
HAL Id: tel-00766963
https://theses.hal.science/tel-00766963

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer Recommendation for Large-Scale Online
Communities

Fady Draidi

To cite this version:
Fady Draidi. Peer-to-Peer Recommendation for Large-Scale Online Communities. Databases [cs.DB].
Université Montpellier II - Sciences et Techniques du Languedoc, 2012. English. �NNT : �. �tel-
00766963�

https://theses.hal.science/tel-00766963
https://hal.archives-ouvertes.fr

ACADÉMIE DE MONTPELLIER
U N I V E R S I T É M O N T P E L L I E R I I

- SCIENCES ET TECHNIQUES DU LANGUEDOC -

T H È S E

En vue de l’obtention du grade de

Docteur de l’Université de Montpellier II

Spécialité : Informatique

Formation Doctorale : Informatique

Ecole Doctorale : Information, Structures, Systèmes

Titre de la thèse

Recommandation Pair-à-Pair pour

Communautés en Ligne à Grande Echelle

par

Fady DRAIDI

Soutenue publiquement le 09 Mars 2012

Section 27 - Informatique - devant le JURY composé de :

Mohand-Said Hacid Professeur, Université Lyon I Président

Sihem Amer-Yahia DR CNRS, LIG, Grenoble Rapporteur

Abdelkader Hameurlain Professeur, Université Toulouse III Rapporteur

Marie-Laure Mugnier Professeur, Université Montpellier II Examinateur

Esther Pacitti Professeur, Université Montpellier II Directeur de thèse

Patrick Valduriez DR INRIA, LIRMM, Montpellier Co-directeur de thèse

 2

 3

Recommandation Pair-à-Pair pour Communautés en Ligne à Grande Echelle

 Résumé de la thèse

Les systèmes de recommandation (RS) et le pair-à-pair (P2) sont complémen-

taires pour faciliter le partage de données à grande échelle: RS pour filtrer et person-

naliser les requêtes des utilisateurs, et P2P pour construire des systèmes de partage de

données décentralisés à grande échelle. Cependant, il reste beaucoup de difficultés

pour construire des RS efficaces dans une infrastructure P2P.

Dans cette thèse, nous considérons des communautés en ligne à grande échelle,

où les utilisateurs notent les contenus qu’ils explorent et gardent dans leur espace de

travail local les contenus de qualité pour leurs sujets d’intérêt. Notre objectif est de

construire un P2P-RS efficace pour ce contexte. Nous exploitons les sujets d’intérêt

des utilisateurs (extraits automatiquement des contenus et de leurs notes) et les don-

nées sociales (amitié et confiance) afin de construire et maintenir un overlay P2P so-

cial.

La thèse traite de plusieurs problèmes. D’abord, nous nous concentrons sur la

conception d’un P2P-RS qui passe à l’échelle, appelé P2Prec, en combinant les ap-

proches de recommandation par filtrage collaboratif et par filtrage basé sur le contenu.

Nous proposons alors de construire et maintenir un overlay P2P dynamique grâce à

des protocoles de gossip. Nos résultats d’expérimentation montrent que P2Prec per-

met d’obtenir un bon rappel avec une charge de requêtes et un trafic réseau accep-

tables. Ensuite, nous considérons une infrastructure plus complexe afin de construire

et maintenir un overlay P2P social, appelé F2Frec, qui exploite les relations sociales

entre utilisateurs. Dans cette infrastructure, nous combinons les aspects filtrage par

contenu et filtrage basé social, pour obtenir un P2P-RS qui fournit des résultats de

qualité et fiables. A l’aide d’une évaluation de performances extensive, nous mon-

trons que F2Frec améliore bien le rappel, ainsi que la confiance dans les résultats avec

une surcharge acceptable. Enfin, nous décrivons notre prototype de P2P-RS que nous

avons implémenté pour valider notre proposition basée sur P2Prec et F2Frec.

Mots-clés: Système pair-à-pair (P2P), système de recommandation (RS), communau-

tés en ligne, réseaux sociaux, recherche d’information, gestion de données à grande

échelle.

 4

P2P Recommendation for Large-scale Online Communities

 Thesis summary

Recommendation systems (RS) and P2P are both complementary in easing large-

scale data sharing: RS to filter and personalize users’ demands, and P2P to build de-

centralized large-scale data sharing systems. However, many challenges need to be

overcome when building scalable, reliable and efficient RS atop P2P.

In this work, we focus on large-scale communities, where users rate the con-

tents they explore, and store in their local workspace high quality content related to

their topics of interest. Our goal then is to provide a novel and efficient P2P-RS for

this context. We exploit users’ topics of interest (automatically extracted from users’

contents and ratings) and social data (friendship and trust) as parameters to construct

and maintain a social P2P overlay, and generate recommendations.

The thesis addresses several related issues. First, we focus on the design of a

scalable P2P-RS, called P2Prec, by leveraging collaborative- and content-based filter-

ing recommendation approaches. We then propose the construction and maintenance

of a P2P dynamic overlay using different gossip protocols. Our performance experi-

mentation results show that P2Prec has the ability to get good recall with acceptable

query processing load and network traffic. Second, we consider a more complex in-

frastructure in order to build and maintain a social P2P overlay, called F2Frec, which

exploits social relationships between users. In this new infrastructure, we leverage

content- and social-based filtering, in order to get a scalable P2P-RS that yields high

quality and reliable recommendation results. Based on our extensive performance

evaluation, we show that F2Frec increases recall, and the trust and confidence of the

results with acceptable overhead. Finally, we describe our prototype of P2P-RS,

which we developed to validate our proposal based on P2Prec and F2Frec.

Key-words: P2P system, recommendation system (RS), online communities, social

networks, information retrieval, large-scale data management.

 5

 6

Table of Contents
Table of Contents 6
List of Tables 9
List of Figures 10

Chapter 1 Introduction... 11

1.1 Motivations .. 11
1.2 Contributions ... 14

1.3 Thesis Organization ... 16

Chapter 2 State-of-the-Art ... 19

2.1 Introduction ... 19
2.2 Recommendation Systems .. 21
2.2.1 Overview 21
2.2.2 Collaborative-based Filtering 22

2.2.3 Content-based Filtering 25

2.2.4 Social-based Filtering 27
2.3 P2P Systems .. 29
2.3.1 Unstructured P2P Networks 30

2.3.2 Structured P2P Networks 31

2.3.3 Dynamic P2P Networks 31
2.3.4 Requirements for P2P Recommendation Systems 33
2.4 P2P Content Management Systems ... 35

2.4.1 Clustering Overlays 35
2.4.2 Shortcut Link Overlays 36

2.5 P2P Prediction Systems ... 39
2.5.1 Basic P2P Prediction Systems 39
2.5.2 Social P2P Prediction Systems 42

2.6 Summary and Observations ... 47
2.7 Conclusion ... 50

Chapter 3 P2Prec: P2P Recommendation for Large-scale Data Sharing 52

3.1 Introduction ... 52
3.2 Problem Definition .. 54
3.3 P2Prec Basic Concepts .. 55

3.3.1 Topics Extraction 55
3.3.2 Topics of Interest and Relevant Users 56
3.4 P2Prec Overlay .. 59
3.4.1 Overlay Construction 59
3.4.2 Query Processing 60

3.4.3 Random Gossip Protocol 60

3.5 Semantic Gossiping ... 62

3.5.1 Computing the Hit-Ratio 63
3.5.2 Similarity Functions 63
3.5.3 Semantic Gossip Behaviors 64
3.6 Semantic Two-Layered Gossiping .. 67
3.7 Query Routing and Recommendation Ranking 69

 7

3.7.1 Query Processing 69
3.7.2 Ranking Recommendations 72
3.7.3 Dealing with Query Failures 74
3.8 Experimental Evaluation ... 74

3.8.1 Experimentation Setup 75
3.8.2 Trade off: Impact of Gossip 77
3.8.3 Trade off: Impact of Semt, Rand, and 2LG 79
3.8.4 Effect of TTL 81
3.8.5 Effect of Using Query-histories 83

3.9 Conclusion ... 84

Chapter 4 F2Frec: Leveraging Social- and Content-based Recommendation

in P2P Systems ... 86

4.1 Introduction ... 86
4.2 General Overview of F2Frec and Problem Definition 88
4.2.1 General Overview of F2Frec 88

4.2.2 Problem Definition 89
4.3 Friend to Friend Recommendation .. 90

4.3.1 FOAF File under F2Frec 90
4.3.2 Random Gossip under F2Frec 91
4.3.3 Metrics 91

4.3.4 Friendship Establishment 92
4.4 Query Processing based on FOAF Files .. 97

4.4.1 Query Processing 97
4.4.2 Trust Computation 100

4.4.3 Ranking Recommendations 100
4.5 Managing the Dynamicity of Users’ Relevant Topics

of Interest ... 103

4.6 Experimental Evaluation ... 103

4.6.1 Experimentation Setup 104
4.6.2 Impact of Gossip 105
4.6.3 Friendship Establishment 108

4.6.4 Impact of the Top-k Query Routing Algorithm 111
4.6.5 Trade-off of Ranking Recommendations 112
4.6.6 Users’ Relevant Topics of Interest Dynamism 114
4.7 Conclusion ... 114

CHAPTER 5 P2P-RS Prototype .. 117

5.1 Introduction ... 117
5.2 Shared-data Overlay Network (SON) ... 118
5.3 P2P-RS Implementation .. 120
5.3.1 P2P-RS Architecture 120

5.3.2 P2P-RS’s Components 121

5.3.3 P2P-RS Components at Work 124

5.4 P2P-RS Demonstration .. 125
5.4.1 Installation 125
5.4.2 Initialization 126
5.4.3 Gossiping 126
5.4.4 Querying 127

 8

5.5 Conclusion ... 129

Chapter 6 Conclusion ... 131

6.1 Summary of Contributions .. 131
6.2 Future Directions ... 132

References 135

 9

List of Tables
Table 3.1. Simulation parameters 76
Table 3.2. Impact of gossip parameters 78
Table 3.3. Impact of Rand, Semt, and 2LG 80
Table 4.1. Simulation parameters 105

Table 4.2. Impact of gossip on friendship establishment 106
Table 4.3. Results obtained by F2Frec over the respective metrics 109
Table 4.4. Impact of the top-k routing algorithm 111

Table 4.5. Varying the way used to rank recommendations 113

 10

List of Figures
Figure 2.1. Overview of recommendation systems 22
Figure 2.2. Collaborative-based filtering 23
Figure 2.3. Content-based filtering 25
Figure 2.4. A snapshot of social-based filtering graph 28

Figure 2.5. Example of unstructured P2P network 30
Figure 2.6. Example of DHT 31
Figure 2.7. Pull-push gossip exchange between peers p1 and p2 33

Figure 2.8. Query processing in P4Q 38
Figure 2.9. Ping/Pong in the random discovery architecture of PocketLen 40
Figure 2.10. A snapshot of the PipeCF system 41
Figure 2.11. A snapshot of a trust network 43
Figure 2.12. Recommendation systems and a hierarchy of solutions 47

Figure 2.13. Overview of the P2P recommendation systems architecture 48
Figure 3.1. LDA under P2Prec context 56
Figure 3.2. User u’s local-view 59
Figure 3.3. Users u and v are not similar 61

Figure 3.4. User u and v are similar 62
Figure 3.5. User u and v carry mostly non-relevant users 62

Figure 3.6. The 2LG framework at user u 68

Figure 3.7. The query processing and recommendation ranking 74

Figure 3.8. The variation of recall, communication cost, and hit-ratio versus

time 81

Figure 3.9. The effect of TTL in Rand over recall and communication cost 82
Figure 3.10. The effect of TTL in Semt over recall and communication cost 82
Figure 3.11. The effect of TTL in 2LG over recall and communication cost 83

Figure 3.12. The effect of query-histories on recall, communication cost and

hit-ratio 83
Figure 4.1. An example of a FOAF file in F2Frec 91
Figure 4.2. Snapshot of F2Frec System 97

Figure 4.3. Query processing, recommendation ranking, trust computing 102

Figure 4.4. The variation of average number of friend versus time 107

Figure 4.5. F2Frec performance over respective metrics 110
Figure 4.6. Fresh users’ local-views vs. gossip cycles 114
Figure 5.1. Layered architecture of P2P-RS 118
Figure 5.2. SON infrastructure 119
Figure 5.3. P2P-RS implementation architecture 121

Figure 5.4. P2P-RS implementation at work 125
Figure 5.5. P2P-RS gossiping interface 127
Figure 5.6. P2P-RS query interface 128
Figure 5.7. An example of the friendship graph of the P2P-RS demo 129

 11

Chapter 1 Introduction

1.1 Motivations

Collaborative web 2.0 tools provide new opportunities for people to interact with

each other within online communities, thus facilitating data, information and

knowledge interchange, processing and publication. The most successful examples of

online communities for publishing and locating information [62][6] are social net-

works (e.g., sites like MySpace [107] and Facebook [46]), wiki systems [164] (e.g.,

Wikipedia [164]), and content sharing web sites (e.g., sites like Citeulike [29] and

Delicious [33]). Online communities have become very popular, and such popularity

has translated into large amounts of data, content and knowledge being spread over

very high numbers of users.

Similarly, in modern e-science (e.g., bio-informatics, physics and environmental

science), scientists must deal with overwhelming amounts of experimental data pro-

duced through empirical observation and simulation. Such data must be processed in a

collaborative way among different researchers, perhaps from different laboratories, in

order to draw new conclusions, produce knowledge or prove scientific theories. Sci-

entists typically work and collaborate using complex workflows that involve hundreds

or thousands of processing steps (within loops of activities), access terabytes of data,

and generate terabytes of result data.

Therefore, with the constant progress in collaborative web 2.0 tools, combined

with that of scientific observational instruments and simulation tools, the data over-

load keeps worsening and makes centralized data sharing difficult.

P2P networks have been successful at providing scalability, dynamicity and de-

centralized control. Thus, they can be used to build decentralized and scalable data

sharing systems. Furthermore, the very nature of P2P with autonomous, collaborative

participants (or peers) is well adapted to online communities. P2P is designed for di-

rect sharing of participants’ resources (processing power, storage capacity, network

link capacity, data, etc.). These shared resources are accessible by other peers directly,

without passing through intermediary entities, i.e., there is no central point of control.

Therefore, the participating entities collaborate to perform tasks such as searching for

other nodes, locating or caching content, routing requests, and retrieving content. P2P

systems are fault-tolerant and scalable because they have no single point of failure.

P2P networks are characterized by their P2P overlay, on top of the physical net-

work, which can be unstructured, structured or dynamic. Typically they differ on the

 12

constraints imposed on how users are organized and where shared contents are placed

[120]. The topology and degree of centralization of the P2P overlay are critical, be-

cause they have direct impact on the performance, reliability and scalability of the

system. Unstructured networks are simple and incur low maintenance cost. However,

this is at the expense of search techniques such as flooding, which incur much traffic

consumption and hurt the scalability of the system. Structured networks provide an

efficient, deterministic search that can locate content in a small number of hops.

However, the maintenance of the structured overlay is complex and time consuming,

which limits system scalability. Dynamic overlays have been proposed to address the

limitations of both unstructured and structured networks, by providing self-

organization of peers and contents in the overlay, with little overhead and network

traffic. In a dynamic overlay, each peer continuously and dynamically constructs and

updates potential contact peers of the overlay, using gossip protocols. Recent work on

dynamic overlays [13][68][79][163] has also shown important performance gains.

P2P has been primarily used for file sharing, examples of popular systems being

BitTorrent [18], eMule [44], Gnutella [51] and KaZaA [48][92]. Recently, P2P has

also been applied to support high performance scientific workflow computing [109],

and instant messaging [34]. P2P file-sharing systems have proven very efficient at

locating content given specific queries [43]. However, popular P2P file-sharing sys-

tems such as Gnutella favour unstructured networks for their high flexibility, which

are characterized by expensive search (flooding). Moreover, they only provide a very

simple keyword search capability, trying to find the documents whose name or de-

scriptions match the keywords provided by the user [82].

P2P systems have also been proposed for building decentralized search engines

with more sophisticated P2P networks. These systems focus on enhancing search ca-

pabilities and reducing the network traffic consumed by search. To do so, information

retrieval techniques such as clustering based on contents’ semantics, establishing

shortcut links to similar peers based on users’ interests or social data, etc., are used to

index, store, and organize data and peers. However, users may get overwhelmed not

only with the high numbers of contents returned as results of their queries, but with

ambiguous results (most of the results are not related to users’ objectives expressed in

their search). Therefore, it becomes hard for users to find the most valuable and rele-

vant documents. Furthermore, these systems would typically return the same results

for the same query submitted by two different users. Thus, the users’ preferences such

as interest in specific topics, past behaviors, rankings and ratings of contents they

have explored, etc. is simply ignored.

The same observation can be made in scientific applications. Consider the typical

case (e.g., in biology) where experimental data sets are stored in raw format and their

contents are described in associated documents (i.e., published scientific papers).

When a scientist needs to select a data set that best matches her requirements for a

workflow execution (i.e., to answer a scientific question), she needs to understand the

candidate raw data, using the associated documents. In this case, the challenge is to

find those documents from a very large collection that are most relevant to the scien-

tific question.

In the mid-1990s, recommendation systems, or recommendation services (RSs),

have been proposed to proactively deliver the right contents to the right users at the

right time [2]. A RS returns to a user contents of interest, based on the contents’ fea-

 13

tures (content-based filtering), or based on the opinions given by other users on that

contents (collaborative-based filtering). RSs enable users to provide feedbacks or rat-

ings on the contents they explored. Then, based on this information and the contents’

features, RSs can predict the preferences of users for yet unseen contents, and then

suggest to users the contents that have the highest prediction relevance. RSs have be-

come very popular and have been applied in many domains, including netnews [84],

movies [59], musics [139], and jokes [55]. Furthermore, they have been deployed in

many e-commerce applications, such as Amazon.com, NetFlix, Last.fm, MyStrands,

iTunes, etc. to help users find products of interest (e.g., books, musics, videos) to pur-

chase.

RSs that are based on users’ ratings or features of the contents suffer from two

problems: data sparsity, due to the fact that most users rate small number of contents;

and cold start, due to the fact that a new user has not rated any content yet, or the new

content has not been rated by any user yet. With the increasing popularity of web2.0

services such as social networks and collaborative tagging systems, social-based fil-

tering has emerged. In social-based filtering, users’ social data such as users’ tags,

friends and trusts, are used to enhance the performance of RSs, in particular, to in-

crease the trust and confidence in the recommendation results [9][141][53]. For in-

stance, Siham et al. [9] propose a generic system that can exploit users’ information

such as age, location, tags, bookmarks, etc. and the semantic of contents, in order to

drive communities of interests, facilitate search, generate recommendations, explain

the results, etc.

However, most RSs use a centralized infrastructure to manage and store users’

preferences and contents, and process recommendations. These systems suffer from

the single point of access and censorship problems, and require a heavy infrastructure

(e.g., clusters) to provide scalability.

RS and P2P are both complementary in easing large-scale data sharing: RS to fil-

ter and personalize users’ demands, and P2P to build decentralized large-scale data

sharing systems. Both of them are trying to break through the limit of decentralizing

and searching through huge amounts of data and users. However, many challenges

need to be overcome when building scalable, reliable and efficient RS atop P2P.

In order to generate recommendations, RSs need to have the users’ preferences

(usually ratings) available. Unfortunately, users’ preferences suffer from data sparsity

and cold start problems, which may deteriorate quality (trust and confidence in the

results) and reliability (in the sense that each user receives recommendations) of the

system. Content-based filtering recommendation approach incorporates the features of

the contents to enrich users’ preferences and generate recommendations. Although

they achieve good reliability, the recommendation results do not have good quality,

primarily because social relations such as friends, trust, etc. are not incorporated in the

recommendation process. The challenge is to leverage the features of contents with

the users’ feedbacks (ratings) and social data, dynamically extract users’ preferences,

and efficiently disseminate users’ preferences in a decentralized infrastructure.

 Recently, several research projects have proposed to use P2P in order to decen-

tralize the RSs [156][106][80][133]. These proposals mostly use unstructured net-

works, and distribute users’ ratings or social data over the peers in the network. When

a user generates a recommendation, it first aggregates the users’ preferences or social

data from the network using flooding. Then, the user uses the aggregated information

 14

to generate recommendations. However, aggregating users’ preferences or social data

through flooding incurs much traffic consumption and may deteriorate the scalability

of the system. Obviously, much more work is needed in order to come up with scala-

ble efficient P2P-RSs that provide high reliability and quality of recommendations.

1.2 Contributions

The goal of this thesis is to provide a novel and efficient decentralized RS for

large-scale online communities. We exploit the use of users’ topics of interest (auto-

matically extracted from users’ contents and ratings) and social data (friends and

trust) as parameters to construct and maintain a social P2P overlay, and generate rec-

ommendations. In this work, we focus on large-scale communities, where users rate

the contents they explore, and store in their local workspace high quality content re-

lated to their topics of interest.

This work has been carried out in the Zenith team (joint team between INRIA

and University Montpellier 2, LIRMM, Montpellier) as part of the DataRing project

(2009-2012), sponsored by the Agence Nationale de la Recherche (ANR), within the

programme Future Networks and Services (VERSO). The DataRing project

(http://www-sop.inria.fr/teams/zenith/dataring/), headed by Zenith, in collaboration

with Leo (INRIA), LIG, LIRMM and Telecom Paristech addresses the problem of

P2P data sharing for online communities, by offering a high-level network ring across

distributed data source owners. The work produced in this thesis is the basis for Da-

taRing’s recommendation service.

Our work has evolved as follows. First, we have focused on the design of a scala-

ble P2P-RS, by leveraging collaborative- and content-based filtering recommendation

approaches. We have then proposed the construction and maintenance of a P2P dy-

namic overlay using different gossip protocols. Second, we have moved to a more

complex infrastructure in order to build and maintain a social P2P overlay (that ex-

ploits social relationships between users). In this new infrastructure, we leverage con-

tent- and social-based filtering, in order to yield a scalable P2P-RS that has high

quality and reliable recommendation results. Finally, we have implemented a proto-

type of our proposal as an application for the Shared-Data Overlay Network (SON),

an open source development platform for P2P networks developed in the Zenith team.

In this thesis, we make the following contributions.

First, we survey the related work. We introduce the main concepts and approach-

es of recommendation systems, and their limitations. We introduce the three main

classes of P2P systems (unstructured, structured and dynamic) and show the ad-

vantages of dynamic systems for our work. We also highlight the requirements that

are needed to design P2P recommendation systems. Then we review the existing solu-

tions related to information retrieval, called P2P content management systems, and

P2P recommendation systems that are based on users’ preferences, called P2P predic-

tion systems.

Our second contribution consists in building a P2P recommendation system,

called P2Prec [36][38], which facilitates document sharing for on-line communities.

http://www-sop.inria.fr/teams/zenith/dataring/

 15

P2Prec leverages content- and collaborative-based filtering recommendation ap-

proaches. It uses users’ relevant topics of interest and gossip exchanges, to organize

users and serve queries. P2Prec adopts a dynamic P2P overlay that is constructed and

maintained through gossip protocols. A user’s relevant topics of interest are automati-

cally computed by analyzing the documents the user holds. The relevant users are

used to serve queries, and a user is considered relevant in a topic if it is interested in

this topic, and holds a sufficient number of highly rated documents on that topic. Ac-

cordingly, the user can provide recommendations for that topic. P2Prec uses seman-

tic-based gossip protocols to efficiently disseminate information about users’ topics

and relevant users, and gossip views as a directory to serve users’ queries. Semantic-

based gossip protocols allow each user to selectively maximize the number of relevant

users at its gossip view, given that those relevant users are similar to the user and can

serve its demands. In addition, P2Prec uses an efficient query routing algorithm that

selects the best relevant users to recommend documents based on the gossip view and

query topics. Our simulation results show that P2Prec has the ability to get reasonable

recall with acceptable query processing load and network traffic.

Our third contribution aims at extending P2Prec with the social relationships be-

tween users as a parameter for recommendation, in order to increase the trust and con-

fidence of recommendation. Thus, we propose F2Frec [41], which leverages content-

and social-based filtering recommendation approaches, in order to construct and

maintain a P2P and friend-to-friend network, and to facilitate recommendations.

F2Frec uses new metrics based on users’ relevant topics of interest, and similarity

(among users and their respective friend network), in order to enable friendship estab-

lishment and to facilitate recommendations. Given that a gossip protocol is used to

disseminate users’ relevant topics of interest, in order to enable users find new inter-

esting friends. F2Frec stores a user’s friends along with their information in a specific

file, which is also used as a directory to serve user queries. F2Frec uses an efficient

query routing algorithm. Moreover, we propose to rank the returned recommendations

by taking into account the semantic similarities, content popularity, distance and trust

between the query’s initiator and responders. Based on our extensive performance

evaluation, we show that our approach increases recall, and the trust and confidence

of the results with acceptable overhead.

Our fourth contribution is the development of a P2P-RS prototype, which is

based on P2Prec and F2Frec, as open source software (http://www-

sop.inria.fr/teams/zenith/p2prec/). The prototype is developed as an application on top

of the Shared-data Overlay Network (http://wwww-sop.inria.fr/teams/zenith/SON), an

open source development platform for P2P networks developed in Zenith. We choose

SON because it makes easy the development of a P2P application: the developer only

writes the code logic for the behaviors of the peer (as in a simulator). The complex

aspects of asynchronous messages between peers are automatically generated and

managed by SON, i.e., the developer does not deal with complex distributed pro-

gramming aspects. We built a full-fledge demonstration of this prototype using the

Ohsumed documents corpus [60], showing how friendship establishment, query pro-

cessing, gossip protocol, etc. are involved.

To summarize this thesis has produced:

 Two journals papers:

 16

1. F. Draidi, E. Pacitti, B. Kemme. P2Prec: a P2P Recommendation System

for Large-scale Data Sharing. Transaction on Large-Scale Data- and

Knowledge- Centered Systems, LNCS, 6790(3), 87-116, 2011.

2. A. Bonifati, G. Summa, E. Pacitti, F. Draidi. Semantic Query Reformula-

tion in Social PDMS. CoRR abs/1111.6084, 2011. Submitted on 25 Nov

2011 to Data & Knowledge Engineering (DKE) Journal.

 Two conferences papers:

1. F. Draidi, E. Pacitti, P. Valduriez, B. Kemme. P2Prec: a Recommendation

Service for P2P Content Sharing Systems. Bases de Donnees Avancees

(BDA), 26, 21-40, 2010.

2. F. Draidi E. Pacitti, M. Cart H-L. Bouziane. Leveraging Social and Con-

tent-based Recommendation in P2P Systems. The 3rd Int. Conf. on Ad-

vances in P2P Systems (AP2PS), 13-18, 2011.

 Two demo papers:

1. F. Draidi E. Pacitti, D. Parigot G. Verger. Demo of P2Prec: a Social-

based P2P Recommendation System. Journées Bases de Donnees Avan-

cées (BDA), 27, 5-8, 2011.

2. F. Draidi E. Pacitti, D. Parigot G. Verger. P2Prec: a Social-based P2P

Recommendation System. Proceedings of the 20th ACM Conf. on Infor-

mation and Knowledge Management (CIKM), 2593-2596, 2011.

 Two deliverables of the DataRing project:

1. F. Draidi, E. Pacitti, P. Valduriez. Deliverable D5.2: demo of replication,

caching and indexing services. DataRing Project, Dec. 2010.

2. F. Draidi, E. Pacitti, P. Valduriez. Deliverable D5.3: replication, caching

and indexing services - experiments report. DataRing Project, Dec. 2011.

 One prototype delivered as open source software: http://www-

sop.inria.fr/teams/zenith/p2prec/

1.3 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we provide a literature review of the state-of-the-art in P2P-RSs.

First, we introduce the main concepts and approaches of recommendation systems,

and their limitations. Then, we introduce P2P systems, identify their main classes, and

highlight the requirements that are needed to design P2P-RSs. Finally, we review the

existing solutions in P2P content management systems and P2P prediction systems.

Chapter 3 presents P2Prec, our proposed P2P recommendation system that lever-

ages content- and collaborative-based filtering recommendation approaches. After the

problem definition, we introduce P2Prec basic concepts such as topics of interest and

relevant users. Then, we explain how the P2Prec overlay is constructed and main-

tained via gossip protocols, and describe new semantic-based gossip protocols. Next,

http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1

 17

we describe our solution for query routing and recommendation ranking. We conclude

with our extensive experimental evaluation and results.

Chapter 4 extends P2Prec in order to enhance the confidence and trust of recom-

mendations. After giving the general overview of F2Frec and the problem definition,

we introduce F2Frec basic concepts, and present our social metrics and how we man-

age friendship establishment. Then, we describe the solution for retrieving and rank-

ing recommendations. Next, we explain how to manage the dynamicity of users’ top-

ics of interest. Finally, we present our experimental validation.

In Chapter 5, we describe the design and implementation prototype of our pro-

posal. First, we give a detailed description of the architecture and implementation of

our proposal. Then, we describe the demonstration of our prototype using a real data

set.

Chapter 6 concludes and highlights future directions of research.

 18

 19

Chapter 2 State-of-the-Art

Abstract. In order to define the problems we address in this thesis, this chapter re-

views the state-of-the-art in P2P recommendation systems. First, we describe central-

ized recommendation systems, their approaches, and limitations. Second, we discuss

P2P systems as an alternative, scalable solution for decentralized recommendation

systems, and extract their requirements. Finally, we evaluate the existing P2P content

management systems and P2P prediction systems.

2.1 Introduction

RSs help filtering out the contents the users may like to explore from huge

amounts of contents based on what they like. RSs exploit the users’ preferences (in-

terest, expertise, friends, ratings, etc.) and suggest contents or information items (e.g.,

movies, documents, Web pages, CDs, or books) of interest to users according to their

preferences [15][54]. Basically, RSs analyze users’ historical patterns (ratings, pur-

chasing, etc.) to find and recommend new contents that the users might be interested

in and like to explore or purchase [125]. Notice that a user’s historical patterns, called

user profile, user model, user preferences, may include information about user (such

as name, age, location, etc.), or user’s interaction history (what the user bought,

viewed, rated, etc.), or description of the items (item’s features) the user has seen,

purchased, explored or rated.

Collaborative Web2.0 tools such as social networks have become very popular

and make it now very easy to publish users’ social data. Social networks allow any-

body to create their own online profile, allow friends to join in, and communicate with

them. Typically, a user’s profile includes personal information such as name, age,

location, topics of interest, expertise, etc. The emergence of Web2.0 and the growing

popularity of online social networks have encouraged exploiting users’ social data in

recommendation systems to improve the quality of recommendations [9][141].

Most recommendation systems for web data are implemented in a centralized in-

frastructure provided by a single operator (e.g. Google or Yahoo). We classify RSs

between content-based filtering [23][116], collaborative-based filtering [25][137], and

social-based filtering [85][88][140]. Content-based filtering recommends to a user u

items that are similar to u’s previously rated items. Collaborative-based filtering, in

contrast, recommends to u items that have been rated by users who share similar in-

 20

terests based on rating behavior. Social-based filtering recommends to u items that

have been rated by its friends, or trustful users.

Typically, in a centralized infrastructure, all users and their rated contents, de-

noted by user-item matrix, are stored in a central server or by a single operator, which

also performs all the recommendation processes. Centralized infrastructure might be

not applicable for large-scale online communities due to several reasons:

1. Single operators are expensive and might be not affordable especially to non-

profit online communities.

2. Aggregating all users and their data, and stores them on a single server or sin-

gle operator is not an easy task, and it consumes a lot of time and network

traffic.

3. Storing the users and their data, and generating recommendations on a single

server or single operator leads to a single point of access, and this may deteri-

orate the availability of the recommendation service.

4. More importantly, many participants of online communities are reluctant to

give full control over their private data to a provider who can sell it to other

businesses and worse, leave such control to third parties of unknown affilia-

tions.

P2P recommendation for web data based on collaborative-based filtering has

been recently proposed [79] with promising results. However, designing scalable,

reliable and efficient P2P recommendation system that leverages users’ social data

and preferences arises very interesting challenges.

Notice that throughout this chapter, we use the terms “contents”, and “items” in-

terchangeably, based on context, to refer to the service that a recommendation system

is designed to recommend. Given that an item or content can be a document, movie,

website, book, CD, an image, etc.

In this thesis, we exploit techniques from two areas: information retrieval and

recommendation systems. Thus, we review the literature about existing solutions in

both areas in the context of P2P systems.

