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Introduction

Les gaz à effet de serre (GES) sont en partie responsables du changement

climatique. L’humanité est donc confrontée à un choix : soit réduire les

émissions des gaz qui sont la cause du problème, soit prendre des me-

sures pour permettre aux populations de surmonter les conséquences de

ces changements. Dans cette thèse, nous nous concentrons sur la pre-

mière solution sous la prémisse selon laquelle une grande partie de l’effet

de serre provient des activités humaines. Plus précisément, nous propo-

sons quelques essais sur la modélisation des déterminants des investisse-

ments ayant pour objet la réduction des GES, en particulier des investis-

sements dans l’amélioration de l’efficacité énergétique, et des investisse-

ments dans la substitution de ressources (fossiles) non-renouvelables par

des ressources renouvelables. Tout d’abord nous essayons et expliquons

la lente diffusion de certains investissements dans l’efficacité énergé-

tique dans un cadre d’équilibre général. Ensuite, nous étudions les dé-

terminants de la substitution des ressources non-renouvelables par des

ressources renouvelables lorsque celles-ci sont des substituts parfaits. En-

fin, nous tenons compte de la nécessité permanente de ressources sales,

même si des technologies plus propres sont disponibles. Toutes ces ques-

tions sont basées sur des modèles qui ne peuvent être entièrement ré-

solus analytiquement. Par conséquent, nous proposons dans cette thèse

une méthodologie basée sur les propriétés des polynômes de Chebyshev

pour calculer les solutions.
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Le contexte

La plupart des scientifiques climatologues s’accordent sur la principale cause du ré-

chauffement climatique actuel : l’augmentation de l’effet de serre provenant des acti-

vités humaines. Cet effet de serre anthropogénique accrôıt l’effet de serre naturel de

la Terre par l’ajout d’émissions de GES provenant de la combustion des combustibles

fossiles (pétrole, charbon et gaz naturel), principalement dû à la production d’énergie.

Le dioxyde de carbone (C02) est le gaz qui a le forçage radiatif le plus élevé, ce qui

signifie que c’est le gaz qui a le potentiel de réchauffement global le plus élevé. Le char-

bon, en particulier le charbon brun, est la source d’énergie qui émet le plus d’émissions

de GES par unité d’énergie. La combustion du charbon génère 70 pourcent de CO2

de plus que le gaz naturel pour chaque unité d’énergie. En même temps, le charbon

ne coûte pas cher et est le combustible fossile le plus largement disponible. En ce qui

concerne le mazout, les taux moyens d’émissions de CO2 aux États-Unis provenant de

la production de fioul est de 1672lbs / Mwh.

Au niveau mondial, les émissions de CO2 liées à l’énergie ont été mutlipliées par

145 depuis 1850 — passant de 200 millions de tonnes par an à 29 milliards de tonnes

par an — et devraient augmenter encore de 54 pourcent d’ici 2030. La majeure par-

tie des émissions mondiales proviennent d’un nombre relativement restreint de pays.

Les 25 plus grands émetteurs, représentant 75 pourcent de la population mondiale et

90 pourcent du produit intérieur brut (PIB) mondial, totalisent environ 85 pourcent

des émissions de GES mondiales.1 Le Quatrième Rapport d’Évaluation datant de 2007

établi par le IPCC (AR4) a noté que « les changements dans les concentrations at-

mosphériques des gaz à effet de serre et des aérosols, de la couverture terrestre et du

rayonnement solaire modifiaient l’équilibre énergétique du système climatique », et a

conclu que « l’augmentation des concentrations de gaz à effet de serre d’origine an-

thropogénique est très susceptible d’avoir en grande partie causé l’augmentation des

températures moyennes mondiales depuis le milieu du 20ème siècle ». Selon ce rapport,

la température a augmenté d’environ 0,13 degrés Celsius par décennie au cours des 50

dernières années — près de deux fois l’augmentation de la température moyenne pour

1Climate Change Mitigation, UNEP, disponible en ligne à : http://www.unep.org/climatechange/

mitigation/Home/tabid/104335/Default.aspx. Extrait du 20 juillet 2012.
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les 100 dernières années, et onze fois durant les douze dernières années (1995-2006) se

classant parmi les 12 années les plus chaudes (depuis 1850). Suite à cette évolution,

on peut s’attendre à une élévation de la température allant de 1,8 degrés à 4 degrés

Celsius [IPCC, 2007, Stern, 2007]. Ce réchauffement de la planète causera plusieurs

préjudices en ce qui concerne l’activité économique, la vie humaine et l’environnement,

souvent à cause de l’eau. La fonte des glaciers et l’élévation conséquente du niveau des

mers se traduira par une réduction de l’approvisionnement en eau et de la migration

de millions de personnes vivant dans des zones inondées. Des événements climatiques

extrêmes seront davantage susceptibles de survenir, et le risque d’un rapide change-

ment climatique et des répercussions majeures irréversibles (par exemple, la fonte de la

calotte glaciaire du Groenland) sera plus importante. En outre, les rendements vont sé-

rieusement baisser au niveau de la production alimentaire, les écosystèmes vulnérables

seront incapables de maintenir leur forme actuelle et de nombreuses espèces devront

faire face à une possible extinction.2

Compte tenu des graves impacts –– négatifs — du réchauffement climatique, l’un

des défis majeurs auxquels doivent faire face actuellement les décideurs du monde est

la réduction des émissions de GES. Selon la version finale de la Déclaration de la 64ème

Conférence Annuelle DPI / ONG [UNDPI, 2011] les gouvernements devraient avoir

atteints des itinéraires clairs vers une durabilité climatique qui régule la hausse de la

température mondiale en dessous de 1,5 degrés Celsius. Les émissions de GES devraient

être réduits de 25 pourcent par rapport aux niveaux de 1990 d’ici 2020, 40 pourcent

d’ici 2030, 60 pourcent d’ici 2040 et 80 pourcent d’ici 2050. Cet objectif est conforme à

celui suggéré par des études antérieures, telles que le rapport Stern sur le changement

climatique [Stern, 2007], qui préconise des interventions importantes et immédiates

afin de réduire les émissions mondiales de 60 pourcent à 80 pourcent en 2050 ; Nord-

haus [2007], qui propose un modeste contrôle à court terme, suivie par des réductions

d’émissions nettes à moyen et à long terme, ou l’IPCC [2007], qui appelle à stabiliser

les émissions à GES entre 445 et 490 ppm —- entre 50 à 85 pourcent de réductions

par rapport aux niveaux de 2000 — pour garder des températures mondiales de 2 de-

2Voir, par exemple : The Consequences of global Warming, NRDC. Disponible en ligne à : http:

//www.nrdc.org/globalwarming/fcons.asp. Extrait du 20 Juillet 2012.
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grés à 2,4 degrés Celsius au-dessus de la moyenne pré-industrielle.3 Pour atteindre cet

objectif, le récent Green Economy report » [UNEP, 2011] propose un objectif de 1,3

milliards de dollars (2 pourcent du PIB mondial) concernant des investissements verts

(public et privé). Près de trois cinquièmes de cette somme serait investi dans l’efficacité

énergétique — en particulier dans les bâtiments, l’industrie et les transports — et les

énergies renouvelables. Des exemples de politiques publiques actuelles en matière d’ef-

ficacité énergétique sont celles du Département de l’Énergie des États-Unis, tel que le

Programme de Renforcement des Technologies, dont le but stratégique est de créer des

technologies et des approches conceptuelles qui permettent de mettre sur le marché des

bâtiments qui ne consomment pas d’énergie, d’ici 2020 pour les maisons, et d’ici 2025

pour les bâtiments commerciaux ; ou l’initiative « Sunshot », dont le but est de rendre

compétitive l’industrie de l’énergie solaire ainsi que celle d’autres formes d’énergies d’ici

la fin de la décennie.4

Compte tenu de ce contexte, il est intéressant de modéliser les déterminants de

l’investissement qui permet la réduction des émissions de GES, à la fois par l’amé-

lioration de l’efficacité énergétique et par la substitution de ressources (fossiles) non-

renouvelables (sales) par des ressources renouvelables (propres) pour l’approvisionne-

ment d’énergie. Nous allons étudier les déterminants de ces investissements dans le but

de fournir des recommandations de politique publique ; ceci est l’objectif principal de

cette thèse. Nous abordons le problème de l’investissement dans l’efficacité énergétique

en tenant compte du cas spécifique du secteur résidentiel (c’est-à-dire l’investissement

dans l’efficacité énergétique pour les fenêtres, les portes, etc.). Le problème de la sub-

stitution des ressources est analysé selon deux scénarios différents. Dans le premier cas,

nous supposons que les combustibles fossiles et les ressources renouvelables sont des

substituts parfaits dans la production d’énergie. Puis, quand les entreprises décident de

passer à des ressources renouvelables, elles continueront de produire avec cette nouvelle

technologie par la suite. Dans le second cas, nous supposons que, bien que les entreprises

peuvent passer à une technologie plus propre en utilisant des énergies renouvelables,

l’économie n’est pas tout à fait « sans pollution »puisque les combustibles fossiles sont

encore nécessaires dans l’économie.

3Il y a également Greenpeace, qui propose d’arrêter toute croissance économique dans le but de

sauver la planète [Acemoglu et al., 2012].
4Le département américain de l’énergie : http://www.eere.energy.gov/. Extrait du 20 juillet 2012
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Une particularité des modèles que nous présentons ici est que toutes les décisions

sont prises dans un environnement stochastique. Dans le même temps, nous introduirons

certaines irréversibilités inhérentes à presque toute politique environnementale. Nous

tenons également compte du fait que, dans la plupart des cas, il est possible de retarder

l’action et d’attendre pour obtenir des nouvelles informations. Nous obtenons que ces

incertitudes, irréversibilités, et la possibilité de retarder l’action peuvent affecter de

manière significative le moment optimal pour l’adoption de politiques. Par exemple, on

obtient que l’incertitude sur les rendements financiers des ménages favorise l’adoption

des technologies qui améliorent l’efficacité énergétique. L’incertitude affecte également

l’efficacité de la politique économique qui vise à accélérer la substitution des ressources

renouvelables pour des ressources non renouvelables dans la production d’énergie. Enfin,

les gouvernements sont tentés d’attendre plus longtemps, le temps que des technologies

plus propres soient suffisamment développées pour les adopter dans les secteurs de la

production.

Dans les lignes qui suivent, nous justifions la nécessité de tenir compte de l’irréver-

sibilité et l’incertitude dans l’économie environnementale. Nous allons ensuite présenter

les quatre chap̂ıtres qui composent ce mémoire.

Irreversibilité et incertitude

L’irréversibilité de l’investissement signifie que l’engagement pour des projets d’inves-

tissements se traduit par un coût irrécupérable — le coût initial — que l’on appelle

« coûts irréversibles ». L’incertitude sur les bénéfices futurs et les coûts d’investisse-

ments sont également importants. En fait, ce sont l’effet combiné de l’irréversibilité et

de l’incertitude qui a conduit Weisbrod [1964] à introduire le concept de la valeur d’op-

tion. Il fait valoir que si une décision a des conséquences irréversibles, alors la flexibilité

— « l’option »— qui permet de choisir le moment le plus opportun pour prendre cette

décision a une valeur qui doit être incluse dans une analyse coûts-bénéfices. Le concept

de valeur d’option a deux interprétations différentes. Dans la première la valeur d’op-

tion est vue comme une prime de risque payée par les consommateurs de risques afin de

réduire l’impact de l’incertitude dans la demande d’un bien environnemental [Cicchetti
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and Freeman, 1971, Schmalensee, 1972]. La seconde interprétation insiste sur l’aspect

inter-temporel de l’irréversibilité et l’arrivée de nouvelles informations au fil du temps

[Arrow and Fisher, 1974, Henry, 1974]. Cette seconde interprétation est celle qui a été

le plus largement utilisée dans la littérature sur les options réelles [Myers, 1977]. Des

exemples sont l’entrée, la sortie et les redémarrages de la production et de l’investisse-

ment ; les implications du moment de construction — et de l’option de renoncer à la

construction — pour la valeur d’un projet ; et les déterminants du choix d’une entre-

prise quant à sa capacité [McDonald and Siegel, 1986, Brennan and Schwartz, 1985,

Pindyck, 1988].

Pour avoir plus d’intuition à propos de l’irréversibilité, l’incertitude, et sur la signi-

fication de la valeur d’option, considérons le modèle proposé par Olsen and Stensland

[1988]. Leur modèle se compose d’une industrie basée sur des ressources non renouve-

lables (par exemple l’extraction d’hydrocarbure extra-côtier) devant décider si elle doit

ou non cesser son activité. Tout d ’abord, la décision de la cessation peut être considérée

comme irréversible. Dans le modèle d’Olsen et Stensland l’irréversibilité signifie que les

entreprises ne peuvent pas reprendre les opérations après la cessation (probablement en

raison de coûts prohibitifs). De plus, Olsen et Stensland supposent que les conditions

économiques — en particuliers les prix et les quantités de production — sont incer-

taines. L’incertitude conjointement à l’irréversibilité implique que la décision prise par

l’entreprise implique l’exercice, ou l’abandon de l’option de fermer de manière optimale

à tout moment dans l’avenir. Dans un tel cadre, il y a une valeur due à l’attente — la

valeur d’option — puisque la firme a toujours la possibilité de reporter la cessation afin

d’en apprendre plus sur les gains actuels et futurs. En conséquence, la règle habituelle

de la cessation de l’activité lorsque les coûts marginaux de production enregistrés sont

égaux aux gains marginaux attendus n’a plus lieu d’être valide. Pour pouvoir cesser

l’activité, les coûts marginaux de production enregistrés doivent être supérieurs au re-

venu marginal attendu d’un montant égal à la valeur de maintien de l’option [Pindyck,

1988, Dixit and Pindyck, 1994]. Notons que la possibilité de cessation (ou la possibilité

d’investir, ou toute autre opportunité en situation d’incertitude et d’irréversibilité) est

analogue à une option sur une action ordinaire. Dans ce cas, nous avons une option

(put) qui nous donne le droit (le prix d’exercice de l’option), mais pas l’obligation (en

raison de la possibilité d’attendre) pour cesser (vendre) les activités (le sous-jacent), la
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valeur fluctuant de manière stochastique [Pindyck, 1991]. Bien sûr, dans le cas d’irréver-

sibilité complète la valeur résiduelle de l’entreprise est égale à zéro [Dixit and Pindyck,

1994, Dangl and Wirl, 2004].

L’incertitude et l’irréversibilité peuvent également être envisagées dans certains

autres problèmes environnementaux. Par exemple, Brennan and Schwartz [1985] ana-

lysent l’exploitation d’une mine, qui peut être fermée temporairement ; Paddock et al.

[1988] proposent un modèle d’évaluation d’hydrocarbure extra-côtier loué en fonction

du prix du marché du pétrole, et Clarke and Reed [1990] étudient la préservation des

réserves sauvages naturelles. Le résultat standard est que, en présence d’irréversibilité

de l’environnement, une analyse standard coûts-bénéfices est biaisée à l’encontre de

la conservation [Arrow and Fisher, 1974, Henry, 1974]. Freixas and Laffont [1984] gé-

néralisent ce résultat, et Conrad [1980] lie la valeur d’option à la valeur attendue de

l’information.

Dans certains documents plus récents, Pindyck [2000, 2002, 2007] explique le rôle

de l’incertitude et de l’irréversibilité de la politique environnementale. Dans le cas de

politiques axées sur le réchauffement global par exemple, l’incertitude provient du fait

que nous ne savons pas de combien de degré la température moyenne s’élèvera avec ou

sans réduction d’émissions de CO2 ; nous ne connaissons pas non plus l’impact écono-

mique de la hausse des températures. Ensuite, l’irréversibilité apparâıt, par exemple,

dans les politiques visant à réduire la dégradation de l’environnement. Il y a des coûts

irrécupérables qui prennent la forme d’investissements discrets (par exemple l’indus-

trie qui utilise la combustion du charbon utilitaires pourrait être obligée d’installer des

épurateurs ou des entreprises pourraient avoir à abandonner des machines existantes

et à investir dans des machines plus économes en carburant), ou ils peuvent prendre la

forme de flux de dépenses. Ces coûts irrécupérables créent un coût d’opportunité quant

à l’adoption d’une politique maintenant, plutôt que d’attendre d’obtenir plus d’infor-

mations sur les impacts écologiques et leurs conséquences économiques. Il y a aussi une

certaine irréversibilité des dommages environnementaux. Par exemple, l’accumulation

de GES dans l’atmosphère est de longue durée, même si nous devions réduire drastique-

ment les émissions de GES, cela demandera de nombreuses années avant que les niveaux

de concentration atmosphérique diminuent. Cela signifie qu’adopter une politique main-

tenant plutôt que plus tard a un bénéfice irrécupérable, qui est un coût d’opportunité
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négatif. Celas signifie aussi que l’analyse des coûts-bénéfices traditionnelle sera un parti

pris contre l’adoption de politiques.

Qu’en est-il des cas particuliers de l’efficacité énergétique et de la substitution de res-

sources qui nous concerne ? Prenons le cas de la substitution des ressources. Imaginons

une entreprise qui tente de décider si oui ou non il faut cesser d’utiliser du non renouve-

lable (combustibles fossiles) en faveur de la production renouvelable en ce qui concerne

la production d’énergie. L’incertitude peut apparâıtre dans plusieurs cas, mais il semble

particulièrement pertinent de se concentrer sur l’incertitude quant à la disponibilité des

ressources [Pindyck, 1980, Epaulard and Pommeret, 2003, Smith and Son, 2005]. Plus

précisément, nous pouvons avoir une idée de leur stock actuel, mais nous ne savons pas

trop ce qu’il en sera quant à leur disponibilité future. Et même si nous étions en mesure

de savoir quelle serait la disponibilité des ressources dans l’avenir, nous ne pouvons

pas savoir l’effet résultant des décisions prises par les entreprises. Par exemple, plus les

ressources renouvelables sont disponibles dans le futur, plus les entreprises sont tentées

de les adopter au plus tôt pour produire de l’énergie. En outre, l’adoption d’énergies

renouvelables impose des coûts irrécouvrables pour la société. C’est le cas en particulier

si une plate-forme pétrolière extra-côtière se transforme en un parc éolien extra-côtier.

Une fois cette décision prise, la quasi-totalité du capital déjà installé doit être démonté,

et très peu de pièces de l’ancienne installation peuvent être réutilisées. Ce processus est

évidemment très coûteux en termes de temps et d’argent. Comme précédemment, il y a

une valeur d’option en ce sens que les investisseurs peuvent attendre d’obtenir de plus

amples informations avant de se débarrasser des plates-formes pétrolières extra-côtières.

Considérons maintenant le cas spécifique d’un propriétaire investissant dans des

nouveaux équipements afin de réduire sa facture énergétique. Nous pouvons supposer

que cet investissement est irréversible, car la désinstallation du nouvel équipement peut

être déraisonnablement coûteuse ou parce que l’ancien équipement a été mis au rebut.

Une certaine incertitude peut également être envisagée. Par exemple, l’évolution de la

richesse du ménage n’est pas entièrement connue, en particulier si l’on suppose que

la richesse est fondée sur des actifs risqués. Sous ces conditions, la décision des mé-

nages pour investir peut être considérée comme comportant une valeur d’option, car

ils peuvent toujours différer l’investissement, afin de savoir si leur future richesse aug-

mentera ou non. S’il n’y a pas d’arbitrage entre la consommation des ménages et la
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décision d’investir — c’est-à-dire dans le cadre d’un équilibre partiel, en vue d’investir

dans cette technologie d’efficacité énergétique, la valeur marginale du nouvel équipe-

ment doit être supérieur au coût d’achat et d’installation, d’un montant égal à la valeur

de maintien pour garder l’option d’investissement. Dans le cas d’un arbitrage entre la

consommation et la décision d’investir — c’est-à-dire dans un cadre d’équilibre géné-

ral, le moment optimal de l’adoption est non seulement sensible à l’incertitude, mais

aussi sensible au degré d’aversion quant au risque des agents (Hugonnier et al. [2008] ;

consulter aussi Pommeret and Schubert [2009] pour un exemple en matière d’économie

de l’environnement).

Sur la résolution numérique des équations de Bellman

Dans cette thèse, nous sommes nous-même confrontés à des équations différentielles

qui sont complexes et ne peuvent être entièrement résolues en utilisant des techniques

analytiques standards. En particulier, les solutions analytiques pour les modèles dans

les chapitres 3 et 5 ne sont valables que dans le cas d’un taux d’actualisation égal à

zéro. Il y a un important débat dans l’économie de l’environnement en ce qui concerne

la façon dont les utilités futures doivent être actualisées, surtout lorsque les décisions

actuelles ont d’importantes conséquences à long terme (voir, par exemple, Portney and

Weyant [1999] pour une enquête). Comme nous ne sommes pas particulièrement enclins

en faveur d’un taux d’actualisation nul ou positif, une méthodologie pour résoudre tous

les cas devient nécessaire. En outre, le modèle du chapitre 4 ne peut pas être entièrement

résolu de façon analytique. Au moins pour les modèles que nous présentons ici, le

problème est la forte non-linéarité des fonctions de valeur et le fait qu’elles doivent

satisfaire certaines conditions limites. Ensuite, nous avons besoin de s’appuyer sur des

méthodes numériques.

Comme suggéré par Judd [1992, 1998], nous utilisons les propriétés d’approximation

des polynômes de Chebyshev pour calculer des solutions stables non divergentes des

équations de Hamilton-Jacoby-Bellman. Plus précisément, nous transformons les fonc-

tions de valeur et ces conditions pour obtenir des expressions avec les coefficients de

Chebychev inconnus. En utilisant cette représentation, notre problème initial pour la
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résolution des équations à dérivées partielles se réduit à un problème où il faut résoudre

des systèmes simples d’équations non-linéaires. Le modèle du chapitre 3 est résolu en

utilisant un algorithme basé sur la méthode de Newton [Miranda and Fackler, 2004,

Dangl and Wirl, 2004], tandis que les modèles des chapitres 4 et 5 sont résolus en uti-

lisant la méthodologie présentée dans le chapitre 2.5 En particulier, nous transformons

la fonction de valeur et les conditions associées pour obtenir des équations matricielles

avec des coefficients inconnus de Chebychev. En faisant de la sorte, notre problème se

réduit à la résolution d’un système simple d’équations algébriques. Cette méthodolo-

gie est un sous-produit secondaire de cette thèse, mais elle constitue en elle-même une

contribution originale à la littérature des méthodes numériques.

Efficacité énergétique

Les rénovations résidentielles sont généralement considérées comme étant pour les mé-

nages un moyen très efficace pour réduire leurs dépenses d’énergie — et indirectement

les GES — en améliorant l’efficacité, et elles deviennent donc une cible clé pour les po-

litiques environnementales. En effet, les analyses coûts-bénéfices indiquent la viabilité

économique de ces systèmes, même si le confort des co-bénéfices tels que l’amélioration

de la qualité de l’air intérieur et de la protection contre le bruit ne sont pas pris en

compte [Jakob, 2006, Ott et al., 2006]. Cependant, l’investissement réel dans ces sys-

tèmes est encore relativement rare [Banfi et al., 2008]. Dans le chapitre 3, nous visons à

expliquer dans un modèle théorique pourquoi les ménages décident d’investir dans les

rénovations résidentielles. Plus précisément, nous essayons d’expliquer la lente diffusion

des investissements économiseurs d’énergie —- le soi-disant paradoxe énergétique ou

l’écart de rendement énergétique [Jaffe and Stavins, 1994a].

La littérature existante qui explique le paradoxe énergétique (Hassett and Metcalf

[1995], par exemple) considère des paramètres d’équilibre partiel, et ignore donc l’in-

teraction entre la consommation optimale et l’adoption optimale, ainsi que les notions

d’aversion au risque, ou les substitutions inter-temporelles. Dans de telles situations les

5La méthodologie du chapitre 2 peut également être adaptée pour résoudre le modèle du chapitre

3. En fait, les deux méthodes ont été utilisées a posteriori à des fins de comparaison.
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consommateurs se comportent comme des entreprises au moment de décider d’investir

dans des technologies qui permettent d’économiser l’énergie. Pour remettre en ques-

tion ces résultats, nous reconsidérons l’effet conjoint de l’irréversibilité et l’incertitude

concernant la décision d’un investissement économiseur d’énergie dans un cadre d’équi-

libre général [Hugonnier et al., 2008, Pommeret and Schubert, 2009]. En particulier, on

peut se demander si l’explication du paradoxe de l’énergie basée sur l’existence d’une

valeur d’option reste valable dans un modèle plus réaliste et plus général.

Pour résoudre ce problème, nous considérons le cas particulier d’un propriétaire qui

peut investir dans une nouvelle isolation, ou dans du double vitrage en vue de réduire

sa facture énergétique. Nous supposons que cet investissement est irréversible, car la

désinstallation du nouvel équipement peut être excessivement coûteuse ou parce que

l’ancien équipement a été mis au rebut. Nous supposons également que les avantages

de ces technologies qui économisent l‘énergie ainsi que les rendements financiers de

l’épargne des ménages sont stochastiques. Nos résultats suggèrent que le seuil de dé-

clenchement de la prise de décision dépend non seulement de paramètres techniques,

mais aussi de paramètres de préférence. En outre, nous montrons que même si l’in-

certitude sur l’efficacité des technologies qui économisent l’énergie n’affecte que peu

le moment de la prise de décision, l’incertitude sur les rendements financiers le favo-

rise. Nous constatons également que l’existence d’une valeur d’option n’exclut pas le

paradoxe énergétique.

Sur la substitution des ressources I

Le remplacement des combustibles fossiles par des ressources renouvelables offre des

possibilités de réductions des émissions de GES permanentes. De nombreuses écono-

mies dans le monde sont donc incitées à s’orienter vers des énergies renouvelables. Dans

le chapitre 4, nous considérons un modèle de switch technologique dans lequel l’éner-

gie peut être produite à partir des deux facteurs de production disponibles : les res-

sources non renouvelables (combustibles fossiles) et les ressources renouvelables. Nous

nous sommes donc particulièrement intéressés à la question suivante : Quand la so-

ciété devrait-elle arrêter d’utiliser des ressources non renouvelables dans la production
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d’énergie et commencer à utiliser des ressources renouvelables ?

Nous proposons un modèle dans lequel les ressources disponibles (les énergies fossiles

et les ressources renouvelables telles que l’eau, le vent, le solaire, la biomasse) sont des

substituts parfaits dans la production d’énergie, et leurs stocks sont stochastiques. Nous

supposons que les firmes commencent à produire de l’énergie en utilisant uniquement des

combustibles fossiles, mais la possibilité de réaliser un investissement irréversible afin

de switcher à un autre type de production est toujours ouverte. Grâce à nos hypothèses

particulières, on obtient une fonction de valeur avant le changement qui est en forme

de S. C’est tout à fait nouveau dans la littérature relative au switch technologique,

où la fonction de valeur qui en résulte des programmes est souvent concave [Dixit

and Pindyck, 1994]. Une autre originalité de notre modèle est que les firmes ne switch

pas immédiatement dans le cas où le coût de switcher est égal à zéro (Pommeret and

Schubert [2009], voir aussi le chapitre 3). Ceci résulte de l’augmentation des bénéfices

obtenus par les firmes grâce aux profits plus élevés qu’elles reçoivent si elle utilisent des

ressources non renouvelables, en particulier si elles sont abondantes.

Nous constatons que l’incertitude joue un rôle évident dans la décision de switcher.

Plus il y a d’incertitude relative à la disponibilité de ressources non renouvelables, plus

les firmes s’orientent tôt vers des ressources renouvelables ; et plus il y a d’incertitude

sur la disponibilité des ressources renouvelables, plus le switch se fera tardivement. Le

moment optimal pour switcher est également sensible à la demande d’énergie, aux coûts

de production et la productivité relatifs des ressources.

Sur la substitution des ressources II

Nous savons déjà que l’une des politiques généralement menées par de nombreux pays

pour réduire les émissions de GES consiste à substituer les sources d’énergie polluantes

comme le charbon, le pétrole et le gaz, par une source d’énergie propre et renouvelable,

comme l’énergie solaire et éolienne. Cependant, il semble que les combustibles fossiles

continueront de représenter une partie importante de la combinaison dans le monde

entier, même en 2050, année où une réduction d’environ 80 pourcent du total des

émissions par rapport à celles de 1990 est attendue. Notre théorie est que tant que
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les énergies renouvelables ne sont pas très avancées et généralisées, (i) l’industrie aura

encore besoin d’un pourcentage d’énergie qui provient de ressources sales, et (ii) la

fourniture d’énergie propre aura besoin elle-même des ressources sales, au moins pour

les matériaux nécessaires à la construction des usines (pensons à des panneaux solaires

par exemple).

