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David GROSS-AMBLARD
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9.1.1 Objectif de la thèse . . . . . . . . . . . . . . . . . . . . . . 97
9.1.2 Structure du manuscrit . . . . . . . . . . . . . . . . . . . . 98
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6 Contents
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Chapter 1

Introduction

1.1 Content-Based Retrieval usage at the turn

of the century

Content-Based Retrieval (CBR) is the generic term describing the problem of
searching for digital material in large multimedia databases. CBR systems are
of great diversity: they deal with a plurality of media (text, still images, music,
videos) and offer a wide range of querying modes, from simple query-by-example
schemes to more complex search processes involving user feedback aiming at best
bridging the semantic gap. In a way, CBR systems promote the cultural and
historical value of multimedia contents. They make the multimedia databases
very useful, their contents reusable, spurring the enrichment of the artistic and
cultural patrimony. CBR has proved to be a marvelous technology, recognizing
content even when severely distorted.

Here are two recent applications of such content recognition that reached the
public and are becoming quite popular: anyone can download a small application
for Apple’s iPhone that does song recognition. It uses low level audio signatures
and content-based similarity searches. Also, anyone can now create superb image
panoramas with fully automatic geometrical and color corrections. It uses local
image descriptor type of content-based techniques. Overall, CBR systems have so
far been used in very cooperative and “friendly” settings where it benefits content
providers business, while increasing users digital experience enjoyment.

From Friendly to Hostile Environments
However, we recently witness another use of this technology. CBR is used to

filter multimedia contents in order to protect the creation of the few from the
piracy of the many [46, 49, 73]. CBR techniques are used to “clean the Internet”,
stopping the upload of material violating copyright law on User Generated Con-
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8 Introduction

tents (UGC) sharing platforms such as YouTube, or forbidding downloads from
P2P networks. During the Online Content for Creativity conference, organized by
the European Commission Directorate-General for Information Society and Me-
dia, panelists were asked “Is filtering DRM 2.0?”. But tables turn: MultiMedia
Intelligence, a market research firm, published a study in January 2008 predicting
that these content identification technologies are “poised for dramatic growth as
they could fulfil the potential of digital rights technologies for monetizing digital
content”. Instead of forbidding the upload of illegal copyrighted materials, UGC
sites now imagine ways to monetize that contents as it is indirectly a form of
advertisement for the copyright holders.

Overall, filtering is an application of CBR techniques that is quite different
from its primary goal: the environment is now hostile in the sense that filter-
ing restricts users freedom, controlling and/or forbidding distribution of content.
Filtering typically requires to extract low-level signatures from multimedia con-
tents and to query a database containing the material to be protected. Alarms
suggesting copyright infringements are raised when matches are found.

The traditional approach for copyright protection is digital watermarking.
This approach refers to the process of embedding information to multimedia con-
tent which may be used to verify its authenticity or the identity of its owners.
However, the Achilles’ heel of digital watermarking is its robustness against geo-
metrical attacks (cropping, stretching, change of aspect ratio, etc) and the lack of
diversity in the secret keys. Because of the disadvantages of digital watermarking,
various Content-Based Retrieval Systems [46, 49, 73, 69, 53, 78, 50, 10, 4, 35, 32,
64, 26, 66, 89, 85, 54] enforcing copyright protection for images and videos have
been recently proposed. Evaluating their efficiency is so crucial in the real-world
that a specific track (Content-Based Copy Detection track) runs since the 2008
TRECVID challenge [84].

In all new applications of CBR, systems no longer magnify cultural richness,
but protect the commercial value of contents. Because there are valuable goods
to protect, there may have serious hackers willing to circumvent the system.
Therefore, it is legitimate to carefully investigate the security side of content-
based retrieval system − this is the goal of this thesis.

1.2 Focus of the thesis

The work presented in this thesis focuses on Content-Based Image Retrieval Sys-
tems, CBIRS. There are some actors playing a role in the system and they can be
trusted or not. However, in this thesis, we work under assumption that querying
users are dishonest; they are pirates. Under this assumption, CBIRS’ use in a
hostile context raises the problem of their security: is it possible for a dishonest



Focus of the thesis 9

(a) Original Lena (b) Modified Lena

Figure 1.1: Right: Original Lena. Left: visual rendering after successive applica-
tion of the proposed modifications. Detail of this figure is shown in section 6.4.1.

querying user (pirate) to mislead such a system so that it doesn’t recognize a
carefully distorted quasi-copy of a protected image? The goal of this thesis is
to examine this new problem of characterizing the security of existing
content-based copy detection systems.

The CBIRS considered in the thesis is made of several components. The early
component connected to the query image. The descriptors from this image are
extracted and used for retrieval via a high-dimensional search strategy. Then
results of retrieval is enhanced via false positive removal, resulting in a list of
ordered images. The system decides whether query is or is not quasi-copy of
the protected image by considering top images in the result list. If the protected
image appears at the top of the result list, it means that the query is a quasi-copy.

The thesis focuses on the visual modifications of the protected image to dis-
turb its descriptors such that the system fails to recognize the modified image
(quasi-copy). In particular, the thesis will define modifications and check their
impact on the descriptors. These modifications must be sufficiently important to
deteriorate the image description without too severe visual artefacts. Figure 1.1
shows the original Lena image (left) and its modified image (right) after applying
the proposed modifications. The PSNR between original Lena and modified Lena
images is 31.30 dB.

The description studied in the thesis is “Scale Invariant Feature Transform
(SIFT)”, which is state of the art among the local description techniques. Based
on a deep understanding about SIFT, we propose some techniques to delude
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SIFT-based CBIRS. The modifications can be performed at the detection feature
step or at the descriptor computation step, or both. We also propose a technique
to attack the geometric verification step used as a post-filtering for removing false
positives among the results returned by the retrieval.

1.3 Structure of the thesis

This thesis targets the security problems of CBIRS. For that purpose, in chapter 2,
we clarify the difference between two concepts: robustness and security. Then,
a security threats analysis of CBIRS is proposed. In detail, we present a trust
model defining who can be pirate in CBIRS, the goals of the pirate in a particular
application, the level of knowledge the pirate can have on a system. With respect
to this latter point, we built some considerations about the Kerckhoffs’ principle
and the way it applies for CBIRS. Depending on the knowledge of the pirate, we
list some kinds of attacks.

In chapter 3, we describe a complete CBIRS. Especially, we focus on the main
components of the system such as feature extraction, indexing and false positive
removal. Because this thesis focuses on the visual modifications of images to
disturb their descriptors, the state of the art about attacking content methods
and detecting attacked contents methods is also mentioned in chapter 3. Chap-
ter 4 presents an overview of the three angles of attacks, including attacking the
keypoint detection, attacking the keypoint description and attacking the false
positive removal, against a CBIRS based on SIFT and the experiment setup.

Main Contributions The main contributions of thesis are in chapters 5, 6
and 7. In chapter 5, some techniques to attack SIFT detection step are proposed.
The attack can be keypoint removal or keypoint creation. Chapter 6 proposes
a method to attack descriptor computation. This is done by changing the ori-
entation of the SIFT keypoints. A learning approach using SVM is proposed to
solve this problem. The attack against a complete CBIRS including a geometric
verification as post-filtering is proposed in chapter 7. The proposed attack is a
kind of Picture in Picture visual modification seen from a security perspective.
It includes some complex steps as the selection of candidate images, the cre-
ation of visual patches, the insertion of patches, and the blur of the boundaries.
The experimental results show that our approach can delude the recognition of a
complete CBIRS.

Chapter 8 ends the thesis by stating the lessons drawn from this study and
presenting some perspectives of future research directions.



Chapter 2

Security threats of CBIRS

The previous chapter explains that CBIRS is used for filtering multimedia content
and their effectiveness has been evaluated by the research community. However,
these evaluations only consider the ability of CBIRS to recognize content modified
by basic modifications, which do not require any knowledge about the system.
In other words, they evaluate the robustness of CBIRS. Intuitively, a pirate can
deludes a system by exploiting his knowledge about the technologies used in the
system. From this inspiration, in this thesis, we consider CBIRS under a new
perspective: security.

First, it is necessary to clarify upfront the concept of security since robustness
is a very similar notion masking what is at stake with security. After showing the
difference between these two concepts, we provide a more solid plot about the
security of CBIRS.

This chapter is structured as follows. Section 2.1 defines what is security
for CBIRS and how it differs from robustness. Section 2.2 presents the security
threats of CBIRS. Section 2.3 concludes the chapter and introduces the work of
the next chapter.

2.1 What is security?

Nowadays, CBIRS typically use advanced indexing techniques and powerful low-
level visual descriptors, making them both efficient and effective at returning the
images from a database that are similar to query images. An abundant literature
describes such systems and evaluates their ability to match images despite severe
distortions [46, 21, 84].

CBIRS is deemed robust if the system succeeds in recognizing contents despite
modifications. Robustness assessment is what has been done for years, bench-
marking CBIRS against some general modifications such as geometric transfor-
mations, cropping, stretching, color adjustment, lossy compression, . . . These

11



12 Chapter1

modifications are the basis of standard image processing softwares such as Adobe
Photoshop, Microsoft Paint, . . . and they do not focus on any specific techniques
related to security. However, the security of CBIRS is different from robustness.

The security of CBIRS is challenged when pirates mount attacks after hav-
ing accumulated a deep knowledge about a particular system, focusing on very
specific parts where flaws have been identified.

Security is different from robustness in many points. A pirate is of course
operating with the malicious purpose of deluding the system. He doesn’t use
classical image processing tools such as the ones provided by a photo editor
software. He mounts his own attack, a process dedicated to delude a particular
content identification technique. He doesn’t blindly lead an attack, instead he first
observes and accumulates knowledge about the details of the CBIRS techniques
and then focuses attacks on very specific parts of the system where flaws have
been identified. Because security attacks are designed based on some knowledge
about system, they have in general bigger success rates than robustness attacks.
Two following examples might help capturing the differences between robustness
and security in the context of CBIRS.

Content Concealment The goal of the pirate is, in this case, to upload some
illegal material inside a UGC platform such that it is not detected, concealed
from the content filter. From white papers, from information in the press, from
technical blogs, the pirate can learn what specific technique is used for extracting
features. In contrast to classical image modifications, such as cropping, cam-
cording, severe compressions, etc, that are pretty well absorbed by copyright
protection CBIRS, the pirate can produce very specific modifications generating
quite different features. Here, the extensive knowledge of the feature extraction
method allows for specific attacks. For example, robust features may be extracted
according to a two phase process first detecting points of interest in images and
then calculating features around each point. Obviously, specifically attacking
the point detector by deleting points, adding artificial points or changing their
location in images may have a strong impact on the features.

Abnormally Frequent Identifications Thanks to photo portals, users can
now buy beautiful pictures on-line. Once the picture of interest is found, they can
receive a high-quality printed poster in their mail box. The typical process starts
with checking a first page of thumbnails, and, with the help of keywords, relevance
feedback and/or visual similarity searches, iterative refinements eventually isolate
the picture to purchase. Once bought, various people (the photographer, portal
keepers, . . . ) get payed. Like pirates tweak HTML pages to get ranked higher in
textual search engines (this is known as “black hat Search Engine Optimization
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(SEO)” attack1), a pirate can tweak the visual contents of images such that
they always get (artificially) ranked high in the result list of similarity searches,
or, in contrast, tweak other images such that their ranks get lowered. In this
case, the pirate can be someone working for the portal, and who receives dirty
money by secretly favoring a particular photographer or photo agency. Note that
similar effect can be produced by a pirate spying the communication channels
and inserting well chosen contents on-the-fly in the image result list sent back to
the user.

