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General Introduction 

Just few years ago, a new branch in microwave engineering developed with the emergence 

of Metamaterials (MTMs). The implementation of the first artificial medium with negative 

effective dielectric permittivity and magnetic permeability opened the door to the experimental 

study of a new kind of media: left-handed media (LHM). 

The possibility of the artificial implementation of such media allowed the corroboration of 

many of their electromagnetic properties, predicted years before by Viktor Veselago who 

examined the propagation of plane waves in a hypothetical substance with simultaneous negative 

permittivity and permeability. He found that the poynting vector of the plane wave is antiparallel 

to the direction of the phase velocity, which is contrary to the conventional case of plane wave 

propagation in natural media. 

Since the year 2000, the interest stirred up by these new materials has given rise to 

numerous works in a wide range of scientific branches. The possibility that Metamaterials offer 

the production of artificial media with controllable characteristics has permitted the creation of a 

growing number of completely new applications. Undoubtedly, the most innovative and 

spectacular application of such artificial media is their use in the implementation of cloaking 

structures to achieve invisibility, which can be accomplished with the help of engineering of the 

refraction index of the different layers of the cloaking shield. 

On the other hand, it has been shown that a medium constructed by periodic metallic thin 

wires behaves as a homogeneous material with a corresponding plasma frequency when the 

lattice constant of the structure and the diameter of the wire are small in comparison with the 

wavelength of interest. It has been also showed that an array of split ring resonator (SRR) 

inclusions can result in an effective negative permeability over a particular frequency region. This 

characteristic has permitted to use such type of inclusion as a resonance creator in several 

applications, multi-band antenna is an example. 

The demand for dual-frequency antennas is increasing in order to deal with the large need 

for radiating elements for dual-band handheld devices. Due to their dual-band performance, 

reduced size, and low profile, dual-frequency printed dipoles could be a good solution. The 

simplest approach to obtain a dual-frequency printed dipole consists of using two different 

dipoles fed through a single port. 
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An interesting approach to develop dual-frequency dipole antennas is by loading an 

antipodal dipole with split ring resonators (SRRs). The loaded dipole resonant frequencies are 

very close to the self-resonant frequencies of the dipole itself and the SRRs, respectively. This 

allows developing dual-frequency dipoles with arbitrary frequency ratios. 

All titles mentioned above are the core subjects treated in this manuscript. Based on these 

ideas, new structures are attacked and optimized in order to improve the electrical and 

dimensional performances. The manuscript is composed of four chapters that present four 

related issues. 

The first chapter constitutes of the basics and overview of Metamaterials. Starting from 

history of MTMs comprising artificial materials and parallel plate media, and passing by chirality 

and bi-anisotropic media, then ending by photonic crystals that are designed to manage and 

manipulate the propagation of light through periodic dielectric or metallic structures. The 

chapter is ended by citing new trends that are related to MTMs domain; the electromagnetic 

cloak, negative magnetic permeability at optical frequencies and electrically small antennas are 

examples of such applications where MTMs are employed. 

The electromagnetic performance of waves in complex media is the basic idea of the 

second chapter in this manuscript. For this issue, Maxwell!s equations are first observed. Then 

using differential forms, these equations could take simpler forms if mathematical formalism 

higher than the vector algebra is used. On the other hand, general linear medium equations that 

are also called magnetoelectric or bianisotrpic are cited. The first section of this chapter is 

finished by showing the fundamentals of bianisotropic materials and homogenization theory. 

The second section includes the bianisotrpic effect comprising an EM investigation about 

the excitation two forms of SRR; the broadside BC-SRR and the edge coupled EC-SRR. 

Depending on the orientation of the EC-SRR to the external fields, the structure can exhibit 

either a bianisotropic or non-bianisotropic behavior. This concept is validated by EM 

simulations; this is followed by an interpretation of the results that compares the functioning of 

the two SRR forms. A common approach for the extraction of the constitutive parameters of 

Metamaterial from transmission and reflection characteristics is demonstrated in addition to a 

case study that completes this section. 

Another description of studying Metamaterials is photonic crystals that are characterized 

by band gap (dispersion) diagram; this is the subject of the last section of the second chapter. 

Two cases are then studied; BC-SRR and single wire structure. 
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After introducing a case study of SRR inclusion in chapter two, Multi SRR is presented in 

chapter three as another sub-wavelength resonator. The electromagnetic behavior of SRR and 

the equivalent circuit of MSRR are the two points of view constituting the second section of this 

chapter. Two approaches for calculating the resonant frequency of a SRR are then depicted in 

addition to numerical applications. Fixed over an artificial magnetic conductor (AMC) 

constituting of an array of MSRRs, the performance of a dipole low profile antenna is studied. 

The rectangular arrays are of 49 and 81 inclusions. 

The last chapter of this manuscript is about multi-band PCB antennas when they are 

loaded by MTMs. This chapter starts by an exposure of radiating elements and their 

characteristics. A physical demonstration of such loaded antenna is presented whereas dipole 

antenna is given as an application example. 

EM simulations of trap-loaded antenna are then shown after explaining its general design 

and the current distribution across its parts. The simulations initiates by a simple rectangular 

dipole antenna followed by a trap-loaded one. After evaluating their reflection coefficient and 

directivity, one can proceed to load the antenna by a SRR first and MSRR as a final load of the 

antenna.
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Chapter 3 Basics and Overviews of 

Metamaterials 

3.1 Introduction 
A growing interest in the research results concerning the interaction of electromagnetic 

waves with complex materials has been observed in the past few years. A reflection of this fact is 

a new term "Metamaterials# that has emerged in the literature and become part of the research 

language. Metamaterials represent an emerging research area, one that maypose many challenging 

objectives of interest to scientists and engineers. 

Metamaterials are artificially fabricated structures that have new, physically 

realizableresponse functions that do not occur or may not be readily available in nature. They are 

not "materials# in the usual sense, but rather artificially prepared arrays of inclusions or 

inhomogeneities embedded in a host medium. 

In this introductory chapter, we will have a look on the history of Metamaterials which has 

been started since the 19th century. Different researches in this modern domain are also 

demonstrated in addition to some example of new trends that are technologically related to 

Metamaterials. 

3.2 History of Metamaterials 

3.2.1 Artficial Materials 

To the best of our knowledge, the first attempt to explore the concept of "artificial 

materials# appears to trace back to the late part of the19th century. Electrical engineers were 

always interested in designing and controlling the electromagnetic properties of the materials. At 

the end of the 19th century, the first studies in this domain were reported. 

 In 1892 Lord Rayleigh examined how the effective properties of the medium are affected 

by conducting spheres and cylinders, put in a rectangular order [3-1]. This was followed by a 

paper published by J. Bose in 1898 showing experimentally the rotation of a plane of polarization 



Chapte

 

 

of man

structur

In

oriented

rotation

medium

cotton b

In

"artificia

The ter

coined b

F
m

In

with a lo

having 

refractiv

scatterin

for artif

parallel 

lenses im

foam an

L

very ben

er 1: Basics 

n-made twis

res [3-2]. 

n 1914, Lin

d small wire

n of polariza

m made up 

balls [3-4].  

n 1940-50s W

al media! as 

rm "artificial 

by him [3-6]

igure 3-1: A
metallic dela

n the mid-40

ow gain rad

refractive in

ve index tha

ng, but its o

ficial dielectr

plate lenses

mplemented

nd cellophan

ow density d

neficial in re

and Overv

sted structu

ndman wor

e helices in 

ation for the

of arbitraril

W. Kock w

a lightweigh

dielectric! w

], [3-7]. 

(a) 

Artificial die
ay lens [3-8

0s Kock's ex

diator leads t

ndex less th

at varies betw

operational b

ric lenses ha

s three dime

d by sprinkl

ne sheets Fig

dielectric fo

educing the 

views of Me

res (jute fib

ked on "ar

a host med

e linearly po

ly gathered 

went further 

ht beam sha

which is now

electric len
8]. 

xperiments s

to a beam p

han unity. T

ween 0.4 $0

bandwidth w

aving refract

ensional latt

ing conduct

gure 3-2[3-8

am was usu

weight sign

etamaterial

10

bers) that a

rtificial# chir

dium [3-3]. L

olarized wav

and oriente

in these stu

aping eleme

wadays used 

 

nses. (a) Me

showed that

pattern simila

The plate sp

0.7 as an effe

was limited.

tive index g

tice structur

tive paint to

8]. 

ally used to 

nificantly. Th

s 

are well de

ral media b

Later, many

ve after pro

ed small cop

udies when 

ents in the l

in the mic

etal-plate le

t radiating a 

ar to that of

pacing was 

fective range

. To avoid t

greater than 

res formed 

o form diffe

hold up the

he refractive

efined today

by embeddi

y publication

pagating thr

pper helices 

he decided 

lens antenn

rowave liter

(b) 

ens, (b) ass

group of pa

f a homogen

used efficie

e which mad

this limitatio

unity were p

of spheres, 

erent geome

e metallic hin

e index was 

y as artifici

ng many ra

ns were rep

rough a bi-i

that are pl

to benefit f

a applicatio

rature was p

embly of a 

arallel metall

neous dielec

ently to con

de the struct

on many pr

presented, in

disks or str

etries on pol

ndrances; wh

variable in 

ial chiral 

andomly 

ortedthe 

isotropic 

lanted in 

from the 

ns [3-5]. 

probably 

 

lic plates 

ctric lens 

ntrol the 

ture very 

ototypes 

ncluding 

rips, and 

lystyrene 

hich was 

a certain 



 

 

range th

[3-10]. 

F
va

In

dielectrics

structur

microwa

prisms, 

noted b

to the f

dielectri

[3-11]. 

3.2.2

W

imitate 

spacing 

validate 

the radi

slab wa

these re

antenna

element

hroughout th

igure 3-2: G
arious inclu

n 1960 J. B

s!. The arti

res compare

ave applica

polarization

by Brown tha

first square 

ic model by 

Parallel Pla

W.  Rotman 

the electric 

equivalent 

the formul

iated beam 

as measured

esults, the r

as [3-13] an

ts. 

he lens. In a

Generic ske
usions in a 

Brown revie

ificial dielec

ed to the un

tions were 

n filters and 

at the synth

of the clas

suggesting 

ate Media 

suggested 

properties 

to │0[3-12]

as for the el

was seen w

d after imple

rodded med

nd in the sy

C

addition, the

etch of a vo
host mediu

ewed the e

ctrics were 

nity index o

considered 

transparent

esis of the a

sical dielect

that a lattice

in 1962 tha

of plasma, 

. Wide ran

lectric prop

when the rad

ementing ro

dia form of

ynthesis of 

Chapter 1: 

11

e surface ma

olumetric M
um. 

early develo

categorized

of refraction

to be the 

t to radio w

artificial diel

tric theory w

e of conduc

at a rodded

as long as 

nge of wave

erties of the

diation from

odded and p

f the artifici

surface im

Basics and

atching was 

Metamateria

opment step

d into "delay

n.During th

large apert

waves random

ectric from 

where O. M

cting spheres

 or parallel 

the rods s

eguide meas

e rodded me

m an electric

parallel plat

ial dielectric

mpedance pr

d Overviews

integrated in

 

al synthesiz

ps in the d

y dielectrics! 

hat time the

ture antenn

m structures

conducting 

Mossotti dev

s can repres

plate medi

pacing less 

surements w

edia. A signi

c aperture c

te media. A

cs was used

rofiles [3-14

s of Metam

nto the desi

zed by emb

domain of 

and "phase 

e most forth

na lenses, di

s. Remarkab

elements is 

veloped in 1

ent a solid d

ia could be 

than 0.2│0 

were carried

ificant narro

overed by a

s a consequ

d in the lea

4] as beam 

materials

ign [3-9], 

bedding 

"artificial 

advance! 

hcoming 

ispersive 

bly it was 

a return 

1850 his 

dielectric 

used to 

or plate 

d out to 

owing of 

a plasma 

uence of 

aky wave 

shaping 



Chapte

 

 

3.3
A

specifica

Kelvin i

a plane m

 O

Kong [3

suddenl

cross-co

respons

relation

In

a distin

witnesse

element

early 19

chirality

wave an

chiral m

were ex

[3-25]. 