Dans le chapitre 5 nous modélisons une économie ayant accès à deux sources d’éner-

gie différentes. La première provient d’une ressource naturelle polluante, tel que les

combustibles fossiles. La seconde provient d’une ressource naturelle backstop, tel que

le rayonnement solaire. En particulier, nous considérons le cas du rayonnement solaire

étant converti en énergie au moyen de panneaux solaires. Il y a deux secteurs productifs

de l’économie. Le premier est dédié à la production de ressources backstop. A tout mo-

ment, ce secteur nécessite des combustibles fossiles et l’énergie fournie par la backstop

déjà disponible. Nous avons donc tenu compte de la nécessité des combustibles fossiles

pour produire de l’énergie propre. Le deuxième secteur est consacré à la production

de biens de consommation. Au départ, il utilise l’énergie provenant exclusivement des

combustibles fossiles. Cependant, il y a toujours la possibilité de switcher pour une

nouvelle technologie dont l’énergie provient de deux types de ressources. Dans ce cadre,

nous cherchons à évaluer ce qui se passe quant la prise de décision concernant le type

d’énergie à choisir si on tient compte de la nécessité des ressources sales, même dans

une économie utilisant des énergies propres.

Dans la modélisation de cette décision de changement, nous tenons compte de l’in-

certitude sur les coûts et les bénéfices futurs. En particulier, nous supposons que l’ac-

cumulation de la backstop, et l’augmentation du stock de pollution — qui dans notre

cas est égal à l’extraction de la ressource — sont stochastiques. Nous considérons éga-

lement les irréversibilités associées à la politique de l’environnement. Plus précisément,

l’adoption de la technologie propre impose des coûts irrécupérables sur le secteur de

la consommation. Nos résultats suggèrent que, compte tenu de l’incertitude et de l’ir-

réversibilité, les incitations à switcher pour une technologie plus propre dépendent de

l’importance relative des combustibles fossiles dans la production de biens de consom-

mation suite au switch. Nous constatons également que les améliorations technologiques

dans le secteur des panneaux solaires sont d’une certaine importance afin de switcher

pour des technologies plus propres. Si le changement technologique implique que la
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backstop peut être produite avec relativement moins de fossiles combustibles, le switch

se produit plus tôt.
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1

Introduction

Greenhouse gases are responsible for some climate change. Humanity faces a choice:

either reducing the emissions of these gases or adapt to climate change. In this disserta-

tion we focus on the first solution under the premise that a large part of the greenhouse

effect comes from human activities. More precisely, we propose some essays on modeling

the determinants of investing in reducing greenhouse gases (GHG) through improving

energy efficiency and substituting non-renewable resources (fossil fuels) by renewable

resources. We first try and explain the slow diffusion of some energy efficient invest-

ments in a general equilibrium framework. We then study the determinants of switching

from non-renewable resources to renewable resources when these are perfect substitutes.

Finally, we account for the need of dirty resources even if cleaner technologies are

available. All these issues are based on models that cannot be fully solved analytically,

therefore we also propose in this dissertation a methodology based on the properties of

Chebyshev polynomials to compute the solutions.

1.1 Context

Most climate scientists agree on the main cause of the current global warming: the

expansion of the greenhouse effect coming from human activities. This anthropogenic

greenhouse effect enhances the Earth’s natural greenhouse effect by the addition of GHG

emissions from the burning of fossil fuels (petroleum, coal, and natural gas), mainly to

energy generation. Carbon dioxide (C02) is the gas with the higher radiative forcing,
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1. INTRODUCTION

meaning that it is the gas with the higher global warming potential. Coal, particularly

brown coal, is the energy source with the highest GHG emissions per energy unit.

Burning coal generates 70 percent more CO2 than natural gas for every unit of energy.

At the same time, coal is cheap and is the most widely available fossil fuel. As far as

burning oil is concerned, the average emissions rates of CO2 in the United States from

oil-fired generation is 1672 lbs/MWh.

Globally, energy related CO2 emissions have risen 145-fold since 1850 —from 200

million tons to 29 billion tons a year— and are projected to rise another 54 percent by

2030. Most of the world’s emissions come from a relatively small number of countries.

The 25 largest emitters, with 75 percent of the world’s population and 90 percent of the

global gross domestic product (GDP), account for approximately 85 percent of global

GHG emissions.1 The 2007 Fourth Assessment Report compiled by the IPCC (AR4)

noted that “changes in atmospheric concentrations of greenhouse gases and aerosols,

land cover and solar radiation alter the energy balance of the climate system”, and

concluded that “increases in anthropogenic greenhouse gas concentrations is very likely

to have caused most of the increases in global average temperatures since the mid-

20th century”. According to that report, temperature has increased about 0.13 degrees

Celsius per decade over the last 50 years —nearly twice the average temperature rise

for the last 100 years, and eleven of the last twelve years (1995–2006) rank among the

12 warmest years (since 1850). Following this trends, a temperature rise ranging from

1.8 degrees to 4 degrees Celsius can be expected [IPCC, 2007, Stern, 2007]. This global

warming will cause several damages on economic activity, on human life and on the

environment, often mediated through water. Melting glaciers and a consequent sea

levels rise will result into a reduction of water supply and a migration of millions of

people living in flooded areas. Extreme weather events will be more likely to appear,

and the risk of a rapid climate change and of major irreversible impacts (for instance

the melting of the Greenland ice sheet) will be higher. Also, crop yields will seriously

decline affecting food production, vulnerable ecosystems will be unable to maintain

current form and many species will face a possible extinction.2

1Climate Change Mitigation, UNEP. Available online at: http://www.unep.org/climatechange/

mitigation/Home/tabid/104335/Default.aspx. Retrieved July 20, 2012.
2See, for instance: The Consequences of Global Warming, NRDC. Available online at: http:

//www.nrdc.org/globalwarming/fcons.asp. Retrieved July 20, 2012.
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1.1 Context

Given the severe —negative— impacts of global warming, one of the major chal-

lenges facing today world’s policy makers is reducing GHG emissions. According to

the final version of the 64th Annual DPI/NGO Conference Declaration [UNDPI, 2011]

governments should have reached clear pathways towards climate sustainability that

regulates the global temperature rise below 1.5 degrees Celsius. Emissions of GHG

should be reduced to 25 percent of 1990 levels by 2020, 40 percent by 2030, 60 per-

cent by 2040 and 80 percent by 2050. This target is consistent with that suggested

by previous research, such as the Stern Review of Climate Change [Stern, 2007], who

calls for extensive and immediate interventions in order to cut global emissions by 60

percent to 80 percent by 2050; Nordhaus [2007], who proposes a modest control in the

short run followed by sharper emissions reductions in the medium and the long run; or

the IPCC [2007], which calls to stabilize emissions at between 445 and 490ppm —50 to

85 percent reductions on 2000 levels— to keep global temperature 2 degrees to 2.4 de-

grees Celsius above the pre-industrial average.3 To achieve this goal, the recent Green

Economy report [UNEP, 2011] proposes a $1.3 trillion (2 percent of world GDP) target

for green (public plus private) investments. Close to three-fifths of this sum would

be invested in energy efficiency —particularly in buildings, industry and transport—

and renewables. Examples of current public policies for energy efficiency are those of

the U.S. Department of Energy, such as the Building Technologies Program, whose

strategic goal is to create technologies and design approaches that lead to marketable

net zero energy homes by 2020, and net zero energy commercial buildings by 2025; or

the SunShot Initiative, whose goal is to make solar energy cost competitive with other

forms of energy by the end of the decade.4

Under this context it is interesting to model the determinants of investment in

reducing GHG, both through improving energy efficiency and by substituting non-

renewable (dirty) resources (fossil fuels) by renewable (clean) resources for energy pro-

vision. Studying these investment determinants in order to provide recommendations

on the best way public policy should deal with them is the main goal of this dissertation.

We tackle the investment in energy efficiency problem by considering the specific case of

home renovation (i.e. investment in energy-efficient windows, doors, or skylights). The

3There is also Greenpeace, which proposes to stop all economic growth in order to save the planet

[Acemoglu et al., 2012].
4The U.S. Department of Energy: http://www.eere.energy.gov/. Retreived July 20, 2012.
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problem of the substitution of resources is analyzed under two different scenarios. In

the first one we assume that fossil fuels and renewable resources are perfect substitute

inputs in energy production. Then, when firms decide to switch to renewable resources,

they will keep producing with that technology thereafter. In the second one we assume

that, although firms can switch to a cleaner technology using renewables, the economy

is not completely “pollution-free” as fossil fuels are still required in the economy.

One particularity of the models we are presenting here is that all decisions are taken

in a stochastic environment. At the same time we introduce some of the irreversibilities

inherents to almost any environmental policy. We also account for the fact that, in

most cases, it is feasible to delay action and wait for new information. We obtain that

these uncertainties, irreversibilities, and the possibility of delay can significantly affect

the optimal timing of policy adoption. For instance, we obtain that uncertainty on

the financial returns of households fosters the adoption of energy savings technologies.

Uncertainty also affects the effectiveness of economic policy in order to accelerate the

substitution of renewable resources for non-renewable resources in energy production.

Finally, governments are tempted to wait more in order for the cleaner technologies to

be sufficiently developed before adopting them in the production sectors.

In following lines we justify the need to account for irreversibility and uncertainty

in environmental economics. We next briefly present the four chapters comprising this

dissertation.

1.2 Irreversibility and uncertainty

Irreversibility of investment amounts to saying that undertaking investment projects

results in some unrecoverable initial cost —the so-called sunk cost. Uncertainty on

future benefits and costs of investments is also important. In fact, it was the combined

effect of irreversibility and uncertainty that led Weisbrod [1964] to introduce the con-

cept of option value. He argues that if a decision has irreversible consequences, then the

flexibility —the“option”— to choose the timing of that decision should be included in a

cost-benefit analysis. The concept of option value has two different interpretations. The

first views option value as a risk premium paid by risk averse consumers to reduce the
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1.2 Irreversibility and uncertainty

impact of uncertainty in the supply of an environmental good [Cicchetti and Freeman,

1971, Schmalensee, 1972]. The second interpretation stresses the intertemporal aspect

of irreversibility and the arrival of new information over time [Arrow and Fisher, 1974,

Henry, 1974]. This second interpretation is the one that has been used more exten-

sively in the literature on real options [Myers, 1977]. Examples are the entry, exit, and

temporary shutdowns and re-startups on investment and output decisions; the impli-

cations of construction time —and the option to abandon construction— for the value

of a project; and the determinants of a firm’s choice of capacity [McDonald and Siegel,

1986, Brennan and Schwartz, 1985, Pindyck, 1988].

To gain more intuition about irreversibility, uncertainty, and about what the option

value means, let us consider the model proposed by Olsen and Stensland [1988]. Their

model consists of an industry based on non-renewable resources (e.g. off-shore oil

extraction) having to decide whether or not shutting down its activity. First at all, the

shut down decision can be thought to be irreversible. In Olsen and Stensland’s model

irreversibility means that firms cannot restart operations after shutting down (probably

because of prohibitive high costs). Additionally, Olsen and Stensland assume that

economic conditions —particularly prices and production quantities— are uncertain.

Uncertainty jointly with irreversibility imply that firm’s decision involves the exercising,

or “killing” of an option —the option to optimally shut down at any time in the future.

In such a framework, there is a value of waiting —the option value— since the firm

has always the possibility to postpone the shut down in order to learn more about

the present and future payoffs. As a result, the usual rule of “shutting down activity

when the marginal production costs saved equal the marginal revenue foregone” is not

longer valid. In order to shut down, the marginal production costs saved must exceed

the marginal revenue foregone by an amount equal to the value of keeping the option

alive [Pindyck, 1988, Dixit and Pindyck, 1994]. Notice that the opportunity of shutting

down (or the opportunity to invest, or any other opportunity under uncertainty and

irreversibility) is analogous to a option on a common stock. In this case we have a (put)

option giving us the right (the exercise price of the option), but not the obligation

(because of the opportunity to wait) to shut down (sell) activities (the underlying

security), the value of which fluctuates stochastically [Pindyck, 1991]. Of course, in the
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case of complete irreversibility the salvage value of the firm is zero [Dixit and Pindyck,

1994, Dangl and Wirl, 2004].

Uncertainty and irreversibility has also being considered in some other environmen-

tal problems. For instance, Brennan and Schwartz [1985] analyze the operation of a

mine, which can be temporarily closed; Paddock et al. [1988] propose a model to value

offshore petroleum leases as a function of the market price of oil; and Clarke and Reed

[1990] study the preservation of natural wilderness reserves. A standard result is that,

in the presence of environmental irreversibility, a standard cost-benefit analysis is bi-

ased against conservation [Arrow and Fisher, 1974, Henry, 1974]. Freixas and Laffont

[1984] generalize this result, and Conrad [1980] links option value to the expected value

of information.

In some more recent papers, Pindyck [2000, 2002, 2007] explains the role of uncer-

tainty and irreversibility in environmental policy. In the case of global warming-oriented

policies for instance, uncertainty appears as we do not know how much average temper-

atures will rise with or without reduced CO2 emissions, nor do we know the economic

impact of higher temperatures. Second, irreversibility appears in, for instance, policies

aimed at reducing environmental degradation. There are some sunk costs taking the

form of discrete investments (e.g. coal-burning utilities might be forced to install scrub-

bers, or firms might have to scrap existing machines and invest in more fuel-efficient

ones), or they can take the form of expenditure flows. These sunk costs create an

opportunity cost of adopting a policy now, rather than waiting for more information

about ecological impacts and their economic consequences. There is also some irre-

versibility in environmental damage. For example, atmospheric accumulations of GHG

are long lasting; even if we were to drastically reduce GHG emissions, atmospheric

concentration levels would take many years to fall. This means that adopting a policy

now rather than waiting has a sunk benefit, that is a negative opportunity cost. Then

traditional cost-benefit analysis will be biased against policy adoption.

What about our particular cases of energy efficiency and on the substitution of

resources? Consider the case of resources substitution. Imagine a firm trying to decide

whether or not stop using non-renewable (fossil fuels) in favor of renewable inputs in

energy production. Uncertainty can appear in a lot of ways, but it seems particularly
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1.2 Irreversibility and uncertainty

relevant to focus on the uncertainty over the availability of resources [Pindyck, 1980,

Epaulard and Pommeret, 2003, Smith and Son, 2005]. Specifically, we can have an idea

of their current stock, but we do not know too much about their future availability.

And even if we knew how much of the resources are expected to be available in the

future, we would not know the resulting effect on firm’s decisions. For instance the more

renewable resources are expected to be available in the future, the more the firms are

tempted to adopt them sooner to produce energy. Moreover, the adoption of renewables

imposes sunk costs on society. It is in particular the case if an offshore oil platform is

being transformed into an offshore wind farm. Once this decision is made, almost all

of the previously installed capital needs to be dismantled, and very few parts of the

old facility can be re-utilized. This process is clearly very expensive in terms of time

and money. As before, there is an option value in the sense that investors can wait for

more information before getting rid of the offshore oil platforms.

Consider now the specific case of a homeowner investing in new “equipment” in

order to reduce his energy bill. We can safely assume that this investment is irre-

versible, as uninstalling the new equipment can be unreasonably costly or because the

old equipment has been scrapped. Some uncertainty can also be considered. For in-

stance, the evolution of the household’s wealth is not fully know, particularly if we

assume that wealth depends on risky assets. Under this circumstances, household’s de-

cision to invest can be considered to have an option value, as she can always postpone

the investment in order to learn whether future wealth is increasing or not. If there is

no arbitrage between household’s consumption and adoption —i.e. in a partial equi-

librium setting, in order to invest in this energy saving technology, the marginal value

of the new equipment must exceed the purchase and installation cost, by an amount

equal to the value of keeping the investment option alive. In the case of an arbitrage

between consumption and adoption —i.e. in a general equilibrium setting, the optimal

adoption timing is not only sensitive to uncertainty, but also sensitive to the degree of

agents’ risk aversion (Hugonnier et al. [2008]; see also Pommeret and Schubert [2009]

for an example in environmental economics).
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1.3 On numerically solving Bellman equations

In this dissertation we face ourselves with functional equations that are complex and

cannot be fully solved using standard analytical techniques. In particular, analytical

solutions for the models in chapters 3 and 5 are only available in the case of a zero

discount rate. There is a huge debate in environmental economics about the way future

utilities should be discounted, especially when today’s decisions have very long-term

consequences (see, for instance, Portney and Weyant [1999] for a survey). As we are

not particularly inclined in favour of a zero or a positive discount rate, a methodology

to solve for all cases becomes necessary. Additionally, the model in chapter 4 can never

be fully solved analytically. At least for the models we are presenting here, the problem

is the high non-linearity of the value functions and the fact that they have to satisfy

some boundary conditions. Then, we need to rely on numerical methods.

As suggested by Judd [1992, 1998], we use the approximation properties of Cheby-

shev polynomials to compute stable non-diverging solutions of the Hamilton–Jacoby–

Bellman equations. Specifically, we transform the value functions and the given condi-

tions into expressions with unknown Chebyshev coefficients. By using this representa-

tion, our original problem of solving partial differential equations reduces to a problem

of solving simple systems of non-linear equations. The model of chapter 3 is solved by

using an algorithm based on Newton’s method [Miranda and Fackler, 2004, Dangl and

Wirl, 2004]; while the models in chapters 4 and 5 are solved by using the methodology

presented in chapter 2.5 In particular, we transform the value function and the given

conditions into matrix equations with unknown Chebyshev coefficients. By doing like

this, our problem reduces to one of solving a simple system of algebraic equations. This

methodology is a secondary by-product of this dissertation, but it constitutes by itself

an original contribution to the numerical methods literature.

5The methodology of chapter 2 can also be adapted to solve the model of chapter 3. In fact, both

methodologies were used a posteriori for comparison purposes.
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1.4 Energy efficiency

1.4 Energy efficiency

Home renovations are generally asserted to be a highly effective means for households

to lower expenditures on energy —and to indirectly reduce GHG— through improving

efficiency, and they become therefore a key target for environmental policies. Indeed,

cost-benefit analyses point to the economic viability of these systems even if the comfort

co-benefits such as improvements in indoor air quality and protection against noise are

not taken into account [Jakob, 2006, Ott et al., 2006]. However, actual investment in

these systems is still relatively rare [Banfi et al., 2008]. In chapter 3 we aim to explain

the home renovation decision of households in a theoretical model. Specifically, we

try to explain the slow diffusion of energy efficient investments —the so-called energy

paradox or energy-efficiency gap [Jaffe and Stavins, 1994a].

The existing literature that explains the energy paradox (Hassett and Metcalf [1995],

for instance) considers partial equilibrium settings, and therefore ignores the interac-

tion between optimal consumption and optimal adoption, as well as the notions of

risk aversion, or intertemporal substitutions. In those settings consumers behave like

firms when deciding energy-saving technology adoption. To challenge these results,

we reconsider the joint effect of irreversibility and uncertainty on the energy-efficiency

investment decision in a general equilibrium framework [Hugonnier et al., 2008, Pom-

meret and Schubert, 2009]. In particular, we wonder whether the explanation of the

energy paradox based on the existence of an option value still valid in a more realistic

and general model.

To tackle this issue we consider the specific case of a homeowner who may invest in

new insulation, or double glazing in order to reduce her energy bill. We assume that

this investment is irreversible, as uninstalling the new“equipment”can be unreasonably

costly or because the old equipment has been scrapped. We also assume that the

benefits of such energy-saving technologies as well as the financial returns on household’s

savings are assumed to be stochastic. Our results imply that the threshold triggering

adoption depends not only on technological parameters but on preference parameters

as well. Additionally, we show that while uncertainty on energy-saving technologies

efficiency hardly affects adoption timing, uncertainty on financial returns fosters it. We

also find that the existence of an option value does not rule out the energy paradox.
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1.5 On the substitution of resources I

Substitution of fossil fuels provides permanent GHG emission reductions. Many economies

in the world have therefore incentives to move towards renewable energy. In chapter 4

we consider a model of technology switching in which energy can be produced from two

available inputs: non-renewable resources (fossil fuels) and renewable resources. We are

particularly interested in tackling the following issue: At what point should society stop

using non-renewable resources to produce energy and start producing from renewables?

We propose a model in which the available resources (fossil fuels, and renewable

resources such as water, wind, solar, biomass) are perfect substitutes in energy pro-

duction, and their stocks are stochastic. We assume that firms start producing energy

using only fossil fuels, but the possibility to carry out an irreversible investment to

switch to the other input is always open. Due to our particular assumptions, we obtain

a value function before the switch that is S-shaped. This is completely new in the

literature of technology switching, where the resulting value function is mostly concave

[Dixit and Pindyck, 1994]. Another novelty of our model is that firms do not switch

immediately in the case of switching cost being equal to zero (Pommeret and Schubert

[2009]; see also chapter 3). This results from the higher profits the firms get from using

nonrenewable resources, particularly if they are abundant.

We find that uncertainty plays a clear role in the decision to switch. The more the

uncertainty about the availability of the non-renewable resources, the sooner the firms

switch to the renewable resources; and the more the uncertainty about the availability

of renewable resources, the later the switching time. The optimal switching time is also

sensitive to energy demand, costs, and the relative productivity of resources parameters.

1.6 On the substitution of resources II

We already know that one of the policies commonly undertaken by many countries in

order to reduce GHG emissions is to substitute dirty energy sources, such as coal, oil

and gas, with a cleaner and renewable energy source, such as solar and wind energy.

However, it seems that fossil fuels will continue to be an important part of the energy
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mix around the world even by 2050, a year in which a reduction of about 80 percent

of total 1990-emissions is expected. Our theory is that as long as renewable energies

are not very advanced and widespread, (i) industry will still need a percentage of

energy that derives from dirty resources, and (ii) the provision of clean energy itself

will require dirty resource at least as materials to build the plants (think of solar panels

for instance).

In chapter 5 we model an economy having access to two different energy sources.

The first one comes from a natural polluting resource, such as fossil fuels. The second

one comes from a backstop natural resource, such as solar radiation. In particular,

we consider the case of solar radiation being converted into energy by means of solar

panels. There are two productive sectors in the economy. The first one is dedicated

to manufacturing the backstop resources. At any time, this sector requires both fossil

fuels and the energy provided by the backstop already available. We therefore account

for the need of fossil fuels to provide clean energy. The second sector is devoted to

production of the consumption good. Initially it uses energy coming exclusively from

fossil fuels. However, it has always the possibility of switching to a new technology

in which energy comes from both types of resources. Under this setting we seek to

appraise what happens for the energy adoption decision if we account for the need of

dirty resources even in an economy using clean energy.

In modeling this switching decision, we account for the uncertainty over the future

costs and benefits. In particular, we assume that the accumulation of the backstop, and

the increase in pollution stock —which in our case is equal to the resource extraction—

are stochastic. We also introduce the irreversibilities associated with environmental

policy. Specifically, adoption of the cleaner technology imposes sunk cost on the con-

sumption sector. Our results imply that, under uncertainty and irreversibility, the

incentives to switch to the cleaner technology depend on the relative importance of

fossil fuels in the production of consumption goods after the switch. We also find that

technological improvement in the solar panels sector is of some importance in order to

switch to cleaner technologies. If the technological change implies that the backstop

can be produced with relatively less of the fossil fuels, the adoption occurs sooner.
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2

Using Chebyshev Polynomials to

Approximate Partial Differential

Equations∗

Caporale and Cerrato [2009] propose a simple method based on Chebyshev approxima-

tion and Chebyshev nodes to approximate partial differential equations (PDEs). How-

ever, they suggest not to use Chebyshev nodes when dealing with optimal stopping prob-

lems. Here, we use the same optimal stopping example to show that Chebyshev polyno-

mials and Chebyshev nodes can still be successfully used together if we solve the model

in a matrix environment.

2.1 Introduction

Many problems in economics lead to functional equations that are complex and cannot

be solved using standard analytical techniques. This is especially true for optimal stop-

ping problems. Examples are the optimal sequential investment model in Majd and

Pindyck [1985], and the incremental investment model in He and Pindyck [1992]. Both

∗A version of this chapter is published as: Mosiño, A. (2012). Using Chebyshev Polynomials to

Solve Partial Differential Equations: A Reply. Computational Economics 39(1), pp 13-27.
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models are solved numerically by using finite difference methods. However, these tech-

niques can sometimes fail to determine the value function accurately or are extremely

slow (see, for instance, Dangl and Wirl [2004]).

Starting from Judd [1992], economists are increasingly interested in the use of pro-

jection methods as an alternative to finite difference methods. For example, Dangl and

Wirl [2004] propose a modification of Judd’s methodology to approximate the solution

of a stopping problem.1 In particular, they approximate the value function by using

Chebyshev polynomials as a basis, and then find the projection coefficients by using

Newton’s algorithm. When one provides the Newton’s algorithm with a good initial

guess, the solution is stable and converges very fast to the real analytical solution. In

this sense, Dangl and Wirl prove that collocation methods are superior to other stan-

dard numerical procedures, such as a modified shooting method -using a Runge-Kutta

algorithm-,2 and finite difference techniques.

In order to solve the same optimal stopping problem as Dangl and Wirl [2004], Ca-

porale and Cerrato [2009] rely first on Chebyshev polynomials to approximate partial

differential equations, but then they use Monte Carlo methods to solve the boundary

conditions for the partial differential equation. Finally, they fit the functional at Cheby-

shev nodes to estimate the coefficients. Such a resolution has the advantage of being

flexible and easy to program. However, in the particular case of the optimal shutdown

time of a machine [Dixit and Pindyck, 1994], Caporale and Cerrato suggest not to use

Chebyshev nodes, arguing it would result in a very poor fit.

Here, we are taking again the optimal shutdown time of a machine model to first

introduce the Chebyshev matrix method. In short, we follow Judd [1992, 1998], Dangl

and Wirl [2004], and Caporale and Cerrato [2009] in assuming that the value function

can be well approximated by truncated Chebyshev series. However, in the spirit of

Sezer and Kaynak [1996], we then express the approximation in matrix terms. This

1Dangl and Wirl [2004] consider the optimal shutdown time of a machine model first presented in

Dixit and Pindyck [1994].
2The shooting method needs to be modified to solve free boundary problems. For standard shooting

methods, see e.g. Deuflhard and Bornemann [2002].
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expression is evaluated at Chebyshev nodes.3 In contrast to Dangl and Wirl [2004],

we do not use a Newton’s algorithm to find the projection coefficients and only simple

algebra is required. In this sense, we avoid the need of a first guess for the projection

coefficients.

Our model also differs from Caporale and Cerrato [2009] in that we do not use Monte

Carlo methods. Instead, we introduce the boundary conditions by a simple modification

in our matrix expression. As a result, Chebyshev polynomials and Chebyshev nodes

can still be successfully used together.

The rest of the chapter is as follows. In section 2.2, the model to derive the optimal

shutdown time of a machine is described and analytically solved. In section 2.3 we

present and adapt the Chebyshev matrix model, and it is shown how Chebyshev coef-

ficients can be obtained by using linear algebra. In section 2.4 we show how our model

can be extended to approximate non-linear problems. As we will see, the approximate

numerical resolution in this case is too close to the one reported in Dangl and Wirl

[2004]. Section 2.5 concludes.

2.2 The optimal stopping problem

The following framework -originally developed by Dixit and Pindyck [1994]- is useful

first because it allows for an explicit analytical solution, so that we can compare it

with the numerical approximation obtained in the following section. Second, the model

is also used by Dangl and Wirl [2004], and Caporale and Cerrato [2009], so we can

compare the performance of our approach with theirs. The model is described briefly,

since it can be referred to the mentioned authors for further details.

3In their paper, Sezer and Kaynak [1996] find the approximate solution of a second order linear

differential equation under some given boundary conditions. Our problem is a free-boundary problem.

As we will see, our boundary conditions are given at some optimal stopping value which has to be

determined.
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2.2.1 Description of the model

Let π(t) denote the profit flow in period t from using a particular equipment. Assume

that π(t) evolves according to:

dπ(t) = adt+ σdz, (2.1)

π(0) = π0,

where a < 0, for both economical obsolescence and physical and reasons. σ > 0 is the

volatility of profit, and dz is a standard increment of a Wiener process. The stochastic

part of equation (2.1), σdz, implies the existence of random shocks to the equipment’s

productivity due to the general business cycle, or because of idiosyncratic variations in

the demand for the equipment’s output. Also, note that there is no particular restriction

on the value π(t), i.e. the firm can accept some losses to keep the machine in operating

condition.

Following Dixit and Pindyck [1994], Dangl and Wirl [2004], or Caporale and Cerrato

[2009], suppose that F (π, t) is a claim on the profit flow, π(t); it is determined as:

F (π, t) = max
{T}

E

T∫

0

e−rtπ(t)dt, (2.2)

where r is the subjective discount rate of the owner, and T is a random stopping time

at which the machine is removed. Also, assume that equipment that is once removed

cannot be reinstalled (or the re-installation cost is close to infinity), and that salvage

value is zero.

The Bellman equation for this optimal stopping problem is:

F (π, t) = max
{T}

{
0, πdt+

1

1 + rdt
E [F (π + dπ, t+ dt)]

}
, (2.3)

where the first argument applies if the machine is scrapped, and the second argument

provides the value from continuation. The firm’s optimal decision can be characterized

by a threshold π∗, such that it is optimal to use the equipment as long as π > π∗, and

to throw it away when the profit flow hits this threshold for the first time.
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Using standard techniques, it is possible to show that, in the domain of continuation,

the value function F (π, t) has to satisfy:

rF (π, t) = π + aFπ +
1

2
σ2Fππ, (2.4)

where F(·) is the derivative with respect to the sub-script. Also, note that there is no

explicit direct dependence on time t, then: F (π, t) = F (π).