The rest of this chapter is organized as follows. Section 2.2 introduces the main

concepts and approaches of recommendation systems, and their limitations. Section

2.3 introduces P2P systems and identifies their main classes. We also highlight the

requirements that are needed to design P2P recommendation systems. Section 2.4

reviews the existing solutions related to information retrieval, called P2P content

management systems. Section 2.5 reviews the existing solutions for P2P recommenda-

tion systems that are based on users’ preferences, called P2P prediction systems. Sec-

tion 2.6 summarizes our observations regarding the state-of-the-art related to the the-

sis. Section 2.7 concludes.

 21

2.2 Recommendation Systems

In this section, we introduce the main concepts and approaches of recommenda-

tion systems, and their limitations. We start with an overview that helps classifying

recommendation systems between collaborative-based filtering, content-based filter-

ing and social-based filtering. Then we describe each class of recommendation ap-

proach with their limitations.

2.2.1 Overview

The explosive growth of web-scale collaboration has increased the amount of in-

formation that is available to users. Therefore, people use a variety of strategies to

search for contents and make choices about what to explore. Recommendation sys-

tems have emerged as software applications that help users with options to consider

and explore. Recommendation systems have roots back to information retrieval [132].

Information retrieval deals with searching for the contents that match a given query,

and then return and retrieve those contents to the users. These systems return all the

contents that are related to a given query. Thus, users get overwhelmed with the high

numbers of contents returned as results of their queries, and it becomes hard for them

to find the most valuable and relevant contents. Information filtering [159] has

emerged to overcome this problem, by taking into account users’ historical patterns,

in order to identify the contents that the users might be interested in. One of the most

successful and popular class of information filtering is recommendation systems.

Recommendation is ubiquitous in our daily life, where we must choose between

alternatives based on opinions and advice that we have received from other resources

such as people we know (friends, family members, etc.), experts we trust, general

surveys, travel guides, published reviews, etc. In order to enable people to share their

opinions and advice, and benefit from each other’s experience without human inter-

vention, recommendation systems have emerged. Since the first work carried out by

Goldberg et al [54], RSs have been used in major applications such as e-commerce,

e.g. Amazon.com, Netflix.com or CDNow [135].

Figure 2.1 gives a general overview of a recommendation system and its main

components. In general, a RS first collects a user’s historical patterns they have ex-

pressed, either explicitly or implicitly [11][49]. Then it finds other users with similar

patterns or items in the historical patterns. Finally, the RS uses the data from those

similar users or items to suggest items the user might be interested in.

To avoid the drawbacks of collaborative-, content-, and social-based filtering

recommendation approaches and exploit synergetic effects, combinations of them

have been developed in the so-called hybrid filtering [136]. Since hybrid filtering is a

combination between collaborative-, content-, and social-based filtering, in the fol-

lowing, we focus on the three main approaches of RSs.

 22

Figure 2.1. Overview of recommendation systems

2.2.2 Collaborative-based Filtering

Collaborative-based filtering is one of the most popular classes of recommenda-

tion systems [102][170]. Collaborative-based filtering tries to automate the process of

“word-of-mouth”, people who have the same preferences and most probably have

similar taste and interest. In collaborative-based filtering, users express their prefer-

ences by rating items either explicitly or implicitly [104][108]. The user ratings, either

explicit or implicit, are often represented by discrete values within a certain range,

e.g., between 1 and 5.

Collaborative-based filtering typically works with three generic steps [139] (see

Figure 2.2): (1) measure the similarity between a user u (the user asking for recom-

mendations) and all users in the system; (2) select those users who are most similar to

u, denoted by neighbors(u); (3) normalize and compute the weighted sum of the

neighbors(u) ratings, then make suggestions based on those ratings. Collaborative-

based filtering has been widely used for building RSs, e.g. in GroupLens [124], Rin-

go/Firefly [139], Tapestry RS [54] and Recommendation [61].

More formally, in collaborative-based filtering users’ preferences or profiles are

modeled in a UxI user-item matrix R, as shown in Figure 2.2, where U represents the

set of users, I represents the set of items in the system, n is the number of users and m

is the number of items. Each entry ru,i of R includes the rating given by user u for item

i, where ru,i = r indicates that user u rated item i by a value of r, and ru,i =  indicates

that user u has not rated item i yet. Each row ruR corresponds to a user’s profile and

includes u’s items rating. The goal of the collaborative-based filtering system is to

predict missing entries in matrix R.

 23

Figure 2.2. Collaborative-based filtering

In order to form the neighbors of each user u, a similarity measure is used to

compute the similarity between u and all the users in the system. One popular meas-

ure for this is cosine similarity [92][136]. The similarity between a user u and another

user v, denoted by sim(u,v), is computed by summing the products between the ratings

that have been given by u and v over their items:

 ()
∑

√∑
 √∑

 (2.1)

Another way to compute similarity between users is to use the Pearson correla-

tion coefficient [100][162]. It was first introduced into collaborative-based filtering as

a weighting method in the GroupLens project [124]:

 ()
∑ (̅̅̅̅) (̅̅ ̅)

√∑ (̅̅̅̅) (̅̅̅̅)

 √∑ (̅̅ ̅) (̅̅ ̅)

 (2.2)

where ru is the average ratings of u. Once the similarity between u and v has been

computed, a neighborhood is formed by using the Best-n neighbors [124] or Similari-

ty-thresholding [139]. With the Best-n technique, the best n similar users are selected

as neighbors for u. With the similarity-thresholding technique, a user v is considered a

neighbor to u if sim(u,v) exceeds the system-defined threshold.

The last step of the collaborative-based filtering process is to generate the rec-

ommendations list for u from its neighbors. In this step, the final rating prediction of

each item iI that user u did not explore yet, denoted by ru,i
*
, is predicted by normal-

izing and computing the weighted sum of the neighbors(u) ratings on item i :

∑ () ()

∑ () ()
 (2.3)

 24

Then item i is added to a prediction list, denoted by predictList, a list that in-

cludes the items that u did not rated yet, along with their rating predictions. After that,

the recommendations list is generated from the predictList using the top-k or thresh-

olding method. With the top-k method, collaborative-based filtering ranks each item

i predictList based on its rating prediction ru,i
*
. Then, collaborative-based filtering

selects the top-k items and adds them to the recommendation list. With the threshold-

ing method, collaborative-based filtering selects each item i predictList such that its

rating prediction ru,i
*

exceeds the system-defined threshold, and adds it to the recom-

mendation list.

Let N be the number of users in the system, M the number of items in the sys-

tem, and K the number of neighbors of each user. Collaborative-based filtering per-

forms O(N
2
xMxK) calculations to measure the similarity between users and construct

their neighbors, and performs O(K) calculations to predict a rating for an item [27]. In

addition, it needs O(NxM + NxK) of storage space, to store the user-item matrix and

users neighbors, excluding the storage space needed to store the items’ contents.

For instance, using a single server to construct users’ neighbors for the Mov-

ieLens [58] dataset, which holds 10 million ratings for 10000 movies rated by 72000

users, selecting the top similar 100 users as the neighbors for each user requires

5184x10
12

 calculations. If we consider that each calculation takes 1 Nano second to be

computed on that server, we need 60 days to finish constructing users’ neighbors. If

we consider that the length of each rating value is 2 bytes, the server consumes 1.355

Gigabytes to store the user-item matrix only, without considering the storage required

to store the movies’ contents.

Infrastructures such as clusters, grids, and cloud computing might be used to de-

crease the computation time and storage space required to perform recommendations.

However, these infrastructures are somehow expensive and significant time and costs

should be invested, to scale-up and cop with the increasing number of users and items.

2.2.2.1 Limitations

Collaborative-based filtering is the widely successful recommendation approach,

and has become used in many e-commerce systems. However, collaborative-based

filtering suffers from several drawbacks:

 Data sparsity: Most users rate small numbers of items in the system [92], thus

those users might not find similar users.

 Cold start problem: This is referring to the problems occurring with a new item

or a new user [138]. A new user who has not rated any items yet will not find

similar users to help in finding recommendations [2][168]. On the other hand,

when a new item is introduced into the system, and no user has rated that item

yet, it is not possible to recommend that item in any way.

 Limited Scalability: this is referring to the problem of resource consumption.

Storing users’ profiles in one place consumes much storage that must increase

tremendously as the number of users and items increase. Moreover, measuring

the similarity between users is time consuming, and it increases exponentially as

the numbers of items and users increase. This is a major concern for e-commerce

web sites providing a lot of recommendations while serving millions of users.

 25

2.2.3 Content-based Filtering

Unlike collaborative-based filtering, content-based filtering works by suggesting

to the user items that are similar to items that the user has seen or rated [23]. In Figure

2.3, the circles represent the items in the system, where the items with the same col-

ours are similar items. In content-based filtering, the similarity measure is computed

between the items the user has seen or rated and the items that the user did not see or

rate yet. Items with high similarity are suggested to the user.

Figure 2.3. Content-based filtering

To measure the similarity between items, each item is identified by a set of fea-

tures and attributes that are usually extracted from its content or description. There-

fore, content-based filtering is designed mostly to recommend text-based items or

items that have text descriptions. Usually the description or content of items in these

systems is described and represented with keywords. For instance, the Fab system

[15], a web page recommendation, represents the web page preferred by a user with

the 100 most important keywords. Similarly, the Webert system [116] represents a

document preferred by a user with the 128 most informative words.

More formally, each item iI is represented by a vector of keywords, denoted by

Vi = { wi,1, wi,2, .., wi,j, ..,wi,k}, where I represents the set of items in the system, wi,j is

the weight (importance) of keyword j in item i, and kK is the number of unique

keywords in the system, where K is the set of the unique keyword in the system. One

of the popular metric used to compute the weight wij of a keyword j in an item i is the

normalized TF-IDF metric [12]:

 (2.4)

 26

where fi,j is the number of times the keyword j appears in item i, max fi,z is the

number of times the most frequent word z appears in item i, ni is the number of items

that have the keyword j, and N is the total number of items in the system.

Once the vectors of keywords of a user u’s items have been constructed, we add

them to u’s profile. Accordingly, a user u’s profile consists of vectors of keywords of

the items that u has rated. In more details, a user u’s profile can be represented as a

matrix P with dimension |Iu|xk, where Iu I is the set of items u has rated, and |Iu| is

the cardinality of the set of items u has rated. Each row PiP corresponds to an item

i’s vector of keywords such that iIu, and includes the weight of the item i’s key-

words.

Once a user u’s preferences or profile has been constructed, we measure the simi-

larity between each item iIu and each item jI that user u did not see or rate yet.

There are several techniques to evaluate the similarity between a user profile and an

item using: Boolean methods [90][160], vector-space methods [131], probabilistic

models [126], neural networks [81][166], fuzzy set models [110], etc. One popular

technique is vector-space that uses the cosine similarity measure. The similarity be-

tween an item i and another item j, denoted by sim(i,j), is computed by multiplying

the components of the two items keywords vectors, and then summing those products.

The result of sum is normalized by dividing it over the product of the lengths of the

two items keywords vectors:

 ()
∑

√∑
 √∑

 (2.5)

After similarity processing, recommendations are generated and provided to user

u by selecting the m items that are most similar to the items that u has seen and rated.

Alternatively, the items of which rating predictions exceed a system-defined threshold

can be recommended to the user.

Let N be the number of users in the system, M the number of items, and K the

number of similar items that are chosen for each item. Content-based filtering per-

forms O(M
2
xNxK) calculations to measure the similarity between items and select

their similar items, and O(K) calculations to predict a rating for an item [27]. In addi-

tion, it needs O(NxM + MxK) of storage space. The example of MovieLens dataset

requires 72x10
11

 calculations to construct items similarity using a single server. The

same if we consider that each operation takes 1 Nano second to be computed on that

server, we need 2 days to finish the similarity process.

2.2.3.1 Limitations

Content-based filtering alleviates the problems of data sparsity [3][17] and new

item. Similarity is based on item contents or descriptions, so the user who rates few

items has the opportunity to receive recommendations, and the item that has been

never rated yet has the opportunity to be recommended to users. However, content-

based filtering has the following problems:

 Overspecialization: a user is limited to receive items that are only similar to the

items it has seen or rated, and thus might not explore new interesting topics. Ab-

bassi et al. [1] propose Outside-The-Box (OTB) recommendation. OTB groups

 27

similar items in boxes, and gives each user u a chance to receive recommendation

items from boxes that include items not similar to u’s items.

 New user problem: the user who did not have past preferences, and did not rate

or see items yet, will not receive recommendations from the system

2.2.4 Social-based Filtering

The emergence of Web2.0 provides opportunities for people to interact with each

other, and facilitate knowledge interchange, processing and publication. Online com-

munities such as social networks (e.g. sites like Facebook and MySpace, the Friend-

Of-A-Friend (FOAF) project [152], etc.), and wiki systems [164] (e.g. Wikipedia) are

some of the most successful examples of Web2.0 services for publishing and locating

information [62][6]. The advantages of mass collaboration such as faster production

and better accuracy of knowledge and data can also be brought to all kinds of compa-

nies and, for instance, help them create better services and items faster at lower cost.

Online social network is a very popular service that exploits Web2.0 technology.

Social network allows anybody to present themselves through their online profile, and

create, edit, annotate and share data with other users. Independent of the content, the

user maintains links to other users, which indicates trust, friendship or shared interest.

Social network is typically modeled as a graph, where nodes represent users, and an

edge between two nodes refers to the relationship between two users. In practice, an

edge can refer to any type of relationships e.g., family, trust, friends, common interest,

like minded, etc. Moreover, a numeric value (e.g., between 0 and 1) can be attached to

an edge between two users, to represent the strength of the relationship between the

two users. Social network exhibits the small-world phenomena [144][105], that is, a

user u can contact any other user v in the system in few hops. Therefore, the social

network structure gives users ability to find new users with similar interests, and lo-

cate content in an efficient way.

Social-based filtering leverages social network links and data to improve the

quality of search and recommendation results [9][85]. Unlike collaborative-based fil-

tering or content-based filtering, social-based filtering does need to measure the simi-

larity between users or items. In contrast, social-based filtering follows the relation-

ships between users to generate recommendations. Given that the relationships be-

tween users are extracted and defined before recommendation process is started.

More formally, social-based filtering is modeled as a graph G=(U,E), where U is

the set of users in the system, and E is the set of edges in the system such that there is

an edge e(u,v) if there is a direct relationship between users u and v. For ease of ex-

planation, we use the friendship to represent the relationship between users. Thus, we

consider that there is an edge e(u,v) if users u and v are direct friends, and the numeric

value attached to the edge, denoted by wu,v, is the strength of the friendship between u

and v. In the example of Figure 2.4, users u and v are direct friends, and the strength

of the friendship between u and v is 0.8.

Each user uU has a set of direct friends, denoted by friend(u), and a set of items

Iu I the items u has rated, where I is the set of items in the system. Given that u has

 28

rated each item iIu by a value ru,i. The goal of social-based filtering is to predict the

rating value ru,i
*
 for each item iI and iIu. To do so, social-based filtering computes

the rating prediction ru,i
*

by normalizing and computing the weighted sum of the

friend(u) ratings on item i :

∑ ()

∑ ()
 (2.6)

Then the top-k items that have the highest rating predictions are recommended to

the user u. Alternatively, the item i that has rating prediction ru,i
*

exceeds the system-

defined threshold can be recommended to the user u.

The set of users used to compute the rating prediction of an item i is not limited

only to friend(u), and indirect friends (friend of friends) can be included to compute

the rating prediction of the item i. In that case, propagation methods such as averag-

ing, shortest path, etc. are used to compute the strength of the friendship between indi-

rect friends.

Figure 2.4. A snapshot of social-based filtering graph

Several social relationships are leveraged in RSs including friendship [85], trust

[88], tags [155][140], etc. For instance, the authors of [88] propose to select the

neighbors of each user u based on the trust network, in order to overcome the cold

start problem. Each user u computes the trust value between itself and each user in the

system. Then, the top-k trustful users are chosen as the neighbors of u. In [155][140],

the authors exploit users’ tags to enhance recommendation. A tag is a metadata as-

signed by users to items they have explored and shared, in order to annotate and cate-

gorize those items. Users’ tags are used to measure the similarity between users and

tags’ semantics to identify the similarity between items.

Kruk et al. [85] introduce an approach for “semantic social collaborative-based

filtering” based on FOAF files. Each user u stores its interests and friends in its FOAF

file. The system aggregates users’ FOAF files, and uses users’ explicit social net-

 29

works to link each user u with friends and friend of friends that their interests are sim-

ilar to u’s interests.

Siham et al. [9] propose a generic approach, called community-driven infor-

mation exploration in order to build communities, facilitate search and recommenda-

tions, etc. This approach relies on SocialScope [8], an architecture for aggregating

data from content and social web sites, and Jelly [7], a language that provides primi-

tives (rating, tagging, users, and items) that can be used to find the relations between

users and/or contents. Based on SocialScope’s architecture and Jelly primitives, users

can derive and generate topics of interest, community, recommendations, and group-

ing, ranking and explaining results.

To conclude, exploiting social relations such as friends, trust, etc. enhances the

quality and performance of RSs, and alleviates the problems of sparsity and new user.

In addition, it increases the confidence and trust in the recommendation results, be-

cause they are returned from trusted friends.

2.3 P2P Systems

P2P systems have gained popularity to share users’ resources (i.e. processing

power, files, information, etc.). These shared resources are accessible by other peers

directly, without requiring intermediary entities, i.e. there is no central point of con-

trol. P2P systems are built on top of the physical network (typically the Internet), and

thus also referred to as P2P overlay networks (or P2P networks for short) and each

peer is connected to a set of peers, called neighbors. P2P networks rely on a topology

that defines how peers are connected, and a routing and searching protocol that de-

fines how peers locate and search for contents and/or other peers.

P2P systems provide scalability, fault tolerance, and self-organization without re-

quiring a dedicated infrastructure. Thus, they are a potential solution for building

large-scale file and content management sharing systems at low cost [91][134]. P2P

techniques have become very popular and being used in different contexts. Although,

they are very dynamic, they give users the ability to join and leave the network at any

time. Therefore, P2P networks should have the ability of self-organization once peers

join and leave, and be scalable to any growing number of peers.

We classify P2P networks according to their degree of centralization and their to-

pology between unstructured, structured and dynamic networks. Typically they differ

on the constraints imposed on how users are organized and where shared contents are

placed [120]. The topology and degree of centralization are critical, because they have

direct impact on the performance, reliability and scalability of the system. Note that

our classification of P2P networks differs a bit from that in [113] (which distinguishes

between unstructured, structured and hybrid) in order to better fit the context of this

thesis.

In the rest of this section, we give a general overview of these classes of P2P

networks and their main search techniques. We also highlight the requirements that

are needed to design P2P recommendation systems, which are at the heart of this the-

sis.

 30

2.3.1 Unstructured P2P Networks

Unstructured P2P networks impose no restriction on data placement in the over-

lay topology [122]. The overlay network is created in a nondeterministic (ad hoc)

manner and the data placement is completely unrelated to the overlay topology (see

Figure 2.5). Once the overlay is constructed, each peer knows its neighbors, but does

not know the resources that they have.

Unstructured networks are the earliest examples of P2P systems whose core func-

tionality remains file sharing. In these systems replicated copies of popular files are

shared among peers, without the need to download them from a centralized server.

Examples of these systems are Gnutella, KaZaA, and BitTorrent.

A fundamental issue in all P2P networks is the type of index to the resources that

each peer holds, since this determines how resources are searched. Unstructuted net-

works typically use a distributed index, where each peer maintains metadata for re-

sources that it holds.

Unstructured networks typically use flooding protocols to disseminate discovery

messages or queries [120]. Flooding is a widely used in P2P file sharing applications

[51] due to its simplicity. With flooding, each query is attached with a Time-To-Live

(TTL) value. When a peer p issues a query q, it forwards q to all its neighbors, which

in turn forward q to their neighbors until TTL becomes zero. However, flooding con-

sumes a lot of network bandwidth, and thus may hurt scalability. Furthermore, TTL

restricts the number of nodes that are reachable.

There have been approaches to address the problems of flooding. A straightfor-

ward method is for each peer to choose a subset of its neighbors and forward the re-

quest only to those. How this subset can be determined may vary. For example, the

concept of random walks can be used [96] where each peer chooses a neighbor at ran-

dom and propagates the request only to it. Each visited neighbor periodically contacts

the query originator, asking whether the query was satisfied or not. The main disad-

vantage of random walk is its highly variable performance, because success rates and

the number of found answers vary greatly depending on the network topology and the

random choices.

Figure 2.5. Example of unstructured P2P network

 31

2.3.2 Structured P2P Networks

Structured P2P networks have emerged to address the scalability issues faced by

unstructured P2P networks, by tightly controlling the overlay topology and the place-

ment of resources. Thus, they achieve higher scalability at the expense of lower au-

tonomy as each peer that joins the network allows its resources to be placed on the

network based on the particular control method that is used.

Structured networks exploit a distributed data structure such as a tree or hash ta-

ble to control content placement and location, and thus, provide efficient, determinis-

tic search that can locate data in a small number of hops. Popular structured P2P sys-

tems are Oceanstore [86], CAN [123], Pastry [128], CHORD [148] and Tapestry

[169]). The most popular form of structured network is the Distributed Hash Table

(DHT), which implements distributed hashing [122] (see Figure 2.6).

The most popular indexing and data location mechanism that is used in structured

P2P networks is dynamic hash table (DHT). DHT-based systems provide two API’s:

put(key, data) and get(key), where key is an object identifier. The key is hashed to

generate a peer id, which stores the data corresponding to object contents. Given a

search query based on a given key k, a DHT can lookup the peer that stores the data

for k efficiently, usually in O(log n) routing hops where n is the number of peers.

Structured P2P networks provide basic techniques for routing queries to relevant

peers and this is sufficient for supporting simple, exact-match queries. For instance, as

noted earlier, a DHT provides a basic mechanism to efficiently look up data based on

a key value. However, supporting more complex queries such as top-k, join and

range queries is more difficult and has been the subject of much recent research (see

Chapter 16 in [113]).

Figure 2.6. Example of DHT

2.3.3 Dynamic P2P Networks

Dynamic P2P networks do not have stable links among neighbors, and the con-

tacts of a peer are changed continuously. The goal is to enable each user to construct

 32

and update dynamically a potential view of the overlay. Gossip protocols are used to

manage and construct the overlay [78].

Gossip protocols, also known as epidemic protocols, have been initially proposed

to maintain the mutual consistency of replicated data by spreading replica updates to

all nodes over the network [5]. Basic gossiping is simple. Each node in the network

has a complete view of the network (i.e., a list of all nodes’ addresses) and chooses a

node at random to spread the request. The main advantage of gossiping is robustness

over node failures since, with very high probability, the request is eventually propa-

gated to all the nodes in the network. In large P2P networks, however, the basic gos-

siping model does not scale as maintaining the complete view of the network at each

node would generate very heavy communication traffic. A solution to scalable gossip-

ing is to maintain at each node only a partial view of the network, e.g., a list of tens of

neighbor nodes. To gossip a request, a node chooses, at random, a node in its partial

view and sends it the request. In addition, the nodes involved in a gossip exchange

their partial views to reflect network changes in their own views. Thus, by continu-

ously refreshing their partial views, nodes can self-organize into randomized overlays

that scale up very well.

Gossip protocols have been successfully used in P2P networks to solve a wide

range of issues such as P2P overlay construction and maintenance [50][145] [68], data

dissemination [76][77][45], data aggregation [74][67][89], data replication [63], and

resource monitoring [146][73]. They have shown high interest in designing new P2P

networks because of their scalability, robustness, simplicity, load balancing, and resil-

ience to failures [78].

In a system where gossip protocols are used to construct and maintain the P2P

overlay, each peer maintains a set of entries in its view. Each entry refers to a peer

and includes information about the data shared by that peer (e.g. shared documents,

contacts, etc.) called view, with another randomly selected peer. Usually, the number

of entries in a peer’s view is very small and less than the network size. With gossip,

each peer periodically exchanges a subset of its view, with another peer, and updates

its view accordingly. In this thesis, we exploit gossip protocols to construct, maintain

overlay and disseminate information, to derive scalable, efficient, high quality, and

reliable P2P recommendation systems.

The behavior of a gossip protocol running at each peer can be modelled with two

separate threads: active and passive behavior. The active behavior describes how a

peer pi initiates a periodic gossip exchange message, while the passive behavior

shows how the peer pi reacts to a gossip exchange initiated by some other peer pj.

Typically, in gossip protocols, each peer p keeps locally a view of its dynamic ac-

quaintances (or view entries), and their corresponding shared data, and p uses gossip-

ing to exchange and update its view. Generally, gossip protocols consist of three

modules: selectContact, exchangeInfo, and updateInfo.

 selectContact defines the way a peer pi selects another peer pj to gossip with.

Peer pj can be selected randomly or based on a biased criterion that is depending

on the application. This module is performed by the peer that runs the active be-

havior.

 exchangeInfo defines the way the information is exchanged between the gossip-

ing peers. The information exchange can be performed with two strategies: push

 33

and pull. With push, the peer that runs the active behavior shares its information

with the remote peer. With pull, the peer that runs the passive behavior shares its

information with the gossip initiator. Gossip protocols can perform either strategy

or a combination of both.

 updateInfo defines how peers use the information received via gossiping to up-

date their views. It can be performed by the peer running either active or passive

behavior.

Figure 2.7 illustrates a pull-push gossip exchange between peers p1 and p2. The

figure shows that each peer pi maintains locally a view, which includes a set of con-

tacts along with their shared data. For instance, peer p1 maintains locally a view,

which includes information about peers p3, p2, and p4. Peer p1 initiates a gossiping

exchange as follows: p1 selects peer p2 to gossip with. Then p1 selects a subset of its

view and sends it to p2, which in turn does the same. Finally, when p1 receives the

gossip information, it merges it with its view, and updates its view.

Figure 2.7. Pull-push gossip exchange between peers p1 and p2

2.3.4 Requirements for P2P Recommendation Sys-

tems

Recommendation systems have been widely used to filter out the items the user

may like from a huge number of items based on user’s interests and preferences. P2P

online communities have become popular in sharing contents, and this popularity has

translated into large amounts of data being spread over high numbers of peers (and

users). Using a centralized RS may suffer the traditional problems of centralized in-

frastructures: single point of access, which may hurt performance and single point of

failure, which may hurt availability.

Our objective is to provide a decentralized RS for large-scale data sharing for

P2P online communities, where each peer represents a user labelled with the contents,

ratings, social data, etc. it stores. Each user is responsible for storing locally its con-

tents, ratings, social data, etc. and collaborates with other users in order to facilitate

 34

searching, generation of recommendations, and self-organization without central con-

trol.

The main requirements to be fulfilled to design a P2P-RS for online communities

are reliability, scalability, performance, expressiveness, and quality of recommenda-

tions

 Reliability guarantees that each user can receive recommendations, and each

item has the possibility to be recommended. To support reliable recommenda-

tions, the system should have the ability to cope with the sparsity and cold start

problems. Thus, users’ contents and social data should be exploited in a way that

insures that each user has a set of neighbors even though the user has not rated

items yet, and each item may have similar items even though the item has not

been rated yet.

 Scalability refers to the ability of the system to accommodate the increase in the

numbers of users and data. Therefore, the system should operate normally (and

prevent bottlenecks) when the numbers of items and users increase. The choice of

the P2P overlay has direct impact on the scalability of the system. The system

should self-organize the users and data in the overlay, in a simple way that incurs

little overhead and network traffic.

 Quality of recommendations guarantees that each user receives high quality and

valuable recommendations that are related to its interests and requests. Quality is

affected by the users’ preferences and social data, and content semantics that are

used to construct neighbors. Thus, the system should have the ability to exploit

content semantics, users’ preferences such as ratings, feedbacks, and users’ social

data such as friends, trusts etc. Moreover, the system should give each user the

ability to rate the content it explores, to return feedbacks on the recommendations

it receives, and to establish friendship with other interested users with a declared

trust.

 Performance guarantees that each user receives recommendations as quickly as

possible, and reduces the overhead and resource consumption. The performance

of the system is mainly affected by the way the data are aggregated; the choice of

the P2P overlay, and the way used to route users’ requests in the overlay. The

system should disseminate users’ data, aggregate users’ neighbors, and organize

users in the overlay in a way that can reduce the overhead, resource consumption,

and search time. For that, the system should aggregate for each user u the users

that may help u in getting recommendations, and only search the users who have

items that are related to the user requests.

 Expressiveness guarantees that each user has the ability to interact with the sys-

tem, and express its demands, and thus avoiding users from receiving the same

list of recommendations many times. The system should give users ability to de-

termine its demands through keywords query. Moreover, the system should have

ability to express the semantics of the query and contents.

 35

2.4 P2P Content Management Systems

Several approaches have been proposed to build distributed information retrieval

systems using P2P networks. These systems, called P2P content management sys-

tems, express query by a set of keywords, and use the semantic of contents to build

the overlay and locate peer and contents place.

P2P systems such as Gnutella, and KaZaA (e.g. file sharing), support limited

functions (e.g. a very simple keyword search capability, trying to find the contents

whose name or description match the keywords provided by the user) and use simple

routing techniques (e.g. resource location by flooding) that have performance prob-

lems. To improve the query expressiveness and performance of search, guided search

approaches have been proposed [4][31]. Therefore, P2P content management use in-

formation retrieval techniques to represent, store, organize and recover specific in-

formation from stored data. These systems are classified according to the construction

of their overlays in two categories.

 Clustering overlays: exploit the contents stored at user peers to group similar

peers or similar data in one logical cluster.

 Shortcut link overlays: whereby peers establish direct links with other peers that

are similar with respect to interest or social patterns. These links can either re-

place or be added on top of a peer neighborhood.

In the rest of this section, we describe in more details these two kinds of overlays.

2.4.1 Clustering Overlays

In these systems, content semantics is exploited as clustering criteria. These sys-

tems use either peer clustering or data clustering. In peers clustering, peers that are

similar (in terms of content) are grouped together while in data clustering, contents

that have some similarity are placed at the same peer.

Peer Clustering: In systems like [30][16][64][83][70][150], peers are organized

in similar content clusters on top of an unstructured overlay (i.e., peers with similar

contents are grouped in one cluster). A query is guided to a cluster that is more likely

to have answers to the given query, and then the query is flooded within this cluster.

For instance, Garcia-Molina et al. [30] introduce the concept of semantic overlay by

using clustering and classification techniques, in order to improve the performance of

search. They explicitly identify a predefined classification hierarchy to classify the

peers’ documents. Each peer joins the system, identifies which cluster(s) to join by

acquiring the classification hierarchy in the system using flooding. Then, it classifies

its documents against this classification hierarchy. Finally, the peer uses flooding to

find peers that belong to its cluster, and then it joins its clusters.

The SETS System [16] clusters peers based on their documents’ topics. A fixed

set of C topic segments is predetermined, where each topic segment represents a clus-

ter, and all peers in a cluster cC store documents related to the topic segment of

cluster c. SETS uses a vector space model to represent documents, peers and cen-

 36

troids. Centroids are used to represent the topic of a cluster c and a peer p. The cen-

troid of a cluster c is computed by averaging the vector terms of the documents that

belong to cluster c. Similarly, the centroid of a peer p is computed by averaging the

vectors terms of p’s documents. The knowledge of the C centroids is global, and giv-

en to a distinguish peer. Once a peer p joins the system, it identifies its cluster by

measuring the distance between its centroid and the C centroids, and then joins the

most similar clusters. When a peer p issues a query q, it forwards q to all members of

its clusters using flooding.

Data Clustering: In systems like [28][94][97][129][101], similar contents is

placed with respect to their semantic on the same node. Typically, these systems use a

structured overlay to place similar content in the same area. PSearch [28] uses latent

semantic indexing [32] to distribute documents in the CAN DHT. Latent semantic

indexing is an indexing and retrieval method used to cluster a set of documents into a

number of groups by analyzing the relations between documents and the terms they

contain using a mathematical technique called singular value decomposition.

Hence the documents that are semantically similar also appear close to each other

in the CAN system. Accordingly, documents that are relevant to a query are likely to

be collocated on a small number of nodes. Sahin et al. [129] represent each document

as a vector of terms and uses them to determine the location of the document indices

in a Chord DHT.

2.4.2 Shortcut Link Overlays

In these systems, each peer establishes logical links (i.e. shortcut links) to peers

that may have contents related to its queries on top of its neighborhood. A query is

forwarded first to those links. If the user is not satisfied or the search fails, then the

query is routed through the traditional flooding techniques. We classify these systems

into interest-based and social-based based on the data that is used to create the

shortcut links. In interest-based, shortcut links are created based on query histories or

peer interests. Peer interests are defined either explicitly or implicitly. Social-based

systems use users’ social data such as common behaviour patterns, tags, bookmarks,

friends, etc. to create the shortcut links.