3.3.1

T

coatings

er 1: Basics 

Chiralit
A growing in

ally in chira

in 1904: "I c

mirror, ideally 

On the other

3-23], [3-24]

ly started res

oupling term

ses when tr

s. 

n Chiral med

ct geometri

ed as the ro

t that result 

9th century in

y research w

nd infrared 

medium, mad

tensively rep

Chiral Med

The applicati

s (radar abs

and Overv

ty and B
nterest in a 

al and bianis

call any geome

realized, cann

r hand, the 

] in 1968 w

search boom

ms between

rying to ch

Fig

dia, the anti

ical characte

otation of t

in magneto

n classical o

which was m

frequencies

de from rand

peated by m

dia Applica

ion of the 

sorbing mat

views of Me

Bi-aniso
different cl

sotrpic struc

etrical figure, o

not be brought

concept of 

when a certa

m on electro

n the electr

aracterize b

gure 3-3: Ex

i-symmetry w

er of the in

the polariza

o-electric co

optics as op

motivated b

s[3-15]-[3-21

domly dispe

many research

ations 

chiral mate

terials); at th

etamaterial

12

otropic
lass of artif

ctures [3-15]

or group of po

t to coincide wi

bianisotropi

ain level of 

omagnetics o

ric and ma

bianisotropic

xample of C

with respect

nternal struc

tion of the 

oupling. Thi

tical activity

by the poten

1].The Lindm

ersed electric

h groups lea

erials was m

he start of 

s 

ficial media 

-[3-21]. Chi

ints, chiral, an

ith itself! [3-2

ic medium w

maturity [3

of moving m

agnetic field

c and chira

Chiral struc

t to mirror r

cture create

propagatin

is phenomen

y. Year 1990

ntial applica

man!s exper

cally small h

ading to sev

mainly seen 

this second

was seen in

irality was fi

nd say it has 

22]. 

was devised 

-16] have b

media. It is n

d excitation

al media by

 

cture 

reflection (F

es macrosco

ng field plan

non has bee

0 witnessed 

ation in mi

riments with

helices in a h

eral patents 

in the desig

 wave of re

n the next 

irst defined 

chirality, if its

by D. Chen

been reached

necessary to

ns and pola

y using con

Figure 3-3), 

opic effects 

ne due to th

en known s

the "second 

crowave, m

h artificial i

host (see Fig

granted at t

gn of antire

esearch; in 

decades, 

by Lord 

ts image in 

ng and J. 

d after a 

o include 

arization 

nstitutive 

which is 

that are 

he chiral 

since the 

wave! of 

millimeter 

isotropic 

gure 3-3), 

that time 

eflection 

order to 



Chapter 1: Basics and Overviews of Metamaterials

 

13 
 

reduce the radar cross-section for aerospace vehicles [3-26]. However, advanced studies showed 

that the introduction of the chiral obstacles results in no enhancements in the reflection 

characteristics when compared to the patterns obtained from non-chiral inclusions and that the 

chiral layers are inadequate for antireflection coatings purposes[3-27], [3-28]. It was recognized 

that the mechanism responsible for the enhanced absorption is the half-wave resonance of the 

inclusion and not their handed geometric shape [3-29]. 

The guided-wave structure containing chiral materials is considered as another potential 

area of application. It is also called chiro-waveguides with the TE and TM modes being coupled 

together where the coupling coefficient is proportional to the chirality parameter [3-30]. It was 

hypotheses that the wave guides loaded with chiral medium have a potential application in 

different areas such as integrated microwave and optical devices (as directional switches), 

optical waveguides and as substrates or superstrates in planar antennas in order to decrease 

the surface-wave power and improve radiation efficiency[3-31]. In addition, it was theoretically 

presented, that the chirality of the antenna substrate is demonstrated in the rotation of the 

radiation pattern around the axis that is at right angle to the slab by an angle depending on the 

chirality parameter, with beam-steering systems or simple radiating devices with complex 

radiation patterns being a possible area of application [3-32]. 

3.3.2 Chiral Media Investigation 

From 1990s there have been focuses on sculptured thin films for the investigation of chiral 

materials, which are nanostructured material that are characterized with unidirectional varying 

properties. Sculptured films can be designed and realized in a manageable manner through using 

physical vapor deposition [3-33]. During this process, the growth direction of the produced 

chiral columnar morphology can be managed by varying the direction of the incident vapor flux 

and rotating the substrate. The chiral sculptured thin films are highly concerned since they 

respond in different ways to orthogonal circular polarizations. Within a certain wavelength 

regime, light of the same handedness as the material is strongly reflected, while the other 

polarization is mainly transmitted. This phenomenon initiated many applications, mainly in linear 

optics, starting from 1999 [3-34]. The applications include but not limited to: circular 

polarization filters, polarization discriminators, optical fluid sensors and chiral photonic 

band-gap materials. Optical interconnects and polarization routing are some of the forthcoming 

applications. 
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EM fields in a prescribed manner. To relax the definition a bit, some researchers allow the 

periodicity to be in the same order of the signal wavelength, so the photonic crystals can have a 

place in Metamaterials. Although random structures are also accepted as Metamaterials, yet 

researches show preference for the periodic structures. 

The subject of MTMs overrode that of bi-anisotropy and related topics like chiral and bi-

isotropic media, for two reasons: their implementations can be in the form of random mixtures, 

and it show magnetoelectricity cross coupling effects [3-62]. At this time, periodic MTM lattices 

and photonic crystals are being developed parallel to each other. The main difference is in the 

EM properties of their unit cells: ordinary dielectrics or metals are the constituents of the 

photonic crystals, whereas the functional building blocks of MTMs are engineered to present 

customized properties. Yet, on the macroscopic level, some interesting effects of periodic MTMs 

are observed in the properly designed photonic crystals; hence both structures are related to each 

other. 

3.6 Metamaterials Properties 
Metamaterials are generally defined as artificial materials of effectively homogenous EM 

structure that reveals remarkable properties not provided by natural materials. The unit-cell size 

"a! is a characteristic property of an effectively homogeneous periodic structure where a<<│m 

(guided wavelength). Having this condition satisfied, the propagated EM reflects only the 

effective macroscopic constitutive parameters; the effective relative electric permittivity ポeff  and 

magnetic permeability ┃eff. Both parameters depend on the nature of the unit cell, and are related 

to the refractive index n by (3-1): 

仔 噺 謬罰資蚕讃讃侍蚕讃讃 (3-1)

ieff and µeff can take any sign, so four possible sign combinations in the pair (ポ, ┃ 樺"R) lead 

to double positive (DPS), single negative (SNG), or double negative (DNG) medium as shown 

in Figure 3-7. Among the four combinations, the DNG materials form a new class. In 1968, V. 

Vaselago predicted a number of fundamental phenomena related to DNG media. 

• A DNG medium allows the propagation of EM waves with 継屎王, 茎屎屎王 and 計屎屎王building a left-

handed triad (継屎王× 茎屎屎王 antiparallel to 計屎屎王), compared with a right-handed triad (継屎王× 茎屎屎王 parallel 

to 計屎屎王) characterizing conventional (DPS) materials. 

• The phase in a DNG medium propagates backward to the source (backward wave) with 

the phase velocity opposite (antiparallel) to the group velocity. 
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• In a medium with negative permittivity and permeability, the index of refraction n given 

by (3-1) is negative [3-63]. 

 

Figure 3-7: Material classification 

• A wave incident upon the interface between the DPS and DNG media undergoes 

negative refraction corresponding to the negative refraction index (a phenomenon called 

vividly i.e.  "Bending the wave the wrong way!). 

• The constitutive parameters of a DNG medium have to be dispersive with the frequency 

dependent ポ and ┃ satisfying the conditions: 纂岫創岨岻纂創 伴 宋┸ 纂岫創疎岻纂創 伴 宋 

Consequently, ポ and ┃ must be positive in some parts of the spectrum, in order to 

compensate for their negative values in other frequency regions. 

3.7 Research in Metamaterials Domain 
 Vaselago early work on DNG media concluded that DNG material does not exist in 

nature, and no further progress in this area occurred for more than 30 years. The step forward 

happened in 1999 with the effort of J. Pendry et al. [3-45], which became aware of that a split 

ring resonator (Figure 3-8a) with dimensions much lesser than the free-space wave-length could 

react to microwave radiation of certain polarization as if it had the effective permeability of the 

form (3-2): 
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when the phase refraction is negative [3-71] when considering the incidence of a modulated 

plane wave on an infinite half space of a negative refractive index material. This inconsistency 

was made clear by explaining that the direction of group velocity is not essentially parallel to the 

normal of the interference pattern formed (in this case) by two waves of different frequencies 

[3-72] $[3-75]. 

Furthermore, the experimental detection of the transmitted wave was done at an 

intermediate distance to the sample and not in the far field which led the critics to claim that the 

interpretation of the transmission measurements are highly vague [3-76]. However, the negative 

refraction phenomenon has been proved in another set of experiments, including the 

measurement of the EM field profiles at the distance of 28│0 [3-77], [3-78] and 85│0 [3-79] from 

the MTM sample. Moreover, the experimental results related to the observed negative refraction 

[3-80], [3-81] were backed up by numerical simulations of wedge-shaped Metamaterials. 

Most of the remarkable phenomena related to DNG media, e.g. reversal of Doppler 

Effect, reversal of Cerenkov radiation and negative Goos-Haenchen beam shift were 

investigated on the theoretical basis only. The interest in Metamaterials was refreshed after the 

confirmation of the concept of the double negative medium through the negative refraction 

experiment, which started on a fast growing research area. 

3.8 New Trends Related to Metamaterials 
However, far from the negative refraction, there are many other ideas related to 

Metamaterials that have attracted the scientists and engineers to this field of studies. Many of 

these new ideas which created the main trends in the current research on Metamaterials are 

briefly described in this part. 

3.8.1 Electromagnetic Cloak 

It has recently been suggested to design the EM structures in such a way to control the 

paths of EM waves within a material by varying the constitutive parameters spatially in a well 

prescribed manner [3-82]$[3-84]. 

Electromagnetic cloak, an invisibility device that guides the waves from any source around an 

object in order to hide it, is one of the applications of transform media (Figure 3-12(a)). The 

cloak prevents the scattering of the waves and does not leave shadow in the transmitted field; in 

addition applying complex material properties provides the hidden volume and the cloak with 

the properties of the free space when viewed externally. 
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The concepts of MTMs continue by demonstrating chirality and bi-anisotropic media. The 

Lindman!s experiments with artificial isotropic chiral medium, made from randomly dispersed 

electrically small helices in a host were extensively repeated by many research groups leading to 

several patents granted. The growth of research on photonic crystals, as a new class of artificially 

structure materials in parallel to the chiral structures, is then presented in addition to composite 

medium based on periodic array of interspaced SRRs and wires.  

In the paragraph that discusses research in Metamaterials domain, the remarkable 

properties of MTMs that are not found in other naturals materials are provided. In other words, 

MTMs are characterized by double negative DNG (negative permittivity and permeability) 

property that allows the propagation of EM with"継屎屎屎王, 茎屎屎王 and 計屎屎王"building a left-handed triad. 

Moreover, the phase in a DNG medium propagates backward to the source with the phase 

velocity opposite to the group velocity. 
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Chapter 2 Electromagnetic Properties in 

Complex Media 

2.1 Introduction 
The central concept that is discussed across this second chapter of the manuscript is the 

electromagnetic performance of waves in complex media. Classical Maxwell!s equations are first 

observed before using differential forms of equations that could take simpler forms if 

mathematical formalism higher than the vector algebra. On the other hand, general linear 

medium equations that are also called magneto-electric or bi-anisotropic are cited. The first 

section of this chapter is finished by showing the fundamentals of bi-anisotropic materials and 

homogenization theory. 

The bi-anisotropic effect, comprising an EM investigation about the excitation of two 

forms of SRR; the broadside BC-SRR and the edge coupled EC-SRR, is the subject of the 

second section. Depending on the orientation of the EC-SRR to the external fields, the structure 

can exhibit either a bi-anisotropic or non-bi-anisotropic behavior. The concept is validated by 

EM simulations; this is followed by an interpretation of the results that compares the functioning 

of the two SRR forms. A common approach for the extraction of the constitutive parameters of 

Metamaterials from transmission and reflection characteristics is demonstrated in addition to a 

case study that completes this section. 

The photonic crystals, another description of studying Metamaterials, are characterized by 

their band gap diagram and studied in the last section of this chapter. As an application example, 

the dispersion diagram obtained for the broadside-coupled split ring resonator is shown. 

Moreover, the dispersion diagram of a Wire unit cell is also depicted. 
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2.2 Maxwell!s Equations 
The Maxwell equations written in terms of real vector quantities, the electric and magnetic 

field vectors E, H and the electric and magnetic flux densities D, B as functions of the position 

vector r and time t, are: 

繕 抜 撮岫司┸ 嗣岻 噺 伐示刷岫司┸ 嗣岻示嗣  (2-1)

繕 抜 殺岫司┸ 嗣岻 噺 示拶岫司┸ 嗣岻示嗣 髪 雑岫司┸ 嗣岻 (2-2)

繕┻刷岫司┸ 嗣岻 噺 宋 (2-3)繕┻拶岫司┸ 嗣岻 噺 奏岫司┸ 嗣岻 (2-4)

Here, the current vector J and the charge density ┈ are the postulated sources of 

electromagnetic fields and they satisfy the continuity condition: 

繕┻ 雑岫司┸ 嗣岻 噺 伐 双双憩 奏岫司┸ 嗣岻 (2-5)

which is implicit in the equations(2-2) and(2-4) and can be obtained by the divergence and 項 項建エ  operations. 

The EM force could be calculated without any reference to EM fields, but the introduction 

of vectors E, B, which are calculated first, facilitates the problem. The force density is then 

obtained from the Lorentz expression: 擦岫司┸ 嗣岻 噺 奏岫司┸ 嗣岻櫛岫司┸ 嗣岻 髪 窟岫司┸ 嗣岻 抜 遇岫司┸ 嗣岻 (2-6)

The electromagnetic fields E, B have thus the physical significance in transmitting the 

force between currents and charges. Because they are not easily calculated from the sources, the 

problem is alleviated by introducing a second pair of auxiliary field vectors H, D. 

Thus, we arrive at the Maxwell equations (3-1)-(3-4), which are a set of two vector and two 

scalar equations for four vector or twelve scalar unknowns. This is not enough for a unique 

solution of the fields. In fact, an additional set of two vector equations should exist between the 

field vectors E, B, H, and D. These equations are dependent on the medium and are called the 

constitutive equations or medium equations. For example, for the most general linear, local and 

non-dispersive media the additional equations can be written as follows: 
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拶 噺 而泊┻ 撮 髪 字泊.H (2-7)

刷 噺 賜泊┻ 撮 髪 侍白.H (2-8)

Here, the dyadic parameters"香 唄┸ 行唄┸ 耕 唄┸ 航唄 depend on properties of the medium. All physical 

phenomena within the medium are hidden behind these four dyadics. In fact, the macroscopic 

electromagnetic fields do not distinguish between two media if they have the same dyadic 

parameters, even if the physical processes behind those parameters are totally different. The 

problems considered here are concerned with effects of media on electromagnetic fields rather 

than the converse case. 