Three boundary conditions have to be met:

F (π∗(t)) = 0 (2.5)

Fπ(π
∗(t)) = 0 (2.6)

lim
π→∞

{
F (π)−

( a

r2
+

π

r

)}
= 0 (2.7)

Equation (2.5) is the value matching condition at the threshold value π∗: the unknown

function F (π) has to equal the known termination payoff function (zero in our example).

Equation (2.6) is the smooth pasting condition. This equation matches the slope of

F (π) to that of the payoff function to ensure that the shutdown occurs at the optimal

time. Finally, equation (2.7) implies that the opportunity to shut down has no value

for π → ∞. Then F (π) reduces to the discounted sum of all future cash-flows.

2.2.2 Solving the model analytically

The general solution of the non-homogeneous linear differential equation (2.4) is:4

F (π) =
[ a
r2

+
π

r

]
+ c1 exp(λ1π) + c2 exp(λ2π). (2.8)

As we can see, equation (2.8) encompasses the discounted sum of all future cash-flows,

and some option values. λ1 > 0 and λ2 < 0 denote the roots of the characteristic

polynomial of the corresponding homogeneous differential equation:

λ1,2 =
−a±

√
a2 + 2σ2r

σ2
. (2.9)

4See Dangl and Wirl [2004].
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Since λ1 > 0, the boundary condition (2.7) can only be satisfied for:

c1 = 0.

Hence, the closed form solution of the value function is:

F (π) =

{ [
a
r2

+ π
r

]
+ c2 exp(λ2π) for π ≥ π∗,
0 for π ≤ π∗.

(2.10)

Using equation (2.10), and solving the system of two equations (2.5) and (2.6) in

the two unknowns π∗ and c2, we get:

π∗ =
1

λ2
− a

r
,

and

c2 = − 1

rλ2 exp(λ2π∗)
.

Both Dixit and Pindyck [1994], and Dangl and Wirl [2004] provide some base case

parameters: a = −0.1, σ = 0.2, r = 0.1. Using these we get:

π∗ = −0.17082039

c2 = 10.1188.

2.3 The matrix model

In this section we find a numerical approximation for equation (2.4) subject to equations

(2.5) to (2.7). To do this, we adapt the procedure first presented in Sezer and Kaynak

[1996] in the context of general linear differential equations. As we shall see, the solution

of the free-boundary problem presented in the previous section is easy to set and only

requires simple algebra.

2.3.1 A numerical approximation of the value function

Suppose that F̂ (π) ≈ F (π) has a Chebyshev series solution of the form:5

F̂ (π) =
1

2
a0T0 (π) +

N∑

i=1

aiTi (π) , (2.11)

5The quality of the approximation F̂ (π) is guaranteed by the Chebyshev approximation theorem.

See Judd [1992] for deeper explanations.

36



2.3 The matrix model

for π∗ ≤ π ≤ π. In equation (2.11), π is an artificial (user defined) upper boundary for

π, and Ti (π), i = 0, 1, ..., N , is the general ith Chebyshev polynomial of the first kind.

This can be obtained from the recurrence relation:

T0(s(π)) = 1,

T1(s(π)) = s, and

Tn+1(s(π)) = 2sTn(s(π))− Tn−1(s(π)),

where:

s(π) =
2π − (π∗ + π)

π − π∗
. (2.12)

In equation (2.11), ai, i = 0, 1, ..., N , are the Chebyshev coefficients to be determined,

and N + 1 is the degree of approximation. Also, assume that:

F̂ (n)(π) =
1

2
a
(n)
0 T0 (π) +

N∑

i=1

a
(n)
i Ti (π) , (2.13)

where F̂ (n)(π) is the nth derivative of F̂ (π) with respect to π, and a
(n)
i are also Cheby-

shev coefficients. Obviously a
(0)
i = ai and F̂ (0)(π) = F̂ (π).

As Ti (π) are generalized Chebyshev polynomials in equations (2.11) and (2.13), the

recurrence relation between the Chebyshev coefficients a
(n)
i and a

(n+1)
i of F̂ (n)(π) and

F̂ (n+1)(π) is given by:6

a
(n+1)
i =

2

π − π∗


2

∞∑

j=0

(i+ 2j + 1) a
(n)
i+2j+1


 . (2.14)

If we take i = 0, 1, ..., N and assume a
(n)
i = 0 for i > N , we can write equation (2.14)

in the matrix form:

A(n+1) = 2MgA(n), n = 0, 1, 2, (2.15)

where A(0) = A, Mg = 2
π−π∗

M, and M is as defined in Sezer and Kaynak [1996].

Equations (2.11) and (2.13) can also be expressed in matrix form:

F̂ (π) = T(π)A, (2.16)

F̂ (n)(π) = T(π)A(n) (2.17)

6See Sezer and Kaynak [1996] for computations in the case of usual Chebyshev polynomials: T (x),

−1 ≤ x ≤ 1.
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so that:

T(π) =
[
T0(π) T1(π) · · · TN (π)

]
,

A =
[

1
2a0 a1 · · · aN

]′
, and

A(n) =
[

1
2a

(n)
0 a

(n)
1 · · · a

(n)
N

]′
.

Using equation (2.15), equation (2.17) can be written as:

F̂ (n)(π) = T(π)A(n)

= 2T(π)MgA(n−1)

= 4T(π) (Mg)2A(n−2)

= ...

= 2nT(π) (Mg)nA(0). (2.18)

2.3.2 Collocating the collocation points

To obtain a Chebyshev solution of equation (2.4) in the form of (2.16), we first compute

the Chebyshev coefficients by means of Chebyshev collocation points (nodes). These

points are defined as:

si = cos

(
iPi

N

)
(2.19)

where i = 0, 1, ..., N , and Pi refers to the standard mathematical constant. As a

function of π is required, we use the definition of s in equation (2.12) to transform the

collocation points as:

πi =
π − π∗

2
(si + 1) + π∗. (2.20)

Next, we write the numerical approximation to equation (2.4) as:

rF̂ (πi)− aF̂ (1)(πi)−
1

2
σ2F̂ (2)(πi) = πi. (2.21)

Consider now the following definitions:

φ0 : = r,

φ1 : = −a,

φ2 : = −1

2
σ2,
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and:

Φj :=




φj(π0) 0 · · · 0
0 φj(π1) · · · 0
...

...
. . .

...
0 0 · · · φj(πN )


 , j = 0, 1, 2. (2.22)

If we use φ0, φ1, and φ2 for this particular problem, equation (2.22) implies:

Φ0 = rIN+1, (2.23)

Φ1 = −aIN+1, (2.24)

Φ2 = −1

2
σ2IN+1, (2.25)

where IN+1 is an identity matrix of size N + 1. Also, define:

F(n) := 2nT (Mg)nA, (2.26)

for:

T =
[
T(π0) T(π1) · · · T(πN )

]′
.

And finally:

Ψ :=
[
π0 π1 · · · πN

]′
. (2.27)

Using equations (2.23) to (2.27), we can write equation (2.21) as:

2∑

k=0

ΦkF
(k) = Ψ,

or, using equation (2.26):

ΓA = Ψ, (2.28)

which corresponds to a system of N + 1 algebraic equations with the unknown Cheby-

shev coefficients so that:

Γ =

2∑

k=0

2kΦkT (Mg)k .
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2.3.3 Value matching condition and Chebyshev coefficients

As one condition is needed to approximate π∗, we keep the smooth pasting condition

apart for the time being and focus only on the value matching condition. Using equation

(2.16), we may write equation (2.5) as:

F̂ (π∗) = T(π∗)A = 0. (2.29)

In order for this condition to be always satisfied, we replace the last row of matrix ΓA

in equation (2.28) by the vector T(π∗)A, and the last row of vector Ψ by 0. Doing this

we get the system:

Γ̃A = Ψ̃ (2.30)

Hence, Chebyshev coefficients can be simply computed from equation (2.30):

A(π∗) = Γ̃−1Ψ̃. (2.31)

2.3.4 Smooth pasting condition and the optimal stopping time

Equation (2.31) jointly with equation (2.16) gives us an approximate numerical solution

for equation (2.4). This solution is a function of both π and π∗:

F̂ (π, π∗) = T(π)A(π∗).

The smooth pasting condition means that:

F̂ (1)(π∗, π∗) = T(π∗)A(π∗) = 0, (2.32)

which is an equation that can easily be solved for π∗ by using Newton’s method, Broy-

den’s method, or any other methodology to solve nonlinear equations.
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2.3.5 Results

Results for N = 5, 7, 10, and 15 are:7

π∗
N=5 ≈ −0.327379614433541,

π∗
N=7 ≈ −0.186102170735499,

π∗
N=10 ≈ −0.171001350671151,

π∗
N=15 ≈ −0.170820408465840.

As expected, the approximation is better as N becomes larger. Moreover, the numerical

solution with N = 15 is really close to the analytical solution. This confirms that the

Chebyshev matrix model is doing a very good job when used jointly with Chebyshev

nodes.

2.4 Introduction to non-linear optimal stopping problems

We want to show that our methodology is also useful to solve more complicated prob-

lems. For example, let us consider the optimal maintenance and shutdown model in

Dangl and Wirl [2004]. According to this model, allowing for maintenance yields the

following dynamic, stochastic problem:

F (π, t) = max
{u(t),t∈[0,T ],T}

E

T∫

0

e−rt

(
π(t)− 1

2
cu2(t)

)
dt, (2.33)

dπ(t) = (a+ u)dt+ σdz, (2.34)

where u > 0 represents maintenance, C(u) = 1
2cu

2 is the costs function, and c is just a

constant.

The Bellman equation for this problem can be found to be:

rF = π +

(
a+

1

2c
Fπ

)
Fπ +

1

2
σ2Fππ, (2.35)

7Refer to the appendix for step-by-step computations in the case of N = 2.
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where we are using the usual techniques and the optimal maintenance value:

u∗ =
Fπ

c
. (2.36)

Equation (2.35) is a non-linear, non-homogeneous, second order differential equation

that has to be solved subject to the two boundary conditions (2.5) and (2.6), and the

transversality condition:8

lim
π→∞

{
F (π)−

(
a

r2
+

1

2c3
+

π

r

)}
= 0. (2.37)

However, this problem seems to have no explicit analytical solution.

2.4.1 Linearizing the non-linear equation

Following section 2.3.1, we assume that F̂ (π) ≈ F (π) and its derivatives can be ap-

proximated as:

F̂ (n)(π) = 2nT(π) (Mg)nA(0).

However, to apply the procedure described in section 2.3.2, we must first linearize

equation (2.35) and the value matching condition (2.5).9 For example, if we use the

linear iterative scheme we can write:

rF̂k+1(πi)−
(
a+

1

2c
F̂

(1)
k (πi)

)
F̂

(1)
k+1(πi)−

1

2
σ2F̂

(2)
k+1(πi) = πi, (2.38)

F̂k+1(π̂
∗) = T(π̂∗)A = 0, (2.39)

for k = 0, 1, 2, . . ., and π̂∗ being an initial guess for π∗.

To start iterating, we take the following initial guess:

F̂0(π) = 0, (2.40)

which satisfies the value matching condition as long as π = π̂∗. Inserting equation

(2.40) into equation (2.38) we get:

rF̂1(πi)−
(
a+

1

2c
F̂

(1)
0 (πi)

)
F̂

(1)
1 (πi)−

1

2
σ2F̂

(2)
1 (πi) = πi, (2.41)

8Refer to Dangl and Wirl [2004] for further explanations.
9As we did in section 2.3.3, we keep the smooth pasting condition apart for a while.
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F̂1(π̂
∗) = T(π̂∗)A = 0. (2.42)

The linear differential problem of equations (2.41) and (2.42) can be easily solved by

using the Chebyshev matrix method.10 The resulting iterative approximation F̂1 is

then used to solve:

rF̂2(πi)−
(
a+

1

2c
F̂

(1)
1 (πi)

)
F̂

(1)
2 (πi)−

1

2
σ2F̂

(2)
2 (πi) = πi,

F̂2(π̂
∗) = T(π̂∗)A = 0,

and son on. In general, the result of the kth iteration is used to activate the (k +

1)th iteration. If the process is convergent, a fixed point will be reached after several

iterations. The process is ended when the maximum absolute value of the difference

between two consecutive estimates is less than a tolerance error ε, i.e.:

Ẽk+1 = max
π̂∗≤π≤π

∣∣∣F̂k+1(π)− F̂k(π)
∣∣∣ ≤ ε.

2.4.2 Using the smooth pasting condition

Assume that F̂k has reached a fixed point, and hence:

F̂k(π̂
∗) = F̂ (π̂∗).

The last step is to evaluate our resulting expression by using the smooth pasting con-

dition:

F̂ (1)(π̂∗) = 0. (2.43)

10Define:

φ0,k+1 : = r,

φ1,k+1 : = −

(
a+

1

2
F

(1)
0 (πi)

)
,

φ2,k+1 : = −
1

2
σ
2
,

and then redefine equations (2.22), and (2.26) to (2.31) in terms of the (k + 1)th iteration.
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If equation (2.43) is satisfied, it is obvious that π̂∗ = π∗ is the optimal stopping value.

On the contrary, if equation (2.43) is not satisfied, we have to guess another value for

π̂∗ and start the whole process again.11

2.4.3 Results

We use the same parameters as in section 2.3.5 and c = 200. Results for N = 5, 7, 10,

and 15 are:

π∗
N=5 ≈ −0.303894042968750,

π∗
N=7 ≈ −0.163452148437500,

π∗
N=10 ≈ −0.177474975585938,

π∗
N=15 ≈ −0.179458618164063.

The numerical solution for N = 15 is really close to the one reported by Dangl and

Wirl [2004]. So, the Chebyshev matrix model also does a very good job when used to

approximate non-linear optimal stopping problems.

2.5 Conclusion

Many differential equations in economic models are usually difficult (or even impossible)

to solve analytically. In many cases approximate solutions are required. Here, we follow

the suggestion of Judd [1992, 1998], Dangl and Wirl [2004], and Caporale and Cerrato

[2009] to use Chebyshev polynomials and collocation methods to approximate value

functions. However, we transform the value function and the given conditions into

matrix equations with unknown Chebyshev coefficients. By using this representation,

our original problem of solving a partial differential equation reduces to a problem of

solving a simple system of algebraic equations.

Contrary to one of the findings in Caporale and Cerrato [2009], our methodology

suggests that Chebyshev series and Chebyshev nodes can still be sucessfully used to-

gether, even if the problem is non-linear. Also, by using the matrix method we avoid

11We can find the optimal stopping value by using a simple search algorithm.
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the need of using a Newton’s algorithm to find the projection coefficients as in Dangl

and Wirl [2004].

2.A An illustrative example with N=2

In this section we follow the procedure described in the main text to solve for F̂ (π) and

π∗ step by step. In order to provide a very illustrative example we fix N = 2. This

will lead to a very bad numerical approximation of equation (2.4), but will simplify our

exposition.

For N = 2, the Chebyshev collocations points as defined by equation (2.19) are:

si = {1, 0,−1} .

Hence, equation (2.20) implies that:

πi =

{
π,

1

2
(π + π∗) , π∗

}
.

For example, if π = 10:

πi =

{
10, 5 +

1

2
π∗, π∗

}
.

Using a = −0.1, σ = 0.2, r = 0.1 we can compute the matrices in equations (2.23)

to (2.25):

Φ0 =




0.1 0 0
0 0.1 0
0 0 0.1


 ,

Φ1 =




0.1 0 0
0 0.1 0
0 0 0.1


 ,

Φ2 =




−0.02 0 0
0 −0.02 0
0 0 −0.02


 ,
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the matrices in equation (2.26):

F(0) =




1 1 1
1 0 −1
1 −1 1


A,

F(1) =




0 − 2
π∗−10 − 8

π∗−10

0 − 2
π∗−10 0

0 − 2
π∗−10

8
π∗−10


A,

F(1) =




0 0 16
(π∗−10)2

0 0 16
(π∗−10)2

0 0 16
(π∗−10)2


A,

and the matrix in equation (2.27):

Ψ =




10
5 + 1

2π
∗

π∗


 .

Hence, equation (2.28) implies:




0.1 1
10

π∗−12
π∗−10

1
50

5(π∗)2−140π∗+884

(π∗−10)2

0.1 −1
5

1
π∗−10 − 1

50
5(π∗)2−100π∗+516

(π∗−10)2

0.1 − 1
10

π∗−8
π∗−10

1
50

5(π∗)2−60π∗+84

(π∗−10)2


A =




10
5 + 1

2π
∗

π∗


 .

Before solving for A, first we take the value matching condition into account. In

this little example, equation (2.29) is:

(
1 −1 1

)
A = 0.

Replace the last row of matrix ΓA by this result, and the last row of vector Ψ by 0 to

get:



0.1 1
10

π∗−12
π∗−10

1
50

5(π∗)2−140π∗+884

(π∗−10)2

0.1 −1
5

1
π∗−10 − 1

50
5(π∗)2−100π∗+516

(π∗−10)2

1 −1 1


A =




10
5 + 1

2π
∗

0


 .
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Now, solve for A as indicated by equation (2.31):

A(π∗) =




0.1 1
10

π∗−12
π∗−10

1
50

5(π∗)2−140π∗+884

(π∗−10)2

0.1 −1
5

1
π∗−10 − 1

50
5(π∗)2−100π∗+516

(π∗−10)2

1 −1 1




−1


10
5 + 1

2π
∗

0




=




5
2
5(π∗)3−25(π∗)2−1408π∗+11580

5(π∗)2−115π∗+674

2010(π∗)2−251π∗+1510

5(π∗)2−115π∗+674

−25
2
(10+(π∗)2−11π∗)(π∗−10)

5(π∗)2−115π∗+674


 .

Hence, we have our approximated function F̂ (π, π∗) = T(π)A(π∗):

F̂ (π, π∗) = −20
30 (π∗)2 − 5π (π∗)2 − 25ππ∗ + 252 + 5π2π∗ − 252π − 5π2

5 (π∗)2 − 115π∗ + 674
.

Finally, we use the smooth pasting condition to find π∗. First, differentiate F̂ (π, π∗)

with respect to π:

F̂π(π, π
∗) = −20

−5 (π∗)2 − 25π∗ + 10ππ∗ − 252− 10π

5 (π∗)2 − 115π∗ + 674
,

and then evaluate in π = π∗ as indicated by equation (2.32):

F̂π(π
∗) = −20

5 (π∗)2 − 35π∗ − 252

5 (π∗)2 − 115π∗ + 674
= 0.

This non linear equation can be easily solved for π∗:

π∗
N=2 = −4.415175298121956

which is, of course, very far from the analytical solution.
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3

Energy-saving Technology

Adoption under Uncertainty in

the Residential Sector∗

Home renovation is generally asserted to be a highly effective means for households to

lower expenditures on energy. In this sense, home renovation can also be thought as a

means to reduce GHG emissions. In this chapter we consider a homeowner who makes

an irreversible energy-saving investment in an uncertain environment. In a general

equilibrium framework, we solve the program of a representative consumer who uses his

wealth to invest in the energy-saving technology, to save or to consume energy goods

and non-energy goods. Resolution is analytical in a zero discounting case and numerical

for the general case, based on collocation and Chebyshev polynomials. In particular, we

show that the usual explanation of the energy paradox based on the existence of an

option value in partial equilibrium is no longer valid when the analysis is extended to a

general equilibrium framework.

∗This chapter is co-writen with Dorothée Charlier and Aude Pommeret. A version of it is published

as: Charlier, D., Mosiño, A., and Pommeret A. (2011). Energy-saving Technology Adoption under

Uncertainty in the Residential Sector. Annales d’Économie et Statistique 103-104, pp 43-70.
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3.1 Introduction

Reducing GHG emissions is nowadays becoming one of the priorities of policy makers

in many developed countries. For instance, the French government wishes to reduce

emissions by four by 2050. Nevertheless, such a concern appears in a context of grow-

ing energy demand. This phenomenon is in part due to the importance of residential

energy: in France, buildings account for 23% of CO2 emissions, of which 70% are

generated by the residential sector, and for 46% of final energy consumption [ANAH,

2008]. Energy demand in the residential sector depends mainly on the intensity of use

of energy appliances and on their efficiency [Hausman, 1979]. Indeed, home renovations

are generally asserted to be a highly effective means for households to lower expendi-

tures on energy through increased efficiency and they become therefore a key target

for environmental policies. For instance, enhanced insulation and energy-efficient ven-

tilation of residential buildings are new technologies that can considerably reduce the

energy consumption for indoor heating and cooling [Farsi, 2010]. Cost-benefit analyses

point to the economic viability of these systems even if the comfort co-benefits, such

as improvements in indoor air quality and protection against noise, are not taken into

account [Jakob, 2006, Ott et al., 2006]. However, actual investment in these systems

is still relatively rare [Banfi et al., 2008]. This chapter aims at carefully explaining the

home renovation decision of households in a theoretical model. In particular, we ex-

plicitly take into account that such a decision takes place in an uncertain environment,

in which there exist arbitrages between consumption, savings, and investment in home

renovation.

The literature has already tried to explain the slow diffusion of energy efficient in-

vestments -the so-called ”energy paradox” or ”energy-efficiency gap” [Jaffe and Stavins,

1994a]. Everything happens as if agents were discounting with unusually high rates

to appraise energy-efficiency investment, ranging from 25% to 30% (see Brown [2001]

and Sanstad et al. [1995]). The usual suspect is the option value generated by the irre-

versibility of the investment decision in a stochastic environment that drives a wedge

between the investment valuation and the Net Present Value. Hassett and Metcalf

[1995] consider models in which households minimize the cost of energy expenditures

subject to a given level of comfort (moreover, accommodations are heterogeneous in
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Hassett and Metcalf [1993]. Investment in renewable energy or in insulation is irre-

versible and future benefits are uncertain. Based on simulations of this model and

energy price data, they obtain that the discount rate should be four times higher for

energy-saving investments than for other kinds of investments. In Ansar and Sparks

[2009], the potential investor may delay adoption not only because of the joint effect

of irreversibility and uncertainty, but also to cash in on future experience-curve effects:

with the passage of time, firms gain practical knowledge in producing and installing

the energy-saving technology, enabling them to reduce the technology cost per unit

of energy saved. Simulations for photovoltaic systems highlight the experience-curve

effect as a fundamental reason for which households and firms delay making energy-

saving investments until internal rates of return exceed values of 50%, consistent with

observations in the economics literature.

Conversely, for Jaffe and Stavins [1994a,b] delaying energy-saving investment is

costly. An example is the difference between incorporation of energy saving technology

in a new home as opposed to an existing home. In the case of the new home, forgoing

the technology at the time of construction typically means that the cost of installation

later (if it is undertaken) will be higher. These investment decisions do not satisfy the

assumptions of the option value model, but further development of the option value

approach could overcome such shortcomings. Their conclusion is that there may simply

be no way, using observations of purchase decisions alone and assuming optimizing be-

haviour, of disentangling the effects of consumer discounting, energy price expectations,

and principal-agent problems, each of which could account for high implicit discount

rates. Finally, some literature now turns to explanations such as behavioral and organ-

isational barriers, leading to some bounded rationality [Sanstad and Howarth, 1994,

Boulanger, 2007, Diaz-Rainey and Ashton, 2009].

In this chapter we go back to the standard assumptions of irreversible energy-saving

technology adoption and of uncertain payoffs. Instead of relying on bounded rationality

we focus on the characteristics of consumers that take the adoption decision in the

residential sector. The existing literature that explains the energy paradox (Hassett

and Metcalf [1995]for instance) considers partial equilibrium settings, and therefore

ignores the interaction between optimal consumption and optimal adoption as well as
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the notions of risk aversion1 or intertemporal substitutions: everything happens as if

consumers behave like firms when deciding about energy-saving technology adoption.

To challenge these results, we reconsider the joint effect of irreversibility and uncertainty

on the energy-efficiency investment decision in a general equilibrium framework: is the

explanation of the energy paradox based on the existence of an option value still valid

in a more realistic and general model? Of course, such a framework may not be specific

to the problem of energy-saving technology adoption in the residential sector. But we

argue that it is better suited to analyse a decision made by consumers and may be

viewed as a generalization of the existing specific models.

Most of the literature on adoption under uncertainty (including that on energy

saving technology adoption) remains in partial equilibrium. Adoption reduces profits

but there is no arbitrage between consumption and adoption. In such a framework, Abel

and Eberly [2002, 2005]study the optimal adoption of the stochastic latest technology.

By contrast, in Roche [2003], it may be optimal for an upgrading firm to keep some

distance with the frontier technology. In Grenadier and Weiss [1997], adopting an

innovation provides the firm with an option value to learn. Pavlova [2001] introduces the

leaning-by-doing of Parente [1994] into the firm’s choice of under uncertainty. Finally,

Alvarez and Stenbacka [2001] study the optimal timing to adopt a technology that

may be updated in the future. Theoretical analyses of technology adoption in general

equilibrium and a stochastic environment are very recent and very limited in number.

Hugonnier et al. [2008] study the optimal adoption of a new technology that increases

the productivity of capital.2 There exists then an optimal adoption timing, and this

timing is highly sensitive to the size of uncertainty as well as to the degree of agents’

risk aversion. Moreover,Pommeret and Schubert [2009] tackle the specific problem of

abatement technology adoption under uncertainty in a general equilibrium. The authors

first determine the socially optimal adoption timing that is affected by the existence

of pollution. Second, they derive the tax scheme such that in a decentralized economy

1See Farsi [2010] for the role of risk aversion in the energy efficient investment decision based on an

empirical approach.
2The latter paper, together with Hugonnier et al. [2005], provides the resolution for the optimal

threshold that triggers an irreversible decision in a general equilibrium framework for the first time in

the literature.
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firms adopt the abatement technology for the same level of economic development as

in the centralized economy.

Tackling the specific problem of a homeowner who may invest in new insulation,

or double glazing in order to reduce his energy bill is a bit different. The determi-

nation of the optimal investment timing is affected by the consumption of goods and

services other than residential energy services (called ”non-energy goods” in the rest of

the chapter). Therefore, we extend the general equilibrium model with a real option

proposed by Hugonnier et al. [2008]. We solve the program corresponding to the op-

timal adoption of an energy-saving technology adoption by a representative consumer

who uses his wealth to save or to consume energy goods and non-energy goods. We

assume that the benefits of such energy-saving technologies are uncertain due to the

lack of information about them.3 The financial return on savings is assumed to be

stochastic as well. Because of uncertainty, we obtain that it may be optimal to reduce

both consumptions in order to foster adoption. As usual (see Hugonnier et al. [2008],

or Pommeret and Schubert [2009]) the model can only be solved analytically if the

utility discount factor is zero. Nevertheless, we confirm our results in the more general

case with non-zero discounting using a numerical procedure based on collocation and

Chebyshev polynomials. We show that the threshold triggering adoption depends not

only on technological parameters but on preference parameters as well. In particular,

the higher the risk aversion parameter, the smaller the level of wealth which is required

for adoption. Finally, we also show that while uncertainty on energy-saving technolo-

gies efficiency hardly affects adoption timing, uncertainty on financial returns fosters it.

The latter result is strikingly different from what is obtained in the existing literature

that remains in partial equilibrium and manages to explain the energy paradox with the

existence of option values (see for instance Sanstad et al. [1995]). In this chapter, we

consider the proper framework to address the issue of energy-saving technology adop-

tion in the residential sector, namely the arbitrage between consumption and adoption

is taken into account. By better describing the decision problem, we manage to chal-

lenge the existing result of previous literature: the existence of an option value does

not rule out the energy paradox.

3Another interpretation for this uncertainty (that do not perfectly fit our modelling) would come

from the great fluctuations in energy prices.
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The remainder of the chapter is as follows. Section 2 presents the general model, and

explains the assumptions that will be valid for the whole chapter. Because this model

is to be solved backwards, we start in section 3 by developing the general equilibrium

framework once the energy-efficient technology has been adopted. In Section 4 we

analytically solve the model before the technology adoption and derive the optimal

adoption timing in the special case of zero discounting. We provide also some sensitivity

analysis based on numerical resolutions. We confirm these results in section 5 with the

more general case of a strictly positive discount rate. Section 6 concludes.

3.2 The Model

We assume that the homeowner holds risky assets. His income return encompasses a

deterministic part, r, and a stochastic one, σ2dz2. He consumes energy goods C2 and

non-energy goods C1. The function of wealth accumulation consists of two components.

The deterministic one is rAt−C1t−xC2t ,with At the level of wealth and x, the relative

price of energy. The stochastic component comes from the stochastic financial returns.