In the next section, we give a brief overview of various problems dealing
with security. It adapts the security problems from digital watermarking and
cryptography to the special case of CBIRS.

2.2 Security threats of CBIRS

First, it is important to clarify who are the actors playing a role in the system,
then it must be clear what are the goals of the pirates, what are measurements the
success or failing of an attack, what type of knowledge on the system’s internal
the pirate can get, and whether the pirate can get access to some of its building
blocks found off-the-shelf (or elsewhere). Even if the exact same core technology
was used in all systems, the conclusions of the security analyses would differ
depending on the nature of the application, on the target chosen by the pirate,
on the level of details he has on the specific techniques of the system and whether
he has any role inside the system itself (as in the photo portal example above).
There are at least the following four important classes of assumptions that need
to be clarified.

2.2.1 Trust model

Any security analysis relies on a trust model which lists the actors playing a
role in the system and whether they can be trusted or not. There are typically
four different actors in any scenario involving a CBIRS. The actors may be real
persons or key software components. These actors are:

1. The image right-holder who is entitled to upload his works or their low-level
features in the database.

2. The image server where a collection of features (computed from uploaded
images) is indexed in a database used for building the answers of content-
based queries.

1“black hat SEO” attack is a technique to rise the rank of web pages in an unethical manner.
For example, an attacker can stuff in his website many key words or invisible texts such that
his site gets a high rank when a textual search engine (eg. Google) searches for a user query.
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3. The querying user who comes up with a particular image to search for.

4. The client software which processes the query image, connects to the server,
send requests, receives and processes answers before displaying them.

The trust model states which actors honestly play open cards and which actors
want to delude the system. There are a priory many possible trust models as any
of the four above-mentioned actors, or even worse, a collusion of several of them,
can be suspected of dishonesty. The most classical scenario is when the user is
the pirate forging illegal copies to be concealed from the system, all other actors
being trusted. An other trust model is, for instance, a right-holder modifying his
contents in order to increase the recognition rate because he receives incentives
whenever the query is deemed to be a copy of his works.

2.2.2 Goals of the pirate

The goals of the pirates might also be very different from an application to the
other. In the context of CBIRS, we can easily identify two main goals:

1. Producing false negatives. The pirate manipulates images that the CBIRS
fails to detect. This encompasses two situations. Either the query is manip-
ulated, either some documents in the database are manipulated: when the
server is not trusted, artificially deleting some relevant matches from the
result list before sending it back to the client indeed produces some false
negatives.

2. Producing false positives. The pirate manipulates multimedia material such
that it will always be detected by the system (even truly innocuous con-
tents). This also encompasses two situations: the pirate produces problem-
atic queries triggering a denial of service, or the manipulated data belongs
to the database to artificially multiply matches.

2.2.3 Measurements

Hacking CBIRS is quite different from hacking a cryptosystem where the disclo-
sure of the secret key grants full decryption of ciphertexts. Here, the success or
failing of an attack cannot be simply measured by a binary answer.

Attacking a protected image results in content manipulation that induces
distortion. The PSNR2 measures this distortion with respect to the original
image in terms of Euclidean distance in logarithmic scales (the bigger the PSNR,

2Peak Signal to Noise Ratio
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the lower the distortion). Intuitively, the stronger the distortion, the higher the
success chances of an attack.

For the false negative goal, an attack on the query succeeds if the CBIRS can
not detect that the query is a quasi-copy of one of the images in the database. In
other words, the protected image should not be ranked at the first position in the
list of ordered images returned by the retrieval process. The second condition is
that the visual quality of the attacked image is acceptable. Therefore, an attack
against CBIRS can be characterized by an operating curve that represents the
relation of rank of protected image (let this rank be r) and the PSNR. The key
issue of CBIRS security is whether security attacks have much more powerful
operating curves than edition processing, by decreasing r for a given PSNR. In
the experiment, whenever a proposed attack is evaluated (chapters 5, 6 and 7),
we will have a look on r and PSNR.

2.2.4 The Knowledge of the pirate

Obviously, the pirate’s knowledge about the system have a strong impact. The
more knowledge the pirate has gathered, the more malicious attack he can design.
In this section, we present the Kerckhoffs’ principle which is the main working
assumption in cryptography. After that, we illustrate this concept by listing
attacks and the required knowledge.

2.2.4.1 Kerckhoffs’ Principle

Generally speaking, there are two broad approaches to keep things secret: the
first approach maintains security of the system through obscurity. The second
approach maintains security through the use of cryptographic-based techniques
defining a secret key [43]. Security through obscurity relies on the bet that pirates
may have very hard time to precisely know what are the algorithms used in the
system, what are the implementation details, what are the parameters and what
can be their values. In other words, the security through obscurity assumes the
pirates are unlikely to find the security flaws due to the great complexity of
the system they are attacking. It has been demonstrated that solely relying on
obscurity is not reliable. Pirates look for any piece of information in publications,
patents, standards or by social engineering. It is impossible to empirically assess
how difficult it is to disclose information about a system. The second drawback
of security through obscurity is the high cost of changing the algorithm if it
gets disclosed. Designers need to re-implement another obscure algorithm, likely
way different, with heavy testing phases and a high burden for deploying the
algorithm on sites. These problems have been reported since a long time and
Kerckhoffs came up with several design principles still applicable today [43]. His
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best known principle says that the system must remain secure even if everything
about the system, except a secret key, is public knowledge. A secret key is a piece
of information that determines the output of a particular algorithm: the same
algorithm does not produces the same output if it is fed with the same data but
with different keys. This secret key solely guarantees the security of the system.
As it is much easier to protect a small piece of information (the secret key) than a
complete system by obscurity, secure systems using secret keys are more reliable.
A secret key is one or more very large random number. Finding its value by an
exhaustive search is almost impossible as the key space is very large. If the secret
key is discovered, then creating a new key is easy and fast. Real-world secure
systems typically include secret keys and/or elements of obscurity.

If the algorithm is known, two neighboring concepts were defined by the digital
watermarking community:

• The worst case attack is the most efficient attack when the pirate knows
the algorithm but not the secret key [87]. Efficiency is typically measured
by the loss of quality versus the increase in probability of watermarking
decoding errors.

• The security hack is different in the sense that the pirate first takes time to
analyze observations in order to estimate the missing information such as
the secret key, and then leads an attack based on this stolen knowledge [9].

2.2.4.2 The Kerckhoffs principle and CBIRS

We discuss here how the Kerckhoffs principle applies to CBIRS. From a bird’s
eye point of view, CBIRS can be classified in two broad categories depending on
whether they use secret-based techniques or not.

Secret-based CBIRS Very few CBIRS use a secret key. Among this small
group, some use the secret key to generate a private selection of parts of the con-
tents [45] or of parts of its features. Another approach defines a secret transform
which extracts some private features [59]. Both [40, 80] define a secret quantifier
used to quantize the extracted features. In this context, the worst case attack is
the best process in terms of probability of successfully changing the robust hash,
and quality of the manipulated content. On the other hand, a security hack is
possible by observing pairs of an image and its robust hash. This attack frame-
work can be entitled KIA for Known Image Attack, a terminology coming from
the cryptanalysis: in the Known Plaintext Attack, the adversary observes pairs
of plain and cipher texts. The assessment evaluates the security level as the num-
ber of pairs needed to disclose the secret key with a given accuracy. This is also
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known as the unicity distance [60]. Then, a second step is to mount the attack
itself which takes full advantage of the disclosed key to forge pirated images.

Non Secret-based CBIRS Most CBIRS do not include any secret key. There-
fore, there is no security hacks against these non-secret techniques, but just worst
case attacks. There are certainly plenty of parameters which are unknown to
the pirate. However, the pirate knows that the designer of the algorithm fine-
tuned the values of these parameters to provide the best performance. Therefore,
those parameters are usually not random, and it is possible to, at least, estimate
windows where their true values lie by using common sense, logic and careful
thinking.

Knowing the Contents of the Database A critical point specific to CBIRS
security is whether or not the pirate partially knows the contents of the database.
Rising false alarms becomes much easier if the pirate has this knowledge. It can
simply be acquired thanks to the reputation of the image server making public the
names of solid clients it is working with. Or, specific database probing protocols
can be cooked by the pirate to get a glimpse of the contents. This is related to
the concept of oracles, detailed next.

2.2.4.3 Access to Oracles

In cryptanalysis and digital watermarking security assessments, there is a class
of attack named oracle attacks. The pirate has an unlimited access to a piece of
software that is part of the system under scrutiny - this piece is said to be an
oracle. It may even be a sealed black box process. What matters is the access to
the output and the total freedom to run that software on any arbitrary, yet well
chosen, input. With CBIRS, one oracle could be the software calculating local
descriptors, or the filtering system itself giving a binary decision. There are two
families of oracle attacks: the Chosen Image Attack (CIA) [11] and the Closest
Point Attack (CPA) [65].

Chosen Image Attack In this case, the pirate aims at disclosing a secret by
challenging the oracle. The difference with the KIA (see 2.2.4.2) is that the pirate
is allowed to choose the images sequentially. For secret-based CBIRS, the pirate
iteratively creates an image, observes its robust hash and gain knowledge about
the secret key with the minimum number of calls to the oracle. For non secret-
based CBIRS, the pirate can tests whether a given image feature, such as the
chrominance channels, play any role in the search.
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Closest Point Attack Here, the pirate is not interested in disclosing any se-
cret. He has a content which is filtered out by the system, and his goal is to forge
the least degraded copy of this content which will not be blocked by the filter.
In the content space, the content is a point belonging to the acceptance region
of the filter. A very degraded copy is another point lying outside this region.
The question is about the fastest iterative process increasing the quality of the
pirated copy. For instance, as a toy example, within few oracle trials and the
help of a dichotomy search, the pirate easily finds the content which lies at the
boundary of the acceptance region. Interesting results are known in the water-
marking community: there exist algorithms which do not need any assumption
about the shape of the acceptance region, or in other words, about the technique
used by the filter [65]. The increase in quality is very fast at the beginning (ie.
in the first hundreds of trials) and then it is going very slowly requiring millions
of trials to get any substantial quality gain [23].

2.3 Summary

From the intuition that a pirate can delude a system if he has a deep knowledge
about its internal technologies, in this chapter, we have considered CBIRS from
a security point of view. First, we provided the definition about the security of
CBIRS. After that, we described the key ingredients of a security threats analysis
such as the trust model, the goals of pirate, the measurements for an attack, the
working assumptions (e.g. Kerckhoffs principle) and also the kind of attacks a
pirate can design. A significant part of the work presented in this chapter has
been published in [18].

In the next chapter, we present a complete CBIRS as well as the state of the
art methods to attack content and detect attacked content.
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State of the art

In the previous chapter, we presented the security threats of CBIRS. This chapter
nows underlines that the security of a CBIRS strongly depends on the knowledge
of the pirate about system. It consists of the state of the art of the main compo-
nents of the system where attacks can appear. Although several actors of CBIRS
might be dishonest (section 2.2.1), this thesis assumes that the pirate is the query-
ing user. Under this assumption, the pirate leads his attack on the query image.
This chapter also gives the state of the art of the attacks at the query side.

This chapter is structured as follows. Section 3.1 presents the overview of a
CBIRS. Section 3.2 gives the state of the art about attacking content methods
and also detecting attacked contents methods. Section 3.3 concludes the chapter.