2.2.1 Operator Equations 

The logic leading to the Maxwell equations can be seen more easily using a mathematical 

formalism higher than the vector algebra. For example, using differential forms the equations 

take a very simple form. This notation can be simulated using mixed matrix operators as follows. 

Starting from the electromagnetic source defined as current-voltage four-vector i: 

餐 噺 磐雑持卑 (2-9)

the equation of charge conservation (2-5) can be written as: 

拶層┻ 兄 噺 磐繕 双双憩卑 ┻ 磐雑持卑 噺 繕┻ 窟 髪 双双憩 奏 噺 宋 (2-10)

with a four-vector operator D1 defined by: 

拶層 噺 磐繕 双双憩卑 (2-11)

The physical fields E, B satisfy the combination of two Maxwell equations (2-1), (2-3). 

Writing the vector pair as a single six vector e: 

蚕 噺 岾櫛遇峇 (2-12)

and defining a second operator D2 by: 
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拶匝 噺 蕃繕 抜 掘唄 掘唄 双双憩宋 繕 否 (2-13)

we can write: 

拶匝┻ 祁 噺 蕃繕 抜 掘唄 掘唄 双双憩宋 繕 否 ┻ 岾櫛遇峇 噺 蕃繕 抜 櫛 髪 双遇双憩繕┻ 遇 否 噺 宋 (2-14)

Here, 0 on the right-hand side means a combination of the null vector and the scalar zero. 

It is easy to check that the following operator product results in the null operator: 拶層┻ 皐拶匝 噺 宋 (2-15)

where we denote: 

皐 噺 岾層 宋宋 伐層峇 (2-16)

Comparing equations (2-10) and(2-15) shows us that the former is satisfied identically if 

the source four-vector i is written in terms of another six-vector h in the form: 餐 噺 皐拶匝皐┻酸 (2-17)

Writing"月 噺 岫茎┸経岻脹as a matrix of two vectors, this equation equals: 

磐雑奏卑 噺 蕃繕 抜 掘唄 伐掘唄 双双憩宋 繕 否 ┻ 岾屈串峇 (2-18)

This together with (2-14) defines the Maxwell equations and can, thus, be interpreted as 

being just a definition of the source in terms of the fields H, D. 

Finally, the medium equation can be written in an operator form: 蚕 噺 捌岫酸岻 (2-19)

where M contains the information of the medium. For a linear medium, the M operator is 

a matrix of four dyadics. 
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2.2.2 Medium Equations 

The most general linear medium can be described in terms of four dyadic parameters 

defined in (2-7), (2-8). These equations can also be written as a relation between the vector pairs 結 噺 岫継┸ 稽岻脹 and 月 噺 岫茎┸経岻脹┺ 殺 噺 捌白 ┻撮 髪 晒白 .B (2-20)

拶 噺 皿白┻ 撮 髪 鯖泊.B (2-21)

The relation between the two sets of medium dyadics can easily be derived by substitution: 而泊 噺 皿白 伐 鯖泊┻ 晒白貸層┻捌白 , 字泊 噺 鯖泊┻晒白貸層 (2-22)

賜泊 噺 伐晒白貸層┻捌白 , づ泊 噺 晒白貸層 (2-23)

The general linear medium is also called magneto-electric or bi-anisotropic. In the case of no 

special directions in the medium all medium dyadic 香唄┸ 航唄┸ 行唄┸ 耕 唄 are multiples of the unit dyadic 荊 唄 
and the medium is called bi-isotropic. 

 Special cases of the bi-isotropic media are the isotropic chiral medium with 耕唄 噺 伐行唄 噺 耕荊 唄 and 

the Tellegen medium with 耕唄 噺 行唄 噺 耕荊 唄┻" 
For"行白 噺 ど,耕唄 噺 ど, the medium is anisotropic and if the dyadic 香唄┸ づ泊 are multiples of 荊 唄, it is 

simply isotropic. 

The constitutive equations of the bi-isotropic medium in the frequency domain can be also 

written in the form: 拶 噺 叢櫛 髪 岫鼠 伐 啓暫岻紐叢宋づ宋殺 (2-24)

刷 噺 岫鼠 髪 啓暫岻紐叢宋づ宋撮 髪 づ殺 (2-25)

The dimensionless coefficients ┎ and k are called the Tellegen and the chirality parameters, 

respectively, and for a lossless medium they turn out to be real numbers. A chiral medium can be 

produced by inserting material particles in a suitable base with specific handedness, i.e., particles 

whose mirror image cannot be brought into coincidence with the original particle, like particles 

of helical form. The Tellegen medium can be produced by combining permanent electric and 
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magnetic dipoles in similar parallel pairs and making a mixture with such particles. Such a 

medium was first suggested by Tellegen in 1948. 

When the medium parameters are actually operators containing time differentiation ©/©t, 

the medium is called dispersive, or, more exactly, time dispersive. If they contain the space 

differentiationu, the medium is called space dispersive or non-local. If the linear relations do not 

hold, the medium is, of course, non-linear. 

Every physical medium can be understood to present time-dispersive properties due to the 

inevitable inertia of its molecules. In particular, at frequencies high enough every physical 

medium should act as if un-polarizable, like the vacuum. However, for some frequency ranges 

medium parameters may depend very little on frequency and they may be considered non-

dispersive as a first approximation. 

2.2.3 Bi-anisotropic Materials 

A material medium consisting of metallic inclusions randomly or periodically distributed 

inside a host dielectric behaves, at least within a certain range of frequencies (typically in the 

microwave region), as an effective continuous medium whose electromagnetic constitutive 

parameters may have values well outside of the range covered by ordinary materials. 

Thus, for instance, an artificial negative electric permittivity medium (NEPM) can be 

obtained by using long metallic wires as inclusions, which simulate the plasma behavior at 

microwave frequencies. Since free magnetic charges are not present in nature, this method 

cannot be used for manufacturing negative magnetic permeability media (NMPM). Such media, 

however, can be built up by using small resonant metallic particles with very high magnetic 

polarizability. Recently, a particle having this property, the so-called split ring resonator (SRR), has 

been proposed for this purpose [2-1]. 

An artificial medium consisting of an aggregate of these particles shows a negative 

permeability region near and above the resonance frequency. In this region, magnetic 

susceptibilities below -1 are possible. A combination of the artificial media proposed in [2-2] has 

been experimentally demonstrated to be a left-handed artificial medium, i.e., a medium having, 

simultaneously, negative electric permittivity and negative magnetic permeability [2-3]. 

On the other hand, embedding metallic resonant particles showing cross polarization 

effects (i.e., an electric polarization as a response to an applied magnetic field and vice versa), in a 
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host dielectric medium, is the usual technology for obtaining bi-isotropic and/or bi-anisotropic 

artificial media (i.e., media which replicate optical activity at microwave frequencies). 

Indeed, all the aforementioned artificial materials (bi-isotropic, bi-anisotropic, NMPM, and 

left-handed materials) turn out to be very similar in many aspects. Thus, the presence of 

resonances in the commonly used bi-anisotropic and bi-isotropic inclusions suggests the 

existence of regions with negative permeability and/or permittivity, at least if losses are very low 

or, simply, ignored. Conversely, cross polarization effects could also be expected in some of the 

proposed resonant particles used to manufacture NMPM and left-handed materials. 

The analysis of bi-anisotropic electromagnetic problems is difficult. Anisotropic, bi-

isotropic, chiral and non-reciprocal materials are examples of bi-anisotropic media, which 

generally obey the constitutive relations: 拶 噺 而泊┻ 撮 髪 字泊.H (2-26)

刷 噺 賜泊┻ 撮 髪 侍白.H (2-27)

Here the relations between the electric and magnetic fields (E and H) and the electric and 

magnetic flux densities (D and B) are contained in the permittivity"香 噺 香追香待 and 

permeability"航 噺 航追航待 and the magneto-electric cross couplings of ｠ and ┅. (The free-space 

parameters are 香待 and 航待, and the subscript "r# is used to distinguish relative material dyadics.) 

The dyadic nature of these material quantities emphasizes the anisotropy of the material. A 

useful distinction in the magneto-electric parameters is the separation of the dyadic ｠ and ┅ into a 

reciprocal part k and a non-reciprocal part ┎ [2-4]: 字 噺 岫璽参 伐 斬暫参岻岫侍宋而宋岻層 匝エ  (2-28)賜 噺 岫璽 髪 斬暫岻岫侍宋而宋岻層 匝エ  (2-29)

where the coefficient j, indicating the time-harmonic notation exp(jwt), is there to 

guarantee real values for the parameters in the case of lossless media. Losses make the 

parameters complex. The superscript T denotes the transpose operation. 

The isotropic chiral material is an important special case [ 2-5] which is defined through 

three parameters: all dyadics are (due to isotropy) multiples of the unit dyadic: 香 噺 香荊, 航 噺 航荊, 
and 倦 噺 倦荊. Because the medium is reciprocal, its fourth dyadic vanishes: 鋼 噺 ど. 
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For the bi-anisotropic case, there are 36 material parameters for one component and, in a 

mixing rule, all these become coupled. Therefore, it is more helpful to use material matrices in 

the polarizability analysis. 

The six-vector approach has been developed to account for bi-anisotropic effects in 

electromagnetics problems [ 2-6]. Six-vectors combine electric and magnetic quantities (that both 

have three components) into a single vector with six components. The electromagnetic six-

vector field e and six-vector flux density d look like: 

祁 噺 岾櫛屈峇, 袈 噺 岾串遇峇 (2-30)

and the constitutive relations(2-26)$(2-27) can be written as a single equation: 袈 噺 轡┻ 祁 (2-31)

Where 

轡 噺 磐叢 祖措 疎卑 (2-32)

is the six-dyadic of the material parameters. It has a 6×6-element matrix representation and 

the full medium description requires 36 parameters. 

2.3 Dispersive Models 
From the observation of the frequency characteristics for Metamaterial effective 

parameters, it can be noticed that extracted curves closely follow Drude or Lorentz behavior 

with additional artifacts occurring near the resonance frequency. We can apply predefined 

dispersive models representing the electric permittivity and magnetic permeability of the 

Metamaterial. 

2.3.1 Metallic Structure Epsilon Effective ポeff: The Drude Model 

In Metamaterials related research, the Drude characteristic is typically used as an analytical 

description of the electric properties for a lattice of continuous wires. One  of  the  earliest  and  

most celebrated  of  these  composites  occurs  in  metals  and  is  known  as  a  Plasmon  [2-23], 

[2-24]:  a collective oscillation of electron density. In equilibrium the charge on the electron gas is 

compensated by the background nuclear charge. Displace the gas and a surplus of 

uncompensated charge is generated at the ends of the specimen, with opposite signs at opposite 

ends supplying a restoring force resulting in simple harmonic motion, 
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磁使匝 噺 仔蚕匝資宋仕蚕讃讃 (2-33)

The  plasma  frequency,  ┐p,  is  typically  in  the  ultraviolet  region  of  the  spectrum: 

around 15eV in aluminum.  The Plasmon!s have a profound impact on properties of metals, not 

least on their interaction with electromagnetic radiation where the Plasmon produces a dielectric 

function of the form, 

資岫磁岻 噺 層 伐 磁使匝磁岫磁 髪 餐誌岻 (2-34)

The parameter ペ is a damping term representing dissipation of the Plasmon!s energy into 

the system. In simple metals ペ is small relative to ┐p. For aluminum, ペ=0.1e.V, where ポ is 

essentially negative below the plasma frequency, at least down to frequencies comparable to ペ. 

An artificial material, in which the effective plasma frequency is depressed by up to six 

orders of magnitude, will be shown. Our material is very thin metallic wires of the order of one 

micron in radius. These wires are to be assembled into a periodic lattice and Figure 2-1 shows 

this structure. 

The density of electrons in these wires is n,  the  density  of  these  active  electrons  in  the  

structure  as  a  whole  is  given  by  the fraction of space occupied by the wire. 

仔蚕讃讃 噺 契慈司匝珊匝  (2-35)

By confining electrons to thin wires we have enhanced their mass by four orders of 

magnitude so that they are now as heavy as nitrogen atoms. Here is the reduction in the plasma 

frequency. 

These microscopy quantities cancel leaving a formula containing only macroscopic 

parameters of the system: wire radius and lattice spacing.  It  is  possible  to  formulate  this  

problem  entirely  in  terms  of inductance  and  capacitance  of  circuit  elements. However in 

doing so, we miss the analogy with the microscopic Plasmon. Our new reduced frequency 

plasma oscillation is every bit the quantum phenomenon as is its high frequency brother. 
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The simulated transmission coefficients for the different configurations of the SRR loading 

the waveguide are shown in Figure 2-10 and Figure 2-11 respectively where we assume the 

direction of propagation is in the z- direction. The waveguide used for the simulation has the X-

band dimension i.e. (WR90) rectangular waveguide. PEC boundary is used on the top and 

bottom instead of the parallel plate. PMC boundary is used on the sides of the structure. 

2.4.3 Results Interpretation 

It can be shown from Figure 2-10 that the BC-SRR is excited in positions (a) and (b) of 

Figure 2-7 while it is not excited in position (c) and (d). Moreover, the simulation results of the 

transmission coefficient for the orientation (a) and (b) in Figure 2-7 are the same, which means 

that the electric field EY does not excite the structure. It can be concluded, that the BC-SRR 

resonance is of magnetic type. 

The behavior of the EC-SRR is not the same and it is more complicated. From the results 

of Figure 2-11 corresponding to orientation (d) in Figure 2-8, it can be concluded that the EC-

SRR does not respond to electric field polarized along the continuous branches of the rings EX. 

