain small, unless the strength of disorder reaches

(extremely strong) values of the order of the hopping parameter t. Note that, in the main panel

of Fig. 8.8, the Fermi energy is very close to the Dirac point. It is well established that disorder

has a very small effect on the metallic phase (at small λso) close to the Dirac point [135, 136].

This point can be understood from a semi-classical consideration: close to the Dirac point, the

Fermi wave length diverges so that only very long range disorder affects the physics.

Away from the Dirac point, onsite disorder does affect the transport properties of graphene,

but not of the QSH phase. This is best seen in the inset of Fig. 8.8 where we plot the longitudinal

transmission T20 as a function of the Fermi energy in the presence/absence of spin-orbit coupling

and disorder (for a typical sample). When spin-orbit coupling is present, adding disorder has no

effect on T20 so long as E < ∆so ≈ 0.1, i.e. inside the QSH phase. In the absence of spin-orbit

coupling (or above the spin-orbit gap), however, disorder strongly affects T20 except at small

energies close to the Dirac point. In short, we find that the QSH phase is very resilient to onsite

disorder.

The above considerations lead us to predict that for the present system, the physics of the

QSH phase is entirely described by the Kane-Mele model (i.e. the full coverage case, nad =

1) provided one performs the substitution λso → λsonad. In particular, the known analytical

expressions for the characteristic scales of the Kane-Mele model should apply here. We now

explicitly check this for the gap ∆so [23] of the QSH phase and the width ξ [119] of the edge

states, whose expected expressions read

∆so = 3
√

3λeff
so , (8.9)

ξ =
~vF
2∆so

=
1

12λeff
so

. (8.10)

Fig. 8.9 shows the behavior of the longitudinal transmission T20 (averaged over several adatom

configurations) as a function of the width W . Its exponential decrease T20 ∝ e−W/ξ allows for

an accurate determination of ξ: as the width increases, the overlap between two opposite edge

modes and the associated backscattering decrease. An extremely good scaling of the data is

obtained with an expression of the transmission deduced from Eq.(8.10), confirming the above

effective homogeneous description.

As a last test, we now turn to a study of the two-terminal transmission T (E) of a rectangular

graphene ribbon as a function of the Fermi energy EF . The results are shown in Fig. 8.10 (upper

plot): for energies inside the topological gap (EF ≤ ∆so), the current is entirely carried by the

edge states leading to T = 2. Above the gap (EF > ∆so), one leaves the QSH phase and the

transmission increases quickly, allowing for a precise extraction of the gap value. Note that as

∆so gets smaller, wider samples must be used to keep the number of open channels at EF = ∆so
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Figure 8.9: Averaged longitudinal transmission as a function of W/ξ for energy E = 0. Filled

symbols: fixed λso = 0.1 with nad = 0.2 (circles), 0.15 (squares), 0.1 (triangles), 0.05 (diamonds).

Open symbols: idem but the role of λso and fixed nad are exchanged, stars: λso = 0.02. Line:

Y ∝ exp−W/ξ where ξ is given by Eq.(8.10). Upper inset: 1/ξ (extracted from the data of

the main plot) as a function of λeff
so including additional points for different energy E = 0.02

(filled, dotted symbols), different aspect ratio of the sample (vertically and horizontally hashed

triangles) and more values of nad (crosses, with fixed λso = 0.1) and λso (stars, with fixed nad =

0.1). Dashed line: Eq.(8.10). Lower inset: ∆so as a function of λeff
so for λso = 0.02 (diamonds), 0.05

(circles) and 0.1 (crosses). Dashed line: Eq.(8.9). In all cases, error bars due to sample-to-sample

fluctuations are smaller than the symbol sizes.

larger than one. In the lower inset of Fig. 8.9, we plot the extracted ∆so as a function of λeff
so for

various values of nad and find, again, a remarkable agreement with the effective homogeneous

Kane-Mele description.
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Figure 8.10: Upper plot: Transmission T as a function of the energy E in a simple armchair

ribbon of width W, for λeff
so = 0.01 (black line: nad = 0.2, crosses: nad = 0.5) with W = 130,

λeff
so = 0.02 (magenta) with W = 65.5, and λeff

so = 0.04 (violet and pluses: two different samples)

with W = 32.5. Lower right: ZT as a function of temperature θ for λeff
so = 0.01, 0.02 and 0.04

from right to left. The Fermi energy was chosen to be equal to 1.5∆so. Lower left: peak value

ZTmax of ZT (θ) as a function of λeff
so for λso = 0.02 (diamond), λso = 0.05 (circles) and λso = 0.1

(crosses).

8.2.2 Application to enhanced thermopower

We now turn to an analysis of a very peculiar feature of Fig. 8.10: the slope of the two-terminal

transmission T (E) above the gap is very steep, and gets steeper as the gap decreases. This

property has strong implications in terms of thermopower generation. To discuss thermopower
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at finite temperature within the Landauer-Büttiker framework, let us start by introducing

Tn =

∫
dE

(
− ∂f
∂E

)
(E − EF )n T (E), (8.11)

where f(E) = 1/(e(E−EF )/(kBθ) + 1) is the Fermi function at temperature θ, from which we can

express the conductance g = (e2/h)T0, the heat conductance gH = 1/(hθ)T2 and the Seebeck

conductance gS = −e/(hθ)T1. The Seebeck coefficient S = −δV/δθ which characterizes the

voltage δV across a sample produced by a difference of temperature δθ between sample edges

is simply given by S = gS/g. The dimensionless figure of merit which measures the efficiency

of the thermopower generator is known as the ZT = θS2σ/κ parameter (we keep the standard

notation ZT although we call the temperature θ and not T ). σ (κ) is the electrical (thermal)

conductivity. At low ZT � 1, a thermocouple has an efficiency equal to the fraction ZT/4 of

the Carnot efficiency δθ/θ, while it tends to the Carnot value at large ZT � 1. Within the

Landauer-Büttiker approach, we have [137]

ZT =
(T1)2

T0T2 − (T1)2
(8.12)

which simplifies at low temperature into the so-called Mott formula [138]

ZT =
π2

3
(kBθ)

2

(
T ′(EF )

T (EF )

)2

. (8.13)

Hence the key towards an efficient thermocouple lies in low values of the transmission and simul-

taneously a steep variation of this transmission with the energy. The shape of the transmission

versus energy curve T (E) presented in Fig. 8.10 possesses all the required properties: the low

transmission value T = 2 accounts for the single edge state conducting channel (moreover it

does not scale with the sample width W ) while its derivative is typically of order T ′ ≈ 1/∆so.

This results in very high values of ZT ≈ 1 for temperatures θ ≈ ∆so/kB.

To quantitatively describe the expected behavior, we have plotted the parameter ZT as a

function of the temperature θ in the lower right of Fig. 8.10. We find well-defined maxima for

θ ≈ ∆so/(2kB), while the optimal efficiency is reached for energy values EF ≈ 3∆so/2. Note

that the present material possesses the unique characteristics that the optimum temperature

∆so/(2kB) can be simply tuned by changing the concentration of adatoms while the Fermi level

can be easily switched to the optimum value by e.g. a simple back gate. The lower left plot of

Fig. 8.10 shows the value of the peak of ZT (θ) as a function of λeff
so : we find very high values, up

to ZT = 0.5, which tend to increase upon decreasing the gap ∆so. Hence, these graphene-based

topological insulators appear as very good candidates for low-temperature thermocouples: for

instance a 6% indium coverage is expected to give a gap of 80 K, hence an optimum working

temperature of 40 K. At 1% coverage, the optimum temperature lies around 10 K, a target
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temperature for e.g. radioisotope thermoelectric generators of spacecrafts for which a material

with such high ZT ≈ 0.5 would constitute a great improvement.

