
HAL Id: tel-00767318
https://theses.hal.science/tel-00767318

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Ontology Matching by Using Machine
Learning, Graph Matching and Information Retrieval

Techniques
Duy Hoa Ngo

To cite this version:
Duy Hoa Ngo. Enhancing Ontology Matching by Using Machine Learning, Graph Matching and In-
formation Retrieval Techniques. Databases [cs.DB]. Université Montpellier II - Sciences et Techniques
du Languedoc, 2012. English. �NNT : �. �tel-00767318�

https://theses.hal.science/tel-00767318
https://hal.archives-ouvertes.fr

Université Montpellier II

� Sciences et Techniques du Languedoc �

Thèse

pour obtenir le grade de

Docteur de l'Université Montpellier II

Discipline : Informatique

Spécialité Doctorale : Informatique

Ecole Doctorale : Information, Structure, Systèmes

présentée et soutenue publiquement par

DuyHoa Ngo
le 12 Décembre 2012

Enhancing Ontology Matching by Using

Machine Learning, Graph Matching and

Information Retrieval Techniques

Jury

Yamine Ait Ameur, Professeur, IRIT-ENSEEIHT, Toulouse, Rapporteur

Jérôme Euzenat, Directeur de Recherche, INRIA Grenoble, Rapporteur

Marie-Laure Mugnier , Professeur, Université Montpellier II, Examinateur

Manuel Ruiz, Directeur de recherche, CIRAD-BIOS, Montpellier,Invité

Zohra Bellahsene, Professeur, Université Montpellier II, Directrice de Thèse

Rémi Coletta, Maître de conférences, Université Montpellier II, Co-encadrant de Thèse

Abstract

In recent years, ontologies have attracted a lot of attention in the Computer

Science community, especially in the Semantic Web �eld. They serve as explicit

conceptual knowledge models and provide the semantic vocabularies that make do-

main knowledge available for exchange and interpretation among information sys-

tems. However, due to the decentralized nature of the semantic web, ontologies are

highly heterogeneous. This heterogeneity mainly causes the problem of variation in

meaning or ambiguity in entity interpretation and, consequently, it prevents domain

knowledge from sharing. Therefore, ontology matching, which discovers correspon-

dences between semantically related entities of ontologies, becomes a crucial task in

semantic web applications.

Several challenges to the �eld of ontology matching have been outlined in recent

research. Among them, selection of the appropriate similarity measures as well as

con�guration tuning of their combination are known as fundamental issues that the

community should deal with. In addition, verifying the semantic coherent of the

discovered alignment is also known as a crucial task. Furthermore, the di�culty of

the problem grows with the size of the ontologies.

To deal with these challenges, in this thesis, we propose a novel matching ap-

proach which combines di�erent techniques coming from the �elds of machine learn-

ing, graph matching and information retrieval in order to enhance the ontology

matching quality. Indeed, we make use of information retrieval techniques to design

new e�ective similarity measures for comparing labels and context pro�les of entities

at element level. We also apply a graph matching method named similarity propa-

gation at structure level that e�ectively discovers mappings by exploring structural

information of entities in the input ontologies. In terms of combination similarity

measures at element level, we transform the ontology matching task into a classi�ca-

tion task in machine learning. Besides, we propose a dynamic weighted sum method

to automatically combine the matching results obtained from the element and struc-

ture level matchers. In order to remove inconsistent mappings, we design a new fast

semantic �ltering method. Finally, to deal with large scale ontology matching task,

we propose two candidate selection methods to reduce computational space.

All these contributions have been implemented in a prototype named YAM++.

To evaluate our approach, we adopt various tracks namely Benchmark, Conference,

Multifarm, Anatomy, Library and Large Biomedical Ontologies from the OAEI

campaign. The experimental results show that the proposed matching methods

work e�ectively. Moreover, in comparison to other participants in OAEI campaigns,

YAM++ showed to be highly competitive and gained a high ranking position.

Keywords

Ontology matching, Information retrieval, Machine learning, Similarity propagation,

Semantic veri�cation

TITRE en français : Amélioration de l'alignement d'ontologies par les

techniques d'apprentissage automatique, d'appariement de graphes et de

recherche d'information

Resumé

Ces dernières années, les ontologies ont suscité de nombreux travaux dans le do-

maine du web sémantique. Elles sont utilisées pour fournir le vocabulaire séman-

tique permettant de rendre la connaissance du domaine disponible pour l'échange

et l'interprétation au travers des systèmes d'information. Toutefois, en raison de

la nature décentralisée du web sémantique, les ontologies sont très hétérogènes.

Cette hétérogénéité provoque le problème de la variation de sens ou ambiguïté dans

l'interprétation des entités et, par conséquent, elle empêche le partage des connais-

sances du domaine. L'alignement d'ontologies, qui a pour but la découverte des

correspondances sémantiques entre des ontologies, devient une tâche cruciale pour

résoudre ce problème d'hétérogénéité dans les applications du web sémantique. Les

principaux dé�s dans le domaine de l'alignement d'ontologies ont été décrits dans

des études récentes. Parmi eux, la sélection de mesures de similarité appropriées

ainsi que le réglage de la con�guration de leur combinaison sont connus pour être

des problèmes fondamentaux que la communauté doit traiter. En outre, la véri�-

cation de la cohérence sémantique des correspondances est connue pour être une

tâche importante. Par ailleurs, la di�culté du problème augmente avec la taille des

ontologies.

Pour faire face à ces dé�s, nous proposons dans cette thèse une nouvelle approche,

qui combine di�érentes techniques issues des domaines de l'apprentissage automa-

tique, d'appariement de graphes et de recherche d'information en vue d'améliorer

la qualité de l'alignement d'ontologies. En e�et, nous utilisons des techniques de

recherche d'information pour concevoir de nouvelles mesures de similarité e�caces

a�n de comparer les étiquettes et les pro�ls d'entités de contexte au niveau des en-

tités. Nous appliquons également une méthode d'appariement de graphes appelée

propagation de similarité au niveau de la structure qui découvre e�ectivement des

correspondances en exploitant des informations structurelles des entités. Pour com-

biner les mesures de similarité au niveau des entités, nous transformons la tâche de

l'alignement d'ontologie en une tâche de classi�cation de l'apprentissage automa-

tique. Par ailleurs, nous proposons une méthode dynamique de la somme pondérée

pour combiner automatiquement les correspondances obtenues au niveau des entités

et celles obtenues au niveau de la structure. A�n d'écarter les correspondances in-

cohérentes, nous avons conçu une nouvelle méthode de �ltrage sémantique. En�n,

pour traiter le problème de l'alignement d'ontologies à large échelle, nous proposons

deux méthodes de sélection des candidats pour réduire l'espace de calcul.

Toutes ces contributions ont été mises en �uvre dans un prototype nommé

YAM++. Pour évaluer notre approche, nous avons utilisé des données du banc

d'essai de la compétition OAEI : Benchmark, Conference, Multifarm, Anatomy, Li-

brary and Large Biomedical Ontologies. Les résultats expérimentaux montrent que

les méthodes proposées sont très e�caces. De plus, en comparaison avec les autres

participants à la compétition OAEI, YAM++ a montré sa compétitivité et a acquis

une position de haut rang.

MOT-CLES

alignement d'ontologies, extraction/recherche d'information, apprentissage automa-

tique, propagation de similarité, véri�cation sémantique.

Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this Ph.D.

thesis possible. First of all, I want to express my gratitude to my family and friends

for their encouragement during all these years. Their support to pursue this goal

has been enormous.

I wish to thank my supervisor Zohra Bellahsene for being my mentor in research.

Her consistent con�dence in me to publish research had propelled me to where I

stand today.

I would like to thank all my thesis jury members. Special thanks to Yamine Ait-

Ameur and Jérôme Euzenat for their valuable comments and remarks as reviewers of

the dissertation. I am indebted to Marie-Laure Mugnier, Manuel Ruiz and Rémi Co-

letta for taking out time from their hectic schedules, to act as examiners for my work.

I owe a lot of thanks to Konstantin Todorov for his valuable feedback and his help

in my English writing. I am also very grateful to Imen Mami for her help in many

administrative procedures in France. Special thanks to my friends and colleagues at

LIRMM and GALERA for their informal discussions and support.

Finally, this Ph.D. would not have been possible without support from INRIA,

University Montpellier II and Centre National de la Recherche Scienti�que (CNRS)

of France. My stay in France for pursuing the doctorate degree has been �nancially

supported by the ANR DataRing ANR-08-VERSO-007-04.

Montpellier, October 2012

Duy-Hoa NGO

ii

Contents

1 Introduction 1

1.1 Ontology, Ontology Matching and Semantic Web 1

1.2 Challenges in Ontology Matching . 3

1.2.1 Example . 4

1.2.2 Challenging Issues . 5

1.3 Objectives of the Dissertation . 6

1.4 Contributions . 8

1.5 Outline of the Dissertation . 11

2 Literature Overview 13

2.1 Preliminaries . 13

2.2 Ontology Heterogeneity . 15

2.2.1 Sources of Ontology Heterogeneity 15

2.2.2 Overcoming Heterogeneity . 16

2.3 Classi�cation of Recent Works . 21

2.3.1 Basic Matching Techniques . 22

2.3.2 Work�ow Strategies . 25

2.3.3 E�ciency and Scalability Techniques 27

2.3.4 User Involvement . 28

2.4 Conclusion . 29

3 Dealing with Terminological Heterogeneity 31

3.1 Analyses of the Terminological Heterogeneity 32

3.2 Basic Terminological Similarity Measures 34

3.2.1 String-based Similarity Measures 34

3.2.2 Language-based Similarity Measures 37

3.2.3 Hybrid Similarity Measures 39

3.3 Advanced Terminological Similarity Measures 42

3.3.1 Information Retrieval Based Similarity Measure 43

iii

3.3.2 Context Pro�le Similarity Measure 49

3.3.3 Instance-based Similarity Measure 52

3.4 Experiments and Evaluations . 54

3.4.1 Performance of the Context Pro�le Method 54

3.4.2 Performance of Instance-based Similarity Measure 55

3.4.3 Comparison of Di�erent Similarity Measures for Labels 56

3.5 Conclusion . 57

4 Dealing with Conceptual Heterogeneity 61

4.1 Analyses of the Conceptual Heterogeneity 62

4.2 Basic Structural Similarity Methods 65

4.2.1 Internal Structure Similarity Methods 66

4.2.2 External Structure Similarity Methods 66

4.2.3 Discussion on Basic Structure Similarity Methods 68

4.3 Similarity Propagation Method . 69

4.3.1 Computation Space . 71

4.3.2 Computing Similarity with Propagation 76

4.3.3 Filters . 81

4.4 Experiments and Evaluations . 81

4.4.1 Comparison of the Similarity Propagation Method with Basic

Structural Methods . 81

4.4.2 Impact of Input Noise on the Structure-based Methods. 84

4.4.3 Impact of the Quality of Input to Similarity Propagation Method 86

4.4.4 Impact of Using a Reasoning System to the Similarity Propa-

gation Method . 87

4.5 Conclusion . 88

5 Matcher Combination 91

5.1 Overview of Automatic Combination Methods 92

5.1.1 Harmonic Adaptive Weighted Sum Method - HW 93

5.1.2 Local Con�dence Weighted Sum Method - LC 94

5.1.3 Observation on the HW and LC methods 95

5.2 Machine Learning Based Combination Method - ML 96

5.3 Dynamic Weighted Sum Method - DWS 100

5.4 Experiments and Evaluations . 103

5.4.1 Comparison of Performance of Di�erent ML Models 103

5.4.2 Impact of Selected Similarity Measures on Performance of ML 104

5.4.3 Comparison of Performance of ML, HW and LC 107

iv

5.4.4 Comparison of Performance of DWS, HW and LC 108

5.5 Conclusions . 110

6 Mapping Selection 113

6.1 Non Semantic Selection Methods . 114

6.1.1 Threshold Filter . 114

6.1.2 Cardinality Filter . 114

6.2 Semantic Selection Methods . 118

6.2.1 Description Logic and Ontology 119

6.2.2 Inconsistent Mappings . 122

6.2.3 Review Existing Methods . 125

6.2.4 Fast Semantic Filtering Method 130

6.3 Experiments and Evaluations . 138

6.4 Conclusion . 139

7 Towards Large Scale Ontology Matching 142

7.1 Partition-based Method . 143

7.2 Anchor-based Segmentation Method 145

7.3 Similar Annotation Oriented Heuristics 146

7.3.1 Filter by Description . 147

7.3.2 Filter by Context . 148

7.3.3 Filter by Label . 149

7.4 Experiments and Evaluations . 150

7.5 Conclusion . 152

8 Ontology Matching with YAM++ 155

8.1 YAM++ v.1.0 in OAEI 2011 Campaign 155

8.1.1 Experiments on the OAEI 2011 Datasets 157

8.1.2 YAM++ vs. Other Participants in OAEI 2011 158

8.1.3 Conclusion of YAM++ v.1.0 Version 160

8.2 YAM++ v.1.5 in OAEI 2011.5 Campaign 161

8.2.1 YAM++ vs. Other Participants in OAEI 2011.5 161

8.3 YAM++ v.2.0 in OAEI 2012 Campaign 164

8.3.1 Experiments on the OAEI 2012 Datasets 166

8.3.2 Conclusion of YAM++ v.2.0 Version 167

8.4 Conclusion . 168

i

9 Conclusion and Future Work 170

9.1 Main Contributions . 170

9.2 Remaining Issues and Future Work 172

ii

List of Figures

1.1 A scenario of semantic information integration [28] 2

1.2 Faculty1.owl ontology . 4

1.3 Faculty2.owl ontology . 4

1.4 Successive improvements of our matching tools 10

2.1 Two fragments of ontologies #205 and #101 from OAEI 2009 Bench-

mark dataset . 14

2.2 Ontology engineering process . 15

2.3 Ontology designing process . 17

2.4 An example of ontology fragment . 17

2.5 Matching layers . 22

2.6 A Classi�cation of matching systems 23

3.1 A graphical illustration of the relation between features of two objects

A and B [95] . 48

3.2 Fragment of an ontology . 50

3.3 Comparison of terminological similarity measures on Conference dataset 57

4.1 Similarity propagation . 69

4.2 A RDF graph for a fragment of an ontology 73

4.3 Two RDF graphs for two fragments of ontologies 74

4.4 A high level ontology graph . 75

4.5 Relations between concepts, object properties, data properties in the

source ontology . 77

4.6 Relations between concepts, object properties, data properties in the

target ontology . 77

4.7 A fragment of the pairwise connectivity graph 78

4.8 Comparison of di�erent matching methods in structure based matcher 83

4.9 Impact of noise input to structure based methods 86

4.10 Impact of the quality of input to the similarity propagation method . 86

iii

5.1 An example of computing a harmony value (taken from [64]) 94

5.2 The trained decision tree classi�cation 98

5.3 Four kinds of candidate mappings . 101

5.4 Comparison of the performance of learning models 104

5.5 Comparison of combination on di�erent collections of similarity mea-

sures . 105

5.6 Comparison of Fmeasure of di�erent combination methods on Con-

ference dataset . 108

5.7 Comparison of di�erent methods to combine results of element and

structure matchers . 109

6.1 An example of a threshold �lter . 114

6.2 An example of using greedy �lter . 115

6.3 An example of using greedy �lter with 1:2 matching cardinality . . . 117

6.4 An example of using maximum assignment �lter 118

6.5 An example of inconsistent mappings 123

6.6 An example of unstable mappings . 124

6.7 Inconsistent mapping patterns used in ASMOV [42] 125

6.8 The ALCOMO con�ict patterns (taken from [66]) 128

6.9 Example of checking two concepts being disjoint 132

6.10 An illustration for our heuristic of disjoint concepts 135

7.1 Partition-based ontology matching 143

7.2 Dynamic segmentation with anchor 145

7.3 An example with the label �ltering method 150

8.1 Main components of YAM++ v.1.0 156

8.2 Comparison of YAM++ with other participants in the Benchmark

track in the OAEI 2011 (taken from [1]) 159

8.3 Comparison of YAM++ with other participants in the Conference

track in the OAEI 2011 (taken from [1]) 160

8.4 Comparison of YAM++ with other participants in the Benchmark

track in the OAEI 2011.5 (taken from [2]) 162

8.5 Comparison of YAM++ with other participants in the Conference

track in the OAEI 2011.5 (taken from [2]) 162

8.6 Comparison of YAM++ with other participants in the Multifarm

track in the OAEI 2011.5 (taken from [2]) 163

8.7 Main components of YAM++ OAEI 2012 version 164

iv

List of Tables

3.1 Similarity scores between tokens . 41

3.2 Similarity scores between tokens . 46

3.3 Performance of the context pro�le measure on the Conference data

set in OAEI 2009 . 55

3.4 Performance of the instance-based measure on the OAEI 2009 Bench-

mark dataset . 56

4.1 Di�erent approaches to computing propagation coe�cients 79

4.2 Variation of the updated similarity functions 80

4.3 Comparison of matching quality obtained with OAEI Benchmark

2011 dataset . 87

4.4 Comparison of matching quality obtained with Conference dataset . . 87

5.1 List of the selected similarity measures 97

5.2 A set of the unclassi�ed data . 99

5.3 Classi�ed mappings by the trained decision tree 100

5.4 Discovered mappings by similarity propagation method 102

5.5 Combination results of element and structure matchers 102

5.6 Result after greedy selection. θ = 0.2716023 103

5.7 Average of Fmeasure obtained by using running ML with 4 di�erent

collections of similarity measures . 105

6.1 Performance of ALCOMOIE on large scale ontology matching 139

6.2 Performance of the fast semantic �ltering on large scale ontology

matching . 139

7.1 Performance of the context �ltering method on the Anatomy test . . 151

7.2 Performance of the context �ltering method on the FMA-NCI-small

test . 151

7.3 Performance of the label �ltering method on the Anatomy and FMA-

NCI-small tests . 152

v

8.1 Evaluation on the Benchmark dataset based on bibliography ontology 157

8.2 Evaluation on the Benchmark dataset based on conference organiza-

tion ontology . 158

8.3 Evaluation on the Conference dataset 158

8.4 YAM++ results on pre-test Scalability track 166

8.5 YAM++ results on Benchmark track in OAEI 2012 166

8.6 YAM++ results on Anatomy track 167

8.7 YAM++ results on Large biomedical ontologies track 167

vi

Chapter 1

Introduction

Ontology matching is an active research �eld, which is a key solution for solving the

semantic heterogeneity problem. The performance of an ontology matching system

including matching quality and runtime e�ciency plays an important role in the

success of many semantic applications. In this chapter, we introduce the main topics

that we are concerned with in the �eld of ontology matching throughout the thesis.

We start by presenting the role of ontology and the requisite of ontology matching

in the computer science �eld (Section 1.1). Next, we discuss the challenging issues

in the ontology matching �eld (Section 1.2). The objectives of our research and our

contributions are then stated in Section 1.3 and Section 1.4 respectively. Finally,

Section 1.5 presents the structure of this thesis

1.1 Ontology, Ontology Matching and Semantic Web

In recent years, ontologies have attracted a lot of attention in Computer Science,

especially in the Semantic Web �eld. In its original meaning in philosophy, ontology

is concerned with the fundamental question of �what kinds of things are there? � and

leads to studying general categories for all things that exist in a domain of interest

[22]. In general, it is visualized and thought of as a semantic network that displays

interrelated conceptual nodes. For example, in a technical vehicular domain, to

describe a concept Car, people relate it to a sub-category of the concept Vehicle

which is a sub-category of the concept Engine.

Transferring from philosophy to computer science, an ontology is a computa-

tional artifact that encodes knowledge of this domain in a machine-processable form

to make it available to information systems. It is a formal explicit speci�cation of

a shared conceptualization of a domain of interest [34]. The term formal in this

de�nition implies that an ontology is based on the grounds of formal logic to repre-

1

sent knowledge. The term explicit implies that ontologies have to state knowledge

explicitly to make it accessible for machines. This ensures that the speci�cation of

domain knowledge in an ontology is machine-processable and is being interpreted in

a well-de�ned way. The term speci�cation means an ontology represents knowledge

about a particular domain of interest. The narrower the scope of the domain is, the

more detail about its concepts can be captured in the ontology. Finally, the term

shared conceptualization implies that an ontology re�ects an agreement on a domain

conceptualization among people in a community.

Owning the important characteristics discussed above, ontologies can serve as

explicit conceptual knowledge models and provide the semantic vocabularies that

make domain knowledge available to be exchanged and interpreted among infor-

mation systems. Hence, they open new opportunities for developing a new line of

semantic applications such as semantic search [35, 61], semantic portal [89, 60, 55],

semantic information integration [16, 73, 5], intelligent advisory systems [77, 6],

semantic middleware [54], semantic software engineering [18].

Figure 1.1: A scenario of semantic information integration [28]

As we discussed above, the strength of an ontology is to support sharing knowl-

edge between information systems. Now, let us illustrate a general scenario of seman-

tic information integration in Fig. 1.1 in order to understand the role, the position of

an ontology and the requisite of ontology matching in a semantic application. This

scenario is taken from the Ontology Matching book by Euzenat and Shvaiko [28].

Assume that data are stored in di�erent local information sources in di�erent for-

mats like SQL, XML, RDF, etc. An information integration task is to gather those

2

data in order to provide the users a unique query interface via a global (or common)

ontology (CO) to all the local information sources. To do that, each local infor-

mation source is wrapped to local ontology (LOi), which then are matched against

the global ontology. The alignment between them (Ai) helps generate a mediatori

which in turn transforms queries against the common ontology into a query to the

information source and translates the answers in the other way.

This is only one example of semantic application that involves ontology and on-

tology matching. Further applications of ontologies and ontology matching are found

in ontology engineering, information integration, including schema integration, cat-

alogue integration, data warehouses and data integration, peer-to-peer information

sharing, web service composition, autonomous communication systems, including

agents and mobile devices communication, and navigation and query answering on

the web.

Obviously, a key for the success of these applications is related to the matching

operation between ontologies. However, it is one of the most di�cult issues because

of the high heterogeneity of ontologies [96, 50, 36]. Due to the de-centralized nature

of the semantic web, an explosion of the number of ontologies has been produced.

Many of them may describe similar domains, but they are very di�erent because

they have been designed independently by di�erent ontology developers following

diverse modeling principles and patterns. For example, within a collection of on-

tologies describing the domain of organizing conferences [93], people attending to

the conference can be conceptualized with di�erent names such as Participant

(in confOf.owl), Conference_Participant (in ekaw.owl), Attendee (in edas.owl),

Delegate (in iasted.owl), Listener (in sigkdd.owl). The heterogeneity of ontologies

mainly causes the problem of variation in meaning or ambiguity in entity interpreta-

tion and, consequently, it prevents domain knowledge sharing. Therefore, ontology

matching becomes a crucial task in semantic web applications.

1.2 Challenges in Ontology Matching

According to [28], ontology matching is a process of discovering correspondences

(or mappings) between semantically related entities of di�erent ontologies. Because

of the high heterogeneity of ontologies, the same concept described in di�erent on-

tologies may have di�erent representations (e.g., labels, properties or relations with

other concepts). Therefore, in the ontology matching process, multiple matching

strategies are usually used. In this section, we �rst illustrate an ontology matching

task through a simple example. Then, we discuss the di�culties and challenging

3

issues in ontology matching.

1.2.1 Example

Assume that two faculties of computer science in two universities plan to join to-

gether and collaborate on some educational projects. The structural organization

of each faculty is sketched by an ontology (i.e., faculty1.owl and faculty2.owl in Fig.

1.2 and Fig. 1.3, respectively). In order to conveniently extend opportunities of ex-

change and collaboration, they should �nd the equivalent positions in both faculties.

It is an ontology matching task.

Figure 1.2: Faculty1.owl ontology Figure 1.3: Faculty2.owl ontology

At �rst glance, we can easily �nd that both ontologies have the same concepts

labeled Employee. So we can assume that these two concepts are similar. Next, we

realize that the label of concept Researcher in the faculty1.owl is not identical but

close to the label of the concept Researcheur in the faculty2.owl. Indeed, their

labels di�er in only one character. It may be a typo mistake, so we can assume these

two concepts are similar too. Looking at the ontologies again, we see that two pairs

of properties such as (teach, teaching) and (hasTitle, title) are highly similar

because the word �teaching� is a variation of the word �teach�; the word �has� in the

label �hasTitle� is an auxiliary verb and it can be ignored. In addition, thanks to the

dictionary, we �nd that �Manager � is synonym to �Director �; �Subject� is a synonym

of �Topic�; thus they are highly similar too. Obviously, the correspondences found at

�rst glance are only based on comparison of the labels of entities in both ontologies.

Moreover, �nding mappings only by comparing identical labels is not adequate; we

should use di�erent techniques in order to discover more results.

4

Next, note that �Teacher � and �Lecturer � are not de�ned as synonyms in the

dictionary, thus we need other ways to measure the similarity of these concepts.

Because they have similar properties (i.e., teach vs. teaching) whose value types

are similar too (i.e., Subjects vs. Topic), we can conclude that the two concepts

Teacher and Lecturer are similar. Furthermore, from the structural hierarchy of

the two ontologies, we realize that the concept Staff in the faculty1.owl ontol-

ogy is similar to the concept Employee in the faculty2.owl ontology because they

have similar descendants, i.e., Manager vs. Director, Teacher vs. Lecturer and

Researcher vs. Researcheur. That is, the concept Employee in the faculty2.owl

ontology is matched to two concepts in the faculty1.owl ontology, namely Employee

and Staff, which are declared as disjoint. Therefore, the two mappings are inco-

herent, consequently, one of them is inconsistent and have to be removed. In this

case, a mapping between the two concepts Employee will be eliminated because they

are used in di�erent contexts even though they have the same labels. Indeed, they

are a typical example of a polysemy. On the contrary, the mapping between the

two concepts Staff and Employee remains. This mapping is a typical example of a

synonym (i.e., the same concept but has di�erent labels).

As it was illustrated in this example, we can see that ontology matching is a

di�cult and complex process due to the heterogeneity of ontologies. To discover

mappings between entities of ontologies, a single and simple matching method will

not be su�cient. Instead, it should make use of di�erent methods coming from

other related research �elds to ful�ll this task. For instance, in the illustration

example above, we can apply some techniques coming from information retrieval

�eld to discover mappings of entities by their labels. In addition, a method of

graph matching could be used to discovers mappings of entities by exploring their

structural information. Moreover, to verify the consistent of mappings, a description

logic method should be employed.

1.2.2 Challenging Issues

Ontology matching can be done either by hand or by using (semi) automated tools.

Manual mappings discovery is tedious, error-prone, and impractical due to the high

complexity and large scale of ontologies, in terms of their size and their number.

Hence, the development of fully or semi automated ontology matching tool becomes

crucial to the success of the semantic information systems and applications. In the

last decade, through the annual campaign OAEI1, many ontology matching systems

1http://oaei.ontologymatching.org/

5

have been proposed. These state of the art approaches have made a signi�cant

progress in ontology matching �eld, but none of them gain a clear success in terms

of matching quality performance over all matching scenarios [27].

Several challenges to the �eld of ontology matching have been outlined in recent

research [76]. Among them, selection of the appropriate similarity measures as well

as con�guration tuning of their combination are known as fundamental issues that

the community should deal with. Indeed, di�erent matching scenarios may require

di�erent collections of similarity measures, which consequently require di�erent set-

tings in the combination function. Additionally, verifying the semantic coherent of

the discovered alignment is also known as a crucial task. Furthermore, the di�culty

of the problem grows with the size of the ontologies. Ontology matching in very

large scale leads to an explosion of the computational space; and consequently, it

requires a lot of hardware memory and computational time.

1.3 Objectives of the Dissertation

Before proceeding to present the objectives of our research in detail, we clarify

the main goal that we will follow in this dissertation. Indeed, the central goal

of our research e�ort is to provide a generic, theoretically sound and practically

e�cient approach to deal with high semantic heterogeneity in the ontology matching

task. Our focus falls on discovering equivalence correspondences between entities

at the schema layer of di�erent ontologies. That is, the aim of our approach is to

produce mappings on the intentional level (of the kind concept-concept and property-

property) and not on the extensional level (e.g., instance-instance) from the input

ontologies.

In our approach, an ontology matching system consists of several matching

components such as terminological matcher, structural matcher, candidate �lter-

ing method, and semantic veri�cation method, each of them is used to solve spe-

ci�c issues in the ontology matching task. In particular, in terms of large scale

ontology matching, a candidate �ltering method �rst reduces the computational

space. Then, terminological heterogeneity of ontologies is solved by a terminological

matcher. Next, in order to deal with conceptual heterogeneity, a structural matcher

is designed. A combination method then enhances the overall matching result by

combining the results obtained by these matchers. Finally, the discovered mappings

are re�ned by a semantic veri�cation method. Besides, a matching strategy is a way

that these components cooperate with each other in order to produce an alignment

between two ontologies. Therefore, matching strategies and matching components

6

are research objects in our study.

Generally, some matching components can work independently, for example,

terminological matcher. On the contrary, the other components(e.g., structural

matcher) usually require initial input provided by other matching components. Con-

sequently, their performance strongly depends on the performance of the other ones.

Therefore, the performance of the whole matching system is relied on the perfor-

mance of its components. Based on this observation, our central hypothesis can be

stated as follows.

�The performance of an ontology matching system including matching quality and

runtime e�ciency can be increased by improving the performance of its components

and its matching strategy�.

Therefore, one of the objectives of our research is to improve the e�ectiveness

of the matching components. On the other hand, automatic, �exible and e�cient

matching strategies (i.e., combination methods) are also fallen in our interest. Ex-

plicitly, the following issues have been investigated in this thesis:

1. How to deal with terminological heterogeneity e�ectively?

Terminological heterogeneity evolves from the same entities having di�erent la-

bels in di�erent ontologies. The aim of a terminological matcher is to discover

similar entities by comparing their labels. In practice, many terminological

similarity measures have been proposed so far, but none of them could cover

all types of the terminological heterogeneity. Therefore, we assume that the

combination of di�erent measures may handle this issue. In that way, we

propose a method using Machine Learning models to combine di�erent sim-

ilarity measures. It is because machine learning models can self tune their

con�guration, which is one objective that we focus to.

On the other hand, unlike the other terminological methods used in existing

systems, we assume that the information content of tokens in labels assigned to

entities in a domain of interest are not the same. Indeed, some tokens are used

more frequently than other, thus they bring less information. This hypothesis

leads us to develop a new e�ective similarity measure based on Information

Retrieval techniques, which is an alternative method to the machine learn-

ing based combination method discussed above when the training data is not

available.

2. How to deal with conceptual heterogeneity e�ectively?

Conceptual heterogeneity evolves from the same entities having di�erent se-

mantic descriptions (e.g., internal and external structural relations, axioms,

7

etc.) in di�erent ontologies. The aim of a structural matcher is to discover

similar entities with similar structural information. In order to reduce this

type of heterogeneity e�ectively, we assume that all of the structural relations

of entities in the ontology should be taken into account. This evokes a graph

matching problem. Therefore, we suggest to make use of an e�ective Graph

Matching algorithm for dealing with this issue.

3. How to e�ectively combine the matching results of the terminological and struc-

tural matchers?

Combination of matching results obtained from the terminological and the

structural matchers is necessary. This is due to the fact that terminological

information and structural information are two independent features of any

entity of ontologies. To combine them e�ectively, we need to know the con-

tribution of these matchers in the matching process. Therefore, the degree of

reliability of these matchers should be estimated. Moreover, it should depend

only on the ontologies of a given matching scenario.

4. How to reduce the computational space when dealing with large scale ontology

matching?

For this issue, we suggest that the reduction of the computational space can

be transformed into a searching problem. Here, we can apply Lucene Search

Engine in order to identify the most similar subset of entities in one ontology

that possibly match to a given entity in another ontology.

On the other hand, we observe that if labels of two entities di�er in more than

three tokens, any string based similarity measures will produce a low similarity

value, consequently, these entities are highly unmatched. This observation

leads us to an e�cient label indexing method to select candidate mappings.

5. How to detect and remove inconsistent mappings e�ectively and e�ciently,

especially in terms of large scale ontology matching?

This issue is highly related to the Ontology Debugging �eld. Therefore, we

can extend some techniques in this �eld to semantically re�ne the discovered

mappings.

1.4 Contributions

In this section, we explicitly describe our contributions to ful�ll the above mentioned

objectives.

8

• Analyze the existing works in the ontology matching �eld. In this study, we

have proposed a survey of related work including a classi�cation of the main

contributions in the �eld.

• New similarity measures to deal with both terminological and conceptual het-

erogeneity of ontologies. Our experiments show that those methods are better

than the existing methods in terms of matching quality.

• A new method based on machine learning models for combining di�erent sim-

ilarity measures.

• A new combination method that automatically assigns weights to individual

matchers. It also automatically determines a threshold value to select the �nal

mappings.

• E�ective and e�cient �ltering methods to deal with large scale ontology match-

ing.

• A method that can detect and remove inconsistent mappings. It is especially

e�cient in large scale.

• A prototype called YAM++ implementing all the above contributions. This

prototype has participated to OARI twice and have got top positions.

The Fig. 1.4 shows the evolution of YAM++ during the research time of this

thesis.

We started with YAM++ v.0.0, which was a modi�cation of the previous schema

matching tool YAM developed by Fabien Duchateau [23]. The main idea of using

machine learning techniques have remained. The main di�erence is that new simi-

larity measures specializing in the ontology matching �eld (e.g., wordnet similarity

measures, context pro�le similarity measures) have been implemented and catego-

rized in di�erent groups.

In YAM++ v.1.0, an instance based matching method and a similarity propaga-

tion method were added. In order to combine the matching results of those matching

methods, a dynamic weighted sum method was added also.

In YAM++ v.1.5, new similarity measures based on information retrieval tech-

niques were added to replace the machine learning method. In addition, a multi-

lingual translator were used to translate labels in di�erent languages into English.

Moreover, a semantic veri�cation component were added also.

YAM++ v.2.0 is the current version. This version was designed for performing

e�ciently large scale ontology matching. For this purpose, new methods for �ltering

9

Figure 1.4: Successive improvements of our matching tools

candidates and a new fast semantic �ltering method are added. Besides, a graphical

user interface is supplemented in order to help the users debugging the discovered

alignment.

YAM++ can be downloaded at: http://www2.lirmm.fr/~dngo/

The work on the current PhD thesis have lead to the following publications:

1. DuyHoa Ngo, Zohra Bellahsene. YAM++ : (not) Yet Another Matcher for

Ontology Matching Task. (demo paper) EKAW 2012.

2. DuyHoa Ngo, DacThanh Tran, PhanThuan Do. An Information Content

Based Partitioning Method For The Anatomical Ontology Matching Task.

SoICT 2012.

3. Remi Coletta, E. Castanier, Patrick Valduriez, C. Frisch, DuyHoa Ngo and

Zohra Bellahsene. Public Data Integration with WebSmatch. CoRR 2012.

4. DuyHoa Ngo, Zohra Bellahsene, Remi Coletta. A Flexible System for Ontology

Matching. CAiSE 2011 - LNBIP 2012.

5. DuyHoa Ngo, Zohra Bellahsene, Remi Coletta. YAM++ � Results for OAEI

2011. In ISWC/OM, 2011.

10

6. DuyHoa Ngo, Zohra Bellahsene, Remi Coletta. A Generic Approach for

Combining Linguistic and Context Pro�le Metrics in Ontology Matching. In

ODBASE, 2011.

7. DuyHoa Ngo, Zohra Bellahsene, Remi Coletta. A Flexible System for Ontology

Matching. CAiSE - Forum, 2011.

1.5 Outline of the Dissertation

This dissertation is organised into 9 chapters. Current chapter introduced the prob-

lem of ontology matching and the objectives of our thesis. In Chapter 2 we present

an overview of ontology, ontology heterogeneity and review the existing ontology

matching system. In chapter 3, we discuss di�erent types of terminological hetero-

geneity in detail, and then we propose our methods to deal with them. In Chapter

4, we analyze conceptual heterogeneity and proposed a solution to overcome this

challenge. Matcher combination is presented in Chapter 6. In Chapter 7, we dis-

cuss existing mapping selection methods and propose our semantic �ltering method

for large scale ontology matching. Next, in terms of large scale ontology matching,

we propose our candidate �ltering methods in order to improve the e�ciency. The

prototypes and evaluation results of YAM++ in OAEI campaigns will be presented

in Chapter 8. Finally, conclusion and new perspectives of our research is given in

chapter 9.

11

12

Chapter 2

Literature Overview

In this chapter, we provide a brief summary of the main aspects of the ontology

matching �eld on the basis of the results published so far. The aims of this summary

are to give the reader a bird's-eye view on the research topic and to determine

our motivations. We start by providing in an informal manner several de�nitions

describing the ontology matching process (section 2.1). Further, we discuss the

heterogeneity issues and give an overview of basic matching methods to deal with

these issues (section 2.2). Finally, we give a classi�cation of the recent approaches

in section 2.3.

2.1 Preliminaries

Following Gruber's de�nition [34], an ontology is seen as a formal, explicit speci-

�cation of a shared conceptualization in terms of concepts (i.e., classes), properties

and relations. In a more general sense, an ontology can be de�ned as a collection of

concepts and relations holding between these concepts, as well as a set of instances

populating these concepts. Ideally, there exists only one ontology describing a do-

main of interest and it provides a common vocabulary enabling the understanding

and sharing of information and data between the members of a given community.

However, as discussed in the introduction, due to the decentralized character of

the ontology creation process, it appears in real life that multiple ontologies describe

similar or identical domains of the world knowledge - a phenomenon referred to as

ontology heterogeneity. We provide an illustration of this heterogeneity in Fig.2.1

showing fragments of two ontologies in OAEI1 2009 Benchmark dataset. Ellipses,

rounded rectangles, rectangles and dashed rectangles represent classes or datatypes,

properties, instances, annotation information or data values respectively. We have

1http://oaei.ontologymatching.org/

13

Figure 2.1: Two fragments of ontologies #205 and #101 from OAEI 2009 Benchmark
dataset

two layers - a schema layer (concepts, relations) and a data layer (instances). In

the schema layer, arrows represent the relations between entities. Dashed arrows

from data layer to schema layer indicate that some instances belong to some classes.

Arrows in the data layer indicate properties and corresponding data belonging to

instances.

The ontology matching task aims to bring together two (or more) heteroge-

neous ontologies by indicating the links between their semantically related elements.

An ontology matching procedure applies a similarity measure of some kind de-

�ned as a function which assigns to a pair of ontology entities a real number between

0.0 and 1.0 expressing the similarity between them [euzenat2007b]. In the example

of Fig.2.1, a speci�c similarity measure known as ScaledLeveinstein2 applied on the

concepts JournalPaper and Article gives the value 0.17. However, a similarity

measure cannot be applied self-dependently - it needs to be a part of a properly de-

signed ontology matching algorithm which takes into account the relations between

the concepts, the instances that populate them, possibly background knowledge

about the domain of interest, and many other elements relevant to the overall se-

mantic similarity of the ontologies and their components. The result of a properly

designed ontology matching procedure ideally is a complete set of semantic corre-

spondences (or mappings) between the entities of two di�erent ontologies [28]. In

this thesis, the two notions of �correspondence� and �mapping� are equivalent.