Stronger dip occurs at orientation (a), where both electric and magnetic field present. 

Weaker response occurs at orientation (b) and (c) that corresponds to separate electric and 

magnetic field excitation. This result leads to the conclusion that the EC-SRR structure is of 

magneto-electric behavior. The simulation result obtained is in good agreement with the 

theoretical one. These two approaches are valuable tools for the identification of the bi-

anisotropic effect. 

2.5 Homogenization Theory: The Effective Medium 
Approach 

Before discussing the effective medium approach, a linear medium requires the foundation 

of 36 frequency dependent, complex constitutive parameters. The goal is to assign 

electromagnetic parameters to a composite or a mixture of more than one material. This is called 

the traditional analytic homogenization theory. 

To our knowledge, all known analytical methods are valid for certain limitations and for 

particular geometries or structures. The analytical homogenization techniques are unreliable or at 

least not applicable for Metamaterials comprising resonant elements and characterized by a non-

negligible lattice constant "a#. One way is to evaluate the numerical solution of the Maxwell!s 

equations assuming that the fields are local. 
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The Metamaterial homogenization method, extraction of effective material parameters, 

based on the retrieval S-parameters techniques requires certain knowledge of the electromagnetic 

behavior of the system, for instance, the magneto-electric coupling effects. The non-physical 

result obtained from this method can be explained or rejected in certain circumstance if one 

already has a deep understand of the bi-anisotropic effect. 

2.5.1 Scattering Parameters Retrieving Method 

One of the most popular approaches for the extraction of the constitutive parameters of 

Metamaterial is retrieval from transmission and reflection characteristics. This method is 

commonly used in laboratories as an experimental way to find the effective parameters of a 

material sample under test [2-12]. The scattering parameters are calculated or measured for a 

finite thickness of a Metamaterial, as an example a one unit cell, and related to analytical formulas 

for reflection and transmission coefficients of a homogeneous slab with the same thickness a 

[2-13], [2-14] and [2-15]: 

傘層層" 噺 岫層 伐 参匝岻三層 伐 三匝参匝  

"傘匝層 噺 岫層 伐 三匝岻参層 伐 三匝参匝  

(2-42)

Here R is the reflection coefficient of a wave incident on the interface between a 

Metamaterial and a free space, and T is the transmission coefficient through the Metamaterial 

slab: 

三 噺 燦 伐 燦宋燦 髪 燦宋 

 参 噺 蚕貸斬暫宋仔珊 

(2-43)

Here Z0, k0 are wave impedance and wave number in free space, respectively. The 

normalized wave impedance  権 噺 傑 傑待斑  and the refractive index n of the homogeneous slab can 

be expressed in terms of the scattering parameters as: 

子 噺 罰俵岫層 髪 傘層層岻匝 伐 傘匝層匝岫層 伐 傘層層岻匝 伐 傘匝層匝  (2-44)

仔 噺 伐 層珊暫宋 版盤岫薩仕珊賛岫残仔参岻 髪 匝仕慈岻 伐 斬三蚕岫残仔参岻匪繁 (2-45)
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Here m is an integer and it is related to the branch index of n# and the transmission term in 

function of scattering parameters. 

参 噺 層 伐 傘層層匝 伐 傘匝層匝匝傘匝層 罰 斬 俵層 伐 峭層伐傘層層匝 髪 傘匝層匝匝 傘匝層 嶌匝 (2-46)

The signs in (2-44) and (2-45) are determined by the requirements, and keep in mind that 

the material under consideration is a passive medium: 

三蚕岫子岻 半 宋 

 仔嫗嫗 半 宋 
(2-47)

The relative electric permittivity and magnetic permeability characterizing the effective 

properties of the medium and equivalent to obtained refractive index n and normalized 

impedance z are directly calculated as: 

資蚕讃讃 噺 仔子  
 侍蚕讃讃 噺 仔子 

(2-48)

The retrieval from scattering parameters is a straight forward method that allows the 

characterization of Metamaterial with sufficient accuracy. But, this procedure delivers a variety of 

artifacts in the retrieval parameters, related to the inherent homogeneity of the Metamaterial unit 

cell. An example of these anomalies is the resonance-anti-resonance coupling or the discrepancy 

between n and z about the positions of the resonance [2-16]. The retrieval process may fail in 

some cases when reflection or transmission coefficients are very small in magnitude [2-17]. Some 

improvements based on the determination of effective boundaries, forced continuity of the 

dispersive effective refractive index, and the elimination of the measurements or simulation noise 

influence on effective impedance have been proposed [2-18].  

2.5.2 Case Studies and Simulation Results 

We consider the BC-SRR, the Single-wire and the EC_SRR-Wire as a Metamaterial sample 

in order to extract its constitutive parameter by the S-parameters retrieval method. The unit cell 

for each sample is shown in Figure 2-12. 
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mainly on the case under investigation. We will state many other methods more or less are 

suitable for some problems and fail for the others. 

2.5.5.1 Smith!s Field Averaging Method 

In many MTM geometries, such as a SNG medium of continuous wires or a double 

negative combination of SRR-wires, a conducting element passes continuously from one unit cell 

to the next. For the flux averages to be correct in this case, the formulation of the effective 

medium parameters should be modified in order to include the contribution of the current 

flowing between the cells. Typically, as a more useful alternative, a gap is introduced in the wire 

near the integration surface so that the current is no longer continuous [2-21]. Moreover, the 

additional element in the MTM geometry can significantly increase the numerical costs. 

2.5.5.2 Pendry!s Field Averaging Method 

The general idea relies on computation of the effective parameters from the electric and 

magnetic fields and fluxes averaged over certain spaces. A key question in this case is how to 

average the fields in order to obtain a reasonable representation of the Metamaterial under test. 

For the structures made of thin wires or sheets of metal, if the averages of fields and fluxes were 

taken over the same regions of space, ポeff and ┃eff would always be constants related to the 

permittivity and permeability of the host material. Pendry et al. presented a straightforward 

approach based on averaging of the local fields. The integration surfaces, similar as the 

integration paths, cannot be crossed by any conducting element passing continuously from one 

unit cell to the next [2-21].This is a serious disadvantage of the method that limits its application 

to Metamaterial lattices not including continuous wires. 

2.5.5.3 Acher!s Field Averaging Method 

As the field quantities are averaged over volume and surfaces instead of surfaces and lines, 

Acher!s FAM is sometimes referred to as volume/surface approach (whereas Pendry!s method is 

called surface/line averaging) [2-22]. Due to the application of the surface averages in the plane 

perpendicular to the direction of the electric field, Acher!s method is characterized by the same 

disadvantage as Pendry!s approach: "it cannot be directly applied to Metamaterials including 

continuous wires that would intersect the integration plane#. 

2.6 Metamaterials as Photonic Crystals 
As Metamaterials do not satisfy the effective medium limit and they are conceptually 

located between homogeneous materials and photonic crystals as demonstrated in Figure 2-21, 

MTMs could be analyzed as lattices of periodically ordered single or double negative unit cells. 



 

 

The des

length r

H

the solid

relation 

Ph

The ban

Eigen v

(PBC). 

T

imposes

frequen

Eigen fr

distribu

scription of

related to the

Here we will 

d physics b

to the diffe

hotonic cry

nd diagram 

value proble

Figur

The phase sh

s the Bloch

ncies of the 

frequencies o

tion of the B

f photonic c

e scale of in

Figure 2-21

discuss the 

ackground. 

erent symme

stals are cha

is plotted f

em of the 

re 2-22: Squ

hift in a give

h wave vec

analyzed p

of the syste

Bloch mode

Chapter

crystal as a 

 homogenei

1: Materials

Bloch analy

The explan

etries of the 

aracterized b

from the pai

unit cell lim

uare lattice 

en direction 

ctor k, wh

periodic latti

m, whereas 

es supported

r 2: Electrom

61

periodic st

ity. 

s classificat

ysis and the 

nations of th

primitive ce

by band gap

irs of w(k) 

mited nume

of a two di

of periodici

ereas the c

ice. The Ei

the Eigen v

d by the peri

magnetic P

ructure is v

tion accord

Brillouin zo

he dispersion

ell. 

p diagrams, 

that are obt

erically with

imensional 

ity in combi

computed w

igen values 

vectors repr

iodic structu

Properties i

valid for any

ding to a/│m

one for a pri

n diagram a

also called 

tained from

h periodic b

photonic c

ination with

w values re

represent t

resent the e

ure. 

in Complex

y ratio of t

m 

imitive cell b

and band ga

dispersion 

 the solutio

boundary c

 

crystal 

h the lattice 

epresent th

the squared

electromagne

x Media

the wave 

 

based on 

ap are in 

diagram. 

on of the 

ondition 

constant 

he Eigen 

d angular 

etic field 



Chapte

 

 

Figure 
uniform

T

dependi

dimensi

A

characte

rotation

Brillouin

the sym

T

consistin

the x, y 

vector s

symmet

In

space w

frequen

er 2: Electro

2-23: Dispe
m one dime

The dispersio

ing on the a

ional (2D) g

Again a pho

erized by a 

n&). Due to

n zone, i.e. 

mmetries in th

The square la

ng of dielec

axes and ho

space, wher

try. 

n photonic c

wavelength, 

ncies corresp

omagnetic 

ersion relat
ensional me

on diagram

application o

graphs of Eig

otonic cryst

various set 

o these symm

a uniquely d

he point gro

attice (Figure

ctric column

omogeneous

eas the irred

crystals, the 

the compl

ponding to th

Properties 

tion (band 
edium 

m, shown in

of the cons

gen frequen

tal emerges

of structur

metries, the 

defined prim

oup of the la

e 2-22) is a 

ns embedded

s along the z

ducible Bril

period of th

lete photon

he lattice co

in Comple

62

diagram), f

n Figure 2-

idered phot

cies on the e

 from the 

ral symmetri

infinite peri

mitive cell of

attice. 

typical exam

d in free sp

z axis. The l

llioun zone 

he lattice is 

nic band ga

onstant 0.5 <

ex Media 

 

frequency w

-23, can be

tonic crystal

edge of the 

translation

ies (inversio

iodic lattice 

f the recipro

mple of a tw

ace. The ph

lattice has a

can be relat

typically co

ap of the Y

< a/│0< 0.6 

w versus w

e presented 

l. Usually, it

first reduced

n of its un

on symmetry

is represent

ocal lattice th

wo dimension

hotonic crys

 square recip

ted to this w

mparable to

Yablonovite

[2-25]. 

ave numbe

in differen

t is represen

d Brillouin z

it cell and 

y, mirror re

ted by its irr

hat is reduc

nal photonic

tal is period

procal zone

wedge by ro

o the operat

 crystal oc

er k, of a 

nt ways, 

nted in 2 

zone. 

can be 

eflection, 

reducible 

ed by all 

c crystal, 

dic along 

e in wave 

otational 

ting free-

curs for 



 

 

O

space w

the case

 

A

method

of Meta

scatterer

2.6.1

T

negative

three lay

structur

fields in

periodic

theory, 

(a) 

Figure 2

On the other

wavelength is

e of the singl

Structur

SRR-Wir

BC-SRR

Wire 

As most Me

ds used for t

amaterials. 

rs [2-26]. Th

SRR-Wire 

The Metama

e SRR-Wire 

yers of meta

re inserted i

n the Metam

c lattice allow

the layers ar

 

-24: Top vi

r hand, for 

s about 1/7

le negative w

Table 2

re Fig

re Figure

R Figure 

Figure

etamaterials 

the analysis 

In principle

hese structur

Structure 

terial lattice

based unit c

allic patterns

n the parall

material. Th

w represent

re effectively

Chapter

iew of (a) S

Metamateri

'1/6 for BC

wire medium

-1: Ratio of

gure T

 2-24(a) D

2-24(b) S

 2-24(c) S

are periodi

of photonic

e, Metamate

res, howeve

e that is ana

cells (see Fig

s printed on

lel plate wav

he PEC bou

ting it by a s

y repeated in

r 2: Electrom

63

(b) 

RR-wire, (b

ials analyzed

C-SRR and 

m (see Table

f lattice con

Type Freq

DNG 9.

SNG 4

SNG

ic structure

c crystals ma

erials can b

er, are less po

alyzed as a 

gure 2-25). T

n a substrate,

veguide that

undaries at 

single layer o

n the vertica

magnetic P

 

b) BC-SRR

d the ratio 

SRR-Wire, 

e 2-1).  

nstant to fre

q (GHz) a

.7-10.3 

4.5-4.6 

< 15 

es with a fi

ay also be v

be built as 

opular and n

photonic cr

The measur

, reported in

t ensures a 

the top an

of SRRs and

al direction a

Properties i

R and (c) Si

of the lattic

whereas it c

ee-space 

a (mm) a/

5 

10 

5 

inite size o

valuable for 

random m

not consider

rystal is for

rements of th

n [2-27], wer

proper pola

nd bottom o

d wires. Acc

as shown in 

in Complex

(c) 

ngle wire 

ce constant 

can approac

/│0 (mm) 漢1/6 漢1/7 

< 1/4 

f the unit 

the characte

mixtures of 

red here. 

rmed by the

he lattice fo

re conducted

arization of 

of the three

cording to th

Figure 2-27

x Media

 

to free-

ch 1/4 in 

cell, the 

erization 

complex 

e double 

ormed by 

d for the 

the EM 

e-layered 

he image 

7(c). 