Finally, we note that the above estimate of ZT only takes into account the electron contribu-

tion to the thermal conductivity. Real values should renormalize by a factor κ/(κ+ κph) where

κph is the phonon contribution and should therefore be slightly smaller than predicted above.

However, adding structural or extrinsic disorder to the ribbon or intentionally damaging the

ribbon by making holes in it can drastically reduce the phonon-mediated thermal conductivity,

while the topologically protected physics discussed above should remain largely unaffected.

8.2.3 Conclusions

One of the most important aspects associated with the discovery of graphene is the relative

easiness (and low cost) of sample production. While very few groups can produce high mobility

two-dimensional electron gases in semiconductor heterostructures, graphene physics requires

lighter equipment and is being studied by an increasing number of groups. The same remark is

even more applicable to the study of two-dimensional topological insulators. Hence, the proposal

[26] discussed in this chapter for the realistic situation of inhomogeneous samples appears all

the more promising.

We have shown that such a QSH phase, while originating from very inhomogeneous samples,

can be described in each sample by the known results on the pure Kane-Mele model with an ef-

fective SO coupling strength accounting for the density of adatoms. This description should hold

in the presence of disorder or charge-density fluctuations induced by the underlying substrate,

as long as the magnitude of these effects remains smaller than the gap ∆so. We have further

demonstrated that this new material and its associated QSH phase provide a very efficient

thermocouple at low temperature. Indeed, while important efforts have been made to improve

the ZT parameter at room temperature (values of ZT > 1 can now be found), the existing

materials are very inefficient at low temperature. For instance, existing thermocouples working

around 10 K have ZT < 0.01. Moreover, the graphene-based thermocouples discussed here have

a target temperature which can be tuned from a few hundred degrees Kelvin (nad = 1) down

to 0 K (nad = 0) by simply changing the concentration of adatoms while retaining extremely

high values of ZT ≈ 1.
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Chapter 9

From QH to QSH effect in graphene

In this chapter we will study the effect of a strong magnetic field on a QSH phase in graphene.

It is well-known that a necessary condition for existence of a robust topological spin Hall

phase is the time-reversal symmetry (TRS) in the system. If this symmetry is broken the edge

states, which are the signature of the QSH phase, are no longer protected from backscattering.

Application of a perpendicular magnetic field of course breaks explicitly TRS in the system.

So, in general it is not clear what would happen to the QSH phase in this case.

Let us explain the problem in more details with the help of a simple schematic setup.

Consider a four-terminal sample of Fig. 9.1. If we are in the QSH phase and no magnetic

field is applied, we have a pair of edge states (Kramer’s doublet) revealing the QSH effect.

These edge states are helical, which implies that the direction of motion is coupled to the spin

degree of freedom. On a given edge, electrons with opposite spin projections propagate in the

opposite directions, see Fig. 9.1a. On the other hand, if we apply a strong magnetic field to

a system in otherwise trivial phase (without SO interaction), one expects to see chiral edge

states responsible for the QH effect, see Fig. 9.1b. Now the question we want to answer is what

happens if we start from a system in the QSH phase and apply a (strong) magnetic field on

top. At some point we naturally expect to see the QH effect, but in order to come from one

phase to the other we need to reverse the direction of motion of one spin (see red dashed lines

on Fig. 9.1).

Our calculations show that, surprisingly, in this case, when we have both SO coupling and a

quantizing magnetic field in the system, one can observe features of both QH and QSH phases

and this is determined by the position of the Fermi level. More precisely, if the Fermi level

lies within the SO gap, we observe a pair of edge states for both spin species propagating (in

the same direction) on the opposite edges, just like in the QSH phase, see Fig. 9.1a. On the

other hand, when the Fermi level is outside the gap, both spin-up and spin-down electrons

propagate on the same edge, just as expected in the QH phase (see Fig. 9.1b). This result is a

direct consequence of the existence in graphene of a zero-energy Landau level. It is important to
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Figure 9.1: Cartoon of a 4-terminal conductor in a) QSH phase and b) QH phase. Blue solid

and red dashed lines represent edge states for spin-up and spin-down electrons, respectively.

note that in the presence of spin-flipping perturbations (which conserve TRS), like Rashba SO

coupling, though the edge states do not have specific spin polarization, they still form a Kramers

doublet and the corresponding phase is characterized by a topological invariant [122, 81]. We

also studied the effect of TRS-breaking perturbations, like magnetic impurities for example, on

our results. It turns out that for finite size structures just as those used in experimental setups,

we expect our results to be still valid. In this case though the edge states are no more protected

by the TRS, one needs to apply an unrealistically strong magnetic disorder to destroy the QSH

phase. Our estimates show that this happens on a characteristic length scale ∼ 1 mm, which

is far above the typical lengths of the samples used in experiments. Moreover, though in this

case the (spin) Hall transmission is not e2/h, the current is still confined to the edges of the

sample, which distinguishes this phase from a trivial insulator.

9.1 Band structure

The issue of how time-reversal-symmetry breaking can affect the QSH phase has been addressed

previously in the literature in different settings [139, 140, 28, 141]. To the best of our knowledge,

however, transport signatures of the competition between QH and QSH phases in graphene have

not been considered as of yet, with the exception of the work by Abanin et al. [142] where the

QSH phase arose from a different mechanism (Zeeman splitting), which is extremely weak 1

1It is so weak that it appears to be superseded by many-body effects in strong magnetic fields [143, 144]. If

Zeeman splitting εZ were artificially enhanced, it would compete with SO coupling and lead to a phase transition

when εZ = ∆so, characterized by a reversal of the direction of spin current on a given edge [28].
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and can therefore easily be destroyed by local fluctuations of the magnetic field. In contrast, we

study the Kane and Mele model [23], to which we add the presence of a strong perpendicular

magnetic field:

H = vF (Π̂xσxτz + Π̂yσy) + ∆soσzτzsz . (9.1)

Π̂ = p̂ + eA is the generalized momentum which accounts for the presence of the magnetic

vector potential A associated with a perpendicular magnetic field B = Bz (∇×A = B), ∆so is

the SO-induced QSH gap, and vF = 3tac−c/2 is the Fermi velocity (expressed as a function of

the nearest-neighbor hopping amplitude t and the lattice constant ac−c which we choose in the

following as our working units of energy and length, respectively). {σ, τ, s} are Pauli matrices

in, respectively, sublattice, valley and spin spaces.