3.1 Overview of CBIRS

Many CBIRS are proposed in the literature. The general schema of a CBIRS is
shown in figure 3.1.

There are three main components in a CBIRS, which are “feature extraction”,
“indexing” and “false positive removal”. The action of a CBIRS system can be
divided into two stages. The first stage computes features for all raw images in
the database. These features are indexed to create a database. This stage is done
off-line. This stage appears in blue dash lines in figure 3.1. At the second stage,
or on-line stage, the user queries an image to the system. First, the features of the
image are extracted. These features are used to query the database of indexed
features computed at first stage resulting in a short list of candidate images.
The search process at second stage ranks the database images without exploiting
geometric information. The accuracy may be improved by adding a “false positive
removal” stage1 [72]. The short list of candidate images is subjected to the “false

1“False positive removal” will filters matching descriptors that are not consistent in terms
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Figure 3.1: General overview of a CBIRS

positive removal” step in order to rerank images. The reranked list is shown to
the user. The higher the rank, the more similar to the query image the images
are. This second stage is marked in red dash lines in figure 3.1.

The next sections detail each component of the system by its state of the art.

3.1.1 Feature extraction

This component extracts a low-level description of the images. The descriptors
are typically high-dimensional vectors, which can be compared with a specific
metric (often L2). An image is described by a global feature or a set of local
features.

Global feature Quantization is used to build a histogram for the whole image
in the spatial domain (e.g. histogram of color) or in the transformed domain (e.g.
histogram of textures, edges, ...). Typical color systems and transforms used in
this approach are

• Color: HSV, Lab,... [14, 12, 79, 77]

• Transform: Gabor / Fourier / Wavelet transform applied to image, a his-
togram is built in the transform domain [67, 44]

The global description is efficient with respect to computation time and stor-
age footprint, but not very accurate. For example, two images can have similar

of angle, scale and positions.
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histograms of colors or edges but very different visual content. The global feature
in CBIRS tends to generate many false positives. Furthermore, the global descrip-
tors are not so robust against common modifications like affine transformations,
cropping . . .

Local feature Recently, many CBIRS use a local description because it is more
robust against affine transformations, cropping, illumination adjustment . . . The
local feature extraction is in two steps. At the first step, some local interest re-
gions in the image are localized by the region detector. At the second step, the de-
scriptors of these local regions are computed. Some state of the art feature detec-
tors are Harris corner detector [30], FAST corner detector [74], DOG [56], LOG,
Harris-Laplace, Harris-Affine, Hessian-Laplace, Hessian-Affine [61, 62]. Some lo-
cal regions description are SIFT [56], PCA-SIFT [41], SURF [5], DAISY [82, 83],
or GLOH [63]. SURF, GLOH and DAISY are extensions of SIFT.

In [63], the authors make an evaluation of common local descriptors like SIFT,
GLOH, shape context [6], and spin image [47]. Given an image, they applied
some modifications such as scale changes, image rotation, image blur, JPEG
compression, or illumination changes to the image. After that, they perform a
matching between original and modified images. The results show that SIFT and
GLOH have a bigger number of correct matches than the other competitors.

3.1.2 Indexing

In a CBIRS using global descriptor, only one vector describes an image, however,
when the size of the database is big (e.g. 100M images), finding the nearest
neighbors of a query vector by the exhaustive search is very time consuming.
This problem becomes more significant for CBIRS based on local descriptors
where each image can have thousands of local high dimensional descriptors (e.g.
128 dimensions for SIFT). This results in billions of vectors in the database. For
each local descriptor vector of the query image, the exhaustive search looking
for the nearest neighbor vectors is impractical. An indexing scheme is designed
to yield a faster search. Indexing techniques are divided into two categories.
The first category performs an exact search method such as KDTree [25] or R-
Trees [28]. The second category performs an approximate search such as K-
means [58] and its variations (Approximate K-means (AKM), Hierarchical K-
means (HKM) [72]), Bag Of Feature [76] and its improved versions [37], Locality-
Sensitive Hashing [15, 27], or NVTree [48].
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3.1.3 False positive removal

Many CBIRS use various techniques to improve the quality of search results. A
common approach is to check the geometric consistency between the query image
and the images of the short list. The usual methods are:

• Generalised Hough Transform(GHT) [3, 56],

• RANSAC [24, 52, 72].

The general idea of these methods is to detect an affine transforms between two
images (the query image and one image in the short list). The number of local
features complying with the detected transformation is the final score of the
image. This produces a re-ranking in the short list.

3.2 Security of contents

As said in section 1.2, we consider in this thesis the security of CBIRS under the
assumption that the pirate is the querying user who comes up with a particular
image to be searched for. With this assumption, the pirate modifies / attacks
the query image to achieve his goal. In this section, we present a state of the
art of such attacks and also some counter-attacks. These attacks are divided
into two categories. The first category gathers the attacks designed to break the
robustness of CBIRS. The other category is composed by the attacks breaking
the security of CBIRS.

3.2.1 Robustness attacks

The pirate creates quasi-copies by applying some standard modifications such as
rotation, shearing, resampling, resizing, cropping, filtering, loss compression . . .
and their combination. These modifications can be found in many image pro-
cessing softwares such as Adobe Photoshop, Microsoft Paint . . .

Another tool to create quasi-copy is Stirmark [71]. Originally, StirMark is
a generic tool for benchmarking the robustness of still image watermarking al-
gorithms. Basically, StirMark simulates a resampling process, i.e. it introduces
the same kind of distortions than one would expect if we print an image on a
high-quality printer and then scan the document with a high-quality scanner.
The algorithm applies a minor geometric distortion, i.e. the image is slightly and
locally stretched, sheared, shifted, and/or rotated by an unnoticeable random
amount and then resampled by a bi-linear interpolation. Figure 3.2 illustrates
the StirMark attack with the Lena image.
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Figure 3.2: StirMark attack on Lena image

Another kind of attack, which does not apply geometric transformation is
image tampering. In this attack, some parts in the quasi-copy are copied from
other images or other parts of the protected image are cloned or an object/person
is covered, or a combination of these operations. An illustration of tampering
attack is given in figure 3.3.

Figure 3.3: An example of tampering attack that appeared in press in July, 2008.
The tampered image on the right shows four Iranian missiles but only three of
them are real. Two different sections (marked in red and purple) are replicates
of other image parts. (Figure is from [2])

All attacks mentioned above are basic and may be used against various sys-
tems. They are not specific of any system. They challenge the robustness of
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CBIRS and do not give any information about security angle.

3.2.2 Security attacks

As presented above, there are many attacks challenging the robustness of CBIRS.
In contrast, very few works propose attacks to evaluate the security of the sys-
tem. In [33], Hsu et al. proposed an attack to an image authentication system
hashing SIFT features. Their attack tries to remove SIFT keypoints inside the
image. In brief, given the location of an interest point in the image, the idea is
to locally add a patch ǫ to this interest region Im = I + ǫ, such that there is
no longer a unique local extremum at this point and therefore the keypoint has
been successfully removed. They claim that their attack succeeds in breaking the
targeted authentication scheme.

We study their attack in our copy detection scenario using a CBIRS instead
of the hashing. After carefully implementing their anti-SIFT attacks and running
experiments, we have the conclusion that their attack can not break CBIRS [20].
The attacked images are still matching their original version. After some inves-
tigations, the drawback of their method is that removing keypoints triggers the
creation of new and undesired ones that match to the original keypoint. One
example is presented below.

We apply the patch ǫ using their method at a particular position (x1, y1) of
the Lena image. It was originally detected as a keypoint because of its local
maximum at scale σ = 1.37. Fig. 3.4(a) shows the Difference of Gaussian (DoG)
local extremum originally detected, identified on the figure by a blue square, and
the second extrema in its neighborhood (green circle). After attack (x1, y1) is no
longer an extremum as the original first and second local extrema values are now
equal (Fig. 3.4(b)). However, a side effect of their method is the creation of a
new local extremum in the neighborhood of (x1, y1) as indicated by a red triangle
on Fig. 3.4(b).

In our experiment, we found that the local description of these new keypoints
is too similar to the description of the removed keypoints. Hence, these descriptors
are easy to match. The protected image is still identified when quasi-copy image
is queried. Hence, this attack is not at all a threat for CBIRS based on SIFT.

3.2.3 Competitive technologies

Digital watermarking is a competitive technology for monitoring content con-
sumption and detecting fraudulent use of copyrighted material. It embeds meta-
data in multimedia content in a robust and imperceptible way [13] . The metadata
are of different nature depending on the application. Examples are name of the
copyright right holders, identity of the consumer / buyer or the provider, iden-
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Figure 3.4: Effect of Hsu’s attack on the 5x5 neighborhood of a particular key-
point: (a) original DoG values, (b) DoG values after attack.
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tifier of the content, licensing term of usage. The embedder and the decoder
share a secret key, which prevents dishonest user to access to the watermarking
channel.

The main advantages of digital watermarking are the following:

• There is no need of a database. The hidden message should be self sufficient
to screen the contents. This allows to place watermark decoders in many
different point in the content distribution chain. For instance, the Blu-
ray disc players look for watermarks in the audio channels to spot illegal
camcording of theater movies.

• Two versions of a Work can be watermarked with two different messages.
This allows to identify, for instance, which distribution chain a piece of
content went through (IPTV, DVD, theater etc.)

Its main drawbacks are as follows:

• The content is modified by the watermark embedder. It resorts to complex
human perception models to shape the embedding distortion under the just
noticeable difference to remain invisible / inaudible to humans.

• Placing watermark decoders here and there rises the issue of keeping the
secret key secret.

As far as security is concerned, this concept and its differentiation with robust-
ness has been studied by the watermarking community during almost a decade.
The main conclusion is that, for a given embedding distortion, there is a trade-
off between security and robustness. As a matter of fact, it is quite difficult
to design a watermarking technique robust to both geometric and valuemetric
(coarse compression, filtering, noise addition etc.) attacks. Some watermarking
techniques by the way use local features like SIFT [57]. This broadens the scope
of application of the results of this thesis. Add the requirement about security
on top and one finds out where the watermarking community stands: there is no
clear consensus whether a secure and fully robust watermarking technique might
exist one day.

A way to deal with the lack of security of robust watermarking is to peri-
odically change the secret key. This stems into the issue of how the watermark
decoder can synchronize its secret key with the one used at the embedding stage.
This is where digital watermarking and CBIRS can cooperate: a CBIRS first
recognizes the content under scrutiny and then gives the associated secret key
to the watermark decoder. The security of this hybrid system then relies on the
CBIRS component ; this is all grist for our mill.

There are also some typical attacks in watermarking which may not have any
reality in the field of CBIR.
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• Oracle attacks: if a consumer electronics device has a watermarking de-
coder, a dishonest user can challenge it as many times as he wishes to
deduce some knowledge about the secret key. Section 2.2.4.3 discusses the
topology of oracles attacks

• Collusion attacks: if two versions of the same content are watermarked with
different metadata, what is decoded when one mixes them (say by a sample-
wise averaging)? The application “active fingerprinting” or “traitor tracing”
where the metadata is the identifier of the consumer is robust against such
type of attacks. However, the cost to pay is a dramatic decrease of the
embedding rate.

• Known Original Attack: it is clear that if a pirate has the original version
of a piece of content, there is no need to attack its watermarked version.
But this is even worse: the difference signal may reveal information on the
watermarking technique and the secret key.

3.2.3.1 Some related applications

Some methods are developed to detect tampered image attack. In [31], the au-
thors proposed an efficient method to detect tampering and to locate tampered
regions in the image under scrutiny. This forensics analysis is based on double
quantization effect. This effect appears when JPEG compression is applied to
an image two times. However, this method only works when original images is a
JPEG image.

