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Résumé

Les Components-Off-The-Shelf (COTS) sont utilisés pour le développement rapide
et efficace de logiciels tout en limitant le coût. Il est important de tester le fonc-
tionnement des composants dans le nouvel environnement. Pour les logiciels tiers,
le code source des composants, les spécifications et les modèles complets ne sont
pas disponibles. Dans la littérature de tels systèmes sont appelés composants “boîte
noire”. Nous pouvons vérifier leur fonctionnement avec des tests en boîte noire tels
que le test de non-régression, le test aléatoire ou le test à partir de modèles. Pour
ce dernier, un modèle qui représente le comportement attendu du système sous test
(SUT) est nécessaire. Ce modèle contient un ensemble d’entrées, le comportement
du SUT après stimulation par ces entrées et l’état dans lequel le système se trouve.

Pour les systèmes en boîte noire, les modèles peuvent être extraits à partir des
traces d’exécutions, des caractéristiques disponibles ou encore des connaissances
des experts. Ces modèles permettent ensuite d’orienter le test de ces systèmes.
Les techniques d’inférence de modèles permettent d’extraire une information struc-
turelle et comportementale d’une application et de la présenter sous forme d’un
modèle formel. Le modèle abstrait appris est donc cohérent avec le comportement
du logiciel. Cependant, les modèles appris sont rarement complets et il est diffi-
cile de calculer le nombre de tests nécessaires pour apprendre de façon complète et
précise un modèle.

Cette thèse propose une analyse et des améliorations de la version Mealy de
l’algorithme d’inférence L* [Angluin 87]. Elle vise à réduire le nombre de tests
nécessaires pour apprendre des modèles. La version Mealy de L* nécessite d’utiliser
deux types de test. Le premier type consiste à construire les modèles à partir
des sorties du système, tandis que le second est utilisé pour tester l’exactitude des
modèles obtenus. L’algorithme utilise ce que l’on appelle une table d’observation
pour enregistrer les réponses du système.

Le traitement d’un contre-exemple peut exiger d’envoyer un nombre conséquent
de requêtes au système. Cette thèse aborde ce problème et propose une technique qui
traite les contre-exemples de façon efficace. Nous observons aussi que l’apprentissage
d’un modèle ne nécessite pas de devoir remplir complètement ces tables. Nous
proposons donc un algorithme d’apprentissage qui évite de demander ces requêtes
superflues.

Dans certains cas, pour apprendre un modèle, la recherche de contre-exemples
peut coûter cher. Nous proposons une méthode qui apprend des modèles sans de-
mander et traiter des contre-exemples. Cela peut ajouter de nombreuses colonnes
à la table d’observation mais au final, nous n’avons pas besoin d’envoyer toutes les
requêtes. Cette technique ne demande que les requêtes nécessaires.

Ces contributions réduisent le nombre de tests nécessaires pour apprendre des
modèles de logiciels, améliorant ainsi la complexité dans le pire cas. Nous présentons
les extensions que nous avons apportées à l’outil RALT pour mettre en oeuvre ces
algorithmes. Elles sont ensuite validées avec des exemples tels que les tampons, les
distributeurs automatiques, les protocoles d’exclusion mutuelle et les planificateurs.
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Abstract

Components-Off-The-Shelf (COTS) are used for rapid and cost effective develop-
ment of software systems. It is important to test the correct functioning of COTS
in new environment. For third party software components source code, complete
specifications and models are not available. In literature such systems are referred
as black box software components. Their proper functioning in new environment
can be tested with black box testing techniques like, comparison testing, fuzz test-
ing, Model based testing. For Model based software testing, software models are
required, which represent the desired behavior of a system under test (SUT). A
software model shows that a certain set of inputs are applicable to the SUT and
how it behaves when these inputs are applied under different circumstances.

For software black box systems, models can be learned from behavioral traces,
available specifications, knowledge of experts and other such sources. The software
models steer the testing of software systems. The model inference algorithms extract
structural and design information of a software system and present it as a formal
model. The learned abstract software model is consistent with the behavior of the
particular software system. However, the learned models are rarely complete and it
is difficult to calculate the number of tests required to learn precise and complete
model of a software system.

The thesis provides analysis and improvements on the Mealy adaptation of the
model inference algorithm L* [Angluin 87]. It targets at reducing the number of
tests required to learn models of software systems. The Mealy adaptation of the
algorithm L* requires learning models by asking two types of tests. First type of
tests are asked to construct models i.e. output queries, whereas the second type is
used to test the correctness of these models i.e. counterexamples. The algorithm
uses an observation table to record the answers of output queries.

Processing a counterexample may require a lot of output queries. The thesis ad-
dresses this problem and proposes a technique which processes the counterexamples
efficiently. We observe that while learning the models of software systems asking
output queries for all of the observation table rows and columns is not required. We
propose a learning algorithm that avoids asking output queries for such observation
table rows and columns.

In some cases to learn a software model, searching for counterexamples may go
very expensive. We have presented a technique which learns the software models
without asking and processing counterexamples. But this may add many columns
to the observation table and in reality we may not require to ask output queries
for all of the table cells. This technique asks output queries by targeting to avoid
asking output queries for such cells.

These contributions reduce the number of tests required to learn software models,
thus improving the worst case learning complexity. We present the tool RALT
which implements our techniques and the techniques are validated by inferring the
examples like buffers, vending machines, mutual exclusion protocols and schedulers.
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This chapter provides a general introduction to learning and testing. The first
section provides a discussion on software testing and its purpose. It also contains a
short description of black box testing and model based testing. The second section
presents an overview for inferring models from implementations and their usage for
testing. The final section contains an outline of the thesis.

1.1 Software Testing

Software systems are an important part of current mode of life and our dependency
on their proper functioning is continuously increasing with the passage of time.
They are getting used in safety critical applications (like medical devices and nuclear
plants), where their failure can result in extensive damage. This makes it essential
to develop methods that can ensure proper functioning of software systems. Test-
ing [Myers 2004] is an approach that enhances the reliability of a software system.
It is a process designed to ensure that a software application does what it is devel-
oped to do and it does not do anything surprising or unpredictable [Myers 2004].
Since testing helps to obtain reliable systems, it is used in all sectors that deal with
software development.

Testing is a primary technique to show that errors are not present in a soft-
ware. Its purpose is to show that a software system performs its intended func-
tions correctly [Myers 2004]. It involves systematically checking the correctness of
a system. Software testing usually involves interacting with a system under test
(SUT) by providing it the inputs and observing the outputs to find errors. How-
ever, testing for all errors or estimating the trustworthiness of a software system is
difficult [Parnas 1990]. The correctness criteria for a software is derived from the
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software specifications. The specifications describe the functionality of a software
system, consequently, they are taken as the basis for software testing.

Software testing can be based on formal methods [Hierons 2008] or formal mod-
els [Broy 2005]. Ideally it should be completely automatic, but practically it requires
human involvement. At least one manual activity is to analyze the testing results.
An example where a software fails, is provided in the case of negative results. This
helps the engineers to find out the error prone part of a software system. Testing is
an important phase in software development but it is difficult and expensive.

Software testing is often applied to the actual SUT to test against some specifi-
cations, without using the knowledge of its internal structure. Even if the internal
structure of the SUT is accessible, usually it is not used as it may lead to a biased
testing process. We may require to check few aspects of a whole very large system.
Extracting a part of code that corresponds to a functionality may be impracticable
in case of legacy systems. However, comparing the SUT with an abstract model
to check for some functionality is a feasible option. Moore initiated the black box
testing in his classical paper in 1956 [Moore 1956], where he pointed to several prob-
lems including the model identification (automata inference of unknown black box
automaton).

Model based software testing requires software models which are used to rep-
resent the desired behavior of a SUT. The software models show that a certain
set of inputs is applicable to the SUT and how it behaves when these inputs are
applied under different circumstances. The models are presented as finite state
machines that are usually an abstract, partial presentation of the desired behav-
ior of the SUT. In model based testing the software models are used to derive test
cases [Bertolino 2007]. Test cases can be generated from models using various graph
traversal algorithms, which are at same level of abstraction as the models. All of
the abstract test cases together can be named as a test suite. The test suite di-
rectly cannot be tested on the SUT because of the different level of abstraction.
The test suite is mapped to concrete tests that can communicate with the SUT
[Utting 2007, Li 2012].

We have many methods that can be applied to models, to derive tests [Apfelbaum 1997,
Dalal 1999, Utting 2007, Meinke 2011b, Meinke 2011a]. Since a test suite is not con-
structed from source code but models of the SUT, model based testing is considered
as a type of black box testing. The models can also be combined with source code
to derive tests which is named as gray box testing [Kicillof 2007].

1.2 Software Models from Implementations

Software industry is focusing on to develop software systems using Components-Off-The-Shelf
(COTS). The target is to develop new systems by assembling existing components.
A new functional system is obtained with little effort which makes possible to develop
systems with reduced cost. The focus is continuously shifting on evaluation, testing
and integration of third party components. The source code, complete specifications
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and models for COTS are not available and in literature such systems are referred
as black box software systems. The COTS can be evaluated and tested with black
box testing techniques like, comparison testing, fuzz testing, Model based testing.
For Model based software testing, software models are required, which represent the
desired behavior of a SUT.

Generally, testing is done on a subset of all possible system behaviors, so it can
find the presence of errors but not their absence. The field of combining model
learning and testing is getting momentum with the passage of time. Automatically
learning and verifying software models has become a prominent approach for testing
software systems. When software models are not available for software black box
components, models can be learned from the interactions with components, available
specifications, knowledge of the experts and other such sources. The software models
help to steer the testing and evaluate the test results.

As a result, software model inference techniques have become popular in the area
of software testing. Inferring a software model is an incremental approach which
requires to take into consideration many aspects of the system under inference (SUI).
A lot of behavioral information can be reused for future inference. The very first
thing to infer a model of a software system, is to capture its state. At a particular
instant of time, a state is an instantaneous description of values of system variables.
It is also required to know that in a response to some action of the system, how
the state of the system will change. The change is described by providing the state
before the occurrence of an action and the state afterwards. The change in the
software system from one state to another state is called a transition of the system.
The model of a software system can be presented in terms of states and transitions.
An initial state of a software model is a snapshot of the system that captures the
initial values of the system variables. A software system can be modeled as a finite
set of states where each state is obtained by transition from the initial state or a
subsequent state.

Model learning from interactions with software components is also known as
black box model inference. Many contributions on the subject are available in the
literature [Gold 1967, Gold 1972, Biermann 1972, Trakhtenbrot 1973, Kearns 1994,
Shu 2007, Angluin 1987, de la Higuera 2010, Steffen 2011]. For model inference, we
use the L∗ algorithm by Angluin [Angluin 1987]. We can find many variants of L∗

in the literature [Rivest 1993, Maler 1995, Balcázar 1997, Hungar 2003b].
The algorithm L∗ permits to infer models (finite state machines) by continuously

interacting with black box systems or from their behavioral traces obtained by in-
teracting with them. The interactions with software implementations are in fact the
tests that are conducted to uncover the models of software implementations. The
L∗ algorithm assumes that there exists a minimally adequate teacher (MAT). MAT
is assumed to answer two types of questions named membership queries and equiv-
alence queries. The membership queries are strings on Σ and MAT replies “yes” if a
membership query belongs to a target model and “no”, otherwise. The equivalence
queries are conjectured models. The algorithm assumes that in case of incorrect
conjecture, MAT always comes up with a counterexample. In testing context, the
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algorithm can be seen as a learner, teacher and oracle as depicted in Figure 1.1.

Figure 1.1: Learning Framework

The learner’s job is to learn the observations and come up with a software model.
The teacher answers the behavior of a particular string in the software implementa-
tion and the oracle replies whether the model conjectured by the learner is correct
or not. It is worth mentioning that the goal of applying model inference algorithm
is not only to discover the unknown behavior of a software system but is also to
find out the errors by executing the tests. This can also be seen as learning and
testing. For the learning phase membership queries are used to conjecture models
of a software system, whereas equivalence queries are used for testing, by comparing
respective conjectured model and the actual system. This process is repeated until
a valid software model is conjectured.

The model inference technique extracts structural and design information of a
software system and presents it as a formal model. The learned abstract software
model is consistent with the behavior of the particular software system. However, the
learned models are rarely complete and it is difficult to calculate the number of tests
required to learn precise and complete model of a software black box system. The
challenge is to find the best trade-off between precision and cost [Bertolino 2007].

The main problems that we address in this thesis are the following.

1.2.1 Poor Equivalence Oracle

To test a software system, after learning its model, the L∗ algorithm requires to
get it validated from an oracle (equivalence oracle). For software implementations
such an oracle does not exist and this deficiency is alleviated by random sampling
oracle. The random sampling oracle is an implementation which explores a learned
model and a target system to search for discrepancies. This may result in increased
number of attempts to find a discrepancy and the discrepancy trace may contain
useless sequences which increases the number of queries required to be executed to
learn a software model.
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1.2.2 Large Input Set

Real world software systems operate on large input test sets. Most of the adaptations
of L∗ use the input set to initialize the observation table rows and columns. The
initialization with large input set results in increased number of queries.

1.2.3 Useless Queries

The answer to query of every cell of an observation table and in some cases to
queries for the rows of the observation table are not required. The learning job can
be accomplished without asking all queries.

1.3 Thesis Outline

The outline of the following chapters is provided as follows.

– Chapter 2 provides the definitions and notations that are used through out the
thesis manuscript. It also presents the models that we have used for software
model inference.

State of the Art

– Chapter 3 provides state-of-the-art for related work and summary of contri-
butions.

– Chapter 4 provides the existing model inference algorithm L∗, possible opti-
mizations to learn Mealy models with L∗, and adaptation of L∗ to infer Mealy
models.

– Section 5.1 and Section 5.2 of Chapter 5 provide the existing methods to search
and process counterexamples, respectively.

Contributions

– Section 5.3 of Chapter 5 provide the improved method to process counterex-
amples. The last section 5.4 provide the experimental results conducted to
analyze the practical complexity.

– Chapter 6 provides the optimized Mealy inference algorithm L1. Complex-
ity discussion for the L1 algorithm and experiments to evaluate its practical
complexity.

– Chapter 7 provides the technique for organization of output queries and the
Mealy inference without using counterexamples.

– Chapter 8 provides the tool and case studies that we have implemented to
validate the algorithms.

Conclusion

– Chapter 9 provides the conclusion and future directions.
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This chapter provides the definitions and notations that we use through out this
manuscript. The first section provides the general notations that we use to present
definitions and algorithms formally. The second section provides the models that
we use to model the behavior of software applications.

2.1 General Notations

Let Σ be a finite set or alphabet for a Deterministic Finite Automaton DFA. The
empty word is denoted by ε and the concatenation of two words s and e is expressed
as s · e or se. The length of ω is the number of letters that a word ω contains and
is denoted by |ω|. If ω = u · v, then u and v are prefix and suffix of ω, respectively.
Let Σ+ is a sequence of letters constructed by taking one or more elements from Σ

and Σ∗ is a sequence of letters constructed by taking zero or more elements from Σ.
Formally a word ω is a sequence of letters a1a2 . . . an ∈ Σ∗ and the empty word is
denoted by ε. The finite set of words over Σ of length exactly n is denoted as Σn,
where n is a positive integer and Σ0 = {ε}. The finite set of words over Σ of length
at most n and less than n are denoted as Σ≤n and Σ<n, respectively. Let suffixj(ω)

denote the suffix of a word ω of length j and prefixj(ω) denote the prefix of the word
ω of length j, where j ∈ {1, 2, . . . |ω|}. Let prefixes(ω) denote the set of all prefixes
of ω and suffixes(ω) denotes the set of all suffixes of ω. Let outputj(ω) denote the
output for jth input symbol in ω. For example, if we have an output 0010 for a
word aaba then output3(aaba) = 1. A set is prefix closed iff all the prefixes of every
element of the set are also elements of the set. A set is suffix closed iff all the suffixes
of every element of the set are also elements of the set. The cardinality of a set D
is denoted by |D|.
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2.2 Finite State Machines

We use finite state machines (FSM) to design models of software systems. It is
conceived as an abstract machine that can be in one of a finite number of states.
A state is an instantaneous description of a system that captures the values of the
variables at a particular instant of time. The state in which it is in at any given time
is called the current state. Typically a state is introduced when the system does not
react the same way to the same trigger. It can change from one state to another
when initiated by a triggering event or receiving an input, this is called a transition.
A transition is a set of actions to be executed on receiving some input. A particular
FSM is defined by a list of the possible transition states from each current state.

2.2.1 Deterministic Finite Automaton

The notion of DFA is formally defined as follows.

Definition 1 A DFA is a quintuple (Q,Σ, δ, F, q0), where

– Q is the non-empty finite set of states,

– q0 ∈ Q is the initial state,

– Σ is the finite set of letters i.e., the alphabet,

– F ⊆ Q is the set of accepting/final states,

– δ : Q× Σ→ Q is the transition function.

A DFA on input set I = {a, b} is presented in Figure 2.1.

Figure 2.1: Deterministic Finite Automaton

Initially the deterministic finite automaton is in the initial state q0. From a
current state the automaton uses the transition function δ to determine the next
state. It reads a letter or a word of letters and using δ, it identifies a state in DFA,
which can be accepting or non-accepting. The transition function for a word ω is
extended as δ(q0, ω) = δ(. . . δ(δ(q0, a1), a2) . . . , an). A word ω is accepted by DFA
iff δ(q0, ω) ∈ F . We define an output function Λ : Q× Σ∗ → {0, 1}, where Λ(q0, ω)

= 1, if δ(q0, ω) ∈ F , and Λ(q0, ω) = 0, otherwise.
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2.2.2 Mealy Machine

The formal definition of a deterministic Mealy machine is given as follows.

Definition 2 A Mealy Machine is a sextuple (Q, I,O, δ, λ, q0), where

– Q is the non-empty finite set of states,

– q0 ∈ Q is the initial state,

– I is the non-empty finite set of input symbols,

– O is the non-empty finite set of output symbols,

– δ : Q× I → Q is the transition function, which maps pairs of states and input
symbols to the corresponding next states,

– λ : Q × I → O is the output function, which maps pairs of states and input
symbols to the corresponding output symbols.

Moreover, we assume dom(δ) = dom(λ) = Q × I i.e. the Mealy machine is input
enabled.

For software systems all inputs may not be valid for every state. To make
software systems input enabled, we introduce the output Ω for invalid inputs with
transitions from the current state to itself. A Mealy machine on input set I = {a, b}
is presented in Figure 2.2.

Figure 2.2: Mealy Machine

Initially the Mealy machine is in the initial state q0. For a transition from a state
q ∈ Q an input i ∈ I is read, output is produced by using the output function λ(q, i)

and the state reached is identified by using the transition function δ(q, i). When an
input string ω composed of inputs i1i2 . . . in ∈ I+ is provided to the Mealy machine,
to calculate the state reached and output produced by the Mealy machine, both the
transition and output functions are extended as follows. The transition function for
ω is extended as δ(q0, ω) = δ(. . . δ(δ(q0, i1), i2) . . . , in). To extend output function
for ω i.e. λ(q0, ω), the transition function is used to identify the state reached
and the output function is used to calculate the output. The process is started
by calculating λ(q0, i1) and δ(q0, i1) from the initial state q0, this takes to the next
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state q1 ∈ Q. From q1 output and next state are calculated by λ(q1, i2) and δ(q1, i2),
respectively. This process is continued until the state qn is reached by λ(qn−1, in)

and δ(qn−1, in), and i1/o1, i2/o2, . . . in/on results in an output string o1o2 . . . on of
length n, where n = |ω|. If the input string ω is provided to the Mealy machine and
the state sω is reached then ω is the access string for sω. Let O+ is a sequence of
outputs constructed by taking one or more elements from O and O∗ is a sequence
of outputs constructed by taking zero or more elements from O.
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This chapter provides a state-of-the-art review for model inference of black box
implementations and possible optimizations for such techniques. It begins with
a brief introduction to model inference and testing. Then, it briefly presents the
passive model learning techniques and goes on to present active learning model
inference algorithm L∗ [Angluin 1987].

The algorithm L∗ learns the software models by continuously posing member-
ship queries to a teacher (software black box implementation). Once a model is
learned, the algorithm requires to search for counterexamples. A counterexample
CE is a string on the inputs set which is accepted by the black box and refused
by the conjectured model or vice-versa. If CE is such a smallest sequence then the
counterexample is optimal and non-optimal, otherwise. For software applications,
the default method to search for counterexamples is random sampling, however,
counterexample search can be improved by increasing the probability to reach unex-
plored states in black box models [Howar 2010, Balle 2010]. An appropriate method
selected to process counterexamples can significantly reduce the number of mem-
bership queries required to learn the black box models [Rivest 1993, Shahbaz 2009].
The order to calculate membership queries is also important, calculating them in a
different order exhibits a different behavior [Garcia 2010]. When a limited number
of membership queries is allowed, then one may require to conjecture models from
sparse observations [de la Higuera 2010]. The models can be conjectured from such
observations by predicting some answers [Eisenstat 2010].

The algorithm L∗ uses membership and equivalence queries to learn the models
but models can be learned from membership or equivalence queries alone [Ibarra 1991,
Birkendorf 1998, Eisenstat 2010]. The Mealy adaptation of L∗ requires to ask out-
put queries instead of membership queries [Niese 2003]. The answers to output
queries are output strings. The Mealy adaptation of the algorithm L∗ requires less
output queries and the number can be further reduced by introducing optimization
filters [Niese 2003]. Model inference has plenty of applications like program analy-
sis [Walkinshaw 2008], software testing [Aarts 2010b], security testing [Cho 2010],
dynamic testing [Raffelt 2009], and integration testing [Shahbaz 2008].

3.1 Model Inference

Software model inference from implementations has become an important field in
software testing [Raffelt 2009, Meinke 2010]. It has been used for the verification
and testing of black box components [Niese 2003, Shahbaz 2008, Shu 2007]. It can
be used to find the behavior of software systems where specifications are missing
[Muccini 2007, Peled 1999]. These techniques ease the use of third party compo-
nents by providing unit and integration testing [Shahbaz 2008]. Model inference
approaches can mainly be divided into active and passive learning. Passive learn-
ing algorithms construct models from a fixed set of positive and negative examples,
whereas active learning algorithms iteratively ask new queries during the model con-
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struction process. In the following sections, we discuss passive and active automata
learning techniques in turn.

3.2 Passive Learning

The passive learning algorithms learn the models from the provided set of positive
traces, i.e. the traces which belong to the language of the unknown model L(DFA)
and negative traces, i.e. the set of traces which do not belong to the target model
language or belong to L(DFA)C (complement of the target language). The technique
restricts learning from the given data. These algorithms cannot perform tests by
creating new tests and it is difficult to analyze how far one may be from the solution.

3.2.1 Passive Learning Approaches in General

For model inference, the passive model inference techniques [Biermann 1972, Cook 1998,
Lorenzoli 2008] assume that sufficient positive and negative traces about the behav-
ior of target system are available. From a provided set of positive and negative
traces, it is not guaranteed that exact models will be inferred. The notion of “com-
plete” sample varies for different algorithms and domains. The de facto notion of a
complete sample was established by Oncina et al. [Oncina 1992] in their work on the
Regular Positive Negative Inference algorithm. To ensure learning accurate models
Dupont et al. [Dupont 1994] showed that the sets of positive and negative traces
would have to be structurally complete and characteristic of the target model. In
other words, one would need to contain a succinctly diverse set of samples to cover
every state transition and contain enough information in positive traces to distin-
guish every pair of non-equivalent states. The problem is, characteristic samples
tend to be vast, whereas in a practical software engineering setting, it tends to be
the case that we have only a small subset of program execution traces or scenarios.
The challenge is to generate a model that is reasonably accurate, even if the given
set of samples is sparse.

3.2.2 Inferring Models of Software Processes

A software process is a set of activities applied to artifacts, leading to the design,
development, or maintenance of a software system. Software process examples are
designing methods, change or control procedures, and testing techniques. The mo-
tive behind software process is to coordinate different activities so that they achieve
the same common goal. Managing and improving a software process is a challenge.
That is the reason methods and tools have been devised support various aspects of
the software process.

Cook et al. [Cook 1998] developed a technique termed as process discovery for
the analysis of the data describing the process events. They present three methods
named as RNet, Ktail and Markov, which range from purely algorithmic to purely
statistical. They developed Markov method specifically for process discovery and
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adopted the other two methods from different domains. They automatically de-
rive the formal model of a process from basic event data collected on the process
[Cook 1995]. Their approach views the process discovery as one of the grammatical
inference problem. The data describing the behavior of the process are the sen-
tences of some language and the grammar of that language is the formal model of
the process. Cook et al. [Cook 1996] implemented the proposed methods in a tool
operating on process data sets. Although the proposed methods are automated,
they still require the guidance from the process engineers who are familiar with the
considered process. The process engineers guide the methods for tuning the parame-
ters built into them and for the selection and application of event data. The process
models produced by the developed methods are initial models that can be refined
by the process engineers. The methods are developed for the model inference of
software processes, however, they can be applied to other processes and behaviors.
The methods were successful to discover the interprocess communication protocols
at operating system level.

3.2.3 Generating Software Behavioral Models

One can learn the model for constraints on the data for the functional behavior as
boolean expressions [Ernst 2001] and the component interactions as the state ma-
chines [Biermann 1972, Cook 1998]. Both types of models are important for testing
and verifying different aspects of the software behavior. However, this type of mod-
els does not capture the interplay between data values and component interactions.
To address this problem Lorenzoli et al. [Lorenzoli 2008] presented the GK-tail al-
gorithm, which automatically generates an extended finite state machines (EFSMs)
from the software interaction strings. The GK-tail algorithm does not rely on the
additional source of information like teachers and operates mainly as described in
the following steps:

– merge the traces, which are input equivalent to create a unique trace annotated
with multiple data values,

– generate the transition associated predicates with the help ofDAIKON [Ernst 2001]
from multiple data values,

– construct a tree like structure EFSM from the interaction traces annotated
with predicates,

– iteratively merge the states, which are equivalent to each other in the EFSM
to construct the final EFSM.

The input equivalent traces are different input traces, which invoke the same
sequence of methods in the target system and the equivalent transitions are the
transitions, which have the same “tail”. If the states cannot be distinguished by
looking at the outgoing sequences, then they are said to have the same “tail”. The
method of merging the equivalent states is an extension to the Ktail algorithm by
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Biermann et al. [Biermann 1972], who consider a set of states to be equivalent, if
all the member elements of the set of states are followed by the same paths. The
sets of paths exiting a state can be infinite, thus comparing the states for all the
possible exiting paths may go very expensive, so the length of the paths sequences
to be compared is limited to k, exactly like Biermann et al. To evaluate GK-tail,
Lorenzoli et al. implemented a prototype for Java programs based on Aspectwerkz
[Aspectwerkz 2007], theorem prover Simplify by Detlefs et al. [Detlefs 2005] and
DAIKON. To monitor systems and record the traces, this prototype is based on As-
pectwerkz, to check for equivalence and implication between annotations on Simplify
theorem prover and DAIKON for detecting the invariants to annotate the edges of
the EFSM. For the evaluation of GK-tail algorithm, the EFSM models were gener-
ated for a set of open source software applications, having different sizes and natures.
The results by Lorenzoli et al. indicate that the size of the generated EFSM models
does not depend on the size of the software implementations but on the size of in-
teraction patterns within software components. They constructed EFSMs for a set
of sample open source applications of different size including Jabref [JabRef ] and
Jedit [jEdit ], the calculated results show that the EFSM models were better and
often more accurate than generating the FSMs [Biermann 1972, Cook 1998] and
learning the constraints [Ernst 2001] independently, especially for models of a non
trivial size.

3.2.4 Exact DFA Identification

Heule and Verwer [Heule 2010] present an exact deterministic finite automata (DFA)
learning algorithm, which is based on satisfiability (SAT ) solvers. They propose a
compact translation of DFA identification into SAT, then they reduce the SAT
search space by adding the lower bound information using a fast max-clique sym-
metry breaking algorithm [Sakallah 2009]. They add many redundant clauses to
improve the performance of the SAT solver and show how flexibility for their trans-
lation can be used to apply over very hard problems. The evidence driven state-
merging (EDSM ) algorithms are normally based on successful techniques such as
satisfiability and graph coloring [Lang 1998]. To increase the quality of the solu-
tion, the EDSM is a greedy procedure that uses simple heuristic to identify which
merges to perform. The examples for such heuristics are dependency directed back-
tracking [Oliveira 1998], mutually incompatible merges [Abela 2004], and searching
most constrained nodes first [Lang 1999]. Bugalho and Oliveria compared different
search techniques for EDSM [Bugalho 2005]. To reduce the size of the problem
Heule and Verwer [Heule 2010] applied few steps of the EDSM algorithm and then
applied their translation to SAT. Their algorithm for exact DFA learning named as
DFASAT was the winner for the STAMINA competition [Walkinshaw 2010a].
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3.2.5 Framework for Evaluating Passive Learning Techniques

It is difficult to compare different software inference algorithms as their evalua-
tion available in the literature revolves around a limited number of benchmarks.
The selected models are rarely diverse enough to make a systematic comparison.
They might have an arbitrary number of states or specific model type, which is
not appropriate for all the techniques. All this increases the need of a framework
which can evaluate the model inference approaches. The STAMINA competition
[Walkinshaw 2010a] provides an online deployed framework for the comparison of
state machine inference approaches [Challenge a]. The purpose of this competition
is to compare passive learning techniques. The advantage of such a framework is
that the participants get their techniques evaluated, which provides an opportunity
to have a snapshot of best performing inference techniques. However, if such a com-
petition terminates with no dominant technique, it will help to find the weaknesses
and strengths of the participating techniques. For the STAMINA framework, the
learning algorithm are supposed to start with a sample of behavior of the target
software system, and that behavior can be presented by a DFA. The sample is in
the form of a set of sequences in Σ∗. For model inference, the sample can be pro-
gram traces or scenarios supplied by the developer. The sample is supplied in two
sets of traces (sequences), the positive traces and the negative traces. A random
walk algorithm has been implemented to generate these traces. A positive trace
is generated by starting a random walk from the initial state and then selecting a
transition randomly with the uniform distribution on the outgoing transitions of the
states. The random walk terminates with the probability

(
1.0

1 + 2 ∗ outdegree(s)

)
,

after reaching a non terminal state s. Negative traces are obtained by editing the
positive traces by substitution, insertion or deletion of a symbol. The traces are
discarded if the edited versions are still accepted.

The STAMINA framework offers the inference of a set of random DFAs. This
set includes 100 DFAs and the elements on the average have state size 50. For every
problem, participants are provided with the training set, the positive and negative
traces. To conjecture the models from the provided samples, the competitors can
download the sample tests of traces from the online available framework1.

1http://stamina.chefbe.net/home

http://stamina.chefbe.net/home
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Sparsity of the training sample

100% 50% 25% 12.5%

Alphabet size

2 1− 5 6− 10 11− 15 16− 20

5 21− 25 26− 30 31− 35 36− 40

10 41− 45 46− 50 51− 55 56− 60

20 61− 65 66− 70 71− 75 76− 80

50 81− 85 86− 90 91− 95 96− 100

Table 3.1: 5 problems to solve in each cell

The participants were supposed to submit the solutions as binary strings and
one was supposed to use “1” to represent the accepted tests by the learned conjecture
and “0” to represent the rejected tests. The provided examples vary in the difficulty
level depending on the size of the target model’s alphabet and the sparsity of the
provided traces. To infer the state machines, implementation of a well documented
version of the baseline technique, the EDSM Blue-Fringe algorithm [Lang 1998] was
made openly available on the competitions website. The participants were supposed
to add their improvements to online available implementation and evaluate their
variant.

Sparsity of the training sample

100% 50%

Alphabet size

2 MVdPyA/Equipo MVdPyA/Menor
5 DFASAT/DFASAT DFASAT/DFASAT
10 DFASAT/DFASAT DFASAT/DFASAT

20 DFASAT/DFASAT DFASAT/DFASAT
50 DFASAT/DFASAT DFASAT/DFASAT

Table 3.2: Cell winners and best challengers

The grids in Table 3.2 provide data about the competition results. The column
labeled with 100% presents cell winners and underlined are the best challengers for
the competition. The DFASAT algorithm discussed in Section 3.2.4 by Heule and
Verwer was the official winner for the competition.

3.3 Active Learning

For passive learning techniques, one is bound to learn a model from the provided
set of traces. Such traces may not contain all the necessary information about the
behavior of the system. It is not possible for the model inference techniques to learn
a correct model from an arbitrary set of traces. If the provided set of traces includes
sufficient information about an implementation, i.e. what it can do and what it
cannot, then inference techniques will be able to identify every state transition and
distinguish all the non equivalent states from each other. However, considering
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that a provided set of traces is unlikely to contain all the necessary information
about the target implementation, the learned model is a poor approximation of the
real implementation. In effort to solve this problem a number of active learning
techniques have been proposed. Active learning algorithms actively interact with
the system to learn the models. Instead of relying on given traces, these algorithms
can create and perform new tests on target systems and find out how far they might
be from the solution. The mathematical setting where the queries are asked to
an oracle is called active learning. Active learning is used to construct the exact
models of unknown black box systems in different communities. These techniques
continuously interact with the target systems to produce the models.

