
Thèse

High Performance by Exploiting Information

Locality through Reverse Computing

Présentée et soutenue publiquement le 21 décembre 2011 par

Mouad Bahi

pour l’obtention du Doctorat de l’université Paris-Sud

Jury

Dr. Christine Eisenbeis INRIA Saclay - Île-de-France Directrice de thèse
Prof. Claire Hanen Université Paris-Ouest Nanterre La Défense Rapporteur
Dr. Erven Rohou INRIA Rennes - Bretagne Atlantique Rapporteur
Prof. Jean-Luc Gaudiot University of California - Irvine Examinateur
Prof. Yannis Manoussakis Université Paris-Sud Examinateur
Dr. Claude Tadonki Mines ParisTech Examinateur

INRIA Saclay - Île-de-France Alchemy project

Université Paris-Sud Ecole doctorale LRI

3

Acknowledgments

I would like to thank many people who provided valuable support during the years in
which I was working on this thesis. I would like to express my appreciation and thanks to
my advisor Christine Eisenbeis for being a great source of inspiration, for her guidance,
and for her patience. I acknowledge the PetaQCD project for providing financial support.
I thank the members of my thesis committee for their reviews and suggestions concerning
this research. I would also like to thank Françoise Combes from Observatoire-de-Paris for
her willingness to hire me before I was quite finished and her patience while I finished the
writing of my dissertation. I am also thankful to my friends, in and out of INRIA, for
their friendship and support. Last but not least, I express my gratitude to my parents,
my brothers and sisters for their constant support.

5

Abstract

The main resources for computation are time, space and energy. Reducing them is the
main challenge in the field of processor performance.

In this thesis, we are interested in a fourth factor which is information. Information
has an important and direct impact on these three resources. We show how it contributes
to performance optimization. Landauer has suggested that independently on the hard-
ware where computation is run information erasure generates dissipated energy. This is a
fundamental result of thermodynamics in physics. Therefore, under this hypothesis, only
reversible computations where no information is ever lost, are likely to be thermodynam-
ically adiabatic and do not dissipate power. Reversibility means that data can always be
retrieved from any point of the program. Information may be carried not only by the
data but also by the process and input data that generate it. When a computation is re-
versible, information can also be retrieved from other already computed data and reverse
computation. Hence reversible computing improves information locality.

This thesis develops these ideas in two directions. In the first part, we address the
issue of making a computation DAG (directed acyclic graph) reversible in terms of spatial
complexity. We define energetic garbage as the additional number of registers needed
for the reversible computation with respect to the original computation. We propose a
reversible register allocator and we show empirically that the garbage size is never more
than 50% of the DAG size.

In the second part, we apply this approach to the trade-off between recomputing (di-
rect or reverse) and storage in the context of supercomputers such as the recent vector and
parallel coprocessors, graphical processing units (GPUs), IBM Cell processor, etc., where
the gap between processor cycle time and memory access time is increasing. We show that
recomputing in general and reverse computing in particular helps reduce register require-
ments and memory pressure. This approach of reverse rematerialization also contributes
to the increase of instruction-level parallelism (Cell) and thread-level parallelism in mul-
ticore processors with shared register/memory file (GPU). On the latter architecture, the
number of registers required by the kernel limits the number of running threads and af-
fects performance. Reverse rematerialization generates additional instructions but their
cost can be hidden by the parallelism gain. Experiments on the highly memory demanding
Lattice QCD simulation code on Nvidia GPU show a performance gain up to 11%.

7

Abstract (in French)

Les trois principales ressources du calcul sont le temps, l’espace et l’énergie, les min-
imiser constitue un des défis les plus importants de la recherche de la performance des
processeurs.

Dans cette thèse, nous nous intéressons à un quatrième facteur qui est l’information.
L’information a un impact direct sur ces trois facteurs, et nous montrons comment elle
contribue ainsi à l’optimisation des performances. Landauer a montré que cest la destruc-
tion - logique - dinformation qui coûte de l’énergie, ceci est un résultat fondamental de
la thermodynamique en physique. Sous cette hypothèse, un calcul ne consommant pas
d’énergie est donc un calcul qui ne détruit pas d’information. On peut toujours retrouver
les valeurs d’origine et intermédiaires à tout moment du calcul, le calcul est réversible.
L’information peut être portée non seulement par une donnée mais aussi par le proces-
sus et les données dentrée qui la génèrent. Quand un calcul est réversible, on peut aussi
retrouver une information au moyen de données déjà calculées et du calcul inverse. Donc,
le calcul réversible améliore la localité de l’information.

La thèse développe ces idées dans deux directions. Dans la première partie, partant
d’un calcul, donné sous forme de DAG (graphe dirigé acyclique), nous définissons la notion
de garbage comme étant la taille mémoire − le nombre de registres − supplémentaire
nécessaire pour rendre ce calcul réversible. Nous proposons un allocateur réversible de
registres, et nous montrons empiriquement que le garbage est au maximum la moitié du
nombre de noeuds du graphe.

La deuxième partie consiste à appliquer cette approche au compromis entre le recalcul
(direct ou inverse) et le stockage dans le contexte des supercalculateurs que sont les récents
coprocesseurs vectoriels et parallèles, cartes graphiques (GPU, Graphics Processing Unit),
processeur Cell dIBM, etc., où le fossé entre temps d’accès à la mémoire et temps de
calcul ne fait que s’aggraver. Nous montons comment le recalcul en général, et le recalcul
inverse en particulier, permettent de minimiser la demande en registres et par suite la
pression sur la mémoire. Cette démarche conduit également à augmenter significativement
le parallélisme d’instructions (Cell BE), et le parallélisme de threads sur un multicore
avec mémoire et/ou banc de registres partagés (GPU), dans lequel le nombre de threads
dépend de manière importante du nombre de registres utilisés par un thread. Ainsi, l’ajout
d’instructions du fait du calcul inverse pour la rematérialisation de certaines variables est
largement compensé par le gain en parallélisme. Nos expérimentations sur le code de
Lattice QCD porté sur un GPU Nvidia montrent un gain de performances atteignant
11%.

9

Contents

I Introduction 17

1 Introduction 19

1.1 Context . 20

1.2 Contribution . 22

1.3 Organization of the Thesis . 22

II Reversible Computing & Information Conservation 25

2 Reversible Computing: Definition and Motivation 27

2.1 Power Consumption and Heat Dissipation 28

2.2 Energy Dissipation and Reversibility . 29

2.3 Reversible Computing . 30

2.3.1 Reversible Operations . 31

2.3.2 Reversible Logic . 33

2.3.3 Reversible Logic Gates . 34

2.4 Reversible Architecture . 36

2.5 Reversible Software . 37

2.6 Summary . 38

3 Reversible Computing for Information Conservation 39

3.1 Cost of Reversibility and Algorithm . 40

3.1.1 Reversible Operations . 41

3.1.2 Algorithm . 43

3.2 Reversible DAG and Register Reuse DAG - Lower Bound 48

3.3 Reversibility and Values Lifetime . 50

3.4 Experimental Results and Upper-Bound for the Garbage Size 52

3.5 Summary . 54

III Using Reverse Computing to Improve Performance 55

4 Register Allocation Overview 57

4.1 Register Allocation Architecture . 58

4.1.1 Data Dependency . 58

4.1.2 Data Dependency Graph . 59

4.1.3 Basic Block . 59

4.1.4 Interference Graph . 59

10 CONTENTS

4.1.5 Meeting Graph . 60

4.1.6 Register Requirements . 60

4.1.7 Register Saturation . 60

4.1.8 Register Pressure . 60

4.1.9 Live Range Splitting . 61

4.1.10 Coalescing . 61

4.1.11 Register Spilling . 61

4.1.12 Register Rematerialization . 62

4.2 Different Register Allocation Approaches . 62

4.2.1 Register Allocation via Graph Coloring 62

4.2.2 Linear Scan Register Allocation . 63

4.2.3 Register Allocation based on Register Reuse Chains 63

4.2.4 Register Allocation via Integer Linear Programming 64

4.3 Register Allocation and Instruction Scheduling 64

5 Using Reverse Computing to Decrease Spill Code 65

5.1 Problem Statement: Register Allocation . 67

5.1.1 Recomputing vs. Storage . 67

5.1.2 Aggressive Register Reuse . 69

5.2 Rematerialization rules and guidelines . 69

5.2.1 Building Register Reuse Chains . 70

5.2.1.1 Register Reuse between Dependent Values 70

5.2.1.2 Register Reuse between Independent Values 74

5.2.2 Detecting Excessive Registers . 81

5.2.3 Discovering Rematerializable Values 81

5.2.3.1 Rematerialization Decision 81

5.2.4 Graph Transformation . 84

5.2.5 More Opportunities for Reverse Computing than for Direct Computing 85

5.3 Experimental Results . 85

5.3.1 Lattice QCD Computation . 86

5.3.2 Register Requirements . 87

5.3.3 Spill Costs . 88

5.3.4 Run-Time Performance . 89

5.3.5 Inverse Precision . 90

5.4 Summary . 90

6 Using Reverse Computing to Increase Intruction Level Parallelism 97

6.1 What is Instruction-Level Parallelism? . 98

6.1.1 Instruction-Level Parallelism Challenges 98

6.1.1.1 Instruction-Level Parallelism within Basic Blocks 99

6.1.1.2 Instruction-Level Parallelism across Basic Blocks 100

6.2 Cell BE Implementation . 101

6.2.1 Cell BE Architecture Overview . 101

6.2.2 Programming Cell BE . 102

6.2.2.1 Code SIMDization . 102

6.2.2.2 Code Partitioning . 104

6.2.2.3 Communication and Data Transfer 104

6.2.3 Performance Measurement . 105

11

6.3 Summary . 106

7 Using Reverse Computing to Increase Thread Level Parallelism 107
7.1 GPU Architecture and Programming Model 108

7.1.1 Memory Hierarchy . 109
7.1.2 Thread-Level Parallelism . 110
7.1.3 Register Usage, Rematerialization and Performance 110

7.2 Experimental Results . 113
7.3 Analysis of Results . 116

7.3.1 Limitations . 117
7.4 Summary . 117

IV Conclusion 119

8 Conclusion and Future Work 121
8.1 Conclusion . 122
8.2 Future Work . 123

13

List of Figures

2.1 Simple model of CMOS system . 28

2.2 State transition: reversible computing vs. irreversible computing 30

2.3 Thermodynamic dissipation vs. technological dissipation 31

2.4 Feynman gate . 34

2.5 Toffoli gate . 34

2.6 Fredkin gate . 34

2.7 Example of reversible logic circuit. 35

3.1 Illustrative example of reversible code and garbage generation. 43

3.2 Scheduling algorithm diagram. 44

3.3 Example of register reuse limitation for reversing a DAG 48

3.4 Example of register reuse limitation between dependent values for reversing
a DAG . 49

3.5 Example of register reuse for reversing a DAG 50

3.6 Example comparing number of live values and their lifetime between re-
versible and irreversible execution . 51

3.7 Example comparing the number of live values at each computation step for
the same code in reversible and irreversible execution (corresponding to the
code of Example 2 Figure 3.3) . 52

3.8 Upper-bound to the garbage size . 53

3.9 Number of graphs randomly generated according to the garbage size 53

3.10 upper-bound to the garbage size . 54

4.1 (a) 3 address code and (b) its corresponding data dependency graph 59

4.2 Example of interference graph . 60

4.3 (a) Pseudo code. (b) Live-ranges of variables. (c) Interference graph before
splitting live-range of a. (d) Pseudo code after splitting. (e) New presenta-
tion of live-ranges. (f) New interference graph. 61

4.4 Example of graph coloring . 63

4.5 Example of register reuse chains . 64

5.1 Memory Access vs CPU Speed . 66

5.2 GPU architecture: Memory Access vs CPU Speed 66

5.3 Reducing register pressure using reverse rematerialization. 68

5.4 Recomputing Vs Storage. 68

5.5 Example of the relation ”can reuse” . 70

5.6 Example of killing and earliest ultimate killing nodes 71

5.7 Initial Data Dependency Graph . 73

14 LIST OF FIGURES

5.8 Initial Register Reuse Chains . 73
5.9 Building register reuse chains . 74
5.10 Building Register Reuse Chains . 75
5.11 Live ranges and distance between nodes . 77
5.12 Live ranges and distance between nodes . 78
5.13 Values lifetime before rematerialization . 82
5.14 Values lifetime after rematerialization. 83
5.15 Data dependency graph after register rematerialization. 83
5.16 Graph transformation. 84
5.17 Local register pressure reduction . 85
5.18 Contribution of reverse rematerialization to execution time 89
5.19 Hopping Matrix k: data dependency graph 92
5.20 Hopping Matrix l: data dependency graph 93
5.21 su3 multiply: data dependency graph . 94
5.22 complex times vector: data dependency graph 95

6.1 Using reverse computing to increase instruction level parallelism 99
6.2 Using reverse computing to increase instruction level parallelism 100
6.3 Cell Broadband Engine Architecture . 102
6.4 Data organization for SIMD operations (SM) 103
6.5 Different data structures used in LQCD . 103
6.6 Double buffering . 104
6.7 Scalability of performance with the count of the used SPEs for different

SIMDization techniques . 106

7.1 Fermi Streaming Multiprocessor (SM) . 109
7.2 Overview of the rematerialization algorithm 110
7.3 Reverse rematerialization : performance vs. register requirements 111
7.4 Cost of reversibility: additional operations 112
7.5 Reverse rematerialization : performance vs. available registers 112
7.6 HMC code fragment: original implementation 113
7.7 HMC code fragment: code splitting and reordering - optimized implemen-

tation . 114
7.8 Reverse rematerialization: global performance on NVIDIA GPU (gflops) . . 116
7.9 Reverse Rematerialization: single thread performance on NVIDIA GPU

(gflops) . 116

15

List of Tables

2.1 Reversible simulation of irreversible computing 32
2.2 Irreversible vs. Reversible function . 35

3.1 Original, reversible and reverse function . 42
3.2 An execution of the algorithm described by relabeling and electing rules

(corresponding to the code of Example 2 Figure 3.3) 47

5.1 List of killer and EUK nodes . 73
5.2 Contribution of reverse rematerialization to the minimization of register

requirements . 87
5.3 Cost of the reversibility: number of additional operations 88
5.4 Contribution of reverse rematerialization to minimize spill operations 89

6.1 Contribution of reverse rematerialization to improve performance 100
6.2 Hopping Matrix k . 105
6.3 Hopping Matrix l . 105

7.1 Contribution of reverse rematerialization to increase thread level parallelism 115
7.2 Contribution of reverse rematerialization to increase performance on NVIDIA

GPU (gflops) - original implementation - 115
7.3 Contribution of reverse rematerialization to increase performance on NVIDIA

GPU (gflops) - optimized implementation - 115
7.4 Single thread performance on NVIDIA GPU (gflops) 115
7.5 Cell BE Vs NVIDIA GPU: single thread performance (gflops) 117
7.6 Cell BE Vs NVIDIA GPU: global performance (gflops) 117

17

Part I

Introduction

19

Chapter 1

Introduction

Contents

1.1 Context . 20

1.2 Contribution . 22

1.3 Organization of the Thesis . 22

20 1. Introduction

1.1 Context

For the three resources of computation - time, space, and energy, it has become a challenge
for researchers and engineers in different fields to minimize them. However, minimizing
one of these resources at all costs requires a disproportionately large amount of the other
resources. The memory usage can be reduced at the cost of slower program execution, and
the computation time can be reduced at the cost of increased power consumption. This
is why finding a trade-off between these three factors has become the challenge of theory
of computation.

In this research we are interested in a fourth factor which is information. Information
has an important and direct impact on power consumption, memory space requirements,
and execution time. Landauer [44] showed that loss of information should release dissi-
pated energy. Therefore only reversible programs where no information is ever lost, are
likely to be thermodynamically adiabatic. Reversibility means that data can always be
retrieved from any point of the program. This was our primary motivation to study the
relationship between reversible computing and information measurement in the context of
information theory, and thereafter to study the relationship between information, space
and time.

This dissertation presents a new method for improving program performance by ex-
ploiting information locality through reverse computing. The reason why we use the term
”information locality” instead of ”data locality” is because information may be carried
not only by a data but also by the process and input data that generate it. Therefore
information can be present in different forms. When computations are reversible there are
more ways for retrieving information, not only from input data and direct computation
but also from other already computed data and reverse computation. Hence reversible
computing improves information locality. For example, for the instruction c:=a+b, the
information in (a,b,c), (a,b), (a,c) or (b,c) is the same, so no need to keep the three values
alive at the same time, because we can always compute one value from the two others. a
can be retrieved from (b,c) and b from (a,c) by a simple subtraction. Hence, values that
carry the same information can share the same register. Therefore, information locality
can even optimize the storage space.

To take advantage of information locality, we study the conservation of information
during an irreversible process. Conventional computing is a priori irreversible and does
not have to conserve information. Adding two numbers together, for example, destroys
information, unless we retain one of the numbers. This leads to the question ”what is the
minimum amount of information we must retain to generate all - input, intermediate and
output - values without any additional memory space demands?”. Since the advantage of
reversible computing is its ability to conserve information, we address the issue of making
a program reversible in term of memory space.

Reversibility of programs has been studied by Bennett [10]. A first easy way to make
a program reversible is to record the history of intermediate variables along the execution,
but then the issue of erasing - forgetting - that information, called garbage, remains. That
garbage can be used as an estimation of the intrinsics energy consumption of programs
and minimizing it is the objective. Bennett[10] proved that if the input can be computed
from the output then there is a reversible way of computing the output from the input
while eliminating the garbage. This may be at the price of large space usage for storing all
the intermediate states during the computation. This is why we take interest in studying
the spatial complexity of reversible programs.

21

High performance by exploiting information locality may come from decreasing reg-
ister pressure and as consequence decreasing spill code. In this work, we revisit register
allocation issues from the reversible computing angle. While being a very old computer
science problem, register allocation is always an important issue in architectures where
memory access time and communication time have ever been increasing with respect to
computing time. In register allocation one can use rematerialization instead of spilling,
meaning that we recompute some value v instead of keeping it live in memory. Hence, the
vertical memory hierarchy is stressed as little as possible. Recomputation is performed
from values still stored in registers, in the same way as specified in the program. But there
is a part of information of v carried by other values w that have been computed directly or
indirectly from v. Hence this gives new opportunities for recovering the v value: undoing
the computation from the w values, or in other words, reversely computing v. Therefore
one of the questions that we address in this dissertation is whether rematerialization by
reverse computing – reverse rematerialization – can help improving register allocation.

Register pressure is also a big issue for multi-core processors with shared memory or
shared register file like GPUs. The number of registers and the amount of shared memory
required by the kernel affects the number of running threads and thus performance. The
optimization we found to be important, as GPUs runs most efficiently with a large numbers
of threads, is to use rematerialization, that helps to minimize register requirements per
thread. We mean that all registers containing values that can be recomputed, can be
re-used. Register rematerialization generates additional instructions and we have to trade
instruction count against register usage. We show that rematerialization with reverse
computing is less sensitive than ordinary rematerialization with direct recomputing. This
increases register reuse and reduces register demand per thread that should increase the
number of active threads.

Another kind of parallelism that can take advantage of information locality is instruction-
level parallelism. Parallelism is limited among instructions not only by data dependencies,
but also by resource availability. By exploiting information locality, reverse rematerializa-
tion can contribute to increase instruction-level parallelism by increasing register reuse to
allow more instructions to be executed simultaneously. In loop-level parallelism, even if
a large register file can hold all values of one iteration, the processor might occasionally
stall as a result of data dependencies and branch instructions. Rematerialization through
reverse operations helps to reduce register usage per iteration to keep pipeline full by un-
rolling loops without any spill operations and exploit parallelism among instructions by
finding sequences of unrelated instructions from different iterations that can be overlapped
in the pipeline.

This work is done in the framework of the PetaQCD project that aims at designing ar-
chitecture and program for the LQCD (Lattice Quantum ChromoDynamics) application.
The lattice of sites on which computations are performed is a 4D lattice that is splitted
into sublattices, each of which is managed by one processor. Since LQCD is highly com-
munication demanding it is crucial that as few processors as possible are used, that means
that parallelism within processors such as instruction level or thread level parallelism is
maximized. One of the key questions to be addressed is whether a scientific application like
LQCD should be parallelized on a multi-core CPU like Cell BE or accelerated on a GPU.
This dissertation presents also our experiences in parallelizing this scientific simulation
code from the computational nuclear physics domain. We test the effectiveness of all our
optimization techniques on the LQCD application.

22 1. Introduction

1.2 Contribution

The purpose of this thesis is twofold.

1. First, we address the issue of making a program reversible in terms of spatial com-
plexity. Spatial complexity is the amount of memory/register locations required for
performing the computation in both forward and backward directions. We present
a lower bound of the spatial complexity of a DAG (directed acyclic graph) with
reversible operations, as well as a heuristic aimed at finding the minimum number
of registers required for a forward and backward execution of a DAG. We define
energetic garbage as the additional number of registers needed for the reversible
computation with respect to the original computation. We have run experiments
that suggest that the garbage size is never more than 50% of the DAG size for DAGs
with unary/binary operations.
This work has been published in the International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems - CASES’2009 [4].

2. Second, we revisit register allocation issues from the reversible computing angle and
we present a new register rematerialization technique based on reverse recomputing.
We detail a heuristic algorithm for performing reverse register rematerialization and
we use the high memory demanding LQCD (Lattice Quantum ChromoDynamics)
application to demonstrate that important gains of up to 33% on register pressure
can be obtained. We also show how instruction and thread parallelism may be im-
proved by performing register allocation with reverse recomputing. Applying these
optimizations on GPUs increases the number of threads per Streaming Multiproces-
sor (SM). This is done on the main kernel of Lattice Quantum ChromoDynamics
(LQCD) simulation program where we gain a 10.84% speedup.
These results has been published in two international conferences: in the ACM In-
ternational Conference on Computing Frontiers- CF’2011 [6] and the International
Symposium on Computer Architecture and High Performance Computing - SBAC-
PAD’2011 [5]. This work has been awarded Best Paper for the Architecture Track,
and Jùlio Salec Aude Award at the SBAC-PAD’2011 conference.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows: Part 1 is devoted to explain in detail
the concepts of reverse computing and information conservation. This part is composed
of the following chapters: Chapter 1 reviews previous work related to these concepts and
discusses various applications and approaches of reversible computing. In chapter 2 we
tackle the problem of reversing a program and we examine the memory cost of the re-
versibility. Part 2 of this thesis describes different approaches for improving program
performance by exploiting information locality through reverse computing. This part is
organized as follows: In chapter 3 we discuss previous work on register allocation tech-
niques - to reduce register pressure - related to the work presented in this dissertation. In
chapter 4 we present a new rematerialization technique based-register allocation through
reverse computing to solve the problem of memory access. Chapters 5 and 6 address issues
related to instruction-level parallelism and thread-level parallelism and show how using
reverse computing can improve the parallelism in a program. We provide the results of

23

our optimizations on Cell BE and Nvidia GPU. Finally, chapter 7 contains the conclusion
of this work and suggests possible directions for future research.

25

Part II

Reversible Computing &
Information Conservation

27

Chapter 2

Reversible Computing: Definition
and Motivation

Contents

2.1 Power Consumption and Heat Dissipation 28

2.2 Energy Dissipation and Reversibility 29

2.3 Reversible Computing . 30

2.3.1 Reversible Operations . 31

2.3.2 Reversible Logic . 33

2.3.3 Reversible Logic Gates . 34

2.4 Reversible Architecture . 36

2.5 Reversible Software . 37

2.6 Summary . 38

28 2. Reversible Computing: Definition and Motivation

One of the most important barriers to the performances of processors is power con-
sumption and heat dissipation. Several works consider how to make architectures and
programs cheaper in terms of energy. Thermal models are designed based on underlying
electronics for architectures, or based on some software rules for programs, for instance
balancing resources usage [35], or minimizing caches misses, or cutting unused devices.
There is also a radically different approach that tackles energy issues under the point
of view of intrinsics thermodynamics of computation and the basis argument that like-
wise irreversible thermodynamics transformations, irreversible programs have to dissipate
heat. This originates from the Landauer remark [44] that erasing or throwing away a
bit information at temperature T must dissipate at least kBT ln2 of energy, where kB is
Boltzmann’s constant. Therefore only reversible programs are likely to be thermodynam-
ically adiabatic. Reversibility means here that no information is ever lost, it can always
be retrieved from any point of the program.

This chapter discusses the original motivation of studying reversible computing, as well
as its definition and its numerous applications at different levels of a computer system.