In the following section, we will discuss in more detail the sources of ontology

heterogeneity. This discussion will provide the main axes upon which we will consider

2http://sourceforge.net/projects/simmetrics

14

and explain the existing ontology matching approaches, each dealing with some or

several heterogeneity types.

2.2 Ontology Heterogeneity

As argued above, understanding the heterogeneity problems and the corresponding

solutions is a key to developing a successful ontology matching system. Therefore,

we proceed to describe the main heterogeneity types.

2.2.1 Sources of Ontology Heterogeneity

The main role of ontology is to describe domain knowledge in a generic, explicit

way and to provide an agreed understanding of a domain. Fig. 2.2 describes the

ontology engineering process which is the source of ontology heterogeneity. We will

go through the di�erent components of this process with regard to the resulting

heterogeneities.

Figure 2.2: Ontology engineering process

The conceptualization process provides a simpli�ed viewpoint of users to the real-

ity (the domain knowledge). However, di�erent users may have di�erent knowledge

acquisitions, di�erent backgrounds and understanding of the way this knowledge has

to be conceptualized. This leads to di�erent conceptualizations comprising di�erent

objects, entities and relations among them.

Further, the formalization process describes all the concepts de�ned in the pre-

vious step as an explicit speci�cation. It means that developers explain all entities

and their relations as given in the conceptualization phase, by using some speci�c

formal language (e.g. Description Logics). But, di�erent languages provide di�er-

ent abilities to represent logical rules or axioms and di�erent developers may assign

di�erent names for constant or predicates. Therefore, at this step even the same

conceptualization maybe formalized with di�erent speci�cation.

15

Finally, the representation process aims to make those logical de�nitions and

axioms to be formal, and machine-accessible. There exist many kinds of languages

can be used in that task such as OWL, KIF, etc. Di�erent represented languages

lead to di�erent syntax in the formal ontologies.

From those points above, we see that ontologies are highly heterogeneous. Ac-

cording to the classi�cation of Jérôme Euzenat and Pavel Shvaiko [28], ontology

heterogeneity can be classi�ed in four levels:

1. Syntactic: At this level, all forms of heterogeneity depend on the choice of the

representation format.

2. Terminological: At this level, all forms of heterogeneity are related to the

process of naming entities that occur in an ontology.

3. Conceptual: At this level, all forms of heterogeneity are come from the di�er-

ences of the content of an ontology.

4. Semiotic & Pragmatic: At this level, all the discrepancies are related to the

fact that di�erent individual/communities may interpret the same ontology in

di�erent ways in di�erent context.

The heterogeneity at the Syntactic level can be handled by using a transforma-

tion tool, which converts ontology from one represented language to another. The

heterogeneity at the Semiotic and Pragmatic level are very di�cult because they

strongly depend on understanding the context of using ontology. Therefore, most of

the current ontology matchers focus only on solving problem of mismatches between

entities at the Terminology and Conceptual levels. Those types of heterogeneity

are also known as semantic heterogeneity. We will see how to overcome semantic

heterogeneity in the next section.

2.2.2 Overcoming Heterogeneity

An ontology can be created manually, semi-automatically or fully-automatically.

However, there are no standard rules widely adopted by all ontology developers.

Generally, experts or senior engineers provide the most useful recommendations,

conventions in designing ontology process. Following [12, 72], the general framework

on building ontology can be viewed in Fig.2.3

There are two parts in ontology design such as: ontology learning and ontology

population. Ontology learning aims to describe the interested domain by ontologi-

cal information (i.e., concepts, properties, relations, axioms) in a so-called �schema

16

Figure 2.3: Ontology designing process

layer� (the top part in Fig. 2.3). Ontology population aims to get the extensional

aspects of the domain. It �nds real instances of the domain that belong to speci�c

concepts and relations mentioned in the ontology learning part. It is also acknowl-

edged as �data layer� (the bottom part in the Fig. 2.3). Let's see a small example of

Natural Water Sources ontology [14] in Fig.2.4 in order to understand each level in

the framework. In the sequel, we will present and analyze the heterogeneity types

with respect to these two parts of the ontology designing process.

Figure 2.4: An example of ontology fragment

Schema Entities

The aim of the Schema Entities level is to de�ne what concepts and properties

are used to describe the user's viewpoint and their understanding on the domain

17

of interest. Generally, at this level, each entitiy on ontology are assigned with an

unique identi�cation, some related labels and other annotation, which represent

the meaning of entities. For example, rectangles and ovals in Fig. 2.4 represent

concepts and properties respectively. Each of them are given a string (e.g., River,

Lake, Ocean, Sea, etc.).

According to [12], the �rst level consists of two sub-tasks corresponding to the

Term and Synonym sub-levels. Most of the Terminological heterogeneity is ap-

peared at this level.

Terms are used as signs for entities (concepts, properties). They are linguis-

tic realizations of domain-speci�c concepts. They convey the implicit meaning by

themselves without the ontological consideration. From a linguistic point of view,

terms are either single words or multi-word compounds with very speci�c, possibly

technical meaning in a given context or domain [12]. Therefore, if terms are the

same or syntactical variation of each other then the entities are probably the same.

For example, (Motion_picture, MotionPicture). In that case, string-based similarity

measures can be used to calculate the similarity score between labels. The assump-

tion is that if labels are highly similar, which means the similarity score obtained by

a string-based similarity measure on labels are higher than some speci�c threshold,

then the entities probably are the same.

At Synonym layer, the task is �nding words, terms which denote the same

concept in the domain knowledge. For example, (Thesis, Dissertation) are synonyms

in the domain of education. Therefore, if labels are synonym then the entities are

probably the same. To deal with that case, we need to use similarity measures,

that can exploit information from some external resources (e.g., thesaurus, domain

dictionary, etc.) to determine that two labels have the same or close meaning or

not. This kind of heterogeneity is known as a semantical variation of terms.

In the study of Mayard and Ananiadou [65], morphology of words is another kind

of term variation. For example, (Match, Matches, Matching) may refer to the same

concepts. The authors also mentioned that the combination of the three kinds of

term variations (i.e., morphological, syntactical and semantical) is very common in

naming process for entities. In that case, hybrid methods are frequently adopted.

They tokenize labels to tokens, remove stop words, normalize tokens and �nally

compare tokens by string-based and language-based similarity measures.

Another aspect of Terminological heterogeneity is about using di�erent natural

languages to represent labels of entities. For instance, the concept Booklet in English

and the concept Livret in French are the same. To discover matching in that case,

multilingual methods are needed. Typically, they use some multilingual dictionaries

18

(e.g., EuroWordnet3) or translation system (e.g., Google Translator4) or multilingual

ontology (e.g., DBPedia5) as a common knowledge background. However, one of the

main di�culties is that there may be many-to-many translations of words or terms,

rather than a single direct correspondence. Therefore, there are many works on

ontology matching with a single language, but very few on cross-lingual ontology

matching.

Semantic Nets

The role of the Semantic Nets level is to de�ne the hierarchies of concepts and

relations between concepts and properties. The main link in the hierarchies is IS-

A relation, which produces a backbone of an ontology. The meaning of this type

of relation is that the descendant entities inherit all the features of the ancestors.

For example, in Fig.2.4, concept Stream has property named connectsTo, concept

River is a subclass (IS-A relation) of Stream, so concept River also has property

connectsTo. In addition to the concepts and properties hierarchies, the semantic

relations between concept-property are provided to speci�c semantic meaning of

those entities in the context of domain. For example, property emptiesInto has

domain River and range BodyOfWater. From this de�nition we can infer that if A

has property emptiesInto with value B then A is an instance of class River and B

is an instance of class BodyOfWater.

Most of the conceptual heterogeneity and mismatches appear at this level. A

classi�cation in detail of di�erent types of conceptual mismatches can be seen in

[96, 51]. Most of the conceptualization mismatches are not easily recognized from

explicit ontology de�nition, consequently, it is not easy to deal with such mismatches.

The common method for discovering mapping between entities on this heterogeneity

level is based on the following intuition: Two entities on two di�erent ontologies are

the same if they can be found in the same structural patterns. Here, a structural

pattern of an entity involves its internal structure, which is a set of properties, and

external structural, which is a set of relationships with other entities.

The idea above can be extended to the similarity propagation idea. It states

that if two entities are the same, they propagate some portion of their similarity

value to their neighbors in the same relation. Contrary to the patterns above, which

are acknowledged as local methods, the propagation idea is widely applied in global

methods. In those methods, the similarity propagation is performed over all pair

3http://www.illc.uva.nl/EuroWordNet/
4http://translate.google.com/
5http://dbpedia.org

19

of entities on ontologies. This process is only stop when the similarity between

all pairs of entities reach to stability status. Then, matching pairs of entities are

selected according to their �nal similarity values.

Schemata Axioms

The highest level in the ontology learning in Fig.2.3 is schemata axioms. By def-

inition, an axiom is a statement expressing a truth in the domain knowledge. In

some ontology languages, ontology is considered as a set of axioms including seman-

tic nets. However, in some works (e.g., [12, 24]), the semantic nets and schemata

axioms is separated in di�erent levels. The reason is that the semantic nets are

considered as backbone of ontology and play a more important role than schemata

axioms. The semantic nets exist in almost ontologies, whereas schemata axioms are

optional.

Similar to the designing of the semantic nets, di�erent designers with di�erent

background knowledge on interested domain may have very di�erent axioms. In

general, schemata axioms are used to provide some special characteritics of entities

on ontology. For concepts we have disjointness, equivalence, restriction or cardinal-

ity, etc., and for properties we have transitivity, symmetry, functional, inverse, etc.

For example, in Fig.2.4, property connectsTo is declared in a symmetry axiom. This

axiom helps us to make an inference like that: if an instance A connectsTo other

instance B then we can say B also connectsTo A. Another example, property emp-

tiesInto is declared in a functional axiom. It means that if there exist two statements

such as: A emptiesInto B and A emptiesInto C, then we can infer that instances B,

C are identical.

Due to the role of schemata axioms on ontology, they are rarely exploited in

discovering mappings between entities from two di�erent ontologies. Instead of that,

schemata axioms are used to make constraints and to detect inconsistent candidate

mappings. For example, consider two candidate mappings (A, B) and (C, D). In one

ontology we �nd that A equivalent B, and in another we �nd C disjoints D, so these

two candidate mappings are con�ict or inconsistent. Users can verify these mappings

and remove some of them manually or automatically by using some semantic-based

methods.

Data Entities

As mentioned before, the task within ontology population are thus to learn instance-

of relation. Here, an instance-of relation is a membership relation between set

of data entities (instances) and set of concepts. As same as the upper-levels on

20

schema layer, di�erent designers may assign di�erent numbers of instances for even

the same concepts. In practice, many matching systems determine the similarity

of two concepts on two di�erent ontologies according to the number of shared data

instances. More sophisticatedly, if two instances are matched and they have the same

values on two respectively properties then these properties are the same. However,

to discover mappings between instances is also a challenge in ontology matching

�eld. Therefore, the ontology matching tasks at schema and instance layers are

highly related to each other.

Domain Knowledge

In Fig. 2.2, the vertical level - Domain Knowledge is very important. Its role

appears in all levels of framework. The intuition is that ontological information

describing the same entities is highly similar if ontology designers or developers

own the same background of domain knowledge. Therefore, in some speci�c case

(e.g., bio-medical ontology matching), people can use some upper-level ontology or

dictionary as common background to discover mappings.

So far, we have presented and analyzed two main types of heterogeneity of on-

tologies, i.e. terminological and conceptual heterogeneity. Moreover, we have also

brie�y discussed methods to deal with them in discovering mappings of entities of

di�erent ontologies. In the next section, we will present a classi�cation of the existing

ontology matching systems in recent years.

2.3 Classi�cation of Recent Works

Many ontology matching systems have been proposed to the community so far and

several surveys were written on the topic as well. However, most of those surveys

[81, 49, 9] had been done before 2006 so they lack the up-to-date information. In

the last six years, along with the appearance of the OAEI (Ontology Alignment

Evaluation Initiative) campaign, researchers on ontology matching �eld are able to

access to diverse new techniques and solutions. Therefore, the aim of this section is

to discuss about recent works that are related to our approach.

In order to make an analysis of matching systems, we view them under the follow-

ing criteria: (i) basic matching techniques; (ii) e�ciency and scalability techniques;

(iii) work�ow strategies; and (iv) user involvement. These criteria are positioned

in 4 layers in Fig. 2.5. Basic matching techniques are the fundamental component

of all the matching systems. They are used to discover mappings between entities

of to-be-matched ontologies based on some extracted features. Therefore, the basic

21

Figure 2.5: Matching layers

matching techniques stand at the lowest layer. On the top of the basic matching

techniques is the work�ow strategies, which combine di�erent basic matching tech-

niques in a matching process. These two layers are requisite and appear in almost

all matching systems. Thus, in Fig. 2.5, their border lines are solid. Many ontology

matching systems contain only these two layers.

In recent years, matching large scale ontologies has attracted a lot of interest and

attention of the ontology matching community. It requires new e�cient techniques

to deal with huge number of pairs of entities in the computational space. Due to

the di�culties of the large scale ontology matching, many systems lack of these

techniques. Therefore, in Fig. 2.5, the scalability and e�ciency methods appear on

top of the work�ow strategies layer and they are remarked by a dash border line.

Finally, the mapping result should be veri�ed by the user or the domain experts.

They can also interact in some phases of a matching process in order to produce a

better matching quality. That is, its layer is stood on the top of Fig. 2.5.

2.3.1 Basic Matching Techniques

The basic matching techniques are also known as basic or individual matchers [81]

because they usually are an implementation of a similarity measure working on

speci�c feature of entities; they can work independently and gain only a partial

mappings. That is why in almost all matching systems, several basic matchers are

combined by some strategy in order to potentially compensate for the weakness of

each other. According to the survey in [28] and descriptions of participant tools on

OAEI campaign, the basic techniques can be divided in the following categories.

Terminological methods. These methods compare strings encoded in the

names, labels or comments of entities to �nd those which are similar. They include

string-based, language-based and combined string-language based methods. These

22

Figure 2.6: A Classi�cation of matching systems

23

methods can be found in every tools (e.g. COMA [4], AgreementMaker [26], ASMOV

[42], etc.) and their mapping results are normally used as input to other methods.

Structural methods. These methods exploit the structural information of

entities of ontologies to �nd mappings. The structural information here is the re-

lationship between entities such as sub-classes, domain, range, restriction property,

etc. According to survey in [28], they are divided in two sub types such as inter-

nal and external structure methods. Internal structure of entities use criteria such

as domain, range and cardinality of their properties to calculate the similarity be-

tween them. A typical example of using these methods are ASMOV [42], COMA

[4]. However, these relation are generally weak (for example, many classes are re-

stricted by the same properties or many properties have the same domain, range),

so these kinds are commonly referred as constraint based approaches in order to

remove wrong mappings rather than to discover accurate correspondences between

entities. This way is successfully applied in GLUE [21], PRIOR++ [64], CODI [41].

External structure methods compare entities based on their position on the hi-

erarchies of ontologies. Many systems (e.g. COMA[4], ASMOV [42]) exploit this

idea to develop their structural similarity metric. Commonly, these metrics calculate

how much overlap between two set of entities taken from super entities or descendant

entities or on the path from the root to the to-be-matched entities. However, the

structure of ontologies strongly depends on the viewpoint of designers on a knowl-

edge domain, so there is no guarantee that the position and neighbors of the same

entities are the similar. Therefore, similar to internal methods, some systems use

external information to �lter incorrect mappings (e.g. AgreementMaker [26]).

Extensional methods. As the information at data layer can give important in-

sight into the contents and meaning of entities at schema layer, this kind of methods

compare entities based on their set of instances. For example, similarity between two

classes can be calculated by how much percent they shared the same instances; or

two properties are consider as match if they are assigned by the same values in two

similar instances. Besides, instances data can be used to build some probabilistic

methods to compute how much two entities are related. These methods are very

useful when schema information is limited. They can be found in many systems

such as ASMOV [42], AROMA [17], GLUE [21].

Semantic methods. The main characteristics of these methods is using se-

mantic information, which encoded by the description logic, to detect inconsistent

mappings. Based on the description logic, some reasoners can be used to infer the

implicit relation to be explicit. For example, KOSIMAP [83] use Pellet6 to rewrite

6http://clarkparsia.com/pellet/

24

and expand relations between entities. Other type of using description logic is to

transform the selected mappings task to the optimization problem on constraint

programming. That way can be found in S-Match [33] with propositional satis�a-

bility SAT solver7, CODI [41] with Markov Logic Network, GLUE [21] with label

relaxation approach.

Background Knowledge methods. Correctly understanding the meaning

of the concepts not only reduces misunderstanding but also discovers high accurate

mappings between entities of heterogeneous ontologies. Along with the development

of semantic web, various ontologies from the same domain or di�erent domains may

be integrated to an upper level ontology. For example, UMLS8 is a generic medical

dictionary; DBPedia9, YAGO10 are multi-purpose upper ontology; Uberon, FMA,

GO are speci�c upper level for bio-medical domain11. Using those upper level on-

tologies is common background knowledge to obtain the de�nition for each concept.

Recently, many matching tools utilize these techniques to discover mappings. For ex-

ample, CODI [41], ASMOV [42] exploit UMLS; AggrementMaker [26] uses Uberon;

BLOOMS [78], LDOA [48] uses Linked data in DBPedia.

Context-based methods. This kind of methods is somehow a mix of termi-

nological and structural methods. The main idea is that two concepts are similar

if they are found in similar contexts. This idea is inspired from the information

retrieval �eld. To do that, for each concept on ontology, a context pro�le is built by

gathering description of its neighbor such as parents, children and properties. The

context pro�le is also called by name Virtual Document [80]. A vector space model

is then constructed from those documents in order to assign weight to each term in

it. Similarity score between two concepts is computed by how much their virtual

documents are similar. The context-based methods can be found in Falcon-AO [39],

RiMOM [58], Prior++ [64], AgreementMaker [26], MaasMatch [84]

2.3.2 Work�ow Strategies

Many basic matching techniques have been proposed so far, but none of them can

ful�ll the requirement of users in order to obtain a full picture of alignments between

ontologies. Commonly, each of them only provides partial mappings according to

the speci�c exploited feature. Therefore, strategies to put several basic techniques

(or basic/individual matcher) in work are needed. According to [28], there are

7http://www.sat4j.org/
8http://www.nlm.nih.gov/research/umls/
9http://dbpedia.org/

10http://www.mpi-inf.mpg.de/yago-naga/yago/
11http://bioportal.bioontology.org/

25

three basic types of work�ow strategies such as sequential, parallel and interactive

composition. Most of the currently matching system have implemented at least one

of those strategies for improving the e�ciency and quality matching results. Their

combination strategies are acknowledged as hybrid composition because each phase

in their work�ow can be applied one of the basic types. In this section, we discuss

about those basic strategies and see how they were used in the matching tools.

Sequential Work�ow. It is the most natural way of composing basic matchers.

The idea is that the output of one basic matcher is passed as input to the next

matcher. This type of combination can be found in many systems. For example,

most of the structural or semantical matching methods require prede�ned mappings.

To do that, an element-level method �rst produces initial mappings and then passes

them to the structural method. This type of strategy can be found in CUPID [59],

Falcon AO [39], Similarity Flooding [67], where a terminological metric is the �rst

matcher and produce initial mappings to the second matcher (structural matcher);

or in CODI [41], PRIOR++ [64] the �rst matcher aims to �nd all possible candidate

mappings, then in the next phase, a semantic matcher re�nes them by eliminating

inconsistent mappings.

Parallel Work�ow. In this strategy, all individual matchers are executed in-

dependently, typically on the whole cross product of source and target entities.

Similarity matrices obtained by individual matchers are combined by some aggrega-

tion operators to produce a �nal result. The most common operators are weighted

sum or weighted average. In that way, systems may be implemented with manual

assign weights (COMA [4], ASCO [56]) or with adaptive weights (the �rst phase in

PRIOR++ [64], AgreementMaker [26]) or fuzzy assign weights (OWA [44]). Besides,

aggregation operators can be seen as a decision functions which decide two entities

are matched or not. In that way, individual matchers are combined by machine learn-

ing models, in which the object is a pair of to-be-matched entities and attributes are

similarity values obtained from individual matchers on entities. Example systems

of this kind of combination are [75, 68]. Similarly, belief theory Dempster-Shafer

framework DDSim [70] and evolutionary methods MapPSO-MapEVO [7] are also

used as aggregation operators.

Iterative Work�ow. The idea of this strategy is that the matching process runs

repeatedly several times until meets the stop condition. The matching process can

be performed by one basic matcher or combination of several basic matchers. This

type of strategy can be used in a part of system or in the whole system. A typical

example of using iterative mwthod in a part of system is similarity propagation

method. The principle of the algorithm is that the similarity between two nodes

26

must depend on the similarity between their adjacent nodes. Therefore, at each

step of running algorithm, similarity value of each pair of entities is re-computed

according to the current values of itself and its neighbors. We can �nd this strategy

in the second phase of works in SimilarityFlooding [67], OLA [30, 29], Falcon-AO

[39], Lily [97], RiMOM [58], AgreementMaker [26]. Similarly, iterative strategy is

also used in constraint based method. In that way, for each step, the constraint-

based method re-calculates the con�dence values for every candidate mappings or

removes inconsistent mappings. This process will be stopped until the optimization

condition is reached. The iterative constraint-based methods can be found in second

phase of GLUE [21], CODI [41], LogMap [45].

Typical examples of using iterative in the whole system can be found in ASMOV

[42], QOM [25]. In those systems, the matching process consists of several basic

matching techniques. For example, in the �rst phase of ASMOV, they use parallel

composition for terminological, structural and extensional metrics, then pass the

discovered mappings to the second phase to run semantic veri�cation process. Those

two phases are repeated several times until there is no change found in the discovered

mappings.

2.3.3 E�ciency and Scalability Techniques

High quality is the prime importance that needs to consider in development of all

matching tool. Besides, e�ciency of matcher is also very important, especially, when

the input ontologies are too big whereas memory is limited. To deal with large-scale

ontology matching, several techniques have been proposed and categorized as follows.

Filtering methods. The main idea behind these techniques is to reduce the

search space by heuristically eliminating less promising matching entity pairs. For

example, in E�2Match [10], the heuristic to select candidate mappings for each

entity in the source ontology is taken by performing the top-K entities algorithm in

the target ontology according to their context (Virtual Document) similarity. More

sophisticatedly, in QOM [25], the heuristics strategies based on di�erent extracted

features such as label, hierarchy, neighours, etc., are used in each iteration to select

the promising mappings.

Partitioning methods. In this category of approaches, two large ontologies are

�rstly slitted into sub-ontologies according to their structural information. Then the

alignment process is performed between entities of pairs of sub-ontologies. In order

to avoid exhaustive pair-wise comparisons, some heuristic techniques are proposed.

Based on those heuristics, instead of all pair of sub-ontologies, only the high relevant

pairs of sub-ontologies will be passed to the matching process. These methods can

27

be found in Falcon-AO [39] or COMA++ [4].

A sub-class of this category is known as Anchor-based Partitioning methods.

These methods are modi�cation of the algorithms above, which partition to-be-

matched ontologies according to the set of anchors. In short, an anchor is a pair of

entities mapping determined by a similarity metric. A fragment or sub-ontology is

constructed by collecting neighbors entities of the chosen anchors across ontologies.

At the end of partition phase, each sub-ontology of the source ontology will have a

corresponding sub-ontology of the target ontology. Then, the alignment process will

be performed for each pair of related sub-ontologies. These methods can be found

in Anchor-Promt [72], AnchorFlood [38], Lily [97], TaxoMap [37].

2.3.4 User Involvement

Most of the current matching systems aim to full automated discover alignment be-

tween entities from di�erent ontologies. However, despite of much e�ort of researcher

and developers, there is no system or tool can obtain 100 percents of matching qual-

ity. In fact, matching tools or systems only provide a list of candidate (with high

con�dence) mappings, but the �nal results are up to the users decision, in which cor-

rect mappings will be selected and incorrect ones will be deleted. Users involvement

can be seen in the whole process including: pre-match, match and post-match.

At the pre-matching phase, users can recommend relevant background knowl-

edge in advance (for example, ASMOV [42] uses UMLS; AgrrementMaker [26] uses

upper-ontologies such as Uberon, FMA for ontology matching in bio-medical �eld).

Users can also provide prede�ned weights for each matching component, or they can

suggest aggregation function to combine di�erent individual matchers. For example,

AggreementMaker [26], COMA++ [4] allow users select di�erent con�guration for

the system.

At the matching phase, users can interact with system in order to give the

feedback (for example, suggestion to remove some inconsistent mappings) after each

iteration. The matching system then updates the suggestion to next iterations. This

type of involvement can be found in PROMPT [74].

At the post-matching phase, users validate the candidate mappings in order to

remove incorrect ones if a matching system provides a graphical interface, in which

ontologies and all discovered mappings are displayed on the screen. According to

the users background knowledge on the matching domain, they can verify found

mappings are correct or not. There are several matching systems supporting very

nice interface such as COMA++ [4], AgreementMaker [26].

28

2.4 Conclusion

In this chapter, we have presented the main notions of ontology matching �eld used

in this thesis. Afterward, we have brie�y reviewed the four types of heterogeneity

of ontologies. They consist of syntactic, terminological, conceptual and semiotic

& pragmatic heterogeneity. We have argued that the main focus of the ontology

matching task is to overcome the challenging issues caused by terminological and

conceptual heterogeneity (Section 2.2).

In Section 2.3, we have classi�ed and reviewed the state of the art ontology

matching systems through four criteria: basic matching techniques, e�ciency and

scalability techniques, work�ow strategies, and user involvement. Thanks to this

classi�cation, we have obtained an overview of the main aspects and characteristics

of the existing ontology matching systems.

Henceforth, in the following chapters of this thesis, we are going to answer to

the list of research issues initiated in the Introduction chapter.

29

30

Chapter 3

Dealing with Terminological

Heterogeneity

Terminologies play an important role in the ontological representation of domain

knowledge. They are collections of symbols which need to be interpreted as evoking

some concepts as well as referring to some concrete objects in the real world. The

connections between objects, concepts and symbols are shown in the so called mean-

ing triangle of Ogden and Richards [47]. For example, a string �Leopard � evokes and

furthermore denotes a speci�c concept of a large animal of the cat family. From this

point of view, a high possibility is that the same concepts are signed by the same

labels or highly similar labels in the same context of domain knowledge, provided

that the same natural language is used.

However, in reality, labels of the same concepts may be highly di�erent because

of di�erent conventions in naming process. Note that, naming is the process of

associating a linguistic object from a public language (i.e. strings or sequence of

characters) to entities described in an ontology. In fact, because there is no standard

rule for labeling concepts in an ontology, the same concepts in the same domain of

knowledge might be assigned with di�erent labels in di�erent ontologies created by

di�erent ontology developers. These di�erences de�ne various challenges for the

ontology matching community since discovering mappings of entities by checking

only identical labels is not su�cient. Therefore, e�ective similarity measures are

needed to overcome this challenge.

In this chapter, we discuss our approaches to deal with the terminological hetero-

geneity issue in discovering mappings between ontologies. We �rst study di�erent

types of terminological heterogeneity of ontologies in section 3.1. The analyses of

these types could help us understand more about the diversity of terminological het-

erogeneity and understand more about the di�culties to deal with these problems.

31

Next, in section 3.2, we classify the existing similarity measures that are widely

used in state-of-the-art ontology and schema matching systems. The classi�cation

is based on the main characteristics of these measures. In addition, we discuss the

capacities of these measures in terms of strengths and weaknesses to deal with the

di�erent types of terminological heterogeneity mentioned above.

The main contribution of this chapter is the de�nition of three advanced simi-

larity measures which will be described in detail in section 3.3. They include an In-

formation retrieval-based similarity measure (section 3.3.1), a Context pro�le-based

similarity measure (section 3.3.2) and an Instance-based similarity measure (section

3.3.3).

Finally, the experiments show the strength and weakness of our similarity mea-

sures in section 3.4.

3.1 Analyses of the Terminological Heterogeneity

In this section, di�erent types of terminological heterogeneity are analyzed in order to

have a full picture about this challenge. According to our study of the terminological

information of di�erent ontologies, we categorize the terminological heterogeneity of

labels into six main types. Before discussing these types in detail, we de�ne three

aspects of matching strings:

• Two strings are syntactic similar if they are identical or they di�er in only

few characters at few positions.

• Two strings are meaning similar if they are synonym or very close according

to their de�nition in a thesaurus (e.g., Roget's Thesaurus) or in a lexical

database(e.g., Wordnet).

• A string is tokenizable if there are split signs between their tokens such as:

upper-lower cases (e.g., �MasterThesis�, �conferenceMember �, etc.), special

character like underline, whitespace, punctuation or digit number, etc., (e.g.,

�phd.thesis�, �Conference_paper �)

According to these aspects, the six terminological heterogeneity types are cate-

gorized as follows:

• Type 1: Two labels are syntactic similar. It commonly happens when one la-

bel uses special characters to separate its tokens, whereas, the other does not.

For example, �issn� vs. �I.S.S.N �, ��rstname� vs. �First_Name�, �email � vs.

32

�E-mail �, �Ph.d_Student� vs. �phdStudent� etc. Besides, this case might be

happened when there is a typo in one label or by using multiple instead of sin-

gular. For example, �sponsor � vs. �sponzor �, �researcher � vs. �researcheur �,

�pccard � vs. �PCcards�, etc.

• Type 2: Two labels are not syntactic similar but they are tokenizable and

their tokens are one by one syntactic similar. For example, �PC_Chair � vs.

�Chair_PC �, �SubmissionsDealine� vs. �deadline_submission�, etc.

• Type 3: Two labels are not syntactic similar but they are meaning similar,

for example, �booklet� vs. �brochure�, �compilation� vs. �collection�, etc.;

or they are tokenizable and their tokens are one by one syntactic or mean-

ing similar, for example, �Conference_participant� vs. �conference-attendee�,

�ConferenceDinner � vs. �Conference_Banquet� etc.; or few of tokens are stop

words, for example, �has_the_last_name� vs. �hasLastName�, �email � vs.

�has_an_email �, etc.

• Type 4: Two labels are not syntactic similar and only a part of them (one

or few tokens) is syntactic similar or meaning similar. For example, �Doc-

ument� vs. �Conference_Document�, �Co-author � vs. �Contribution_co-

author �, �Attendee� vs. �Conference_participant�, etc.

• Type 5: Two labels are totally di�erent in terms of syntactic or in terms

of meaning. In this case, maybe one label is an acronym or an abbreviation

of the other (e.g., �WWW � vs. �WorldWideWeb� vs. �Website�, �Misc.� vs.

�Miscellaneous�) or maybe they are only closely related in a speci�c domain

(e.g. �Contribution� vs. �Paper �, �Information_for_participants� vs. �Pro-

gramme_Brochure�, etc., in the Conference organization domain).

• Type 6: Labels are represented by di�erent languages. For example, a label

is written in French (e.g. � livre� and the other is written in English (e.g.

�booklet�).

In fact, the type 6 of heterogeneity can be transformed to one of �ve types above

when labels are translated into the same language (e.g. English). Therefore, we

mainly focus to �nd solutions for the �rst �ve types of heterogeneity. Now, we

are going to review the existing similarity measures and propose a new similarity

measures to deal with these heterogeneity types discussed above.

33

3.2 Basic Terminological Similarity Measures

A lot of terminological measures have been proposed so far to apply in di�er-

ent scienti�c �elds like record linkage and record matching, data duplication in

database [69, 99], entity or object identi�cation in information retrieval [94], discov-

ering common molecular subsequences in bioinformatic [87], etc. According to [28],

terminological-based similarity measures can be divided into two main groups like

string-based and language-based similarity.

3.2.1 String-based Similarity Measures

A similarity score between two strings computed by a string-based similarity measure

depends on their sequences of characters only. Following to the comprehensive survey

in [13], string-based similarity measures can be categorized into three following types:

edit-based, token-based and hybrid.

Edit-based Similarity

In general, edit-based similarity value of two strings is computed by counting di�er-

ent edit operations to transform one string into the other, e.g., insertion of characters,

character swaps, deletion of characters, or replacement of characters. Depending on

the computation method, the two following families of edit-based similarity measures

are frequently used in practice:

• Edit distance family. Here, the edit distance between two strings s1 and s2

is the minimum cost of transforming s1 into s2 using a speci�ed set of edit op-

erations with associated cost functions. For example, the Levenstein method

assigns the cost of all operations to 1, the Hamming method only assigns the

cost of replacement operation to 1, whereas, SmithWaterman, Needleman-

Wunch, Gotoh methods assign di�erent costs to di�erent operation types.

• Jaro distance family. The similarity computation of similarity score in this

family is mainly based on the number and the order of the common characters

between two strings s1 and s2 (like LCS - longest common substring method).

Jaro method also takes the cost of transpositions of common characters where

a transposition occurs when the i-th common character of s1 is not equal to

the i-th common character of s2 in computation. An extension of the Jaro

similarity, called the Jaro-Winkler similarity, emphasizes the importance of

common pre�x between s1 and s2. Recently, a new extension ISUB [90] takes

into account not only the similar part but also the di�erent part of two strings.

34

According to its experimental results, ISUB seems to perform well in ontology

matching �eld.

In practice, the edit distance value of two strings is commonly transformed to

their similarity value by counting the compensation of its normalized value. For

example, ScaledLevenstein(s1, s2) = 1− Levenstein(s1,s2)
max(size(s1),size(s2))

.

Token-based Similarity

Token-based similarity measures compute the similarity score between two strings

by comparing their tokens rather than the whole string themselves. It means

that they �rst tokenize the input strings s1 and s2 into two collections of to-

kens. Intuitively, tokens correspond to substrings of the original string. For ex-

ample, tokenize(�ConferenceParticipant�) is {�Conference�, �participant�}, here

tokenize() is a tokenization function. Then, the similarity score between two orig-

inal strings is computed by measuring the degree of similarity between their collec-

tions of tokens.

In fact, there are three factors impacting to the similarity computation of token-

based similarity measures.

• The �rst factor is related to tokenization method. Most of the token-based

similarity measures rely on special signs between tokens in a string to perform

tokenization. In this case, the input string is tokenizable. Besides, even if the

string is not tokenizable, it can be split by a Ngrams methods, in which each

token is a chunk of characters with �xed size N.

• The second factor is related to internal similarity measure that computes the

similarity scores between tokens. The frequently used internal measure is

an Identical measure, which returns 1.0 if two tokens are absolutely equal,

otherwise 0.0. Several token-based similarity measures using the Identical

measure are: Ngrams, Manhattan distance, Euclidean distance, Jaccard

similarity, Overlapor Dice coe�cient, TFxIDF measure, Cosine similarity,

Jensen-Shannon divergence, etc. However, the strict equal condition faces a

problem when tokens are not identical but syntactically similar. For example,

the Identical measure discovers only the �rst pair of tokens but not the second

in two strings �ConferenceMember � and �Conference_Members�. To solve this

problem, the similarity score between tokens can be computed by applying an

edit based similarity measure. There are examples of token-based measures:

Monge-Eklan, Level2, ExtendedJaccard, SoftTFIDF, etc.

35

• The last factor is related to a computation similarity of two collections of to-

kens. It may use an operation on set, in which all tokens have the same weight

(e.g., Overlap, Dice coe�cient, Jaccard similarity); or an arithmetical func-

tion with setting weights to tokens (e.g., TFxIDF, SoftTFIDF measure,

Cosine similarity); or a probabilistic function (e.g. Jensen-Shannon diver-

gence, Fellegi-Sunter method).

Observations on String-based Similarity Measures

After doing the analysis on both edit-based and token-based similarity measures,

our observation of the relation between these measures and di�erent types of termi-

nological heterogeneity is as follows:

• The main advantage of token-based similarity measures is that the similarity

is less sensitive to word swaps compared to similarity measures that consider a

string as a whole (notably edit-based measures). For example, �MemberCon-

ference� and �Conference_Member � are similar. To overcome typographical

errors or syntactically similar tokens, a token-based similarity measure must

use an edit based measure as its internal measure. Therefore, token-based

similarity measures can be used to deal with type 2 of terminological hetero-

geneity.

• The edit-based similarity measures and Ngrams measure are more appropriate

than token-based measures when one of two strings is not tokenizable. Besides,

edit-based measures and Ngrams measure are less impacted by typographical

errors than the basic token-based measures. Therefore, these measures can be

used to deal with type 1 of terminological heterogeneity.

• Several measures like TFIDF, SoftTFIDF, Jensen-Shannon and Fellegi-

Sunter [13] do need an external resource to assign weights to tokens. They

face to a limitation that a large corpus of text related to a given domain

may not be available. Therefore, these measures are mainly used in object

identi�cation within a large database.

• None of these measures can deal with type 3 of terminological heterogeneity.

It is because they compute the similarity score by using syntactic feature only.

To overcome this type of heterogeneity, we propose a combination of string-

based and language-based similarity measures to compute the similarity score

between tokens.

36

3.2.2 Language-based Similarity Measures

Language-based measures focus on the meaning and grammatical form of words to

�nd the association between them. Many techniques used in these measures are

inherited from the Natural Language Processing �eld. They can be divided into two

intrinsic and extrinsic measures.

Intrinsic Similarity Measures

The intrinsic similarity measures are based on using the internal linguistic properties

of words to perform the terminological matching. The key idea of the intrinsic mea-

sures is to perform term normalization with the help of morphological and syntactic

analysis. In the real world, morphological variants are one of the main reasons

making the terminological heterogeneity of ontologies. For example, �matching�,

�matched � and �matches� are three variations of the term �match�. In order to

perform a normalization of a term, we can use a stemming algorithm (e.g., Porter

stemmer [79]), which strips words to their root form by removing su�xes such as

plural forms and a�xes denoting declension or conjugation. However, term varia-

tions are not only about the di�erence of su�xes or a�xes, for example, �bring -

brought�, � leaf - leaves�, etc. In that cases, because these words are irregular, we

need to use a dictionary (e.g. Wordnet) to �nd the base form of each word.

Extrinsic Similarity Measures

The extrinsic similarity measures make use of external knowledge resources such as

dictionaries, lexicons or thesauri. They mainly rely on the semantic relationships in

the dictionary hierarchy to compute a similarity score between words. For example,

they can �nd that �Attendee� is synonym with �Participant�, �Facial � is an adjec-

tive and related to noun word �Face�, etc. In that case, language-based similarity

measures easily conclude that these words are similar and assign value 1.0 to their

similarity scores. However, if words are not synonym, for example �Book � is hyper-

nym of �Booklet�, etc., a computation function is needed to determine how much

these words are similar.