3.3.1 Overview of the Learning Algorithm L∗

Angluin introduced an active learning model named as the algorithm L∗ [Angluin 1987].
The algorithm queries sequences of inputs known as membership queries to the tar-
get system and organizes the replies in a table named as the observation table. The
observation table row labels are prefix closed access strings for states and columns
are suffix closed distinguishing strings for states.

Table 3.3: An observation table for a machine with Σ = {a, b}

E

ε

S
ε 0
a 1

S · Σ
b 1
aa 1
ab 0

To conjecture a model from the observation table the algorithm requires the table
to be closed and compatible (in the original version of the algorithm L∗, Angluin
named the compatibility concept as consistency). The observation table is closed
if every element of S · Σ is equal to at least one element of S and it is compatible
if two elements of S are equal, then their one letter extensions are also equal. The
conjectured model is iteratively improved with the help of a teacher (oracle) by
asking equivalence queries. If the learned model is correct, the oracle replies “yes”
or a counterexample, otherwise. By taking the counterexample into account, the
algorithm iterates by asking new membership queries and constructing an improved
conjecture until we get the automaton that is equivalent to the black box. The worst
case complexity of the algorithm in terms of membership queries is O(|Σ|mn2),
where |Σ| is the size of alphabet, m is the length of the longest counterexample
provided by oracle and n is the number of states in the inferred model.
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3.3.2 Searching for Counterexamples

After conjecturing the initial model, the algorithm L∗ requires the oracle to provide
the counterexamples. The methods for state space exploration [Keidar 2003] and
functional test coverage [Walkinshaw 2010b] can be used to search for the counterex-
amples. Angluin [Angluin 1987] proposed a random sampling oracle that constructs
a string by selecting elements from alphabet Σ+ and returns string with “yes” or
“no”, yes if the string belongs to the language of the unknown model and no, oth-
erwise. This naive method to search for the counterexamples may return very long
counterexamples and may consume a lot of iterations to find such counterexamples.

Howar et al. [Howar 2010] proposed the Evolving Hypothesis Blocking (E.H. Blocking)
and Evolving Hypothesis Weighted (E.H. Weighted) counterexample searching algo-
rithms. The E.H. Blocking algorithm constructs the strings by randomly selecting
the elements from the set S · Σ, then the continuation of the strings is randomly
generated by increasing length on Σ+ and the constructed strings are candidates for
counterexamples. The E.H. Weighted algorithm uses weights along the transitions
of the conjecture. Every time a transition is traversed the weight gets incremented
and its selection for traversal is inversely proportional to its weight.

Balle [Balle 2010] used the algorithms BalleL1 and BalleL2 to search for coun-
terexamples. To search for counterexamples the algorithm BalleL1 builds the strings
by uniform distribution over alphabet Σ, whereas BalleL2 constructs the strings by
exploring the transitions of the conjecture, the probability that a transition is se-
lected for exploration depends on its destination height.

3.3.3 Processing Counterexamples

Processing the counterexamples is an important part of learning with the learning
algorithm L∗. To process a counterexample CE either the prefixes of CE can be
added to rows S or the suffixes of CE can be added to the columns of the obser-
vation table. The counterexamples processing method by Angluin [Angluin 1987]
requires to add all the prefixes of CE to the rows S of the observation table, which
results in increased number of membership queries. Every prefix of CE is not nec-
essarily a distinct row and some of the prefixes in S may point to equivalent states
thus requiring to check the compatibility for such states and increased number of
membership queries.

Rivest and Schapire [Rivest 1993] provided a counterexamples processing method,
which uses binary search to find a distinguishing sequences from CE and adds the
distinguishing sequence to the columns E of the observation table. This method
always keeps the elements of S distinct and increments the size of S only to make
the table closed, thus compatibility condition is trivially satisfied. The learning
algorithm L∗ keeps the row and column labels of the observation table prefix and
suffix closed, respectively. But the method by Rivest and Schapire does not add
the suffixes of distinguishing sequence thus requiring a compromise on suffix clo-
sure property.
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To alleviate this problem, Maler and Pnueli [Maler 1995] proposed a counterex-
ample processing method, which adds a counterexample and all of its suffixes to
the columns E of the observation table. The resulting observation table is always
prefix and suffix closed and trivially compatible. Shahbaz and Groz [Shahbaz 2009]
identify that to process the counterexample CE, it is not inevitable to add all the
suffixes to E. Their method searches for the longest member of the set S ∪ S · Σ
that is prefix to CE, and after dropping such a prefix from CE adds the suffixes of
remaining part of CE to the columns E of the observation table.

Luque [Luque 2010] proposed a counterexample processing method which oper-
ates like the counterexample processing method by Angluin [Angluin 1987]. The
difference lies at the point of adding the prefixes of CE to rows S of the observation
table. The counterexample processing method by Luque adds the prefixes of CE
one by one to the rows S in the hope that it is not necessary to add all the prefixes
of CE to identify new states.

3.3.4 Executing new Experiments in Canonic Order

Garcia et al. [Garcia 2010] proposed two variants of the algorithm L∗ known as
Depth-M∗ and Breadth-M∗ for the ZULU challenge [Combe 2010]. To calculate
the membership queries, the algorithms require to execute them in canonic order.
The Depth-M∗ algorithm fills the cells of the observation table with a top down
(depth-first) technique by selecting the columns from left to right. After recording
results for every test in the observation table, the algorithm checks for the closure
property. If the table is not closed it moves the row with the newly added cell from
equivalent states part S ·Σ to states part S of the observation table and extends the
table. To make the table closed new rows are added and empty table cells are filled
with top down and left to right approach. This technique is explained with the help
of Figure 3.1 where learning from a sample automaton is presented. The sequence a
is added to columns of tables to process a counterexample (an arbitrary sequence).

Figure 3.1: Learning with the Depth-M∗ algorithm

The Breadth-M∗ algorithm fills the cells of the observation table with a left
to right (breadth-first) technique by selecting the rows from top to bottom. The
algorithm checks for the closure property after recording results for every test in the
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observation table. After making the table closed newly added rows are filled with
the same left to right and top down pattern. This technique is explained with the
help of Figure 3.2 where learning from a sample automaton is presented.

Figure 3.2: Learning with the Breadth-M∗ algorithm

Both of the algorithms Depth-M∗ and Breadth-M∗ operate similarly, if they are
required to ask membership queries for only one column. They operate differently
when they have to calculate queries for multiple columns. The algorithms calculate
queries on the same pattern up to fourth table (from left to right) in Figure 3.1 and
second table (from left to right) in Figure 3.2. After this, the Depth-M∗ algorithm
will calculate the membership query ba · ε, whereas the Breadth-M∗ algorithm has
to calculate aa · a and ab · a before calculating the query ba · ε.

Garcia et al. claim that the behavior of both Depth-M∗ and Breath-M∗ is quite
different and therefore, both are considered as different algorithms.

3.3.5 Tables with Holes

At times while learning with L∗, we may come across situations when we do not have
all the information to conjecture a model and we are required to construct models
from incomplete or sparse observations. We can quite often have such problems,
specifically in learning natural languages. When limited queries are allowed, the
learner may run out of the queries limit with a sparse observation table (we might
consume the entire available query budget before achieving the target model). In
such cases and many others, we need to construct models from sparse observation
tables. A sparse/incomplete observation table is a table, which has holes. A hole in
the observation table is a pair (s, e) where s is an element of the set of rows indices
and e is an element of the set of columns indices of the table such that s ·e = ∗, here
“∗” denotes the empty cells. A table is complete if it does not have any holes and is
incomplete or sparse, if it has holes. To conjecture a model, we need the observation
table to be complete and satisfy the closure and compatibility properties. But for
incomplete tables, it is difficult to check such properties because of sparse cells.

For instance, if we have the observation table presented in Table 3.4, de la
Higuera [de la Higuera 2010] (Grammatical Inference, page 271) proposes a method
to conjecture the models from such tables. The method figures that the entries in
the column labeled with ε decide whether a state in the conjectured model is final
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Table 3.4: An incomplete table

E

ε a b

S

ε 1 1
a 1 1 0
ab 0 0

S · Σ

b 1 1
aa 1 1
aba 0 1 0
abb 1

or non final. Thus, the states qb, qa and qaa are final, and the states qab and qaba are
non final. The corresponding entries for qε and qabb are missing so they are neither
final nor non final. Figure 3.3 shows the conjectured model.

Figure 3.3: The conjecture from Table 3.4

Eisenstat and Angluin [Eisenstat 2010] proposed an algorithm for ZULU compe-
tition [Combe 2010] to learn the challenge problems where participants were allowed
to make a limited number of membership queries. To conjecture a model from a
sparse observation table, the algorithm requires to have all distinct rows in S, which
are the states. If the membership query for the ε column of any of the states has
not been queried, then the algorithm selects it as final or non final from a uniform
distribution over “final” and “non final”. For transitions, if the one letter extension
of a state is equivalent to more than one state in S, then the algorithm selects one
state from a uniform distribution over the set of all such states.

To infer a model from Table 3.4, first of all the algorithm will move all the
distinct states to S. The row aba is not equivalent to any of the distinct states, it is
moved to S and its one letter extensions are added to S · Σ. The queries abaa and
abab for the new added rows can be inferred from known queries (with the help of
dictionaries). The updated observation table is shown in Table 3.5.

To conjecture a model, the algorithm needs to know that the distinct states are
“final” or “non final”. From the observation table one cannot decide about the state



3.3. Active Learning 23

Table 3.5: By moving the row aba to S

E

ε a b

S

ε 1 1
a 1 1 0
ab 0 0
aba 0 1 0

S · Σ

b 1 1
aa 1 1
abb 1
abaa 1
abab 0

ε. Let us say the algorithm selects it as “final” by uniform distribution over “final”
and “non final”. The cell ε · ε is filled with 1. For the transition a from the state a,
it can either go to the state ε or a, one from these is selected. The algorithm uses
this technique wherever required and conjectures the model shown in Figure 3.4.

Figure 3.4: The conjecture from Table 3.5

3.3.6 Optimized Learning with the Algorithm L∗

Different type of optimizations can be introduced to the algorithm L∗ to reduce the
number of membership queries. Hungar et al. [Hungar 2003b] proposed optimiza-
tions to learn models of reactive systems. The states of such systems are accepting
states with all the non accepting strings leading to a sink state, thus the language
defined by such a state machine is prefix closed. Contrary to general languages,
there is no switching from non accepting to accepting states. They introduced fil-
ters which use properties like input determinism, prefix closure, independence and
symmetry of events. They reduce the number of membership queries by getting new
membership queries answered from filters and previously observed answers.

Balcázar et al. introduce observation packs [Balcázar 1997] as a unified view of
the algorithm L∗, discrimination trees of Kearns and Vazirani [Kearns 1994], and
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the counterexample processing method by Rivest and Schapire [Rivest 1993]. They
point out that the conjectured model after processing a counterexample with Rivest
and Schapire [Rivest 1993] method may still classify the counterexample incorrectly
and the same counterexample can be reused to answer several equivalence queries.
Howar et al. [Howar 2010] used observation packs along their improved algorithms
to search for the counterexamples for learning the problems provided by ZULU
challenge [Combe 2010]. Their algorithm was the most efficient one, and asked less
membership queries to learn better models as compared to the other participants
[Eisenstat 2010, Balle 2010, Garcia 2010, Vilar 2010, Luque 2010].

Chaki and Strichman propose three optimizations for the algorithm L∗ based on
assume guarantee reasoning [Chaki 2007, Chaki 2008]. Balcázar et al. [Balcázar 1997]
find that while using the Rivest and Schapire [Rivest 1993] counterexample process-
ing method, a counterexample can be reused to refine conjectured models. The
first improvement by Chaki and Strichman is based on the same observation that
sometimes a counterexample can be reused to improve the conjectured models.

They consider a system composed of two components M1 and M2, and the
components are required to synchronize on a set of shared actions. The system is
supposed to be verified against a property ϕ. The automated assume guarantee
procedure uses a constant assumption alphabet Σ = (Σ1 ∪Σϕ)∩Σ2, Where Σ1, Σ2

and Σϕ are the alphabets for M1, M2 and ϕ, respectively. The unknown language
to be learned is U = L((M1 × ϕ̄) � Σ) over the alphabet Σ.

Their second improvement is based on the observation that most of the mem-
bership queries can be avoided, if the algorithm L∗ exploits the internal knowledge
of M1, M2 and ϕ. This internal knowledge helps the algorithm L∗ to ask the mem-
bership queries in a more intelligent manner. On finding the observation table not
closed, the algorithm L∗ requires to move the row causing unclosure from S · Σ to
S and add all of its one letter extensions to S · Σ. To complete the cells of these
rows, the algorithm requires to ask |Σ| × |E| membership queries. For membership
queries, any ω ∈ Σ∗, let Sim(ω) be the set of states of M1 × ϕ̄ reached by sim-
ulating ω on M1 × ϕ̄ from initial state. Then, ω is in the unknown language iff
any of the accepting states of M1 × ϕ̄ does not belong to Sim(ω). Let En(s) =
{a ∈ Σ|output(Sim(s), a) 6= ∅} be the set of enabled actions from Sim(s) in M1× ϕ̄.
Now, for any e ∈ E and a /∈ En(s), Sim(s · a · e = ∅) guarantees that s · a · e belongs
to the unknown language. Thus, for all the cells of rows s · a where a /∈ En(s) they
directly put “1” and ask membership queries only for the rows s ·a where a ∈ En(s).
The motivation behind this optimization is that the enabled actions size |En(s)| is
usually much smaller than the alphabet size |Σ| for any s.

The third improvement is similar to the one proposed by Gheorghiu et al.
[Gheorghiu 2007], this improvement is based on the assumption that it is always
possibly to complete the verification with the much smaller size of alphabet than
Σ. They start with the empty alphabet and keep refining on the basis of counterex-
amples, this procedure terminates with a minimal alphabet that is sufficient for the
overall verification. Since the overall complexity depends on the size of alphabet, a
smaller alphabet can improve the overall performance. Their improvement reduces



3.3. Active Learning 25

the size of alphabet and states in the learned DFA.

3.3.7 Learning from Membership Queries Alone

Most of the variants of L∗ require asking membership and equivalence queries to
learn the unknown models [Bshouty 1994, Shahbaz 2007, Pasareanu 2008, Aarts 2010a].
However, in the literature we can find some techniques that use only membership
queries to learn the models, like the method proposed by Eisenstat and Angluin
[Eisenstat 2010]. They proposed an algorithm for ZULU competition [Combe 2010]
where the participants were required to learn from the limited budget of member-
ship queries. Their work is inspired from Korshunov’s work [Korshunov 1967], which
implies that in almost all DFAs of n states with input alphabet of size k, a test set
consisting of all strings of length at most about log(k)log2(n) is sufficient to dis-
tinguish all in-equivalent pairs of states. They alter the algorithm L∗ to use such
strings, but for black box models n number of states is not known, so log(k)log2(n)

cannot be calculated. As a solution, their method adds suffixes of length 0, 1, 2, . . .

until the budget to ask the queries is exhausted. The method starts by adding empty
string to columns of the observation table and carries on adding incrementing suf-
fixes. When most of the suffixes of a certain length are added, then the length of
the suffixes getting added to the observation table is incremented.

3.3.8 Learning from Counterexamples Alone

The complexity of the target model is measured by two parameters: the number of
inputs Σ and the number of states n. Angluin claims that equivalence queries alone
are not sufficient to learn the target models [Angluin 1990] though her L∗ learn-
ing algorithm learns the models with a minimally adequate teacher [Angluin 1987].
Ibarra and Jiang [Ibarra 1991] show that membership queries are not needed for
DFA inference if one puts additional information to the answers of the equivalence
queries. They show that DFA models can be learned from |Σ|n3 smallest counterex-
amples. Birkendorf et al. [Birkendorf 1998] improve these results by presenting a
new algorithm named as REDIRECT, which requires only |Σ|n2 smallest counterex-
amples. To get started REDIRECT requires a first partially correct DFAM1. They
suppose the DFAs M1

1 and M0
1 as shown in Figure 3.5, where ε denotes the empty

string.

Figure 3.5: Initial DFAs M1
1 and M0

1 for Σ = {0, 1}. State qε is accepting in M1
1

and non-accepting in M0
1 .
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The state diagrams consist of a single state qε with the edges qε
a→ qε for all

a ∈ Σ. Thus, M1
1 and M0

1 are acceptors of ∅ and Σ∗. Let M∗ and Mk denote the
target unknown DFA and learned DFA, respectively. Now M0

1 is partially correct if
M∗(ε) = 0 orM0

1 is partially correct, otherwise. Thus, by using one counterexample
to determine M∗(ε), M1 can be set to M

M∗(ε)
0 . If mincex(M1,M∗) denotes the

smallest counterexample for M1, then the algorithm proceeds by finding a smallest
counterexample c1 = mincex(M1,M∗). They prove that their algorithm requires at
most |Σ|n2 counterexamples.

3.3.9 Mealy Adaptation of the Algorithm L∗

Mealy machine models are more appropriate to model the systems that reply with
outputs, e.g. online commerce, communication protocols, web services, etc. The
transitions of Mealy machine models are labeled with input/output (i/o) instead
of DFA that are labeled with only input symbols. The (i/o) models (Mealy ma-
chines) are more appropriate to model reactive systems [Aarts 2010b, Bohlin 2009].
Bohlin, and Aarts et al. used Mealy inference to infer the models of communication
protocols [Aarts 2010b, Bohlin 2009]. Mealy machines need less states and queries
than DFA to model the same problem [Niese 2003, Hungar 2003b]. For Mealy ma-
chine models, the distinction between accepting and non accepting states is not like
DFA models, rather Mealy machine states are distinguished by real outputs that
they produce for a given input for a specific state. The algorithm L∗ was adapted
formally [Niese 2003, Berg 2005a, Shu 2007, Shahbaz 2009, Bohlin 2009] and infor-
mally [Pena 1998, Margaria 2004] to infer the Mealy machine models. To annotate
transition edges of (i/o) models, the Mealy adaptation of the algorithm L∗ requires
to initialize the columns of the observation table with the input set I. The concepts
to make the observation table closed and compatible before conjecturing a model
remains the same.

3.3.10 Optimized Mealy Inference

Cho et al. [Cho 2010] noticed that the Mealy adaptation of the algorithm L∗ asks a
number of output queries that are independent from each other and can be executed
in parallel on their case study (a network protocol). They implemented a file named
as query cache to collect the parallel query responses, this file stores pairs of input
strings and corresponding output sequences. Their implementation issues output
queries in parallel and processes the responses sequentially. They divided the queries
among 8 machines, which emit them independently in parallel to run them on the
network. The deterministic assumption enables them to avoid asking duplicate
queries that can be calculated from cached responses.

They identified that there is a significant amount of redundancy in the learning
process due to the states that have self loops. These loops increase the number of
queries for model inference without identifying new states. They believe that there
are two factors that result in a number of self loops for network protocol model
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inference:

– One needs to calculate the outputs for all inputs at every state as the target
is to learn the complete models. Most of the protocols use every message for
a dedicated task, which means that asking an unexpected input from a state
leads to the error state or is ignored while remaining on the same state.

– The protocol interaction messages are supposed to be abstracted to input
and output alphabet before the protocol model is learned. The abstraction
overestimation may increase the redundancy in the model (e.g. increase the
number of self loops that can not be eliminated before the model is learned).
Reducing the input alphabet size may result in over simplified models.

They propose that a distinct state d (where d ∈ S, S the upper part of the
observation table) with self-loops will have many equivalent rows in S · I (the lower
part of the observation table). The responses for these equivalent rows can be
predicted from the responses for d. To explain the intuition for response prediction,
they use an example with states having a number of self loops. They propose a
two level heuristic for predicting the query responses. The first level named as
restriction-based prediction exploits the fact that protocols can have states with
number of self-loops, for predicting the output query answers. The second level
called probability-based prediction exploits input determinism (same input sequences
result in same output sequences). The prediction errors are detected by random
sampling. If an error is detected, the algorithm backtracks to the step with the first
output query with an erroneous response and continues the learning process after
fixing that error. They use same sampling queries to detect new states and to fix
the wrong predictions.

3.3.11 Learning NFA Models

In many testing and verification applications the learned non-deterministic finite
state automata (NFA) models are exponentially smaller than the corresponding DFA
models. So there is a significant gain, when we use learning algorithms that learn the
models as succinct NFA instead of DFA. But the issue is that the class of NFA lacks
the significant properties that most of the learning algorithms available in the litera-
ture use. For a given regular language there is no minimally unique NFA, so it is not
clear which of the automaton is required to be learned. Denis et al. [Denis 2002]
introduced a subclass of NFA, the residual finite state automata (RFSA), which
shares important properties with the DFA class. For example, there is unique mini-
mal canonical RFSA for all the regular languages accepting them, which is more suc-
cinct than the corresponding DFA. Bollig et al. [Bollig 2008, Bollig 2009] proposed
an active learning algorithm NL∗ which learns the RFSA models. This algorithm
alters the Angluin algorithm L∗ to learn the RFSA models using the membership
and equivalence queries. The NL∗ algorithm requires O(n2) equivalence queries
and mn3 membership queries where n is the minimal number states in the target
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model and m is the length of the longest counterexample provided by the oracle.
They introduced the concepts of Composed and Prime Rows to redefine closure and
compatibility as RFSA-Closure and RFSA-Compatibility, respectively. They imple-
mented the algorithm and used it to learn the regular languages described by the
regular expressions. For the considered set of experiments, in most of the cases, they
observed that they required very few membership and equivalence queries as com-
pared to L∗, and the RFSA learned by the NL∗ algorithm were much smaller than
the corresponding DFA learned by the algorithm L∗. Yokomori [Yokomori 1994]
has also shown that a specific class of NFA, called polynomially deterministic, is
learnable in polynomial time using membership and equivalence queries.

3.3.12 Framework for Evaluating Active Learning Techniques

In the context of active learning, numerous algorithms have been developed to infer
the unknown models as state machines. It is complicated to decide which one
is better amongst them, as different algorithms may perform better in different
settings. If we want to work on a given problem, then finding all the possible
solutions available in the literature is a difficult task. Furthermore, the research
community is growing and working fast and always we have the possibility of better
recently proposed solutions. One of the possible solutions to all such problems
can be development of a framework, which can evaluate the solutions and bring
the community closer to provide an opportunity to have a look at other solutions.
Similarly, there could be a common source where all contributions on a specific
subject are recorded and evaluated, e.g. the bibliographical study of grammatical
inference [de la Higuera 2005] and grammatical inference for learning automata and
grammar [de la Higuera 2010].

The finite state machine or grammar learning competitions like the Omphalos
Context-Free Grammar Learning Competition [Starkie 2004], the Tenjinno Machine
Translation Competition [Starkie 2006] and ZULU: An interactive learning compe-
tition [Combe 2010] are the efforts in this regard. The ZULU challenge provides an
online deployed framework for evaluation and comparison of active learning state
machine inference approaches. It is a challenge to test the algorithms more specif-
ically the variants of Angluin’s algorithm L∗ [Angluin 1987]. The baseline of the
framework implemented in Java, is based on the algorithm L∗ and is openly avail-
able on the ZULU challenge website [Challenge b]. Randomly generated machines
have often been used to assess testing techniques, e.g. work by Sidhu and Leung
[Sidhu 1989], Yevtushenko and El Fakih [Dorofeeva 2005], Berg et al. [Berg 2005b],
more recently by Bollig et al. [Bollig 2009]. For the ZULU challenge the minimal
DFAs were generated randomly with variation on number of states and alphabet size.
The problems were divided into 12 different categories, by different combinations of
“small, medium and large” states and alphabet sizes combined with the number of
allowed queries. The ZULU framework operates with the concept of two oracles; the
first oracle can be accessed by a participant after getting registered. The participant
can then request for a target DFA. The oracle computes the number of membership
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queries k required to learn a reasonable machine and offers the participant to learn
that machine with k membership queries. Here reasonable means a machine with
less than 30% classification errors. The second oracle interacts with a participant
and answers to k queries. Once, the participant has learned a state machine for the
provided task. Now in order to judge the correctness of the participant’s technique,
the oracle generates 1800 strings and sends them to the participant. The participant
runs these 1800 strings on his learned conjecture and records the results as “yes” or
“No”, (“Yes” for accepted strings and “No” for the rejected strings) and sends the
result to the oracle. The oracle receives the 1800 labels along with answers and
computes the score.

Figure 3.6: ZULU challenge results.

There were 23 competing algorithms registered by 11 players, Figure 3.6 shows
the results for all the 24 tasks which were grouped in 12 categories. The figure
presents only the best results by any of the algorithms. The winners were calcu-
lated by averaging at the performance of the algorithms in all of the 12 categories.
The algorithm by Howar et al. [Howar 2010] was ranked first, the algorithm from
Balle [Balle 2010] was the second, and the algorithm by Eisenstat and Angluin
[Eisenstat 2010] was rated third.

3.4 Applications of Model Inference

Grammatical inference has a number of applications like machine learning [Mitchell 1997],
speech recognition [Jelinek 1997] and formal language theory [Harrison 1978]. Soft-
ware model inference from implementations has been used for software testing
[Niese 2003, Shu 2007, Raffelt 2009, Bué 2010], specification mining [Xie 2004] and
model checking [Peled 1999, Berg 2005c, Elkind 2006]. It can be used to find be-
havior of software systems where specifications are missing [Peled 1999].
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3.4.1 Specification Mining

The high level specifications can be extracted from the existing code of components
and can be used for understanding the components. The specifications can also be
used for formal verification and regression testing of programs or software compo-
nents. A model of well functioning system captures properties of the system which
can be considered as specification of the system. Mining specifications is a well
known technique and in the literature, we can find significant number of contri-
butions on the subject, which can be divided into dynamic and static approaches.
From event traces, the finite state machine based models can be extracted. There
are techniques which consider the general problem of extracting finite state machine
based models from the event traces like Cook and Wolf [Cook 1998]. They take the
model inference problem as well-known grammar inference problem [Gold 1967] and
discuss algorithmic, statistical and hybrid approaches. Mining the specifications can
be used for automatic verification of the programs; in this regard there is a contri-
bution from Ammons et al. [Ammons 2002]. The proposed approach addresses C
programs and learns the models as probabilistic finite state automata. For static
mining specification techniques, there is a rich body of literature. There are tech-
niques which mine object usage models that describe the usage of an object in a
program [Wasylkowski 2007]. Wasylkowski et al. [Wasylkowski 2007] apply concept
analysis to find code locations where rules derived from usage models are violated.
Ramanathan et al. [Ramanathan 2007] use an inter-procedural path sensitive anal-
ysis to infer preconditions for method invocations. Shoham et al. [Shoham 2007]
discover that static mining of automata based specifications requires precise aliasing
information to produce reliable results.

To have specifications reflect normal rather than potential usage, dynamic spec-
ification mining observes executions to infer common properties. Typical exam-
ples of dynamic approaches include DAIKON [Ernst 2001] for invariants or GK-tail
[Lorenzoli 2008] for object states. The issue with these approaches is that they
are limited to the possibly small set of observed executions. If a piece of code is
not executed, it will not be considered in the specifications, if it is executed only
once, we do not know about alternative behavior. To address this problem, test
case generation to systematically enrich dynamically mined specifications is used.
Combined this way, both techniques benefit from each other: Dynamic specification
mining profits from test case generation, additional executions can be observed to
enrich the mined specifications. Test case generation, on the other hand, can profit
from mined specifications, as their complement points to yet unobserved behavior.

The idea of combining test case generation with specification mining was con-
ceived by Xie and Notkin [Xie 2004]. They presented a generic feedback loop frame-
work where specifications are fed into a test case generator, the generated tests are
used to refine the specifications, and the refined specifications are again given as in-
put to the test case generator. Dallmeier et al. [Dallmeier 2010] extended this work
by providing an implementation of the framework for type state mining, as well as
an evaluation of how useful enriched specifications are for a real-world application.
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The initially mined specifications by their technique contain only observed transi-
tions. Then, to enrich the specifications, the TAUTOKO tool generates the test
cases to cover all possible transitions between all observed states and thus extracts
the additional transitions from their executions.

Michael Pradel et al. [Pradel 2010] present a framework for the systematic eval-
uation of different specification mining approaches. They tailor the metrics for
accounting incompleteness and imprecision in mined specifications. Their frame-
work consists of two parts: i) a mechanism that helps to formalize the knowledge of
API usage constraints. On the basis of these formalizations the framework generates
FSMs that serve as a reference for evaluation of mined specifications. ii) the metrics
for computing precision and incompleteness. The precision indicates about the cor-
rectness of mined specification. Bogdanov and Walkinshaw proposed an algorithm
[Bogdanov 2009] to structurally compare two FSMs. Their algorithm selects pairs
of states, one from each of the machines under consideration with similar incoming
and outgoing transitions and then expresses the difference between the FSM s in
terms of added and removed transitions, whereas the framework from Pradel et al.
compares the languages accepted by two FSMs.

3.4.2 Integration Testing

The fact that the integration of good quality components may not give rise to
the good quality software systems yields the importance of integration testing. It
may be complicated to cover all interactions between components to discover all
possible errors and it can be more complicated when the provided components lack
the source code and formal models. In such circumstances the learning and testing
techniques to test the integrated systems [Li 2006, Groz 2008, Shahbaz 2008] can be
very helpful. For integration testing the test cases are constructed following some
test generation strategy. The selected strategy is built on some coverage criteria.
These techniques explore how the components interact with each other in a system.
Learning and testing individual components is not reliable. Indeed, the learned
models are partial and they cannot depict integrated systems completely. With the
integration of components the system may experience the issues like dead-locks and
live-locks, which can be detected and tested in the integrated systems.

Groz et al. [Groz 2008] address the problem of testing intermittent errors for
communicating components when models of components are not available. They
propose a technique named as k-quotient to infer models of software components
where k is based on state distinguishability. These models are used to detect compo-
sitional problems and intermittent errors. They perform reachability analysis of the
learned models to identify traces of compositional errors like unspecified receptions,
live-locks, and races.

Shahbaz [Shahbaz 2008, Shahbaz 2011] presents the integration framework for
software systems developed from black box components using their partially learned
models. The testing activity gives the results in two directions. The component
models are iteratively refined after finding the discrepancies between the learned



32 Chapter 3. State of the Art

model behavior and the original system. Secondly during testing compositional er-
rors can be discovered. The proposed framework assumes that architecture of the
system under test SUT is known, it is known that how the components are bound
together through their interfaces and the SUT can be assembled and disassembled
at the testers will. It considers a system built from black-box components which
communicate asynchronously through their input output interfaces. The interfaces
of the SUT are distinguished as internal and external interfaces. The internal inter-
faces are the interfaces with which the components of the SUT interact with each
other, whereas the external interfaces are the interfaces through which the SUT
interacts with the environment. The internal and external inputs and outputs are
distinguished with the help of these internal and external interfaces. These inter-
faces are observable, external interfaces are controllable, whereas the internals are
not. This means that the interaction between the components of the SUT can be
monitored but cannot be interrupted in the integrated system. This framework
assumes that the SUT is input deterministic and input enabled. On receiving an
input on any of the states, only one transition labeled with that input is enabled and
produces an observable output. The system is in a stable state when none of the
SUT component’s transitions is enabled. The SUT can accept the external inputs
only when it is in a stable state. The components are black boxes but their input
set is always known and the models of these components can be learned as finite
state machines. The five steps of this approach are explained in Figure 3.7.

Figure 3.7: Learning and testing approach for integrated systems.
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At first a complex integrated system is disassembled into components to learn
and test each unit component in isolation. Then, at the second step, from the
learned formal models of the components, the product of the unit models is con-
structed. This product may partially present the SUT, therefore it is analyzed for
the compositional problems. If a problem is reported it is confirmed on the SUT, if
it is confirmed, then procedure terminates after reporting it. If it is not confirmed,
then it is an artifact and the problem is considered as counterexample for refining
the conjectured model. At step three the product of the learned models is refined
by relearning some components after which the second step is again repeated. At
step four, tests are generated from the product of the formal models of the compo-
nents of the SUT, which contains no compositional problems as it was verified at
the initial stages. The generated tests are confirmed on the SUT, if any discrepancy
is reported, then proceed to step five. At step five, the discrepancy is resolved either
by reporting it as an error or a counterexample. If it is a counterexample, then
conjectured model is refined by moving to step three. This procedure is repeated
until any compositional problem, real error or no discrepancy between the product
of the learned formal models of the components and SUT is reported.