In [1, 2], SIFT is used for image tampering detection in which the image is
modified by a copy-move attack (see Fig. 3.3). The SIFT feature are first ex-
tracted from the image. Each descriptor is matched to its nearest neighbor and
the matching points are clustered based on their spatial location. A transforma-
tion is estimated between clusters to determine if one region is the copy of the
other. This is another context where our security analysis finds a key role.

In image hashing, a binary signature, so called hash or perceptual hash, is
computed from the visual content of an image and a secret key. This signature
is stored as a metadata in the header of the file. If the image undergoes an
innocuous transformation like a light JPEG compression, the perceptual hash
should not change. On contrary, if the image is tampered, his hash changes and
no longer equals the signature in the header. The pirate doesn’t know the secret
key and this prevents him to update the signature. His goal is thus to create a
forgery while keeping the same perceptual hash, or whose perceptual hash is the
same as another authenticated image. The features hashed in the signature can
be global [80] or local feature [34, 42, 75]. The security is gauged by the entropy
of the hashes, which is somehow questionable. A big entropy confirms that the
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probability of finding two images with the same hash is very weak. But it does
not say how sensible is the hash with respect to tampering. It also does not prove
that the pirate observing signed images cannot disclosed the secret key.

3.3 Summary

This chapter gives an overview of CBIRS. We present the state of the art of the
main components of the system. After that, we present some attacks proposed
in literature for evaluating the robustness and the security of the system. We see
that most of attacks challenge the robustness. They are basic modifications and
do not require any knowledge about the system. On the other hand, few attacks
are security oriented. We did an evaluation of the anti-SIFT attack proposed
in [33]. Our study shows that this attack is not at all a threat for CBIRS based
on SIFT. An detailed version of our evaluation presented in section 3.2.2 has been
published in [20].

We also present state of the art methods for detecting copies of a content.
Beside CBIRS, there are other techniques relying on watermarking and hashing.
However, as said in section 3.2.3, watermarking approaches weakly resist to ge-
ometric attacks while hashing approaches based on local feature are not robust
if pirates remove or insert local features in the image. This is one of the attacks
that we present in the next chapter.



Chapter 4

Overview of solutions

In chapter 3, we have discussed the structure of CBIRS and the state of the art of
its main components: feature extraction, indexing, and false positive removal. In
this chapter, first, we detail the components of our own system. The assumptions
about the security as well as the criterions to evaluate an attack are also presented.
Then, we propose three key ideas for designing attacks.

This chapter is structured as follows. Section 4.1 details the experimental
setup used in the remaining of the thesis. Section 4.2 briefly describes three ideas
to delude the recognition of the system. Section 4.3 concludes the chapter and
introduces the work of the next chapter.

4.1 The experiment setup

4.1.1 Overview of our system and the evaluation criteria

A large database of images to be protected has been created, offline. Given a
protected image, we apply a specific modification resulting in an attacked image.
The attacked image is used as query image. The query image is submitted and
checked against the database. The system decides whether this query is a quasi-
copy of the protected original image, which belongs to the database.

We consider that the system succeeds in recognizing the attacked content
when the original version is on the top of the result list returned by the retrieval
process. In contrast, the system fails (it mean that the attack succeeds) when
the original version of the attacked image is not on the top of result list. It is
“hidden” behind other images. In the experiments of the next chapters, we look
at the score of the original image and the first best non-original images. This
measures the strength of the attack. An “strong” attack yields a big gap between
the score of best non-matching image and the one of the original version.

In [81], the authors show that the PSNR is a good measure of the variation
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of the image quality when the visual content are fixed across the test conditions.
In our scenario, the pirates aims at forging an attacked image while keeping the
same visual content. Hence, we compute the PSNR to measure the quality of
the attacked images. The PSNR between an attacked image K and its original
version I is computed as

PSNR = 10 · log10

(

2552

MSE

)

(4.1)

where MSE is the mean squared error between two images, computed as

MSE =
1

m n

m−1
∑

i=0

n−1
∑

j=0

[I(i, j) − K(i, j)]2 (4.2)

Intuitively, the more distortion the attack introduces, the higher its chance of
success.

4.1.2 Description

This thesis focuses on the SIFT descriptor proposed by Lowe [56]. SIFT is a state
of the art descriptor for CBIRS [63].

Describing a gray image using the SIFT method includes three steps: (i) the
keypoint detection, (ii) the main orientation computation, (iii) the descriptor
computation.

In the first step, a pyramid of Gaussian images is built. The Gaussian images
are grouped by octaves. Each octave is a group of 6 Gaussian images having
the same size. To build the first octave (called octave −1), the original image is
doubled and smoothed by a Gaussian kernel of standard deviation σ1. In [56], σ1

is set to 1.61.This smoothed image is the first image of the octave −1. The next
five Gaussian images of this octave are formed by smoothing the first image with
Gaussian kernels with σ2 = 1.6k, σ3 = 1.6k2, σ4 = 1.6k3, σ5 = 1.6k4, σ6 = 1.6k5,
respectively, where k equals 2

1

3 . The consecutive smoothing of an image by two
Gaussian kernels with standard deviation σa and σb is equivalent to smoothing

with a Gaussian kernel with σ =
√

σ2
a + σ2

b . In the implementation, the ith

Gaussian image is made by smoothing the previous image by a Gaussian kernel

whose standard deviation equals σ̂i =
√

σ2
i − σ2

i−1 where i = {2, .., 6}.
To build the next octave, its first Gaussian image is formed by the down-

sampling by a factor 2 of the fourth Gaussian image of the previous octave. The

1In [56], the author assumes that the original image has a blur of at least σ = 0.5 (the
minimum needed to prevent significant aliasing) and that therefore the doubled image has
σ = 1.0 relative to its new scale. Hence, in the implementation, the real σ used for smoothing
of doubled image is

√
1.62 − 12
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ith Gaussian images of the octave is built by smoothing the previous adjacent
Gaussian image with σ = σ̂i as for the octave −1.

Once the pyramid of Gaussian images is created, the pyramid of Difference-
of-Gaussian functions D(x, y, σ) is built. In detail, D(x, y, σ) is calculated by the
subtraction of two adjacent Gaussian images:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ⊗ I(x, y)

= ∆Gσ(x, y) ⊗ I(x, y), (4.3)

where ⊗ is the 2D convolution operator, and G(x, y, σ) is the Gaussian kernel
of standard deviation σ. Because there are 6 Gaussian images per octave, there
are 5 DoG functions per octave. Figure 4.1 illustrates the pyramids of Gaussian
images and DoG functions.

The detection of keypoints relies on the local extrema of the Difference-of-
Gaussian function D(x, y, σ). To detect these local maxima and minima, each
sample point of the DoG functions is compared to its eight neighbors in the
current scale and its nine neighbors at scales above and below. This extrema
detection is processed only on the three inner DoG images of each octave. Fig-
ure 4.2 illustrates this detection. Once a keypoint candidate has been found by
comparing a coefficient to its neighbors, a substep performs a detailed fit to the
nearby data for location, scale, and ratio of principal curvatures. This infor-
mation allows rejection of candidates that have low contrast (and are therefore
sensitive to noise) or are poorly localized along an edge.

Overall, a keypoint is detected at location and scale x = (x, y, σ)T if the
following three conditions hold:

• D(x) is a local extrema over a neighborhood of x,

• a sustainable contrast is present, i.e., |D(x)| > C where C is a threshold
hard-coded in the algorithm,

• the keypoint is not located on an edge, which can be detected by

tr(H)2

det(H)
<

(r + 1)2

r

where H the 2x2 Hessian matrix, computed at the location and scale of the
keypoint. r is the ratio between the largest magnitude eigenvalue and the
smaller one of H.

The second step finds one or more main orientations for each keypoint based
on the directions of the gradient. An orientation histogram is formed from the
gradient orientations within a region of size [−4σ, 4σ]2 around the keypoint, called
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Figure 4.1: For each octave of the scale space, the initial image is iteratively
convolved with Gaussian kernels to produce the set of scale space images shown
on the left. For the next octave, the Gaussian image is down-sampled by a factor
of 2, and the process is repeated. Two adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian functions on the right.

support region of the keypoint. The orientation histogram has 36 bins covering
the 360 degree range of orientations. Each sample added to the histogram is
weighted by its gradient magnitude and by a Gaussian-weighted circular window
whose deviation is 1.5σ. After collecting the data in the bins, the histogram is
smoothed by a moving average filter. The keypoint orientation is obtained as the
maximum of this histogram. In addition to the global maximum, a local maxi-
mum with a value above 0.8 of the maximum is retained as well. Thus for each
location and scale, multiple orientations might be generated. After orientation
computation, each keypoint x is presented by four value: x = (x, y, σ, θ), where
θ is keypoint orientation.

The final step computes a descriptor for each keypoint over its support region.
The descriptor layout is a 4 × 4 grid. First the image gradient magnitudes and
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Figure 4.2: The local maxima and minima of the DoG images are detected by
comparing a coefficient (marked with X) to its 26 neighbors in a 3 × 3 region at
the current and adjacent scales (marked with circles). Figure is from [56]

orientations are sampled around the keypoint location. In order to achieve orien-
tation invariance, the coordinates of the descriptor and the gradient orientations
are rotated relative to the keypoint main orientation.

The gradient orientation then is quantized into 8 bins. It means that each
bin covers a 45 degree range of gradient orientation. The gradient magnitude
of each sample point is further weighted by a Gaussian function whose standard
deviation equals one half of the width of the descriptor window, and these values
are accumulated into the bins. At the end, each local patch is described by a
vector having 4 × 4 × 8 = 128 dimensions.

We compute the local SIFT descriptors using the open-source SIFT-VLFeat
code by Vedaldi [86]. This open-source software is widely used by the research
community (it has roughly 200 citations according to Google Scholar at the time
of writing). By using SIFT-VLFeat software, data type of descriptor is unsigned
8-bit integer. It means that value of each element in the descriptor is in interval
[0, 255]. We did several experiments to get descriptors that are as close as possible
to the original SIFT description based on Lowe’s binary [55] 2, both in terms of
number of descriptors and of spatial location in images. In our case, the best
configuration is when C = 4 and r = 12. The number of octaves (O) depends on
size of images. It is determined by

O = ⌊(log2(min(M ; N)))⌋ − 2,

2SIFT is protected under a US patent. David Lowe only provided binary version to compute
SIFT descriptor.
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where M, N is the height and the width of the original image. It means that the
smallest image on the top of the pyramid is approximately 4 pixels long on its
shortest edge.

4.1.3 Indexing

In [48], Lejsek et al. proposed a new indexing method for approximate nearest
neighbor search in very large high-dimensional collections, called NVTree (Nearest
Vector Tree). This tree is similar to a hierarchical K-means [72]. However, instead
of using K-means for the partition into clusters at each level of the tree, they used
random projection. All SIFT descriptors of the image collection are projected to
a single projection line. The projected values are partitioned into disjunct sub-
partitions. An overlap partition is created for each pair of adjacent partitions
to avoid boundary problem. The projection and partition are repeated to create
the sub-levels of NVTree. The process stops when the number of descriptors in
a sub-partition is below a threshold designed to be disk I/O friendly. This sub-
partition is called a leaf node. At this time, a projection line is used to order the
descriptor identifiers in a leaf node. After that, the ordered identifiers are written
on disk.