In practice, Wordnet lexical database is widely used to compute the semantic

similarity between English words. In terms of multi-languages matching, a multi-

lingual dictionary or a multilingual translator are necessary to convert labels into

the same language. Generally, similarity measures designed for the Wordnet can

be used with other semantic network resources (e.g., MeSH (Medical Subject Head-

ings)). According to survey [8], Wordnet-based similarity measures can be divided

37

into two main types:

• Edge-based similairy measures compute the similarity of words by the distances

of the positions of their senses in the Wordnet hierarchy. The intuition is that

the shorter the path from one sense to another, the more similar they are.

Typical examples are Path, WuPalmer, LeacockChodorow.

• Information-based and integrated similarity measures compute the similarity

of words through the position of their senses in the Wordnet hierarchy and

their information content. Here, the information content (IC) of a concept

provides an estimation of its degree of generality or concreteness, which enables

a better understanding the semantic meaning of the concept. This idea of

using information content in computing semantic similarity of words was �rst

proposed by Resnik, then it have been extended in other measures like Lin,

JiangCorath, Seco, etc.

Besides, like techniques used in Natural Language Processing and Information

Retrieval �elds, the extrinsic measures ignore stop words in their similarity compu-

tation. Note that, stop words are the common words which would appear to be of

little value in labels. For example, in English, articles �a, an, the� or preposition

�on, in, at�, etc., are stop words. Then, the key word in label �has_an_email � is

�email �. Furthermore, for other languages, there exist others stop word lists.

Observations on Language-based Similarity Measures

Obviously, to compute the semantic similarity of words, the extrinsic similarity

measures are more important than the intrinsic similarity measures. In fact, the

intrinsic measures mainly deal with the syntactic variations of words but do not

deal with their meaning. For example, the intrinsic measures can normalize terms

�booklets� to �booklet�, but they cannot show the semantic relation between �booklet�

and �brochure�. Therefore, the intrinsic measures cannot recognize that �booklets�

and �brochure� are similar. Whereas, the extrinsic measures with the help of a

complete dictionary (e.g., Wordnet) can �nd the basic forms and all possible senses

of words to compute the similarity score between them. For example, the extrinsic

measures �nd the basic form of �booklets� is a noun word �booklet� and it is synonym

with noun word �brochure�.

However, both of the intrinsic and extrinsic measures may su�er from the two

following problems. The �rst problem is when the input words cannot be found

in the dictionary. It can be caused by typographical errors (e.g., �sponsorship vs.

38

sponzorship�, etc.) or by the words themselves. The second problem is that both

intrinsic and extrinsic measures mainly deal with single words but not compound

words, which are frequently assigned to labels of entities in ontologies. For example,

neither of labels �DoctoralThesis� or �PhdDissertation� are found in Wordnet. But

each of their token can be found in Wordnet and they are one by one closely related

(i.e., �Doctoral vs. Phd � and �Thesis vs. Dissertation�.

Therefore, like the observation in Section 3.2.1, a combination of string-based

and language-based measures is needed to compute the similarity score of two words

(or tokens) in general. Furthermore, in order to deal with type 3 of terminological

heterogeneity, we should use this combination as an internal similarity measure for

the token-based similarity measures.

3.2.3 Hybrid Similarity Measures

Now we present hybrid similarity measures, which are a combination of string-based

and language-based similarity measures, in order to deal with type 3 of terminological

heterogeneity. In particular, we split a hybrid measure into two parts: (i) compute a

similarity score between tokens and, (ii) compute similarity score between compound

tokens.

Combination of a String-based and a Language-based Similarity Measures

The main idea is as follows. Firstly, a morphological method �nds all possible basic

forms of each token in the dictionary (e.g., Wordnet). If the basic forms of both

tokens exist, an extrinsic-based similarity measure is used to compute the similarity

score between every pair of basic forms of tokens. Otherwise, the similarity score of

two tokens is computed by a string-based measure.

This idea is presented in the Algorithm.1. Here, function MorphologicalForms

takes a token as input and �nds all possible senses and morphological forms of token

existing in Wordnet dictionary. For example, let's compare �teach� and �teach-

ing�. MorphologicalForms(�teach�) returns { noun: �teach� , verb: �teach�};

MorphologicalForms(�teaching�) returns { noun: �teaching�, verb: �teach�}. Be-

cause two obtained sets of senses have a common {verb: �teach�}, therefore token

�teach� and token �teaching� are similar. Another example, let's compare �sponsor-

ship� and �sponzorship�. Because token �sponzorship� cannot be found in Wordnet,

MF2 is empty. If a string-based measure is ScaledLevenstein, then the similarity

score of two tokens is equal to 0.91.

39

Algorithm 1: Compute similarity between two tokens -

sim(token1, token2)

input : token1, token2 : two tokens,
dictMetric : a language-based similarity measure,
stringMetric : a string-based similarity measure,
pos : part of speech function

output: score : a numerical value
1 MF1 ← MorphologicalForms(token1)
2 MF2 ← MorphologicalForms(token2)
3 if (MF1 6= ∅) ∧ (MF2 6= ∅) then
4 score← maxti∈MF1,tj∈MF2(dictMetric(ti, tj))
5 where pos(ti) = pos(tj)

6 else
7 score← stringMetric(token1, token2)
8 end

Computing Similarity Value between Compound Labels

The idea of computing similarity value between two compound labels is inherited

from the token-based similarity measures. In fact, a compound label can be split into

a set of tokens. Now we can apply a similarity measure, which is a combination of

string-based and language-based measures, to compute the similarity score between

two tokens. Having the similarity scores between every pair of tokens, we can use

the two widely used aggregation methods namely ExtendedJaccard and Monge-

Eklan.

Formally, let TokenSim(t1, t2) be a similarity measure that compares two tokens

t1 ∈ tokenize(s1) and t2 ∈ tokenize(s2); θtoken is a similarity threshold used to

determine if two tokens are similar or not. Note that tokenize() is a tokenization

function. We de�ne several support functions as follows:

Shared(s1, s2) = {(ti, tj)|ti ∈ tokenize(s1) ∧ tj ∈ tokenize(s2) : TokenSim(ti, tj) ≥ θtoken}

Unique(s1) = {ti|ti ∈ tokenize(s1) ∧ ∀tj ∈ tokenize(s2) : (ti, tj) /∈ Shared(s1, s2)}

Unique(s2) = {tj |tj ∈ tokenize(s2) ∧ ∀ti ∈ tokenize(s1) : (ti, tj) /∈ Shared(s1, s2)}

Extended Jaccard Formula An extension of the Jaccard similarity is to intro-

duce a weight function w for matching and non-matching tokens. For instance, tokens

in a pair of Shared may get a weight corresponding to their similarity, whereas, to-

40

kens in Unique get a weight equal to 1.0. Let Σ be an aggregation function aggregates

the individual weight. The ExtendedJaccard similarity is de�ned as:

ExtendedJaccard(s1, s2) =

Σ(ti,tj)∈Shared(s1,s2)w(ti, tj)

Σ(ti,tj)∈Shared(s1,s2)w(ti, tj) + Σ(ti)∈Unique(s1)w(ti) + Σ(tj)∈Unique(s2)w(tj)
(3.1)

For example, assume that TokenSim is a combination of the Lin similarity mea-

sure (i.e., an extrinsic-based measure) and Identical string-based measure. The

similarity score between tokens of two labels s1: �UM2_DoctoralThesis� and s2:

�PhdDissertation� are shown in Table.3.1.

UM2 Doctoral Thesis

Phd 0.0 0.70 0.22

Dissertation 0.0 0.30 1.0

Table 3.1: Similarity scores between tokens

If select θtoken > 0.7 then Shared(s1, s2) = {(Thesis,Dissertation)}. Accord-

ing to formula 3.1, the similarity computed by ExtendedJaccard is 1.0
1.0+2+1

= 0.25.

However, if θtoken ≤ 0.7 then Shared(s1, s2) = {(Thesis,Dissertation), (Doctoral, Phd)}.
Therefore, the similarity computed by ExtendedJaccard is 1.0+0.7

1.0+0.7+1+0
= 0.63.

Monge - Elkan Formula The intuition of theMonge-Elkan method is that two

strings are similar if their tokens are one by one similar. In fact, it matches every

token ti from s1 to the token tj in s2 that has the maximum similarity to ti , i.e.,

where TokenSim(ti, tj)is maximal. These maximum similarity scores obtained for

every token of s1 are then summed up, and the sum is normalized by the number of

tokens in s1. Formally, the Monge-Elkan method is de�ned as follows:

MongeElkan(s1, s2) =
1

|tokenize(s1)|

|tokenize(s1)|∑
i=1

max {TokenSim(ti, tj)}|tokenize(s2)|j=1

(3.2)

In theMonge-Elkanmethod, the similarity threshold θtoken is not needed. How-

ever, this method is asymmetric. For example. according to formula 3.2, the simi-

larity score between �UM2_DoctoralThesis� and �PhdDissertation� is 0.7+1.0+0.0
3

=

0.57; whereas, the similarity score between �PhdDissertation� and �UM2_DoctoralThesis�

is 0.7+1.0
2

= 0.85. To make this method symmetric, we can take the average of the

41

similarity scores such as:

SymMongeElkan(s1, s2) =
MongeElkan(s1, s2) +MongeElkan(s2, s1)

2
(3.3)

According to formula 3.3, the similarity score between �UM2_DoctoralThesis�

and �PhdDissertation� is 0.57+0.85
2

= 0.71

Observations on Hybrid Similarity Measures

Apparently, a hybrid similarity measure is an extension of a token-based similarity

measure. Here, the similarity value of two tokens is computed by a combination

of a string-based and a language-based similarity measures. Therefore, the hybrid

similarity measures can be used to deal with both the type 2 and type 3 of termino-

logical heterogeneity. When two strings have a high number of shared tokens, which

are highly similar in syntactic or similar in meaning, the hybrid similarity measure

can detect them as matched. But if the number of shared tokens of two strings is

small, both token-based and hybrid measure return a low similarity value and they

possibly detect these strings as unmatched. Therefore, for types 4 and type 5 of

terminological heterogeneity, we need to exploit other feature information of entities

in order to discover mappings between them.

3.3 Advanced Terminological Similarity Measures

In this section, we present three advanced similarity measures which exploit the

integrated features between terminological, structural and instance data to overcome

the di�culties of type 4 and type 5 of terminological heterogeneity. In particular,

we propose the following measures:

• Information retrieval based similarity measure is an extension of the hybrid

method to deal with type 4 of terminological heterogeneity. In the similarity

computation, this measure calculates the information content of each token in

each label of entities. We will discuss this measure in 3.3.1.

• Context pro�le based similarity measure use another information retrieval tech-

niques to deal with all types of terminological heterogeneity. In the computa-

tion of similarity between entities, this measure compares the textual contexts

of the two to-be-matched entities, instead of comparing their labels solely. We

discuss this measure in 3.3.2.

42

• Instance-based similarity measure is based on instances to deal with all types

of terminological heterogeneity. We will discuss this measure in 3.3.3.

3.3.1 Information Retrieval Based Similarity Measure

The origin of this measure lies in the following observation. In an ontology rep-

resenting knowledge of a speci�c domain, some words, which are not �stop words�

like articles or prepositions, frequently appear with the others in labels of concepts

in the domain. For example, in the conference.owl ontology in the Conference

organization domain, the total number of concepts is 60. Among these concepts, 14

concepts contain the word �conference�, and 10 concepts contain the word �contri-

bution�, whereas, other words like �author �and �speaker � appear only one time. If

the word �conference� or the word �contribution� are found in a compound label,

they are highly possible not key words. Instead, they are used to emphasize the

speci�c meaning of the associated words in a speci�c domain and distinguish the

meaning of the associated words in di�erent domain scopes. For example, �Confer-

enceDocument� refers to a type of document which is used in a conference, but is

not a type of document used in other domain (e.g. �O�ceDocument�, �FinanceDoc-

ument�, etc.). Furthermore, in the conference organization domain, when the user

talks about a document, they implicitly refer to a conference document. Therefore,

word �Conference� may be ignored. For example, in the cmt.owl ontology, the

ontology developers used �Document� instead of �ConferenceDocument�.

The proposed measure was inspired from the comparison methods of documents

in information retrieval �eld. Basically, �stop words� �rstly are removed from docu-

ments. The remaining words are considered as informative words which convey the

content of documents. Next, weighted approach is used to assign a weight value to

each remaining word. Here, the value for each processing word represents the rel-

ative importance of that word in the context of document. Finally, a computation

method (e.g., cosine similarity measure) is applied to calculate a similarity score

between two documents.

The main di�erence between labels comparison in ontology matching and generic

document comparison in information retrieval is that the former is a comparison of

short strings, whereas, the latter is a comparison of long or even very long texts.

Therefore, the techniques used in comparison of documents should be modi�ed to

adapt to label comparison task. In particular, we are going to discuss weight assign-

ment and similarity computation issues which are quite connected to each other.

43

Weighting Assignment

There are many weighted approaches proposed in the information retrieval literature,

e.g., word frequency, inverse document frequency, signal weighting, etc [52]. They

are mainly based on statistical calculation of the frequency of occurrence of each

word in a large corpus. In relation to the ontology matching task, we consider the

following issues:

• Firstly, a large number of ontologies describing the same domain is not avail-

able. Commonly, only two ontologies in a matching scenario are given. More-

over, because of the high heterogeneity, ontologies may be slightly overlap or

may be totally separated. Then, the words used in one ontology may be very

di�erent from the words used in the other. Consequently, there may be no

bene�t to calculate the frequency of words within multiple ontologies.

• Secondly, the weight of a word depends on the ontology that contains that

word. As we mention above, common words in a speci�c domain may ex-

plicitly appear many times in one ontology. They also may not appear but

be implicitly represented in the other ontologies. Therefore, if we take multi-

ple ontologies in account, the frequency of occurrence of the common words

and keywords maybe not strongly di�erent. Consequently, there is not much

di�erence between common words and keywords.

In our approach, a weight value is computed for each word appeared in a given

ontology. In particular, we apply the Shannon's information theory [86] in our

weighting method. Here, a normalization of the information content of each word is

considered as its weight. In Information theory, the information content of an object

is inversely proportional to the probability of occurrence of that object. The more

times an object occurs, the less information it conveys. The information content of

a word t is computed as follows:

IC(t) = log
|T |
|N |

(3.4)

weight(t) =
IC(t)

maxi=1..|T |{IC(ti)}
(3.5)

Where, |T | is a total number of concepts in a given ontology; |N | is a number of
concepts whose label contains word t.

For example, in the ontology conference.owl, IC(Conference) = log 60
14

= 0.632;

whereas, IC(Author) = log 60
1

= 1.778 is a maximum information content value.

44

Therefore, weight(Conference) = 0.632
1.778

= 0.355, weight(Author) = 1.

Similarity Computation

The similarity computation issue concerns the function or method that calculates

similarity score between labels. In our approach, an appropriate similarity compu-

tation method ful�lls two properties as follows:

• Intelligent. This property means that the computation method should rec-

ognize the amount of informativeness that each token (or word) carries in each

label. By knowing the degree of importance of each token, the similarity score

between labels relies more on the highly important tokens than on the rest.

For example, in the conference organization domain, token �Participant� is the

most important part in label �ConferenceParticipant�.

• Discriminating. This property means that the computation method rarely

assigns the same similarity value when it compares one particular label to sev-

eral quite similar other labels. For example, it should distinguish the di�erent

similarity of �Publication� to �Journal �, �Magazine� and �Periodical �.

According to these requirements, the similarity computation method should take

both the weight values of tokens and the similarity values between tokens into ac-

count.

Review of Existing Methods To the best of our knowledge, ExtendedJaccard

and SoftTFIDF are the only two methods that have implemented this idea to com-

pute similarity score between labels. The ExtendedJaccard computation method

was shown in Section 3.2.3. Now, we are going to discuss the main features of

SoftTFIDF method.

The SoftTFIDF computation method is an extension of cosine similarity based

on TFIDF weighted approach. Let TokenSim(t1, t2) be an internal terminological

similarity measure used to compare tokens; tokenize(s) be a tokenization function.

Then, SoftTFIDF de�nes Close(θtoken, s1, s2) is the set of token ti in s1 such that

there is some token tj in s2 where their similarity score is higher than a prede�ned

threshold θtoken. That is:

Close(θtoken, s1, s2) = {ti|ti ∈ tokenize(s1) ∧ ∃tj ∈ tokenize(s2) :

: TokenSim(ti, tj) > θtoken} (3.6)

45

Note that SoftTFIDF is similar to ExtendedJaccard in the way of using a �lter

threshold θtoken to determine a collection of high similar tokens from two input

strings. However, the Close(θtoken, s1, s2) in SoftTFIDF only includes tokens from

string s1 and not from s2, whereas, the Shared(s1, s2) in ExtendedJaccard contains

every pair of tokens. Besides, SoftTFIDF is similar to Monge-Eklan method to

determine the most similar token tj in s2 to any token ti in the Close(θtoken, s1, s2).

That is:

maxsim(ti, tj) = max
tj∈tokenize(s2)

TokenSim(ti, tj) (3.7)

Then, the hybrid version of the cosine similarity measure, called SoftTFIDF is

de�ned as:

SoftTFIDF (s1, s2) =
∑

ti∈Close(θtoken,s1,s2)

(
weight(ti) · weight(tj) ·maxsim(ti, tj)

‖V1‖ · ‖V2‖

)
(3.8)

Here, V1, V2 are the vector representations of s1 and s2. Each numerical value

in Vk is a weight of the corresponding token in sk, where k = 1, 2. In SoftTFIDF,

a weight value is computed by TFIDF (i.e., token frequency-inverse document fre-

quency) weighted approach. In general, the TFIDF approach requires a large corpus

of documents to compute weight for each token. Because a large corpus related to a

given matching scenario is not always available, we can use our information retrieval

based weighted approach instead of TFIDF.

Discussion of the Existing Methods Both of the ExtendedJaccard and Soft-

TFIDF methods have drawbacks. We will discuss their drawbacks through the

following examples.

Firstly, ExtendedJaccard lacks of discriminating property. Without loss of gen-

erality, assume that weight values of all tokens �Publication�, �Journal �, �Magazine�

and �Periodical � are equal to 1.0. Assume that ExtendedJaccard use a language-

based measure (e.g., Lin similarity measure) to compare tokens. Table 3.2 shows

the similarity scores between them.

Journal Magazine Periodical

Publication 0.75 0.76 0.89

Table 3.2: Similarity scores between tokens

Obviously, if the �lter threshold θtoken ≤ 0.75, then Shared(Publication, Journal)

46

= {(Publication, Journal)}, Unique(Publication) = ∅, Unique(Journal) = ∅ .

ExtendedJaccard(Publication, Journal) =
TokenSim(Publication, Journal)

TokenSim(Publication, Journal) + 0 + 0

=
0.75

0.75
= 1.0

Similarly, we have: ExtendedJaccard(Publication,Magazine) = 1.0 and

ExtendedJaccard(Publication, Pediorical) = 1.0. However, according to their def-

inition in Wordnet, �journal � and �magazine� are sibling and they both are children

of �periodical �. Therefore, ExtendedJaccard method does not satisfy the discrimi-

nating property.

Next, the SoftTFIDF method is asymmetric and maybe returns similarity score

higher than 1.0. Assume we compute similarity score between two strings: �Publica-

tion� and �PeriodicalPublication�. We have,Close(Publication, PeriodicalPublication)

is {(Publication,Publication)}; Close(PeriodicalPublication, Publication) is {(Pe-

riodical,Publication),(Publication,Publication)}.

SoftTFIDF (Publication, PeriodicalPublication) =
1 · 1 · 1

1 ·
√

1 + 1
=

1

1.41
= 0.70

SoftTFIDF (PeriodicalPublication, Publication) =
1 · 1 · 1

1 ·
√

1 + 1
+

1 · 1 · 0.89

1 ·
√

1 + 1

=
1

1.41
+

0.89

1.41
= 1.34

By this example, we see the similarity score computed by SoftTFIDF depends

on the order of input strings. Moreover, if we compute the average similarity score

of these values, we obtain 0.70+1.34
2

= 1.02, which is still higher than similarity score

between identical strings �Publication� vs. �Publication�. Therefore, this method

does not guarantee the reliability of result.

In order to avoid the weaknesses of the existing methods, in the next paragraph,

we will present our similarity computation method which is an extension of the

Tversky similarity measure [95].

Extended Tevrsky measure Here, we propose an extension of Tversky similar-

ity measure to compute similarity score between two strings. First of all, we will

illustrate the idea through a simple example to compare �Publication� and �Period-

icalPublication�.

Fig.3.1 shows the relation between two objects A and B. A∩B is the part shared

47

Figure 3.1: A graphical illustration of the relation between features of two objects
A and B [95]

between A and B. A − B is the unique part that belong to A only. B − A is the

unique part belong to B only. Formally, the Tversky's measure is de�ned as follows:

Tverskymeasure(A,B) =
f(A ∩B)

f(A ∩B) + αf(A−B) + βf(B − A)
(3.9)

When α = β = 0.5, the Tversky becomes:

Tverskymeasure(A,B) =
f(A ∩B) + f(B ∩ A)

f(A ∩B) + f(A−B) + f(B ∩ A) + f(B − A)

=
f(A ∩B) + f(B ∩ A)

f(A) + f(B)
(3.10)

Now, we de�ne the function f and the shared part, unique parts between token-

token as follows:

shared(ti, tj) =

{
TokenSim(ti, tj) if TokenSim(ti, tj) ≥ θtoken

0 Otherwise

unique((ti, tj) = 1− shared(ti, tj)

f(ti ∩ tj) = weight(ti) · shared(ti, tj) (3.11)

f(tj ∩ ti) = weight(tj) · shared(ti, tj) (3.12)

f(ti − tj) = weight(ti) · unique(ti, tj) (3.13)

f(tj − ti) = weight(tj) · unique(ti, tj) (3.14)

We next de�ne the function f for string and for token-string as follows:

48

f(s) =
∑
t∈s

weight(t) (3.15)

f(ti ∩ s) = weight(ti) · max
tj∈tokenize(s)

shared(ti, tj) (3.16)

f(s1 ∩ s2) =
∑
ti∈s1

f(ti ∩ s2) (3.17)

Assume the TokenSim be Lin similarity measure, weight value of each token be

1.0 like example in the previous paragraph. The similarity score between �Publica-

tion� and �PeriodicalPublication� is computed as follows:

f(Publication) = 1

f(PeriodicalPublication) = 1 + 1 = 2

f(Publication ∩ PeriodicalPublication) = f(Publication ∩ Publication)

= 1 · 1 = 1

f(PeriodicalPublication ∩ Publication) = f(Publication ∩ Publication) +

+ f(Periodical ∩ Publication)

= 1 · 1 + 1 · 0.89 = 1.89

Finally,

Tverskymeasure(Publication, PeriodicalPublication) =
1 + 1.89

1 + 2
= 0.96.

3.3.2 Context Pro�le Similarity Measure

Here, we propose context pro�le measures which are inspired from the idea of �nding

term-term similarity in the information retrieval �eld [62]. The intuition is that �The

key to similarity is that two terms appear in the same context - that is they have

very similar neighboring terms�.

To relate to the ontology matching task, we may assume a term is as an en-

tity and neighboring terms are set of other entities that are related to the entity in

question. However, the major obstacle here is that term-term similar can be easily

and deterministically de�ned by comparing two strings, but the similarity of enti-

ties is unknown or uncertain beforehand. Therefore, leveraging terminological and

structural features are needed. Herein, we assume the local name of an entity as a

49

term, its neighboring terms are found as string tokens in labels, comments of itself

and other related entities in the ontology. Similar to the original idea in informa-

tion retrieval �eld, we call the collections of neighboring terms as the context pro�le

features (or context for short) of an entity.

Figure 3.2: Fragment of an ontology

In our system, we construct three di�erent types of context pro�les for each

entity such as: IndividualPro�le, SemanticPro�le and ExternalPro�le.

De�nition 1. IndividualPro�le IP (e) of an entity e is a collection of strings in-

cluded in its name and annotation. Individual Pro�le IP (i) of an instance i is a

collection of strings included in its annotation and property values. The later de�-

nition has recursive property, which means that string value of an object property is

the individual pro�le of the corresponding object value.

De�nition 2. SemanticPro�le SP (c) of a class c consists of individual pro�le of

itself, its sub-classes and restricted properties. Semantic Pro�le SP (p) of a property

p consists of individual pro�le of itself, its sub-properties, its domains and ranges.

De�nition 3. ExternalPro�le EP (c) of a class c consists of individual pro�le of all

instances belonging to either itself or its descendants. External Pro�le EP (p) of a

property p consists of all data values corresponding to this property appearing in all

instances of the ontology.

From the de�nition, we have:

IP (e) = Name(e) ∨ Labs(e) ∨ Coms(e)
IP (i) =

⋃
p∈DP (i) V al(i, p) ∨

⋃
p∈OP (i) IP (V al(i, p))

SP (c) =
⋃
e∈{c∪Desc(c)∪Rest(c)} IP (e)

SP (p) =
⋃
e∈{p∪Desc(p)∪Doms(p)∪Rans(p)} IP (e)

50

EP (c) =
⋃
i∈

⋃
e∈{c∪Desc(c)} Inst(e)

IP (i)

EP (p) =
⋃
i∈Inst(p) V al(i, p) | p ∈ DP

EP (p) =
⋃
i∈Inst(p) IP (V al(i, p)) | p ∈ OP

Where, for every entity e, Name(e), Labs(e), Coms(e), Desc(e) are functions

returning its local name, labels, comments and descendants respectively; Doms(p),

Rans(p) are functions return all domains and ranges of a property p; Rest(c) is a

function that return all properties, on that a class c has a restriction. Inst(c) is

a function returning all instances that belong to class c and Inst(p) is a function

returning all instances that have property p; V al(i, p) is a function returning a

value corresponding to the property p in instance i; OP (i) and DP (i) are functions

returning a list of object properties and data properties of instance i, respectively.

Let us illustrate how to build IndividualPro�le, SemanticPro�le and External-

Pro�le following a fragment of ontology in Fig.3.2

IP (Courses) = �Courses A course is the study of a particular topic�

IP (hasID) = �has ID identi�cation�

IP (Prof.Pascal) = �UM2 001 002 Math for Beginner 20�

SP (Courses) = �Courses A course is the study of a particular topic Subject has Title�

SP (hasID) = �has ID identi�cation Teacher string�

EP (Courses) = �Math for Beginner 20�

EP (hasID) = �UM2 001 002�

EP (teach) = �Math for Beginner 20�

Now, the similarity between entities can be computed by the similarity between

their context pro�le features. Similar to work [80], we call each type of context

pro�le above as a virtual document. The similarity between virtual documents is

calculated in the Vector Space Model combining with a TFxIDF term-weighting

technique. The computation process in detail can be seen in [62]. To sum up, it

includes three main phases as follows.

• Phase 1 (term indexing). In this phase, virtual documents of all entities in

both ontologies are collected. A re�nement process performs tokenization,

stop words removing and term stemming for each document. Then, a matrix

document-term is built, where each column represents a unique term and, each

row represents a document. This matrix is called a vector space model because

each of the terms occurring in each document forms a coordinate basis vector

of the vector space; thus the dimension denotes the number of all the unique

terms and each document is represented as a vector in the vector space.

51

• Phase 2 (term weighting). In this phase, a term-weighting process assigns

weight to each cell in the matrix, which re�ects the relatedness between a

term and a document. The higher the weight is, the more the term is related

to the document. In particular, we apply a similar formula named TFxIDF in

[80] for speci�c term-document such as:

weight = TF ∗ IDF
TF = w

W
; IDF = 1

2
∗
(
1 + log N

n

)
Where, w is the frequency of a speci�c term occurred in a speci�c document.

W is total frequency of all terms in that document. N is a total number of

documents and n is a number of documents containing that term.

• Phase 3 (similarity computing). Finally, the similarity between two virtual

documents Di, Dj is measured by the cosine value between the two vectors
→
Vi

and
→
Vj representing the two row with index i and j respectively in the vector

space model. The measure is as follows:

cos(Vi, Vj) =
∑D

k=1 niknjk√∑D
k=1 n

2
ik

∑D
k=1 n

2
jk

where, |D| is the total number of terms contained in the Vector Space Model,

nik and njk are the coordinate value at kth dimension of Vi and Vj respectively.

Let simI(ei, ej), simS(ei, ej) and simE(ei, ej) are functions calculating similarity

scores between entities (ei, ej) by IndividualPro�le, SemanticPro�le and External-

Pro�le respectively. To combine all of types of context pro�les of entities, we propose

the following generic formula:

sim(ei, ej) = f (simI(ei, ej), simS(ei, ej), simE(ei, ej)) (3.18)

Where f may be weighted average, max, etc. If the combination function returns

only similarity score achieved by SematicPro�le, then our context pro�le similarity

measure is similar to measures used in [80, 63, 58]. If the combination function

returns only similarity score achieved by ExternalPro�le, then our context pro�le is

similar to the instance-based measure.

3.3.3 Instance-based Similarity Measure

In this section, we propose an instance-based similarity measure that exploits in-

stance data provided by ontologies to discover mappings between entities. There are

52

two issues we should consider here: (i) how to �nd similar instances from two ontolo-

gies; and (ii) given a list of similar instances, how to discover new concept/property

mappings.

For the �rst issue, we propose two methods for discovering instance mappings as

follows:

• If two instances belong to two matched classes and they have highly similar

labels then they will be considered as similar. Here, the list of matched classes

is taken from the result of Terminological module. Similarity score between

instance labels can be computed by a string-based similarity measure described

in section 3.2.1. That means:

if sim(labs(i1), labs(i2)) > θ1 | i1 ∈ Inst(c1),
i2 ∈ Inst(c2) & 〈c1, c2〉 then 〈i1, i2〉

• If two instances have similar description, they will be considered as similar

too. Here, a description is taken from values of all properties described in

an instance. The intuition behind is that the property values of the same

instances will be the same. We can use the similar computing method described

in section 3.3.2 to compute the similarity value of two descriptions of two

instances. Therefore:

if sim(IP (i1), IP (i2)) > θ2 then 〈i1, i2〉

For the second issue, we apply two methods for discovering concept/property

mappings as follows:

• If the text values of two properties of two matched instances are highly similar,

then these properties are considered as similar. That means:

if 〈i1, i2〉& sim(V al(i1, p1), V al(i2, p2)) > θ3then 〈p1, p2〉

• If most of their instances of two concepts are matched, then these concepts are

matched. That means:

if sim(Inst(c1), Inst(c2)) > θ4 then 〈c1, c2〉

In our system, we don't investigate the matching problem at data layer exten-

sively like some other instance matchers do. Our methods mainly focus to �nd

the changes of ontologies during the versioning and evolution processes. Accord-

ing to [71, 91] the change operations for ontologies can be distinguished between

three kinds such as: Conceptual changes, Speci�cation changes and Representation

changes. Those operations, for instance, may change the concepts labels, relations,

add new properties to a concept or use another ontology representation language,

53

but the content of the data instances is almost maintained. Therefore, we set all θ1

= θ2 = θ3 = θ4 = 0.9, a high threshold with hope that even entities in the schema

layer are changed but the data instances are slightly modi�ed.

3.4 Experiments and Evaluations

In this section, we evaluate the performance of our proposed similarity measures

through experiments over di�erent data sets used in OAEI campaigns. We design

three experiments, which illustrate the following interesting issues: (i) Performance

of the Context pro�le similarity measure, (ii) Performance of the Instance-based sim-

ilarity measure, and (iii) Performance of the Information retrieval based similarity

measure.

3.4.1 Performance of the Context Pro�le Method

The aim of this experiment is to evaluate the performance of the Context pro�le

similarity measure. According to the formula 3.18, di�erent aggregation functions f

correspond to di�erent context pro�le measures. In our approach, we select function

f , which returns the maximum value of similairy values computed by comparing

IndividualProfile, SemanticProfile and ExternalProfile. That is, two entities

will be compared by selecting the most similar context pro�les. For example, if two

entities have the same descriptions, they are highly similar, despite the fact that

their neighbors or their instances are not highly overlapped. In this case, using

IndividualProfile is enough. Another example is that if two entities have poor

annotation (i.e., only one label) and they do not have any shared instances, their

similarity value is only counted by their SemanticProfile.

To estimate the bene�t of using this measure, we design two matchers as follows.

The �rst matcher consists of only the Identical similarity measure (ID), which re-

turns 1.0 if two string are identical, otherwise 0.0. The second matcher consists of

the ID measure and the context pro�le similarity measure (CP). For the context

pro�le measure, we vary a threshold value from 0.5 to 0.95 to select mappings. In the

second matcher, the �nal matching result is obtained by running a union operator

overall the collection of mappings returned by both ID and CP measures.

In this experiment, we use the Conference data set containing 16 real world

ontologies. The reason we select this data set is that we would evaluate the perfor-

mance of the context pro�le similarity measure in the real ontology matching case.

Table 3.3 shows the matching results obtained by the two matchers overall tests in

54

Matchers Precision Recall F-Measure TP FP FN

ID 0.81 0.47 0.59 143 33 162

ID + CP0.50 0.52 0.55 0.53 169 156 136

ID + CP0.55 0.57 0.55 0.56 169 125 136

ID + CP0.60 0.63 0.54 0.58 166 98 139

ID + CP0.65 0.68 0.53 0.60 163 78 142

ID + CP0.70 0.71 0.53 0.61 162 66 143

ID + CP0.75 0.76 0.52 0.62 158 49 147

ID + CP0.80 0.77 0.51 0.62 155 42 150

ID + CP0.85 0.79 0.49 0.61 150 39 155

ID + CP0.90 0.80 0.48 0.60 148 37 157

ID + CP0.95 0.81 0.48 0.60 147 35 158

Table 3.3: Performance of the context pro�le measure on the Conference data set in
OAEI 2009

the Conference data set. Here, TP means the total number of correct discovered

mappings, FP means the total number of incorrect mappings and FN means the

total number of mappings that matcher did not �nd. In the �rst column, CPx means

a threshold value x is used to select mapping result for the context pro�le measure.

Generally, the second matcher has better Recall than the �rst one. That is, the

CP measure can help us to discover new correct mappings that the ID measure

cannot. However, the Precision of the second matcher is lower than that of the

�rst one. That is, the CP measure also produces additional incorrect mappings.

Therefore, the selection of threshold value is very important. For example, when the

threshold value is small (e.g. 0.5), the number of incorrect mappings (156−33 = 123)

increases faster than the number of correct mappings (169 − 143 = 26). That is,

using CP measure decreases the overall matching result. On the contrary, when the

threshold value is too high (e.g., 0.95), both the number of correct and incorrect

mappings slightly increase. In this case, using the CP measure slightly increases the

overall matching result (Fmeasure increases 0.60−0.59 = 0.01). The best threshold

is 0.75 or 0.80, where the Fmeasure increase 0.62− 0.59 = 0.03.

To sum up, the context pro�le method can help us to discover new correct map-

pings. However, the improvement of the overall matching quality strongly depends

on the selection of the threshold value for this measure.

3.4.2 Performance of Instance-based Similarity Measure

The aim of this experiment is to evaluate the performance of the Instance-based

Similarity Measure. As we discussed in Section 3.3.3 above, this measure is de-

signed for discovering mappings of di�erent versions of ontologies. Therefore, in this

55

Matchers Precision Recall F-Measure TP FP FN

ID 0.99 0.57 0.72 4504 29 3344

ID + IB 0.98 0.62 0.76 4902 97 2946

Table 3.4: Performance of the instance-based measure on the OAEI 2009 Benchmark
dataset

experiment, we select the Benchmark data set published in OAEI 2009. The reason

we select this data set is that the test ontology in each test is produced from the

original ontology by running a versioning process.

In order to highlight the importance of this measure, we design two matchers as

follows. The �rst matcher consists of only the Identical similarity measure (ID). The

second matcher consists of the IDmeasure and the Instance-based similarity measure

(IB). In the second matcher, the �nal matching result is obtained by running a union

operator overall the collection of mappings returned by both ID and IB measures.

Table 3.4 shows the matching results of the two matchers on the Benchmark

data set. Obviously, the IB measure discovers the number of correct mappings

(4902 − 4504 = 398) more than the number of incorrect mappings (97 − 29 = 68).

Thus, by using IB, the Fmeasure increases (0.76 − 0.72 = 0.04). That is, the

Instance-based method is useful to discovering mappings of the versioning ontologies.

3.4.3 Comparison of Di�erent Similarity Measures for Labels

The aim of this experiment to evaluate the performance of our proposed similar-

ity measure, which is based on information retrieval techniques (IR). Because our

method focuses on comparing similarity of labels, so in this experiment, we compare

the performance of our method with popular methods such as ISUB, Levenstein

(Lev), QGrams that widely used in the existing matching system. Moreover, we

also compare it with other methods such as Token-based Levenstein (TokLev),

HybLinISUB and HybJCLev. Here, TokLev is a token-based measure which

uses Levenshtein measure to compute similarity value of tokens. HybLinISUB (or

HybJCLev) is hybrid similarity measure that combines Lin with ISUB measures

(or JiangCorath and Levenstein measures). Their algorithms are described in

section 3.2.

In this experiment, the Conference data set in OAEI 2009 is used to evaluate the

performance of those measures above. Moreover, a threshold value is used to select

a mapping result for each measure. Here, the threshold value varies from 0.6 to 0.95.

Fig.3.3 shows the line charts of all similarity measures being compared. Obviously,

our similarity measure IR outperforms all other measures with respect to all varied

56

Figure 3.3: Comparison of terminological similarity measures on Conference dataset

threshold values. It obtains the best result when the threshold falls in range from

0.70 to 0.80. This range conforms to what we expected. Assume that there are two

entities, one of them has a label containing a single token (e.g., �AAA�) and the

other has a label containing two tokens (e.g. �AAA BBBB �). This is a type 4 of

terminological heterogeneity that we discussed in the Section 3.1, and it appears a

lot in the Conference data set. Let x, y and z are the weights of these three tokens

in the two labels. Our IR measure will returns a value sim = x+y
x+y+z

= 1 − z
x+y+z

.

According to the heuristic of our IR measure, these two entities are match if the

shared token (i.e., �AAA� in both labels) are more than the others (i.e., �BBBB �).

Thus, z
x+y+z

<< 1
3

= 0.33, consequently, sim >> 0.66. That is the range [0.70, 0.80]

is expectable.

3.5 Conclusion

In this chapter, we have presented a new approach, named IR method to deal with

terminological heterogeneity in ontology matching. For this purpose, a compre-

hensive classi�cation of the di�erent types of terminological heterogeneity has been

given. Based on this classi�cation, we have argued that most of the existing termi-

nological similarity measures are able to deal with the �rst three types (i.e., type 1,

type 2 and type 3) of terminological heterogeneity. In particular, they can discover

a mapping between two entities if their labels are highly similar in syntax or highly

similar in meaning (type 1 and the �rst part of type 3), or tokens in their labels are

57

pairwise similar in syntax or in meaning (type 2 and the second part of type 3).