3.4.3 Dynamic Testing

Grammatical inference can be used for dynamic testing [Raffelt 2009]. Raffelt et
al. [Raffelt 2009] used Integrated Test Environment (ITE ) [Niese 2001] along the
Learnlib framework [Raffelt 2005, Raffelt 2006, Raffelt 2008] to propose a dynamic
testing method. They improve the practicality of their technique by integrating
the common record and replay testing. They use ITE for recording and replay-
ing the test cases and the Learnlib framework for model inference. The jABC
framework [Margaria 2005b, Steffen 2006] is used to graphically model the entire
learning process that includes modeling conditional and interactive behavior of the
system under test.

They used the web based bug tracking case study [Tracker ] to illustrate the
features of their technique. Their technique successively explores the system under
test SUT to infer a behavioral model and the model is used to steer the further
exploration. The technique traverses the SUT like real human users. It retrieves
and analyses the web pages by using an application like a web robot along SUT ’s
functionality. It considers the dynamic behavior of SUT along the static elements
like URL. For example, the operations like change password and update file are
visible in the next test run and the technique adapts according to the changed
scenario.

The ITE environment provides the Webtest testing solution which facilitates to
record and execute tests for web applications. The Webtest is a support tool for
dynamic testing of web applications using the machine inference. The capabilities
of Webtest can be summarized as the identification and execution of test actions
(the inputs), recording test cases, replaying the test cases, and integration of all the
collected information into dynamic testing process. The inputs are captured and
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defined by guiding the user through the process of configuring the desired actions
interactively with a browser. The test cases can be recorded in modeling or harvest-
ing mode. In modeling mode the available actions are displayed as trees. The test
engineer can select one action and append it to executable graph after configuring
it. However, in harvesting mode actions are recorded while the test engineer browses
the SUT. The recorded tests are executed with the help of a browser component
that exposes an interface to trigger the desired actions on a web page.

The dynamic testing framework uses the Learnlib framework along the ap-
plication and structure specific optimizations to reduce the number of test cases
[Hungar 2003a, Margaria 2005a]. The Learnlib framework starts learning by initial-
izing the algorithm L∗. The algorithm asks the tests, that are executed via the SUT
interface. The test cases are executed by repeatedly using the ITE and replies are
recorded. While learning the web applications, every page may lead to new actions
(inputs) by offering new hyperlinks and forms. This dynamic alphabet handling is
done as follows: after recording the replies for tests, if the alphabet size has been
changed, the previous step is repeated, otherwise, the algorithm L∗ conjectures a
model after making the observations closed and compatible (as discussed in Sec-
tion 3.3.1). The equivalence between the conjectured model and SUT is done by
checking the test suite generated by using the WpMethod [Fujiwara 1991]. If the
conjectured model is not correct the learning process continues, otherwise, the test
engineer can decide to introduce further actions and refine the abstraction level.

3.4.4 Communication Protocol Entities Models

Communication protocol entities models can be learned from the external behaviors
of protocols. Aarts et al. [Aarts 2010b] proposed a framework which uses model
inference to infer models of communication protocols. They use the Learnlib model
inference framework [Raffelt 2005, Raffelt 2006, Raffelt 2008] along ideas from pred-
icate abstraction [Loiseaux 1995, Clarke 2003] to infer the models as Symbolic Mealy
machines. They implemented their approach to infer models of the Session Initiation
Protocol (SIP) and the Transmission Control Protocol (TCP). To infer the proto-
col models they use the Network Simulator ns-2 [The Network Simulator - ns-2 ],
which provides implementation of many network protocols. The SIP protocol is an
application layer protocol that is responsible for creating and managing multimedia
communication sessions. They infer the behavior of the SIP server entity at the
time of establishing connections with a SIP client. The input messages from the
client to the server are represented as Method(From, To, Contact, CallId, CSeq,Via),
where

– Method defines the type of request that can be INVITE, PRACK, or ACK,

– From and To are addresses of the originator and receiver of the request,

– CallId is an unique session identifier,

– CSeq is a sequence number that orders transactions is a session,
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– Contact is the address where the Client wants to receive input messages, and

– Via indicates the transport path that is used for transaction.

The output messages from server to client are represented as StatusCode(From,
To, Contact, CallId, CSeq,Via), where, StatusCode is a three digit status code that
indicates the outcome of the previous request.

They constructed an abstraction mapping, which maps each parameter to an
abstract value for server. Before starting a session with The Network Simulator ns-
2 the parameters From, To and Contact are configured and they remain constant
for the whole session duration. The parameter Via consists of default address and
variable branch. The Network Simulator ns-2 implementation retains the values of
CallId, CSeq and Via parameters that it received in the first invite message and it
also retains these parameters for the most recent input message but after producing
an output these parameters are omitted. This is the reason for the abstraction they
use 6 state variables. The variables firstId and lastId, firstCSeq and lastCSeq, and,
firstVia and lastVia store the values for CallId, CSeq, and Via, respectively. For
their experiment, the Learnlib framework asked about one thousand output queries
and one counterexample to conjecture a model of 10 states and 70 transitions.

Bohlin et al. [Bohlin 2010] developed a technique that infers symbolic Mealy
machines using user supplied criteria for forming state variables and control loca-
tions to override the default ones. They generated a model of the Mobile Location
Center (A-MLC ) protocol by using their technique. The A-MLC protocol is a com-
mercially available middleware software product that enables the mobile network
operators to identify the current information about the current status, geographi-
cal location and mobile telephone device details. The protocol is implemented in
Erlang [Armstrong 2007]. They selected A-MLC because they had access to the
executable specification of A-MLC which is created to improve the understanding
of developers and testers. They were able to conjecture the models by executing the
output queries and comparing the conjectured models to the provided models, this
made A-MLC case study more appropriate for their research.

3.4.5 Security Testing

Cho et al. [Cho 2010] propose a technique to infer Mealy models of botnet Command
and Control (C&C) protocols. A botnet is a network which consists of hosts remotely
controlled by botmasters to carry out important activities like protecting personal
information and spamming by denying the unauthorized access. They show that
inferred machines enable to analyze formally the botnet defense. Mainly, they show
three things:

– How models can be used to identify the weakest links in a protocol when mul-
tiple pools of bots partially share the same source. These weakest links are
critical for normal functioning of one or more participating agents in commu-
nication.
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– The inferred Mealy models can be used to discover the protocol design flaws.

– How models can be used to prove the existence of unobservable communication
back-channels among botnet servers.

They analyzed the MegaD mass spamming botnet model and discovered a design
flaw that was not known previously. They identified the important components of
the botnet that are shared among multiple pools of bots by analyzing the critical
links. By analyzing the back channels they prove that the MegaD servers commu-
nicate with each other.

The implementation of their technique consists of a bot emulator (a script written
by them) and the algorithm L∗ along the optimizations. The bot emulator receives
the output queries from the learning algorithm and concertizes the output queries
to valid protocol messages. After receiving a response from the botnet server, the
bot emulator abstracts the responses to strings of output alphabet and provides
such strings to the learning algorithm. They build the bot emulator from scratch
in order to ensure that it does not perform any malicious activity. They designed
experiments carefully so that they do not cause any harm to any party involved (e.g.
the bot emulator carefully avoids constructing corrupted messages).

For their experiments the response messages were deterministic except for one
exception: sometimes the master servers reply with an arbitrarily long sequence
of INFO messages that always terminate with a non INFO message. Their infer-
ence infrastructure discards all the INFO messages and treats the first non INFO
message as a response. This was the only source of non-determinism. They used
sampling based approach for counterexamples search by generating uniformly dis-
tributed strings of input messages. Their implementation makes the table closed and
conjectures a Mealy machine model, which is tested iteratively through sampling
until the complete model is attained.

3.5 Problem Statement

The algorithm L∗ can be used to infer the models of software black box imple-
mentations. It uses the minimally adequate teacher to answer two types of ques-
tions: membership queries and correctness of a conjecture. The algorithm L∗ can
be adapted to learn Mealy models directly and the Mealy adaptation asks output
queries instead of membership queries [Niese 2003, Shahbaz 2009]. We search for
answers to the following questions.

1. Can we reduce the impact of non optimal counterexamples?

2. Can we reduce the number of output queries required to infer a software
black box model?

3. Can we learn models without using counterexamples?
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For black box model inference, to reply about the correctness of a conjecture,
the minimally adequate teacher is substituted by a random sampling oracle. The
counterexamples provided by the random sampling oracle may include some futile
prefixes to the actual distinguishing sequences. Can we get rid from these useless
sequences? This gives rise to the Suffix1by1 counterexample processing method
[Irfan 2010c].

– The Suffix1by1 counterexample processing method adds the suffixes of a coun-
terexample to the columns of the observation table to find all distinguishing
sequences from the counterexample.

The Mealy adaptation of L∗ requires less queries as compared to L∗ for inferring
the model of the same problem [Niese 2003, Hungar 2003b, Shahbaz 2009]. The
Mealy adaptations of L∗ initialize the columns of the observation table with the set of
inputs. The columns of the observation table contain distinguishing sequences. Are
all of the inputs set elements distinguishing sequences for states of target models?
Like L∗, on finding a distinct state the Mealy adaptations of L∗ add its one letter
extensions to the rows of the observation table. All of the inputs are not valid for
every state of software applications. Should we add the rows to the observation
table for an invalid one letter extension of a state (invalid state successors)? All
these factors are the motivation for the algorithm L1.

– Initially, the algorithm L1 keeps the columns of the observation table empty
and the size of the columns of the observation table augments only to process
counterexamples. It uses the Suffix1by1 counterexample processing method
to process the counterexamples. The algorithm keeps only valid one letter
extensions of the distinct states (valid state successors) in the rows of the
observation table.

If an output query is asked again to a deterministic system, it will reply the same
answer as it replied previously. The construction of output queries for some cells of
the observation results in similar output queries or prefix to the output queries for
other cells. Recording the answers for output queries in dictionaries helps to avoid
recalculating the output queries. The answers for output queries that are prefix
to already calculated output queries can be inferred from the dictionaries. This
motivated us for the following heuristic to calculate output queries.

– Instead of calculating the output queries according to their order of cells in
the observation table, calculate an output query that can answer a greater
number of other unanswered output queries.

The random sampling oracle replies with non optimal counterexamples. One
solution as we have seen is to process the counterexamples efficiently, another so-
lution is to avoid using these counterexamples. The GoodSplit algorithm learns
the DFA model by taking a bound on the number of membership queries added
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to the observation table. This algorithm initializes the rows and columns of the
observation table with inputs set and then following a greedy choice fills the cells of
the observation table to find distinct rows (states). Mealy variants of L∗ require a
smaller number of output queries as compared to the algorithm L∗. This motivated
us for the Mealy adaption of the GoodSplit algorithm.

– We present the Mealy adaptation of the GoodSplit algorithm named as the
learning algorithm LM-GS . The greedy choice proposed for the GoodSplit
algorithm is applicable to the boolean queries. We propose a greedy choice
for LM-GS that helps the algorithm to find distinct rows fast. The algorithm
LM-GS wherever possible uses the improved heuristic to decide about the
calculation order of output queries.

3.6 Contributions

The summary for each of the main contributions is provided in the following.

3.6.1 Optimized Counterexample Processing Method

The Suffix1by1 algorithm operates with the spirit of Rivest and Schapire [Rivest 1993],
Maler and Pnueli [Maler 1995], and Shahbaz and Groz [Shahbaz 2009] algorithms.
Instead of adding prefixes of a counterexample to the rows of the observation table
like Angluin’s method [Angluin 1987], it adds the counterexample suffixes to the
columns by increasing length (one by one). After adding every suffix, the observa-
tion table is completed and the closure property is checked. The algorithm continues
adding suffixes until a suffix is found, which makes the table not closed and forces
refinement. On finding such a suffix, this method stops adding the suffixes to the
columns of the observation table. Now, the algorithm makes the table closed by
finding a row, which is not equivalent to any of the distinct rows. This row is moved
to distinct rows part of the observation table and its one letter extensions are added
to the observation table. The process is iterated to make the table closed. Like
Rivest and Schapire, Maler and Pnueli, and Shahbaz and Groz, in the upper part of
the observation table this method keeps the non equivalent distinct rows. Therefore
the observation table is always compatible. On finding the table closed, a conjecture
is constructed from the observation table.

At this stage, the algorithm has processed only one distinguishing sequence from
the counterexample. There is a possibility that the counterexample string includes
other longer distinguishing sequences. Thus, the counterexample is tested on the
conjecture. If required, the process of adding sequences from the counterexample is
resumed and continued until all of the distinguishing sequences are added.

The Suffix1by1 method adheres to all the qualities of the existing counterexample
processing methods. It adds the distinguishing sequences from a counterexample
like Rivest and Schapire, it keeps the observation table suffix closed like Maler and
Pnueli, and it removes the useless counterexample prefixes like Shahbaz and Groz.
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3.6.2 Optimized Mealy Inference Algorithm

The Mealy variants of the algorithm L∗ [Niese 2003, Li 2006, Shahbaz 2009] on
pattern of the algorithm L∗, use an observation table to record answers of output
queries asked to the teacher. These learning algorithms initialize the columns with
the elements of inputs set to construct the transition tables for conjectured models.
The columns of the observation table are distinguishing sequences for the states
of the target models. If the size of inputs set is large, then all of the elements of
the inputs set may not be distinguishing sequences. If we initialize the columns of
the observation table with a large number of inputs, then it will result in requiring
a greater number of output queries. The optimized Mealy inference algorithm L1

keeps the columns empty and adds only distinguishing sequences (of target model
states) and their suffixes to the columns of the observation table. The suffixes are
added to keep the observation table suffix closed. Angluin used the prefix closure
and suffix closure properties of the observation table to prove the correctness of a
conjecture [Angluin 1987].

The Mealy adaptations of L∗ initialize the columns with inputs for transition
table of conjectured models. For transition tables, the algorithm L1 records the
output for the last input sequence of the access strings labeling the rows of the
observation table. The Mealy inference algorithms assume that target models are
input enabled as on identifying a distinct state it has to find its successor states for
every input (all the one letter extensions). But for software applications, valid inputs
for every state are smaller than the set of all inputs. For L1 the output recorded
along access strings helps to identify that an access string is valid or invalid, and only
valid access strings are kept in the observation table. The algorithm L1 augments
the columns size of the observation table only to process the counterexamples, i.e.
columns of the observation table contain only the distinguishing sequences, and
sequences to keep set of column labels suffix closed. To process counterexamples L1

uses the Suffix1by1 counterexample processing algorithm.
This algorithm does not initialize the columns with I and adds only those ele-

ments from I to the columns that are required to distinguish the target model states.
For the rows of the observation table this algorithm adds only state successor access
strings for valid inputs.

3.6.3 Organizing Output Queries Calculation

For model inference, we are supposed to calculate a set of output queries to complete
the observation table. The improved method calculates the number of prefix output
queries of every output query that belong to the set. Then, an output query is
chosen to maximize the number of prefix output queries for every output query.
The output query is calculated and its answer is recorded in the dictionaries. The
output query and its prefixes are removed from the set and their answers are updated
in the observation table. This process is iterated until the set is empty.
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3.6.4 Mealy Inference Without Using Counterexamples

The DFA inference algorithms can learn the i/o systems (the software black box
implementations) by model transformation techniques by taking the union or cross
product of inputs set and outputs set as alphabet. The alphabet size plays a key
role for the complexity of the algorithm. The increased size of alphabet results
in an increased time complexity of the algorithm. We propose the Mealy inference
algorithm LM-GS which learns i/o systems directly. To fill the observation table, the
algorithm asks output queries to the teacher instead of membership queries, using
the main settings from the GoodSplit algorithm. The length of sequences added
to the columns of the observation table by LM-GS is ≤ l and initially l is 1. The
algorithm initializes the columns and rows with the inputs set. Then, it calculates
some of the output queries for the observation table, while keeping the other cells
empty. All of the output queries are not calculated as the algorithm targets at
learning models by consuming less output queries. After calculating 80% of the
table cells the algorithm increments l. The examples that we have learned, filling
80% of the cells was sufficient to learn correct models. However, the decision about
the number of observation table cells filled and empty is based on target models and
it can be changed to adapt in accordance with a target model. This algorithm uses
the heuristic explained in Section 3.6.3 to get answers for more output queries by
calculating fewer queries.

Like L1, the algorithm LM-GS on identifying a distinct state, keeps only valid
access strings (for the state successors) in the observation table. Thus, it avoids to
calculate the output queries for the rows labeled with invalid access strings. While
adding new rows and columns, LM-GS updates the output query answers that can
be inferred from the dictionaries.

In order to construct the transition table, every one letter extension of a distinct
row (state) should be a distinct row or at most consistent with one distinct row.
Two rows of the observation table are consistent: if the cells of the rows for all of the
columns are calculated, then they are equal. Since all of the table cells are not filled,
the observation table can have a row that is consistent with more than one distinct
state. If we calculate output queries for all of the cells of the row, then immediately
we would be able to figure out the corresponding distinct state. But we do not
want to consume too much output queries. The algorithm greedily calculates the
output queries for the row to find out the corresponding distinct row. The process
is iterated until every row becomes distinct or consistent with at most one distinct
row.

The algorithm LM-GS assumes that it knows a bound on the number of states
of a target model and when distinct rows size becomes equal to this bound, the
algorithm terminates by conjecturing a model. This algorithm is based on the re-
sult from Trakhtenbrot and Barzdin [Trakhtenbrot 1973] which indicates that a test
set consisting of all strings of length at most about logglogh(n) is sufficient to dis-
tinguish all distinct states in almost all complete finite state machines, where n is
the number of states, g is the number of inputs and h is the number of outputs.
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However, if the number of states for a target system are known, we can also cal-
culate the number of membership queries required for inferring the model of the
system [Domaratzki 2002].
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Angluin introduced the active learning model [Angluin 1981] that infers the mod-
els from the answers of queries asked to a teacher. She proved that regular languages
can be learned with a polynomial amount of queries [Angluin 1987], the name of
the proposed algorithm is L∗. Model inference with the algorithm L∗ is a form
of machine learning that focuses on induction of formal models. Such induction is
particularly useful for learning abstractions of software systems through queries.

In the first section of this chapter, we provide a detailed description of the algo-
rithm L∗ along the data structure used for recording the observations and complexity
analysis. The second section shows how the algorithm L∗ infers the input/output
(i/o) models and how the optimizations adapted for the algorithm L∗ enable it to
learn models with fewer queries. The third section presents the Mealy adaptation of
the algorithm L∗, and the altered data structure used to record the query answers
and complexity analysis. The final section provides a conclusion for the chapter.

4.1 The Learning Algorithm L∗

The learning algorithm L∗ by Angluin [Angluin 1987] can learn the models of black
box implementations. This algorithm assumes the formal model of black box im-
plementations as unknown regular language and this language is learned with the
following assumptions:
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– the alphabet set Σ is known,

– and the target black box implementation can be reset before executing a query.

The algorithm L∗ infers the model of a target black box implementation using
the input alphabet Σ of the black box. The algorithm queries sequences of inputs
to the black box and organizes the replies in a table known as the observation table.
The rows and columns of the observation table are labeled with prefix closed and
suffix closed sets of strings, respectively. This algorithm is based on two kinds of
interactions with the black box: membership and equivalence queries. Making a
membership query consists in giving to the black box a string that is constructed
from the inputs set Σ and observing the answer, which can be recorded as 0 or
“reject” and 1 or “accept”. The membership queries are iteratively asked until con-
ditions of compatibility and closure on the recorded answers are satisfied (in the
original version of the algorithm L∗, the compatibility concept is named as con-
sistency). The answers recorded into an observation table enable the algorithm to
construct a conjecture, which is always consistent with the answers. The algorithm
then relies on the existence of a minimally adequate teacher or oracle that knows
the unknown model. It asks an equivalence query to the oracle in order to deter-
mine whether the conjecture is equivalent to the black box or not. If the black
box is not equivalent to the conjecture, the oracle replies with a counterexample or
“yes”, otherwise. By taking the counterexample into account, the algorithm iterates
by asking new membership queries and constructing an improved conjecture, until
we get an automaton that is equivalent to the black box. If the inferred DFA is
not partial model of the black box implementation, then it is the exact behavior of
implementation.

4.1.1 Observation Table for Learning Algorithm L∗

The information collected by the algorithm as answers to the membership queries
is organized in the observation table. Let S ⊆ Σ∗ be a prefix closed non empty
finite set, E ⊆ Σ∗ a suffix closed non empty finite set, and T a finite function
defined as T : ((S ∪ S ·Σ)×E)→ {0, 1}. The observation table is a triple over the
given alphabet Σ and is denoted as (S,E, T ). The rows of the observation table are
labeled with S ∪ S ·Σ and columns are labeled with E. For a row s ∈ S ∪ S ·Σ and
column e ∈ E, the corresponding cell in the observation table is equal to T (s, e).
Now T (s, e) is “1”, if s · e is accepted by the target model and “0”, otherwise, that is
T (s, e) = Λ(q0, s · e). The observation table rows S and columns E are non empty
and initially they contain ε, that is S = E = {ε}. The algorithm runs by asking
the membership and equivalence queries iteratively. Two rows s1, s2 ∈ S ∪ S ·Σ are
said to be equivalent, iff ∀e ∈ E, T (s1, e) = T (s2, e), and it is denoted as s1 ∼= s2.
For every row s ∈ S ∪ S · Σ, the equivalence class of row s is denoted by [s]. The
observation table is finally used to construct a DFA conjecture. The rows labeled
with strings from the prefix closed set S are candidate states for the DFA conjecture
and the columns labeled with strings from the suffix closed set E are the sequences
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to distinguish these states. The S ·Σ elements are used to build the transitions. An
example of the observation table (S,E, T ) for DFA learning is given in Table 4.1.

E

ε

S ε

S · Σ a

b

Table 4.1: Example for the observation table (S,E, T ), where Σ = {a, b}

To construct a DFA conjecture from an observation table, the table must satisfy
two properties, closure and compatibility (in the original work the compatibility
concept is called consistency). An observation table is closed if for each s1 ∈ S · Σ,
there exists s2 ∈ S and s1 ∼= s2. The observation table is compatible, if any two
rows s1, s2 ∈ S, such that s1 ∼= s2, then s1 · a ∼= s2 · a, for ∀a ∈ Σ. To construct a
conjecture that is consistent with the answers in (S,E, T ), the table must be closed
and compatible. If the observation table is not closed, then a possible state, which is
present in the observation table may not appear in the conjecture. If the observation
table is not compatible, then two states marked as equivalent in the observation table
might be leading to two different states with same letter a ∈ Σ. In other words, if
(S,E, T ) is not compatible, then there exists s1, s2 ∈ S and s1 ∼= s2, and for some
a ∈ Σ, s1 · a � s2 · a. When the observation table (S,E, T ) satisfies the closure and
compatibility properties, a DFA conjecture is build over the alphabet Σ as follows.

Definition 3 Let the observation table (S,E, T ) be closed and compatible, then DFA
conjecture Conj = (Q,Σ, δ, F, q0) is defined, where

– Q = {[s]|s ∈ S}

– q0 = [ε]

– δ([s], i) = [s · i],∀s ∈ S,∀i ∈ Σ

– F = {[s]|s ∈ S ∧ T (s, ε) = 1}

In order to verify that this conjecture is well defined with respect to the obser-
vations recorded in the table (S,E, T ), one can note that as S is a prefix closed non
empty set and it always contains ε, so q0 is defined. Similarly as E is non empty
suffix closed set, it also always contains ε. Thus, if s1, s2 ∈ S and [s1] = [s2], then
T (s1) = T (s1 · ε) and T (s2) = T (s2 · ε), are defined and equal, which implies F is
well defined. To see that δ is well defined, suppose two elements s1, s2 ∈ S such
that [s1] = [s2]. Since the observation table is compatible, ∀a ∈ Σ, [s1 · a] = [s2 · a]

and the observation table is also closed, so the classes of rows [s1 · a] and [s2 · a] are
equal to a common row s ∈ S. Hence, the conjecture is well defined.
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4.1.2 The Algorithm L∗

The learning algorithm L∗ organizes the gathered information into (S,E, T ). It
starts by initializing the rows S and columns E to {ε}.

Algorithm 1 The Learning Algorithm L∗

Input: The alphabet Σ

Output: DFA conjecture Conj

begin
initialize the rows S and columns E of (S,E, T ) to {ε} and S ·Σ = {ε·a}, ∀a ∈ Σ

complete (S,E, T ) by asking membership queries s · e such that s ∈ (S ∪ S · Σ)

∧ e ∈ E
repeat

while (S,E, T ) is not closed or not compatible do
if (S,E, T ) is not compatible then

find s1, s2 ∈ S, a ∈ Σ and e ∈ E, such that
s1 ∼= s2, but T (s1 · a, e) 6= T (s2 · a, e)
add a · e to E
complete the table by asking membership queries for the column a ·e

end
if (S,E, T ) is not closed then

find s1 ∈ S · Σ such that s1 � s2, ∀s2 ∈ S
move the row s1 to S
add s1 · a to S · Σ, ∀a ∈ Σ

complete the table by asking membership queries for new added rows
end

end
construct the conjecture Conj from (S,E, T )

ask the equivalence query to oracle for Conj
if oracle/teacher replies with a counterexample CE then

add CE and all the prefixes of CE to S
complete the table by asking membership queries for new added rows

end
until oracle replies “yes” to the conjecture Conj;
return the conjecture Conj from (S,E, T )

end

For all s ∈ S and e ∈ E, the algorithm performs membership queries s · e
and fills the cells of the observation table. Now algorithm ensures that (S,E, T ) is
compatible and closed. If (S,E, T ) is not compatible, incompatibility is resolved by
finding two rows s1, s2 ∈ S, an alphabet letter a ∈ Σ and and a column e ∈ E such
that [s1] = [s2] but T (s1 · a, e) 6= T (s2 · a, e), and adding the new suffix a · e to E.
If (S,E, T ) is not closed, the algorithm searches for s1 ∈ S · Σ such that s1 � s2,
for all s2 ∈ S and makes it closed by adding s1 to S. This process is iterated
until (S,E, T ) is closed and compatible. The algorithm L∗ eventually constructs
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the conjecture from (S,E, T ) in accordance with the Definition 3.

4.1.3 Complexity of L∗

Angluin [Angluin 1987] showed that the algorithm L∗ can conjecture a minimum
DFA in polynomial time on the alphabet size |Σ|, the number of states in minimal
conjecture n, and the length of the longest counterexample m. Initially, S and E
contain ε, each time (S,E, T ) is discovered to be not compatible, one string is added
to E. Since the observation table can be incompatible for at most n− 1 times, the
total number of strings in E cannot exceed n. Each time (S,E, T ) is discovered to
be not closed one element is moved from S · Σ to S. This can happen for at most
n − 1 times, and there can be at most n − 1 counterexamples. If the length of the
longest counterexample CE provided by the oracle is m, for each counterexample at
most m strings are added to S. Thus the total number of strings in S cannot exceed
n+m(n− 1). The worst case complexity of the algorithm in terms of membership
queries is: (n+m(n− 1) + (n+m(n− 1))|Σ|) (n)= O(|Σ|mn2).

4.2 DFA Inference of Mealy Machines and Possible Op-
timizations

One bottle neck for the learning algorithm L∗ is that it may require executing
a lot of membership queries, although equivalence query is another tricky issue.
Hungar et al. [Hungar 2003b] proposed domain specific optimizations for reducing
the number of membership queries for regular inference with the Angluin algorithm
L∗. To reduce the number of membership queries, they introduced filters, which
use properties like input determinism, prefix closure, independence and symmetry
of events. Most of the filters are linked to the specific structure of DFA, which
enables the learning algorithm L∗ to learn Mealy models. The reduction is done by
having membership queries answered by the filters, in cases where the answer can
be deduced from the membership queries of the so-far accumulated knowledge of
the system. They proposed the filters for testing reactive systems. They transform
Mealy machines to DFA models with the help of Definition 4.

Definition 4 The transformation of a Mealy machineM = (QM, I, O, δM, λM, q0M)

to a DFA model (Q,Σ, δ, F, q0) is defined as:

– Q ⊇ QM ∪ {qerr}, where qerr is a sink state

– q0 = q0M,

– Σ = I ∪O,

– for each transition δM(q, i) = q′ where i ∈ I, q, q′ ∈ QM and λM(q, i) = o

where o ∈ O, the set Q contains the transient states q1 · . . . ·qn, with transitions

– δ(q, i) = q1 and δ(q1, o) = q′
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– the transitions δ(q, o) = qerr for all q ∈ QM, and o ∈ O,

– the transitions δ(qerr, a) = qerr for all a ∈ Σ,

– F = Q\{qerr}.

Mealy models are learned as DFA, which have only one sink state, i.e. all the
rejecting strings lead to the sink state as described in Definition 4. Contrary to
general languages, there is no switching from non-accepting to accepting states. For
such languages, the optimization filters can be introduced that are described in the
following. For qualitative evaluation of these filters, Hungar et al. [Hungar 2003b]
carried out experiments on four specific implementations of call center solutions.
Each call center solution consists of a telephone switch connected to a fixed number
of telephones.

4.2.1 Prefix Closure

The unknown regular language of systems discussed above is prefix closed. In this
case, once a string has been evaluated as accepting then in the whole learning
process, all the prefixes of the string will be evaluated to accepting without asking
to the teacher. Similarly, once a string has been evaluated as rejected, then all
continuations of that string will be evaluated to rejected, i.e. all strings which have
rejected string prefix to them will be evaluated to rejected without asking to the
teacher. Thus the language to be learned is prefix closed. Formally these filters can
be expressed as,

– for ω, ω′, ω′′ ∈ Σ∗ and ω = ω′ · ω′′ and T (ω) = 1 =⇒ Λ(ω′) = accept

– for ω, ω′ ∈ Σ∗ and ω′ ∈ prefix(ω) and T (ω′) = 0 =⇒ Λ(ω) = reject

For learning prefix closed languages of DFA models having single sink state, us-
age of such filters significantly reduces the number of membership queries. These
two optimizations for a set of experiments conducted by Hungar et al. on scenar-
ios for call center solution [Hungar 2003b] gave a reduction of 72.22% to 77.85%
membership queries.

4.2.2 Input Determinism

The second type of filters use the input determinism property, input determinism
means that for a sequence of inputs, from the same state, we always have the same
sequence of outputs. These filters are proposed for the scenarios when learning
reactive systems as DFA, and alphabet for learning such systems is union of input
set I and output set O of the target system. The first filter of this type proposes
that replacing just one output symbol in a word of an input deterministic language
cannot be the word of the same language, for decomposition of ω, a word from the
language L, as ω = ω′ · o · ω′′, where o belongs to O, then all the other words made
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by replacing o with other elements from alphabet Σ\{o} does not belong to the
language L or in simple words all such words will be evaluated to rejected. The
second filter of this type proposes that replacing one input symbol from I with
input symbol from O in a word of an input deterministic language cannot be the
word of the same language. For decomposition of ω a word from the language L as
ω = ω′ · i · ω′′, where i belongs to I, then all the other words made by replacing i
with elements from O do not belong to the language L or simply all such words will
be rejected. Formally these filters can be expressed as,

– ∃o ∈ O, a ∈ Σ\{o}, ω, ω′, ω′′ ∈ Σ∗ such that ω = ω′ · o · ω′′ ∧ T (ω′ · a · ω′′) = 1
∧ o 6= a =⇒ Λ(ω) = reject

– ∃i ∈ I, o ∈ O,ω, ω′ ∈ Σ∗ such that ω′ · o ∈ prefix(ω) ∧ T (ω′ · i) = 1 =⇒
Λ(ω) = reject

The learning results for a set of experiments conducted on scenarios for call center
solution [Hungar 2003b] presented by Hungar et al. show that after introducing
such filters the number of membership queries was reduced further from 50% up to
94.48%. This reduction is the additional reduction for the membership queries after
the reduction by first type of filters.

4.2.3 Independence of Events

The intuition of independency in reactive systems can help to avoid asking un-
necessary membership queries. Two devices in a system may require to perform
actions that are independent of each other, i.e. the order of actions does not affect
the results. If an input trace constructed from input traces executing two events
independent of each other in two devices of the same system is accepted, then equiv-
alence class of all traces to this trace is accepted. At first independent subparts of
a trace with respect to the independence relation are identified, then shuffling these
independent sub-traces in any order makes the equivalence class of a trace. The
application of this filter along with first two types of filters further reduces the num-
ber of membership queries. The experiments on scenarios for call center solution
[Hungar 2003b] by Hungar et al. show that the reduction with such filters varies
from 3.23% to 44.64%.