The band structures of a graphene ribbon in the QSH and QH phases are quite differ-

ent. In the QH phase, the perpendicular magnetic field gives rise to Landau levels εn =

±(~vF/lB)
√

2|n|, with lB =
√

~/(eB), which become dispersive close to the edges of the

graphene ribbon (Fig. 9.2a). When the Fermi level is placed between two of these Landau lev-

els, transport is characterized by spin-degenerate edge states as in Fig. 9.1b, which propagate

in a direction imposed by the sign of the magnetic field. In the QSH phase, the band structure

consists of hyperbolic bands above the QSH gap and a pair of linearly dispersing ones below

it (Fig. 9.2b). These linear bands correspond to spin-polarized states, localized at the edges

of the graphene ribbon on a characteristic length scale ξso = ~vF/∆so (see Section 7.2). When

the Fermi level is below the QSH gap, transport in the system can be described by counter-

propagating edge states as shown in Fig. 9.1a. By comparing Figs. 9.1a and 9.1b, one observes

that one spin species – hereafter referred to as the “unhappy” spin (dashed red in Fig. 9.1) – has

to reverse its direction of propagation when going from one phase to the other. We will see how

this reversal happens in two different setups: a homogeneous sample, where the quantum phase

transition between QH and QSH phases is driven by electrostatic doping, and a heterojunction

between the two phases.

The first insight is given by the spectrum of Eq.(9.1) in the presence of graphene edges.

The energy spectrum for a bulk system described by Eq.(9.1) reads εn = ±
√

∆2
B|n|+ ∆2

so, with

∆B = (~vF/lB)
√

2. The lowest level n = 0 stands out from the others, as each branch (±)

can be shown to host only one of the two spin species [28] (Fig. 9.2c). Whereas n > 0 levels

will all disperse in the same direction when confinement is taken into account, the fate of the

lowest level is more subtle. To be more quantitative, we make use of a tight-binding model

on the graphene hexagonal lattice, which in the presence of both Kane-Mele SO coupling and

perpendicular magnetic field can be written as

H = −t
∑
〈i,j〉,α

eiφijc†i,αcj,α + iλso

∑
〈〈i,j〉〉,α,β

νije
iφijc†i,αs

z
αβcj,β . (9.2)

Indices (i, j) label lattice sites, (α, β) label spin indices, while symbols 〈 〉 and 〈〈 〉〉 re-
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Figure 9.2: Band structure of a (semi-metallic armchair) graphene ribbon in the a) QH and

b) QSH phase. When both magnetic field and SO coupling are present c), the resulting band

structure leads to a QSH phase for |EF | < ∆so (shaded region) and a QH phase for |EF | >
∆so. Compared to the pure QH and QSH cases, the spin degeneracy is lifted (blue thick and

red dashed lines), which is particularly prominent in the lowest band which consists of spin-

polarized branches at E = ±∆so. As the Fermi energy crosses the SO gap, the localization of

the “unhappy” spin (red dashed) shifts from one edge to the other, while it is fully localized in

the bulk when EF = ∆so. This is illustrated in the corresponding current-density plots d). On

the other hand, the “happy” spin (thick blue) gets increasingly localized on the same edge as

the Fermi energy crosses the transition region (not shown). The parameters used are λso = 0.02,

lB ' 8, and a ribbon width W = 40
√

3.
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spectively refer to nearest-neighbor coupling (with hopping amplitude t) and next-nearest-

neighbor coupling (with SO-induced hopping amplitude λso = ∆so/(3
√

3) [23]). The Peierls

phase φij = (e/~)
∫ ri
rj

A·dr takes into account the contribution from the magnetic flux threading

the lattice, and νij = ±1 depending on whether sites are coupled clockwise or counter-clockwise.

Note that in order for the system to remain gauge invariant, Peierls substitution has to be done

on all hopping matrix elements: nearest-neighbor and (SO) second nearest-neighbor. To com-

pute transport properties numerically, we make use of the software KNIT, which is based on

an advanced recursive Green’s function technique [22], and works in the linear response regime.

The numerical calculations are done with semi-metallic armchair boundary conditions, but

our results are qualitatively unaffected by this choice. An important technical point is that

the magnetic field should be present in the entire sample, including in the leads, in order to

avoid spurious reflection at the lead-sample interface. The multi-terminal Peierls subsitution

prescription allowing to do that is described in the Appendix B.

The full tight-binding band structure of a semi-metallic armchair graphene ribbon described

by the Hamiltonian in Eq.(9.2) is shown on Fig. 9.2c. It can be summarized in very simple terms:

for Fermi energies inside the SO gap |EF | < ∆so (shaded region), the system is in the QSH

phase, with opposite spin channels on a given edge propagating in opposite directions, while for

energies |EF | > ∆so, the system is in the QH phase, with opposite spin channels on a given edge

propagating in the same direction. Hence for a given value of ∆so, the transition between the

two phases is governed solely by the Fermi energy and does not depend at all on the value of the

magnetic field (once again neglecting Zeeman splitting, which is very small in graphene). This

quite remarkable result is a direct consequence of the existence in graphene of a B-independent

zero-energy Landau level: as soon as ∆so 6= 0, the spin degeneracy of the zero-energy Landau

level is lifted, as opposed to all other Landau levels which remain spin degenerate [28]. This

lifting leads to a QSH phase in the corresponding SO gap, as can be understood with the help

of topological invariants.

9.2 Topological order

In this section, we discuss the topological order of the phases obtained by varying the chemical

potential in the energy spectrum of Fig. 9.2c. In particular, we relate the unique transition

between the QSH topological order and the QH topological order in presence of SO coupling

to the specificities of the QH physics of Dirac fermions in graphene. Let us start by recalling

the standard topological number characterization of Landau levels when ∆so = 0. Each Landau

level n and its associated eigenfunctions over the first Brillouin zone are characterized by a

topological invariant, the so-called Chern number [145]. This topological number takes a value

C
(n)
τ,s = +1 for each Landau level, independently of the Landau n, valley τ or spin s indices. For
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each value of the Fermi energy, we can characterize the corresponding phase by a topological

number C =
∑

τ,s

∑
εn<EF

C
(n)
τ,s obtained by summing the Chern numbers of all filled energy

bands [145]. For graphene and any Dirac system, however, this procedure would yield an ill-

defined topological number C due to the presence of an infinite number of filled Landau levels

below EF . As shown recently through the use of non-commutative Berry’s connection [146], the

correct topological number for a single Dirac cone takes a value Cτ,s = −1/2 for ε−1 < EF < ε0,

and Cτ,s = +1/2 for ε0 < EF < ε1, where εn are the usual Landau levels. In the discussion

below, we will make use of the more convenient topological Chern number per spin species,

Cs =
∑

τ Cτ,s which takes values two-fold larger.

Let us now turn to the energy spectrum of Fig. 9.2c where ∆so 6= 0. The presence of the

SO coupling does not modify any of the Chern numbers per Landau level, but it lifts the spin

degeneracy of the n = 0 Landau level into the two levels at E = ±∆so. As the z component of

spin is conserved, the topological Chern numbers per spin species introduced above turn out

to be useful quantities to characterize the topological order in this new spectrum. They read

C↑ = −1,C↓ = −1 for ε−1 < EF < −∆so , (9.3a)

C↑ = +1,C↓ = −1 for −∆so < EF < ∆so , (9.3b)

C↑ = +1,C↓ = +1 for ∆so < EF < ε1 , (9.3c)

C↑ = +3,C↓ = +3 for ε1 < EF < ε2 , (9.3d)

this time with εn the modified Landau levels introduced at the beginning of Sec. 9.1. The

difference between C↑ and C↓ for |EF | < ∆so signals the appearance of a Z2 topological order

characteristic of the QSH phase. Indeed, when the z component of spin is conserved, the Z2

topological index characterizing the QSH phase is defined as ν = (C↑−C↓)/2 (mod 2) [147, 81].