Chapte

 

 

Figure

T

the neg

mainly w

dimensi

plate wa

C

dimensi

this latt

lattice o

plane an

plane (F

the x dir

er 2: Electro

(a

e 2-26: (a) T

The correspo

ative refract

with the m

ional. This c

aveguides lo

Consequently

ional equiva

tice contains

of dielectric 

nd resulting 

Figure 2-26b

rection, the 

omagnetic 

Figure 2-2

 

) 

Two-dimen
plane

onding top v

tion experim

etallic inclu

conclusion i

oaded with d

y, the two-

alent shown 

s four chara

rods, and a

from the la

b). For the 1

relevant par

Properties 

25: 3D view

nsional Met
(c) Equival

view of the 

ment is limit

usions patter

s supported

different orie

-dimensiona

in Figure 2

acteristic po

additional Y

ack of a rota

1D represen

rt of the irre

in Comple

64

w of a single

(b) 

tamaterial l
lent one dim

lattice is sh

ted to the x

rned in the 

d by the stud

entations of 

al Metamate

-26c. In the

oints: ﾞ, X a

Y point repr

ational symm

ntation and 

educible Bril

ex Media 

e unit EC_

lattice (b) F
mensional 

hown in Figu

x direction, 

y plane an

dy of transm

split ring re

erial lattice 

e 2D case, th

and M, ana

resenting th

metry of the

propagation

llouin zone i

 

_SRR-Wire

Face of the 
lattice 

ure 2-24. As

the EM fie

d the lattice

mission chara

esonators. 

can be mo

he irreducib

alogous to th

he face of th

e Metamater

n in the Met

is its ﾞ' X e

 

(c) 

unit cell in

s the propag

lds (Ez, Hy)

e is effectiv

acteristics of

odeled by 

ble Brillouin 

he case of 

he unit cell 

rial unit cell 

tamaterial lim

edge. 

n the y-

gation in 

 interact 

vely one-

f parallel 

its one-

zone of 

a square 

in the y 

in the z 

mited to 



 

 

T

Ansoft H

in Figur

the x an

T

direction

simulati

T

the latti

9.9'10.

vector m

where │

A

dispersiv

characte

paramet

(

The band dia

HFSS and c

re 2-28. PEC

nd y directio

The transver

n of propag

ion, we assu

The dispersio

ice up to th

1 GHz is ch

magnitude k

│m is the wav

According to

ve curve in

erized by a 

ters. 

(a) 

Figure 2-2

agram of the

correspondin

C limits the 

ns periodic 

sal wave nu

gation in the

ume that kz is

on diagram 

he frequency

haracterized

kz is less tha

velength in t

o the homog

ndicates that

negative re

Chapter

27: Three ce

e Metamater

ng to the ﾞ 

unit-cell str

boundary co

umber ky is 

 Metamateri

s in the dire

of the SRR

y of 20 GH

d by the nega

an ┇/(3a) (o

the medium,

genization o

t the propag

efractive ind

r 2: Electrom

65

(b)

ells in a par

rial lattice, co

' X edge of

ructure at th

onditions (P

assumed eq

ial, is swept 

ction of pro

R-Wire unit c

z. The fund

ative slope o

or equivalent

, is smaller t

f the photon

gating mod

dex that co

magnetic P

 

rallel plate 

omputed wi

f the irreduc

he z bounda

PBC) are use

qual to zero

in the range

opagation. 

cell shows t

damental mo

of the dispe

tly, the elec

than 1/6). 

nic crystal th

e is a backw

rresponds t

Properties i

waveguide

ith the Eigen

cible Brillou

aries of the u

ed.  

o and kx, co

e 0 ' ┇/a i.e

two Eigen m

ode within t

rsive curve, 

trical size o

heory, the n

ward wave 

to double n

in Complex

(c) 

e 

n mode solv

uin zone is p

unit cell, wh

orrespondin

e. 180 degre

modes supp

the frequen

as long as t

of the unit c

negative slop

and the me

negative con

x Media

 

ver using 

presented 

hereas in 

ng to the 

ee. In the 

orted by 

cy range 

the wave 

cell a/│m, 

pe of the 

edium is 

nstitutive 



Chapte

 

 

In

flatten, 

interacti

that this

away fro

fundam

support

forward

 

er 2: Electro

n the range 

correspondi

ion between

s type of mo

om the edg

mental mode

ted in 11.6 '

d type. 

Figu

omagnetic 

Figure 2-28

┇/ (3a) < 

ing to a very

n the Metam

ode is comp

ge of the Br

e changes it

' 18 GHz 

ure 2-29: sin

Properties 

8: Band dia

kx< ┇/ (2a

y low group

material and

posed of cou

rillouin zone

ts character

range, and t

ngle or dou

in Comple

66

agram of th

a) (1/6 < a/

p velocity (d┐

d the propag

unter propag

e [2-29]. Fo

r to the fo

the positive

uble negativ

ex Media 

he Metamat

/│m < 1/4)

┐/dk Ã 0) a

gating wave

gating waves

or larger latt

rward wave

e slope of th

ve constitu

terial lattice

 the dispers

and longer ti

e [2-28]. Rec

s which resu

tice constan

e. The seco

he dispersive

tive param

 

e 

sion curve 

ime constan

cent reports

ults in the ex

nts [kx> ┇/ 

ond Eigen 

e curve indi

 

eters 

tends to 

nts in the 

s suggest 

xtremum 

(2a)] the 

mode is 

icates its 



Chapter 2: Electromagnetic Properties in Complex Media

 

67 
 

In the frequency band of the second mode, the Metamaterial structure is described by a 

positive effective refractive index equivalent to double positive constitutive parameters (ポひ > 0 

and ┃ひ > 0).The frequency ranges obtained by Eigen mode solver Ansoft HFSS simulations and 

corresponding to single or double negative constitutive parameters (i.e. stopbands and 

passbands, respectively) are related to the results extracted with retrieval S-parameters method in 

Figure 2-29. 

From Figure 2-29, it can be seen that the backward wave band of the first Eigen mode 

(9.8$9.98 GHz) fits in the double negative frequency range (9.4$9.98 GHz) extracted from 

scattering matrix. Moreover, the frequency band of the second Eigen mode matches the double 

positive constitutive parameters between 11.5 and 12 GHz. 

Table 2-2: Results of both approaches mentioned above 

Description type ﾟf (GHz) Band Eigen mode wave 

SNG: ポひ < 0 and ┃ひ > 0 7 - 9.4 Stop band - - 

DNG: ポひ < 0 and ┃ひ < 0 9.4 $ 9.98 Band pass first backward 

SNG: ポひ < 0 and ┃ひ > 0 9.98 $ 11.5 Stop band - - 

DPS: ポひ > 0 and ┃ひ > 0 11.5 - 18 Band pass second forward 

 

The results of both approaches summarized in Table 2-2 shows a good agreement between 

the solution of the periodic boundary eigenvalue problem and the retrieval S-parameters 

extracted from scattering parameters. The discrepancy between the frequency bands related to 

the DNG range can be discussed on the number of modes used in the S-parameters calculation 

in the retrieval method used to extract the constitutive parameters. 

2.6.2 BC-SRR Structure 

The band diagrams are computed for single negative Metamaterials, i.e. BC-SRR. 

(Figure 2-30) unit cells. The field polarization and the direction of propagation are assumed 

analogous to the case of the SRR-Wire unit cell. 
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2.7 Conclusion 
In the first paragraph of this chapter, we presented classical Maxwell!s equations that give 

two vector equations relating the field vectors of an EM wave by means of four dyadic 

parameters. All physical phenomena within the medium are hidden behind these four dyadic 

where the most general linear medium can be described in terms of these parameters. This 

general medium is also called magneto-electric or bianisotropic. 

The second section of the chapter discusses bi-anisotropic materials. Anisotropic, bi-

isotropic, chiral and non-reciprocal materials are examples of bi-anisotropic media. On the other 

hand, embedding metallic resonant particles showing cross polarization effects in a host 

dielectric medium is the usual technology for obtaining bi-isotropic and/or bianisotropic 

artificial media. 

The bianisotropic effect for Metamaterials is then tested to extract the effective material 

parameters. The test is performed on a split ring resonator (SRR) of two different topologies; the 

broadside-coupled BC-SRR and the edge-coupled EC-SRR. The theoretical analyses show that 

depending on the orientation of the EC-SRR to the external EM fields, the structure can exhibit 

either a bianisotropic or non-bianisotropic behavior. On the other hand, the BC-SRR structure 

exhibits a non-bianisotropic effect due to the symmetry of the structure. This is an important 

result and will lead to a conclusion that the symmetrical structure has a lack of magnetoelectric 

coupling. 

Another presented method is the extraction of the constitutive parameters of Metamaterial 

from transmission and reflection characteristics as well as from the ABCD parameters. A Matlab 

code for the retrieval procedure is written and the constitutive parameters are extracted one by 

one. The physical behavior of extracted effective permittivity or permeability by S-retrieval 

method was achieved where it is concluded that such parameters cannot form the effective 

description of a homogenized material. 

Bloch analysis and the Brillouin zone for a primitive cell based on the solid physics 

background are then discussed. The Metamaterial lattice analyzed as a photonic crystal is formed 

by the double negative SRR-Wire, Wire, BC-SRR based unit cells. The results of both 

approaches show a good agreement between the solution of the periodic boundary eigenvalue 

problem and the retrieval S-parameters extracted from scattering parameters. For a single wire 

unit cell, The solution of a periodic boundary eigenvalue problem presents a valuable tool that 
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allows one to identify frequency ranges of forward and backward waves in a lattice, 

corresponding to double positive and double negative constitutive parameters, respectively. 
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Chapter 3 Inclusion Designs and 

Applications 

3.1 Introduction 
Within the huge number of new applications of Metamaterials, one of the most productive 

ones is the implementation of microwave devices by means of artificial transmission lines. The 

following sections will deal with one of the approaches devoted to this purpose: the resonant-

type approach. 

Different sub-wavelength resonators employed in the design of Metamaterial transmission 

lines based on the resonant-type approach will be studied. The equivalent circuit models of 

different kinds of Metamaterial transmission lines, as well as the parameter extraction methods 

employed as design and corroboration tools will be also presented. In closing, a selection of 

application examples of resonant-type Metamaterial transmission lines in the design of 

microwave devices will be presented. 

3.2 Sub-wavelength Resonators 
The implementation of the first effective medium with left handed properties[3-1] was 

possible thanks to the employment of small metallic resonators known as split ring resonators 

(SRRs). 

3.2.1 Split Ring Resonators (SRR) 

These resonators had been previously presented as the first non-magnetic resonator 

capable of exhibiting negative values of the magnetic permeability around its resonance 

frequency. This was one of the characteristics which made the SRR suitable for the synthesis of 

such a medium; the second one was its small electrical size.  

At the resonance frequency, the SRR perimeter is smaller than half the wavelength of the 

exciting wave. These small dimensions allow the use of SRRs in the implementation of effective 

media, which requires small unit, cell sizes (smaller than the wavelength). By this means, the 
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following this formulation, the equivalent circuit representation of the MSRR depicted in 

Figure 3-10(a) is the one reported in Figure 3-10(b). 

This equivalent circuit neglects some high-order effects, which have, anyway, a slight 

influence in the determination of the resonant frequency of the inclusions. Namely, the mutual 

inductances between the parallel stems of the inclusion, the mutual capacitances between non 

adjacent rings and the split capacitances are neglected in the model. 

3.2.5.1 Analytical Derivation 

In order to derive the expressions of the inductance and of the distributed capacitances of 

the proposed model, we assume that the strip width ┐, the separation between two adjacent 

rings, and the length of the split do not vary from a ring to another. We assume also that the 

inclusion is surrounded by free-space. The total strip length of the generic nth ring is determined 

as: 残仔 噺 想岷残 伐 匝始岫仔 伐 層岻 伐 匝史岫仔 伐 層岻峅 (3-2)

Being l the side length of the outer ring. We derive at first the expression of the total 

capacitance CMSRR, given by the parallel of the n-1 capacitances associated to each separation 

between two adjacent rings. The general expression is given by: 

察捌傘三三 噺 布察仔岫仔袋層岻想錆貸層
仔退層  (3-3)

where Cn(n+1)/4 is the series between the two equal-valued distributed capacitances Cn(n+1)/2 

between the two halves of the nth and the (n+1)th rings. The total distributed capacitance Cn(n+1) 

between such rings can be expressed as: 察仔岫仔袋層岻 噺 岷残仔袋層 髪 匝岫始 髪 史岻峅察宋 (3-4)

Being C0 the per-unit-length capacitance between two parallel strips having width ┐ and 

separation s, given by: 

察宋 噺 資宋皐岫ヂ層 伐 暫匝岻皐岫暫岻  (3-5)

Where K(-) is the complete elliptic integral of the first kind and 



Chapter 3: Inclusion Designs and Applications

 

86 
 

暫 噺 史【匝始 髪 史【匝 (3-6)

Using (3-2) and (3-4), the total capacitance can be expressed as: 

察捌傘三三 噺 錆伐 層匝 岷匝残 伐 岫匝錆 伐 層岻岫始 髪 史岻峅察宋 (3-7)

Examine now the behavior of the total distributed capacitance CMSRR as a function of the 

number N of the rings (N œ 2). When the number N of the rings increases, it is expected that 

the contribution of the distributed capacitances associated to the inner rings is progressively less 

significant. Therefore, we expect that the curve describing the behavior of CMSRR as a function of 

the number N of the rings has at a certain point a flat slope. This happens in correspondence of 

N=Nmax, when there is no more space to place further concentric rings in the middle of the 

MSRR. 

The derivation of an effective expression for the inductance when defining the equivalent 

circuit model of the SRR is considered from one of the circular (or squared) loop having an 

equivalent radius (or side) given by the average between the inner and the outer radii (or sides) of 

the rings [[3-15]$[3-17]. Using these formulas, it is not possible to take properly into account 

how the multiple rings fill the available area. An accurate formula should consider also this effect 

and, thus, involve the so called fill ratio (┈) which takes into account how hollow the MSRR is. 