The experimental results [Hungar 2003b] show that for the considered set of
experiments on call center solutions, using all types of filters, there was an overall
reduction of 87.03% to 99.78%. For one of the examples initially 132,340 member-
ship queries were asked, whereas after the introduction of all the proposed filters it
required only 289 membership queries, hence a reduction of 99.78%. Thus, modify-
ing the learning algorithm by filtering out unnecessary queries enabled to perform
quick and efficient learning. The approach of filters is quite flexible and is practical
for the fast adaptations to different application domains.
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4.3 Mealy Inference

We target at providing the optimized algorithms that can be applied to software
testing. Software systems characterize their behaviors in terms of input/output.
These systems on getting an input perform computations to take decision on internal
transitions and produce output. More natural modeling of such models is Mealy
machines. In Section 4.2, we have presented how Mealy machines can be learned
with DFA algorithms. In this section we focus on to learn the Mealy models directly.
The algorithm L∗ can be adapted to learn reactive systems as Mealy machines
[Niese 2003, Li 2006, Shahbaz 2009] instead of DFA and this considerably improves
the efficiency of the learning algorithm. DFA models require an intermediate state
to model the i/o behavior of reactive systems, whereas Mealy models do not. This is
the reason why learning as DFA models require far more states to represent the same
system as compared to Mealy models. DFA models lack the structure of i/o based
behavior; Mealy models are more succinct to represent reactive systems. Although,
the algorithm L∗ can learn Mealy models by model transformation techniques by
taking the inputs I and outputs O of target unknown Mealy machine as alphabet
for DFA as presented in section 4.2. Alphabet set can be collection or product
of the inputs and outputs, i.e. Σ = I ∪ O [Hungar 2003b, Groce 2006] or Σ =

I ×O [Mäkinen 2001]. But this significantly increases size of alphabet and number
of states in learned model, which increases the time complexity of the learning
algorithm. The simpler way of handling this problem is to use the modified algorithm
L∗, which learns Mealy machines directly.

Figure 4.1: Mealy machine.

O. Niese [Niese 2003] proposed a Mealy adaptation of the algorithm L∗ to learn
reactive systems. He implemented the Mealy inference algorithm and conducted the
experiments on four specific implementations of call center solutions. He observed
that with the Mealy adaptation of the learning algorithm there was a noteworthy
gain in terms of the membership queries and number of states. For instance, one of
the examples for call center solutions discussed in O. Niese thesis and also presented
in [Hungar 2003b] required 132,340 membership queries without any filter and with
filters it required 289 membership queries, whereas O. Niese showed inferring the
same example with Mealy inference technique required only 42 membership queries,
which is an enormous reduction. For the number of states, there was also a reduction
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of 60% to 90.12%.
The Mealy inference algorithm learns the target model by asking output queries

[Shu 2007]. For Mealy inference, the observation table is filled with output strings
instead of accept or “1” and reject or “0”. For the algorithm L∗, the columns of
the observation table are initialized with ε, whereas the Mealy inference adaptation
initializes the columns with the input set I. This change enables the algorithm to
detect i/o to annotate the edges in the Mealy machines. The concept of closure
and compatibility remains the same as for the algorithm L∗. However, to make the
observation table closed and compatible, instead of comparing the boolean values,
the outputs recorded in the table cells are compared. To process a counterexample
CE, the prefixes of CE are added to the rows of observation table. To learn the
models of software black box components, the Mealy inference algorithm can be
used to infer the models with the following assumptions:

– input set I for the target machine is known,

– before each query the learner can always reset the target system to the initial
state,

– the i/o interfaces of the machine are accessible, the interface from where an
input can be sent is a input interface and the interface from where an output
can be observed is an output interface.

4.3.1 The Mealy Inference Algorithm LM
∗

The Mealy machine inference algorithm LM
∗ [Niese 2003, Li 2006, Shahbaz 2009]

learns the models as Mealy machines using the general settings of the algorithm L∗.
The algorithm explores the target model by asking output queries [Shu 2007] and
organizes the outputs in the observation table. The output queries are iteratively
asked until the observation table is closed and compatible. When the observation
table is closed and compatible, a Mealy machine conjecture is constructed. The
LM
∗ algorithm then asks equivalence query to the oracle, if the conjectured model

is not correct, the oracle replies with a counterexample. The algorithm processes
the counterexample to improve the conjecture. If the oracle replies “yes”, then the
conjecture is correct and the algorithm terminates. We denote the Mealy machine
to be learned by the LM ∗ algorithm in Figure 4.1 asM = (QM, I, O, δM, λM, q0M).
The observation table used by the LM ∗ algorithm is described as follows.

4.3.1.1 Observation Table for the Mealy Inference Algorithm LM
∗

The observation table contains the outputs from O+ by the interactions with the
target black box. The LM ∗ algorithm sends the input strings from I+ and records
the outputs in the observation table. The observation table is defined as a triple
(SM , EM , TM ), where SM ⊆ I∗ is a prefix closed non empty finite set, which labels
the rows of the observation table, EM ⊆ I+ is a suffix closed non empty finite
set, which labels the columns of the observation table and TM is a finite function,
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which maps (SM ∪ SM · I) × EM to outputs O+. The observation table rows SM
and columns EM are non empty and initially SM = {ε}, SM · I = {i · ε} for all
i ∈ I and EM = I. In the observation table, ∀s ∈ SM ∪ SM · I, ∀e ∈ EM ,
TM (s, e) = suffix|e|(λM(q0M, s · e)). Since SM is a prefix closed set, which includes
ε and the columns of the observation table always contain the input set elements,
this means that λM(q0M, s) can be calculated from the outputs already recorded
in the observation table. Thus, recording the suffixes of answers to the output
queries suffix|e|(λM(q0M, s · e)) to the observation table is sufficient. A word ω =

s · e is an input string or output query and on executing this output query the
black box machine replies with λM(q0M, ω). However, in the observation table only
suffix|e|(λM(q0M, ω)) is recorded. The initial observation table (SM , EM , TM ) for
Mealy inference of the machine in Figure 4.1 is presented in the Table 4.2, where
the input set I has two elements {a, b}.

EM
a b

SM ε x y

SM · I
a x y

b x y

Table 4.2: Initial observation table for the Mealy machine in Figure 4.1

The equivalence of rows in the observation table is defined with the help of
function TM . Two rows s1, s2 ∈ SM ∪SM · I are said to be equivalent, iff ∀e ∈ EM ,
TM (s1, e) = T (s2, e), and it is denoted as s1 ∼= s2. For every row s ∈ SM ∪SM ·I, the
equivalence class of row s is denoted by [s]. Like the algorithm L∗, to construct the
conjecture, the LM ∗ algorithm requires the observation table to satisfy the closure
and compatibility properties. The observation table is closed, if ∀s1 ∈ SM · I, there
exists s2 ∈ SM such that s1 ∼= s2. The observation table is compatible whenever
two rows s1 ∼= s2 for s1, s2 ∈ SM then s1 · i ∼= s2 · i for ∀i ∈ I. On finding the
observation table closed and compatible, the LM ∗ algorithm eventually conjectures
a Mealy machine. The rows labeled with strings from the prefix closed set SM
are the candidate states for the conjecture and the columns labeled with strings
from suffix closed set EM are the sequences to distinguish these states. The Mealy
machine conjectured by the LM ∗ algorithm is always a minimal machine.

Definition 5 Let (SM , EM , TM ) be a closed and compatible observation table, then
the Mealy machine conjecture MM = (QM , I, O, δM , λM , q0M ) is defined, where

– QM = {[s]|s ∈ SM}

– q0M = [ε]

– δM ([s], i) = [s · i],∀s ∈ SM , i ∈ I

– λM ([s], i) = TM (s, i),∀i ∈ I
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One must show that MM is a well defined conjecture. Since SM is a non empty
prefix closed set and always contains ε, q0M is well defined. Suppose we have two
elements s1, s2 ∈ SM such that [s1] = [s2]. Since the observation table is compatible,
∀i ∈ I, [s1 · i] = [s2 · i] and since the observation table is also closed, the rows [s1 · i]
and [s2 · i] are equal to a common row s ∈ SM . Hence, δM is well defined. Since
EM is non empty and always contains inputs I, if there exists s1, s2 ∈ SM such
that s1 ∼= s2, then for all i ∈ I, we have TM (s1, i) = TM (s2, i). Hence λM is also
well defined.

4.3.1.2 The LM ∗ Algorithm

The LM ∗ learning algorithm maintains the observation table (SM , EM , TM ).

Algorithm 2 The LM ∗ Algorithm
Input: Black box and input set I
Output: Mealy machine conjecture MM

begin
initialize the rows SM = {ε}, columns EM = I and SM · I = {ε · i}, ∀i ∈ I
complete (SM , EM , TM ) by asking output queries s · e such that s ∈ (SM ∪ SM ·
I) ∧ e ∈ EM
repeat

while (SM , EM , TM ) is not closed or not compatible do
if (SM , EM , TM ) is not compatible then

find s1, s2 ∈ SM , e ∈ EM , i ∈ I such that s1 ∼= s2, but
TM (s1 · i, e) 6= TM (s2 · i, e)
add i · e to EM
complete the table by asking output queries for the column i · e

end
if (SM , EM , TM ) is not closed then

find s1 ∈ SM · I such that s1 � s2, for all s2 ∈ SM
move s1 to SM
add s1 · i to SM · I, for all i ∈ I
complete the table by asking output queries for new added rows

end
end
construct the conjecture MM from (SM , EM , TM )

ask the equivalence query to oracle for MM

if if oracle replies with a counterexample CE for MM then
add all the prefixes of CE to SM
complete the table by asking output queries for new added rows

end
until oracle replies “yes” to the conjecture MM ;
return the conjecture MM from (SM , EM , TM )

end
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The set of rows SM is initialized to {ε}. The Mealy machine associates an
output value with each transition edge, this output value is determined both by its
current state and the input of the transition edge. The edges of Mealy machines
are annotated with i/o, where i ∈ I and o ∈ O. Thus the set of columns EM is
initialized to I, it enables the algorithm to calculate the corresponding output label
o for every i ∈ I for all the transition edges in the conjectured model.

The output queries are constructed as s · e, for all s ∈ SM ∪ SM · I and e ∈ EM ,
the observation table is completed by asking the output queries. The main loop of
the LM ∗ algorithm tests if (SM , EM , TM ) is closed and compatible. If (SM , EM , TM )

is not closed, then the LM ∗ algorithm finds a row s1 ∈ SM · I, such that s1 � s2,
for all s2 ∈ SM . Then the LM ∗ algorithm moves s1 to SM and completes the table.
If (SM , EM , TM ) is not compatible, then the LM ∗ algorithm finds s1, s2 ∈ SM ,
e ∈ EM , and i ∈ I such that s1 ∼= s2 but TM (s1 · i, e) is not equal to TM (s2 · i, e).
Then the string i · e is added to EM and TM is extended to (SM ∪ SM · I) · (i · e)
by asking the output queries for missing elements. On finding the observation table
(SM , EM , TM ) closed and compatible, the LM ∗ algorithm builds the Mealy machine
conjecture in accordance with Definition 5. The algorithm is explained with the
help of the Mealy inference of the machineM in Figure 4.1.

4.3.1.3 Example for Learning with LM
∗

The LM ∗ learning algorithm begins by initializing (SM , EM , TM ). The rows SM
are initialized to {ε} and the columns EM to {a, b}. The output queries are asked
to complete the table. The initial observation table is shown in Table 4.2. This
observation table is closed and compatible, thus the LM ∗ algorithm conjectures the
Mealy machine MM

′ = (QM
′, I, O, δM

′, λM
′, q0M

′) shown in Figure 4.2.

Figure 4.2: The Mealy machine conjecture MM
′ from Table 4.2

Then, the LM ∗ algorithm asks the equivalence query to the oracle. Since the
conjectured modelMM

′ is not correct, the oracle replies with a counterexample CE.
There can be more than one counterexamples and oracle selects one from them. Let
the counterexample CE selected by the oracle be ababaab, since

– λM(q0M, ababaab) = xyxyxxx, but

– λM
′(q0M

′, ababaab) = xyxyxxy.

We have different methods to process the counterexamples, the processing of the
counterexample CE with different methods is illustrated in Chapter 5.
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4.3.1.4 Complexity of LM ∗

The learning algorithm LM
∗ can conjecture a minimal Mealy machine in polynomial

time on the input size |I|, the number of states in minimum conjecture n, and the
length of the longest counterexample m. Initially, EM contains elements from input
set I and its size is |I|, each time (SM , EM , TM ) is discovered to be not compatible,
one string is added to EM . Since the observation table can be incompatible for at
most n−1 times, the total number of strings in EM cannot exceed |I|+n−1. Initially,
SM contains ε, i.e. one element. Each time the observation table (SM , EM , TM ) is
discovered to be not closed, one element is moved from SM ·I to SM . This can happen
for at most n− 1 times, and there can be at most n− 1 counterexamples. If length
of longest counterexample CE provided by the oracle is m, for each counterexample
at most m strings are added to S. Thus the total number of strings in S cannot
exceed n+m(n− 1). The worst case complexity of the algorithm for the number of
output queries is described as follows:

(n+m(n− 1) + (n+m(n− 1))|I|) × (|I|+ n− 1)= O(|I|2mn+ |I|mn2).

4.4 Conclusion

This chapter presents the DFA model inference algorithm L∗, which can infer the
DFA models of black box implementations with membership queries and counterex-
amples. The learner L∗ asks membership queries to the minimally adequate teacher
in order to conjecture a model. The correctness of the model is verified from the
oracle. If the learned model is not correct, the oracle replies with a counterexample.
The algorithm processes the counterexample and this process is iterated until the
oracle replies “yes” the learned model is correct.

The algorithm L∗ can be used to infer Mealy models by model transformation
techniques, but it increases the size of alphabet. Since the size of alphabet is one
of the key parameters to the time complexity of the learning algorithm, increased
alphabet size results in requiring greater number of membership queries. The filters
presented in Section 4.2 can be used to reduce the membership queries.

The Mealy inference algorithm LM
∗ (the Mealy adaptation of L∗) requires fewer

output queries to infer i/o models as compared to L∗. This adaptation requires
to change the observation table slightly. For the transition table of a conjectured
model, it initializes the columns of the observation table with I. It asks output
queries instead of membership queries. On finding the table closed and compatible
it conjectures a Mealy machine from the observation table. A detailed study on
searching and processing counterexamples for LM ∗ is provided in Chapter 5.
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Once the learning algorithm LM
∗ has conjectured a model from the observation

table then it relies on the existence of an oracle (teacher), which replies “yes” if the
learned model is correct or provides a counterexample, otherwise.

For software black box systems the existence of such an oracle is a strong as-
sumption, which is not met generally. Random sampling as suggested by Angluin
[Angluin 1987] and its variants [Cho 2010, Irfan 2010a, Irfan 2010c, Howar 2010,
Balle 2010] are simple heuristics to find counterexamples. A counterexample is a
string on the inputs I+, whose output for a black box system under inference and
a conjectured model are different. Most of the oracle implementations involve a
compromise on the precision and often counterexamples identified by them are not
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optimal. For non optimal counterexamples, it becomes important to process them
efficiently to avoid asking numerous queries. To address this issue, a number of
counterexample processing methods have been proposed [Angluin 1987, Rivest 1993,
Maler 1995, Shahbaz 2009]. Angluin proposed a method to process the counterex-
amples for L∗, this method adds the prefixes of a counterexample to the columns of
the observation table [Angluin 1987].

Rivest and Schapire identified that there is always a distinguishing sequence in
a counterexample that along an access string from the observation table makes a
shorter counterexample. This method adds such a distinguishing sequence to the
columns of the observation table requiring a relaxation on the suffix closure prop-
erty of the observation table. Since this method adds only a single distinguishing
sequence from a counterexample, the number of queries for model inference is signif-
icantly reduced. Maler and Pnueli [Maler 1995] proposed to add all the suffixes of
a counterexample to the columns of the observation table. Their method keeps the
observation table suffix closed, however, again the number of queries increases. In
an attempt to reduce the number of queries required to learn models, Shahbaz and
Groz [Shahbaz 2009] propose to drop the longest prefix of a counterexample which
matches any of the access strings in the observation table and add the suffixes of
remaining counterexample to the columns of the observation table. The newly pro-
posed counterexample processing method adds the suffixes of a counterexample and
stops adding them when a distinguishing suffix is added.

The first section of this chapter discusses the random sampling technique to
search for the counterexamples. The second section provides the counterexample
processing methods available from the literature. The third section presents the
improved counterexample processing method suffix1by1 along the complexity dis-
cussion. In order to analyze the practical complexity of the algorithms, the fourth
section shows some experimental results on simulated machines and we conclude
this chapter in the final section.

5.1 Searching for Counterexamples

For inferring and testing black box software systems, a common procedure to search
for counterexamples is a random walk on the inputs. It consists in providing the
resulting input sequence in parallel to a black box and a conjectured model to find
the differences. On finding such a difference, the trace of all the inputs from the
first input on the initial state of the black box to the last input resulting in output
difference, is considered as a counterexample. The counterexamples found by this
method very often are non optimal and there is a possibility that before reaching
a state, where a black box and a conjectured model differ in behavior, many states
are compared where in fact the comparison was not required (as they are already
there in the conjectured model) [Irfan 2010c]. It is not evident that oracle finds
a counterexample at the very first attempt, it may require a number of iterations
before finding a counterexample.
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To find the counterexamples one can also use conformance testing methods as
was done for instance in [Peled 1999] and [Margaria 2004]. But such methods are ex-
pensive, especially the Vasilevskii and Chow method [Vasilevskii 1973, Chow 1978]
comes at a high exponential cost, its time complexity is O(l2n|Σ|n−l+1), where n is
the assumed size of states of the black box automaton, l ≤ n is the actual size states
(l is the size of states of the conjectured model), and |Σ| is the alphabet size.

5.1.1 Counterexamples Search by Random Sampling

In Angluin’s black box learning framework, the counterexamples help to iteratively
refine the conjectured models. Angluin [Angluin 1987] proposed a random sampling
oracle that selects a string x from input set I+ according to some distribution
and returns x with “yes” or “no”, yes if x belongs to the language of the unknown
model and no, otherwise. This method adapted for Mealy inference constructs
the input strings from uniform distribution on inputs and calculates the outputs
from the target system and the conjecture to find the discrepancies. All the calls
to this oracle are independent from each other. This method may use a lot of
strings x before finding a counterexample string. This technique can be improved
by generating the counterexample search strings with the objective that every new
string covers a different set of states in order to increase the probability of finding
undiscovered states.

5.1.2 Howar Algorithm for Counterexample Search

Howar et al. [Howar 2010] proposed the Evolving Hypothesis Weighted (E.H. Weighted)
and Evolving Hypothesis Blocking (E.H. Blocking) algorithms that steer the search
to find the counterexamples quickly. The E.H. Weighted algorithm requires annotat-
ing the conjecture transitions with a variable (counter) used to record the number of
traversals for a transition. This counter is reset whenever the transition changes. For
counterexample search the algorithm uses the conjectured model transition weights
(counters) to select a transition for traversal. The probability of selecting a transi-
tion is inversely proportional to the increasing weight associated with the transition.

The E.H. Blocking counterexample searching method by Howar et al. [Howar 2010]
exploits the fact that processing a counterexample CE results in moving a row
si ∈ S · I to S. Where, CE = si · d and d ∈ I+ is a distinguishing sequence, i.e.
a counterexample sequence always has an element of set S.I prefix to it followed
by some distinguishing sequence (they use Rivest and Schapire [Rivest 1993] coun-
terexample processing method, described later in Section 5.2.2). The E.H. Blocking
algorithm randomly selects an element from the set S · I and then by randomly
selecting inputs from the set I, constructs a string by increasing length, which is
tested for being a distinguishing sequence. The length of the string is initialized with
ratio to the number of states in a conjecture and is increased after a certain number
of unsuccessful attempts. In order to avoid the states that have already been tested,
once an S · I element is used, it is excluded from the subsequent counterexample
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search tests. This process continues until all the elements of S · I are disabled. If
all the elements of S · I are disabled, without learning the target model are enabled
again.

5.1.3 Balle Algorithm for Counterexamples Search

Balle et al. [Balle 2010] used the algorithms BalleL1 and BalleL2 for learning un-
known DFAmodels in the ZULU competition [Combe 2010]. The difference between
the two algorithms lies in the method to search for counterexamples. The algorithm
BalleL1 uses the uniform distribution over alphabet for the counterexample search,
whereas BalleL2 searches the counterexamples from a random walk over the states
of a conjecture with the probability of selecting each transition between states de-
pending on height of the state successor. The search is based on the assumption
that strings generated by traversing more transitions towards shorter leaves in the
current conjecture are more likely to be counterexamples. In their implementation
they assigned a weight to each transition using the expression

w (s, σ) =

(
1

hτ(s,σ) − hmin + 1

)2

,

where hτ(s,σ) is the height of the leaf corresponding to the state τ(s, σ) and hmin is
the height of the shortest leaf in the discrimination tree. Transition probabilities are
obtained by normalizing these weights for each state: p(s, σ) = w(s, σ)/Ws where
Ws = Σσw(s, σ). They computed the transition probabilities for the hypothesis
according to this rule. Even though they tried to make the BalleL2 algorithm
efficient by introducing improvements described above and were expecting gain as
compared to BalleL1 for learning the tasks offered by the ZULU challenge, however,
they observed that both algorithms performed similarly and statistically there was
no significant difference.

5.2 Processing Counterexamples

The length of counterexamples is an important parameter to the complexity of the
algorithm LM

∗, which is evident from the Section 4.3.1.4. The counterexample
processing methods play a vital role and directly affect the complexity. That is the
reason why a significant number of different counterexample processing methods
[Rivest 1993, Maler 1995, Shahbaz 2009] have been proposed.

Angluin’s method [Angluin 1987] to process counterexamples adds all prefixes
of a counterexample to SM , and two rows of SM become equivalent only after
processing the counterexamples. Rivest and Schapire [Rivest 1993] identified that
incompatibilities in the observation table (SM , EM , TM ) can be avoided by keeping
the rows SM distinct. The compatibility condition requires that whenever two rows
of SM are equal, s1, s2 ∈ SM , s1 ∼= s2 then for ∀i ∈ I, s1 · i ∼= s2 · i. But if
the SM rows are always distinct, that is for all s1, s2 ∈ SM , always s1 � s2, then
the compatibility condition is trivially satisfied. The counterexample processing
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method by Rivest and Schapire adds only a single distinguishing string from CE to
EM . However, it may make up to log(m) output queries to find such a string, where
m = |CE|. This method maintains the condition that all rows SM of observation
table are distinct, that is for all s1, s2 ∈ SM , s1 � s2.

The counterexample processing methods proposed by Maler and Pnueli [Maler 1995],
and Shahbaz and Groz [Shahbaz 2009] also add sequences only to columns EM .
Since for these methods SM augments only when the observation table is not closed,
this keeps the SM elements distinct. Thus, always |SM | ≤ n, where n is the num-
ber of states in a conjectured model. We present the counterexample processing
methods adapted for the algorithm LM

∗ in the following.

5.2.1 Counterexample Processing Algorithm by Angluin

The counterexample processing method by Angluin [Angluin 1987] requires to add
all the prefixes of a counterexample to the rows of the observation table. This
method can be adapted for Mealy inference. If we have a counterexample CE, this
method adds CE and all the prefixes of CE to SM . Then the observation table is
completed by extending TM to (SM ∪ SM · I) · (EM ) and by asking output queries
for new added rows. This method adapted for Mealy inference can be presented as
Algorithm 3.

Algorithm 3 Counterexample Processing by Angluin for LM ∗

Input: Pre-refined observation table (SM , EM , TM ), CE
Output: Refined observation table (SM , EM , TM )
begin

for j = 1 to |CE| do
if prefixj(CE) /∈ SM then

if prefixj(CE) ∈ SM · I then
move the row prefixj(CE) to SM

end
else

add prefixj(CE) to SM
end

end
end
construct the output queries for the new rows
complete (SM , EM , TM ) by executing output queries
make (SM , EM , TM ) closed and compatible
return refined observation table (SM , EM , TM )

end

After adding the prefixes of CE to SM and completing the observation table, the
table can be not closed or incompatible. The algorithm LM

∗ makes the observation
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table closed and compatible, when both of these properties are satisfied, LM ∗ con-
jectures the Mealy machine from the table. This method is explained with the help
of following example.

5.2.1.1 Example for Processing Counterexamples with Angluin Algo-
rithm

While learning the Mealy machine M in Figure 4.1 with LM ∗, for the initial con-
jecture MM

′ in Figure 4.2, the oracle replies with a counterexample CE = ababaab.
The counterexample processing method by Angluin requires to add CE and all of its
prefixes that are not in SM to to the distinct rows of the observation table SM , i.e.
a, ab, aba, abab, ababa, ababaa, ababaab to the set SM and the one letter extensions
of these prefixes to SM · I (one letter extensions that are not already member of
SM ∪SM · I), i.e. aa, abb, abaa, ababb, ababab, ababaaa, ababaaba, ababaabb to the set
SM ·I. The function TM is extended to (SM∪SM ·I)·EM by means of output queries
for the missing entries. After adding the prefixes of counterexample the observation
table is presented in Table 5.1a.

a b

ε x y

a x y

ab x y

aba x y

abab x y

ababa x y

ababaa x x

ababaab x y

b x y

aa x x

abb x y

abaa x x

ababb x y

ababab x y

ababaaa x x

ababaaba x x

ababaabb x y

(a) The observation ta-
ble after adding prefixes
of CE.

a b ab

ε x y xy

a x y xx

ab x y xy

aba x y xx

abab x y xy

ababa x y xx

ababaa x x xx

ababaab x y xx

b x y xy

aa x x xx

abb x y xy

abaa x x xx

ababb x y xy

ababab x y xy

ababaaa x x xx

ababaaba x x xx

ababaabb x y xy

(b) To make the observation ta-
ble compatible ab is added to
EM .

Table 5.1: The observation table in Table 5.1a after adding prefixes of CE is incom-
patible for rows with underlined labels. The observation table in Table 5.1b is made
compatible by adding ab to EM .
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Since ε, ababa ∈ SM , a ∈ I and b ∈ EM such that the underlined row labels
ε ∼= ababa, but TM (ε · a, b) is not equal to TM (ababa · a, b), the observation table in
Table 5.1a is closed but not compatible. Thus, this method adds the string ab to EM .
The observation table is completed by executing the output queries for the newly
added column ab. The observation table in Table 5.1b is closed and compatible,
thus, LM ∗ conjectures the Mealy machine shown in Figure 7.4.3.

Figure 5.1: Conjectured Mealy machine.

The conjectured model is correct, so the oracle replies “yes” and LM ∗ terminates.
Thus, a total of 51 output queries were asked to learn this example. The worst case
complexity of the algorithm for number of output queries is O(|I|2mn + |I|mn2),
where |I| is the size of input set, m is the length of the longest counterexample
provided by the oracle and n is the number of states in the learned model.

5.2.2 Counterexample Processing Algorithm by Rivest and Schapire

The counterexample processing method by Rivest and Schapire [Rivest 1993] adapted
for LM ∗ significantly improves the worst case number of output queries required to
learn the Mealy machines. In the observation table (SM , EM , TM ), SM is a prefix
closed set representing the states of the conjecture. The counterexample process-
ing method by Rivest and Schapire maintains the condition that all rows SM of
observation table are distinct, i.e. for all s1, s2 ∈ SM , s1 � s2. Instead of adding
prefixes of a counterexample CE to SM , it adds only a single distinguishing string
from CE to EM . However, it may make up to log(m) output queries to find such a
string, where m is the length of CE, i.e. m = |CE |. The counterexample processing
method by Rivest and Schapire can be described as follows.

Let uj be a sequence made up of first j actions in CE and vj be a sequence made
up of actions after first j actions, thus, CE = uj · vj , where 0 ≤ j ≤ m such that
u0 = vm = ε and um = v0 = CE. Now, if we run uj on a conjecture, the conjecture
moves to some state q, where q ∈ QM . By construction this state q corresponds
to a row s ∈ SM . For the output query s · vj , let αj be the output from a target
Mealy machineM and βj be the output from a conjecture. For a counterexample
CE, we have α0 6= β0 and αm = βm, and the point where αj 6= βj and αj+1 = βj+1

can be found using the binary search in log(m) output queries. Binary search can
be performed by initializing j to m/2, if αj 6= βj then j = 3(m/4) and j = m/4,
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otherwise. On finding such j, this method adds vj+1 to EM . For j < m and ij ∈ I,
the counterexample is uj · ij · vj+1 = uj · vj = CE and vj+1 distinguishes s · ij from
distinct rows of Sm, where s · ij ∈ SM · I. It is presented as Algorithm 4.

Algorithm 4 Counterexample Processing by Rivest and Schapire for LM ∗

Input: Pre-refined observation table (SM , EM , TM ), CE, Conjecture
Output: Refined observation table (SM , EM , TM )
1: CE = uj · vj , where uj are first i actions and vj are subsequent actions in CE
2: q = δ(q0M , uj) by running uj on Conjecture, where q ∈ QM
3: Find the row s ∈ S, which corresponds to q
4: Calculate outputs αj , βj for output query s · vj from target Mealy machine and
learned Conjecture, respectively
5: By binary search find the point where αj 6= βi and αj+1 = βj+1

6: uj · ij · vj+1 = uj · vj = CE, j < m

7: Add vj+1 to EM
8: Construct the output queries for the new column
9: Complete (SM , EM , TM ) by executing output queries
10:Make (SM , EM , TM ) closed
11:return refined observation table (SM , EM , TM )

If LM ∗ processes counterexamples with this method then size of SM augments
only when the observation table is not closed. Thus, we always have |SM | ≤ n,
where n is the number of states in the conjecture. Since the compatibility condition
requires that whenever two rows of SM are equal, s1, s2 ∈ SM , s1 ∼= s2 then for
∀i ∈ I, we have s1 · i ∼= s2 · i. To process counterexamples with Angluin’s algorithm,
LM
∗ requires to add all prefixes of a counterexample to SM and two rows of SM

become equivalent only after processing counterexamples. Since this counterexample
processing method maintains the condition for all s1, s2 ∈ SM , s1 � s2, compatibility
condition is always trivially satisfied.

Balcázar et al. pointed out that after processing a counterexample with this
method the conjectured model may still classify the counterexample incorrectly, as
another longer distinguish sequence from the same counterexample can improve the
conjecture [Balcázar 1997]. To address this, they propose to process distinguishing
sequences from a counterexample until no further distinguishing sequence can be
identified. This method adds only one suffix of a counterexample to EM and requires
a compromise on the suffix closure property for the observation table, consequently,
the new conjecture may not be minimal and consistent with the observation table.
The worst case complexity of LM ∗ adapting this counterexample processing method
in terms of output queries is O(|I|2n+ |I|n2 + nlog(m)).

5.2.2.1 Example for Processing Counterexamples with Rivest and Schapire
Algorithm

While learning the Mealy machine M in Figure 4.1 with LM ∗, for the initial con-
jecture MM

′ in Figure 4.2, the oracle replies with a counterexample CE = ababaab.
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The counterexample processing method by Rivest and Schapire searches for the dis-
tinguishing sequence by means of binary search. The binary search divides ababaab
as uj · vj , here uj = abab and vj = aab. Now, by running abab on the conjecture
MM

′, the corresponding string from the observation table for the state reached is
ε. The potential shorter counterexample sequence is aab = ε·aab. By running the
output query aab onM, we get

– λM(q0M, aab) = xxx, but

– λM
′(q0M

′, aab) = xxy.

The search for shorter distinguishing sequence continues by selecting uj = ababaa
and vj = b, the string from the observation table for state reached is ε. New
candidate sequence is b = ε·b, but

– λM(q0M, b) = x, and

– λM
′(q0M

′, b) = x.

The values for uj and vj are changed to ababa and ab, respectively. New candi-
date sequence is ab = ε·ab, we get

– λM(q0M, ab) = xx, and

– λM
′(q0M

′, ab) = xx.

The binary search ends by finalizing uj = abab and vj = aab. By running abab
on the conjecture MM

′, we get the access string ε. The row ε · a along the column
ab will make the table not closed. After adding the suffix vj+1 = ab, the observation
table is presented in Table 5.2a.

From the observation table in Table 5.2a, it can be observed that the row a ∈
SM · I is not equal to the only member ε of SM , thus, the observation table is not
closed. To make the table closed, the row a is moved to SM and its one letter
extensions are added to SM · I. Now, again the row aa of the observation table in
Table 5.2b makes the table not closed. It is made closed by adding aa to SM . The
observation table in Table 5.2c is closed. Since with this counterexample processing
method the observation table is always compatible, the Mealy machine shown in
Figure 7.4.3 is conjectured. The conjectured model is correct, so the oracle replies
“yes” and the algorithm terminates. Thus, in total 24 = (21 + 3) output queries
are asked.