At the query stage, the query descriptor first visits the inner nodes of NVTree.
At each level, the query descriptor is projected onto the projection line associated
with a node. The projection value is used to decide the sub-partition of the next
level whose center point is the closest to projection value of the query descriptor.
This process is repeated and stopped when a leaf node is reached. The ordered
values of this leaf node are loaded into memory. The query descriptor is projected
onto the line associated with the leaf node. The two closest descriptor identifiers
on either side of the projected query descriptor are returned as the nearest neigh-
bors. Then the two nearest neighbors of these two above descriptors are returned
and so on. In our experiment, the 1, 000 nearest neighbors for each given query
descriptors are considered for the voting. Because the search results are based on
projection onto a single line at leaf node, this may result in false positives. This
can be avoided by applying some ranking method to combine results from several
NVTrees. In our experiments, three NVTrees are used.

For each query descriptor, two voting mechanisms of NVTree are considered
in our experiments. One is multiple voting: each image in the database receives
a number of votes equal to the number of its descriptors belonging to the 1,000
nearest neighbors of the query descriptor. The other is single voting: each image
in the database receives one vote if number of its descriptors belonging to the
1,000 nearest neighbors of query descriptor is bigger than zero.

The total number of votes after processing all query descriptors is used to
rank the images. When several NVTrees are used, each image in the database



The experiment setup 35

will receive votes from each NVTree. The final score is the sum of these votes.

4.1.4 The geometric verification

The geometric verification is a filtering stage performed on the candidate images
returned by the search engine. It checks the geometric consistency of matching
keypoints to eliminate false positives. It relies on the affine transformation esti-
mation between the query and a candidate image. Once the affine transformation
is estimated, the candidate images are reranked according to the number of their
keypoints that verify this affine transformation.

To estimate the affine transformation, keypoints of both images are first
matched, providing a list of matching points. For a given keypoint kq of the
query, its nearest neighbor in the candidate image is defined as the keypoint k1

with minimum Euclidean distance for their SIFT descriptors denoted by d(kq, k1).
One possible matching criterion proposed by Lowe [56] compares the distance of
the closest neighbor k1 to that of the second-closest neighbor k2. Two keypoints
kq and k1 match if d(kq, k1) ≤ 0.8d(kq, k2). This measure performs well because
the correct pairing needs to have the closest neighbor significantly closer than
the closest incorrect match to achieve a reliable matching [56]. We will use this
matching criterion in chapter 7 and it will be referred as “Lowe criterion” in the
following. However, a problem appears if the candidate image have very similar
local descriptors: for example if there are two identical logos in the image, the
query descriptors will not match any of them due to “Lowe criterion”.

The estimation of affine transformation is performed by a Generalized Hough
Transform (GHT) on the pairs of matching points [56]. After that, the least
square estimation [56] is computed on matched pairs with the best transformation
to remove outliers. The number of inlier points satisfying the estimated model is
used as the score to rank the images. We use the open source software developed
by A. Jepson [39] for the GHT and least square estimation. Because the geometric
verification is time consuming, it is usually performed on a short list of top results
returned by the search.

4.1.5 Dataset and queries

Our image collection is composed of 100,000 random pictures downloaded from
Flickr that are very diverse in contents. All images have been resized to 512
pixels on their longer edge. Because SIFT works on gray images, the images are
converted to gray scale if they are color images. Intensity value for each pixel
in image is in interval [0,255]. This collection yields 103,454,566 SIFT-VLFeat
descriptors indexed by the NV-Tree.

We then randomly picked 1,000 of these images as protected images. All
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attacks in the next chapters are performed on these 1,000 images. The attacked
images are used as queries. For each query, we keep track of the scores of the
100 best matching images. The final result is averaged on the 1,000 queries.
Additionally, the Lena image is used to illustrate the visual impact of the different
attacks.

4.1.6 Security assumption

In chapter 3, we listed the actors in the systems potentially dishonest: the image
right-holder, the image server, the query user or the client software. In this thesis,
we analyze the security threat on the system under the assumption that only the
query user is dishonest.

4.2 Three angles of attacks

The structure of a CBIRS of chapter 3 suggests 3 ideas to delude recognition
based on local descriptor. This section gives a short introduction, and the next
chapters provide their in-depth study.

4.2.1 Attacking the keypoint detection

When a pirate attacks this step of the system, its goal is to produce specific
modifications of the images entirely driven by the deep understanding of the
properties of the detection scheme, such that matches with descriptors of the
database will subsequently fail. To attack the keypoint detection, a pirate may
want to artificially add new keypoints or delete keypoints by applying well-chosen
local modifications. Having new keypoints by patching the images in turn cre-
ates new descriptors, increasing the score of irrelevant images. Deleting detected
keypoints decreases the score of original image. Hence it lowers the probability
that the original version of the pirated image appears at the top of the short list.
Chapter 5 will present in details attacks at this step of system.

4.2.2 Attacking the keypoint description

Based on a deep knowledge about the descriptor computation, a pirate may
modify the support region of the keypoint such that its descriptor is changed.
Hence, a modified descriptor will be unlikely to match with its original version in
database, and the score of the original image will decrease. Similar to the above
attack, this lowers the probability that the original version of the pirated image
appears at the top of the short list. The attack at keypoint description step will
be the main content of chapter 6.
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4.2.3 Attacking the false positive removal

When pirates face to geometric verification problem of CBIRS, a way to attack
geometrical consistency is to insert into the pirated image distractors extracted
from existing images of the database (let this image be I), such that the number
of matches between pirated image and I is greater than the number of matches
retained by the geometric verification between the pirated image and its original
version. Such that, I will be ranked higher than the original image. Chapter 7
will focus on attacks at this step of the system.

4.3 Summary

This chapter gives some details on the setup of the system used in the remaining of
the thesis. Additionally, we introduce the three main angles of attacks. Especially,
the first two angles focus on the feature extraction step while the last one focuses
on the false positive removal step. Each of the three angles of attack is the subject
of the following chapters, the next chapter detailing how to design attack against
the keypoint detection step.
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Chapter 5

Attacking keypoints

The performance of a CBIRS is mainly related to the ability of the description
scheme in use to match images despite distortions. Without loss of generality, the
search process eventually builds a ranked result list of images, such that highly
ranked images are more likely to be true positive matches. True positives tend
to have a particularly high score compared to the other images in the list. Two
strategies can therefore be designed to delude the recognition of a system. First, it
is possible to attack the image to be concealed such that its score gets dramatically
reduced. Second, it is possible to attack the image by introducing in the picture
visual elements that often match with other images from the database, such that
the scores of these images get increased. It is of course possible to combine these
two strategies. In this chapter, we present some attacks to delude the recognition
of CBIRS based on SIFT descriptor.

This chapter is structured as follows. Sections 5.1 and 5.2 detail the two
typical strategies to delude a system, respectively concealing an illegal image from
identification and polluting the search results with false positives. It visually
illustrates their impact using the well known Lena image. Section 5.3 details
properties of new keypoints in attacked image. Section 5.4 evaluates the impact
of these strategies against a large scale database used together with a state-of-art
CBIRS using a multiple voting mechanism also single voting mechanism. It shows
which strategies are effective in breaking the security of the SIFT description
scheme. Section 5.5 concludes the chapter, suggests some counter measures, and
works in the next chapter.

5.1 Reducing Scores by Keypoint Removal

Concealing an image from recognition by reducing its score translates into reduc-
ing the number of local descriptors that match. This can obviously be achieved
by eliminating some of its keypoints.

39
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As explained in section 4.1.2, keypoints are detected when local extremum are
found in DoG with enough contrast and away from edges. Avoiding the detection
of a keypoint at x = (x, y, σ)T is possible by applying on the image a visual patch
of a certain size centered at (x, y) such that at least one of the three conditions for
existing of a keypoint does not hold anymore. Patching images introduces visual
artifacts, and, thus, a side effect of keypoint removal is the creation of new,
undesired keypoints. We study in the following two keypoint removal strategies
that are extreme in the sense that one is designed to minimize the local distortion
on images, ignoring any potential keypoint creation, while the other takes little
care of the distortion but rather eliminates as many keypoints as possible while
lowering the number of creations.

5.1.1 Removal with Minimum Local Distortion (RMD)

For the keypoint x = (x, y, σ)T , this approach determines a patch ǫ to be applied
on the support region of the keypoint such that it minimizes the local distortion.
Since, at scale σ, the Difference of Gaussian kernel ∆Gσ has a limited support Sσ

in the spatial domain, ǫ defined over (x, y) + Sσ modifies the quantity D(x, y, σ)
of a given amount δ. In other word, for (u, v) in the neighborhood of (x, y), the
image is modified in I ′(u, v) = I(u, v) + ǫ(u, v) so that D′(x) = D(x) + δ. The
patch should be of minimal Euclidean norm to reduce the perceptual degradation.
This resorts to an optimization under constraint:

ǫ = arg min
ǫ:D′(x)=D(x)+δ

1

2
‖ǫ‖2. (5.1)

The constraint being affine and the function to be minimized being convex, a
simple Lagrangian resolution yields that

ǫ =
δ

‖∆Gσ‖2
t(x,y)(∆Gσ) (5.2)

where t(x,y) is the 2D translation operator of a shift (x, y). This patch succeeds in
controlling D(x), however, as illustrated in Figure 5.1, it also modifies the DoG
values in the neighborhood such as D(x + u, y + v, σ) with (u, v) ∈ [−4σ, 4σ]2.

The first condition for the existence of a keypoint is that its DOG value
is bigger than a contrast threshold. Let this threshold be C. We control the
Removal with Minimum local Distortion (RMD) attack power by targeting a
limited number of keypoints to be erased. We introduce a value δ+ > 0 that
defines the subset Eδ+ = {x : C < |D(x)| < C + δ+}. Erasing keypoints in Eδ+

means that we decrease |D(x)| by an amount δ = −δ+ such that its new value is
below the threshold C : |δ+| = |D(x)| − C. Obviously, when δ+ grows, we deal
with a bigger subset Eδ+ , and more keypoints are removed.
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Figure 5.1: A RMD patch has been applied at scale σ = 2.54 with δ = −1. The
z-axis represents the difference D′(x+u, y +v, σ)−D(x+u, y +v, σ). If the patch
succeeds to lower the targeted DoG coefficient of the amount δ, it also impacts
the DoG values around.

The most visible artifacts are caused by the removal of keypoints at higher
scales, mostly because the patches have a bigger support and a stronger ampli-
tude, as shown in Figure 5.2(a). Note with RMD, it is the local distortion around
each keypoint that is minimized, not the global distortion on the whole image.
The image attacked by RMD is displayed in Figure 5.2(b).

Table 5.1 summarizes the results when comparing the number of keypoints
between the attacked and the original images. From Table 5.1, RMD with δ+ = 7
removes 90.48% keypoints on Lena images and 77.49% on average over 1000
images. The attack on keypoints where |D(x)| is big requires a bigger δ+. Hence
it will distort more the image (by equation 5.2). The maximum value of |D(x)|
on Lena image is 19.

However, a undesired side effect of RMD is that it creates many new key-
points. Applying the patch ǫ creates discontinuities in this local region. Table 5.1
shows that 72.91% keypoints (resp. 53.22%) in the attacked image for Lena (resp.
on average over 1000 images) are indeed new keypoints. As illustrated on Fig-
ure 5.2(c), these new keypoints are located near the original keypoints, and hence
potentially match with the original ones. A detailed analysis of these new key-
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(a) (b)

(c)

Figure 5.2: Visual distortions caused by RMD with C = 4, δ+ = 4 for keypoints
at different scales: (a) close view of the face (see distortion on the lips and the
shadow under the eye on the left) ; (b): whole image ; (c): the RMD attack with
δ+ = 7 on a subset of keypoints: unchanged (blue), deleted (green), and new
(red) keypoints.
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points properties is presented in the section 5.3. Another disadvantage of the
RMD attack is that we can only control DoG value of each keypoint separately.
It is then difficult to control the DoG values of a local region having a high density
of keypoints.