2.1 Power Consumption and Heat Dissipation

To better understand why electronic computers dissipate energy, we come back to energy
dissipation in conventional circuits. Power dissipation in CMOS circuits arises from two
different mechanisms: static power consumption which occurs from resistive devices, and
dynamic power consumption, which results from switching capacitive loads between two
different voltage states. A boolean variable is implemented as electrical node whose voltage
represents the present value of the variable, as shown in figure 2.1.

dq!R

C +

-

V

0

U

Figure 2.1: Simple model of CMOS system

R is a resistor that varies the power-supply voltage V at the point V . This point is
a simple conductor, equipotential, that represents a boolean variable. C is a constant
capacitor. The energy dissipated Ed by R when we move charge Q = CU between the
conductors in the capacitor considering an incremental change of V from 0 to U is given
by:

Ed =

∫ CU

0
(U − V)dq

= U

∫ CU

0
dq − C

∫ U

0
V dV

= CU2 −
1

2
CU2

29

Ed =
1

2
CU2

The term CU2 is the total amount of energy provided by the power-supply. 1
2CU

2 is
the amount of the energy stored in the capacitor. Their difference 1

2CU
2 must have been

dissipated as heat. Note that the amount of energy dissipated Ed is always independent
of the resistor R [48].

2.2 Energy Dissipation and Reversibility

In the following we will discuss about the thermodynamic view of energy dissipation.
The second law of thermodynamics states that any transformation from one state to
another involves an increase of global disorder caused by heat dissipation. This disorder
is measured by function called entropy S. According to this law, the entropy of a system
cannot be conserved specially in case of irreversible transformation [23]. The entropy of a
system changes at temperature T absorbing an amount of heat δQ is given by

dS =
δQ

T

In other words, in any irreversible process where the system gives up energy ∆E, and
its entropy falls by ∆S, a quantity at least T ×∆S of that energy must give up as waste
heat limiting the amount of work a system can do.

However, according to the Clausius equality, the entropy of an isolated system can be
constant if the transformation is reversible [46]

∮
δQ

T
= 0

Boltzmann [38] gave a statistical definition of entropy in function of Ω; the number of
micro-states or the number of configurations defining a macro-state. He showed that his
definition was equal to the thermodynamic definition. The statistical entropy is defined
as

S = KB ln Ω

whereKB is a constant number known as the Boltzmann’s constantKB=1.38066×10−23JK−1.

Based on that Gibbs [38] defined the entropy for a classical system with discrete set
of micro-states, using probability theory. If pi is the probability that micro-state i occurs
during the system’s fluctuations, then the entropy of the system is

S = −KB

∑
i

pi ln pi

The statistical and thermodynamic entropy can be interpreted as an application of the
information entropy known as Shannon’s entropy [58] which quantifies the average infor-
mation contained in a message. In other words, it is a function to measure the uncertainty
of information. The Shannon’s entropy of a discrete random variable x consisting of n
symbols where a symbol i has a probability p(i) to be appeared is defined as:

H(x) = −
n∑

i=1

p(i)log2 p(i),

30 2. Reversible Computing: Definition and Motivation

assuming that x is coded on n bits, where each bit can be in two states 1 or 0. Erasing
a bit i is equivalent to lose the information of that bit, which increases the number of
states (or level of uncertainty) that i may take, implying an increase of the entropy H.

Landauer [44] started from the fact that information must obey the laws of physics,
and proved that information loss which is a thermodynamically irreversible process, is
equivalent to energy loss. He showed that erasing or throwing away a bit information at
temperature T must dissipate at least

KBT ln2 Joules (J)

of energy. In general erasing a bit of information increases the number of possible states
by factor of 2, therefore the entropy of a system that can be in W states is:

KB T lnW

Therefore, reducing heat dissipation requires that information entropy must be con-
served, and conserving the entropy means that the computation process must be reversible.
Reversibility of computation means that no information is ever lost, it can always be re-
trieved from any point of the program.

For example, at room temperature T = 300 kelvins, the amount of dissipating heat
when erasing one bit is small (i.e., 2.9× 10−21 joule), but is becoming more and more
not negligible compared to the energy cost per logic operation which is already about
102 KBT ln2, as shown in Figure 2.3, that continues to fall steadily with the exponential
growth of computer performance predicted by Moore’s law thanks to the miniaturiza-
tion of transistors that improved energy efficiency. This is why studying heat dissipation
minimization from the thermodynamics view of computation becomes more and more
interesting.

!

"

#

$

!

"

#

$

Initial state!

Final state!

(a)! Reversible state transition of computation (b) Irreversible state transition of computation!

Figure 2.2: State transition: reversible computing vs. irreversible computing

2.3 Reversible Computing

Reversibility of computation has been studied in several works [10, 26, 64] with a first
aim to reduce the energy dissipation due to the irreversibility of computing process. A
computing is reversible if we can always reconstruct a previous state from the actual state
as it is shown in Figure 2.2. The precondition is preservation of all information throughout
the entire process of computing.

31

Figure 2.3: Thermodynamic dissipation vs. technological dissipation

2.3.1 Reversible Operations

A boolean function f(x1, x2, ..., xn)→ (y1, y2, ..., yk) with n input boolean variables and k
output boolean variables is called reversible if it is bijective. This means that the number
of outputs is equal to the number of inputs and each input pattern maps to a unique
output pattern.

Example 1
Consider the XOR ⊕ operation. f(x, y) = x⊕ y defined by this table:

x y x ⊕ y

0 0 0

0 1 1

1 0 1

1 1 0

The operation ⊕ is destructive and does not conserve information, it is irreversible
operation since we cannot retrieve x and y from x⊕y because 0 in f(x, y) can be computed
from several distinct input pairs (e.g. < 0; 0 >,< 1; 1 >). It is necessary that the number
of inputs be equal to the number of outputs. One of the ways to make it reversible is
adding a second output which can be x in this example, so that the function becomes as
shown bellow.

x y x ⊕ y x

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

32 2. Reversible Computing: Definition and Motivation

Example 2
Consider the basic arithmetic operations like the increment function, defined from the

set of integers Z to Z, that to each integer x associates the integer y := x+1. The inverse
function is x := y − 1, easily determined from the result uniquely, which means that the
increment operation is reversible.

Bennett [10] proved that all operations can be made reversible, however, this goal may
not be achieved for free, an additional information, called garbage, may be required to
make them reversible. A first easy way to make a program reversible is to record the his-
tory of intermediate variables along the execution, but then the issue of erasing - forgetting
- that information, garbage data, remains. That garbage can be used as an estimation of
the intrinsics energy consumption of programs and minimizing it is the objective. Bennett
[10] proved that if the input can be computed from the output then there is a reversible
way of computing the output from the input while eliminating the garbage. This may be at
the price of large space usage for storing all the intermediate states during the computation.

In the following we note a conventional function by:

f(x) = y

A reversible function fr that returns the same value as the function f but produces a
garbage data g which not useful for the final result but required for reversibility, typically
has the form:

fr(x) = (y, g)

The associated inverse function f−1
r that uses the garbage data g and the output value y

to regenerate the input value x is represented as:

f−1
r (y, g) = (x)

A simulation of irreversible computing that computes f(x) from x to a reversible
computing that compute the same result by using only reversible operations, can be done
as is shown in Table 2.1 by: first, computing f(x) and saving the computing history,
garbage g, then making a copy of f(x) which is a reversible operation, then recomputing
x from the copy of f(x) and g, and erasing in the same time the computing history g.
Then, computing x from f(x) and save a new garbage g′. The double x we got can be
reduced to one x. Finally undo x and g′ by computing f(x). At the end we got f(x). All
actions described in Table 2.1 are reversible.

Action Work

Initial configuration x

Compute f(x) and save garbage g f(x), g

Copy f(x) f(x), f(x), g

Reverse computing of x from f(x) and g x, f(x)

Compute x from f(x) and save garbage g′ x, x, g′

Cancel extra x x, g′

undo computing of x from f(x) and g′ f(x)

Table 2.1: Reversible simulation of irreversible computing

33

2.3.2 Reversible Logic

Let a reversible function f : {0, 1}n → {0, 1}n of n boolean variables, such that each
output pattern corresponds to one and only one input pattern. The output patterns can
be considered as a permutation of 2n elements of n bits on the input values, so the set of
bijective - reversible, functions with 2n binary inputs of n bits is 2n!. In other words, in
reversible logic, there are 2n! reversible gates among (2n)m of all possible gates with m
outputs on n bits.

For example, in the truth table shown bellow, the output (x0 ⊕ x1, ¬x0) is just a
permutation of the input (x0, x1). In total, 24 different 2-bit reversible truth tables can
be constructed with two boolean variables.

x
0!

x
1!

x
0

x
1
! ¬x

0
!

0! 0! 0! 1!

0! 1! 1! 1!

1! 0! 1! 0!

1! 1! 0! 0!

䎩

Hamming distance

The Hamming distance between two strings of bits x and y of equal length n which defined
as the number of bit places in which x and y are different, can help to determine if a logic
function is reversible or not. The Hamming distance can be found by counting the number
of 1 in a bitwise XOR operation between the two strings.

d(x, y) =
n−1∑
i=0

(xi ⊕ yi)

In general, a reversible logic function f(x) = y can be expressed by a truth table of 2n

boolean inputs and 2n outputs denoted xi and yj respectively with i, j ∈ [0, 2n − 1].

x = (xi)i∈[0,2n−1] et y = (yj)j∈[0,2n−1]

Example
if x = (100110101) and y = (101100111) then x⊕y = (001010010) and d(x, y) = 3

Using Hamming distance we give some results on reversible logic operations:

• if ∃i, j ∈ [0, 2n − 1] such that i 6= j d(yi, yj) = 0 then the function f is not injective
and therefore not reversible.

• if ∀i, j ∈ [0, 2n − 1] such that i 6= j d(yi, yj) ≥ 1 then the function f is bijective and
therefore reversible.

• if ∃i,∀j ∈ [0, 2n − 1] such that i 6= j

2n−1∑
j=0

d(yi, yj) = C1
n + C2

n + ...+ Cn
n

then the function f is reversible.

34 2. Reversible Computing: Definition and Motivation

2.3.3 Reversible Logic Gates

Most digital gates that implement logical functions are not reversible, such the AND
and OR operations. Other ones are reversible like the NOT gate. A design of universal
reversible logic circuits requires a set of reversible gates. Several such gates have been
proposed. Among them are the Feynman [28] gate also known as controlled-NOT (CNOT)
which is 2-bit gate. It can be described by the function f(x0, x1) = (y0, y1) such that
y0 = x0 ⊕ x1 and y1 = x1. A 2× 2 Feynman gate is shown in Figure 2.4.

x1!

x0! y0= x0!

y1= x0 x1!䎩
FG!

Figure 2.4: Feynman gate

Toffoli [64] invented a universal reversible logic gate called Toffoli gate, also known
as controlled-controlled-NOT CCNOT gate, which means that any reversible circuit can
be constructed from Toffoli gates. It is a 3-bit gate that implements the logic function
f(x0, x1, x2) = (y0, y1, y2) with y0 = x0, y1 = x1 and y2 = x0x1 ⊕ x2. A 3-input and
3-output Toffoli gate is shown in Figure 2.5.

x1!

x0! y0= x0!

y1= x1!

䎩

TG!

x2! y2= x0 x1 x2!

Figure 2.5: Toffoli gate

The Fredkin gates [26] is a 3-bit gate with 3 inputs and 3 outputs, it can be represented
as: f(x0, x1, x2) = (y0, y1, y2) with y0 = x0, y1 = x̄0x1 ⊕ x0x2 and y2 = x̄0x2 ⊕ x0x1, as
it is shown in Figure 2.6. The Fredkin gate is a conservative gate, that is, the Hamming
weight1 of its input equals the Hamming weight of its output.

x1!

x0! y0= x0!

䎩

FRG!

x2! y2= x0 x2 x0 x1!

y1= x0 x1 x0 x2!䎩

Figure 2.6: Fredkin gate

A reversible logic circuit requires that all gates used be reversible and be interconnected
without fan-out2 in acyclic composition. As with reversible gates, a reversible circuit has

1The Hamming weight of a string is the number of 1 in its binary expansion.
2The fan-out of a logic gate output is a term that defines the maximum number of gate inputs to which

it is connected.

35

the same number of inputs and outputs. For example, in Figure 2.7 we show an example
of reversible circuit composed of four reversible gates.

x
1!

x
0!

x
2! 䎩 x

2
 x

0
x

1
x

0!

x
1

1!
䎩

x
1
x

2
x

2
 x

0
x

1!䎩 䎩

䎩

G
0!

G
1!

G
2!

G
3!

Figure 2.7: Example of reversible logic circuit.

The aim of reversible logic circuit designers is, first, to minimize the gate count, and
second, to minimize the garbage outputs and/or constant inputs which is more important
than the number of gates used from the point of view of reversible logic [24].

When the number of outputs is smaller than the number of inputs, the garbage outputs
is unavoidable, since the reversibility necessitates an equal number of outputs and inputs,
and when these numbers are equal and one output pattern occurs more than one time,
the constant inputs are required to make the corresponding truth table reversible.

Example

We take back the example given by Maslov in [24]. Consider the AND function between
two binary variables denoted by their concatenation f(x0, x1) = x0x1. With respect to
the reversibility proprieties, adding one single output to make the number of inputs and
output equal does not help to make this function reversible. One of the ways to make it
reversible is to add one input and two outputs so that the function becomes as shown in
Table 2.2. The desired result, shown in gray lines, can be obtained by setting the value of
variable c to 0, (where the word constant comes from). The two copies g0 and g1 of x0

and x1 respectively are called garbage because they are not useful for final result.

x0 x1 x0x1

0 0 0

0 1 0

1 0 0

1 1 1

x0 x1 c g0 = x0 g1 = x1 x0x1 ⊕ c

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

(a) irreversible AND function (b) reversible function computing the logical AND

Table 2.2: Irreversible vs. Reversible function

36 2. Reversible Computing: Definition and Motivation

Garbage minimization

The term garbage was defined in several works [26, 49, 50], however it does not include
constant inputs. Maslov defined the garbage as the set of both garbage outputs and con-
stant inputs, and gave a lower bound for garbage bits for a function
f : {0, 1}n → {0, 1}k. If M is the number of times an output pattern is repeated in the
truth table then the minimum number of garbage bits required to make it reversible is
⌈log(M)⌉. As a result of this theorem, we give a lower bound for input constants which is
⌈log(M)⌉ − n if ⌈log(M)⌉ > n else 0. Hence, the aim of reversible circuit designers is to
simulate irreversible functions with only O(Log M) garbage bits.

Information distance

For two strings x and y (there is no fixed program here), we see the problem of garbage
minimization in Bennett’s reversible machine as finding the minimum amount of infor-
mation g, as well as the result y, to regenerate input values x. This is similarly to the
conditional Kolmogorov complexity [42] K(x|y) of a string x relative to a string y. K(x|y)
is defined as the size of the shortest program to compute x if y is furnished as an auxiliary
input to the computation. In other words, the problem is to find the minimum amount
of information required to program a reversible computation from x to y and from y to
x. This notion is defined as information distance for reversible computation [9]
denoted by Er.

Er(x, y) = Kr(x|y) = Kr(y|x)

with Kr is the shortest reversible program that computes y from x and x from y.
For example let take the addition operation x1+x2 = y. The expression 2+2 corresponding
to the first term of the equality contains more information than the expression y = 4. All
what we know from the second expression is that two numbers have been added which
can be from different numbers 1 + 3, 2 + 2, 4 + 0, etc. In this case we say that

K(x|y) > K(y|x)

with x = (x1, x2) which means that more information is required for y to find x than for
x to find y.

2.4 Reversible Architecture

Reversible computation requires reversible architectures that must implement a reversible
instruction set in a reversible circuit in order that logic operations may be thermodynami-
cally reversible. Because performing exclusively reversible logic operation is necessary but
insufficient for a thermodynamic reversibility.

The first reversible processor was Pendulum [37] developed at the MIT’s reversible
computing research group in 1995. Pendulum is a 12-bit fully adiabatic implementation
with a complete instruction set and register transfer level datapath based on a RISC
processor designed to achieve much lower power.

After Pendulum, and in 1998, the same research group built a fully reversible FPGA
chip called Flattop [2]. Flattop emulates the Billiard Ball model of computation intro-
duced by Fredkin [26] which is universal and fully reversible.

37

Other research works on quantum architecture consider various problems of reversible
logic circuits synthesis [59, 69], because quantum computers use quantum gates, which are
always reversible operators. Recently, researchers in Switzerland at EPFZ led by professor
Renato Renner, have laid the theoretical basis for developing a quantum computer that
does not dissipate heat, and which will harness the power of atoms and molecules to
perform memory and processing tasks. Jeffrey Bokor and his team at UC Berkeley [43] are
working to develop magnetic computers that would require no moving electrons and would
store and process information using magnets. Their aim is to approach the theoretical
energy limit set by Rolf Landauer.

2.5 Reversible Software

Reversibility of computation has several applications at the software level, among which
we can mention bidirectional debuggers [57, 61], rollback mechanisms for speculative ex-
ecutions in parallel and distributed systems [19], simulation and error detection tech-
niques [13]. There are also algorithms that require a pass where intermediate results have
to be scanned in reverse order. This happen for instance in reservoir simulation [62], or
in automatic program differentiation [36].

Two mains approaches have addressed the reversibility at the software level to design
reversible applications. Since writing reversible programs by hand is not quite natural,
some works are devoted to the design of reversible programming languages [7, 45, 29]. The
alternative approach is to convert existing programs written in an irreversible program-
ming language into equivalent reversible programs. An irreversible-to-reversible compiler
receives an irreversible program as input and reversibly compiles it to a reversible pro-
gram [39].

When one converts irreversible programs into reversible ones one has to face the issue of
trading time complexity with data storage complexity. One elegant method was proposed
by Bennett [8] where he models the former problem with a pebble game. Pebbles represent
available data at some point of the program. One can add pebbles on some node when
there is a way to compute that node with data identified by a pebble in a previous node.
One can remove pebbles if there is an alternative way to recompute data required in this
node. This is therefore an abstraction of reversible computations that allows analysis of the
space and time complexity for various classes of problems, but this simulation operates only
on sequential list of nodes. This sequence is broken hierarchically into sequences ending
with checkpoints storing complete instantaneous descriptions of the simulated machine.
After a later checkpoint is reached and saved, the simulating machine reversibly undoes
its intermediate computation, reversibly erasing the intermediate history and reversibly
canceling the previously saved checkpoint. Bennett chose the number of pebbles large
enough (n = O(logT)) so that m the number of steps become small.

In [68], Vitanyi gives a time-space trade-off for an irreversible computation using time

T and space S to be simulated reversibly in time T ′ = 3k2O(T/2k)S and space S′ =
S(1 + O(k)), where k is a parameter that can be chosen freely 0 ≤ k ≤ log(T) in order
to obtain the required trade-off between reversible time T ′ and space S′. Naumann [51]
considers the problem of restoring the intermediate values computed by such a program
(the vertices in the DAG) in reverse order for a given upper bound on the available
memory, while keeping the computational complexity to a minimum. He shows that the
optimal data-flow reversal problem is NP-complete,[51] but he doesn’t consider reversible

38 2. Reversible Computing: Definition and Motivation

operations and seeks only reversible behavior for recovering intermediate values in reverse
order. Griewank also in [36] presents an optimal time-space trade-off algorithm in the
context of automatic differentiation. In [24] it has been showed that the minimum number
of garbage bits required to make a boolean function reversible is ⌈log(M)⌉, where M
is the maximum of number of times an output pattern is repeated in the truth table.
However, traditional techniques for bi-directional execution are not scalable to all classes
of problems.

2.6 Summary

As it has been presented in this chapter, several works on reversible computing have been
realized with respect to energy, time and space requirements, and various of its applications
have been proposed at different levels of computer system, including hardware design, logic
synthesis and software conception. Each of them introduces new terms, new designs and
new implementations.

In the next chapter, we take interest in studying a fundamental factor for improving
time, space and energy which is information, and its relationship with storage and recom-
puting. Since reversible computing allows the conservation of information, one important
question we answer in the following is how to make a program reversible.

39

Chapter 3

Reversible Computing for
Information Conservation

Contents

3.1 Cost of Reversibility and Algorithm 40

3.1.1 Reversible Operations . 41

3.1.2 Algorithm . 43

3.2 Reversible DAG and Register Reuse DAG - Lower Bound . . 48

3.3 Reversibility and Values Lifetime 50

3.4 Experimental Results and Upper-Bound for the Garbage Size 52

3.5 Summary . 54

40 3. Reversible Computing for Information Conservation

In this chapter we study the conservation of information during a computation process.
We want that a program does not destroy the information but only create it, and that
available information should be always sufficient to permit an exact reconstruction of data.

Since the property of reversible computing is the conservation of information, we want
to characterize the intrinsic reversibility of a program or piece of program based on its
data dependency graph and not only on some linear sequence of instructions. We consider
only DAGs (directed acyclic graphs), this means basic blocks in DDG (data dependency
graphs). Compared to other works we consider possible rescheduling of instructions instead
of a fixed sequence of already scheduled instructions. And the question that we address
is: ”given a DAG computation graph with reversible operations, what is the minimum
amount of garbage necessary to make the whole DAG reversible?”. This is equivalent to
study the spatial complexity of reversibly computable DAG.

Our ambition is therefore modest compared to this major and important issue of under-
standing precisely the relationship between physics, information, measurement, observers
in one hand and information theory, computing in the other hand [30]. We believe however
that this work may help optimizing scheduling and data storage in applications mentioned
just before this chapter.

The remaining part of the chapter is organized as follows. In Section 3.1 we explain
more precisely our basic hypothesis and how we relate the problem of garbage minimiza-
tion to the problem of register allocation, namely the number of registers required for
reversibly executing the computation DAG. Definitions and strategies for register allo-
cation are detailed in Chapter 4. We give a heuristic algorithm for finding the number
of additional registers (“garbage”) required. In section 3.2 and 3.3 , we propose a lower
bound based on the decomposition of DAG into elementary paths and we compare the
values lifetime between reversible and irreversible computing. Systematic experiments
(section 3.4) with our heuristic algorithm suggests that garbage is never more than n/2
where n is the operation count in the DAG. Finally, we summarize our main results in
section 3.5, and discuss our following works in the second part on exploiting information
locality for improving performance.

3.1 Cost of Reversibility and Algorithm

In this section, we present our approach and algorithm for computing the spatial complex-
ity of reversing a DAG. We consider a DAG of operations, typically the data dependency
graph of instructions within a basic block 1, see the part (a) of Figure 3.1. A basic block
is a linear sequence of instructions with a single entry point and a single exit, meaning
there is no jump instruction into the code except at the last instruction. Once the first
instruction in a basic block is executed, the rest of the instructions will for certain be
executed exactly once. Basic blocks are represented as directed acyclic data dependency
graph with precedence constraints. Nodes of the graph are instructions denoted by the
name of the variable carrying the result. The directed edges represent data dependencies
between instructions which must be satisfied to ensure correct program semantics. This
makes sense as two different nodes need be treated as two different variables. We consider
only unary and binary operations and we make the important hypothesis that they can
be made reversible.

1Basic blocks are usually the basic unit to which compiler optimizations are applied.

41

3.1.1 Reversible Operations

A boolean function f(x1, x2, ..., xn) with n input boolean variables and k output boolean
variables is called reversible if it is bijective. This means that the number of outputs is
equal to the number of inputs and each input pattern maps to a unique output pattern.
Based on that we make the very rough abstract approximation that the operations in the
DAG are reversible in the following sense: for unary operations, they are bijective so that
the operand is uniquely determined by the result. For example, consider the increment
function, defined from the set of integers Z to Z, that to each integer x associates the
integer y := x + 1. The inverse function is x := y − 1, easily determined from the result
uniquely. For binary operations, this means that only one additional value beside the
result is needed for recovering both operands from this result and this additional value.
This is typically the case of the basic arithmetic operations, like addition c := a+ b, where
(a, b) can be retrieved from (a, c) or (b, c) by a simple subtraction. Hence the ’+’ operation
is considered as having two operands and two results.

This is only an abstraction and we are aware of a number of flaws underlying the
concretization of this assumption. For instance the multiply ′∗′ operation needs at least
one additional resulting bit for determining which of both operands was 0 if the result is 0.
There are also data precision issues especially with floating point operations and round-
off problems but we neglect them and count only the number of data as a measure of
memory/register space. We could also consider the semantics of operations and transform
the operations in order to minimize the space for storing intermediate results. This is for
instance done by Burckel et al. in [56] where they show that the computation transforming
n inputs into n outputs can be (reversibly) performed by using a storage space not greater
than n. Therefore in our abstracted model, when executing a binary operation we have
the choice of memorizing the first or the second operand or both, provided that the reverse
operation is possible based on the result and memorized operands.

In Table 3.1, we give some rules to reverse some basic operations.

What we want to evaluate is the maximum size of storage needed to execute the op-
erations of the DAG reversibly in a forward and backward execution, or in other words
we want to minimize the history required for performing the DAG reversibly. The addi-
tional storage space required compared to a simple forward execution is our criterion of
“energetic garbage”. With this criterion we want to characterize the intrinsic energetic
cost of the DAG. Compared to the Bennett strategy for minimizing the storage space with
checkpoints we have the degree of freedom to choose the schedule of operations. Finally
our problem is finding a schedule that minimizes the register requirement in a forward and
backward execution. The difference between the bidirectional execution and the forward
execution is called the energetic garbage.