5.2.3 Counterexample Processing Algorithm by Maler and Pnueli

The counterexample processing method by Maler and Pnueli [Maler 1995] does not
require any compromise on the suffix closure property of the observation table. This
method adds a counterexample CE and all the suffixes of CE to EM that are not
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a b ab

ε x y xy

a x y xx

b x y xy

(a) Observation table
after adding the distin-
guishing suffix vj+1 =
ab.

a b ab

ε x y xy

a x y xx

b x y xy

aa x x xx

ab x y xy

(b) Make the obser-
vation table closed by
moving the row a to SM .

a b ab

ε x y xy

a x y xx

aa x x xx

b x y xy

ab x y xy

aaa x x xx

aab x y xx

(c) Make the observation table
closed by moving aa to SM .

Table 5.2: After adding the distinguishing suffix vj+1 = ab to EM , we get the
observation table in Table 5.2a. The underlined rows are the rows, which make the
table not closed. The observation table in Table 5.2c is closed.

already member of the set EM . Since EM always contains the set of inputs I, the
algorithm adds only the suffixes of size ≥ 2. Thus, the observation table is always
suffix closed and the improved conjecture is always consistent to the observation
table. Like Rivest and Schapire the size of distinct rows SM augment only when
a row from SM · I is identified as distinct and is moved to SM , thus, avoiding the
incompatibilities trivially. The algorithm is presented as Algorithm 5.

Algorithm 5 Counterexample Processing by Maler and Pnueli for LM ∗

Input: Pre-refined observation table (SM , EM , TM ), CE
Output: Refined observation table (SM , EM , TM )
begin

for j = 2 to |CE| do
if suffixj(CE) /∈ EM then

add suffixj(CE) to EM

end
end
construct the output queries for the new columns
complete (SM , EM , TM ) by executing output queries
make (SM , EM , TM ) closed
return refined observation table (SM , EM , TM )

end

The observation table is completed for missing entries by executing the output
queries. As SM elements are always distinct, the observation table is compatible.
If the observation table is not closed, it is made closed by finding s1 ∈ SM · I such
that s1 � s2 for all s2 ∈ SM and then adding s1 to SM . On finding the table closed
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the Mealy machine is conjectured.

5.2.3.1 Example for Processing Counterexamples with Maler and Pnueli
Algorithm

While learning the Mealy machine M in Figure 4.1 with LM ∗, for the initial con-
jecture MM

′ in Figure 4.2, the oracle replies with a counterexample CE = ababaab.
The counterexample processing method by Maler and Pnueli adds the counterexam-
ple ababaab and elements of its prefixes set to the set EM (the elements that are not
already member of EM ), i.e. ababaab and babaab, abaab, baab, aab, ab to columns
of the observation table. The function TM is extended to (SM ∪ SM · I) · EM by
means of output queries for the missing entries. After adding the suffixes of v, the
observation table is presented in Table 5.3a.

a b ab aab baab abaab babaab ababaab

ε x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

a x y xx xxx yxxx xxxxx yxyxxx xyxyxxx

b x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

(a) Observation table after adding CE and its suffixes.

a b ab aab baab abaab babaab ababaab

ε x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

a x y xx xxx yxxx xxxxx yxyxxx xyxyxxx

b x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

aa x x xx xxx xxxx xxxxx xxxxxx xxxxxxx

ab x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

(b) Make the observation table closed by moving the row a to SM .

a b ab aab baab abaab babaab ababaab

ε x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

a x y xx xxx yxxx xxxxx yxyxxx xyxyxxx

aa x x xx xxx xxxx xxxxx xxxxxx xxxxxxx

b x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

ab x y xy xxx yxxx xyxxx yxyxxx xyxyxxx

aaa x x xx xxx xxxx xxxxx xxxxxx xxxxxxx

aab x y xx xxx yxxx xxxxx yxyxxx xyxyxxx

(c) Make the observation table closed by moving aa to SM .

Table 5.3: After adding ababaab and its suffixes babaab, abaab, baab, aab, ab to EM ,
we get the observation table in Table 5.3a. The underlined rows are the rows, which
make the table not closed. The observation table in Table 5.3c is closed.

From the observation table in Table 5.3a, it can be observed that the row a ∈
SM · I is not equal to the only member ε of SM , thus, the observation table is not
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closed. To make the table closed, the row a is moved to SM and its one letter
extensions are added to SM · I. Now, again the row aa of the observation table in
Table 5.3b makes the table not closed. It is made closed by moving aa to SM . The
observation table in Table 5.3c is closed. Since with this counterexample processing
method the observation table is always compatible, the Mealy machine shown in
Figure 7.4.3 is conjectured. The conjectured model is correct, so the oracle replies
“yes” and the algorithm terminates. Thus, in total 56 output queries are asked.

5.2.4 Counterexample Processing Algorithm by Shahbaz and Groz

The counterexample processing method by Shahbaz and Groz [Shahbaz 2009] op-
erates in the same manner as the counterexample processing method by Maler and
Pnueli [Maler 1995]. The only difference is that before adding the suffixes of a coun-
terexample CE to EM , this method drops the longest prefix of CE that matches
any element of SM ∪ SM · I, whereas the method by Maler and Pnueli adds all the
suffixes of counterexample to EM . Thus, for this method suffix closure property is
also trivially satisfied. As shown by Rivest and Schapire [Rivest 1993], incompati-
bilities can arise only when we have equivalent states in SM , which can happen on
adding counterexample prefixes to SM . The counterexample processing algorithm
by Shahbaz and Groz adds counterexample suffixes to EM , and SM augments only
when the observation table is not closed, thus, all the rows labeled by SM elements
are always distinct. After adding the suffixes to the observation table, it is required
to make the table closed as it is always compatible. The algorithm is presented as
Algorithm 6.

Algorithm 6 Counterexample Processing by Shahbaz and Groz for LM ∗

Input: Pre-refined observation table (SM , EM , TM ), CE
Output: Refined observation table (SM , EM , TM )
begin

divide CE as u·v, where u is the longest prefix of CE such that u ∈ (SM ∪SM ·I)

for j = 2 to |v| do
if suffixj(v) /∈ EM then

add suffixj(v) to EM

end
end
construct the output queries for the new columns
complete (SM , EM , TM ) by executing output queries
make (SM , EM , TM ) closed
return refined observation table (SM , EM , TM )

end

The counterexample processing method by Shahbaz and Groz divides CE as
u · v where u is the longest prefix in SM ∪ SM · I. It adds v and all the suffixes of
v to EM that are not already member of the set EM . Since EM always contains
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the set of inputs I, the algorithm begins by adding the suffixes of size ≥ 2. Then
observation table is completed for missing entries. As SM elements are always
distinct so observation table is compatible. If the observation table is not closed, it
is made closed by finding s1 ∈ SM · I such that s1 � s2 for all s2 ∈ SM and then
moving s1 to SM . On finding the table closed the Mealy machine is conjectured.

5.2.4.1 Example for Processing Counterexamples with Shahbaz and Groz
Algorithm

While learning the Mealy machine M in Figure 4.1 with LM ∗, for the initial con-
jecture MM

′ in Figure 4.2, the oracle replies with a counterexample CE = ababaab.
The counterexample processing method by Shahbaz and Groz divides ababaab as
u ·v, where u = a and v = babaab (a ∈ SM ∪SM · I is the longest prefix of CE in the
Table 4.2). Then it adds v and all the suffixes of v to EM that are not already in
EM , i.e. babaab, abaab, baab, aab, ab to the set EM . The function TM is extended to
(SM ∪SM · I) ·EM by means of output queries for the missing entries. After adding
the suffixes of v, the observation table is presented in Table 5.4a.

From the observation table in Table 5.4a, it can be observed that the row a ∈
SM · I is not equal to the only member ε of SM , thus, the observation table is not
closed. To make the table closed, the row a is moved to SM and its one letter
extensions are added to SM · I. Now, again the row aa of the observation table in
Table 5.4b makes the table not closed. It is made closed by adding aa to SM . The
observation table in Table 5.4c is closed. Since with this counterexample processing
method the observation table is always compatible, the Mealy machine shown in
Figure 7.4.3 is conjectured. The conjectured model is correct, so the oracle replies
“yes” and the algorithm terminates. Thus, in total 49 output queries were asked.

5.2.5 Issue with Rivest and Schapire Algorithm

The Rivest and Schapire counterexample processing algorithm searches for the
smallest distinguishing sequence from a counterexample and adds the suffix to the
columns EM of the observation table. The learning algorithm LM

∗ requires the
observation table to be prefix closed for the row labels SM and suffix closed for
column labels EM . The Rivest and Schapire counterexample processing method
requires a compromise on the suffix closure property of the observation table. Thus,
the algorithm is not sound for the example in Figure 5.2. We explain this fact by
learning the Mealy machine provided in Figure 5.2.

5.2.5.1 Example that creates problem with Rivest and Schapire Algo-
rithm

To learn the Mealy machineM1 provided in Figure 5.2, the algorithm LM
∗ begins by

initializing (SM , EM , TM ). The rows SM are initialized to {ε}, and columns EM to I.
The initial observation table after executing the output queries for {SM∪SM ·I}×EM
is shown in Table 5.5.
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a b ab aab baab abaab babaab

ε x y xy xxx yxxx xyxxx yxyxxx

a x y xx xxx yxxx xxxxx yxyxxx

b x y xy xxx yxxx xyxxx yxyxxx

(a) Observation table after adding suffixes of v.

a b ab aab baab abaab babaab

ε x y xy xxx yxxx xyxxx yxyxxx

a x y xx xxx yxxx xxxxx yxyxxx

b x y xy xxx yxxx xyxxx yxyxxx

aa x x xx xxx xxxx xxxxx xxxxxx

ab x y xy xxx yxxx xyxxx yxyxxx

(b) Make the observation table closed by moving the row a to
SM .

a b ab aab baab abaab babaab

ε x y xy xxx yxxx xyxxx yxyxxx

a x y xx xxx yxxx xxxxx yxyxxx

aa x x xx xxx xxxx xxxxx xxxxxx

b x y xy xxx yxxx xyxxx yxyxxx

ab x y xy xxx yxxx xyxxx yxyxxx

aaa x x xx xxx xxxx xxxxx xxxxxx

aab x y xx xxx yxxx xxxxx yxyxxx

(c) Make the observation table closed by moving aa to SM .

Table 5.4: After adding v and all suffixes of v to EM , we get the observation table
in Table 5.4a. The underlined rows are the rows, which make the table not closed.
The observation table in Table 5.4c is closed.

Figure 5.2: Mealy machine with I = {a, b}.
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Table 5.5: Initial Observation Table for the Mealy machine in Figure 5.2

EM
a b

SM ε 0 0

SM · I
a 0 0

b 0 0

The observation table of Table 5.5 is closed and compatible, thus, the algorithm
LM
∗ conjectures the Mealy machine Conj′ = (QC

′, I, O, δC
′, λC

′, q0C
′) shown in

Figure 5.3.

Figure 5.3: The Mealy machine conjecture Conj′ from Table 5.5

Now, in order to verify the correctness of the conjectured model, the algorithm
LM
∗ asks an equivalence query to the oracle. Since the conjectured model Conj′ is

not correct, the oracle replies with a counterexample. There can be more than one
counterexamples and the oracle selects one from them. Since

– λ(q0, baaab) = 00001, but

– λC
′(q0C

′, baaab) = 00000.

Thus, the counterexample CE returned by the oracle is baaab/00001 and by
using the binary search the Rivest and Schapire counterexample processing method
finds uj = b and vj = aaab. The corresponding access string from the table is ε.
This method adds vj+1 = aab to the columns EM of the observation table. After
adding this distinguishing string, the observation table is presented in Table 5.6a.

The observation table in Table 5.6a is not closed and it is made closed by moving
the row a from SM · I to the distinct rows SM . The observation table in Table 5.6b
is closed. Since with this counterexample processing method the observation table
always remains compatible, the Mealy machine shown in Figure 5.4 is conjectured.

The conjectured Mealy machine shown in Figure 5.4 is neither a minimal machine
nor consistent with the observations of Table 5.6b.

Again the oracle replies with the counterexample baaab, the algorithm again
finds uj = b and vj = aaab. But vj+1 = aab is not a distinguishing sequence for
the row ε · a, as the suffix aab is already there in the observation table and the row
ε · a ∈ SM . Thus, the algorithm fails to find a distinguishing sequence.
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a b aab

ε 0 0 000

a 0 0 001

b 0 0 000

(a) Observation Table after adding distin-
guishing string aaab

a b aab

ε 0 0 000

a 0 0 001

b 0 0 000

aa 0 0 000

ab 0 0 000

(b) To make the table closed moving the row
a to SM .

Table 5.6: The underlined rows are the rows which make the table not closed. The
observation table in Table 5.6b is closed.

Figure 5.4: The Mealy machine conjecture Conj′′ from Table 5.6b

5.3 The Improved Counterexample Processing Algorithm

In this section, we present an improved method to process the counterexamples,
which is named as Suffix1by1 [Irfan 2010c]. This method adapted for the algorithm
LM
∗ can be presented as the Algorithm 7. We illustrate our algorithm with the help

of Example 5.3.3. The discussion about the complexity of the algorithm is provided
in Section 5.3.4.

5.3.1 Motivation for Improved Counterexample Processing Algo-
rithm

The Mealy machine conjecture MM
′ in Figure 4.2 of machine M in Figure 4.1 is

not correct and in the previous section we have used the sequence of inputs ababaab
as a counterexample. Now, if we look carefully at both the conjectured model MM

′

and the target machine M, we may recognize the fact that the minimal string of
inputs required to distinguish these machines is aab. The set of inputs I is {a, b}
and with random sampling the probability to select the string aab as a counterex-
ample is 1/8. From this, it can be deduced that there is a strong possibility that the
counterexample provided by the oracle will be preceded by some useless sequence.
Even if we consider the guided counterexample searching techniques by Howar et
al. [Howar 2010] and Balle et al. [Balle 2010], these techniques do not provide the
minimal counterexamples. In the case when ababaab is a counterexample, it can be
noticed that the minimal counterexample is a suffix to the provided counterexam-
ple. However, this is not the standard case, we can have useless sequences at the
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beginning or at any later stage. Considering suffixes of a counterexample results in
a smaller counterexample, which is closer to minimal counterexample as compared
to originally found counterexample.

5.3.2 Counterexample Processing Algorithm Suffix1by1

Like Rivest and Schapire [Rivest 1993], Maler and Pnueli [Maler 1995], and Shahbaz
and Groz [Shahbaz 2009], the Suffix1by1 counterexample processing method adds
the suffixes of a counterexample to the columns EM of the observation table and
the size of SM augments only to make the observation table closed, (when a row
from SM · I is moved to SM ). If we have a counterexample CE, this method adds
the suffixes one by one by increasing length from CE to EM . Each time a suffix is
added, the observation table is completed and the closure property is checked. The
algorithm carries on this process until a suffix is found, which makes the table not
closed and forces refinement. On finding such a suffix, this method stops adding the
suffixes of CE to EM and conjectures a Mealy machine.

Since a part of the counterexample CE having a distinguishing sequence is added
to the observation table, the conjectured model may still classify the sequence CE
as counterexample. After adding a distinguishing suffix from CE and conjecturing
a model, the algorithm checks if CE is again a counterexample for the conjecture.
If CE is again a counterexample, this means a longer suffix from the same sequence
CE can still improve the conjecture. The algorithm continues adding suffixes from
CE until a suffix is found, which makes the table not closed. The algorithm makes
the table closed and conjectures a model. This process is continued until CE can no
longer help to improve the conjectured Mealy machine. This algorithm is described
as Algorithm 7.

This method of processing the counterexamples also keeps the SM members
distinct, thus, while processing the counterexamples with this method, the obser-
vation table is always compatible. As the experiments have shown, in the case of
non-optimal counterexamples, this method can have a big impact on complexity.
The rationale behind the proposed improvement in this method comes from the
observation that random walks on uniform distribution of inputs to search for the
counterexamples can cycle through states of a black box that are already present
in a conjectured model, before reaching undiscovered states. Therefore, only the
tail parts of such counterexamples actually correspond to discriminating sequences.
Thus, considering suffixes of such counterexamples makes it possible to reduce the
negative impact of unproductive cycles.

5.3.3 Example for Processing Counterexamples with Suffix1by1
Algorithm

While learning the Mealy machine M in Figure 4.1 with LM ∗, for the initial con-
jecture MM

′ in Figure 4.2, the oracle replies with a counterexample CE = ababaab.
The Suffix1by1 counterexample processing method adds the smallest suffix of CE to



74 Chapter 5. Searching and Processing Counterexamples

Algorithm 7 Counterexample Processing Suffix1by1
Input: Pre-refined observation table (SM , EM , TM ), CE
Output: Refined observation table (SM , EM , TM )
begin

while CE is a counterexample do
for j = 2 to |CE| do

if suffixj(CE) /∈ EM then
add suffixj(CE) to EM
construct the output queries for the new columns
complete (SM , EM , TM ) by executing output queries
if (SM , EM , TM ) is not closed then

break for loop
end

end
end
make (SM , EM , TM ) closed
construct the conjecture MM

end
return refined observation table (SM , EM , TM )

end

EM that is not already member of EM . Since EM is initialized with I, it starts by
adding the suffix of length 2 to the observation table, it adds ab to the set EM . The
function TM is extended to (SM ∪ SM · I) · EM by means of output queries for the
newly added column. After adding the suffix ab, the observation table is presented
in Table 5.7a.

From the observation table in Table 5.7a, it can be observed that row a ∈ SM · I
is not equal to the only member ε of SM , thus, the observation table is not closed.
To make the table closed, the row a is moved to SM and its one letter extensions
are added to SM · I. Now, again the row aa of the observation table in Table 5.7b
makes the table not closed. It is made closed by moving aa to SM . The observation
table in Table 5.7c is closed. This counterexample processing method always keeps
the observation table compatible. So the Mealy machine shown in Figure 7.4.3 is
conjectured. The conjectured model is correct, so the oracle replies “yes” and the
algorithm terminates. Thus, in total 21 output queries are asked.

5.3.4 Complexity

The learning algorithm LM
∗ adapting the Suffix1by1 counterexample processing

method can conjecture a minimal Mealy machine in polynomial time on the following



5.3. The Improved Counterexample Processing Algorithm 75

a b ab

ε x y xy

a x y xx

b x y xy

(a) The observation
table after adding the
suffix ab.

a b ab

ε x y xy

a x y xx

b x y xy

aa x x xx

ab x y xy

(b) Make the obser-
vation table closed by
moving the row a to SM .

a b ab

ε x y xy

a x y xx

aa x x xx

b x y xy

ab x y xy

aaa x x xx

aab x y xx

(c) Make the table closed
by moving the row aa to
SM .

Table 5.7: We get the observation table in Table 5.7a after adding suffix ab to EM .
The underlined rows are the rows, which make the table not closed. The observation
table in Table 5.7c is closed.

factors.

– the size of inputs |I|,

– the number of states in minimal conjecture n,

– and the length of the longest distinguishing sequence from a counterexample p.

Using Suffix1by1 to process the counterexamples, the learning algorithm LM
∗

initializes the SM with ε and EM with I. The size of SM augments only when one
element from SM · I is moved to SM to make the table closed. This can happen
at most n − 1 times and hence, we always have |SM | ≤ n. Thus, the number of
observation table rows SM ∪ SM · I cannot exceed n+ n|I|.

The columns EM are initialized to I and to process a counterexample at most
p − 1 suffixes are added to EM , where p is the length of the longest distinguishing
sequence added to EM . This can happen at most n− 1 times. Thus, the size of EM
cannot exceed |I|+(p−1)(n−1). Putting all this together the maximum cardinality
of {SM ∪ SM · I} × EM is at most

(n+ n|I|)× (|I|+ (p− 1)(n− 1)).

The worst case time complexity for the learning algorithm LM
∗ adapting the

improved counterexample processing method Suffix1by1 in terms of output queries
is O(|I|2n+ |I|pn2).

5.3.5 Complexity Comparison

The theoretical worst case time complexity for LM ∗ in terms of output queries
is O(|I|2mn + |I|mn2), which is reduced to O(|I|2n + |I|mn2) by adapting the
counterexample processing method from Maler and Pnueli [Maler 1995].
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If Rivest and Schapire counterexample processing method is adapted for LM ∗

then the complexity is reduced to O(|I|2n+|I|n2+nlog(m)) output queries, but this
method requires a compromise on the suffix closure property of the observation table.

By adapting the counterexample processing method from Shahbaz and Groz,
the worst case time complexity remains O(|I|2n + |I|mn2), but the gain is for the
factor m, which is reduced from length of the longest counterexample to length of
the longest suffix of a counterexample added to the observation table.

The worst case complexity for the improved method is O(|I|2n+|I|pn2), where p
is the length of the longest suffix added by the method. This suffix is a distinguishing
sequence from a counterexample and non optimal counterexamples include useless
prefixes to distinguishing sequences. Thus, the suffix added by the improved method
is always much smaller than the suffix added by the Shahbaz and Groz method.

5.4 Experiments to Analyze Practical Complexity of Suf-
fix1by1

We have performed an experimental evaluation of the algorithm LM
∗ with the coun-

terexample processing techniques described in previous sections. Our experiments
aim at finding out how all of these techniques perform in practice. The algorithms
are implemented by closely following their high level description. In order to ana-
lyze these techniques, we performed two sets of experiments. We first executed the
various algorithms on the Edinburgh Concurrency Workbench (CWB) examples 1

[Moller ]. Then, we used random machines, which allowed us to study the influence
of the various parameters (number of inputs, outputs, states) on the algorithms.

Randomly generated state machines have been used to investigate the applica-
tion of state machine inference algorithms [Berg 2005b, Bollig 2008, Shahbaz 2009].
This testbed provides independence to generate state machines with required pa-
rameters. We record the number of output queries and counterexamples to analyze
the practical complexity of the learning algorithms. Since the CPU time depends
on the execution of output queries in the black box and we experiment on the sim-
ulated machines, it is useless to record the time. Execution of output queries varies
a lot from one black box to another. For instance in the case of a web service of
a slow interface (e.g. smart card) or a system with physical delays such as me-
chanical motions, the execution time of a query can be much greater than rest of
the algorithm.

5.4.1 CWB Examples

Berg et al. [Berg 2005b], and Shahbaz and Groz [Shahbaz 2009] use the CWB
examples to examine the practical applicability and analysis of their techniques.
The CWB examples cater for the manipulation and analysis of concurrent systems.
These examples allow evaluation of testing and model checking techniques. We

1Examples available at http://homepages.inf.ed.ac.uk/perdita/cwb/Examples/ccs/

http://homepages.inf.ed.ac.uk/perdita/cwb/Examples/ccs/
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have experimented with examples like buffers, vending machines, mutual exclusion
protocols and schedulers shipped with the CWB examples. To all of the examples,
we have added a sink state having transitions with invalid inputs from all states.

The Mealy machines of CWB examples are learned with the algorithm LM
∗

considering each of the counterexample techniques discussed in previous sections of
this chapter.

For CWB examples we have implemented an oracle that finds the counterex-
amples by calculating the symmetric difference between a conjecture and a target
example. Let C be a model conjectured from an unknown DFA A. The lan-
guage L(Ā ∩ C) accepts the strings which are accepted by C but rejected by A.
The language L(A ∩ C̄) is defined analogously. We construct a DFA Z such that
L(Z) = L(Ā ∩ C) ∪ L(A ∩ C̄). Thus, the language of Z contains the strings that
are either accepted by C or A, but not by both. Any string that belongs to L(Z) is
a counterexample. If L(Z) is ∅, then this implementation returns, “yes” the conjec-
ture is correct. Here we are inferring Mealy models and every Mealy machine can
be expressed as a DFA.

Table 5.8: Number of output queries required

|Q| |I| RS 1by1 Ang Sh MP
ABP-Lossy 11 3 306 340 754 340 578
Peterson2 11 3 306 340 880 374 850
Small 11 5 392 392 462 392 672
VM 11 5 392 392 891 448 672

Sched2 13 6 553 553 824 790 1027
ABP-Safe 19 3 638 754 2336 754 870
TMR1 19 5 1152 1632 1392 1728 1920
Vmnew 29 4 2106 1638 2941 2106 3510
CSPROT 44 5 3536 3094 4864 3757 6188
Jobshop 39 7 5754 5206 3960 5206 8768

Table 5.8 shows the number of output queries required by all of the considered
counterexample processing methods. The columns of the table are labeled with the
number of states |Q|, the size of input set |I|, RS the Rivest and Schapire counterex-
ample processing, 1by1 the Suffix1by1 counterexample processing, Ang the Angluin
counterexample processing, Sh the Shahbaz and Groz counterexample processing,
and MP the Maler and Pnueli counterexample processing. The recorded results
show that generally the Rivest and Schapire counterexample processing method is
better than the others, however, in some cases it requires more queries than the
other methods. For the examples Small and VM, the Rivest and Schapire and Suf-
fix1by1 both require only two counterexamples, and both of the methods add only
one sequence to distinguish new states. Since both of the methods add the same
number of sequences to the columns EM and every sequence distinguishes the simi-
lar number of states, they result in requiring the equal number of output queries. A
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distinguishing sequence is a sequence which can distinguish a state from other states
of a model. A distinguishing sequence can identify one or more than one state. For
the examples Vmnew, CSPROT and Jobshop, the distinguishing sequences added
by the Rivest and Schapire method distinguished relatively less states as compared
to other methods, which results in requiring more output queries 5.8.

Table 5.9: Number of counterexamples required

|Q| |I| RS 1by1 Ang Sh MP
ABP-Lossy 11 3 5 5 4 5 3
Peterson2 11 3 5 5 5 5 4
Small 11 5 2 2 2 2 2
VM 11 5 2 2 2 2 2

Sched2 13 6 1 1 1 1 1
ABP-Safe 19 3 8 4 4 4 3
TMR1 19 5 7 2 2 2 2
Vmnew 29 4 14 8 6 8 5
CSPROT 44 5 11 7 5 6 5
Jobshop 39 7 14 6 4 6 6

The Table 5.9 shows the number of counterexamples required by the considered
counterexamples processing methods. We can observe that the Maler and Pnueli
method requires least number of counterexamples. However, it asked most number
of output queries. This method adds all the suffixes of counterexamples to the
observation table, some of them are distinguishing sequences while other are not.
The non distinguishing sequences may eventually become distinguishing sequences
after adding new rows to the observation table. Thus, this method suits most
where finding the counterexamples is hard but output queries can be tolerated to
some extent.

5.4.2 Random Machines

We generate the input deterministic machines by variating the inputs |I|, outputs
|O| and state sizes |Q|. We learn Mealy machines of these random machines with the
counterexample processing methods provided in this chapter. We have simulated
an oracle so that the algorithm can ask the equivalence queries for the correctness
of conjectured models. The oracle selects an input from uniform distribution over I
and provides this input in parallel to conjecture and target system and observes the
outputs. This process is continued until it finds an input whose output for conjecture
and target system are different. The sequence of inputs from the initial input to the
one which causes the difference in outputs is returned as a counterexample. Since the
counterexamples are searched with the random search, the counterexamples found
are often not optimal. In order to increase our confidence in results, we repeat the
learning for every required machine for 30 times and average on the calculated data.

We generate Mealy machines by fixing the output and state sizes but varying
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the number of inputs. Here machines are generated with inputs |I|∈{2, 3, . . . 8},
outputs |O|=7 and states |Q|=40. In Figure 5.5 the number of output queries
asked by all of the algorithms are presented. The vertical axis shows the number of
output queries and horizontal axis shows the number of inputs. The curves for the
Rivest and Schapire, and the Suffix1by1 methods are very close as the maximum
difference for the number of output queries asked is around 60 on the average. Both
of these methods perform better than the others. However, on the average these
methods require around 1.7 counterexamples, whereas the others on the average
require around 1.2 counterexamples. For the smallest machine with input size |I| =
2, the Rivest and Schapire, Suffix1by1, Angluin, Shahbaz and Groz, and Maler and
Pnueli methods on the average require 274, 331, 586, 1069 and 1102 output queries,
respectively, and for the largest machine with |I| = 8 require 2895, 2910, 37778,
14166, and 14873 output queries, respectively.

Figure 5.5: |I|∈{2, 3 . . . 8},|O|=7 and |Q| = 40

The second set of random machines is generated with inputs |I|=2, the outputs
|O|=2 and states |Q|∈{3, 4 . . . 40}. The algorithm LM

∗ is executed to learn these
machines repeatedly with the counterexample processing methods. The Figure 5.6
presents the number of output queries asked by all of the methods. The vertical axis
shows the number of output queries and horizontal axis show the number of states.

We can observe that by increasing the number of states, the gain with Rivest and
Schapire method becomes more significant. For the smallest machine with State size
|Q| = 3, the Rivest and Schapire, Suffix1by1, Angluin, Shahbaz and Groz, and Maler
and Pnueli methods on the average require 21, 21, 63, 42 and 56 output queries,
respectively. For the largest machine with |Q| = 40 require 610, 775, 1287, 1215,
and 972 output queries, respectively. For the smallest machine all of the methods
required only one counterexample, whereas for the largest machine the Rivest and
Schapire, Suffix1by1, Angluin, Shahbaz and Groz, and Maler and Pnueli methods
require 9, 5, 2.22, 2.75, and 1.72 counterexamples respectively.
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Figure 5.6: |I|=2,|O|=2 and |Q|∈{3, 4 . . . 40}

5.5 Conclusion

This chapter presents the techniques for searching and processing the counterexam-
ples. The counterexamples help to improve models conjectured with LM ∗. However,
for software black box system inference searching for counterexamples is a hard task.
Random sampling is a simple method to search for the counterexamples. However,
this method finds non optimal counterexamples that have useless sequences prefix
to them. We can use the algorithms for conformance testing of a conjectured ma-
chine with a black box machine but the complexity of such algorithms is exponential
[Vasilevskii 1973, Chow 1978].

Howar et al. propose to search for the counterexamples by introducing some
weights along the transition edges of the conjectured models. The selection of an
edge for counterexample search is inversely proportional to the weight of the edge.
This algorithm worked well for randomly generated machines for ZULU competition,
however, this method may not be efficient for all models. Balle found that the
transitions ending in shorter leaves of a discrimination tree close to root are less
informed. Thus, the traversal of transitions towards the shorter leaves increases the
probability to find counterexamples. Their experiments could not witness gain with
this method.

For software black box model inference, almost all of the counterexample search-
ing methods provide non optimal counterexamples. To circumvent this deficiency
a number of counterexample processing methods are proposed. The method by
Angluin adds all the prefixes of a counterexample to S rows of the observation ta-
ble. Before conjecturing a model it ensures that the observation table is closed and
compatible. Rivest and Schapire found that compatibility check can be avoided if
we keep S elements distinct. Their method finds a smallest distinguishing sequence
from a counterexample by querying log(m) output queries. Balcázar et al. iden-
tified that after processing the smallest distinguishing sequence, a larger may still
be there in the counterexample, which can still improve the conjecture. Rivest and
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Schapire method adds only a distinguishing sequence to the columns of the observa-
tion table by requiring a compromise on the suffix closure property. The conjecture
constructed from such tables can go inconsistent with the observations in tables.

The method from Maler and Pnueli adds all the suffixes to columns of the obser-
vation table where fewer might be required. However, it keeps the observation table
suffix and prefix closed. In an effort to reduce the elements added to the columns
of an observation table, Shahbaz and Groz proposed a method to process the coun-
terexamples. This method drops the longest prefix from CE that is equivalent to
any element of access strings in the observation table and then adds all the suffixes
of remaining CE to the columns of the observation table. For inferring black box
systems, it is not easy to find “smart” counterexamples. The counterexamples are
often non optimal and a counterexample may contain some useless sequence as prefix
to it. The Shahbaz and Groz method removes only a small prefix of such a useless
counterexample prefix. The Suffix1by1 algorithm adds the suffixes from CE one by
one to E, as soon as it finds a distinguishing suffix from CE which can improve the
conjecture it stops adding suffixes to E. Thus, such useless prefixes are avoided.

The counterexample processing method by [Rivest 1993] is the best competitor
of the improved counterexample processing method. It adds only a distinguishing
sequence from a counterexample CE and finds it in log(m) output queries. The com-
promise on suffix closure property by this method can result in inconsistent conjec-
ture. Merten et al. provide a solution in LearnLib (RivestAllSuffixesSplitterCreator)
[Merten 2011], which adds the distinguishing sequence along its suffixes to EM . But
they ask log(m) output queries just to search for a distinguishing sequence, which
is not necessarily the smallest one. A suffix of such a distinguishing sequence can be
a distinguishing sequence along other access strings which were not tested during
the binary search to identify the smallest distinguishing sequence from CE. The
Suffix1by1 counterexample processing method always finds the smallest distinguish-
ing sequence as it adds the suffixes of CE by increasing length to the columns of
the observation table by beginning from the smallest suffix. This method finds the
smallest distinguishing suffix without asking log(m) output queries.