5.1.2 Removal by smoothing

Local extrema of the DoG correspond to points located on significant disconti-
nuities in the image. A straightforward way to avoid their detection consists in
smoothing the image.

Global Smoothing (GS) Performing a smoothing on the whole image reduces
the number of keypoints while avoiding the creation of new ones, as it does not
introduce strong discontinuities. Experiments show this global smoothing is quite
effective even with a Gaussian kernel of small variance. The value of σ is set
empirically by conducting many experiments described in section 5.4; σ = 1.3
is found as a good trade-off between visual and score (or number of unchanged
keypoints) of the attacked images (see section 5.4). A greater σ would in turn
remove more keypoints, but the quality of the resulting images would be worse.
This global smoothing strategy is referred to as the GS strategy. Almost all
keypoints not removed by the GS attack have high absolute DoG value.

Local Smoothing (LS) To increase the number of removed keypoints, a sec-
ond step of smoothing can subsequently be applied, this time on a local basis.
After a GS attack, a local smoothing (LS) phase is ran on each remaining key-
point: it replaces the n × n region around the current keypoint by its smoothed
version with a Gaussian kernel whose variance equals the keypoint scale, and
checks whether this keypoint is still detected or not. This is in fact performed
iteratively using regions of growing sizes (n = {1, 3, 5, 7}), until the keypoint is
no longer detected. Having n larger than 7 introduces too severe distortions in
the images. Therefore, if the keypoint is still detected when n = 7, then the LS
phase is aborted for that keypoint. This usually corresponds to keypoints with
large scales. The strength of the LS attacks is controlled by the maximum value
of n: the strongest LS attack, denoted LS7, is when n can take all values, while
in the milder LS5 attack n varies in {1, 3, 5}. The visual distortions introduced
by LS7 are shown in Figure 5.3. Note that we can attack with GS only, or with
both GS and LS referenced to as GS+LS.

As shown in Table 5.1 and Figure 5.3(c), applying LS after GS results in a
smaller number of created keypoints, as keypoints created by GS may be subse-
quently removed by LS. GS+LS7 removed 96.22% keypoints on Lena image and
94.25% on average over 1000 images. These figures are bigger than with the RMD
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(a) (b)

(c)

Figure 5.3: Visual distortions caused by GS+LS7: (c) close view of the face ; (b)
whole image ; (c): GS+LS7 on a subset of keypoints: unchanged (blue), deleted
(green), and new (red) keypoints.

attack. Both global and local smoothing also create new keypoints. The number
of created keypoints, however, is by far smaller than with the RMD attack.
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Table 5.1: Number of deleted and created keypoints by RMD with δ+ = 7, GS,
GS+LS7, DS and GS+LS7+FMD. Original Lena image has 1218 keypoints; and
the set of 1,000 images has 1026 keypoints on average.

Image Attack # KP % KP #KP % KP # KP PSNR
deleted deleted created created after in dB

attack

Lena

RMD 1102 90.48 888 72.91 1004 27.78
GS 1112 91.30 339 27.83 445 31.17

GS+LS7 1172 96.22 270 22.17 316 30.31
DS 1005 82.51 455 37.36 668 33.95

DS+LS7 1007 82.68 437 35.88 648 33.90
GS+LS7+FMD 1174 96.39 383 31.44 427 30.12

1,000 imgs

RMD 795 77.49 546 53.22 777 30.70
GS 903 88.01 395 38.50 518 29.17

GS+LS7 967 94.25 321 31.29 380 28.41
DS 698 68.03 582 56.73 910 34.07

DS+LS7 934 91.03 528 51.46 620 32.43
GS+LS7+FMD 967 94.25 389 37.91 448 28.23

Density-based Smoothing (DS): A variant of GS attack GS attack is ef-
ficient to remove keypoints in the image. However, there are some regions/images
which do not have any keypoints or have a sparse density of keypoints. Smooth-
ing such regions/images is not necessary: few keypoints are affected while much
visual distortion is introduced. It is more efficient to only smooth regions pre-
senting a high density of keypoints. In this section, we use a variant version of
the GS attack which takes into account the keypoints density and is referred to
as Density Smoothing (DS).

The image is segmented to dense regions and non-dense regions by sliding a
window of size 50 × 50. A smaller window makes DS more time consuming. A
bigger window makes DS less efficient in spotting high keypoint density regions.
A region is considered as dense if the number of keypoints in the window is more
than 60. It means that there are approximately 1 keypoint per 7×7 pixels square.
Dense regions are smoothed by the Gaussian kernel with σ = 1.3, like the GS
attack. Figure 5.4(a) illustrates dense regions in Lena image. The attacked image
after applying DS is shown in Figure 5.4(b).

On average over 1,000 images, the number of remaining keypoints after the DS
attack is 910. It is higher than 518 which is number of keypoints after applying
GS (Table 5.1). However, the average PSNR after DS attack is 34.07 dB. It is
significantly higher than the average PSNR for GS (29.17 dB in Table 5.1).
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(a) (b)

Figure 5.4: Density-based Smoothing on Lena image: (a) red circles are original
keypoints. Dense regions are marked with blue rectangles ; (b) visual distortion
after DS.

5.2 Forging New Keypoints

As mentioned in the chapter introduction, the other strategy is to deliberately
create new keypoints so that their descriptors will match with wrong images in
the database, increasing their scores. Hopefully, querying with the attacked image
will bring at the top of the result list some other images, while the original one
may either be further away in the list or not in the list at all. This also raises
false alarms spoiling the trust that users have on the system.

The strategy we use for forging new keypoints with Minimum local Distortion
(FMD) is symmetric to the RMD attack. In this case, we address the local
extrema in the subset Fδ− = {x : C − δ− < |D(x)| < C}, and add patches that
strengthen the contrast in the neighborhood of keypoints. This also reduces the
gap between the absolute values of the first and second eigenvalues, such that the
condition on the Hessian matrix gets verified most of the times.

To be created with FMD, new keypoints must meet two conditions: (i) belong
to the two first octaves, such that the introduced distortion is small, (ii) be located
relatively far away from existing keypoints such that the resulting descriptors are
rather different from the existing ones. We thus create keypoints where the
neighborhood of size 8 pixels is free from original keypoints. This size of 8 pixels
ensures that the new keypoints are not near to some original keypoints and their
descriptor is far enough from the descriptor of the original keypoints. The distance
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(a) (b)

(c)

Figure 5.5: Visual distortions caused by FMD with C = 4, δ− = 3: (a): close
view of the face; (b): whole image. The keypoints created under (i) and (ii)
conditions; (c): Illustration of MFD on a subset of keypoints: original (green)
and new (yellow) keypoints

between descriptors is bigger than 450 for keypoints on octave -1 and 0 on Lena
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image (see figure 5.6). The new keypoints yield salt and pepper noise artifacts.
This is shown in figure 5.5.

The goal is achieved if the score of some images in the database are higher
than the score of the original image. However, we can not forge many new key-
points in the attacked image to limit the introduced distortions. Hence, we lead
GS+LS attack to remove some keypoints before applying FMD. The combination
is referenced to as GS+LS+FMD.

Tables 5.2 and 5.3 show that there are 111 keypoints created by FMD on
the first two octaves of Lena image (68 on octave -1, and 43 on octave 0), and
68 created keypoints on average over 1000 images (36 on octave -1, and 32 on
octave 0). Table 5.1 shows the number of deleted and created keypoints with
GS+LS+FMD. On average over 1000 images, the number of removed and created
keypoints are 94.25% and 37.91%, respectively. The average PSNR between
attacked and original images is 28.23 dB.

5.3 Properties of New Keypoints

As presented in sections 5.1 and 5.2, the new keypoints in the attacked image come
from two sources. They are created as a side effect of the removal method (RMD
or GS+LS) or deliberately by FMD. This section details the properties of these
keypoints and their impact on recognition. Tables 5.2 and 5.3 give indications
on the locations and scales of the keypoints created as a collateral effect of RMD
or GS+LS. It focuses on the new keypoints belonging to the first two octaves (-1
and 0), because it is where the majority of creations takes place. For each such
new keypoint, we compute the distance from its location to the nearest original
keypoint in the same octave. Averaging over all created keypoints gives the “avg
distance” line in Tables 5.2 and 5.3. Those tables also give the average scale
factor between new keypoints and their nearest original keypoints, regardless of
the octave. It can be seen that the new keypoints created by LS+GS are farther
away in location than those created by RMD. However, the keypoints created
by RMD have an average scale factor smaller than those created by LS+GS.
In other words, the new keypoints created by RMD are moved farther away in
scale than those created by GS+LS. Table 5.2 and Table 5.3 also show average
distance of the new keypoint created by FMD from the nearest original keypoint.
As expected, this distance is big. However, their scale factors are similar than
the nearest original keypoints.

To understand how the shift in space or in scale impacts on keypoint descrip-
tors, we carefully track the whole descriptor creation process for all keypoints of
the Lena image. We then replay the creation for these keypoints, but we arti-
ficially shift each keypoint away from its original location in space (or in scale)
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Table 5.2: Properties of the new keypoints: average distance per octave and scale
factor between a new keypoint and the nearest original keypoint. The last column
only shows the creation of the keypoints thanks to FMD, after applying GS+LS7.
Lena image

Attack RMD, δ+ = 7 GS+LS7 GS+LS7+FMD
Octave -1 0 -1 0 -1 0

# KP created 613 188 11 147 68 43
avg distance 3.1 9.1 4.1 7.8 36.3 34.0

avg scale factor 0.21 0.62 0.47 0.80 0.56 0.79

Table 5.3: Properties of the new keypoints: average distance per octave and scale
factor between a new keypoint and the nearest original keypoint. The last column
only shows the creation of the keypoints thanks to FMD. Average on 1000 images

Attack RMD, δ+ = 7 GS+LS7 GS+LS7+FMD
Octave -1 0 -1 0 -1 0

# KP created 329 141 28 196 36 32
avg distance 4.1 8.7 4.8 10.7 34.6 36.3

avg scale factor 0.26 0.55 0.45 0.77 0.51 0.75

and measure the euclidean distance between the descriptor associated with that
shifted keypoint and its original version. Figure 5.6 shows the result of this
experiment when considering spatial shifts while Figure 5.7 is for scale shifts.
Figures 5.6 and 5.7 shows that shifting keypoints in the image indeed increases
the distances in the high-dimensional space.

For a given distance between descriptors, keypoints on small octaves need less
location shift. This is expected as the corresponding support regions are smaller,
so rather different with a small shift. For scale shift, the behavior of the distance
is different. The shift in scale increases or decreases the support region size.
However, the weighting during the descriptor computation give more influence
to the central area of the support regions. Hence, the shift in scale on different
octaves has similar impact on distance.