The function of wealth accumulation writes therefore:

dA = (rA− C1 − xC2)dt+ σ2Adz2t for t < τ (3.1)

At any time τ , the household can lower the cost x of the energy service by switching

to a new technology y. The initial cost of the new technology is β. This cost is

unrecoverable. Moreover, there exists an uncertainty σ1 that is linked to the cost

of consumption in energy service after the adoption of the new technology. Indeed,

we assume that the benefits of such energy-saving technologies are uncertain due to

the lack of information about them. The amount of uncertainty grows with the time

horizon. Thus, we learn about the efficiency of the new technology as time passes, but

the efficiency in the future will always be unknown.4 Notice that y must be less than x

4It could be more realistic to assume that after adoption some uncertainty is solved. However, the

modelling of uncertainty we have chosen can account for shocks on climate (for instance thinking of

solar panels ) or on maintenance costs (again for solar panels, see Slade [2009]). And it is anyway well

suited to account for the fact that prior to adoption, uncertainty about its efficiency grows with the

time horizon.
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because the cost of the energy service is otherwise higher with the new technology and

the homeowner never adopts. We define the difference between x and y as the savings

in energy efficiency. The function of wealth accumulation after the adoption of the new

technology is:

dA = (rA− C1 − yC2)dt− σ1yC2dz1t + σ2Adz2t for t ≥ τ (3.2)

The homeowner preferences over consumption plans are represented by the lifetime

expected utility functional:

E0

[∫ ∞

0
e−ρtU(C1t, C2t)dt

]
= E0

[∫ ∞

0
e−ρt (C

a
1C

b
2)

1−γ

1− γ
dt

]
(3.3)

To facilitate the presentation, let denote Θ the set of admissible plans, that is, the set

of consumption plans and dates of adoption (C, τ) such that:

E0

[∫ ∞

0
e−ρtU(C1t, C2t)dt

]
< ∞ (3.4)

where ρ is the consumer subjective discount factor, γ is the constant relative risk

aversion of the household with γ 6= 1 and γ > 0. The elasticities a and b are positives.

We define the effective coefficient of risk aversion (see Smith and Son [2005]):

R = 1− (a+ b)(1− γ) (3.5)

The optimal switching time should maximize the intertemporal utility subject to the

function of wealth accumulation, the non-negativity constraint and the initial condition

A0. The value function of the homeowner is :

V (A0) = sup
(C,τ)

E0

[∫ τ

0
e−ρt (C

a
1tC

b
2t)

1−γ

1− γ
dt+ e−ρτW (Aτ − β)

]
(3.6)

where W is the value after having adopted the new technology and τ is the optimal

adoption time.

This program can be solved in two stages. First, we solve for the optimal con-

sumption plans of the representative agent after the adoption of the new technology.

Then, there is no longer an adoption option in the value of the program. We find the

expression of the value function which provides the boundary condition to compute
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3. ENERGY-SAVING TECHNOLOGY

the equilibrium of our general model with a technology adoption opportunity. Notice

that it also provides a benchmark for the economy with the technology adoption op-

tion. Second, we formulate the choice of an optimal consumption plan and an optimal

investment time prior to technology adoption.

3.3 The Optimal Path after Adoption

We assume in this section that the new technology has been adopted. The set of

admissible plans collapses to the set of consumption plans such that :

Eτ

[∫ ∞

τ
e−ρ(t−τ) |U(C1t, C2t)| dt

]
< ∞ (3.7)

The value function of the household is :

W (Aτ ) = sup
C

Eτ

[∫ ∞

τ
e−ρ(t−τ) (C

a
1tC

b
2t)

1−γ

1− γ
dt

]
(3.8)

The Bellman equation may be written :

W (At) = max
C1t,C2t

{
(Ca

1tC
b
2t)

1−γ

1− γ
dt+ e−ρdtEt(W (At+dt))

}
with t ≥ τ (3.9)

The first order conditions yield the optimal consumption of energy and non-energy

goods:5

Proposition 3.1 Under assumptions (3.2) and (3.3) the representative agent’s con-

sumptions and lifetime utility are:

C∗
1t =

[
(a+ b)

a
MB−b(1−γ)

] 1
a(1−γ)−1

At (3.10)

C∗
2t = BAt (3.11)

W (At) =
MA1−R

t

(1− γ)
(3.12)

5See Appendix A.
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with:

B =
Ry ± (1− γ)

√
∆

Rσ2
1y

2 [2R− b(1− γ)]

∆ =

[
y

(
a+ b− 1

1− γ

)]2
− 4

[
R

2
σ2
1y

2

(
2a+ b− 2

(1− γ)

)][
b
R

2
σ2
2 − br +

bρ

1−R

]

M =
a

a+ b
B−R

[a
b

(
y +Rσ2

1y
2B
)][a(1−γ)−1]

We notice that the optimal consumptions are both constant fractions of the wealth

level. The feasibility condition imposes B > 0. Depending on the value of γ relative to

unity we consider one or the other root of the second order equation.

The expected optimal wealth growth rate is:

Et(dAt/At)

dt
= r − Et

[
C∗
1

At

]
− yEt

[
C∗
2

At

]

= r −
[
M

a
(a+ b)B−b(1−γ)

] 1
a(1−γ)−1

−By

Notice that this is a more complex expression than usual (see for instance Smith and

Son [2005]) since consumption expenditure is itself directly affected by uncertainty in

the wealth accumulation equation. The following results can be obtained analytically:

∂(C1t/Kt)

∂σ2
2

=

[
∂(C1t/Kt)

∂M

∂M

∂B
+

∂(C1t/Kt)

∂B

∣∣∣∣
M=M

]
∂B

∂∆

∂∆

∂σ2
2

> 0 for γ < 1
indeterminate for γ > 1

∂(C2t/Kt)

∂σ2
2

=
∂B

∂∆

∂∆

∂σ2
2

> 0 for γ < 1
< 0 for γ > 1

An increase in the uncertainty on the financial returns increases current consump-

tion in both energy and non-energy consumption if the intertemporal elasticity of sub-

stitution (1/γ) is greater than unity. Moreover, current consumption in energy goods

decreases when uncertainty σ2 rises if the intertemporal elasticity of substitution is less

than unity. These results are consistent with the usual income and substitution effects:

more uncertainty reduces the certainty equivalent of the financial returns which in turn

generates an income effect (less current consumption) and a substitution effect (more

current consumption). The substitution effect prevails if the intertemporal elasticity of
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3. ENERGY-SAVING TECHNOLOGY

substitution is large enough. Effects of σ2
2 on C1t for γ > 1, or of σ2

1 on both C1t and

C2t are analytically indeterminate. Figures providing a numerical computation of these

effects can be found in 3.A.

It is easy to show that the condition on parameters such that the utility function is

concave is (a+ b)(1−γ)− 1 < 0. The transversality condition requires the convergence

of the value function, i.e.

lim
t→∞

E0(W (At)) = 0

It is satisfied if the lifetime utility of wealth does not grow “too fast” in expectation

(see Smith and Son [2005]). Applying Itô’s lemma to W (Kt), this requires that:

E(dA) = WAE(dA) +
1

2
WAAE(dA2) < 0

⇔ M

[
r −

(
M

a
(a+ b)B−b(1−γ)

) 1
a(1−γ)−1

− yB − R

2

(
σ2
1y

2B2 + σ2
2

)
]
> 0.

We assume that this condition is fulfilled.

3.4 The Optimal Adoption Timing with no Discounting

Considering the analytical resolution helps understanding the mechanisms of the model.

However, solving analytically is only possible in the special case in which the consumer’s

discount rate is equal to zero6. This is why we assume zero-discounting in this section.

Note that the expressions of the optimal consumption path and of the value function

after the switch that have been derived in the previous section remain valid but we

now impose ρ = 0 in these expressions. Nevertheless, assuming that the consumer

does not discount the future is not very realistic. Therefore, we will turn to numerical

resolutions in the next section to show that introducing a discount factor does not

change the nature of the results.

Recall that the homeowner has to choose both an optimal consumption plan and an

optimal technology adoption timing. This choice is given by the maximization of the

intertemporal utility function subject to the wealth accumulation equation. Once the

6See next section.
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3.4 The Optimal Adoption Timing with no Discounting

new technology has been adopted, the homeowner optimally follows the consumption

plan described by equations (3.10) and (3.11). Therefore, the value function at the time

of adoption is given by the following value matching and smooth pasting conditions :

V (Aτ ) = W (Aτ − β) (3.13)

VA(Aτ ) = WA(Aτ − β) (3.14)

where Aτ is the level of wealth for which is optimal to adopt. It implicitly determines

the optimal switching time τ . The value matching condition (3.13) simply requires

that, at the time of the switch (i.e for a level Aτ of wealth), the value before the switch

is equal to the value after the switch once paid the initial costs. The smooth pasting

condition (3.14) ensures the smoothness of the value function around the switch (V

before the switch and W after the switch). It guarantees that adoption occurs for the

optimal level of wealth.

Since it is always possible for the homeowner to indefinitely postpone the adoption

of the new technology, another condition has to be satisfied, namely that for any level

of wealth, the value with the adoption opportunity V cannot be smaller than W0, the

value without such an opportunity:

W0(At) ≤ V (At) ∀t (3.15)

The household’s program is :

V (A0) = sup
C,τ

E0

[∫ τ

0

(Ca
1tC

b
2t)

1−γ

1− γ
dt+W (Aτ − β){τ<∞}

]
(3.16)

s.t. dA = (rA− C1 − xC2)dt+ σ2Adz2t (3.17)

To solve the program before the switch, we determine the marginal value of wealth

which has to satisfy the smooth pasting condition. Integrating this value between zero

and the level of wealth at the optimal switching time, we can use the value matching

condition to get the optimal adoption date.
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3.4.1 The Marginal Value of Wealth

The first order condition yields:7

C∗
1t = a

1−b(1−γ)
R

(
b

x

) b(1−γ)
R

V
− 1

R
A (3.18)

C∗
2t = a

a(1−γ)
R

(
b

x

) 1−a(1−γ)
R

V
− 1

R
A (3.19)

Using a variable change, the Bellman equation leads to the following expression for the

marginal value of wealth before the switch (see 3.B) :

VA(At) =


D1A

−1
t + D2A

D3
t︸ ︷︷ ︸

G(At,Aτ )




R

(3.20)

with D1 =


 R

γ − 1
a

a(1−γ)

R

(
b

x

) b(1−γ)
R


 1(

r − 1
2σ

2
2R
) (3.21)

and D3 = − 2r

Rσ2
2

(3.22)

Let G(At, Aτ ) = D2A
− r

1
2Rσ2

2
t be the option value to switch.8 D2 is a constant which

must be determined9 using the smooth pasting condition (3.14). We obtain:

D2 =
[M(a+ b)]

1
R

(Aτ − β)AD3
τ

− D1

AD3+1
τ

(3.23)

If the homeowner does not have the opportunity to adopt a new technology, there is

no option value to adopt the new technology, G(At, Aτ ) = 0, and the value function

7See 3.B.
8Recall that under uncertainty, it is possible to delay an irreversible investment. While the home-

owner is waiting, he can take advantage of an opportunity to invest, similar to what happens with a

financial option. Therefore, there exists an option value of the investment project that is killed at the

time of investment (see Dixit and Pindyck [1994]). This option value represents an opportunity cost of

investment that must be taken into account.
9See 3.B.
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reduces to:10

W0(At) =




R
γ−1a

a(1−γ)

R

(
b
x

) b(1−γ)
R

(
r − 1

2σ
2
2R
)

︸ ︷︷ ︸
D1




R

A1−R
t

(a+ b)(1− γ)
(3.24)

⇔ W0(At) =
DR

1

(a+ b)

A1−R
t

(1− γ)

where W0(At) is the value function of the homeowner with no opportunity to switch.

Moreover, the feasibility condition associated with the program in the absence of adop-

tion opportunity writes:

D1 > 0

Recall thatW0(At) cannot be greater than the lifetime utility of the agent in an economy

with the new technology; therefore we must have:

W0(At) ≤ W (At) (3.25)

This condition ensures that there exists an optimal switching date, that is, in the

absence of costs of switching to the new technology, the central planner would choose

to immediately switch for any current level of wealth accumulation.

Using the expressions for W0A (computed using equation (3.24)) and for WA (com-

puted using equation (3.12)), the marginal value VA(At) can be rewritten:

VA(At) =


W0A(At)

1
R +

(
[WA(Aτ − β)]

1
R −W0A(Aτ )

1
R

) Aτ

At

2r

Rσ2
2

︸ ︷︷ ︸
=G(At,Aτ ), part due to the option to switch




R

(3.26)

The marginal value of wealth differs significantly from the one that can be derived in

the absence of technological change. This is due to the existence of an option to switch

that generates an option value taken into account in the marginal value of wealth. In

the absence of such an option, G(At, Aτ ) = 0 and the marginal value of wealth reduces

10See 3.B.
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to W0A(At). This option value is the difference between the marginal value after the

switch (having paid initial cost β) and the marginal value in the absence of opportunity

to switch, discounted by the distance to the switch, that is related to the ratio between

the current wealth At and Aτ .

We have two cases :

• If γ < 1, we have: W0A(At)
1
R < WA(At)

1
R < WA(At − β)

1
R that ensures that

G(At, Aτ ) > 0. There is no problem of existence of VA in this case. The marginal

value of wealth in the economy with an opportunity to switch is greater than the

marginal value of wealth in an economy without this opportunity. It means that

consumption at each time is smaller in an economy with opportunity to adopt a

new technology, compared to the consumption which prevails in an economy in

which the opportunity does not exist.

• If γ > 1, we have W0A(At)
1
R > WA(At)

1
R . In this case, the sign of G(At, Aτ ) is

ambiguous.

– G(At, Aτ ) < 0. It means that the part due to the option to adopt a new

technology in the expression of the marginal value of wealth is negative.

Therefore, consumption at each period is greater in an economy with an

opportunity to switch compared to the consumption which prevails in an

economy without such an opportunity. In this case, the homeowner does not

like to substitute and the option to adopt a new technology is an incentive to

rise his consumption today to smooth his consumption path that is expected

to grow more once the technology is adopted. Thus, adoption is delayed.

However such a consumption path cannot happen since for small values of

At, namely for At < (−D1/D2)
1/(1−2r/Rσ2), the expression of V

1
R
A becomes

negative and the program is no longer defined. Therefore, G(At, Aτ ) < 0

cannot be considered.

– G(At, Aτ ) > 0. It implies that when integrating VA, the following condition

W0(At) ≤ V (At) ∀t can no longer be satisfied (since for γ > 1, feasibil-

ity condition implies 2r/(σ2
2R) > 1). Therefore, G(At, Aτ ) > 0 cannot be

considered.
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– G(At, Aτ ) = 0. It ensures both that V
1
R
A is positive (the program is defined)

and that the conditionW0(At) ≤ V (At) ∀t is satisfied. It is the sole solution
that we can consider if γ > 1. It involves that the consumption is not affected

by the existence of an option to adopt a new technology. We denote A∗ the

special value of At such that G(At, Aτ ) = 0.

Therefore, we obtain using equation (3.24) and (3.26):

A∗ =
β

1− [M(a+b)]
1
R

D1

(3.27)

A∗ must be positive, which requires M(a+ b) < DR
1 that is ensured by condition

(3.25). Obviously, this threshold raises with the cost to pay for adoption and

decreases with the savings in energy efficiency (see numerical resolutions in 3.B).

The better the new technology compared to the old one, the smaller the threshold.

3.4.2 Boundary Conditions

The level of wealth Aτ is such that, at the time to the adoption, the value with the

initial technology is equal to the value with the new technology once the cost β is paid

(this is the value matching condition):

V (Aτ ) = W (Aτ − β) (3.28)

It is straightforward to obtain Proposition 2 for γ < 1 using equations (3.18), (3.19),

(3.26) with G(At, Aτ ) > 0 and (3.28):

Proposition 3.2 Assume that the problem is undiscounted, that γ < 1 and that the

marginal propensity to consume is positive. The optimal technology adoption threshold

is then the unique solution to the non-linear equation:

∫ Aτ

0
VA(A,Aτ )dA = W (Aτ − β) sinceV (0) = 0 for γ < 1 (3.29)

with

VA(At, Aτ ) =
[
W0A(At)

1
R +G(At, Aτ )

]R
(3.30)
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where

G(At, Aτ ) =
(
[WA(Aτ − β)]

1
R −W0A(Aτ )

1
R

) Aτ

At

2r

Rσ2
2

G(At, Aτ ) is the part of the marginal value which from the option to switch to a new

technology. Moreover, the value function and optimal consumptions strategies before

technology adoption are given by:

V (At) =

∫ At

0
VA(A)dA

C∗
1t = a

1−b(1−γ)
R

(
b

x

) b(1−γ)
R

V
− 1

R
A (3.31)

C∗
2t = a

a(1−γ)
R

(
b

x

) 1−a(1−γ)
R

V
− 1

R
A (3.32)

We now illustrate this case. Equation (3.29) can be solved numerically. Simulations

are driven using the following values for the parameters: σ1 = 0.013; b = 0.25; a = 0.7;

γ = 0.5; x = 10; y = 0.25; r = 0.05; σ2 = 0.5; β = 0.1. The value of the effective

coefficient of risk aversion is R = 0.525.

Figure 3.1 shows the three value functions: V (A) before the switch, W (A − β)

after the switch, and W0(A) without the option to switch. The threshold that triggers

the switch is Aτ = 0.82. Notice that at the time of adoption, yC2 (with C2 computed

after adoption) is smaller that xC2 (with C2 computed before adoption). It implies

that, at least at the time of adoption, the rebound effect does not prevail on energy

consumption.

It is straightforward to obtain Proposition 3 for γ > 1 using equations (3.18), (3.19),

(3.26) with G(At, Aτ ) = 0 and (3.28):

Proposition 3.3 Assume that the problem is undiscounted, that γ > 1, and that the

marginal propensity to consume is positive. The optimal technology adoption threshold

Aτ is then:

Aτ = A∗ =
β

1− [M(a+b)]
1
R

D1

(3.33)
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Figure 3.1: The Value Functions for γ < 1

Moreover, the value function and optimal consumptions strategies before technology

adoption are given by:

V (At) =
1

1−R

[
DR

1 A
1−R
t + [M(a+ b)] (Aτ − β)1−R −DR

1 A
1−R
τ

]
(3.34)

C∗
1t = a

1−b(1−γ)
R

(
b

x

) b(1−γ)
R

V
− 1

R
A (3.35)

C∗
2t = a

a(1−γ)
R

(
b

x

) 1−a(1−γ)
R

V
− 1

R
A (3.36)

We now illustrate this case. Note that both A∗ and V (At) are analytically defined

with γ > 1. Simulations to draw the value functions are driven using the following

values for the parameters : σ1 = 0.013; b = 0.25; a = 0.7; γ = 2; x = 10; y = 0.25;

r = 0.05; σ2 = 0.1; β = 0.1. The value of the effective coefficient of risk aversion is

R = 1.95.
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Figure 3.2 shows the three value functions: V (A) before the switch, W (A−β) after

the switch, and W0(A) without the option to switch. The threshold which triggers the

switch is A∗ = 0.265 (see equation (3.27)). Contrary to what happened for γ < 1, one

may compute that the rebound effect prevails at the time of adoption.
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Figure 3.2: The Value Functions for γ > 1

3.4.3 Comparative Statics

We provide Table 3.1 in 3.C to show the effect of each parameters. Parameters’ values

used to draw the value functions previously are now considered as baseline parameters

for the simulations.

The level of wealth for which it is optimal to switch is a decreasing function of x and

an increasing function of y. It is quite intuitive that the larger the gain of adoption,

the sooner the homeowner wishes to adopt and therefore the lower the level of wealth

for which he wishes to adopt. Of course, we obtain that the higher the adoption cost,

the higher the threshold wealth and the later the adoption.
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3.4 The Optimal Adoption Timing with no Discounting

Let us consider the effects of preference parameters. As far as parameters a (on non-

energy goods C1) and b (on energy goods C2)
11 are concerned, we obtain the following

results: the more sensitive the utility of the household to non-energy consumption (i.e.

the higher a), the later the homeowner wants to devote resources to adoption and then,

the higher the optimal adoption threshold, but the effect of b depends on the value

of γ relative to unity. The relative risk aversion coefficient γ has a complex effect

because it summarizes both the attitude with respect to risk and that with respect to

intertemporal substitution. Simulations show that the higher γ, the smaller the level

of wealth that triggers adoption.

Let us now turn to the effect of uncertainties. The level of wealth for which it is

optimal to switch is not sensitive to the uncertainty (σ1) related to the efficiency of con-

sumption in energy service after the adoption of the new technology. It is an increasing

function of the deterministic part of financial return (r) while it is a decreasing func-

tion of the uncertainty on the financial returns (σ2). First, the larger the deterministic

return on wealth, the more reluctant the homeowner is to devote part of his wealth

to technology adoption. Second, σ2 reduces the certainty equivalent of the wealth rate

of return (r − 1
2σ

2
2R) and it is no surprise that it affects adoption in the opposite way

compared to r. These effects of r and σ2 only appear for γ < 1. For γ > 1 adoption

becomes insensitive to these parameters.

This numerical example illustrates that contrary to what happens in partial equi-

librium, uncertainty does not increase the adoption threshold. An explanation of the

energy paradox based on the existence of option values is therefore no longer valid when

one considers more carefully the consumer’s decision problem.

11Note that we only present the results for values of b between 0.2 and 0.4 because b cannot be

greater than a.
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3. ENERGY-SAVING TECHNOLOGY

3.5 The Optimal Adoption Timing with Discounting

It is not possible to go on with the analytical resolution if the consumer discount rate

is not equal to zero. Indeed, the Bellman equation before the switch is:

ρV = max
C1t,C2t

{
(Ca

1tC
b
2t)

1−γ

1− γ
+ VA(rA− C1 − xC2) +

1

2
σ2
2A

2VAA

}
(3.37)

Maximizing wit respect to both C1t and C2t leads to

ρV.V
1−R
R

A =
R

1− γ
a

a(1−γ)
R

b

x

b(1−γ)
R

+ rAV
1
R
A +

1

2
σ2
2A

2V
1−R
R

A VAA (3.38)

Such an equation can no longer be solved using the variable change proposed in

appendix B for ρ = 0. As this Bellman equation cannot be solved analytically, we turn

to a numerical resolution. More precisely, we adapt Judd’s methodology (see Judd

[1992]) based on Chebyshev polynomials and projection methods as proposed in Dangl

and Wirl [2004].

3.5.1 An Approximate Value Function Before Adoption

Using equation (3.38), let us define L:

L(V )(A) =
R

1− γ
a

a(1−γ)
R

b

x

b(1−γ)
R

+ rAV
1
R
A +

1

2
σ2
2A

2V
1−R
R

A VAA − ρV
1−r
R

A V.

L is an operator, or a function that maps functions to functions, and A ∈ [0, Aτ ]. As

noted in Judd [1992, 1998], the domain of L includes all the C1 functions, and its

range is C0. The differential equation (3.38), combined with the value matching and

smooth pasting conditions, equations (3.13) and (3.14) respectively, can be viewed as

the problem of finding a C1 function V such that:

L(V )(A) = 0 (3.39)

V (Aτ ) = W (Aτ − β) (3.40)

V ′(Aτ ) = W ′(Aτ − β). (3.41)
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3.5 The Optimal Adoption Timing with Discounting

The projection method simplifies the original problem (3.39) by approximating the

function V (A) by means of polynomials.12 As we decided to use Chebyshev polynomi-

als, our approximation can be written as:

V̂ (A, c) =
1

2
c0T0(A) +

N∑

i=1

ciTi(A), (3.42)

where A ∈ [0, Aτ ], and Ti(A) is the general ith Chebyshev polynomial of the first kind

that is defined by the following recurrence relationship:

T0(s(A)) = 1,

T1(s(A)) = s(A), and

Tn+1(s(A)) = 2sTn(s(A))− Tn−1(s(A)),

or by the trigonometric identity:

Tn(s(A)) = cos(n arccos s(A)),

where s(A) is a linear transformation such that −1 ≤ s(A) ≤ 1. Written in this way, the

quality of our approximation is guaranteed by the Chebyshev approximation theorem

(see Judd [1992]).

3.5.2 Choosing the Coefficients

We need to choose c = {c0, c1, c2, ..., cN} so that V̂ (A, c) nearly solves the differential

equation (3.38). To do this, we first ignore the conditions (3.40) and (3.41), and define

the residual function:

RF (A, c) ≡ L(V̂ )(A). (3.43)

Equation (3.43) is the deviation of L(V̂ )(A) with respect to the zero target value.

The projection method adjusts the set of coefficients until a set c is found that makes

RF (A, c) sufficiently close to the zero function. Equation (3.42) has then to be inserted

12By Weierstrass theorem, we know that any C1 function can be properly approximated by a large

sums of polynomial terms. So, as N becomes larger in our equation (3.42), we are sure that V̂ (A, c) is

converging to V (A).
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3. ENERGY-SAVING TECHNOLOGY

into equation (3.43). Note that we have N+1 coefficients ci to be found. Therefore, we

choose N +1 collocation values Ai ∈ [0, Âτ ], where Âτ is an arbitrarily chosen value of

Aτ . For example, the Chebyshev-Gauss-Lobatto collocation points can be used. They

are defined as follows:

si = cos

(
iπ

N

)
.

Applying such a collocation method, the initial problem is reduced to that of solving a

set of N + 1 non linear equations:

RFi(Ai, c) = 0, i = 0, 1, ..., N. (3.44)

Boundary conditions, i.e. the value matching and smooth pasting conditions, need

then to be considered. For instance, let us start by introducing the value matching

condition. Choosing an initial value Âτ for A, equation (3.42) and equation (3.40)

imply that:

V̂ (Âτ )−W (Âτ − β) = 0. (3.45)

To impose that our solution satisfies the value matching, one condition of the set (3.44)

is then replaced by equation (3.45). The resulting system can be solved iteratively

starting with a guess c0 = (c0i ). Specifically, we use Newton’s method: ck+1 = ck −
(Jck)

−1P (ck), where Jck is the Jacobian of RF (A, c) evaluated at the respective point

ck. Finally, the optimal switching time Aτ is found using a search algorithm in order

satisfy the smooth pasting condition. We solve for our non-linear system until a value

Âτ = Aτ is found that solves:

V̂ ′(Âτ ) = W ′(Âτ − β)

3.5.3 Results

In our computations we are using N = 10 and the baseline parameters’ values described

in the previous section (with no discounting) except that ρ = 0.0001. Such a small

value allows to compare the results with those obtained under the assumption of no-

discounting.13 Simulations are driven using Matlab software. Figures 3.3 and 3.4 4

show the value functions before and after the switch and the optimal switching level of

wealth Aτ :

70



3.6 Conclusion
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Figure 3.3: Value functions ρ 6= 0, γ < 1. Aτ = 0.5049

Table 3.2 in 3.C show the sensitivity of the optimal adoption timing to the model

parameters, starting with the usual baseline.

First, this analysis proves to be fully consistent with that driven under the no-

discounting assumption. In particular we obtain again that one cannot rely on uncer-

tainty to explain the energy paradox. Second, the table shows that the more concerned

about the present the household is (larger ρ), the earlier he adopts the new technology,

in order to get the benefits sooner.