As all Landau levels n 6= 0 are still spin-degenerate, we have C↑ = C↓ and thus ν = 0 for all Fermi

energies |EF | > ∆so. For these values of EF , the system lies in a QH phase characterized by the

usual topological Chern number C = C↑+C↓. However for |EF | < ∆so, Eq.(9.3) leads to a non-

trivial Z2 index ν = 1, while the total Chern number simultaneously vanishes C = C↑+C↓ = 0.

The system then lies in a different topologically insulating phase: the QSH insulator. This

shows that as the Fermi energy crosses the values ±∆so, the system undergoes a quantum

phase transition between two topological insulators – a QH phase and a QSH phase:

ν = 0,C = −2 for ε−1 < EF < −∆so : QH , (9.4a)

ν = 1,C = 0 for −∆so < EF < ∆so : QSH , (9.4b)

ν = 0,C = 2 for ∆so < EF < ε1 : QH , (9.4c)

ν = 0,C = 6 for ε1 < EF < ε2 : QH . (9.4d)

This transition appears crucially tied to the Dirac physics of graphene and the presence of the

n = 0 Landau level: in the present case, we do not need a SO coupling to overcome an energy
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gap in order to drive this transition, as would be the case for non-relativistic fermions with

Landau gap ~ωc or if graphene had a trivial mass gap mσz. The spin degeneracy lifting of the

n = 0 level is all that is required here. Let us note finally that while this argument formally

uses the conservation of the Sz spin component, the robustness of topological numbers proves

it to remain valid if non-Sz-conserving terms are included in the Hamiltonian, provided two

branches of the n = 0 Landau level with opposite spins remain non-degenerate.

9.3 Transport signatures

9.3.1 Ballistic regime

Let us now study how this topological phase transition appears in transport. We will study the

multi-terminal (dimensionless) differential conductance Tab which expresses how much current

dIa is collected in lead a when the voltage in lead b is raised by dVb,

dIa
dVb

=
e2

h
Tab . (9.5)

Additionally, in order to observe the edge states directly, we also study (in color plots) the

differential local current density di(~r)/dVa which allows to clearly observe the edge states inside

the sample. In Fig. 9.2d, we show local current-density plots which illustrate how the behavior

of the “unhappy” spin changes as a function of the Fermi energy: it goes from propagating along

one edge when EF < ∆so (left panel) to propagating along the other as EF > ∆so (right panel),

while it gets localized in the bulk at the critical point EF = ∆so (middle panel). We find that the

energy window where this localization is observed is extremely narrow and decays exponentially

with the width of the sample. Note that this scenario is completely different from what one

would expect starting from the naive toy model of SO coupling acting as a spin-dependent

magnetic field Bsozsz. In this case, for a critical value of the real magnetic field B = Bso, the

“unhappy” spin would feel no magnetic field at all and be fully delocalized. On the contrary,

we observe that the QSH phase is virtually independent from the real magnetic field and that

the “unhappy” spin actually gets localized when EF = ∆so, illustrating the limitations of the

toy model in this situation.

In the vicinity of the transition, the “unhappy” spin keeps propagating along a given edge but

its classical cyclotron orbit center xc = −kyl2B (with ky the longitudinal wave vector component)

is shifted inwards as the Fermi energy increases (see Fig. 9.2c). On the other hand, the “happy”

spin gets increasingly localized on the same edge when the Fermi energy increases, which is

qualitatively equivalent to the usual QH case. One can indeed show that the notion of a classical

cyclotron orbit center remains well defined here, despite the presence of SO coupling, and that

the corresponding eigenstates are very similar to those found in the pure QH regime [28].
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Before presenting the rest of our numerical data on transport in the vicinity of the QSH-QH

transition, a few words should be said about the shape of the spectrum corresponding to the

non-zero Landau levels. While the branches corresponding to the “happy” spin seem basically

unaffected by the SO coupling, the two branches of the “unhappy” spin display very different

behaviors (Fig. 9.2c). In particular, one of them is significantly bent by the SO coupling, such

that counter-propagating states along the same edge appear in a finite window of energy. This

leads to the possibility of backscattering and therefore destroys the robustness of the QH phase

in this energy window, the size of which can nevertheless be significantly reduced by increasing

the width of the graphene ribbon2. Note that at negative energies, EF < −∆so, “happy” and

“unhappy” spin species exchange their roles (see Fig. 9.2c).

We proceed to investigate further how the transition between QSH and QH phases shows up

in transport, and consider the 4-terminal Ψ-shape geometry depicted in the inset of Fig. 9.3a.

In the core of Fig. 9.3a, we plot as a function of the Fermi energy the current collected in leads

1, 2 and 3 when injected from lead 0. Nothing unexpected happens away from the transition:

the transmission coefficients feature characteristic signatures of current-carrying edge states

(left and right panels of Fig. 9.2d). Around the critical value EF = ∆so, however, we observe

in Fig. 9.3a that the “unhappy” spin is fully transmitted in lead 2. This can be understood

as follows. As the transition point is approached, the classical cyclotron orbit center is shifted

(inwards) away from the edge (as discussed above) by a distance which can reach 2Rc, where

Rc(B) = l2B/ξso is the classical cyclotron radius of the n = 0 level. When 2Rc > W1/2, where

W1 is the width of lead 1, then, somewhere in the vicinity of the transition, the incoming state

cannot penetrate lead 1, hence leading to perfect direct transmission to lead 2 as observed

in Fig. 9.3a. This feature could in principle be checked experimentally by simply varying the

strength of the magnetic field close to the transition: for wider systems or at larger magnetic

field, the width of the peak of direct transmission from 0 to 2 shrinks and eventually disappears.

A clear way to distinguish between QH and QSH phases in a transport measurement is

to plot the “direct” dimensionless differential conductance from lead 0 to lead 2 as a function

of the classical cyclotron radius Rc ∝ B−1. This is illustrated in Fig. 9.3b: below the QSH

gap, the “direct” transmission is zero for any value of the magnetic field; on the other hand,

above the QSH gap, transmission can become non-zero as the magnetic field weakens, due to

the breakdown of the QH effect when Rc becomes larger than the width of the system. It thus

interpolates between zero (in the QH regime) and a finite value which depends on the number

of occupied bands at the Fermi level in the ribbon when B = 0. Of course, in the latter limit,

the topological protection is lost and the value of the transmission will strongly depend on the

disorder configuration.