From Table 5.3, the distance between the new keypoints created as a side
effect of GS+LS and RMD and the original keypoints on the same octave is 4.8,
4.1 for octave -1 and 10.7, 8.7 for octave 0. According to Figure 5.6, these new
keypoints are likely to match with these original keypoints. We also see that the
distance between a keypoint created by FMD and the nearest original keypoint
(on same octave) is 34.6 and 36.3 for octave -1 and 0, respectively. Hence, the
new keypoints created by FMD are unlikely to match to these nearest original
keypoints. The scale factors between the new keypoints created by FMD and the
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Figure 5.6: Euclidean distance between descriptors vs. distance between key-
points (Lena image).

nearest original ones (regardless the octave) are ranging from 0.51 to 0.75. These
scale factors are not very far from the nearest original, but these new keypoints
are ensured to be far away (at least 8 pixels) from the nearest original keypoints
(by condition (ii) in section 5.2). Hence, in conjunction with Figure 5.6, we draw
the conclusion that the keypoints created by FMD are also unlikely to match
with some original keypoints.

5.4 Large Scale Experiments

We evaluate the efficiency of the above mentioned attacks using a large scale
image collection and a real CBIRS. The experiment setup is given in section 4.1.
The search process uses the multiple voting scheme of NVTree. The geometric
verification is not considered in this experiment.

5.4.1 Results

The first experiment illustrates the efficiency of the keypoint removal. We av-
erage the scores of 1,000 original images when searched with 4 RMD attacks
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Figure 5.7: Euclidean distance between descriptors vs. scale shift of a given factor
(Lena image).

corresponding to δ+ = {3, 4, 6, 7} and 4 GS+LS attacks with σ = 1.3 for GS and
n = {1, 3, 5, 7} for LS.

We also collect the average PSNR observed on the attacked images for each
family of attack. The results of this experiment are on Figure 5.8, which addi-
tionally depicts scores and PSNR for JPEG attacks with varying quality factors,
for comparison.

As expected, both the score and the PSNR drop down as the attack strength
increases (through increasing parameters n or δ+). It also confirms that the
RMD attack yields a better PSNR than GS+LS, as it was designed to introduce
the minimum distortion. RMD is less efficient than GS+LS at lowering the
matches, as it creates more descriptors that are not so different from their original
counterpart.

Figure 5.9) shows the results of the experiment, focusing on 10 “security”
attacks. Along the X-axis, the attacks differ by the keypoint removal process with
varying parameters as described in sections 5.1 and 5.2 and whether the FMD
attack is turned off (left side) or on (right side). The Y-axis of the figure shows,
for each attack, the average scores (over the 1,000 queries) of the original images
that are expected to match with the attacked copies. It also shows the scores
of the first, second and third best matching images that are different from the
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Figure 5.8: Average score vs. PSNR (dB). JPEG-, GS+LS and RMD based
attacks.

original images. When the image having rank #1 in the result list is the original
image, then the system succeeded in recognizing that image. When the image at
rank #1 is not the original image, then the system failed. For comparison, the
score of the original images when searched with themselves is around 1,000 and
the second best is below 100.

5.4.2 Analysis

Figure 5.9 shows that solely removing keypoints (the 5 attacks on the left) fails
at deluding the system. There are mainly two reasons for this. First, the gap
in scores between the original image and the best non-matching image is very
large, and therefore, at least 90% of the keypoints should be removed to shrink
that gap, which is impossible in practice due to the severe visual distortion this
would cause. Second, keypoint removal creates new keypoints in their vicinity
and it turns out the corresponding vectors match with the original ones. We also
see in this figure that the gap in score between the original image and the best
non-matching image for GS or GS+LS attack is smaller than RMD attack. This
consolidates the fact that keypoints removal by smoothing is stronger than RMD.

When the FMD attack is turned on then things are changing. With the
GS+FMD attack, although the original image is found, the score of the best
other image jumps and get much closer. A detailed examination of the matching
shows that the new forced keypoints are created at small scales and tend to match
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Figure 5.9: Image scores in realistic settings. X-axis: 10 selected “security”
attacks. Y-axis: for each family of attack, the average scores over the 1,000
queries of the original images and of the three other best matching images.

with regular images from the database that have repetitive visual patterns such
as bricks, small windows on large facades, tiles, venitian blinds, . . . Interestingly,
despite the size of the collection, few images have such patterns (see Figure 5.10
for an example) and therefore they concentrate the votes when scoring. This is
due to the multiple voting scheme used in these experiments, that allow multiple
matches for one descriptor. Indeed, only with a small number of keypoints created
by FMD, the attacked image can get many votes from keypoints belonging to
regular images of the database.

Increasing the strength of these attacks by adding local smoothing succeed in
deluding recognition. With the last three attacks on the right of the Figure 5.9,
not only few other images concentrate matches (thanks to FMD) but the number
of keypoints in the attacked image drops (thanks to GS+LS7), reducing the
number of true matches. It is essential to note that the attacked image is not
concealed from the CBIRS (as its unmodified copy has rank #2), but it gets
“hidden” behind another image that better matches. This is a key result.
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Figure 5.10: Images of the database often ranked #1 when the attack succeeds.

Overall, these experiments are a proof of concept that “security” attacks can
conceal an image, at the cost of a distortion of around 30 dB in PSNR (see
Table 5.1). A “robustness” attack, such as a JPEG compression with Q = 1,
achieves the same goal but with a PSNR of 23.68dB (see Figure 5.8).

5.4.3 Discussion

The main result of the proposed attacks is that the score of the original is now
lower than the scores of some other irrelevant images of the database (Figure 5.9).
This result comes from the strength of the GS, LS and FMD attacks, and from
the multiple voting mechanism in the system. An additional result with single
voting for three attacks GS + LS3 + MFD, GS + LS5 + MFD, GS + LS7 +
MFD is shown in Figure 5.11. From this figure, we see that the original image
are still on the top of the result list. This is because each best competitor image
in database only receives a maximum of one vote per each keypoint created by
FMD 1. The score of the best competitor image fails being bigger than the score
of original image.

5.5 Summary

In this chapter, we show that a “security” attack dedicated to a given CBIR
technique is more efficient than “robustness” attacks. A significant part of the
work presented in this chapter has been published in [19].

1Let number of created keypoint be n, the best competitor image will have maximum n
votes.
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There are some lessons learned from this work.

• Removing keypoints is not sufficient to delude a system in real settings.
All attacks on the left of Figure 5.9 fail. Although we removed 90% of
keypoints, the gap between the scores of the original image and the best
competitor is so huge. This is due to the robustness of the system. CBIRS
still works well even with a small number of unchanged keypoints remaining
in the attacked image.

• The RMD attack introduces little distortion but it creates new keypoints
in the vicinity so that they still match with the original. Hence, RMD is
not used in the remaining of the thesis. GS+LS are much more efficient
but still not enough: removing so many keypoints would severely degrade
the image.

• The forgery of new keypoints is necessary, but on the condition that the new
keypoints massively match with a restricted set of images in the database.
In addition, this will happen only on systems using multiple voting.

• The geometric verification is not used in the experiments. If geometric
verification is used (see later in next chapter), it can remove keypoints
created by FMD. In that case, FMD can be useless.

• This chapter tries to delude the recognition of CBIRS attacking the keypoint
detection step. Another possibility is to attack the keypoint description
step. In the next chapter, we propose some attacks changing the orientation
of keypoints such that it changes support regions. It is likely to change the
final descriptor so that it is unlikely to match with the original descriptor.



Chapter 6

Attacking descriptors

The previous chapter introduces a complex mixtures of keypoint removal and
keypoint creation. Removing keypoints reduces the number of matches ; creating
keypoints produces false positives. Overall, the previous chapter exploits the
way the Difference of Gaussian (DoG) value of a keypoint is used in the SIFT
extraction process. However, we can not remove all the keypoints in the image,
in particular those at high scales: their modification severely degrades the image
over their big support region.

To further disrupt the matching between attacked image and original image,
we change the list of descriptors found by the K nearest neighbors search at re-
trieval time. In other words, we want to preclude the appearance of descriptors
of the original image in K-nn list. This is done by pushing the descriptors of the
attacked image far way from their original version. Hence, an attacked descrip-
tor unlikely match with the original one. One way to do this is to change the
orientation of keypoints, as this has a direct impact on the SIFT description.

This chapter explores how this strategy can be put into practice. The ori-
entation of a keypoint is changed by modifying its support region. The attack
includes two steps. In a first step, a learning process based on SVM learns the hy-
perplane 1 separating support regions of different orientations. After that, given
a keypoint in one side of the hyperplane, we modify its support region with the
minimum distortion such that it is pushed to the other side of the hyperplane.

This chapter is structured as follows. Section 6.1 demonstrates the impact
of the keypoint orientation on its description. Section 6.2 details the method to
change the orientation of keypoints. Section 6.3 evaluates the proposed method
at patch level, image level and large scale recognition. Section 6.5 concludes the
chapter.

1In this chapter, we use SVM with RBF kernel. Hence, when we say hyperplane, it is
implication of the hyperplane in kernelized space.

57
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Figure 6.1: The role of the orientation in the description of the keypoint

6.1 SIFT: impact of keypoint orientation on key-

point descriptor

This section first shows that the keypoint orientation has an important role in the
descriptor computation. An experiment then quantifies the impact of orientation
on descriptors.

6.1.1 From orientation to descriptor

As presented in section 4.1.2, at description step, the coordinates of the descriptor
and the gradient orientations are rotated relatively to the main keypoint orien-
tation to gain orientation invariance, Hence, shifting the orientation of keypoints
is likely to change the final high-dimensional descriptor. This strategy does not
remove the keypoints but reduces the likelihood that they will match with their
original vectors. This is illustrated in Figure 6.1. The change of orientation from
θ (left figure) to θ′ (right figure) change the original descriptor d to a new descrip-
tor d′. Note that this is different from rotating the whole support region, which
has no impact on description. Intuitively, the shift must be large enough in order
for the final descriptor to be sufficiently different and to preclude the matching.

6.1.2 Changing Orientations Impacts Descriptors

To see the relation between orientation and descriptor, we first describe Lena
using the open-source VLFeat package [86]. We then patch the code of VLFeat to
artificially change the orientation of the detected keypoints by a multiple of π/18.
We then launch 35 descriptions of Lena, each time increasing the orientation
change from π/18 to 35π/18. To foresee an acceptable visual quality of the
attacked image, we focus on the keypoints having a small support region. In
other words, only the keypoints on first three octaves {−1, 0, 1} are considered.
Figure 6.2 shows the impact of this forced change of orientation by plotting the
distance in the feature space between the original descriptors and the descriptors
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Figure 6.2: Euclidean distance between descriptors as a function of the distance
in radian between the keypoint orientation.

after the orientation changes. We see that the larger distances in feature space
are reached when the keypoint orientation is changed by π/2 and 3π/2. In other
words, if the new orientation is orthogonal to the original one, then the maximum
difference between descriptors is obtained. This applies to other images as well.

6.2 SVM for Changing Orientations

This section describes our method to force the orientation of keypoints. In short,
we learn which patch ǫ should be applied to a specific support region to change
the orientation by π/2. As mentioned in section 4.1.2, the main orientation of a
keypoint is computed based on distribution of gradient orientation of pixels in the
support region. Intuitively, the keypoints having similar orientation should have
the same distribution of gradient orientation. In other words, they should belong
to the same class in view of gradient orientation distribution. If we consider the
keypoints having the same orientation as a class, now, the problem of changing
the keypoint orientation is turned into a problem of moving a keypoint from
a given class to another class. A classical method to separate two classes is
SVM. Our method relies on a collection of SVMs. Each SVM determines the
hyperplane separating the keypoints having the orientation θ1 from the keypoints
with orientation θ2 = θ1 + π/2. To facilitate learning, reduce the noise and



60 Attacking descriptors

be more effective, the orientation space is quantized in bins of length π/18. It
means that after quantization, there are 36 bins covering all orientations. We
use 18 SVM classifiers trained for the 18 pairs of orthogonal orientations (e.g.,
from orientations ranging in [0, π/18] to orthogonal orientations ranging in π/2+
[0, π/18]). Table 6.1 illustrates patches belonging to different orientation bins.