However, in real world ontology matching, the last three types appear frequently

and are not easy to solve. In these types, labels of the same entities in di�erent

ontologies may share only one or few tokens but not all (type 4). Moreover, these

labels may be totally di�erent in terms of syntax or in terms of meaning (type 5)

or may be represented by di�erent languages (type 6). To overcome these types of

heterogeneity, we have proposed three advanced similarity measures, i.e., information

retrieval based similarity, context pro�le similarity and instance-based similarity.

Indeed, the Information retrieval based measure has been designed to deal with

type 4. To the best of our knowledge, it is the �rst similarity measure that uses

information content of each token to compute the similarity of compound labels of

entities in ontologies. This idea lies on the following heuristic: if two entities are

the same, the tokens that their labels share are usually keywords of the two labels

and have higher information content than the rest. Our experiments show that this

measure outperforms all existing similarity measures when dealing with real-case

ontology matching.

In addition, a context pro�le similarity measure has been designed to deal with

all types of terminological heterogeneity. In fact, it does not rely on the similarity of

the labels of entities, but relies on the similarity of contexts to which entities belong.

Our experiments show that by using this measure, we can increase recall. However,

the matching quality strongly depends on the selection of a threshold value.

Finally, an instance-based similarity measure has been designed to discover map-

pings between ontologies in di�erent versions. It makes use of the relationships

between concepts, properties and instances to detect new mappings from set of

matched instances between two ontologies. Our experiments prove its usefulness in

improving the matching quality.

Despite the fact that our similarity measures can adapt to all types of termino-

logical heterogeneity, they cannot discover all mappings completely. It is because

they mainly exploit terminological feature encoded in ontology. Using only termi-

nological features is not enough to deal with the two following problems. The �rst

problem relates to the polysemy issue, where two di�erent concepts have the same

labels. The second one relates to the synonymy issue, where the same concepts have

totally di�erent labels. Generally, the two issues can be solved with the context

pro�le and the instance-based measures. But if the input ontologies do not have

instance data, the instance-based measure cannot work. On the other hand, if the

annotations of entities in the input ontologies are poor (e.g., ontologies in the Con-

ference data set), the context pro�les of entities are poor, too. In that case, the

58

bene�t of using Context pro�le measure is not high. Therefore, to deal with the two

problems discussed above, we should use other types of information of an ontology.

In particular, the structural information of entities should be exploited. We will

discuss this issue in the following chapter.

59

60

Chapter 4

Dealing with Conceptual

Heterogeneity

In the previous chapter, we have argued that using terminological features of en-

tities is not su�cient to discover all mappings between ontologies. A terminology

represents a natural visualization of an abstract concept, that evokes its meanings in

the real world, but it cannot indicate the exact meaning of this concept in a speci�c

domain of interest. For example, the term �bank � has two di�erent meanings with

respect to the �nancial domain and geographical domain. On the other hand, in

an ontology, the explicit meaning of a concept is described through a set of seman-

tic relations with other concepts. In addition, its speci�c semantic meaning is also

strengthened by a set of logical statements (i.e., axioms), that indicate the truth

of this concept in the domain of interest. For example, the term �bank � found in

the statement: Bank is-a Organization, that supports Transactions by Money,

expresses a concept Bank in the �nancial domain. Because the aim of ontology

matching is to discover semantic mappings of entities, the explicit meaning is more

important and more reliable than the intended meaning of terminology.

Discovering mappings by comparing the semantic description of entities is very

di�cult because of the high conceptual heterogeneity of ontologies. There are many

reasons causing the conceptual heterogeneity. However, they all originate from the

di�erent viewpoints of the ontology designers on the domain of interest. Therefore,

in section 4.1, we �rst analyze di�erent types of ontology mismatches caused by

the conceptual heterogeneity, and then discuss di�culties to deal with them in the

ontology matching task.

Based on the understanding of these challenging issues, in section 4.2, we brie�y

review the existing structural similarity measures to point out their strengths and

weaknesses.

61

The main contribution of this chapter is found in section 4.3, where a Similarity

Propagation method is described in detail. The idea of this method originates from

the well-known Similarity Flooding algorithm [67]. Our contribution is to apply

this idea to ontology matching �eld. Moreover, we propose a high level graph data

structure for storing semantic relations of entities in an ontology. This data structure

helps us to implement the similarity propagation method easily and e�ectively.

Four experiments in section 4.4 are designed to evaluate di�erent aspects of the

similarity propagation method. The experimental results show that this method is

stable and improves the overall matching quality.

4.1 Analyses of the Conceptual Heterogeneity

Conceptual heterogeneity or semantic heterogeneity of ontologies stands for the mis-

matches in content of ontologies modeling the same domain. According to [96, 51],

ontology mismatches can occur during two sub process in the creation of an ontology

such as: conceptualizing a domain and explicating the conceptualization.

During the conceptualization process, classes, instances, relations, attributes and

axioms are distinguished in the domain. Usually, this process also involves ordering

the classes and properties in a hierarchical fashion, and assigning attributes and

relationships between them. Therefore, a conceptualization mismatch is a di�er-

ence in the way a domain is interpreted (conceptualized), which results in di�erent

ontological concepts or di�erent relations between them.

On the other hand, during the explication process, ontological entities like classes,

properties and instances are de�ned through an ontology language. Each entity is

associated a de�nition, which involves logical formulas or assertion axioms, in order

to provide an explicit semantic meaning of the entity in the domain. Therefore, an

explication mismatch is di�erent in the way the conceptualization is speci�ed. It can

manifest itself in mismatches in de�nitions, mismatches in terms and combination

of both.

According to [96], each conceptualization mismatch is also present in the ex-

plication of that conceptualization. In fact, each conceptualization mismatch type

occurs in the explication as a de�nien (type D or CD) mismatch, which means dif-

ferent de�nitions. However, not all explication mismatches necessarily occur in the

conceptualization. To sum up, we survey the main types of ontology mismatches as

follows:

• Class mismatches are concerned with classes and their subclasses distin-

guished in the conceptualization.

62

� A categorization mismatch occurs when the same classes are divided

into di�erent subclasses in di�erent conceptualizations. For example, the

class Animal can be structured around the class Mammals and the class

Birds, but it also can be structured around class Carnivores and class

Herbivores.

� An aggregation-level mismatch occurs when the same classes are de�ned

at di�erent levels of abstraction. For instance, one conceptualization dis-

tinguishes class Persons and other conceptualization distinguishes class

Males and Females but does not have class Persons as their superclass.

• Relation mismatches are associated with the relations distinguished in the

conceptualization. They concern the relations between classes and the assign-

ment of attributes to classes.

� A structure mismatch occurs when two conceptualizations distinguish the

same set of classes but di�er in the way these classes are structured by

means of relations. For example, in one conceptualization, the class House

connects to the class Brick by the relation is-made-of, and in another

they are connected by the relation has-component.

� An attribute-assignment mismatch occurs when two conceptualization

di�er in the way they assign an attribute to various classes. For exam-

ple, two conceptualization distinguish that class Car is a subclass of class

Vehicle. One conceptualization assigns attribute Color to Vehicle, and

the other assigns Color to Car.

� An attribute-type mismatch occurs when the same attributes are assigned

by di�erent instantiations (range of possible values). For example, in

one conceptualization, the attribute Length assumes its instances to be

a number of miles, whereas in another conceptualization, the attribute

Length assumes its instances to be a number of kilometers.

• Terminological mismatches are related to terms (identi�ers) to denote con-

cepts in the explication process.

� A synonym term mismatch concerns the same concepts having the same

de�nition, but being represented by di�erent names. For example the

term �car � in one ontology and the term �automobile� in another ontology.

� A homonym term mismatch concerns the di�erent concepts have the same

names, but they di�er in de�nitions in di�erent context. For example,

63

term �conductor � has a di�erent meaning in a music domain and in an

electric engineering domain.

• Epistemic mismatches are associated with di�erent (possibly contradictory)
assertions about the same entities in di�erent conceptualizations.

Because of the di�erent types of mismatches discussed above, in reality, even

if ontologies describe the same domain knowledge, they are highly conceptually

heterogeneous. That makes the process of discovering mappings between entities of

real ontologies is very di�cult. We can list several reasons for that:

• Firstly, the basic principle of mapping discovery here has a recursive property.

Intuitively, two entities are similar if they have been de�ned by the same

de�nitions, which is containing the same attributes, the same relations to the

same other entities. It means that the similarity of two entities depends on

and impacts the similarity of other entities related to them and so on.

• Secondly, there does not exist a common structural pattern to recognize sim-

ilar entitities from di�erent ontologies. Due to high heterogeneity, both the

external and internal structure of entities are very di�erent in di�erent ontolo-

gies.

� Here, two entities having the same external structural patterns means the

other entities in the same relationship with them are one-by-one similar.

In fact, categorization, aggregation and structure mismatches cause the

di�erence of hierarchies and structural relationships between entities in

ontologies. Therefore, the possibility of �nding the same pattern for two

entities is very low. Generally, two entities may be similar on one feature

(e.g., same parents) but di�erent on other feature (e.g., di�erent sets of

ancestors or di�erent descendants).

� Similarly, two entities having the same internal structure patterns means

their arrtibutes and attribute type of values are similar. However, the

attribute-assignment and attribute-type mismatches show that the same

concepts may have di�erent attributes and di�erent attribute values. Be-

sides, the implicit inheritance between entities in ontology makes the

internal structure of the same concepts di�erent. For example, in the

attribute-assignment mismatch, a concept can be directly assigned an

attribute, or it can implicitly inherit this property from its ancestor.

64

• Finally, the automatic discovery methods at conceptual heterogeneity face the

uncertainty problem. In fact, a discovering method at structural level is a

function of two arguments: initial mappings and structural patterns. There-

fore, the uncertainty of a structural method can be caused by the uncertainty

of its arguments.

� Firstly, discovery mappings by exploiting semantic information (i.e., se-

mantic level) of entities requires initial mappings which are usually pro-

vided by other matching methods like terminological-based methods. How-

ever, because of the terminological mismatches, the matching result of a

terminological-based method is not certain. In particular, a homonym

mismatch implies that two entities with the same names are di�erent;

and a synonym mismatch implies that two entities with di�erent names

maybe are the same. Therefore, the initial mappings of the discovery

mappings at semantic level are uncertain, consequently, the result of this

process might be uncertain either.

� Secondly, assume that the initial mappings are totally correct, two enti-

ties found in the same structural patterns might represent two di�erent

concepts. It may be caused by the incompleteness in designing ontolo-

gies. For example, in the example of the categorization mismatch, class

Mammals, class Birds, class Carnivores and class Herbivores are sub-

class of Animal. If there is no more detail about them, any mapping

between these classes is incorrect.

After doing analyses on conceptual heterogeneity of ontologies, in the next sec-

tions, we are going to discuss the similarity methods that can be used to deal with

ontology matching at this heterogeneity.

4.2 Basic Structural Similarity Methods

According to [28], a basic structural similarity method exploits a speci�c structural

feature of two entities to compare their similarity. This comparison can be subdi-

vided in two types such as:

• Comparison of the internal structure of an entity, which is relating to the

relation mismatches.

• Comparison of the external structure of an entity, which is relating to the class

mismatches.

65

4.2.1 Internal Structure Similarity Methods

Internal structure is the de�nition of entities without reference to other entities. For

each ontology class, the internal structure includes its properties (i.e. attributes and

relations), range of properties and restricted cardinality on values of properties. For

each ontology property, the internal structure includes its domain, range and its own

characteristics like transitivity, symmetry, etc.

The internal structure methods are based on internal structure pattern of entities

to compute the similarity score between them. Three internal structure patterns as

follows are widely used in the ontology matching systems:

• If the properties of two concepts are similar, the concepts are also similar [?, 43]

• If the domain and range of two properties are similar, the properties are also

similar [?, 43]

• If two properties are restricted by the same cardinality (i.e. minimum and

maximum cardinality) and have the same type of values, the properties are

similar [43].

However, entities with comparable internal structures or properties with similar

domains and ranges in two ontologies can be numerous. It makes the internal struc-

ture patterns not being strict rule to discover mappings between entities. Therefore,

these methods are commonly used to detect the inconsistent mappings rather than

to discover accurate correspondences between entities. For example, if two concepts

have di�erent cardinality (minimum vs. maximum) on the same properties, they

will be considered as two di�erent concepts.

4.2.2 External Structure Similarity Methods

External structure (aka. relational structure) is a set of relations that an entity

has with its neighbors entities. There are three types of relations that have been

considered so far in ontology matching systems such as: (i) Taxonomic structure is

a backbone hierarchy of an ontology, which is built from IS-A relationship between

class-class and property-property. For example, Computer IS-A Machine; (ii)

Mereologic structure is an another type of entities hierarchy, which is built from

PART-OF relationship. For example, CPU PART-OF Computer; and (iii) Generic

relation structure is a graph structure, where nodes are classes and edges are prop-

erties, which connect classes. For example, Computer connectTo Printer.

66

Similar to the internal structure methods discussed above, external structure

similarity methods compute a similarity score between entities by comparing their

external structural features. The intuition behind these methods is that two enti-

ties are similar if their neighbors are similar. Several external structure patterns

commonly used in ontology matching are as follows:

• ANCESTORS: two entities are similar if all or most of their ancestor entities

are similar [19].

• DESCENDANTS: two entities are similar if all or most of their descendant

entities are similar [19].

• LEAVES: two entities are similar if all or most of their leaf entities are similar

[20].

• ADJACENTS: two entities are similar if all or most of their adjacent entities

(parents, children, siblings, domains, ranges) are similar [56].

• ASCOPATH: two entities are similar if all or most of the entities in the paths

from the root to the entities in question are similar [56].

• Descendant's Similarity Inheritance (DSIPATH): two entities are similar if the

total contribution of the entities in the paths from the root to them is higher

than a speci�c threshold [92].

• Sibling's Similarity Contribution (SSC): two entities are similar if the total

contribution of their sibling entities is higher than a speci�c threshold [92].

Obviously, most of these external structure methods were mainly designed for

the taxonomy structure of entities in an ontology. Indeed, they can be also used

for mereologic structure to discover mappings between entities. It is understand-

able because the external structure patterns discussed above can be found in both

hierarchies built on IS-A and PART-OF relations. For example, in the taxonomic

structure, if classX IS-A classY and classY IS-A classZ, then classX and classY

are descendants of classZ; or classY and classZ are ancestors of classX. Similarly,

in the mereologic structure, if classX PART-OF classY and classY PART-OF classZ,

then classX and classY can be considered as descendants of classZ; or classY and

classZ can be considered as ancestors of classX.

However, these external structure methods cannot apply for the generic relation

structure. It is because of two reasons. Firstly, generic properties are diverse and

they may not be transitive like IS-A and PART-OF relations. Therefore, in generic

67

structure there does not exist notions of ancestors, descendants or path of entities.

Secondly, generic properties are not standard like IS-A and PART-OF relations. In

fact, they are created by ontology designers, so in di�erent ontologies, they may

have di�erent representation. Whereas, in di�erent ontologies, IS-A and PART-OF

relations always have the same meaning and the same representation.

4.2.3 Discussion on Basic Structure Similarity Methods

There are two advantages of using internal and external structure methods. Firstly,

they are simple in similarity computation. Here, both internal and external structure

patterns (e.g. ancestors, descendants, path, leaves, etc.) can be easily extracted from

ontology. The similarity functions are usually based on operation on set theory (e.g.

Jaccard, Dice, etc.). Secondly, they are more reliable than method of discovering

mapping by terminology only. It is because they compare the intended meaning

of entities in their speci�c context, which are semantically de�ned within speci�c

ontologies.

However, they also su�er several disadvantages. At �rst, they lack discriminat-

ing property. For example, many di�erent classes have the same property or have

properties with the same datatypes. In this case, internal structure methods can-

not distinguish those di�erent classes. On the other hand, when a class has more

than one child, some external structure methods based on ancestors or path to root

cannot distinguish the di�erent between its children. Therefore, they may return

many incorrect mappings. On the other hand, as we mentioned in section 4.1, the

similarity between entities computed by structural methods are mutual in�uence. It

means the similarity of two entities are not only depends on its current value but

also similarity value of their neighbors. From the beginning, both type of structural

methods depend on some initial mappings, which are provided by other matching

methods (e.g. terminological methods). If there are some incorrect mappings within

the initial mappings, the structural methods may lead to other incorrect mappings.

To overcome the drawback of both types of structure methods, we need to com-

bine their matching evidence to have a more reliable matching result. However, it

turns on a well-known challenge in the ontology matching �eld, namely �selection

and con�guration tuning�.

First, selection of a combination function is the �rst challenge. It is because some

structure methods (including internal and external) can work with some entities but

cannot work with the others. In fact, as we mentioned in section 4.1, di�erent entities

have very di�erent internal and external structure. Therefore, it is not easy to �nd

an appropriate function that takes all structure methods above as its arguments.

68

Second, setting con�guration or parameter for the combination method is another

challenge. Here, for each entity, di�erent methods exploit di�erent structure features,

which bring di�erent degree of importance in similarity computation. The degree

of importance of the same feature (ancestor, path, etc.) are even very di�erent

between di�erent entities. Therefore, manually setting parameter seems to be not

applicable.

Furthermore, non-iterative combination method is still error prone. In fact, if

initial mappings are incorrect, the structure methods will produce other incorrect

mappings, and so on for their combination. Both individual structure methods

and combination method do not remove the incorrect mappings from the initial

mappings.

For that reasons, in the next section we will present our method, which is an

extension of similarity �ooding algorithm [67] used in schema matching. In the

proposed method, we can take advantage of almost all types of structural feature

(i.e., internal and external) in commutation of similarity. Moreover, through the

iterative process, the error prone problem can be solved.

4.3 Similarity Propagation Method

In this section, we present a similarity propagation method for discovering mappings

between entities of two to-be-matched ontologies. Before going in detail about its

algorithm, we �rstly clarify what is similarity propagation.

Figure 4.1: Similarity propagation

Let us see Fig.4.1, assume that in the ontology O1, two entities A1 and B1 are

connected by a directed relation P (Fig.4.1a). Similarly, in the ontology O2, two

entities A2 and B2 are also connected by same relation P (Fig.4.1b). Here, the

69

relation P may be any semantic relationship like IS-A, PART-OF, domain, range, or

user speci�c property, etc.

According to the direction of the relation P , those entities produce two candidate

mappings, i.e., (A1, A2) and (B1, B2), which are connected by the relation P

(Fig.4.1c). We may say that two candidate mappings are adjacent through the

relation P . Intuitively, if one of the candidate mappings is correct match, the other

mapping is very likely to be a match and vise versa. It means that the similarity

of one mapping in�uences the similarity of the other. Depending on the function of

similarity computation, their similarity values will be fully or partly propagated to

each other in order to recompute the new similarity score values.

Obviously, the key idea behind the similarity propagation method is similar to the

other structure similarity methods, in terms of two entities of two distinct ontologies

are similar if they relate to the other similar entities. However, there are three main

di�erences between them as follows.

In contrast to basic structure similarity methods, the similarity propagation

method uses a �x point computation, in which the similarity scores are computed

iteratively until the global condition point is reached. In the similarity propagation

process, the new similarity score of two entities depends not only on the current

similarity score between them, but also also on the current similarity scores of their

adjacent. Obviously, basic structure similarity methods can be assumed as a simi-

larity propagation method with only one iteration.

Another di�erence is about the amount of similarity values to be propagated

during the similarity computation of two entities from their adjacent. In basic

methods, the similarity values will be fully propagated from the adjacent entities.

Except, in DSIPATH and SSC methods, the authors use a factor value to distinguish

di�erent types of adjacent (e.g., the contribution of parent is more important than

the contribution of grandparent and so on). In the similarity propagation method,

the similarity value is only partly and directly propagated from two entities to direct

adjacent through their relations.

Finally, the similarity propagation method is able to exploit all structure infor-

mation of entities in an ontology, whereas, basic methods exploit only a part of it. In

particular, internal structure methods are limited by class-properties relations (e.g.

hasProperty, domain, range); external structure methods are limited by class-class

relations (e.g., IS-A, PART-OF). In similarity propagation method, any type of re-

lation between entities can be used to couple two entities of two di�erent ontologies

to a candidate mapping. For example, it can couple two classes and two proper-

ties to two candidate mappings, which are connected by a class-property relation.

70

Moreover, it can also couple two pairs of classes from two ontologies to two candi-

date mappings, which are connected by a class-class relation. Therefore, in [28], the

similarity propagation is referred as global based method, whereas, basic structure

methods are referred as local based methods.

Now we are going in detail into the similarity propagation method. The main

steps in this method are shown in the Algorithm 2. First, input ontologies are

transformed into directed labeled graphs OntoGraph, then they are merged into a

pairwise connectivity graph (PCG). Here, the amount of similairy to be propagated

is de�ned by the current similarity score hold in PCG's nodes and the weight values on

the edges. Therefore, at the beginning, edges in the PCG are assigned weight values

by the Weighted function and nodes in PCG are assigned similarity values taken

from initial mappings M0. After initiating values, the PCG becomes an induced

propagation graph IPG. During the Propagation on IPG, only similarity score hold

on nodes are changed, whereas, the edges' weights are not. At the end of each

iteration in Propagation, all similarity values are normalized by Normalized to fall

in range [0,1]. When the Propagation meets a stop condition, a Filter is used to

produce the mapping results.

Algorithm 2: Similarity Propagation Algorithm

input : O1 , O2 : ontologies to be matched
M0 = {(e1, e2,≡, w0)} : initial mappings

output: M = {(e1, e2,≡, w)} : result mappings

1 G1 ← Transform(O1);
2 G2 ← Transform(O2);
3 PCG← Merge(G1, G2);
4 IPG← Initiate(PCG, Weighted,M0);
5 Propagation(IPG, Normalized);
6 M ← Filter(IPG, θs);

In particular, the following issues will be considered, i.e., (i) computation space

(i.e., lines number 1,2 and 3), (ii) iteratively computing similarity with propagation

(i.e., lines number 4 and 5), and (iii) �lters (line 6).

4.3.1 Computation Space

A computation space here means the total number of candidate mappings involved in

the similarity propagation process. In Fig.4.1, apparently, a similarity value is only

propagated from one candidate mapping to another candidate mapping. Therefore,

the aim of building a computation space is to determine a collection of candidate

71

mappings and the relationships between them. This step is corresponding to the

step of building pairwise connectivity graph (PCG) in the original similarity �ooding

algorithm. In particular, each node in the pairwise connectivity graph is a candidate

mapping produced from two entities of two ontologies.

Basically, two entities of two distinct ontologies become a candidate mapping if

and only if they have a same relation to two other entities in those ontologies. The

rule to build a pairwise connectivity graph from two distinct ontologies is as follows:

((x, y), p, (x′, y′)) ∈ PCG(O1, O2)⇔ (x, p, x′) ∈ O1 ∧ (y, p, y′) ∈ O2

where, x, x′ are two entities of ontology O1; y, y′ are two entities of ontology

O2; (x, p, x′) means entity x heads to entity x′ by relation named p.

Therefore, in order to avoid the loss of candidate mappings, we need to transform

structural information of entities (including internal and external) of two ontologies

into the same set of prede�ned relations. Hence, each ontology is converted to a di-

rected acyclic graph, whose nodes are ontologies entities (i.e., classes, properties and

datatypes) and each directed edge between nodes has a label encoded for semantic

relationships between the corresponding entities.

Naturally, an ontology can be seen as a RDF graph1, whose each edge is a RDF

triple. That means, for each edge in the graph, Subject and Object are two end

nodes, the direction is heading from Subject to Object with label Predicate. Let us

see a fragment example of an ontology and its corresponding RDF graph in Fig. 4.2.

Here, Author and Reference are classes; hasAuthor is an object property, whose

range is class Author; and hasTitle is a data property, whose range is a string

datatype. Class Reference has restriction on both hasAuthor and hasTitle.

However, this representation obviously has disadvantages such as:

• Two RDF graphs may produce a huge number of redundant nodes in the PCG. For

example, with the same label rdf:type, PCG may contain many nodes compounded

of classes of the �rst ontology with properties of the second ontology and vice versa.

These nodes are not needed because we try to discover mappings between class-class

and property-property only.

• It would produce many incorrect mapping candidates. For example, two RDF triple

statements describing classes Author and Reader in two distinct ontologies as follows:

〈Author, rdf:type, rdfs:Class〉 and 〈Reader, rdf:type, rdfs:Class〉

1http://www.w3.org/TR/rdf-concepts/

72

Figure 4.2: A RDF graph for a fragment of an ontology

Because these triples have the same predicates and objects, so it may infer that

classes Author and Reader are similar, which is incorrect.

• Lastly, the RDF graph faces a problem with anonymous (blank) nodes (e.g., the gray

square with label A in Fig.4.2 are anonymous nodes). In RDF graph, anonymous

nodes are used to describe a complex description of a concept. Unfortunately, we

cannot compute the similarity between blank nodes. If we remove them, we loose

the connection between nodes using these blank nodes as bridge.

To overcome the weaknesses of the RDF graph, strong constraint conditions on

merging edges are needed. For example, in [98], the author proposed a �Strong Con-

straint Condition for Similarity Propagation in Triples� as follows: Given two triples

ti = 〈si, pi, oi〉 and tj = 〈sj, pj, oj〉, and let Ss, Sp and So denote the corresponding

similarities of (si, sj), (pi, pj) and (oi, oj) for the two triples. The similarity can be

propagated if and only if ti and tj satisfy the following three conditions:

• If ti includes ontology language primitives, the corresponding positions of tj

must be the same primitives

• ti or tj has at most one ontology language primitive

73

• In Ss, Sp and So, at least two similarities must be large than threshold θ (equal

to 0.005 by default)

The �rst condition ensures that the propagation is only performed when two

triples use the same ontology language primitive to describe the facts. Here, the on-

tology language primitives refer to RDF vocabularies and OWL vocabularies. There-

fore, there will be not candidate mappings created by class-property or property-class

entities. The second condition ensures that there is no de�nition and declaration

of triples during propagating, because such triples may cause incorrect matching

results. The third condition is a heuristic to reduce the computational space by

limiting number of candidate mappings with a similarity threshold θ.

However, because these constraints are applied on RDF triples, the problem of

anonymous nodes still remains. Generally, if a class in an ontology has a complex

description, it is a subclass of some anonymous nodes. For example, in Fig.4.2, class

Reference is described by as subject of two statements, whose predicate is subClas-

sOf and objects are two anonymous nodes namely -3f45da6:139a10f5a3a:7ffd

and -3f45da6:139a10f5a3a:7ffe. Two statements like that will merge not only

named ontology entities (i.e. classes, properties) but also their anonymous nodes.

Therefore, they will produce a lot of computation nodes in the computation space.

Figure 4.3: Two RDF graphs for two fragments of ontologies

Moreover, computing a similarity score between anonymous nodes is not an easy

task. In fact, similarity of anonymous nodes depends on the statement, which the

anonymous is involved. Let us see Fig. 4.3, two classes Reference in two ontologies

are described by two di�erent anonymous nodes namely 68e56d3b:139afb27514:7ffd

and 68e56d3b:139afb27514:7ffe. These two anonymous nodes have the connec-

tion to class Author but with di�erent edges (onClass vs. someValueFrom); or

have the same edge (onProperty) but connect to properties with di�erent labels

74

Figure 4.4: A high level ontology graph

(isWrittenBy vs composedBy). These di�erences may make two anonymous

nodes be very di�erent, consequently make two classes Reference be di�erent also.

According to the analyses discussed about RDF graph above, we may conclude

that this type of graph is not suitable for the similarity propagation algorithm. To

overcome the problem related to anonymous nodes, we extract only main information

of each ontology entity to build a directed acyclic graph with prede�ned labels on

edges. In particular,the following rules for building a high level ontology graph will

be used:

• For each class, its direct connected classes through IS-A and PART-OF re-

lations are extracted to build a high level ontology graph, where edges be-

tween them are assigned with labels subClass and partOf respectively. Note

that, the PART-OF relation is usually used in anatomy ontology in the form

SubClassOf(clsA ObjectSomeValuesFrom(PART-OF clsB)) .Additionally, its

properties (i.e., data property, object properties) and their value types are also

extracted. In graph, edges between them are assigned with labels onProperty

and hasPropertyValue respectively.

• For each property, its direct parent and children are extracted. Im graph,

edges between them are assigned label subProperty. Besides, its inverse and

equivalent properties are also extracted. In graph, edges between them are

assigned labels inverse and equivalent respectively. Additionally, its domain

and range are also extracted. In graph, edges between them are assigned labels

domain and range respectively.

Based on these rules, the fragment of ontology described in Fig.4.2 can be con-

verted to a high level ontology graph as in Fig.4.4. We call the graph a high level

75

graph because we encode the semantic meaning of relations by human understand-

able. Now, each edge in a high level ontology graph (ontology graph for short) has

format:

〈sourceNode, edgeLabel, targetNode〉

where, sourceNode and targetNode are ontology entities (i.e., concepts, ob-

ject properties, data properties) or primitive datatypes. The semantic meaning

of an edge is expressed by edgeLabel, which belongs to one of the 5 following

types: subClass, partOf onProperty, hasPropertyValue, subProperty, inverse,

equivalent, domain, and range.

The transformation from ontology to a high level ontology graph brings the fol-

lowing advantages. Firstly, we can easily merge two ontology graphs into a pairwise

connectivity graph, which is a computation space for the similarity propagation

method. It is because in both graphs, their edges were standardized with prede�ned

labels. Therefore, a pairwise connectivity graph can be retrieved by merging the

corresponding source and target nodes of edges with the same label. A node in the

pairwise connectivity graph is a candidate mapping created from two entities of two

input ontologies. Next, by using only main relations of entities, the computation

space will be reduced. In fact, the other internal structure information will be used

in the re�nement process to detect and reject incorrect mappings. Lastly, it is easy

to add new edges, which are not shown explicitly as semantic relations between en-

tities in ontology but can be inferred by a description logic reasoner (e.g., Pellet,

Hermit). For example, a class inherits all properties of its super class. Then we only

have to add new edges with labels onProperty from this class to the properties of

its super class. This advantage can be used to deal with the attribute mismatch and

class mismatches as we mentioned in section 4.1

For illustration purpose, the high level graphs of the source and the target on-

tologies, which were introduced in Chapter 1, are depicted in Fig. 4.5 and Fig. 4.6,

respectively. Next, by merging the two ontology graph, we obtain a pairwise con-

nectivity graph (PCG). Fig. 4.7 shows a fragment of the PCG around a candidate

mapping (Sta�, Employee). In the next section, we will present how similarity

values are propagated in the pairwise connectivity graph.

4.3.2 Computing Similarity with Propagation

The process of similarity propagation in our method is inherited from the original

similarity �ooding algorithm. In the similarity computation process, two issues

76

Figure 4.5: Relations between concepts, object properties, data properties in the
source ontology

Figure 4.6: Relations between concepts, object properties, data properties in the
target ontology

77

Figure 4.7: A fragment of the pairwise connectivity graph

will be considered: (i) what amount of similarity is propagated from one candidate

mapping to the other; and (ii) how to update the similarity score of candidate

mappings at each iteration of similarity computation. The �rst issue is related to

the setting weight to every edges in the pairwise connectivity graph. The second

issue is related to the updated (i.e., accumulated and normalized) similarity functions

used in the propagation process.

Edge weighting in pairwise connectivity graph As in the original similar-

ity �ooding algorithm, amount of similarity propagated from one node to another

in the pairwise connectivity graph depends on the importance of the edge con-

nected between them. In the similarity propagation, the importance of an edge

is assigned by a value called propagation coe�cient. Intuitively, the propagation

coe�cient of an edge is determined by two features: the semantic meaning of the

relation itself (e.g., subClass relation is somehow more important than onProperty

or hasPropertyValue relations), and the frequency of the type of edge adhered to

a graph node.

For the �rst feature, we can set a FACTOR value for each type of semantic

relation. For the second feature, we can use one of the computing propagation

approaches described in the original algorithm.

In particular, assume card(x, p,G) delivers the numbers of edges of node x that

carry label p in graph G. The number of outgoing and incoming edges are calculated

as follows:

78

cardi(x, p,G) = ‖{(x, p, t)} ‖∃t : (x, p, t) ∈ G‖

cardo(x, p,G) = ‖{(t, p, x)} ‖∃t : (t, p, x) ∈ G‖

Assume, function π de�nes the propagation coe�cients for a candidate mapping

(x, y) in the pairwise connectivity graph, where x, y are nodes in the high level

ontology graphs G1, G2 respectively. Some possibility for a choice of function π can

be seen in Table 4.1.

π{i,o}((x, p,G1), (y, q, G2)) p = q

InverseAverage 2
card{i,o}(x,p,G1)+card{i,o}(y,q,G2)

InverseProduct 1
card{i,o}(x,p,G1)·card{i,o}(y,q,G2)

InverseTotalAverage 2
card{i,o}(p,G1)+card{i,o}(q,G2)

InverseTotalProduct 1
card{i,o}(p,G1)·card{i,o}(q,G2)

CombinedInverseAverage 4
(card{i,o}(x,p,G1)+card{i,o}(y,q,G2))·(card{i,o}(p,G1)+card{i,o}(q,G2))

Stochastic 1∑
∀p′ (card{i,o}(x,p

′,G1)·card{i,o}(y,p′,G2))

Constant 1.0

Table 4.1: Di�erent approaches to computing propagation coe�cients

Note that, when p 6= q, the propagation coe�cient function π alway returns 0.

According to the studies in [67, 98, 31], approaches based on inverse average and

inverse product are commonly used and slightly better than other approaches.

Let us see an example of computing propagation coe�cient of edges by inverse

product approach in Fig.4.7. There are two outgoing subClass edges from node

(Teacher, Lecturer). Thus, the propagation coe�cient for each of those edges

is equal to 1
2

= 0.5. It means that node (Sta�, Employee) receives only 0.5 of

similarity values propagated from node (Teacher, Lecturer).

On the other hand, node (Teacher, Lecturer) is also in�uenced by node (Sta�,

Employee). However, there are 4 incoming subClass edges to node (Sta�, Em-

ployee). Thus, the weight or propagation coe�cient for each of those edges is equal

to 1
4

= 0.25. It means that node (Sta�, Employee) propagates only 0.25 of its sim-

ilarity values to its adjacent (i.e., (Educator, AcademicSta�), (Educator, Lec-

turer), (Teacher, AcademicSta�) and (Teacher, Lecturer)) through subClass

edges.

Therefore, the subClass edge from node (Teacher, Lecturer) to node (Sta�,

Employee) has outgoing coe�cient of 0.5 and has incoming coe�cient of 0.25.

79

Identi�er Updated similarity function

Basic σ(i+1) = normalize(σi + ϕ(σi))

A σ(i+1) = normalize(σ0 + ϕ(σi))

B σ(i+1) = normalize(ϕ(σ0 + σi))

C σ(i+1) = normalize(σ0 + σi + ϕ(σ0 + σi))

Table 4.2: Variation of the updated similarity functions

Updated similarity function In each iteration of the similarity propagation

process, every node in graph (i.e., a candidate mapping) will update its similarity

score. As described in the original algorithm, the updated similarity function for

each node is performed in two steps: (i) accumulation similarity propagated from its

adjacent; and (ii) normalization similarity values over the entire computation space.

Firstly, the accumulation of propagated similarity values is performed as follows.

Assume σi(a, b) is the similarity score value of two entities a ∈ G1 and b ∈ G2 at

iteration i. In the next iteration (i + 1), the generalized function to accumulate

similarity score values is:

ϕ(σi(a, b)) =
∑

(a,p,x)∈G1,(b,q,y)∈G2

σi(x, y) · πo((x, p,G1), (y, q, G2)) +

+
∑

(x,p,a)∈G1,(y,q,b)∈G2

σi(x, y) · πi((x, p,G1), (y, q, G2))

Secondly, the normalization function projects similarity values of all candidate

mappings into the range [0,1]. According to the original algorithm, a normalized

similarity value is obtained by dividing the current value by the highest similarity

value in the computation space. In particular:

normalize(σ(a, b)) =
σ(a, b)

max {s‖∃x ∈ G1, y ∈ G2 : σ(x, y) = s}

Finally, the updated function, which is a combination of accumulation and nor-

malization functions, can be de�ned as one of the formulas in Table 4.2.

The updated similarity function is known as a �xpoint function in each iteration

of the similarity propagation. It directly impacts the convergence and e�ciency of

this process. According to the study in the original algorithm [67], the formula C

makes the propagation converge fast and it does not negatively impact the quality

of the results.

80

4.3.3 Filters

Mapping �lter is to choose the best match candidate from the list of possible map-

pings. Several �lters such as threshold �lter, greedy �lter or maximum weighted

assignment �lter can be used after performing similarity propagation. We will dis-

cuss them all in detail in the section 6.1 in Chapter 6. Here, in context of the

similarity propagation method, we apply two consecutive �lters, i.e., threshold �lter

then maximum weighted assignment �lter. The �rst one eliminates low similarity

candidate mappings, whereas the second one guarantee the best solution for 1:1

matching cardinality.

4.4 Experiments and Evaluations

In this section, we evaluate the di�erent aspects of our similarity propagation method.

In particular, we �rst compare the performance of this method against the other

structural methods. Furthermore, we investigate the impact of input noise on this

method and the other structural methods. Next, the impact of quality of input on

this method is also studied. Finally, we evaluate the impact of using a reasoning sys-

tem to detect hidden relationships between entities in ontologies on the performance

of the similarity propagation method.

4.4.1 Comparison of the Similarity Propagation Method with

Basic Structural Methods

In this evaluation, we are going to compare the e�ectiveness of using our Similarity

Propagation method (SP) to other existing structural methods. In particular, all the

basic external structural methods described in section 4.2 will be used in the compar-

ison, i.e., ANCESTORS, DESCENDANTS, LEAVES, ADJACENTS, ASCOPATH,

DSIPATH and SSC.

To perform this experiment, we have used Benchmark 2011 dataset including 103

test cases. These test cases are mainly considered for structural evaluation because

of the following features: (i) Because entities do not have annotation (i.e., labels,

comments) and their names are altered by random strings (no variation by naming

convention or synonym words), the combination of di�erent string based, linguistic

based methods are not necessary. In this experiment, we can use only a simple string

method to check whether two strings are identical or not. The interesting point here

is that if two entities from two input ontologies have the same name, they are a

correct mapping; (ii) In some tests, the structure of ontologies are not changed but

81

a number of names are replaced by random strings. In other tests, not only names

of entities are altered but also the ontology structure is changed (�atten, extension,

etc.).

According to this observation, the matching strategy used in this experiment is

described as follows:

• Only 3 modules will be used: Element based matcher, Structure based matcher

and Mapping selection.

• Element based matcher provides init mappings to structural based matcher.

It is based on the Identical similarity measure (see section 3.2.1 in Chapter 3).

• Each structure based matcher corresponding to each of the structural methods

selected above produces a similarity matrix for all pairs of entities of the two

input ontologies.

• We vary di�erent threshold (0.01 - 0.9) to select mappings discovered by struc-

tural matcher. The mappings obtained by structural matcher are combined

with the mappings obtained by element based matcher to produce the set of

candidate mappings. Then, a greedy selection method described in section 6.1

in Chapter 6 is used to extract the �nal alignment.