2In fact, what happens is that in the energy window, in the dips (peaks) of the red dashed (blue solid) lines

above E = ∆so (below E = −∆so), the counterpropagating edge states cancel out each other and play no role

in transport. Therefore, one does not see any traces of these features in conductance simulations.
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Figure 9.3: QSH-QH transition in a 4 terminal Ψ-shape geometry. a) Dimensionless differential

conductance from lead 0, where the current is injected, to outgoing leads 1, 2 and 3 in the

geometry depicted in the inset, as a function of the Fermi energy (λso = 0.02, lB ' 8, and

lead widths W0 = 64
√

3, W1 = 22
√

3). Below the SO gap, current is carried by QSH edge

states, which propagate on different edges (left inset), while above the SO gap it is carried by

QH edge states, which propagate on the same edge (right inset). b) Dimensionless differential

conductance from lead 0 to lead 2 as a function of the classical cyclotron radius Rc ∝ B−1

(same values of λso, W0 and W1 as in a). Circular symbols (thick line) correspond to data with

EF < ∆so, while other symbols (dashed lines) correspond to data with EF > ∆so, respectively

EF/∆so = 1.06 (blue diamonds), EF/∆so = 1.25 (violet triangles), and EF/∆so = 1.44 (red

squares). While this “direct” transmission is vanishingly small and independent of the magnetic

field below the SO gap, it increases with both Rc and EF above the SO gap. The latter situation

arises because the QH phase is destroyed as 2Rc & W1, and because the number of transmitting

channels increases with lB and EF .
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9.3.2 Effects of disorder

In this subsection, we study the robustness of the results described in the ballistic regime with

respect to the presence of various types of disorder. In the absence of a magnetic field, the QSH

phase is known to be very robust with respect to the presence of scalar disorder (i.e. disor-

der that breaks neither time reversal symmetry nor spin rotational symmetry), as introducing

backscattering between edge states involves tunneling through the gapped bulk region. On the

other hand, disorder that breaks both time reversal symmetry and spin rotational symmetry

(such as magnetic impurities) leads to scattering between the two counter-propagating edge

states of the same edge, which leads to intra-edge backscattering. If this intra-edge backscat-

tering becomes strong (or the edges are very long), edge states may eventually get localized,

such that no edge transport occurs anymore. In our case, as we explicitly break time reversal

symmetry with a magnetic field, disorder that breaks only spin rotational symmetry (such as

Rashba-like SO terms arising from adatoms) effectively behaves as magnetic impurities and

could potentially lead to the same breakdown of the QSH phase.

In order to study these effects quantitatively, we add the general perturbation

Hdis =
∑
i,α,β

c†i,α

( ∑
µ=0,x,y,z

Vi,µs
µ
αβ

)
ci,β (9.6)

to our tight-binding Hamiltonian (9.2). The onsite potentials Vi,µ are independent random

variables uniformly distributed inside a given interval on each site of the system (Anderson dis-

order). We study three different sorts of disorder with different symmetries: Vi,0 ∈ [−Vs/2, Vs/2]

takes into account scalar (spin-independent) disorder, Vi,z ∈ [−Vz/2, Vz/2] represents Zeeman-

like (Sz conserving) impurities, and {Vi,x, Vi,y} ∈ [−Vm/2, Vm/2] captures the influence of Sz

non-conserving impurities.

The results are presented in Fig. 9.4 for the 4-terminal Ψ-shape geometry (depicted in the

inset of Fig. 9.3a). Note that in order to obtain a significant effect of disorder, we used ex-

tremely (unrealistic) high values of disorder, much higher than the SO gap itself. A first general

qualitative conclusion is that the ballistic results presented above are extremely robust with

respect to all kinds of disorder. More precisely, we find, as expected, that extremely large values

of Vs or Vz are needed to significantly affect the transport coefficients. “Magnetic” impurities

(Vm), which can induce intra-edge backscattering, do affect the QSH phase at weaker values.

We note, however, that the system remains topological (i.e. does not become a simple ordinary

insulator) as transport is still dominated by edge contributions: for instance, at Vm = 0.5, the

direct transmission probability T20 (from lead 0 to lead 2) remains many orders of magnitude

smaller than T10 (from lead 0 to 1). The topological nature of the phase is encoded in the Z2

topological invariant, which cannot change unless the bulk gap is closed by the perturbations

we consider. We checked (not shown) that the above results are essentially unaffected upon
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Figure 9.4: Effect of very strong disorder on the QSH phase in the 4-terminal Ψ-shape geometry.

We plot the dimensionless differential conductance from lead 0 to leads 1 and 2 as a function

of disorder strength for λso = 0.02, lB ' 8, EF = 0.05, and otherwise same system as in

Fig. 9.3. Circular symbols stand for T10 and triangular symbols for T20. The behavior for T30

(not shown) is the same as for T10. Dashed black lines correspond to purely scalar disorder

(Vs), dotted red lines correspond to purely Zeeman-like disorder (Vz), and filled blue symbols

correspond to purely Sz non-conserving disorder (Vm). The latter is clearly the dominant effect

on T10, though unrealistically large values are required to quantitatively affect the edge state

transmission (see main text for a mean free path estimate). Each data point has been averaged

over 48 disorder configurations. Unless shown, error bars are smaller than symbol sizes. Full

black line: fit y = 1− 3.0x2.

changing the SO gap by a factor of 2, putting all three sorts of disorder simultaneously or

changing the Fermi energy (inside the SO gap).

To rule out any concerns raised by the intra-edge scattering due to Vm , the corresponding

intra-edge mean free path le (or equivalently the localization length, as both are roughly equal

for one-dimensional states) can be estimated using Fermi’s golden rule: le = vdτe where vd =

~−1(dE/dk) is the drift velocity of the edge states (extracted for instance from Fig. 9.2), and

τe ∝ (Vm)2|dk/dE|. Alternatively, one may extract it directly from the numerical calculations

of Fig. 9.4, since T10 ≈ 1 − (L/le) (with L the length along the edge, roughly 5 nm in this
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instance). Fitting the small Vm regime with T10 ≈ 1− 3.0V 2
m , we obtain (in nm)

le ≈ (Vm/t)
−2, (9.7)

where we have explicitly restored the hopping amplitude t (our energy unit) in order to get

numbers. The ballistic results are essentially unaffected for systems smaller than le , while the

edge states become localized for larger systems. In the context of a QSH phase induced by

adatoms (using for instance the indium atoms proposed by Weeks et al. [26]), a possible source

of Vm-like disorder comes from the SO coupling induced by the adatoms themselves. Typical

values for Vm are smaller than 1 meV, which translates into extremely large intra-edge mean

free paths le > 1 mm. Hence we estimate that this perturbation should be largely irrelevant in

real size samples.

To summarize, all of our results are essentially unaffected by the presence of disorder,

except when the Fermi energy lies in the vicinity of the QSH-QH transition, in which case

strong disorder can give rise to a random net- work of QH and QSH regions through which a

percolating cluster connecting opposite edges can therefore lead to backscattering 3.

9.4 Topological heterojunction

We take advantage of the above described topological quantum phase transition as a function

of the Fermi energy to propose a setup which allows for a direct junction between two different

topological phases in the same sample. Let us consider the case in which an additional electro-

static gate enables to split the system in two parts, one in which the Fermi level is in the QSH

phase, and the other in which the Fermi level is in the QH phase (Fig. 9.5). This constitutes a

QSH-QH junction which shares some similarities with quantum Hall n-p junctions previously

fabricated in graphene [148, 149]. Indeed, the incoming “unhappy” spin at the junction has

no other choice but to propagate along the interface in order to reach the only other available

channels which lie on the opposite edge. This is reminiscent of the situation both spin channels

have to face in the QH regime when they must cross a n-p junction, since their direction of

propagation on a given edge is reversed for negative energies. Various theoretical models have

been proposed in the latter setup [150, 151, 152, 153] but they all fail to explain the experi-

mental observations [148, 149], probably due to some dephasing mechanism taking place in the

vicinity of the Dirac point which is obscured by charge-density fluctuations (so-called electron-

hole puddles). The system we consider could therefore provide a new perspective to solve this

puzzle, as the QSH-QH transition takes place at a value of energy which can be far away from

3This effect will be all the more potent for zigzag-terminated ribbons, as they feature energy-dependent QSH

edge states, whose width is expected to strongly increase when the energy approaches the SO gap [119], see

Fig. 7.7.
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3 2

10

Vg

QHQSH

Figure 9.5: Topological heterojunction, with QSH edge states on the left and QH edge states

on the right. This junction can be experimentally achieved by applying a top gate (grey shaded

region) on the right half of the sample. While one of the spin species (thick blue) can propagate

through this junction, the other one (red dashed) cannot and therefore gives rise to a chiral

state, localized at the interface between QH and QSH phases, which connects both edges.

the Dirac point 4 for realistic values of SO-induced QSH gap.