The counterexample processing methods are analyzed with the systematic and
the random generation of counterexamples for CWB examples and randomly gen-
erated machines, respectively. The systematic counterexample generation results
in relatively smaller counterexamples and consists of calculating the symmetric dif-
ferences, which is not possible for black box model inference. However, we have
considered both counterexample searching techniques to observe the behavior of the
improved method. We have compared the number of output queries and counterex-
amples required to learn the considered models. We have observed that the results
for Suffix1by1 counterexample processing method are encouraging.
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This chapter presents the improved Mealy inference algorithm named as the
algorithm L1. In the first section of this chapter, we provide discussion on the
motivation that leads us to the optimized algorithm. The second section presents:
the L1 algorithm, the improved observation table (data structure) that it uses for
recording the observations, the method to conjecture a model from the observation
table, an example to illustrate the algorithm, and complexity discussion. The third
section provides model learning of the HVAC controller with the LM ∗ algorithm
and L1 algorithm. To show the gain with the improved algorithm, we conduct
experiments in the fourth section. The final section provides a conclusion for the
chapter.

6.1 Motivation for the L1 Algorithm

In Chapter 5, We have exploited the fact: for black box model inference the coun-
terexamples reported by the oracle are often non optimal as they have useless se-
quences as prefixes. If we process the counterexamples with the improved method
(the suffix1by1 method presented in Section 5.3), it results in getting rid of these
useless sequences. In this chapter, we explore the other points where the black box
model inference with LM ∗ can be optimized. This gives rise to the L1 algorithm.

Mealy models associate an output with each transition i.e. Mealy machine tran-
sitions are annotated with i/o, where i ∈ I and o ∈ O. The output o of a transition
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in a model is determined both by the current state and the input of the transition.
For the Mealy inference variant LM ∗ of the L∗ algorithm, the columns of the obser-
vation table are initialized to input set I and this enables the algorithms to calculate
the corresponding i/o for every transition in a conjectured model.

The rows of the observation table are labeled with sequences, which are access
strings for the states and the columns of the observation table are labeled with the
sequences, which distinguish the distinct states of a target system’s model. If input
set I has a large number of elements and we initialize the columns of the observation
table with I, then there is a possibility that all of the input sequences are not
distinguishing strings and we have initialized the columns with too many sequences,
which results in an increased number of output queries. A heuristic, which can
restrict the columns of the observation table only to the distinguishing sequences,
can reduce the number of output queries required by the learning algorithm.

The LM ∗ algorithm assumes that the target system is input enabled. To attain
this, it uses the collection of all possible inputs I for each state (either there exists a
behavior for that input or not). When the LM ∗ algorithm identifies an access string
for a distinct state, then its one letter extensions are added to the observation table
to identify its successor states. But all inputs may not be valid for every state. For
invalid inputs a transition from current state with output Ω to itself is introduced.
Thus, the successor state reached with invalid input is again the current state. We
need not to record the behavior of a state twice. A row in the observation table
corresponds to behavior of a state and it can be marked as unnecessary row if it has
a row in the observation table that will always be equal to it (the rows corresponding
to the states reached with transitions having output Ω are such cases). A technique,
which avoids asking output queries for unnecessary rows of the observation table
reduces the number of output queries required to learn a model of the target system.

6.2 Improved Mealy Inference Algorithm

The Mealy inference algorithm L1 is an improved version of the learning algorithm
LM
∗. The L1 algorithm initially keeps the columns of the observation table empty

with the intent to add only those elements from the set I, which are really required.
But, Mealy adaptations [Niese 2003, Li 2006, Shahbaz 2009] of the L∗ algorithm
initialize the columns with the input set I to calculate the annotations (labeling)
for the transitions of conjectured models. To enable the L1 algorithm to calculate
the output labels for the transitions of the conjectured Mealy models, we record the
output for the last input symbol of the access strings (input sequences) that label
rows of the observation table. This output also helps to identify unnecessary rows
of the observation table. The columns of the observation table are populated only
to process the counterexamples, i.e. columns of the observation table contain only
the distinguishing sequences, and sequences to keep the set of column labels suffix
closed. To process a counterexample L1 adds sequences from the counterexample to
the columns of the observation table like Rivest and Schapire [Rivest 1993], Maler
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and Pnueli [Maler 1995], and Shahbaz and Groz [Shahbaz 2009]. To process a coun-
terexample, the L1 algorithm adds the suffixes of the counterexample by increasing
length to the columns of the observation table [Irfan 2010c]. The observation table
is populated with the outputs from O+ that are calculated from the target system
by sending input strings from I+. The observation table used by the L1 algorithm
is described as follows.

6.2.1 Observation Table

The observation table is defined as a quadruple (S,E,L, T ), where

– S ⊆ I∗ is a prefix closed non empty finite set of access strings, which labels
the rows of the observation table,

– E ⊆ I+ is a suffix closed finite set, which labels the columns of the observation
table,

– for S′ = S ∪ S · I, the finite function T maps S′ × E to the set of non empty
output sequences O∗\{ε} or O+,

– and the finite function L maps S′\{ε} to outputs O which are used to label
the transitions.

The observation table rows S′ are non empty and initially, S = {ε} and S ·I = I.
The output for the last input element for all the members of S′\{ε} are recorded
with the access strings S′ by L. The columns E are initially ∅ and E augments only
after processing the counterexamples. To process a counterexample, the suffixes of
the counterexample are added to E by increasing length. The observation table is
completed by extending T to S′ ·E by asking the output queries. The access strings
are concatenated with the distinguishing sequences to construct the output queries
as s · e1, for all s ∈ S′ and e ∈ E. In the observation table, ∀s ∈ S′, ∀e ∈ E, T (s, e)

= suffix|e|(λ(q0, s · e)), and L(s) = output|s|(λ(q0, s · e)). By means of function L,
all the access strings s ∈ S′\{ε} labeling the rows of the observation table contain
the output o for the last input symbol of the access string s, and S′ is prefix closed.
This implies that λ(q0, s) can be calculated from the row labels. Thus, recording the
suffix of the output query answer suffix|e|(λ(q0, s ·e)) to the cell labeled by row s and
column e in the observation table is sufficient. Initial observation table (S,E,L, T )

for Mealy inference of the machine in Figure 4.1 is presented in Table 6.1, where the
input set I is {a, b}.

The equivalence of rows in the observation table is defined with the help of
function T . Two rows s1, s2 ∈ S′ are said to be equivalent, iff ∀e ∈ E, T (s1, e) =

1The sequences s · e for s ∈ S′ ∧ e ∈ E and s · i for s ∈ S′ ∧ i ∈ I are constructed by considering
the access strings only. The output for last input symbol of access strings recorded along rows
S′\{ε} of the observation table, is used for mapping pair of a state and an input symbol to the
corresponding output symbol (for annotating the transitions during conjecture construction) and
identifying the valid access strings.



86 Chapter 6. Improved Model Inference

Table 6.1: Initial table for mealy inference with L1 of machine in Figure 4.1

E

∅
S ε

S · I\S a/x

b/y

T (s2, e), and it is denoted as s1 ∼= s2. For every row s ∈ S′, the equivalence
class of a row s is denoted by [s]. To construct the conjecture, the L1 algorithm
requires the observation table to satisfy the closure and compatibility properties.
The observation table is closed, if ∀s1 ∈ S · I, there exists s2 ∈ S such that s1 ∼= s2.
The observation table is compatible, if whenever two rows s1 ∼= s2 for s1, s2 ∈ S,
then s1 · i ∼= s2 · i for ∀i ∈ I. Since size of the rows S of observation table (S,E,L, T )

increases only to make the table closed, the L1 algorithm always maintains the
condition that all rows S are distinct, i.e. for all s1, s2 ∈ S, s1 � s2. Thus, the
compatibility condition is always trivially satisfied. On finding the observation table
closed and compatible, the L1 algorithm eventually conjectures a Mealy machine.
The access strings S are the states for the conjecture and columns labeled with
strings from suffix closed set E are the sequences that distinguish these states. The
conjecture Conj1 is defined as:

Definition 6 Let (S,E,L, T ) be a closed and compatible observation table, then the
Mealy machine conjecture Conj1 = (QC , I, O, δC , λC , q0C) is defined, where

– QC = {[s]|s ∈ S}, (since ∀s1, s2 ∈ S, always s1 � s2 thus |S| = |QC |)

– q0C = [ε], ε ∈ S is the initial state of the conjecture

– δC([s], i) = [s · i],∀s ∈ S, i ∈ I

– λC([s], i) = L(s · i),∀s ∈ S,∀i ∈ I ∃!s · i ∈ S′

To verify that Conj1 is a well defined conjecture: since S is a non empty prefix
closed set and always contains ε, q0C and QC are defined. For all s ∈ S and i ∈ I,
the string s · i is added to S · I exactly once. Thus, for every s and every i, there
exists uniquely one s · i in S. Since the observation table is closed, the row s · i ∼= s1
for some row s1 ∈ S. Hence, δC is well defined. Since every s · i is also associated
with some output o by function L, λC is well defined.

Theorem 1 If (S,E,L, T ) is a closed and compatible observation table, then the
Mealy conjecture Conj1 from (S,E,L, T ) is consistent with the finite function T .
Any other conjecture consistent with T but inequivalent to Conj1 must have more
states.

Theorem 1 claims the correctness of the conjecture Conj1. The formal proof by
Niese [Niese 2003] for the correctness of a model conjectured by Mealy adaptation
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of L∗, uses the prefix closure and suffix closure properties of the observation table.
The L1 algorithm always keeps the observation table prefix and suffix closed and
the conjecture is a minimal machine by construction.

6.2.2 The L1 Algorithm

The L1 learning algorithm maintains an observation table (S,E,L, T ) to record the
answers O+ of the output queries I+. The set of rows S is initialized to {ε} and the
columns E at the beginning are ∅.

Algorithm 8 The Algorithm L1

Input: Black box and input set I
Output: Mealy Machine Conjecture
begin

initialize the rows S = {ε}, and columns E = ∅;
execute output queries for S · I strings;
since columns are empty, table is closed;
construct a conjecture C;
repeat

search for counterexamples;
if the oracle replies with a counterexample CE then

while CE is a counterexample do
for j = 1 to |CE| do

if suffixj(CE) /∈ E then
add suffixj(CE) to E;
complete (S,E, T, L) by asking output queries s · e such that
s ∈ S′ ∧ e ∈ E;
if (S,E, T, L) is not closed then

break for loop;
end

end
end
while (S,E,L, T ) is not closed do

find s1 ∈ S · I\S such that s1 � s2, for all s2 ∈ S;
move s1 to S;
add s1 · i to S · I, for all i ∈ I;
complete table by asking output queries for new added rows and
find unnecessary rows;

end
construct a conjecture C;

end
end

until oracle replies yes to the conjecture C;
end
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For the set of inputs I labeling rows S · I, the outputs are calculated. All of
the columns are empty, which implies that all the rows of the observation table are
equivalent, i.e. ∀s1 ∈ S · I, there exists s2 ∈ S, such that s1 ∼= s2, thus, the obser-
vation table is closed. Since S has only one element ε, the compatibility condition
is trivially satisfied. On finding the observation table closed and compatible, the L1

algorithm conjectures a model (the initial conjecture is a single state “daisy” ma-
chine). For every access string s ∈ S and for every input i ∈ I, there exists exactly
one s · i ∈ S′ and the output for the last input i of the S′ elements enables the L1

algorithm to calculate the corresponding output label o for all the transitions of the
conjectured model. Now the L1 algorithm asks the equivalence query to the oracle.
If the oracle replies with a counterexample CE, then L1 adds one by one the suffixes
by increasing length from CE to E. The observation table is completed by asking
the output queries. After adding a suffix and completing the observation table, the
closure property is checked. The algorithm continues adding suffixes until a suffix
of CE is found, which makes the table not closed and forces refinement. On finding
such a suffix, this method stops adding suffixes to E. Now the algorithm makes
(S,E,L, T ) closed by finding a row s1 ∈ S · I, such that s1 � s2, for all s2 ∈ S and
moving s1 to S. The one letter extensions of s1 are added to S · I. Since a row
in the observation table corresponds to behavior of a state and Ω is output for a
transition having same current and target state, on asking an output query for any
of new added rows if the output found to be stored with access string of that row is
Ω then it is marked as unnecessary row. On completing the table, again the closure
property is checked. Since the observation table (S,E,L, T ) is always compatible,
on finding it closed, L1 builds the Mealy machine conjecture in accordance with the
Definition 6.

Now the main while loop checks, if processed CE is again a counterexample for
the learned conjecture. If “yes” (CE is still a counterexample), this means a longer
suffix from the same counterexample CE can improve the conjecture. The algo-
rithm L1 relearns with CE and this process is continued until the counterexample
CE can no longer help to improve the conjectured Mealy machine. After processing
a counterexample and making the table closed, the algorithm again asks equivalence
queries to the oracle. This process is continued until oracle is unable to find a coun-
terexample and replies “yes” to the conjectured model. The algorithm is explained
with the help of the Mealy inference of the machineM in Figure 4.1.

6.2.3 Example for learning with L1

To illustrate the L1 algorithm, we learn the Mealy machine M given in Figure
4.1. The L1 algorithm begins by initializing (S,E,L, T ), the rows S are initialized
to {ε} and columns E to ∅. The output queries a and b are asked to find the
outputs for input symbols {a, b} labeling the rows S · I. The initial observation
table is shown in Table 6.1. This observation table has empty columns for all
of the rows, thus, for every s2 ∈ S · I, there exists s1 ∈ S such that s2 ∼= s1.
Hence, the table is closed. Since for the L1 algorithm the set of rows S always
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has distinct members, trivially the observation table is compatible. On finding the
observation table closed and compatible, the L1 algorithm conjectures the model
Conj1 = (QC1, I, O, δC1, λC1, q0C1) shown in Figure 6.1.

Figure 6.1: The Mealy machine conjecture Conj1 from Table 6.1

To verify correctness of the one state machine conjecture, the L1 algorithm asks
an equivalence query to the oracle. The conjectured model Conj1 is not correct,
and there can be more than one counterexample and oracle replies with one from
them.

– λ(q0, ababaab) = xyxyxxx, but

– λC1(q0C1, ababaab) = xyxyxxy.

Let us assume the oracle replies with the counterexample ababaab/xyxyxxx. The
L1 algorithm adds the smallest suffix b of the counterexample ababaab to the columns
E and completes the table, which remains closed as presented in Table 6.2a. Then
suffix ab is added, which makes the observation table not closed as presented in
Table 6.2b.

The row a as shown in Table 6.2b makes the observation table not closed. It is
moved to S and its one letter extensions aa and ab are added to S · I. To calculate
the output for last input of access strings aa and ab, the algorithm does not require
to execute the output queries separately. The output for the last input of access
strings can be calculated from any of the output queries executed for that row. For
instance if the algorithm asks the output query ab · ab, the answer from the target
machine is xyxy. The output for the last input string in ab is calculated as y and
remaining xy is recorded in column ab of the observation table. After completing
the table, it can be observed from Table 6.2c that the row aa makes the observation
table not closed. Again the table is made closed by moving the row aa to S. The
observation table in Table 6.2d is closed. Since the algorithm L1 maintains the
condition ∀s1, s2 ∈ S always s1 � s2, the observation table is always compatible.
Hence, L1 conjectures the Mealy machine shown in Figure 7.4.3.

The conjectured model is correct, the oracle replies “yes” and L1 terminates.
Initially 2 output queries were executed to calculate the outputs for {a, b} labeling
S · I, thus, L1 asks a total of 16 output queries to learn this example. Since all the
inputs are valid for all of the states, none of the observation table row is marked as
unnecessary row. Here, we have considered an example with a small set of inputs.
If we learn a system with a large input set, the L1 algorithm can restrict a bigger
number of columns.
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b

ε y

a/x y

b/y y

(a) The observation
table after adding
the suffix b.

b ab

ε y xy

a/x y xx

b/y y xy

(b) The observation
table after adding
the suffix ab.

b ab

ε y xy

a/x y xx

b/y y xy

aa/x x xx

ab/y y xy

(c) Make the obser-
vation table closed by
moving the row a to S.

b ab

ε y xy

a/x y xx

aa/x x xx

b/y y xy

ab/y y xy

aaa/x x xx

aab/x y xx

(d) Make the table
closed by moving the
row aa to S.

Table 6.2: Model inference of Mealy machine in Figure 7.4.3 with L1

6.2.4 Complexity of the L1 Algorithm

The learning algorithm L1 can conjecture a minimal Mealy machine in polynomial
time on, the inputs size |I|, the number of states in the minimal conjecture n, and
m the length of the longest distinguishing sequence added to the observation table
(S,E,L, T ) from a counterexample. Initially S contains ε, i.e. one element. Each
time the observation table is discovered to be not closed, one element is moved from
S · I\S to S. This can happen for at most n − 1 times, hence, we always have
|S| ≤ n. The algorithm begins with columns E = ∅ and |E| = 0, each time to
process a counterexample at most m suffixes can be added to E and at most there
can be n−1 counterexamples. Thus, the size of E cannot exceed m(n−1). Putting
all this together the maximum cardinality of S′ × E is (n+ n|I|)×m(n− 1). The
worst case complexity of L1 in terms of output queries is O(|I|mn2). Since the
algorithm avoids asking output queries for unnecessary rows (avoids asking output
queries for observation table rows that have output Ω recorded with access strings),
for every state the size of inputs |I| is reduced to the size of the valid inputs.

6.3 Inferring the HVAC controller

In this section, we infer a simplified version of an HVAC (Heating-Ventilation-Air-
Conditioning) controller with the LM ∗ and the L1 algorithms and show differences.
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6.3.1 Description of the HVAC controller

The HVAC controller regulates heating, ventilation and air conditioning components
in a building. Usually, a sensing device is used to compare the actual temperature
with a target temperature. Then, the control system determines an action (e.g.
start heater). We have taken the specifications of the HVAC controller from the
UPNP standardization2.

The HVAC Controller operations on different temperature values that are:
– for low temperature, i.e. [−20, 11], turn on the heater,
– for high temperature, i.e. [16, 50], turn on the fan,
– for average temperature, i.e. [11, 16], stop both heater and fan.

Figure 6.2 presents the HVAC controller. The controller has various modes depend-
ing on the specifications. We infer its very generic behavior, that is, controlling
the heating and cooling components on the change of temperature. The controller
accepts inputs from its environment to control the connected components. It uses
ON and OFF for starting and shutting down the components, respectively. The
temperature T ranges from -20℃ to +50℃. The control modes are: it turns on the
heater H when temperature is between -20℃ and 11℃, it turns on the fan F when
the temperature is between 16℃ and 50℃. The controller shuts down a component,
when the temperature goes out of the provided range for a component or the con-
troller receives the instruction OFF , and shut down is denoted by S. The outputs
for invalid inputs are recorded as Ω.

Figure 6.2: HVAC controller

6.3.2 Inference of the HVAC controller with the LM
∗ Algorithm

The behavior of the HVAC controller can be modeled as a Mealy machine. We use
the LM ∗ algorithm to infer controller’s interactions with the heating and cooling

2HVAC V1.0 Standardized DCP. http://www.upnp.org/standardizeddcps/hvac.asp

http://www.upnp.org/standardizeddcps/hvac.asp
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components. The elements of the input set I are ON , OFF , and variating tem-
perature. We are interested to infer the behavior of controller when temperature
is -5, 5, 15, 25 and 35 denoted by T -5, T5, T15, T25 and T35, respectively. Thus,
the input set is I = {ON,OFF, T -5, T5, T15, T25, T35}. The observation table
(SM , EM , TM ) is completed by asking the output queries and the algorithm LM

∗

iterates till the table is closed. The observation table (SM , EM , TM ) in Table 6.3 is
closed. Since all of the SM rows are distinct, the table is compatible. To save the
space, we have excluded the rows {OFF, T -5, T5, T15, T25, T35, ON ·ON,ON ·T5 ·
ON,ON · T25 ·ON} from the table 6.3.

EM

ON OFF T -5 T5 T15 T25 T35

SM

ε OK Ω Ω Ω Ω Ω Ω

ON Ω S H H S F F

ON · T5 Ω S H H S S S

ON · T25 Ω S S S S F F

SM · I

ON ·OFF OK Ω Ω Ω Ω Ω Ω

ON · T -5 Ω S H H S S S

ON · T15 Ω S H H S F F

ON · T35 Ω S S S S F F

ON · T5 ·OFF OK Ω Ω Ω Ω Ω Ω

ON · T5 · T -5 Ω S H H S S S

ON · T5 · T5 Ω S H H S S S

ON · T5 · T15 Ω S H H S F F

ON · T5 · T25 Ω S H H S F F

ON · T5 · T35 Ω S H H S F F

ON · T25 ·OFF OK Ω Ω Ω Ω Ω Ω

ON · T25 · T -5 Ω S H H S F F

ON · T25 · T5 Ω S H H S F F

ON · T25 · T15 Ω S H H S F F

ON · T25 · T25 Ω S S S S F F

ON · T25 · T35 Ω S S S S F F

Table 6.3: The HVAC controller’s inference with LM ∗

A total of 203 output queries (29 rows × 7 columns) are asked to conjecture
Mealy machine of the HVAC controller. Figure 6.3 shows the model conjectured
from Table 6.3.

6.3.3 Inference of the HVAC controller with the L1 Algorithm

We illustrate the L1 algorithm by learning the Mealy model Mhvac of the HVAC
controller, and show how unnecessary rows can be identified using the output for
the last input of the access strings. The L1 algorithm begins by initializing the
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Figure 6.3: The HVAC controller’s model conjectured from Table 6.3

observation table (S,E,L, T ), the rows S are initialized to {ε}, and columns E
are ∅. The output queries ON,OFF, T -5, T5, T15, T25 and T35 are asked to find
the outputs for input symbols {ON,OFF, T -5, T5, T15, T25, T35} labeling the rows
S · I.

E

∅
S ε

S · I\S

ON/OK

OFF/Ω

T -5/Ω
T5/Ω

T15/Ω

T25/Ω

T35/Ω

Table 6.4: Initial Observation Table for Mealy inference with L1 of the HVAC
controller

The rows with access strings whose output for the last input symbol is Ω are
marked as unnecessary rows and are excluded from the subsequent tests. The ac-
cess strings of unnecessary rows are struck out in initial observation table as shown
in Table 6.4. This observation table has empty columns for all of the rows, thus,
for every s2 ∈ S · I, there exists s1 ∈ S such that s2 ∼= s1. Hence, the table
is closed. Since for the L1 algorithm the set of rows S always has distinct mem-
bers, trivially the observation table is compatible. On finding the observation ta-
ble closed and compatible, the L1 algorithm conjectures the model Conjhvac1 =
(QChvac1 , I, O, δChvac1 , λChvac1 , q0Chvac1) shown in Figure 6.4.

To verify correctness of the one state machine conjecture, the L1 algorithm asks
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Figure 6.4: The Mealy machine conjecture Conjhvac1 from Table 6.4

an equivalence query to the oracle.

T5

ε Ω

ON/OK H

(a) The observation ta-
ble after adding the
suffix T5.

T5

ε Ω

ON/OK H

ON ·ON/Ω Ω

ON ·OFF/S Ω

ON · T -5/H H

ON · T5/H H

ON · T15/S H

ON · T25/F S

ON · T35/F S

(b) Make the observation ta-
ble closed by moving the row
ON to S.

T5

ε Ω

ON/OK H

ON · T25/F S

ON ·OFF/S Ω

ON · T -5/H H

ON · T5/H H

ON · T15/S H

ON · T35/F S

ON · T25 ·ON/Ω Ω

ON · T25 ·OFF/S Ω

ON · T25 · T -5/S H

ON · T25 · T5/S H

ON · T25 · T15/S H

ON · T25 · T25/F S

ON · T25 · T35/F S

(c) Make the observation table
closed by moving the row ON ·T25
to S.

Table 6.5: The HVAC controller inference observation table after adding the suffix
T5 to E.

The conjectured model Conjhvac1 is not correct, and there can be more than
one counterexample and oracle replies with one from them.

– λMhvac
(q0Mhvac

, ON · T5) = OK ·H, but

– λChvac1(q0hvac1 , ON · T5) = OK · Ω.
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The oracle replies with a counterexample ON · T5. The L1 algorithm adds the
smallest suffix T5 of the counterexample ON · T5 to the columns E and completes
the table. This suffix makes the observation table not closed as presented in Table
6.5a.

The row ON makes the observation table not closed. It is moved to S and its one
letter extensions {ON ·ON,ON ·OFF,ON ·T -5, ON ·T5, ON ·T15, ON ·T25, ON ·
T35} are added to S · I. To calculate the output for last input of access strings
in S · I, the algorithm does not require to execute these output queries separately.
The output for the last input of access strings can be calculated from the output
query executed for any of the cells of that row. For instance, for row ON · T15 and
column T5, if the algorithm asks the output query ON · T15 · T5, the answer from
the HVAC controller is OK ·S ·H. The output for the last input string of ON ·T15 is
calculated as S, and H is recorded in the column T5 of the observation table. After
completing the table, it can be observed from Table 6.5b that the row ON · T25

makes the observation table not closed. Again the table is made closed by moving
the row ON · T25 to S. The observation table in Table 6.5c is closed. Since the
algorithm L1 maintains the condition ∀s1, s2 ∈ S always s1 � s2, the observation
table is always compatible. Hence, L1 conjectures the Mealy machine Conjhvac2 =
(QChvac2 , I, O, δChvac2 , λChvac2 , q0Chvac2) shown in Figure 6.5.

Figure 6.5: The Mealy machine conjecture Conjhvac2 from Table 6.5c

The L1 algorithm asks an equivalence query to the oracle.

– λMhvac
(q0Mhvac

, ON · T -5 · T25) = OK ·H · S, but

– λChvac2(q0hvac2 , ON · T -5 · T25) = OK ·H · F .

The oracle replies with a counterexample ON ·T -5 ·T25. The L1 algorithm adds
the smallest suffix T25 of the counterexample ON · T -5 · T25 to the columns E and
completes the table. This suffix makes the observation table not closed as presented
in Table 6.6a.

The row ON ·T5 as shown in Table 6.6a makes the observation table not closed.
It is moved to S and its one letter extensions are added to S ·I. After completing the
observation table, we get Table 6.6b. It is closed and compatible observation table.
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T5 T25

ε Ω Ω

ON/OK H F

ON · T25/F S F

ON ·OFF/S Ω Ω

ON · T -5/H H S

ON · T5/H H S

ON · T15/S H F

ON · T35/F S F

ON · T25 ·OFF/S Ω Ω

ON · T25 · T -5/S H F

ON · T25 · T5/S H F

ON · T25 · T15/S H F

ON · T25 · T25/F S F

ON · T25 · T35/F S F

(a) The observation table after adding the
suffix T25 to E.

T5 T25

ε Ω Ω

ON/OK H F

ON · T25/F S F

ON · T5/H H S

ON ·OFF/S Ω Ω

ON · T -5/H H S

ON · T15/S H F

ON · T35/F S F

ON · T25 ·OFF/S Ω Ω

ON · T25 · T -5/S H F

ON · T25 · T5/S H F

ON · T25 · T15/S H F

ON · T25 · T25/F S F

ON · T25 · T35/F S F

ON · T5 ·ON/Ω Ω

ON · T5 ·OFF/S Ω Ω

ON · T5 · T -5/H H S

ON · T5 · T5/H H S

ON · T5 · T15/S H F

ON · T5 · T25/S H F

ON · T5 · T35/S H F

(b) Make the observation table closed by
moving the row ON · T5 to S.

Table 6.6: The HVAC controller observation table after adding the suffix T25 to E.
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The L1 algorithm conjectures the Mealy machine shown in Figure 6.3. The con-
jecture is a correct behavior of the HVAC controller and the algorithm terminates.
The L1 algorithm asks 7 output queries to construct Table 6.4, 7 output queries for
Table 6.5b, 7 output queries for Table 6.5c, 14 output queries for Table 6.6a, and 13
output queries for Table 6.6b. Thus, in total it requires 38 output queries to learn
the Mealy model of the HVAC controller instead of 203 output queries for the LM ∗

algorithm.

6.4 Experiments to Analyze Practical Complexity of L1

In Section 5.2, we have presented 4 counterexample processing methods [Angluin 1987,
Rivest 1993, Maler 1995, Shahbaz 2009] for LM ∗. The Rivest and Schapire method
adds only a distinguishing sequence to the columns of the observation table by
requiring a compromise on the suffix closure property of the observation table. Sec-
tion 5.2.5 shows that a conjecture built from such an observation table may not be
minimal and consistent with the observation table.

Shahbaz and Groz [Shahbaz 2009] show that their Mealy adaptation algorithm
LM

+ (their counterexample processing method adapted for LM ∗) performs better
than Mealy inference with rest of the counterexample processing methods. We have
performed an experimental evaluation to compare L1 and LM+. Our experiments
aim at finding out how both algorithms perform in practice. The algorithms are
implemented by closely following their high level description. In the previous section,
the worst case theoretical complexity analysis shows that L1 performs better than
LM

+ in terms of required output queries. This is important to find the average case
practical complexity of these algorithms.

Randomly generated state machines have been used to investigate the applica-
tion of state machine inference algorithms ([Berg 2005b, Bollig 2009]). This testbed
provides independence to generate state machines with given parameters. We use
random machines, which allow us to study the influence of the various parameters
(number of inputs, states, etc) on the learning algorithms. For both of the following
sets of experiments in order to increase our confidence, we repeat the learning for
every target machine for 30 times and average on the calculated data.

A set of Mealy machines is generated by fixing outputs and states sizes, but
varying the number of inputs. We record the number of output queries to analyze
the practical complexity of the learning algorithms. Since the CPU time depends on
the execution of output queries in a black box implementation and we experiment
on the simulated machines, it is useless to record the time. Execution of output
queries varies a lot from one black box to another. For instance in the case of a web
service of a slow interface (e.g. smart card) or a system with physical delays such as
mechanical motions, the execution time of a query can be much greater than rest of
the algorithm. We generate machines for inputs |I|∈{2, 3, . . . 10}, outputs |O|=5 and
states n=40. We learn the Mealy machines of these machines with both algorithms.
We have simulated an oracle so that the algorithms can ask the equivalence queries
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for the correctness of conjectured models. The oracle systematically compares the
conjecture and target system’s model to obtain the counterexamples.

In Figure 6.6 the number of output queries asked by both algorithms are pre-
sented. The vertical axis shows the number of output queries and horizontal axis
shows the number of inputs. The results for output queries clearly show that L1

outperforms LM+. We can observe that for the machines generated with smaller
input set the gain is small and it increases with increase in the size of the input set.
For instance, for the smallest machine with inputs size |I| = 2, on the average L1

asks 385 output queries and LM+ asks 405 output queries. There is a 4.94% gain
of output queries. Now, if we consider the machine generated with inputs size |I| =
10, on the average L1 asks 1604 output queries and LM+ asks 4010 output queries.
There is a gain of 60% for output queries.

Figure 6.6: |I|∈{2, 3, . . . 10} and |O|=5,n=40

The second set of experiments is generated by fixing the size of input set and size
of outputs set, but varying the number of states. The machines are generated with
input set size |I|=5, the outputs set size |O|=7 and number of states n∈{3, 4 . . . 40}.
The size of outputs set is changed to get slightly different machines as compared
to the first set of experiments. The L1 and LM+ algorithms are executed on these
machines one by one. Figure 6.7 presents the number of output queries asked by both
algorithms. The vertical axis shows the number of output queries and horizontal
axis shows the number of states. Again for this set of experiments L1 outperforms
LM

+.
On the average L1 requires 16 output queries to learn the machine with states

size n = 3 and LM
+ requires 80 output queries. So there is a gain of 80% for

output queries. For the largest machine having states size n = 40, L1 requires 784
output queries and LM

+ requires 1202 output queries, there is a gain of 34.78%
output queries. Thus, clearly L1 outperforms LM+ for both of the considered sets
of experiments. Here, we have inferred examples with relatively small input set,
the gain with L1 increases when we are required to learn black box systems with
large input set. The counterexample processing method adapted for L1 is also a
contributing factor towards gain.

However, L1 may require more counterexamples than LM
+. To start learning

L1 asks equivalence query to the oracle. As the columns E of the observation table
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Figure 6.7: |I|=5,|O|=7 and n∈{3, 4 . . . 40}

(S,E,L, T ) are initially empty and they are populated only to process the coun-
terexamples. Initially for one state conjecture and conjectures with a small number
of states, very small sequences are counterexamples and such counterexample search
is not costlier than an output query.

6.5 Conclusion

The Mealy adaptations of L∗ available in the literature initialize the columns EM
with I. The L1 algorithm does not initialize the columns with I and adds only
those elements of I to the columns E which are distinguishing sequences or suffixes
of distinguishing sequences. Adding fewer elements from I to E results in a reduced
number of output queries and the gain with L1 increases for systems with large input
set. Secondly, all the members of I are not valid inputs for every state, the existing
Mealy inference algorithms on identifying an access string for a state, add its one
letter extensions for all inputs (valid and invalid) to the observation table. The one
letter extensions of access strings with invalid inputs are unnecessary rows. The
output recorded along access strings in the observation table helps L1 to identify
the unnecessary rows. Keeping only valid access strings in the observation table
results in fewer rows S′ and thus, fewer output queries.