Interest-based: These systems rely on the assumption that if a peer pi has content

that another peer pj requested or is interested in, then most probably pi has other con-

tents that pj is interested in. Thus, in these systems each peer p adds links to peers that

interests are similar to p’s interests, or that have successfully answered p’s queries

[147][158][161][65][167]. Upadrashta et al. [158] propose to let each peer add

shortcut links to similar peers in terms of interests, in top of Gnutella, to enhance its

search. In this model, each peer is interested in a set of categories of interest. A cate-

gory of interest is defined as a bag that consists of keywords or topics. Peer’s catego-

ries of interests are either extracted implicitly from peer’s documents, or stated explic-

itly by the user. When a peer p submits a query q in a category of interest t, it creates a

shortcut link to peers that successfully answered q. Each peer maintains n peers that

have strong relationships for each category of interest, and uses it for searching files

 37

in the network. According to their results, the shortcut links reduce search time for

queries as well as the number of messages circulating in the system.

Similarly, in [147] and [65], each peer p adds shortcut links, on top of Gnutella,

to the most recent peers that have successfully answered p’s queries. When p searches

for contents, it disseminates its query to its shortcuts and, if the search fails, uses

flooding to search the underlying P2P overlay.

Social-Based: These systems consider user social behaviours and data for con-

structing the overlay and searching contents [13][47][99][157][115][22][121]. Fast et

al. [47] propose a P2P overlay for music file sharing that is constructed based on us-

ers’ preferences on music style. A hierarchical Dirichlet process [151] is used locally

to extract the music styles of each user u from the music files it stores. The authors

start from a random overlay network, where each user is connected to a set of neigh-

bors. Then, when users start searching for music files, shortcut links are established

between users that have similar music styles. When a user u initiates a query q, u for-

wards q to each neighbor v, which in turn forwards q to its neighbors until TTL. Then,

u establishes a shortcut link to each user v that has responded to q successfully, and

v’s music styles are similar to u’s music styles. Once u has established shortcut links,

it uses them to serve its queries.

SPROUT [99] exploits users’ explicit friends on top of the Chord DHT, in order

to avoid misrouting, and increases the number of query results. When a peer p joins

the DHT, in addition to its routing table, p adds shortcut links to all its online friends.

Once p issues a query q with key k, it forwards q to the friend whose id is closest to,

but not greater than, k. In turns that friend forwards q in the same manner, until the

peer which is responsible for k is found. In case p does not find a friend that is close

to, and less than k, it uses the regular Chord algorithm.

In [115], the authors propose to use personalized PageRank [114] in order to give

users the ability to perform personalized search in an unstructured P2P network. Each

peer computes the PageRank scores of its pages in a distributed manner, and the peer

is aware of the rank scores of the pages owned by its neighbors. Once a peer pi issues

a query q, it forwards q to the neighbor that has the highest ranked page. Each peer pj

that receives q forwards q to the neighbor which has the highest ranked page. This

process continues until the desired number of results is obtained.

Bai et al. [13] propose a personalized P2P top-k search for collaborative tagging

systems, called P4Q. In P4Q, each user u maintains locally a profile, denoted by pro-

file(u), which includes the items that u has tagged along with their tags. In addition, it

maintains a personal network, denoted by network(u), that includes a fixed number n

of users with similar interest. The network(u) consists of two parts (see Figure 2.8),

the first includes the c users that have the highest similarity with u, denoted by pro-

fileList(u), along with their profiles such that c<<n. The second part includes the oth-

er similar users along with the bloom filters of their profiles, denoted by bloomfilter-

List(u). Two users are considered similar if they share a common number of tagged

items.

In order to find and construct the network(u) of user u, two gossip protocols are

used. The first is used as peer sampling to keep the overlay connected. The second is

used to gossip the bloom filter of users’ profiles, and measures the similarity between

them based on the bloom filters of their profiles. Once u has determined the c users

with highest similarity, it stores them locally along with their profiles in its pro-

 38

fileList(u), and then stores the other similar users along with the bloom filters of their

profiles in its bloomfilterList(u).

When a user u issues a query (which is a set of tags), it uses the profiles of the c

users in its profileList(u) to process locally its query. If the search fails, or u is not

satisfied with the results, u gossips its query as follows. First, u selects from its

bloomfilterList(u) the users that have tags similar to the query’s tags, and adds them to

a list, called remainingList(u).

In the example of Figure 2.8, user u selects the users v, v4, v6, and v8 from its

bloomfilterList(u), and adds them to its remainingList(u). Once u has selected the

members of its remainingList(u), it selects randomly a user v from the remain-

inList(u), and forwards the query along with the remainingList(u) to v.

When a user v receives a query message issued by a user u, it checks whether it

stores locally a user x in its profileList(v) given that xremainingList(u). If v finds the

user xremainingList(u) in its profileList(v), it sends x’s profile to u. Next, v removes

x from the remainingList(u) (see Figure 2.8). Then, if the remainingList(u) is not

equal to zero yet, v splits the remainingList(u) into two parts after removing itself

from the remainingList(u), and returns the first part to the query initiator u. Finally, v

selects randomly a user y from the second part of the remainingList(u) and forwards it

along with the query to y. Notice that, the query initiator u keeps gossiping its query

while its remainingList(u) is not equal to zero.

In Figure 2.8, user v splits the remainingList(u) it received into two parts: the first

part includes user v6, and the second part includes user v8. After that, v returns the part

that includes v8 to the initiator u, and forwards query to the user v6.

Figure 2.8. Query processing in P4Q

 39

2.5 P2P Prediction Systems

In centralized RSs, the time complexity in finding the closest neighbors, and the

space required to store user-item matrix increases exponentially when users and items

increase. Decentralized architectures such as P2P systems that provide scalability, and

fault tolerance for large-scale applications, have thus been exploited to build distribut-

ed RSs.

In P2P prediction systems, the user-item matrix, users’ profiles and social data

are distributed over the participant users, and each user stores its own data and a part

of other users’ data. Then users collaborate to share the data they store and to generate

recommendations. We classify P2P prediction systems according to the data that are

used to construct the P2P overlays and generate recommendations, into the following

category:

 Basic P2P prediction systems: In these systems, recommendations are generated

based on users’ ratings only.

 Social P2P prediction systems: These systems consider users’ social behaviors

in constructing the overlay and generating recommendations.

In the rest of this section, we describe in more details these two kinds of predic-

tion systems, and show their limitations.

2.5.1 Basic P2P Prediction Systems

Recall that RSs that use a centralized infrastructure use a single service provider

to store the user-item matrix (see Section 2.2.2). Also that server or operator is re-

sponsible for similarity computation and recommendations generation. In basic P2P

prediction systems [106], each peer keeps a fraction of the user-item matrix. When a

peer needs recommendations, first it aggregates the other fractions of the user-item

matrix from the other peers. Then, it performs locally the similarity computation to

extract its neighbors. Finally, it generates recommendations with the help of the

neighbors it has extracted.

The first work on distributed RSs is Tveit [156], a P2P collaborative-based filter-

ing system to suggest recommendations for mobile customers. The system is based on

a pure P2P topology like Gnutella, and queries that include users’ ratings are simply

propagated by flooding. In addition, each user u maintains locally a cache that in-

cludes a copy of each query q that u has received, i.e., when the user u receives a que-

ry q that includes a user v’s rating data, u maintains locally q in its local cache. In

Tweit, a user u generates recommendations as follows. First, u sends a query q that

includes its rating data to each neighbor. Each user v receives the query q, it measures

the similarity between q and each query q* that v has stored in its local cache using

the cosine similarity, and returns to u each q* whose similarity with q exceeds a spe-

cific threshold. Then, v stores q in its local cache, and forwards q to each of its neigh-

bors if TTL is not equal to zero yet. Once u has received the ratings data that are simi-

 40

lar to its ratings data, it generates recommendations by computing the weighted sum

of those ratings data, and makes suggestions based on those ratings data.

In PocketLens [106], a P2P-RS, the authors propose four architectures including

random discovery (similar to Gnutella), transitive traversal, distributed hash table

(DHT), and secure blackboard. In all these architectures, a user u searches the P2P

overlay to find new neighbors. Then it aggregates the ratings data from those neigh-

bors. After that, u measures the similarity between itself and those neighbors, and

selects the top-k similar users for generating recommendations. The Pearson correla-

tion coefficient is used to measure the similarity between users based on their ratings

data. User u generates recommendation as follows. First u selects the items that have

been rated by the top-k similar user, and not seen by u yet. Then, u measures the simi-

larity between those items and its items, and selects the top-n similar items as the rec-

ommendation results.

The architectures proposed in PocketLens differ in the way they search for new

neighbors. In random discovery, when a user u joins the system, it sends a ping mes-

sage to each neighbor. Each neighbor v that receives a ping message returns to u a

pong message that includes all its neighbors. When u receives a pong message, it ag-

gregates the rating data from the users in that pong message. In the example of Figure

2.9, u forwards a ping message to its neighbors v. User v returns to u a pong message

that includes v’s neighbors. Thus, u becomes knowing the existence of users v1 and v2

after the one round of pingpong messages.

Figure 2.9. Ping/Pong in the random discovery architecture of PocketLen

Transitive traversal lets each user u find new neighbors during the time of search-

ing for contents. In this architecture, u uses the flooding from Gnutella to forward its

query in the overlay, and u considers each user v in the response path of the query as a

a new neighbor. In content addressable architecture, distributed hash table (DHT) is

used to publish users’ rating data. The items along with their ratings and similar items

are stored at DHT nodes using the items identifier to identify the keys. When a user u

generates recommendations, first it aggregates the items it has rated along with their

ratings and similar items from the DHT. Then it generates the recommendation re-

 41

sults. The last architecture (secure blackboard) lets each user encrypt each item it

shares, in order to increase user’s privacy. Simulation results show that PocketLens

produces good recommendations, and the results are close to the results obtained by

using a centralized recommendation system.

Peng et al. [118] propose to store users’ ratings over a DHT in order to distribute

the user-item matrix, called PipeCF. All users that have rated an item with the same

rating are grouped in one cluster, called bucket. These buckets are spread over the

DHT. The item’s name and rating are used to identify the key of each bucket (see Fig-

ure 2.10). A user aggregates all buckets of its items to make recommendations.

Figure 2.10. A snapshot of the PipeCF system

Kermarrec et al. [79] use gossiping and random walk for a decentralized RS.

Gossiping lets each user u aggregate the most similar users, denoted by neighbors(u).

Information about them is stored locally along with their profiles. A user’s profile

includes the items the user has rated along with their ratings. Cosine similarity is used

to measure the similarity between users.

Each user u computes its recommendations by running locally a random walk on

its neighbors and neighbors of neighbors as shown in Algorithm 2.1. User u inputs to

the algorithm the random walk probability α, to decide whether to continue random

walking or stop. The transition probability matrix P is defined over neighbor(u). Each

entry Pvx represents the probability that user v would ask user x for recommendations

and is defined as:

 ()
 ()

∑ () ()

 (2.7)

where β is a scale parameter such that β(0,1), to give the user ability to jump

randomly to another user in its neighborhood during the random walk.

In addition, u inputs to the algorithm the initial vector du of the probability distri-

bution over neighbor(u). Each component of du is defined as:

 42

 ()
 ()

∑ () ()
 (2.8)

The output of the algorithm is the final vector du
*
 of the probability distribution

over neighbor(u), and is defined as:

 ()

 (2.9)

where (1-αP)
-1

 is the inverse of the matrix.

The entries of the final vector du
*
 is used as the similarity weight between u and

its neighbors, in order to predict the rating of unseen items and generate recommenda-

tions. The simulation results using the MovieLens dataset show that random walk

enhances the precision of recommendation results. However, computing the transition

similarity matrix of the random walk and its inverse is complex, and time consuming,

as the number of items and its neighbors (and neighbors of neighbors) increase.

Algorithm 2.1- Random walk at user u

Input: random walk probability α; the transition probability matrix P; initial vector du of
the probability distribution
Output: the final vector du

* of the probability distribution.
1 Initialize x = du
2 While x has not converged
3 x = ()

4 End while
5 du

* = x

2.5.2 Social P2P Prediction Systems

These systems combine users’ preferences (ratings) with users’ social data

(friends, trust, etc.) in order to improve recommendations performance. Kim et al.

[80] propose a P2P-RS based on FOAF files. This system is designed to generate

movie recommendations. Each user u extracts locally its preferences, and asserts them

in its FOAF file. User u’s preferences consist from the movie genres u has rated.

Where movie genres are divided into 19 categories, and u computes its preferences in

each genre based on the ratings that u has given to the movies in that genre. The sys-

tem uses users’ FOAF files to cluster the users with similar preferences in one group

on real-time, and recommendations are propagated automatically from user to user,

starting from an initiator. When a user u rates an item i, it recommends the item i to its

friend as follows. First, the system groups the friends that are similar to u by aggregat-

ing the FOAF file of each friend v of u. Then, the similarity between u and friend v is

computed by using the cosine similarity between u and v preferences. Then, the group

is established, in which it includes each friend v that its similarity with u exceeds a

system-defined threshold. Finally, u forwards its recommendation to each friend v in

that group.

 43

Once a user v receives a recommendation for item i from u, it either rates or does

not rate i. In case v has rated i with a rating that exceeds a specific threshold, it rec-

ommends i to its friends as described before. Otherwise, v stops recommending i. The

recommendations are propagated until a specific depth n is reached, where depth n is

the number of hops between the recommendation’s initiator and terminator.

Massa et al. [100] propose a trust-aware collaborative-based filtering system that

uses users’ trust data in a decentralized environment such as P2P online communities

(e.g., Slashdot.org [143]) in marketplace sites (e.g., eBay.com [98]) in order to en-

hance the performance of recommendations. The system lets each user u express its

level of trust, denoted by trust(u,v), with each user v it has interacted with. The

trust(u,v) value is between 0 and 1, where 0 means total distrust and 1 means full

trust. The trust network is represented as a directed graph G=(U,E), where U is the set

of users in the network and E is the set of edges between users. There is an edge e(u,v)

from user u to user v, if u has expressed its level of trust on user v (see Figure 2.11).

The trust level from user u to user v, for which there is no direct edge trust, is predict-

ed based on a maximum propagation distance d (system defined), and the minimum

distance n between u and v, and is defined as:

 ()

 (2.10)

where distance is computed based on the number of hops.

In the example of Figure 2.11, we assume that the maximum propagation dis-

tance d is 4. Then, the predicted trust value from u to v is 0.75, and the predicted trust

value from v2 to u is 1. When u measures the trust level between itself and each user

in the network, it selects the most trustful as its trustful neighbors, denoted by neigh-

bortrust(u). Those neighbors are used to compute the recommendations. When u pre-

dicts the rating for an unseen item i, it selects those users that have rated item i from

neighbortrust(u). Then, u computes the weighted sum of those users’ ratings, and

makes suggestion based on those ratings. Simulation results using Epinions.com data

set show that trust aware recommendation alleviates the cold star problem, and in-

creases the number of returned recommendations.

Figure 2.11. A snapshot of a trust network

 44

Sarda et al. [133] propose a distributed trust-based recommendation system for

social networks. The system recommends a vendor for an item the user likes to pur-

chase. Each user u maintains locally a list of friends, and the system allows u to ex-

press its level of trust to each friend v it has maintained, denoted by trust(u,v). The

value of a trust given by a user u over a friend v is varied between 0 and 1. In addi-

tion, each user u maintains locally the values of trust between itself and each user v in

the system. Given that these trust values are computed beforehand by using Tidal-

Trust algorithm [52] i.e., no transitive trusts are computed at run-time.

TidalTrust uses a modified breadth first search-based algorithm to infer the trust

value from u to v, if u has not expressed its trust level with v yet. TidalTrust finds all

possible paths between u and v, and computes the trust value along each path by mul-

tiplying the trust values between direct users along the path. Then it computes the

trust value from u to v by averaging the trust values along all paths.

The system allows each user u to give a rating value between 0 and 5 for each

item i that it has explored, denoted by ru
i
. When an originator user u initiates a query q

seeking for recommendation for an item j, it forwards q to each neighbor v such that

the trust value trust(u,v) exceeds specific threshold.

Each user x receives q from a neighbor v, processes q as follows. First, x checks if

it has rated the item j. If this is the case and rx
j
 exceeds a specific threshold, x sends

back rx
j
 to v, and stops forwarding q. Otherwise, x forwards q to each neighbor y such

that trust(x,y) exceeds a specific threshold.

When user v receives a response from a neighbor x, it computes a score for that

response as the product between trust(v,x) and rx
j
. Responses trace back along the

path of q until the query’s originator u. Finally, the query’s originator u selects the

response that has the highest score and its corresponding user as a result for the query.

Wang et al. [163] propose a P2P-RS for television systems on top of Tribler

[121]. Each user u maintains locally a set of top most similar users, called buddy(u),

and a set of random peers along with their profiles. Whenever a user selects another

user to contact, it first merges its buddy with the random peers and ranks them based

on the similarity between their profiles with its profile (the similarity between two

profiles is measured by counting how many common files they have). Then one user

is randomly selected according to a roulette wheel approach. This gives more chance

for more similar users to be selected and gives a chance for new users to be explored.

User profiles consist of the users’ interests that are extracted from the watched

TV programs. User u is interested in a TV program, if the time that u spent in watch-

ing that program divides the duration time of the program, and the number of times

that program has been broadcast exceeds a specific threshold. A user u’s profile, de-

noted by profile(u), contains a set of K TV programs, where K is the number of

unique TV programs, and each TV program kK is associated with a Boolean value

that indicates whether u is interested in that TV program.

Once the user u has aggregated its buddy, it exploits them to generate recommen-

dations. Algorithm 2.2 shows how a user u generates recommendations taking into

account its profile and buddy. User u selects each TV program k, such that kKu,

where Ku is the set of TV programs that u has watched, and then computes the rank of

k, denoted by rank(k), as follows. First, u computes the popularity of k, by counting

 45

how many users in its buddy is interested in k. Then, u counts how many users in its

buddy are interested in k and in each TV program k
*
 such that k

*Ku, and then sums it

to the popularity of k. Finally, u orders the TV programs that u has not watched yet in

a list, and selects the top-n TV programs as the recommendation result.

 46

Algorithm 2.2- Generate recommendation at user u

Input: profile(u); buddy(u)
Output: recommendation result

1. For each kKu do

2. For each user vbuddy(u) do
3. If v is interested in k then
4. Increment popularity of k
5. End if
6. End for

7. For each k*Ku do

8. For each user vbuddy(u) do
9. If v is interested in k and k*
10. Increment k’s co-occurrence
11. End if
12. End for
13. End for
14. Rank(k) = popularity of k + k’s co-occurrence
15. Add rank(k) to a List
16. End for
17. Order the List
18. Recommendation = the top-n of the ordered List

 47

2.6 Summary and Observations

In this section, we summarize our review of the work related to this thesis and

our observations, which will be useful to introduce our approach.

The solutions we discussed, shown in Figure 2.12, fall either within decentralized

or centralized infrastructures. In centralized infrastructures, the users and their rated

items are modelled in a user-item matrix, and stored at a single service provider,

which also performs all the recommendation processes. On the other hand, decentral-

ized infrastructures distribute the user-item matrix over users, and users cooperate to

generate recommendations.

Figure 2.12. Recommendation systems and a hierarchy of solutions

We observed that the three classical centralized RSs, namely collaborative-based

filtering, content-based filtering, and social-based filtering, consume large storage

space, suffer from limited scalability, and require high cost in maintaining and updat-

ing the underlying infrastructure. Moreover, centralized collaborative-based filtering

and content-based filtering consume much time in measuring similarity and suffer

from sparsity and cold star problems.

Decentralized infrastructures encompass two trends, namely, P2P content man-

agement systems and P2P prediction systems. We observed that neither P2P content

management systems nor P2P prediction systems fully satisfy the requirements which

we identified in Section 2.2. In P2P content management systems, users send keyword

queries to the system that returns a set of contents that are most related to query. The

solutions in these systems focus on reducing the time and network traffic consumed

by search, but they do not take into account users’ feedbacks and ratings, which may

deteriorate the quality of results.

 48

P2P prediction systems proactively return a set of recommendations to users

based on their profiles. The solutions in these systems focus on how to distribute the

user-item matrix over users, but they do not take into account the overhead required to

aggregate the user-item matrix by users, which also may deteriorate the performance

and scalability of the system. In addition, they do not give users the ability to express

their demands, thus hurting expressiveness.

Figure 2.13 illustrates the services provided by a P2P infrastructure, and the

modules required for each category of solutions previously described. The services

provided by the P2P infrastructure are overlay, location and routing. The P2P overlay

defines the neighbors of each user and how users are connected. The location service

defines the location of users and contents in the overlay. And the routing service de-

fines how users forward their discovery messages and queries.

Figure 2.13. Overview of the P2P recommendation systems architecture

P2P content management systems use information retrieval techniques such as

clustering to enhance the search for contents in P2P networks. Two approaches are

identified: clustering overlays and shortcut link overlays. In clustering overlays, peers

that are similar with respect to contents are grouped in one cluster usually on top of an

unstructured overlay, or similar contents are placed on the same peer usually on top of

a structured overlay. The clustering module searches the P2P overlay to find the loca-

tion (cluster) of a peer or content. In unstructured overlays, searching for the clusters

of users is achieved through flooding, which increases network traffic overhead. In

structured overlays, the content semantics are used so as to determine the peer respon-

sible for the location of that content. Due to the location constraint, data clustering

requires high maintenance overhead, and gets less efficient as the size of the shared

contents increases. However, clustering overlays enhance performance by reducing

the number of messages in the network for a query, and provide rich query expres-

siveness.

 49

Shortcut link overlays let each user establish logical links to friends or to users

with similar interests, usually on top of an unstructured or dynamic overlay. The

shortcut link modules search for potential users in order to establish links with them.

These systems use users’ interests or social data in order to establish new shortcut

links. We observed that using users’ social data such as friends, trust, etc. increases

the quality of results, and enhance the performance of the system. In unstructured

overlay, flooding or query propagation is used to search for potential users, and does

not have any mechanism to manage the number of shortcut links, in which it may de-

teriorate the scalability of the system. In dynamic overlay, gossip protocols are used

to construct users’ shortcuts. We observe that using gossip protocols give users ability

to self-organize themselves, and increase the scalability of the system. However, ex-

changing users’ profiles, and storing them locally may increases the traffic consumed

in the network and storage space.

Along these lines, integrating users’ social data or using gossip protocols in P2P

content management systems may increase the scalability, quality and performance of

the system.

In P2P prediction systems, users’ ratings and social data are distributed over

peers, and are used to compute the recommendations. Two approaches are identified

in this category: basic and social P2P prediction systems. Basic P2P predictions sys-

tems just distribute the user-item matrix over the peers, and then peers collaborate and

communicate in order to compute the recommendations. Social P2P prediction sys-

tems leverage users’ social data such as trusts, friends, etc. with the user-item matrix

in order to compute recommendations.

The “find and aggregate neighbors” step searches the P2P overlay to find neigh-

bors, and then aggregates their profiles in order to let each user locally build the user-

item matrix. Most of the basic and social P2P prediction systems are built on top of an

unstructured overlay, and flooding is used to find neighbors. We observed that aggre-

gating neighbors’ profiles (users’ preferences, FOAF files, etc.) and using flooding to

find neighbors increase the overhead traffic, which may hurt the scalability of the sys-

tem. Structured overlays reduce the network traffic for aggregating neighbors’ pro-

files, but increase the maintenance overhead because of their tightly controlled topol-

ogy.

We observed that basic P2P prediction systems have limited reliability due to the

sparsity and cold star problems, and limited quality due to the lack of social relations

such as friends, trusts, etc. between users. Social P2P prediction systems have in-

creased the reliability and quality of the results. However, both basic and social P2P

prediction systems have limited performance due to the traffic and time required to

find and aggregate neighbors’ profiles, and suffer from expressiveness because they

do not give users ability to query the system. Along these lines, integrating users’ so-

cial data or users’ ratings, feedbacks, rankings, etc. increases the quality and the relia-

bility of the returned results.

Finally, we observed that taking into account contents’ semantics alleviates blind

search because only the peers that can serve queries are exploited, increases query

expressiveness, and increases the reliability of the results by reducing the effects of

the sparsity and cold start problems. Users’ social data such as friends, trusts, etc. in-

crease the quality and confidence of results. Finally, using gossip protocols increases

the scalability and the performance of the system [78].

 50

2.7 Conclusion

In this chapter, we introduced the main concepts and approaches of recommenda-

tion systems, and their limitations. We also highlighted the requirements that are

needed to design P2P recommendation systems. We introduced P2P systems accord-

ing to three main classes: unstructured, structured and dynamic (using gossip proto-

cols).

Since in this thesis, we exploit techniques from information retrieval and recom-

mendation systems, we reviewed the existing solutions in both areas in the context of

P2P systems, namely P2P content management systems and P2P prediction systems.

Finally, we summarized our review of related work and our observations.

We pointed out that none of the aforementioned approaches meets all the re-

quirements of recommendation systems. Therefore, our goal in this thesis is to pro-

vide a decentralized RS for large-scale data sharing for P2P online communities that

satisfies these requirements. Our approach is to leverage users’ interests combined

with social data, and using gossip protocols to disseminate users’ information, con-

struct and maintain the P2P overlay. Users’ interests are extracted automatically from

their contents and taking into account users’ ratings.

 51

 52

Chapter 3 P2Prec: P2P Recommendation

for Large-scale Data Sharing

Abstract. In this chapter, we propose a P2P recommendation system called P2Prec

that facilitates document sharing for on-line communities. Given a query, the goal of

P2Prec is to find relevant peers that can recommend documents that are relevant for

the query and are of high quality. A document is relevant to a query if it covers the

same topics, and it is of high quality if relevant peers have rated it highly. The topics

each peer is interested in are automatically calculated by analyzing the documents the

peer holds, and the peer becomes relevant for a topic if it holds a certain number of

highly rated documents on this topic. We propose new semantic-based gossip proto-

cols to efficiently disseminate information about peers’ topics and relevant peers. In

addition, we propose an efficient query routing algorithm that selects the best peers to

recommend documents based on the gossip-view entries and query topics. In our ex-

perimental evaluation, using the TREC09 dataset, we show that P2Prec has the abil-

ity to get reasonable recall with acceptable network traffic.

3.1 Introduction

In this chapter, we propose a P2P recommendation system, called P2Prec, that fa-

cilitates document sharing for on-line communities. Our approach leverages content-

and collaborative-based filtering recommendation approaches. In most collaborative-

based filtering systems, topics of interest are derived based on the users’ tagging ac-

tivities that may lead to ambiguous interpretations. In contrast, in our context of

online communities, we exploit the fact that people tend to store high quality content

related to their topics of interests. Thus, we can automatically derive the users’ topics

of interest from the documents they store and the ratings they give, without requiring

tagging.

P2Prec works with a set of documents distributed over a large-scale network of

volunteer and autonomous peers (users) willing to share and rate their documents. It

automatically extracts the topics a user is interested in by relying on a generic auto-

matic topic classifier such as Latent Dirichlet Allocation (LDA) [19]. LDA uses

Bayesian statistics and machine learning techniques to infer to the hidden topics in

unlabeled content (documents, collections of images, music, DNA sequences, etc.)

from labeled content whose topics have already been determined.

 53

To guide recommendation and manage sparsity, we propose a metric to identify

the relevance of a user with respect to a given topic. That is, a user is considered rele-

vant to give recommendations for a specific topic t if it has a sufficient number of

highly rated documents related to t.

Information about the interest and relevance of users is disseminated over the

P2Prec overlay using gossip protocols. With random gossiping [50][69], each user

keeps locally a view of its dynamic acquaintances (or view entries), and their corre-

sponding topics of interest. Periodically, each user chooses randomly a contact (view

entry) to gossip with. The two involved peers then exchange a subset of each other’s

view, and update their view state. This allows peers to get to know new peers and to

forget about peers that have left P2Prec. Whenever a user submits a query, the view is

used as a directory to redirect the query to the appropriate peers. Thus, overlay

maintenance and information dissemination are done gracefully, assuring load balanc-

ing and scalability. Several algorithm parameters, such as the gossip contact, the view

subset, etc. are chosen randomly.

In P2Prec, users search for documents that are related to their topics of interests.

Thus, in order to increase the quality and the efficiency of recommendation, we pro-

pose a semantic gossip approach where semantic information, such as user’s topics of

interest, is taken into account while gossiping. The content of this chapter is mainly

based on our material published in [36][38] and has the following contributions.

 We propose a new approach for decentralized recommendation that leverages col-

laborative- and content-based filtering recommendation approaches. To guide rec-

ommendation, we introduce the concept of relevant users.

 We propose a P2Prec overlay that enables efficient decentralized recommendation

using gossip protocols. We propose two new semantic-based gossip protocols that

take into account semantic information such as the users’ topics of interest and user

relevance, while maintaining the nice properties of gossiping.

 We propose an efficient query routing algorithm that takes into account the most

relevant view entries, and recommends the best users to provide recommendation

for a query. We use information retrieval techniques, such as cosine similarity, to

help P2Prec find relevant documents at each involved peer.

 To rank recommendations at the query initiator, we propose a rank method that

takes into account similarities, ratings and document popularity.

 We provide an experimental evaluation using the TREC09 dataset [127] that

demonstrates the efficiency of P2Prec.

The rest of this chapter is organized as follows. Section 3.2 defines the problem.

Section 3.3 introduces P2Prec basic concepts such as topics of interest and relevant

users. Section 3.4 describes how the P2Prec overlay is constructed and maintained via

gossip protocols. Sections 3.5-3.6 describe two new gossip protocols, semantic and

semantic two-layered gossip, respectively. Section 3.7 describes our solution for que-

ry routing and recommendation ranking. Section 3.8 gives an experimental evalua-

tion. Section 3.9 concludes.

 54

3.2 Problem Definition

Intuitively, given a query, we want to recommend the most relevant and qualita-

tive documents from a huge distributed content base. Most recommender systems for

web data are centralized and are either content-based or use collaborative-based filter-

ing. Content-based filtering recommends to a user u items that are similar to u’s pre-

viously rated items as described in Section 2.2.2. Collaborative-based filtering, in

contrast, recommends to u items that have been rated by users who share similar in-

terests with u as described in Section 2.2.1. Relying on both content-based and col-

laborative-based filtering approach, we extract a user’s topics of interest based on the

documents stored at the user.

Our recommendation model assumes a set D of shared documents and a set U of

users u1,…un corresponding to autonomous peers p1,…pn. Notice that documents may

be replicated as a result of using P2Prec. Thus, each document docD can have many

read-only copies. Since we focus on on-line communities, we safely assume that users

are willing to rate the documents they store. That is, each document doc that has a

copy at user u has high probability to be rated by u. Furthermore, we assume a set T of

topics. Our system will automatically associate each user uU with a set of topics of

interest Tu  T, and a set of relevant topics Tu
r Tu depending on the documents u

maintains locally and the ratings he/she has given to these documents. More specifi-

cally, a topic t is of interest for user u, i.e, t Tu , if a specific percentage of u’s local

documents Du are related to topic t with high probability and are highly rated by u.

User u is considered a relevant user for topic tTu
rTu, if u is interested in t and has a

sufficient number of highly rated documents that are related to t with high probability,

and u will be able to provide high quality recommendations related to t.

Finally, queries are expressed through keywords and a response to a query q is a

recommendation defined as:

recommendationq = rank(recqv1(doc1) … cqvi(docj)) (3.1)

Different recommendations recq
v1

 (doc), recq
v2

 (doc), … may be given for the rep-

licas of a document doc. Each rec is defined in terms of the similarity between the

query q and doci, and the document popularity. Finally, the rank function may be

standard or user defined.

Problem Statement: Given a keyword query q and our recommendation

model above, the problem we address is how to efficiently retrieve the most relevant

users (or peers) to compute recommendationq and selectively choose the best recom-

mendations.

 55

3.3 P2Prec Basic Concepts

In this section, we introduce P2Prec basic concepts for managing topics of inter-

ests and relevant users. First we present how topics are extracted from a set of docu-

ments by using LDA. Next, we introduce how we extract users’ topics of interests

from documents they store, and how we define the concept of relevant users.

3.3.1 Topics Extraction

In P2Prec, topics are automatically extracted from a set of documents to produce

the set of topics T, and for each user uU, its set of topics of interest Tu  T. Classify-

ing the hidden topics available in a set of documents is an interesting problem by it-

self. Several models have been proposed, described and analyzed in the Information

Retrieval literature [26] to tackle this problem. We use, LDA, a topic classifier model

that represents each document as a mixture of various topics and models each topic as

a probability distribution over the set of words in the document. For example, a doc-

ument talking about vegetarian cuisine is likely to be generated from a mixture of

words from the topics food and cooking.