More generally, our proposal offers the possibility of studying the nature of the state that

propagates at the interface between QSH and QH phases, which are characterized by different

topological invariants [145, 24]. What we usually refer to as QSH (or QH) edge states are states

propagating between QSH (or QH) insulators and a trivial insulator (the vacuum, typically).

As the QSH insulator is characterized by a Z2 number, there is only one QSH topological phase:

junctions between QSH phases with different Fermi energies (including n-p junctions) have no

effect on transport, as the spin-polarized states can propagate through these junctions. On the

other hand, the QH topological invariant is a Z number, which counts the number of edge

channels, and the notion of QH junctions therefore makes sense. In this case, one expects the

existence of chiral propagating states, localized at the interface corresponding to the Landau

level crossing. For QH n-n′ junctions, these states are “bubbling” states [153], which simply

follow the drifting Hall motion of charge carriers subjected to crossed electric and magnetic

fields. For QH n-p junctions, these states are ambipolar “snake” states [154], which can be

4Far from the Dirac point, however, the adatoms which induce the QSH phase in graphene [26] may give

rise to parasitic [23] Rashba-type SO couplings.
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Figure 9.6: Heterostructure in a 4 terminal Z-shape sample as depicted in Fig. 9.5. Transmission

probabilities from lead 0, where the current is injected, to outgoing leads 1 (dotted lines), 2

(dashed lines) and 3 (full lines) as a function of the top gate voltage Vg. When Vg < (∆so−EF ),

such that left and right regions are in the QSH phase, current is perfectly transmitted by

the QSH edge states, as shown in the current-density plot in the left inset. When Vg is high

enough (Vg > (∆so − EF )) that the right part of the sample enters the QH phase, a QSH-QH

junction is created, which is characterized by a chiral state propagating along the interface.

This is illustrated in the current-density plot shown in the right inset. Once it has reached the

opposite edge, this chiral state is partially transmitted in lead 2, partially transmitted in lead 3,

with proportions shown in the main plot. The light red curves correspond to an abrupt voltage

change across the junction region while the dark blue curves correspond to a smooth transition.

Parameters are EF/∆so = 0.58 (in the left half of the sample), λso = 0.02, lB ' 8, and widths

W0 = Wc = 40
√

3 for the leads and central region.
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seen as classical skipping orbits of mixed electron-“hole” character. The characteristics of the

state propagating at the interface between QSH and QH insulators, on the other hand, are still

unclear as far as we know.

Our proposal is the following. Consider the Z-shape geometry shown in Fig. 9.5. It is split

into two regions: the left half and the right half. A top gate is applied on the latter in order to

tune the Fermi level in both regions independently. In Fig. 9.6, we plot, for a given value of the

Fermi energy in the left half inside the QSH gap, the differential conductance Ti0 from lead 0

to leads 1, 2 and 3 as a function of the gate voltage (which determines the value of the Fermi

energy in the right half). While the Fermi energy in the right half remains below the value of

∆so, transport characteristics remain unaffected by the gate (left inset of Fig. 9.6). However,

as soon as the Fermi energy in the right half crosses the QSH gap, it gives rise to a QSH-

QH junction characterized by a topological state at its interface (see right inset of Fig. 9.6).

This chiral state propagates along the interface until it reaches the opposite edge, and then

gets partially transmitted in lead 2, partially transmitted in lead 3, with proportions which

depend on the microscopic details of the model (Fermi energies, the length of the interface, the

smoothness of the potential step, the amount of disorder, the possible valley-space polarization

of the edge states, etc), the study of which is left to subsequent work. This system constitutes

a very efficient spin-polarized charge-current switching mechanism, as the current in lead 1

(respectively 2) can be reversibly switched from one (respectively zero) to zero (respectively non-

zero) while simultaneously being spin-polarized (see Fig. 9.6). Additionally, this switching can

be activated by simply tuning the voltage in the top gate over a very small energy range (whose

lower bound will depend on the magnitude of the disorder in the vicinity of the transition), and

should yield extremely sharp transitions with values of on/off current topologically protected

from the presence of disorder 5.

9.5 Conclusions

In summary, we showed that the transition between QSH and QH phases in graphene is inde-

pendent of the value of the magnetic field (neglecting the weak effect of Zeeman splitting) and

can be crossed simply by tuning the value of the Fermi energy across the SO-induced QSH gap.

This unique property owes to existence of the zero-energy LL in graphene. In a heterojunction,

one of the spin species gives rise to a chiral state propagating along the interface between QSH

and QH phases. The nature of this special state is a fascinating issue which could bring new

light concerning the unresolved mystery of conductance plateaus observed in quantum Hall n-p

5Note that a similar switching mechanism (without the spin polarization) could also be realized using a

graphene quantum Hall n-p junction, provided the charge-density fluctuations close to the Dirac point can be

reduced.
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junctions [148, 149]. We also showed that the tunable transition between the QSH and QH

topological phases could serve as a spin-polarized charge-current switch with potentially ex-

tremely high, topologically protected, on/off ratios. An interesting future direction of research

could be to investigate whether this tunable topological phase transition can arise in bilayer

graphene [155], which also possesses zero-energy Landau levels [156] and has very recently been

shown to host a Z2 topologically insulating phase [157] for strong enough Rashba SO coupling.
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Perspectives and future work

The thesis, as presented above, consists of two parts. So far there was no link between them

and they appeared as completely separate. However, there is an interesting possibility of using

the formalism developed in the first part of the thesis to make a new step in investigating the

effects presented in the second part. Over the last two years, a series of works was done on

the properties of various semiconducting materials irradiated by the high-frequency electro-

magnetic fields [158, 159, 160, 161, 162, 163]. It was shown that the band structure of these

materials modified by the presence of radiation manifests itself in an intriguing behavior of

DC conductance when a stationary bias is applied. Moreover, such systems as graphene and

topological insulators (for example, HgTe/HgCdTe quantum wells) were shown to undergo a

topological phase transition from a trivial (insulating) to a topological state when a circularly

polarized laser field is applied [158, 159, 161, 163]. These proposals are based on the Floquet

theory, and this is the Floquet Hamiltonian which possesses the topological edge states. The

only difficulty is that the quasistationary states described by the Floquet Hamiltonian can be

populated in a complicated way making it difficult to single out the effect of the (topological)

edge states only [159, 161].