The expression of the fill ratio adapted to the case of the MSRR is given by: 

持 噺 残 伐 残錆残 髪 残錆 噺 岫錆 伐 層岻岫始 髪 史岻残 伐 岫錆 伐 層岻岫始 髪 史岻 (3-8)

The fill ratio is a function of all the geometrical parameters involved in the determination 

of the response of the MSRR (l, w, s, and N). Finally, the expression of the total inductance of 

the spiral inductor, which is similar to that, for the MSRR is derived as: 

鯖捌傘三三 噺 侍宋匝 残珊士賛想 想┻ 掻掃 釆珪契 磐宋┻ 操掻持 卑 髪 層┻ 掻想持挽 (3-9)

where is the average strip length calculated over all the rings as: 

鯖珊士賛 噺 層錆布残仔錆
仔退層 噺 想岷残 伐 岫錆 伐 層岻岫史 髪 始岻峅 (3-10)
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3.3.1 SRR Equivalent Circuit: Baena!s Analytical Model [3-4] 

The whole device then behaves as an LC circuit driven by an external electromotive force. 

The total capacitance of this LC circuit will be the series capacitance of the upper and the lower 

halves (with respect the line containing the ring gaps) of the SRR and the resonance frequency is 

given by: 

磁宋 噺 層俵 匝慈司宋鯖察使四残 (3-12) 

where Cpul is the per unit length (p.u.l.) capacitance between the rings, L is the total 

inductance of the SRR, and r0 is the average radius of the considered SRR. 

The polarizability equations for the SRR are given as follows: 

仕子 噺 詩子子仕仕刷子蚕姉嗣 伐 斬詩姿子蚕仕撮姿蚕姉嗣 (3-13) 使姿 噺 盤詩姿姿蚕蚕 髪 詩姿姿嫗蚕蚕匪撮姉蚕姉嗣 髪 斬詩姿子蚕仕刷子蚕姉嗣 (3-14) 使姉 噺 詩姉姉蚕蚕撮姉蚕姉嗣 (3-15) 

where m and p are the magnetic and electric induced dipoles, Bext and Eext the external 

fields and プ the polarizabilities, which are found to be [3-18]: 

詩子子仕仕 噺 詩宋岫磁宋匝磁匝 伐 層岻貸層, 詩宋 噺 慈匝司宋想鯖  (3-16) 

詩姉姉蚕蚕 噺 詩姿姿蚕蚕 噺 資宋 層掃司蚕姉嗣想惣  (3-17) 

詩姿子蚕仕 噺 匝磁宋慈司宋匝纂蚕讃讃察宋┸使四残 磁磁宋 岫磁宋匝磁匝 伐 層岻貸層 (3-18) 

詩姿姿嫗蚕蚕 噺 想磁宋匝司宋匝盤纂蚕讃讃察宋┸使四残匪匝鯖岫磁宋匝磁匝 伐 層岻貸層 (3-19) 

with deff=c+d and C0,pul being the p.u.l. capacitance between the rings when the dielectric 

slab is removed. The subscripts stand for Cartesian components and superscripts for 

magnetic/magnetic (mm), electric/electric (ee) or electric/magnetic (em) interaction between the 

particle and the external field. 
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The computation of the total inductance of the SRR is not so straightforward, although an 

appropriate approximation can provide a considerable simplification while keeping reasonable 

accuracy. According to the previous assumptions on the behavior of the line currents along the 

SRR, it can be assumed that the total inductance of both SRR can be approximated by the 

inductance of a single equivalent ring whose average radius is the average radius of the 

considered SRR and width equal to the width of each original ring (see Figure 3-17). 

The inductance can be then computed making use of the variational expression L=2UM/I2, 

where UM is the magnetostatic energy for the total current intensity supported I by the ring. 

Solving for the magnetostatic potential in the Fourier-Bessel domain, and after some algebraic 

manipulations, it is finally obtained that: 

鯖 噺 侍宋慈匝薩匝 豹岷薩楓岫暫岻峅匝暫匝纂暫著
宋  (3-21) 

Where 荊寞岫倦岻 is the Fourier-Bessel transform of the current function on the ring, 荊岫堅岻 
defined by: 

薩岫司岻 噺 豹 雑史┸蒔岫司嫗岻纂司嫗著
司  (3-22) 

with being the azimuthal surface current density on the ring. For practical computations it 

has been assumed a constant value for on the ring, that is, 

雑史┸蒔 噺 班薩算 """" 讃伺司 司宋 伐 算匝 隼 司 隼 司宋 髪 算匝宋 伺嗣酸蚕司始餐史蚕  (3-23) 

This approximation gives a reasonable approximation for L. In this case, the Fourier-

Bessel transform, 荊寞岫倦岻, is analytically obtained in  terms of the Struve and Bessel functions and 

the integration in L is carried out numerically. A better approximation could be obtained if a 

more accurate description for (multiple basis functions) had been employed. Nevertheless, this 

numerical improvement is not expected to enhance substantially the quality of the approach 

since other approximations are already involved in the theory. 

Finally, as aforementioned, ohmic losses are introduced in the model by means of the 

effective resistance, R, of the SRR. This effective resistance is obtained by using the equivalent 
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ring model for the current distribution on the SRR. If a constant is assumed on the ring of 

Figure 3-17, the resistance can be approximated as: 

三 噺 畔匝慈司宋算酸時 ┸ 餐讃 酸匝 隼 諮慈司宋算諮時 ┸ 伺嗣酸蚕司始餐史蚕 (3-24) 

where ボ is the skin depth and h and ┊ the thickness and conductivity of the metallization, 

respectively. 

Once the SRR polarizabilities have been obtained in a self-consistent way, they can be used 

in a local field theory in order to determine the macroscopic constitutive parameters of media 

consisting of a regular array of SRRs. This local field theory makes use of the well-known 

Lorentz theory and directly applies to any SRR-based NMPM. It can be also applied to the 

analysis of discrete LHM made by the superposition of artificial plasma and a SRR-based 

NMPM. In this latter application, it will be implicitly assumed that the constitutive parameters of 

the LHM media are the superposition of those of the artificial plasma and the NMPM. 

The application of the proposed theory to discrete LHM would account for the artificial 

plasma by simply introducing an additional effective dielectric susceptibility ┎eff (which may be 

tensorial for anisotropic artificial plasmas). 

 For 2-D artificial plasma made of a regular array of parallel metallic plates separated a 

distance "a!, and for electric field polarization and wave propagation both parallel to the plates 

┎eff, is given by: 

鼠蚕讃讃 噺 伐岫磁宋磁 岻匝 (3-25) 

where ┐0 plays the role of an effective plasma frequency, which coincides with the cutoff 

frequency of the parallel-plate waveguides: 降待 噺 講盤欠紐綱待航待匪貸怠. For 2-D and 3-D arrays of 

wires, the expressions for ┎eff and ┐0 may become more complicated. 

3.3.2 SRR Equivalent Circuit: Saha!s and Shamonine!s Analytical Approach 

3.3.2.1 First Approach 

Different approaches to model the circuit of split ring resonators are demonstrated by 

several authors. In addition to the equivalent circuit of MSRR, two approaches are presented to 

visualize the equivalent circuit of SRR. First we start by the work of C. Saha [3-21] who 
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through the inter ring spacing, d and the structure behaves as a LC circuit. As shown in the 

equivalent circuit in Figure 3-19, the metallic rings contribute a total inductance, LT and 

distributed capacitances C1 and C2 forming at the two halves of the SRR structure above and 

below the split gaps. This new equivalent circuit also incorporates the gap capacitances, Cg1 and 

Cg2 formed due to the split within the inner and outer rings, respectively. 

The resonant frequency ┐0 of the circular SRR, thus is given by: 

創宋 噺 俵 層鯖参察蚕刺 (3-26) 

where, Ceq is the total equivalent capacitance of the structure. 

Again, from the equivalent circuit of Figure 3-19, the total equivalent capacitance, Ceq can 

be evaluated as: 

察祁恵 噺 盤察層 髪 察賛層匪盤察匝 髪 察賛匝匪盤察層 髪 察賛層匪 髪 盤察匝 髪 察賛匝匪 (3-27) 

As the split gaps are of identical dimensions g1= g2 =g, hence the gap capacitances Cg1 

=Cg2=Cg and the series capacitances C1=C2=C0 and therefore (3-35) is modified as: 

察祁恵 噺 盤察宋 髪 察賛匪匝  (3-28) 

Considering a metal thickness, t of the strip conductors, the gap capacitances Cg1 and Cg2 

can be represented as: 

察傾層 噺 察傾匝 噺 察傾 噺 資宋算嗣賛  (3-29) 

where, c and t are the width and thickness of the metallic rings, respectively and ポ0 is the 

free space permittivity. The distributed capacitances C1 and C2 are also a function of the split gap 

dimensions g1=g2=g and the average ring radius ravg and is given as: 

察宋 噺 察層 噺 察匝 噺 岫粗司珊士賛 伐 傾岻察使四残 (3-30) 

司軍携傾 噺 司祁景憩 伐 卦 伐 纂匝 (3-31) 

and Cpul is the capacitance per unit length and is calculated as: 
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隅径掲珪 噺 紐資蚕【察宋燦宋 (3-32) 

where c0= 3×108 m/s is the velocity of light in free space, ポe is the effective permittivity of 

the medium and Z0 is the characteristic impedance of the line. 

The characteristic impedance Z0 is given as: 

燦宋 噺 層匝宋慈紐資蚕 皐岫暫岻皐岫暫嫗岻 (3-33) 

K(k) is a complete elliptic function of the first kind and K(k!) is its complimentary 

function. The final expression of Ceq is given as follows: 

察祁恵 噺 岫慈司珊士賛 伐 賛岻察使四残匝 資宋算嗣匝賛  (3-34) 

A simplified formulation for the evaluation for the total equivalent inductance LT for a 

wire of rectangular cross section having finite length land thickness c is proposed as [3-22]: 

鯖傘三三 噺 宋┻ 宋宋宋匝残 釆匝┻ 惣宋惣 抜 残伺賛層宋 磐想残算 卑 伐 噌挽 抜 層宋貸惣殺 (3-35) 

where, the constant ペ = 2.451 for a wire loop of circular geometry. The length "l# and 

thickness "c# are in mm. The evaluation of the wire length l is straight forward as: 

残 噺 匝慈司蚕姉嗣 伐 賛 (3-36) 

For close proximity wires at high frequencies, the current is confined to the wire surfaces 

and effectively reduces the spacing between them [3-23]. The finite length "l# is calculated 

considering a single loop with rext as the radius. The mutual inductance hence has been ignored. 

3.3.2.1.2 Numerical Application 

By employing the equations of L * C presented in the previous paragraph, the dimensions 

of the SRR are selected to have a resonance at 2.4 GHz (see Figure 3-20). These equations are 

introduced in a Mathcad sheet added to appendix D at the end of the manuscript. 

In order to validate the desired resonance of the SRR electromagnetically, a simulation on 

HFSS is accomplished on a waveguide having a cutoff frequency λcutoff less than 2 GHz 

(WG_R23) and containing an SRR cell shown in the Figure 3-20(a). The electric field 継屎王 is 

polarized in parallel to the gap (parallel to y-axis) of the outer ring as displayed on Figure 3-20(b); 
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3.4 Bianisotropy 

3.4.1 Role of Bianisotropy 

We have mentioned before that the polarizability equations for the SRR are given as 

follows: 

仕子 噺 詩子子仕仕刷子蚕姉嗣 伐 斬詩姿子蚕仕撮姿蚕姉嗣 (3-41) 使姿 噺 盤詩姿姿蚕蚕 髪 詩姿姿嫗蚕蚕匪撮姉蚕姉嗣 髪 斬詩姿子蚕仕刷子蚕姉嗣 (3-42) 使姉 噺 詩姉姉蚕蚕撮姉蚕姉嗣 (3-43) 

From these equations, which clearly shows the bianisotropic behavior of the particle, it 

should be possible to obtain the macroscopic susceptances of an effective continuous medium 

consisting of a random or periodic arrangement of these particles. The suitability of such a 

homogenization procedure will be mainly limited by the electrical size of the unit cell. There 

exists wide experimental evidence of an appropriate homogenization procedure that provides a 

good description of the main features of the electromagnetic behavior of left-handed and/or 

bi(iso/aniso)tropic Metamaterials, provided that the size of the unit cell is smaller than 

approximately one-tenth of the free space wavelength. 

Losses can also play an important role in the homogenization procedures, but the 

numerical simulations show that, for the particular SRR analyzed here, the main experimental 

results can be accounted for by neglecting losses in the analysis of the artificial atoms. 

Furthermore, they could be easily incorporated in the proposed model by simply adding a 

frequency-dependent imaginary part -iR/┐ to the inductance L (accounting for the series 

resistance R of the metallic strips) and an imaginary part i┐G to the p.u.l. capacitance C 

(accounting for the p.u.l. shunt conductance G across the slot between the rings). 