LDA assumes a fixed finite number of topics. Hierarchical Dirichlet Processes

[151] has been proposed as an extension to the standard LDA [19] to adapt the num-

ber of topics automatically but is more complex. In P2Prec, we use the standard LDA

and thus use a fixed finite number of topics. We choose LDA because it is efficient in

clustering high dimensional and sparse data, and it has ability to solve synonymy (dif-

ferent words with identical meaning) and polysemy (same word with multiple mean-

ings). But we could easily extend P2Prec to use Hierarchical Dirichlet Processes.

We adapt LDA for P2Prec to proceed in two steps: the training (at the global

level, see Figure 3.1(a)), and inference (at the local level, see Figure 3.1(b)). Training,

denoted by Global-Training-LDA, is usually done by a specific peer, e.g., the boot-

strap server. LDA is fed with a sample set of M documents that have been aggregated

from the system, i.e., collected from P2Prec peers on demand. Each document doc

M is a series of words, doc={word1,...,wordn}, where wordi is the i
th

 word in doc and n

is the total number of words in doc. Then, LDA executes its topic classifier program

and produces a set B={b1,.. bd} of bags. Each bag bB is tagged with a label t (we

refer to it as topic t). The set of topics T of P2Prec corresponds to t1...td. Each bag con-

tains a set of z words, where z is the total number of the unique words in M, and each

of these words is associated with a weight value between 0 and 1. More formally, this

set of bags can be represented as a matrix ф with dimensions d*z, where d is the

number of topics and z is the total number of unique words in M. Each row of ф rep-

resents the probability distribution of a topic tT over all words. The bootstrap server

periodically aggregates M from the peers and estimates ф. Each version of ф is at-

tached with a timestamp value.

The inference part of LDA, denoted by Local-Inference-LDA, is performed local-

ly at each (peer) user u. The goal is to extract the topics of u’s local documents, using

the same set of topics that were previously generated at the global level. Thus, when-

 56

ever a peer joins P2Prec, it first contacts the bootstrap server in order to download ф.

Then, for inference, LDA’s input is the set of local documents of user u, and the ma-

trix ф generated at the global level. As output, LDA produces a vector of size d for

each document doc, called document topic vector, =[
 ….

], where

is the weight of each topic tT with respect to doc.

Figure 3.1. LDA under P2Prec context

3.3.2 Topics of Interest and Relevant Users

Now introduce the concepts of users’ topics of interest and relevant users neces-

sary to guide recommendation. Algorithm 3.1 illustrates how each user computes its

topics of interests with which we determine relevant users. Given a set of documents

Du stored locally at user u, we extract the topics of interest Tu  T in two steps. First,

we compute the document quality for each document doc Du that user u has rated

and we record the quality locally in a vector quality(doc,u). This is done by multiply-

ing the document topic vector =[
 ….

] that has been extracted using the

Local-Inference-LDA, by the rate
 that has been given by user u for doc. Thus,

we have:

quality(doc,u) = [

 ….…

] (corresponds to line 2)

Then, user u identifies for each topic tT only the documents that are highly re-

lated to t. A document doc is considered highly related to topic t, denoted by

 (), if its weight in that topic

 multiplied by its rate
 exceeds

a threshold value (which is system defined), i.e.,

 () {

 (3.2)

Topic(s) related to a document leverages the user’s rating and document’s seman-

tic content. If a document has not been rated explicitly by user u, we still have the

ability to compute the topics that are related to it. In this case, we consider the docu-

ment to be highly related to topic t if its weight in that topic exceeds a threshold value.

 57

In the second step (lines 3, 4 and 5), user u counts how many documents are

highly related to each topic t T. The number of documents that are highly related to

t T represents u’s degree of interest in that topic, denoted by
 , i.e.,

 ∑ ()

 (3.3)

Then, user u implicitly computes its topics of interest Tu  T (lines 9, 10 and 11).

User u is considered interested in topic t if a percentage y (or absolute value) of its

local documents Du are highly related to topic t, i.e.,

tTu if

 (3.4)

Furthermore, user u is considered a relevant user for topic t that belongs to its rel-

evant topics Tu
r
 i.e., tTu

r
, if u is interested in t and degreeu

t
 exceeds a number x

(which is system defined), i.e.,

tTu
r
 if

 and tTu (3.5)

In other words, u is considered a relevant user in topic tTu
r
 if it is interested in t

and has a sufficient amount of documents that are highly related to topic tTu
r
 (lines

12 and 13). Otherwise u is not a relevant user for topic t even though u might be inter-

ested in t. We denote a user that is not relevant for any topic as a non-relevant user.

User u has the ability to download and rate the documents it receives, and add or

delete documents. Thus, its relevance (topics of interest) may change over time. To

capture this dynamic behavior, user u computes its topics of interest Tu and relevant

topics Tu
r
 periodically, or if a number of documents have been added to (or deleted

from) its Du and exceeds a system-defined threshold.

 58

Algorithm 3.1- Compute-Topics-Of-Interest(Vdoc, ratedoc)

Input: user u’s document topic vectors, Vdoc where docDu ; user u’s document rating,

ratedoc
u where docDu

Output: user u’s topics of interest Tu

1 For each doc Du do
2 quality(doc,u) = Multiply(Vdoc,ratedoc

u)

3 For each tT do
4 If relatet(doc,u) then
5 increase degreeu

t by one
6 End If
7 End For
8 End For

9 For each tT do
10 If (degreeu

t /|Du|) ≥ y then
11 u add t to Tu

12 If
 and tTu then

13 u add t to Tu
r

14 End If
15 End If
16 End For

 59

3.4 P2Prec Overlay

In this section, we first describe how the P2Prec overlay is constructed and main-

tained via gossip protocols. Then, we introduce our query routing solution. Finally,

we describe the well-known random gossip protocol [50][69], and discuss its limita-

tions for P2Prec

3.4.1 Overlay Construction

In P2Prec, users use gossip protocols to construct the P2Prec overlay and ex-

change a subset of their views in an epidemic manner [5]. Users also gossip to detect

failed users. Gossip protocols [50][69] have attracted a lot of interest for building and

managing unstructured networks. With gossip, each user periodically (with a gossip

period denoted by Cgossip) exchanges a subset of its state, called local-view, with an-

other user. Thus, after a while, as with gossiping in real life, each user will have a

partial view of the other users in the system.

 Each user’s local-view contains a fixed number of entries, denoted by view-size.

Each entry refers to a user u, and contains u’s gossip information such as:

 u’s IP address;

 u’s topics of interest Tu, each topic tTu being associated with a Boolean field that

indicates whether u is relevant in that topic.

Users’ topics of interest and relevant users’ information are disseminated using

gossip protocols in order to guide queries for recommendation retrieval. When a user

is interested in a topic t it may be a candidate to serve a query on topic t. This corre-

sponds to the case in which there is no relevant user on that topic in the view.

In the example of Figure 3.2, u carries in its local-view two users v1 and v2. User

v1 is interested in two topics t1 and t2. Figure 3.2 shows that v1 is not relevant either in

t1 or t2. As user v1 is not relevant in any topic, then v1 is a non-relevant user. User v2 is

interested in two topics t1 and t2. Figure 3.2 shows that v2 is relevant in t2, and not

relevant in t1. As v1 is relevant at least in one topic, then v2 is a relevant user.

Figure 3.2. User u’s local-view

We choose gossip protocols for the following reasons. First, the continuous ex-

change of subsets of local-views between users enables the building of an unstruc-

tured overlay network in a continuous manner, which reflects the natural dynamism of

P2P networks and helps providing very good connectivity despite failures or peer dis-

connections [50]. Second, gossiping provides a reliable way to disseminate infor-

 60

mation in large-scale dynamic networks, so that users discover new users [45]. Third,

it ensures load balancing during the disseminating of information between users, since

all users have the same number of gossip targets and the same exchange period, and

thus send exactly the same number of messages [50]. Finally, it is scalable, reliable,

efficient and easy to deploy [66].

3.4.2 Query Processing

Whenever a user submits a query, local-view is used as a directory to redirect the

query to the appropriate relevant users. A query is defined as q(wordi, TTL, Vq, Tq,u),

where wordi is a list of keywords, TTL is the time-to-live value, and Vq is query q’s

topic vector. Notice that q’s topic vector Vq is computed using the Local-Inference-

LDA. Tq represent q’s topics and u corresponds to the address of q’s initiator. When a

user u initiates a query q, it routes q as follows: first, it extracts q’s topic vector Vq

using the Local-Inference-LDA. Then, user u computes q’s topics Tq from q’s topic

vector Vq. The query q is considered to belong to a topic tTq if its weight

 in

that topic exceeds a certain threshold (which is system defined). Then, user u uses its

local-view to find relevant users that can give recommendation for q’s topics Tq, and

then redirects q to those relevant users after reducing TTL.

Whenever a user u receives a query q that has been initiated by a user v, it returns

to q’s initiator the recommendation information it has which are related to q, and re-

cursively selects from its local-view the relevant users in q’ topics Tq. Afterwards, u

redirects q to those relevant users as long as TTL does not reach zero. More details on

query processing are given in Section 3.7.

3.4.3 Random Gossip Protocol

The basic random gossip protocol (Rand for short) proceeds as follows: a user u

(either relevant or non-relevant) acquires its initial local-view during the join process

using a bootstrap technique. We register each user that has joined P2Prec at a boot-

strap server. Whenever a user u joins the system, it randomly selects a set of users

from the bootstrap server to initialize its local-view. Notice that u’s local-view may

carry relevant and non-relevant users.

 Whenever a user u initiates an information exchange, it selects a random contact

v from its local-view to gossip with. Then, u selects a random subset of size Lgossip -1,

denoted by viewSubset, from its local-view, and includes itself into viewSubset. Then,

u sends viewSubset to v. Similarly, u receives a viewSubset* of v’s local-view.

 Finally, once a user u receives a gossip message, it updates its local-view based

on the gossip message received. The update process proceeds as follows: 1) the con-

tent of the gossip message is merged with the content of the current local-view of user

u and set in a buffer; 2) using the buffer, u selects view-size entries randomly and up-

dates its local-view. Whenever, u searches for a recommendation, it uses its local-

 61

view to identify the relevant users in its view that can provide recommendation for the

query.

Rand does not take into account user u’s topics of interests during the gossip ex-

changes. This reduces the possibility of having users in u’s local-view which are simi-

lar to u in terms of topics of interest, which reduces the possibility of getting better

responses. In particular, the exchange does not consider whether the view contains

users that are relevant for the topics user u is interested in. In the following we refer to

this as similarity. For now, we informally assume two users are similar if they have

similar interests. In Section 3.5.2 we provide a formal definition.

In the following we present three examples where Rand limits the quality of the

gossip exchange:

1. Consider two users u and v1 that are not similar, and user v1 is in u’s local-view

(see Figure 3.3(a)), because they do not have any common topic of interest. Let us

suppose that v1 has several users in its local-view that are similar to v1. For in-

stance v4 is in v1’s local-view, and has topics of interest Tv4 which are the same as

v1 topics of interest Tv1. By transitivity these users are not similar to u. If u choos-

es v1 as a gossip contact, with high probability it will end by filling its local-view

with un-similar users (see Figure 3.3(b)), because most of the users in u’s local-

view do not have topic in common with u’s topics of interest. In the example of

Figure 3.3, u selects v1 to gossip with, and sends to v1 ViewSubsetu which, in addi-

tion to itself, includes v2 and v3. Similarly, v1 returns to u a vewSubsetv1 which in-

cludes in addition to itself users v5 and v6. Once u receives the viewSubsetv1, it

merges viewSubsetv1 with its local-view in a buffer, and then updates its local-

view.

Figure 3.3. Users u and v are not similar

2. Consider now that u and v are similar (see Figure 3.4(a)), because u’s topics of

interest Tu and v1’s topics of interest Tv1 are similar. However, v1 has many un-

similar users in its local-view. For instance v4 is in v1’s local-view and does not

have any topic of interest that v1 is interested in. By transitivity, these users are not

similar to u. If u chooses v as gossip contact again, with high probability it will

end up filling its local-view with un-similar users (see Figure 3.4(b)), because

most of the users in u’s local-view do not have topic in common with u’s topics of

interest. In the example of Figure 3.4, u selects v1 to gossip with, and sends to v1

ViewSubsetu which includes in addition to itself users v2 and v3. Similarly, v1 re-

turns to u a vewSubsetv1 which includes in addition to itself users v5 and v6. Once u

 62

receives the viewSubsetv1, it merges viewSubsetv1 with its local-view in a buffer,

and then updates its local-view.

Figure 3.4. User u and v are similar

3. Consider the case that several users u1,…,uk are non-relevant users, and u’s local-

view carries mostly non-relevant users (see Figure 3.5(a)), for example v2 is in u’s

local-view and is not relevant in any topic. In this case, the gossip exchanges are

useless for serving queries (see Figure 3.5(b)). For example, after gossiping, u

does not carry in its local-view any user that is relevant in topic t1Tu.

Figure 3.5. User u and v carry mostly non-relevant users

Based on the above examples, we conclude that Rand may generate uninteresting

view states resulting in low query responses.

3.5 Semantic Gossiping

In this section, as a first approach to Rand’s limitations, we present a new seman-

tic gossip protocol (called Semt). The goal is to selectively maximize the number of

relevant users at each user u’s local-view that are similar to u. First, we give our crite-

ria for keeping similar relevant users in the local-views. Then, we present in detail the

active and passive behavior of Semt.

Recall that our objective is to improve the efficiency of returning useful recom-

mendations for on-line communities. We let each user u maintain a local-view of rele-

 63

vant users similar to u. Thus, when u initiates a query q (see Algorithm 3.4), it search-

es for a relevant user vu’s local-view so that v can give recommendation for q. If u

finds such relevant user, then u’s hit-ratio is increased. Hit-ratio is defined as the per-

centage of the number of queries that have been answered. Moreover, u likes to find

many relevant users in its local-view that can serve its queries, and this reduces query

response time (time spent to retrieve useful recommendations).

To measure user u’s hit-ratio, we use a query-history that keeps the track of past

queries. With Semt, when a user u chooses a contact, it selects a user v that has high

hit-ratio, and is similar to user u. For that, u includes into viewSubset the relevant us-

ers that are similar to u, and have high hit-ratios. Note that hit-ratio can be easily

added as an attribute of a local-view entry, and becomes part of the gossip message.

In the rest of this section, we present our techniques to compute hit-ratio, and the

similarity functions.

3.5.1 Computing the Hit-Ratio

To compute a user’s hit-ratio, we assume that each user u maintains a log of lim-

ited size, called query-history, denoted by Hu. The cardinality of u’s query-history is

denoted by |Hu|. Hu contains a set of entries, each entry referring to a past query q that

u has initiated. Each past query q entry included in Hu contains q’s topics Tq and its

query state sq. Query state sq can be either 1 or 0. The value of 1 for sq denotes a que-

ry-success, i.e., there was at least one relevant user in u’s local-view that was able to

serve query q. In contrast, sq = 0 denotes a query-fail, i.e., user u has not found any

relevant user in its local-view that can give recommendations for query q. We use

FIFO to replace the past queries once user u’s query-history has reached its full size

|Hu|.

Periodically, each user u computes its hit-ratio. User u’s hit-ratio represents the

percentage of the number of query-success in its query-history Hu which is:

 -
∑ 

 (3.6)

where n is the total number of past queries available at u’s query-history Hu.

3.5.2 Similarity Functions

Recall that each user has a set of topics of interest, and each relevant user v a set

of relevant topics. Thus, we measure the similarity between a user u and a relevant

user v, denoted by distant(u,v), by counting the overlap between u’s topic of interests

Tu and v’s relevant topics Tv
r
 . We use the Dice coefficient [35] which is:

 ()

 (3.7)

 64

We could also use other similarity functions such as cosine, jaccard, etc. Similar-

ly, we use the Dice coefficient to measure the similarity between a query q and a rele-

vant user v:

 ()

| |

 (3.8)

If distant(q,v) ≠0, then the relevant user v can give recommendations for q.

3.5.3 Semantic Gossip Behaviors

The behavior of Semt at a user u is illustrated in Algorithm 3.2. The active behav-

ior describes how u initiates a periodic gossip exchange message, while the passive

behavior shows how u reacts to a gossip exchange initiated by some other user v. Each

user u acquires its initial local-view during the join process using a bootstrap tech-

nique. We register each relevant user which has joined the P2Prec at a bootstrap serv-

er. Whenever a user u joins the system, it selects randomly a set of relevant users from

the bootstrap server to initialize its local-view. Notice that u’s local-view only carries

relevant users.

The active behavior is executed every time unit Cgossip. A user u initiates a com-

munication message and computes the similarity distance between itself and each

relevant user v in its local-view (line 4). Then, u computes the rank of each relevant

user v in its local-view, denoted by rank(v). A relevant user v’s rank at user u depends

on the similarity distance between u and v, and v’s hit-ratio if v has issued more than z

number (where z is system defined) of queries within an interval of time i.e., Hv ≥z.

Otherwise v’s rank depends on similarity distance between u and v only. Accordingly

the rank(v) is:

 () {
 ()

 ()
 (3.9)

Usually z is very small, that is to prevent the relevant users that are similar to u,

but do not issue queries from getting very low ranks. Note that |Hv| can be easily add-

ed as an attribute of a local-view entry, and becomes part of the gossip message.

Once u has computed the rank of each relevant user v rank(v) in its local-view,

adds rank(v) to a RankList (lines 5 to 10) which contains the relevant users’ entries

along with their ranks. Once u has computed the relevant users’ ranks and added them

in the RankList, it selects from the RankList a relevant user v which has the highest

rank to gossip with, using the selectTop() method (line 12). The relevant user v with

the highest rank is the relevant user that is most similar to u and has the highest hit-

ratiov.

Once user u has selected a relevant user v to gossip with, it selects Lgossip entries

from the RankList which have the highest rank using SelectTopEntries() (line 13).

These entries compose user u viewSubset. After that user u sends to v the viewSubset

(line 14).

 65

In turn, user u will receive a viewSubset* of user v’s local-view (line 15). Upon

receiving viewSubset*, u computes the rank for each relevant user v in viewSubset*

and adds it to the RankList (lines 16-24). Recall that RankList includes also the rank

of the relevant users at u’s current local-view. Then, the method SelectTopEntries()

selects view-size entries from the RankList which have the highest rank to become the

new local-view (line 25).

In the passive behavior, a user u waits for a gossip message from a user v. Upon

receiving a message (line 3), it computes the rank of the relevant users in its local-

view (lines 4-11). Then, it uses SelectTopEntries() to select viewSubset* of Lgossip

entries from the RankList that have the highest rank (line 12). Then, it sends back

viewSubset* to user v. Then, it computes the rank of the relevant users in the received

viewSubset (lines 14-22). Finally, it updates its local-view by selecting view-size en-

tries from the RankList that have the highest rank.

Letting each user u select the top ranked entry v from its local-view as the next

gossip contact may deteriorate the randomness of its local-view entries, because it

may occur that v remains the same contact for long period of time. To increase the

randomness and prevent user u from selecting the same contact v for a long period of

time, each user u stores in a list L, the last l recent contacts that have been selected for

gossiping. Then, instead of blindly selecting the top ranked relevant user in RankList,

to gossip with it selects the first user in RankList that is not in the list L of users with

whom u has recently gossiped.

Furthermore, the fact that viewSubset and the gossip contact are not chosen ran-

domly may reduce the user’s ability to discover new relevant users.To overcome this

limitation, we propose a semantic two-layered gossiping (Section 3.6).

 66

Algorithm 3.2- Gossiping(local-viewu)

// Active behavior
Input: local-viewu

Output: updated local-viewu

1 Forever do
2 wait(Cgossip)

3 For each relevant user v local-viewu do

4 user u computes distant(u,v)
5 If |Hv| ≥ z then
6 rank(v) = distant(u,v)
7 Else
8 rank(v) = hit-ratiov * distant(u,v)
9 End If
10 user u adds <rank(v) ,v> to RankList
11 End For
12 user v = selectTop(RankList)
13 viewSubset = SelectTopEntries(RankList,Lgoosip)
14 User u send <viewSubset > to user v
15 User u receive viewSubset * from user v

16 For each relevant user v viewSubset * do

17 user u computes distant(u,v)
18 If |Hv| ≥ z then
19 rank(v) = distant(u,v)
20 Else
21 rank(v) = hit-ratiov * distant(u,v)
22 End If
23 user u adds <rank(v) ,v> to RankList
24 End For
25 Local-viewu =SelectTopEntries(RankList, view-size)

//Passive behavior
Input: viewSubset of a user v; local-viewu

Output: updated local-viewu
1 Forever do
2 waitGossipMessage()
3 receive <viewSubset > from user v

4 For each relevant user vu’s local-view do

5 user u computes distant(u,v)
6 If |Hv| ≥ z then
7 rank(v) = distant(u,v)
8 Else
9 rank(v) = hit-ratiov * distant(u,v)
10 End If
11 End For
12 viewSubset* = SelectTopEntries(RankList,Lgoosip)
13 send viewSubset * to user v

14 For each relevant user v viewSubset do

15 user u computes distant(u,v)
16 If |Hv| ≥ z then
17 rank(v) = distant(u,v)
18 Else
19 rank(v) = hit-ratiov * distant(u,v)
20 End If
21 user u adds <rank(v) ,v> to RankList
22 End For
23 Local-viewu = SelectTopEntries(RankList, view-size)

 67

3.6 Semantic Two-Layered Gossiping

In this section, we propose a semantic two-layered gossiping (called 2LG) to

combine the benefits of Rand (e.g., connected overlay, ability to find new users, etc.)

and semantic exchange of Semt. Rand preserves gossiping properties and gives users

the ability to discover new relevant users. These new relevant users are then taken

into account in Semt to find new similar relevant users.

2LG uses the following approach. Each user u maintains a view for each algo-

rithm: 1) a view for Rand, called random-view (first layer), with limited size Rsize , 2)

a view for Semt, called semantic-view (second layer), with limited size Ssize s.t.

Rsize>Ssize. Notice that user u uses both Rand and Semt views to support its queries.

With 2LG, each user u acquires its initial random-view during the join process (as

described in Section 3.4.3). Then, it initializes its semantic-view by computing the

ranks of the relevant users in its initial random-view and selects Ssize entries which

have the highest ranks. Then, u periodically (with a gossip period Crandom and Csemantic)

performs Rand and Semt asynchronously. Notice that Csemantic >> Trandom because user

semantics (topic of interests) are not changed rapidly. But we assume that Crandom is

small enough to capture the dynamicity of the network, as peer joins and leaves keep

happening continuously.

In 2LG, we adopt Semt (see Algorithm 3.2) with a modification to its active be-

havior only, to take advantage of the random-view. Algorithm 3.3 shows the modifi-

cations on the active behavior of Semt for 2LG. In principle, the lines 1-24 of Algo-

rithm 3.2 do not change except that user u uses its semantic-view and not the local-

view for creating the RankList. Thus, these lines are not repeated in Algorithm 3.3.

However, line 25 of Algorithm 3.2 is replaced by the steps taken in Algorithm 3.3.

After line 16 of Algorithm 3.2, the RankList includes the rank of the relevant users at

u’s current semantic-view and the ranks of the relevant users in the viewSubset that u

has received during the exchange. From there, and different to Semt, 2LG also takes

into account the relevant users in its random-view as follows: u ranks the relevant

users in its random-view, and adds them to the RankList (lines 1-9 in Algorithm 3.3).

Then, u selects the Ssize entries from RankList that have the highest rank to be its new

semantic-view (line 10 of Algorithm 3.3).

In the example of Figure 3.6, we show the framework of 2LG at user u. User u

performs Rand and Semt asynchronously. It performs Rand as described in Section

3.4.3: it selects randomly a user v1 from its random-view to gossip. Then it selects

randomly a viewSubsetu from its random-view and sends it to v1. Afterwards, user u

receives a viewSubsetv1 from v1. Once u has received viewSubsetv1, it updates its local-

view, by merging viewSubsetv1 with its current random-view in a buffer, selecting Rsize

entries randomly, and updates its random-view.

User u performs Semt as described in Algorithm 3.2 with the modification of Al-

gorithm 3.3. It computes the rank of each relevant user v in its semantic-view and adds

them to RankList. Then it selects the relevant user v2 that has the highest rank to gos-

sip with. Then it selects a viewSubsetu from the RankList that have the highest rank

and sends it to v2. Afterward, u receives a viewSubsetv2 from v2. Once user u has re-

ceived, viewSubsetv2, it updates its semantic-view as follows: 1) It computes the rank

of each relevant user v in the viewSubsetv2 and adds it to the RankList. 2) It computes

 68

the rank of each relevant user v in its random-view and adds to the RankList. 3) It se-

lects Ssize entries from the RankList that have the highest rank.

Algorithm 3.3. Modifications on the active behavior of Semt for 2LG

Input: semantic-viewu; random-viewu
Output: updated semantic-viewu
Lines 1-24 of the active behavior of Algorithm 3.2

1 For each relevant user vrandom-viewu do
2 user u computes distant(u,v)
3 If |Hv| ≥ z then
4 rank(v) = distant(u,v)
5 Else
6 rank(v) = hit-ratiov * distant(u,v)
7 End If
8 user u adds <rank(v),v> to RankList
9 End For
10 semantic-viewu = SelctTopEntries(RankList,Ssize)

Figure 3.6. The 2LG framework at user u

 69

3.7 Query Routing and Recommendation

Ranking

In this section, we first describe the query processing algorithm that we use to

generate recommendations. Then, we describe the ranking model we use to order the

returned recommendations. Finally, we show how users can manage query failures.

3.7.1 Query Processing

We assume keyword queries of the form q = {word1,word2, ….,wordl}, where l is

the number of keywords in the query and wordi is the i
th

 keyword in q. Query q can be

of type push or pull [75]. In the push type, the system automatically extracts the key-

words of the query q from the documents that are belonging to the user’s topics of

interest, such as the most representative words in topics of interest. In the pull type,

user u issues a query q with keywords. For both types, the system extracts q’s topic

vector, denoted by = [
 ….

], using LDA as we did for a document. Then

query topic(s) Tq  T are extracted as described in Section 3.4.2.

Based on this assumption, each query q issued by a user u has the form q(wordi,

TTL, Vq, Tq, u). Algorithm 3.4 illustrates the behavior of query processing of each

user u. In active behavior, u issues a query q and proceeds as follows. First, it selects

from its local-view the relevant users that are similar to q in terms of topics. Then, it

redirects q to those relevant users after reducing the query TTL by one (lines 1 to 6).

In other words, user u selects each relevant user vu’s local-view that are similar to q,

i.e., distant(q,v) ≠0, and then redirects q to them. If 2LG is used, u’s local-view is the

union of its random-view and its semantic-view.

If user u does not find any relevant user v in its local-view that is similar to q, the

query q is considered failed, and u uses the query-history of the users in its local-view

to support q (lines 7 to 14) (presented in Section 3.7.3). Once user u receives the rec-

ommendation information from the responders, it ranks those recommendations based

on their popularity and semantic similarity (lines 15 to17) (presented in Section

3.7.2).

In the passive behavior, when user u receives a query q, it processes q as follows.

First, u selects from its local-view the relevant users that are similar to q, and redirects

the query to them if the query’s TTL is not yet zero (lines 9 to 16). Second, user u

measures the similarity between query q and each document user u has locally (lines 3

and 4). The similarity between a document doc and q, denoted by sim(doc,q), is

measured by using the cosine similarity [130] between the document topic vector

 =[
 ….

] and the query topic vector = [
 ….

] which is:

 ()
∑

√∑

 ∑

 (3.10)

 70

Finally, u returns to the query initiator the recommendations for the documents

whose similarity exceeds a given (system-defined) threshold (lines 5 and 6).

With such query routing, we avoid sending q to all neighbors, thus minimizing

the number of messages and network traffic for q.

 71

Algorithm 3.4- Query Processing

//Active behavior: Route-Query(q, local-viewu)

Input: query q (wordi, TTL, Vq, Tq,u); local-viewu
Output: submit q to potential relevant users

1 For each relevant user vlocal-viewu do
2 If distant(q,v) ≠0 then
3 u send q to v
4 q.TTL = q.TTL-1
5 End if
6 End For
7 If query-fail then

8 For each user v local-viewu do
9 user u retrieve user v query-history Hv

10 If distan(q,qi) ≠ 0 and sqi=1 s.t. qjHv then
11 User u Send q to user v
12 End If
13 End For
14 End If
15 If user u Receives rec1,…, recn then
16 User u Ranks (rec1,…, recn)
17 End If

//Passive behavior: Process-query(q, Du, local-viewu)

Input: query q (wordi, TTL, Vq, Tq,u); local-viewu
Output: answer set of information recommendations for query q; u send q to potential
relevant users
1 Forever do
2 Receive query q

3 For each docDu do
4 Sim(q,doc) = CosineSimilarity(Vq,Vdoc)
5 If Sim(q,doc) greater than threshold then
6 recommend doc to q’s initiator
7 End If
8 End For
9 If q.TTL not equal to zero then

10 For each relevant user vlocal-viewu do
11 If distant(q,v) ≠0 then
12 u send q to v
13 TTL = TTL-1
14 End if
15 End For
16 End If

 72

3.7.2 Ranking Recommendations

Assume the query initiator receives recq
v1

(doc1),…, recq
vi
(docj) from the respond-

ers, where recq
v
(doc) is the recommendation that has been given for a document doc

from a responder v. recq
v
(doc) includes the similarity between query q and document

doc. With this, the initiator ranks recq
v1

(doc1),…, recq
vi
(docj) to provide recommenda-

tionsq. The recommencations recq
v1

(doc1),…, recq
vi
(docj) are ranked based on their

popularity and semantic similarity (line 16 in the active behavior of Algorithm 3.4).

That is, the rank of a recq
v
(doc), denoted by rank(recq

v
(doc)), reflects its semantic

relevance with q and its popularity:

 (
 ()) () () (3.11)

where a and b are scale parameters such that a + b = 1 and pop(doc) is the popu-

larity of doc. The popularity is equal to the number of replicas this document has, i.e.,

the number of users that store a replica of doc. The user can specify whether it prefers

highly popular documents or documents that are highly semantically relevant by ad-

justing parameters a and b. Upon receiving recommendation documents, a user u can

download a copy of a document, give a rating to it and include it in its document set

Du.

In the example of Figure 3.7, suppose that user u initiates a query q for topic t1

with TTL=2. User u redirects the query q to relevant users v3 and v4 after reducing the

TTL by 1 (see Figure 3.7(a)).

Figure 3.8(b) shows that when v3 receives q, it computes the similarity between q

and its documents sim(doc,q) where docDv3. Then, v3 returns to u the recommenda-

tions recq
v3

(doc) for those documents whose similarity exceeds a given threshold.

User v3 stops redirecting q even though its TTL is not zero. This is because v3 does

not have a relevant user in its local-view that is similar to q, and has not yet received a

copy of q. Similarly user v4 computes sim(doc,q) for docDv4, and returns the recom-

mendations recq
v4

(doc) to u. It then redirects q to relevant user v1 after reducing TTL

by one (see Figure 3.7(b)).

When user v1 receives q, it computes sim(doc,q) for docDv1 and returns the rec-

ommendations recq
v1

(doci) to u. User v1 does not forward q because its TTL has

reached zero (see Figure 3.7(c)). Notice that in the case in which u does find any rele-

vant user in its local-view that can serve q, it exploits the query-histories of the users

in its local-view.

Figure 3.8(d) shows that once the user u receives recq
v
(doci) from the relevant us-

ers v3, v4 and v1, it ranks recq
vi
(docj) based on their popularity and semantic similarity

to provide recommendationsq.

 73

 74

Figure 3.7. The query processing and recommendation ranking

3.7.3 Dealing with Query Failures

We use query-histories to support failed queries in the hope to increase the hit-

ratio. Whenever, a user u submits a query q, it adds q’s topics Tq to its query-history

along with a state, which indicates if q was successfully submitted or not. q was suc-

cessfully submitted, if u has relevant user(s) in its local-view that are similar to q. The

idea is that such users can serve other queries that are similar to q.

Query q is considered as query-fail if user u does not find any relevant user in its

local-view that is similar to q, i.e., distant(q,v)= 0, for each relevant user v local-

viewu. To handle this situation, we exploit the query-histories of the users in u’s local-

view.