The theoretical worst case time complexity for LM ∗ in terms of output queries
is O(|I|2mn + |I|mn2), which is reduced to O(|I|2n + |I|mn2) by adapting the
counterexample processing method from Maler and Pnueli [Maler 1995]. If Rivest
and Schapire [Rivest 1993] counterexample processing method is adapted for LM ∗,
then the complexity is reduced to O(|I|2n+|I|n2+nlog(m)) output queries, but this
method requires a compromise on the suffix closure property of the observation table.
The worst case time complexity for L1 in terms of output queries isO(|I|mn2). Thus,
there is a gain of |I|2n output queries for L1. Here, m is the length of the longest
distinguishing sequence added from a counterexample, which is always smaller than
length of the longest counterexample processed by L1. The size of inputs |I| is also
reduced to only the valid inputs for every state. Real world systems work on huge
data sets as their possible inputs, thus, gain with L1 over LM ∗ and its variants
becomes more visible on inferring models of such systems.
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We propose a technique which infers models of software components as Mealy
machines without using counterexamples. The technique is based on the Good-
Split algorithm, which was proposed by Eisenstat and Angluin [Eisenstat 2010] as
an improvement over the L∗ algorithm. For black box model inference, the L∗

algorithm requires an oracle that can answer equivalence queries. The GoodSplit
algorithm learns black box models without using equivalence queries and by taking
into account an estimate on the length of distinguishing sequences. The GoodSplit
algorithm uses a greedy choice to ask membership queries which is only applicable
queries with answers “accept/reject”. In this chapter, we propose the Mealy adapta-
tion of the GoodSplit algorithm. The learning algorithm is reorganized along some
improvements that enable it to learn Mealy models. The algorithm uses a technique
to ask the output queries. The technique is based on the following observation: some
output queries required to learn a black box model that are prefixes to other tests
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can be deduced from the answers executeded for the larger tests. The improvements
for the Mealy inference algorithm enable it to learn the software black box models
with a reduced number of output queries.

In the first section of this chapter, we provide a discussion on the concept of dic-
tionaries, the motivation that leads us to devise the technique for calculating output
queries and the new technique. The second section presents the generic concept of
oracle. The third section discusses the need to learn without counterexamples and
entails the details about the issues with oracle. The fourth section introduces the
GoodSplit algorithm. In the fifth section, the Mealy GoodSplit algorithm LM-GS is
formally presented and explained with the help of an example. The chapter provides
a discussion before concluding the chapter.

7.1 Organization of Output Queries

The DFA inference algorithms ask membership queries that are answered as accept
or reject [Angluin 1987, Eisenstat 2010], whereas the Mealy inference algorithms ask
output queries that are replied with an output string [Niese 2003, Shu 2007].

7.1.1 Output Queries and Dictionaries

It is observed that in the process of learning unknown models with the variants of
Angluin algorithm L∗ [Howar 2010, Niese 2003, Shahbaz 2009], the algorithms may
repeatedly need to ask the same output queries. For deterministic systems, asking
again the same output query from a target system will result in the same answer.
If an output query for a cell of the observation table is calculated, then its answer
can be reused to answer the same or its prefix output query for a different cell.
It consumes resources and takes time to calculate the output queries from a black
box. Moreover, recalculating the output queries increases the learning cost. If we
use dictionaries to record answers for output queries for software model inference,
it will accelerate the learning process by consuming fewer resources [Niese 2003].
To calculate output queries, in the literature, we can find techniques that consult
answers of already calculated output queries before executing them into a target
system [Niese 2003, Eisenstat 2010, Howar 2010]. The dictionaries and filters can
be used to avoid asking the output queries repeatedly. To answer the output queries
the filters are constructed from the assumption of input determinism, knowledge of
the target system (domain specific constraints) and the known answers to the output
queries (optimization filters are presented in Section 4.2). With the implementation
of dictionaries, an output query will be asked to a target black box system only
when its output cannot be inferred from the already known queries. Whenever an
output query is calculated, it is recorded in the dictionaries before adding its answer
to an observation table.
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7.1.2 Motivation

In the process of learning unknown models with the algorithm LM
∗ (the Mealy

adaptation of L∗) and even with the L1 algorithm, we may very often repeatedly
require to ask the output queries that have already been asked (but for a different cell
of the observation table). This is because the concatenation of different access strings
and distinguishing strings of an observation table may result in a similar output
query. It will reduce the learning cost, if we infer the answer for an output query
from the answers of output queries whose outputs/answers are already calculated
(without consulting the target black box system). The concept of query caching
has been used for learning Mealy models [Niese 2003, Cho 2010, Howar 2010]. The
idea of dictionaries implementation is general and helps to avoid asking queries
repeatedly. An output query is executed in a target black box system only when
its output cannot be inferred from the dictionaries. The answer of an output query
from the dictionaries can be used to answer the output query and its prefix output
queries.

Generally, the learning algorithms ask the output queries by concatenating the
access strings and distinguishing strings in the order they are found in the observa-
tion table. However, if from unanswered output queries, we first calculate an output
query which can answer relatively larger number of unanswered output queries, then
the number of output queries required for model inference of a black box system is
reduced. Thus, the order in which output queries are asked is important.

7.1.3 Improved Heuristic

We have observed that while learning with LM ∗, at times we may require to ask a
number of output queries at once, especially when LM ∗ adapts the counterexample
processing method from Maler and Pnueli [Maler 1995]. To process a counterex-
ample CE with this method, the algorithm requires to ask |CE| × |SM ∪ SM · I|
output queries. Asking longer queries prior to smaller queries helps to calculate
the answers for the smaller queries (that are prefix to these longer queries). The
intuition behind this technique is to ask those output queries first that have greater
number of unanswered output queries as prefix to them. This technique proposes
to choose an output query with a maximum number of prefixes in a current set of
unanswered output queries. This output query is executed in the target black box
system and its output is recorded in the dictionaries. This output also helps to infer
outputs for its prefix output queries.

7.2 Motivation

For software black box implementations in reality an oracle does not exist. A num-
ber of heuristics have been proposed to circumvent this deficiency. Almost all of
them involve a compromise on the precision. For inferring and testing black box
software systems, the most common procedure is the construction of an input se-
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quence by a random walk on a uniform distribution of inputs. The resulting in-
put sequence is provided in parallel to the conjectured model and black box to
find the differences [Angluin 1987, Howar 2010, Irfan 2010c]. The counterexamples
found by this method are often very long. Since the counterexample sequences
are built randomly, there is a strong possibility that such sequence are constructed
by traversing iteratively the states which are already present in a learned model.
This type of long counterexamples include most of the information that is already
known to the learned model. To circumvent the negative impact of long coun-
terexamples, in the literature we can find the counterexample processing methods
[Angluin 1987, Maler 1995, Rivest 1993, Shahbaz 2009, Irfan 2010c]. However, if we
can avoid the usage of an oracle or equivalence oracle, it may ease the job of test
engineers.

7.3 Learning without Counterexamples

Since searching for counterexamples for black box model inference is a complicated
task, construction of a technique which can learn the models of black box implemen-
tations without requiring counterexamples is important. The GoodSplit learning
algorithm is a worthy contribution in this regard. To find new states, this algo-
rithm does not require the counterexamples from an oracle. Instead, it adds all the
sequences of a given length to the columns of the observation table.

The oracle also provides a termination criteria by saying “yes” to a conjectured
model. In the absence of an oracle the GoodSplit algorithm requires an alternative
criterion to stop the learning process. There are many possibilities in this regard;
the original version of the GoogSplit algorithm which stood third in the Zulu com-
petition [Combe 2010] uses a limit on the number of membership queries.

7.3.1 The GoodSplit Algorithm

The GoodSplit algorithm [Eisenstat 2010] uses an observation table to record the
answers from target model interactions. This algorithm adds the distinguishing
sequences to the columns of the observation table like [Rivest 1993, Maler 1995,
Shahbaz 2009, Irfan 2010c]. The models are learned as DFA accepting an unknown
regular language over a given alphabet Σ. The outputs of the queries are recorded
in the cells of the observation table in the form of accept or “1” and with reject or
“0”, otherwise. This algorithm does not fill the observation table completely, some
cells contain either accept or reject depending on the output of the corresponding
membership query, while other cells do not contain anything at all until queries
for those cells are calculated. The rows of the observation table are states and the
columns are the distinguishing sequences. The set of columns is denoted by Σ≤l,
where l is the length of the longest suffix added to the observation table. The set
of distinct rows is denoted by D and it is initialized with ε, where ε is an empty
string. The set of all distinct and equivalent to distinct rows is denoted by P , i.e.
P = D ∪D · Σ.
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Two rows r1, r2 ∈ P are said to be consistent iff ∀e ∈ Σ≤l, if both r1 · e and r2 · e
are non-empty, then they must be equal, and it is denoted by r1 ∼=c r2.

The inconsistency of rows r1 and r2 is denoted as r1 �c r2. For any row r the
set Dr denotes the rows from D consistent with r. A row is identified as distinct,
if it is not consistent with any of the distinct rows. For all r ∈ P , [r] denotes
the equivalence class of a row r, the equivalence class of rows includes all the rows
that are consistent with r. For a row r we always have Dr v [r]. Initially, the
observation table has one row and one column, both consisting of the empty string
ε. The answer for the only cell of the observation table is calculated and recorded.
The set of executed queries is cached and consulted before asking new queries and
is maintained as A = A0 ∪ A1, where A0 are the queries answered “0” and A1 are
the queries answered “1”. The algorithm was proposed for the ZULU competition
[Combe 2010], where a limited number of queries were allowed. This algorithm uses
the query limit as the termination criteria. The algorithm operates in the following
steps.

1. For the transitions of the states, ∀r ∈ D and a ∈ Σ, if r · a /∈ P , then add r · a
to P and complete the table by asking membership queries.

2. If ∃r1 ∈ (P\D) and ∀r2 ∈ D, r1 �c r2, then move r1 to D. Repeat this process
until P does not change anymore.

3. ∀r ∈ (P\D), as long as |Dr| > 1, the algorithm selects greedily a suffix e ∈ Σ≤l

and queries r · e.
The greedy choice is made as follows: For b ∈ {0, 1}, let

vb(r, e) = |{r′ ∈ Dr : r′ · e ∈ Ab}|
that is the number of r′ ∈ Dr such that r′ ·e has been queried and answered b,
then e ∈ Σ≤l is chosen to maximize

v(r, e) = min{v0(r, e), v1(r, e)}.
Since elements of Dr are inconsistent with each other, there will be at least
one e with v(s, e) ≥ 1. The greedy choice maximizes the minimum number of
possible identifications that could be eliminated by a membership query.

4. The algorithm uses the following heuristic to decide whether or not to incre-
ment the current suffix length l. If more than 90% of table cells are filled, then
l is incremented by 1, i.e. (r, e) ∈ (P\D) × Σ≤l and r · e ∈ A is greater than
90%, then increment l by 1.

5. For d|D|/2e random choices (r, e) ∈ (P\D)×Σ≤l such that answer for r · e is
not known, query both r · e and r′ · e such that r′ ∈ D is consistent with r.
Return to step 1.

After reaching the query limit, the algorithm executes step 1 and step 2, as if
at this stage there are distinct states in (P\D), they can be moved to D. The
conjecture is constructed from the observation table as follows:
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Definition 7 The GoodSplit algorithm constructs a DFA conjecture Conj = (Q,Σ, δ, F, q0)

from the observation table defined as:

– Q = {[r]|r ∈ D};

– q0 = [ε];

– F = {[r]|r ∈ D ∧ r ∈ A1},
∃r ∈ D, such that r /∈ A, then it is randomly selected as accepting or rejecting;

– δ([r], a) = [r · a], ∀r ∈ D, a ∈ Σ,
if r ·a is consistent with more than one r′ ∈ D, then one from them is selected
randomly.

The strings in D are the distinct states for the inferred model and the initial
state is ε. If the corresponding string of the state in the observation table belongs
to A1, then it is an accepting state, and if it belongs to A0, then it is a rejecting
state. If the string does not belong to A, or the string has not been queried, then
it is selected from a uniform distribution over accept or reject. For all r ∈ D, the
transition function δ(r, a) maps the transition for state r with letter a to r · a, if r
is in D. Otherwise, r′ ∈ D is selected such that r′ ∼=c r · a, if r · a is consistent with
more than one r′, then from such r′, one distinct state is selected randomly.

7.3.2 Termination Criteria for the GoodSplit Algorithm

The GoodSplit learning algorithm does not use an oracle which can provide an
answer “yes”, when the learned model is correct and learning process can be stopped.
However, it needs a “Heuristic” that may answer “yes” when the correct model is
learned and learning process can be stopped. The “Heuristic” can use the information
about the number of states to terminate the learning process. For black box model
inference such a guess could be difficult. So we look for the other options that
can be a limit on the number of output queries or limit on the length of suffixes
l added to the observation table. The monograph from Trakhtenbrot and Barzdin
[Trakhtenbrot 1973] indicates that for complete finite state machines with n states,
g inputs, and h outputs, the length of input sequences reaching all n states is
asymptotically equal to logg(n) and distinguishing states just logglogh(n).

This means that we can use this result for the length of l to terminate the
learning process if we know about the sizes of inputs, outputs and number of states.
For d = ξ+ logglogh(n), querying all suffixes in Σ≤d for each state and its one letter
extension (state successor) entails about k1+εnlogh(n) membership queries, where ξ
is a small constant. But again, we need to know the number of states to determine
the number of membership queries required for a model.

For the GoodSplit learning algorithm, for any two rows r1, r2 ∈ D, we always
have r1 �c r2, which means that the number of rows in D corresponds to the number
of states in a conjectured model. For black box checking Peled et al. assume that
a bound n on the number of states of the checked system is known [Peled 1999]. If
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we know about a bound n on the number of states, then as soon as the size of D
becomes equal to n, the learning algorithm stops the learning process and terminates
by constructing a conjecture.

7.3.3 Greedy Choice for the GoodSplit Algorithm

Each distinct row r ∈ D of the observation table is an access string to a state. We
want to be able to figure out the transitions with every i ∈ Σ for these states. For
every r ∈ D, its one letter extension is r · a ∈ P for some a ∈ Σ. Since to save
membership queries the GoodSplit algorithm keeps some cells of the observation
table empty, it is possible to have some r ·a ∈ P\D such that r ·a is consistent with
more than one r′ ∈ D. The algorithm wants to bring it down to one. This can be
done immediately if all of the table cells for the row s · a are filled.

This is where the greedy part of the algorithm comes in. To optimize the query
consumption the algorithm wants to query some of the entries in row r · a. The
algorithm queries to eliminate as many consistent distinct states as possible (with
s ·a). It examines each column one by one to count the number of entries filled with
“accept” and “reject”. If the algorithm queries (r · a, e) for some e ∈ Σ≤l and the
answer is “accept”, then all of the rows with rejecting entries will be eliminated. On
the other hand, if the answer is “reject”, then all of the rows with accepting entries
will be eliminated. The greedy choice maximizes the worst case number of rows
eliminated as follows: take the minimum of the number of accepting and rejecting
entries for each column, then maximize this value.

For DFA model inference the membership queries have boolean answers, whereas
for Mealy inference, the output queries are answered with strings of outputs. Thus,
this greedy choice will not work for Mealy inference.

7.4 Mealy Adaptation of the GoodSplit Algorithm

Like the L∗ algorithm, the GoodSplit algorithm can learn Mealy models of in-
put/output (i/o) systems using model transformation techniques by taking the union
or the cross product of sets of inputs I and outputs O of the target unknown Mealy
machine as alphabet for DFA [Hungar 2003b, Groce 2006, Mäkinen 2001]. However,
this increases the size of alphabet which results in increasing the complexity of the
learning algorithm. Learning directly Mealy models results in requiring less number
of output queries [Niese 2003, Shahbaz 2009].

We propose the Mealy version LM-GS of the GoodSplit algorithm which learns
the models of target systems as Mealy machines. The LM-GS learning algorithm
operates with an additional assumption along the assumptions described in Sec-
tion 4.3.

– A bound on the number of states in the target black box software is known.

This algorithm learns the models as Mealy machines by using the general settings
of the GoodSplit algorithm. The algorithm explores the target model by asking
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output queries [Niese 2003, Shu 2007] and organizes the outputs in an observation
table. This algorithm introduces some improvements which are as follows:

– The observation table keeps only valid access strings.

– On adding new rows and columns for the observation table, the answers for
their output queries which can be inferred from known answers (dictionaries)
are added at the time of adding new rows or columns. This helps to find
distinct states fast.

– The greedy choice of the GoodSplit algorithm for asking boolean member-
ship queries does not work for the Mealy version of the GoodSplit algorithm.
A greedy choice is proposed which is applicable to the answers of the out-
put queries.

The observation table for LM-GS is defined as follows.

7.4.1 Observation Table

We define an observation table (S,E, T ) for the Mealy learning algorithm.

– S ⊆ I∗ is a prefix closed non empty finite set of access strings, which labels
the rows of the observation table,

– E ⊆ I≤l is a suffix closed finite set, which labels the columns of the obser-
vation table, ε /∈ E and l is the length of the longest suffix added to the
columns.

– for S′ = S ∪ S · I, the finite function T maps S′ × E to outputs O+,

The observation table rows S′ are non empty and initially, S = {ε} and S ·I = I.
At the beginning, the value for l is 1 as the columns E are initialized to I and
E augments only when l in incremented. The observation table is completed by
extending T to S′ · E by asking the output queries greedily. The access strings are
concatenated with the distinguishing strings to construct the output queries as s · e,
for all s ∈ S′ and e ∈ E. In the observation table, ∀s ∈ S′, ∀e ∈ E, T (s, e) =
suffix|e|(λ(q0, s · e)). The initial observation table (S,E, T ) for Mealy inference of
the machine in Figure 2.2 is presented in Table 7.1, where the inputs set I is {a, b}.

Table 7.1: Initial observation table for Mealy machine in Figure 2.2

E

a b

S ε

S · I\S a

b
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The consistency of two rows of the observation table is defined with the help of
the function T .

Two rows s1, s2 ∈ S′ are consistent, if
∀e ∈ E, T (s1, e)∧T (s2, e) are known⇒ T (s1, e) = T (s2, e). It is denoted as s1 ∼=c s2.

Two rows s1, s2 ∈ S′ are inconsistent, if
∃e ∈ E such that T (s1, e) ∧ T (s2, e) are known and T (s1, e) 6= T (s2, e) and it is
denoted as s1 �c s2.

Two rows of the observation table are said to be equivalent if they are consistent,
the equivalence class of a row r ∈ S′ is denoted by [r]. The distinct rows s ∈ S of
the observation table are always inconsistent. The observation table is not closed,
if ∃s1 ∈ S · I\S such that ∀s2 ∈ S, s1 �c s2. If s1 makes the observation table not
closed, then s1 is moved to distinct rows S.

For all s ∈ S, the set Ds denotes the set of rows s1 ∈ S which are consistent with
s. From the observation table all transitions cannot be determined, if ∃s ∈ S · I\S
and |Ds| > 1.

The observation table is eventually used to construct a Mealy conjecture. The
Mealy machine conjecture is a minimal machine which is consistent with the obser-
vations in the table. To construct a conjecture, we use the following definition.

Definition 8 If an observation table (S,E, T ) is such that all the one letter exten-
sions of distinct rows are distinct or consistent with one distinct row and all the
columns for the inputs of distinct rows are filled, then a Mealy Conjecture Conj1 =
(I,O,QC , q0C , δC , λC) is defined as:

– QC = [s]|s ∈ S;

– q0C = [ε], ε ∈ S is the initial state of the conjecture;

– δC([s], i) = [s · i],∀s ∈ S,∀i ∈ I;

– λC([s], i) = T (s, i), ∀s ∈ S, ∀i ∈ I.

Now to verify that the Mealy conjecture Conj1 is well defined, we know that S
is a non-empty prefix closed set and it always contains at least one row ε, hence QC
and q0C are well defined. Now ∀s1, s2 ∈ S′ if s1 ∼=c s2, we have [s1] = [s2] and the
distinct rows of the observation table are always inconsistent, then (s1 ∼=c s2)⇒ ∀i ∈
I(s1·i ∼=c s2·i) [Rivest 1993, Shahbaz 2009], which implies that ∀i ∈ I, [s1·i] = [s2·i].
Since every non distinct row is consistent with a distinct row, ∃s ∈ S such that
[s] = [s1 · i] = [s2 · i]. Hence the transition function for the conjecture δC is well
defined. The set of columns E is a non-empty set and E ⊇ I always holds, if there
exists s1, s2 ∈ S′ such that s1 ∼=c s2, then for all inputs i ∈ I, T ([s1], i) = T ([s2], i),
which implies that, the output function λC is also well defined. Since for every
distinct row (distinct access string) its one letter extensions are added to S · I
and at least output query for one cell of every one letter extension is queried to
identify the corresponding distinct row from S (to which it is consistent), all the
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output queries for the columns for the inputs of distinct rows are known (thanks to
dictionaries).

Theorem 2 If (S,E, T ) is a closed and compatible observation table, then the Mealy
machine conjecture from (S,E, T ) is consistent with the finite function T . That is
for every s ∈ S′ and e ∈ E, λ(δ(q0C , s), e) = T (s, e). Any other conjecture consistent
with T but inequivalent to Conj1 must have more states.

The correctness of the conjectured Mealy machine is claimed by the Theorem 2.
Niese [Niese 2003] provides the formal proof for Mealy inference by adapting the
formal proofs for L∗. He proves that the inferred Mealy machine is consistent with
the observation table by using the prefix closure and suffix closure properties for the
rows and columns of the observation table. The LM-GS learning algorithm respects
all the properties used by Niese for the formal proofs. The learning algorithm by
Niese makes the observation table closed and compatible before constructing the
conjecture. The closure property means, if ∃s′ ∈ S · I\S such that ∀ ∈ S, s′ �c s,
then such a row is moved to distinct rows S and observation table for the LM-GS al-
gorithm always preserves this property. The compatibility property is only required
to be checked, when we have equivalent rows in S [Rivest 1993, Shahbaz 2009], but
LM-GS learning algorithm always keeps the distinct rows in S (which are inconsis-
tent with each other), thus the observation table is always compatible.

We define Ne and Ps·e notations as follows:

– ∀s ∈ S ∧ ∀e ∈ E, Ne is the set of queries where T (s, e) has been calculated
(the output queries that have been calculated for distinct rows of a column e),

– Ps·e is the set of not calculated prefixes(s ·e) output queries where s ∈ S′∧e ∈
E ∧ T (s, e) is not calculated (the set of all prefix output queries of an output
query that have not been calculated yet).

7.4.2 The LM-GS Algorithm

The LM-GS learning algorithm maintains an observation table (S,E, T ) to record
the answers O+ of the output queries I+. The set of distinct rows S is initialized to
{ε} and the columns E are initialized to I, i.e. the length of the suffixes which are
added to the columns of the observation table is one (l = 1). The learning algorithm
targets at learning a model without using counterexamples and by using minimum
possible output queries. The output queries are constructed by concatenating the
row labels (access strings) with column labels (distinguishing strings) as s · e where
s ∈ S′ and e ∈ E. To maximize the utilization of answers calculated for output
queries with the help of dictionaries, whenever there are no constraints to execute a
specific output query, the algorithm uses the heuristic described in Section 7.1.3 to
ask output queries. Initially, the output queries for the cells having similar columns
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and rows labels are such possibilities. Executing such an output query results in
answering output queries for two cells in a column. After calculating these output
queries the algorithm searches for distinct states. If (S,E, T ) is not closed, then the
LM-GS algorithm finds a row s1 ∈ S · I\S, such that s1 �c s2, for all s2 ∈ S, then
the LM-GS algorithm moves s1 to S and adds its valid one letter extensions to the
observation table. The algorithm fills the cells of newly added rows whose output
queries can be inferred from the dictionaries.

Algorithm 9 The LM-GS Learning Algorithm
Input: Black-box, Number of States, k and set of inputs I
Output: Mealy Machine Conjecture

begin
initialize (S,E, T ) with S = ε, E = I and l = 1;
calculate output queries s · e where s = e for s ∈ S′ ∧ e ∈ E;
repeat

do
while (S,E, T ) is not closed do

find s1 ∈ S · I\S such that s1 �c s2, for all s2 ∈ S;
move s1 to S;
add valid s1 · i to S · I, for all i ∈ I;
update added row cells whose queries are prefixes(calculated queries);

end
while all transitions cannot be determined from (S,E, T ) do

find s ∈ S · I\S such that |Ds| > 1;
∀e2 ∈ E, select e1 ∈ E where T (s, e1) is not calculated and (|Ne1| ≥
|Ne2|);
calculate s · e1 and record outputs to prefixes(s · e1) output queries;

end
while (S,E, T ) is not closed ;
while the table cells filled < k% do

calculate s1 ·e1 for s1 ∈ S′, e1 ∈ E where ∀s2 ∈ S′, ∀e2 ∈ E(s1 6= s2∨e1 6=
e2) ∧ (|Ps1·e1 | ≥ |Ps2·e2 |);
record outputs to prefixes(s1 · e1) output queries;
if (S,E, T ) is not closed then break while loop;

end
if the table cells filled > k% then

if “most” of the suffixes of length l are added then increment l;
else add a new suffix of length l;

end
until S is equal to Number of States;
return the conjecture C from (S,E, T )

end

For the transitions, the algorithm ensures that all the one letter extensions (state
successors) of the distinct rows are distinct or consistent with at most one distinct
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row. If all transitions cannot be determined from (S,E, T ), then the algorithm finds
s ∈ S · I\S such that Ds > 1. The algorithm greedily choses a suffix e ∈ E and
queries s.e. The greedy choice is made as follows. For all the empty cells of the row
s, a column label e ∈ E is chosen to maximize |Ne|.

If the size of S is not equal to the number of states and k% of the table cells are
not filled, the algorithm asks extra output queries by selecting with the improved
technique described in Section 7.1.3 until k% of the table cells are filled or the
observation table becomes not closed. If the improved technique is not applicable
to output queries, then the algorithm selects an output query randomly. Default
value for k is 80, as for machines that we have inferred querying 80% of total output
queries was sufficient to infer a correct model. However, this may change depending
on the target system.

When output queries for 80% of the table cells have been queried, the algorithm
increments l. It can be useless consumption of output queries to query every suffix
of length l when fewer are required. So the algorithm adds suffixes one by one.
Since last few suffixes may not distinguish any new state, after adding “most” of
the suffixes of length l, it is incremented. Here we use a guess on number of states
to terminate the learning process. However, this can be changed with a limit on
number of output queries or maximum possible length for l. On finding the size of S
equal to the provided number of states, the algorithm conjectures a Mealy machine
model and terminates.

7.4.3 Example for learning with LM-GS Algorithm

As an application example of the LM-GS learning algorithm, we consider the “un-
known” Mealy model shown in Figure 2.2 with three states that are labeled as A
(the initial state), B, and C. This machine is defined over inputs {a, b} and outputs
{x, y}. For this example, we use the number of states (which is 3 in this case) to
stop the learning process of the LM-GS algorithm, i.e. when the size of S reaches 3
the algorithm terminates by conjecturing a Mealy machine model.

The learning algorithm starts learning the unknown model by initializing the
observation table (S,E, T ). The column indices E are initialized with I and the
row indices S are initialized with ε and one letter extensions of ε are updated in S ·I
as shown in Table 7.1. Now, in order to fill in the observation table, the algorithm
selects all the cells of the observation table that have the same input symbol as their
row and column label. Executing these output queries results in filling two cells for
every column of the observation table. From the output of the query a · a, output
for ε · a can also be derived and this fills two cells of the column a. After filling the
table by executing the queries for such cells, the table is presented in Table 7.2.

Now the LM-GS algorithm searches for any row in S · I\S that is inconsistent
with S rows. In Table 7.2, none of the rows from row a and row b is inconsistent
with ε. The algorithm finds the rows in (S ·I)\S that are consistent with more than
one distinct row. Since there is only one row in S, this condition is satisfied. Again
the observation table is checked for the closure property but here nothing has been
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Table 7.2: Observation table after calculating the output queries a · a and b · b.

E

a b

S ε x y

S · I\S a x

b y

changed for making every one letter extension of distinct rows equal to a unique
distinct row, the closure property is satisfied. Since the observation table cells filled
are less than 80%, the algorithm continues filling them. From the output queries
that have not been calculated yet, none of them is prefix of others. So the improved
technique to execute output queries described in Section 7.1.3 is not aplicable. The
output query a · b is selected randomly and its output is calculated.

Table 7.3: The observation table after adding the answer of the output query a · b

E

a b

S ε x y

S · I\S a x y

b y

Now more than 80% of the table cells are filled and the number of distinct rows
S in the observation table is less than the number of states in the target model.
The algorithm increments l (the length of suffixes added to the columns of the
observation table). Since it can be wasteful to query every suffix of length l, the
algorithm adds a suffix aa of length l to the observation table and updates the cell
ε · aa, as the output query aa can be inferred from the dictionaries.

Table 7.4: Adding the suffix aa to the observation table

a b aa
ε x y xx
a x y
b y

The algorithm checks if the table is not closed or any of the one letter extensions
is consistent with more than one distinct states, which is not the case. Now, the
algorithm considers all the unanswered output queries and selects the one which
can answer the maximum number of output queries using the heuristic described in
Section 7.1.3. In Table 7.5, the output queries are provided which are not calculated
yet.

From Table 7.5, it can be observed that b · a is prefix to another output query
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Table 7.5: Unanswered output queries

a · aa b · a b · aa

b · aa. The improved heuristic to calculate output queries selects the output query
b · aa. The algorithm calculates b · aa and updates the cells b · a and b · aa.

Table 7.6: Calculating the output query b · aa

a b aa
ε x y xx
a x y
b x y xx

None of the rows has made the observation table not closed. Now, more than 80%
of the table cells are filled and the number of distinct rows in S of the observation
table is less than number of states in the target model. The algorithm adds another
suffix ab of the length l to the observation table and updates the cell ε · ab, as the
output query ab can be inferred from the dictionaries.

Table 7.7: Adding the suffix ab to the observation table

a b aa ab
ε x y xx xy
a x y
b x y xx

The algorithms checks if the table is not closed or any of the one letter extensions
is consistent with more than one distinct states, which is not the case. Since the
improved heuristic to calculate output queries is not applicable here, the algorithm
selects an output query randomly.

Table 7.8: Adding the output for the output query a · ab

a b aa ab
ε x y xx xy
a x y xx
b x y xx

Now, the observation table is not closed so the algorithm breaks the process of
calculating the output queries and makes it closed as shown in observation table
presented in Table 7.9.

The row a is inconsistent with the distinct row ε, so the algorithm moves it to
the distinct states and adds its one letter extensions to S · I as shown in Table 7.9.
Now the algorithm checks if the observation table is not closed, which is the case.
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Table 7.9: Moving the row a to S

a b aa ab
ε x y xx xy
a x y xx
b x y xx
aa x
ab

As the row aa is inconsistent with the distinct rows ε and a, the algorithm moves it
to the distinct states and adds its one letter extensions to S · I as shown in Table
7.10.

Table 7.10: Moving the row aa to S

a b aa ab
ε x y xx xy
a x y xx
aa x
b x y xx
ab
aaa
aab

The algorithm checks again if the observation table is not closed, which is not
the case. To figure out the transitions table, the algorithm checks if all the transition
can be determined from the observation table. None of the S ·I\S rows is consistent
with only one distinct row. The algorithm fills the cells for these rows to bring it
down to one. For the row b, it has only one cell which has not been calculated yet,
the output query for this cell is calculated and it becomes consistent to only one
distinct row ε as presented in Table 7.11.

Table 7.11: Adding the output for the output query b · ab

a b aa ab
ε x y xx xy
a x y xx
aa x
b x y xx xy
ab
aaa
aab

For the row ab all of the cells are empty, so the output query for the column
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cell having maximum number of cells filled in distinct rows will be calculated. The
output query ab · b is calculated, but even after updating the answer, the row ab is
consistent with more than one distinct rows.

Now, the columns a and ab have equivalent number of cells filled in the distinct
rows. But a is prefix to ab, so the output query ab · ab is calculated. After updating
the answers for output queries ab · ab and ab · a, the row ab becomes consistent with
only one row ε. The observation table is presented in Table 7.12.

Table 7.12: Adding the output for the output queries ab · a and ab · ab

a b aa ab
ε x y xx xy
a x y xx
aa x
b x y xx xy
ab x y xy
aaa
aab

For the row aaa all of the cells are empty so the output query for the column
cell having maximum number of cells filled in distinct rows will be calculated. The
output query aaa · b is calculated and recorded in the observation table. The row
becomes consistent to only one distinct row aa as presented in Table 7.13.