3.6 Conclusion

In this chapter we consider a homeowner who makes an irreversible energy-saving in-

vestment under uncertainty. Both financial returns and the energy-saving technology

efficiency are stochastic. In a general equilibrium framework, we solve the program

13A more realistic value for ρ can be found in the sensitivity analysis.
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Figure 3.4: Value functions ρ 6= 0, γ > 1. Aτ = 0.2653

corresponding to the optimal adoption of an energy-efficiency technology adoption by

a representative consumer who uses his wealth to save or to consume energy goods and

non-energy goods. We therefore explicitly take the arbitrage between consumption and

adoption into account. This is not the case in the existing literature that explains the

energy paradox. The model can only be solved analytically if the utility discount factor

is zero. We confirm the results in the more general case with non-zero discounting using

a numerical procedure. We show that the threshold triggering adoption depends not

only on technological parameters but on preference parameters as well. In particular,

the higher the risk aversion parameter, the smaller the level of wealth which is required

for adoption. Finally, we also show that while uncertainty on energy-saving technolo-

gies efficiency does not affect adoption timing, uncertainty on financial returns fosters

it. The latter result is strikingly different from what is obtained in partial equilibrium:

we show that the usual explanation of the energy paradox based on the existence of an

option value is no longer valid when the analysis is extended to a general equilibrium

framework.
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3.A Solving the Optimal Program after Adoption

3.A Solving the Optimal Program after Adoption

The Bellman equation is written as:

W (At) = max
C1t,C2t

{
(Ca

1tC
b
2t)

1−γ

1− γ
dt+ Et(W (At+dt))

}
with t ≥ τ

Using Itô’s lemma, this equation becomes:

max
C1t,C2t

{
(Ca

1tC
b
2t)

1−γ

1− γ
dt+WA(rA− C1 − yC2)dt+

[
σ2
1

2
y2C2

2 +
σ2
2

2
r2A2

]
WAAdt

}
= 0

(3.46)

The first order conditions yields:

C∗
1t =

[
WA

C
−b(1−γ)
2t

a

] 1
a(1−γ)−1

and C∗
2t =

yWA

bC
b(1−γ)−2
2t C

a(1−γ)
1t +σ2

1y
2WAA

We guess that C∗
2t = B.A and W (At) = W (At) = MA1−R/(1 − γ), with B and

M being constant to de determined and R = 1 − (a + b)(1 − γ) being the effective

coefficient of risk aversion (equation (3.5) in the text). Then:

WA = M(a+ b)A(a+b)(1−γ)−1

WAA = M(a+ b) [(a+ b)(1− γ)− 1]A(a+b)(1−γ)−2

By replacing the consumptions by their optimal expressions into the bellman equa-

tion we get:

0 =
1

1− γ



(
WA(BA)−b(1−γ)

a

) a(1−γ)
a(1−γ)−1

(BA)b(1−γ)




+WA


rA−

(
WA(BA)−b(1−γ)

a

) 1
a(1−γ)−1

− y(BA)


+WAA

[
σ2
1

2
y2(BA)2 +

σ2
2

2
A2

]
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⇔ M
1

a(1−γ)−1B
−b(1−γ)
a(1−γ)−1 =

(
a

a+ b

) 1
1−a(1−γ)

(
a(1− γ)

1− a(1− γ)

)[
R

2

(
σ2
1y

2B2 + σ2
2

)
− r + yB

]

Moreover, using the expression of C∗
2t we can get:

M
1

a(1−γ)−1B
−b(1−γ)
a(1−γ)−1 =

B

b
a

a(1−γ)
a(1−γ)−1 (a+ b)

1
1−a(1−γ)

(
y +Rσ2

1y
2B
)

Hence:

(
1− γ

1− a(1− γ)

)[(
σ2
1y

2B2 + σ2
2

) R
2
− r + yB

]
=

B

b

(
y +Rσ2

1y
2B
)

⇔ B2

[
R

2
σ2
1y

2

(
1− γ

[1− a(1− γ)]
− 2

b

)]
+B

[
y

(
(1− γ)

1− a(1− γ)
− 1

b

)]

+

[
ρ

1−R
− r +

R

2
σ2
2

](
1− γ

1− a(1− γ)

)
= 0

⇔ B2

[
R

2
σ2
1y

2

(
b− 2

[1− a(1− γ)]

1− γ

)]
+B

[
y

(
b− [1− a(1− γ)]

1− γ

)]
+

[
b
R

2
σ2
2 − br +

bρ

1−R

]
= 0

⇔ B2

[
R

2
σ2
1y

2

(
2a+ b− 2

1− γ

)]
+B

[
y

(
a+ b− 1

1− γ

)]
+

[
b
R

2
σ2
2 − br +

bρ

1−R

]
= 0

∆ =

[
y

(
a+ b− 1

1− γ

)]2
− 4

[
R

2
σ2
1y

2

(
2a+ b− 2

(1− γ)

)][
b
R

2
σ2
2 − br +

bρ

1−R

]

Therefore:

B =
−y ((a+ b)(1− γ)− 1)± (1− γ)

√
∆

Rσ2
1y

2 [(2a+ b) (1− γ)− 2]

=
−y ((a+ b)(1− γ)− 1)± (1− γ)

√
∆

Rσ2
1y

2 [2 (a+ b) (1− γ)− 2− b(1− γ)]

=
Ry ± (1− γ)

√
∆

Rσ2
1y

2 [2R− b(1− γ)]

W (At) = Bb(1−γ)

[
B

b
a

a(1−γ)
a(1−γ)−1 (a+ b)

1
1−a(1−γ)

(
y +Rσ2

1y
2B
)][a(1−γ)−1] A(a+b)(1−γ)

(1− γ)

74
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We insert the expression of the effective coefficient of risk aversion in the precedent

equation and we obtain (equation 3.12 of the text):

W (At) = Bb(1−γ)

[
B

b
a

a(1−γ)
a(1−γ)−1 (a+ b)

1
1−a(1−γ)

(
y +Rσ2

1y
2B
)][a(1−γ)−1] A1−R

(1− γ)

Moreover, consumption expenditure can be affected by uncertainty. Effects of σ2
2

on C1t if γ > 1 or of σ2
1 on both C1t and C2t are analytically indeterminate. Figures

3.5, 3.6, and 3.7 provide a numerical computation of these effects based on the set of

parameters’ values described in section 4.2.
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Figure 3.5: Effect of σ2

2
on C1t when γ > 1.

3.B Solving the Optimal Program Before Adoption

Using Itô’s lemma, the value function before adoption V (Aτ){t<τ} has to satisfy:

max
C1t,C2t

{
(Ca

1tC
b
2t)

1−γ

1− γ
dt+ VA(rA− C1 − xC2)dt+

1

2
σ2
2A

2VAAdt

}
= 0 (3.47)
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The first order conditions yield:

aC
a(1−γ)−1
1t C

b(1−γ)
2t = VA

C
a(1−γ)
1t bC

b(1−γ)−1
2t = xVA

Therefore:

C∗
1t =

[
a1−b(1−γ)(

b

x
)b(1−γ)

] 1
R

V
−1
R

A

C∗
2t = a

a(1−γ)
R (

b

x
)
1−a(1−γ)

R V
−1
R

A

Replacing consumption by its optimal expression in the Bellman equation and mul-

tiplying by V
1−R
R

A yields:

R

1− γ
a

a(1−γ)

R

(
b

x

) b(1−γ)
R

+AV
1
R
A r +

1

2
σ2
2A

2V
1−R
R

A VAA = 0

We make the following variable change: f(At) = V
1
R
A and f ′(At) =

1
RV

1−R
R

A VAA.

Hence, the preceding equation may be written as:

R

1− γ
a

a(1−γ)

R

(
b

x

) b(1−γ)
R

+ f(At)Atr +
1

2
σ2
2A

2
tRf ′(At) = 0

We guess that f(At) can be written as follows:

f(At) =
D1

At
+D2A

D3
t ⇒ f ′(At) = −D1

A2
t

+D2D3A
D3−1
t

where D1, D2 and D3 are constants to be determined. Then:

R

1− γ
a

a(1−γ)

R

(
b

x

) b(1−γ)
R

+

(
D1

At
+D2A

D3
t

)
Atr +

1

2
σ2
2RA2

t

(
−D1

A2
t

+D2D3A
D3−1
t

)
= 0
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This equation is of the form: g(At) + υ = 0. In order for this condition to be

satisfied whatever At, one must have: g(At) = 0 and υ = 0. Therefore:

R

1− γ
a

a(1−γ)

R

(
b

x

) b(1−γ)
R

+D1

(
r − 1

2
σ2
2R

)
= 0

and:

r +
1

2
σ2
2RD3 = 0

Thus, we obtain D1 and D3:

D1 =


 R

γ − 1
a

a(1−γ)

R

(
b

x

) b(1−γ)
R


 1(

r − 1
2σ

2
2R
)

D3 = − r
1
2Rσ2

2

We show that the marginal value of wealth before the switch is:

VA(At) =




R
γ−1a

a(1−γ)

R

(
b
x

) b(1−γ)
R

(
r − 1

2σ
2
2R
)

︸ ︷︷ ︸
D1

A−1
t +D2A

− r
1
2Rσ2

2
t




R

D2 is a constant which must be determined using the smooth pasting condition (see

equation (3.14) of the text). From the last equation we obtain:

V
1
R
A = f(A) =

D1

A
+D2A

D3

⇒ VA =

[
D1

A
+D2A

D3

]R

and using the smooth pasting condition (equation (3.14) in the text):

VA = WA(Aτ − β) = M(a+ b)(Aτ − β)−R.
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Hence:
[
D1

Aτ
+D2A

D3
τ

]R
= M(a+ b)(Aτ − β)−R

⇔ D1

Aτ
+DD3

2 Aτ =
[M(a+ b)]

1
R

Aτ − β

⇔ D2A
D3
τ =

[M(a+ b)]
1
R

Aτ − β
− D1

Aτ

⇔ D2 =
[M(a+ b)]

1
R

(Aτ − β)AD3
τ

− D1

AD3+1
τ

.

This is the equation (3.23) in the text.

=⇒ VA =

[
D1

At
+

(
[M(a+ b)]

1
R

(Aτ − β)AD3
τ

− D1

AD3+1
τ

)
AD3

t

]R

=




D1

At︸︷︷︸
W0A(At)1/R

+



[M(a+ b)]

1
R

(Aτ − β)︸ ︷︷ ︸
WA(Aτ−β)1/R

− D1

Aτ︸︷︷︸
W0A(Aτ )1/R




(
At

Aτ

)D3




R

The expression of the marginal value of wealth can be written as follows:

VA(At) =







R
γ−1a

a(1−γ)

R

(
b
x

) b(1−γ)
R

(
r − 1

2σ
2
2R
)


A−1

t +G(At, Aτ )




R

where G(At, Aτ ) is the option value. It is the equation (3.20) in the text.

Notice that W0(At), the value function of the homeowner in an economy with no

technological change, has to satisfy:

0 =
R

γ − 1
a

a(1−γ)
R

(
b

x

) b(1−γ)
R

+AW0Ar +
1

2
σ2
2A

2W0AA

⇔ W0(At) =




R
γ−1a

a(1−γ)

R

(
b
x

) b(1−γ)
R

(
r − 1

2σ
2
2R
)




R

A1−R

(a+ b)(1− γ)

⇔ W0(At) = DR
1

A1−R

(a+ b)(1− γ)

Finally, notice that in the special case in which σ1 = 0 and x = y, we have M =

DR
1 /(a+ b).
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3.C Comparative Statics

γ < 1 γ > 1

x 10 20 30 2 7 15

Aτ 0.82 0.75 0.7 0.42 0.29 0.24

y 2 4 8 0.2 1 1.5

Aτ 1.5 2.5 9 0.25 0.39 0.46

β 0.2 0.4 0.8 0.2 0.5 0.8

Aτ 1.6 3.4 6.6 0.53 1.33 2.12

a 0.1 0.4 0.7 0.1 0.4 0.7

Aτ 0.22 0.39 0.82 0.20 0.23 0.26

b 0.25 0.30 0.40 0.08 0.2 0.4

Aτ 0.82 0.90 1.5 0.65 0.31 0.20

γ 0.45 0.6 0.8 1.2 1.8 2.2

Aτ 1.19 0.56 0.41 0.67 0.29 0.25

σ1 0.2 0.4 0.8 0.5 1 1.5

Aτ 0.82 0.82 0.82 0.265 0.265 0.265

σ2 0.6 1 1.4 0.02 0.06 0.1

Aτ 0.76 0.58 0.38 0.265 0.265 0.265

r 0.01 0.02 0.04 0.025 0.035 0.045

Aτ 0.36 0.39 0.57 0.265 0.265 0.265

Table 3.1: ρ = 0
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γ < 1 γ > 1

x 5 10 15 5 10 15

Aτ 0.530 0.505 0.493 0.314 0.265 0.245

y 0.25 1 1.5 0.25 1 1.5

Aτ 0.505 0.564 0.589 0.265 0.392 0.466

β 0.1 0.15 0.2 0.1 0.15 0.2

Aτ 0.505 0.757 1.009 0.265 0.399 0.533

a 0.1 0.4 0.7 0.1 0.4 0.7

Aτ 0.149 0.249 0.505 0.201 0.233 0.265

b 0.1 0.25 0.5 0.1 0.25 0.5

Aτ 0.410 0.505 0.828 0.542 0.265 0.176

γ 0.5 0.6 0.7 1.8 2 2.2

Aτ 0.505 0.328 0.229 0.292 0.265 0.248

σ1 0.013 1 2 0.013 1 2

Aτ 0.505 0.505 0.505 0.265 0.265 0.266

σ2 0.5 0.75 1 0.01 0.1 0.2

Aτ 0.505 0.318 0.291 0.263 0.265 0.244

r 0.02 0.035 0.05 0.02 0.035 0.05

Aτ 0.311 0.374 0.505 0.260 0.265 0.265

ρ 0.0001 0.02 0.04 0.0001 0.02 0.04

Aτ 0.505 0.349 0.297 0.265 0.221 0.200

Table 3.2: ρ 6= 0
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Figure 3.6: Effects of σ2
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on both C1t and C2t when γ < 1
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4

Producing Energy in a Stochastic

Environment: Switching from

Non-Renewable to Renewable

Resources∗

In this chapter, we study the determinants of switching from non-renewable natural

resource inputs to renewable resource inputs in energy production. We assume that

the stocks of both natural resources are stochastic, and that the adoption of renewable

resources is costly and irreversible. Our formulation gives raise to an optimal stop-

ping/switching problem that cannot be solved analytically, then we turn to numerical

simulations. Our results suggest that the optimal switching time depends not only on the

uncertainty parameters, but also on energy demand, costs, and the relative productivity

of the resources.

∗This is a version of a paper to be published as: Mosiño, A. (2012). Producing Energy in a

Stochastic Environment: Switching from Non-Renewable to Renewable Resources. Resource and Energy

Economics 34(4), pp 413-430.
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4. SWITCHING FROM NON-RENEWABLE TO RENEWABLE
RESOURCES

4.1 Introduction

Nowadays the substitution of renewable for non-renewable resources in the energy sector

is among the most important environmental and economic issues. On the one hand,

this is due to the recognition of the excessive emission of carbon dioxide generated

by burning of fossil fuels as a major cause of global warming. On the other hand,

the substitution of renewable for non-renewable resources is also recognized as a key

strategy to prevent the depletion of the stock of natural capital. Despite this, most

analyses in environmental economics have been focused on only renewable resources, or

only non-renewable resources, and very few exceptions can be found in the literature.

Among the studies on both renewable and non-renewable resources, two types of

models can be identified. The first type corresponds to aggregate capital-resource

growth models in which a backstop technology is a perfect substitute input for a non-

renewable resource. For instance, in the model of Krautkraemer [1986], and the more

recent model of Tahvonen and Salo [2001] the substitution of resources depends crucially

on the structure of the extraction costs and the cost of using the backstop. Given their

relative costs, the economy can use either renewables only, the backstop only, or both

resources at the same time. One extension to Krautkraemer and Tahvonen and Salo’s

type models is of particular interest. André and Cerdá [2005] include in their model a

natural growth function to account for the fact that the stock of a renewable resource

can regenerate and grow by natural means. As a result, the optimal solution has a

particular shape with three stages corresponding to three different extraction regimes.

These stages depend on the characteristics of the natural growth function.

The second type of studies on the substitution of resources is that of technical

innovation. In Chakravorty et al. [1997] for instance, innovation results in a decrease

in the cost of renewable energy, in such a way that it can be substituted more easily

for the other non-renewable (traditional) forms of energy. Another more recent study

by Acemoglu et al. [2012] considers the interaction of renewables and non-renewables

in the form of clean and dirty inputs. In their model, if the elasticity of substitution

between dirty and clean inputs is sufficiently high, innovation in the long run will be

directed towards the clean sector only. Similar conclusions are found in Grimaud and
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Rougé [2008], in which the (non-polluting) renewable input enters in the form of a

labour resource. In both Acemoglu et al., and Grimaud and Rouge’s models however,

the non-renewable resource is essential in production and then it will be exhausted at

some time.

Despite the very interesting results of the literature we have mentioned, we believe

that a complete theory on the substitution of resources is far from being complete. In

this chapter, we direct our attention towards three important and yet somewhat ne-

glected characteristics that must be taken into account to evaluate the adoption of any

environmental policy [Pindyck, 2000, 2002]. First, the uncertainty over the future costs

and benefits. Second, the irreversibilities associated with environmental policy. Third,

the fact that policy adoption is rarely a now or never proposition, such that, in most

cases, it is feasible to delay action and wait for new information. By including these

characteristics the analysis becomes more accurate, as these uncertainties, irreversibil-

ities, and the possibility of delay can significantly affect the optimal timing of policy

adoption. Specifically, at what point should society stop using non-renewable resources

to produce energy and start producing from renewables? First, although we have an

idea of their current stock, we do not know too much about the future availability of

the resources. But, even if we knew how much of the resources are expected to be avail-

able in the future, we would not know the resulting effect on firms decisions. Second,

adoption of renewables imposes sunk costs on society. In addition, economic constraints

(particularly those associated with the production process) make the adoption of re-

newables difficult to reverse, so that these sunk costs are incurred over a long period

of time, even if the original rationale for the switching disappears. These kinds of sunk

costs create an opportunity cost of adopting renewables now, rather than waiting for

more information.1

As in the previous literature, we propose a model in which energy can be produced

from two available inputs which are perfect substitutes: non-renewables (fossil fuels),

and renewables (water, wind, solar, biomass). In our model, however, there is some

1A second source of irreversibility that is not considered here is that of environmental damage

[Pindyck, 2000, Pommeret and Prieur, 2009]. For instance, increases in greenhouse gas (GHG) con-

centrations are long lasting. Then, even if radical policies were adopted to drastically reduce GHG

emissions, these concentrations would take many years to fall. This creates an opportunity cost of

adopting renewables later.
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uncertainty about the availability of both resources. Following the literature on invest-

ment under uncertainty, we assume that the current stock of both resources is known

with certainty, but the instantaneous change in their stocks is random.2 As in André

and Cerdá [2005] we also assume that renewables regenerate and grow by natural means.

But contrary to Krautkraemer [1986] and Tahvonen and Salo [2001], our assumptions

imply that both types of resources are never used simultaneously. This result may be

a loss of generality, but it allows us to be more focused on the optimal timing of the

switching decision, and on the factors influencing the decision to switch.

We assume that firms start producing energy using only fossil fuels, but the pos-

sibility to carry out an irreversible investment to switch to the other input is always

open. We simplify our model by assuming that once the irreversible investment is un-

dertaken, it is not possible to switch back to the use of the non-renewable resources.3

This simplification implies that complete exhaustion of the non-renewable resource can

be avoided. It also implies that our model can be viewed as an option value problem

in the sense of Dixit and Pindyck [1994].

The optimal switching time is found in three steps. In the first step we assume that

firms use only non-renewable resources, and they do never switch. In the second step,

we assume that firms in the market have switched to the renewable input. These two

steps can be solved analytically in some particular cases [Pindyck, 1984], and provide

the boundary conditions that help us find the optimal switching time in the third step.

However, due to the particular structure of our model (and specifically because of the

boundaries found in the first and second steps) our problem cannot be fully solved

analytically. Then, the optimal switching time (in the form of an optimal switching

level of the non-renewable stock) can only be found by numerical approximations.

As we shall see, due to the particular assumptions in our analysis, and especially

the boundary conditions (both, the transversality condition and the condition at the

2See Dixit and Pindyck [1994] for a general treatment of these kind of models, and Pindyck [2000,

2002] for examples of optimal timing problems in environmental economics. The seminal paper of

Dasgupta and Heal [1974], and Mason [2001] also present models of non-renewable extraction under

uncertainty.
3As the structure of firms producing energy from non-renewable resources is usually very different

from that of firms producing energy from renewables, this assumption seems to be appropriate in our

context.
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switching time), and the fact that the stock of the non-renewable resource is decreasing,

the resulting value function before the switch is S-shaped. This is completely new in the

literature of technology switching, where the resulting value function is mostly concave

[Dixit and Pindyck, 1994]. Another novelty of our model is that firms do not switch

immediately in the case of switching cost being equal to zero [Pommeret and Schubert,

2009, Charlier et al., 2011]. This results from the higher profits the firms get from using

non-renewable resources, particularly if they are abundant.

The rest of the chapter is as follows. In section 4.2 we describe the assumptions

and equations governing our economy. In section 4.3 we carefully describe the decisions

of the firms before and after the switch; in that section we also describe the economic

conditions at the optimal switching time. In section 4.4 we describe one of the funda-

mental determinants of the optimal switching time, namely the renewable resource’s

self regeneration function; we also describe the conditions under which the equilibrium

in the natural resource market converges to the steady state. In section 4.5 we solve

the model and perform a sensitivity analysis. We conclude in section 4.6.

4.2 The model

We consider a competitive market in which a large number of identical firms are engaged

in energy production. In the aggregate, firms are assumed to use q1(t) units of a non-

renewable natural resource to produce E(t) units of energy at time t according to the

following production function:

E(t) = a1q1(t), (4.1)

for a1 = 1/µ1, and µ1 being the fabrication coefficient, i.e. how many units of q1 are

needed to produce one unit of energy.4 We assume that the stock of the non-renewable

resource is stochastic and evolves according to:

dS1 = −q1(t)dt+ σ(S1)dz1, (4.2)

with σ′(·) > 0, σ(0) = 0 to ensure that the resource stock is always non-negative, and

dz1 being the standard increment of a Wiener process. In particular, we assume that

4See, for instance, Førsund [2007].
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σ(S1) = σ1S1. Then, equation (4.2) implies that the current stock of the resource is

known with certainty, but that percentage changes in the stock, dS1/S1, have a random

component that is normally distributed. Examples of random negative shocks in our

context are earthquakes, hurricanes, floods, and droughts, while a random positive

shock can be the discovery of an unexpected field.5 q1(t) > 0 is the aggregate rate of

extraction or “harvest”.

When using the non-renewable natural resource as an input, firms are assumed to

pay total (extraction) costs given by:

C(q1, S1) = c(S1)q1(t),

where marginal cost c(S1) is decreasing and strictly convex, and c(0) = ∞. We also

assume that D(p) is the downward sloping market demand function for energy. Specif-

ically, we consider iso-elastic demand, and iso-elastic marginal cost functions:

D(p) = bp−η (4.3)

c(S1) = cS−γ
1 . (4.4)

Consumer plus producer surplus (or more precisely, consumer surplus minus total ex-

traction costs) can thus be computed as:6

π1(q1, S1) =

E∗∫

0

D−1(E)dE − c(S1)q1(t). (4.5)

5Processes as the one in equation (4.2) have been used to model the dynamics of fossil fuels, such as

oil and coal (see, for instance, the stochastic “cake-eating”problems in Epaulard and Pommeret [2003],

and Smith and Son [2005]. However, there is no complete agreement on whether the uncertainty on the

stock is multiplicative or additive. One can imagine that the loss due to a negative shock is proportional

to the known stock, while it is easier to think of positive shocks as being additive [Pindyck, 1980]. We

prefer the shock to be multiplicative, as in this way it can also be interpreted as a random rate of

depreciation [Beltratti, 1996].
6Alternatively, we could have assumed that each firm i (i = 1, 2, . . . n) in the market is interested

in maximizing its individual profits given by:

pE
i − C

i(qi1, S1),

where the price of energy p is taken as exogenous. Both expositions are equivalent if the property rights

in the market are clearly defined, and each firm own equal shares of the resource stock. Pindyck [1984]

presents this latter case.
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Suppose that firms in the market have the option to switch to a renewable (perfect

substitute) input to produce energy. This switching is available at a fixed and irre-

versible cost I > 0. We assume that, once the irreversible investment is undertaken,

it is not worthwhile to switch back to the non-renewable resource, even if profits fall

due to an excess supply of the resource. This assumption is not new in the literature,

and seems to be highly justified in our context.7 Consider for instance the differences

between an offshore oil platform and an offshore wind farm. Once the oil platform

decides to become a wind farm, almost all of the previously installed capital needs to

be dismantled, and very few parts of the old facility can be re-utilized.8 This process

is very expensive in terms of time and money, and so is the reverse procedure, making

it difficult to the firm to even consider the possibility of switching back.9

Notice also what our previous argument implies for production before and after

the switching decision. In Tahvonen and Salo [2001] for instance, both resources are

used simultaneously at least with resource stocks implying that the marginal costs of

using the renewables and the marginal cost of extracting the non-renewables are equal.

However, uncertainty, irreversibility, and the very nature of the decision in our model

make using both resources at the same time to be highly improbable. In the particular

case of oil and wind, no more energy can be produced from the former resource from

the very beginning of the offshore oil platform’s dismantling process, and even the parts

being re-utilized need to be adapted before using them in the wind farm. Then, if firms

decide to switch to the new input, energy will be produced according to the following

production function:

E(t) = a2q2(t), (4.6)

where a2 = 1/µ2, and µ2 is the new fabrication coefficient. As for the non-renewable

7Classical readings are Brennan and Schwartz [1985], McDonald and Siegel [1986], and Pindyck

[1988].
8Spar buoys, and deepwater cabling plus pipeline are good examples. See publications of the Na-

tional Renewable Energy Laboratory at: http://www.nrel.govforinstance. (Retrieved on November

25, 2011).
9In a more general setting, firms may still be able to switch back to the use of non-renewables in

the case of, for instance, a profit fall. This is particularly the case if the offshore oil platforms are not

transformed into wind farms but simply abandoned, and the switching-back and maintenance costs are

not prohibitively high. We do not consider this possibility here, but refer interested readers to Wirl

[2006] for an example of optimal stopping and switching back decisions in environmental economics.
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resource case, we assume that the stock of the renewable natural resource, S2, is stochas-

tic, but it now evolves according to:

dS2 = [f(S2)− q2(t)] dt+ σ(S2)dz2, (4.7)

where q2(t) > 0 is the new aggregate rate of extraction, and dz2 is the standard incre-

ment of a Wiener process. For simplicity, we assume that z1 and z2 are uncorrelated.

Additionally, we assume that σ(S2) = σ2S2.

In equation (4.7), f(S2) is the resource’s self regeneration function. This function

is assumed to be is strictly concave, with f(0) = 0. Specifically:

f(S2) =
α

β
S2

(
1−

(
S2

K

)β
)
, (4.8)

which is a modified version of the logistic equation proposed by P.F. Verhulst in 1838.

We study this equation in more detail in section 4.4.1.

Processes as the one in equation (4.7) have been widely used in the population

ecology literature,10 and clearly are very appropriate in the case of biomass energy. In

particular, many of the crops used to produce biofuels, such as biodiesel and bioethanol,

can be assumed to display a logistic growth in yields. For instance, Waggoner [1995]

uses a logistic projection for maize yields, with carrying capacity depending on the

technology available. Also, Harris and Kennedy [1999] show that there are strong

indications in the data that the logistic model is superior to the exponential model.

This is true for maize, but also true for other crops like wheat, and rice. Uncertainty in

this context can result, for example, from random fluctuations in nutrient availability, or

from stochastic changes in natural conditions that affect reproduction.11 Other sources

of energy can be considered, like the total amount of water into a reservoir [Thompson

et al., 2004, Zhao and Davison, 2009], or the local levels of incoming solar radiation

Hamlen et al. [1978].

We also make the following assumptions in order to capture two of the main dif-

ferences between the use of non-renewable and renewable natural resources in energy

10See Pindyck [1984] for a survey.
11Justification of equation (4.7) in the case of modelling biofuels can also be found in some recent

literature on engineering. See for instance [Benavides and Diwekar, 2011, Ulas and Diwekar, 2004,

Rico-Ramirez et al., 2003].
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production. First, we assume that extracting renewables is cheaper than extracting

non-renewables. This is usually the case, compare for instance the cost of extracting oil

with the cost of using wind or water. While the marginal cost ot extracting oil is clearly

positive, wind or water are freely available. To simplify, we assume that marginal costs

are zero in the case of renewable energy production. Then, the total surplus function

becomes:

π2(q2, S2) =

E∗∫

0

D−1(E)dE. (4.9)

Second, we assume that non-renewables are more productive than renewables. This

is again the case. For instance, 1MWH of electricity can be produced from about 25

gallons of oil, or from about 800 gallons of water.12 Then, we assume that a2 = λa1,

λ < 1.

Reasons to switch are evident at this point. If firms decide not to switch, their

profits increase as the non-renewable resources are more productive; but at the same

time, their profits decrease as marginal costs increase. Thus, the final effect on profits

depends on which effect is the strongest. However, firms know that their profits will

eventually fall to zero, as the only inputs available are depletable. Switching allows the

firms to use a resource that is less productive but that can be tentatively used forever.

Uncertainty can affect the decision to switch in several ways. The most obvious is

related to the availability of the resources. As we shall see, if firms are afraid about the

future availability of the non-renewable resources, they can be tempted to switch sooner.

On the other hand, if firms believe that the availability of the renewable resource is very

uncertain (which can be the case of solar energy for instance), they can be tempted to

switch later.13

12See, for instance, the Energy Conversion Factors avaliable at: http://www.bioenergy.ornl.gov/

papers/misc/energy_conv.html (Retrieved on October 25, 2011)
13There are other important reasons to switch that our model does not account for. For instance,

renewable resources are non-pollutant. Thus, firms would like to switch if they particularly interested

in the environment. There can also be some other sources of uncertainty. For example, current and

future climate change policies are expected to influence the cost of the fossil fuels. Additionally, R&D

can also affect the cost of resource extraction, energy production, and the cost of the switch.
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4.3 Three steps to solve for the optimal switching time

To solve for the optimal switching time T , we proceed as follows. First, we develop the

program to be solved by the firms when using the non-renewable resource as an input,

and they do never switch. Second, we develop and solve the program assuming that all

the firms in the market have switched to the renewable input. The results of the first

and second steps will provide the transversality and boundary conditions, respectively,

to compute the equilibrium of the general model in which the switching opportunity is

taken into account. Of course, this equilibrium is computed as a third step, in which

the optimal switching time is implicitly found.