Recall that each user u maintains a query-history Hu. When u experiences a que-

ry-fail, u retrieves the query-history Hv of each user v in its local-view. Then, for each

Hv, it computes the similarity between q and each query qiHv (lines 8 and 9 in the

active behavior of Algorithm 3.4). If there is a query qi such that distant(q,qi)≠0 and

sqi=1, u sends q to v (lines 10 and 11 in the active behavior of Algorithm 3). Notice

that we do not use query-histories in passive behavior.

3.8 Experimental Evaluation

In this section, we provide an experimental evaluation of P2Prec to assess the

quality of recommendations, search efficiency (cost, and hit-ratio), bandwidth con-

sumption, and clustering coefficient. We have conducted a set of experiments using

TREC09 [127]. We first describe the experimentation setup. Then, we examine the

effect of gossip parameters on the quality of recommendations, and performance of

the system for Rand and Semt. Finally, we evaluate each gossip protocol and its effect

on the respective metrics, and the effect of TTL and query-histories on query pro-

cessing.

 75

3.8.1 Experimentation Setup

We use the classical metric of recall in IR and RSs to assess the quality of the re-

turned results [135]. Recall represents the system ability to return all relevant docu-

ments to a query from the dataset. Thus, in order to measure recall, the relevant doc-

ument set for each query that has been issued in the system should be known in ad-

vance, i.e., we need to have relevance judgments for each query that has been issued

in the system. Data published by TREC have many relevance judgments. We use the

Ohsumed documents corpus [60] that has been widely used in IR. It is a set of 348566

references from MEDLINE, the on-line medical information database, consisting of

titles or abstracts from 270 medical journals over a five year period (1987-1991). It

was used for the TREC09 Filtering Track [127]. It includes a set Q of 4904 queries.

The relevant documents for each query q denoted by Rq were determined by TREC09

query assessors. In the experiment, user u issues a query qQ and uses P2Prec to pos-

sibly retrieve the documents that have been in Rq. The set of documents returned by

P2Prec for a user u of a query q is denoted by Pq. Once a user u has received Pq from

P2Prec, it can count the number of common documents in both sets Pq and Rq to com-

pute recall. Thus, recall is defined as the percentage of q’s relevant documents

docRq occurring in Pq with respect to the overall number of q’s relevant documents |

Rq |:

| ⋂ |

 (3.12)

We use the following metrics to evaluate P2Prec.

 Communication cost: the number of messages in the P2P system for a query.

 Hit-ratio: the percentage of the number of queries that have been successful-

ly answered.

 Background traffic: the average traffic in bps experienced by a user due to

gossip exchanges.

 Clustering coefficient: the density of connections between peer neighbors.

Given a user u, the clustering coefficient of u is the fraction of edges between

neighbors (users at u’s local-view) of u that actually exist compared to the to-

tal number of possible edges which is:

∑

()()
  (3.13)

In order to compute the clustering coefficient of the network, we sum the cluster-

ing coefficient of each user u, and divide it over the number of users in the network.

We extracted the titles and the abstracts of TREC09 documents and removed

from them all the stop words (e.g., the, and, she, he, …) and punctuations. Then, we

fed them to the GibbsLDA++ software [119], a C++ implementation of LDA using

Gibbs sampling, to estimate the document topic vectors Vdoc. With |T|=100 as the

number of topics, we ran GibbsLDA++ 2000 times to estimate the document topic

vectors Vdoc. To estimate the query topic vectors Vq, we removed the stop words and

punctuations from queries keywords, fed the query keywords left to the

 76

GibbsLDA++, and computed the topics Tq of each query qQ. We consider that each

query qQ has one topic tT for ease of explanation. We consider as topic tq of query

the maximum component of its Vq, i.e., the maximum wq
t
.

We use a network consisting of 7115 users. Once a user u joins the network, it in-

itializes its local-view by selecting randomly a set of users, and adding them into its

local-view (as described in Section 4.3). Suppose that the document popularity fol-

lows the zipf distribution [24]. Thus, we assume that the number of replicas of a doc-

ument is proportional to the number of times a document is relevant for a query in Q.

After distributing randomly the TREC09 documents over the users in the network,

these users have 693308 documents, with an average of 97.433 documents per user.

We generate a random rating between 0 and 5 for each document a user has, and

compute the users’ topics of interest from the documents they have rated. We consider

that each user u is interested at least in one topic, and relevant at least for one topic.

Also u is interested at maximum in 10 topics, and relevant at maximum for 5 topics.

P2Prec is built on top of a P2P content sharing system which we generated as an

underlying network of 7115 peers (corresponding to users). We use PeerSim [117] for

simulation. Each experiment is run for 24 hours, which are mapped to simulation time

units.

In order to evaluate the quality of recommendations, we let each user u issue a

query after receiving the results from all the users that have received the previous que-

ry, or after the query has reached a system-specified timeout. The query topic is se-

lected, using zipf distribution, among u’s topics of interest Tu. Then, we obtain the

recommendations for each query and compute recall, communication cost, and re-

sponse time. In order to obtain global metrics, we average the respective metric values

for all evaluated queries.

Table 3.1. Simulation parameters

Parameter Values

Topics (T) 100

TTL 1, 2, 3

Local-view size (view-size) 50,70,100

Gossip length (Lgossip) 5, 10, 20

Gossip period (Cgossip) 1,30,60 min

Random-view size (Rsize) 40

Semantic-view size (Ssize) 30

Gossip period for random at 2LG (Crandom) 10 min

Gossip period for semantic at 2LG (Csemantic) 30 min

Table 3.1 summarizes the main simulation parameters that we have used in the

experiments. TTL refers to the time-to-live value of a query. Cgossip and view-size re-

fers to the gossip period and local-view size, respectively, when Semt or Rand is used.

 77

While Rsize, and Ssize refers to the Random-view and Semantic-view size, respectively,

when 2LG is used as described in Section 3.6. Similarly, Crandom and Csemantic refer to

the gossip period used for Rand and Semt, respectively, when 2LG is used. Lgossip re-

fers to the maximum size of the gossip message transferred during the gossip ex-

changed.

We performed our experiments under churn, i.e., the network size continuously

changes during the run due to users joining or leaving the system. The experiments

start with a stable overlay with 355 users. Then, as experiments are run, new users are

joining and some of the existing users are leaving.

3.8.2 Trade off: Impact of Gossip

In this experiment we investigate the effect of gossip parameters for Rand, Semt

on the quality of recommendations over the respective metrics. The experiments are

done by varying the gossip parameters: gossip message size Lgossip, gossip period Cgos-

sip, and view-size. In each experiment, we vary one of the parameters (Lgossip, Cgossip,

view-size) and fix the two other parameters. Then, we collect the results for each pa-

rameter after each simulation hour. Notice that each experiment is run for 24 hours,

which are mapped to simulation time units. We show the results obtained from using

Semt, we do not show the results obtained from Rand which illustrate almost similar

performance (i.e., almost same gains and same trade-off).

Table 3.2 summarizes the results obtained from the experiments after 24 simula-

tion hours for Semt. The values in Table 3.2 are the average values of the respective

metrics that are collected during the simulation time (i.e., we collect the value of each

respective metric after each simulation hour, and then we take the average of each

respective metric for the 24 simulation hours).

Table 3.2(a) shows the results obtained due to the variation of Cgossip. Decreasing

Cgossip increases the speed of reaching stabilized recall. It takes 1 hour to reach a recall

of 48.71% when Cgossip is 1 minute and 15 hours to reach the same recall when we

increase Cgossip to 1 hour. Decreasing Cgossip increases the frequent of gossip exchanges

between users, and thus users find their similar relevant users rapidly, which in turn

increases the speed of reaching higher recall, communication cost, hit-ratio and clus-

tering coefficient.

But decreasing Cgossip increases the bandwidth consumed by the users, because

gossip exchanges are less spaced and thus more frequent. The bandwidth consumed

by a user is multiplied by 60 when decreasing Cgossip from 1 hour to 1 minute.

Table 3.2(b) shows the results obtained due to the variation of Lgossip. Increasing

Lgossip increases the bandwidth consumed by a user due to gossiping. When Lgossip in-

creases from 10 to 50, the bandwidth of a user is increased by a factor of 5. When

Lgossip increases, more entries are carried out in the gossip message, thus, increasing

message size and bandwidth.

But increasing Lgossip increases the speed of reaching higher recall, communication

cost, hit-ratio and clustering coefficient, because exchanging more entries in the gos-

sip message increases the possibility that each user u finds new similar relevant users,

and then maintains them in its local-view.

 78

Table 3.2(c) shows the results obtained due to the variation of view-size. Increasing

view-size increases the number of users at each user local-view. This lets each user u

maintains more number of relevant users in its local-view that are similar to u, which

in turn increases recall, communication cost and hit-ratio.

But increasing view-size does not have significant impact on the clustering coeffi-

cient. Clustering coefficient depends on the overlap between users’ local-views and

view-size (see Equation 3.13). The overlap between users’ local-views is the numera-

tor, and the view-size is the denominator of Equation 3.13. Increasing view-size lets

users maintain more number of similar relevant users in their local-views, which in

turn may increase the overlap between users’ local-views (i.e. increasing the numera-

tor of Equation 3.13), and thus increases the cluster coefficient. However, increasing

view-size increases the denominator of Equation 3.13, and thus decreases the cluster-

ing coefficient. Accordingly clustering coefficient value stays almost similar when we

varied the view-size.

In Rand, we observe that the variation of Cgossip and Lgossip does not have signifi-

cant impact over the recall, communication cost, hit-ratio and clustering coefficient

metrics. That is, due to the random process used in updating local-views, and selecting

the entries of gossip messages (cf. Section 3.4.3).

For the rest of the simulation, we use 30 minutes for Cgossip (simulation time

units), 20 for Lgossip, and 70 for view-size when Rand or Semt is used, because this

setting provides good quality of recommendations with acceptable network traffic.

Table 3.2. Impact of gossip parameters

Metric Cgossip=1min Cgossip=30 min Cgossip=1 hour

Recall 50.04 48.71 41.23

Communication cost 21.23 17.56 11.43

Hit-ratio 0.832 0.776 0.697

Background traffic (bps) 122.23 3.976 2.132

Clustering coefficient 0.362 0.358 0.284

(a) Varying Cgossip with (Lgossip = 20; view-size = 70)

Metric Lgossip=10 Lgossip=20 Lgossip=50

Avg. Recall 45.63 48.71 49.8

Communication cost 14.47 17.56 19.23

Hit-ratio 0.761 0.776 0.795

Background traffic (bps) 2.14 3.976 11.08

Clustering coefficient 0.338 0.358 0.361

(b) Varying Lgossip with (Cgossip = 30 min; view-size = 70)

 79

Metric view-size = 30 view-size =70 view-size =100

Recall 37.22 48.71 55.67

Communication cost 9.87 17.56 31.78

Hit-ratio 0.763 0.776 0.792

Background traffic (bps) 3.83 3.976 4.07

Clustering coefficient 0.351 0.358 0.347

(c) Varying view-size with (Lgossip = 20; Cgossip = 30 min)

3.8.3 Trade off: Impact of Semt, Rand, and 2LG

In this experiment, we investigate the effect of Rand, Semt and 2LG on the quali-

ty of recommendations over the respective metrics. In each experiment, we run one

gossip protocol (Rand, Semt or 2LG). Then, we collect the results for each algorithm

after 24 simulation hours. We set TTL to 1 to measure the quality and effectiveness of

users’ local-views.

Table 3.2 summarizes the results obtained from the experiments after 24 simula-

tion hours for Semt. The values in Table 3.2 are the average values of the respective

metrics that are collected during the simulation time (i.e., we collect the value of each

respective metric after each simulation hour, and then we take the average of each

respective metric for the 24 simulation hours).

Table 3.3 shows the results obtained from the experiments after 24 simulation

hours. The values in Table 3.3 are the average values of the respective metric as de-

scribed in Section 3.8.2. We showed that the background traffic is affected by gossip

period (Cgossip) and gossip length (Lgossip) (see section 3.8.2). We observe that increas-

ing either Cgossip or Lgossip increases background traffic while decreasing either Cgossip

or Lgossip decreases it. Thus, Rand and Semt are used with the same gossip parameters

(Cgossip = 30 minutes, and Lgossip = 20), so they consume almost the same bandwidth (4

bps). 2LG consumes more bandwidth because four exchange messages are applied

each 30 minutes (three exchanges for Rand and one exchange for Semt). Thus, the

background traffic in 2LG is four times that of Rand and Semt (13.979 bps).

Rand produces an overlay with a low clustering coefficient. There is a low over-

lap between a user u’s local-view and the local-views of its neighbors (the users at u’s

local-view). Semt produces a high clustering coefficient. There is a high overlap be-

tween users’ local-views. This is due to the fact that, if a user u1 is similar to user u2,

and user u2 is similar to u3, then most probably u1 and u3 are similar, and thus produce

a clique. In 2LG, the clustering coefficient is moderate between it uses both Rand and

Semt,the first favoring randomness while the other favors cliques. Therefore, the clus-

tering coefficient is higher than in Rand but lower than in Semt.

 80

Table 3.3. Impact of Rand, Semt, and 2LG

Metric Rand Semt 2LG

Recall 30.7 48.71 42.23

Communication cost 5.04 17.56 10.89

Max. Hit-ratio 0.515 0.776 0.795

Background traffic (bps) 3.484 3.976 13.979

Clustering coefficient 0.073 0.358 0.133

In Figure 3.8, we show the variation of recall, communication cost, and hit-ratio

versus time for the three algorithms. Figure 3.8(a) shows that the recall keeps increas-

ing at the beginning, and almost stabilizes after 10 hours. At the beginning, the net-

work size is small and many relevant users are not alive. Thus, many irrelevant docu-

ments are returned, which reduces recall. Semt increases recall by a factor of 1.6 in

comparison with Rand and by a factor of 1.12 in comparison with 2LG. This is be-

cause in Semt, a user u has in its local-view a high number of relevant users that are

similar to u’s queries. Thus, when u submits a query q, q reaches more relevant users,

and thus more relevant documents are returned.

Figure 3.8(b) shows the communication cost of queries for the three algorithms.

We set TTL to 1 so that communication cost represents the number of relevant users

that serve the query. We observe that Semt has the highest communication cost, be-

cause each user u includes in its local-view a high number of relevant users that are

similar to u’s demands, and thus, each query is sent to many neighbors. In Rand, the

communication cost is low because each u has few relevant users to which queries

could be sent to. In 2LG, the communication cost is a little less than Semt, because

the semantic-view size (Ssize = 30) is less than that in Semt (view-size = 70).

Figure 3.8(c) shows the hit-ratio for the three algorithms. The maximum hit-ratio

that has been obtained by Rand is low (0.515). Under Rand, each user u has few rele-

vant users that are similar to u’s queries. Thus, when u submits a query q, there is a

high probability that u does not find a relevant user in its local-view that can serve q.

In Semt and 2LG, the hit-ratio is high because u’s local-view includes many relevant

users that are similar to u’s demands. Thus, when u submits a query q, u finds many

relevant users in its local-view that can serve its query q.

In Figure 3.8, the significant jump in the beginning of the results is because we

start from time zero, no queries are issued and thus no result is gathered. We start the

experiments with a small network size, so the number of involved users is small.

Therefore, the average value of the metrics starts large, because we divide the gath-

ered value of metrics over a small number of users. As the experiments proceed and

more users join the networks, the number of users involved increases and the average

value of the metrics stabilizes.

 81

Figure 3.8. The variation of recall, communication cost, and hit-ratio versus

time

3.8.4 Effect of TTL

We investigate the effect of varying TTL on the quality of recommendations over

recall and communication cost metrics. In each experiment, we run one gossip proto-

col and vary TTL from 1 to 3. Then, we collect the results for each algorithm under

each TTL after 24 simulation hours.

Notice that clustering coefficient depends on the overlap between users’ local-

views, and hit-ratio depends on the local-view of the query’s initiator. Accordingly,

redirecting query to neighbors of neighbors (i.e., the query’s TTL variation) does not

have impact on the clustering coefficient and hit-ratio metrics.

The TTL variation has significant impact on recall and communication cost espe-

cially when Rand is used. When increasing TTL, more relevant users are visited, thus

increasing the communication cost and the number of returned documents, which in

turn increases recall.

In Figure 3.9 we show the variation of recall and communication cost versus time

for the three TTLs when Rand is used. Figure 3.9(a) shows that in Rand the commu-

nication cost is multiplied by 26.5 when TTL increases from 1 to 3 (141 relevant users

are visited), while maximum recall is increased from 31% to 73.04% (See Figure

3.9(b)).

 82

Figure 3.9. The effect of TTL in Rand over recall and communication cost

Figure 3.10 shows the variation of recall and communication cost versus time for

the three TTLs when Semt is used. In Semt, maximum recall is increased from 50.1%

to 68.5%, when TTL increases from 1 to 3 (see Figure 3.10(a)), while communication

cost is multiplied by 4.62 (100 relevant users are visited) (see Figure 3.10(b)). Vary-

ing TTL does not have significant impact on Semt, due to the fact that the users’ lo-

cal-views have high overlap. Thus, when a user u submits a query q to a user v, v does

not have many relevant users in its local-view that have not received q before, because

the overlap between u’s local-view and v’s local-view is high.

Figure 3.10. The effect of TTL in Semt over recall and communication cost

Figure 3.11 shows the variation of recall and communication cost versus time for

the three TTLs when 2LG is used. The TTL variation has moderate impact on 2LG.

Hence, maximum recall is increased from 43.1% to 82.4% when TTL increases from

1 to 3 (see Figure 3.11(a)), while communication cost is multiplied by 19 (234 rele-

vant users are visited) (see Figure 3.11(b)). Remember that in 2LG, each user u uses

its random and semantic view. Thus, when a user u submits its query q to a user v, v

may find many relevant users in its semantic and random views that have not received

q yet.

 83

Figure 3.11. The effect of TTL in 2LG over recall and communication cost

3.8.5 Effect of Using Query-histories

In this experiment, we study the effect of using query-histories to support failed

queries. Figure 3.12 shows the effect of using query-histories in the 2LG algorithm

with TTL=1 on recall, communication cost and hit-ratio. In the fact, the use of query-

histories increases the hit-ratio to 96.9%. That is, each time a user u submits a query

q, there is a high probability to find a relevant user to serve its query either from its

view or from its neighbors’ query-histories. Recall that each user u maintains in its

semantic-view the relevant users that are most similar to itself. The queries that have

been requested by user u are most probably similar to queries that are requested by the

users in its semantic-view. Thus, when u uses the query-histories of the users in its

views, it most probably finds a user v that can serve its query.

Using query-histories increases recall slightly, because more users are visited and

thus, more documents are returned. But it also increases communication cost, because

more relevant users are visited.

Figure 3.12. The effect of query-histories on recall, communication cost and

hit-ratio

 84

3.9 Conclusion

In this chapter, we proposed P2Prec, a recommendation system for large-scale

data sharing that leverages collaborative- and content-based filtering recommendation

approaches. P2Prec is useful to recommend to a user documents that are highly relat-

ed to a specific topic from relevant users in that topic. Each user in the system is au-

tomatically assigned topics of interest, based on a combination of topic extraction

from its documents (the documents it shares) and ratings. To extract and classify the

hidden topics available in the documents, we use the LDA technique. P2Prec is built

on top of an unstructured overlay for the sake of scalability and decentralization, and

uses gossip protocols to disseminate relevant users and their topics. P2Prec uses two

new semantic-based gossip protocols (Semt and 2LG) to let each user aggregate simi-

lar relevant users and insure randomness in its view.

In our experimental evaluation, using the TREC09 dataset, we showed that using

Semt increases recall and hit-ratio. This is because each user maintains in its local-

view a high number of relevant users that can serve its demands. Using Rand decreas-

es the overlap between users’ local-views and thus, increases randomness. Using 2LG

exploits the advantages of Rand and Semt. It increases recall and hit-ratio by a factor

of 1.4 and 1.6, respectively, compared with Rand, and reduces the overlap between

users’ local-views by a factor of 2.è compared with Semt.

Using gossip style communication to exchange the topics of interest (especially

in Semt) increases the system’s ability to yield acceptable recall with low overhead in

terms of bandwidth consumption. Furthermore, it increases the hit-ratio because gos-

siping brings allows similar relevant users to be included into a user’s local-view, thus

reducing the possibility that the user does not find relevant users satisfying its queries.

The natural next step (see next Chapter) is to focus on designing a decentralized

RS based on explicit personalization (friendship network) and users’ topics of inter-

ests over a distributed graph, in order to increases the quality and confidence of re-

sults, and alleviate the system from cold start problem.

 85

 86

Chapter 4 F2Frec: Leveraging Social- and

Content-based Recommendation in P2P

Systems

Abstract. In this chapter, we exploit the social relationships between users as a pa-

rameter for recommendation, in order to increase the trust and confidence of recom-

mendation. For this, we propose F2Frec that leverages content- and social-based

filtering recommendation approaches, in order to construct and maintain a P2P and

friend-to-friend network, and to facilitate recommendations. Furthermore, we pro-

pose new metrics based on users’ relevant topics of interest, such as usefulness, and

similarity (among users and their respective friend network), necessary to enable

friendship establishment and to select recommendations. In our experimental evalua-

tion, using the Wiki vote social network and TREC09 dataset, we show that F2Frec

has the ability to get reasonable recall and precision with acceptable network traffic.

Moreover, we show that ranking recommendations put the relevant documents in the

top positions of the rank list.

4.1 Introduction

Quality and confidence of recommendations is one of the main requirements that

should be taken into account when designing a P2P-RS. In Chapter 3, we described

P2Prec a fully decentralized P2P-RS that leverages collaborative- and content-based

filtering recommendation approaches, in order to alleviate the scalability problem

faced by the state-of-the-art solutions (see Section 2.6). In P2Prec, users’ local-views

are used as a directory to serve their queries, and to generate recommendations. Yet,

the users that are maintained at a user u’s local-view are anonymous to u, because

they are selected either randomly (as in Rand), or by using the semantic similarity

between users’ topics of interest (as in Semt). In other words, there is no social rela-

tionship such as friendship, trusts, etc. between u and the users maintained in its local-

view, which may deteriorate the quality and confidence of the returned recommenda-

tions.

Then, P2Prec should be extended to provide high quality, trustable and confi-

dence recommendations taking into account the nice properties provided by P2Prec

such as self-organizing, reliability, scalability, and the high performance. For this, we

 87

proposed F2Frec, which leverages users’ topics of interest and social data, in order to

maintain P2P social network and generate recommendations.

Sinha et al. [142] have shown that users prefer the advices that come from known

friends in terms of quality and trust, because users typically trust their friends’ advic-

es. The emersion of Web2.0 and the growing popularity of online social networks

have encouraged exploiting users’ social data in P2P recommendation systems.

In existing P2P-RSs, friendship links are extracted from users’ behaviors [80][9]

or are established based on explicit trust declaration [100]. Siham et al. [9] proposed a

generic framework that can be used to extract relations between users based on their

tags, items, personal information, etc. in order to extract and extend user’s communi-

ties, friends etc. To enrich these solutions, we consider that users that store similar

contents may be potentially friends with a specific declared trust level with respect to

the relevance of a user in a specific topic.

As a basis for recommendation, we propose new social metrics such as similari-

ties (among users and their respective friend network) and usefulness of a user with

respect to a friend or query taking into account the declared trusts. These measures are

defined based on user topics of interest and relevant topics that are automatically ex-

tracted from the contents they store. Notice that a user is considered relevant in a spe-

cific topic t if it has a sufficient amount of content with high probability related to t as

described in Section 3.3.2. Then this user will be relevant to serve queries related to t.

Also a user v is considered useful to a user u, if v is relevant in topics that u is inter-

ested in.

We implement friendship networks using concepts from the Friend-Of-A-Friend

(FOAF) project [152]. FOAF provides an open, detailed description of profiles of

users and the relationships between them using a machine-readable syntax. We use

FOAF files to support users’ queries. To establish friendship and disseminate recom-

mendation, we rely on random gossip protocols as follows. At each gossip exchange,

each user u checks its gossip local-view to enquire whether there is any relevant user v

that is useful to u, and whether its friendship networks have high overlap with u’s

friendship network. If it is the case, a demand of friendship is launched among u and v

and the respective FOAF files are updated accordingly.

Different from P2Prec, where local-views are used to serve queries, in F2Frec, a

query is forwarded to friends (of friends) users. That is, whenever a user submits a

keyword query, its FOAF file is used as a directory to redirect the query to the top-k

most adequate friends taking into account similarities, relevance, usefulness and trust.

The major contributions of this chapter (also in [41] as a preliminary version) can

be summarized as follows.

 We introduce new social metrics to suggest friends and detect if a friend is relevant
and useful to provide recommendations.

 We propose an efficient query routing algorithm that takes into account the social
metrics to select, in a top-k approach, the most appropriate friends to provide rec-
ommendation.

 Once the best recommendations are provided, we propose to rank them by taking
into account the semantic similarities, content popularity, distance and trust be-
tween query’s initiator and responders.

 88

 We provide an experimental evaluation using real data sets that demonstrates the
efficiency of F2Frec over the TREC09 and Wiki vote social network [165].

The rest of this chapter is organized as follows. Section 4.2 provides a general

overview of F2Frec and the problem definition. Section 4.3 introduces F2Frec basic

concepts, and presents our social metrics and how we manage friendship establish-

ment. Section 4.4 describes our solution for retrieving recommendations over F2Rrec

given a keyword query. Section 4.5 explains how we manage the dynamicity of users’

topics of interest. Section 4.6 gives our experimental validation. Section 4.7 con-

cludes.

4.2 General Overview of F2Frec and

Problem Definition

F2Frec is a social version of P2Prec that facilitates the construction and mainte-

nance of P2P social network, and exploits social metrics to provide recommendations.

In this section, we first give a general overview of F2Frec system. Then we define the

problems that F2Frec addresses.

4.2.1 General Overview of F2Frec

 F2Frec recommendation model is expressed based on a graph G = (D,U,E,T),

where D is the set of shared documents, U is the set of users u1,…un corresponding to

autonomous peers p1,…pn, E is the set of edges between the users such that there is an

edge e(u,v) if users u and v are friends, and T is the domain of topics. Each user uU

is associated with a set of topics of interest Tu  T, and a set of relevant topics Tu
r Tu

extracted locally from the documents u has rated.

To manage topics of interests and relevant users, we reuse the concepts defined in

Section 3.3. In short, we use LDA to automatically extract the topics in the system

(the training at a global level), which in turn are used to extract users’ relevant topics

of interest (inference at the local level).

Each user uU maintains locally a FOAF file that contains a description of its

personal information, and friendship network, denoted by friends(u)={f1, f2,…fn}. Per-

sonal information includes the extracted topics of interest, where each topic of interest

tTu is associated with a Boolean value that indicates whether u is relevant in that

topic. Friends’ information includes friends’ names, links (URI) to their FOAF files,

relevant topics of interest, and trust levels. The trust level between user u and a friend

v, denoted by trust(u,v), is a real value within [0, 1] and represents the faith of user u

in its friend v. The trust level between user u and its friend v can be obtained explicitly

[100] or implicitly [87].

 89

Furthermore, each user uU establishes new friendships with users that are use-

ful to u’s demands or have friendship networks with high overlap with u’s friendship

network. A user v is considered useful to a user u, if v is a relevant user and a certain

amount of v’s relevant topics Tv
r
 are of interest for u. User u exploits its useful friends

(of friends) for recommendations. Notice that, if a friendship acquaintance exists be-

tween users u and v, u implicitly recommends its documents to v and vice-versa, in

related topics. More precisely, if there is a friendship path between users u and v,

path(u,v)={(u, vi), (vi,vj),...,(vk, v)}, then u can recommend its documents related to

their topics of interest to v and vice-versa.

Queries are expressed through keywords, and mapped to topic(s) Tq using LDA.

Moreover, queries are associated with a TTL (Time-To-Live), and routed recursively

on a distributed top-k algorithm: Once a query is received by any user, it is forwarded

to its top-k best friends by taking into account usefulness and trust. A response to a

query q is a recommendation provided in a ranked list and defined as:

recommendationq = rank(recqv1(doc1) … cqvi(docj)) (4.1)

Different recommendations may be given for the replicas of a document doc. The

recommendationq is ordered based on a ranking function, that ranks each recq
v
(doc)

according to its relevance with q, its popularity, and the distance and trust between the

q’s initiator and responder v. The trust value between a query’s initiator u and a re-

sponder v, denoted by trustq(u,v), is computed during query processing by multiplying

the trust values among directs friends along the query path between u and v. More

details on query processing, trust computation and recommendations ranking are giv-

en in Section 4.4.

4.2.2 Problem Definition

Given the above recommendation model and keyword query q submitted by u,

the problems we tackle are:

 The definition of new metrics to enable friendship establishment taking into

account users topics of interest and relevant topics.

 The design of a P2P algorithm useful for friendship establishment by taking

into account the defined metrics.

 The definition of a criteria to choose the appropriate direct or indirect friends

to provide recommendations based on friends(u)={f1, f2,…fn} in a top-k ap-

proach.

 Proposal of a tunable, parameterized ranking metric to choose the best rec-

ommendations provided by the appropriate friends

 90

4.3 Friend to Friend Recommendation

The goal is to let each user explicitly establish friendship with useful users, so

that it can exploit them for recommendation. First, we introduce the basic concepts

(FOAF files and random gossip) used in F2Frec. Next, we present the similarity met-

rics we propose. Finally, we present the data structures and algorithms for friendship

establishment.

4.3.1 FOAF File under F2Frec

 FOAF provides a simple, machine-readable vocabulary serialized in RDF/XML

to describe people, content objects and the connections that bind them all together. A

FOAF file is typically created by the individual user and published on a server that the

user trusts. Over the last few years, FOAF has become increasingly popular and used

in many different projects [95].

With a FOAF file, a user can describe herself using the foaf:Person class, listing

attributes such as name, address and expertise and use foaf:knows to describe its

friends, etc. Whenever a user generates its FOAF file, it stores it in a host server that it

trusts and obtains an identity for the file on the Web in the form of a URI from that

host server. Overall, the FOAF vocabulary is simple and can be integrated with any

other semantic Web vocabularies.

We have adapted the FOAF files to F2Frec and extended the FOAF syntax to al-

so describe users’ relevant topics of interest, and the trust between friends. Figure 4.1

shows the FOAF file adapted to F2Frec. The FOAF file owner Jean includes Jean’s

personal information and information about her friends. In the personal information,

the FOAF file shows her name and information about her relevant topics of interest. It

shows that she is interested in topics t1T and t2T, and relevant in topic t2. Given

that t1 and t2 have been extracted from the documents she maintains by using the

global and local inference of LDA. In Friends information, Jean’s FOAF file shows

that she knows a friend whose name is Peter, the URI of its FOAF file is

http://www.lirmm.fr/Peter.rdf. Peter is interested in t1, t2 and t3, but he is relevant in

topic t1. In addition, Jean has trusted Peter by a value of 0.8.

 91

Figure 4.1. An example of a FOAF file in F2Frec

4.3.2 Random Gossip under F2Frec

The information about relevant users is disseminated using Rand in order to

guide users in establishing new useful friends, and updating their FOAF files accord-

ingly. Recall that each user u maintains a local-view, which contains a fix number of

entries, where each entry refers to a user v, and contains v’s gossip information such

as: 1) v’s IP address. 2) v’s topics of interest Tv, each topic tTv being associated with

a Boolean field that indicates whether v is relevant in that topic. F2Frec extends local-

view’s entry to include additional gossip information that is necessary for computing

the metrics such as: 3) v’s friends built using a Bloom filter [20]. 4) v’s friendship

network size i.e., |friend(v)| helpful to the metric. 5) The timestamp of the entry: a

numerical field represents the version of the entry, where greater timestamp means

fresher entry.

In F2Frec, we adopt Rand (described in Section 3.4.3) with a modification to its

update process only, to take advantage of the entries’ timestamp. That is, when a user

u receives a gossip message, it updates its local-view based on the gossip message

received taken into account the entries’ timestamp. The update process proceeds as

follows. 1) The content of the gossip message is merged with the content of the cur-

rent local-view of user u and set in a buffer, and discards the duplicates: if 2 entries

related to the same user, only the instance with the largest timestamp value is kept. 2)

Using the buffer, u selects view-size entries randomly and updates its local-view.

4.3.3 Metrics

We compute the similarity distance between u and v based on their friendship net-

works and relevant topics of interest. We measure the similarity distance between u

 92

and v based on their friendship networks, denoted by distancefri(u,v), by counting the

overlap of their friends. We use the dice coefficient, which is:

 ()
 () ()

 () ()
 (4.2)

We could also use other similarity functions such as cosine, jaccard, etc. We use

distancefri(u,v) as a measure for the implicit trust between u and v.