As a possible extension of the results presented in this thesis would be the investigation

of the effect of external radiation on graphene with SO coupling. There are two regimes one

could choose: off-resonant (when the frequency of light is bigger than the band width of a

material, so that only virtual absorption/emission processes take place) [163] and resonant (low

enough frequencies, enabling direct absorptions/emissions of light quanta) [159]. It was shown

in Ref.[163], that in graphene the off-resonant light is enough to see the quantum Hall effect

without a magnetic field. One interesting possibility would be to see whether one can observe

any kind of topological transition, like the QSH/QH considered in this thesis, if we shine a high

frequency light on graphene instead of applying a magnetic field. Moreover, in Ref.[159] authors

showed that by an appropriate choice of the laser field parameters, it is possible to create both

co- and counter-propagating helical edge states in an initially trivial (insulating) system (they

considered HgTe/HgCdTe in this work).

Thus, the properties of various semiconducting materials in presence of an external radiation

is a very promising line of research. Further investigations are needed to understand how one
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can engineer in a controlled way the many interesting features potentially useful to design new

optoelectronic nanodevices.
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Appendix A

General results for AC observables

given in Section 3.3

In this Appendix we present the formulae for AC observables beyond the WBL, see Section

3.3. Just as before we will split them in two parts: response to the internal and external

perturbations.

A.1 External perturbation

First, we consider the situation when the AC voltage is applied to one of the contacts, say m′.

Below we present various system response functions to such a perturbation assuming there is

no DC bias in the system.

The AC conductance matrix is given by

Υm,m′(ω) =
e2

h

∫
dE

~ω

{
(f(E)− f(E + ~ω))Tr

[
Λar
m (E;E + ~ω)G2Λra

m′(E + ~ω;E)G†0

]
+f(E + ~ω)Tr

[
Λaa
m (E;E + ~ω)G†2Λaa

m′(E + ~ω;E)G†0

]
(A.1)

−f(E)Tr
[
Λrr
m(E;E + ~ω)G2Λrr

m′(E + ~ω;E)G0

]
− f(E)Tr [D1] + f(E + ~ω)Tr [D2] δm,m′

}
.

Functions D1,2 in the diagonal part are defined as

D1 = i
(
G2 − G

†
0

)
Γ(m′;E) +

(
G0 − G

†
0

)
Λrr
m′(E;E + ~ω), (A.2)

D2 = i
(
G2 − G

†
0

)
Γ(m′;E + ~ω) +

(
G2 − G

†
2

)
Λaa
m′(E;E + ~ω). (A.3)
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The stationary (DC) component of the current to leading order in perturbation amplitude

reads (m 6= m′)

d2Im(0ω)

dV 2
ac

=
ie3

4~2ω2

∫
dE

2π~

{
(f(E)− f(E + ~ω)) Tr

[
G0Λra

m′(E;E + ~ω)G†2Λaa
m′(E + ~ω;E)G†0Γm(E)

−G0Λrr
m′(E;E + ~ω)G2Λra

m′(E + ~ω;E)G†0Γm(E)
]

+ (f(E − ~ω)− f(E)) Tr
[
G0Λrr

m′(E;E − ~ω)G−2Λra
m′(E − ~ω;E)G†0Γm(E) (A.4)

−G0Λra
m′(E;E − ~ω)G†−2Λaa

m′(E − ~ω;E)G†0Γm(E)
]

− if(E)Tr
[
G0

(
Γm′(E + ~ω) + Γm′(E − ~ω)− 2Γm′(E)

)
G
†
0Γm(E)

]}
.

Adiabatic current. Assuming that the frequency of the perturbation is very small, to zeroth

order in ~ω the current is (m 6= m′)

Iadm (t) =
e

h

∫
dE

{
f(E)Tr

[
i
(
F 0(t, E)− F 0,†(t, E)

)
Γm(E)− F 0(t, E)Γ(E)F 0,†(t, E)Γm(E)

]
+ Tr

[
F 0(t, E)

(
∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)
F 0,†(t, E)Γm(E)

]
eVac cosωt

}
, (A.5)

where the definition of the functions F 0,1(t, E) is given in Section 4.3.2.

Correction to the adiabatic current. It is the leading order correction of the order ∼ ~ω to

Eq.(A.5). Note that it contains all orders in Vac,

δIadm (t) = δI1
m(t) + δI2

m(t) + δI3
m(t) + δI4

m(t) + δI5
m(t), (A.6)
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where separate parts read,

δI1
m(t) = e

∫
dE

2π~

{
Tr

[
F 1(t, E)

(
∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)
F 0,†(t, E)Γm(E)

+F 0(t, E)

(
∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)
F 1,†(t, E)Γm(E)

]
(A.7)

+ f(E)Tr
[
i
(
F 1(t, E)− F 1,†(t, E)

)
Γm(E)− F 1(t, E)Γ(E)F 0,†(t, E)Γm(E)

− F 0(t, E)Γ(E)F 1,†(t, E)Γm(E)
]}

,

δI2
m(t) =

e~
2

∫
dE

2π~
Tr

[
∂(F 0(t, E) + F 0,†(t, E))

∂t

(
∂Γm(E)

∂E
f(E) +

∂f

∂E
Γm(E)

)]
, (A.8)

δI3
m(t) =

e~
2

∫
dE

2π~
∂

∂t

{
Tr

[
F 0(t, E)Γ(E)F 0,†(t, E)

∂

∂E
(Σr(m;E) + Σa(m;E))

]
f(E)

− Tr

[
F 0(t, E)

(
∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)
(A.9)

×F 0,†(t, E)
∂

∂E
(Σr(m;E) + Σa(m;E))

]
eVac cosωt

}
,

δI4
m(t) = −ie~

2

∫
dE

2π~

{
Tr

[
F 0(t, E)

(
∂Γ(E)

∂E
f(E) +

∂f

∂E
Γ(E)

)
∂F 0,†(t, E)

∂t
Γm(E)

−∂F
0(t, E)

∂t

(
∂Γ(E)

∂E
f(E) +

∂f

∂E
Γ(E)

)
F 0,†(t, E)Γm(E)

]
(A.10)

+ Tr

[
∂F 0(t, E)

∂E
Γ(E)

∂F 0,†(t, E)

∂t
Γm(E)− ∂F 0(t, E)

∂t
Γ(E)

∂F 0,†(t, E)

∂E
Γm(E)

]
f(E)

}
,

δI5
m(t) =

ie~
2

∫
dE

2π~
Tr

{
∂F 0(t, E)

∂E

(
∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)[
∂

∂t

(
F 0,†(t, E)eVac cosωt

)]
Γm(E) (A.11)

−
[
∂

∂t

(
F 0(t, E)eVac cosωt

)](∂Γm′(E)

∂E
f(E) +

∂f

∂E
Γm′(E)

)
∂F 0,†(t, E)

∂E
Γm(E)

}
.

The generalized injectivity [1, 6, 20], which is the density of particles on site i injected from

the lead m′ as a consequence of the oscillating electrochemical potential is

dn(i, 1ω,m′)

dVac
=
ie

hω

∫
dE
[
(f(E)− f(E + ~ω))G2Λra

m′(E + ~ω;E)G†0

−f(E)G2Λrr
m′(E + ~ω;E)G0 + f(E + ~ω)G†2Λaa

m′(E + ~ω;E)G†0

]
ii
. (A.12)
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A.2 Internal perturbation

Now we will present the results for the response to an internal potential. Again, we assume that

there is no DC bias applied to the system.