As an illustration, consider the code segment shown in Figure 3.1(a) with its corre-
sponding pseudo-assembly code and dependence graph in which each node corresponds to
a statement in the code segment. This pseudo code requires only two registers. Figure
3.1(b) shows a reversible code that returns the same result as the code in Figure 3.1(a) and
saves also two intermediate values. This code requires three registers for the three outputs
g, f and c. Figure 3.1(c) shows the reverse code and its corresponding reverse graph
derived from the reversible code in Figure 3.1(b). It shows how a reverse computation
could be performed to generate all previous values. Thus, 2 registers are required in the
forward computation, 3 in the forward and backward computation. The energetic garbage
is 1.

42 3. Reversible Computing for Information Conservation

Operation Original Reversible Reverse
Addition f(x, y) = x+ y = z fr(x, y) = (x+ y, g) f−1

r
(z, g) = (z − g, g)

with g = y
Subtraction f(x, y) = x− y = z fr(x, y) = (x− y, g) f−1

r
(z, g) = (z + g, g)

with g = y

Multiplication f(x, y) = x ∗ y = z

fr(x, y) = (x ∗ y, g, bit)
s.t.
if x 6= 0 then

g ← x
bit← 0

else
g ← y
bit← 1

f−1

r
(z, g) = (x, y) s.t.

if z 6= 0 then
x← g
y ← z/g

else
if bit=0 then

x← g
y ← 0

else
y ← g
x← 0

Division f(x, y) = x/y = z fr(x, y) = (x/y, y) f−1

r
(z, g) = (z ∗ g, g)

Sequence f0; f1; · · · fk f0 r; f1 r; . . . fk r; f−1

k r
; · · · f−1

1 r
; f−1

0 r
;

Branch y: br x;
Saving the address of
the last branch.

br y;

Condition

if cond. then
statement0

else
statement1

if cond. then
statement0r

else
statement1r

if cond. then
statement−1

0r

else
statement−1

1r

Loop

for(i=0;i<n;i++){
f0(xi);
f1(yi);
. . .
fk(zi); }

for(i=0;i<n;i++){
f0 r(xi);
f1 r(yi);
. . .
fk r(zi); }

for(i=n-1;i≥0;i–){
f−1

k r
(zi);

. . .
f−1

1 r
(yi);

f−1

0 r
(xi); }

Table 3.1: Original, reversible and reverse function

43

F!

E!

G!

D!

C!

B!

A!

F!

G!

D!

E!

C!

A!

B!

F’
!

C’
!

F’
!

C’
!

Saved data!

A: Load (a);!

B: b = a * 5 ;!

C: c = a + 13;!

D: d = b – c ;!

E: e = d / 10;!

F: f = d – 3 ;!

G: g = e + f ;!

A: ld r0, &a;!

B: mul r1, r0, 5;!

C: add r0, r0, 13;!

D: sub r1, r1, r0;!

E: div r0, r1, 10;!

F: sub r1, r1, 3 ;!

G: add r1, r0, r1;!

str (r1);!

A: Load (a);!

B: b = a * 5;!

C: c = a + 13;!

D: d = b – C;!

E: e = d / 10;!

F: f = d - 3;!

G: g = e + f;!

C’: save (c);!

F’: save (f);!

A: ld r0, &a;!

B: mul r1, r0, 5;!

C: add r0, r0, 13;!

D: sub r1, r1, r0;!

E: div r2, r1, 10;!

F: sub r1, r1, 3;!

G: add r2, r2, r1;!

str (r0);!

str (r1);!

str (r2);!

C: Load (c);!

G: Load (g);!

F: Load (f);!

E: e = g - f;!

D: d = e * 10;!

B: b = d + c;!

A: a = b / 5;!

C: ld r0, &c;!

F: ld r1, &f;!

G: ld r2, &g;!

E: sub r2, r2, r1; !

D: mul r2, r2, 10;!

B: add r2, r2, r0;!

A: div r2, r2, 5;!

str (r2);!

F!

G!

D!

E!

C!

A!

B!

(a) Original (b) Reversible (garbage generation) (c) Reverse

Figure 3.1: Illustrative example of reversible code and garbage generation.

3.1.2 Algorithm

Like all optimization problems in register allocation it is likely that garbage minimization
is a NP-complete problem. But we have not proved it. Here we describe a heuristic that
schedules a DAG in the direct order while keeping some variables alive in order to make
the backward computation feasible. We call garbage the difference between number of
registers in the direct computation and number of registers in the schedule found in this
algorithm.

Starting from the input data, the DAG is scheduled first in the forward direction and
then in the reverse direction and we are looking for a schedule that uses the minimum
number of registers. Since we consider a DAG, the number of registers required by a
schedule is also the maximum number of simultaneously live values during direct and
reverse computation. One of the main issues of this work comes from the need to deal
at the same time with the constraint of the minimum number of registers and with the
constraint of saving values for enabling backward scheduling (reversibility constraint). Our
algorithm has to arbitrate two kinds of information: first, which intermediate values will
be saved in order to make the reverse computing feasible, and second, which successor
node will kill the value - and hence will reuse the same register in the actual register
assignment of the direct computation.

The algorithm scans the DAG G = (V,E) and schedules instructions in some topolog-
ical order only in the forward direction. V is the set of nodes and E the set of edges. At
each step the instruction with highest priority is elected.

In the following, we give some preliminary definitions that describe the algorithms.
Given a graph G = (V,E) we denote by:

output(v) = {u ∈ V | (v, u) ∈ E} the set of direct dependent nodes of v denoted by a
direct edge from v in the graph G.

input(v) = {u ∈ V | (u, v) ∈ E} the set of direct connected nodes by outgoing edge to v.

dependent(v) = {u ∈ V | u ∈ output(v) ∨ u ∈ dependent(output(v))}, the set of all
descendant nodes of v. In other words, it is the set of all nodes such that there is a
path from v to these nodes.

44 3. Reversible Computing for Information Conservation

independent(v) = {u ∈ V | u /∈ dependent(v)} the set of all nodes such that there is no
path between v and these nodes.

source(G) = {u ∈ V | input(v) = φ} the set of input nodes of the graph G.

A path P is a finite totally ordered set of nodes {v0, v1, ..., vk−1, vk} such that
(v0, v1), (v1, v2), ..., (vk−1, vk) are all edges in E.

A chain C is a set of pairwise comparable elements of V defining a total order, but there
is not necessarily an edge between each two elements of a chain. Thus, every path
is a chain but not vice versa.

The algorithm is presented on the following chart.

Input: DAG computation graph.

Output: number of registers required for reversible computation.

DAG!

Computing Result + Garbage!

Running elected instruction!

Elected instruction!

Find executable instructions !

Saving garbage!

Election Algorithm!

No instruction to execute!

W
h
il

e
th

er
e

ar
e

in
st

ru
ct

io
n
s

to
 e

x
ec

u
te
!

Figure 3.2: Scheduling algorithm diagram.

a. Priority

• We use a heuristic.

• Our scheduling is based on minimizing the number of resources (registers) without
time constraint.

• The order in which ready instructions are selected affects the number of registers
required and the garbage size.

• We favor instructions that have more predecessors with a minimum of successors in
the DAG (this allows to use fewer registers)

• We favor instructions on the critical path. This will increase the number of calls to
the scheduler.

• We reuse only registers of the direct predecessors (to preserve information).

45

b. Labeling
Each node can take one of the following labels:

• Active: if the value of a node is already computed and available in one of the registers.

• Passive: any already calculated node that will not be used in a future computing.

• Ready : if the value of a variable is ready to be calculated and all its predecessors
are active.

• Idle: a node that is waiting because one of its predecessors is still waiting (waiting
for all its predecessors to become active).

Initially all source nodes (nodes without predecessors) are set to Active, the others are
set to Idle.

Labeling rules
Let us consider the functions λ and Ω that define the state of a node u from the set of

global nodes V

λ : V −→ {Active, Passive,Ready, Idle}
u −→ λ(u)

Ω : V −→ {Elected,Not elected}
u −→ Ω(u)

These rules are applied at each stage of calculation.

∀u ∈ V ∧ |input(u)| = 0⇒ λ(u) = active
∀v ∈ input(u) ∧ λ(v) = active⇒ λ(u) = ready
∃u λ(u) = ready ∧ Ω(u) = elected⇒ λ(u) = active

Stop condition
∀u ∈ V : λ(u) = active ∨ λ(u) = passive

The final number of active nodes is the number of registers required.
The active nodes represent also the footprint needed for reversing the DAG computa-

tion.

Election Algorithm
As an entry, the list of values ready to be calculated

Rule 1: u is the unique successor of v that remains to be scheduled: u will reuse the
register used by v.

if ∃u ∈ V λ(u) = ready {
if ∃v ∈ input(u)/|output(v)| = 1 {

Ω(u) = elected;
λ(v) = passive;

} else

46 3. Reversible Computing for Information Conservation

if ∃v ∈ input(u)/∀w ∈ output(v) ∧ w 6= u ∧ λ(w) = active {
Ω(u) = elected;
λ(v) = passive;

}
}

Rule 2: Among ready nodes, one node with most successors is elected. For each pair of
ready nodes u,v ∈ V

∃u ∀v (u, v) ∈ V λ(u) = λ(v) = ready
if |output(u)| ≥ |output(v)|

Ω(u) = elected;

The second rule is applied if the first rule fails to elect an instruction (node). Once we
find the elected instruction, we go the labeling rules.

c. Guarantees
This algorithm ensures that all nodes will be covered. In other words, all values will be
calculated, and at the end, the number of active nodes is the number of register require-
ments and values of active nodes is a sufficient information for a backward generation of
all values.

d. Analysis
We can show that the following algorithm allows electing a high priority instruction, which
consumes fewer resources, at least at each computation step, this is a local optimization.
At each computation step only one instruction is elected. The first rule allows the node
who has a predecessor with one successor or predecessor of degree 1, to run first, this
will not influence any other possible decision, and this node will reuse the register of this
predecessor. The second rule is applied if the first rule fails to elect an instruction. It
consists of choosing the variable at the greatest distance from the result and which has
more successors, the idea behind this is to increase the number of calls to the scheduler
and the set of candidates from which the elected will be chosen. Therefore if we consider
the number of candidates for the election at step i is NCi = k then we want that at step
i+1 NCi+1 ≥ k. Labeling each calculated node as active will reduce the degree of suc-
cessor nodes and increase the priority of neighboring nodes. An execution of this algorithm
on the DAG of Figure 3.3(b) is shown in Table 3.2. In the following, we show that for
every DAG G, values of active nodes after running the algorithm allow the computation
of all intermediate results back to input nodes.

e. Proof
We prove that from the nodes with active state we can find back all previous values.
At the end of the direct computation, we have only active or passive nodes, knowing that
an active node changes its state to passive only during the call of the election procedure
and in the back track, an idle node becomes active iff:

∃v ∈ input(u) λ(v) = active ∧ ∀w ∈ output(v) v 6= u λ(w) = active

47

Nodes A B C D E F G H I J K L M N O P

Initialization A I I I I I I I I I I I I I I I
Labeling A R R I I I I I I I I I I I I I
Election - - E - - - - - - - - - - - - -

.......
Labeling P P P P A P A P P P A P A A A R
Election - - - - - - - - - - - - - - - E
Labeling P P P P A P A P P P A P A P A A

A: Active P: Passive R: Ready I: Idle E: Elected

Table 3.2: An execution of the algorithm described by relabeling and electing rules (cor-
responding to the code of Example 2 Figure 3.3)

Proof by contradiction:

Assuming there is always a node with idle state:
∀ instant t ∃u ∈ V λ(u) = idle =⇒
∀v ∈ input(u) λ(v) = idle∨ (∃v ∈ input(u) λ(v) = active∧∃w ∈ output(v) v 6= u λ(w) =
idle)

1. If ∀v ∈ input(u) λ(v) = idle by recursion we find that ∃u ∈ V/|input(u)| = 0 λ(u) =
idle which is contradiction, because we know that : ∀u ∈ V/|input(u)| = 0 =⇒ λ(u) =
Active (stop condition of the algorithm)

2. If one of its successor node is active and has a different predecessor in idle state:
∃v ∈ input(u) λ(v) = active ∧ ∃w ∈ output(v) v 6= u λ(w) = idle

This means there are two neighbor nodes in the idle state and each one of them is waiting
for the other to become active, in other words both of them were passives at the end
of the direct computation. A node becomes passive only during the call of the election
procedure; in this case we have either:

|input(u)| = 1 ∧ |input(w)| = 1 ∧ input(u) = input(w) = {v} ∧ λ(u) = λ(w) = passive.

Which is impossible because v could not make two active nodes passive.

Let: |input(u)| = 1 ∧ |input(w)| > 1 This means that the state of w was modified from
active to passive by another successor and not v, but as w is always waiting λ(w) = idle,
it implies there is another idle neighbor which cannot modify its state and that there is
another successor thanks to it, it took passive state previously.

Let take ui the neighbor of u such that |input(ui)| > 1 ∧ λ(ui) = passive =⇒ ∃ui+1

neighbor of ui and |input(ui+1)| > 1 ∧ λ(ui+1) = passive =⇒ ∃ui+2|input(ui+2)| >
1 ∧ λ(ui+2) = passive =⇒

That leads us to the infinity, knowing that our graph is bounded (number of nodes is
limited), which is contradictory.

48 3. Reversible Computing for Information Conservation

We have shown that our algorithm at the end of a direct computation allows to re-
browse all of the graph in the reverse direction, that means recomputing all intermediate
values. The table 3.2 shows the execution of the algorithm on the graph of Figure 3.3.

3.2 Reversible DAG and Register Reuse DAG - Lower Bound

In this section we are seeking for a lower bound on the number of registers required for
a DAG reversible computation. For that purpose we investigate the degree of register
reuse in the reversible computation and we study its limitations in relation to the degree
of dependency among variables.

Since the aim of reversible computing is the regeneration of data, some variables -
contrary to the conventional computing, have to be saved even if they are not useful for
the final result of (direct) computation. Therefore, register reuse is limited either between
(a) independent values or (b) indirectly dependent values.

K!

N!

H!

J!

E!

B!

D!

M!

O!

I!

L!

G!

C!

F!

P!

A! A!

B!

D!

H!

J!

N!

P!

C!

F!

I!

L!

O!

E!

K!

G!

M!

P!

N!

O!

L!

I!

M!A: load(a); !

B: b = a * 4; !

C: c = a - 13; !

D: d = b + 9; !

E: e = b / 8; !

F: f = c * 13; !

G: g = c / 2; !

H: h = d * e; !

I: i = f / g; !

J: j = h – 5; !

K: k = h / 3; !

L: l = I * 5; !

M: m = I - 5; !

N: n = j / k; !

O: o = l * m; !

P: p = n + o;!

dependent

variables!

independent

variables!

(a) 3 address code (b) data dependence DAG (c) register reuse chains (d) reverse DAG

Figure 3.3: Example of register reuse limitation for reversing a DAG

Figure 3.3 shows a 3 address code for a basic block and its corresponding data de-
pendence DAG using statement labels. In this particular example, the minimum register
requirement to compute ’P’ is three. Figure 3.3(c) gives an example of register allocation
that uses only three registers. However, as shown in Figure 3.3(d), three registers are not
enough for saving certain intermediate variables during a direct computation for reversibly
computing ’A’ after computing ’P’.

Register reuse between independent values. Independent variables correspond
to variables for which no dependency chain between both exists. They correspond to
independent information. Since we want to be able to recover all intermediate values, this
implies that for each chain in the graph we need at least one live variable at each step
of the computation. This means that the number of chains in a minimal decomposition
is a lower bound for register requirement in reversible computing. This is actually also a
consequence of the Dilworth theorem.

49

Theorem 1 The maximum number of independent elements in a partial order is equal to
the number of chains in a minimal decomposition [25].

K!

N!

H!

J!

E!

B!

D!

M!

O!

I!

L!

G!

C!

F!

P!

A! A!

B!

D!

H!

J!

N!

P!

C!

F!

I!

L!

O!

E!

K!

G!

M!

P!

N!

O!

L!

I!

M!K!

J!

H!

(a) data dependence DAG (b) register reuse chains (c) reverse DAG

Figure 3.4: Example of register reuse limitation between dependent values for reversing a
DAG

In the same example shown in Figure 3.3, at most four instructions can be executed
in parallel because the number of chains in the minimal decomposition is four. An exam-
ple of minimal chain decomposition is shown in Figure 3.4(b). The values computed by
independent statements D, E, F and G can all be live at the same time and thus cannot
share registers. Likewise, the values computed by J, K, L and M could not share the same
registers since they are in separate chains, so there is no register reuse between K and
M or K and G -contrary to the direct computation, nevertheless they are independent
and they have not the same live range. Hence, the register requirement with respect to
this condition is four but still not enough for reversibly computing this DAG, as shown in
Figure 3.4(c).

Register reuse between dependent values. For dependent values the main
difference in reversible computation compared to direct ordinary computation is that we
can not simply reuse the register of a killed value because of convergences in the graph.
A convergence is a binary operation which has two operands and one result. This corre-
sponds to loss of information that has to be stored for backward computation. This means
for instance that stronger constraints for reuse have to be met for reuse chains than just
ordinary chains. At least there must be a dependency edge between both operations in
order that the second one can reuse the register of the first one. Therefore, we need to
consider decomposition of the graph into paths instead of chains. We prevent that a path
contains a sub-path for the same reason (presence of a convergence).

The measurement of register requirement uses a Reuse DAG, which indicates which
instructions can reuse a register used by a previous instruction. We use the same algorithm
of the construction of the Reuse DAG for registers, proposed in [11], but the relation R
that allows a value to reuse the register of a killed value requires that the defining in-
struction of the new value be the killing instruction of the previous one, in other words,
it should be the last instruction that uses it. Therefore, all allocation chains of the reuse
DAG are paths in the original DAG.

50 3. Reversible Computing for Information Conservation

A!

B!

D!

H!

J!

N!

P!

C!

F!

I!

L!

O!

E!K! G! M! O!

N!

J!

H!

D!

B!

A!

P!

L!

I!

F!

C!

M!G! K! E!

K!

N!

H!

J!

E!

B!

D!

M!

O!

I!

L!

G!

C!

F!

P!

A!
Path!

Chain!

Convergence!

(a) data dependence DAG (b) register reuse paths (c) reverse DAG

Figure 3.5: Example of register reuse for reversing a DAG

We come back to our example. G and M are indirectly dependent, at the point of use
of M, G is already dead and could normally share the same register. But we prevent this,
because we need G and I for recomputing F. In this example there are five convergences
in the graph, which means a loss in information at five points during the computation, so
we have to save additional information which is one of the inputs at each convergence. We
can determine a lower bound of the size of this information by finding the minimal number
of paths in the minimal decomposition of the reuse DAG. As shown in Figure 3.5(b), the
sets of nodes {A,B,D,H, J,N, P}, {C,F, I, L,O}, {E}, {K}, {G} and {M} are all paths
in the graph, and each end of each path can define an information that should be saved for
the backward computation. The set of these paths is called register-reuse DAG because
all nodes of a path are assigned to the same register. The reuse DAG chains those values
that are not simultaneously live and can thus share a register, without any violation of
information. Different paths are assigned to different registers, and therefore the number
of paths is the number of registers. Thus, the register reuse DAG in Figure 3.5(b) requires
at least six registers. Therefore, by Theorem 2, a minimum decomposition of a DAG into
elementary paths that do not contain any sub-path gives a lower bound to the register
requirement for a reversible execution.

Theorem 2 The minimum number of registers required for a reversible execution of a
program is bigger than or equal to the number of elementary paths in a minimal decompo-
sition of the corresponding DAG.

The reverse DAG of the original DDG, shown in Figure 3.5(c), shows how we can
reconstruct all previous computed data.

3.3 Reversibility and Values Lifetime

There are cases when conventional and reversible computations consume the same number
of registers, but values lifetime is not the same. As an example, consider the DAG in Fig-
ure 3.6(a). Both of the executions -reversible and non-reversible, require 4 registers for the
computation. A register is used to hold a value from the time that the defining instruction
executes until the value is killed by the last instruction that uses it. Figure 3.6(b) shows
how a value that should be killed and frees a register, stays for the whole computation.

51

E = A + B!

F = B * C!

G = C * D!

H = E - F!

I = F * G!

J = H+ I!

End of the code!

A B

C

D

E

F

G

H I!

J!

Value lifetime during reversible execution !

Value lifetime during irreversible execution!

I!

J!

1!

2!

3!

4!

1 2 3 4 !

number of live values!

Reversible execution !

Irreversible execution!

computation

step!

F!

H!

G!

C!B!

E!

D!A!

(a) data dependence DAG (b) values lifetime (c) number of live values

at each computation step

Figure 3.6: Example comparing number of live values and their lifetime between reversible
and irreversible execution

We compute the number of live values at every computation step. Since we allow only
one instruction to be executed at each computation step, the curve is either constant or
increasing in the reversible computing, as shown in Figures 3.6(c) and Figure 3.7; because
we should not get rid of a value if it is not directly replaced by another otherwise we will
lose unrecoverable information.

This can define another problem in the reversible computing: how to keep the min-
imum garbage with a shortest lifetime possible? We can deduce the minimum number
of registers required for a reversible execution of a program from a direct execution by
computing the number of live values at each step. The idea is to add the positive difference
of the number of live values between two successive iterations in each computing step.
If we take Ψi the number of live values at the iteration i with i ∈ [1, N - Ψ0] and N is the
graph size or the number of nodes and Ψ0 is the number of sources in the graph, q is an
integer. This simple code can deduct the number of registers required for the reversible
execution.

q = Ψ0;
if(Ψi+1 −Ψi > 0)

q+ = Ψi+1 −Ψi;

In the reversible computing, we should not kill a datum if we have no other way to
recompute it unlike in conventional computing. However, each increase in the number of
live registers means that new values are generated and no one was killed. The possibility
to clean garbage data (garbage-free) to free registers, can be done by a backtrack to
recompute intermediate values or the input data.

52 3. Reversible Computing for Information Conservation

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 !

Number of live values!

Irreversible execution !

Reversible execution!

Instructions!

6

5

4

3

2

1!

Figure 3.7: Example comparing the number of live values at each computation step for the
same code in reversible and irreversible execution (corresponding to the code of Example
2 Figure 3.3)

3.4 Experimental Results and Upper-Bound for the Garbage
Size

We come back to our algorithm defined in section 3.1. In order to understand more about
what this criterion of garbage is, we made two kinds of experiments. First we generated all
graphs of some (small) fixed given size (≤ 10) and second we used a randomly generated
set of larger graphs (up to 46). For exhaustive or random generation of DAGs we represent
DAGs by their adjacency matrix, namely a boolean matrix with rows and columns labeled
by graph vertices, with a 1 or 0 in position (vi, vj) according to whether vi and vj is an
edge in the DAG or not. In both cases we computed the garbage as explained in previous
sections.

From our experiments of small graphs we exhibited critical graphs for which garbage
is maximal. These are the graphs of Figure 3.8(b), where indeed according to Section 3.2
garbage is at least n/2 because a partition into elementary paths results in at least n/2
paths if the DAG has n nodes.

In [47] where reversibility of automata instead of DAG is considered, they argue that
energetic garbage is related to convergences in automata - that result in loss of informa-
tion. In this case our critical graphs do not have the maximal number of convergences.
Maximal number of convergences correspond to DAG with only binary operations. In our
case if we want to maximize the garbage size we have to maximize the number of conver-
gences without increasing the number of register requirements in the direct computation.
At least two registers are needed to create a convergence in a graph, so we fix the register
requirement to two, and we try to create a maximum of convergences. We can observe
that each increase of the number of convergence of one corresponds to an increase of two in
the graph size, which explains the upper-bound of the garbage size (50% of the graph size).

This n/2 upper-bound is actually corroborated by experiments on randomly generated
larger graphs. Figure 3.8(a) reports the maximum garbage obtained in percentage of the
number of nodes. One can see that this number is never more than 50%. Figure 3.9
reports also an histogram of garbage size for different size of graphs.

53

garbage size!

garbage size / !

graph size! A!

C!

B!

E!

D!

G!

F!

(a) maximum garbage size in function of graph size (b) critical graph

Figure 3.8: Upper-bound to the garbage size

Garbage size!

Number of graphs!

!"

#!!!!!!!"

$!!!!!!!"

%!!!!!!!"

&!!!!!!!"

'!!!!!!!!"

'#!!!!!!!"

'$!!!!!!!"

'%!!!!!!!"

!" '" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!"

,-$!"

,-(!"

,-(!"

,-#)"

Figure 3.9: Number of graphs randomly generated according to the garbage size

Figure 3.10 shows the percentage number of graphs per garbage size for graph size
equals to 40. It shows that more than 90% of generated graphs have a garbage size less
than 35% of the graph size.

54 3. Reversible Computing for Information Conservation

!"

!#$"

!#%"

!#&"

!#'"

!#("

$" %" &" '" (")" *" +" ," $!" $$" $%"

<10-2!

Garbage size!