Obviously, when the threshold varies from 0.6 to 0.9, the structural method

lines in Fig. 4.8 seem to be converging into INIT-MAPPINGS line where H-mean

Fmeasure = 0.68 (4643 correct mappings, 27 incorrect mappings, 4342 unfound).

It means that the structural methods did not discover additional correct mappings

or they discovered correct mappings, which already exist in input mappings. It is

understandable because almost structural methods compute similarity between two

entities by determining how much overlap (e.g. Jaccard measure) of their structural

patterns (i.e.m adjacent, ancestor, etc.). The higher �lter threshold is, the lower

possibility to discover new mappings is.

On the contrary, the matching quality of structural methods are signi�cantly

di�erent when threshold value is small. When the threshold is set to very small value

(from 0.01 to 0.09), ASCOPATH and ANCESTORS provide low matching quality.

It means that these methods discover many incorrect mappings. For example, when

the threshold is equal to 0.01, ACSOPATH discovers 90 (4733 - 4643) additional

correct mappings but 453 (480 - 27) incorrect mappings in comparison with init

mappings. It can be explained as follows. Due to observation of ontologies in

Benchmark 2011 dataset, we see that the maximum depth and also the maximum

82

number of ancestors of an entity in the ontology hierarchy is equal to 5. Assume that

two entities have only one common entity in their ancestors, then their similarity

score at least is equal to 1/10 = 0.1. If two entities do not have any common entity,

then their similarity is equal to 0. Therefore, with threshold in range from 0.01 to

0.09, any pair of entities having at least one common ancestor will be assumed as

matched. Since siblings entities have the same path and ancestors, they will have the

same structural patterns. Therefore, many pairs of entities have the same similarity

scores. Moreover, one entity may have many descendant entities so many pairs of

entities can be coupled, consequently, many incorrect mappings are produced.

Figure 4.8: Comparison of di�erent matching methods in structure based matcher

Whereas, other methods such as DESCENDANTS, SSC, DSIPATH and LEAVES

seem to work well with small thresholds. They discover more additional correct

mappings than incorrect mappings and, consequently, they improve the quality of

matching. For example, with threshold is equal to 0.01, DESCENDANTS discovers

494 = (5137 - 4643) additional correct mappings and 175 = (202 -27) incorrect map-

pings in comparison with init mappings. Similar to ASCOPATH and ANCESTORS

methods, with low threshold �lter, many pairs of entities are passed. However,

these methods clearly distinguish the structural patterns of entities. For instance,

in DESCENDANTS and LEAVES, di�erent entities have di�erent sets of leaves/

descendants; in DSIPATH and SSC, they use di�erent contribution percentage of

83

entities according to how much an entity is important to another [92]. Therefore,

by running greedy selection, high percentage of selected mappings are correct.

Our proposed Similarity Propagation (SP) is di�erent with these structural meth-

ods discussed above. Note that the similarity scores produced by SP is not the

absolute but relative values due to normalized process at the end of each running

iteration. SP propagates similarity values from one pair of entities to others, hence,

if two entities have similarity score higher than 0, then they are somehow similar.

Thus, with a low threshold �lter, SP discovers more correct mappings than that

with a high threshold value. Moreover, similarity score of a pair of entities depends

on not only their current status but also on the status of the other pairs. The more

neighbors with high similarity a pair of entities have, the higher possibility that they

are matched. Therefore, SP distinguishes well correct and incorrect mappings by

ranking similarity scores. That explains why SP outperforms all other local based

structural methods discussed above when the �lter threshold is low. For example,

when the threshold is equal to 0.01, SP discovers additional 1298 (5941 - 4643)

correct mappings and 247 (274 - 27) incorrect mappings in comparison with init

mappings. It shows that SP produces better matching quality result than other

methods in the structure based matcher module.

4.4.2 Impact of Input Noise on the Structure-based Methods.

In this experiment, we evaluate the behavior of di�erent structure methods when we

add noise data to input mappings. Here, we call noise a pair of dissimilar entities

but discovered as similar by element based matcher. It is important because in

real scenario matching case, a matching method rarely produces 100% precision,

consequently, it rarely provides input mappings without noise to structure methods.

Intuitively, when noise data increase, the number of incorrect mappings increases

whereas, the number of correct mappings decreases. Our assumption is that a stable

method will produce less incorrect mappings than correct mappings. Therefore, we

will study the changes of the number of correct and incorrect mappings discovered

by each structure method. The evaluation strategy works as follows:

• At Element based matcher, we use Identical similarity measure to produce

initial mappings. In order to make noise, we add a number of random incor-

rect mappings to inputs, which is corresponding to N% of size of original init

mappings. Here N = (0,10,..,100).

• At Structure based matcher, SP takes input mappings from Element based

matcher and performs similarity propagation. According to the experiment in

84

section 4.4.1, we select the best �lter threshold value for each structure method.

For example, θSP = 0.01, θDESCENDANTS = 0.01, θADJACENTS = 0.07, etc.

• For each running, we count the total number of correct mappings and the total

number of incorrect mappings that a structure method produces overall 103

test cases in Benchmark 2011 dataset.

Fig. 4.9 shows the total number of correct and incorrect mappings produced

by the structure methods for each time noise data are added to inputs. Generally,

when more noise data are added, the number of correct mappings discovered by all

the methods decreases ,whereas, the number of incorrect mappings discovered by

almost methods increases except DSIPATH and SSC. Here, DSIPATH and SSC are

unlike other local based structure methods in terms of interaction between entities

in ontology. For example, the similarity of two entities computed by DSIPATH

strongly depends on their similarity provided by input mappings and decreasingly

depends on similarity of parents, grandparents, etc. Consider two entities of two

input ontologies. If noise appears at the same level in their path to root, their

similarity will be impacted by noise, otherwise, it will not. Therefore, the impact of

noise in discovering others mappings depends on the position of its entities in the

hierarchies of input ontologies. Because noise data are created randomly, the impact

of noise to produce incorrect mappings is unpredictable. Whereas, other structure

methods use set operations (i.e. intersection, union), so there is no di�erence between

parent and grandparent. When a noise appears in the set of ancestors or descendants

of two entities, the noise will directly propagate errors to them. Therefore, obviously

in Fig. 4.9, the number of incorrect mappings increases in almost all structure

methods.

This experiment also shows the dominant of using Similarity propagation over

other structure methods. Let's see on the diagram representing the number of cor-

rect mappings discovered in Fig. 4.9. When the percentage of noisy data is 100%,

SP still discovers 913 additional correct mappings in comparison with init mappings.

Whereas, the maximum number of correct mappings discovered by the other meth-

ods is only 612 mappings when there is no noise added to the inputs. Moreover,

in the next diagram in Fig. 4.9, from 0% to 100% of the noisy data, SP produces

only 57 (321 - 274) additional incorrect mappings. Whereas, for example, LEAVES

method produces 481 (553 - 72) more inccorect mappings. This feature is reasonable

because SP takes all kinds of semantic relations of entities such as concept-concept,

concept-property and property-property into account. These constraint relations

will reduce the impact of the noisy data to produce mappings. That is why SP is

85

Figure 4.9: Impact of noise input to structure based methods

known as a stability constraint method.

4.4.3 Impact of the Quality of Input to Similarity Propaga-

tion Method

In this experiment, we investigate the inpact of input on the Similarity Propagation

(SP) method. To do that, we select a string based matcher to produce input (initial

mappings) to the SP process. From the Fig. 3.3, we choose QGRams and ISUB

matchers because they show di�erent manner when the threshold used to select the

mappings at element level changes.

Figure 4.10: Impact of the quality of input to the similarity propagation method

86

Fig. 4.10 shows the changes of matching quality obtained by SP when the init

mappings changed. Obviously, line ISUB increases from 0.398 to 0.595, then line

ISUB+SP increases from 0.439 to 0.612. Both lines QGrams and QGrams+SP go

up to the peak (threshold is equal 0.7) then go down. Therefore, when the matching

quality of the inputs improves, the matching quality of the SP increases too. Accord-

ing to this experiment, we may conclude that the better initial mappings provided

to the similarity propagation are, the better matching result will be obtained.

4.4.4 Impact of Using a Reasoning System to the Similarity

Propagation Method

In this section, we will show the advantage of using a description logic reasoner in

the ontology matching task. Apparently, the ontology reasoner detects the hidden

relations between entities; consequently, new edges in ontology graph will be added.

Therefore, it impacts to the result obtained by propagation process in structural

method. To see that, we con�gure our method running with and without a reasoner

on some test cases. In this experiment, we use Pellet as a description logic reasoner.

Configuration Pr. Re. Fm. TP FP FN

with Pellet 0.979 0.609 0.751 5470 115 3515

no Pellet 0.978 0.608 0.749 5462 120 3523

Table 4.3: Comparison of matching quality obtained with OAEI Benchmark 2011
dataset

Configuration Pr. Re. Fm. TP FP FN

with Pellet 0.750 0.570 0.648 174 58 131

no Pellet 0.715 0.551 0.622 168 67 137

Table 4.4: Comparison of matching quality obtained with Conference dataset

We perform the two following experiments to see the comparison of matching

quality obtained by running matching with two con�gurations, i.e., with and without

Pellet reasoner.

• In the �rst experiment, we select OAEI Benchmark 2011 as test matching

scenarios. Similar to section 4.4.1, we use Identical similarity measure to

provide initial mappings to the similarity propagation process. Table 4.3 shows

the comparison result of this experiment.

• In the second experiment, we select the real world ontologies in Conference

dataset. The Identical similarity measure is used to provide initial mappings

87

to the similarity propagation. Table 4.4 shows the comparison result of the

average of of this experiment.

In the both experiments, using a reasoner discovers more correct mappings and

less incorrect mappings. For example, in the Conference track, the number of correct

mappings increases 6 (174− 168) and the number of incorrect mappings decreases 9

(67 − 58). Therefore, in term of H-mean Fmeasure, using Pellet improves its value

with 2.6%. Similarly, in the Benchmark OAEI 2011 track, the number of correct

mappings increases 8 (5470 − 5462), the number of incorrect mappings decreases

5 (120 − 115) and Fmeasure slightly increases by 0.002%. According to this ex-

periment, we may conclude that the using a reasoning system slightly increases the

matching quality.

4.5 Conclusion

In this chapter, we have presented our approach to deal with conceptual hetero-

geneity in ontology matching. For this purpose, we have analyzed di�erent types of

conceptual heterogeneity as well as the challenges in dealing with them. In addi-

tion, we have also discussed the ability of basic structural similarity measures when

dealing with conceptual heterogeneity. We have concluded that the basic methods

are incomplete and uncertain.

To overcome the challenging issues of the conceptual heterogeneity, we have pro-

posed a modi�cation of the Similarity Flooding algorithm [67], that is speci�cally

adapted to the ontology matching task. Our method is called Similarity Propa-

gation. It is based on a iterative computation, in which, the similarity of a pair of

entities propagates to the other neighboring pairs in each iteration. The modi�cation

lies on the new graph data structure that we used for storing semantic information

of an ontology. Thanks to the high level graph data structure, the semantic infor-

mation encoded in the ontology becomes more visible. Consequently, the similarity

propagation process can be easily implemented on it.

Our experiments have proved the importance of the similarity propagation method.

Firstly, we have shown that this method outperforms other basic structural methods

in terms of matching quality. It is because this method exploits more structural in-

formation than the others. Next, according to the experiment with noise input, we

have concluded that the similarity propagation method is the most stable in com-

parison to the others. This property has been again veri�ed in the experiments in

section 4.4.3. Indeed, its performance correlates with the quality of the input. This

method always improves the matching quality by discovering new correct mappings.

88

According to these experiments, the most important observation is that if we would

obtain a high matching quality result by using this method, we should provide a good

matching quality of input. Finally, using a reasoning system to build a high level

graph from an ontology slightly improves the matching quality. However, because

new hidden relations are added into the graph, the computational space becomes

bigger, which leads to a requirement of big memory and high runtime computation.

In Chapter 3 and in the current chapter, we have discussed many similarity

measures that can deal with terminological and conceptual heterogeneity. Each of

the proposed measures has been tested in our experiments. The next question is how

to combine these measures e�ectively. In the ontology matching �eld, this problem

is known as the selection and con�guration tuning challenge [76]. We will discuss

and propose a solution to this issue in next chapter.

89

90

Chapter 5

Matcher Combination

The combination of di�erent individual matchers is necessary and pervasive in on-

tology matching systems. In the ideal combination, the individual matchers should

complement each other in order to increase the matching evidence of pairs of enti-

ties. Moreover, a clear distinction between correct and incorrect mappings should

be made. However, in reality, designing an intelligent combination method like that

is a real challenge in the ontology matching �eld. Two major problems arise: (i)

selecting matchers and combining them, and (ii) self-con�guring or tuning matchers

[76].

So far, we have reviewed many individual matchers dealing with heterogeneity

of ontologies. Each of these matchers is based on a similarity measure and exploits

a speci�c feature of the entities. In particular, terminological matchers are based on

terminological similarity measures, which compute a similarity value for two entities

by comparing their terminological features � labels, comments, context, etc. On

the other hand, structural matchers are based on structural similarity measures,

which exploit the relation between entities for the similarity computation. As we

discussed in Chapter 3, the existing similarity measures including the ones proposed

in this thesis can be su�cient for few types of terminological heterogeneity, but not

for all. Thus, several methods should be combined together in order to e�ectively

overcome the terminological heterogeneity. Moreover, since the semantics of an

entity encompasses both terminological and structural information, using only one

matcher may be not su�cient. Therefore, a combination between terminological and

structural matchers is a requisite.

In this chapter, we propose our approach to deal with the challenge of matcher

combination. For this purpose, in Section 5.1, we review �rst several automatic

combination methods in the state-of-the-art ontology matching systems. In particu-

lar, two automatic combination methods, namely Harmonic Adaptive Weighted Sum

91

[64] and Local Con�dence Weighted Sum [15] will be discussed in detail to underline

their strengths and weaknesses.

Our �rst contribution contained in this chapter is a machine learning-based

method, which is used to combine di�erent terminological similarity measures (Sec-

tion 5.2). The intuition behind this method is that an ontology matching task can

be transformed into a task of a classi�cation of objects, which can be solved by

using machine learning models. Furthermore, the bene�t of using machine learning

methods is that they can be �exible and self-con�guring during the training process.

The second contribution is a Dynamic Weighted Sum method, which is used to

combine terminological and structural matchers (Section 5.3). For a given match-

ing scenario, this method evaluates the degree of reliability of these matchers, and

assigns a corresponding weight values to them. In addition, it also automatically

determines a threshold value to select a combined matching result.

Finally, the performance of our proposed methods will be evaluated in experi-

ments described in Section 5.4. In these experiments, we prove that our methods

outperform Harmonic Adaptive Weighted Sum and Local Con�dence Weighted Sum

methods.

5.1 Overview of Automatic Combination Methods

In [28], many combination methods have been proposed to aggregate similarity

values of di�erent individual matchers. For example, the Max/Min methods re-

turn the maximal/minimal similarity value of individual matchers. The Weighted

method computes a weighted sum of similarity values of individual matchers. The

Average method is one special case of the Weighted function and returns where

weights assigned to all individual matchers are equal. The SIGMOID method

combines multiple results using a sigmoid function, which is essentially a smoothed

threshold function.

Generally,Weighted and SIGMOIDmethods need to manually set aggregation

weights based on experience for di�erent individual matchers or tentatively factor in

the sigmoid function. This way of setting parameters is not able to adapt to di�erent

matching tasks because it might work well in a speci�c matching scenario but not in

the others. Moreover, manual setting is not �exible and nor scalable namely when

the selected matchers change or when their number increases.

In addition Max/Min and Average methods do not require any parameter

settings but they are limited to use in some speci�c circumstances. In particular, the

Average method assumes that no one of the individual matchers is more important

92

than the others. But, in practice, some entities in the input ontologies can work with

some but not all individual matchers. For example, some entities have properties,

they can work with matchers based on similarity of properties. Whereas the other

entities do not have properties, thus they cannot work with those matchers. This

problem can solved by using the Max/Min methods. However, these methods

assume that a mapping can be completely discovered by using only one extracted

features of entities. For example, some mappings can be found by comparing names

of entities only, whereas, the others may be found by comparing labels or descriptions

of entities, etc. That is, the certainty of the Max/Min methods strongly depend

on the certainty of the individual matchers. Therefore, these methods can be useful

when the individual matchers are strong and high certainty.

To our best knowledge, in recent years, there are two automatic weighted sum

methods that have been implemented and proved their success. The �rst method

is Harmonic Adaptive Weighted Sum, which has been introduced in the PRIOR+

system. According to the comparison analyses in [64], this method outperforms all

the methods mentioned above. The second method is Local Con�dence Weighted

Sum [15]. It is a core method for combining individual matchers in the Agree-

mentMaker system which is one of the top best ontology matching system in recent

OAEI campaign. The brief overview of the two methods will be discussed in the

next sections.

5.1.1 Harmonic Adaptive Weighted Sum Method - HW

This method is based on the notion of harmony which estimates the importance and

reliability of di�erent individual matchers. In order to determine a harmony value

for a given individual matcher, this method assumes that the matching cardinality

is 1:1. The intuition of this method is as follows. The similarity value of two truly

mapped entities (e.g., 〈ai, bj〉) should be larger than that of all other pairs of entities

that contain either ai or bj. It implies that the two entities ai and bj mutually prefer

each other.

Assume that a given individual matcher produces a similarity matrix for all pairs

of entities from the two input ontologies. The harmony value of a given individual

matcher with two input ontologies O1 and O2 is computed by the following formula:

harmony =
‖perfectMatches‖
‖O1‖+ ‖O2‖

where, perfectMatches is a set of the pair of entities that has the highest and

the only highest similarity in its corresponding row and column in the similarity

93

Figure 5.1: An example of computing a harmony value (taken from [64])

matrix. Let see an example in the Fig.5.1, the harmony value is equal to 4
5

= 0.8.

Once harmony values are calculated for all individual matchers, the harmonic

adaptive weighted sum method uses these values as weights for the individual

matchers. Then, the �nal similarity value of two entities (ai, bj) can be computed

as follows:

finalSim(ai, bj) =

∑
k hk · Simk(ai, bj)

n

where, n is the total number of individual matcher being combined; hk is a

harmony value of the kth individual matcher, and Simk(ai, bj) denotes the similarity

value of two entities (ai, bj) computed by the kth individual matcher.

5.1.2 Local Con�dence Weighted Sum Method - LC

This method is based on the notion of local con�dence measure, which estimates

the degree of the reliability of a given individual matcher that discovers mappings

for a given entity. Note that this measure is very di�erent to the harmony measure

discussed in above. In particular, a harmony value is a degree of reliability of

similarity values of all pairs of entities computed by a matcher, whereas, each local

con�dence value is a degree of reliability of a similarity value of two speci�c entities

computed by a matcher.

The computation of local con�dence is based on the following intuition. Firstly, it

should be directly proportional to the similarity values of selected mappings. Next,

it should detect and penalize those matchers that tend to assign high similarity

values too generously. For instance, if the matching cardinality is 1:1, a reliable

matcher will discover each entity to be very similar (i.e., have high similarity value)

to one entity at most, and very di�erent (i.e., have low similarity value) to all others.

Based on this intuition, given a matcher M and an entity c, the local con�dence

94

LCM(c) of M with respect to c is computed as follows:

• Let T be the set of all target entities;

• Let mM(c) ⊆ T be the set of concepts c′ ∈ T that have been mapped to c by

M ;

• Let simM(c, c′) be the similarity value between c and c′ assigned by M ;

• Then LCM(c) is de�ned as the di�erence between the average of selected map-

pings similarities for c and the average of the remaining correspondences' sim-

ilarities:

LCM(c) =

∑
c′∈mM (c) simM(c, c′)

‖mM(c)‖
−
∑

c′∈T\mM (c) simM(c, c′)

‖T\mM(c)‖

Then, the �nal similarity value of two entities (ai, bj) can be computed as follows:

finalSim(ai, bj) =

∑
k LCk(ai, bj) · Simk(ai, bj)∑

k LCk(ai, bj)

where, LCk(ai, bj) is a local con�dence value of the kth individual matcher with

respect to pair of entities (ai, bj); and Simk(ai, bj) denotes the similarity value of

two entities (ai, bj) computed by the kth individual matcher.

5.1.3 Observation on the HW and LC methods

Generally, both HW and LC methods somehow solve the problem of assigning

weights to individual matchers automatically. They both analyze the similarity

values computed by a given matcher in order to estimate their degree of reliabil-

ity. They are �exible because there is no restriction on the number of individual

matchers being combined.

However, there are several weaknesses in these methods. Firstly, in some situ-

ations, di�erent individual matchers are complementary, i.e., they can only handle

a part of entities well, therefore with the HW method, all these matchers may be

assigned a low reliability. In that case, the similarity values computed by individual

matchers seem to be shrank into smaller range. Thus, the distinction between cor-

rect and incorrect mappings becomes slight. It makes a trouble in the selection of

�nal alignment. On the other hand, this weakness of the HW method is somehow

�xed in the LC method. It is because the LC method estimates the reliability of

each pair of entities instead of the whole similarity matrix as the HW does.

95

Secondly, both methods may not really satisfy the natural aim of a weighted sum

model, which emphasizes the contribution of the high reliable matchers and weakens

the contribution of the low reliable ones. For example, in general, the similarity

values obtained by a terminological similarity measure are usually higher than that

obtained by a structural similarity measure. In that case, the local con�dence of

the �rst method is higher than the local con�dence of the second method. It is a

contradiction because the reliability of a terminological similarity measure is usually

less important than the reliability of a structural similarity measure.

Finally, they both lack a strategy to determine a threshold value to select the

best mappings. In fact, a reliability value of a given individual matcher varies with

respect to di�erent matching scenarios. Therefore, the �nal similarity values are

dependent to the input ontologies in a given matching scenario. Thus, the �lter

threshold should be selected dynamically and dependent to the matching scenarios.

5.2 Machine Learning Based Combination Method

- ML

In this section we present our approach for combining similarity measures, which

is based on machine learning. The main idea is as follows. From existing gold

standard dataset, a classi�cation will be built. Here, a �gold standard� data is a

pair of ontologies with an alignment provided by domain experts. Given a matching

scenario, for each pair of entities in ontologies, the classi�cation classi�es them in to

match or not match category. To do that, we are going to deal with the following

issues.

The �rst issue is about how to generate training data from gold standard dataset

and how to generate unclassi�ed object from two entities of the input ontologies? In

fact, the way of generating both training and unclassi�ed data are the same. For

each pair of entities, a list of similarity scores is computed by applying a list of

similarity measures. Here, each pair of entities is considered as a learning object

X; each similarity measure becomes a X's attribute and its corresponding similarity

score is considered as a X's feature value. If two entities are in two to-be-matched

ontologies, X becomes an unclassi�ed object. We set an unknown value to its class.

If two entities are in ontologies within the gold standard dataset, X becomes an

instance of training data. Its class value is assigned by its con�dence value found in

expert alignment. In our approach, we categorize the class values into two groups

which mean two entities are matched (value 1.0) or not matched (value 0.0).

The second issue is which similarity measures will be selected for combination?

96

Theoretically, all terminological similarity measures can be used as attributes, but it

will make the learning and classifying processes be time consuming. In our approach,

we select representative similarity measures that can deal with di�erent types of ter-

minological heterogeneity described in Section 3.1. In particular, to deal with type 1,

we select Levenstein and ISUB, which are representative for a group of edit-based

similarity measures; to deal with type 2, we select QGrams and TokLev, which is

a token-based similarity measure that use Levenstein as its internal similarity mea-

sure. Next, in order to deal with type 3, we select two hybrid similarity measures,

namely HybLinISUB and HybJCLev. Where, HybLinISUB (or HybJCLev) is

hybrid similarity measure that combines Lin with ISUB measures (or JiangCo-

rath and Levenstein measures). Their algorithms are described in Section 3.2. To

deal with type 4 and type 5 of terminological heterogeneity, we make use of aMax-

Context measure, which returns a maximum similarity of three types of context

pro�les (i.e., IndividualPro�le, SemanticPro�le and ExternalPro�le) of entities. It

is described in Section 3.3.2. To sum up, Table 5.1 shows the list of the selected

similarity measures. Surely, we can add other similarity measures in combination;

our method will automatically tune new parameters to combine them.

Type List of measures
Type 1 Levenstein, ISUB
Type 2 QGrams, TokLev
Type 3 HybLinISUB, HybJCLev
Type 4-5 MaxContext

Table 5.1: List of the selected similarity measures

The third issue is about what machine learning model will be used to build a

classi�cation from given training data? Di�erent machine learning models (e.g.,

tree-based, probability-based, function-based, rule-based, instance-based, etc.) can

be used to build a classi�cation. The implementations of these machine learning

models are reused from the well-known open source data mining framework Weka1.

The last issue is about how to classify an unclassi�ed object to its class in or-

der to check if two entities corresponding to this object are match or not? Let us

demonstrate the classifying process with the motivating example described in Chap-

ter 1. Assume that we use a decision tree model to combine the three similarity

measures i.e., Levenstein, Qgrams, HybLinISUB. The �gold standard� dataset used

to generate training data is taken from Benchmark OAEI 2009 track.

Fig. 5.2 shows the classi�cation obtained after the training process. In this

1http://www.cs.waikato.ac.nz/ml/weka

97

Figure 5.2: The trained decision tree classi�cation

example, a decision tree is a tree whose non-leaf nodes are the similarity measures,

leaf nodes values are either 1.0 or 0.0 indicating if there is a match or not. In Fig.5.2,

leaves are represented by rounded rectangle shapes with number inside. At a non-

leaf node, a similarity value of to-be-matched entities is computed by the similarity

measure stored in this node. The returned value is compared with condition values

on outgoing edges from current node in order to decide which child node will be

reached. Here, all condition values are determined automatically by algorithm of

building decision tree with given training data. The classi�cation process will start

at root node and iterate until a leaf node is reached. The value of destination leaf

node indicates whether the two entities should match or not. In Fig. 5.2, edges with

the condition values are indexed by numbers in pre-order traversal of tree.

98

Instances Hyb. Lev. QGs CLS

Researcher|Reseacheur 0.00 0.91 0.80 ?

Teacher|Lecturer 0.77 0.37 0.21 ?

Manager|Director 1.00 0.13 0.10 ?

teach|teaching 1.00 0.63 0.59 ?

Table 5.2: A set of the unclassi�ed data

Now, we demonstrate how we use this decision tree classi�cation in our system by

several examples in Table 5.2. Here, we use Hyb., Lev., QGs and CLS as abbreviation

of HybLinISUB, Levenshtein, QGrams and CLASS attributes respectively.

Let us see feature values of the �rst instance, which corresponds to the pair of

entities Researcher and Reseacheur from the source and target ontologies. From

the root of the decision tree, the similarity score for this pair of entities returned by

the HybLinISUBmeasure is 0.00, which is smaller than 0.891794. Here, 0.891794 is

the condition value determined from the training process at the root node. Therefore,

the decision goes through the �rst edge (HybLinISUB <= 0.891794). In the next

node, QGrams, the returned similarity score is 0.80, which is higher than condition

value 0.258065. Therefore, the decision goes through the edge number 03. Similarly,

this score is higher than condition value 0.645161 in the next node, hence, the

decision goes through the edge number 05. The next node is HybLinISUB, which

returns the similarity score lower than the condition value 0.576275. Then, the

decision goes through edge number 06 to the next node QGrams. Here, because the

similarity score is higher than the condition value 0.7, the decision goes through

edge number 08 to the Levenshtein node. Since the similarity score returned by

Levenshtein measure is 0.91 higher than condition value 0.888889, therefore the

decision reach to leaf with label 1.0 on edge number 10. It means that entities

Researcher and Reseacheur are matched. To sum up, edges on the path of the

decision for those two entities is: 01 → 03 → 05 → 06 → 08 → 10 → leaf(1.0).

In the same way, we can make the decision for the rest in unclassi�ed data as

follows. The decision path for the second instance on Table 5.2 is: 01 → 02 →
leaf(0.0). The decision paths for the third and fourth instances on Table 5.2 are

the same as: 12 → 13 → 15 → 16 → leaf(1.0). It means two entities Teacher

and Lecturer are not match, whereas, Manager matches to Director and teach

matches to teaching. The full results obtained by using this decision tree are shown

in the Table 5.3.

99

Source Target Score

Employee Employee 1.0
Manager Director 1.0
Researcher Researcheur 1.0
Subjects Topic 1.0
hasTitle title 1.0
teach teaching 1.0

Table 5.3: Classi�ed mappings by the trained decision tree

5.3 Dynamic Weighted Sum Method - DWS

In this section we will present our method to combine the mapping results obtained

from a terminological matcher (or an element matcher in general) and a structural

matcher. The main idea of this method is explained in Algorithm 3. Here, Aelement

is a set of mappings discovered by the terminological matcher. Astructure is the set

of mappings discovered by the structural matcher. The similarity values ce and cs

computed by these matcher are in range [0, 1].

Algorithm 3: Produce Final Mappings

input : Aelement = {(ei,ej,≡,ce}
Astructure = {(ep,eq,≡,cs)}

output: Afinal = {(e1,e2,≡,c)}
1 θ ← min(m.cs) |m ∈ Astructure ∩ Aelement;
2 A← WeightedSum(Aelement, θ, Astructure, (1− θ));
3 threshold← θ;
4 Afinal ← GreedySelection(A, threshold);

5 return Afinal

To take the contribution of both terminological and structural matchers into

account, we use a weighted sum method to combine them. In order to avoid man-

ual setting, this method should automatically set weights to element and structure

matchers and select a threshold to �lter mappings (lines 1,2 and 3 in Algorithm 3).

Let us explain our method in Fig.5.3. Here, Melement is a set of mappings discovered

by only the terminological matcher. Similarly, Mstructure is a set of mappings dis-

covered by only the structural matcher. They are indicated by labels with pink �em�

and light-blue �sm� pre�xes respectively. Moverlap is a set of mappings discovered

by both terminological and structural matchers. They are labeled with yellow �se�

pre�x.

In Fig.5.3, obviously, the mappings belong to Moverlap = {se1,se2,se3} are

the most potentially matched because their entities seem to have both similar

100

Figure 5.3: Four kinds of candidate mappings

name/labels and similar semantic description. Next, the mappings belong toMstructure

= {sm1,sm2,sm3} are kind of synonym because their entities seem to have di�erent

name/labels but have similar semantic descriptions. Whereas, each mapping be-

long to Melement = {em1,em2,em3} is kind of polysemy because their entities seem

to have similar name/ labels but di�erent semantic descriptions. Intuitively, the

explicit meaning of entity (through semantic relations with other entities) is more

important than its intended meaning (through name, labels). Therefore, the order

of con�dence to be selected as correct mapping is: Melement < Mstructure < Moverlap.

In our approach, we assume that all mappings in Moverlap are correct mappings.

Now, two questions arise: (i) will we ignore all mappings in Melement?; and (ii)

will we accept all mappings in Mstructure?. For the �rst question, due to the high

heterogeneity of ontologies, it is possible that entities referring to the same thing

may have di�erent or small degree overlap of their semantic descriptions. Therefore,

we cannot de�nitely reject all these candidate mappings. Instead, we should assign

to them a con�dence value for later selection. For the second question, we cannot

accept all of them because maybe their similarity scores obtained from structure

level are very small. Therefore, we need a threshold θ to �lter the probably incorrect

mappings. It means that if two entities has cs ≥ θ then they are probably matched.

Let us see Algorithm 3 to understand how we calculate the con�dence value

for mappings in Melement and �lter threshold for mappings in Mstructure. Firstly,

we seek the minimum value of structural similarity score in Moverlap (line 1). We

assume that all mappings having a structural similarity score, which is higher than

this value will be considered as correct. Therefore, we select this value as �lter

threshold θ. According to our intuition discussed above, the possibility of correctness

of mappings in Melement is smaller than priority of mappings in Mstructure, we will

set the con�dence to the mappings in Melement to θ. This rule guarantees that

the similarity scores of correct mappings in Mstructure are always higher than the

101

similarity scores of correct mappings inMelement. Thus, when we perform a selection

method (line 3,4), the mappings in Mstructure have higher con�dence than mappings

in Melement. Finally, in the Moverlap, to normalize the similarity score value, we set

weights to the similarity values obtained by element and structure levels to θ and

1− θ respectively. Then we compute their similarity by weighted sum function (line

2).

For the illustration of this idea, we continue with the motivating example de-

scribed in the Introduction chapter. The terminological matcher is based on machine

learning models to combine di�erent terminological similarity measures described in

the previous section. The structural matcher is based on the Similarity propaga-

tion method described in section 4.3. Indeed, the input of the structural matcher

is taken from the output of the terminological matcher. By running the Similarity

propagation on the input ontologies, we obtain the following result in Table 5.4.

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.2716023
Researcher Researcheur 0.2770916
Subjects Topic 0.80278397
Staff Employee 0.428497
Educator AcademicStaff 0.04201378
Teacher Lecturer 0.49652436
hasTitle title 0.54690593
teach teaching 0.84298825
hasID identity 1.0

Table 5.4: Discovered mappings by similarity propagation method

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.4694368
Researcher Researcheur 0.47343516
Subjects Topic 0.8563483
Staff Employee 0.428497
Educator AcademicStaff 0.04201378
Employee Employee 0.2716023
Teacher Lecturer 0.49652436
hasTitle title 0.6699673
teach teaching 0.885633
hasID identity 1.0

Table 5.5: Combination results of element and structure matchers

102

Source Target Score

Courses LearningModule 0.6460724
Manager Director 0.4694368
Researcher Researcheur 0.47343516
Subjects Topic 0.8563483
Staff Employee 0.428497
Teacher Lecturer 0.49652436
hasTitle title 0.6699673
teach teaching 0.885633
hasID identity 1.0

Table 5.6: Result after greedy selection. θ = 0.2716023

Let us see mapping results in Table 5.3 and Table 5.4. There, pair of entities

(Employee, Employee) has the minimum value (cs = 0.271) found in overlap between

results of element level and structure level matchers. Then, we set θ = 0.271. Table

5.5 shows the combination results obtained from element level and structure level

matchers. After perform a Greedy Filtering with threshold θ = 0.271, the �nal

result is shown in Table 5.6.

5.4 Experiments and Evaluations

In this section, we design 4 experiments to evaluate the performance of our proposed

combination methods. In the �rst experiment (Section 5.4.1), we compare the perfor-

mance of di�erent machine learning models that can be used to build a classi�cation

for the ontology matching task. In the second experiment (Section 5.4.2), we inves-

tigate the impact of selected similarity measures on the performance of the machine

learning based combination method. Next, in Section 5.4.3, we compare the per-

formance of the machine learning based method with two automatic weighted sum

methods HW and LC. Finally, in Section 5.4.4, we compare the performance of our

dynamic weighted sum method with HW and LC.

5.4.1 Comparison of Performance of Di�erent ML Models

The aim of this experiment is to �nd the most suitable ML model for our approach.

In fact, we can use di�erent machine learning algorithms in order to build a classi-

�cation model. These algorithms are divided in 5 groups as follows:

• Tree-based: J48, J48Graft, ADTree, SimpleCart, NBTree.

• Probability-based: NaiveBayes, BayesNet.

103

Figure 5.4: Comparison of the performance of learning models

• Function-based: Logistic, MultiLayerPerceptron.

• Rule-based: JRip, VFI, DecisionTable.

• Instance-based: IBk, NNGe.

To compare di�erent models, we randomly select a set of �gold standard� datasets

to generate training data and then measure the performance of each learning model

by applying 10-fold cross-validation technique [100]. This process is repeated 10

times in order to limit the impact of randomness during the evaluation. The average

of F-measure values of all learning models are displayed in Fig.5.4. The model which

has the highest performance is J48 - a modi�ed version of the decision tree model.

Following the J48 model are J48graft, JRip and SimpleCart models. According to

the comparison result, hereafter, we use J48 model in the learning and classi�cation

tasks.

5.4.2 Impact of Selected Similarity Measures on Performance

of ML

In order to study the impact on the matching quality of similarity measures selected

from 4 groups discussed above, we set up 4 di�erent sets of selected measures used

in combination by the decision tree model as follows:

• C1: Only string-based measures in Table 5.1, i.e., Levenstein, ISUB, QGrams,

TokLev.

104

• C2: Collection of string-based and context pro�le measure, i.e., {S1} and

MaxContext.

• C3: Collection of string-based and language-based measures, i.e., {S1} and

HybLinISUB, HybWPLev.

• C4: All measures in Table 5.1.

In this experiment, we again select test cases from Conference track. To provide

training data to build decision tree classi�er, we use gold standard data sets from

OAEI Benchmark 2009 and FOAM project. We randomly generate 10 di�erent

training data (numbered from 01 to 10). For each training data, we build 4 di�erent

decision tree classi�cations based on 4 di�erent collections of selected similarity

measures described above. We call these classi�cations as ML1, ML2, ML3 and

ML4 respectively. These classi�cations are used to produce matching results for

each test case in Conference track.

Figure 5.5: Comparison of combination on di�erent collections of similarity measures

ML1 ML2 ML3 ML4

Average Fmeasure 0.579 0.615 0.573 0.616

Table 5.7: Average of Fmeasure obtained by using running ML with 4 di�erent
collections of similarity measures

Here, we are going to study the impact of similarity measures on discovering

both correct and incorrect mappings. Therefore, for saving space, we show only the

total number of correct and incorrect mappings discovered by di�erent combina-

tion of similarity measures overall test cases in Conference dataset in Fig.5.5. The

observation from the Fig.5.5 is as follows:

105

• Firstly, the context pro�le measure seems to not only discover correct map-

pings but also to reduce incorrect mappings. Let see ML2 and ML1 in the

Fig.5.5. Note that C2 consists of all measures in C1 and context pro�le sim-

ilarity measure. In almost training data, the total number of correct map-

pings that ML2 discovered is higher than that ML1 did. Moreover, the total

number of incorrect mappings that ML2 produced is smaller than that ML1

did. For example, by using context pro�le similarity measure, ML2 discovered

concepts PaperAbstract and Abstract from cmt.owl and conference.owl

respectively are matched, whereas ML1 did not. Moreover, ML1 discovered

Chairman and Chair_PC from cmt.owl and confOf.owl matched but ML2

�ltered this incorrect mapping.

• Secondly, the language-based measures discover not only additional correct

mappings but also additional incorrect mappings. For example, by using

language-based measures, ML3 discovered concepts Chairman and Chair from

cmt.owl and conference.owl are matched because two labels are synonym

indeed. Moreover, because the language-based measures remove all stop words,

ML3 discovered name, has_a_name and hasName from cmt.owl, conference.owl

and edas.owl respectively are matched also, but in fact they are incorrect

mappings. Let see ML3 and ML1 in the Fig.5.5. In almost training data,

the total numbers of correct and incorrect mappings that ML3 discovered are

higher than that ML1 did. Additionally, Table 5.7 shows that the average

of H-mean Fmeasure of ML3 (0.573) is smaller than the average of H-mean

Fmeasure of ML1 (0.579). It means that using linguistic measures does not

improve matching quality of system. Therefore, to take advantage of using

linguistic measures e�ectively, we need to use another measure to remove the

incorrect mappings produced by linguistic measures.