4.3.1 Step 1: Production with non-renewable inputs

As a starting point, we assume that the possibility of switching to a renewable input is

not available. With a discount rate of ρ, the social value function W0 can be computed

as:

W0 = W0(S1) = max
q1

E0

∞∫

0

e−ρtπ1(t)dt,

subject to equations (4.2) and (4.5), and E0 indicating the expectation at time 0. We

also assume that S1(0) < ∞ to guarantee that the problem is bounded. In this case,

the fundamental equation of optimality is:

ρW0dt = max
q1

{π1(t)dt+ E0dW0} . (4.10)

Notice that the instantaneous return on energy production ρW0dt has two components:

the instantaneous total surplus flow π1(t)dt, and the instantaneous expected capital

gain EtdW0. Also, on the margin any increase in the total surplus flow will just be

offset by a decrease in expected capital gain. By using Ito’s lemma, equation (4.10)

can be rewritten as:

ρW0 = max
q1





E∗∫

0

D−1(x)dx− c(S1)q1(t)− q1W0,S1 +
1

2
σ2(S1)W0,S1S1



 , (4.11)
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where subscripts denote partial derivatives. The first order condition for the optimal

choice of q1 is:

a1D
−1(E∗)− c(S1)−W0,S1 = 0, (4.12)

where E∗ = a1q
∗
1. Equation (4.12) implies that the marginal value function W0,S1

equals the profit that can be obtained by extracting, manufacturing and selling one

unit of the natural resource as energy.

We restrict attention to the special case where γ = 1/η, which allows us to char-

acterize explicitly the solution before the switch. Later in the chapter we relax this

assumption, which requires solving the model by using numerical simulations. By us-

ing the methodology proposed in 4.A, we can show that fixing γ = 1/η does not change

any of the main results of our analysis, then we keep this equality from now on. This

leads us to the following proposition.

Proposition 4.1 If firms use the non-renewable resource forever, the welfare maxi-

mizing outcome can be found to be:

W0 = φ1
η

η − 1
S

η−1
η

1 , ∀ η 6= 1, (4.13)

where φ1 > 0 solves:

θ1φ
1

1−η

1 − φ1 − c = 0,

and:

θ1 = a1

(
ρ

b
η +

η − 1

η

σ2
1

2b

) 1
1−η

.

As a result, the optimal rate of resource extraction is:

q∗1(S1) =
aη−1
1 b

(φ1 + c)η
S1. (4.14)

Proof See 4.B.

Notice in proposition 4.1 that we restrict the constant φ1 to be strictly larger than

zero. This guarantees the concavity of the social value function W0.
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4.3.2 Step 2: The optimal path after the switch

We now assume that the economy is at time T , which is defined as the optimal switching

time. From that point on, the social value function W is computed as:

W = W (S2) = max
q2

ET

∞∫

T

e−ρ(t−T )π2(t)dt,

subject to equations (4.7) and (4.9), and ET indicating expectation at time T . As in

section 4.3.1, we assume that S2(T ) < ∞ to guarantee that the problem is bounded.

Then, it is easy to show that our problem consists in finding the function W that solves:

ρW =

E∗∫

0

D−1(x)dx+ [f(S2)− q∗2(S2)]WS2 +
1

2
σ2(S2)WS2S2 . (4.15)

In general this problem must be solved numerically, but a special case that admits

an analytical solution does exist. Specifically, we can characterize explicitly the solution

after the switch in the special case where β = 1/η − 1. This assumption is not new

in the literature. In particular, Pindyck [1984] shows that increasing the elasticity of

demand and then skewing the biological growth function to the left reduces the effect

of uncertainty on the physical scarcity of the resource.14 We relax this assumption

later in the chapter. By using the methodology proposed in 4.A, we can show that

β = 1/η − 1 has no critical implications for our analysis, and then it can be safely be

held throughout the chapter. This leads us to the following proposition.

Proposition 4.2 If firms use the renewable resource forever, the welfare maximizing

outcome can be found to be:

W = φ2
η

η − 1

(
S

η−1
η

2

α

ρ
K

η−1
η

)
, (4.16)

where φ2 > 0 solves:

θ2φ
1

1−η

2 − φ2 = 0,

14In Pindick’s paper, this conclusion depends on both the concavity of the biological growth function

and the convexity of the costs function. In particular, resource rent increases due to the concavity of

the biological growth function, but reduces due to the convexity of the costs function.
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and:

θ2 = a2

(
ρ+ α

b
η +

η − 1

η

σ2
2

2b

) 1
1−η

.

As a result, the optimal rate of resource extraction is:

q∗2(S2) =
aη−1
2 b

φη
2

S2. (4.17)

Proof See 4.B.

In proposition 4.2, we again restrict attention to parameters implying that φ2 > 0.

This guarantees the concavity of the social value function W .

Finally, notice that nothing in our analysis prevents S2 from falling to zero. As we

will see in section 4.4.2, some conditions on parameters need to be imposed in order to

ensure that the stock S2 fluctuates around some steady-state expected value, and that

q∗2 > 0.

4.3.3 Step 3: The opportunity to switch and the optimal switching

time

As in section 4.3.1, all firms are using a non-renewable input S1 to produce energy.

The stock of this resource is still evolving according to equation (4.2). However, in this

case as an opportunity to switch does exist, society needs to choose both the optimal

extraction plan, q∗1(S1), and the optimal switching time, T . The value function before

the switch is in this case:

V = V (S1) = max
q1,T

E0

T∫

0

e−ρtπ1(t)dt+ e−ρT (W (S2,T )− I) , (4.18)

where π1(t) is as defined in equation (4.5), and E0 is expectation at time 0. Notice

in equation (4.18) that all firms switch to the new input at time T , and get aggregate

discounted profits W from that point on. Also notice that the cost of switching is I > 0,

as mentioned before this cost is irreversible. We also assume that S2,T = ϑ, which is

some fixed initial stock of the renewable resource.15

15See section 4.4.1.
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As usual, the firm’s optimal decision can be characterized by a threshold S∗ = S1,T ,

such that it is optimal not to switch as long as S1 > S∗, and to switch when the

level of the natural resource hits this threshold for the first time.16 In the domain of

continuation, the fundamental equation of optimality can be written as:

ρV = max
q1

{
π1(t) +

1

dt
ETdV

}
. (4.19)

By going through the same steps as in sections 4.3.1 and 4.3.2, we can find the

social optimality condition before the switch, V :

ρV =

E∗∫

0

D−1(x)dx− c(S1)q
∗
1(S1)− q∗1(S1)VS1 +

1

2
σ2(S1)VS1S1 , (4.20)

where q∗1(S1) is again determined by equation (4.12).

Contrary to what happened in sections 4.3.1 and 4.3.2, no analytical solution is

available in this case. This is because equation (4.20) has to satisfy the following

boundary conditions:

V (S∗) = W (ϑ)− I, (4.21)

VS1(S
∗) = 0. (4.22)

Equation (4.21) is the value matching condition at the threshold value S∗: the unknown

function V (S1) has to equal the known termination pay-off function, W (ϑ)− I, which

is constant in our case. Equation (4.22) is the smooth pasting condition. This equation

matches the slope of V (S1) to that of the pay-off function, zero in our case, to ensure

that the switching occurs at the optimal time. It also ensures the smoothness of the

value function around the switch.

To ensure that the option to switch is of some value, we also require that:

V (S1) ≥ W0(S1),

and:

lim
S1→∞

[V (S1)−W0(S1)] = 0, (4.23)

16I.e., the random switching time T is determined by T = inf {τ > 0|S1,τ ≤ S∗} .
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where W0 is as defined in equation (4.13). Equation (4.23) is the transversality condi-

tion. It implies that if the stock of the non-renewable resource is infinite, firms do not

care about having the renewable resource as an input substitute in production.17

4.4 The natural resource’s renewal function and the steady

state behaviour of the resource after the switch

Equation (4.8) plays an important role in the decision to switch. As we will show in

section 4.4.1, the larger the stock of the renewable resource, the less the incentives to

switch to the use of this resource. But additionally, function f(S2) also has interesting

implications for the behaviour of the steady-state equilibrium.18 As we shall see, de-

pending on f(S2) (and also on σ(S2), and D(p)), the stock S2 may eventually fluctuate

around some steady-state expected value. Alternatively, the equilibrium q∗2(S2) might

yield a degenerate steady-state distribution for S2, i.e. with probability 1 the stock will

eventually fall to zero [Pindyck, 1984]. In section 4.4.2, we will derive the steady state

probability distribution of S2, and derive the conditions under which this distribution

is not degenerate.

4.4.1 The natural resource’s renewal function

As we mentioned above, equation (4.8) plays an important role in the decision to switch.

In that equation, α
β > 0 is the intrinsic growth rate, and the constant K > 0 is the

environmental carrying capacity, saturation level, or natural equilibrium level of the

resource.19 In the presence of a positive harvest rate (e.g. q∗2(S2) = q < max(f(S2)),

equation (4.8) possesses two equilibria, S2 and S2. In this case, f(S2) > 0 when S2

lies between these two values, while f(S2) < 0 elsewhere. It follows that S2 is a stable

17Although the switching time requires to be found numerically in any case, the procedure is simpli-

fied as we have analytical expressions for W (ϑ) and W0(S1) in equations (4.21) and (4.23). Otherwise,

the model needs to be entirely approximated. See 4.A.

18In a deterministic model, the steady-state equilibrium is found by setting
·

S2 = 0. When the re-

source grows stochastically, that equilibrium can only be described in terms of probability distributions

and moments [Pindyck, 1984].
19See Clark [1990] for a deeper analysis of this model.
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equilibrium. This is shown in Figure 4.1, where we used the parameters of Table 4.1,

and a hypothetical harvest rate of 5%.

Table 4.1: Base Case Parameters

a1 1.0
b 1.0
c 1.0
I 1.0
K 2.0
α 0.21
ρ 0.05
λ 0.5
σ1 0.01
σ2 0.05
η 0.8

Notice in Figure 4.1 that there exists a maximum sustained yield MSY at qMSY =

max (f(S2)), with the property that any larger harvest rate will lead to the depletion

of the resource. Also, the stock level S2 = SMSY = (β + 1)−1/β K at which the pro-

ductivity of the resource is maximized is different from the natural equilibrium level K.

If the renewable resource is not used in other sectors in the economy apart from

the energy sector, we get from the properties of equation (4.8) that S2 = K, and hence

ϑ = K in equation (4.21). An optimal switching time exists as long as W0(S1) and

W (K) − I intersect each other. In Figure 4.2 for instance, firms are not interested

in using renewables as long as S1 → ∞. This is because social benefits from using

non-renewables, W0(S1), are larger than the social benefits from start using the current

stock of renewables, W (K) − I. However, as S1 becomes smaller, and hence W0 and

W (K) − I approach each other, it becomes more and more interesting for firms to

switch. Obviously, if W0 and W (K) − I do not intersect, firms will be tempted to

switch immediately. In general, we need the following condition to be satisfied:

W (K)− I < lim
S1→∞

W0(S1) =

{
φ1

η
η−1 if η > 1

0 Otherwise
. (4.24)
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Figure 4.1: Renewable Natural Resource’s Growth Function.

It is interesting to notice that condition (4.24) is always satisfied if η < 1. In this

case, then, firms prefer to take advantage of the higher profits they get from using

non-renewable resources before switching. This is true even if I is equal to zero. Notice

also from equation (4.24) or from Figure 4.2, that if the initial stock of the renewable

resources is sufficiently small — or I is sufficiently high, firms are tempted to wait

before switching until the stock of the non-renewable resource is almost exhausted.

These results are both confirmed in section 4.5.

4.4.2 The steady state behaviour of the resource after the switch

Production from a renewable resource stock needs not fall to zero. However, the equi-

librium q∗2(t) in equation (4.7) may lead to a situation in which the stock S2 falls to

zero with probability 1 (e.g. Figure 4.1). Alternatively, the stock S2 may fluctuate

around some steady-state expected value. Substitution of the equilibrium extraction

rate, equation (4.17), into equation (4.7) yields a stochastic differential equation that

completely describes the evolution of S2:

dS2 = [f(S2)− q∗2(t)] dt+ σ(S2)dz2.
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Figure 4.2: Value functions before and after the switch.

As shown in Merton [1975],20 if the probability distribution of S2 is not degenerate, i.e.

if in the long run the stock S2 fluctuates around some steady-state expected value, it

is given by:

π∞(S2) =
m

σ2(S2)
exp

[
2

∫ S2 [f(ν)− q∗2(ν)]

σ2(ν)
dν

]
, (4.25)

with m chosen so that π∞(S2) integrates to unity.21

Using equations (4.8) and (4.17), we can show that a non-degenerate steady-state

distribution for S2 exists if:

0 < σ2
2 < 2

(
α

η

1− η
− aη−1

2 b

φη
2

)
, (4.26)

which in turn implies:

α
η

1− η
>

aη−1
2 b

φη
2

.

20See also Pindyck [1984].
21On the other hand, the probability distribution of S2 is degenerate, i.e. the stock S2 will eventually

fall to zero, if
∫

∞

0
π∞(S2)dS2 is unbounded.
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If condition (4.26) is satisfied, then equation (4.25) can be shown to be:

π∞(S2) =
βω

ω1/β
2

Γ (ω1/β)
Sω1−1
2 exp

(
−ω2S

β
2

)
, (4.27)

where:

ω1 =
2

σ2
2

(
α

β
− aη−1

2 b

φη
2

)
− 1

ω2 =
2

σ2
2βK

β

α

β
,

and Γ (·) is the gamma function. From (4.27) we determine the steady-state expected

stock:

E∞(S2) = S2,∞ =
Γ
(
ω1+1
β

)

Γ (ω1/β)
ω
−1/β
2 , (4.28)

and the steady-state expected extraction rate:

q∗2,∞ =
aη−1
2 b

φη
2

x2,∞. (4.29)

Notice that equation (4.26) is not satisfied in the particular case of η > 1. Hence the

renewable resource stock does not have a non-degenerate steady-state distribution in

this case. This is because, for small S2, the expected (absolute) change in the stock

is of order S
1/η<1
2 but the standard deviation of that change is of order S2. Then, S2

will eventually be exhausted. Fortunately, it is precisely the case of η < 1 the one that

seems to be empirically relevant, as shown in the literature on energy demand.22 This

is the case we will be focused on from now on.

4.5 Results

To approximate the value function before the switch, we can use the procedures de-

veloped by Dangl and Wirl [2004], Caporale and Cerrato [2009], Mosiño [2012], or

Balikcioglu et al. [2011]. In our computations we use the base case parameters of Ta-

ble 4.1. Figure 4.3 shows the value function before the switch, V (S1), and the value

function after the switch at the initial stock of the renewable resource, W (K)− I. As

22See Bohi and Zimmerman [1984], and Maddala et al. [1997] for instance.

101



4. SWITCHING FROM NON-RENEWABLE TO RENEWABLE
RESOURCES

we can see from this figure, the optimal switching level of S1 is S∗ = 0.1229. We also

illustrate in Figure 4.4 that the value function before the switch shows the asymptotic

behaviour demanded by the transversality condition (4.23). Finally, although it is not

evident due to the little value of S∗, notice that Figures 4.3 and 4.4 show that the

resulting value function before the switch is S-shaped.
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V (S1)

S∗

Figure 4.3: Value function before the switch and the optimal switching time.

This latter result is very interesting. From a technical point of view, the S-shaped

value function before the switch it is the result of (1) the negative drift (extraction)

function in the dynamics of the non-renewable resource; (2) the fact that the value

function before the switch must converge to a constant as S1 → S∗; and (3) the fact that

the value function before the switch must converge to a concave function as S1 → ∞.

From an economical point of view, the S-shaped value function can be interpreted

as follows. If the non-renewable resource is very abundant, the gain to society from

having an additional unit (or alternatively, the loss of using an additional unit) is close

to zero. As the resource is being exhausted, society starts caring more about using the

resource, and so the social value of using an additional unit is increasing. However, as

the resource approaches to its optimal switching level, firms become more interested

in using renewables in the production process, and so the social value of having an
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additional unit of non-renewables goes back to zero.23
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Figure 4.4: Value functions before the switch and the transversality condition.

Table 4.2 shows the effect of each parameter on the optimal switching level of S1.

Specifically, it shows the percentage change of S∗ with respect of its base case value.

As we can see, the optimal switching level of S1 is a decreasing function of b and η,

the demand parameters. This is probably due to the higher productivity of the non-

renewable resources. As long as the demand for energy becomes larger, firms are able

to satisfy the demand easier if they stick to non-renewable resources. Then, they are

tempted to switch later.

S∗ is also a decreasing function of I, the cost of switching, and an increasing function

of c, the marginal cost of using non-renewables. This is quite intuitive. On the one

hand, as long as the switching becomes more expensive, firms prefer waiting a bit more

and continue producing with the non-renewable resources. On the other hand, firms

have more incentives to switch as long as the extraction cost of the non-renewable

resources becomes larger. Additionally, it is worth noting that firms will not switch

23Of course, in the absence of a switching option, the social value of using an additional unit of

the non-renewable resource becomes infinite as the resource is completely exhausted. In this case, the

social value before the switch is concave, and equal to W0(S1).
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Table 4.2: Sensitivity Analysisa

−5% +5%

b 5.9943% −5.4584%
c −4.7450% 4.6866%
I 0.1431% −0.1429%
K −5.8727% 5.8509%
α −4.2395% 4.2294%
ρ −1.5480% 1.5442%
λ −5.8727% 5.8509%
σ1 −0.0001% 0.0001%
σ2 0.1279% −0.1344%
η 15.3608% −15.4567%

a Percentage change of S∗ (with

respect of its base case value)

following a −5% or +5% change in

the model’s parameters.

immediately if I = 0. This results from the higher profits the firms get from using

non-renewable resources, particularly if they are abundant.

The biological growth function’s parameters also play an important role in the

decision to switch. The optimal switching level of S1 is an increasing function of both

α and K. As the renewable resource reproduces faster, and its saturation level is larger,

firms will switch sooner to take advantage of the more abundant (and cheaper) resource.

Of course, S∗ is an increasing function of λ, the productivity of renewables relative

to non-renewables. Firms will always take advantage of the most productive resource;

if the renewable resource is becoming more productive, firms will want to use it sooner.

In the same way, S∗ appears to be an increasing function of ρ. The more concerned

about the present the firms are, the sooner the switching time. This is particularly true

if firms take into account the fact that, as the non-renewable resource gets depleted

profits become smaller over time.

The role played by uncertainty is also clear. In particular, Table 4.2 shows that

S∗ is an increasing function of σ1, but a decreasing function of σ2. The former result

implies that firms are tempted to switch sooner as long as the uncertainty about the

availability of the non-renewable resources is larger. The later result implies that firms
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will be less interested in switching as long as the uncertainty on the availability of the

renewable resources becomes larger.

We can run some simulations to evidence some other implications of uncertainty.

In general, when global uncertainty increases (i.e. when both, σ1 and σ2 increase),

S∗ as a function of any of the parameters shifts down. This means that firms adopt

later for any given value of b, c, I, K, α, ρ, λ, or η. We can also show that S∗ is less

sensitive to b and η as global uncertainty increases. This implies that economic policy

focused on energy demand is less effective in the presence of uncertainty. The contrary

is true for c, K, α, ρ, and λ: when global uncertainty increases economic policy focused

on these parameters seems to be more effective. One exception is the switching cost

variable I, whose effectiveness on the optimal switching time does not seem to change

as uncertainty changes.

Table 4.3: Sensitivity Analysis: β

and γa

−5% +5%

β 0.5433% −0.5401%
γ −11.7305% 11.6807%

a Percentage change of S∗ (with

respect of its base case value)

following a −5% or +5% change in

the model’s parameters.

Finally, we can know the effect of β and γ by dropping the assumptions of sections

4.3.1 and 4.3.2. In this case the optimal switching level can be found by entirely

approximating the optimal switching time.24 As we can see in Table 4.3, the optimal

level of S1 is a decreasing function of β. In other words, the more skewed to the right

the resource’s self regeneration function is — and the less the intrinsic growth rate α/β,

the later the switch. We also see that the optimal level of S1 is an increasing function of

γ: the higher the elasticity of the marginal cost function before the switch, the sooner

the adoption time.

24Refer to 4.A.
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4.6 Conclusion

In this chapter we consider a model of technology switching in which energy can be

produced from two available inputs: non-renewable resources (fossil fuels) and renew-

able resources. The stock of both resources is stochastic, and the decision to adopt

renewables in production is costly and irreversible. Our model is simplified in two

ways. First, we constrain the transition from one resource to the other one only into

one direction. This can be the result of the dismantling of the infrastructure to extract

fossil fuels and, of course, the fact that investment cannot be recovered. Second, we

assume that both types of resources are never used simultaneously. These assumptions

allow us to be more focused on the optimal timing of the switching decision, and on

the factors influencing the decision to switch.

We find that uncertainty plays a clear role in the decision to switch. The more the

uncertainty about the availability of the non-renewable resources, the sooner the firms

switch to the renewable resources; and the more the uncertainty about the availability

of renewable resources, the later the switching time. The optimal switching time is also

sensitive to energy demand, costs, and the relative productivity of resources parameters.

These later results have some implications for economic and environmental policy. For

instance, the government can accelerate the substitution of renewable for non-renewable

resources in energy production by increasing the marginal cost of using non-renewable

resources, through a tax, or by decreasing the cost of switching through a subsidy. The

government may also implement measures to reduce energy demand, or apply policies to

increase the productivity of renewable resources with respect to non-renewable resources

(e.g. through innovation). The effectiveness of any of these policies also depends on

the degree of uncertainty surrounding the economy.

Our model can be extended to consider some other sources of uncertainty, and

in particular those related to climate policies. For instance, switching can help firms

to ward off mandatory future environmental regulations, so they may be tempted to

switch sooner. At the same time, firms can decide to wait until the new regulations

are announced, and thus they delay the switching time. Uncertainty can also appear

in the productivity of the renewable resource, in the demand for electricity, or even in

climate change (e.g. a future rise in temperature).
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Some other possible extensions are the following. 1) Taxes and subsidies can be

incorporated in an explicit way. 2) Relative productivity of resources is not necessarily

known with certainty. 3) Learning or adjustment costs can be introduced in such a

way that both resources can be used simultaneously. 4) Consumers decisions can be

included to account for the negative effects of environmental degradation. 5) Finally,

the possibility of switching back can also be considered. However, including all these

possibilities at the same time can result in a model difficult to treat, so we left them as

a future work.

4.A Numerical approximations and more on sensitivity

analysis

In this section we provide a sketch of the way we can entirely approximate the optimal

switching value S∗ of section 4.3.3. Our problem is to find the function V (S1) that solves

the second order non-linear differential equation (4.20), subject to the boundaries (4.21)

and (4.22). An entirely numerical approximation of V (S1), and the optimal switching

level of S1, can be found as follows:

1. Approximate the function W0(S1). This can be easily done by following, for

instance, the procedure described in Miranda and Fackler [2004]. The procedure

uses a combination of Chebyshev polynomials and Chebyshev nodes, and the

resulting function is approximated by using Newton’s method. This step is useful

for at least two reasons. The first one is that the resulting equation provides the

transversality condition as described in section 4.3. The second reason is that the

resulting Chebyshev coefficients can be used as an initial guess for the Chebyshev

coefficients in the following steps.

2. Approximate the function W (S2). As in the previous step, as no additional

boundaries are required, the procedure in Miranda and Fackler [2004] can be

applied straightforwardly.

3. From the previous step we recover the value W (K). Then, we compute W (K)−I,

which is one of the boundaries we are going to use in the following steps.
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4. Approximate the function V (S1). To do this, we recommend the procedures

described in Dangl and Wirl [2004] and Mosiño [2012]. Both procedures use a

combination of Chebyshev polynomials and Chebyshev nodes, but the first one

approximates the appropriate coefficients (and hence function V (S1)) by using

Newton’s method, while the second one uses a more algebraic procedure (avoiding

then the need for an initial guess for the Chebyshev coefficients). Both procedures

allow the user to easily modify the algorithm in order to include the appropriate

boundaries. In particular, any of the algorithms need to be modified in order to

include the value matching condition.

5. Use the smooth pasting condition to solve for the optimal switching value of S1,

S∗.

One of the advantages of using the procedure we have just described, is that there

is no need to set γ = 1/η, nor β = 1/η − 1. This procedure then allows us to perform

a sensitivity analysis on these parameters. The results of this exercise are those shown

in Table 4.3 in the main text.

4.B Solving the Hamilton-Jacobi-Bellman equation

In this section we solve a somewhat more general problem in order to prove propositions

4.1 and 4.2 simultaneously. We also show that, in the case of S being a regulated pro-

cess, the value function cannot be found explicitly, and then numerical approximations

are required.

4.B.1 The non-regulated process case

Assume that the social value function, J , can be computed as:

J = J(S) = max
q

ET

∞∫

T

e−ρ(t−T )π(t)dt, (4.30)
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subject to:

dS = [f(S)− q(t)] dt+ σ(S)dz, (4.31)

π(t) =

E∗∫

0

D−1(x)dx− c(S)q(t), (4.32)

S(T ) < ∞, (4.33)

where dz is the standard increment of a Wiener process. As usual, the fundamental

equation of optimality is:

ρJdt = max
q

{π(t) + ETdJ} .

By using Ito’s Lemma, it is easy to find that:

ρJ =

E∗∫

0

D−1(x)dx− c(S1)q
∗(t) + [f(S)− q∗(t)] J ′ +

1

2
σ2(S)J ′′, (4.34)

where:

q∗ =
1

a
D

(
1

a

[
c(S) + J ′

])
, (4.35)

and E∗ = aq∗.

Using:

D(p) = bp−η,

c(S) = cS−γ ,

σ(S) = σS,

and:

f(S) =
α

β
S

(
1−

(
S

K

)β
)
,

equation (4.34) becomes:

ρJ =
b

η − 1
aη−1

(
cS−γ

1 + J ′
)1−η

+
α

β
S

(
1−

(
S

K

)β
)
J ′ +

1

2
σ2S2J ′′,

(4.36)
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and equation (4.35):

q∗ =
aη−1b

cS−γ + J ′
. (4.37)

If S is a non-regulated process, no additional restrictions are imposed to equation

(4.36). Then, it admits a closed-form solution as long as:

γ =
1

η
, and β =

1

η
− 1.

It is easy to verify (by substitution) that this solution is:

J(S) = φ
η

η − 1

(
S

η−1
η − α

ρ
K

η−1
η

)
, (4.38)

where φ satisfies:

θφ
1

1−η − φ− c = 0,

and:

θ = a

[
α+ ρ

b
η +

η − 1

η

1

2b
σ2

] 1
1−η

.

Equations (4.13) and (4.16) in the main text are found using the appropriate pro-

cesses (i.e. either S1 or S2, and parameters), and by fixing: 1) α = 0, and T = 0, and

2) c = 0, respectively. Obviously, equations (4.14) and (4.17) are found by substituting

the resulting value function in equation (4.37).

4.B.2 The regulated process case

Assume that the social value function is now:

J = J(S) = max
q

ET

T∫

0

e−ρtπ(t)dt+ e−ρTG(·),

where S and π(t) satisfy equations (4.31), (4.32), and (4.33), and G(·) is a known

function — or constant. In the continuation (waiting to switch) region, the value

function can be rewritten as in equation (4.34), and then the optimal extraction value

is as in equation (4.37). However, as S is now a regulated process, equation (4.34)

needs to satisfy the following boundary conditions:

J(S∗) = G(·),

J ′(S∗) = G′(·).
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4.B Solving the Hamilton-Jacobi-Bellman equation

Unfortunately, the specific form of this non linear differential equation prevents us

from having a complete analytical solution. A particular solution of the full equation

is obviously identical to equation (4.38). However, a complementary function (which

is also the option value of waiting to switch, [Dixit, 1991, Dixit and Pindyck, 1994]) is

imposible to find. Also notice that, as the optimal extraction value, q∗, depends on the

value function J(S), this is going to differ from the one we computed in the absence of

regulated processes.25

25The fact that the Bellman equation does not allow for an analytical solution is not just a peculiar

feature of our model. Similar second order non-linear differential equations with no analytical solutions

can be found in Raman and Chatterjee [1995], and Dangl and Wirl [2004], for instance.
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4. SWITCHING FROM NON-RENEWABLE TO RENEWABLE
RESOURCES
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5

Switching to clean(er)

technologies in a stochastic

environment

In this chapter, we consider an economy having access to two different energy sources.

The first one is coming from natural polluting resources; and second one is coming from

a backstop natural resource. There are two productive sectors in the economy. The first

one is dedicated to manufacturing the backstop resources; the second one is devoted to

production of the consumption good. Both sectors are dirty in the sense that both use

the polluting resource at any time. The social planner sector, however, has always the

possibility of paying an irreversible fixed cost to switch the consumption sector towards

the use of a cleaner technology. Additionally, we assume that the accumulation of the

backstop, and the increase in pollution stock are stochastic. Our results imply that

the incentives to switch to the cleaner technology depend on the relative importance of

fossil fuels in the production of consumption goods after the switch. We also find that

technological improvement in the solar panels sector is of some importance in order to

switch to cleaner technologies.
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5. SWITCHING TO CLEAN(ER) TECHNOLOGIES

5.1 Introduction

The Intergovernmental Panel on Climate Change [IPCC, 2007] and the International

Energy Agency [IEA, 2008] estimate that in order to limit the rise of average global

temperature to 2 degrees Celsius, the concentration of greenhouse gases (GHG) should

not exceed 450 parts per million (ppm) CO2. This translates to a peak of global

emissions in 2015 and at least a 50 per cent cut in global emissions by 2050, compared

with 2005 [UNEP, 2011]. This objective is consistent with that of many developed

countries. For instance, France has been committed in 2003 to divide by four the 1990

national level of GHG, while the U.S. and Canada aim at reducing GHG emissions by

more than 80 percent by 2050.