We measure the common interest of topics between user u and v, denoted by dis-

tanceintr(u,v), by counting the overlap of their topic of interests. We use the dice coef-

ficient, which is:

 ()

 (4.3)

We use the distanceintr(u,v) metric to rank recommendations, more details are giv-

en in see Section 4.4.3. Notice that user u and v may be similar in terms of topics of

interest. However, v may not be useful for u, because the topics of interest of u are not

related to v’s relevant topics. Therefore, we measure how much v is useful to u, de-

noted by useful(u,v), by counting the overlap between u’s topics of interest Tu and v’s

relevant topics Tv
r
. Similarly, we use the Dice coefficient to measure useful(u,v):

 ()

 (4.4)

We measure the final similarity distance between u and v, denoted by sim(u,v), by

combining distancefri(u,v) with useful(u,v) in a weighted approach as follows.

sim(u,v) = *useful(u,v) + (1-)*distancefri(u,v) (4.5)

The parameter  is used to adjust whether u prefers to establish friendship with us-

ers that are highly useful to its queries, or with users that their friendship networks are

highly overlapped with u’s friendship network. As  values become close to 1, the

usefulness of users play a more important role in the final similarity distance sim(u,v).

Also, we use the Dice coefficient to measure how much a relevant user v is useful

to a query q:

 ()

| |

 (4.6)

If useful(q,v)≠0, then the relevant user v can give recommendations for q.

4.3.4 Friendship Establishment

Algorithm 4.1 shows how each user u exploits its gossip local-view to establish

friendship. For each gossip cycle, u goes through each user vlocal-viewu, and evalu-

ates whether v may be suggested for friendship as follows. User u computes the simi-

 93

larity distance sim(u,v) as described in Section 4.3.3 (lines 3-5). User v is suggested to

u for friendship if similarity sim(u,v) exceeds system-defined threshold, denoted by τ,

(lines 6 and 7), which is:

s m(v) τ (4.7)

Notice that the suggestion may include the degree of similarity sim(u,v), the dis-

tancefri(u,v), the distanceintr(u,v), useful(u,v), and v’s relevant topics, etc.

 If u has accepted to establish friendship with v, user u sends a message to v, de-

noted by msgreq, asking v for a friendship (lines 8 and 9). Then, u adds v to a waitList

list (line 10), waiting for friendship confirmation.

Afterwards, user u receives a reply message, denoted by msgrep, from each user

vwaitList (line 15). If user v has accepted to establish friendship with u i.e., msgrep =

accept, u stores v’s information in its FOAF file. The information for the new friend v

includes v’s relevant topics of interest, a trust value trust(u,v) between u and v, and

link to v’s FOAF file (line 16-19). Notice that the trust(u,v) is assigned explicitly by u

[100].

 94

Algorithm 4.1- How a user u establishes friendship

Input: local-viewu
Output: updated FOAFu

1 Forever do

2 For user v local-viewu && v friend(u) do

3 u computes useful(u,v)
4 u computes distantfri(u,v)

5 sim(u,v) =*useful(u,v) (1-)*distantfri(u,v)
6 IF sim(u,v) ≥ τ then
7 suggests v to user u
8 IF user u accepts the suggestion then
9 u sends msgreq to user v
10 u adds v to waitList
11 End If
12 End If
13 End For

14 For each user v waitList do
15 u receives msgrep from user v
16 IF msgrep = accept then
17 u adds v to its FOAF file as a friend
18 u adds Tv and Tv

r to its FOAF file
19 u assigns trust(u,v) and adds to its FOAF
20 End If
21 End For

 95

Figure 4.2, shows an example of F2Frec gossip exchange and friend establish-

ment. In the example, the network is composed by 7 users that are interested in three

topics. The link between two pair of users represents that they are friends. Figure 4.2

also shows the content of users’ FOAF files and local-views before and after gossip

exchange.

Before gossip exchange (Figure 4.2(a)), u has three friends v1, v2, and v3. Each

friend is relevant (interested in a set of topics), and a declared trust. For instance, v1 is

a friend to u, v1 is relevant and interested in topic t2, and u has declared trust with v1

by a level of 0.8. Also, it shows that u maintains in its local-view two entries that refer

to users v1 and v2, and includes their gossip information. For instance, the entry that

refers to v2 indicates that v2 is interested in t1, has two friends u and v4, and the

timestamp of entry is 3.

Suppose u has selected v2 to gossip with, and then a message exchange has been

performed between u and v2 (see Figure 4.2(a)). Afterwards, u updates its local-view

based on the gossip message it has received from v2 (see Figure 4.2(b)). Therefore, u’s

local-view contains entries for users v4 and v6 as shown in Figure 4.2(b).

After that, u evaluates whether users v4 and v6 may be suggested for friendship.

First, u measures the similarity between itself and users v4 and v6 based on the Equa-

tion 4.5. Suppose the value of α in Equation 4.5 is equal to 0.5, then the sim(u,v4) is

equal to 0.65 and sim(u,v5) is equal to 0.5. Suppose that the value of τ in Equation 4.7

is equal to 0.5, then v4 is suggested to u, and friendship establishment is lunched be-

tween u and v4 as depicted in Figure 4.2(c). Afterwards, u becomes friend to v4. Thus

u stores v4 in its FOAF file along with its topics of interest t2 and t3, and u has de-

clared trust with v4 by a level of 0.75 (see Figure 4.2(d)).

 96

 97

Figure 4.2. Snapshot of F2Frec System

4.4 Query Processing based on FOAF

Files

In this section, we describe our query processing algorithm to generate recom-

mendations. Next we explain the criteria we use to compute the trust level between

the query’s initiator and a responder. Finally, we describe the ranking model we use to

order the returned recommendations.

4.4.1 Query Processing

A query is defined as q(wordi, TTL, Vq, Tq, trustq(u,v),k), where wordi is a list of

keywords, TTL is the time-to-live value, Vq is query q’s topic vector. Query q’s topic

vector, Vq= [wq
t1

,..,wq
tk
], is extracted using LDA. Then, query topic(s) Tq  T are

computed, where q is considered to belong to a topic tTq if its weight wq
t
 in that top-

ic exceeds a certain threshold (which is system-defined). The trustq(u,v) is the trust

level between u and a responder v. The value k is the parameter for top-k redirection.

Algorithm 4.2 illustrates the behaviors of query processing. In active behavior, a

user u issues a query q and proceeds as follows. First, it computes how much each

useful friend vfriend(u) is useful to q (line 2). Then, u computes the rank of v, de-

noted by rank(v). The rank of a useful friend v for u depends on the usefulness of v for

q, and the trust level between u and v. Accordingly the rank(v) is defined as:

 98

rank(v) = trust(u,v)*useful(q,v) (4.8)

Once u has computed the rank of each useful friend v, it adds rank(v) to a RankList

(lines 3 to 5) that contains the useful friends’ addresses along with their ranks. Then,

it selects the top-k useful friends from the RankList with highest rank using Se-

lectTopk (), and adds them to topkList (line 8). Then, u forwards q to each useful

friend vtopkList, attaching to q the trust value trustq(u,v), and reducing the query

TTL by one (lines 9 to 14). Note that the value of trustq(u,v) is equal to the value of

trust(u,v), because v is a direct friend of u. Also the useful friend v with the highest

rank is the useful friend that is most useful to q, and has the highest trust level with u.

Once user u receives the recommendation information from the responders, it

ranks those recommendations and presents them in an ordered list (lines 15 to 17) (see

Section 4.4.3).

In the passive behavior, when a user v receives a query q that has been initiated by

a user u, it processes q as follows. First, it measures the similarity between query q

and each document v has locally (lines 3 and 4). The similarity between a document

doc and q, denoted by sim(doc,q), is measured by using the cosine similarity between

the document topic vector Vdoc= [wdoc
t1

,…,wdoc
tk
] and the query topic vector Vq=

[wq
t1

,…,wq
tk
], which is:

sim(doc,q) =
∑

√∑

 ∑

 (4.9)

Second, v returns to the query’s initiator u the recommendations for the documents

whose similarity exceeds a given (system-defined) threshold (lines 5 and 6).

Finally, v selects from its friends the top-k useful friends that have the highest

rank, and adds them to the topkList if the query’s TTL is not yet zero (lines 9 to17).

Then, v computes the trust value trustq(u,x) for each useful friend xtopkList based on

Equation 4.9 (line 19) (presented in Section 4.4.2). Then v attaches trustq(u,x) to q,

and forwards q to x after reducing TTL by one (lines 20 to 22).

With such query routing, we avoid sending q to all friends, thus minimizing the

number of messages and network traffic for q. In addition, we send the query to

friends that are most useful and trustful.

 99

Algorithm 4.2- Query Processing

//Active behavior: Route-Query(q, FOAFu)
Input: query q (wordi, TTL, Vq, Tq,u); FOAFu
Output: submit q to potential friends; recommendations

1 For each useful friend vfriend(u) do
2 user u computes useful(q,v)
3 If useful(q,v) >0 then
4 rank(v) = trust(u,v)*useful(q,v)
5 user u adds <rank(v) ,v> to RankList
6 End if
7 End For
8 topkList = selectTopk(RankList)

9 For each useful friend vtopkList do
10 trustq(u,v) = trust(u,v)
11 u attaches trustq(u,v) to q
12 q.TTL = q.TTL-1
13 u send q to v
14 End For
15 If user u Receives recq

v1(doc1),…, recq
vi(docj) then

16 u ranks (recq
v1(doc1),…, recq

vi(docj))
17 End If

//Passive behavior: Process-query(q, Du, FOAFu)
Input: q (wordi, TTL, Vq, Tq, trustq(x,u)); Du; FOAFu
Output: recommendations for query q; u send q to top-k useful friends
1 Forever do
2 Receive query q initiated by x

3 For each docDu do
4 Sim(q,doc) = CosineSimilarity(Vq,Vdoc)
5 If Sim(q,doc) greater than threshold then
6 recommend doc to q’s initiator
7 End If
8 End For
9 If q.TTL not equal to zero then

10 For each useful friend vfriend(u) do
11 user u computes useful(q,v)
12 If useful(q,v) >0 then
13 rank(v) = trust(u,v)*useful(q,v)
14 user u adds <rank(v) ,v> to RankList
15 End if
16 End For
17 topkList = selectTopk(RankList)

18 For each useful friend vtopkList do
19 trustq(x,v) = trustq(x,u)*trust(u,v)
20 u attaches trustq(x,v) to q
21 q.TTL = q.TTL-1
22 u send q to v
23 End For
24 End If

 100

4.4.2 Trust Computation

We compute the trust value between a query’s initiator and a responder during

the query processing (line 19 in the passive behavior of Algorithm 4.2). When an ini-

tiator u sends a query q to a direct useful friend v, it attaches with q the trust level

trustq(u,v) which is equal to the trust(u,v). When a user v receives a copy of q, and the

query’s TTL is not yet zero, it redirects q to a direct useful friend x as follows. First it

computes the trust value between u and x trustq(u,x), by multiplying the trust value

trustq(u,v) attached to q that v has received, with the trust value trust(v,x). Then v at-

taches trustq(u,x) to q, and forwards q to x.

More in details, the path of a query q between an initiator u and a responder v can

be represented as pathq(u,v)={(u,vi), (vi,vj), (vj,v)}, and the trust value between u and v

can be computed by multiplying the trust values among directs friends along the

pathq(u,v), which is:

 () ∏ ()  ()
 (4.10)

With such trust method, we do not need an extra data and information to propa-

gate and aggregate the trust network, thus minimizing the complexity and network

traffic of the system. This trust method does not represent the most optimal trust value

between the initiator u and the responder v. However, it gives a good approximation,

because the users involved in the pathq(u,v) are the most trustful friends (of friends).

4.4.3 Ranking Recommendations

Recall that the result of a query q submitted by a user u is recommendationq =

rank(recq
v1

(doc1),…, recq
vi
(docj)), where recq

v
(doc) is the recommendation that has

been given for a document doc from a responder v. We rank recq
v
(doc) based on the

semantic similarity between q and doc, the popularity of doc, and the distance and

trust between u and the responders of doc. Accordingly, recq
v
(doc) that has been re-

ceived from responder v includes sim(doc,q), v’s topics of interest Tv and the

trustq(u,v). The rank of a recq
v
(doc) (line 15 in the active behavior of Algorithm 4.2),

denoted by rank(recq
v
(doc)), is defined as:

rank(recqv(doc)) = ()

∑ () ()

 () (4.11)

Where a, b and c are scale parameters, pop(doc) is the popularity of doc, and |R|

is the number of responders that have recommended doc to the initiator u. The popu-

larity is equal to the number of replicas of doc in F2Frec. The user can specify wheth-

er it prefers highly popular documents, documents that are highly semantically rele-

vant to q, or documents that come from highly similar users, by adjusting parameters

 101

a, b and c. Upon receiving the recommended documents, user u can download a copy

of a document, rate and include it in its document set Du.

Figure 4.3 shows an example of query processing in F2Frec. The network is

composed of a user u and its friends (of friends) along with their relevant topics and

trust. In the example, suppose that user u initiates a query q for topic t1 with TTL=2

and k=1 (see Figure 4.3(a)). User u ranks its friends based on trust, and their useful-

ness to q. Based on k and friends’ ranks, u forwards q to v1, because v1 has the highest

rank as shown in Figure 4.3(a). But before forwarding, u attaches trustq(u,v1) to q and

reduces TTL by one. Notice that trustq(u,v1) is equal to trust(u,v1), which is equal to

0.8, because u and v1 are direct friends.

Figure 4.3(b) shows the behavior of v1 when it receives q, v1 computes the simi-

larity between q and its documents sim(doc,q) where docDv1. Then it returns to u the

recommendations recq
v1

(doc) for those documents whose similarity exceeds a given

threshold. In addition, recq
v1

(doc) includes v1’s topics of interest Tv1, and the trust val-

ue between u and v1 that it is attached in the received q i.e., trustq(u,v1) = 0.8.

 Since TTL is not equal to zero, v1 redirects q to its top-k trust and useful friends

as follows. First, it ranks its useful friends based on trust and usefulness, and forwards

q to the top rank one i.e., it forwards q to v3, because v3 has the highest rank. Before

forwarding q to v3, v1 computes the trust between u and v3 trustq(u,v3), by multiplying

the trust(v1,v3) with the trust attached to q trustq(u,v1) i.e., trustq(u,v3) = 0.8*0.9 =0.72.

Then, v1 attaches trustq(u,v3) to q, and reduces TTL by one.

Figure 4.3(c) shows that when v3 receives q, it computes sim(doc,q) for docDv3

and returns the recommendations recq
v3

(doc) to u. User v1 does not forward q because

its TTL has reached zero. Finally, in Figure 4.3(d) we show that when the user u re-

ceives recq
v
(doc) from useful friends (of friends) v1 and v3, it ranks recq

v
(doc) based

on their popularity, semantic similarity, distance and trust between u, v1 and v3 to pro-

vide recommendationsq.

 102

Figure 4.3. Query processing, recommendation ranking, trust computing

 103

4.5 Managing the Dynamicity of Users’

Relevant Topics of Interest

Users in F2Frec are active and continuously changing their relevant topics of in-

terest. For instance, users are continuously downloading, rating new documents, and

removing some old documents. Consequently, users’ relevant topics of interest are

changed, and thus their entries should be updated accordingly.

Consider a user u that is relevant in a topic t1, joins F2Frec and starts gossiping

with other users. After a while, there will be a set of users SU that carry an entry for

u in their local-views, where u’s entry indicates that u is relevant in topic t1. Assume

that meanwhile u has changed its relevant topic to t2. But u is not suggested to any

user vS that is interested in t2 for friendship establishment. That is because the entry

of u that has been carried by v’s local-view is not useful to v. In addition when u

changes its relevant topics of interest, its friends should update their FOAF files to

avoid false redirection of queries. In order to avoid the false friendship establishment

and redirection of queries, we propose friend-promotion that is inspired on self-

promotion approach [14].

In friend-promotion, whenever a user u changes its relevant topics of interest, it

creates a new entry for itself, in which it includes its new relevant (topics and inter-

ests) and timestamp. Then, u sends to each friend vfriend(u) an update message car-

rying the new entry.

Once a friend v receives an update message, v updates u’s relevant topics of in-

terest in its FOAF file. Then, v includes the new entry of u in its local-view as follows.

User v checks whether it has an entry for u in its local-view. If its the case, v replaces

the old entry of u with the new one. In case that v does not have an entry for u in its

local-view, it adds the new entry of u to its local-view while |local-viewv|<view-size.

If v’s local-view size is equal to view-size, v selects randomly a user x from its local-

view, and replaces the entry of x by the new entry of u.

4.6 Experimental Evaluation

In this section, we provide an experimental validation of F2Frec to assess the

quality of recommendations, search efficiency (cost, and hit-ratio), and the average

number of friends. We conducted a set of experiments using TREC09 and the Wiki

vote social network [165]. We first describe the experimentation setup. Then, we in-

vestigate the effect of gossip on the quality of friendship establishment, and we evalu-

ate the effect of friendship establishment on the performance of F2Frec. After that, we

investigate the trade-off of the top-k query routing, and ranking recommendation.

Finally, we evaluate the effectiveness of friend-promotion algorithm in updating us-

ers’ local-views.

 104

4.6.1 Experimentation Setup

To validate our simulation experiments, we use the TREC09 dataset that was

previously used and described in Section 3.8.1. Also, in order to assess the quality of

recommendations, in addition to recall that was used and discussed in Section 3.8.1,

we use precision metric. Precision represents the system ability to return documents

that are mostly relevant to a query from the dataset.

TREC09 includes a set Q of 4904 queries. The relevant documents for each query

qQ, denoted by Rq, were determined by TREC09 query assessors. In the experi-

ments, when a user u issues a query qQ, u uses F2Frec to possibly retrieve the doc-

uments that are in Rq. The set of documents returned by F2Frec for a user u and a que-

ry q is denoted by Pq. Once a user u has received Pq from F2Frec, it can count the

number of common documents in both sets Pq and Rq to compute precision. Thus,

precision is defined as the percentage of q’s relevant documents doc Rq occurring in

Pq with respect to the size of Pq i.e., | Pq |:

precision =
| ⋂ |

| |
 (4.12)

Moreover, we use communication cost, hit-ratio and background traffic met-

rics that were previously used and discussed in Section 3.8.1 in order to assess the

search efficiency. In addition, we introduce the average number of friends metric in

order to assess the effectiveness of friendship establishment.

 Average number of friends in the network: the total sum of the number of

friend of all users divided by the size of the network (total number of users),

which is:

∑ ()

 (4.13)

Where |U| is the cardinality of the set of users in the system, and |friend(u)| is the

cardinality of the set of friends for each user uU.

We use the Wiki vote social network [165] to give randomly each user a set of

documents from TREC09. Wiki vote considers that two users are friends if one votes

for the other. It consists of 7115 users connected together by 103689 links with an

average of 14.57 links per user. After distributing the TREC09 documents over the

Wiki vote users, we get a total of 6816170 documents, with an average of 958 docu-

ments per user.

Our evaluation methodology reuses many concepts defined in Section 3.8.1. In

short, we used GibbsLDA++ to extract the document topic vectors Vdoc, and query

topic vectors Vq, with |T|=100. We consider that each query qQ has one topic in

most of experiments setting. We consider that each user u is interested at least in one

topic and at most in 10 topics. Also, u is relevant at least for one topic and for 5 topics

at most. We use PeerSim for simulation, and generate an underlying network of 7115

nodes, which is equal to the number of users in the Wiki vote network. All experi-

ments are performed under churn, and run for 24 simulation hours. Besides, we let

each user u issue a query after computing the previous query or after a system-

 105

specified timeout. Then we obtain the result for each query and compute the respec-

tive metric values as described in Section 3.8.1.

In addition, each user uU gets its initial friends from the Wiki social network,

and then u runs the F2Frec algorithm to establish new friends. We let each user u es-

tablish new friends after each time it performs a Rand gossip. Hence, a user u adds a

user v as a new friend, if sim(u,v) exceeds 0.5 i.e., τ = 0.5.

Table 4.1 lists the main simulation parameters that we have used in the experi-

ments. Cgossip, view-size, and Lgossip refers to the gossip period, local-view size, and the

maximum size of the gossip message transferred during the gossip exchanged, respec-

tively. α refers to scale parameter that is used in the Equation 4.5. τ is the threshold

value that is used in Equation 4.7 in order to decide whether to suggest a user for

friendship establishment.

Table 4.1. Simulation parameters

Parameter Values

Topics (T) 100

TTL 1, 2, 3

Local-view size (view-size) 10,50,70

Gossip length (Lgossip) 5, 10, 20

Gossip period (Cgossip) 1, 30, 60 min

α 0.0, 0.3, 0.5, 0.7, 1.0

τ 0.5

4.6.2 Impact of Gossip

In this experiment we investigate the effect of gossip on the friendship establish-

ment over background traffic and average number of friend metrics. The experiments

are done by varying the gossip parameters, where in each experiment, we vary one of

the parameters (Lgossip, Cgossip, view-size) and fix the other two parameters. We use the

value 0.5 for the scale parameter α in Equation 4.5.

Table 4.2 lists the maximum results obtained from the experiments after 24 simu-

lation hours, in terms of average number of friends and background traffic. Table

4.2(a) shows that decreasing Cgossip from 1 hour to 1 min increases the average num-

ber of friends from 90.2 to 781.5. When Cgossip is decreased, the gossip exchanges are

less spaced and more frequent, which in turn increases the frequent of performing the

friendship establishment. Accordingly, more users are suggested for friendship estab-

lishment, and thus more friends are added to users’ FOAF files. Moreover, increasing

 106

the frequent of gossip exchange increases the possibility of exploring new relevant

users, which in turn increases the possibility of establishing new friendship.

However, decreasing Cgossip increases the bandwidth consumed by the user signif-

icantly. That is due to two factors. 1) Gossip exchanges are less spaced and thus more

frequent. 2) Increasing users’ friend increases the size of the gossip entries, which

increases the bandwidth. Decreasing Cgossip from 1 hour to 1 min increases the band-

width consumed by a user from 7 bps to 5560 bps.

Table 4.2(b) conveys the fact that carrying more entries in Lgossip leads to greater

average number of friends, as well as greater background traffic. Increasing Lgossip

from 5 to 20 increases the average number of friends from 95.5 to 223.85, and back-

ground traffic from 7.5 bps to 41.3 bps.

From Table 4.2(c), we can see that using very small view-size reduces the possi-

bility of establishing new friendship. That is, because using very small view-size, a

few relevant users are maintained at users’ local-views, which reduces the number of

users suggested for friendship establishment, and thus a few new friends are added to

users’ FOAF files.

Table 4.2. Impact of gossip on friendship establishment

Cgossip (min) Avg. Background traffic (bps) Avg. number of friends

1 5560 781.5

30 19 177.5

60 7 90.2

(d) Varying Cgossip with (Lgossip = 10; view-size = 50)

Lgossip Avg. Background traffic (bps) Avg. number of friends

5 7.5 95.5

10 19 177.5

20 41.3 223.85

(e) Varying Lgossip with (Cgossip = 30 min; view-size = 50)

View-size Avg. Background traffic (bps) Avg. number of friends

10 10.5 78.95

50 19 177.5

70 20.8 192.65

(f) Varying view-size with (Lgossip = 10; Cgossip = 30 min)

 107

In Figure 4.4, we show the variation of the average number of friends versus time

under the three gossip parameters. From Figure 4.4 we observe that the average num-

ber of friend keeps on increasing with time, given that more new relevant users are

explored due to gossiping, more users are suggested for friendship establishment, and

thus more friends are added to users’ FOAF files. Figure 4.4(a) shows that using very

large view-size does not have significant impact on the average number of friends. In

large view-size, when gossip exchange occurred, a few relevant users are added to the

local-views compared to the view-size. Taking into account that the previous entries in

the local-views are already checked for friendship establishment, then a few users are

suggested for friendship establishment, and thus a few new friends are added to users’

FOAF files.

Figure 4.4. The variation of average number of friend versus time

Figure 4.4(b) shows that increasing Lgossip increases the possibility of exploring

and finding new relevant users at each gossip cycle. Accordingly, the number of users

suggested for friendship is increased, which increases the speed of achieving larger

average number of friends. For instance, average number of friends reaches 95 after

11 gossip cycles when Lgossip=20. Hence, when Lgossip=5, it needed 24 gossip cycles to

reach average number friend equal to 95.

 108

From Figure 4.4(c) we observe that decreasing the Cgossip achieves larger average

number of friends very fast. Also we observe that, the average number of friends is

stabilized after performing a certain numbers of gossip cycles. The average number of

friend stabilizes almost after 9 hour (540 gossip cycles) when 1 min is used for Cgossip.

To conclude, we observe that the choice of the 2 gossip parameters (Lgossip and

Cgossip) is a trade-off between the speed of achieving larger average number of friends

and the background traffic consumption. Increasing the frequent of gossip exchange,

more new relevant users are explored and suggested for friendship, thus larger aver-

age number of friends is achieved fast, and more background traffic is consumed.

Similarly, the more entries are carried during the gossip exchange, the faster users

discover new friends, and more background traffic is consumed.

For the rest of the simulation, we use 30 minutes for Cgossip (simulation time

units), 10 for Lgossip, and 50 for view-size, as this setting provides moderate average

number of friends with acceptable network traffic.

4.6.3 Friendship Establishment

In this experiment, we investigate the effect of friend establishment on the per-

formance of F2Frec over the respective metrics. We use 1 for the TTL of the query to

measure the quality and effectiveness of friendship establishment. Also, query is for-

warded to each friend v that is useful to query, in order to measure the quality and

effectiveness of friendship establishment.

In this experiment, we vary the value of  between 0 and 1, in order to investi-

gate the trade-off of usefulness and friendship distance based on the Equation 4.5. In

addition, we investigate the effect of friendship establishment on the performance of

F2Frec over the respective metrics.

Table 4.3 shows the maximum results obtained after 24 hours of running the

F2Frec system. We can see that the average number of friends increases from 49.7 to

174.6 when increasing  from 0 to 1. Combining users’ usefulness with friend net-

works increases the likeness between users. Thus more new friends are added to us-

ers’ FOAF files. We also observe that recall, communication cost, hit-ratio and back-

ground traffic are correlated to the average number of friends. The communication

cost increases because more useful friends are visited. Visiting more useful friends

increases the relevant documents returned, and thus greater recall is achieved. Also,

hit-ratio increases as long as the average number of friends also increases, because

there is a higher probability to find a useful friend to serve a query. However, band-

width consumption increases because increasing the number of friends implies the

increase of the size of the gossip entries, increasing the size of the gossip messages.

As a result the bandwidth consumed is increased.

 109

Table 4.3. Results obtained by F2Frec over the respective metrics


Max.

recall

Max.

precision

Max.

Com.

cost

Max. Hit-

ratio

Max. Avg.

background traf-

fic (bps)

Max. Avg.

Friend

0 0.31 0.41 20 0.61 12.4 49.7

0.3 0.58 0.43 38.3 0.94 17.4 141.1

0.5 0.67 0.44 46 0.977 19 177.6

0.7 0.67 0.45 47 0.98 18.7 177.6

1 0.73 0.47 46.5 0.98 18.5 174.6

In Figure 4.5, we show the variation of average number of friends, recall, preci-

sion and hit-ratio versus time under different values of. We observe that combining

the usefulness of users with friendship networks increases the possibility of finding

new friends (Figure 4.5(a)). When the value of  is equal to 0, the final friendship

establishment depends on the overlap between users’ friends only. This depends on

the density of the links in the network graph. In our benchmark, the overlap between

friend networks is low, and thus the average number of friends is low, which causes

low recall. However, the recommended documents in this case have more confidence

and quality, and users are more satisfied with those recommendations. This is because

they are recommended by trusted friends.

When the value of  is equal to 1, friendship establishment depends on the use-

fulness of users only. Each time a user u performs gossip, new relevant users are add-

ed to its local-view. Thus, u finds new relevant users that are useful to its demand, and

then establishes friendship with them. Therefore, more friends are added at u’s FOAF

file. As a result, the average number of friends is increased. While the values of 

increase between the two extremes, u finds new relevant users that are useful to its

demand, and establishes friendship with them. Accordingly, its friend list is increased.

Then, the possibility of overlap between users’ friends increases as well. As a result,

the possibility of establishing new friendship increases.

We observe that the recall achieved by =1 is greater than that with =0.7 or 0.5,

even though the average number of friends are almost identical (Figure 4.5(b)). When

=1, friendship establishment depends on users usefulness only. Accordingly, each

user u establishes new friendship with relevant users that are more useful to its de-

mands.

Figure 4.5(c) shows that precision starts at around 0.47 value and then decreases

until stabilizing around 0.4 after 11 hours. Initially, a user u might have a few useful

friends in its FOAF file. As gossip is used, and friendship establishment is performed,

more useful friends are added at u’s FOAF file. Accordingly, more useful friends

might be visited, and more documents might be recommended, and thus more irrele-

vant documents might be returned.

In Figure 4.5(d), we observe that the hit-ratio starts at low value and keeps on

growing as the network size grows and becomes stable after 17 hours. Note that, at

the beginning, a user may not have live (online) friends in its FOAF satisfying its que-

ry, and thus is not able to forward the query.

 110

To conclude, we observe that combining users’ usefulness with friend networks

increases the likeness between users. Thus more new friends are added to users’

FOAF files, which increase the recall, communication cost, hit-ratio, and background

traffic. Also, we observe that the recall and precision are inversely related, and they

depend on the length of the returned recommendation documents. If more documents

are recommended, then more relevant documents might be recommended, which in-

creases the recall value. On the other hand, more irrelevant documents might be in-

cluded in the returned documents, which decreases the precision value.

In practice, if recall is preferred, importance is given to retrieve all or most of the

relevant documents. In the other hand, if precision is preferred, importance is given to

retrieve some of the relevant documents without going through a lot of irrelevant doc-

uments. In that case, it is important to rank the recommendation documents, return the

top-k recommendation documents, and ensure as possible that the top-k returned doc-

uments are relevant (see Section 4.6.5).

For the other simulations, we set =0.5, because this setting leverages users’ use-

fulness and friendship networks, and provides reasonable results with acceptable

overhead in terms of background traffic.

Figure 4.5. F2Frec performance over respective metrics

 111

4.6.4 Impact of the Top-k Query Routing Algo-

rithm

In this experiment, we investigate the effect of the top-k algorithm used to route a

query over the recall metric. We use 1 for TTL and forward query to the top-10 ade-

quate friends. In this experiment, we consider that each query qQ has at most 5 top-

ics i.e., |Tq|=5. For each query q, we rank the component of its Vq, and set the top-n

components as the topics Tq of the query. Notice that the number n is the size of a

query q’s topics i.e., n = |Tq|, and is selected randomly. We use more than one topic

for each query q, to measure the effectiveness of the usefulness metric.

When a user u submits a query q, the top-k adequate friends are chosen by letting

u’s selects all friends that are useful for q based on the Equation 4.7, and adds them

into a temporary list, denoted by nominatList. After that, u varies the way used to rank

the adequate friends, and selects the top-10 to serve its query q as follows. First, u

ranks each friend v nominatedList based on the trust between u and v, and then u

forwards q to the top-10 trustful friends. Second, u ranks each friend v nominatList

based on the usefulness of v for q, and then u forwards q to the top-10 useful friends

for q. Finally, u ranks each friend v nominatList based on the usefulness of v for q,

and the trust between u and v, then u forwards q to the top-10 useful friend for q and

trustful.

Table 4.4 shows the maximum results obtained from the experiments after 24

simulation hours. We observe that forwarding query q to the top-k useful friends for

q, produces higher recall. The friends that are most useful for q, they have more rele-

vant topics similar to q’s topics. Thus, they have more documents related to q. Ac-

cordingly, many relevant documents are returned, which increases the recall value.

Ranking friends based on the trust, produces a lower recall. There is no guaranty that

the highest trustful friends have many relevant topics similar to q’s topics. According-

ly, a few relevant documents are returned, which reduces recall.

When we rank friends based on trust and usefulness, the recall is moderate be-

tween both usefulness and trust, the first may return a high number of relevant docu-

ments while the other may return a few number of relevant documents. Therefore, the

recall is higher than in trust but lower than in usefulness.

Table 4.4. Impact of the top-k routing algorithm

Top-10 Max. recall

trustful 0.163

useful 0.203

trustful + useful 0.187

To conclude, we observe that forwarding query to the top-k useful friends, in-

creases the chance of returning more relevant documents. But forwarding query to

 112

top-k trust friends increases the chance of returning more trusted and confidence rec-

ommendations.