% number!

 of graphs for N= 40 !

9 10 11 12 13 14 15 16 17 18 19 20!

Figure 3.10: upper-bound to the garbage size

3.5 Summary

We have presented an analysis of the number of registers required to make a DAG com-
puting graph reversible. We defined the energetic garbage as the additional number of
registers required for computing a forward and backward execution of the graph with
respect to the simple forward execution. We gave a lower bound as the size of the de-
composition of the graphs into elementary paths and through our experiments, we found
that the garbage size does not exceed 50% of the program size - for DAG of unary/binary
operations. However, values lifetime is shorter in a direct computation.

It is amazing to observe that in code optimization on current processors, minimizing
power consumption amounts most of the time to minimizing the number of memory ac-
cesses, cache misses, etc. Therefore it was quite expected that this thermodynamics view
of computation leads to trade-off between storage and recomputing, and helps to under-
stand more thoroughly the relationship between variables of a computation graph in terms
of mutual information between them. Our next step in this dissertation, is to show how
exploiting this information may make the compiler problem of data rematerialization eas-
ier to effectively minimize the number of memory access. We will show that recomputing
a value in reverse path from output operands is more beneficial than recomputing it from
its original input operands which allows to reduce the register demands efficiently. This,
is totally contradictory with what we have seen in this chapter where making a program
reversible may require more registers.

55

Part III

Using Reverse Computing to
Improve Performance

57

Chapter 4

Register Allocation Overview

Contents

4.1 Register Allocation Architecture 58

4.1.1 Data Dependency . 58

4.1.2 Data Dependency Graph . 59

4.1.3 Basic Block . 59

4.1.4 Interference Graph . 59

4.1.5 Meeting Graph . 60

4.1.6 Register Requirements . 60

4.1.7 Register Saturation . 60

4.1.8 Register Pressure . 60

4.1.9 Live Range Splitting . 61

4.1.10 Coalescing . 61

4.1.11 Register Spilling . 61

4.1.12 Register Rematerialization . 62

4.2 Different Register Allocation Approaches 62

4.2.1 Register Allocation via Graph Coloring 62

4.2.2 Linear Scan Register Allocation 63

4.2.3 Register Allocation based on Register Reuse Chains 63

4.2.4 Register Allocation via Integer Linear Programming 64

4.3 Register Allocation and Instruction Scheduling 64

58 4. Register Allocation Overview

While being a very old computer science problem, register allocation is always an
important issue in architectures where memory access time and communication time are
ever and ever increasing with respect to computing time.

In this chapter, we give some preliminary definitions related to the register allocation
and we summarize previous works and various approaches to decrease register pressure in
compilers.

4.1 Register Allocation Architecture

4.1.1 Data Dependency

A data dependence in instruction sequence is a situation in which the execution order of
two instructions or more must be preserved otherwise the final result will be wrong. This
happens in three situations:

• Read After Write (RAW), refers to a situation where a write is followed by a read
of the same variable. In other words, it occurs when an instruction uses (reads) the
resulting value of a previous instruction (write). Such dependence is known as a true
dependence.

Example
I1. a = b+ c
I2. d = a + 3
Here the output value d of instruction I2 is calculated from the output value a of the
instruction I1. A wrong scheduling that fetches the value of a before being calculated
and saved by instruction I1 will give a wrong result of the value d

• Write After Read (WAR), also know as an antidependence. This occurs when an
instruction writes to a destination that is read by a previous instruction.

Example
I1. a = b + c
I2. b = d+ 3
Here I1 must have read the b variable before I2 writes it else the result of I1 would
be wrong.

• Write After Write(WAW), it is the situation when two instructions write the same
destination, also called output dependence.

Example
I1. a = b+ c
I2. a = d+ 3
Both I1 and I2 have the same output. To avoid a dependence violation, the instruc-
tion I1 should be finished before the instruction I2, otherwise a will have a wrong
value after both operations are performed.

Register renaming eliminates false dependencies (WAR and WAW) between instruc-
tions to facilitate program transformation and out-of-order execution to exploit the po-
tential parallelism available in applications. This technique was first introduced by Toma-
sulo [65] in 1967 for floating point instruction in the IBM 360/91. Tjaden and Flynn [63]
were the first to suggest the use of this technique to remove false dependencies. Optimiz-
ing compilers do that by using a program representation called Single Static Assignment
(SSA) where each value is assigned exactly once.

59

4.1.2 Data Dependency Graph

Data Dependency Graph (DDG) is a directed graph representing dependencies between
instructions which must be satisfied to ensure correct program semantics, where nodes
denote results carried by instructions and edges represent data dependencies. In formal
term, it is a graph G = (V,E) of set of nodes V and an order relation E = V ×V with (u,v)
∈ V represents and edge from u to v. For example, given the instruction sequence shown
in Figure 4.1(a), the corresponding data dependency graph is shown in Figure 4.1(b)

A: load(a);!

B: load(b);!

C: c = a + b;!

D: d = c * 3;!

E: e = d – c;!

F: f = e / b;!

G: g = f + a;!

!"

#"

$"

%"

&"

'"

!"

(a) (b)

Figure 4.1: (a) 3 address code and (b) its corresponding data dependency graph

4.1.3 Basic Block

A basic block is a linear sequence of instruction with a single entry point and a single exit,
meaning there is no jump instruction into the code except at the last instruction. Once the
first instruction in a basic block is executed, the rest of the instructions will for certain be
executed exactly once. Basic blocks are represented as directed acyclic data dependency
graph with precedence constraints, and they are usually the basic unit to which compiler
optimizations are applied. Each basic block gives rise to partial order on its nodes.

Register allocation can be performed within a basic block, which is called local

register allocation, or across basic blocks, also called global register allocation.
In both cases, compilers uses intermediate representations for resolving the problem of reg-
ister allocation. In this thesis we focus on the local register allocation problem.

4.1.4 Interference Graph

In an interference graph [20] nodes represent variables and an edge connects two nodes if
the corresponding variables interfere, so they cannot be assigned to the same register.

Consider the example in Figure 4.2, a is used to compute c so it is live from the load
instruction of b to this line. Also a is used to compute g so it still live till computing g.
Hence the node a in the interference graph is connected to all other nodes except g. The
lifetime of a is shown in the table of Figure 4.2, where the symbol ’x’ denotes whether a
interferes with variables presented in the rows. For example a is live from the instruction
B to the instruction G. b is live from the instruction C to the instruction F.

60 4. Register Allocation Overview

!"#"

$" %"

&"

'"

!"

a! b! c! d! e! f! g!

A: load(a);!

B: load(b);! ("

C: c = a + b; (" ("

D: d = c * 3; (" (" ("

E: e = d – c; (" (" (" ("

F: f = e / b; (" (" ("

G: g = f + a; (" ("

Figure 4.2: Example of interference graph

4.1.5 Meeting Graph

The meeting graph was introduced by Eisenbeis et al. [27] as an alternative to the in-
terference graph for loop register allocation when variables span more than one iteration.
It models loop unrolling and register allocation together to keep a pipeline full without
spilling. The graph is denoted by G = (V,E) where V is the set of variables or intervals,
and E are directed edges such that an edge between two nodes u and v means that the
interval of u ends when the interval of v begins. Therefore, their model takes into account
the notion of time contrary to the interference graph where time is not present. They pre-
sented an optimal algorithm based on graph coloring for allocating variables to a rotating
register file, as well as a heuristic for loop variable spilling if the coloring fails, and gave
a bound for the unrolling factor which gives an optimal coloring. In this work authors
assumed that loop instructions schedule is fixed.

4.1.6 Register Requirements

Register requirements, also called register demands, corresponds to the number of simul-
taneously live values with respect to the program specification like instruction’s sequence
order.

4.1.7 Register Saturation

Touati [66] gave an upper-bound of the register requirements for any schedule of the
instructions inside a basic block, independently of the functional unit constraints and
called it register saturation (RS). The aim is to guarantee a maximum degree of
parallelism.

4.1.8 Register Pressure

Register pressure concerns the number of registers required compared to the number of
available registers. High register pressure is the situation when the number of regis-
ters required exceeds the number of available registers which means that more spills and
reload are needed. Low register pressure usually means that there are enough registers
available.

61

4.1.9 Live Range Splitting

Live-range splitting is a technique to split the live range of variables into smaller subranges
by adding copies and renaming variables, each of which can be assigned to a different
register. The idea behind is to minimize the interferences between variables to improve
results of coloring the interference graph. An example of live-range splitting is shown in
Figure 4.3. a interferes with both b and c, but in part 1 and 2 of its live-range a interferes
only with one variable. We can make a copy of a (called a′ in this example) and rename it
in its last use by the name of the copy as shown in Figure 4.3(d). After register renaming
a interferes only with b, c interferes with a′. The new interference graph shown in Figure
4.3(d) has a complexity of coloring less than that in Figure 4.3

a = .!

b = .!

c = .!

. = a!

a b

c1

2

a = .!

b = .!

a’= a!

c = .!

. = a’!

a b

c

a’!
!"#"$"

#"$"

#%"!"

(a) (b) (c) (d) (e) (f)!

Figure 4.3: (a) Pseudo code. (b) Live-ranges of variables. (c) Interference graph before
splitting live-range of a. (d) Pseudo code after splitting. (e) New presentation of live-
ranges. (f) New interference graph.

4.1.10 Coalescing

This technique is the inverse of live-range splitting. It aims at eliminating copies if the
source and target operands of a copy operation do not interfere. Hence, the variable and
its copy can be assigned to the same register. This can be done by, first, renaming copy’s
occurrences as the variable’s name, and then removing the copy operation. In the context
of the interference graph, the coalesced node will ensure that the register allocator assigns
a variable and its copy to the same register. However the coalesced node will have all
interference edges of the source and target nodes being coalesced, which may affect the
coloring of the interference graph. Figure 4.3 shows an example of coalescing if we take it
in the reverse order of live-range splitting. Consider the pseudo code after splitting a as
the original code where a′ is the copy of a. The graph coloring algorithm can give different
colors to a and a′, though the aim is that a and a′ share the same register. On the other
hand, in the resulting interference graph of coalescing, shown in Figure 4.3(c), a and a′

are fused in one node which mean one color. Different approach of coalescing have been
proposed [33, 17, 21, 53]. Bouchez et al. [14] studied the NP-completeness of different
various of these approaches.

4.1.11 Register Spilling

When there are not enough registers available, the register allocator decides which variables
are held in registers and which should be spilled to memory. The register allocator inserts
store and load operations to move values between registers and memory since the number

62 4. Register Allocation Overview

of registers required is larger than the number of available registers. These memory access
can slow down the program performance because accessing memory is much slower than
accessing a register. Therefore, the aim is to reduce the spill code. Register allocation and
spill minimization are NP-complete problems in general [21, 14], therefore, many heuristics
have been proposed to solve these problems like graph coloring [20, 17] and linear scan
[67, 54]

4.1.12 Register Rematerialization

Rematerialization in register allocation amounts to recomputing values instead of spilling
them in memory when registers run out.

One of the first who have efficiently conceived rematerialization were Briggs et al.
in [16], their approach focuses on rematerialization in the context of Chaitin’s allocator
[20], where the problem was already discussed briefly. Punjani in [55] has implemented
rematerialization in GCC, the experimental results indicated a gain of 1-6% in code size
and 1-4% improvement in execution performance. Zhang in [71] proposed an aggressive
rematerialization algorithm to reduce security overhead that uses multiple instruction to
recompute a value and extends the live-ranges of depending values deliberately to make
the values alive through the point of rematerialization.

Simpson in [60] proposes a register rematerialization pass before the register allocator
when a register pressure estimate is considered high. However, it is difficult to correctly
approximate register pressure without resolving register allocation pass.

Most of these previous works target rematerialization across basic blocks and ignore it
inside basic blocks, and many of rematerialization algorithms are invoked before register
allocation [60], which make rematerialization decision less efficient because of the lack
of information concerning register requirements, excessive registers and rematerializable
values, and which can create extra dependencies to extend live-range of inputs of the
rematerialized value, and this can increase register pressure.

In this thesis, we consider using reverse computing to reduce both register pressure and
spill code and we argue that there are more opportunities for rematerialization through
reverse operations than direct operations only. In the next Chapter, we will give all details
of effective rematerialization through reverse computing.

4.2 Different Register Allocation Approaches

Many register allocation algorithms have been proposed in the literature. In this section
we briefly introduce the main approaches to solve this problem.

4.2.1 Register Allocation via Graph Coloring

Graph coloring [21, 20] is the most common solution that has been proposed to solve the
problem of register allocation. Most works that came later to solve this problem were all
focused on optimizing the coloring algorithms [15, 22]. The basic idea of this technique
is, given an interference graph of a program, the algorithm attempts to color the resulting
interference graph with a number of colors equal to the number of registers available in
such a way that two connected nodes may not have the same color, this makes sure that
two variables that interfere are not assigned to the same register. If the number of colors
is not sufficient to color the graph with respect to the previous propriety, this means

63

that the number of interfering variables is possibly larger than that of available registers,
hence the content of at least one register must be spilled out to memory. The algorithm
attempts to re-color the graph from the beginning. The coloring of the graph is called
optimal if a minimum of colors is used to color the graph. For example, the interference
graph in Figure 4.2 for the 3-address code shown in Figure 4.1(a) requires four colors to be
colored. The smallest number of colors required to color a graph is called in graph theory
chromatic number, this number represents the minimum register requirements in register
allocation. However a graph can be colored in different ways using at least k colors where
k is the chromatic number.

!"#"

$" %"

&"

'"

!"

Figure 4.4: Example of graph coloring

Register allocation via coloring of chromatic graph G given a number of available
registers k is NP-complete except the case where k = 1 and k = 2, it is equivalent to
decide if G admits a proper node coloring with k colors [32]. However, it is NP-hard to
find a lower bound of register requirements which is equivalent to compute the chromatic
number [40].

4.2.2 Linear Scan Register Allocation

Poletto [54] proposed a new approach to accelerate the graph coloring algorithm in a single
linear-time scan of the variables live-range. The algorithm replaces the live range of each
variable by a contiguous interval with long lifetime, and proceed to color these intervals,
which makes the algorithm faster than coloring an interference graph, but not optimal.
The linear scan algorithm is mostly used in Just in Time (JIT) compilers like Java and
LLVM.

4.2.3 Register Allocation based on Register Reuse Chains

Berson [12] proposed registers allocation technique based on register reuse chains where
each chain contains values that can share the same register. In this approach, both schedul-
ing and register allocation are solved simultaneously. To avoid additional dependencies,
the algorithm starts first by assigning nodes that are not simultaneously live in any possi-
ble schedule to the same chain, then reduces the number of chains by assigning dependent
nodes which do not overlap their live ranges to the same chain. Only at the end, and if
the number of chains is still larger than the number of available registers, the algorithm
merges independent chains. Zhang [72] showed that register allocation based on register
reuse chains approach requires fewer register on average than the traditional register allo-
cation based on graph-coloring algorithm.

64 4. Register Allocation Overview

The register reuse chains in Figure 4.5 corresponding to the DDG of the pseudo code in
Figure 4.1(a), can be decomposed exactly into four chains. The number of chains presents
the register requirement. Detailed description of the algorithm used for the construction
of register reuse chains is given in Chapter 5.

!"

#"

$"

%"

&"

'"

!"

!" %"

$"

#"

&"

'"

!"

(b) Register Reuse Chains!(a) Data Dependence Graph!

Figure 4.5: Example of register reuse chains

4.2.4 Register Allocation via Integer Linear Programming

Goodwin and Wilken [34] were one of the first who used Integer Linear Programming
(ILP) to solve the problem of register allocation and instruction scheduling for regular
architectures. The basic idea of this approach is to express the interaction between registers
and variables as a sequence of binary decisions, such as, to assign or not assign a given
variable to a register at a given time. However, ILP is an attractive technique only for
small code segments because compilation time increases exponentially with code size and
can take hours to find an optimal solution. This is why most of works that came later
[3, 31] were all focused on optimizing the solution time while keeping the result optimal. Fu
and Wilken [31] proposed a faster solution for optimal register allocation. Their approach
reduces the ILP model complexity by removing unnecessary decision variables from the
integer program like spill and deallocation decisions.

4.3 Register Allocation and Instruction Scheduling

If the number of simultaneously live values exceeds the number of available physical regis-
ters, selected values must be spilled and reloaded from memory, which can reduce overall
performance. On the other hand, an aggressive optimization in order to limit register pres-
sure may lead to underutilized registers, resulting in suboptimal performance. This is why,
instruction scheduling and register allocation are important phases in a high-performance
compiler, and the ordering of these two phases can affect the program’s performance.

In most research efforts, instruction scheduling and register allocation are studied sep-
arately. However, these optimizations influence each other significantly. The usefulness of
register reuse chains comes from that. Berson and all [12] make a promising contribution
by proposing registers allocation based on register reuse chains where scheduling and reg-
ister allocation are solved simultaneously. Register allocation and instruction scheduling
can be also solved simultaneously using integer linear programming. Many formulations
have been proposed for the problem.

65

Chapter 5

Using Reverse Computing to
Decrease Spill Code

Contents

5.1 Problem Statement: Register Allocation 67

5.1.1 Recomputing vs. Storage . 67

5.1.2 Aggressive Register Reuse . 69

5.2 Rematerialization rules and guidelines 69

5.2.1 Building Register Reuse Chains 70

5.2.2 Detecting Excessive Registers . 81

5.2.3 Discovering Rematerializable Values 81

5.2.4 Graph Transformation . 84

5.2.5 More Opportunities for Reverse Computing than for Direct Com-
puting . 85

5.3 Experimental Results . 85

5.3.1 Lattice QCD Computation . 86

5.3.2 Register Requirements . 87

5.3.3 Spill Costs . 88

5.3.4 Run-Time Performance . 89

5.3.5 Inverse Precision . 90

5.4 Summary . 90

66 5. Using Reverse Computing to Decrease Spill Code

Over the years, processor cycle time is decreasing much faster than memory access
times, and the architectural design of processors has improved with the development of
pipelining and multiple instruction issue. These factors have influenced the increasing
technological gap between processor speed and the speed of the memory hierarchy. Figure
5.1 shows processor and memory speedup during the years, and the processor-memory
performance gap.

CPU!

60%/year.!

DRAM!

7%/year.!

1!

100!

10 000!

100 000!

1980! 1985! 1990! 1995! 2000! 2005! 2010!

Memory!

Processor!

Processor-Memory!

Performance Gap:"

(grows 50% / year)!

P
er

fo
rm

an
ce
!

Year!

“Moore’s Law”!

10!

1000!

! !

Figure 5.1: Memory Access vs CPU Speed

But, no matter how fast a CPU is, it has to request data from different levels of some
memory hierarchy. Hence CPU speed is hindered by the slow read/write memory speed.
A computer with insufficient storage space will have to rely on a higher level of memory for
this data, which would make the processor speed essentially irrelevant, forcing programs to
run at the speed of this memory level. This is why memory together with communication
optimizations are today the most important room for performance.

Shared memory (64 KB/SM)

Register (128 KB/SM)

Global memory (1GB)

Host memory (16 GB)

400 - 600

10 - 20

1

104 - 105

Figure 5.2: GPU architecture: Memory Access vs CPU Speed

The purpose of this chapter is to describe how to maximize (increase) the use of the
processing units to overlap memory transfer by computation, and how to best set up data
items to use the memory effectively, by using as much fast memory and as little slow-access
memory as possible.

We test the effectiveness of the solution we propose on the LQCD application. LQCD
program typically reads sequentially through a large 4D lattice of data, modifies the data,
and writes out to another large lattice, which will be memory bound, so anything that
optimizes the flow of data is highly desirable, typically load data once, and need not touch
them again. To ensure this, we exploit recomputing instead of spilling in the kernel’s code
and since a value can be recomputed locally no need to re-load it from memory.

67

5.1 Problem Statement: Register Allocation

We revisit register allocation issues from the reversible computing angle.

Since LQCD program is memory demanding it is important that the least number of
data are stored in memory or equivalently the largest number of useful data. That means
first that intermediate values be kept in lowest levels of memory - registers if possible - and
therefore that they have short lifetimes or can be recomputed from other values. Second
that the vertical memory hierarchy is stressed as little as possible: we have to avoid spill
operations that store intermediate value in the memory and reload it on demand. This
means that we have to minimize spill code. Hence, in this program, we can see that register
allocation is a still delicate and critical issue that must in no ways be left aside as it is the
basic bottleneck that conditions the whole performance.

Reversible computing has a lot to do with the classical issue of trade-off between data
storage and data recomputing. In reversible computing no information is ever lost, every
data value can always be retrieved from any point in the program.

In register allocation one can use rematerialization instead of spilling, meaning that
we recompute some value v instead of keeping it live. Recomputation is performed from
values still stored in registers, recomputation is done in the same way as specified in the
program. But there is a part of information on v carried by other values w that have been
computed from v. Hence this gives new opportunities for recovering the v value: undoing
the computation from the w values, or in other words, reversely computing v.

Therefore the question that we address in this chapter is whether rematerialization by
reverse computing – reverse rematerialization – can help improving register allocation.

We develop a heuristic for rematerialization-based register allocation through reverse
computing and demonstrate important gains over a kernel of the LQCD computation.

As an illustration, consider the code segment shown in Figure 5.3(a) with its corre-
sponding pseudo-assembly code and dependence graph in which each node corresponds to
a statement in the code segment. This original pseudo code requires four registers. Fig-
ure 5.3(b) shows the same code that returns the same result as the code in Figure 5.3(a)
but with an additional load/store operation. This code requires three registers. Figure
5.3(c) shows always the same code that returns the same result but with an additional
operation. It shows how a reverse computation of A from B and C could minimize register
pressure and avoid load/store operations. Thus, four registers are required in the forward
computation, three with an additional reverse operation without any additional load/store
operation.

5.1.1 Recomputing vs. Storage

In this section, we present our approach about recomputing to minimize load/store opera-
tions when we achieve high register pressure. We consider a DAG of operations, typically
the Data Dependency Graph of instructions within a basic block, see part (a) of Figure 5.3.
Nodes of the graph are instructions denoted by the name of the variables carrying the re-
sult. This makes sense as two different nodes need to be treated as two different variables.
We make the important hypothesis that they can be made reversible.

Most problems of spill code minimization are NP-complete [14]. Here we have another
degree of freedom. We can recompute a value no matter the number of instructions
required to recompute it, and as we make the condition that all operations can be made
reversible, a value can be recomputed either from source or result operands.

68 5. Using Reverse Computing to Decrease Spill Code

A: load(a);!

B: load(b);!

C: c = a + b;!

D: d = c * 3;!

E: e = d – c;!

F: f = e / b;!

G: g = f + a;!

3 address code!

A: ld r0,&a;!

B: ld r1,&b;!

C: add r2,r1,r0;!

D: mul r3,r2,$3;!

E: sub r3,r3,r2;!

F: div r3,r3,r1;!

G: add r3,r3,r0;!

Register requirement=4!

A: ld r0,&a;!

B: ld r1,&b;!

C: add r2,r1,r0;!

D: mul r0,r2,$3;!

E: sub r0,r0,r2;!

F: div r0,r0,r1;!

R: sub r1,r2,r1;!

G: add r1,r1,r0;!

Register requirement=3 !

A: ld r0,&a;!

B: ld r1,&b;!

C: add r2,r1,r0;!

S: str r0;!

D: mul r0,r2,$3;!

E: sub r0,r0,r2;!

F: div r0,r0,r1;!

S’: ld r1,&a;!

G: add r1,r1,r0;!

Register requirement=3 !

"!

#!

$!

%!

&!

'!

!"

Dependency DAG!

 High register pressure!

(a) Original (b) Spilling (c) Reverse

rematerialization

Figure 5.3: Reducing register pressure using reverse rematerialization.

An example of direct (forward) rematerialization is shown in Figure 5.4(a). In the
example six registers are required to perform the DAG according to the initial reuse DAG
drawn in (a). Live ranges of A, B, C, D, E and F overlap. But since B and D are alive
during the computation of all outputs of C and E respectively, and since C can be directly
computed from B, and E from D, we can choose to let C reuse the register of B, and let
E reuse the register of D, and recompute later D from C and B from A before computing
H and J respectively. This is drawn in the right part of figure 5.4(a).

We can even more increase register reuse by considering sequences with more than one
instruction for rematerialization (figure 5.4(b)). A is alive during all the computation.
Thus we can rematerialize B, C, D from A. In this example register requirement is only
3 with 6 additional operations and this could remove 3 spill operations if we had only 3
available registers. As a matter of fact it makes sense to use multiple instructions only
as far as the execution of the sequence remains negligible with respect to the latency of
memory access. In this work, we first consider that computation is free so we do not
consider this trade-off.

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,"

'")"

$"

&"

%"

("

!"

+"

#"

#"!" '")"

$"&"

%"

("

!"

+"

#"

#"!"

'"

#"

#")"

$"

&"

%"

&"

!"

+"

#"

#"

!"

'"

("

#"

&"

'"

#"

RRC with!

0 step of recomputing!

RR=6!

RRC with!