To achieve this goal, one of the policies commonly undertaken by many countries

is to substitute dirty energy sources, such as coal, oil and gas, with a cleaner and

renewable energy source, such as solar and wind energy. For instance, the Directive

2009/28/EC on renewable energy, implemented by Member States by December 2010,

sets ambitious targets for all Member States, such that the European Union will reach

a 20 percent share of energy from renewable sources by 2020. In spite of this, fossil fuels

will continue to be an important part of the energy mix around the world even by 2050.

In particular, as long as renewable energies are not very advanced and widespread, (i)

industry will still need a percentage of energy that derives from dirty resources, and

(ii) the provision of clean energy itself will require dirty resources at least as materials

to build the plants (think of solar panels for instance). This is the main idea that we

address here. We seek to account for the need of dirty resources even if a clean energy

can be used.

In this chapter, we consider an economy having access to two different energy

sources. The first one comes from a natural polluting resource, such as fossil fuels.

The second one comes from a backstop natural resource, such as solar radiation. In

particular, we consider the case of solar radiation being converted into energy by means

of solar panels. There are two productive sectors in the economy. The first one is ded-

icated to manufacturing the backstop resources. At any time, this sector requires both

fossil fuels and the energy provided by the backstop already available. We therefore
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5.1 Introduction

account for the need of fossil fuels to provide clean energy. The second sector is devoted

to production of the consumption good. Initially it uses energy coming exclusively from

fossil fuels. However, it has always the possibility of switching towards a new technology

in which energy comes from both types of resources. As the backstop is being accumu-

lated such a switch becomes more attractive. In particular, it gets worth paying a fixed

cost to use the existing stock of new solar panels and avoid —at least partially— the

use of the polluting input. With this specification, the economy becomes cleaner after

the switch although not completely clean, in the sense that the clean energy cannot

fully replace fossil fuels to produce the consumption good. Therefore we account for

the fact that even if the new technology is used, fossil fuels are still required in the

industry. While taking into account these two levels of dependence with respect to the

fossil fuels (namely (i) to run the economy, and (ii) to produce clean energy) after the

switch, we pay particular attention to the optimal timing of the switching decision, and

on the factors influencing the decision to switch.

In modelling this switching decision we include three important characteristics that

must be taken into account to evaluate the adoption of any environmental policy

[Pindyck, 2000, 2002]. First, we account for the uncertainty over the future costs

and benefits. In particular, we assume that the accumulation of the backstop, and the

increase in pollution stock —which in our case is equal to the resource extraction— are

stochastic. Then, the future availability of the backstop, and the future levels of pollu-

tion —affecting the utility function— are not completely known. Second, we introduce

the irreversibilities associated with environmental policy. Specifically, adoption of the

cleaner technology imposes sunk cost on the consumption sector. Finally, we take into

account the fact that technology adoption is rarely a now or never proposition, such

that, in most cases, it is feasible to delay action and wait for new information. As

the adoption of the new technology is difficult to reverse, the sunk costs are incurred

over a long period of time, even if the original rationale for the switching disappears.

These kind of sunk costs create an opportunity cost of adopting the new technology

now, rather than waiting for more information. Our results imply that the incentives

to switch to the cleaner technology depend on the relative importance of fossil fuels in

the production of consumption goods after the switch. Specifically, if fossil fuels are
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5. SWITCHING TO CLEAN(ER) TECHNOLOGIES

relatively less important than solar panels to produce consumption, the central plan-

ner tends to wait more in order to switch to the new technology. This is because the

solar panels sector needs to be sufficiently developed to prevent some consumption loss

once the new technology is adopted. But, if fossil fuels are relatively more important

than solar panels to produce consumption, switching to the new technology is easier

—smoother—, and then the incentives for the central planner to wait vanishes. We also

find that technological improvement in the solar panels sector is of some importance

in the decision to switch to cleaner technologies. If the technological change implies

that the backstop can be produced with relatively less of the fossil fuels, the adoption

occurs sooner .

The rest of the chapter is as follows. In Section 5.2 we describe the assumptions and

equations governing our economy. In Section 5.3 we develop the general equilibrium

framework once the cleaner technology has been adopted by the consumption sector.

In section 5.4 we solve the model before the technological switch by assuming that the

discount rate is zero, and derive the socially optimal adoption timing. We additionally

perform a comparative statics exercise in Section 5.5. In Section 5.6 we relax the as-

sumption of a zero discount rate and then solve the model by using numerical methods.

We conclude in section 5.7.

5.2 The model

We consider an economy with access to two different energy sources: one dirty, and

another one clean. Dirty energy comes from a natural polluting resource, Rt, such as

fossil fuels (e.g. oil). Clean energy comes from a backstop natural resource, such as

solar radiation. Specifically, we consider the case of solar radiation being converted into

energy by means of solar panels, St.

There are two productive sectors in this economy. The first one is devoted to

production of the consumption good. Initially, it uses energy coming exclusively from

dirty inputs to run a given constant stock of capital K1. At some point, however, the

backstop becomes more developed in the economy, such that the consumption sector is

more interested to switch to a new technology using both types of energy, i.e. electricity
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from solar panels and oil, to run the capital. Such a switch becomes more attractive as

the backstop is being accumulated: it gets worth paying a fixed cost to use the existing

stock of solar panels. In particular, we assume that:

Ct = B1(κtRt)K1, (5.1)

for t < T , and:

Ct = A1(κtRt)
η(λtSt)

1−ηK1, (5.2)

for t ≥ T , where T is the time of the switching, i.e. when the backstop becomes more

active —sufficiently developed— in the economy. In equations (5.1) and (5.2), B1,

A1 > 0 are technological parameters, and η (0 ≤ η ≤ 1) is the share of the polluting

resource in the consumption function. Notice that after the switch, the smaller the

parameter η, the cleaner the consumption sector. However, even in the limit case of

η = 0, the economy is not completely “pollution-free” due to the fact that solar panels

still require fossil fuels to be produced by the other sector (see below equations (5.3)

and (5.4)).

The second sector is dedicated to manufacturing the backstop resource. This sector

requires both fossil fuels and the energy provided by the backstop already available.

On can think of solar panels whose fabrication requires some given constant stock of

capital K2, as well as solar panels (for electricity provision) and oil as a source of energy

or of materials to be built. This particular assumption is in line with a physician view

of environmental economics that stresses the need for oil in order to turn to a new

energy (and some of them even doubting that current reserves are sufficient for this

energy change). Moreover, efficiency in this sector is stochastic, since there is a lot of

uncertainty surrounding the productivity of solar panels in energy provision and the

maintenance costs of these panels. Uncertainty is assumed to be multiplicative, meaning

that the larger the number of solar panels already built the larger future uncertainty

on solar panel accumulation. We assume that the backstop is accumulated according

to:

dSt = B2 [β(1− κt)Rt + (1− β)St]K2dt+ σSK2StdzS , (5.3)

for t < T , and:

dSt = A2 [α(1− κt)Rt + (1− α)(1− λt)St]K2dt+ σSK2StdzS , (5.4)
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for t ≥ T , with St > 0, and S0 given. In equations (5.3), and (5.4) B2, A2 > 0 as well as

α and β (0 ≤ α, β ≤ 1) are technological parameters, and dzS is the standard increment

of a Wiener process. The parameters κt and λt (0 ≤ κt, λt ≤ 1) are endogenously chosen

fractions of the polluting and backstop resources, respectively, used in the consumption

sector. We assume that a 100 percent of the extracted polluting resources, and a 100

percent of the backstop already available are used in the economy. Hence, by choosing

optimally κt and λt, the central planer is implicitly choosing (1−κt) and (1−λt) to be

the fractions of the polluting and backstop resources, respectively, used in the backstop

production sector. It is worth noting that if κt = λt = 1, there is no production of

solar panels after the switch —though they are still stochastically evolving as a simple

Brownian motion, then we go back to a one sector formulation. It is also important

to notice that before T the backstop resource is not used in the consumption sector,

though it is accumulated according to equation (5.3). Additionally, uncertainty affects

solar panels accumulation in the same way irrespective of whether panels are used in

the consumption sector or not.

Our formulation in equations (5.1) to (5.4) also implies that from period T the

economy becomes cleaner in the sense that the clean resource can be used to provide

the consumption good, but there is also a switch in technology since the accumulation

process of solar panels changes. Particularly, technology in solar panel accumulation

improves after the switch as long as A2 > B2. Additionally, the green effect of the

switching is reinforced by assuming that α < β, such that the backstop production

sector is less polluting-resource dependent after the switch. We analyse this case, and

the less general case in which there is no technological improvement (A2 = B2 and

α = β) in Section 5.5.

We assume that the increase in the pollution stock is equal to the resource extrac-

tion. It is also subject to some multiplicative uncertainty that for instance takes into

account that Nature assimilation of CO2 released after oil combustion is not well-known.

This is described by the following equation:

dP = Rtdt+ σPPtdzP , (5.5)
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with Pt ≥ 0, and P0 given. dzP is another standard increment of a Wiener process. For

simplicity, we assume that dzS and dzP are uncorrelated.

The social preferences derived from consumption and environmental quality can be

represented by the lifetime expected utility:

E0




∞∫

0

e−ρτU(Cτ , Pτ )dτ


 = E0




∞∫

0

e−ρτ

(
CτP

φ
τ

)1−ε

1− ε
dτ


 , (5.6)

where φ < −1, and ρ ≥ 0 is the rate of time preference. This specification satisfies some

conditions that are now common in the literature, and takes into account the fact that

the combustion of fossil fuels is responsible for an important part of CO2 emissions and

other pollutants, and provides a (negative) amenity to households. The cross derivative

UcP is negative which means that utility exhibits a “distaste effect”, in the terminology

of Michel and Rotillon [1995]: a decrease in pollution increases the marginal utility of

consumption and implies that households have a higher desire to consume.

Since there are two arguments in the utility function, it is not immediately ob-

vious what risk aversion or intertemporal substitution means (see Debreu [1976] and

Kihlstrom and Mirman [1974] for the literature on multivariate risk aversion). Equation

(5.6) can be rewritten as:

E0




∞∫

0

e−ρτ

(
C

1
1+φ
τ P

φ
1+φ
τ

)1−Γ

1− ε
dτ




Debreu [1976] calls the function in the braces the “least concave utility function”. The

exponents of this function may be interpreted as governing ordinal preferences between

the two goods in the absence of risk. The transforming function [·]1−Γ can then be

interpreted as governing aversion to risk. A simple calculation then reveals that the

appropriate measure of risk relative aversion is Γ. Then, following the terminology in

Smith [1999] or Pommeret and Schubert [2009] we will call Γ the effective coefficient

of relative risk aversion and E the inverse of the effective elasticity of intertemporal

substitution Since Γ depends on φ, pollution changes risk aversion:

Γ = 1− (1− ε)(1 + φ)

E = 1− (1− ε) = ε.
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From now on, we keep the notation ε for the inverse of the effective elasticity of

intertemporal substitution. We let Ω denote the set of admissible plans, that is the set

κt, λt, extraction rates and dates of adoption (κ, λ,R, T ), such that:

E0




∞∫

0

e−ρτ |U(Cτ , Pτ )| dτ


 < ∞.

In this case, we can write the value function of the central planner as:

V (S0, P0) = sup
(κτ ,λτ ,Rτ ,T )∈Ω

E0





T∫

0

e−ρτ

(
CτP

φ
τ

)1−ε

1− ε
dτ + e−ρTW (ST − IP−φ

T , PT )





,

where W (·) is the value function after the switch and IP−φ
t is the switching cost. Notice

that this cost is increasing with the level of pollution, and can be expressed in terms of

solar panels by means of some constant I > 0. In this sense, the cost of switching to a

new production technology in the consumption sector is assimilated to a lost of some

solar panels. This program can be solved in two stages. We first solve for the problem

for the representative agent assuming that the backstop energy is used actively. We

next determine the optimal time for adopting the backstop in the consumption sector.

5.3 The optimal path after the switch, and the case with-

out an option to switch

5.3.1 The after the switch case

We assume that the backstop energy is used actively in the economy. The set of

admissible plans collapses to the set (κ, λ,R) such that:

Et




∞∫

t

e−ρ(τ−t) |U(Cτ , Pτ )| dτ


 < ∞.

The value function of the central planner is:

W (St, Pt) = sup
(κτ ,λτ ,Rτ )∈Ω

Et





∞∫

t

e−ρτ

(
CτP

φ
τ

)1−ε

1− ε
dτ





, t ≥ T .
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switch

Then, the Hamilton-Jacobi-Bellman equation can be written as:

ρW (St, Pt) = max
κt,λt,Rt





(
CtP

φ
t

)1−ε

1− ε
+ Et [W (St+dt, Pt+dt)]





, t ≥ T . (5.7)

After maximizing the right hand side of equation (5.7), we can rewrite the Hamilton-

Jacobi-Bellman equation by defining the following pollution-adjusted version of the

variables:

ct : = CtP
φ
t (5.8)

st : = StP
φ
t (5.9)

rt : = RtP
φ
t . (5.10)

Then our problem is simplified to one of solving the following second order differential

equation in one variable:

ρω (st) = a1
[
ω′ (st)

] ε−1
ε + a2ω

′ (st) st + a3ω
′′ (st) s

2
t ,

where:

a1 =
ε

1− ε

[
(1− η)ΘA

A2(1− α)K2

] 1−ε
ε

a2 = A2(1− α)K2 +
1

2
φ(φ− 1)σ2

P

a3 =
1

2

(
σ2
SK2 + φ2σ2

P

)
,

ΘA = A1

(
1− α

α

η

1− η

)η

K1,

and:

W (St, Pt) ≡ ω (st) .

This formulation leads us to the following Proposition.

Proposition 5.1 If the clean energy is used actively in the consumption sector, the

value of the pollution-adjusted solar panels is:

ω(st) = A
1

1− ε
s1−ε
t , (5.11)
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where:

A =

[
1

a1

(
ρ

1− ε
− a2 + εa3

)]−ε

.

The optimal consumption, and the optimal amount of the dirty input used in the con-

sumption sector are:

c∗t = ΘAλ
∗st (5.12)

(κtrt)
∗ =

1− α

α

η

1− η
λ∗st, (5.13)

where:

λ∗ = λ∗
t =

[
(1− η)Θ1−ε

A2(1− α)A

] 1
ε

is a constant.

Proof See 5.A.

Therefore, we obtain that the repartition of the stock of solar panel between the

consumption sector and the backstop manufacturing sector is constant over time. Notice

that it is not necessarily the case for κt that governs the repartition of fossil fuel

extraction between the two sectors. Moreover, (pollution-adjusted or not) consumption

is a constant fraction of (pollution-adjusted or not) solar panels. The latter result

follows from the fact that (κtrt)
∗, i.e. the fossil fuel input in the consumption good

process, is a constant fraction of st.

In Proposition 5.1 we require that A > 0, so we impose:

ρ
1−ε − a2 + εa3 > 0, if ε < 1
ρ

1−ε − a2 + εa3 < 0, if ε > 1.
(5.14)

The transversality condition requires the convergence of the value function, i.e.:

lim
t→∞

E0 [ω(st)] = 0.

This condition is satisfied if ω(st) does not grow too fast in expectation. This requires

that:

E [dω(st)] = ωs(st)E (dst) +
1

2
ωss(st)E (dst)

2 < 0.
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Hence:

(φ+ 1)

{
1− α

α

η

1− η

(
−αA2

φ

)
λ∗

κ∗
+

1

2
σ2
P [φ− ε (φ+ 1)]

}
< 0. (5.15)

As φ+1 < 0, guaranteeing condition (5.15) to be satisfied requires the term inside the

curly brackets to be strictly positive. We can show that sufficient conditions are:

φ <
ε

1− ε

in the case of ε > 1, and:

1− α

α

η

1− η

(
−αA2

φ

)
λ∗ >

∣∣∣∣
1

2
σ2
P [φ− ε (φ+ 1)]

∣∣∣∣

otherwise.

5.3.2 The no option to switch case

Having solved the program once the clean energy has been adopted in the consumption

sector, one can easily deduce the solution of the central planner’s problem in an economy

in which this kind of energy is never available to this sector. We will consider the fictive

case in which —even though there is no possibility of switching— there is still a second

sector which produces solar panels according to equation (5.3). The hypothetical results

—although not intuitively relevant— will be theoretically useful for what follows. We

let W0(St, Pt) be the value function of the central planner of the economy with no clean

energy used in the consumption sector, with:

W0 (St, Pt) = sup
(κτ ,Rτ )∈Ω

E0





∞∫

t

e−ρ(τ−t)

(
CτP

φ
τ

)1−ε

1− ε
dτ





Following the above steps and definitions, we can show that the value function in this

case can be written as:

ρω0 (st) = b1

[
ω′
0 (st)

] ε−1
ε + b2ω

′
0 (st) st + b3ω

′′
0 (st) s

2
t ,
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with:

b1 =
ε

1− ε

[
B1K1

βB2K2

] 1−ε
ε

b2 ≡ a2

b3 ≡ a3.

and:

W0(St, Pt) ≡ ω0 (st) .

The solution is as in the following Proposition.

Proposition 5.2 If the economy cannot use the clean energy in the consumption sec-

tor, the value of the pollution-adjusted panels is:

ω0(st) = B
1

1− ε
s1−ε
t , (5.16)

where:

B =

[
1

b1

(
ρ

1− ε
− b2 + εb3

)]−ε

.

The optimal consumption, and the optimal amount of the dirty input used in the con-

sumption sector are:

c∗t = B1ΘBst,

(κrt)
∗ = ΘBst,

where:

ΘB =

[(
B1K1

)1−ε

B2βBK2

] 1
ε

.

Proof See 5.B.

In Proposition 5.2 we require that B > 0. We then impose:

ρ
1−ε − b2 + εb3 > 0, if ε < 1
ρ

1−ε − b2 + εb3 < 0, if ε > 1.
(5.17)

For any st the value function in equation (5.16) cannot be greater than the lifetime

utility of the agent in an economy with the clean energy available in the consumption

sector. Then, we must have:

ω0(st) ≤ ω(st). (5.18)
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This condition ensures that there exists an optimal switching date; that is, in the

absence of costs of switching to the cleaner energy, the central planner would choose to

immediately switch for any current level of pollution-adjusted capital accumulation. A

necessary and sufficient condition for equation (5.18) to be satisfied is:

A ≥ B, if ε < 1

A ≤ B, if ε > 1,

which we impose.

5.4 The optimal switching time, the undiscounted case

The choice of an optimal consumption plan (through the choice of the optimal extraction

rate, and the variables κt and λt) and of an optimal adoption time, is given by the

maximization of the intertemporal utility function subject to the laws of solar panels and

pollution accumulations. Once the new energy has been adopted, the central planner

optimally follows the consumption plan described by equation (5.12). Therefore, the

value function at the time of the switch is given by the following value-matching and

smooth pasting conditions:

V (ST , PT ) = W (ST − IP−φ
T , PT ), (5.19)

VS(ST , PT ) = WS(ST − IP−φ
T , PT ), (5.20)

where V (ST , PT ) is the value function before the switch —evaluated at T , and subscripts

denote partial derivatives. The central planner’s problem becomes then:

V (S0, P0) = sup
(κτ ,λτ ,Rτ )∈Ω

E0





T∫

0

e−ρτ

(
CτP

φ
τ

)1−ε

1− ε
dτ + e−ρTW (ST − IP−φ

T , PT )





,

subject to equations (5.1), (5.4), (5.5), and conditions (5.19), and (5.20). Notice that

the value function before the switch depends on the current stock of solar panels even

though these panels are not used before T . This is because solar panels have some

value due to the existence of an opportunity to switch in the future.
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By using the notation in equations (5.8) to (5.10), we can show that after maxi-

mization, the problem collapses to one of solving the following differential equation:

ρυ (st) = b1

[
υ′ (st)

] ε−1
ε + b2υ

′ (st) st + b3υ
′′ (st) s

2
t , (5.21)

with:

V (St, Pt) ≡ υ (st) ,

and the following boundary conditions:

υ(sT ) = ω(sT − I), (5.22)

υs(sT ) = ωs(sT − I), (5.23)

which represent the pollution-adjusted version of the value matching and smooth past-

ing conditions. In the problem above, sT is the level of the pollution-adjusted solar

panels stock for which it is optimal to switch. This value implicitly determines the op-

timal switching time T . Additionally, given that the central planner can always choose

not to switch to the technology using panels to produce consumption, another condition

that must be satisfied is:

ω0(st) ≤ υ(st) ∀t. (5.24)

The problem in equations (5.21) to (5.23) has an analytical solution only if the

discount rate ρ is equal to zero. Let us assume that it is the case. Then, we can find an

expression for the marginal value of the pollution-adjusted capital before the switch:

υs(st) =

(
D1

st
+D2s

D3
t

)ε

, (5.25)

where:

D1 = B
1
ε ,

D3 = − b2

εb3
,

and D2 is a constant that must be determined using the smooth pasting condition,

equation (5.23). We can show that this is:

D2 =
1

sD3
T

(
A

1
ε

sT − I
− D1

sT

)
.
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5.4 The optimal switching time, the undiscounted case

We define:

G(st, sT ) := D2s
D3
t

as the part of the value function due to the option to switch. Notice that in the absence

of such an option, i.e. G(st, sT ) ≡ 0, the marginal value of the pollution-adjusted

capital reduces to ω0s(st). We deduce from the following Propositions that the value of

G(st, sT ), and hence the value function and the optimal switch time crucially depend

on the value of ε.

Proposition 5.3 If ε < 1, then G(st, sT ) > 0, and υs(st) is always defined. As a

consequence the stock of the pollution-adjusted panels sT can be found by solving:

sT∫

0

υs(st)dt = ω(sT ). (5.26)

Proof See 5.C.

Equation (5.26) can be solved numerically. Numerical resolution is driven using

the parameters in Table 5.1. Figure 5.1 shows the three value functions: before the

switch, υ(st), after the switch, ω(st− I), and without the option to switch, ω0(st). The

threshold that triggers the switch is sT = 0.4825.

Table 5.1: Base Case Parameters, ε < 1

φ −2.0
ε 0.7
σS 0.5
σP 0.05
A1 1.0
A2 0.1
α 0.5
η 0.5
B1 1.0
B2 0.1
β 0.7
I 0.1
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Figure 5.1: Optimal switching level of st, ε < 1.

Proposition 5.4 If ε > 1 the option G(st, sT ) collapses to zero. In this case, the value

function before the switch can be found to be:

υ(st) = B
1

1− ε
s1−ε
t +B0, (5.27)

for:

B0 =
1

1− ε

[
A (sT − I)1−ε −Bs1−ε

T

]
.

The optimal switching is then:

sT =
I

1−
(
b1
a1

) 1
ε

:= s∗. (5.28)

The optimal consumption, and the optimal amount of the dirty input used in the con-

sumption sector remain as in Proposition (5.2).

Proof See 5.C.
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As before, (pollution-adjusted or not) consumption is a constant fraction of (pollution-

adjusted or not) solar panels. This is because the fossil fuel input in the consumption

good process, (κtrt)
∗, is still a constant fraction of st.

As an example, we drive a numerical resolution by using the values in Table 5.2.

Figure 5.2 shows the three value functions: before the switch, υ(st), after the switch,

ω(st − I), and without the option to switch, ω0(st). The threshold that triggers the

switch is sT = 0.2514.

Table 5.2: Base Case Parameters, ε < 1

φ −2.0
ε 1.7
σS 0.2
σP 0.2
A1 1.0
A2 0.6
α 0.5
η 0.5
B1 1.0
B2 0.6
β 0.7
I 0.1

5.5 Comparative Statics

In this section we begin our analysis by considering the simplifying assumptions of

A2 = B2, and α = β. In this case, there is no technological improvement in the

backstop production sector, nor a reinforcement of the “green effect” after the switch.

By imposing these assumptions, the only advantage of the backstop production sector

when switching is that solar panels are to be shared with the consumption sector. Next,

we compare our results with those of the more general case of A2 > B2, and α < β.
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Figure 5.2: Optimal switching level of st, ε > 1.

5.5.1 No technological improvement in the solar panel process

As a base case, we use the same parameters as in Table 5.1, and Table 5.2, in which

it is already assumed that A2 = B2, and we set α = β = 0.85. Then we get that

sT = 1.4378 when ε < 1 (Figure 5.3), and sT = 1.4451 when ε > 1 (Figure 5.4). We

next consider the effect of each of the parameters on the optimal switching value of the

pollution-adjusted panels.

We consider first the effect of φ on the level of the pollution-adjusted solar panels

stock triggering their adoption by the consumption sector. As we can deduce from

Table 5.3, sT is a decreasing (and convex) function of φ: the larger (less negative) φ,

the technology using solar panels is adopted by the consumption sector for a smaller

pollution-adjusted panels stock. This is a priori counter-intuitive: more negative values

of φ means that the central planner cares more about pollution affecting the utility

of households and adoption should occur for a smaller solar panel stock. However, it

has to be kept in mind that, from the definition of sT , more negative values of φ, and
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Figure 5.3: Optimal switching level of st without technological change, ε < 1.

then smaller values of sT , may perfectly correspond to higher levels of non-pollution-

adjusted panels, ST , since pollution may be smaller. Moreover, there exists another

effect of φ through the effective risk aversion Γ = 1− (1− ε)(1 + φ) (see also equation

(5.11) in which the two effects of this parameter clearly appear through the constants

a2 and a3). The larger φ, the smaller the risk aversion. This may explain that a smaller

accumulated stock of pollution-adjusted solar panels is required to switch. In the case

ε > 1, the switch is triggered by the equality between the marginal values before and

after the switch that depend in the same way from φ; therefore this parameter does

not affect sT . Again, it does not mean that it does not affect ST .

We now consider the effect of ε. As we know, this parameter is the inverse of the

effective intertemporal elasticity of substitution. On the one hand, larger values of ε

reduce the effective intertemporal elasticity of substitution. On the other hand, larger

values of ε increase the effective coefficient of risk aversion Γ = 1− (1− ε)(1 + φ). We

deduce from Table 5.3 that the optimal level of the pollution-adjusted solar panels is

a decreasing function of ε: less taste for intertemporal substitution erodes the option
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Figure 5.4: Optimal switching level of st without technological change, ε < 1.

value to wait and therefore induces an adoption for a smaller stock of pollution adjusted

panels.

Uncertainty plays an interesting role in the decision to switch, particularly in the

case of ε < 1. The level of the pollution-adjusted solar panels at which it is optimal to

switch is a decreasing function of the uncertainty on the accumulation of solar panels.

This result on “economic” uncertainty fully reverses that of the partial equilibrium

literature (e.g. Pindyck [2000]), in which higher levels of uncertainty increase the

incentives to wait rather than adopt the policy now. What happens here is that this

uncertainty reduces the value before the switch more than the value after it, therefore

reducing the level of pollution adjusted panels stock that triggers the switch. On the

contrary, uncertainty on pollution accumulation is consistent with the usual partial

equilibrium effect of uncertainty. The effect of both σS and σP disappears in the case

of ε > 1 because uncertainties affect in the same way the marginal values before and

after the switch and therefore do not affect sT (it does not mean that it does not affect

ST ) as can be seen in equations (5.11) and (5.27). This is in standard result in general
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equilibrium (see, for instance, Pommeret and Schubert [2009]).

We also have that the level of the pollution-adjusted solar panels at which it is

optimal to switch is a decreasing function of the technological parameter A1, and an

increasing function of the technological parameter B1: the larger the technology gain

due to the switch, the smaller the pollution adjusted panels stock that triggers adoption.

Again this is due to an increase of the value after the switch compared to that before

the switch. On the other hand, sT is an increasing function of A2: the more the level of

technology in the solar panels production sector, the later the adoption. As A2 = B2,

the larger the level of technology in this sector the less the incentives to switch. Such an

effect necessarily arises from the effect of solar panels technology on the option value

to switch. This last effect, however, disappears in the case of ε > 1 because value

functions before and after the switch are affected in the same way.

Our simulations show that sT is an increasing (and convex) function of η: as the

participation of the polluting resource in the production of the consumption good after

the switch increases the central planner will choose to adopt for a larger sT ; the larger

this parameter, the less the incentive to switch. On the opposite, the larger α, the

share of the polluting resource required to accumulate solar panels (before and after

the switch), the most important it is to use less of the fossil fuel in the production of the

consumption good and therefore the smaller the sT that triggers the switch. Finally,

the central planner will decide to adopt for a higher sT if the irreversible investment

cost is higher.

5.5.2 Technological improvement in the solar panels sector

We now relax the assumptions of α = β. and A2 = B2, and see how much the results

change in the presence of technological improvement, i.e. α < β and A2 > B2, starting

from the parameters of Table 5.1, and Table 5.2. Some effects are quite similar to those

found in the previous section. For instance, the optimal level of the pollution-adjusted

solar panels is still a decreasing (but now convex) function of ε, a decreasing function of

A1, and an increasing function of B1. We also get that the central planner will decide
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Table 5.3: Comparative statics without technological improvement

ε < 1 ε > 1

f ′(·) f ′′(·) f ′(·) f ′′(·)
φ ≤ 0 ≥ 0 = 0 = 0
ε ≤ 0 ≥ 0 ≤ 0 ≥ 0
σS ≤ 0 ≥ 0 = 0 = 0
σP ≥ 0 ≥ 0 = 0 = 0
A1 ≤ 0 ≥ 0 ≤ 0 ≥ 0
A2 ≥ 0 ≥ 0 = 0 = 0
α ≤ 0 ≥ 0 ≤ 0 ≤ 0
η ≥ 0 ≥ 0 ≥ 0 ≥ 0
B1 ≥ 0 ≥ 0 ≥ 0 ≤ 0
I ≥ 0 = 0 ≥ 0 = 0

to adopt for a higher sT the higher the irreversible investment cost. However, most of

the results are inverted. Let us consider each of them.