Table 7.13: Calculating the output query aaa · b and updating cells (a · aa, aa · a,
aa · ab,aaa · b)

a b aa ab
ε x y xx xy
a x y xx xx
aa x x xx
b x y xx xy
ab x y xy
aaa x
aab

For the row aab all of the cells are empty so the output query for the column
cell having maximum number of cells filled in distinct rows will be calculated. The
columns a and ab have equivalent number of cells filled in the distinct rows.

But a is prefix to ab, so the output query aab · ab is calculated. After updating
the answers for output queries aab ·ab and aab ·a, still the row aab is consistent with
more than one distinct rows. The algorithm calculates aab · b, the row aab becomes
consistent with only one distinct row a as presented in Table 7.14. The row aab

is consistent with only one distinct row a. The distinct rows are equal to states of
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Table 7.14: Adding the output for the output queries aab · ab and aab · b

a b aa ab
ε x y xx xy
a x y xx xx
aa x x xx
b x y xx xy
ab x y xy
aaa x
aab x y xx

the target model, the algorithm terminates the learning process and conjectures a
Mealy machine model. The conjectured model is presented in Figure .

The algorithm calculates 11 output queries, whereas in the table the outputs for
22 output queries can be observed, where 11 output queries were inferred from the
dictionaries.

7.4.4 Complexity

For the LM-GS algorithm, initially S contains ε, i.e. one element. Each time the
observation table (S,E, T ) is discovered to be not closed, one element is moved from
S · I\S to S. This can happen for at most n−1 times, hence, always |S| ≤ n, where
n is the number of states in the minimal conjecture. Thus, the total number of the
observation table rows cannot exceed (n+ n · |I|).

The algorithm begins with columns E = I and |E| = |I|, each time after incre-
menting l, the total number of suffixes in E cannot exceed |I|l, where l is the length
of longest distinguishing sequences added to E and |I| is the size of inputs. Putting
all this together the maximum cardinality of S′ ×E is at most ((n+ n · |I|)× |I|l).

The worst case complexity of the LM-GS learning algorithm in terms of output
queries is O(n · |I|l+1).

7.5 Discussion

The Mealy inference algorithm L1 presented in Chapter 6 learns the unknown mod-
els in O(|I|mn2) output queries, where I is the set of inputs, n is the number of
states and m is the length of longest suffix processed by the learning algorithm
from a counterexample. However, this complexity formula does not take the equiv-
alence oracle into account. The existence of an oracle is a strong assumption for
software model inference (that oracle can always come up with a counterexample
if the learned model is not correct). For software black box inference, the oracle
is an implementation which constructs input strings from a uniform distribution
over the set of inputs I and provides the resulting sequences in parallel to conjec-
ture and target black box to search for the differences. The oracle might iterate
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repeatedly with very long input sequences in the software black box implementa-
tion without finding a counterexample. Along the random exploration, the confor-
mance testing methods can also be used to accommodate the deficiency of an oracle
[Margaria 2004, Peled 1999], but such methods for instance the one from Vasilevskii
and Chow [Vasilevskii 1973, Chow 1978] come at high exponential cost.

Domaratzki et al. [Domaratzki 2002] provided a lower bound on membership
queries for the identification of exact language, they show that (g−1)nlogh(n)+O(n)

bits are necessary and sufficient to specify a language accepted by automata, where
n is the number of states, g is the number of inputs and h is the number of outputs.

7.6 Conclusion

The GoodSplit algorithm can learn i/o systems by taking the union or cross product
of inputs set and outputs set as alphabet, but it significantly increases the size of
alphabet. From the complexity discussion in Section 7.4.4, it can be observed that
the size of alphabet is one of the key parameters to the time complexity of the
algorithm. The objective is to learn the models with less number of output queries.
The improved technique to calculate output queries makes the dictionaries more
effective by enabling them to reply more output queries without consulting black
box implementations.

We have proposed the Mealy inference algorithm LM-GS which can directly learn
i/o systems using improved technique to calculate output queries. The algorithm
keeps only valid one letter extensions of distinct states (valid access strings) in
the observation table. On calculating an output query for any column of an access
string it can be identified that it is valid or invalid. The algorithm avoids calculating
output queries for invalid access strings by keeping only valid access strings in the
observation table. At the time of adding new rows and columns, the algorithm
updates their output queries which can be calculated from the dictionaries, this
accelerates the process of identifying distinct states. The algorithm proposes a
greedy choice which helps to identify the corresponding distinct row of a non distinct
row in question by requiring less output queries. This algorithm does not require any
counterexamples at all. Since searching for the counterexamples is not an easy task,
the gain for LM-GS also includes the fact that it does not need counterexamples.

This algorithm is based on the result from Trakhtenbrot and Barzdin which
indicate that a test set consisting of all strings of length at most about logglogh(n) is
sufficient to distinguish all distinct states in almost all complete finite state machines.
However, this algorithm may not be appropriate for the models which require very
long distinguishing sequences, combination locks are a well known example in this
regard. For them, we require distinguishing sequences of much higher length, and
for these models LM-GS would need to perform a lot of output queries.
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In this chapter, we present the tool Rich Automata Learning and Testing (RALT)
developed by Shabaz [Shahbaz 2008]. We have added the implementation of our
software model inference algorithms in RALT. Current version is RALT 5.0. This
chapter also includes the case studies that we have used for analysis and evaluation
of our algorithms.

8.1 RALT

We have extended the RALT toolbox version 4.0 to evaluate our software model
inference algorithms. This toolbox is developed with Java 2 Platform Standard
Edition 5.0. It is developed for learning deterministic and non-deterministic ob-
servable black-box systems. These systems can be software components (COTS)
or hardware devices such as UPnP, X10, DPWS or Bonjour devices. RALT can
learn various models: DFA [Angluin 1987], Mealy [Shahbaz 2009], Parameterized fi-
nite state machines [Li 2006] and observable non-deterministic finite state machines
[El-Fakih 2010].

The tool RALT interacts with a target implementation with the help of a test
driver. After asking a certain number of tests, it conjectures a model from the
answers calculated from the implementation. This model can be produced as “.jff”
or “.dot” files. The general learning framework for RALT version 5.0 is presented in
Figure 8.1.

Figure 8.1 depicts functioning of RALT in general and execution order of the
various modules.
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Figure 8.1: Rich Automata Learning and Testing Framework

8.1.1 Test Drivers

The tool RALT requires test drivers to enable a learning algorithm implementation
to interact with a simulated or real life example. The test drivers are responsible for
ensuring the communication between the learning algorithm and a target software
implementation. Test drivers receive abstract output queries from the learning algo-
rithm and translate them to concrete inputs for the target software implementation.
They are also responsible for translating the concrete outputs to abstract outputs
that are understandable for the learning algorithm. Most of the test drivers are sys-
tem specific, however, generic test drivers can be written for applications developed
respecting some standard ontologies.

8.1.2 Learning Platform

This is the main module through which all of the modules communicate with each
other. This module contains the abstract test drivers and methods that help the
learning algorithm implementations to access the internal data structures imple-
mented in the tool.

8.1.3 Learner

All of the learning algorithms use this module to calculate output queries by interact-
ing with the test drivers. Our tool can learn DFA, Mealy machines, parameterized
finite state machines (PFSM) and observable non-deterministic finite state machines
(ONFSM). We have added the implementation of the L1 (the Algorithm 8) and LN
algorithms [El-Fakih 2010] (the LN algorithm learns the ONFSM models). The im-
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plementation of the LM-GS (the Algorithm 9) is in process. The detailed Learner
module is presented in Figure 8.2.

Figure 8.2: Detailed Learner Framework

For all of the learning algorithms presented in Figure 8.2, the following coun-
terexample search and counterexample processing algorithms are implemented.

8.1.3.1 Counterexample search

The L∗ algorithm and its variants require to validate a learned model from an oracle.
To verify the learned models of software implementations we have implemented the
random sampling oracle proposed by Angluin (provided in Section 5.1.1).

8.1.3.2 Counterexample Processing

RALT contains five counterexample processing methods. The counterexample pro-
cessing method from Angluin and Shahbaz were already implemented in RALT ver-
sion 4.0. We have implemented the counterexample processing method from Maler
and Pnueli (provided in Section 5.2.3), Rivest and Schapire (provided in Section
5.2.2), and the Suffix1by1 counterexample processing method (provided in Section
5.3).
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8.2 Case Studies

The efficiency of a learning algorithm can change with the nature of considered
example to be learned. An algorithm can be efficient for one example, whereas it
can be less efficient for the other. In order to analyze an algorithm, we need to
study different aspects for a variety of examples. Selecting a set of examples which
can exhibit the advantages and disadvantages of a learning algorithm is a complex
task. This problem can be addressed by using a random machines generator which
provides liberty to generate a variety of machines ranging from simple to complex.

8.2.1 Random Machine Generator

For finite state machines, we have implemented a generator in RALT, which con-
structs random finite state machines with a given number of inputs, outputs and
states. The method for generating these machines is straightforward: we define the
states of the machine and choose an initial state. Then from the initial state, for
each input i ∈ I, we select a random output from the given set of outputs o ∈ O
and select a target state randomly from the given set of states q ∈ Q, we continue
this process until we are done for all the states Q. The constructed FSM is finally
minimized (thus it does not have equivalent states) and serves as a target black
box example for a learning algorithm. We may want to learn a FSM with a given
state size, so we iterate generation while constructing the minimized machines to fit
the size, until we get a machine of the required size. With random counterexample
searching method we can find the long and optimal counterexamples simultaneously,
which can make the learning very erratic. To overcome the erratic behavior, we av-
erage on the output parameters to the learning algorithms for a given set of input
parameters. This generator basically takes as input: the number of states n, the
number of inputs |I| the number of outputs |O| and returns a FSM.

8.2.2 Edinburgh Concurrency Workbench (CWB Examples)

We have used this case study to calculate the practical complexity of proposed
learning algorithms. We have analyzed our counterexample processing method by
comparing it with rest of the counterexample processing methods. The experiments
show the gain.

8.2.3 HVAC controller

We have used the HVAC controller to evaluate the L1 algorithm. We have learned
the controller with LM

∗ and L1 algorithms. The experiments show that the L1

algorithm requires much lesser output queries as compared to the L1 algorithm.
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8.2.4 Coffee Machine

Merten et al. [Merten 2011] provide the LearnLib tool1 for inferring models of black
box implementations. The LearnLib tool offers a tutorial for model inference of a
coffee machine presented in Figure 8.3. In this section, we provide model inference
of the coffee machine with the L1 algorithm and compare with the best inference
algorithm implemented by the LearnLib tool named as the complex setup algorithm.
The complex setup algorithm comprises of the LM ∗ (direct Mealy adaptation of L∗

presented in 4.3.1) algorithm and the counterexample processing method by Rivest
and Schapire [Rivest 1993].

Figure 8.3: Coffee machine

8.2.4.1 Model Inference of the Coffee Machine with the Complex Setup
Algorithm

The behavior of the coffee machine is modeled as a Mealy machine. We present the
inference results for the complex setup algorithm of the Learnlib tool. The elements
of the input set I for the coffee machine are pad, water, button and clean. The final
observation table (SM , EM , TM ) after processing the counterexamples is presented
in Table 8.1.

They asked 150 output queries (25 rows × 6 columns) to conjecture Mealy
machine model of the coffee machine [Steffen 2011]. Additional 3 + 2 = 5 output
queries are used to process counterexamples. Thus, in total they asked 155 output
queries. Figure 8.4 shows the model conjectured from Table 8.1.

1Online available to download from http://faelis.cs.uni-dortmund.de/learnlib.de/index.php
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Table 8.1: The observation table for model inference with the complex structure
algorithm

water pad button clean pad· button water· water· button
ε ok ok error ok error error

pad ok ok error ok error coffee
water ok ok error ok coffee error
button error error error error error error

water· pad ok ok coffee ok coffee coffee
water· pad· button error error error ok error error

clean ok ok error ok error error
water· clean ok ok error ok error error
pad· button error error error error error error
pad· clean ok ok error ok error error

button· water error error error error error error
button· clean error error error error error error
button· pad error error error error error error

button· button error error error error error error
water· water ok ok error ok coffee error
pad· water ok ok coffee ok coffee coffee

water· button error error error error error error
pad· pad ok ok error ok error coffee

water· pad· pad ok ok coffee ok coffee coffee
water· pad· water ok ok coffee ok coffee coffee
water· pad· clean ok ok error ok error error

water· pad· button· clean ok ok error ok error error
water· pad· button· button error error error error error error
water· pad· button· pad error error error error error error
water· pad· button· water error error error error error error

Figure 8.4: The Coffee Machine model conjectured from Table 8.1
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8.2.4.2 Model Inference of the Coffee Machine with the L1 Algorithm

We illustrate the L1 algorithm by learning the Mealy model Mcoffee of the coffee
machine presented in Figure 8.3 and show how invalid access strings can be excluded
from subsequent tests using the output for the last input of the access strings. The
L1 algorithm begins by initializing the observation table (S,E,L, T ), the rows S are
initialized to {ε}, and columns are initially empty, i.e. E = ∅. The output queries
pad, water, button and clean are asked to find the outputs for the set of input
symbols {pad,water, button, clean} labeling the rows S · I.

Table 8.2: Initial Observation Table of the coffee machine for Mealy inference with
the L1 algorithm.

E

∅
S ε

S · I\S

pad/ok

water/ok

button/error

clean/ok

The coffee machine has an error state and all inputs with output error have
transitions to this state. The access strings whose output for the last input sym-
bol is error are marked unnecessary rows and are excluded from the subsequent
tests. The initial observation table is shown in Table 8.2. This observation ta-
ble has empty columns for all of the rows, thus, for every s2 ∈ S · I, there exists
s1 ∈ S such that s2 ∼= s1. Hence the observation table is closed. The table has
only one row in S, trivially the observation table is compatible. The row whose
access string is struck out is unnecessary row. On finding the observation ta-
ble closed and compatible, the L1 algorithm conjectures the model Conjcoffee1 =
(QCcoffee1 , I, O, δCcoffee1 , λCcoffee1 , q0Ccoffee1

) shown in Figure 8.5.

Figure 8.5: The Mealy machine conjecture Conjcoffee1 from Table 8.2

To verify correctness of the one state machine conjecture, the L1 algorithm asks
an equivalence query to the oracle. The conjectured model Conjcoffee1 is not correct,
and there can be more than one counterexamples and oracle replies with one from
them. Since

– λMcoffee(q0Mcoffee
, water · pad · button) = ok · ok · coffee, but
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– λCcoffee1(q0coffee1 , water · pad · button) = ok · ok · error.

The oracle replies with a counterexample water · pad · button. The L1 algorithm
adds the smallest suffix button of the counterexample water · pad · button to the
columns E and completes the table. The observation table remains closed so the
suffix pad ·button is added, which makes the observation table unclosed as presented
in Table 8.3a.

button pad · button
ε error ok · error

pad/ok error ok · error
water/ok error ok · coffee
clean/ok error ok · error

(a) The observation ta-
ble after adding the suffix
button and pad · button.

button pad · button
ε error ok · error

water/ok error ok · coffee
pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · pad/ok coffee ok · coffee

water · button/error error

water · clean/ok error ok · error

(b) Make the observation table
closed by moving the row water to
S.

button pad · button
ε error ok · error

water/ok error ok · coffee
water · pad/ok coffee ok · coffee

pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · clean/ok error ok · error

water · pad · water/ok coffee ok · coffee
water · pad · pad/ok coffee ok · coffee

water · pad · button/coffee error error · error
water · pad · clean/ok error ok · error

(c) Make the observation table closed by
moving the row water · pad to S.

button pad · button
ε error ok · error

water/ok error ok · coffee
water · pad/ok coffee ok · coffee

water · pad · button/coffee error error · error
pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · clean/ok error ok · error

water · pad · water/ok coffee ok · coffee
water · pad · pad/ok coffee ok · coffee
water · pad · clean/ok error ok · error

water · pad · button · water/error error

water · pad · button · pad/error error

water · pad · button · button/error error

water · pad · button · clean/ok error ok · error

(d) Make the observation table closed by mov-
ing the row water · pad · button to S.

Table 8.3: We get the observation table in Table 8.3a after adding the suffixes button
and pad · button to E. The underlined rows are the rows, which make the table not
closed. The observation table in Table 8.3d is closed.

The row water makes the observation table not closed. It is moved to S and its
one letter extensions {water · water, water · pad,water · button,water · clean} are
added to S · I. To calculate the output for last input of access strings in S · I, the
algorithm does not require to execute the output queries separately. The output for
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the last input of access strings can be calculated from the output query executed for
any of the cells of that row. For instance, for row water · pad and column button,
if the algorithm asks the output query water · pad · button, the answer calculated
from the coffee machine is ok · ok · coffee. The output for the last input string of
water · pad is calculated as ok and coffee is recorded in the column button of the
observation table. After completing the table, it can be observed from Table 8.3b
that the row water · pad makes the observation table not closed. Again the table
is made closed by moving the row water · pad to S. This procedure is iterated
until the observation table is closed as shown in Table 8.3d. Since the algorithm
L1 maintains the condition ∀s1, s2 ∈ S always s1 � s2, the observation table is
always compatible. Hence L1 conjectures the Mealy machine model Conjcoffee2 =
(QCcoffee2 , I, O, δCcoffee2 , λCcoffee2 , q0Ccoffee2

) shown in Figure 8.6.

Figure 8.6: The Mealy machine conjecture Conjcoffee2 from Table 8.3d

The L1 algorithm asks an equivalence query to the oracle. Since

– λMcoffee(q0Mcoffee
, pad · water · button) = ok · ok · coffee, but

– λCcoffee1(q0coffee1 , pad · water · button) = ok · ok · error

The oracle replies with a counterexample pad ·water · button. Since the smallest
suffix button is already member of E, the L1 algorithm adds the suffix water ·button
to the columns E and completes the table. This suffix makes the observation table
unclosed as presented in Table 8.4a.

The row pad as shown in Table 8.4a makes the observation table not closed. It
is moved to S and its one letter extensions are added to S · I. After completing the
observation table, we get the Table 8.4b. It is closed and compatible observation
table. The L1 algorithm conjectures the Mealy machine model shown in Figure
8.4. The conjecture is a correct behavior of the coffee machine, thus, the algorithm
terminates. The L1 algorithm asks 4 output queries to construct Table 8.2, 8 output
queries for Table 8.3a, 7 output queries for Table 8.3b, 8 output queries for Table
8.3c, 5 output queries for Table 8.3d , 12 output queries for Table 8.4a, and 10
output queries for Table 8.4b, Thus, in total it asks 54 output queries to learn the
Mealy model of the coffee machine.
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button pad · button water · button
ε error ok · error ok · error

water/ok error ok · coffee ok · error
water · pad/ok coffee ok · coffee ok · coffee

water · pad · button/coffee error error · error error · error
pad/ok error ok · error ok · coffee
clean/ok error ok · error ok · error

water · water/ok error ok · coffee ok · error
water · clean/ok error ok · error ok · error

water · pad · water/ok coffee ok · coffee ok · coffee
water · pad · pad/ok coffee ok · coffee ok · coffee
water · pad · clean/ok error ok · error ok · error

water · pad · button · clean/ok error ok · error ok · error
(a) The observation table after adding the suffix water · button to E.

button pad · button water · button
ε error ok · error ok · error

water/ok error ok · coffee ok · error
water · pad/ok coffee ok · coffee ok · coffee

water · pad · button/coffee error error · error error · error
pad/ok error ok · error ok · coffee
clean/ok error ok · error ok · error

water · water/ok error ok · coffee ok · error
water · clean/ok error ok · error ok · error

water · pad · water/ok coffee ok · coffee ok · coffee
water · pad · pad/ok coffee ok · coffee ok · coffee
water · pad · clean/ok error ok · error ok · error

water · pad · button · clean/ok error ok · error ok · error
pad · water/ok coffee ok · coffee ok · coffee
pad · pad/ok error ok · error ok · coffee

pad · button/error error

pad · clean/ok error ok · error ok · error
(b) Make the observation table closed by moving the row pad to S.

Table 8.4: We get the observation table in Table 8.4a after adding the suffix water ·
button to E. The underlined rows are the rows, which make the table not closed.
The observation table in Table 8.4b is closed.
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8.3 Conclusion

We have presented the tool RALT 5.0 which is an extension to RALT 4.0. The
extension contains the implementation of the algorithms proposed by us in the
thesis. The main modules of the tool are presented to show the functioning of the
tool. All of the learning algorithms are implemented in the module called learner
which interacts via test drivers with software implementations to be learned.

We have used the case studies presented in this chapter for learning and testing.
The detailed analysis of learning results is provided in the respective chapters. We
have used the random machines mainly for evaluation of our algorithms. However,
wherever other case studies are more appropriate, we have used them.

This tool can be applied for learning and testing of software systems. One needs
to write a test driver which can cater with translating the RALT queries to concrete
system inputs and system outputs to the messages that are understandable by the
RALT algorithms.
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This chapter concludes the thesis. First section provides the summary for the
contributions presented in the previous chapters. The second section presents all
of the papers and a book chapter published during the thesis along the abstracts.
Final section provides some future directions.

9.1 Summary

Inferring models of software systems is an active approach and it is gaining momen-
tum for testing software systems. The main advantage for this technique is that it
enables to test even a part of the whole functionality of a large SUT. The thesis ad-
dresses the problem of learning software models with reduced number of tests. The
reduction has been done by proposing various techniques which can be summarized
as below.

– We studied the various counterexample processing methods for the L∗ algo-
rithm. Most of them are unable to reduce the effect of long counterexamples
provided by random sampling oracle. We propose a new counterexample pro-
cessing algorithm named as the Suffix1by1 algorithm. The Suffix1by1 algo-
rithm reduces the random sampling oracle effect and results in reduced number
of output queries. This gain is confirmed by experimenting with random ex-
amples and CWB workbench.

– Mealy models are more appropriate to learn the i/o systems. We have pro-
posed the L1 Mealy inference algorithm. This algorithm has a significant gain
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over the other Mealy adaptations of L∗ when the size of the input set is large.
The gain with this algorithm also comes from the fact that all of the inputs
are not valid for every state and the algorithm avoids asking output queries
for the states reached with the transitions of invalid inputs. This algorithm is
tested on randomly generated machines and experiments confirm the gain.

– Random sampling is used to find the counterexamples while learning the soft-
ware black box implementations with the L∗ algorithm. One may require many
resets before finding a counterexample. We propose the GoodSplit algorithm
which learns Mealy models of software implementations without requiring the
counterexamples. This algorithm greedily selects output queries to calculate
them from a system under inference and keeps some of the entries in the
observation table sparse which results in reduced number of output queries.

– To validate all of our proposed algorithms we have implemented them in the
tool RALT. This enables us to test our algorithms on various case studies to
calculate the practical complexity of the algorithms.

9.2 Publications

In the following, we present the list of papers and a book chapter published in the
course of the thesis along their abstracts.

1. Muhammad Naeem Irfan, Roland Groz, Catherine Oriat. Improving Model
Inference of Black Box Components having Large Input Test Set. ICGI 2012
[Irfan 2012a].

The deterministic finite automata learning algorithm L∗ has been extended
to learn Mealy machine models which are more succinct for input/output
based systems. We propose an optimized learning algorithm L1 to infer Mealy
models of software black box components. The L1 algorithm uses a modified
observation table and adds only valid access strings to the rows of the obser-
vation table. The columns of the observation table are initially kept empty
and their size augments only to process the counterexamples. The proposed
improvements reduce the worst case time complexity. The L1 algorithm is
compared with the existing Mealy inference algorithms and the experiments
conducted on a comprehensive set of examples confirm the gain.

2. Roland Groz, Muhammad Naeem Irfan, Catherine Oriat. Algorithmic
Improvements on Regular Inference of Software Models and Perspectives for
Security Testing. ISoLA 2012 [Groz 2012].

Among the various techniques for mining models from software, regular infer-
ence of black-box systems has been a central technique in the last decade. In
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this paper, we present various directions we have investigated for improving
the efficiency of algorithms based on L∗ in a software testing context where in-
teractions with systems entail large and complex input domains. In particular
we consider algorithmic optimizations for large input sets, for parameterized
inputs, for processing counterexamples. We also present our current directions
motivated by application to security testing: focusing on specific sequences,
identifying randomly generated values, combining with other adaptive tech-
niques.

3. Muhammad Naeem Irfan, Catherine Oriat, Roland Groz. Model Inference
and testing, Book chapter “Advances in Computers, Volume 89”. Editor: Atif
Memon [Irfan 2012b]

For software systems, models can be learned from behavioral traces, available
specifications, knowledge of experts and other such sources. Software models
help to steer testing and model checking of software systems. The model infer-
ence techniques extract structural and design information of a software system
and present it as a formal model. This chapter briefly discusses the passive
model inference and goes on to present the active model inference of software
systems using the algorithm L∗. This algorithm switches between model infer-
ence and testing phases. In model inference phase it asks membership queries
and records answers in a table to conjecture a model of a software system under
inference. In testing phase it compares a conjectured model with the system
under inference. If a test for a conjectured model fails, a counterexample is
provided which helps to improve the conjectured model. Different counterex-
ample processing methods are presented and analyzed to identify an efficient
counterexample processing method. A counterexample processing method is
said to be efficient if it helps to infer a model with fewer membership queries.
An improved version of L∗ is provided which avoids asking queries for some
rows and columns of the table which helps to learn models with fewer queries.

4. Muhammad Naeem Irfan. State Machine Inference in Testing Context
with Long Counterexamples. In Third International Conference on Software
Testing, Verification and Validation, ICST 2010, Pages 508-511, Paris, France,
2010 (PhD symposium) [Irfan 2010a].

We are working on the techniques which iteratively learn the formal mod-
els from black box implementations by testing. The novelty of the approach
addressed here is our processing of the long counterexamples. There is a pos-
sibility that the counterexamples generated by a counterexample generator
include needless sub sequences. We address the techniques which are devel-
oped to avoid the impact of such unwanted sequences on the learning process.
The gain of the proposed algorithm is confirmed by considering a comprehen-
sive set of experiments on the finite sate machines.
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5. Khaled El-Fakih, Roland Groz,Muhammad Naeem Irfan, Muzammil Shah-
baz. Learning Finite State Models of Observable Nondeterministic Systems in
a Testing Context. In 22nd IFIP International Conference on Testing Software
and Systems, Pages 97-102, Natal, Brazil, 2010 (short paper) [El-Fakih 2010].

Learning models from test observations can be adapted to the case when the
system provides nondeterministic answers. In this paper we propose an al-
gorithm for inferring observable nondeterministic finite state machines (ONF-
SMs). The algorithm is based on Angluin L∗ algorithm for learning DFAs. We
define rules for constructing and updating learning queries taking into account
the properties of ONFSMs. Application examples, complexity analysis and an
experimental evaluation of the proposed algorithm are provided.

6. Muhammad Naeem Irfan, Roland Groz, Catherine Oriat. Optimizing
Angluin Algorithm L∗ by Minimising the Number of Membership Queries
to Process Counterexamples. In Zulu Workshop, Valencia, September 2010
[Irfan 2010b].

Angluin algorithm L∗ is a well known approach for learning unknown models
as minimal deterministic finite automata (DFA) in polynomial time. It uses
concept of oracle which presumably knows the target model and comes up
with a counterexample, if the conjectured model is not correct. This algo-
rithm can be used to infer the models of software artefacts and a cheap oracle
for such components uses random strings (built from inputs) to verify the
inferred models. In such cases and others the provided counterexamples are
rarely minimal. The length of the counterexample is an important parameter
to the complexity of the algorithm. The proposed technique tends to reduce
the impact of non minimal counterexamples. The gain of the proposed algo-
rithm is confirmed by considering a set of experiments on DFA learning.

7. Muhammad Naeem Irfan, Catherine Oriat, Roland Groz. Angluin Style
Finite State Machine Inference with Non-optimal Counterexamples. In 1st
International Workshop on Model Inference In Testing, MIIT 2010, July 2010
[Irfan 2010c].

Angluin’s algorithm is a well known approach for learning black boxes as min-
imal deterministic finite automata in polynomial time. In order to infer finite
state machines instead of automata, different variants of this algorithm have
been proposed. These algorithms rely on two types of queries which can be
asked to an oracle: output and equivalence queries. If the black box is not
equivalent to the learned model, the oracle replies with a counterexample. The
complexity of these algorithms depends on the length of the counterexamples
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provided by the oracle. The aim of this paper is to compare the average prac-
tical complexity of three of these algorithms in the case of poor oracles, in
particular when the counterexamples are constructed with random walks.

8. Muhammad Naeem Irfan. Heuristics for Improving Model Learning Based
Software Testing. In Testing: Academic and Industrial Conference - Practice
and Research Techniques (TAIC PART 2009), Windsor, UK, September 2009
[Irfan 2009].

In order to reduce the cost and provide rapid development, most of the modern
and complex systems are built integrating prefabricated third party compo-
nents COTS. We have been investigating techniques to build formal models for
black box components. The integration testing framework developed by our
team leaves several open strategies; we will be investigating variations of these
open strategies to enhance applicability. We are investigating the heuristics to
improve the existing methodologies for learning black boxes and integration
testing. We are addressing the counter-example part of the learning algo-
rithm for improvements and are examining different techniques to identify the
counterexamples in a more efficient way.

9.3 Perspectives

We have been working on finding new model inference algorithms and improving
the existing algorithms to make them more efficient and effective in testing context.
Testing is an approximate and time consuming task. We have optimized the algo-
rithms so that they can be used widely in the testing community. The work can be
extended in many directions. However, we plan to consider some possible extensions
of our contributions. We are already working on few of them and we plan to work
on others in near future. In the following, we present these directions briefly.

9.3.1 Optimizing and extending the LM-GS Algorithm

Searching for the counterexamples to improve the inferred software models is not
an easy task. An equivalence oracle may fail a number of times before finding a
counterexample, which results in an increased cost for model inference. The LM-GS
algorithm is an important contribution in this regard. We are working on optimiza-
tions for this algorithm. Currently there is a lot of room for the improvement of
this algorithm. While asking the output queries, this algorithm can be adapted in
different ways. The realization and adaption of a better method will result in a
gain. We plan to extend this algorithm for non-deterministic and parameterized
machines.
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9.3.2 Generic Test driver for RALT

To learn model of a software implementation our tool RALT requires a test driver.
This test driver is a target application specific. Writing test drivers is a time consum-
ing task. We are working on a generic test driver which can at least learn a number
of web applications with few customizations. We are implementing a generic test
driver which has some variables that can be set according to a target application.

9.3.3 Learning non-deterministic Machines

In [El-Fakih 2010], we propose an algorithm LN for inferring observable non deter-
ministic finite state machines (ONFSMs). This algorithm is an extension to the L∗

algorithm. The rules for constructing and updating learning queries are defined by
considering the properties of the observable non-deterministic finite state machines
(ONFSMs). We plan to extend this work for non-deterministic machines. The
non-deterministic machines produce multiple outputs if an input is provided repeat-
edly. The algorithm LN learns a sub class of these machines by using the so-called
“all-weather conditions” [Milner 1982]. The algorithm records all of the outputs
produced for an input into the corresponding cell of the observation table. This
algorithm assumes that with a pair of an input and output the machine under infer-
ence has a transition to only one state, which is not the case for non-deterministic
machines. Bollig et al. propose the NL∗ algorithm for learning residual finite state
machine automata (RFSA). RFSA is a sub-class of NFA and it shares important
properties with DFA. We plan to devise a method that benefits from the qualities
of both LN and NL∗.

9.3.4 Addressing non-deterministic values

To infer the non-deterministic machines every time a transition is triggered from a
state, it can provide new values. It is important to identify that all such outputs
from the black box actually correspond to the same transition of the state. We
are working on methods that can recognize such values and record them in the
observation table with reference to the same transition. This will help to infer
models that include this kind of data non-determinism.

9.3.5 Improving Partial Models of Implementations

Model inference can be used when models are not available at all. However, it
can also be used to improve existing partial models. Improving existing models is
akin to processing the counterexamples for the learned models. The difference is
that by processing the counterexamples the software models (conjectured models)
improve monotonically, whereas for improving the partial models one may also need
to remove some states or transitions. This is because the initial software model may
have some behavior that has been changed or removed in the revisions afterwards.
An observation table can be constructed from a partial model provided along the
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system under inference. But the problem is that the observations in the observation
table might not be consistent with the system under inference. Although each
observation can be verified from the system under inference but at the cost of losing
the advantage of available partial model (if each observation is to be cross checked
then the observation table can be directly filled by asking the output queries to the
system under inference).

The inconsistency of the observation table and system under inference can be
found and addressed on the counterexample search pattern. There are many way
outs to optimize searching and addressing such inconsistencies [Chaki 2008, Cho 2010].
Cho et al. [Cho 2010] predict the answers to the output queries. They try to make
accurate prediction of responses. However, the erroneous predictions are detected
using sampling queries and fixed by backtracking to the first mistake made by the
predictor.
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