1 step of recomputing!

RR=4!

Dependency DAG!

RR: Register requirements!

RRC : Register Reuse Chains!

DAG: Directed Acyclic Graph!

RRC with!

 3 steps of recomputing!

RR=3!

#"

)"

$"

&"

%"
&"

!"

+"

#"

'"

!"

'"

("

#"

!"

RRC with!

1 steps of reverse!

computation!

RR=2!

(b) Multiple instruction

rematerialization!

(c) reverse rematerialization!(a) Direct rematerialization!

Figure 5.4: Recomputing Vs Storage.

69

Direct rematerialization aims at avoiding spilling by recomputation. However direct
rematerialization is limited because values needed for recomputation have to stay alive and
recomputation may take multiple instructions. In contrast considering reverse computing
makes rematerialization more attractive because it can reduce both register pressure and
number of rematerialization instructions. In Figure 5.4(c) only 2 registers are required
and each recomputed value rematerialized by one instruction which would avoid 4 spills
for the whole DAG in the case of 2 available registers. The register pressure is high after
computing C, D, E and F causing A, B, C and D to be spilled. A simple way to avoid
inserting four load operations before computing H, I, J and K is to rematerialize them
from their outputs with one instruction by recomputing D from E, C from D, B from C,
and A from B. For minimizing spill code we increase register reuse by reducing values
lifetime.

We suggest a hybrid algorithm that both considers direct and reverse computing.
The idea is to check at each point when a extra register is needed if a previous value is
rematerializable either in a direct or reverse way in order to consider reusing the register
where it is stored.

5.1.2 Aggressive Register Reuse

The idea of aggressive register reuse is to enforce register reuse between direct dependent
values. Based on the generation of register reuse chains [12] we propose to consider
register rematerialization after register allocation. Register requirement is determined
from the reuse DAG which indicates which instruction can use a register used by a previous
instruction. For the reuse DAG we use the algorithm proposed by Yukong in [72]. But we
use a more aggressive reuse relation by allowing reuse not only for killed variables but also
for possibly rematerializable values either directly from the source operands or reversibly
from the result operands. This is likely to promote register reuse between dependent
values and hence reduce register pressure.

5.2 Rematerialization rules and guidelines

Rematerialization should be done after register allocation for two reasons:

• Before register allocation there is no information about actual register pressure,
register requirement and excessive register demands, which makes rematerialization
decision very difficult to take.

• Rematerialization decision before register allocation would create extra dependencies
and possibly extend live-range of inputs of the rematerialized value, and this could
increase register pressure.

All information regarding excessive registers, rematerializable values, etc. can be ex-
tracted from register reuse chains. Berson [12] showed that excessive register demands can
be better determined using register reuse DAG, where instruction scheduling and register
allocation can be solved simultaneously. Because instruction scheduling and register allo-
cation are mutually dependent and it is better to manage them in a common framework,
which is the aim of the register reuse chain. Zhang [72] has also shown that register allo-
cation based on a register reuse chains approach requires fewer registers on average than
traditional register allocation algorithms based on graph-coloring algorithms.

70 5. Using Reverse Computing to Decrease Spill Code

The register rematerialization can be decomposed into four passes:

• a) Building register reuse chains.

• b) Detecting excessive registers.

• c) Discovering rematerializable values.

• d) Graph transformation.

5.2.1 Building Register Reuse Chains

The first phase decomposes the input data dependency graph G = (V,E) where V is the
set of nodes and E the set of edges in G into reuse chains. Each chain contains values that
can share the same register. We start by considering register reuse between dependent
values and then between independent values. For each node we identify possible reuse
nodes through the relation “can reuse”. If the live-range of a variable does not overlap
the range of another variable they can share the same register. Formally:

(u, v) ∈ V 2, u can reuse v iff output(v) ∩ dependent(u) = φ

where output(v) is the set of direct dependent nodes of v denoted by a direct edge from
v in the graph G, and dependent(v) is the set of all descendant nodes of v. In other words,
it is the set of all nodes such that there is a path from v to these nodes. An example of
the relation “can reuse” is shown in Figure 5.5.

v!

u!

v!

u! w!

v!

w!

u!

u can reuse v! u can reuse v! u cannot reuse v!

Figure 5.5: Example of the relation ”can reuse”

In the following we denote also input(v) the set of direct connected nodes by outgoing
edge to v and independent(v) the set all nodes such that there is no path between v and
these nodes.

5.2.1.1 Register Reuse between Dependent Values

This is an iterative algorithm. In order to create as few as possible additional dependencies
we start by first defining register reuse between dependent values. The initial reuse node
has to be one Earliest Ultimate Killing (EUK) node. EUK of a node is the earliest node
where the lifetime of the values residing in the node is guaranteed to be over [72].

71

k is killer of v iff ∀u ∈ output(v), k depends on u

and

q is EUK node of v if q is killer of v ∧ ∀k killer of v, k 6= q k depends on q ∨ q is
independent of k

means that when k or q are executed we are sure that all their inputs which correspond
to dependent nodes of v are already computed and as a result v is dead. Figure 5.6
illustrates killing and earliest ultimate killing nodes.

q1 and q2 are two killing nodes of v !

q1 is the EUK node of v!

v!

v1! v2!

q1!

q2!

v!

v1! v2!

q1! q2!

q1 and q2 are two EUK nodes of v

Figure 5.6: Example of killing and earliest ultimate killing nodes

Initial Register Reuse Chains
As it is shown in Algorithm 1, to build the initial register reuse chains we associate to
each node its EUK node (determined by the Algorithm 2 and 3) if it exists. This allows
generating register reuse chains without any additional dependency. A node v can have
more than one EUK node if EUK (v) 6∈ output(v). If two EUK nodes of v are independent
we choose one of them and this does not effect the initial register reuse chains. A node k
can be the EUK of several nodes. If it is the case we choose the nearest node to the killer
following the function NearestToKiller defined by the Algorithm 6, and we set the other
nodes as free (without reuse nodes).

72 5. Using Reverse Computing to Decrease Spill Code

Algorithm 1: InitialRegisterReuseChain(G)

/*The function generates the initial register reuse chains based on the EUK nodes*/
forall the i ∈ G do

GetEUK(i,G)

forall the i ∈ G do
if EUK(i)6= φ then

Reuse(i)←EUK(i)
else

Reuse(i)←i

forall the (i, j) ∈ G2do
if Reuse(i) = Reuse(j) && NearestToKiller(i,j)=j then

Reuse(i)←i
forall the k ∈ G do

if IsKiller(k,i)=1 && k6=Reuse(j) then
if Reuse(i)=i || Reuse(i) depends on k then

Reuse(i)←k

return Reuse

Algorithm 2: GetEUK(i, G)

/* i is a node in the Graph G */
/* The function returns the earliest ultimately killing node of i */
forall the j ∈ G do

if IsKiller(j,i,G)=1 then
if j ∈ output(i) then

EUK(i)←j
else

if EUK(i) = φ || EUK(i) depends on j then
EUK(i)←j

return EUK(i)

Algorithm 3: IsKiller(i, j, G)

/* i and j are two nodes in the Graph G */
/* The function checks if node i is a killer of node j */

forall the k ∈ G do
if k ∈ output(j) && i 6∈ dependent(k) then

return 0

if output(j)= φ then
return 0

else
return 1

73

Example Consider the dependence graph shown in Figure 5.7. Node A has three
direct dependent nodes, B, C and D. Node K is the only node that depends on all three
nodes. Thus, K is a killer of A, and as K is the only killing node of A, it is also its EUK
node. Similarly, D has two outputs, G and H. J and K are descendant of both G and H.
Thus J and K are killers of D. Since K depends on J, node J is the EUK node of D. Node I
has a single dependent node K. Thus K is also the EUK node of I. Table 5.1 shows killing
and ultimately earliest killing nodes of all nodes of the graph shown in Figure 5.7.

!"

#"

$"%"

&"

'"

("

)"

*"+"

,"

Figure 5.7: Initial Data Dependency Graph

Node A B C D E F G H I J

Killer nodes K I, K J, K J, K I, K I, K J, K J, K K K

EUK node K I J J I I J J K K

Table 5.1: List of killer and EUK nodes

To build the initial register reuse chains and once killing and earliest ultimate killing
nodes are found, we associate each EUK node to only one node. Figure 5.8 shows the
initial register reuse chains derived from the dependence graph by the algorithms 1, 2 and
3. If two or more nodes have the same EUK node like A, I and J, we call the function
NearestToKiller to choose the closest node among them to their common EUK node,
which is K in this example. I and J are at the same distance from K but closer than A.
Hence, we choose K as a reuse node of I, just because I was visited before J. More details
about the function NearestToKiller to choose a schedule that might require fewer registers
are given in the subsection Distance between Nodes.

!" #" $" %"

&"

'"("

)"

!"

*" +"

Figure 5.8: Initial Register Reuse Chains

The register reuse algorithm continues visiting all nodes that can reuse a node v. If
v has no reuse node we choose the first visited node otherwise we compare the visited

74 5. Using Reverse Computing to Decrease Spill Code

node with the current reuse node. The criteria of comparison are: the live-range and
dependencies between reuse nodes. Hence, if the EUK of node v does not depend directly
on v, we choose a reuse node from the set of outputs of v. If more than one node can reuse
v, we compare their live-range ends by using the Algorithm 5, and we choose the latest
one. If all outputs of v already use other registers, we search a closer reuse node from the
set of dependent nodes of v, and if two reuse nodes have the same distance from v and are
independent, we compare their live-range ends and we choose the first done.

Starting graph reduction by choosing reuse nodes from dependent nodes creates fewer
dependencies because reuse nodes require always dependence from reused nodes.

Example Consider the same data dependency graph as in the previous example.
The algorithm starts with the input node of the graph which is the node A, and chooses
B as reuse node. It creates new dependencies from the other output nodes of A, C and D
to B. Then, it visits the next node B and calls the function CanReuse to checks if E and
F can reuse B. As E and F are at the same distance from their common EUK node, the
algorithm chooses the first visited node E and it adds an additional dependency from F to
E. The node I has always a reuse node K found from the previous step of the algorithm.
Similarly for C, the algorithm is called and chooses G as a reuse node and adds a new
dependency from H to G by following rules. Therefore, the algorithm stops by visiting all
nodes to assign them reuse nodes, which are not assigned, from their dependent nodes.
The new data dependency graph and its corresponding register reuse chains are shown in
Figure 5.9. The additional dependencies are shown by disconnected red edges.

!"

#"

$"%"

&"

'"

("

)"

*"+"

,"

!" $"*"

%"

#"

,"

!"

'"

)"

&"+"

(b)! Register Reuse Chains !

! between dependent variables!

(a)! DDG with additional !

! dependencies!

Figure 5.9: Building register reuse chains

If the number of register reuse chains is still greater than the number of available
registers we proceed to reduce the number of chains by defining new reuse nodes from the
set of independent nodes.

5.2.1.2 Register Reuse between Independent Values

Independent values correspond to nodes for which no dependency path between both
exists. In certain cases, they correspond to sequences of nodes that can share the same
register. The function CannotReuse checks if there is no constraint that prevents reusing
a node. If a node is dead and has no reuse node, it can be reused by an independent node
if the latter does not reuse any register and if there is no dependency violation. If there

75

are two or more independent nodes of v that can reuse it, we compare the live range ends
of these nodes with the function GetLastLiveRange and we choose the node which finishes
first.

Example Consider the same previous example. After the first phase of register
reuse algorithm which considers only dependent nodes, H still has no reuse node and F is
not assigned to any node, as it is shown in the part (b) of Figure 5.9. Since H and F are
independent nodes, the function CannotReuse is called to check if F can reuse H without
any dependence violation. Thus, F is assigned to H and a new dependency is added in
the DDG from J, the output of H, to F. The additional dependency is shown by a green
disconnected edge. Finally, all nodes are visited and the reduction algorithm is stopped.
The final register reuse chains are shown in Figure 5.10(b).

!"

#"

$"%"

&"

'"

("

)"

*"+"

,"

!" '"

*"%"

$"

,"

!"

#"

)"

&"
+"

(b)! Register Reuse Chains!

! between dependent and

independent variables!

(a)! DDG with additional !

! dependencies!

Figure 5.10: Building Register Reuse Chains

During the reduction process some dependencies have been added to minimize the
register pressure and they now have to be considered for the scheduling. Once the number
of chains is less than the number of available registers we stop the reduction phase. The
register requirements is the number of chains. Between dependent nodes the relation
CanReuse - defined in Algorithm 11, checks if a node can reuse an other node without
any dependency violation. Between independent nodes, the relation CannotReuse, defined
in Algorithm 12, checks if there is a constraint preventing register reuse. This iteratively
adds dependencies one by one every time we reduce the initial register reuse chains. The
register reuse chains are built thanks to the general algorithm of register reuse shown in
Algorithm 4.

76 5. Using Reverse Computing to Decrease Spill Code

Algorithm 4: Algorithm of register reuse

notation: liverange(p) ≻ liverange(q) if p stays live after the last use of q
if EUK(v) ∈ output(v) then

Reuse(v)← EUK(v)

if (EUK(v) /∈ output(v)) ∨ (EUK(v) = φ) then
get P | ∀p ∈ P, p ∈ output(v) ∧ p can reuse v
if |P | ≥ 1 then

Reuse(v)← GetLastLiverange(P)
else

get Q/∀q ∈ Q, q ∈ dependent(v) ∧ q can reuse v
if (|Q| ≥ 1) then
∀(a, b) ∈ Q2

if (a depends on b) then
Reuse(v)← b

else
if (b depends on a) then

Reuse(v)← a
else

if liverange(a) ≻ liverange(b) then
Reuse(v)← b

else
Reuse(v)← a

else
get R/∀r ∈ R, r ∈ independent(v) ∧ r can reuse v
if (|R| ≥ 1) then
∀(a, b) ∈ R2

if (a depends on b) then
Reuse(v)← b

else
if (b depends on a) then

Reuse(v)← a
else

if (liverange(a) ≻ liverange(b)) then
Reuse(v)← b

else
Reuse(v)← a

77

Distance between Nodes

The notion of distance between nodes is used to favor schedules that are likely to fewer
less registers. The function GetLastLiveRange defined in Algorithm 5 is used to compare
the live range ends of variables, by computing the distance from nodes and their common
ultimate killing node if it exists (with the function NearestToKiller defined in Algorithm 6),
otherwise by computing the distance from their last common dependent node (with the
function NearestToLastCommonNode defined in Algorithm 10). The aim is to reduce the
lifetime of each value, which helps prevent that too many live ranges overlap. The value
lifetime is defined as the length of time for which a value is held on a register from its
defining instruction to killing instruction.

In the set of nodes that can reuse v, if these nodes are independent or indirectly
dependent of v, we favor the node with a longest distance from their EUK common node
if it exists, otherwise we favor the node with the longest distance from their last common
dependent node. This corresponds (with high probability) to the node whose live range
finishes first. If these nodes are directly dependent of v, we favor the node with the shortest
distance from the common EUK node if it exists, otherwise from their last common node.
The value corresponding to this node will be the last killed, so we schedule its defining
instruction after the defining instructions of all other outputs of v to reduce its lifetime.

Example ’A’ has three outputs, ’B’, ’C’ and ’D’. All of them can reuse it. Choosing
’D’ as a reuse node of ’A’ creates dependencies from ’B’ and ’C’ to ’D’ forcing them to be
computed before ’D’. As Figure 5.11(b) shows, ’B’ and ’C’ stay live during the computing
of ’D’, ’E’ and ’F’. Thus, the maximum number of simultaneously live values is four.

A B C D E F G !

Load A

B = A + 3

C = A * 6

D = A / 5

E = D / 4 Max live =4

(a) Data Dependency

 DAG

(c) Register Reuse

 Chains

!"

#" $"%"

&"

'"

("

!"

#"

("%" '"

$"

&"

F = D - E

G = B + C * F

(b) Values Lifetime

Figure 5.11: Live ranges and distance between nodes

However, the earliest common killer of the three nodes is ’G’. The distance between
’B’ and ’G’, or ’C and ’G’ is 1. The shortest distance between ’D’ and ’G’ is 2. So, we
choose ’C’ to reuse ’A’, knowing that ’D’ dies just after computing ’F’, making its register
free, so that ’B’ can reuse it. Hence, the number of simultaneously live values is three.

Some detailed algorithms of functions used to build our tool of generation of register
reuse chains are shown below.

78 5. Using Reverse Computing to Decrease Spill Code

A B C D E F G !

Load A

B = A + 3

C = A * 6

D = A / 5

E = D / 4

Max live =3
!"

#" $"%"

&"'"("

!"

#"

%"'" ("

$"

&"

F = D - E

G = B + C * F

(a) Data Dependency DAG (c) Register Reuse

 Chains

(b) Values Lifetime

Figure 5.12: Live ranges and distance between nodes

Algorithm 5: GetLastLiveRange(node i, node j, Graph G)

/* i and j are two nodes in the Graph G */
/* The function returns the value with highest probability that it will stay live
after the last use of the other value. */
if IsKiller(i,j)=i then

return i
else

if IsKiller(j,i)=j then
return j

else
if GetCommonKiller(i,j)6= φ then

return NearestToKiller(i,j)
else

if GetLastCommonNode(i,j)6= φ then
return NearestToLastCommonNode(i,j)

Algorithm 6: NearestToKiller(node i, node j)

/* i, j and k are three nodes in the Graph G */
/* The function compares the shortest distance from the common killing node of i
and j, and i, and the shortest distance from the common killing node of i and j, and
j, and returns the smallest one */
node k;
int d1,d2;
k=GetCommonKiller(i,j, Graph G);
if k6= φ then

d1=GetShortestDistance(k,i);
d2=GetShortestDistance(k,j);
if d1<d2 then

return i;
else

return j;

79

Algorithm 7: GetCommonKiller(i, j, Graph G)

/* i and j are two nodes in the Graph G */
/* The function returns the closest common killer of i and j */
for k ∈ G do

if (Iskiller(k,i)=1) && (Iskiller(k,j)=1) then
if depends(killer,k)=1 || (killer=φ) then

killer←k

return killer

Algorithm 8: GetShortestDistance(node i, node j, Graph G, int ldist)

/* i and j are two nodes in the Graph G */
/* The function returns the shortest distance between i and j if i depends on j and
-1 if they i is independent of j */
int gdist=size(G);
for k ∈ G do

if i ∈ output(k) then
ldist++;
if k == j then

if ldist < gdist then
gdist=ldist;

else
if k 6∈ source(G) then

GetShortestDistance(k, j, ldist);

ldist−−;

if gdist == size(G) then
return -1;

else
return gdist;

Algorithm 9: GetLastCommonNode(i, j, Graph G)

/* i and j are two nodes in the Graph G */
/* The function returns the closest common node of i and j */
for k ∈ G do

if (depends(k,i)=1) && (depends(k,j)=1) then
if (depends(k,common)=1) || (common=φ) then

common←k;

return common;

80 5. Using Reverse Computing to Decrease Spill Code

Algorithm 10: NearestToLastCommonNode(node i, node j, Graph G)

/* i, j and k are three nodes in the Graph G */
/* The function compares the shortest distance from the common node of i and k,
and k, and the shortest distance from the common node of j and k, and k, and
returns the smallest one */
node c;
int d1,d2;
c=GetCommonNode(i,j);
d1=GetShortestDistance(c,i);
d2=GetShortestDistance(c,j);
if d1<d2 then

return i;
else

return j;

Algorithm 11: CanReuse(node i, node j, Graph G)

/* i and j are two nodes in the Graph G */
/* Between dependent nodes, the function checks if a node can reuse an other node
without any dependence violation. */
for k ∈ G do

if k ∈ output(j) && k∈ dependent(i) then
return 0;

if i ∈ dependent(j) then
return 1;

else
return 0;

Algorithm 12: CannotReuse(node i, node j, Graph G)

/* i and j are two nodes in the Graph G */
/* Between independent nodes, the function checks if a node can reuse an other
node without any dependence violation. */
if j ∈ dependent(i) || i ∈ dependent(j) then

return 1;
else

for k ∈ G do
if k ∈ output(j) && k∈ dependent(i) then

return 1;

return 0;

81

5.2.2 Detecting Excessive Registers

Excessive register demands arise when the number of values simultaneously live exceeds
the number of available registers or the target number that we are seeking for. The register
reuse chains identify excessive sets that represent values whose scheduling requires more
resources than available. Since scheduling and register allocation are solved simultane-
ously, the order in which values are computed is known and as a result excessive demands
for registers can be determined. The excessive sets are then used to drive reduction of the
excessive demands for registers and rematerialization is used to reduce register demands.

5.2.3 Discovering Rematerializable Values

In general, a value stays live after being used a first time because it is used more than
once. While it is not used by all direct dependent operations it is live and the register of
this value cannot be reused. A value v might be rematerializable by a direct operation
from source operands, or by a reverse operation from the result and the rest of operands
of the operation.

v is directly rematerializable iff ∀p ∈ input(v) p is live.

v is reversibly rematerializable iff ∃q ∈ output(v) ∀p ∈ input(q) s.t. p 6= v ⇒ p and q
are live.

We call R-input(v) the set of sets of operands from which v can likely be recomputed
either by a direct or reverse operation.

v is rematerializable by multiple instructions iff ∃S ⊂ R-input(v) ∀p ∈ S ⇒ p is live
or p is rematerializable

5.2.3.1 Rematerialization Decision

In general, an early rematerialization decision (which variable must be used and remateri-
alized after) before register allocation is definitive and will not be undone later. It might
increase register pressure by extending lifetime of inputs of the rematerialized value, which
is the length of the longest path from its definition to its last use. The rematerialization
decision is efficiently controlled in our approach. It is performed after register allocation
and it manages at the same time both rematerializable and excessive nodes of the graph.
We first find all rematerializable values and compare their live-ranges with the ones of
excessive variables. For each rematerializable value we choose the appropriate value that
can reuse it and does not prevent its recomputing. Based on register reuse chains we give
conditions for a value u to reuse the register of value v in the case of high register pressure
and recompute v later when we achieve low register pressure, knowing that live-ranges of
u and v overlap.

82 5. Using Reverse Computing to Decrease Spill Code

∃x ∈ ExcessiveRegisters(G), v is rematerializable so x can reuse v iff
∃S ⊂ R-input(v), ∀p ∈ S, reuse(p) is defined after x or reuse(p) = φ

If at the next use of v we still have high register pressure, we add the condition

output(x) ∩ output(v) = φ

In technical term, we compare the reuse node of p if it exists with x. If reuse(p) is de-
fined after the defining instruction of x, v is considered as a rematerializable value. This
happens when x does not depend on reuse(p), so we schedule instructions to compute
reuse(p) after x. Otherwise, if p has no reuse node and its last use is before the next use
of v, we extend live-range of p up to the next output(x).

In Figure 5.13 and 5.14, we show values lifetime, just before and after rematerialization
decision of the DDG shown in Figure 5.7. H is the excessive node, A is rematerializable as D
is live and reuse(D)=φ. Thus, H can reuse A which reduces the number of simultaneously
live values from four to three. Once we reach a low register pressure after computing J we
rematerialize A from D to recompute B. The final register allocation chains are shown in
Figure 5.15(a). The chain ’A - H - F’ share the same register, and the chain ’B - E - I -
K’ still share the same register but with the new A after rematerialization.

A B C D E F G H I J K !

Load A!

B = A * 3!

C = A + 6!

E = B + 5!

Max live = 4

High register pressure

F = B * 2 !

H = B / C!

I = E * F!

K = I / J!

G = B * C!

J = G + H!
Max live = 2

Low register pressure

Excessive register

demand D = A - 5 !

Figure 5.13: Values lifetime before rematerialization

83

A B C D E F G H I J K !

Load A!

B = A * 3!

C = A + 6!

E = B + 5!

F = B * 2 !

H = B / C!

I = E * F!

K = I / J!

G = B * C!

J = G + H!
Reverse

rematerializatio

n

of A

D = A - 5 !

A = D + 5!

Lifetime

extension

Figure 5.14: Values lifetime after rematerialization.

(b)! DDG after graph

transformation !

!"

#"

$"

%"

&"

'"

!"

("

)"*"

+"

!"

(a)! Register Reuse Chains after

rematerialization!

Aggressive register

reuse

Reverse

rematerialization of A

A!

D!

G!H!

J!

C!

K!

B!

F!E!

I!

A,"

Figure 5.15: Data dependency graph after register rematerialization.

84 5. Using Reverse Computing to Decrease Spill Code

5.2.4 Graph Transformation

Once rematerialization decision is made we proceed to the graph transformation of the
original DDG. Graph transformation, or graph rewriting, consists in rules for creating a
new graph out of an original graph: we insert a copy of the rematerializable value with
all edges from its new inputs, and move all edges from the rematerializable value to nodes
calculated after the excessive node (new reusing node) to the new copy node.