As before, we first consider the effect of φ on the level of the pollution-adjusted

solar panels stock triggering their adoption by the consumption sector. As we can see

in Table 5.4, sT is an increasing function of φ: the larger (less negative) φ, the higher

the value of the adjusted-solar panels in order the technology using solar panels to

be adopted by the consumption sector. This result seems to be more intuitive than

previously. In this particular case, i.e. if the switch allows using less polluting resource

for both consumption and solar panels accumulation, it is the direct effect of φ on

utility the one that matters the most: more negative values of φ mean that the central

planer cares more about pollution affecting the utility of households and can increase

the intertemporal utility thanks to the technology improvement.

We now consider the effect of uncertainty. The role played by uncertainty on the

accumulation of solar panels still depends on the value of ε relative to unity, and they

are now reversed for ε < 1. To explain these new results we can focus on the effect of

the technological improvement after the switch. Whatever the effective intertemporal

elasticity of substitution, the pollution-adjusted solar panels stock that triggers the

switch is a decreasing function of the uncertainty on pollution accumulation. This

comes from the fact that the central planner tries to mitigate the bad effect of an
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increasing pollution uncertainty by adopting the new technology sooner. Uncertainty

on solar panels accumulations has a different effect. The role played by uncertainty

on the accumulation of solar panels depends again on the value of ε relative to unity.

In particular, for ε < 1, a larger σS now leads to a larger sT and such a result is

consistent with the existing literature on technology adoption under uncertainty in

partial equilibrium. But the effect is reversed for ε > 1. What happens is that more

uncertainty on solar panels accumulation unambiguously reduces the value after the

switch, but may increase the value before the switch through the option part of the

value. This should trigger adoption for a larger sT ; this is what occurs if the agent likes

to substitute in time, but it is no longer the case for ε > 1 for which there is no option

part in marginal value before the switch.

Moreover, the level of the pollution-adjusted solar panels at which it is optimal

to switch is a decreasing function of A2 and an increasing function of B2 whatever

ε: the more the gain in technology thanks to the switch the smaller the adoption

threshold sT . This results confirm that technological improvement in either sector

is an important incentive (absent in the previous section) to switch. It is also clear

that sT is an increasing function of α, and a decreasing function of β. The more

important is the polluting resource to produce solar panels after the switch, the later

the adoption. The more important is the polluting resource to produce solar panels

before the switch the sooner the adoption. Of course, the fact that β is larger than α

and that A2 > B2 provide the central planner with an additional incentive to switch,

as solar panels production process is more efficient after the switch and, in particular,

it requires less of the polluting resource in their production process. In other words,

this sector becomes “greener””.

Our simulations on η are as in Figure 5.5. Notice that sT is an increasing (de-

creasing) function of η as long as η ≤ 0.5 (η > 0.5). This is the result of the constant

returns to scale in the production of the consumption good after the switch. If fos-

sil fuels are relatively less important than solar panels to produce consumption, the

central planner tends to wait for a larger value of sT in order to switch to the new

technology. This is because the solar panels sector needs to be sufficiently developed

to not loosing consumption once the new technology is adopted. But, if fossil fuels are

relatively more important than solar panels to produce consumption, switching to the
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new technology is easier (smoother), and then the incentives to wait for the central

planner start vanishing.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s T

η

Figure 5.5: The effect of η on the optimal switching level of st.

The effect of all of the parameters on sT is summarized in Table 5.4.

5.6 The optimal switching time, the discounted case

When ρ 6= 0 there is no analytical solution to the problem described by equations

(5.21) to (5.24). Hence, numerical methods are necessary to calculate the value func-

tion in this case. As suggested by Judd [1992, 1998], we can use the approximation

properties of Chebyshev polynomials to compute stable non-diverging solution of the

Hamilton–Jacoby–Bellman equation (5.21). In this section, we follow Mosiño (2012) in

transforming the value function and the given conditions into matrix equations with

unknown Chebyshev coefficients. By using this representation, our original problem of

solving a partial differential equation reduces to a problem of solving a simple system
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Table 5.4: Comparative statics with technological improvement

ε < 1 ε > 1

f ′(·) f ′′(·) f ′(·) f ′′(·)
φ ≥ 0 = 0 ≥ 0 ≤ 0
ε ≤ 0 ≤ 0 ≤ 0 ≤ 0
σS ≥ 0 ≥ 0 ≤ 0 ≤ 0
σP ≤ 0 ≤ 0 ≤ 0 ≤ 0
A1 ≤ 0 ≥ 0 ≤ 0 ≥ 0
A2 ≤ 0 ≥ 0 ≤ 0 ≥ 0
α ≥ 0 ≥ 0 ≥ 0 ≥ 0
η ≤ 0 ≤ 0 ≤ 0 ≤ 0
B1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
B2 ≥ 0 ≥ 0 ≥ 0 ≥ 0
β ≤ 0 ≥ 0 ≤ 0 ≥ 0
I ≥ 0 = 0 ≥ 0 = 0

of algebraic equations. Interested readers can also follow Dangl and Wirl [2004], which

propose an algorithm using Newton’s method.

5.6.1 A numerical approximation of the value function

In the computations that follow we suppress time subscripts as they are not necessary

for clarity. Suppose that υ̂ (s) ≈ υ (s) has a Chebyshev series solution of the form:

υ̂ (s) =
1

2
γ0T0(s) +

N∑

i=1

γiTi(s), (5.29)

for s ≤ s ≤ sT . In equation (5.29), s is an artificial lower bound for s, and Ti(s),

i = 0, 1, . . . , N , is the general i-th Chebyshev polynomial of the first kind. This can be

obtained from the recurrence relation:

T0(h(s)) = 1,

T1(h(s)) = s, and

Tn+1(h(s)) = 2hTn(h(s))− Tn−1(h(s)),
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where:

h(s) =
2s− (s+ sT )

sT − s
. (5.30)

In equation (5.29), γi, i = 0, 1, . . . , N , are the Chebyshev coefficients to be determined,

and N + 1 is the degree of approximation. We also assume that:

υ̂(n) (s) =
1

2
γ
(n)
0 T0(s) +

N∑

i=1

γ
(n)
i Ti(s), (5.31)

where υ̂(n) (s) is the n-th derivative of υ̂ (s) with respect to s, and γ
(n)
i are also Cheby-

shev coefficients. Obviously γ
(0)
i = γi, and υ̂(0) (s) = υ̂ (s).

Equations (5.29) and (5.31) can also be expressed in matrix form:

υ̂ (s) = T(s)Γ, (5.32)

υ̂(n) (s) = 2nT(s)(Mg)nΓ, (5.33)

where:

T(s) = [T0(s) T1(s) · · · TN (s)] ,

Γ =

[
1

2
γ0 γ1 · · · γN

]′
,

and Mg is as defined in Mosiño (2012).

To obtain a Chebyshev solution of equation (5.21) in the form of (5.32), we first

linearise the non-linear equation (5.21):

ρυ̂k+1 (si) =

[
b1

(
υ̂
(1)
k (si)

)− 1
ε
+ b2si

]
υ̂
(1)
k+1 (si) + b3υ̂

(2)
k+1 (si) s

2
i , (5.34)

where k = 0, 1, 2, . . . refers to the k-th iteration on equation (5.34). Also:

si =
ŝT − s

2
(hi + 1) + s,

for ŝT being an initial guess of sT , and hi being the i-th collocation point defined as:

hi = cos

(
iπ

N

)
,

where i = 0, 1, . . . , N , and π is the standard mathematical constant. We also write the

“iterative” version of equation (5.22):

υ̂k+1(ŝT ) = T(ŝT )Γ =ω(ŝT − I). (5.35)
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Notice that we are not taking the smooth pasting condition, equation (5.23), into

account. This condition will be useful only at the end of the process.1

To start iterating, we take the following initial guess:

υ̂0(s) = ω(s− I), (5.36)

which satisfies equation (5.35) as long as s = ŝT . Inserting equation (5.36) into equation

(5.34) we get:

ρυ̂1 (si) =

[
b1

(
υ̂
(1)
0 (si)

)− 1
ε
+ b2si

]
υ̂
(1)
1 (si) + b3υ̂

(2)
1 (si) s

2
i , (5.37)

υ̂1(ŝT ) = ω(ŝT − I). (5.38)

The linear differential problem of equations (5.37) and (5.38) can be easily solved by

using the Chebyshev matrix method in Mosiño (2012). The resulting approximation

υ̂1 is then used to solve:

ρυ̂2 (si) =

[
b1

(
υ̂
(1)
2 (si)

)− 1
ε
+ b2si

]
υ̂
(1)
2 (si) + b3υ̂

(2)
2 (si) s

2
i ,

υ̂2(ŝT ) = ω(ŝT − I),

and so on. In general, the result of the k-th iteration is used to activate the (k + 1)-

th iteration. If the process is convergent, a fixed point will be reached after several

iterations. The process is ended when the maximum absolute value of the difference

between two consecutive estimates is less than a tolerance error ǫ, i.e.:

Ẽk+1 = max
s≤s≤sT

|υ̂k+1(ŝT )− υ̂k(ŝT )| ≤ ǫ.

Finally, assume that υ̂k+1 has reached a fixed point. Hence:

υ̂k(ŝT ) = υ̂(ŝT ).

The last step is to evaluate our resulting expression by using the smooth pasting con-

dition:

υ̂(1)(ŝT ) = ωs(ŝT − I). (5.39)

If equation (5.39) is satisfied, we conclude that ŝT = sT is the optimal threshold value.

Otherwise, we have to guess another value for ŝT and start the whole process again.2

1Also notice that the transversality condition does not play an important role in the computations.

We can say that this condition is satisfied as long as the system is stable.
2If ŝT = sT is not satisfied, we can find the optimal threshold value by using a simple search

algorithm.
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5.6.2 Results

Table 5.5: Optimal switching time - Discounted Case

ρ 0.005 0.01 0.015

ε < 1 0.6570 0.9336 1.3263
ε > 1 0.2530 0.2593 0.2656

In our computations we are using the base case parameters of Tables 5.1 and 5.2,

and N = 15. Figures 5.6 and 5.7 illustrate the particular example of ρ = 0.01 in the

more general case of technology improvement.
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Figure 5.6: Optimal switching level of st, ρ 6= 0 ε < 1.

By running some simulations we can show that the qualitative results of Section 5.5

remain the same. Then, we focus on the comparative statics with respect to ρ, whose

results are shown in Table 5.5. As we can see, the level of the pollution-adjusted solar

panels at which it is optimal to switch is an increasing function of ρ: the higher the

discount rate, the later the adoption. This result fully reverses the results of previous

literature (e.g. Hugonnier et al. [2008], and Charlier et al. [2011]). Our intuition

140



5.7 Conclusions

-2500

-2000

-1500

-1000

-500

0

0.05 0.1 0.15 0.2 0.25 0.3 0.35

υ
(s

t)
,
ω
0
(s

t)
,
an

d
ω
(s

t
−
I
)

st

sT

υ(st)
ω0(st)

ω(st − I)

Figure 5.7: Optimal switching level of st, ρ 6= 0 ε < 1.

suggests that, as the social planner is becoming more concerned about the present, she

prefers waiting the solar panels sector to be more developed before switching. This is

because before any action, the consumption sector can take advantage of the higher

productivity of the polluting resource.

5.7 Conclusions

In this chapter we consider a model in which two sectors interact to produce consump-

tion. The first sector is dedicated to manufacturing a backstop resource —solar panels

for instance. At any time, this sector requires both fossil fuels and the energy provided

by the backstop already available. The second sector is the one that produces the con-

sumption good. Initially it uses energy coming exclusively from fossil fuels. However, it

has always the possibility of switching to a new technology in which energy comes from

both types of resources. Using fossil fuels pollutes the economy. We assume that the

accumulation of pollution, as well as the accumulation of the backstop, are stochastic.
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We also assume that, as this backstop resource is being accumulated, it gets worth

paying a fixed and irreversible cost to use the existing stock of new solar panels and

avoid —at least partially— the use of the polluting input. With this specification, the

economy becomes cleaner after the switch —although not completely clean. Particu-

larly, we account for the fact that even if the new technology is used, fossil fuels are

still required in the industry.

We find that the threshold triggering adoption crucially depends on technological

parameters. In particular, the incentives to switch to the cleaner technology depend on

the relative importance of fossil fuels in the production of consumption goods after the

switch. Technological improvement in the solar panels sector is also important in order

to switch to cleaner technologies. If the technological change implies that the backstop

can be produced with relatively less of the fossil fuels, the adoption occurs sooner.

These conclusions are important in terms of economic policy. They imply that policy

is to be focused on (i) reducing the dependence of countries on fossil fuels — which is

particularly important for oil-dependent developing countries, and on (ii) innovation.

We also find that the effect of uncertainty depends on the existence of technological

improvement in the backstop production sector, and on the value of inverse of the

effective intertemporal elasticity of substitution relative to unity. If the inverse of the

effective intertemporal elasticity of substitution is less than unity, and in the absence

of any technological improvement, the cleaner technology is adopted sooner as the

uncertainty on the accumulation of solar panels increases. The cleaner technology is

adopted later for higher levels of uncertainty on pollution. The former result fully

reverses that of the partial equilibrium literature, while the latter is fully consistent

with it. If the inverse of the effective intertemporal elasticity of substitution is larger

than unity, however, both uncertainties affect the the marginal values before and after

the switch in the same way, and then their effects disappear. This is a standard result

in general equilibrium settings.

When there is technological improvement the effect of uncertainty is even more

important. On the one hand, whatever the effective intertemporal elasticity of substi-

tution, the pollution-adjusted solar panels stock that triggers the switch is a decreasing

function of the uncertainty on pollution accumulation. This comes from the fact that
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5.A Proof of Proposition 5.1

the central planner tries to mitigate the bad effect of an increasing pollution uncer-

tainty by adopting the new technology sooner. On the other hand, the uncertainty on

solar panels accumulation unambiguously reduces the value after the switch, but may

increase the value before the switch through the option part of the value.

An extension to this model seems to be particularly relevant. In this chapter we

assume that the increase in the pollution stock is equal to the resource extraction.

However, exhaustibility of the resource is not taken into account explicitly. To deal

with this we can either (i) include another process for the resource stock, or (ii) bound

the pollution process to take into account the fact that the resource stock cannot be

negative. This issue is left for future work.

5.A Proof of Proposition 5.1

The Hamilton-Jacobi-Bellman equation after the switch is as in equation (5.7):

ρW (St, Pt) = max
κt,λt,Rt





(
CtP

φ
t

)1−ε

1− ε
+ Et [W (St+dt, Pt+dt)]





(5.40)

Following the usual techniques (see Dixit and Pindyck [1994] for instance), and using

equations (5.2), (5.4), and (5.5) we can rewrite equation (5.40) as:

ρW = max
κ,λ,R

{(
CP φ

)1−ε

1− ε
+WSA2 [α(1− κ)R+ (1− α)(1− λ)S]K2dt+WPR

}

+
1

2

[
WSSσ

2
SK2

2
S2 +WPPσ

2
PP

2
]
, (5.41)

where time subscripts and arguments have been suppressed for ease of exposition. Sub-

scripts in equation (5.41) represent partial derivatives. The first order conditions are:

(
CP φ

)1−ε η

R
+WSA2 [α(1− κ)]K2 +WP = 0, (5.42)

(
CP φ

)1−ε (1− η)

λ
+WSA2 [(1− α)S]K2 = 0, (5.43)

(
CP φ

)1−ε η

κ
−WSA2 [αR]K2 = 0. (5.44)
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From equations (5.43) and (5.44) we get that:

κR =
1− α

α

η

1− η
λS. (5.45)

Combining this result with equation (5.2) we obtain:

C = ΘAλS, (5.46)

where ΘA is as defined in the main text. From this result and equation (5.43) we also

get:

λS =

[
(1− η)

(
ΘAP

φ
)1−ε

WSA2(1− α)K2

] 1
ε

. (5.47)

Using equations (5.46) and (5.47) — and after a few simplifications , we are able to

rewrite equation (5.41) as:

ρW = a1

(
WsP

−φ
) ε−1

ε
+A2(1− α)K2WSS

+
1

2

[
WSSσ

2
SK2

2
S2 +WPPσ

2
PP

2
]
. (5.48)

We now consider the following transformation:

W (S, P ) ≡ ω(s); s := SP φ.

Then:

Ws = ωsP
φ,

WP =
φ

P
ωss,

and:

Wss = ωssP
2φ,

WPP = φ2ωss
S2

P 2
+ φ(φ− 1)ωs

S

P 2
.

This last expressions allow us to rewrite equation (5.48) as in the main text:

ρω = a1ω
ε−1
ε

s + a2ωsst + a3ωsss
2
t . (5.49)
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Solution to equation (5.49) can be easily find to be:

ω = A
1

1− ε
s1−ε, (5.50)

which is equation (5.11) in the main text.

Finally, notice that equation (5.47) can be rewritten as:

λSP φ = λs =

[
(1− η)Θ1−ε

A

ωSA2(1− α)K2

] 1
ε

.

By combining this equation with equation (5.50) we find that:

λ = λ∗ =

[
(1− η)Θ1−ε

A2(1− α)A

] 1
ε

is a constant. Direct application of this result on equations (5.45) and (5.46), gives us

equations (5.12) and (5.13) in the main text.

5.B Proof of Proposition 5.2

We now use equations (5.1), (5.3), and (5.5) to write the Bellman equation before the

switch as:

ρV = max
κ,R

{(
CP φ

)1−ε

1− ε
+ VSB2 [β(1− κ)R+ (1− β)S]K2dt+ VPR

}

+
1

2

[
VSSσ

2
SK2

2
S2 + VPPσ

2
PP

2
]
, (5.51)

where again time subscripts and arguments have been suppressed for ease of exposition.

Subscripts in equation (5.51) represent partial derivatives. The first order conditions

are:
(
CP φ

)1−ε 1

R
+ VSB2 [β(1− κ)]K2 + VP = 0, (5.52)

(
CP φ

)1−ε 1

κ
− VSB2 [βR]K2 = 0. (5.53)

From equations (5.53) and (5.1) we get that:

κR =

[(
B1K1P

φ
)1−ε

VSβB2K2

] 1
ε

, (5.54)
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and of course:

C = B1

[(
B1K1P

φ
)1−ε

VSβB2K2

] 1
ε

K1. (5.55)

These results allow us to rewrite equation (5.51) as:

ρV = b1

(
VsP

−φ
) ε−1

ε
+B2(1− β)K2VSS

+
1

2

[
VSSσ

2
SK2

2
S2 + VPPσ

2
PP

2
]
. (5.56)

We now consider the following transformation:

V (S, P ) ≡ υ(s); s := SP φ.

Then:

Vs = υsP
φ,

VP =
φ

P
υss,

and:

Vss = υssP
2φ,

VPP = φ2υss
S2

P 2
+ φ(φ− 1)υs

S

P 2
.

This last expressions allow us to rewrite equation (5.56) as in the main text:

ρυ = b1υ
ε−1
ε

s + b2υsst + b3υsss
2
t . (5.57)

If an option to switch is not available, we redefine:

υ(s) = ω0(s),

and equation (5.57) can be solved directly. Solution can be easily found to be:

υ = B
1

1− ε
s1−ε, (5.58)

which is equation (5.16) in the main text.

Finally, using equation (5.58) on equations (5.54) and (5.55) we get that:

c∗t = B1ΘBst,

(κrt)
∗ = ΘBst,

as in the main text.
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5.C Proof of Propositions 5.3 and 5.4

5.C Proof of Propositions 5.3 and 5.4

The marginal value of the adjusted solar panels —equation (5.25) in the main text—

is:

υs(st) =

(
D1

st
+G(st, sT )

)ε

. (5.59)

Equations (5.11) and (5.16), allow us to rewrite equation (5.59) as:

υs(st) =

(
[
ω′
0(st)

] 1
ε +

([
ω′(sT − I)

] 1
ε −

[
ω′
0(sT )

] 1
ε

)( st
sT

)D3
)ε

, (5.60)

where:

G(st, sT ) =
([

ω′(sT − I)
] 1
ε −

[
ω′
0(sT )

] 1
ε

)( st
sT

)D3

,

is the part of the value function due to the option to switch.

5.C.1 Proof of Proposition 5.3

If ε < 1, it can be easily deduced that:

ω′
0(st) ≤ ω′(st) < ω′(st − I).

This implies that G(st, sT ) > 0, and hence υs(st) (> 0) is always defined. Then the

stock of the pollution-adjusted solar panels can be found by integrating equation (5.59)

and using the value matching condition, equation (5.22) in the main text.

5.C.2 Proof of Proposition 5.4

If ε > 1, the sign of G(st, sT ) is ambiguous:

• Assume first that G(st, sT ) < 0. In this case, there is a value sinf :

sinf =

(
D1

D2

) 1
D3−1

,

such that υs(st) < 0, and hence the program is not longer defined —because

a contradiction with the smooth pasting condition, equation (5.23) in the main

text. Then, this case cannot be considered.
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5. SWITCHING TO CLEAN(ER) TECHNOLOGIES

• Now, assume that G(st, sT ) > 0. In this case the marginal value function is

positive as required. However, by integrating this we get that υ(st) > 0, which is

a contradiction with the value matching condition —equation (5.22) in the main

text. Then this case cannot be considered either.

• G(st, sT ) = 0 ensures both that υ(st) > 0 and that the value matching condition

can be satisfied. Then, this constitutes the sole case we can consider. Equation

(5.27) and s∗ in the main text can be easily found by integrating υs(st) and using

the value matching condition, equation (5.22).
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6

Conclusion

This dissertation has been devoted to modeling the determinants of investing in re-

ducing greenhouse gases (GHG) through improving energy efficiency and substituting

non-renewable resources (fossil fuels) by renewable resources. We have first presented

a general equilibrium framework in which we try and explain the slow diffusion of en-

ergy efficient investments. In particular, we consider the specific case of a homeowner

who may invest in new insulation, or double glazing in order to reduce her energy

bill. This investment is irreversible; there is also uncertainty over the benefits of such

energy-saving technologies, and over the financial returns on savings. We show that

the threshold triggering adoption depends not only on technological parameters but

on preference parameters as well. In particular, the higher the risk aversion parame-

ter, the smaller the level of wealth which is required for adoption. We also show that

while uncertainty on energy-saving technologies efficiency hardly affects adoption tim-

ing, uncertainty on financial returns fosters it. By considering the arbitrage between

consumption and adoption, we manage to challenge the existing result of previous lit-

erature that remains in partial equilibrium: the existence of an option value does not

rule out the energy paradox.

We also presented two models on the substitution of resources. In the first model

we consider two different resources —fossil fuels, and renewable resources— that are

perfect substitutes for energy production. The stocks of both resources are stochastic.

In this model, firms start producing energy using only fossil fuels, but the possibility
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6. CONCLUSION

to carry out an irreversible investment to switch to the other input is always open.

We find that uncertainty plays a clear role in the decision to switch. The more the

uncertainty on the availability of the non-renewable resources, the sooner the firms

switch to the renewable resources; and the more the uncertainty on the availability of

renewable resources, the later the switching time. The optimal switching time is also

sensitive to energy demand, costs, and the relative productivity of resources parameters.

These later results have some implications for economic and environmental policy. For

instance, the government can accelerate the substitution of renewable for non-renewable

resources in energy production by increasing the marginal cost of using non-renewable

resources, through a tax, or by decreasing the cost of switching through a subsidy. The

government may also implement measures to reduce energy demand, or apply policies to

increase the productivity of renewable resources with respect to nonrenewable resources

(e.g. through innovation). The effectiveness of any of these policies also depends on

the degree of uncertainty surrounding the economy.

In the second model on the substitution of resources we consider a different sce-

nario. Our theory is that as long as renewable energies are not very advanced and

widespread, (i) industry will still need a percentage of energy that derives from dirty

resources, and (ii) the provision of clean energy itself will require dirty resource at least

as materials to build the plants. Particularly the economy has access to two differ-

ent energy sources. The first one comes from a natural polluting resource, such as

fossil fuels. The second comes from a backstop natural resource, such as solar radi-

ation. There are two productive sectors in the economy. The first one is dedicated

to manufacturing the backstop resources. At any time, this sector requires both fossil

fuels and the energy provided by the backstop already available. We therefore account

for the need of fossil fuels to provide clean energy. The second sector is devoted to

production of the consumption good. Initially it uses energy coming exclusively from

fossil fuels. However, it has always the possibility of switching to a new technology

in which energy comes from both types of resources. The backstop accumulation and

pollution are both stochastic, and the adoption of the cleaner technology imposes sunk

costs on the consumption sector. We find that the effect of uncertainty depends on the

existence of technological improvement in the backstop production sector, and on the

value of inverse of the effective intertemporal elasticity of substitution relative to unity.
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We also show that the threshold triggering adoption crucially depends on technological

parameters. In particular, the incentives to switch to the cleaner technology depend on

the relative importance of fossil fuels in the production of consumption goods after the

switch. Technological improvement in the solar panels sector is also important in order

to switch to cleaner technologies. If the technological change implies that the backstop

can be produced with relatively less of the fossil fuels, the sooner the adoption. These

conclusions are important in terms of economic policy. They imply that policy to speed

up clean energy adoption is to be focused on (i) reducing the dependence of countries

on fossil fuels —which is particularly important for oil-dependent developing countries,

and on (ii) innovation.

As a result of the extensive use of numerical methods, another contribution of this

dissertation is a methodology for solving non-linear Hamilton-Jacobi-Bellman equa-

tions. Particularly, we transform the value functions —partial differential equations—

and the given conditions into expressions with unknown Chebyshev coefficients. In this

case, we reduce our original problem of solving partial differential equations to one of

solving simple systems of —algebraic— non-linear equations.
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Abstract 

    Greenhouse  gases  (GHG)  are  responsible  for  some  climate  change. Humanity  faces  a  choice: 
either  reducing  the emissions of these gases or adapt  to climate change.  In  this dissertation we 
focus on  the  first  solution under  the premise  that a  large part of  the greenhouse effect  comes 
from human activities. More precisely, we propose some essays on modeling the determinants of 
investing  in  reducing GHG  through  improving  energy  efficiency  and  substituting nonͲrenewable 
resources (fossil fuels) by renewable resources. We first try and explain the slow diffusion of some 
energy efficient investments in a general equilibrium framework. We then study the determinants 
of  switching  from  nonͲrenewable  resources  to  renewable  resources  when  these  are  perfect 
substitutes. Finally, we account  for  the need of dirty  resources even  if cleaner  technologies are 
available. All these  issues are based on models that cannot be fully solved analytically, therefore 
we  also  propose  in  this  dissertation  a  methodology  based  on  the  properties  of  Chebyshev 
polynomials to compute the solutions. 

Keywords: Greenhouse gases; Irreversible investment; Uncertainty; Natural resources; Numerical 
solutions 

 

Résumé 

    Les  gaz  à  effet  de  serre  (GES)  sont  en  partie  responsables  du  changement  climatique. 
L'humanité est donc confrontée à un choix : soit de réduire les émissions des gaz qui sont la cause 
du problème, ou bien de prendre de mesures pour permettre aux populations de surmonter  les 
conséquences  de  ces  changements.  Dans  cette  thèse,  nous  nous  concentrons  sur  la  première 
solution sous la prémisse selon laquelle une grande partie de l'effet de serre provient des activités 
humaines.  Plus  précisément,  nous  proposons  quelques  essais  sur  la  modélisation  des 
déterminants  des  investissements  ayant  pour  objet  la  réduction  des  GES,  en  particulier  des 
investissements  dans  l'amélioration  de  l'efficacité  énergétique,  et  des  investissements  dans  la 
substitution  de  ressources  (fossiles)  nonͲrenouvelables  par  des  ressources  renouvelables.  Tout 
d'abord nous essayons et expliquons la lente diffusion de certains investissements dans l'efficacité 
énergétique  dans  un  cadre  d'équilibre  général.  Ensuite,  nous  étudions  les  déterminants  de  la 
substitution des ressources nonͲrenouvelables par des ressources renouvelables  lorsque cellesͲci 
sont des substituts parfaits. Enfin, nous tenons compte de la nécessité permanente de ressources 
sales, même si des technologies plus propres sont disponibles. Toutes ces questions sont basées 
sur des modèles qui ne peuvent être entièrement résolus analytiquement. Par conséquent, nous 
proposons  dans  cette  thèse  une  méthodologie  basée  sur  les  propriétés  des  polynômes  de 
Chebyshev pour calculer les solutions. 

MotsͲclés : Gaz à effet de serre; Investissement irréversible; Incertitude; Ressources Naturelles; 
Solutions numériques 
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