4.6.5 Trade-off of Ranking Recommendations

In this experiment, we investigate the effect of ranking recommendations over the

quality of recommendations. We vary the value of parameters a, b and c between 0

and 1, in order to investigate the trade-off of semantic similarity, popularity and the

distance an trust based on the Equation 4.11. In each experiment we set the value of

one parameter (a, b, or c) to 1 and the other two values to 0, except the last experi-

ment, we set all parameter values to 0.33 i.e., a=b=c=0.33. In addition, we use 1 for

the TTL of the query, and query is forwarded to each friend v that is useful to query.

In each experiment, when a user u initiates a query q. First, we generate recom-

mendations for q. Then, we rank the recommendations based on: 1) semantic similari-

ty, 2) popularity, 3) distance and trust between query’s initiator and responders, 4)

combinations of all. Next, we compute the recall and precision of the q when top-5,

top-10 and top-20 recommendation documents are selected. Finally, we average the

recall and precision values for all evaluated queries.

In this experiment, in addition to the classical precision that we have discussed in

Section 4.6.1, we use a new metric, denoted by RankPower, to reflect the count

(number) and rank (position) of the relevant documents recommended. RankPower

has been first proposed by Meng et al. [103], but it has a lower bound of 0.5, and it is

obtained when all the returned documents in the rank list are relevant i.e., the mini-

mum value indicates the optimal performance. A revised definition of RankPower has

been proposed by Tang et al. [149] and takes values between 0 and 1, where the value

0 indicates the worst performance and the value of 1 indicates the best performance.

RankPower combines the count and the rank of the relevant documents appeared in

the rank list, and is defined as follow.

 ()

∑ ()

 (4.14)

Where n and rank(i) is the number of relevant documents and the rank of the ith

relevant document appear in the top-k recommended documents, respectively.

Table 4.5 lists the maximum results obtained from the experiments after 24 simu-

lation hours, in terms of precision and RankPower. We observe that ranking recom-

mendation documents based on the semantic similarity produces the highest precision

(0.78 when top-5 recommendation documents are selected) among all ranking meth-

ods proposed. This is due to the fact that, the documents that is most similar to a que-

ry q, most probably is relevant to q. Using distance and trust produces the lowest pre-

cision (0.45 when top-5 recommendation documents are selected).

In the other hand, using document popularity produces a precision higher than in

distance and trust but lower than in semantic similarity (0.53 when top-5 recommen-

dation documents are selected). While combining semantic similarity, with popularity

and distance and trust produces a moderate precision (0.72 when top-5 recommenda-

tion documents are selected).

 113

Similarly, the highest RankPower is obtained, when the recommendations are

ranked based on the semantic similarity, because in that case, more relevant docu-

ments are appeared in the top-k recommendation documents. From the RankPower

values, we observe that ranking recommendations methods put the relevant docu-

ments in the top positions of the rank list i.e., the relevant documents have higher

ranks than the irrelevant documents.

RankPower gives us an idea of the positions of the relevant documents in the

rank list, while precision gives us an idea of how many relevant documents are re-

turned. For instance, the precision value of 0.78 obtained, when recommendations are

ranked based on the semantic similarity, and the top-5 recommendation documents

are selected, implies that almost 4 documents out of 5 are relevant. The RankPower

value of 0.84 obtained from the same example, implies that the probability of finding

the relevant documents in top positions of the rank list is 0.84. Thus, the user does not

need to go through a lot of irrelevant documents to find the relevant documents in the

rank list.

From Table 4.5, we observe that increasing the value of k decreases the precision

and RankPower values in all ranking methods. This is due to the fact that, as more

documents are recommended, more irrelevant documents might be returned.

To conclude, we observe that ranking recommendations based on the semantic

similarity between documents and query increases the chance of including the rele-

vant documents in the top-k selected documents. However, using the distance and

trust, increases the confidence and trust of the recommendation documents, because

these documents are recommended from trusted friends. Also, we observe that rank-

ing recommendations methods give higher ranks to the most relevant documents than

irrelevant documents, and put them in the top positions of the rank list.

Table 4.5. Varying the way used to rank recommendations

Parameters

a, b, and c

values

Top-5 Top-10 Top-20

Max.

precision

Max.

Rank-

Power

Max.

precision

Max.

Rank-

Power

Max.

precision

Max.

Rank-

Power

a=1, b=c=0 0.78 0.84 0.75 0.81 0.72 0.80

b=1, a=c=0 0.53 0.76 0.51 0.75 0.50 0.71

c=1, a=b=0 0.45 0.72 0.43 0.71 0.42 0.68

a=b=c=0.33 0.72 0.78 0.69 0.74 0.66 0.72

 114

4.6.6 Users’ Relevant Topics of Interest Dynamism

As described in Section 4.5, users’ entries are updated by self-promotion and

friend-promotion. In this experiment we compare friend-promotion with self-

promotion on the freshness of users’ entries. In this experiment we measure the num-

ber of gossip cycles needed to refresh the users’ local-view. The experiments are

achieved as follows. 1) We run the F2Frec algorithms for a period of time until most

of the users in the network become online. 2) We change the topics of interest for all

users in the network. 3) We collect the number of gossip cycles needed to update all

users’ local-views i.e., all users’ local-views become fresh and up-to-date.

From Figure 4.6 we observe that friend-promotion speeds up the freshness of us-

ers’ local-views. In friend-promotion more than 50% of users refresh their local-view

in less than 23 gossip cycles. Friend-promotion needs 50 cycles to fresh all users’

local-views. Self-promotion needs 40 cycles to refresh 50% of users’ local-views, and

70 cycles to updates all users local-views. However, friend-promotion increases the

back ground traffic by a factor of 4.6, compared to self-promotion.

Figure 4.6. Fresh users’ local-views vs. gossip cycles

4.7 Conclusion

In this chapter, we proposed F2Frec, a P2P recommender system that leverages

content and social-based recommendations by maintaining P2P social networks. The

basic idea of F2Frec is to exploit the users’ relevant topics of interest and friends’

networks, in order to get high quality recommendations. F2Frec relies on gossip pro-

tocols to disseminate relevant users and their information, in order to let users estab-

lish friendship with new useful friends. We use FOAF files to store users’ friendship

networks and their relevant topics of interest, and as a directory to redirect a query to

the appropriate trustful and useful friends in a top-k approach.

 115

We did an extensive experimental evaluation, using the Wiki vote social network

and the TREC09 dataset. In this evaluation, we made the following observations. We

showed that using small Cgossip and large Lgossip increases the number of friends added

to users’ FOAF files, because more new relevant users are explored and suggested for

friendship. But, it increases the background traffic consumption. Combining users’

usefulness with friend networks increases the likeness between users, and the possibil-

ity of establishing new friendships. This increases the recall, trust and confidence of

the recommendation documents.

Forwarding query q to the top-k useful friends for q increases the recall of the

recommendation documents. This is because, the top-k useful friends for q maintains

a lot of documents related to q. Forwarding q to the top-k trustful friends increases the

trust and confidence of the recommendation documents, because they are recom-

mended from trusted friends.

Ranking recommendations puts the relevant documents in the top positions of the

rank list. Ranking recommendations based on the semantic similarity between query q

and documents produced the highest precision and RankPower. This is due to the fact

that, the document that is most similar to q, most probably is relevant to q.

 116

 117

Chapter 5 P2P-RS Prototype

Abstract. In this chapter, we describe our prototype of P2P-RS, which we developed

to validate our proposal, in particular, P2Prec and F2Frec. We developed our proto-

type as an application on top of the Shared-Data Overlay Network (SON), an open

source development platform for P2P networks. We first describe the architecture of

P2P-RS on top of SON. Then, we describe the demonstration of P2P-RS’s main ser-

vices (installing the P2P-RS peers, initializing peers, gossiping topics of interest

among peers, keyword querying for contents) using our prototype.

5.1 Introduction

To further test and validate the feasibility of our proposal, we have implemented

a prototype in Open Source Software of P2P-RS, based on P2Prec and F2Frec, de-

scribed in the previous chapters. The prototype is described at our web site

http://www-sop.inria.fr/teams/zenith/p2prec/ and the prototype code can be found at

http://gforge.inria.fr/projects/p2prec/. The content of this chapter is partly based on

our publications in [39][40].

P2P-RS is implemented in Java as an application on top of SON (http://wwww-

sop.inria.fr/teams/zenith/SON), an open source development platform for P2P net-

work applications developed in the Zenith team. The main objective of SON is to of-

fer an open source development platform for P2P applications, by hiding the complex

aspects of asynchronous messages between peers, thus helping developers building

P2P applications rapidly. The developers do not need to deal with the complex dis-

tributed programming aspects; they only write the code logic for the behaviors of the

peer (as in a simulator). In contrast, using other P2P development platforms such as

JXTA [72], Jtella [71] and Groove [57] much effort and time are required to success-

fully build P2P applications.

Figure 5.1 shows the layered architecture of P2P-RS over SON. The top layer is

the application layer that provides the essential interfaces for users. This layer gives

users the ability to interact with the system such as sending a keyword query, receiv-

ing a response for a query, reading, storing, rating a document, managing FOAF files

and establishing new friendships. Under the application layer is the P2P-RS layer,

which provides the functions, services and protocols that are necessary for generating

and receiving recommendations. Under the P2P-RS layer is the SON layer, the P2P

 118

overlay that is used to support P2P-RS. At the bottom is the Internet layer, which pro-

vides the physical connections between peers in the system.

The rest of this chapter is organized as follows. In Section 5.2, we briefly recall

the main aspects of SON. Section 5.3 describes in more details the architecture of

P2P-RS. In Section 5.4, we describe the demo of P2P-RS’s main services (installing

and initializing P2P-RS peers, gossiping topics of interest among peers, keyword que-

rying for contents) using our prototype. Section 5.5 concludes.

Figure 5.1. Layered architecture of P2P-RS

5.2 Shared-data Overlay Network (SON)

SON is an open source development platform for P2P networks using web ser-

vices, JXTA and OSGi [112]. With SON, the development of a P2P application is

done through the design and implementation of a set of components. A SON’s com-

ponent is a software package that encapsulates the code logic (typically generated by

developers) that provides the functions and purposes of the component. It is accessed

through interfaces that can be discovered at runtime. The interfaces comprise services

provided by the component to other components in the system, as well as services

required by the component to operate but implemented elsewhere. Given that these

services are described through a machine-processable format, a component generator

automatically generates the code of the services from their descriptions i.e., the devel-

oper does not deal with complex distributed programming aspects.

SON is implemented in Java on top of OSGi components that provide all basic

services for the lifecycle of SON components, in particular, the deployment services.

OSGi is a set of modules (called bundles) that provide services for Service Oriented

Applications. Notice that several modules may provide the same service S, but at

runtime, one module is chosen to provide the service S. The launching of a SON ap-

 119

plication is defined through an OSGi configuration, which describes the application

components.

The basic infrastructure of SON is composed of a Component Manager (CM), a

Publishing and Discovery Component (PDC), and a Connection Component (CC)

(see Figure 5.2). The PDC allows publishing or discovering components on different

peers using a DHT. The CC provides connection between remote components on

peers. The CM performs the creation of new component instances and the connections

between them.

To establish a connection between two components A and B, the Component

Manager uses the services description to associate the services provided by compo-

nent A with the services required by component B, and conversely. After the connec-

tion process, the two components can communicate directly with each other, without

going through the Component Manager.

The Component Manager delegates the management of lists of remote compo-

nents to the Publishing and Discovery Component. In the current version, the Open-

Chord DHT implementation [111] is used for the Publishing and Discovery Compo-

nent, although other implementations can be used. For this purpose, an interface has

been defined with the usual methods (put(key,value) and get(key)) that can be ex-

pected from a DHT. At each creation of a component, the Component Manager pub-

lishes into this DHT the information for a remote component useful to connect to this

component.

Notice that the DHT is used to publish and discover the components of SON, it

does not have any coupling with the P2P overlays that are constructed for the applica-

tions build in top of SON. Moreover, we can use dedicated servers or DHT overlay

from elsewhere to support the DHT overlay of SON.

The Connection Component is a component that handles the communication be-

tween remote components. It opens the TCP connection between peers. It is based on

the concept of virtual pipes introduced by JXTA technology. This concept allows

passing through a single TCP connection several logical communications (virtual

pipes) between peers. Using this abstraction allows each component to open a virtual

pipe to read messages sent to it.

Figure 5.2. SON infrastructure

 120

5.3 P2P-RS Implementation

We developed the P2P-RS as a SON application with two components: the LDA

component for the document topics process and the P2Prec component for the rec-

ommendation process. The user interacts with those components with a graphical user

interface.

In the following, we first present the P2P-RS’s components and describe in de-

tails their implementation features. Then, we show the interaction between P2P-RS’s

components among different users in a network overlay.

5.3.1 P2P-RS Architecture

Figure 5.3 illustrates the P2P-RS implementation architecture. We used the

Google Web Toolkit [56] to build the user interface. This toolkit allows defining a

client/server application written completely in Java that runs in a web browser. It au-

tomatically compiles the Java client code into HTML and JavaScript, and easily per-

mits to use Java libraries. Therefore, all graphical user interfaces are made of web

pages and run in a classical browser.

Figure 5.3 shows that each component consists of a number of modules. For in-

stance, the P2Prec component has four modules, Data Management, Friend Estab-

lishment, Gossip Protocol and Query Processing. Typically, each module is responsi-

ble for performing a set of activities. As an example, the gossip protocol module is

responsible for providing the gossip behaviors of each user. Each component, module

or user interface provides a set of interfaces that allow them to communicate between

each other. These interfaces are either services or methods. We define two types of

services, asynchronous and synchronous services, and one type of method, synchro-

nous method.

 Asynchronous services. These services are provided or required by P2P-RS’s

components. We refer to these services by the solid links that have a black arrow

or red circle at their end. Hence, the component that is connected to the part end-

ing with a circle provides the service, while the component that is connected to the

part ending with an arrow requires the service. The components connected by a

link that has two parts (black arrow and red circle) means that these components

communicate locally. For instance, the P2Prec component provides the service

topicsOf(doc) that it is required by the LDA component. The component connect-

ed to a link that has one part (black arrow or red circle) means that this service is

provided to, or required by a remote instance of the same component. As an ex-

ample, the P2Prec component provides/requires the gossip(msg) service to/from a

remote P2Prec component.

 Synchronous services. These services are used to pass messages between P2P-RS

components and the graphical user interface. They are represented by the dash

links that have two parts (green arrow and blue circle). The component connected

to the blue circle provides the service to the user interface, while the component

connected to the green arrow requires the service from the user interface. For ex-

 121

ample, the service propose(friend) is required by the P2Prec component, while

submit(q) is provided by the P2Prec component.

 Synchronous methods. These methods are used to exchange information and data

between a component’s modules. They are represented by a link with an arrow at

end. The direction of the link’s row represents which module invokes the method.

For instance, the method get(user) is invoked by the friend establishment module.

Figure 5.3. P2P-RS implementation architecture

5.3.2 P2P-RS’s Components

We now present in more details P2P-RS’s components including their modules,

objectives, services, methods and functionalities.

5.3.2.1 P2Prec Component

The role of the P2Prec is computing, processing and generating recommenda-

tions. It has four modules:

1. Data Manager. This module manages user u’s documents and FOAF file. In ad-

dition, it is responsible for extracting u’s relevant topics of interest and maintain-

ing the documents that are related to u’s relevant topics i.e., the documents that

 122

the user u can provide recommendation for as described in Algorithm 3.1 (see

Section 3.3.2). The data manager offers one asynchronous service:

 topicsOf(doc) returns the topic vector of a document (see Section 3.3.1). It is

invoked by the LDA components, when LDA finishes computing the docu-

ment topic vector.

The data manager offers two synchronous services:

 updateFOAF(friend, topic, etc) updates the FOAF file when provided with the

fields to be added or deleted such as friends, topics of interest, etc. This ser-

vice is invoked by the user interface.

 store(doc,rate) adds the document along with its rating value to user u’s doc-

uments, and it is invoked by user interface.

The data manager offers three synchronous methods:

 topics(Tu,Tu
r
, friends) returns user u’s relevant (topics of interest) and friend-

ship network. This method is invoked by gossip protocol in order to create u’s

gossip entry.

 top-K(friend) returns the top-k useful and trust friends that can serve a query

(see Section 4.4.1). This method is invoked by query processing when it routes

a query.

 rec(doc) returns the documents of which similarity with a query exceeds a

system-defined threshold (as described in Section 4.4.1). It is invoked by que-

ry processing in order to process a received query.

The data manager requires read(doc, rate) synchronous services to send a stored

document to the user interface.

2. Friend Establishment. The role of this module consists in measuring the similari-

ty between a user u and the users in its local-view, in order to suggest users to u

for friendship establishing, and let u lunches a demand friendship with them, as

depicted in Algorithm 4.1 (see Section 4.3.4). Friend establishment offers two

asynchronous services:

 request(frd) enables a user u to send a request message to a user v asking v for

a friendship.

 reply(frd) returns the reply message that has been sent by a remote user v. This

service is invoked by the remote user v, when it is responding to a request

friendship.

Friendship establishment requires two synchronous services:

 propose(friend) to send the suggested user to the user interface.

 reply(frd) to send the response of a user v for friendship establishment to the

user interface.

Friendship establishment offers a request(frd) synchronous service that enables a

user u to submit a request friendship to another user v. This service is invoked by the

user interface.

 123

3. Gossip Protocol. This protocol provides the gossip behavior of a user u, manages

updates and initializes the local-view of the user u (see Section 3.4.3). It offers

three asynchronous services:

 gossip(msg) enables user u to submit a gossip message to remote user v when

u initiates a gossip exchange. This service is invoked by u, the user who initi-

ates the gossip exchange.

 gossipAnswer(msg) returns the gossip message that has been sent by a remote

user v. This service is invoked by the remote user v when it is responding to a

gossip exchange.

 initiateLocalView(user) adds an initial contacts to user u’s local-view. To do

so, u invokes this service from bootstrap server BS.

The gossip protocol has a get(user) synchronous method that returns the users

that are currently maintained at u’s local-view. This method is invoked for friend es-

tablishment when the user u would like to establish new friendship.

4. Query Processing. This module performs query processing at a user u as de-

scribed in Algorithm 4.2 (see Section 4.4.1). It routes the query submitted by u or

received from a remote user v or processes a query received from a remote user v,

and provides v with the recommendations. In addition, it ranks the recommenda-

tions that are returned as a response for a query that has been submitted by u. Que-

ry processing comes with three asynchronous services:

 topicsOf(q) asynchronous service: returns the query topics vector when user u

submits a keyword query. This service is invoked by the local LDA compo-

nents when LDA finishes computing the query topics vector.

 query(Tq, TTL) asynchronous service: enables user u to submit a query q to a

remote user v. Notice that the query q either has been initiated by u or received

from another remote user x. This service is invoked and provided by both u

and remote user v.

 queryAnswer(q,rec) asynchronous service: enables user u to receive a response

for a query (initiated by u) from a remote user v. Also, it enables u to submit a

response for the query (received from a remote user x) to a remote user v. This

service is invoked and provided by both local user u and remote user v.

Query processing provides the submit(q) synchronous service and requires the

queryAnswer(rec) synchronous service:

 submit(q) enables user u to submit a keyword query. It is invoked by the

search form that is implemented in the user interface.

 queryAnswer(rec) enables the query processing module to provide a response

for a query to the user interface.

Query processing offers two synchronous methods:

 qTopics(Tq): passes a query q’s topics Tq to data manager, in order to select

the useful and trust friends that can serve q.

 124

 qTopicsVector(Vq, Tq): passes a query q’s topics Tq and the topic vector of the

q to the data manager, in order to measure the similarity between q and each

document that is related to q’s topics.

5.3.2.2 LDA Component

The LDA component performs local inference with LDA as described in Section

3.3.1. It downloads the topic model T from the bootstrap server. To do so, u invokes

the connect() service that is provided by the bootstrap server, which then returns the

topic model T to u by invoking the allTopics(T) service that is provided by the LDA

component. Then, LDA locally starts using the topic model T to extract the topic vec-

tors of u’s documents and queries. The LDA component offers three asynchronous

services:

 computeTopics(doc) enables user u to computes the topics hidden in its docu-

ments. This service is invoked by data manager when it starts extracting u’s rele-

vant (topics of interest).

 computeTopics(q) gives user u ability to extract the topics of each query q submit-

ted by u. It is invoked by query processing when u initiates q.

 allTopics(T) returns the topic model T from bootstrap server. This service is in-

voked by the LDA component at each user, and provided by the LDA component

of the bootstrap server.

5.3.3 P2P-RS Components at Work

Now that we have introduced the P2P-RS components individually, we discuss

how they work together in a network. We focus on the work of the P2Prec and LDA

components. Moreover, we explain and describe the services and functions that are

necessary for generating and receiving recommendations.

The services of the P2Prec component are the services for passive and active

propagation through gossip services (gossip and gossipAnswer services) and the query

services (query and queryAnswer services). There are two OSGi configurations (see

Figure 5.4): the bootstrap server configuration and the Client (the peer) configuration.

To run the P2P-RS application, the bootstrap server must be started on a given

machine (with a given IP address). This IP address will be used as the entry point into

the P2P-RS network for new peers. At start-up time, a new peer must first identify

itself with the bootstrap server (connect service) and the bootstrap server returns the

current set of all topics (allTopics service). Then within the local peer's LDA compo-

nent and the current topics, the topics of each document are computed locally.

After these steps, the peer can start the recommendation steps and documents dis-

covery without any connection with the bootstrap server. Indeed, the search of topics

of a new document (computeTopic(doc) service) and the computing of topics of a

query (computeTopic(query) service) can be made locally with the local peer's LDA

component. Depending on the evolution of documents on the P2P-RS network, the

 125

bootstrap server may update the set of topics of documents, and inform the peers by

broadcasting this new topic set (using the allTopics service).

Figure 5.4. P2P-RS implementation at work

5.4 P2P-RS Demonstration

In this section, we describe how the P2P-RS’s services cooperate using scenari-

os based on the Ohsumed documents corpus (MEDLINE) that has been used and dis-

cussed in Section 3.8.1.

We only implemented the interfaces that are necessary for demonstration to dis-

play the functions and services provided by the components of P2P-RS, which in-

cludes an interface that allows a user to submit a keyword query, and then displays the

query response. In addition, we implemented an interface that shows the current

friends of a user, and another interface that shows the entries of the current local-view

of a user, and the user log gossip exchange. Furthermore, we have implemented the

Rand gossip that is described in Section 4.3.2.

The demo with the MEDLINE information database (with a fixed data set) can

be downloaded from the P2P-RS website (http://www-sop.inria.fr/teams/zenith/

p2prec/index.php/Demo/) with the complete procedure for installing, deploying and

running. In the following, we show how the application works, from the global instal-

lation to the utilization by an end-user.

5.4.1 Installation

In order to run a peer in the P2P-RS properly, any user (at a peer) has to connect

first to the bootstrap server. Therefore we define a place the bootstrap server will run

on. Every peer in the system will know its IP address. As the bootstrap server and any

peer offer the same kind of services, we have defined two OSGi configurations for

 126

running the P2P-RS’s components: one as a bootstrap server, and one as a standard

peer that will connect to the bootstrap server.

5.4.2 Initialization

Each peer consists of a LDA part coupled with a communication part (called

P2Prec). As the demonstration starts, the bootstrap server is created, and so are sever-

al peers (100 of them). Each peer sends some of its documents, which are arbitrarily

distributed among all peers, to the bootstrap server to perform LDA on a sample of all

documents and to define the set of topics used in the network. Next, the bootstrap

server informs all connected peers about the topics that are present in the network,

and each peer indexes its own documents with the set of topics. Each peer is given an

initial FOAF, which determines its friends in the network, and provides it information

about them. It can now start gossiping with other peers, and the user belonging to the

peer can send queries to discover documents. When connecting a new peer to the

network, we show how it gets initial information in its FOAF file in two cases:

 It has already joined the network in the past (i.e. it knows other peers)

 It connects to the network for the first time.

5.4.3 Gossiping

The gossip service is at the heart of P2P-RS, and is transparent to the end-user.

While peers exchange gossiping messages, the system recommends new friendships

to users. For the sake of the demonstration, we developed an interface showing what

is internally happening during gossiping (see Figure 5.5). The interface shows the

current friends of the user, the gossiping messages sent and received by the peer, the

gossip local-view that permits to find friends, etc. We show how the gossip mecha-

nism notifies the user that other users share the same interests, and ask her to add

them to her friend list.

 127

Figure 5.5. P2P-RS gossiping interface

5.4.4 Querying

Spreading information with gossip to make new friends has one aim: being able

to answer queries accurately when a user searches for documents. This is where the

query service is needed. The user is able to send a query for getting documents rec-

ommendations from her friends. The local LDA of the user translates the query into a

set of relevant topics, and the peer sends them through the query service to the user’s

friends. Each friend may recommend documents depending on the similarity in terms

of topics and the rate of the document. The query hops to friends of friends as many

times as its TTL allows, the results being returned during the journey.

Figure 5.6 shows the result returned to the user after a query is sent. We show

the results of the query for a user who has been in the network for a long time com-

pared to a new user, and compare the accuracy and the number of answers she gets.

 128

Figure 5.6. P2P-RS query interface

We can monitor the connections between the different peers of the network by

using the SON's integrated graph view. Figure 5.7 shows an example of this view

during the demo.

 129

Figure 5.7. An example of the friendship graph of the P2P-RS demo

5.5 Conclusion

This chapter has described our prototype of P2P-RS, which we developed to vali-

date our proposal, in particular, P2Prec and F2Frec. The P2P-RS prototype is imple-

mented in Java on top of SON (http://wwww-sop.inria.fr/teams/zenith/SON), an open

source development platform for P2P network applications developed in Zenith using

web services, JXTA and OSGi. SON hides the complex aspects of asynchronous mes-

sages between peers, and thus makes it easier for developers to build P2P applica-

tions.

We showed the implementation architecture of P2P-RS using SON, with two

components: the LDA component for processing document topics and the P2Prec

component for the recommendation process. A full-fledge demonstration of this pro-

totype has been built using the Ohsumed documents corpus, showing how friendship

establishment, query processing, gossip protocol, etc. are involved.

This P2P-RS prototype implementation has been useful to validate our proposals,

as well as to show its feasibility. Furthermore, using SON has been effective in mak-

ing our development simpler and faster.

The P2P-RS web site is http://www-sop.inria.fr/teams/zenith/p2prec, the proto-

type code can be found at http://gforge.inria.fr/projects/p2prec, and the demo can be

downloaded from http://www-sop.inria.fr/teams/zenith/p2prec/index.php/Demo

 130

 131

Chapter 6 Conclusion

Abstract. In this chapter, we summarize our main contributions and discuss future

directions of research.

6.1 Summary of Contributions

This work has addressed the problem of decentralized recommendation in large-

scale online communities. We proposed the design and implementation of a P2P rec-

ommendation system that exploits users’ topics of interest and social data as parame-

ters to construct and maintain a social P2P overlay, and generate recommendations.

Our main contributions are as follows.

State-of-the-Art. We reviewed the techniques that have been proposed for building

P2P recommendation systems. First, we introduced the main approaches of RSs

namely collaborative-filtering, content-based filtering and social-based filtering along

with their limitations. Then, we gave an overview of the main classes of P2P systems

(unstructured, structured and dynamic), and highlighted the requirements that are

needed to design P2P recommendation systems. Finally, we discussed the existing

approaches for P2P content management systems (the systems that use information

retrieval techniques to index and retrieve contents), and the approaches for P2P pre-

diction systems (systems that are based on users’ preferences).

P2Prec. We proposed the design of a scalable and reliable P2P recommendation sys-

tem, called P2Prec. P2Prec leverages collaborative- and content-based filtering rec-

ommendation approaches. P2Prec uses relevant users to guide recommendations, giv-

en that relevant users are defined based on users’ topics of interest. Users’ topics of

interest are automatically extracted from the contents the users hold using LDA.

P2Prec uses the dynamic P2P overlay, where semantic-based gossip protocols are

used to constructs and maintains the overlay, and to disseminate relevant users and

topics of interests in the overlay. In addition, P2Prec uses an efficient query routing

algorithm that uses users’ gossip views to select the best relevant users that can serve

query. Through an extensive performance experimentation (through simulation), we

showed that using semantic gossiping increases recall and hit-ratio, because each user

maintains more relevant users that can serve its queries in its gossip’ view. Our results

demonstrate that exploiting contents semantics and gossip protocols are perfectly

adapted to the context.

 132

 The initial proposal of P2Prec was published in [36], and an improved proposal

appeared in [38].

F2Frec. To increase the quality, confidence and trust of recommendations, we pro-

posed the design of F2Frec, a P2P-RS that leverages content- and social-based filter-

ing recommendation approaches by maintaining a P2P and friend-to-friend network.

F2Frec uses users’ relevant topics of interest and friendship network to suggest new

friends that are useful to provide recommendations. Given that gossip protocol is used

to disseminate users’ relevant topics of interest, in order to find new interesting

friends. F2Frec uses an efficient query routing algorithm that selects the top-k trust

and useful friend to serve query. In addition, F2Frec ranks the recommendation doc-

uments based on the document popularity, the semantic similarity between the docu-

ment and query, and the trust and topics of interest between the documents’ respond-

ers and query’s requestor. Simulation results showed that establishing new friends

based on users’ relevant topics of interest increases the recall, because more friends

are added and thus more recommendations are returned. Establishing new friends

based on trust increases the confidence of the result, as they returned from more trust-

able friends. Our extensive performance experimentation (through simulation)

showed that ranking recommendations put the relevant documents in the top positions

of the rank list. It also showed that ranking recommendations based on the semantic

similarity between query q and documents produced the highest recall and precision.

This is due to the fact that, the document that is most similar to q, most probably is

relevant to q.

A partial version of this proposal appeared in [41].

Prototype. To fully validate our proposal, we implemented a prototype of P2P-RS for

(http://www-sop.inria.fr/teams/zenith/p2prec/), which is based on P2Prec and F2Frec.

P2P-RS is deployed as a standalone application on top of SON, an open source devel-

opment platform for P2P networks developed in Zenith. SON hides the complex as-

pects of asynchronous messages between peers, and aids developers building P2P

applications rapidly. We built a full-fledge demonstration of the P2P-RS prototype

using the Ohsumed documents corpus, showing how friendship establishment, query

processing, gossip protocol, etc. are involved.

 The initial version of F2Frec is described in [39] and an improved version is de-

scribed in [40].

6.2 Future Directions

In this section, we present a list of directions of research in P2P recommendation

systems that we believe to be interesting to explore.

Document indexing and retrieval. In this work, documents and queries are repre-

sented by their topic vectors extracted from LDA. When a user u receives a query q, u

measures the similarity between query q and each document doc it has locally, using

the cosine similarity between =[
 ….

] and = [
 ….

]. Since doc

and q are classified in the same topic, then most probably, they return a high similari-

ty value. In that case, doc is included in the response of q, even though it is not rele-

 133

vant to q. Typically, a topic includes a lot of documents, and most probably they are

similar to q and will be included in q’s response. In fact, many of them are not rele-

vant to q, even though they are similar to q, and this decreases the precision of the

system. It would be interesting to use another indexing technique such Lucene index-

ing [10] to represent the documents and queries.

Experiments with different datasets. For this thesis, we have used the Ohsumed

documents corpus, which consists of titles or abstracts from 270 medical journals

over a five year period (1987-1991). In this dataset, documents (articles) are not

associated with users. Moreover, there are no real ratings or feedbacks given by users

of the documents in this dataset. Thus, in our experiments, we randomly distributed

the documents over the users in the system, and generated a random rating between 0

and 5 for each document a user has. Accordingly, it is important to see if the behav-

iors of the system change when another dataset(s) are used. Also it is important to

perform experiments with more realistic datasets. Moreover, it would be interesting to

evaluate the performance of the system using human evaluations, which will give

better insight of the performance of the system and users’ satisfaction.

Ontology indexing. In our proposals, we use LDA to compute the topic model T in

the system at a specific peer, e.g., the bootstrap server (see Section 3.3.1). The boot-

strap server periodically aggregates a set of documents from the peers and estimates

T. Each version of T is attached with a timestamp value. Each user u periodically con-

tacts the bootstrap server and checks whether the timestamp of the topic model T it

has is different from the one at the bootstrap sever. If that case, u downloads the new

version of the topic model T from the bootstrap sever, and then computes its relevant

topics of interest. Aggregating documents by the bootstrap sever, and continuously

contacting the bootstrap server by users, increases the bandwidth consumed in the

system, and introduces some type of centralization to the system. To handle this, us-

ers’ topics of interest could be represented in terms of concepts (extracted from the

documents they maintain) using a common defined ontology, thus providing more

semantics that could be exploited for indexing contents. In that case, we would not

need a bootstrap server to compute the topic model T in the system.