3.4.2 Consequences of Bianisotropy 

In order to evaluate the physical implications of the bianisotropic nature of the SRR 

particle, both the anisotropic NMPM and a two dimensional left-handed medium LHM have 

been analyzed. The first medium consists of a number of identical SRR particles printed on a 

dielectric slab (relative dielectric permittivity "ポr! and thickness "t!) and arranged in a cubic lattice 

with spacing "a#. See Figure 3-25.  
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medium described by the constitutive relations (3-44) and (3-45) (with the aforementioned 

restrictions), provided that E and H are polarized along the y and z axes of the SRR!s, 

respectively. The wave number of these TEM plane waves is given by: 

狙景 噺 創謬疎渓渓叢桂桂 伐 疎宋叢宋事姿子匝  (3-46) 

Note that a very important consequence of (3-46) is the existence of a forbidden band at 

those frequencies satisfying: 

疎渓渓叢桂桂 伐 疎宋叢宋事姿子匝 伴 宋  (3-47) 

while transmission is possible for: 

疎渓渓叢桂桂 伐 疎宋叢宋事姿子匝 隼 宋  (3-48) 

Using (3-46) for the TEM wave number instead of the simplified equation だ淡 噺ù紐づ炭炭鉛湛湛  leads to quantitatively different results, but also to a meaningfully different qualitative 

behavior. Assuming that the NMPM has a positive dielectric constant (伴 ど) in the whole 

frequency range of interest, assuming that the composite SRR and wire medium (i.e., the left-

handed material) has a negative dielectric constant at the same frequencies (鉛湛湛宅滝 隼 ど), and 

assuming that the magnetic properties of both media are identical (づ湛湛択托沢托 噺"づ炭炭宅滝and だ湛湛択托沢托 噺"だ炭炭宅滝), the simplified relation だ淡 噺 ù紐づ炭炭鉛湛湛, which neglects bianisotropy i.e., the 

magnetoelectric coupling in the SRR predicts a forbidden band for the NMPM which exactly 

coincides with the transmission band for the left-handed material. 

When numerical simulations are carried out for the same structure and for plane waves 

propagating in the same direction, but with the electric field polarized along the x axis of the 

SRR particle, the rejection band of the NMPM and the transmission band of the left-handed 

material exactly coincide. This result can be interpreted by taking into account that the cross 

polarization ゎ淡炭奪鱈 vanishes in the SRR particle and, therefore, the coupling parameter だ淡炭 must 

vanish in the corresponding effective medium. We can thus conclude that the presence of 

bianisotropy provides an explanation of some unexplained qualitative results of the numerical 

simulations and experiments. 

The electromagnetic behavior of artificial bianisotropic media, NMPM, and left-handed 

Metamaterials, made with resonant metallic inclusions in host uniform medium, present 

noticeable similarities. In particular, the bianisotropic characteristics of recently reported NMPM 
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3.5 Low Profile Antenna AMC-Based Surface 
The great revolution in wireless communications domain obligates the electrical engineers 

to create novel approaches  

in order to cover the needs worldwide under several operating conditions. One of the 

most important challenges in this domain is the design of antenna structures and the 

improvement of its performance. This is related to the evolution in the functioning of numerical 

computational electromagnetic tools that improve the capability to build non-classical complex 

3D structures and to visualize different results in an acceptable simulation time. 

3.5.1 Artificial Magnetic Conductors (AMCs) 

A flat metal sheet is used in many antennas as a reflector, or a ground plane [3-25]. Its 

presence improves the gain of the antenna by 3 dB. Unfortunately, a reduction in the radiation 

efficiency results if the antenna is too close to the conductive surface. This problem was usually 

solved by placing the antenna │/4 apart from the metal sheet [3-26].  

However, such distance affects the compactness and the size of the structure; a 

disadvantage in some applications where small sizes and low frequencies are required. Several 

researches have explored solutions to replace the metallic conductive surface with other sheets 

that perform the same task and permit to locate the antenna in close proximity. 

Metamaterials structures are typically realized from periodic dielectric substrates and 

various metallization patterns [3-27], [3-28]. The reflection phase of these materials is defined as 

the phase of the reflected electric field at the reflecting surface. It is known that perfect electric 

conductors (PECs) have a 180º reflection phase for a normally incident plane wave, whereas it is 

0º for Perfect Magnetic Conductors (PMCs) [3-29]. Since PMCs does not exist in nature, a 

special effort has been devoted to realize PMC-like surfaces [3-30]. Artificial Magnetic 

Conductors (AMCs), a special name of fabricated PMC, are designed from Metamaterials and 

proposed to replace the metallic conductive surface [3-26]. 

Antenna research area is interested in AMCs as they can replace PMCs for low profile 

antennas [3-31]. This is referred to the fact that, from a designing point of view, the overall 

height of the structure of these antennas is less than │/10 [3-32]; a critical distance if a ground 

plane is implemented nearby. Different kinds of magnetic inclusions had been used in the 

synthesis of artificial materials and Metamaterials. 
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(a) (b) 

 

(c) 

Figure 3-32: (a) Magnitude (b) reflection (c) impedance of the return loss of the unit cell 

This structure presents an impedance of 2000 ヅ at resonance; a very high value if 

compared with 120┇. With respect to this unusual boundary condition, AMC surface can operate 

as a new type of ground plane for low-profile antennas. 

3.5.2.3 AMC Surface Reflection Phase 

In order to compare the reflection characteristics of an AMC surface with those obtained 

for a MSRR unit cell structure, an array of five MSRRs is simulated by applying the same 

boundary conditions. The results are not shown in the paper because they are very close to the 

previous ones got for a unit cell. 

3.5.3 Dipole Low Profile Antenna 

Once the reflection coefficient of the AMC surface is characterized, one can proceed to 

investigate the performance of a low profile dipole antenna fixed nearby this surface that is 
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3.6 Conclusion 
In this chapter, the performance improvement of a dipole antenna placed on AMC surface 

is demonstrated. Using Metamaterial structures, the gain and the directivity of such antenna have 

been widely improved. All the obtained results have proved that the MSRR cells can perfectly 

replace the conventional ground plane in order to improve the radiation characteristics. 

Moreover, the impact of the MSRR cells number on the antenna performance has also been 

investigated. 
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Chapter 4 Metamaterial-Loaded Multi-

Band PCB Antennas 

4.1 Introduction 
Metamaterials can be broadly defined as electromagnetic structures engineered to achieve 

exotic or unusual properties [4-1], [4-3] * [4-10]. Recently these features have been used in 

microwave and antenna engineering to develop devices with extraordinary properties. For 

example, microwave devices with extraordinary characteristics such as miniaturization or 

operation over multiple frequency bands have been developed [4-1], [4-2] * [4-10]. The effort in 

the antenna field has been put on the use of Metamaterials for travelling-wave antennas and as 

substrates and superstrates to enhance the performance of the original antennas [4-1], [4-2] * 

[4-3]. 

One of the main applications of Metamaterial structures in microwave engineering is the 

development of artificial Left-Handed (LH) Transmission Lines (TLs) [4-1] * [4-2].These TLs 

are termed as LH because their behavior is the dual of the conventional or Right-Handed (RH) 

ones. In the LH TLs, the electric field, magnetic field and propagation vectors form a LH triplet, 

allowing the propagation of backward-waves, contrary to the conventional case. If we consider a 

TL as the concatenation of infinite unit cells, the equivalent circuit model of a LH unit cell is a 

series capacitance and a shunt inductance which is the dual of a RH unit cell (a series inductance 

and a shunt capacitance) [4-1]. 

During the last years, wireless systems have achieved a great popularity and penetration in 

society. Cellular systems, positioning systems (GPS, Galileo), personal area networks (Bluetooth) 

and wireless local area networks (WiFi) are good examples. This fact has made that user 

terminals designed for two or more of these services are very common nowadays. 

4.2 Radiating Elements Characteristics 
From the antenna engineering point of view, the radiating elements for these terminals 

require challenging features. The first one is multi-frequency, which means that the antennas 



Chapter 4: Metamaterial-Loaded Multi-Band PCB Antennas

 

122 
 

must work at two or more arbitrary bands simultaneously. Another challenging feature is multi 

functionality because in some cases different characteristics, such as polarization or radiation 

pattern, are required at each working band. Moreover, all these antennas must be small to 

integrate them into compact handheld devices attractive for the users. 

4.3 Metamaterial Loaded Printed Dipoles 
The use of cheap technologies is crucial for mass production. All these requirements 

cannot be easily achieved with conventional approaches. For that reason, novel technologies 

such as those based on Metamaterial structures are being proposed to fulfill all of these 

requirements. 

The proposed approach is called Metamaterial-loaded printed circuit antennas. It is based 

on conventional printed antennas loaded with a small number of Metamaterial particles. 

Although Metamaterial structures are ideally formed by an infinite number of unit cells, a small 

number of unit cells can be used to achieve devices with enhanced performance for practical 

purposes. For example, microwave devices such as filters or couplers have been developed with 

a small number of Metamaterial cells [4-1], [4-2] * [4-10]. 

Furthermore, the use of a small number of particles does not increase the complexity and 

the size of the antennas, providing easy design and manufacturing processes and allowing the 

antennas to fit into modern devices. Finally, it is important to note that printed circuit board 

antennas have low profile, light weight, low cost and they are easy to integrate with circuitry and 

as elements of antenna arrays [4-4] * [4-9]. 

4.3.1 Dipole Antenna 

The dipole is one of the most basic antennas. The dipole is a straight piece of wire cut in 

the center and fed with a balanced generator or transmission line. This structure is resonant, or 

non-reactive, at the frequency where the conductor length is 1/2 wavelength. For the ISM band, 

this length is approximately 6 cm or about 2 ½ inches. At this length, the dipole shows 

resonance, the feed impedance is resistive, and is close to 73 Ohms. This also holds true for a 

very thin wire in free space. 

A practical dipole of some thickness, loaded with different dielectric materials (PCB etc.), 

and perhaps relatively close to ground, shows resonance at a slightly shorter length than 

calculated, and the radiation resistance drops somewhat. For dipoles not too close to ground, the 

shorting factor is typically in the range of 5-20@, the shorter being more heavily dielectric 
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loaded, and radiation resistance is in the range of 35-65Ohms.This dipole setup exhibits a 

relatively good match to a 50 Ohm generator, but the feed is differential. 

A small ceramic balun can be used for single-ended feed. The bandwidth is typically 2-5@, 

depending on the return loss required. The radiation pattern in free space is doughnut-shaped, 

with pronounced dips along the direction of the wires. To fill out these dips, the outer ends of 

the antenna can be bent at a 45 degree angle. Several configurations are possible, including the 

broken arrow shape. Any materials close to the antenna can distort the radiation pattern. 

To reduce the size of the dipole, several options exist: 

• Replacing some of the wire length with loading coils. 

•  Bending the dipole ends back on the dipole. 

•  Folding the dipole into a meander pattern. 

•  Hairpin or coil loading of the center. 

•  Capacitive loading of the dipole ends. 

As the antenna size is smaller, the lower the radiation resistance and the lower the 

efficiency. The antenna should also be removed somewhat from the ground plane, preferably at 

least ¼wavelengths (3 cm) but not less than 1 cm. Sometimes a loading technique is employed 

where the dipole ends are bent close to the ground plane, or even loaded with small capacitors to 

ground. This technique shorts the dipole considerably but causes heavy RF currents to flow in 

the ground plane, resulting in low efficiency. Often some of the other loading techniques result 

in better performance.

4.3.2 Miniaturization Trade Off 

As stated, reducing antenna size results in reduced performance. Some of the parameters 

that suffer are: 

• Reduced efficiency (or gain). 

• Shorter range. 

• Smaller useful bandwidth. 

• More critical tuning. 

• Increased sensitivity to component and PCB spread. 

• Increased sensitivity to external factors. 

As stated, several performance factors deteriorate with miniaturization, but some antenna 

types tolerate miniaturization better than others. How much a given antenna can be reduced in 
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size depends on the actual requirements for range, bandwidth, and repeatability. In general, an 

antenna can be reduced to half its natural size without much impact on performance. 

However, after a one half reduction, performance gets progressively worse as the radiation 

resistance drops off rapidly. As a rule, one half the antenna sizes equals one quarter the radiation 

resistance. As loading and antenna losses often increase with reduced size, it is clear that 

efficiency drops off quite rapidly. 

The amount of loss that can be tolerated depends on the range requirements. Bandwidth 

also decreases, which causes additional mismatch losses at the band ends. The bandwidth can be 

increased by resistive loading, but this often introduces even more loss than the mismatch loss. 

The low bandwidth combined with heavy loading requires a spread analysis to ensure adequate 

performance with variations in component values and PCB parameters. 

As shown by these facts, it is often better not to reduce antenna size too much, if board 

space allows. Even if range requirements do not require optimum antenna performance, 

production problems and spread are minimized. It is also best to keep some clearance between 

the antenna and nearby objects. Although the antenna may be re-tuned to compensate for the 

loading introduced by the surroundings, tuning becomes more critical, and the radiation pattern 

can be heavily distorted. 

4.4 The Trap-Loaded Antenna 

4.4.1 General Antenna Design Guides 

A typical symmetric trap-loaded antenna is illustrated in Figure 4-1. The antenna has a total 

length of 2L, the traps are located a distance "s# from the center, and the diameter of the 

antenna is "2a#. The surface of the antenna is assumed to be perfectly conducting, and both the 

source and the trap are assumed to be very small. The trap ZL is either a parallel inductor-

capacitor circuit or a short-circuited quarter-wave transmission line. The trap is usually adjusted 

to be anti-resonant when "s# is a quarter of a wavelength. 

When L is approximately 3/4 of a wavelength, and "s# is approximately 1/4 of a 

wavelength, the antenna is a type of Franklin array, an antenna that has been used since the early 

days of radio [4-14]. It is frequently used as a radio amateur antenna [4-15]. The input impedance 

of a Franklin antenna is believed to be about 300☆ [4-15] and the current distribution is assumed 

to be sinusoidal and of equal amplitude on both the main section (┛z┛<=s) and the parasitic 

elements (s <= ┛z┛<= L), [4-14]. Harrington!s results [4-16] for one parasitic element indicate 

that the current distribution is approximately sinusoidal and that the current amplitude on the 

parasitic element is somewhat less than on the driven element. 
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have been studied for L less than 1/10 wavelength [4-20] as well as for L greater than 1/10 

wavelength [4-15]. Resistance loaded cylindrical antennas have also been explored [4-21], [4-22]. 