The algorithm guarantees that the graph transformation does not create any cycle in
the new graph. No cycle exists between the new inserted value and the excessive value as
all inserted edges from the new node are directed to values computed after the excessive
value. Hence there is no path between the inserted node and the excessive node. In
Figure 5.16 we show an example of graph transformation for the 3 address code shown in
Figure 5.3, in this example D is the excessive node, A the rematerializable value and A’ is
the copy value of A rematerialized from B and C. Because we know that A’ is computed
after C and B all output edges from A’ are to nodes computed after C and B. Therefore
there is no path between output nodes of A’ and C or B. As a result there is no path
between A’ and C or A’ and B hence no cycle between A’ and C or A’ and B.

!"

#"

$"

%"

&"

'"

!"

!" %"

$"

#"

&"

'"

!"

(b) Reuse DAG!(a) Dependency !

 DAG!

!"

#"

$"

%"

&"

'"

!"

!("

(d) New DDG after!

 rematerialization!

X

!" #"

$"

%"

&"

'"

!"

!("

(c) Reuse DAG with !

 rematerialization!

Reverse

rematerialization of A!

 Graph transformation!

Excessive demand!

Figure 5.16: Graph transformation.

The rematerialization algorithm we propose is iterative, after each graph transforma-
tion we re-call the algorithm till there will be no rematerializable value.

85

It is important to note that it may happen that sometimes rematerialization reduces
only locally the register pressure and not globally. In Figure 5.17, rematerialization has
no effect on the global register requirements. But, if we assume there are two registers
available, rematerialization helps to avoid a first spill. Even though this does not seem to
improve a lot since the register count is fixed, this can in fact be exploited for running
more computations (parts of DAG, iterations, threads) in parallel.

1!

2!

3!

4!

1 2 3 4! 5! 6 !

Number of live values!

instructions!

1!

2!

3!

4!

1 2 3 4! 5 6 7

Number of live values!

instructions!

Aggressive

register reuse !

rematerialization!

Figure 5.17: Local register pressure reduction

5.2.5 More Opportunities for Reverse Computing than for Direct Com-
puting

Based on the abstract definition of reversible function where the number of inputs equals
the number of outputs, any operation is reversible since the register reuse is limited between
direct dependent operands, which means that values of reused registers can be retrieved
easily from output operands, contrary to the direct rematerialization where the necessary
condition is to keep all input values of the operation live.

Also, the direct rematerialization is limited in the fact that program’s inputs are not
rematerializable, and there is only one way to recompute intermediate values through
direct operations, unlike the reverse rematerialization where inputs like intermediate values
are always rematerializable and from different instructions since register reuse is limited
between direct dependent values. Taking back the example in Figure 5.4. B can be
recomputed in reverse way from two different operations, from C or from I and J. However
there is only one way to recompute B with a direct operation (from A). This effect has
to be more precisely measured experimentally and theoretically analyzed with respect to
DAG properties.

5.3 Experimental Results

In this section, we evaluate the effectiveness of our compiler optimization. In order to
understand more about the recomputing opportunities, we developed a profiling tool that
is able to measure the degree of recomputing in an acyclic code. We perform two separate
evaluations: direct rematerialization does rematerialize a value with a direct operation
from its source operands. Reverse rematerialization does rematerialize a value in the
case of high register pressure with a reverse operation. In both cases rematerializing a value

86 5. Using Reverse Computing to Decrease Spill Code

can be done by multiple instructions. We apply our tool on a set of Data Dependency
Graphs extracted from the most critical kernel in the LQCD simulation program [18].
The kernel of the code (Hopping Matrix) contains two separate synchronized loops k and
l, which we will call them also Hopping Matrix k and Hopping Matrix l respectively.

One iteration of loops k and l contains 768 and 840 operations respectively. Their
corresponding data dependency graph contains 872 and 1016 nodes respectively. Our tool
uses a register allocator based on register reuse chains. We used this kernel to show that
opportunities exist for both direct and reverse rematerialization to significantly reduce spill
costs. We performed many experiments with different values for the number of available
registers.

5.3.1 Lattice QCD Computation

This application performs complex operations on 4-dimensional space-time lattice that
describes the strong force which binds protons and neutrons forming the atomic nucleus.
The main kernel routine, called Hopping Matrix, is contributing about 90% of the total
execution time [70]. This routine is responsible for computing the action of the Wilson-
Dirac operator, as mentioned in the equation bellow. The actions of Dirac operator involve
a sum over quark field (ψi+̂µ) multiplied by a gluon gauge link (Ui,µ) through the spin
projector (I ± γµ)

χi =
∑

µ=x,y,z,t

κµ{Ui,µ(I − γµ)ψi+̂µ + U †
i−̂µ,µ(I + γµ)ψi−̂µ}

In technical term, the core kernel involves O(n) computation over two sequential and
synchronized loops, single or double precision floating point latices, where each loop iter-
ation itself involves complex-vector multiplications, vector-matrix multiplications, vector
additions and vector subtractions. In the first loop, for every lattice point, as inputs,
there are four complex constants, one input spinor contains that four SU(3) vectors, each
of these SU(3) vectors consists of three complex numbers. Four inputs three-by-three
complex matrix U that refer to gauge links. As output, there are eight halfspinor phi
consist of two SU(3) vectors, leading to a total data usage of 104 input complex numbers
and 96 output complex numbers. Inputs of the second loop are the same four U matrices
and four complex constant of the first loop with its eight halfspinor outputs. The second
loop returns one spinor. The loop body consists of the same operations as in the first loop.

Considering that an input value should be loaded at most once, and once a final output
is computed it is directly stored in the memory, thus:

• One complex-complex multiplication requires 6 floating point operations and 6 reg-
isters.

• One complex-vector multiplication requires 18 floating point operations and 10 reg-
isters at least.

• One vector-matrix multiplication amounts to 66 floating point operations and 14
registers at least by performing three independent vector-vector multiplications.

The result accumulation is 768 flops for the first loop and 840 flops for the second one.
An optimized use of data lets reduce the memory usage to 48 registers per iteration in

87

both first and second loop.
For a maximum instruction level parallelism, the register requirements are:

• 6 registers for complex-complex multiplication.

• 14 registers for complex-vector multiplication.

• 18 registers for vector-vector multiplication.

• 42 registers for vector-matrix multiplication.

Thus, the memory size required for the kernel scales linearly with the loop size, but
register requirements and the number of floating point operations are fixed O(1).

Figures 5.19, 5.20, 5.22 and 5.21 show data dependency graphs of Hopping Matrix k,
Hopping Matrix l, complex times vector, and su3 multiply.

5.3.2 Register Requirements

Both reverse and direct rematerialization reduce the overall register requirements of Hop-
ping Matrix but with different reduction rates and different costs. Table 5.2 shows the
number of register requirements for each benchmark before and after rematerialization by
using reverse and direct computing with one and multiple instructions. The percentage
gain is shown in table 5.3, followed by the cost of reversibility given by the number of addi-
tional operations. There is no positive impact of direct rematerialization on su3 multiply
and complex times vector in Hopping Matrix (loop k) or su3 inverse multiply and
complexcjg times vector in Hopping Matrix (loop l), unlike when using reverse remateri-
alization with one or multiple instructions that helps by reducing the number of register
requirements by 16.2% and 33.3% respectively in complex times vector, and 7.1% and
14.3% in su3 multiply.

benchmark without. direct reverse reverse remat.
remat. remat. remat. multiple. inst.

complex times vector 6 6 5 4
complexcjg times vector 6 6 5 4

su3 multiply 14 14 13 12
su3 inverse multiply 14 14 13 12

Hopping Matrix (loop k) 48 39 35 33
Hopping Matrix (loop l) 48 48 47 45

Table 5.2: Contribution of reverse rematerialization to the minimization of register re-
quirements

Even in Hopping Matrix, the direct rematerialization is less successful than reverse
rematerialization and with highest cost; 54 operations added which represent 7% of the
total number of operations in Hopping Matrix (loop k) for a reduction of register require-
ments of 18.7%. The same amount of register requirement reduction is given by using
reverse rematerialization with lowest cost, only 33 operations added from total of 768 op-
erations that represents 4.3%. With reverse rematerialization with multiple instructions
we achieve up to 31.2% of reduction. The direct rematerialization is limited due to the
multi usage of inputs data, which are not rematerializable in a direct way.

88 5. Using Reverse Computing to Decrease Spill Code

By considering all macros and data structures in the l loop of Hopping Matrix as
elementary elements, the data dependency graph corresponding to one iteration of the
loop l is a tree where each node v (except inputs nodes) depends at least on one node u
with one output edge, that means v is the only reuse node of u. As the rematerialization
depends on the number of reuse of variables, in a graph if there are few cases of node
reuse then there are few opportunities of rematerialization. In the loop l, only reverse
rematerialization in functions su3 inverse multiply and complexcjg times vector has a
positive impact. Table 5.2 shows a register pressure reduction of 1 register by using
reverse rematerialization with one instruction and 2 registers with multiple instructions.

register gain direct reverse reverse. remat.
requirements remat. remat. multiple inst.

Hopping Matrix (loop k) 39/48 18.7% 54 33 33
768 operations 35/48 27% - 45 45

872 nodes 33/48 31.2% - - 153

Hopping Matrix (loop l) 47/48 2.1% - 8 8
840 op 1016 nodes 45/48 6.2% - - 94

complex times vector 5/6 16.7% - 3 3
18 op 26 nodes 4/6 33.3% - - 9

su3 multiply 13/14 7.1% - 3 3
66 op 90 nodes 12/14 14.3% - - 21

Table 5.3: Cost of the reversibility: number of additional operations

Finally, note that even in the absence of register pressure reduction, reverse rematerial-
ization can reduce the number of variables that are alive simultaneously at some computing
step, thus register pressure is reduced locally and therefore load/store operations could be
avoided.

5.3.3 Spill Costs

We measure spill costs statically. For that we compute the register requirements which
is the maximum number of variables that are simultaneously alive. When the number of
available registers is less than the number of simultaneously alive variables, the register
allocator decides which variables should not be stored in registers and load/store instruc-
tions are introduced. The number of spill operations depends on the number of variables
that exceed the number of available registers, hence reducing the maximum number of
simultaneously live variables N by S with R is the number of available registers and
(N − S) ≥ R means that spill cost is reduced at least by S. For all rematerialization
techniques, the number of available register is assumed to be one. Thus, the remateri-
alization algorithm extracts recomputing and applies rematerialization to reduce register
requirements as small as possible.

Table 5.4 shows the number of static spills using different techniques of rematerial-
ization. The table compares all techniques and shows how reverse rematerialization is
more beneficial. For example, it indicates 51 load/store operations for Hopping Matrix
(loop k) without rematerialization; compared to 45 load/store operations with direct re-
materialization and no spill instruction using reverse rematerialization, for 35 available
registers.

89

number of number of spill operations
benchmark available without direct reverse reverse remat.

registers remat. remat. remat. multiple inst.

complex times vector
5 3 3 0 0
4 6 6 3 0

complexcjg times vector
5 3 3 0 0
4 6 6 3 0

su3 multiply
13 3 3 0 0
12 6 6 3 0

su3 inverse multiply
13 3 3 0 0
12 6 6 3 0

Hopping Matrix 39 45 0 0 0
(loop k) 35 51 45 0 0

33 57 51 9 0
Hopping Matrix 47 4 4 0 0

(loop l) 45 12 12 8 0

Table 5.4: Contribution of reverse rematerialization to minimize spill operations

5.3.4 Run-Time Performance

The performance improvement from the reduction in explicit spills cannot be determined
exactly, but running the two equivalent codes shown in Figure 5.18 - a simulation of
the above example in Figure 5.4 - shows a difference in performance up to 40% for a
sequence size equals to 100x210. This is because for the first code, the maximum number
of simultaneously live values is equal to the sequence size which is larger than the number
of registers, creating more spills to memory. Inversely for the second code where the
number of simultaneously live values is constant and independent of the sequence size.

for(i=0;i<SIZE-1;i++)!

! A[i+1]=A[i]+ i;!

B=A[SIZE-1];!

for(i=SIZE-1;i>=0;i--)!

! B=B+A[i];!

return B;!

! ! ! ! !

(a) without rematerialization!

for(i=0;i<SIZE-1;i++)!

! A=A+i;!
B=A;!
B=B+A;!
for(i=SIZE-2;i>=0;i--){!
! A=A-i; !
! B=B+A;!
}!
return B;!

(b) with reverse rematerialization!

Sequence’s size 5120 10240 102400 1024000
%Performance (double) +25% +37% +40% +45.5%
%Performance (simple) -6% +10% +26% +30%

Figure 5.18: Contribution of reverse rematerialization to execution time

90 5. Using Reverse Computing to Decrease Spill Code

5.3.5 Inverse Precision

In a static analysis of FORTRAN programs, Knuth [41] reports that 39% of arithmetic
operators were additions, 22% subtractions, 27% multiplications, 10% division, and 2%
exponentiations.

All numbers expressed in floating point format are rational numbers with a terminating
expansion in the relevant base. The number of bits of precision limits the set of rational
numbers that can be represented exactly, the error can be related to the decimal place of
the right-most significant digit, specifically for multiplication and division where results in
general are rounded, so in turn the result of the inverse operation is not exact if the result
it self is not, though small errors may accumulate as operations are performed repeatedly.
In case of rematerialization with one instruction, at most one operand is inexact, for
the multiplication y ∗ z = x + error(x), the error of the inverse operation x+error(x)

y is
error(x)

y . For the division, y
z = x+ error(x), the error of the inverse operation y = x ∗ z is

error(y) = z ∗ error(x)

But in general, the error propagation given dependent variables each with an error
is: for the addition and the subtraction, the precision error in the result is given by:
error(x) = error(y) + error(z) for the operation x = y + z. For the multiplication and
the division, the maximum error in the result is given by: error(x) = error(y) ∗ z +
error(z) ∗ y + error(y) ∗ error(z). Usually error(y) << y and error(z) << z so that
the last therm is much smaller than the other terms and can be neglected. Formally we
write more compactly by forming the relative error, that is the ratio of error(x)/x, namely
error(x)

x = error(y)
y + error(z)

z + ...

Even though we did not observe differences between both original and optimized ver-
sion of one LQCD kernel run, we are aware that this application is very sensitive to data
precision. We have not yet run the whole code that intensively iterates on data and calls
this kernel. This will be a meaningful test.

5.4 Summary

We have presented reverse rematerialization, a novel method for reducing register pressure.
Reverse rematerialization takes advantage of the relative cost of computing versus memory
access. It recomputes data instead of spilling them. We have found that there may be
more opportunities for recomputing a value in reverse direction from output operands than
recomputing it from its original input operands. In this context reverse rematerialization
seems more beneficial. It provides a mechanism to reduce register pressure with a lowest
cost than classical rematerialization techniques. Our rematerialization algorithm targets
the basic blocks with higher register pressure, it is intended to work after register alloca-
tion based on register reuse chains that can provide all necessary information to extract
opportunities for recomputation in a graph.

Reverse rematerialization is also an alternative to spilling. Spilling is just storing inter-
mediate values in memory. Conversely we want to see if rematerialization and especially
reverse rematerialization could be an alternative to storing unneeded arrays of interme-
diate values in the memory. This could help exploiting at most as possible the available
memory which is one of the bottlenecks of LQCD. The next step would be then to apply
it also to communication - recompute rather than communicate.

91

We also have to extensively check whether precision issues can be overcome, this will
be done on the LQCD application that is a specially well adapted benchmark for that
purpose as it requires very high precision at least in some parts.

In the next chapters, we will see how reverse rematerialization may improve the par-
allelism. Improving register reuse by using this method can increase instruction and
thread-level parallelism typically available in the GP-GPU - general purpose graphical
process units.

92 5. Using Reverse Computing to Decrease Spill Code

Figure 5.19: Hopping Matrix k: data dependency graph

93

Figure 5.20: Hopping Matrix l: data dependency graph

94 5. Using Reverse Computing to Decrease Spill Code

Figure 5.21: su3 multiply: data dependency graph

95

Figure 5.22: complex times vector: data dependency graph

96 5. Using Reverse Computing to Decrease Spill Code

97

Chapter 6

Using Reverse Computing to
Increase Intruction Level
Parallelism

Contents

6.1 What is Instruction-Level Parallelism? 98

6.1.1 Instruction-Level Parallelism Challenges 98

6.2 Cell BE Implementation . 101

6.2.1 Cell BE Architecture Overview 101

6.2.2 Programming Cell BE . 102

6.2.3 Performance Measurement . 105

6.3 Summary . 106

98 6. Using Reverse Computing to Increase Intruction Level Parallelism

In this chapter, we show how we can improve instruction-level parallelism on Cell
BE (IBM) by increasing register reuse through recomputing, to allow more independent
instructions to be performed simultaneously. Even with enough available registers, re-
materialization through reverse operations may help to reduce register usage per loop
iteration by increasing pipeline usage through unrolling loops. We demonstrate a 16.8%
(statically timed) gain over a basic LQCD computation on Cell BE.

6.1 What is Instruction-Level Parallelism?

A program is, in essence, a set of instructions, that can be grouped together to accom-
plish a task. These instructions can be scheduled according to the data and resources
dependencies among them, and then executed in parallel without changing the result
of the program, to speed up the execution. This is called Instruction-Level Parallelism
(ILP). This is achieved by performing different stages of the pipeline1 through a number
of execution units within the processor.

Example:

1. A = B + C 1. A = B + C
2. E = A * D Scheduling 3. G = F + C
3. G = F + C =⇒ 2. E = A * D

IF ID ADD IF ID ADD
IF ID stall stall ... IF ID MUL

IF stall IF ID stall ...

The above code fragment consists of three instructions. The second instruction depends
on the result of the first instruction. So that, the processor stalls till computing of the
value A. The third instruction can be executed at the same time as the first instruction
because they do not depend on each other’s result. The compiler or the run-time system -
for instance superscalar processor - separate dependent instructions, 1 and 2, and regroup
independent instructions, 1 and 3, to be executed in parallel. In both cases, before and
after scheduling, the parallelism is the number of instructions divided by the number of
cycles required. Architectures that have been proposed to take advantage of this kind of
parallelism are superscalar processors [1] and VLIW architectures [52].

6.1.1 Instruction-Level Parallelism Challenges

Parallelism is limited among instructions. First, by data dependencies between pairs of
instructions. Second, by resource dependencies when an instruction requires a hardware
resource which is still being used by a previously issued instruction.

In the following, we apply our reverse computing-based technique in order to increase
the amount of ILP in the kernel of Hopping Matrix according to resource constraints.
Remember that the usefulness of reverse rematerialization is not only decreasing register

1Instruction pipeline is a technique used to increase the number of instructions that can be executed
in a unit of time. The fundamental idea is to split the processing of a computer instruction into a series
of independent steps, with storage at the final stage.

99

pressure, but also increasing register reuse to allow more instructions to be performed
simultaneously.

Two different kinds of techniques for increasing the instruction-level parallelism can
be exploited; exploiting it within a basic block and exploiting it across basic blocks.

6.1.1.1 Instruction-Level Parallelism within Basic Blocks

Consider the following code that corresponds to a part of the su3 multiply macro. As
the assembly code in Figure 6.1(a) shows, the added operations caused by reverse rema-
terialization do not increase the cycle time since they are overlapped with synchronized
operations and replace stall cycles. In this example, we consider that a reverse operation
has the same cycle time of its original operation. This is only an abstraction specially for
the multiplication and the division.

(b) Assembly code: without rematerialization! (c) Assembly code: using reverse rematerialization!

0! C[0] =!A[0]*B[0]!

1! C[1] =!A[1]*B[1]!

2! C[2] =!C[1]+C[0]!

3! C[3] =!A[2]*B[2]!

4! C[4] =!C[3]+C[2]!

5! C[5] =!A[3]*B[3]!

6! C[6] =!C[5]+C[4]!

7! C[7] =!A[4]*B[4]!

8! C[8] =!C[7]+C[6]!

9! C[9] =!A[5]*B[5]!

10!C[10] = C[9]+C[8]!

! ...!

000000 012345 fm $15,$3 ,$9!

000001 123456 fm $16,$4 ,$10!

000002 234567 fm $5 ,$5 ,$11!

000003 345678 fm $6 ,$6 ,$12!

000004 456789 fm $7 ,$7 ,$13!

000005 567890 fm $8 ,$8 ,$14!

000007 -789012 fa $16,$16,$15!

000009 -901234 fa $15,$5 ,$6!

000010 012345 fd $5 ,$5 ,$11!

000011 123456 fd $6 ,$6 ,$12!

000015 ---567890 fa $16,$16,$15!

000016 678901 fa $15,$7 ,$8!

000017 789012 fd $7 ,$7 ,$13!

000018 890123 fd $8 ,$8 ,$14!

000022 ---234567 fa $16,$16,$15!

000000 012345 fm $15,$3 ,$9!

000001 123456 fm $16,$4 ,$10!

000007 -----789012 fa $16,$16,$15!

000008 890123 fm $15,$5 ,$11!

000014 -----456789 fa $16,$16,$15!

000015 567890 fm $15,$6 ,$12!

000021 -----123456 fa $16,$16,$15!

000022 234567 fm $15,$7 ,$13!

000028 -----890123 fa $16,$16,$15!

000029 901234 fm $15,$8 ,$14!

000035 -----567890 fa $16,$16,$15!

(a) 3 address code!

Running count! Instruction clock cycle occupancy! Running count! Instruction clock cycle occupancy!

…

Figure 6.1: Using reverse computing to increase instruction level parallelism

Operation 2 depends on the results of operations 0 and 1, so it cannot be calculated
until both of them are completed. Knowing that input data stay alive during the whole
computation, so with only two available registers, the processor stalls for six cycles before
computing the result of operation 2. However operations 0, 1, 3, 5, 7, 9 do not depend
on any other operation, so they can be calculated in parallel if there are enough available
registers. As can be seen in Figure 6.1(c), by using reverse rematerialization we can use
registers of input data to perform the six operations and replace most of stall cycles. We
rematerialize input data once intermediate values are used. The performance gain in this
example is up to 31.7%

Table 6.1 shows the number of clock cycles - statically timed - and the speedup due to
reverse computation for some basic computations of LQCD program. We set the number
of available registers for small codes like vec times vec.

100 6. Using Reverse Computing to Increase Intruction Level Parallelism

Benchmark Available Cycles Cycles Improvement
registers -without remat.- -rev remat.-

vec times vec 14 49 44 10.2%
Hopping Matrix - 4815 4004 16.84%

(loop k)

Table 6.1: Contribution of reverse rematerialization to improve performance

6.1.1.2 Instruction-Level Parallelism across Basic Blocks

Sometimes, even if the register file can hold all intermediate values of one iteration, the
processor might occasionally stall as a result of data dependencies and branch instructions.
To avoid stalls, a dependent instruction must be separated from the source instruction
by a distance in clock cycles equal to the pipeline latency of that source instruction.
Rematerialization through reverse operations helps to reduce register usage per iteration to
keep pipeline full by unrolling loops without any spill operations. It can exploit parallelism
among instructions by finding sequences of unrelated instructions from different iterations
that can be overlapped in the pipeline.

Consider the C code in Figure 6.2(a), where the body of the outer loop is a simulation
of the example of Figure 5.4(a). The first inner loop generates a sequence of numbers
where each term is found by adding the previous one with a fixed number S. The second
inner loop returns the product of all previous elements and stores the result in array B in
memory.

000000 012345 fa $1, $1, $0!

000001 123456 ! fa $2, $2, $0!

000002 234567 fa $3, $3, $0!

000003 345678 fa $4, $4, $0!

000004 456789 fa $5, $5, $0!

000005 567890 fa $6, $6, $0!

000006 678901 fa $1, $1, $0!

... !

000084 456789 fm $10,$10,$1!

000085 567890 fs $1, $1, $0!

000086 678901 fm $20,$20,$2!

000087 789012 fs $2, $2, $0!

...!

000098 890123 fm $30,$30,$3!

000099 901234 fm $40,$40,$4!

000100 012345 fm $50,$50,$5!

000101 123456 fm $60,$60,$6!

000000 012345 fa $2, $1, $0 !

000001 123456 fa $20,$10,$0 !

000006 ----678901 fa $3, $2, $0 !

000007 789012 fa $30,$20,$0 !

000012 ----234567 fa $4, $3, $0 !

000013 345678 fa $40,$30,$0 !

...!

000048 ----890123 fm $6, $6, $3!

000049 901234 fm $60,$60,$30 !

000054 ----456789 fm $6, $6, $2 !

000055 567890 fm $60,$60,$20 !

000060 ----012345 fm $6, $6, $1 !

000061 123456 fm $60,$60,$10 !

for(j=0;j<N;j++){!

 A[0]=B[j];!

 for(i=1;i<M;i++)!

 A[i] = A[i-1] + S;!

 B[j] = A[M-1] * A[M-2];!

 for(i=M-3;i>=0;i--)!

 B[j] = B[j] * A[i];!

}! !

(b) Assembly codes - without reverse rematerialization

(a) Pseudo C code

x3

(c) Assembly codes - using reverse rematerialization

Running count! Instruction clock cycle occupancy!

Figure 6.2: Using reverse computing to increase instruction level parallelism

101

Here, the compiler can exploit a minimum of M registers, the sequence’s size, which
is the number of simultaneously live values. As shown in Figure 5.4(c), using reverse
rematerialization, we can reduce the register requirement to only two registers.