Recommendation in the Cloud. In cloud computing, services providers host a set of

services at their infrastructures and deliver these services to customers over the inter-

net. Then customers can use these services without installing and storing them in their

personal computers. In the cloud, large amounts of data, content and knowledge are

being spread over the service providers’ infrastructures. Moreover, each provider has

administrative control over the users’ data in its infrastructure and there is neither

communication nor interoperability between providers. To support data sharing

among users that have different cloud providers, we could envision a decentralized

recommendation system for multiple clouds.

Recommendation diversity. Diversity could be exploited as another parameter of

recommendation. When a user submits a keyword query q, typically q includes a few

numbers of keywords. Thus, only the documents that are most similar to q, in terms of

q’s keywords are recommended. However, the user may also be interested in the doc-

uments that fit more general descriptions of q’s keywords. This can be done by ex-

tending q’s keywords (find the synonymy or the keywords that have some relations

with q’s keywords) and including them in q’s body. Another way is to let the system

 134

returns a few documents that are not similar to q, but have some relations (i.e., they

have concepts related to q’s concepts, etc.) with q.

 135

References

[1] Z. Abbassi, S. Amer-Yahia, L-V. Lakshmanan, S. Vassilvitskii, C. Yu. Getting

recommender systems to think outside the box. In Proceedings of the 2009 ACM Conf.

on Recommender Systems (RecSys), 285-288, 2009.

[2] G. Adomavicius, A. Tuzhilin. Toward the next generation of recommender systems: a

survey of the state-of-the-art and possible extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6), 734-749, 2005.

[3] C. Aggarwal, J. Wolf, K. Wu, P. Yu. Horting hatches an egg: A new graph-theoretic

approach to collaborative filtering. In Proceedings of the 5th Int. Conf. on Knowledge

Discovery and Data Mining (SIGKDD), 201-212, 1999.

[4] R. Akbarinia, E. Pacitti, P. Valduriez. Reducing network traffic in unstructured p2p

systems using top-k queries. Distributed and Parallel Databases, 19(2-3), 67-86, 2006.

[5] D. Alan, D-H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H-E. Sturgis, D-C.

Swinehart, D-B. Terry. Epidemic algorithms for replicated database maintenance. In

Proceedings of the 6th ACM Symposium on Principles of Distributed Computing

(PODC), 1-12, 1987.

[6] Alexa-Top sites, 2012. http://www.alexa.com/topsites/

[7] S. Amer-Yahia, J. Huang, C. Yu. Jelly: A Language for Building Community-Centric

Information Exploration Applications. In Proceedings of the 25th Int. Conf. on Data

Engineering (ICDE), 1588-1594, 2009.

[8] S. Amer-Yahia, L. Lakshmanan, C. Yu. SocialScope: Enabling Information Discovery

on Social Content Sites. In the 4th Biennial Conf. on Innovative Data Systems

Research (CIDR), 2009.

[9] S. Amer-Yahia, C. Yu. Leveraging communities in social content sites. In Proceeding

of 2009 EDBT/ICDT Workshops, 1-1, 2009.

[10] Apache Lucene Indexing web site. http://incubator.apache.org/lucene.net/

[11] C. Avery, R. Zeckhauser. Recommender systems for evaluating computer messages.

Communications of the ACM, 40(3), 88-89, 1997.

[12] B. Baeza-Yates, B. Ribeiro-Neto. Modern information retrieval. Addison-Wesley

Harlow, England, 1999.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Cong.html
http://www.informatik.uni-trier.de/~ley/db/conf/edbtw/edbtw2009.html#Amer-YahiaY09

 136

[13] X. Bai, M. Bertier, R. Guerraoui, A-M. Kermarrec, L. Leroy. Gossiping personalized

queries. In 13th Int. Conf. on Extending Database Technology (EDBT), 87-98, 2010.

[14] X. Bai, M. Bertier, R. Guerraoui, A-M. Kermarrec, L. Leroy. Personalized top-k

processing: from centralized to decentralized systems. Ph.D. dissertation, 2010.

http://tel.archives-ouvertes.fr/docs/00/54/56/42/PDF/Thesis_XiaoBai.pdf

[15] M. Balabanovic, Y. Shoham. Fab: Content-Based, Collaborative Recommendation.

Communications of the ACM, 40(3), 66-72, 1997.

[16] M. Bawa, G-S. Manku, P. Raghavan. SETS: Search enhanced by topic segmentation.

In Proceedings of 26
th
 Int. Conf. in Information Retrieval (SIGIR), 306-313, 2003.

[17] D. Billsus, M-J. Pazzani. Learning collaborative information filters. In Proceedings of

the 15th Int. Conf. on Machine Learning. Morgan Kaufmann, 46-54, 1998.

[18] BitTorrent P2P File Sharing. http://www.bittorrent.com/index.html/

[19] D-M. Blei, A-Y. Ng, M-I. Jordan. Latent Dirichlet Allocation. Journal of Machine

Learning Research, 3, 993-1022, 2003.

[20] B-H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7), 422-426, 1970.

[21] A. Bonifati, G. Summa, E. Pacitti, F. Draidi. Semantic Query Reformulation in Social

PDMS. CoRR abs/1111.6084, 2011. Submitted on 25 Nov 2011 to Data & Knowledge

Engineering (DKE) Journal.

[22] N. Borch. Social Peer-to-Peer for social people. Proceedings of the Int. Conf. on

Internet Technologies and Applications, 2005.

[23] J-S. Breese, D. Hecherman, C. Kadie. Empirical analysis of predictive algorithms for

collaborative filtering. In Proceedings of the 14th Conf. on Uncertainty in Artificial

Intelligence, 43-52, 1998.

[24] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker. Web Caching and Zipf-like

Distributions: Evidence and Implications. In Proceedings of the 18th Joint Conf. of the

IEEE Computer and Communications Societies (INFOCOM), 126-134, 1999.

[25] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and

User-Adapted Interaction, 12(4), 331-370, 2002.

[26] J. Callan. Distributed Information Retrieval. In W. B. Croft, editor, Advances in

Information Retrieval, Kluwer Academic Publishers, 127-150, 2000.

[27] M. Chevalier, C. Julien, C. Soulé-Dupuy. Collaborative and Social Information

Retrieval and Access: Techniques for Improved User Modeling. Information science

reference, 2009.

[28] T. Chunqiang, Z. Xu, M. Mahalingam. psearch: information retrieval in structured

overlays. Computer Communication Review, 33(1), 89-94, 2003.

[29] Citeulike web site. http://www.citeulike.org/

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Leroy:Vincent.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Leroy:Vincent.html

 137

[30] A. Crespo, H. Garcia-Molina. Semantic overlay networks for p2p systems. Technical

report, Stanford University, 2003. In the 3rd Int. Workshop, Agents and Peer-to-Peer

Computing (AP2PC), LNCS, 3601, 1-13, 2005.

[31] M-F. Cuenca-Acuna, C. Peery, R-P. Martin, T-D. Nguyen. Planetp: Using gossiping to

build content addressable peer-to-peer information sharing communities. In

Proceedings of the 12th IEEE Int. Symposium on High Performance Distributed

Computing (HPDC), 236-246, 2003.

[32] S-C. Deerwester, S-T. Dumais, T-K. Landauer, G-W. Furnas, R-A. Harshman.

Indexing by Latent Semantic Analysis. Journal of the American Society of Information

Science, 41(6), 391-407, 1990.

[33] Delicious web site. http://delicious.com/

[34] G. Derek, O-M. Donal. Instant Messaging & Presence management in Mobile Ad-Hoc

Networks. In Proceedings of 2nd IEEE Conf. on Pervasive Computing and

Communications Workshops, 55-59, 2004.

[35] R-L. Dice. Measures of the Amount of Ecologic Association between Species. Ecology

26(3), 297-302, 1945.

[36] F. Draidi, E. Pacitti, P. Valduriez, B. Kemme. P2Prec: a Recommendation Service for

P2P Content Sharing Systems. Bases de Donnees Avancees (BDA), 26, 21-40, 2010.

[37] F. Draidi, E. Pacitti, P. Valduriez. Deliverable D5.2: demo of replication, caching and

indexing services. DataRing Project, Dec. 2010.

[38] F. Draidi, E. Pacitti, B. Kemme. P2Prec: a P2P Recommendation System for Large-

scale Data Sharing. Transaction on Large-Scale Data- and Knowledge- Centered

Systems, LNCS, 6790(3), 87-116, 2011.

[39] F. Draidi, E. Pacitti, D. Parigot, G. Verger. Demo of P2Prec: a Social-based P2P

Recommendation System. Journées Bases de Donnees Avancées (BDA), 27, 5-8, 2011.

[40] F. Draidi, E. Pacitti, D. Parigot, G. Verger. P2Prec: a Social-based P2P

Recommendation System. Proceedings of the 20th ACM Conf. on Information and

Knowledge Management (CIKM), 2593-2596, 2011.

[41] F. Draidi, E. Pacitti, M. Cart, H-L. Bouziane. Leveraging Social and Content-based

Recommendation in P2P Systems. The 3rd Int. Conf. on Advances in P2P Systems

(AP2PS), 13-18, 2011.

[42] F. Draidi, E. Pacitti, P. Valduriez. Deliverable D5.3: replication, caching and indexing

services - experiments report. DataRing Project, Dec. 2011.

[43] M. El-Dick, E. Pacitti, R. Akbarinia, B. Kemme. Building a peer-to-peer content

distribution network with high performance, scalability and robustness. Information

Systems, 36(2), 222-247, 2011.

[44] eMule project. http://www.emule project.net.

http://jstor.org/stable/1932409
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1
http://hal-lirmm.ccsd.cnrs.fr/index.php?halsid=fjhqipfrolardobjvl3apfn3d0&view_this_doc=lirmm-00640979&version=1

 138

[45] P-T. Eugster, R. Guerraoui, A-M. Kermarrec, L. Massoulieacute. Epidemic information

dissemination in distributed systems. IEEE Computer, 37, 60-67, 2004.

[46] FaceBook web site. http://www.facebook.com/

[47] A. Fast, D. Jensen, B-N. Levine. Creating social networks to improve peer to peer

networking. In Proceeding of the 11th ACM Int. Conf. on Knowledge Discovery in

Data Mining (SIGKDD), 568-573, 2005.

[48] FastTrack web site. http://www.fasttrack.nu/

[49] W. Gaul, T. Schmidt-Thieme. Recommender systems based on user navigational

behavior in the internet. Behaviormetrika, 29(1), 1-22, 2002.

[50] D. Gavidia, S. Voulgaris, M. Steen. Cyclon: Inexpensive Membership Management for

Unstructured P2P Overlays. Journal of Network and System Management, 13(2), 197-

217, 2005.

[51] Gnutella project. http://www.gnutelliums.com/

[52] J. Golbeck. Computing and Applying Trust in Web-Based Social Networks. Ph.D.

Dissertation, University of Maryland, College Park, 2005.

[53] J. Golbeck, C-N. Ziegler. Generating Predictive Movie Recommendations from Trust

in Social Networks. In Proceedings of the 4th Int. Conf. on Trust Management, iTrust,

93-104, 2006.

[54] D. Goldberg, D. Nichols, B. Oki, D. Terry. Using Collaborative Filtering to Weave an

Information Tapestry. Communication of the ACM, 35(12), 61-70, 1992.

[55] K. Goldberg, T. Roeder, D. Gupta, C. Perkins. Eigentaste: A Constant Time

Collaborative Filtering Algorithm. Information .Retrieval, 4(2), 133-151, 2001.

[56] Google Web Toolkit GWT. http://code.google.com/webtoolkit/

[57] Groove Peer Computing Platform, Groove Networks Inc. http://www.groove.net.

[58] GroupLens Research, MovieLens Data Sets. http://grouplens.org/node/12#attachments/

[59] J-L. Herlocker, J-A. Konstan, A. Borchers, J. Riedl. An Algorithmic Framework for

Performing Collaborative Filtering. In Proceeding of the 22nd Int. Conf. on

Information Retrieval (SIGIR), 230-237, 1999.

[60] W-R. Hersh, C. Buckley, T. Leone, D-H. Hickam. Ohsumed: An interactive retrieval

evaluation and new large test collection for research. In Proceedings of 18th Int. Conf.

in Information Retrieval (SIGIR), 192-201, 1994.

[61] W. Hill, L. Stead, M. Rosenstein, G. Furnas. Recommending and evaluating choices in

a virtual community of use. Conf. Proceedings on Human Factors in Computing

Systems, 194-201, 1995.

[62] HitWise Press Release, July, 11, 2006. http://www.hitwise.com/press-center/hitwise

HS2004/social-networking-june-2006.php/

http://code.google.com/webtoolkit

 139

[63] J. Holliday, R. Steinke, D. Agrawal, A-E. Abbadi. Epidemic algorithms in replicated

databases. IEEE Transactions on Knowledge and Data Engineering, 15(5), 1218-1238,

2003.

[64] A. Iamnitchi, M. Ripeanu, I. Foster. Locating data in (smallworld?) peer-to-peer

scientific collaborations. In proceeding of the 1st Int. Workshop on Peer-to-Peer

Systems (IPTPS), 232-241, 2002.

[65] A. Iamnitchi, I. Foster. Interest-Aware Information Dissemination in Small-World

Communities. In Proceedings of High Performance Distributed Computing (HPDC),

167-175, 2005.

[66] M. Jelasity, A. Montresor. Epidemic-style Proactive Aggregation in Large Overlay

Networks. In Proceedings of the 24th Int. Conf. on Distributed Computing Systems

(ICDCS), 102-109, 2004.

[67] M. Jelasity, M. Alberto, B. Özalp. Gossip-based aggregation in large dynamic

networks. ACM Transactions on Computer Systems (TOCS), 23(3), 219-252, 2005.

[68] M. Jelasity, B. Özalp. T-Man. Gossip-based overlay topology management. In

Proceedings of the 3rd Int. Workshop on Engineering Self-Organizing Systems

(ESOA), LNCS, 3910, 1-15, 2005.

[69] M. Jelasity, S. Voulgaris, R. Guerraoui, A-M. Kermarrec, M-V. Steen. Gossip-based

peer sampling. ACM Transactions on Computer Systems (TOCS), 25(3), 8, 2007.

[70] H. Jin, N. Xiaomin, C. Hanhua. Efficient search for peer-to-peer information retrieval

using semantic small world. In Proceedings of the 5th Int. Conf. on World Wide Web

(WWW), 1003-1004, 2006.

[71] Jtella platform. http://polo.lancs.ac.uk/p2p/JTella/jtella.htm/

[72] JXTA project. http://jxta.kenai.com/

[73] G. Katherine, M. Hayden, R-V. Renesse, W. Vogels, K-P. Birman. GSGC: An efficient

gossip-style garbage collection scheme for scalable reliable multicast. Technical report,

Cornell University, Ithaca, NY, USA, 1997.

[74] D. Kempe, A. Dobra, J. Gehrke. Gossip-based computation of aggregate information.

In Proceedings of the 4th IEEE Symposium on Foundations of Computer Science

(FOCS), 482-491, 2003.

[75] J. Kendall, K. Kendall. Information delivery systems: an exploration of web pull and

push technologies. Communications of the Association for Information Systems (AIS),

1(4), 1-43, 1999.

[76] P-B. Kenneth, H. Mark, O. Oznur, X. Zhen, B. Mihai, M. Yaron. Bimodal multicast.

ACM Transactions on Computer Systems (TOCS), 17(2), 41-88, 1999.

[77] A-M. Kermarrec, M. Laurent, J-G. Ayalvadi. Probabilistic reliable dissemination in

large-scale systems. IEEE Transactions on Parallel and Distributed systems, 14(3),

248-258, 2003.

http://jxta.kenai.com/

 140

[78] A-M. Kermarrec, M-V. Steen. Gossiping in distributed systems. Operating Systems

Review, 41(5),2-7, 2007.

[79] A-M. Kermarrec, V. Leroy, A. Moin, C. Thraves. Application of Random Walks to

Decentralized Recommender Systems. In proceeding of the 14th Int. Conf. in

Principles of Distributed Systems (OPODIS), 48-63, 2010.

[80] H-J. Kim, J-J. Jung, G-S. Jo. Conceptual framework for recommendation system based

on distributed user ratings. In Grid and Cooperative Computing, LNCS, 3032, 115-122,

2004.

[81] M. Kim, V. Raghavan. Adaptive Concept-based Retrieval Using a Neural Network. In

Proceedings of Mathematical/Formal Methods in information retrieval Workshop at the

23th Int. Conf. in Information Retrieval (SIGIR), 33-40, 2000.

[82] R-A. King, A. Hameurlain, F. Morvan. Query Routing and Processing in Peer-To-Peer

Data Sharing Systems. Int. Journal of Database Management Systems, Academy &

Industry Research Collaboration, 2(2),116-139, 2010.

[83] I-A. Klampanos, J-M. Jose. Architecture for information retrieval over semi-

collaborating peer-to-peer networks. In Proceedings of the ACM symposium on

Applied computing, 1078-1083, 2004.

[84] J-A. Konstan, B-N. Miller, D. Maltz, J-L. Herlocker, L-R. Gordon, J. Riedl.

GroupLens: Applying Collaborative Filtering to Usenet News", Communication of the

ACM, 40(3), 77-87, 1997.

[85] S-R. Kruk, S. Decker, A. Gzella, S. Grzonkowski, B. McDaniel. Social semantic

collaborative filtering for digital libraries. Journal of Digital Information, Special Issue

on Personalization, 2006.

[86] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,

S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao. Oceanstore: architecture for

global-scale persistent storage. Proceedings of the 9th Int. conf. on Architectural

support for programming languages and operating systems (ASPLOS), 190-201, 2000.

[87] L. Lacomme, Y. Demazeau, V. Camps. Personalization of a trust network. In

Proceedings of the 1st Int. Conf. on Agents and Artificial Intelligence (ICAART), 408-

415, 2009.

[88] N. Lathia, S. Hailes, L. Capra. Trust-based collaborative filtering. In Joint iTrust and

PST Conf. on Privacy, Trust Management and Security (IFIPTM), 119-134, 2008.

[89] M. Laurent, E-L. Merrer, A-M. Kermarrec, A. Ganesh. Peer counting and sampling in

overlay networks: random walk methods. In Proceedings of the 25th ACM Symposium

on Principles of Distributed Computing (PODC), 123-132, 2006.

[90] L. Lee. Ranking Documents in Thesaurus-Based Boolean Retrieval Systems.

Information Processing and Management: an Int. Journal, 30, 79-91, 1994.

 141

[91] J. Li, B-T. Loo, J. Hellerstein, F. Kaashoek, D-R. Karger, R. Morris. On the Feasibility

of Peer-to-Peer Web Indexing and Search. In Proceedings of the 3rd Int. Workshop on

P2P Systems (IPTPS), 207-215, 2003.

[92] J. Lianga, K. Rakesh, W-R. Keith. The FastTrack overlay: A measurement study.

Computer Networks Journal, 50(6), 842-858, 2006.

[93] G. Linden, B. Smith, J. York. Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing, 76–80, 2003.

[94] F. Liu, M. Li, L. Huang. Distributed information retrieval based on hierarchical

semantic overlay network. In Proceedings of the 3rd Int. Conf. in Grid and Cooperative

Computing (GCC), 657-664, 2004.

[95] LiveJournal social network. http://www.livejournal.com/

[96] Q. Lv, C. Pei, C. Edith, L. Kai, S. Scott. Search and replication in unstructured peer-to-

peer networks. In Proceedings of the 16th ACM Int. Conf. on Supercomputing (ICS),

84-95, 2002.

[97] J-C. Lv, X. Won-Goo. A pure peer-to-peer full text information retrieval system based

on semantic overlay networks. In Proceedings of the 3rd IEEE Int. Symposium on

Network Computing and Applications (NCA), 47-54, 2004.

[98] Market web site eBay http://www.eBay.com/

[99] S. Marti, Ganesan, Garcia-Molina. SPROUT: P2P routing with social networks. In Int.

Workshop on Peer-to-Peer Computing and Data Bases, 425-435, 2004.

[100] P. Massa P. Avesani. Trust-aware collaborative filtering for recommender systems. In:

Int. Conf. on cooperative information systems, LNCS, 3290, 492-508, 2004.

[101] B. Matthias, S. Michel, P. Triantafillou, G. Weikum, .C. Zimmer. Minerva:

collaborative p2p search. In Proceedings of the 31th Int. Conf. on Very Large Data

Bases (VLDB), 1263-1266, 2005.

[102] M-R. Mclaughlin, J-L. Herlocker. A collaborative filtering algorithm and evaluation

metric that accurately model the user experience. In Proceedings of the 27th Int. Con.

on Information Retrieval (SIGIR), 329-336, 2004.

[103] X. Meng, Z. Chen. On User-oriented Measurements of Effectiveness of Web

Information Retrieval Systems. Int. Conf. on Internet Computing, 527-533, 2004.

[104] S. Middleton, N. Shadbolt, D. Roure. Ontological user profiling in recommender

systems. ACM Transactions on Information Systems, 22(1), 54-88, 2004

[105] S. Milgram. The small world problem. Psychology Today 1(1), 61-67, 1967.

[106] B-N. Miller, J-A. Konstan, J. Riedl. PocketLens, Toward a Personal Recommender

System. ACM Transaction on Information Systems, 22(3), 437-476, 2004.

[107] MySpace web site. http://www.myspace.com/

 142

[108] D. Nichols. Implicit rating and filtering. In Proceedings of the 5th DELOS Workshop

on Filtering and Collaborative Filtering, 31-36, 1998.

[109] S. Ogasawara, C. Paulino, L. Gresta, P. Murta, C. Werner, M. Mattoso. Experiment

Line: Software Reuse in Scientific Workflows. Scientific and Statistical Database

Management (SSDBM), 264-272, 2009.

[110] Y. Ogawa, T. Morita, K. Kobayashi. A fuzzy document retrieval system using the

keyword connection matrix and a learning method. Fuzzy Sets and Systems, 39, 163-

179, 1991.

[111] OpenChord DHT project. http://open-chord.sourceforge.net/

[112] OSGi web site. http://www.osgi.org/

[113] T. Özsu, P. Valduriez. Principles of Distributed Database Systems. 3rd edition,

Springer, 2011

[114] L. Page, S. Brin, R. Motwani, T. Winograd. The pagerank citation ranking: Bringing

order to the web. Technical report, Stanford Digital Library Technologies Project,

1998.

[115] A. Paul, P. Alex, R. Chirita, W. Nejdl, O. Scurtu. Knowing where to search:

Personalized search strategies for peers in p2p networks. In Proceedings of the P2P

Information Retrieval Workshop at the 27th Int. Conf. in Information Retrieval

(SIGIR), 2004.

[116] M. Pazzani, D. Billsus. Learning and Revising User Profiles: The Identification of

Interesting Web Sites. Machine Learning, 27(3), 313-331, 1997.

[117] Peersim p2p simulator. http://www.peersim.sourceforge.net/

[118] H. Peng, X. Bo, Y. Fan, S. Ruimin. A scalable p2p recommender system based on

distributed collaborative filtering. Expert systems with applications, 27(2), 203-210,

2004.

[119] X-H. Phan. http://gibbslda.sourceforge.net/

[120] J. Pisson, T. Moors. Survey of research towards robust peer-to-peer networks: search

methods. Computer Networks, 50(17), 3485-3521, 2006.

[121] J-A., Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D-H-J. Epema, M.

Reinders, M-R. Van-Steen, H-J. Sips. TRIBLER: a social-based peer-to-peer system.

Concurrency and Computation: Practice & Experience - Recent Advances in Peer-to-

Peer Systems and Security, 20(2), 127-138, 2008.

[122] Y. Qiao, F-E. Bustamante. Structured and unstructured overlays under the microscope:

a measurement-based view of two P2P systems that people use. In Proceedings of the

USENIX Technical Conf. (ATEC), 341-355, 2006.

[123] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A scalable content-

addressable network. In Proceedings of the 2001 Conf. on Applications, technologies,

http://open-chord.sourceforge.net/
http://www.osgi.org/

 143

architectures, and protocols for computer communications (SIGCOMM), 161-172,

2001.

[124] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl. Grouplens: an open

architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM

Conf. on Computer supported cooperative work, 175-186, 1994.

[125] P. Resnick, H-R. Varian. Recommender systems. Communications of the ACM, 40(3),

56-58, 1997.

[126] S. Robertson, S. Jones. Relevance Weighting of Search Terms. Journal of the American

Society for Information Science, 27 (3), 129-46, 1988.

[127] S. Robertson, D-A. Hull. The TREC-9 filtering track final report. The 9th Text

REtrieval Conf. (TREC-9), 25-40, 2001.

[128] A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. Middleware, 329-350, 2001.

[129] O-D. Sahin, F. Emek¸ci, D. Agrawal, A-F. Abbadi. Content-based similarity search

over peer-to-peer systems. In Proceedings of Databases, Information Systems, and

Peer-to-Peer Computing (DBISP2P), 61-78, 2004.

[130] G. Salton. Theory of Indexing. Conf. Series in Applied Mathematics Society for

Industry and Applied Mathematics, J. W. Arrowsmith Ltd., 1975.

[131] G. Salton, C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5), 513-523, 1988.

[132] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[133] K. Sarda, P. Gupta, D. Mukherjee, S. Padhy, H. Saran. A distributed trust-based

recommendation system on social networks. In 2nd IEEE workshop on Hot Topics

in Web Systems and Technologies (HotWeb), 2008.

[134] S. Saroiu, P-K. Gummadi, S. Gribble. Measurement study of peer-to-peer file sharing

systems. In SPIE Multimedia Computing and Networking (MMCN), 2002.

[135] B-M. Sarwar, G. Karypis, J-A. Konstan, J-T. Riedl. Analysis of recommendation

algorithms for e-commerce. In Proceedings of the 2nd ACM Conf. on Electronic

commerce (EC),158-167, 2000.

[136] B-M. Sarwar, G. Karypis, J-A. Konstan, J-T. Riedl. Item based collaborative filtering

recommendation algorithms. In Proceedings of the 10th Int. World Wide Web Conf. of

ACM, 285–295, 2001.

[137] J-B. Schafer, J-A. Konstan, J-T. Riedl. E-commerce recommandation applications.

Data Mining and Knowledge Discovery, 5(1-2), 115-153, 2001.

[138] A-I. Schein, A. Popescul, L-H. Ungar, D-M. Pennock. Methods and Metrics for Cold-

Start Recommendations. In Proceeding of the 25th Int. Conf. in Information Retrieval

(SIGIR), 253-260, 2002.

 144

[139] U. Shardanand, P. Maes. Social Information Filtering: Algorithms for Automating

"Word of Mouth". In Proceeding of the ACM Conf. on Human Factors in Computing

Systems, 210-217, 1995.

[140] A. Shepitsen, J. Gemmell, B. Mobasher, R. Burke. Personalized recommendation in

social tagging systems using hierarchical clustering. In Proceedings of the 2nd ACM

Conf. on Recommender Systems, 259-266, 2008.

[141] S. Siersdorfer, S. Sizov. Social recommender systems for web 2.0 folksonomies. In

Proceedings of the 20th ACM Conf. on Hypertext and hypermedia, 261-270, 2009.

[142] R. Sinha, K. Swearingen. Comparing Recommendation made by Online Systems and

Friends. Proceeding of the DELOS-NSF Workshop on Personalization and

Recommender Systems in Digital Libraries, 2001.

[143] Slashdot web site. http://www.slashdot.org/

[144] I. Sola-Pool, M. Kochen, S. Milgram, T. Newcomb. The Small World. Ablex,

Norwood, 1989.

[145] V. Spyros, M. Van-Steen. Epidemic-style management of semantic overlays for

content-based searching. In Proceedings of the 11th Int. Euro-Par Conf. (EuroPar),

1143-1152, 2005.

[146] R. Sridharan, A-D. George, R-W. Todd, M-C. Chidester. Gossipstyle failure detection

and distributed consensus for scalable heterogeneous clusters. Cluster Computing,

4(3),197-209, 2001.

[147] K. Sripanidkulchai, B-M. Maggs, H. Zhang. Efficient content location using interest-

based locality in peer-to-peer systems. In Proceedings of the 22nd Joint Conf. of the

IEEE Computer and Communications Societies (INFOCOM), 2003.

[148] I. Stoica, R. Morris, D. Karger, M-F. Kaashoek, B. Balakrishnan, A. Chord. A scalable

peer-to-peer lookup service for internet applications. In Proceedings of the 2001 Conf.

on Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM), 149-160, 2001.

[149] J. Tang, Z. Chen, A-W. Fu, D-W. Cheung. Capabilities of Outlier Detection Schemes

in Large Databases: Framework and Methodologies. Knowledge and Information

Systems, 11(1), 45-84, 2006.

[150] C. Tang, Z. Xu, S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-

Organizing Semantic Overlay Networks. In Proceedings of the 2003 Conf. on

Applications, technologies, architectures, and protocols for computer communications

(SIGCOMM), 175-186, 2003.

[151] Y. Teh, M. Jordan, M. Beal, D. Blei. Hierarchical Dirichlet processes. Journal of the

American Statistical Association, 101(476),1566-1581, 2006.

[152] ‎The friend of a friend (FOAF) project. http://www.foaf-project.org/

[153] The Grid’5000 web site. http://www.grid5000.fr/

 145

[154] The PlanetLab web site. http://www.planet-lab.org/

[155] K-H-L. Tso-Sutter, L-B. Marinho, L. Schmidt-Thieme. Tag-aware Recommender

Systems by Fusion of Collaborative Filtering Algorithms. In Proceeding of 23rd ACM

Symposium on Applied Computing, 16-20, 2008.

[156] A. Tveit. Peer-to-Peer Based Recommendations for Mobile Commerce. Proceedings of

the Int. Workshop on Mobile Commerce, 26-29, 2001.

[157] B. Upadhyaya, C. Eunmi. Social Overlay: P2P Infrastructure for Social Networks. In

Proceedings of the Int. Conf. on Networked Computing and Advanced Information

Management (NCM) 970-976, 2009.

[158] Y. Upadrashta, J. Vassileva, W. Grassmann. Social Networks in Peer-to-Peer Systems.

Proceedings of the 38th Hawaii Int. Conf. on System Sciences (HICSS), 3-6, 2005.

[159] H. Uri, B. Shapira, P. Shoval. Information Filtering: Overview of Issues, Research and

Systems. User Modeling and User-Adapted Interaction, 11, 203-259, 2001.

[160] J. Verhoeff, W. Goffman, J. Belzer. Inefficiency of the use of Boolean functions for

information retrieval systems. Communications of the ACM, 4 (12), 557-558, 1961.

[161] C. Vicent, P. Felber, E. Biersack. Efficient search in unstructured peer-to-peer

networks. In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA), 271-272, 2004.

[162] J. Wang, J. Pouwelse, R-L. Lagendijk, M-J-T. Reinders. Distributive collaborative

filtering for Peer-to-Peer file sharing systems. In Proceeding of ACM symposium on

applied computing, 1026–1030, 2006.

[163] J. Wang, J-A. Pouwelse, J-D-V. Fokker, M-J-T. Reinders. Personalization of peer-to-

peer television system. Multimedia Tool and Applications, 36(1-2), 89-113, 2008.

[164] Wikipedia the free encyclopedia. http://en.wikipedia.org/

[165] Wikipedia vote network. http://snap.stanford.edu/data/ wiki-Vote.html/

[166] R. Wilkinson, P. Hingston. Using the cosine measure in a neural network for document

retrieval. In Proceedings of the 14th Int. Conf. in information retrieval (SIGIR), 202-

210, 1991.

[167] B. Yann, A-M. Kermarrec. Proxsem: Interest-based proximity measure to improve

search efficiency in p2p systems. In Proceedings of the 4th European Conf. on

Universal Multiservice Networks (ECUMN), 62-74, 2007.

[168] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, H-P. Kriegel. Probabilistic memory-based

collaborative filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1),

56-69, 2004.

[169] B. Zhao, J. Kubiatowicz, A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-

area location and routing. Technical Report, U. C. Berkeley, 2001.

 146

[170] C-N. Ziegler, S-M. Mcnee, J-A. Konstan, G. Lausen. Improving recommendation lists

through topic diversification. In Proceedings of the 14th Int. Conf. on World Wide Web

(WWW), 22-32, 2005.