• Finally, Table 5.7 shows that ML4 is the best combination with average H-

mean Fmeasure is equal to 0.616. ML4 is slightly better than ML2 (0.615).

Note that C4 consists of all measures of C2 and addition linguistic measures.

Thanks to linguistic measures, ML4 discovered more correct mappings. Be-

sides, incorrect mappings produced by the linguistic measures were removed

by the context pro�le similarity measure. For example, ML1 did not dis-

cover name, has_a_name and hasName from cmt.owl, conference.owl and

edas.owl respectively are matched.

The experiment shows that using the combination of all selected similarity from

the Table 5.1 produces the higher matching quality than other subsets of measures.

106

Therefore, by default we use all these similarity measures within the decision tree

J48 model.

5.4.3 Comparison of Performance of ML, HW and LC

In this experiment, we compare the matching performance of ML, LC and HW on

the Conference2 dataset containing 16 real world ontologies describing the conference

organization domain. These ontologies were developed by di�erent people, concepts'

labels are highly heterogeneous. Therefore, we assume that if a matcher obtains

a high matching quality over this dataset, it would perform well over other real

matching scenarios.

In the experiment, similarity measures in Table 5.1 are selected as individual

matchers being combined by ML, LC and HW methods. To build a classi�cation

in ML, we use gold standard data sets from Benchmark and FOAM project as

training data to make sure that training and testing data are independent. Here, we

performed 10 times with di�erent gold standard datasets in order to have di�erent

training data and to limit the impact of randomness during the evaluation. Then, we

sort H-mean values overall 10 executions in an ascending order. Note that by using

ML method, we do not need to set a threshold for selecting mappings. Whereas,

for each individual matcher and for LC, HW methods discussed above, we need to

set a �lter threshold to select mappings. The threshold value θ is tuned from 0.6

to 0.97.

Obviously, the ML combination method performed better than the others in-

cluding individual matchers and LC and HW combination methods. The average

Fmeasure of ML (0.60) is higher than the maximum value Fmeasure of HW (0.56

at θ = 0.75), LC (0.55 at θ = 0.80). ML is better than HW and LC because it does

not use linear arithmetic functions to combine individual matchers, instead, it ex-

tracts the combination rules and constraints between them from training data. For

example, ML method discovers (Co-author ≡ Contribution_co-author) in ontolo-

gies cmt.owl and conference.owl respectively. It is because ML �nds many pat-

terns in training data similar to the current example (e.g., (networkA.rdf# O�ce ≡
networkB# O�ceSoftware), (russia1# payment ≡ russia2# means_of_payment),

etc.). , Whereas, individual matchers and their combination by HW and LC return

low similarity score between two labels, for instance, Levenstein(Co-author, Con-

tribution _co-author) = 0.4; QGrams(Co-author, Contribution_co-author) = 0.6;

LC(Co-author, Contribution _co-author) = 0.57.

2http://oaei.ontologymatching.org/2011/conference/

107

Figure 5.6: Comparison of Fmeasure of di�erent combination methods on Conference
dataset

Apparently, in Fig. 5.6, we can see that HW and LC have their own threshold

that provides the best performance. For example, with HW, we will select threshold

equal to 0.75; with LC we select 0.85. Because there is no guarantee that when

threshold gets high, the Fmeasure improves; the selection of a good threshold is

really a challenge to all matchers. An advantage of ML method is that it does not

require any �lter's threshold value.

Moreover, our method is �exible because there is no limit to add new individual

matchers (aka. similarity measures) to the combination. Furthermore, it frees the

user from the e�ort of setting �lter's threshold to select �nal mappings.

5.4.4 Comparison of Performance of DWS, HW and LC

In this experiment, we compare the performance of our method DWS with HW and

LC methods in combining matching results of an element matcher and a structural

matcher. The element matcher is a combination of terminological similarity mea-

sures by using a machine learning model (ML). The structural matcher is based on

similarity propagation method (SP). Note that a combination method may return

only matching result of ML or only matching result of SP or a weighted sum of

matching results of both ML and SP. The experiment methodology is as follows:

• Firstly, the element matcher produces a matching result (ML).

• Next, the structure matcher take ML as input and produces another matching

108

result (SP).

• Three automatic weighted sum methods discussed above combine ML and SP

to produce combination results such as HW, LC and DWS respectively.

• A �lter threshold value θ is used to select the �nal mappings for SP, HW

and LC. Note that, the similarity score of mappings in ML is 1.0, therefore,

changing the �lter threshold value does not impact to its matching quality.

Besides, our method DWS automatically determines the �lter threshold value

for each matching scenario, so changing the �lter threshold value does not

impact to its matching quality either.

• Finally, the H-mean Fmeasure value for each of �ve matching results ML, SP,

HW, LC and DWS is computed.

Fig.5.7 shows the H-mean Fmeasure value for each of �ve combination methods

i.e., ML, SP, HW, LC and DWS overall 21 real test cases of Conference dataset.

We chose this dataset because the ontologies in these test cases are highly di�erent

in terms of both terminology and structure, which makes sure that using element

matcher or structure matcher solely is inadequate.

Figure 5.7: Comparison of di�erent methods to combine results of element and
structure matchers

The �rst observation from Fig.5.7 is that the matching quality of SP is lower than

that of ML. Here, the H-mean Fmeasure of ML is 0.604, whereas, the maximum H-

mean Fmeasure of SP is 0.541 when θ = 0.1. In fact, SP discovered many additional

109

mappings (e.g., (cmt.owl#Paper ≡ confOf.owl#Contribution), etc.) that ML did

not. However, SP also discovered many more incorrect mappings when the threshold

value is low. It is important to show us three remarks. Firstly, despite the fact

that the structural features are more important than the terminological features

to describe an entity in an ontology, exploiting the latter ones seems to be more

e�ective than exploiting the former in discovering mappings. Secondly, in the real

ontology matching scenarios, matching result relying only on structure matcher like

in [67, 98] is not su�cient or do not provide good quality of matching. Finally, in

order to overcome the weakness of SP, we need not only an appropriate combination

method but also an appropriate �lter to select a high quality of �nal mappings.

We also observe that among three automatic combination methods discussed

above, our method DWS outperforms the others. Here, the H-mean Fmeasure of

DWS is 0.638, whereas, the maximum H-mean Fmeasure of HW is 0.606 and the

maximum H-mean Fmeasure of LC is 0.595. In fact, thanks to the dynamic setting

of the weights and the �lter's threshold value, DWS improves the matching result

of ML by adding new correct mappings obtained by SP. For example, in the match-

ing scenario conOf.owl vs. edas.owl, ML discovers (Event, ≡, ConferenceEvent,
0.0) and (write, ≡, hasRelatedPaper, 0.0), SP discover (Event, ≡, ConferenceEvent,
0.16) and (write, ≡, hasRelatedPaper, 0.18). Three methods DWS, HW and LC

produce the same results (Event, ≡, ConferenceEvent, 0.16) and (write, ≡, hasRe-
latedPaper, 0.18). Besides, DWS automatically determines the �lter's threshold for

this matching scenario (i.e., θ = 0.14). Therefore, these two mappings passed the

�lter are selected in �nal mapping result. Whereas, in the cases of HW and LC,

if the threshold value θ is greater than 0.2, these mappings will be ignored; if the

threshold value θ is smaller 0.1, many other inccorect mappings will pass the �lter,

consequently, the matching quality is decreased.

Finally, we conclude from this experiment that our dynamic weighted summethod

ful�lls the two following requirements: (i) automatic setting weights for each matcher

and, (ii) automatic setting �lter's threshold for the mapping selection process. More-

over, the experimental result shows that our method outperforms the other consid-

ered methods.

5.5 Conclusions

In this chapter, we have presented our approach to deal with the problem of matcher

combination. In particular, we have proposed a Machine Learning based method

to combine di�erent terminological similarity measures. We have also proposed a

110

Dynamic Weighted Sum method to combine matching results of a terminological

matcher and a structural matcher.

In terms of the Machine Learning based Combination method, we have trans-

formed the problem of discovering mappings to a problem of binary classi�cation of

pairs of entities into prede�ned classes. In particular, if two entities are classi�ed to

a given class with a value 1.0, they are matched; otherwise, they are not. On the

other hand, we have proposed a strategy to select similarity measures to combine.

This strategy is based on the classi�cation of terminological similarity measures that

we have described in Chapter 3.

In terms of the Dynamic Weighted Sum method, we have proposed an algorithm

to automatically estimate the weight values for both terminological and structural

matchers. Moreover, this method is able to automatically determine the threshold

value used for selecting combined matching results in the given matching scenario.

The experiments in Section 5.4 show that both of our methods outperform the

two existing automatic combination methods (Harmonic Adaptive Weight Sum and

Local Con�dence Weighted Sum). Regarding the Machine Learning based combi-

nation method; we have concluded that it works best with a Decision Tree - J48

model.

111

112

Chapter 6

Mapping Selection

In an ontology matching system, mapping selection is an important task because it

is involved in many matching phases. In particular, it can be used as a �lter to select

the high possible candidate mappings before performing the main matching process.

During the matching process, it can be used as an internal �lter for individual

matchers. Indeed, a simple individual matcher is a combination of a similarity

measure and a mapping �lter. The �lter selects the best candidate mappings with

respect to the similarity values computed by the similarity measure. The aim of

this processing is to reduce the noise data that may be passed as input to another

individual matcher. Finally, mapping selection is used at the end of the matching

process in order to produce a �nal result to the user. It becomes more important

for the user because it save a lot of post-match e�ort to verifying the correctness of

mapping result.

Mapping selection is to select a subset of mappings from all possible mappings

of entities of the two ontologies being matched, that satis�es some given criteria.

Each criteria leads to a strategy to select the most appropriate mappings. However,

they share a common aim, which is to eliminate suspicious incorrect and inconsistent

mappings.

Basically, three following criteria, i.e., similarity values, matching cardinality

and semantic consistency, are widely used in mapping selection. They lead to the

corresponding three types of �ltering methods such as Threshold Filter, Cardinality

Filter and Semantic Filter. The �rst two �lters, i.e., Threshold Filter and Cardinality

Filter are ontology independent extraction methods. Their functions do not use any

semantic information encoded in the input ontologies. They are will be presented in

section 6.1.

Whereas, the Semantic Filter is an ontology dependent extraction method. It

takes additional semantic information of entities in the input ontologies in consid-

113

eration to select the best mappings. The semantic �lter will be presented in the

next section 6.2. In this section, our main contribution lies on the Fast Semantic

Filtering method, which e�ectively and e�ciently re�nes the discovered mappings

in the large scale ontology matching.

In the section 6.3, we present the evaluation of the performance of our method

dealing with large scale ontology matching. In addition, we compare the performance

of our method and method provided by ALCOMO tool [66].

6.1 Non Semantic Selection Methods

In this section, we discuss Threshold Filter and Cardinality Filter, which are based

on the order of similarity values and the constraint on the matching cardinality.

6.1.1 Threshold Filter

A Threshold Filter is a simple �lter that selects mappings by comparing their simi-

larity values with a prede�ned threshold value. Indeed, after performing similarity

computation by an individual or a combination of several similarity measures, sim-

ilarity values are assigned to each candidate mapping. Because the similarity value

re�ects the degree of con�dence that two entities are similar, the higher the simi-

larity value is, the more likely two entities are matched. Therefore, we can use a

Threshold Filter to select only pairs of entities, whose similarity values are higher

than some prede�ned threshold value. However, this type of �lter may produce

multi mapping result, where one entity matches with several other entities. Fig. 6.1

shows an example of using a Threshold Filter.

Figure 6.1: An example of a threshold �lter

6.1.2 Cardinality Filter

Matching cardinality is a constraint to limit multi mapping, where one or several

entities of one ontologies may match to one or several entities of the other ontologies.

114

The aim of the Cardinality Filter is to comply the matching cardinality rigorously

to eliminate the less similar mappings from the multi mappings.

Among several types of matching cardinality, one-to-one (1:1) mapping is widely

used in the ontologies matching �eld. In fact, when domain knowledge is concep-

tualized in an ontology, the ontology developers always try to avoid or minimize

number of duplicate entities. Therefore, when we run matching between entities of

two distinct ontologies, we mainly expect 1:1 cardinality matching, which means

one entity in the source ontology is matched to maximum one entity in the target

ontology. Of course, there may be other type of cardinality such as 1:n, m:1 or m:n,

but they do not frequently happen.

In the ontology matching �eld,Greedy Filter andMaximum Assignment are

two main methods usually used to extract mappings with 1:1 matching cardinality.

Here, we �rst present their algorithms, then, we will discuss the way to extend them

to deal with multi mapping.

Greedy Filter

The main steps of this �lter are described in the Algorithm.4. Here, SortDescending

function sorts the input set of mappings in descending order of their con�dence

value. In each iteration, the mapping with the highest con�dence value is extracted.

Then, this mapping is added to the result set if the con�dence value (getScore

function) is higher than threshold θ, otherwise the while loop will stop. Function

GetRelated(M,m) is de�ned to return all other mappings in M , whose source or

target entities are the same with ones in m.

An example of using a Greedy Filter with di�erent threshold can be seen in

Fig.6.2

Figure 6.2: An example of using greedy �lter

In order to extend this Filter for obtaining multi-mapping (1:n, m:1 or n:m), we

115

Algorithm 4: Greedy Selection with threshold θ

input : Morig = {(ei,ej,≡,c), c ∈ [0..1]}
θ ∈ (0..1] : threshold value

output: Msub = {(ep,eq,≡,c), c ∈ [0..1]}

1 Msub ← ∅
2 SortDescending(Morig)
3 while Morig 6= ∅ do
4 m← RemoveFirstElement(Morig)
5 if getScore(m) ≥ θ then
6 Msub ←Msub ∪ {m}
7 else
8 return Msub

9 end
10 for m′ ∈ GetRelated(Morig,m) do
11 RemoveElement(Morig,m

′)
12 end

13 end

14 return Msub

propose a simple technique as follows. Assume that we would select the maximum

top-K entities from one ontology that match to one entity of another ontology. Thus,

in each of K iterations, the following steps will be executed:

• Step 1: Run the Greedy Filter overall the candidate mappings to obtain a

subset of them as the best mappings.

• Step 2: Copy the returned result to another place and the similarity value

for each of those mappings in the original collection of candidates is set to 0.

Repeat the Step 1.

Fig.6.3 shows an example of using a Greedy Filter with 2 iterations.

One of the advantage of this Filter is that is run very e�cient. It complexity is

O(N), where N is the total number of candidate mappings.

Maximum Assignment

Contrary to the Greedy Filter, which is based on sequences of local decisions, the

Maximum Assignment Filter �nds a solution that is optimal from a global point of

view. In particular, it selects a subset of 1:1 mappings that maximizes the total

similarity values.

For solving an optimal solution, Hungarian assignment algorithm is usually im-

plemented. The main steps of the Hungarian algorithm are shown as follows.

116

Figure 6.3: An example of using greedy �lter with 1:2 matching cardinality

• Step 0: Create an NxM matrix called the cost matrix in which each element

represents the distance value (i.e., 1 - similarity value) of assigning one of

N entities of the source ontology to one of m entities of the target ontology.

Rotate the matrix so that there are at least as many columns as rows and let

K = min(N,M).

• Step 1: For each row of the matrix, �nd the smallest element and subtract it

from every element in its row. Go to Step 2.

• Step 2: Find a zero (Z) in the resulting matrix. If there is no starred zero in

its row or column, star Z. Repeat for each element in the matrix. Go to Step

3.

• Step 3: Cover each column containing a starred zero. If K columns are

covered, the starred zeros describe a complete set of unique assignments. In

this case, Go to DONE, otherwise, Go to Step 4.

• Step 4: Find a non covered zero and prime it. If there is no starred zero in

the row containing this primed zero, Go to Step 5. Otherwise, cover this row

and uncover the column containing the starred zero. Continue in this manner

until there are no uncovered zeros left. Save the smallest uncovered value and

Go to Step 6.

117

• Step 5: Construct a series of alternating primed and starred zeros as follows.

Let Z0 be the uncovered primed zero found in Step 4. Let Z1 denote the

starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in the

row of Z1 (there will always be one). Continue until the series terminate at a

primed zero that has no starred zero in its column. Unstar each starred zero

of the series, star each primed zero of the series, erase all primes and uncover

every line in the matrix. Return to Step 3.

• Step 6: Add the value found in Step 4 to every element of each covered row,

and subtract it from every element of each uncovered column. Return to Step

4 without altering any stars, primes, or covered lines.

An example of using a Maximum Assignment Filter can be seen in Fig.6.4

Figure 6.4: An example of using maximum assignment �lter

In order to extend this Filter for obtaining multi mappings, we can run this

method several times. Similar to the technique used for Greedy Filter, the selected

mappings at the end of each time of running this method are stored before being set

0 for their value in the next time. However, this �lter works very slow with O(N3)

complexity.

6.2 Semantic Selection Methods

The aim of the Semantic Filter is to detect and reject inconsistent mappings by

exploring semantic information of entities in the input ontologies. By applying this

�lter after computing similarity values for all candidate mappings, we can obtain a

consistent alignment, which contains the best mappings between the input ontolo-

gies. In this section, we �rst present the use of Description Logic in ontology. Then,

the notion of inconsistent and unstable mappings will be de�ned. Next, we discuss

methods to detect and eliminate them in order to obtain the optimal consistent set

of mappings.

118

6.2.1 Description Logic and Ontology

First of all, we are going to introduce the fundamental of Description Logic (DL) un-

derlying ontology. In particular, we will focus the Web Ontology Language (OWL),

which is a knowledge representation language standardized by the World Wide Web

Consortium (W3C). Basically, the main functions of OWL (especially OWL-DL)

are indeed very similar to those of DLs, which prodive means to model the relation-

ships between entities in a domain of interest. It is therefore not surprising that

description logics have had a major in�uence on the development of OWL and the

expressive features that it provides.

Like DL, OWL ontology describes all logic expressions upon a collection of vo-

cabulary called a signature. According to the speci�cation of OWL language, we

adopt the following de�nition of a signature in [66]:

De�nition 4. (Signature). A signature S is a quadruple S = 〈C,P,R, I〉 where C
is a set of concept names, P is a set of object property names, R is a set of data

property names, and I is a set of individual names. The union P ∪R is referred to

as the set of property names.

Unlike a database, a DL ontology does not fully describe a particular situation

or �state of the world �; rather it consists of a set of statements, called axioms or

assertions, each of them must be true in the described situation [53]. Therefore, an

ontology usually consists of both terminological axioms TBox and assertions ABox.

Here, the terminological axioms TBox are used to de�ne the meaning of a named

concept or property by clarifying its relations to the other concepts in the ontology.

Opposed to an axiom, an assertion (ABox) is used to make a statement about an

instance by describing its qualities in terms of concept membership and relations to

other instances. Thus, a de�nition of an ontology from the point of view of DL is as

follows:

De�nition 5. (Ontology). Given an ABox A and a TBox T in S = 〈C,P,R, I〉.
The union O = A ∪ T is called an ontology in S. S is called the signature of O if

there exists no S' = 〈C',P',R', I'〉 such that (i) O is in S' and (ii) C ′ ⊂ C or

P ′ ∈ P or R′ ∈ R or I ′ ∈ I.

As their name suggests it, DLs are logics and as such they are equipped with

a formal semantics: a precise speci�cation of the meaning of DL ontologies. This

formal semantics allows humans and computer systems to exchange DL ontologies

without ambiguity, and also makes it possible to use logical deduction to infer ad-

ditional information from the facts stated explicitly in an ontology - an important

119

feature that distinguishes DLs from other modeling languages such as UML [53].

The computation of inferences is called reasoning - one of the most important goal

of DL language.

In order to understand the semantic meaning of a complex expression in DL,

an interpretation is needed. The general principle is known as the principle of

compositionality, where the meaning of a complex expression is determined by the

meaning of its constituent expressions and the rules used to combine them. The

de�nition of a DL interpretation is the following:

De�nition 6. (Interpretation).

Given an ontology and its signature S = 〈C,P,R, I〉 and a datatype theory D. An

interpretation I =
〈
∆I ,∆ID, ·I

〉
consists of a set ∆I, which is the abstract domain;

a set ∆ID, which is the concrete domain (concrete data values); and a function ·I

that maps every concept name in C to a subset of ∆ID, every object property name

in P to a subset of ∆I×∆I, every data property name in R to a subset of ∆I×∆ID,

every individual name in I to an element of ∆I, every datatype in D to a subset of

∆ID, and every data constant to a value in ∆ID.

Furthermore,

>I = ∆I (owl : Top)

⊥I = ∅ (owl : Bottom)

(¬C)I = ∆I\CI (owl : complementOf)

(B u C)I = BI ∩ CI (owl : intersectionOf)

(B t C)I = BI ∪ CI (owl : unionOf)

{o1, . . . , on}I = {oI1 , . . . , oIn} (enumeration)

(∃P.C)I = {x | ∃y 〈x, y〉 ∈ P I ∧ y ∈ CI} (owl : someV aluesFrom)

(∀P.C)I = {x | ∀y 〈x, y〉 ∈ P I → y ∈ CI} (owl : allV aluesFrom)

(∃≤nP)I = {x | #{〈x, y〉 ∈ P I} ≤ n} (owl : maxCardinality)

(∃≥nP)I = {x | #{〈x, y〉 ∈ P I} ≥ n} (owl : minCardinality)

(∃R.D)I = {x | ∃y 〈x, y〉 ∈ RI ∧ y ∈ DI} (owl : someV aluesFrom)

(∀R.D)I = {x | ∀y 〈x, y〉 ∈ RI → y ∈ DI} (owl : allV aluesFrom)

(∃≤nR)I = {x | #{〈x, y〉 ∈ RI} ≤ n} (owl : maxCardinality)

(∃≥nR)I = {x | #{〈x, y〉 ∈ RI} ≥ n} (owl : minCardinality)

where B and C are concept descriptions in S, D is a datatype de�ned in D, P is

120

an object property description in S, R is a data property description in S, n ∈ R+,

and o1, . . . , on ∈ I are individual names. [66]

Through the DL interpretation, the satis�ability of a DL statement (i.e., axiom,

assertion) can be de�ned as follows:

De�nition 7. (Satis�ability).

Given interpretation I =
〈
∆I ,∆ID, ·I

〉
. I satis�es an axiom:

C1 v C2 iff CI1 v CI2 (conceptinclusion)

P1 v P2 iff P I1 v P I2 (objectpropertyinclusion)

R1 v R2 iff RI1 v RI2 (datapropertyinclusion)

trans(P) iff 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI → 〈x, z〉 ∈ RI(objectpropertytransitivity)

where C1 and C2 are concept descriptions, P1 and P2 are object property descriptions,

and R1 and R2 are data properties. I satis�es an equivalence axiom X ≡ Y i� I
satis�es X v Y and I satis�es Y v X. Furthermore, I satis�es an assertion:

C(a) iff aI ∈ CI (conceptassertion)

P (a, b) iff
〈
aI , bI

〉
∈ P I (objectpropertyassertion)

P (a, d) iff
〈
aI , dI

〉
∈ RI (datapropertyassertion)

a = b iff aI = bI (equality)

a 6= b iff aI 6= bI (inequality)

where C is a concept description, P is an object property description, R is a data

property, a and b are individuals, and d is a data value. [66]

Due to this de�nition, an ontology divides the set of interpretations into those

interpretations that do not satisfy the ontology and those interpretations that satisfy

the ontology. The latter ones are called models of the ontology.

De�nition 8. (Model).

An interpretation I is a model for an ontology O, i� I satis�es each axiom and

each assertion in O. [66]

121

Thus a model is an abstraction of a state of the world that satis�es all axioms in

the ontology. An ontology is consistent if it has at least one model. A DL statement

a is a consequence of an ontology O (or O entails a) if a holds in every model of O.

De�nition 9. (Entailment).

An ontology O entails an assertion or axiom a, i� each model for O is also a

model for a. An ontology O entails a set of assertions or axioms A, i� each model

for O is also a model for each a ∈ A. We write O |= a if O entails a; if O does not

entail a we write O 2 a. [66]

Now, we can de�ne the notion of concept and property (un)satis�ability as well

as the notion of ontology (in)coherence. A concept C is de�ned to be unsatis�able

i� each model I of O maps C to the empty set, i.e., an instance of C cannot exist

for logical reasons.

De�nition 10. (Concept/Property Unsatis�ability).

Given an ontology O and its signature S. A concept description C (property

description P) in S is unsatis�able in O i� for each model I =
〈
∆I ,∆ID, ·I

〉
of O

we have CI = ∅; (P I = ∅). [66]

De�nition 11. (Incoherence).

Given an ontology O and its signature S = 〈C,P,R, I〉. O is incoherent i� there

exists an unsatis�able C ∈ C, P ∈ P or R ∈ R. Otherwise O is called coherent.

[66]

As we mentioned above, the task of a DL reasoning system is to infer additional

knowledge from a explicitly stated collection of axioms and assertions. Therefore,

we can make use of a DL reasoner (e.g., Pellet, Hermit, Fact++, etc.) to verify

the entailment of an axiom/assertion, the satis�ability of a concept/property or the

coherent of an ontology.

6.2.2 Inconsistent Mappings

From the previous section, we understand what is an unsatis�ed concept/property

and what is an incoherent ontology. Based on those ideas, now we are going to

de�ne the notion of inconsistent mappings between ontologies to be matched.

Assume that A is an alignment (i.e., a collection of mappings) discovered from

two ontologies O1 and O2. Thanks to A, the two ontologies O1 and O2 can be merged

into one ontology by the following rule.

122

De�nition 12. (Merged ontology).

The merged ontology O1 ∪A O2 of two ontologies O1 and O2 connected via align-

ment A is de�ned as:

O1 ∪A O2 = O1 ∪O2 ∪ {t(m) | m ∈ A}

where, t is a function contering each mapping m = 〈O1 : e1, O2 : e2,≡, c〉 into an

equivalent axiom of O1 ∪A O2. [66]

By adding the mappings of A as bridges between two ontologies, we have a

unique structural hierarchy connecting their all entities. Hence, we can make use

of a DL reasoning system on the merged ontology in order to discover new infor-

mation. However, those bridges may make the merged ontology become incoherent,

where several concepts or properties of the input ontologies become unsatis�ed. In

that case, A is incoherent with respect to the input ontologies. Therefore, some

mappings in the alignment A are inconsistent.

Figure 6.5: An example of inconsistent mappings

We present an example of incoherent mappings in Fig.6.5. If two mappings

〈WorkingGroup,GroupWorking〉 and 〈AdminStaff,ManagerTeam〉 are consis-

tent, then in the merged ontology we can infer the following information:

WorkingGroup ⊥ AdminStaff ∧WorkingGroup ≡ GroupWorking

→ AdminStaff⊥GroupWorking

AdminStaff ≡ ManagerTeam ∧AdminStaff⊥GroupWorking

→ManagerTeam⊥GroupWorking

ManagerTeam v GroupWorking ∧ManagerTeam⊥GroupWorking

→ManagerTeam v ⊥

123

In that case, the concept ManagerTeam is not satis�ed the merged ontology.

Therefore, the two mappings are inconsistent.

Figure 6.6: An example of unstable mappings

Let us present another example in Fig.6.6. If two mappings 〈Organization,Edu.Organization〉
and 〈ResearchGroup, SocialGroup〉 are consistent, then in the merged ontology we

can infer the following information:

ResearchGroup v Organization ∧Organization ≡ Edu.Organization

→ ResearchGroup v Edu.Organization

ResearchGroup ≡ SocialGroup ∧ResearchGroup v Edu.Organization

→ SocialGroup v Edu.Organization

SocialGroup v Edu.Organization ∧ Edu.Organization v SocialGroup

→ Edu.Organization ≡ SocialGroup

Organization ≡ Edu.Organization ∧ResearchGroup v Edu.Organization

→ Organization v ResearchGroup

ResearchGroup v Organization ∧Organization v ResearchGroup

→ ResearchGroup ≡ Organization

In that case, we can infer two equivalences in the two input ontologies. It is

possible because if concept A is equivalent to concept B then concept A may be

considered as a subsumption of concept B. However, if there is any other constraint

in the input ontologies stating that those concepts cannot be equivalent then the

two mappings will become inconsistent. In [66], those mappings are called unstable

mappings.

124

6.2.3 Review Existing Methods

So far we understand the fundamental of Description Logic underlying ontology and

notion of the inconsistent mappings. In order to extract the best mappings from

the discovered ones, now we have to detect the set of inconsistent mappings and

select the correct subset of mappings with minimum incoherence. In the following,

we review some approaches that exploit the semantic underlying ontologies in order

to avoid logical problems in the produced mappings. In particular, we will discuss

a semantic veri�cation method used in ASMOV [42] and (in)complete reasoning

method used in ALCOMO and Logmap.

Semantic Veri�cation with ASMOV

ASMOV, which stands for Automated Semantic Mapping of Ontologies with Veri�-

cation [42], is one of the top three alignment tools at OAEI campaigns (2008, 2009

and 2010). The main idea of ASMOV is not to �nd semantically invalid or unsat-

is�able alignments, but rather to remove correspondences that are less likely to be

satis�able based on the information present in the ontologies.

Figure 6.7: Inconsistent mapping patterns used in ASMOV [42]

According to the system description, ASMOV uses a list of patterns to detect

pairs of con�ict correspondences (i.e., mappings). Fig. 6.7 shows examples of the

inconsistent mapping patterns used in ASMOV. In particular, they are including

the following patterns:

• Multiple-entity correspondences. This pattern occurs when one entity in one

125

ontology is matched to some di�erent entities in another ontology, whereas,

the matching cardinality is 1:1.

• Criss cross correspondences. Two correspondences 〈a1, a2〉 and 〈b1, b2〉 are
found by this pattern if O1 |= a1 v a2 and O2 |= b2 v b1.

• Disjointness subsumption contradiction. Two correspondences 〈a1, a2〉 and
〈b1, b2〉 are an instance of this pattern if O1 |= a1 v a2 and O2 |= b1 v ¬b2 or
O1 |= a1 v ¬a2 and O2 |= b1 v b2.

• Subsumption and equivalence incompleteness. Two correspondences 〈a1, a2〉
and 〈b1, b2〉 are found by this pattern if O1 |= a1 v a2 (or O1 |= a1 ≡ a2) but

O2 2 b1 v b2 (or O2 2 b1 ≡ b2).

• Domain and range incompleteness. A concept-concept mapping 〈c1, c2〉 and
a property-property mapping 〈p1, p2〉 are detected by this pattern if O1 |=
c1 v domain(p1) and O1 2 c2 v domain(p2); or O1 |= c1 v range(p1) and

O1 2 c2 v range(p2)

In each iteration, ASMOV extracts a set of con�icts from the pre-alignment

which results from the similarity computation. In order to remove inconsistent

correspondences, ASMOVmakes use of a greedy method. That is the correspondence

with the lowest con�dence value is eliminated from the set of con�icts. The removed

correspondences are then stored in a list of removals and they will be not touched

in the next iteration.

Obviously, the detection of con�ict correspondences is very important in the

ASMOV algorithm. It is because if a correct correspondence was removed in an

iteration, it will be never in the �nal alignment. Therefore, the detecting patterns

should be highly precise. Our observations of these patterns are the following:

• Firstly, the multiple-entity correspondences only works in a speci�c circum-

stance when the matching quality is 1:1. In case the restriction on matching

cardinality is di�erent to 1:1, the �rst pattern may reject many incorrect map-

pings.

• As it was showed in the examples in section 6.2.2, the disjointness subsumption

contradiction is a strong con�ict pattern because it makes the merged ontology

incoherent. One of them is incorrect and we have to remove it.

• The degree of con�ict of the criss cross correspondences and the subsumption

and equivalence incompleteness patterns are weaker than that of the disjoint-

ness subsumption contradiction pattern. They are only used in case of the

126

input ontologies are complete. When the ontologies are incomplete, they be-

come uncertain. For example, the criss cross correspondences pattern leads to

entities in the mappings become equivalent, i.e., O1 |= a1 ≡ a2, which means

O1 |= a1 v a2∧a2 v a1; and O2 |= b1 ≡ b2, which means O2 |= b1 v b2∧b2 v b1.

In this case, we may consider that O1 |= a2 v a1 and O2 |= b1 v b2 are two

missing subsumption relations in the two ontologies. It is possible because

ontologies in general are incomplete.

• Finally, the domain and range incompleteness pattern is weak and maybe is

not correct. In fact, a property may have di�erent domains and ranges.

Based on the observations above, we realize that the detection and elimination of

the disjointness subsumption contradiction pattern is necessary, whereas, the other

patterns are less certain and they cannot theoretically work for all cases. However,

according to the good results of ASMOV in the recent years of OAEI campaign, in

practice, we can reuse some of them, for example criss cross correspondences pattern

which is commonly used in other ontology matching systems [97].

Furthermore, running semantic veri�cation to eliminate inconsistent correspon-

dences at each working iteration is risky. It is because the elimination of a correspon-

dence is based on its current con�dence (i.e., similarity) value. It is possible that

at some intermediate step, the con�dence value of an incorrect correspondence is

higher than that of a correct one. Thus, the correct correspondence will be rejected;

the incorrect will be remained and it maybe propagates other errors.

Filtering Method with ALCOMO

In work [66], the author presents ALCOMO - a state of the art and e�ective tool for

dealing with incoherent alignment. Indeed, ALCOMO transforms this problem into

a diagnostic problem. It �nd a minimal set of mappings ∆ (i.e., alignment diagnosis)

from a given set of mappings A between input ontologies O1 and O2 such that A\∆
is coherent.

The main idea of the ALCOMO is as follows. Firstly, it detects all MIPS (i.e.,

minimal incoherent preserving sub-TBox) from the given alignment. Here, each

MIPS is a minimal con�ict set of mappings that make the merged ontology become

incoherent. After having a collection of MIPS, ALCOMO applies an optimization

method in order to �nd an optimal alignment diagnosis. By removing mappings of

the alignment diagnosis, ALCOMO produces a coherent set of mappings.

Basically, each method provided by ALCOMO can be seen as a combination of

two main components such as a reasoning component and a computing optimization

127

component. For each component, several methods have been designed. In particular,

ALCOMO supports two types of reasoning such as complete and incomplete meth-

ods. It also supports two types of computing optimization such as local optimization

alignment diagnosis and global optimization alignment diagnosis.

Reasoning Component The aim of the reasoning component is to identify un-

satis�ed concepts/properties and to check the coherence of a set of mappings. In

terms of using a complete reasoning method, ALCOMO makes use of a Description

Logic reasoning system (e.g., Pellet, Hermit) to work with the merged ontology.

In terms of using an incomplete reasoning method, similar to ASMOV, ALCOMO

proposes several con�ict patterns in order to detect all MIPS.

Figure 6.8: The ALCOMO con�ict patterns (taken from [66])

According to the system description in [66], ALCOMO uses three patterns shown

in the Fig.6.8. Note that, A#i means entity (i.e., concept, property) A of ontology

Oi.

• Subsumption propagation. This pattern is quite similar to the subsumption

and equivalence incompleteness pattern of ASMOV. However, in ASMOV, it

is used heuristically with assumption that the input ontologies are complete.

In ALCOMO, this pattern is stronger than that of ASMOV due to the fact of

128

disjoint axioms. Indeed, ALCOMO only concludes that two correspondences

〈A#i, B#j〉 and 〈C#i, D#j〉 are in con�ict if Oi |= A#i v C#i and there exist a

concept F#j that Oj |= F#j v B#j and Oj |= F#j¬D#j. In Fig.6.8, the author

drew only the subsumption v relations. In fact, this pattern can be applied

to the equivalent relation (≡) also.

• Disjointness propagation. This pattern is similar to the previous pattern except

that it propagates the disjointness relation instead of subsumption relations

along the concept hierarchy of the input ontologies.

• Property propagation. This pattern is similar to the domain and range in-

completeness pattern of ASMOV but stronger and more explicit. Indeed, a

pair of correspondences M including a correspondence between two properties

〈A#i, B#j〉 and a correspondence between two concepts 〈C#i, D#j〉 are in con-

�ict because a reasoning system can infer that Oi ∪M Oj |= F#j v D#j but

Oj |= F#j¬D#j.

Obviously, the detection of con�ict correspondences in ALCOMO is compeletly

derived from logical axioms. There is no assumption or heuristic about the input

ontologies like ASMOV has. Indeed, all three patterns depend of the existence of

disjointness axioms in the input ontologies. However, in practice, this type of axioms

is usually omitted. That is a major drawback that the author of ALCOMO have

mentioned in his work [66].

Furthermore, ALCOMO makes use of a reasoning system to perform both com-

plete and incomplete reasoning tasks. This way has both advantages and disadvan-

tages. The major bene�t is that the e�ective inferring algorithms can be reused in

order to automatically entail new logical axioms. For example, to check two con-

cepts C1 and C2 are disjoint or not, ALCOMO �rst creates a new axiom such as

OWLDisjointClassesAxiom(C1, C2); then, ALCOM uses Pellet - a DL reasoner,

to verify this axiom. However, there are also two drawbacks of using a reasoner such

as time performance and memory usage. Basically, due to the big size of the input

ontologies, the classi�cation process of the reasoner on those ontologies or on the

merged ontology is time consuming and maybe raise an error exception of out of

memory.

Computing Optimization Diagnosis Component The aim of this component

is to select the minimum diagnosis that if we remove its correspondences we obtain

a coherent set of correspondences. In ALCOMO, this task can be done with either

129

local optimal method or glocanl optimal method. The detail of these methods can

be read in chapter 6 in [66]. Here, we show only the main ideas of them.

• The main idea of the local optimal method is based on the principle to trust

always correspondences with higher con�dence in case of a con�ict. Therefore,

from each MIPS M , ALCOMO removes the correspondence with lowest con�-

dence unless another correspondence in M has not yet been removed. At the

end, the result is a set of removed correspondences.

• The main idea of the global optimal method is to �nd a set of coherent corre-

spondences that have the lowest sum of con�dences.

According to the experimental analyses of these methods in [66], both methods

increase the quality of a given alignment by removing inconsistent correspondences.

In addition, the results of applying the global method are slightly better than that of

applying the local method. Indeed, the local optimization method is highly sensitive

to the order of con�dence values, whereas, these kinds of problems are avoided by

computing a global optimization, which is determined by an aggregation of con�-

dence values. However, in terms of time performance, the local method outperforms

the global method. In fact, given an incoherent alignment A, the global method

requires ‖A‖ times to check the unsatis�ability of a speci�c class, whereas, the lo-

cal method requires to check log2 ‖A‖ times whether there exist some unsatis�able

concepts. Moreover, in the conclusion, the author also stated that when the global

optimal diagnosis contains more than 40 correspondences, the global method will

raise a problem and it does not return any result. Finally, it is important to note

that these methods have been designed for the 1:1 matching cardinality. That is if a

matching scenario allows 1:n, m:1 or n:m matching cardinality, these methods may

remove correct correspondences.