Current response linear in Vac is given by

dIm(1ω)

dVac
=
e2

h

∫
dE

{
(f(E)− f(E + ~ω)) Tr

[
Λar
m (E;E + ~ω)G2WG

†
0

]
− f(E)Tr

[
Λrr
m(E;E + ~ω)G2WG0

]
+ f(E + ~ω)Tr

[
Λaa
m (E;E + ~ω)G†2WG

†
0

]}
. (A.13)

The DC component of the current caused by the rectification effect can be written (to

leading order in Vac) as

d2Im(0ω)

dV 2
ac

=
e3

4h

∫
dETr

[
(f(E)− f(E + ~ω))G0WG2Γ(E + ~ω)G†2WG

†
0Γm(E)

− (f(E − ~ω)− f(E))G0WG−2Γ(E − ~ω)G†−2WG
†
0Γm(E)

]
. (A.14)

Similarly, the 2nd harmonics of the current is given by

d2Im(2ω)

dV 2
ac

=
e3

2h

∫
dETr

[
(f(E)− f(E + ~ω))G2WG

†
0WG

†
−2Λar

m (E − ~ω;E + ~ω)

+ (f(E − ~ω)− f(E))G2WG0WG
†
−2Λar

m (E − ~ω;E + ~ω) (A.15)

+ f(E + ~ω)G†2WG
†
0WG

†
−2Λaa

m (E − ~ω;E + ~ω) (A.16)

− f(E − ~ω)G2WG0WG−2Λrr
m(E − ~ω;E + ~ω)

]
.

The response function to perturbating the onsite potential on site i is the (generalized)

emissivity [1, 6, 20] and it reads (note, that it differs from the original definition by Büttiker,

where one has to multiply it by 1/(ieω))

dIm(1ω)

dVii
=
e2

h

∫
dE
[
(f(E)− f(E + ~ω))G†0Λar

m (E;E + ~ω)G2

−f(E)G0Λrr
m(E;E + ~ω)G2 + f(E + ~ω)G†0Λaa

m (E;E + ~ω)G†2

]
ii
. (A.17)
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Appendix B

Magnetic field in multi-terminal

calculations

In this appendix, we explain how to compute the Peierls phase φij between two atoms i and j

in multi-terminal systems. It is given by

φij =

∫ ri

rj

A · dr (B.1)

where ri = (xi, yi) is the spatial position of site i. A common choice for A is the Landau gauge

(Lg)

ALg(x, y) = −By

(
1

0

)
(B.2)

which leads to

φLgij = −B(xi − xj)
yi + yj

2
(B.3)

(using linear paths between atoms). The numerical prescription follows simply: one calculates

the real coordinates of the two atoms and uses the above equation to get φij. An important

aspect of the Landau gauge is that the phase depends on the x-coordinate only through the

difference of x between the two atoms i and j. This is crucial for taking magnetic field into

account in the leads: the leads are semi-infinite periodic systems made of layers. They are

described by an intra-layer Hamiltonian H0 and an inter-layer Hamiltonian V . Within the

Landau gauge, we find that the matrices H0 and V of horizontal leads are layer-independent,

which allows the use of standard schemes to calculate their self-energies. However, general

samples (such as the Ψ-shaped sample studied in this thesis) can have leads with an arbitrary

angle θ with respect to the y-axis. For those leads, the corresponding gauge choice is

A(r) = −B(r · e2)e1 (B.4)
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with

e1 =

(
cos θ

sin θ

)
, e2 =

(
− sin θ

cos θ

)
, (B.5)

which leads to

φij = φLgij + Φi − Φj , (B.6)

where the potential

Φi = B(1− cos 2θ)
xiyi

2
+B sin 2θ

x2
i − y2

i

4
(B.7)

is a pure gauge potential allowing to go from one choice of gauge to the other. A (possible)

general prescription for an arbitrary system is now the following: one assigns a potential Φi =

0 to all sites except those belonging to a lead. For the latter, one uses Eq.(B.7) with the

appropriate angle θ. Then one calculates the phases φij according to Eq.(B.6).

All the prescriptions above are given in real space. It is of course possible to calculate

analytically the equivalent prescriptions in terms of the integer coordinates on the Bravais

sublattices, as both are in one to one correspondance. However, for numerical purposes, it is

more convenient to calculate the real space positions of the atoms numerically and then use

Eqs. (B.3,B.6,B.7) in order to use a lattice-independent prescription.
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[5] M. Büttiker, H. Thomas, and A. Prêtre, “Current partition in multiprobe conductors in

the presence of slowly oscillating external potentials,” Zeitschrift für Physik B Condensed

Matter, vol. 94, pp. 133–137, 1994.
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Rapidly changing market of electronic devices sets up a lot of challenges for the manufactur-

ing and design technologies. When electronic circuit elements get smaller, the device behavior

becomes increasingly complicated as new physical phenomena due to quantum interference

effects come into play. Understanding of the latter necessitates development of advanced theo-

retical tools. In this thesis we investigate quantum electron transport in multiterminal devices.

In the first part making use of the Keldysh Green’s functions we develop a general framework

for electron quantum transport in multi-terminal systems in the presence of oscillating fields.

We are able to express any AC observable in terms of stationary Green’s functions and leads

self-energies, which makes our formalism a practical numerical tool for a variety of possible

finite-frequency perturbations.

In the second part we investigate theoretically a proposal to induce strong spin-orbital

coupling in graphene by functionalizing its surface with certain type of heavy adatoms. In

this case graphene becomes a topological insulator. Then we investigate the evolution of this

topological phase in external magnetic field. We were able to see a unique transition between

quantum Hall and quantum spin Hall phases in the same system by only varying the position

of the Fermi level. A heterojunction between these two phases was shown to give rise to a new

type of a chiral state at the interface between the latter.

Keywords: quantum transport, finite frequency, graphene, spin-orbit coupling, Hall effects.

Les évolutions rapides du marché des composants électroniques font apparâıtre de nombreux

challenges pour la conception et la fabrication de ces derniers. Lorsque ces éléments deviennent

plus petits, leur comportement se complexifie à mesure que de nouveaux phénomènes, liés

aux effets d’interférence, entrent en jeu. Comprendre ces derniers nécessite le développement

d’outils théoriques avancés. Dans ce contexte cette thèse est consacrée au transport électronique

quantique dans des systèmes multi-terminaux.

Dans la première partie on développe un formalisme général, utilisant les fonctions de Green

de Keldysh, pour le transport électronique quantique dans des systèmes multi-terminaux en

présence de perturbations oscillantes. Nous sommes capable d’exprimer toute obervable AC en

termes de fonctions de Green à l’équilibre et des self-énergies des contacts. Ceci fait de notre

formalisme un outil pratique pour toute une variété de perturbations à fréquence finie.

Dans la seconde partie on présente l’idée d’induction d’un fort couplage spin-orbite dans le

graphène en déposant à sa surface un certain type d’atomes lourds. Le graphène devient alors

un isolant topologique. Nous avons ensuite étudié l’évolution de la phase topologique avec un

champ magnétique externe. Une transition entre la phase de Hall quantique et la phase de Hall

quantique de spin a été identifiée dans le même système en variant seulement la position du

niveau de Fermi. Nous avons montré qu’une hétérojonction entre ces deux phases donnait lieu

à un nouveau type d’état chiral à l’interface.

Mots clés: transport quantique, fréquence finie, graphène, couplage spin-orbite, effets Hall.
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