By assuming that the number of the first inner loop’s iterations is 6, and the number
of available registers is 12, the compiler can select the unroll factor that fits the register
requirements into the available registers. The outer loop can be unrolled twice, without
using rematerialization, and 6 times using reverse rematerialization. The aim is to avoid
the stalls and extra tests and branches. After unrolling, there are 2 copies of the original
loop body and 6 copies of the modified loop with additional operations. If we assume that
the number of j-loop iterations is 6, the estimated running time of this loop is the running
time of the body loop after unrolling, times the new number of iterations, as shown in
Figure 6.2(b). In this example it is estimated to 201 cycles for the original code without
using rematerialization, compared to only 107 cycles using rematerialization.

The assembly code in Figure 6.2(c) shows this optimization and the number of cycles,
statically timed using the spu-timing tool of IBM on Cell BE. As can be seen, with reverse
rematerialization, we can use available registers to perform six independent operations
and replace all stall cycles. The performance gain in this example is x2.

However, this optimization is traded off on Cell BE due to the small size of SPE’s
local store (LS) where the code has to be loaded, against the potential penalty caused by
increased code size on the larger loop body to fit both code and data.

6.2 Cell BE Implementation

6.2.1 Cell BE Architecture Overview

The cell Broadband Engine (CBE), shown in Figure 6.3, is a single chip heterogeneous
multi-core processor that can provide a huge computational power with high efficiency for
a wide range of applications due to a 64-bit Power Processor Element (PPE) and eight
Synergistic Processor Elements (SPEs).

Each SPE is a Single Instruction Multiple Data (SIMD) engine with 128-bit vector
registers for single and double precision instructions, and 256 KB of non-coherent local
memory. It communicates with other SPEs and main memory through its DMA controller.
The communication between the PPE, the SPEs, main memory, and external devices is
realized through an Element Interconnect Bus (EIB), which has a 204.8 GB/s bandwidth
peak performance at half the system clock rate. The Memory Interface Controller (MIC)
provides 25.6 GB/s to system memory. The I/O controller (IO) provides peak bandwidth
of 25 GB/s inbound and 35 GB/s outbound.

The PPE and each SPE can complete eight single precision operations per clock cycle
by using a vector fused-multiply-add instruction (”SIMD” instructions), which translates
to 25.6 GFLOPS at 3.2 GHz. In double precision, at the same processor clock rate, the
theoretical peak performance is 6.4 GFLOPS for PPE and 1.8 GFLOPS per SPE. As
a result, the CBE is capable of achieving 230.4 GFLOPS in single precision and 20.08
GFLOPS in double precision at 3.2 GHz.

102 6. Using Reverse Computing to Increase Intruction Level Parallelism

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

EIB (204.8 GB/s)

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

SPE

 SPU

(128x128b

Registers)

 LS

(256 KB)

51.2GB/s

25.6 GB/s

25.6 GB/s

 L2 (512 kB)

L1 (32KB I-D)

51.2GB/s 51.2GB/s

PX / VMX

25.6 GB/s 25.6 GB/s

PPE

51.2GB/s

IO

Controller
MIC

Memory

25.6 GB/s 25.6 GB/s 25.6 GB/s

25.6 GB/s

25.6 GB/s 35 GB/s

BIF &I/O

Figure 6.3: Cell Broadband Engine Architecture

6.2.2 Programming Cell BE

6.2.2.1 Code SIMDization

The first important step in developing Cell BE application, after having determined ker-
nels, is to use Vector/SIMD functional units; Multimedia Extension (VMX unit of the
PPE) and Synergistic Processor units (SPUs of the eight SPEs). Nearly all instructions
provided by the SPE operate in a SIMD fashion on 128 bits of data. SIMDization is a
form of fine grained parallelism that obeys certain constraints with respect to accessed
data. Data have to be aligned and contiguous.

Therefore, to achieve high rates of computation at moderate costs in area, data orga-
nization is very important. Two organizations are possible: array of structures (aos) and
structure of arrays (soa). In our code, the first organization helps to optimize space and
use the whole 128-bit registers, because the elementary data in the code is structure of
three complex numbers, each complex variable representing two 64-bit double floats, so
three registers are required to hold three complex numbers, contrary to the second orga-
nization that requires four registers to hold one SU(3) vector. Data organization is shown
in Figure 6.4.

Recall that two complex numbers x = a+ bi and y = c+ di are multiplied as follows:

Real part = a ∗ c− b ∗ d

Imaginary part = a ∗ d+ b ∗ c
In the array of structure organization, one vector register can hold one complex double
precision. So, within-loop SIMDizable, a cost model is employed to shuffle SIMD vectors
elements.

A best way to enable an efficient parallel execution is extracting SIMD parallelism

103

r
0

0
i
0

0
r
0

1
i
0

1

…!

…!

r
0

2
i
0

2

r
0

0
i
0

0
r
0

1
i
0

1
r
0

2
i
0

2

r
0

0
r
0

1
r
0

2
i
0

0
i
0

1
i
0

2

r
0

0
r
0

1
r
0

2
i
0

0
i
0

1
i
0

2

r
0

0
r
1

0
i
0

0
i
1

0
r
0

1
r
1

1
i
0

1
i
1

1
r
0

2
r
1

2
i
0

2
i
1

2

Array of Structures!

Structure of arrays!

(a) Within loop SIMDization! (b) Across-loop SIMDization!

r
0

0
r
1

0
i
0

0
i
1

0
r
0

1
r
1

1
i
0

1
i
1

1
r
0

2
r
1

2
i
0

2
i
1

2

r
1

0
i
1

0

r
1

0
i
1

0

r
1

0
r
1

1

r
1

0
r
1

1

su3_vector!

Figure 6.4: Data organization for SIMD operations (SM)

across-loop iterations and not within-loop, as loop-level SIMDization satisfies dependence
conditions as a traditionally vectorizable loop. This makes easier and faster developing
and avoids all shuffling operations.

Data in this case is structure of very long arrays. Figure 6.5 shows different data
structures used in our implementation of LQCD on Cell BE.

struct complex {!

 double *re,*im;!

};!

struct su3 {!

 complex c00,c01,c02,c10,c11,c12,c20,c21,c22;!

};!

struct su3_vector {!

 complex c0,c1,c2;!

};!

struct spinor {!

 su3_vector s0,s1,s2,s3;!

};!

struct halfspinor {!

 su3_vector s0,s1;!

};!

spinor k;!

halfspinor phi;!

su3 gauge;!

struct complex {!

 double re,im;!

};!

struct su3 {!

 complex c00,c01,c02,c10,c11,c12,c20,c21,c22;!

};!

struct su3_vector {!

 complex c0,c1,c2;!

};!

struct spinor {!

 su3_vector s0,s1,s2,s3;!

};!

struct halfspinor {!

 su3_vector s0,s1;!

};!

spinor *k;!

halfspinor *phi;!

su3 *gauge;!

Data structure: within loop SIMDization Data structure: across loops SIMDization !

Figure 6.5: Different data structures used in LQCD

104 6. Using Reverse Computing to Increase Intruction Level Parallelism

6.2.2.2 Code Partitioning

The next step, is to determine for each kernel the number and mapping of SPE threads
used in the computation. The Hopping Matrix algorithm exhibits two synchronized loops
containing synchronized operations. We wrote two kernels for these two loops and we
called them Hopping Matrix k and Hopping Matrix l, and each thread of each kernel would
perform a different amount of work. The master thread runs on the PPE processor.

6.2.2.3 Communication and Data Transfer

A more significant step, is to determine the optimal memory layout and the access to
memory. The PPE accesses main storage with load and store instructions that move data
between main storage and a private register file, the contents of which may be cached. The
PPU can perform one 16 Byte access to the 32KB L1 cache per cycle. The L1 cache has one
read bus and one write bus to the 512 KB L2 cache performing up to two 16 Byte accesses
per cycle (one read, one write). The SPEs, in contrast, access main storage with direct
memory access (DMA) commands that move data and instructions between main storage
and local store (LS). The SPE’s 256KB local memory fully pipelined 16-byte accesses for
memory instructions and 128-byte accesses for instruction fetch and DMA transfers. To
fit code and data into the small SPE memory and keep the computation fluid, we used
double buffering on the input and output data buffers where possible. Essentially, during
current computation we had ongoing DMAs that transfers out the previous results and
transfers in the next input data from/to global memory. See Figure 6.6 for an illustration
of how double buffering works.

GET(0) GET(1) PUT(0) GET(0) PUT(1) PUT(1)

PROCESS(1) PROCESS(0)

GET

PROCESS PROCESS

PUT GET

PUT(0) GET(1)

PROCESS(0)

PUT

time

MFC

CPU

MFC

CPU

Single Buffer DMA

Double Buffer DMA

PROCESS(1)

Figure 6.6: Double buffering

Register Allocation Register allocation is very important in Cell BE in terms of per-
formance, because, first the memory is slow and second the local store of SPE is small
(256KB) to fit both code and data. Reducing lifetime of intermediate local variables al-
lows to use fewer registers and less local store and avoids each time 6 cycles of load/store
latency in case of high register pressure.

By programming the SPE in assembler, we can select which registers to use and sched-
ule the code manually. We perform aggressive register allocation to increase register reuse

105

using recomputing for all local computations, to make good use of the 128-entry register
file. As a result, most local variables are rematerialized from live data, and thus memory
storage and associated load/store instructions are reduced. This provides a high degree of
flexibility and, when used judiciously, will yield highest performance.

6.2.3 Performance Measurement

The experiments were done on the IBM BladeCenter QS22. We first evaluate the across-
loops SIMDization for double and single precision computation by measuring SPE time
elapsed without DMA transfer. The across loops SIMDization delivers better SPE perfor-
mance of up to x2 compared with within-loop SIMDization. For single precision computa-
tion, we do not expect better results with within-loop SIMDization because more shuffling
operations are required than in double precision computation.

Tables 6.2 and 6.3 show the SPU time spent by both Hopping Matrix k and Hop-
ping Matrix l, without data transfer, for the maximum buffer size, for one iteration. Data
size concerns only input and output data of the program. The number of operations in
the tables is the total number of operations executed for the whole buffer size.

To measure time elapsed in DMA transfer we initialize the decrementer register just
before mfc put, which writes back data in the main memory, and we read the new register’s
value after having got input data from main memory with mfc get. We did not implement
a single precision version for SIMDization within-loop because we believe that performance
will be penalized by the increased number of shuffling operations that will be required.

SIMDization across-loops within-loop

single precision double precision double precision

Code size (KB) 16.58 16.43 10.11

Data size (KB) 216.125 222.125 243

Number of iterations 36 74 162

Number of operation 110592 113664 124416

SPU time (µs) 12.94 18.08 38.14

Table 6.2: Hopping Matrix k

SIMDization across-loops within-loop

single precision double precision double precision

Code size (KB) 18.85 18.63 12.95

Data size (KB) 216.125 216.125 243

Number of iterations 36 72 156

Number of operation 124320 124320 131040

SPU time (µs) 11.89 15.83 42.34

Table 6.3: Hopping Matrix l

The number of iterations with SIMDization across-loops is divided by two in double
precision version and by four in single precision version, because we perform two and four
spinors data per iteration respectively, contrary to the SIMDization within-loop where
one spinor data is performed per iteration. However, the loop body in the SIMDization
across-loops version is larger, which means that the code size is larger too. The different

106 6. Using Reverse Computing to Increase Intruction Level Parallelism

data size in different versions is explained by the limited LS space which is being used for
both code and data. An increased code size limits space to buffer data.

For the global Cell BE performance, we vary the used SPE count from 1 to 16. Across
loops SIMDization still returns better results but not with the same rate comparing with
within-loop SIMDization. As shown in Tables 6.2 and 6.3, the code size in within-loop
SIMDization implementation is smaller than that in across-loop SIMDization implemen-
tation which allows to increase the buffer size and reduce the number of DMA transfers.

Figures 6.7 shows global performance on the QS22 and how performance scales with
the count of SPEs. The peak performance is reached with 8 SPEs most of time. So few
SPEs can be used to save power.

SPE count!

G
F

L
O

P
S
!

Hopping_Matrix_k!

SPE count!

G
F

L
O

P
S
!

Hopping_Matrix_l!

!"

#"

$"

%"

&"

'"

("

#" $" &" (")" #!" #$" #&" #("

*+,-.."/--0.".12314*5-6"

7%$891:.;"

*+,-.."/-00.".12314*5-6"

7(&891:.;"

<1:=16"/--0".12314*5-6"

7(&891:.;"

!"

$"

&"

("

)"

#!"

#$"

#&"

#("

#)"

#" $" &" (")" #!" #$" #&" #("

Figure 6.7: Scalability of performance with the count of the used SPEs for different
SIMDization techniques

6.3 Summary

We have seen that reverse rematerialization may improve instruction parallelism, within
and across basic blocks.

Within a basic block, when stall cycles due to data dependencies are caused by the
limited number of registers, reverse rematerialization can increase register reuse to allow
more independent instructions to be performed simultaneously and replace stall cycles.

Across multiple basic blocks and multiple iterations of a loop, reverse rematerializa-
tion can help to reduce register demands per iteration to increase pipeline usage through
unrolling loops to exploit parallelism among instructions by finding sequences of unrelated
instructions from different iterations that can be overlapped in the pipeline.

In the next Chapter, we will show how reverse rematerialization can increase thread-
level parallelism typically available in the GP-GPU - general purpose graphical process
units, by improving register pressure.

107

Chapter 7

Using Reverse Computing to
Increase Thread Level Parallelism

Contents

7.1 GPU Architecture and Programming Model 108

7.1.1 Memory Hierarchy . 109

7.1.2 Thread-Level Parallelism . 110

7.1.3 Register Usage, Rematerialization and Performance 110

7.2 Experimental Results . 113

7.3 Analysis of Results . 116

7.3.1 Limitations . 117

7.4 Summary . 117

108 7. Using Reverse Computing to Increase Thread Level Parallelism

Single core processor has apparently hit physical limits of clock frequencies. To sustain
the Moore’s law, chip-makers now increase the number of processing units on a single chip,
instead of increasing clock rate. These processing units are called cores; the chip is called
multi-core processor.

However, an increased number of cores per chip at the same clock rate does not al-
ways speed up linearly applications that have already reached the limits of their parallel
efficiency. Only applications that have excellent parallel efficiency can further exploit the
power of multi-core processors. In this case, multiple independent data buffers can be
processed simultaneously. However the parallelism in an application is not limited only
by data dependencies but also by resource availability.

The aim of this chapter is to study the exploitation of inter-core parallelism or thread
level parallelism, through recomputing in general and reverse computing in particular.

We study the limits of parallelism available in applications due to the memory space
availability. We target multi-core processors with shared memory or shared register file
structure like GPUs, and we show how we can increase thread level parallelism by increas-
ing resources availability through recomputing to minimize memory space requirements.
Our recomputing approach is more generic, it is also based on reverse computing with one
or multiple instructions.

7.1 GPU Architecture and Programming Model

GPU is a massively parallel architecture initially intended for media application such
3D games or high-end 3D rendering. But modern GPUs have been designed to enable
fundamental advances in processor performance and their highly parallel structure makes
them more effective than general-purpose CPUs for a range of complex algorithms in both
commercial and scientific fields. It is made possible by the addition of programmable stages
and higher precision arithmetic making it, an ideal processor to accelerate a variety of data
parallel applications. Figure 7.1 shows a block diagram of the NVIDIA Fermi Streaming
Multiprocessor (SM). The NVIDIA, first who coined the terms graphics processing unit
and GPU, Fermi architecture has been designed to support a broad range of application
by featuring up to 448 CUDA cores. A CUDA core executes a floating point or integer
instruction per clock for a thread. The 448 CUDA cores are organized in 14 Streaming
Multiprocessors (SMs) of 32 cores each. Each CUDA processor has a fully pipelined integer
arithmetic logic unit (ALU) and floating point unit (FPU). Each SM has 16 load/store
units, allowing source and destination addresses to be calculated for sixteen threads per
clock. Four Special Function Units (SFUs) execute transcendental instructions such as
sine, cosine, reciprocal, and square root. Each SFU executes one instruction per thread,
per clock. Up to 16 double precision fused multiply-add operations can be performed per
SM, per clock. Each SM has a 128 KB of shared register file and a 48 KB of shared
memory. The SM schedules threads in groups of 32 parallel threads called warps. Each
SM features two warp schedulers and two instruction dispatch units, allowing two warps
to be issued and executed concurrently.

109

Figure 7.1: Fermi Streaming Multiprocessor (SM)

7.1.1 Memory Hierarchy

NVIDIA Fermi GTX 470 has three physical programmable memory spaces, which have
different characteristics that affect the performance of applications depending of their
usage.
Shared Register Files At the top level of the memory hierarchy are the shared register
files. Each SM has 32 768-entry, 32-bit shared register file providing the fastest access to
data possible at 1 clock cycle. This register file stores all data types - integer, floating-
point, etc.
Shared Memory Fermi introduced 64 KB of on-chip memory that can be configured as
48 KB of shared memory used to facilitate reuse of data within the same thread block and
16 KB that can be requested as L1 cache memory. Latency of shared memory is 10 to 20
clock cycles . There is also the 768 KB L2 data cache shared by all SMs services for all
load, store and Texture requests.
Global Memory Global memory has the greatest access latency, because it is off-chip.
Its latency is roughly 40x higher than shared memory. There is a latency of 400 to 600
clock cycles to read data from global memory.
Local, Texture and Constant memory are all off-chip memories implemented in the global
memory.

For existing applications that are bandwidth constrained, reducing the shared memory
and register usage yields significant performance improvements. First, by avoiding higher-
level memory usage, to automatically benefit from fast on-chip registers. Second, by
increasing the multiprocessor warp occupancy to hide latency of the global memory by
issuing independent instruction while waiting for the global memory access to complete.

110 7. Using Reverse Computing to Increase Thread Level Parallelism

We study the effects of register requirement via direct measurement of time.

7.1.2 Thread-Level Parallelism

The SM’s 32 768-entry, 32-bit register file allows running 1024 threads simultaneously
which is the maximum number of threads per block running on a single streaming multi-
processor. Several thread blocks may run on the same SM. If one thread block stalls while
waiting for global memory, etc., then another thread block may run. This can be used
to hide the latency. The number of registers and shared memory required by the kernel
affects the number of threads per block and the number of thread blocks per streaming
multiprocessor. If a thread uses more ”variables” than registers allocated for each thread,
the extra variables will automatically be spilled to a special region of global memory,
called local memory, which may decrease performance. The optimization we found to be
important, as Fermi runs most efficiently with a large numbers of threads, was a concept
"recomputing or rematerialization", that helps to minimize register requirements per
thread. We mean that all registers of values that can be recomputed, they can be re-used.
This increases register reuse and reduces register demands per thread that should increase
the number of active threads per SM.

7.1.3 Register Usage, Rematerialization and Performance

Register pressure is a big issue for GPUs, and one way of limiting register pressure is to
make sure we efficiently use data presented in different levels of memory hierarchy. Some
times several data carry the same information, so no need to keep all of them in memory.
Example c:=a+b, the information in (a,b,c), (a,b), (a,c) or (b,c) is the same, so no need to
keep the three values live at the same time, because we can always compute one value from
the two others. a can be retrieved from (b,c) and b from (a,c) by a simple subtraction.
Hence, values that carry the same information can share the same register.

To achieve this goal, we use our technique of register rematerialization based on reg-
ister reuse chains after register allocation, proposed in Chapter 3. Figure 7.2 shows an
overview of the algorithm. It takes a GPU kernel as an input and constructs data depen-
dence graphs (DDG) for the basic blocks. The measurement of register requirements uses
a reuse DAG indicating which instruction can reuse a register used by a previous instruc-
tion. Once rematerialization decision is made, we proceed to the graph transformation
of the original DDG. The rematerialization algorithm we propose is iterative, after each
graph transformation we re-call the algorithm till there will be no rematerializable value.

New GPU Kernel

Register Reuse

Chains

Detecting

Excessive

Registers

Finding

Rematerializable

Values

Graph

Transformation

GPU Kernel

Rematerialization

Setting

Data Dependency

Graph

Rematerialization decision!

Figure 7.2: Overview of the rematerialization algorithm

111

We aim to study the impact of reverse rematerialization on performance and how
additional operations could affect the execution time. We try also to find a trade-off
between register usage, number of rematerialization instructions and performance. We
have implemented the code of Figure 6.2(a) on NVIDIA GTX 470 as both opportunities
of direct and reverse rematerialization exist. The body of the outer loop is a simulation
of the example in Figure 5.4(a). We apply direct and reverse rematerialization till there
will be no rematerializable value. In this example the register requirements using reverse
rematerialization is lowered to two as shown in Figure 5.4(c). Figure 7.3 shows execution
time as we vary the number of simultaneously live values. By comparing the two plots of
Figure 7.3 we notice that the positive impact of reducing register usage per thread by using
reverse rematerialization and rematerialization in general is not immediate. This can be
explained by, first, the limited number of concurrently running threads per SM, 1024 on
GTX 470 compared to the large number of registers, 32 768 32-bit registers, which allows
assigning up to 32 registers per threads. So no speedup is expected with a number of live
values less than 32. Second, the number of additional operations increases by increasing
the number of simultaneously live values when the number of available registers is fixed,
as shown in figure 7.4.

running time!

live values!

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#!("

!#!)"

!#!*"

!" %!" '!")!" +!" $!!" $%!" $'!"

,-.-,/-",-012"

3425672",-012"

Figure 7.3: Reverse rematerialization : performance vs. register requirements

After the crossing of the two curves, we start getting speedup and when the number
of live values is getting larger, the performance gap between the two versions is getting
larger too. In this simulation, the register requirements per thread using rematerialization
is constant, only the number of operations is increasing. The plot of reverse rematerial-
ization is almost linear with the number of simultaneously live values because the register
requirement and the number of active threads are constant and only the number of op-
erations is increasing. Thus, there is no extra spill of variables or use of local memory
compared to the original code.

112 7. Using Reverse Computing to Increase Thread Level Parallelism

live values!

add flop!

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

!" #!" $!" %!" &!" '!" (!"

)*+,-."+,/0."

+,1,+2,"+,/0."

Figure 7.4: Cost of reversibility: additional operations

Now we choose a configuration with 48 simultaneously live values that requires 48
registers. We apply again reverse rematerialization and we vary the number of available
registers in the algorithm. Knowing that the number of additional operations decreases
by increasing the number of available registers and vice versa. Figure 7.5 shows that
the execution time decreases gradually by increasing the number of available registers.
However the optimal running time is reached when the number of registers is less than
that required for the original version.

!"!!#$

!"!!%$

!"!!&$

!"!!'$

!"!!($

!"!!)$

!"!!*$

!"!!+$

!"!,$

!$,!$ #!$ %!$ &!$ '!$ (!$

-./.-0.$-.123$

4536783$-.123$

running time!

available registers!

Figure 7.5: Reverse rematerialization : performance vs. available registers

In the future, in order to take advantage of this approach systematically, we would
like to find ways in which a compiler can automatically predict with which rate reducing
register demands per thread, using recomputing, will provide higher performance. This
allows high performance CUDA programs to be built with minimum time and effort.

113

7.2 Experimental Results

This section presents our experiments in parallelizing LQCD application on NVIDIA GPU.
We have taken the simplest approach in parallelizing across multiple cores of GPU, by as-
signing one thread to each lattice site. In other words, we have assigned one thread per
loop iteration Hopping Matrix.

We wrote a parser for the kernel that extracts basic blocks and builds their data depen-
dency graphs. We use our tool to study and optimize this application. We give priority to
reduce register requirements per thread without inserting any spill instruction. Figure 7.6
shows a code fragment of Hopping Matrix and its corresponding data dependency graph.

U

ka chi
0 chi

1

phi
0 phi

1

psi
0 psi

1

 : matrix!

 : vector!

 : vector!

 : vector!
 : complex !

phi
j

chi
j

psi
j

U

ka

_su3_multiply(chi0, U, psi0);!

_complex_times_vector(phi0, ka, chi0);!

_su3_multiply(chi1, U, psi1);!
_complex_times_vector(phi1, ka, chi1);!

U

ka

chi
0

chi
1

phi
0

phi
1

psi
0

psi
1

(b) Register Reuse Chain!(a) Data Dependency Graph!

Simultaneously live values: !

26 inputs + 4 intermediate values !

Figure 7.6: HMC code fragment: original implementation

We divide the instructions into sub-instructions. The major improvement is reordering
the computational instructions, so that, we decrease the number of simultaneously live
values. A vector of matrix U is used for the computation of two complex of two different
vectors. We compute the i-th complex of each vector instead of computing one vector
after another, as shown in figure 7.7. Thus, a matrix U is never loaded entirely, but only
the six values on each line that will be replaced by the next six values of the next line.
Hence, we can save up to 6 registers in this code fragment.