4.4.2 Current Distribution 

The characteristics of thin-wire, center-fed, linear antennas have been studied extensively 

by King [4-23]. Through the use of an integral equation technique, the current distribution along 

such an antenna may be determined. It is well known that a conventional cylindrical antenna of 

this type supports an essentially standing wave distribution of current. Such an antenna is highly 

frequency sensitive in that its input impedance is a strong function of frequency. A traveling-

wave linear antenna supports a distribution of current which is essentially an outward traveling 

wave. 

As compared with a conventional dipole, the traveling-wave antenna has two practical 

aspects that are desirable for certain purposes: a broadband character where by the input 

impedance is relatively independent of frequency, and a modified radiation pattern having a 

wider beam width and a notable absence of minor lobes for a long antenna. In order to realize a 

traveling-wave antenna, its construction must necessarily be altered from that of a conventional 

standing wave dipole. 

It has been established that a traveling-wave antenna may be realized through the use of a 

resistance loading technique. Using a transmission line analogy, Altshuler [4-24] proposed an 

optimum double resistance loading to be located a quarter wavelengths from the ends of the 

antenna. Such a resistance loaded antenna was found experimentally to support a traveling wave 

of current along most of its length. Although the loading is properly located only at a single 

frequency, the antenna impedance was measured to be reasonably constant over a wide 

frequency range. 

More recently, Wu [4-25] and King [4-23] demonstrated that a traveling-wave antenna may 

be realized by constructing it from a dissipative conductor whose resistance varies with position 

along the cylinder. Broadband input impedance is obtained, although the traveling wave of 

current decays rapidly as it advances outward along the dissipative antenna. 

These techniques share the common disadvantage of a very low radiating efficiency (of the 

order of 50 percent or less) due to dissipation in the resistive loadings. It is the objective of the 

present study to investigate the possibility of realizing a traveling-wave antenna through use of a 

reactance loading technique. The antenna is assumed to consist of a thin cylinder, doubly loaded 

with a pair of identical impedances. 
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The omni-directional 3D pattern of the gain at the operating frequencies of the antenna is 

depicted in Figure 4-23. The omni-directional shape is the same for both operating frequencies. 

4.5 Conclusion 
In the last chapter of this manuscript, the functioning of radiating antennas having several 

phases and conditions are presented. As an introductory to the chapter, the characteristics of 

radiating elements as antenna engineering point of view are demonstrated. Then, in the second 

paragraph, dipole antennas and their functions are explained as an entrance to discuss the 

metamaterial loaded dipole antennas. The approach is based on loading the antennas with a small 

number of Metamaterial particles to achieve devices with enhanced performance for practical 

purposes. 

The trap-loaded antenna is the first form presented in the following paragraph. Its general 

design is explained beside the demonstration of the current distribution by employing the 

integral equation technique resulting in a type that supports an essentially standing wave 

distribution of currents. Then, in order to compare the results with basic antenna structure, a 

simple rectangular dipole antenna is designed and simulated to have a radiating frequency at 1.5 

GHz. The reflection coefficient, the input impedance and the radiation pattern are shown and 

validate the radiation at the target frequency. 

The following step has focused on creating another radiation frequency by loading the 

antenna by two lumped RLC traps; one trap on each arm of the dipole antenna. The results are 

again proved when two frequencies at 1.5 and 2.4 GHz are created. The validation of this result 

is introduced in the next paragraph when a dipole antenna is loaded with two SRRs on each arm. 

This configuration of dual-frequency performance is approved since two frequencies are created 

at 1.5 and 2.4 GHz. The first one is due to the dipole itself, while the second is originated in the 

vicinity of the SRR self-resonant frequency. 

The inclusion that replaced the SRR is the Multi Split Ring Resonator (MSRR). Two 

operating frequencies are obtained at 1.5 and 2.4 GHz giving rise to a dual-band structure similar 

to that obtained when loading the antenna with four SRRs. 

As a perspective in the conclusion of this chapter, the realization of the MSRR-loaded 

dipole antenna could be accomplished to perform the measurements needed in order to validate 

the theoretical results experimentally. 
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General Conclusion 

This manuscript that is between your hands, dear reader, contains four chapters that 

describe the results of the work during three years. This thesis presents an efficient approach to 

the understanding of Metamaterials structures and their applications. In the frame of this work, a 

set of simulations and investigations are accomplished, that allows one to predict the 

functionality of inclusions and resonators made up of Metamaterials. 

The basic history and concepts of Metamaterials studies are paragraphed in first chapter to 

ensure a beneficial prefatory to the following chapters of the manuscript. Starting from the 

primary attempt to discover the concept of artificial materials in the 19th century up to the great 

evolution in the field of Metamaterials nowadays, a historical view is introduced. 

The concepts of MTMs continue by demonstrating chirality and bianisotropic media. The 

Lindman!s experiments with artificial isotropic chiral medium, made from randomly dispersed 

electrically small helices in a host were extensively repeated by many research groups leading to 

several patents granted. The growth of research on photonic crystals, as a new class of artificially 

structure materials in parallel to the chiral structures, is then presented in addition to composite 

medium based on periodic array of interspaced SRRs and wires.  

Concerning researches in Metamaterials domain, the remarkable properties of MTMs that 

are not found in other naturals materials are provided. In other words, MTMs are characterized 

by double negative DNG (negative permittivity and permeability) property that allows the 

propagation of EM with 継屎王, 茎屎屎王 and 計屎屎王 building a left-handed triad. Moreover, the phase in a DNG 

medium propagates backward to the source with the phase velocity opposite to the group 

velocity. 

In the second chapter of this manuscript, we presented classical Maxwell!s equations that 

give two vector equations relating the field vectors of an EM wave by means of four dyadic 

parameters. All physical phenomena within the medium are hidden behind these four dyadic 

where the most general linear medium can be described in terms of these parameters. This 

general medium is also called magnetoelectric or bianisotropic. 

Anisotropic, bi-isotropic, chiral and non-reciprocal materials are examples of bi-

anisotropic media. On the other hand, embedding metallic resonant particles showing cross 
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polarization effects in a host dielectric medium is the usual technology for obtaining bi-isotropic 

and/or bianisotropic artificial media. 

The bianisotropic effect for MTMs is then tested to extract the effective material 

parameters. The test is performed on a split ring resonator (SRR) of two different topologies; the 

broadside-coupled BC-SRR and the edge-coupled EC-SRR. The theoretical analyses show that 

depending on the orientation of the EC-SRR to the external EM fields, the structure can exhibit 

either a bianisotropic or non-bianisotropic behavior. On the other hand, the BC-SRR structure 

exhibits a non-bianisotropic effect due to the symmetry of the structure. This is an important 

result and will lead to a conclusion that the symmetrical structure has a lack of magneto-electric 

coupling. 

Another presented method is the extraction of the constitutive parameters of Metamaterial 

from transmission and reflection characteristics. A Matlab code for the retrieval procedure is 

written and the constitutive parameters are extracted one by one. The physical behavior of 

extracted effective permittivity or permeability by S-retrieval method was achieved where it is 

concluded that such parameters cannot form the effective description of a homogenized 

material. 

Bloch analysis and the Brillouin zone for a primitive cell based on the solid physics 

background are then discussed. The Metamaterial lattice analyzed as a photonic crystal is formed 

by the double negative SRR-Wire based unit cells. The results of both approaches show a good 

agreement between the solution of the periodic boundary eigenvalue problem and the retrieval S-

parameters extracted from scattering parameters. For a single wire unit cell, The solution of a 

periodic boundary eigenvalue problem presents a valuable tool that allows one to identify 

frequency ranges of forward and backward waves in a lattice, corresponding to double positive 

and double negative constitutive parameters, respectively. 

In the third chapter, performance improvement of a dipole antenna placed on AMC 

surface is demonstrated. Using Metamaterial structures, the gain and the directivity of such 

antenna have been widely improved. All the obtained results have proved that the MSRR cells 

can perfectly replace the conventional ground plane in order to improve the radiation 

characteristics. Moreover, the impact of the MSRR cells number on the antenna performance has 

also been investigated. 

In the last chapter of this manuscript, the functioning of radiating antennas having several 

phases and conditions are presented. As an introductory to the chapter, the characteristics of 
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radiating elements as antenna engineering point of view are demonstrated. Then, in the second 

paragraph, dipole antennas and their functions are explained as an entrance to discuss the 

metamaterial loaded dipole antennas. The approach is based on loading the antennas with a small 

number of Metamaterial particles to achieve devices with enhanced performance for practical 

purposes. 

The trap-loaded antenna is the first form presented in the following paragraph. Its general 

design is explained beside the demonstration of the current distribution by employing the 

integral equation technique resulting in a type that supports an essentially standing wave 

distribution of currents. Then, in order to compare the results with basic antenna structure, a 

simple rectangular dipole antenna is designed and simulated to have a radiating frequency at 1.5 

GHz. The reflection coefficient, the input impedance and the radiation pattern are shown and 

validate the radiation at the target frequency. 

The following step focused on creating another radiation frequency by loading the antenna 

by two lumped RLC traps; one trap on each arm of the dipole antenna. The results are again 

proved when two frequencies at 1.5 and 2.4 GHz are created. The validation of this result is 

introduced in the next paragraph when a dipole antenna is loaded with two SRRs on each arm. 

This configuration of dual-frequency performance is approved since two frequencies are created 

at 1.5 and 2.4 GHz. The first one is due to the dipole itself, while the second is originated in the 

vicinity of the SRR self-resonant frequency. 

The inclusion that replaced the SRR is the Multi Split Ring Resonator (MSRR). Two 

operating frequencies are obtained at 1.5 and 2.4 GHz giving rise to a dual-band structure similar 

to that obtained when loading the antenna with four SRRs. 

As a perspective in the conclusion of this chapter, the realization of the MSRR-loaded 

dipole antenna could be accomplished to perform the measurements needed in order to validate 

the theoretical results experimentally. 
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Résumé 

Le travail de cette thèse est en rapport avec les métamatériaux et ses applications. Tout d!abord, un 
état de l!art est dressé en présentant leur évolution depuis leur apparition en 19ème siècle jusqu!au nos 
jours. Les notions sur les milieux chirale, bi-anisotrope, cristaux photoniques et quelques applications 
dans ces milieux sont données.  

Ensuite, nous présentons les équations classiques de Maxwell dans les milieux complexes. L!effet 
bi-anisotrope dans les métamatériaux est ensuite validé par l!extraction des paramètres caractéristiques du 
matériau main gauche (LHM). La validation a été faite en utilisant deux types différents du résonateur 
avec inclusion (SRR). Les métamatériaux sont également étudiés comme des cristaux photoniques quand 
les dimensions utilisées sont de l!ordre de la longueur d!onde correspondant. 

De plus, les résonateurs SRR et multi-SRR sont analysés du point de vue analytique et 
électromagnétique afin d!extraire leur fréquence de résonance. Par conséquent, ces composants peuvent 
être introduits dans différents types de conception; La surface conductrice magnétique artificielle (AMC) 
illustre un cas explicite et efficace de ces derniers.  

Une antenne dipôle, placée sur cette surface à la place d!un plan de masse conventionnel, a été 
étudiée comme une application des métamatériaux. Les résultats relatifs sur la directivité, le gain et le 
coefficient de réflexion montrent une nette amélioration. Une antenne multi-bandes, comme une autre 
application des métamatériaux, a également été conçue et simulée. Le résonateur SRR est inséré dans 
l!antenne de départ afin de créer une autre résonance, et par conséquent une autre bande est ainsi créée. 

Mots clés: Métamatériaux, Matériau main gauche, Matériaux doublement négatifs, 

Résonateur à inclusion, Multi-Résonateurs à inclusion, Conducteur magnétique artificiel, 

Antenne Dipôle, Antenne multi-bandes. 

Abstract 
The work in this thesis deals with metamaterials, its components and applications. A historical 

overview about these materials, features and researches in the domain are presented. Chiral media, 
binaisotropic materials and photonic crystals are also studied in order to visualize physics behind 
metamaterials. 

Electromagnetic properties in complex media are widely investigated. Starting from Maxwell!s 
equations, bi-anisotropic materials and their effect are deeply analyzed whereas two types of Split Ring 
Resonator (SRR) are treated to determine constitutive parameters of Left Handed Materials (LHM). The 
metamaterials are also studied as photonic crystals since the effective medium approach is not applicable 
when the dimensions of the inclusions tend to the operating wavelength. 

Moreover, SRRs and Multi SRRs are synthesized analytically and electromagnetically in order to 
extract their resonant frequencies. Consequently, these components could be introduced in any design; 
Artificial Magnetic Conductor (AMC) surface is an efficient case. Thus, a low profile antenna positioned 
over such surface is examined as an application of metamaterials. The results of directivity, gain and 
reflection coefficient are of great importance and affirm the employing of metamaterials in such 
applications. 

A dual band PCB antenna, as another application of metamaterials, is designed and simulated. The 
SRR element studied in the previous chapters is used as the trap which inserted in the arm of the antenna 
in order to create another resonance, and consequently another band is created. 

Keywords: Metamaterials (MTMs), Left Handed Materials (LHM), Double Negative 

Materials (DNG), Inclusions, Split Ring Resonators (SRRs), Multi Split Ring Resonators 

(MSRRs), Artificial Magnetic Conductors (AMCs), Dipole antenna, Dual band antenna. 