6.2.4 Fast Semantic Filtering Method

In order to reduce the weaknesses and reuse the advantages of the two methods

discussed above, we propose a new method called Fast Semantic Filtering. The

aim of this method is to e�ectively and e�ciently deal with large scale ontology

matching. Basically, this method adopt the e�cient local optimization method

of ALCOMO, which is based on incomplete reasoning and local optimal diagnosis

methods in order to detect con�ict pairs of mappings and remove the inconsistent

mappings.

130

Algorithm 5: Fast Semantic Filtering Method

input : O1, O2 : input ontologies,
A : initial alignment

output: Ac : coherent alignment

1 DescendingSortByConfidenceValues(A);
2 Ac ← ∅
3 while ‖A‖ > 0 do
4 m← extractFirstMapping(A);
5 if isNotConflict(m,Ac, O1, O2) then
6 Ac ← Ac ∪ {m}
7 end

8 end

The main steps of this method is shown in the Algorithm 5. It �rst sorts all

mappings in the initial alignment A by con�dence values in descending order. Then,

for each iteration, it picks up the mapping with highest con�dence value from the

initial alignment A into the semantic veri�cation process. At line 5, if the examined

mapping m does not cause any con�ict to the already extracted alignment Ac, it

will be saved in Ac.

Obviously, in this method, con�dence values of mappings and con�ict patterns

are the most important. To adapt this method to the large scale ontology matching

task, the following modi�cations and extensions of the ALCOMO and ASMOV

approaches should be added:

• A new and fast method based on a new structural indexing technique is used

for checking a speci�c relationship between two concepts instead of using an

existing reasoning system. It is important because any reasoning system works

very slow and requires a lot of memory to classify a big ontology. Moreover,

there exist many cases, in which a reasoner cannot �nish its classi�cation

process even when the size of ontology is small [66].

• New heuristics are used to detect more possible con�ict mappings. Note that,

ALCOMO is based on the explicit existence of disjoint axioms. If the input

ontologies have no or very small number of disjoint axioms, the ALCOMO

may bypass inconsistent mappings.

• A new con�dence propagation method is used to enhance the reliability of

con�dence values of candidate mappings. It is important because all of the

selection methods used in ASMOV and ALCOMO are highly sensitive to the

order of con�dence values

131

Structural Indexing

First of all, we present an example in Fig.6.9 for illustrating how to check if two

concepts are disjoint.

Figure 6.9: Example of checking two concepts being disjoint

In Fig. 6.9, among ancestors of concept 20, concept 4 is found in the disjoint

table. Moreover, among the set of concepts, which disjoint with concept 4, concept 5

is found in ancestors of concept 16. Therefore, concepts 20 and 16 are disjoint. That

means the subsumption and disjoint propagation patterns can be easily checked with

help of the ancestors function, which returns ancestors of a given concept in a given

ontology. Similarly, the other patterns like criss cross correspondences, subsumption

and equivalence incompleteness can be easily checked if the ancestors function is

available. Therefore, we believe that the e�ciency of the ancestors function is the

key for e�cient detection of con�ict patterns.

In this section, we introduce our method for indexing the hierarchy of ontology

that allows us fast and easily verify the relationships of any two concepts. Basically,

our method is implemented by using a bitmap compression method and leads to

super speed (O(1) time) of some key queries on relations among concepts such as

�nding their ancestors, �nding the lowest common ancestor of two concepts. Based

on the structural indexing, the propagation patterns used in ALCOMO and other

patterns in ASMOV can be easily implemented.

Let us explain Algorithm 6, after having topologically sorted G (O(|V | + |E|)),
we implement a bitmap index compression method to store ancestors information

in order to quickly perform queries in getting the relationships between entities and

minimize CPU usage. The basic idea of bitmap indexes is to assign one bitmap

132

Algorithm 6: Indexing Ontology Structure

input : O : an ontology,
isa : subsumption relation

output: M : Bitset codings of all concepts

1 G = (V,E)← Transform(O);
2 Vo ← TopologicalSort(G, isa);
3 for i← 1 to |Vo| do
4 Mi ← new BitSet();
5 Mi.set(i);
6 forall the vj | isa(vj, vi) do
7 Mi ←Mi.OR(Mj);
8 end

9 end

(i.e., bit array) to each entity. Each bitmap has length |Vo|; initially, all bitmap

values are set to 0. Then, in topological order, if entity i is an ancestor of j, the

i-th component of the bitmap of j will be set to 1. Without compression, bitmap

indexes are impractically large and the processing is time consuming. Here we use

compression techniques Enhanced Word-Aligned Hybrid (EWAH) based on run-

length encoding (RLE) published in [57].

In terms of storage bound, these techniques help to store the bitmap index in

O(|Vo| c) where c is number of bit 1 in a bitmap in average. In computational bound,

by using these techniques, logical operations over any two compressed bitmaps B1,

B2 are in O(|B1| + |B2|) where |B1| , |B2| are proportional to the number of bit 1

in corresponding basic bitmaps. Moreover, we observe that the maximum depth

of some very big ontology is very small with respect to the number of entities.

For example, according to Bioprotal1, the maximum depth of SNOMED is 32, the

maximum depth of GALEN is 26, the maximum depth of FMA is 22. This means

that the number of bits 1 in basic bitmaps is relatively small in comparison with

the length of bitmaps. Consequently, only O(1) time is needed to perform further

AND, OR operations over any two compressed bitmaps.

In particular, we directly bene�t advantages of this indexing for the following

queries:

• Concept A is a subclass of concept B if a bit at the position corresponding to

index number of B in the topo order is set to 1 in the bitmap of A. Then this

query can perform in O(1) time.

• To �nd the common ancestors of two concepts whose bitmaps are B1 and B2,

1http://bioportal.bioontology.org/

133

we compute bitmap B ← B1ANDB2 in O(1). The common ancestors are

concepts whose index number in the topo order is equal to the position of bit

1 in B. Especially, one of the most interesting thing here is that the lowest

common ancestor of B1, B2 is the concept whose index is the last bit 1 in B.

Obviously, the time complexity for this query is also O(1).

New Heuristic for Detecting Con�ict

As we discussed above, ALCOMO strongly depends on the existence of disjoint

axioms in the ontologies being matched. If the disjoint axioms are omitted (e.g.,

there is no disjoint axiom in the two ontologies of the Library track in OAEI 2012),

ALCOMO cannot detect con�ict mappings. In that case, similar to ALCOMO,

ASMOV cannot detect any con�ict based on the disjoint subsumption contradiction

pattern. One of solution to overcome this problem is that we can use the criss cross

correspondences pattern proposed in ASMOV. Therefore, we use this pattern as one

of complement to the ALCOMO patterns.

In addition, we propose a heuristic about disjoint between two concepts without

explicit declaration in a large scale ontology. The idea is that if the similarity of

two concepts in a given ontology is too small, we can consider that two concepts are

disjoint. Therefore, the problem of detecting the disjoint of two concepts can be

transformed into the problem of computing similarity value between them.

Generally, computing similarity value of two concepts in an ontology is similar

to computing similarity value of two synsets in the Wordnet dictionary. As we

mentioned in section 3.2.2, there are many similarity measures working on Wordnet

and each of them has its own strength and weakness. In order to select the most

suitable measure for our problem, let see an illustration in the Fig.6.10.

Obviously, if concept A and concept B are disjoint, their descendants are disjoint

also. That means the disjoint between two concepts does not depend of the distance

of the path from one concept to the other. For example, the distance of two concept

A and B is equal 2, but the distance of two concept X and Y , which are descendants

of A, B respectively, maybe much longer than 2. From this observation, we assume

that the disjoint of two concepts depends of the information content of their lowest

common ancestor (e.g., the concept C in the Fig.6.10). Therefore, in this case, we

can apply the Resnik [82] measure to compute the similarity value of two concepts

in ontology. We propose a de�nition of relative disjoint between two concepts in an

ontology as follows:

De�nition 13. Relative disjoint. Two concepts a, b in a given ontology O are

relative disjoint if ResnikSim(a, b) < θ, where θ is a small value in range [0, 0.1].

134

Figure 6.10: An illustration for our heuristic of disjoint concepts

Note that, the Resnik similarity computation of two senses in Wordnet is based

on the notion of information content. In fact, the similarity value of two concepts is

equal to the information content of a concept, which is the lowest common ancestor

of the two concepts in the ontology. However, what is the information content (IC

for short) of a concept in a given ontology? In computation linguistic, IC is a

fundamental dimension measuring the amount of information such as the degree of

generality or concreteness provided by the concept when appearing in the context.

The basic idea is that general and abstract concepts convey less IC than the concrete

and specialized ones in a given discourse. Classical information theoretic approaches

[82] obtain the IC values by statistically analyzing corpora. The IC of a concept is

de�ned as the inverse of its appearance probability in a given corpus. The IC value

is then obtained by considering the negative log likelihood:

IC(a) = − log p(a)

However, the drawback of this computation is that the probability depends of

the size and background of input copora. The content of corpora should be ade-

quate with respect to the domain knowledge and big enough in order to avoid data

sparseness. Moreover, due to the scalability problem such as manual tagging and

copora dependency and availability, this kind of IC computation is not applicable.

To overcome those limitation, in recent years, new methods have been proposed

to compute IC of concepts from an ontology in an intrinsic manner [85]. In fact,

those new methods are derived from the classical ones. Here, the intuition of intrinsic

IC is that, in a well organized hierarchy (especially in an ontology), the meaning of a

135

concept is not only encoded by itself, but also inherited from its descendants. There-

fore, counting the number of descendants of a concept may refer to its appearance

frequency of the domain knowledge represented by a given ontology.

In relation to our task, we realize that most of the ontologies are well organized.

In order to compute the IC of concepts on anatomy ontology, we extend the state of

the art intrinsic IC model proposed in [88]. This model is based on two assumptions

as follows:

• Concepts with many leaves in the hierarchy are general (i.e., they have low

IC) as they subsume the meaning of many salient concepts.

• Concept inheriting from several subsumers makes it more speci�c than another

one inheriting from a unique subsumer, even belonging to the same level of

depth, as the former incorporates di�erential features from several concepts.

To sum up, based on hierarchy of is-a hierarchy, the IC value of a concept a is

de�ned as:

IC(a) = − log

(|leaves(a)|
subsumers(a)

+ 1

max_leaves+ 1

)
From the indexing of the ontology structure, we can easily get the sets leaves(a)

and subsumers(a) with O(n) time complexity. In reality, one concept may have only

several children and parents, so the real time complexity is approximately O(1).

Now, we can restrict the equivalence incompleteness and multiple-entity corre-

spondences patterns described in the ASMOV with condition of relative disjoint as

follows.

De�nition 14. Relative disjoint Con�ict. Two correspondences 〈a1, a2〉 and
〈b1, b2〉 are found by this pattern if O1 |= a1 ≡ a2 but b1 and b2 are relative disjoint

in O2 .

The purpose of this pattern is to specialize in large scale ontology matching,

which allows multiple matching cardinality. In that case, one concept of an ontology

may be matched with many concepts of another ontology. It is only acceptable if

the matched concepts in the target ontology are semantically close to each other. If

they are relatively disjointed, then some of them are incorrect.

Con�dence Propagation

As we discussed in the ASMOV and ALCOMO approaches, the result of semantic

selection strongly depends of the con�dence values of the mappings being examined.

136

Basically, a con�dence value is used to express the degree of truth in the correctness

of a mapping. When con�ict mappings are found, the mapping with the lowest

con�dence is removed. Therefore, the certainty of con�dence values should be as

rigorous as possible. Ideally, the distinction between the con�dence values of a

correct and an incorrect mapping should be clear. That is the con�dence value of an

incorrect mapping is smaller than the con�dence value of a correct one when they

both are found in con�ict mappings.

In order to improve the accuracy of our semantic selection method, we propose

a method named con�dence propagation, which aims to increase the con�dence

values of the correct mappings and to decrease the con�dence values of the incorrect

mappings. The heuristic of this method is that the con�dence value of a mapping

becomes more certain if it can �nd other mappings whose entities have the same

semantic relationships with its entities.

Algorithm 7: Confidence Propagation

input : O1, O2 : input ontologies,
A : alignment

output: A′ : alignment with updated con�dence values

1 for a = 〈e1, e2,≡, c〉 ∈ A do
2 c′ = c+ getContextProfileSim(e1, e2);
3 a← 〈e1, e2,≡, c′〉;
4 end
5 for a = 〈e1, e2,≡, c′〉 ∈ A do
6 AE1 ← ancestors(O1, e1);
7 AE2 ← ancestors(O2, e2);
8 forall the ae = 〈ae1, ae2,≡, ac′〉 ∈ A | ae1 ∈ AE1 ∧ ae2 ∈ AE2 do
9 a← 〈e1, e2,≡, c′ + ac′〉;
10 ae← 〈ae1, ae2,≡, ac′ + c′〉;
11 end

12 end
13 A′ ← normalizedConfidenceValues(A)

The idea of con�dence propagation is presented in the Algorithm 7. It is similar to

the idea of the similarity propagation method described in the section 4.3. However,

in this method, a con�dence value is only propagated from one mapping to the other

in the given alignment instead of the whole pairwise connectivity graph. Here, at the

line 2, function getContextProfileSim returns the similarity value of two concepts

by comparing their context pro�les as we discussed in the section 3.3.2. The bene�t

of using this measure is that even though the neighbor concepts around two similar

concepts in the two input ontologies may be not pairwise similar, but the vocabulary

137

used to describe them may be highly overlapped. It is especially important for the

large scale ontology matching, where the number of correct mappings is too small

with respect to the size of ontologies. For example, FMA and NCI ontologies contain

78,989 and 66,724 classes respectively, but they share only about 2,900 concepts.

That means the distribution of the correct mappings seems very sparse.

Next, after updating the similarity value by comparing the context pro�le, the

propagation process propagates the new similarity values (i.e., new con�dence val-

ues) of all mappings in the given alignment among their subsumption path in the on-

tology hierarchies (line 5 to line 12). At lines 6 and 7, function ancestors returns all

ancestors of a concept in a given ontology. At line 13, function normalizedConfidenceV alues

normalizes the con�dence values of mappings into range of [0, 1].

6.3 Experiments and Evaluations

In this section, we evaluate the performance of our semantic �ltering method. Be-

cause our contribution focus on the large scale ontology matching, in the following

experiment, we are going to compare the performance of our method (i.e., Fast

Semantic Filtering) and the methods provided in ALCOMO tool on the Anatomy

and Biomedical ontology matching (i.e., Small FMA-NCI, Large FMA-NCI, Whole

FMA-NCI) data sets used in OAEI 2011.5. Note that, the size of the whole FMA

and NCI ontologies are 78,989 and 66,724 classes, respectively. The size of the mouse

and human ontologies in the Anatomy test are 2744 and 3304 classes, respectively.

Our prototype performing this experiment consists of three main components.

• The �rst component is based on Label Filter, which is an e�cient �lter to

select the high possible candidate mappings. The description of this �lter can

be read in section 7.3.3.

• The second component is based on Information retrieval based similarity mea-

sure described in section 3.3.1

• The last component is based on either a method in ALCOMO tool or our fast

semantic �ltering method. In terms of ALCOMO, we use the incomplete and

e�cient method ALCOMOIE.

Running both ALCOMO and our methods in the same prototype assures the

fairness in comparison. Table 6.1 and Table 6.2 show the results obtained by applying

ALCOMO and our method, respectively. The ALCOMOIE method only won our

method in case of LargeFMA−NCI test, whereas, our method won it in the rest

138

Test set Precision Recall Fmeasure Run times

Anatomy 0.9227 0.87401 0.8977 154 (s)
Small FMA - NCI 0.95896 0.88682 0.92148 1082 (s)
Large FMA - NCI 0.73065 0.86301 0.79133 2281 (s)
Whole FMA - NCI - - - - (s)

Table 6.1: Performance of ALCOMOIE on large scale ontology matching

Test set Precision Recall Fmeasure Run times

Anatomy 0.944 0.868 0.904 201 (s)
Small FMA - NCI 0.980 0.848 0.9093 482 (s)
Large FMA - NCI 0.923 0.821 0.869 1908 (s)
Whole FMA - NCI 0.906 0.821 0.861 3864 (s)

Table 6.2: Performance of the fast semantic �ltering on large scale ontology matching

tests. Especially, in case of WholeFMA−NCI, ALCOMO did not pass due to an

exception of out of memory. In fact, we have tested ALCOMO with other large scale

tests with SNOMED ontology (122464 classes) but it failed. In terms of our method,

we passed all tests including SNOMED ontology. The other results returned by our

method can be read in section 8.3.1.

6.4 Conclusion

In this chapter, we have presented di�erent mapping selection methods that are

widely used in ontology matching systems. We have categorized them into two

groups, i.e., non-semantic selection methods and semantic selection methods.

Our contribution in this chapter focuses on semantic selection method. For

this purpose, we have analyzed semantic veri�cation methods used in ASMOV and

ALCOMO tools. In the analyses, we have shown the strengths and weaknesses of

each method.

In terms of ASMOV, we have argued that some con�ict patterns of ASMOV

are not rigorous. Moreover, the veri�cation method used in ASMOV may be error

prone due to the uncertainty of similarity values computed in each running iteration

of ASMOV.

In terms of ALCOMO, we have argued that it maybe not work well if the input

ontologies do not have any disjoint axiom. In that case, it cannot detect any con�ict

pair of mappings. Moreover, ALCOMO strongly depends of the use of reasoning

system (i.e., Pellet). In many cases where Pellet cannot classify one of the input

ontologies, this tools will fail.

139

To overcome the weaknesses of ASMOV and ALCOMO, we have proposed a

Fast Semantic Filtering method to re�ne the discovered mappings for large scale

ontology matching. In our method, we have proposed a heuristic of Relative disjoint,

which can �nd to disjoint concepts in a big ontology. It can be useful in the case

when there is no disjoint axiom number declared in an ontology or the number of

this axiom is too small. Moreover, we have proposed an e�cient method to index

the structure of a ontology. By using this indexing method, we can e�ciently verify

the relation of any pair of entities.

Finally, the experimental result shows that our method can work even in very

large scale ontology matching, whereas, the incomplete method in ALCOMO cannot.

Furthermore, our method outperforms ALCOMO both in matching quality and

performance time.

140

141

Chapter 7

Towards Large Scale Ontology

Matching

Matching large scale ontologies is one of the most di�cult problems in the ontology

matching �eld. In particular, the size of ontologies being matched strongly impacts

the performance, i.e., e�ectiveness and e�ciency of any ontology matching system. It

is because large ontologies usually lead to very high conceptual heterogeneity, which

makes the ontology matching system di�cult to �nd all mappings. Consequently, the

e�ectiveness of the matching system will be decreased. Furthermore, large ontologies

produce a huge search space, in which a matching system seeks all correct mappings.

A discovery mappings in the huge space is very time consuming especially if multiple

matchers need to be evaluated and combined. Thus, the e�ciency of the matching

system will be decreased also.

In this chapter, we mainly focus on the approaches dealing with large scale

ontology matching. For this purpose, we overview �rst several existing methods

used in the state of the art ontology matching systems. In particular, a Partition-

based method will be discussed in section 7.1. Then, an Anchor-based Segmentation

method will be discussed in section 7.2. In the discussion, we will show the strengths

and weaknesses of these methods.

Our contribution in this chapter is new methods for reducing the search space.

In particular, in section 7.3, we propose two heuristics for selecting the candidate

mappings that are likely to be matched. The �rst heuristic states that if two entities

of two ontologies are likely similar if the context information of one entity can be

found in the context information of the other. This heuristic leads us to design

two �ltering methods, namely Description Filter and Context Filter, which are

based on search engine techniques. These methods will be discussed in section 7.3.1

and section 7.3.2, respectively. On the other hand, the second heuristic states that if

142

two entities are likely similar, their labels are likely similar too. Based on this idea,

we propose a �ltering method called Label Filter. This method will be presented

in section 7.3.3. Finally, in section 7.4, we present our experiment for evaluating the

performance of our �ltering methods.

7.1 Partition-based Method

In this section, we discuss the main features of a partition-based method dealing

with large scale ontology matching. Fig. 7.1 depicts the main steps of the partition-

based ontology matching method. The algorithm used in this method is similar

to the divide and conquer algorithm. Here, a big problem (i.e., matching on large

ontologies) is broken down into smaller problems (i.e., matching on sub ontologies).

Figure 7.1: Partition-based ontology matching

In this method, two main sequent phases work as follows:

• Firstly, the input ontologies are partitioned into sub-ontologies. It can be done

by applying a clustering algorithm overall entities of ontologies. For example,

in works [3, 40], two Agglomerative Hierarchical Clustering algorithms namely

ROCK and SCAN have been implemented. At the end of this phase, entities

within the same cluster are strongly related to each other, whereas, entities of

di�erent clusters are weakly related. Thus, we can assume that sub-ontologies

built on those clusters are represented di�erent and independent sub-domains

of knowledge.

• Next, in order to reduce the run-time complexity, a block (i.e., sub-ontology)

�lter selects candidate blocks, which will be compared to �nd mappings be-

tween their entities. It can be done by using some similarity measure at block

level. The intuition is that if two blocks describe the same or close topic, they

may share a high number of concepts and vocabulary used to represent entities

on that topic. This intuition leads to two methods for computing similarity

between blocks.

143

� The underlying idea of the �rst method is that the more anchors can be

found between two blocks, the more similar the two blocks are. Here,

an anchor is de�ned as a pair of entities, which have a high similarity

value computed by a similarity measure (e.g., string-based measure). For

example, this method is implemented in [40]. Let B1 and B2 be two

sets of blocks from two ontologies O1 and O2 and Q be a set of anchors

found between O1 and O2. Function TAnchors(b1, b2, Q) returns the total

number of the anchors in Q between two blocks b1 and b2 (b1 ∈ B1,

b2 ∈ B2). The similarity between b1 and b2 is de�ned as follows:

sim(b1, b2) =
2 · TAnchors(b1, b2, Q)∑

bi∈B1
TAnchors(bi, b2, Q) +

∑
bj∈B2

TAnchors(b1, bj, Q)

By setting a cuto� θ ∈ [0..1], any two blocks whose similarity is greater

than θ is selected to make up a block mapping.

� The underlying idea of the second method lies in the similarity of block

documents that contain the name, label of all entities of blocks. For

example, this method is implemented in [3]. The computation of similar-

ity values between two block documents is similar to the computation of

similarity between two virtual document in section 3.3.2.

The advantages of this method is that is can be used as a upper layer of existing

matching methods which can produce a high matching quality but time consuming

(e.g., graph matching method). In that case, an existing matching tool can be used

to discover mappings between selected pairs of blocks of the input ontologies. If the

size of two blocks is small enough, the matching process can run fast and does not

require extra memory.

Nevertheless, this method su�ers from several weaknesses. Firstly, the marginal

entities within a block may loss semantic information. It is because when the method

breaks down the input ontology, some relations will be cut o�. Therefore, it may

cause inaccuracy in computation of similarity. Next, the semantic coherence in each

block and its size strongly depend on the cut-o� criteria of the clustering algorithm.

There is no guarantee about the maximum size of blocks. It may produce unbalanced

blocks, where some of them have a very big size and the others have small size. In

that case, a big size block should be broken down again. However, the more breaking

down operations are, the more information will be lost. Finally, the complexity of the

clustering algorithm is high. For example, the complexity of the ROCK algorithm

144

is O(n2log(n)); the complexity of SCAN algorithm in a worst case is O(n2), where

n is the size of the ontology to be partitioned.

7.2 Anchor-based Segmentation Method

This method is also known as a dynamic selection of candidates. It does not break

input ontologies into smaller partitions like previous method. Instead, it iteratively

updates the set of candidate mappings, i.e., generate new candidates by exploiting

structural information of entities and remove probable mismatched ones by judging

their similarity values. This method can be found in QOM [?], Anchor-PROMPT

[72] systems, and more recently in the Anchor-Flood [38] system which obtained the

best runtime in the anatomy track in OAEI 2008.

Figure 7.2: Dynamic segmentation with anchor

Fig.7.2 illustrates the dynamic segmentation method in the Anchor-Flood sys-

tem. Basically, the main steps of this method work as follows:

• Firstly, at least one of initial anchor between the input ontologies is discovered

by running a fast similarity measure (e.g., an equality string-based measure).

• In each iteration, an aligned pair is selected to be explored. Note that the �rst

aligned pair comes from the initial anchor. For each concept in the selected

pair, the Anchor-Flood algorithm will update the ontology segment, which this

concept belongs to, by adding its neighboring concepts such as super concepts,

siblings and subconcepts of certain depth. The intuition is that the neighbors

of similar concepts might also be similar.

145

• Then, the aligning process (i.e., similarity computation and mapping selection)

produces aligned pairs from the collected neighbors. The new aligned pairs are

then used as anchors for the next iteration.

• The process is repeated until �either all the collected concepts are explored, or

no new aligned pair is found �. It outputs a set of aligned pairs within two

segments across the input ontologies.

The main advantage of this method is time e�ciency and memory e�ciency. It

does not compute similarity values for all pairs of entities in the input ontologies,

but only within two �segments� build around the selected anchor. The complexity

analysis of this method shows that it performs O(Nlog(N)) number of comparison

in average, where N is the size of input ontologies. Because this method runs

iteratively, so in each iteration, the memory usage is small.

However, this method may su�er from some drawbacks when the size of two

input ontologies is large and the positions of aligned pairs are highly distributed. For

example, the Foundational Model of Anatomy ontology (FMA.owl - 78,989 classes)

and the National Cancer Institute Thesaurus ontology (NCI.owl - 66,724 classes)

have in common only 2898 aligned pairs [46], which is much smaller than the size

of the both ontologies. In that case, in the two segments built around a selected

aligned pair, the number of aligned pairs is usually much smaller than the number

of unaligned pairs. Therefore, in the aligning process, the structural similarity value

computed for each pair of concepts between two segments is small; consequently, it

may not discover new aligned pairs for the next iteration. This problem causes the

loss of many candidates. That is maybe a reason why Anchor-Flood obtained a not

high Recall (0.682) in the OAEI 2008 Anatomy track.

7.3 Similar Annotation Oriented Heuristics

In this section, we are going to present our heuristics to deal with large scale ontology

matching, in particular with biomedical ontologies. The proposed heuristics are

inspired from two observations described in the work [32] as follows.

• Firstly, biomedical ontologies are usually large in size and have relatively little

structure, with only a few relationships. Moreover, real-world large ontologies

are highly conceptual heterogeneity in terms of di�erent properties such as

coverage, granularity and perspective. Therefore, algorithms that rely heavily

on analyzing the structure do not have an advantage.

146

• Second, biomedical ontologies often have rich terminological information, with

many synonyms speci�ed for each concept. Therefore, just using labels and

synonyms as a source for mappings provides good results. Moreover, there

is probably less variability in the language used to name biomedical concepts

compared to other domains. In fact, in order to distinguish thousands of con-

cepts, the developers of biomedical ontologies should precisely select and assign

labels to each concept. All these factors make lexical techniques e�ective.

These observations may be right not only for matching with large ontologies in

the biomedical �eld, but also for matching large scale ontologies in general. Besides,

as we mentioned in chapter 4, discovery matching from conceptual heterogeneity is

more complex than discovery matching from terminological heterogeneity. More-

over, its matching quality also strongly depends on the matching quality found by

terminological matcher. Therefore, in our approach, we try �rst to discover as many

as possible numbers of mappings by exploiting terminological information of entities.

Then, the structural and semantic information of entities are exploited to discover

new mappings and to verify the correctness of each mapping.

In order to discover mappings by using terminological information, i.e., annota-

tion of entities, we proposed two heuristics as follows:

• Two entities are similar if their textual context are highly similar. The tex-

tual context of an entity consists of a vocabulary used to describe its semantic

meaning in the modeling domain.

• Two entities are similar if their name or labels or synonyms di�er by maximum

two tokens. The intuition is that if two labels of two entities di�er by more than

three tokens, any string-based similarity measure will produce a low similarity

score value. Then, these entities are highly unmatched.

Based on these two heuristics, we have designed three �lters for selecting candi-

dates named Description Filter, Context Filter and Label Filter.

7.3.1 Filter by Description

The aim of this �lter is to fast locate pairs of entities from the input ontologies,

which have highly similar descriptions. Here, the description of an entity is a

simple textual context, which is created from name, labels, synonyms and comments

in the annotation of the entity. In fact, the description of an entity is usually a long

text. Using an exhaustive algorithm to compare every pair of entities from the input

147

ontologies will be very time consuming. Therefore, in this �lter, we propose a fast

method based on search engine technique for selecting candidate mappings. The

two main steps of this method work as follows:

• For the �rst input ontology (source ontology), Lucene search engine indexes

and stores the description of each entity. Lucene search engine automati-

cally tokenizes the description into tokens; performs token-stemming and stores

them in its indexing directory.

• For each entity in the second ontology (target ontology), a multi token-query

is created from the collection of tokens in the description. The query is then

executed within the Lucene indexing directory to return a sorted list of results.

Each searching result consists of an entity of the source ontology and a ranking

score, which shows the similarity between the description of this entity and

the query. From the list of results, we select a top-K highest results to form a

top-K candidates.

This method is useful when entities in both input ontologies have some comments

in their annotation.

7.3.2 Filter by Context

This �lter is an extension of the Description Filter discussed above. For each entity

in ontology, instead of a simple description, its context is composed of 3 independent

descriptions such as:

• An internal description consisting of name, labels, synonyms and comments

in the annotation of the entity.

• An ancestor description consisting of a collection of internal descriptions of

ancestors of the entity.

• A descendant description consisting of a collection of internal descriptions

of descendant of the entity.

The intuition behind this method is that if two entities of the two input ontolo-

gies are similar, we can �nd that the vocabulary used to describe their ancestors,

descendants and themselves are similar. This assumption leads to three main steps

as follows:

148

• At the indexing step, for each entity in the source ontology, Lucene search

engine indexes and stores 3 independent descriptions in 3 independent indexing

directories.

• At the searching step, for each entity in the target ontology, three independent

queries constructed from its three descriptions are executed in the correspond-

ing indexing directory. For example, a query created from ancestor description

is executed in the indexing directory containing ancestor descriptions of all en-

tities in the source ontology. Thus, for each entity in the target ontology, the

Lucene search engine returns three lists of results corresponding to an ances-

tor query, an internal query and a descendant query. Note that, each result

consists of an entity of the source ontology and a corresponding ranking score.

• At the selection step, it selects the top-K entities from the three lists of results,

which has the highest sum of ranking scores.

In fact, this method is similar to the �ltering method described in [11], which

obtains a good result in the Anatomy track (Fmeasure = 0.88). However, in our

approach, thanks to Lucene, which is one of the fastest state of the art search engine,

this �lter provides good performance.

7.3.3 Filter by Label

The aim of this �lter is to fast locate pairs of entities from the input ontologies,

which have highly similar name, labels or synonyms. The selected pairs of entities

are considered as candidate mappings, which will be judged by a string similarity

measure.

As we mentioned in our proposed heuristics, if two labels di�er by more than

three non-stop words (tokens), their similarity computed by any string measure is

low. Therefore, two entities in a candidate mapping should have at least a pair of

labels that di�er by less than two non-stop words.

Based on this idea, the main steps of this method are as follows:

• For each input ontology, build an inverted map, where the key of each entry is

a normalized label and the value is the entity of the ontology. The procedure of

producing normalized labels for an entity will be demonstrated in the example

below.

• Extract the two key sets of the two inverted maps and get their intersection.

Obviously, each item in the intersection set is a shared label between some

149

entities of the input ontologies. Those entities can be easily obtained by a

look up of the values corresponding to a shared label in the inverted maps.

The e�ciency of this method lies in the way of manipulating appropriate data

structure. Here, thanks to the hash function, the intersection operation between two

set of labels runs very fast. Moreover, thanks to inverted map data structure, it is

fast to get the entities by a given label key.

Figure 7.3: An example with the label �ltering method

Fig. 7.3 illustrates a simple example extracted from the anatomy track in

OAEI2012. Obviously, the labels of two entities are not identical, but highly similar.

Thanks to the Label Filter, the two entities are detected as a candidate mapping very

fast. Then, our Information Retrieval based similarity measure described in section

3.3.1 is used to compute the similarity value of the two entities by comparing their

original labels, i.e., �spinal cord grey matter � vs. �Gray_Matter_of_the_Spinal_Cord �.

7.4 Experiments and Evaluations

In this section, we evaluate the performance of our proposed �lters. Two criteria

considered in this evaluation are Recall and Runtime. Here, Recall indicates the

150

Top-K Precision Recall F-Measure TP FP FN Runtime

K = 1 0.432 0.778 0.556 1179 1546 337 23 (s)

K = 2 0.398 0.781 0.527 1184 1790 332 23 (s)

K = 3 0.231 0.847 0.363 1285 4268 231 23 (s)

K = 4 0.216 0.855 0.345 1296 4694 220 23 (s)

K = 5 0.158 0.889 0.269 1343 7122 173 23 (s)

K = 6 0.150 0.887 0.257 1345 7604 171 24 (s)

K = 7 0.121 0.908 0.214 1377 9972 139 24 (s)

K = 8 0.117 0.910 0.207 1380 10437 136 24 (s)

K = 9 0.099 0.923 0.178 1400 12775 116 24 (s)

K = 10 0.095 0.926 0.173 1404 13293 112 24 (s)

Table 7.1: Performance of the context �ltering method on the Anatomy test

Top-K Precision Recall F-Measure TP FP FN Runtime

K = 1 0.610 0.802 0.693 2262 1444 557 111 (s)

K = 2 0.333 0.876 0.483 2471 4940 348 111 (s)

K = 3 0.229 0.902 0.365 2544 8570 275 112 (s)

K = 4 0.174 0.915 0.293 2581 12235 238 112 (s)

K = 5 0.141 0.925 0.245 2609 15908 210 117 (s)

K = 6 0.118 0.929 0.209 2620 19598 199 120 (s)

K = 7 0.102 0.936 0.183 2638 23281 181 120 (s)

K = 8 0.089 0.939 0.163 2648 26972 171 125 (s)

K = 9 0.080 0.944 0.147 2661 30659 158 125 (s)

K = 10 0.072 0.947 0.134 2670 34349 149 125 (s)

Table 7.2: Performance of the context �ltering method on the FMA-NCI-small test

number of correct mappings can be discovered by other matchers, and Runtime

indicates about the e�ciency of our �ltering methods.

Generally, the higher Recall is, the more mappings can be obtained. Besides,

Precision in this experiment is less important than Recall. It is because the aim

of our methods is to �nd a subset of entities from one ontology that possibly match

to one entity of the other ontology. Many incorrect mappings maybe also involved

in the result of our methods, consequently, the Precision may be low. However,

improving Precision is the job of similarity matchers.

In this experiment, we use dataset of the Anatomy and Biomedical ontology

matching tracks in OAEI 2012. The Anatomy test consists of a mouse ontology

with 2744 classes and a human ontology with 3304 classes. A test taken from the

Biomedical ontology matching track is FMA-NCI-small, which consists of a small

fragment of FMA ontology with 3696 classes and small fragment of NCI ontology

with 6488 classes.

Table 7.1 and Table 7.2 show the performance of the Context Filter on the

151

Test Precision Recall F-Measure TP FP FN Runtime

Anatomy 0.922 0.872 0.896 1322 112 194 14 (s)

FMA-NCI-

small

0.912 0.899 0.905 2534 243 285 20 (s)

Table 7.3: Performance of the label �ltering method on the Anatomy and FMA-
NCI-small tests

Anatomy and the FMA-NCI-small tests. Note that this method makes use of the

Lucene Search Engine to search the most similar entities to a given entity by com-

paring their contexts. Parameter K implies that for each entity in the query, the top

K entities of the searching result for each query will be selected. In this experiment,

the value K is varied from 1 to 10.

The general trend of both tables shows that when the value K increases, the

Recall increases also. For example, when K is set to 10, Recall for the Anatomy

test is 0.926 and Recall for the FMA-NCI-small test is 0.947. The most important

thing is that the number of candidate mappings signi�cantly decreases. For example,

the total pairs of entities coming from two ontologies in the Anatomy test are:

2744 · 3304 = 9066176, whereas, after �ltering, the total candidate mappings is only

1404 + 13293 = 14697. Moreover, the runtime of the �ltering process is very small

(maximum 24 seconds for the Anatomy test).

Table 7.3 shows the performance of the Label Filter on the Anatomy and FMA-

NCI-small tests. Surprisingly, it run fast (about 14 seconds and 20 seconds for

each test) and obtained very high quality. In particular, for the Anatomy test, the

Fmeasure is 0.896, and for the FMA-NCI-small test, the Fmeasure is 0.905. These

results prove that our heuristic proposed in the Section 7.3.3 is e�cient.

7.5 Conclusion

In this chapter, we have presented our methods to deal with large scale ontology

matching. In particular, we have only focused on the improvement of e�ciency. In

our approach, two heuristic for candidate �ltering have been proposed, which implies

that two entities are likely similar if their contexts and their labels are highly similar,

respectively.

The �rst heuristic have been used in the two �ltering methods, namely Descrip-

tion Filter and Context Filter in section 7.3. These methods make use of the Lucene

search engine to indexing and searching contexts of entities in the input ontologies.

The experiment in section 7.4 shows that the performance of these methods depends

on the parameterK, which implies how many entities will be selected from the query

152

result. The higher value of K is, the higher Recall will be obtained.

The second heuristic have been implemented in the Label Filter in section 7.3.

The experiment in section 7.4 shows that this �lter is very e�ective and e�cient.

Therefore, to deal with large scale biomedical ontology matching, we can use this

method to reduce the search space before running the main matching process.

153

154

Chapter 8

Ontology Matching with YAM++

In this chapter, we present our ontology matching system called YAM++, which

have implemented all the contributions discussed in the previous chapters. In order

to evaluate the performance of our approach, we perform experiments with the

standard data sets published in the OAEI campaigns and compare the results of

YAM++ with other participants in the campaigns.

In section 8.1, we �rst introduce the prototype and evaluation results of the �rst

version (YAM++ v.1.0), which participated to the OAEI 2011 campaign. Next, in

section 8.2, we present the modi�cation that had been made from YAM++ v.1.0

to the YAM++ v.1.5. In addition, we present the comparison result of YAM++

v.1.5 with other participants in OAEI 2011.5 campaign. Section 8.3 presents the

current version YAM++ v.2.0. This version is able to deal with large scale ontology

matching. In this section, we present the performance of YAM++ v.2.0 in both

terms of matching quality and runtime e�ciency when it deals with large scale data

sets.

8.1 YAM++ v.1.0 in OAEI 2011 Campaign

This is the �rst version of YAM++ that participated to the campaign OAEI 2011.

The motivation of this version is to deal with the selection and con�guration tuning

challenge in the ontology matching �eld. That is, two main issues should be consid-

ered such as (i) selection of appropriate individual matchers (or similarity measures),

and (ii) combination with self-tuning con�guration for the selected matchers. The

idea for solving these issues in the whole matching system is that a divide and

conquer method will be used to deal with these issues in each component of the

system.