As a result, we got a new version of Hopping Matrix called Hopping Matrix opt that
requires fewer registers than the original code. We call also the optimized versions of
Hopping Matrix k and Hopping Matrix l, Hopping Matrix k opt and Hopping Matrix l opt
respectively.

114 7. Using Reverse Computing to Increase Thread Level Parallelism

U
0

U
1

U
2

ka chi
0

0
chi

1

0
chi

2

0
chi

0

1
chi

1

1
chi

2

1

phi
0

0
phi

1

0
phi

2

0 phi
0

1 phi
1

1

phi
2

1

psi
0 psi

1

_vector_times_vector(chi00, U0, psi0);!
_complex_times_complex(phi00, ka, chi00);!

_vector_times_vector(chi01, U0, psi1);!
_complex_times_complex(phi01, ka, chi01);!

_vector_times_vector(chi10, U1, psi0);!
_complex_times_complex(phi10, ka, chi10);!

_vector_times_vector(chi11, U1, psi1);!
_complex_times_complex(phi11, ka, chi11);!

_vector_times_vector(chi20, U2, psi0);!
_complex_times_complex(phi02, ka, chi20);!
_vector_times_vector(chi21, U2, psi1);!

_complex_times_complex(phi21, ka, chi21);!

U
0

ka chi
0

0

chi
0

1

phi
0

0

phi
0

1

psi
0psi

1

(b) Register Reuse Chain!

Simultaneously live values : !

20 inputs + 4 intermediate values !

U
1

U
2

chi
2

0

chi
2

1

phi
2

0

phi
2

1

(a) Data Dependency Graph!

 : vector!

 : vector!

 : complex!

 : complex!

 : complex !

phii
j

chii
j

psi
j

U
i

ka

Figure 7.7: HMC code fragment: code splitting and reordering - optimized implementation

In Chapter 3, we showed that rematerialization through reverse computing can reduce
the register usage at a significant rate, so we performed this optimization for both original
and optimized versions as described in Table 7.1 that shows a gain of 6% and 14% in
register requirement for Hopping Matrix k and Hopping Matrix k opt respectively, and an
increase of 20% of the maximum number of threads per block in the optimized implemen-
tation using recomputing. This optimization increases the number of instructions of the
GPU kernel by 7%, but recomputing using reverse operations from output operands
amortizes the cost of recomputing to 4.68%. Even if recomputing increases the number of
instructions, this should not penalize performance since threads of one warp are running
in parallel comparing to the gain from reducing register demands that frees more space for
more threads. The total space gain equals to register gain per thread times the number
of threads per SM.

115

min reg. req. max thread/block

Hopping Matrix k 50 640

Hopping Matrix k remat 47 640

Hopping Matrix k opt 43 704

Hopping Matrix k opt remat 37 768

Hopping Matrix l 54 576

Hopping Matrix l opt 50 640

Table 7.1: Contribution of reverse rematerialization to increase thread level parallelism

We measure the performance of the original and optimized code without and with using
recomputing. Tables 7.2 and 7.3 present results for: (1) original code without any kernel
optimization (2) code optimized using our register allocation tool. This result demon-
strated the efficacy of recomputing to improve performance by increasing memory space
availability and thread level parallelism. It provides improvements of 5.75% and 10.83%
over original code for single and double precision respectively, and -1.33% and 10.60% over
the optimized implementation for single and double precision versions respectively.

without remat with remat %Perf

Hopping Matrix k
float 19.12 20.22 5.75%

double 9.69 10.74 10.83%

Table 7.2: Contribution of reverse rematerialization to increase performance on NVIDIA
GPU (gflops) - original implementation -

without remat with remat %Perf

Hopping Matrix k opt
float 20.19 19.92 -1.33%

double 11.88 13.14 10.60%

Table 7.3: Contribution of reverse rematerialization to increase performance on NVIDIA
GPU (gflops) - optimized implementation -

Our results in table 7.4 illustrate that on a NVIDIA GTX 470 GPU, recomputing
can even improve single-thread performance. Among the four different single precision
versions, applying recomputing on the original code takes the least amount of time which
increases performance up to 22.9% to 0.14 gflops. When converting to double precision
only an improvement of 6.4% can be observed by using recomputing on the original code.
Our optimization has a negative impact on the optimized versions.

without remat with remat % Perf

Hopping Matrix k
float 0.1163 0.1429 22.9%

double 0.0565 0.0601 6.4%

Hopping Matrix k opt
float 0.1115 0.1097 -1.6%

double 0.0747 0.0737 -1.3 %

Table 7.4: Single thread performance on NVIDIA GPU (gflops)

116 7. Using Reverse Computing to Increase Thread Level Parallelism

GFLOPS

!"

#"

$!"

$#"

%!"

%#"

&'()" *'+,-."

'/0102(-"

'/0102(-3/.4()"

'56407.*"

'56407.*3/.4()"

Figure 7.8: Reverse rematerialization: global performance on NVIDIA GPU (gflops)

GFLOPS

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

!#(&"

)*+," -*./01"

*23435+0"

*23435+06217+,"

*8973:1-"

*8973:1-6217+,"

Figure 7.9: Reverse Rematerialization: single thread performance on NVIDIA GPU
(gflops)

7.3 Analysis of Results

Table 7.5 shows a weak single-thread performance on NVIDIA GPU compared to Cell
BE. This is justified by the slower memory, lower clock frequency and short vector data
parallelism. The power of the GPU comes from that it can keep thousands of threads
running concurrently. Constantly swapping different threads, with no context switch over-
head, hides global memory latency and stall time due to dependencies among instructions,
which is approximately 24 cycles. Thus, increasing the number of active threads per SM
makes GPU able to run a lot of threads in essentially the same time as a single thread
would execute as it is shown in Table 7.6.

NVIDIA GPU today demonstrates approximately twice the performance for single
precision execution when compared to double precision. We know double precision rules in
High Performance Computing for problems that require higher precision and to minimize
the accumulation of round-off error.Because of lack of 64-bit registers, recomputing to
reduce register usage has greater advantages for 64-bit floating point execution.

117

Cell BE NVIDIA GTX 470

Hopping Matrix k
float 2.82 0.14

double 1.07 0.07

Hopping Matrix l
float 4.62 0.12

double 1.87 0.03

Table 7.5: Cell BE Vs NVIDIA GPU: single thread performance (gflops)

Cell BE NVIDIA GTX 470

Hopping Matrix k
float 5.44 20.22

double 2.68 13.14

Hopping Matrix l
float 15.61 25.92

double 7.79 8.52

Table 7.6: Cell BE Vs NVIDIA GPU: global performance (gflops)

7.3.1 Limitations

Currently, our reverse rematerialization has several limitations. First, there are data preci-
sion issues especially with floating point operations and round-off problems. Next, division
operation, the inverse of multiplication, when implemented in software, will require more
non pipelined stages, and each will require temporary storage of a few intermediate results,
so we only apply reverse rematerialization when we do not exceed the number of registers
of the original operation.

7.4 Summary

We have shown experimental results for our approach using reverse computing based
register rematerialization. A number of previous works have addressed the interaction
between instruction scheduling and register allocation, but using reverse computing gives
news degrees of freedom and we have shown that it can still improve performance despite
an increase in instruction count. In our algorithm the maximum number of steps required
for recomputing a value is a parameter hence in the future, the user could flexibly play
with this parameter to find the best trade-off between number of threads, register count
and additional instruction count

We have also shown that register allocation is still an important issue on the recent
GPU processors as different threads share a common register file and the number of
simultaneously concurrent threads depends on the number of registers of each individual
thread. In this case too reverse computing helps gaining performance as it provides more
opportunities for register rematerialization.

We will have to extensively check whether precision issues can be overcome, this will
be done on the LQCD application that is a specially well adapted benchmark for that
purpose as it requires very high precision at least in some parts.

119

Part IV

Conclusion

121

Chapter 8

Conclusion and Future Work

Contents

8.1 Conclusion . 122

8.2 Future Work . 123

122 8. Conclusion and Future Work

8.1 Conclusion

The reversibility view of computation can help to improve time and space efficiency of
programs. The goal of this thesis was to study the effects of information on time and
space from the point of view of reversible computing. In particular, we have tackled three
significant problems:

1. the trade-off between conservation of information and memory space.

2. the relationship between information and recomputing.

3. the effect of recomputing on the execution time and memory space requirements.

This work addresses these problems in the context of reversible computing. The basic
idea of using reverse computing for improving performance is motivated by two observa-
tions. First, the relative cost of computing versus the memory access. Second, reversible
computing favors the regeneration of data.

It is quite interesting to note that when trying to break today’s barriers we have to rely
on new hypotheses, for instance considering that computation is almost for free, specially
when the gap between processor and memory speeds is increasing.

The work described in this thesis addresses three topics:

• studying the spatial complexity of reversible programs by designing a new technique
for register allocation and instruction scheduling.

• using reverse recomputing to improve time and space efficiency of programs.

• practical works, including a variety of experiments on multi-core processor architec-
tures.

In the first part, we have presented an analysis of the number of registers required to
make a DAG computing graph reversible. We have defined the energetic garbage as the
additional number of registers required for computing a forward and backward execution of
the graph with respect to the simple forward execution. We gave a lower bound as the size
of the decomposition of the graphs into elementary paths and through our experiments,
we found that the garbage size does not exceed 50% of the program size - for DAG of
unary/binary operations. However, values’ lifetime is shorter in a direct computation.

In the second part, we have presented reverse rematerialization, a novel method for
reducing register pressure which takes advantage of the relative cost of computing versus
memory access. We have found that there may be more opportunities for recomputing a
value in reverse path from output operands than recomputing it from its original input
operands. We also showed that reverse rematerialization may increase instruction-level
parallelism and thread-level parallelism by increasing resource availability.

For the experiments, we first implemented a graph generator for generating connected
and directed acyclic graphs. The graph generator can generate all graphs of a given size or
random graphs of different sizes. The graphs have been used to test the effectiveness of our
reverse register allocation algorithm. We have developed a register allocation technique
for reversible execution of programs. The allocator computes also the energetic garbage
defined as the difference between the number of registers required for direct execution and
those required for reversible execution. We have developed a technique based on register
reuse chains for measuring the register requirements in basic blocks. We developed a new

123

rematerialization technique based on register reuse chains through reverse computing.
We ported the LQCD simulation code on Cell BE and NVDIA GPU and we applied
our optimization techniques on this code. The results demonstrated the benefit of the
optimizations for decreasing spill code and improving both instruction-level parallelism
and thread-level parallelism on both architectures, which are critical for achieving good
performance. Finally, experiments showed that the performance depends on information
locality rather than data locality.

8.2 Future Work

Despite our efforts, we are aware that more systematic experiments should be done and
more benchmarks should be used in order to prove that rematerialization based reverse
computing is effective in the general case. But we believe that as the gap between com-
munication/memory latency and CPU latency increases we possibly will have to consider
that computation is for free and only communication matters. Recomputing together with
reverse recomputing may then be an alternative to communication/memory access, but
at the price of opening the precision issue, a new trade-off that we believe is worth being
a topic for future research in high performance computing.

The other next step would be to apply recomputing in general and reverse recomputing
in particular to communication - recompute rather than communicate since the inter-
processor communication seriously affects the performance of parallel processing.

We would also like to find ways in which a compiler can automatically predict the
good parameters of reverse rematerialization in order to take advantage of this approach
systematically. This allows high performance programs to be built with minimum time
and effort.

In addition, it is quite interesting to integrate our register allocation algorithm for
reversible programs presented in Section 3.1 in a reversible compiler like the RCC -Georgia
Tech’s reversible C code compiler [39] in order to compare the size of generated codes with
existing reversible programs and memory usage.

Finally, we aim also to continue studying the thermodynamics aspect of computation
and try to understand more deeply the program entropy.

125

Bibliography

[1] Tilak Agarwala and John Cocke. High performance reduced instruction set processors.
Technical Report #55845, March 31 1987.

[2] M. Josephine Ammer, Michael Frank, Tom Knight, Nicole Love, Norm Margolus,
Carlin Vieri, and Margolus Carlin Vieri. A scalable reversible computer in silicon,
1998.

[3] Andrew W. Appel and Lal George. Optimal spilling for CISC machines with few
registers. In Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, PLDI ’01, pages 243–253, New York, NY, USA,
2001. ACM.

[4] Mouad Bahi and Christine Eisenbeis. Spatial complexity of reversibly computable
dag. In International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems - CASES. ACM, 2009.

[5] Mouad Bahi and Christine Eisenbeis. High performance by exploiting information
locality through reverse computing. In International Symposium on Computer Ar-
chitecture and High Performance Computing - SBAC-PAD. IEEE Computer Society,
2011.

[6] Mouad Bahi and Christine Eisenbeis. Rematerialization-based register allocation
through reverse computing. In International Conference on Computing Frontiers -
CF. ACM, 2011.

[7] H. G. Baker. NREVERSAL of fortune - the thermodynamics of garbage collection.
Int’l Workshop on Memory Mgmt, 1992.

[8] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18:766–776, August 1989.

[9] Charles H. Bennett, Péter Gács, Ming Li, Paul M. B. Vitányi, and Wojciech H. Zurek.
Information distance. IEEE Transactions on Information Theory, 44(4):1407–1423,
1998.

[10] D. H. Bennett. Logical reversibility of a computation. IBM J. Res. Dev., 1973.

[11] David Berson, Rajiv Gupta, and Mary Lou Soffa. Ursa: A unified resource allocator
for registers and functional units in vliw architectures. In In Conference on Archi-
tectures and Compilation Techniques for Fine and Medium Grain Parallelism, pages
243–254, 1992.

126 BIBLIOGRAPHY

[12] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Ursa: A unified resource alloca-
tor for registers and functional units in vliw architectures. In PACT ’93: Proceedings
of the IFIP WG10.3. Working Conference on Architectures and Compilation Tech-
niques for Fine and Medium Grain Parallelism, pages 243–254, Amsterdam, The
Netherlands, The Netherlands, 1993. North-Holland Publishing Co.

[13] P. G. Bishop. Using reversible computing to achieve fail-safety. In Proceedings of
the Eighth International Symposium on Software Reliability Engineering, ISSRE ’97,
pages 182–, Washington, DC, USA, 1997. IEEE Computer Society.

[14] Florent Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two
Separate Phases. PhD thesis, ENS Lyon, 2009.

[15] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring heuris-
tics for register allocation. SIGPLAN Not., 39:283–294, April 2004.

[16] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In Proceed-
ings of the ACM SIGPLAN 1992 conference on Programming language design and
implementation, PLDI ’92, pages 311–321, New York, NY, USA, 1992. ACM.

[17] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring
register allocation. ACM Trans. Program. Lang. Syst., 16:428–455, May 1994.

[18] A. Shindlerb C. Urbacha, K. Jansenb and U. Wenger. Hmc algorithm with multiple
time scale integration and mass preconditioning. Computer Physics Communications,
2006.

[19] Christopher D. Carothers, Kaylan S. Perumalla, and Richard M. Fujimoto. Efficient
optimistic parallel simulations using reverse computation. In Proceedings of the thir-
teenth workshop on Parallel and distributed simulation, PADS ’99, pages 126–135,
Washington, DC, USA, 1999. IEEE Computer Society.

[20] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN ’82:
Proceedings of the 1982 SIGPLAN symposium on Compiler construction, pages 98–
105, New York, NY, USA, 1982. ACM.

[21] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markstein. Register allocation via coloring. Computer Languages, 6(1):47–57, 1981.

[22] Frederick Chow and John Hennessy. Register allocation by priority-based coloring.
SIGPLAN Not., 19:222–232, June 1984.

[23] John Collier. Two faces of Maxwell’s demon reveal the nature of irreversibility. Studies
In History and Philosophy of Science Part A, 21(2), 1990.

[24] G.W. Dueck D. Maslov. Reversible cascades with minimal garbage. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2004.

[25] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. of Math.,
1950.

[26] Fredkin Edward and Toffoli Tommaso. Conservative logic. International Journal of
Theoretical Physics, 21:219–253, 1982.

127

[27] Christine Eisenbeis, Sylvain Lelait, and Bruno Marmol. The meeting graph: a new
model for loop cyclic register allocation. In Proceedings of the IFIP WG10.3 working
conference on Parallel architectures and compilation techniques, PACT ’95, pages
264–267, Manchester, UK, 1995. IFIP Working Group on Algol.

[28] Richard Feynman. Quantum mechanical computers. Optics News, 11:11–20, 1985.

[29] M. P. Frank. The R programming language and compiler. MIT RC Proj. Memo #M8,
1997.

[30] Michael P. Frank. The physical limits of computing. Computing in Science and Engg.,
2002.

[31] Changqing Fu and Kent Wilken. A faster optimal register allocator. In Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture, MICRO
35, pages 245–256, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[33] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans. Program.
Lang. Syst., 18:300–324, May 1996.

[34] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register
allocations using 01 integer programming. Softw. Pract. Exper., 26:929–965, August
1996.

[35] C. Leung H. Yang, G. R. Gao. On achieving balanced power consumption in software
pipelined loops. In CASES, 2002.

[36] M. Iri, K. Tanabe, K. Academic, and A. Griewank. On automatic differentiation. In
in Mathematical Programming: Recent Developments and Applications, 1989.

[37] R. M. Frederic J. V. Carlin, F. K. Thomas. Pendulum: A Reversible Computer
Architecture. Master’s thesis, MIT Artificial Intelligence Laboratory, 1995.

[38] E. T. Jaynes. Gibbs vs Boltzmann Entropies. American Journal of Physics,
33(5):391–398, 1965.

[39] k. Perumalla and R. Fujimoto. Source-code transformations for efficient reversibility.
Technical Report GIT-CC-99-21, College of Computing, Georgia Tech., 1999.

[40] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Com-
puter Computations, pages 85–103, 1972.

[41] D. E. Knuth. An empirical study of fortran programs. In Software: Practice and
Experience, Volume 1, Issue 2, pages 105–133, 1971.

[42] A. N. Kolmogorov. Three approaches to the definition of the concept “quantity of
information”. In Problemy Peredaci Informacii, volume 1, pages 3–11, 1965.

[43] Brian Lambson, David Carlton, and Jeffrey Bokor. Exploring the thermodynamic
limits of computation in integrated systems: Magnetic memory, nanomagnetic logic,
and the landauer limit. Phys. Rev. Lett., 107:010604, Jul 2011.

128 BIBLIOGRAPHY

[44] R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 1961.

[45] C. Lutz and H. Derby. Janus: a time-reversible language. Caltech class project, 1982.

[46] Richard H. Dittman Mark Waldo Zemansky. Heat and thermodynamics: an interme-
diate textbook, 7th edition. McGraw-Hill, New York, USA, 1997.

[47] P. Matherat and M. T. Jaekel. Logical Dissipation of Automata Implements - Dissi-
pation of Computation. Technique et Science Informatiques, 1996.

[48] P. Matherat and M. T. Jaekel. What about the ”dissipation of computation” question
? a return to bennett. pages 690–713, 2007.

[49] M.A. Perkowski M.H.A. Khan. Logic synthesis with cascades of new reversible gate
families. 6th International Symposium on Representation and Methodology of Future
Computing Technology, pages 43–55, March 2003.

[50] Alan Mishchenko and Marek Perkowski. Logic synthesis of reversible wave cascades,
June 2002.

[51] U. Naumann. On optimal DAG reversal. Technical Report AIB-2007-05, 2007.

[52] A. Nicolau and J. A. Fisher. Measuring the parallelism available for very long in-
struction word architectures. IEEE Trans. Comput., 33:968–976, November 1984.

[53] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM Trans. Pro-
gram. Lang. Syst., 26:735–765, July 2004.

[54] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans.
Program. Lang. Syst., 21:895–913, September 1999.

[55] Mukta Punjani. Register rematerialization in gcc. In GCC Developers’ Summit 2004,
2004.

[56] E. Gioan S. Burckel. In Situ Design of Register Operations. ISVLSI, 2008.

[57] J. Y. Chung S. K. Chen, W. K. Fuchs. Reversible debugging using program instru-
mentation. IEEE Trans. Softw. Eng., 2001.

[58] Claude E. Shannon and Warren Weaver. A Mathematical Theory of Communication.
University of Illinois Press, Champaign, IL, USA, 1963.

[59] Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes. Reversible
logic circuit synthesis. In Proceedings of the 2002 IEEE/ACM international conference
on Computer-aided design, ICCAD ’02, pages 353–360, New York, NY, USA, 2002.
ACM.

[60] Loren Taylor Simpson. Value-driven redundancy elimination. PhD thesis, Rice Uni-
versity, Houston, TX, USA, 1996.

[61] N. Doi T. Koju, S. Takada. An efficient and generic reversible debugger using the
virtual machine based approach. In VEE, 2005.

129

[62] L. Kent Thomas, Thomas N. Dixon, and Ray G. Pierson. Fractured reservoir simu-
lation. SPE Journal, 23(1):42–54, 1983.

[63] G.S. Tjaden and M.J. Flynn. Detection and parallel execution of independent in-
structions. IEEE Transactions on Computers, 19:889–895, 1970.

[64] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming, pages 632–644, London, UK, 1980. Springer-
Verlag.

[65] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev., 11:25–33, January 1967.

[66] Sid-Ahmed-Ali Touati. Register Pressure in Instruction Level Parallelism. PhD thesis,
Université de Versailles, France, June 2002.

[67] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and speed in linear-
scan register allocation. In PLDI, pages 142–151, 1998.

[68] Paul M. B. Vitanyi. Time, space, and energy in reversible computing. Conf. Com-
puting Frontiers, 2005.

[69] Alexis De Vos and Stijn De Baerdemacker. Symmetry groups for the decomposition
of reversible computers, quantum computers, and computers in between. Symmetry,
3(2):305–324, 2011.

[70] P. Vranas, M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger,
V. Salapura, J. C. Sexton, R. Soltz, and G. Bhanot. Massively parallel quantum
chromodynamics. IBM J. Res. Dev., 52:189–197, January 2008.

[71] Tao Zhang, Xiaotong Zhuang, and Santosh Pande. Compiler optimizations to reduce
security overhead. In CGO ’06: Proceedings of the International Symposium on Code
Generation and Optimization, pages 346–357, Washington, DC, USA, 2006. IEEE
Computer Society.

[72] Yukong Zhang, Young-Jun Kwon, and Hyuk Jae Lee. A systematic generation of
initial register-reuse chains for dependence minimization. SIGPLAN Not., 36(2):47–
54, 2001.

	I Introduction
	Introduction
	Context
	Contribution
	Organization of the Thesis

	II Reversible Computing & Information Conservation
	Reversible Computing: Definition and Motivation
	Power Consumption and Heat Dissipation
	Energy Dissipation and Reversibility
	Reversible Computing
	Reversible Operations
	Reversible Logic
	Reversible Logic Gates

	Reversible Architecture
	Reversible Software
	Summary

	Reversible Computing for Information Conservation
	Cost of Reversibility and Algorithm
	Reversible Operations
	Algorithm

	Reversible DAG and Register Reuse DAG - Lower Bound
	Reversibility and Values Lifetime
	Experimental Results and Upper-Bound for the Garbage Size
	Summary

	III Using Reverse Computing to Improve Performance
	Register Allocation Overview
	Register Allocation Architecture
	Data Dependency
	Data Dependency Graph
	Basic Block
	Interference Graph
	Meeting Graph
	Register Requirements
	Register Saturation
	Register Pressure
	Live Range Splitting
	Coalescing
	Register Spilling
	Register Rematerialization

	Different Register Allocation Approaches
	Register Allocation via Graph Coloring
	Linear Scan Register Allocation
	Register Allocation based on Register Reuse Chains
	Register Allocation via Integer Linear Programming

	 Register Allocation and Instruction Scheduling

	Using Reverse Computing to Decrease Spill Code
	Problem Statement: Register Allocation
	Recomputing vs. Storage
	Aggressive Register Reuse

	Rematerialization rules and guidelines
	Building Register Reuse Chains
	Register Reuse between Dependent Values
	Register Reuse between Independent Values

	Detecting Excessive Registers
	Discovering Rematerializable Values
	Rematerialization Decision

	Graph Transformation
	More Opportunities for Reverse Computing than for Direct Computing

	Experimental Results
	Lattice QCD Computation
	Register Requirements
	Spill Costs
	Run-Time Performance
	Inverse Precision

	Summary

	Using Reverse Computing to Increase Intruction Level Parallelism
	What is Instruction-Level Parallelism?
	Instruction-Level Parallelism Challenges
	Instruction-Level Parallelism within Basic Blocks
	Instruction-Level Parallelism across Basic Blocks

	Cell BE Implementation
	Cell BE Architecture Overview
	Programming Cell BE
	Code SIMDization
	Code Partitioning
	Communication and Data Transfer

	Performance Measurement

	Summary

	Using Reverse Computing to Increase Thread Level Parallelism
	GPU Architecture and Programming Model
	Memory Hierarchy
	Thread-Level Parallelism
	Register Usage, Rematerialization and Performance

	Experimental Results
	Analysis of Results
	Limitations

	Summary

	IV Conclusion
	Conclusion and Future Work
	Conclusion
	Future Work