Fig. 8.1 shows the main components of YAM++ v.1.0. The Parsing & Pro-

155

Figure 8.1: Main components of YAM++ v.1.0

cessing component is used to read and load the input ontologies into the internal

data structure in the main memory. This component is built up on the OWLAPI

library and Pellet reasoner.

The matching process is performed within the two main components i.e., ele-

ment level matcher and structure level matcher. The element level matcher is

mainly based on a terminological matcher, which discovers mappings of entities

by comparing their annotation informations (i.e., labels, comments). In order to

deal with high terminological heterogeneity, several terminological similarity mea-

sures are combined in this matcher. In our approach, we propose a machine learning

based methods to select and combine those similarity measures. This method is

discussed in detail in Section 5.2 in Chapter 5. Besides, an extentional matcher

described in Section 3.3.3 in Chapter 3 complements the matching results to the

terminological matcher. The combination between them is simply performed by

making an union of their results. Finally, we have an element level matching result.

On the other hand, the structure level matcher is based on the similarity propa-

gation method, which is described in detail in Section 4.3 in Chapter 4. The output

of the element level matcher is passed as input to this matcher in order to perform

a similarity propagation process. In turn, this matcher produces a structure level

matching result.

In order to combine the matching results of both element and structure level

matchers, we apply the dynamic weighted sum method which is described in

Section 5.3 in Chapter 5. Here, the Greedy selection method, which is described in

the Section 6.1.2 in Chapter 6, is used to produce the �nal alignment.

156

Con�guration Precision Recall F-Measure

ML 0.99 0.72 0.84

ML + IB 0.99 0.74 0.85

ML + IB + SP 0.98 0.84 0.90

Table 8.1: Evaluation on the Benchmark dataset based on bibliography ontology

8.1.1 Experiments on the OAEI 2011 Datasets

In order to demonstrate the performance of our system, we will show the e�ectiveness

and the impact of the components above by comparing the results with following

con�gurations. The basic con�guration consists of the Terminological matcher only,

which is based on a machine learning (ML) approach. Next, we extend it with

the Extensional component, which is an Instance based matcher (IB), in order to

have a full Element-level matcher. Finally, we add the Similarity Propagation (SP)

component to the third con�guration. All experiments are executed with JRE 6.0

on Intel 3.0 Pentium, 3Gb of RAM, 1Gb for JVM in Window XP SP3.

Benchmark

The �rst benchmark data set, which is based on bibliography ontology, includes

111 tests. Each test consists of source (reference) ontology and a test ontology,

which is created by altering some information from the reference. The reference

ontology contains 33 named classes, 24 object properties, 40 data properties, 56

named individuals and 20 anonymous individuals. The evaluation of our system on

this track with the three con�gurations is shown in the Table 8.1.

The observation from this track is as follows. By using only machine learn-

ing (ML) approach, YAM++ achieved good result with very high precision (0.99)

and F-Measure (0.84). After adding the Instance based (IB) matcher, both Recall

and F-Measure increased with 2% and 1% respectively. These improvements were

happened because many ontologies have common extensional data (instances). Fi-

nally, thanks to the process of propagation of similarity, both Recall and F-Measure

increased with 10% and 5% respectively.

The second benchmark data set based on conference ontology includes 103 tests.

Similar to the biblio benchmark, in this track, a source (original) ontology is com-

pared to target ontologies which were obtained by altering some features from the

original. The reference ontology contains 74 named classes, 33 object properties

without extensional data (instances). The evaluation of our system on this track

with the three con�gurations is shown in the Table 8.2.

Similar to the Benchmark 2010 track, using Similarity Propagation method in-

157

Con�guration Precision Recall F-Measure

ML 0.98 0.51 0.67

ML + IB 0.98 0.51 0.67

ML + IB + SP 0.97 0.60 0.74

Table 8.2: Evaluation on the Benchmark dataset based on conference organization
ontology

Con�guration Precision Recall F-Measure

ML 0.75 0.50 0.60

ML + IB 0.75 0.50 0.60

ML + IB + SP 0.78 0.56 0.65

Table 8.3: Evaluation on the Conference dataset

creases both Recall and F-Measure values with 9% and 7%, respectively. The

Instance based matcher did not improve the performance because in this track, on-

tologies don't support extensional data. That is why the matching results of running

the �rst and the second con�gurations are the same.

Conferences

Conference track now contains 16 ontologies from the same domain (conference

organization) and each ontology must be matched against every other ontology.

Due to the high heterogeneity of those ontologies, �nding mappings between them is

more di�cult than that in benchmark tracks. Besides, this track is an open+blind

test because there are no reference alignments for most of those tests. In the Table

8.3, we can only report our results with respect to the available reference alignments.

The observation on this track is similar to the second benchmark track. Here, thanks

to our Similarity Propagation method, all of Precision, Recall and F-Measure values

are improved.

8.1.2 YAM++ vs. Other Participants in OAEI 2011

In order to compare the performance of YAM++ v.1.0 with other systems, we sub-

mitted YAM++ to the SEALS portal. To participate to the campaign, all par-

ticipants have to select the best con�guration for their performances. It is a very

good condition of the campaign that avoids a manual tuning. The organizers of the

SEALS portal run all participated system on the common data sets and fairly made

comparison of performance between those systems.

In the OAEI 2011 campaign, three tracks i.e., Benchmark, Conference and

158

Figure 8.2: Comparison of YAM++ with other participants in the Benchmark track
in the OAEI 2011 (taken from [1])

Anatomy were used for evaluation. Fig.8.2 and Fig.8.3 show the comparison of

YAM++ v.1.0 with other participants on the benchmark and conference tracks.

In terms of the Benchmark track, YAM++ achieved a position in top-2 best

matching systems with respect to the original, biblio and ekaw data sets. In

particular, YAM++ obtained 0.87 of Fmeasure and stood behind AgreementMaker

(0.88 of Fmeasure) for the original data set. For the biblio data set, YAM++ were

the best tool with 0.86 of Fmeasure. For the ekaw data set, YAM++ obtained 0.75

of Fmeasure and only lost MapSSS, which obtained 0.78 of Fmeasure. However,

YAM++ did not pass the Finance data set in the Benchmark track, which were

designed for large scale matching. It was the same problem of YAM++ with the

Anatomy track.

In terms of the Conference track, YAM++ achieved a position in top-2 best

matching systems with respect to di�erent computation of Fmeasure. In particular,

when the weight of Precision is higher than that of Recall (in case of F0.5measure),

YAM++ lost LogMap system. When the weight of Recall is higher than that of

Precision (in case of F2measure, YAM++ lost CODI and AgreementMaker. But,

in terms of harmonic mean of precision and recall (F1measure), YAM++ obtained

the best result.

159

Figure 8.3: Comparison of YAM++ with other participants in the Conference track
in the OAEI 2011 (taken from [1])

8.1.3 Conclusion of YAM++ v.1.0 Version

In this section, we presented the prototype of the �rst version of YAM++, which

focus on the selection and con�guration tuning challenge in the ontology match-

ing. The experimental results showed that individual components of YAM++ work

e�ectively. Furthermore, the comparison results showed that YAM++ is high com-

petitive with other state of the art ontology matching systems.

However, there were two drawbacks of this version. Firstly, it based on a ma-

chine learning model to combine similarity measures for discovering mappings. The

performance of the learning model strongly depends on the given training data. In

case that the training data are not available or are not suitable for a given matching

scenario, the performance of YAM++ will be low.

Besides, the second drawback relates to large scale matching. In the �rst time

participated to the campaign, YAM++ v.1.0 did not pass any test in Finance and

Anatomy data sets. The main reason is because a very big propagation graph in

the similarity propgation method, that lead to the problem of overload of the main

memory. Moreover, storing temporary data for the learning and classifying processes

of the machine learning model requires a lot of memory also. Another reason is

because of using Pellet reasoner to classify the input ontologies in the parsing and

processing step. A very large ontology is very time and memory resource consuming

to perform a complete reasoning task. In some case, if the input ontologies are

incoherent, Pellet cannot �nish its job.

160

8.2 YAM++ v.1.5 in OAEI 2011.5 Campaign

Generally, the architecture of this version and the �rst version are the same. Several

changes had been made to this version as follows:

• Firstly, due to the high complexity and due to the problem of lacking training

data for the machine learning based method, in the version YAM++ v.1.5,

we removed the machine learning part and used the information retrieval

similarity measures described in section 3.3.1 in Chapter 3.

• Secondly, in order to semantically re�ne the discovered mappings, we made

use of a debugging tool for incoherent mappings, namely ALCOMO [66].

• Lastly, due to the OAEI 2011.5 campaign provided multilingual ontology

matching track, we incorporated a multilingual translator, i.e., Microsoft

Bing1, in this version in order to translate labels of entities from other lan-

guages to English.

However, because of the short time between the two campaigns, the problem

of large scale matching was still retained in this version. Therefore, in the OAEI

2011.5 campaign, YAM++ v.1.5 was able to produce results for the Benchmark,

Conference and Multifarm tracks only.

8.2.1 YAM++ vs. Other Participants in OAEI 2011.5

The comparisons of YAM++ v.1.5 and other participants are shown in the Fig. 8.4,

Fig.8.5 and Fig.8.6.

In the OAEI 2011.5 campaign, new data sets were added to the Benchmark

track. According to the increasing sizes (total number classes and properties) of the

seed ontologies from biblio (97) to jerm (205), provenance (431) and �nance

(633), the Benchmark track became a scalability track. In this track, YAM++ v.1.5

produced good result on the biblio data set with 0.83 of Fmeasure. YAM++ got

the second position on this data set, where the best tool were MapSSS with 0.86

of Fmeasure. For the jerm data set, YAM++ stood in the top 4 best tools with

Fmeasure is equal to 0.72. The best tools were CODI and AROMA obtained a

surprisingly high Fmeasure, which is equal to 0.96. In terms of the provenance

and the �nance data sets, YAM++ did not complete or did not pass the whole

tests due to problems related to the lacking of memory.

1http://www.bing.com/translator

161

Figure 8.4: Comparison of YAM++ with other participants in the Benchmark track
in the OAEI 2011.5 (taken from [2])

Figure 8.5: Comparison of YAM++ with other participants in the Conference track
in the OAEI 2011.5 (taken from [2])

162

Figure 8.6: Comparison of YAM++ with other participants in the Multifarm track
in the OAEI 2011.5 (taken from [2])

For the Conference track, thanks to our new proposed similarity measure, which

is based on Information retrieval techniques, and thanks to the semantic veri�cation

component, which is based on the ALCOMO tools, the overall results of YAM++

signi�cantly increased. In particular, this version increased 0.13 (0.69 − 0.56) in

Recall and 0.02 (0.80−0.78) in Precision. Therefore, the Fmeasure of this version

were increased 0.09 (0.74− 0.65) in comparison with the �rst version. Furthermore,

in this track, YAM++ v.1.5 obtained value of 0.74 for Fmeasure and outperformed

other participants. The second best tool were Logmap, which obtained 0.66 for

Fmeasure.

The goal of the MultiFarm track is to evaluate the ability of matcher systems

to deal with multilingual ontologies. It is based on the OntoFarm dataset, where

annotations of entities are represented in di�erent languages such as: English (en),

Chinese (cn), Czech (cz), Dutch (nl), French (fr), German (de), Portuguese (pt),

Russian (ru) and Spanish (es). For those tests of this track, thanks to a multilingual

translator, which were used to translate annotations of entities in those ontologies

into English, YAM++ were able to discover alignments between them. According to

the comparison results, YAM++ were the winner on this track. In particular, there

were two types of evaluation. In the �rst type, all matching tools dealt with di�er-

ent ontologies in di�erent languages. In this evaluation, YAM++ achieved the best

matching quality (Fmeasure = 0.45). In the second type, all tools discovered map-

pings of the same ontologies but translated in di�erent languages. In this evaluation,

163

YAM++ obtained the second position among all participants.

8.3 YAM++ v.2.0 in OAEI 2012 Campaign

The major focus of this version (v.2.0) of YAM++ is to deal with large scale ontology

matching. Especially, scalability and large scale ontology matching is the main topic

of the OAEI 2012 campaign. Indeed, new data sets with very large ontologies such

as Library ontologies, Biomedical ontologies have been introduced in this campaign.

In order to overcome the weakness of the last versions of YAM++, the new

version have been updated and supplemented with new components. Fig.8.7 shows

the main components of the YAM++ v.2.0 version.

Figure 8.7: Main components of YAM++ OAEI 2012 version

In the YAM++ v.2.0, a generic work�ow for a given ontology matching scenario

is as follows.

1. Input ontologies are loaded and parsed by the Ontology Parser component;

2. Information of entities in ontologies are indexed by theAnnotation Indexing

and the Structure Indexing components.

3. Candidates Filtering component �lters out all possible pairs of entities from

the input ontologies, whose descriptions are highly similar;

4. Among those candidate mappings, the Terminological Matcher component

produces a set of mappings by comparing the annotations of entities;

5. The Instance-based Matcher component discovers new mappings through

shared instances between ontologies;

164

6. Like in previous versions of YAM++, matching results of the Terminological

Matcher and the Instance-based Matcher are aggregated into an element

level matching result. The Structural Matcher component then enhances

the element level matching result by exploiting structural information of enti-

ties;

7. The mapping results obtained from the three matchers above are then com-

bined and selected by the Combination & Selection component to have a

unique set of mappings;

8. Finally, the Semantic Veri�cation component re�nes those mappings in

order to eliminate the inconsistent ones.

In this version, the Annotation Indexing, the Structure Indexing and the

Candidates Filtering components are new; the Semantic Veri�cation compo-

nent have been updated with new features. The speci�cations of those components

are described as follows.

Annotation Indexing In this component, all annotations information of entities

such as ID, labels and comments are extracted. The languages used for representing

annotations are considered. In the case where input ontologies use di�erent lan-

guages to describe the annotations of entities, a multilingual translator (Microsoft

Bing) is used to translate those annotations to English. Those annotations are then

normalized by tokenizing into set of tokens, removing stop words, and stemming.

Next, tokens are indexed in a table for future use in similarity computation in the

Terminological matcher.

Structure Indexing In this component, the main structure information such as

IS-A and PART-OF hierarchies of ontologies are stored. This indexing method is

described in detail in the Section 6.2.4 in Chapter 6. A bene�t of this method

is to easily access to the structure information of ontology and minimize memory

for storing it. After this step, the loaded ontologies can be released to save main

memory.

Candidates Filtering The aim of this component is to reduce the computational

space for a given scenario, especially for the large scale ontology matching task. For

this purpose, two �lters have been designed in the YAM++ v.2.0 version. These

�lters are described in detail in Section 7.3 in Chapter 7.

165

Test set H-mean Precision H-mean Recall H-mean Fmeasure
Biblio 0.972 0.794 0.874
Jerm 0.988 0.967 0.978

Provenance 0.979 0.641 0.774
Finance 0.979 0.798 0.879

Table 8.4: YAM++ results on pre-test Scalability track

Test set H-mean Precision H-mean Recall H-mean Fmeasure
Biblio 0.98 0.72 0.83

Benchmark 2 0.96 0.82 0.89
Benchmark 3 0.97 0.76 0.85
Benchmark 4 0.96 0.72 0.83

Finance 0.97 0.84 0.90

Table 8.5: YAM++ results on Benchmark track in OAEI 2012

Semantic Veri�cation Because the ALCOMO tool has some limits in very large

scale ontology matching (e.g., Biomedical track), this component is used to replace

ALCOMO tool. The detail of its description can be found in the Section 6.2.4 in

Chapter 6.

Thanks to these changes and modi�cations, YAM++ v.2.0 now can work with

large scale ontology matching. At this time, we do not have the comparison results

of YAM++ with other participants in the OAEI 2012. We will present the evalu-

ation results of YAM++ with data sets published in the OAEI 2012 campaign, in

particular, the scalability and large scale data sets will be focused. Here, all experi-

ments are executed with JRE 6.0 on Intel 3.0 Pentium, 3Gb of RAM, 1Gb for JVM

in Window XP SP3.

8.3.1 Experiments on the OAEI 2012 Datasets

Scalability track

Firstly, we evaluate the performance of YAM++ v.2.0 with the scalability tests in

the OAEI 2011.5 campaign. Due to we do not have the complete results for all test

sets, Table 8.4 shows the result of YAM++ running on the pre-test, which is not

the full data set.

In OAEI 2012, Benchmark includes 2 open tests (i.e., biblio, �nance) and 3

blind tests (i.e., Benchmark 2, 3, 4). Here, the size of the seed ontologies in those

tests is 274, 354 and 472, respectively. Table 8.5 shows the results of YAM++

running on the Benchmark data sets:

166

Test set Precision Recall Fmeasure Run times
Anatomy 0.944 0.868 0.904 201 (s)

Table 8.6: YAM++ results on Anatomy track

Test set Precision Recall Fmeasure Run times
Small FMA - NCI 0.980 0.848 0.9093 482 (s)
Large FMA - NCI 0.923 0.821 0.869 1908 (s)
Whole FMA - NCI 0.906 0.821 0.861 3864 (s)

Small FMA - SNOMED 0.972 0.693 0.809 1990 (s)
Large FMA - SNOMED 0.879 0.684 0.769 7709 (s)
Whole FMA - SNOMED 0.878 0.683 0.768 9907 (s)
Small SNOMED - NCI 0.951 0.604 0.739 5643 (s)
Large SNOMED - NCI 0.864 0.599 0.708 13233 (s)
Whole SNOMED - NCI 0.859 0.599 0.706 17690 (s)

Table 8.7: YAM++ results on Large biomedical ontologies track

Anatomy track

The Anatomy track consists of �nding an alignment between the Adult Mouse

Anatomy (2744 classes) and a part of the NCI Thesaurus (3304 classes) describing

the human anatomy. Table 8.6 shows the evaluation result and runtime of YAM++

on this track.

Large Biomedical Ontologies track

This track consists of �nding alignments between the Foundational Model of Anatomy

(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). There

are 9 sub tasks with di�erent size of input ontologies, i.e., small fragment, large frag-

ment and the whole ontologies. Table 8.7 shows the evaluation results and runtime

performance of YAM++ on those sub tasks.

8.3.2 Conclusion of YAM++ v.2.0 Version

Obviously, YAM++ passed all scalability and large scale ontology matching tests

and obtained high matching results. Moreover, YAM++ can run with normal laptop

or PC with not high con�guration. That is the bene�t of using structure indexing,

candidate �ltering and fast semantic veri�cation components that we proposed in

previous chapters.

167

8.4 Conclusion

In this chapter, we have presented the three prototypes of YAM++ system, which

have participated to the OAEI 2011, OAEI 2011.5 and OAEI 2012 campaigns. We

have discussed the ability and the weaknesses of each prototype. The experimental

results show that the performance of YAM++ have been step by step improved.

Moreover, according to the comparison results with other ontology matching systems

in the OAEI campaigns, YAM++ achieved a high ranking position.

168

169

Chapter 9

Conclusion and Future Work

The �nal chapter aims to summarize the main contributions of this thesis and to

outline a number of directions for future work. We start with Section 9.1 to highlight

our contributions to the list of research questions initiated in the introduction of this

thesis. Next, in Section 9.2, we present the remaining issues that we are concerned in

future work. We focus on extensions and improvements of our approach and suggest

additional experiments required to answer these issues.

9.1 Main Contributions

The main goal of our research is enhancing ontology matching by using techniques

coming from di�erent �elds such as Machine Learning, Information Retrieval and

Graph Matching. This objective was stated in the introduction with a list of �ve

research questions. Each of these questions has been carefully studied in each chapter

of this thesis in order to be e�ectively and completely solved.

The �rst issue related to the problem of dealing with terminological heterogene-

ity in ontology matching. Terminological heterogeneity causes many problems, in

which the same entities to be labeled with di�erent names in di�erent ontologies.

Because of the high terminological heterogeneity in the real ontologies, most of the

existing terminological similarity measures are not su�cient. In order to overcome

this challenge, we have designed new similarity measures based on di�erent tech-

niques coming from Information retrieval �eld. The experimental results proved

that our similarity measures, i.e., Context pro�le measure, Instance-based similar-

ity measure, and especially, the Information Retrieval based measure e�ectively deal

with terminological heterogeneity with the real world ontologies. These measures are

our �rst contribution, which have been described in detail in Section 3.3. On the

other hand, we have also argued that a combination of the existing similarity mea-

170

sures could improve the matching quality. Thus, we have proposed a combination

method which is based on Machine Learning models (Section 5.2). This combina-

tion method is automatic and �exible. That is, it does not limit the number of the

similarity measures to be combined and its con�guration is self-tuned during the

training process. The Machine Learning based combination method is our second

contribution in this thesis.

The second issue related to the problem of dealing with conceptual heterogene-

ity in ontology matching. Conceptual heterogeneity makes the same entities have

di�erent semantic descriptions including their internal properties or their external

relationships with other entities. In order to overcome this challenge, we have pro-

posed a Similarity Propagation method, which is built on our proposed high level

graph data structure for ontology. The data structure and the Similarity Propaga-

tion method are described in section 4.3. The experimental results have proved that

our method is stable and less error prone than the other existing structural methods.

This method and the high level graph data structure is our third contribution in

this thesis.

The third issue related to the problem of combining matching results obtained

from element level matcher, which may consist of several terminological matchers,

and from structure level matcher. The aim of this combination is fully automatic

and e�ective. To solve this problem, we have designed a method called Dynamic

Weighted Sum in section 5.3, which automatically assigns a weigh value to each

matcher. Moreover, it also automatically determines a threshold value to select

the �nal mappings in combination. The experimental results have proved that our

proposed method outperforms two other automatic weighted sum methods used in

the PRIOR+ [64] and AgreementMaker [15] systems. The Dynamic Weighted Sum

method is our fourth contribution in this thesis.

The fourth issue related to the problem of matching large scale ontologies. Large

scale ontology matching is one of the toughest challenges in the ontology matching

�eld. The large size of ontologies decreases both the e�ectiveness and the e�ciency

of any ontology matching system. Furthermore, it usually requires a very powerful

hardware to perform the matching task. In section 7.3, we have proposed two

heuristics and three new �ltering methods, namely Description Filter, Context Filter

and Label Filter to reduce the computational space of the matching task. The two

�rst �lters are based on the use of Search Engine technique, in particular, Lucene

Search Engine. The last one is based on a Hash function to �lter identical labels or

sub-labels e�ciently. These �ltering methods are our �fth contribution.

The last issue related to the problem of removing semantic inconsistent map-

171

pings in the large scale ontology matching. In this case, the problem of detecting

inconsistent mappings becomes harder because almost all reasoning systems fail or

cannot completely classify large ontologies. To overcome this challenge, we have

proposed a Fast Semantic Filtering method and a new heuristic, namely Relative

disjoint heuristic. Our heuristic and our �ltering method have been described in

section 6.2.4. The experimental results have proved that our �ltering method can

work with very large scale ontologies. This is our sixth contribution.

Despite the fact that we have contributed a solution to each research issue,

there are still many open issues that should be considered. Indeed, some of our

methods are not complete, and consequently they need more investigation. In the

next section, we will discuss these issues.

9.2 Remaining Issues and Future Work

In the following, we present some works that remains to be done. They show the

possibility to improve or extend our system.

Improving Time Performance E�ciency is one of the main focuses that we are

concerned. Despite the fact that the last version of YAM++ can deal with large and

very large scale ontology matching, the runtime performance of YAM++ is low. In

terms of large scale matching, the indexing of structural information of an ontology

is very time consuming. It is mainly because of running topological sort overall the

concepts of ontology. On the other hand, the process of semantic veri�cation is slow

because the con�dence propagation is performed overall the discovered mappings.

In terms of small scale matching (like Conference, Benchmark data sets), the most

consuming time lies in similarity propagation method. This method is based on �x

point computation, thus it runs iteratively to update all candidate mappings in the

computational space.

We are now working on the optimization of the code of YAM++ in order to

save memory resource and improving its e�ciency. On the other hand, the current

YAM++ runs with only one thread. We may extend it into multi-threading system

to take advantages of multi-core processor computing system.

Recall Improvement For small scale ontology matching, the candidate �ltering

method is not used. But for the large scale matching, the candidate �ltering reduces

the computation space before running the main matching process. In the current

version of YAM++, we use a Context Filter and Label Filter. From the experiments,

172

we realize that the Recall obtained by these �lters is always smaller than 1.0. That

is, these �lters miss a number of correct mappings.

In order to overcome this problem, we are now working on a supplementary

�ltering method, which is based on similar structure of entities. The intuition is

similar to the idea implemented in an external structural similarity measure. A good

structural indexing will help �nding entities having the similar structural patterns

e�ciently.

Moreover, we may consider the possibility of taking into account background

knowledge (like super ontology) to discover more correct mappings.

Inconsistent Removing In YAM++, we have designed a Fast Semantic Filtering

method to eliminate inconsistent mappings. In fact, this method is a modi�cation

of the incomplete and e�cient method provided in ALCOMO. In order to improve

the coherent of mappings, we need to perform more experiments and maybe improve

the algorithm.

User Interaction A graphical user interface (GUI) is necessary in order to help

the user verify the discovered mappings. We are now developing a GUI that allows

the user to visualize the graph of semantic context of entities for each discovered

mapping. In addition, we plan to implement an incomplete reasoner to detect and

show con�ict mappings in the GUI. It will be a debugging tool to re�ne the �nal

matching result.

On the other hand, we are concerned with user interaction. That is, we let the

user the possibility to provide feedbacks on some mappings during the matching

process. YAM++ will exploit the feedback in order to produce a higher matching

quality.

Instance Matching The current version of YAM++ discovers mappings at schema

level only. That is, mappings between class-class and property-property will be re-

turned. In ontology matching, instance matching is an important task. It is because

instances of an ontology are the real world data. The discovered mappings between

instance-instance could be very useful in semantic data integration. Therefore, in

the future, we plan to deal with instance matching.

173

174

Bibliography

[1] OAEI 2011. http://oaei.ontologymatching.org/2011/.

[2] OAEI 2011.5. http://oaei.ontologymatching.org/2011.5/.

[3] Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. A clustering-based

approach for large-scale ontology matching. In ADBIS, 2011.

[4] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema

and ontology matching with coma++. In SIGMOD Conference, pages 906�

908, 2005.

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so

far. Int. J. Semantic Web Inf. Syst., 5(3):1�22, 2009.

[6] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. Representation

of context-dependant knowledge in ontologies: A model and an application.

Expert Syst. Appl., pages 1899�1908, 2008.

[7] Jürgen Bock, Carsten Dänschel, and Matthias Stumpp. Mappso and mapevo

results for oaei 2011. In OM, 2011.

[8] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based measures

of lexical semantic relatedness. Comput. Linguist., pages 13�47, 2006.

[9] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.

SIGMOD Rec., 2006.

[10] Watson Wei Khong Chua and Jung-Jae Kim. E�2match results for oaei 2010.

In OM, 2010.

[11] Watson Wei Khong Chua and Jung-jae Kim. Boat: Automatic alignment of

biomedical ontologies using term informativeness and candidate selection. J.

of Biomedical Informatics, pages 337�349, 2012.

175

[12] Philipp Cimiano. Ontology learning and population from text - algorithms,

evaluation and applications. Springer, 2006.

[13] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A

comparison of string distance metrics for name-matching tasks. In IIWeb,

pages 73�78, 2003.

[14] Roger L. Costello and David B. Jacobs. Owl web ontology language, 2003.

[15] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. E�cient selection

of mappings and automatic quality-driven combination of matching methods.

In OM, 2009.

[16] Isabel F. Cruz and Huiyong Xiao. Using a layered approach for interoperability

on the semantic web. In WISE, pages 221�231, 2003.

[17] Jérôme David. Aroma results for oaei 2009. In OM, 2009.

[18] Ricardo de Almeida Falbo, Fabiano Borges Ruy, and Rodrigo Dal Moro. Using

ontologies to add semantics to a software engineering environment. In SEKE,

pages 151�156, 2005.

[19] Rose Dieng and Stefan Hug. Comparison of personal ontologies represented

through conceptual graphs. In ECAI, pages 341�345, 1998.

[20] Hong Hai Do and Erhard Rahm. Coma - a system for �exible combination of

schema matching approaches. In VLDB, pages 610�621, 2002.

[21] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. On-

tology matching: A machine learning approach. In Handbook on Ontologies,

pages 385�404. 2004.

[22] John Domingue, Dieter Fensel, and James A. Hendler, editors. Handbook of

Semantic Web Technologies. Springer, Berlin, 2011.

[23] Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller. Yam:

a schema matcher factory. In CIKM, pages 2079�2080, 2009.

[24] Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap. Springer, 2007.

[25] Marc Ehrig and Ste�en Staab. Qom � quick ontology mapping. In ISWC,

pages 683�697. Springer, 2004.

176

[26] Isabel F. Cruz et al. Using agreementmaker to align ontologies for oaei 2010.

In OM, 2010.

[27] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko,

and Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six

years of experience. J. Data Semantics, pages 158�192, 2011.

[28] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Hei-

delberg (DE), 2007.

[29] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in

owl-lite. In ECAI, pages 333�337, 2004.

[30] Jérôme Euzenat, David Loup, Mohamed Touzani, and Petko Valtchev. On-

tology alignment with ola. In In Proceedings of the 3rd EON Workshop, 3rd

International Semantic Web Conference, pages 59�68, 2004.

[31] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clémentine

Nebut. Metamodel matching for automatic model transformation generation.

In MoDELS '08.

[32] Musen MA Ghazvinian A, Noy NF. Creating mappings for ontologies in

biomedicine: simple methods work. In AMIA, 2009.

[33] Fausto Giunchiglia and Pavel Shvaiko et al. S-match: an algorithm and an

implementation of semantic matching. In In Proceedings of ESWS, pages 61�

75, 2004.

[34] Thomas R. Gruber. Toward principles for the design of ontologies used for

knowledge sharing. Int. J. Hum.-Comput. Stud., pages 907�928, 1995.

[35] Ramanathan V. Guha, Rob McCool, and Eric Miller. Semantic search. In

WWW, pages 700�709, 2003.

[36] Alon Y. Halevy. Why your data won't mix: Semantic heterogeneity. ACM

Queue, pages 50�58, 2005.

[37] Fayçal Hamdi, Brigitte Safar, Nobal B. Niraula, and Chantal Reynaud. Tax-

omap alignment and re�nement modules: results for oaei 2010. In OM, 2010.

[38] Md. Seddiqui Hanif and Masaki Aono. An e�cient and scalable algorithm

for segmented alignment of ontologies of arbitrary size. J. Web Sem., pages

344�356, 2009.

177

[39] Wei Hu, Jianfeng Chen, Gong Cheng, and Yuzhong Qu. Objectcoref & falcon-

ao: results for oaei 2010. In OM, 2010.

[40] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies: A divide-

and-conquer approach. Data Knowl. Eng., pages 140�160, 2008.

[41] Jakob Huber, Timo Sztyler, Jan Nöÿner, and Christian Meilicke. Codi: Com-

binatorial optimization for data integration: results for oaei 2011. In OM,

2011.

[42] Yves R. Jean-Mary and Mansur R. Kabuka. Asmov: Results for oaei 2008. In

OM, 2008.

[43] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology

matching with semantic veri�cation. pages 235�251, 2009.

[44] Qiu Ji, Peter Haase, and Guilin Qi. Combination of similarity measures in

ontology matching using the owa operator. In Recent Developments in the

Ordered Weighted Averaging Operators, pages 281�295. 2011.

[45] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and

scalable ontology matching. In ISWC, pages 273�288, 2011.

[46] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Hor-

rocks. Large-scale interactive ontology matching: Algorithms and implemen-

tation. In ECAI, pages 444�449, 2012.

[47] Ogden C. K. and Richards I. A. The meaning of meaning. In Harvest HBJ,

1989.

[48] Marouen Kachroudi, Essia Ben Moussa, Sami Zghal, and Sadok Ben Yahia.

Ldoa results for oaei 2011. In OM, 2011.

[49] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of

the art. Knowl. Eng. Rev., pages 1�31, 2003.

[50] M. Klein. Combining and relating ontologies: an analysis of problems and

solutions. In IJCAI'01, 2001.

[51] Michel Klein. Combining and relating ontologies: An analysis of problems and

solutions, 2001.

[52] Gerald Kowalski. Information Retrieval Systems: Theory and Implementation.

Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997.

178

[53] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic

primer. CoRR, 2012.

[54] Andreas Langegger, Wolfram Wöÿ, and Martin Blöchl. A semantic web mid-

dleware for virtual data integration on the web. In ESWC, pages 493�507,

2008.

[55] Holger Lausen, Ying Ding, Michael Stollberg, Dieter Fensel, Rubén Lara Her-

nandez, and Sung-Kook Han. Semantic web portals: state-of-the-art survey.

J. Knowledge Management, 9(5):40�49, 2005.

[56] Bach Thanh Le, Rose Dieng-Kuntz, and Fabien Gandon. On ontology match-

ing problems. In ICEIS (4), pages 236�243, 2004.

[57] Daniel Lemire, Owen Kaser, and Kamel Aouiche. Sorting improves word-

aligned bitmap indexes. Data Knowl. Eng., pages 3�28, 2010.

[58] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. Rimom: A dynamic multistrategy

ontology alignment framework. IEEE Trans. Knowl. Data Eng., pages 1218�

1232, 2009.

[59] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema

matching with cupid. In VLDB, pages 49�58, 2001.

[60] Alexander Maedche, Ste�en Staab, Nenad Stojanovic, Rudi Studer, and York

Sure. Semantic portal: The seal approach. In Spinning the Semantic Web,

pages 317�359, 2003.

[61] Christoph Mangold. A survey and classi�cation of semantic search approaches.

Int. J. Metadata Semant. Ontologies, pages 23�34, 2007.

[62] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, New York,

2008.

[63] Ming Mao, Yefei Peng, and Michael Spring. A pro�le propagation and infor-

mation retrieval based ontology mapping approach. In SKG, pages 164�169,

2007.

[64] Ming Mao, Yefei Peng, and Michael Spring. An adaptive ontology mapping

approach with neural network based constraint satisfaction. J. Web Sem.,

pages 14�25, 2010.

179

[65] Diana Maynard and Sophia Ananiadou. Term extraction using a similarity-

based approach. In In Recent Advances in Computational Terminology. John

Benjamins, pages 261�278, 1999.

[66] Christian Meilicke. Alignment incoherence in ontology matching phd. thesis.,

2011.

[67] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity �ooding:

A versatile graph matching algorithm and its application to schema matching.

In ICDE, pages 117�128, 2002.

[68] Prasenjit Mitra, Natasha F. Noy, and Anuj Rattan Jaiswal. Omen: a proba-

bilistic ontology mapping tool. In Proceedings of the 4th international confer-

ence on The Semantic Web, ISWC'05, 2005.

[69] Alvaro E. Monge and Charles Elkan. The �eld matching problem: Algorithms

and applications. In KDD, pages 267�270, 1996.

[70] Miklos Nagy, Maria Vargas-Vera, and Piotr Stolarski. Dssim results for oaei

2009. In OM, 2009.

[71] Natalya F Noy and Michel C. A. Klein. Ontology evolution: Not the same as

schema evolution. Knowl. Inf. Syst., pages 428�440, 2004.

[72] Natalya F. Noy and Deborah L. Mcguinness. Ontology development 101: A

guide to creating your �rst ontology. Technical report, 2001.

[73] Natalya Fridman Noy. Semantic integration: A survey of ontology-based ap-

proaches. SIGMOD Record, 33(4):65�70, 2004.

[74] Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and tool for

automated ontology merging and alignment. In AAAI/IAAI, pages 450�455,

2000.

[75] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A bayesian network ap-

proach to ontology mapping. In ISWC, ISWC'05, pages 563�577, 2005.

[76] Shvaiko Pavel and Jerome Euzenat. Ontology matching: State of the art and

future challenges. IEEE TKDE, 2011.

[77] Velma L. Payne and Douglas P. Metzler. Hospital care watch (hcw): An

ontology and rule-based intelligent patient management assistant. In CBMS,

pages 479�484, 2005.

180

[78] Catia Pesquita, Cosmin Stroe, Isabel F. Cruz, and Francisco M. Couto. Blooms

on agreementmaker: results for oaei 2010. In OM, 2010.

[79] M. F. Porter. An algorithm for su�x stripping. pages 313�316. 1997.

[80] Yuzhong Qu, Wei Hu, and Gong Cheng. Constructing virtual documents for

ontology matching. In WWW, pages 23�31, 2006.

[81] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, pages 334�350, 2001.

[82] Philip Resnik. Using information content to evaluate semantic similarity in a

taxonomy. In IJCAI, pages 448�453, 1995.

[83] Quentin Reul and Je� Z. Pan. Kosimap: Ontology alignments results for oaei

2009, 2009.

[84] Frederik C. Schadd and Nico Roos. Maasmatch results for oaei 2011. In OM,

2011.

[85] N. Seco, T. Veale, and J. Hayes. An intrinsic information content metric for

semantic similarity in WordNet. Proc. of ECAI, pages 1089?1090�1089?1090,

2004.

[86] C. E. Shannon. Prediction and entropy of printed english. Bell Systems Tech-

nical Journal, pages 50�64, 1951.

[87] T. Smith and M. Waterman. Journal of Molecular Biology, pages 195�197,

1981.

[88] David Sánchez, Montserrat Batet, and David Isern. Ontology-based informa-

tion content computation. KBS, pages 297�303, 2011.

[89] Ste�en Staab, Jürgen Angele, Stefan Decker, Michael Erdmann, Andreas

Hotho, Alexander Maedche, Hans-Peter Schnurr, Rudi Studer, and York Sure.

Semantic community web portals. Computer Networks, 33(1-6):473�491, 2000.

[90] Giorgos Stoilos, Giorgos B. Stamou, and Stefanos D. Kollias. A string metric

for ontology alignment. In ISWC Conference, pages 624�637, 2005.

[91] Ljiljana Stojanovic. Methods and tools for ontology evolution. PhD thesis,

2004.

181

[92] William Sunna and Isabel F. Cruz. Structure-based methods to enhance

geospatial ontology alignment. In GeoS, pages 82�97. Springer, 2007.

[93] Vojtech Svátek and Petr Berka. Ontofarm: Towards an experimental collection

of parallel ontologies. In In: Poster Session at ISWC, 2005.

[94] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object iden-

ti�cation rules for information integration. pages 607�633, 2001.

[95] Amos Tversky. Features of similarity. Psychological Review, 84:327�352, 1977.

[96] P.R.S. Visser, Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-capon, and

M. J. R. Shave. An analysis of ontology mismatches; heterogeneity versus

interoperability, 1997.

[97] Peng Wang. Lily results on seals platform for oaei 2011. In OM, 2011.

[98] Peng Wang and Baowen Xu. Lily: Ontology alignment results for oaei 2009.

In OM, 2009.

[99] William E. Winkler. The state of record linkage and current research problems.

Technical report, Statistical Research Division, U.S. Census Bureau, 1999.

[100] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. 1999.

182