To train the SVMs, we first determine all the keypoints and their orientation
for a set of 1,000 queries images (same as section 4.1). We only keep keypoints
belonging to the octaves {−1, 0, 1} as their support regions are small, facilitating
patching them visually while not too severely distorting the images. There are
954,285 keypoints on these octaves and 83% belong to the octave −1. We then
normalize all support regions to be of size (12 × 12), which is the average size
of patches on octave −1. A larger patch size requires a longer time to train the
SVM and to find the patch ǫ (as presented below). The keypoints from octaves
0 and 1 are also resized to (12 × 12). After resizing, we map all of them from
grayscale to range [0, 1] and then stored each resized and normalized patch in a
vector r of L = 12 × 12 = 144 components.

The set of keypoints is then divided into classes according to their orientations
θ. Let X1 = {(ri, ℓi)}i be the training set of normalized support regions ri of a
given orientation θ1, forming the class labelled by ℓi = +1. X2 = {(rj, ℓj)}j is the
training set of normalized support regions rj whose orientation is θ2 = θ1 + π/2,
forming the dual class labelled by ℓj = −1. At training time, the SVM in charge
of θ1 and θ2 learns the hyperplane parameters (w, b) separating X1 and X2 as
solution of:

ℓk.(〈w, Φ(rk)〉 + b) ≥ 1 ∀rk ∈ {X1, X2},

with 〈w, Φ(x)〉 =
∑

k:αk>0 αkℓkK(x, rk),

where Φ maps x to an higher dimensional space, αk are the Lagrange multipliers,
and K is the Radial Basis kernel Function (RBF):

K(x, rk) = 〈Φ(x), Φ(rk)〉 = exp

(

−‖x − rk‖2

2σ2

)

. (6.1)

The RBF kernel is chosen because it is tuned by only one parameter σ. In our
experiments, σ equals 1 (the default value in MATLAB library). Once trained,
the SVM is used to determine the patch ǫ of minimum norm to be added to a
region r ∈ X1, such that r+ǫ ∈ X2. This asks to solve the following optimization:

min
1

2
‖ǫ‖2 (6.2)

s.t.
∑

k:αk>0

αkℓkK(r + ǫ, rk) + b = −∆d, (6.3)

and 0 ≤ ri + ǫi ≤ 1, ∀i ∈ {1, . . . , L} (6.4)
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orientation [0, π/18] (π/18, 2π/18] (2π/18, 3π/18] (3π/18, 4π/18]

orientation (4π/18, 5π/18] (5π/18, 6π/18] (6π/18, 7π/18] (7π/18, 8π/18]

orientation (8π/18, 9π/18] (9π/18, 10π/18] (10π/18, 11π/18] (11π/18, 12π/18]

orientation (12π/18, 13π/18] (13π/18, 14π/18] (14π/18, 15π/18] (15π/18, 16π/18]

orientation (16π/18, 17π/18] (17π/18, 18π/18] (18π/18, 19π/18] (19π/18, 20π/18]

orientation (20π/18, 21π/18] (21π/18, 22π/18] (22π/18, 23π/18] (23π/18, 24π/18]

orientation (24π/18, 25π/18] (25π/18, 26π/18] (26π/18, 27π/18] (27π/18, 28π/18]

orientation (28π/18, 29π/18] (29π/18, 30π/18] (30π/18, 31π/18] (31π/18, 32π/18]

orientation (32π/18, 33π/18] (33π/18, 34π/18] (34π/18, 35π/18] (35π/18, 36π/18)

Table 6.1: Illustration of patches in 36 orientation bins used for SVMs
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Figure 6.3: The way we find ǫ.

where ∆d > 0 is the distance from r + ǫ to the hyperplane (w, d). The value of
∆d is somehow related to the probability that we achieve our goal: r + ǫ ∈ X2. If
∆d is small, r+ǫ will likely lie on the boundary between X1 and X2. In the other
hand, if ∆d is big, r + ǫ will be pushed deep inside X2. Figure 6.3 illustrates the
problem of finding ǫ by using SVM.

Eq. (6.4) ensures that the modified region remains in the range [0, 1]. Defining
scalars ak = αkℓkK(r, rk), and vectors ck = 2(r − rk), Eq. (6.3) can be rewritten
as:

∑

k:αk>0

ak exp

(

−c⊤

k ǫ + ‖ǫ‖2

2σ2

)

+ b + ∆d = 0. (6.5)

The derivative of constraint (6.5) is

∑

k:αk>0

−ak(ck + 2ǫ)

2σ2
exp

(

−c⊤

k ǫ + ‖ǫ‖2

2σ2

)

. (6.6)

This minimization problem under constraints is solved using an interior-point
method [7, 8], resulting in the desired ǫ to be applied. Once ǫ is found for a par-
ticular r, we reshape it to 12×12. After that, it is resized to size of corresponding
support region by bicubic interpolation method, rescaled to [0, 255], and finally
added to the corresponding support region. Table 6.2 shows visual of patches ǫ.

6.3 Evaluation of the orientation attack

We first evaluate the effectiveness of the above method for changing the orienta-
tion of keypoints. We show that while the orientation of many keypoints indeed
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Table 6.2: Visual examples of patches ǫ

change, some remain un-impacted. We evaluate the method at the image level
and show that new keypoints appear as a side-effect of visual distortions. We
finally benchmark the effectiveness of the method when querying the database of
100,000 random images (see section 4.1) with orientation-attacked quasi-copies.

The SVMs were trained using 1,000 random images from that set, as described
earlier. Note that this amounts to 954,285 samples, and the number of samples
per orientation class ranges from 19,567 to 45,060.

6.3.1 Ability to Change Orientations

We apply the method to the keypoints belonging to octaves {−1, 0, 1} of the
1,000 images earlier described. To check whether or not orientations changed, we
observe for all keypoints the angle between the original and attacked orientation,
expecting a change of ∆θ = π/2. However, this is not always verified. With ∆d =
2, Figure 6.4(a) counts the number of keypoints as a function of the observed
orientation change ∆θ. Each bin on the x-axis covers a range of π/18 from 0 to
π: the first bin corresponds to keypoints with ∆θ ∈ [0, π/18], the second one to
∆θ ∈ (π/18, 2π/18], . . . It appears that for most of the keypoints, the orientation
is changing by 6π/18 to 8π/18 (7th and 8th bins). The value of ∆d drives this
phenomenon: a larger value for ∆d increases the number of π/2 changes but in
turn causes more severe and visible distortions in the patches. This will be shown
in the following where results using ∆d = 2 and ∆d = 3 are compared.

Figures 6.4(c) and 6.4(d) show the average of the Euclidean distances be-
tween the original and attacked descriptors, as a function of ∆θ. The observed
distances are fairly constant between 4π/18 and 13π/18. While Figure 6.2 sug-
gests enforcing ∆θ = π/2 would be best, Figures 6.4(c) and 6.4(d) show that,
in practice, a value for ∆θ ranging from 4π/18 to 13π/18 pushes the attacked
descriptors far away in the feature space.

For ∆d = 2, 79% of the keypoints have their orientation changed from 4π/18
to 13π/18, moving as far as possible descriptors in the feature space, and making
matches potentially problematic. When ∆d = 3, this number is even higher:
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(a) ∆d = 2 (b) ∆d = 3

(c) ∆d = 2 (d) ∆d = 3

(e) ∆d = 2 (f) ∆d = 3

Figure 6.4: Orientation changes analysis for ∆d = 2 and ∆d = 3. X-axis: each bin
i = 1, ...18 corresponds to an observed orientation change ∆θ = [ (i−1)π

18
, iπ

18
]. (a)-

(b): Number of keypoints per orientation change bin; (c)-(d): Distance between
the original and modified descriptors; (e)-(f): PSNR between the original and
modified support regions. ∆θ ∈ [4π

18
, 13π

18
] is marked as blue region.
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about 89%, as summarized in Table 6.3.
However, the increase of ∆d introduces more distortion. The average PSNR

between the original and attacked support regions (computed over the 79% of
keypoints having their orientations changed from 4π/18 to 13π/18) is 21.64 dB
for ∆d = 2. For ∆d = 3, it drops to 19.44 dB for the same set of keypoints. This
phenomenon is also visible on Figures 6.4(e) and 6.4(f) representing the PSNR
between original and attacked support region.

To keep a acceptable PSNR for attacked patches, ∆d is set to 2 in the following
experiments of this chapter.

%keypoint PSNR

∆d = 2 79 21.64
∆d = 3 89 19.44

Table 6.3: Number of keypoints whose orientation has changed from 4π/18 to
13π/18 and average PSNR of patches for different value of ∆d

6.3.2 Cropped Patches Center

It is possible to preserve even more the PSNR by running a small variant of
the method. Instead of applying the patch to the whole support region, only
its central region is added. The size of the latter is proportional to the size of
the support region, meaning it is equal to 7 × 7, 9 × 9, or 11 × 11 for keypoints
belonging to octave -1, 0, or 1, respectively. These sizes are chosen from empirical
experiments, trying to get the best trade-off between the number of orientation
changes from 4π/18 to 13π/18 and the PSNR of the attacked patches.

Although we only update the center of patches, it is quite effective thanks to
the weighting enforced when determining the orientation, the central area of the
support regions having more influence. Reproducing all experiments with this
variant gives an average PSNR of 23.84dB as shown in Figure 6.5(f). It does,
however, change the effectiveness of the method as fewer keypoints have their
orientation changed. Figure 6.5(b) counts the number of keypoints as a function
of ∆θ observed with this variant. It clearly shows many orientations could not be
changed (see the left-most bin); most of the keypoints that changed orientation
have a ∆θ ∈ [4π/18, 10π/18]. The distances between descriptors are shown in
figure 6.5(d), which is quite similar to the ones observed on Figure 6.5(c).

There are about 62% number of keypoints having their orientations changed
from 4π/18 and 13π/18. Table 6.4 summarize results when comparing the full
and cropped patches updating for ∆d = 2.

Because the number of modified keypoints having ∆θ ∈ [4π
18

, 13π
18

] is still high
and while increasing the overall PSNR, this variant is used in the sequel.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Orientation changes comparison for ∆d = 2 when applying a full
patch (left column) and a centered cropped patch (right column). X-axis: each bin

i = 1, ...18 corresponds to an observed orientation change ∆θ = [ (i−1)π
18

, iπ
18

[. (a)-
(b): Number of keypoints per orientation change bin; (c)-(d): Distance between
the original and modified descriptors; (e)-(f): PSNR between the original and
modified support regions. ∆θ ∈ [4π

18
, 13π

18
] is marked as blue region.
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%keypoint PSNR

Full patches 79 21.64
Cropped patches 62 23.84

Table 6.4: Number of keypoints whose orientation has changed from 4π/18 to
13π/18 and average PSNR of patches for ∆d = 2.

6.3.3 Impact at Image-Level

To get an acceptable visual distortion at the level of the whole attacked image,
the variant modifying the center of support regions is used and applied only if the
PSNR between the original and patched support regions is bigger than a given
threshold tP SNR. We apply the method to 1,000 images for 3 different tP SNR

values: 15.3, 16.3, and 17dB. The Table 6.5 shows the average PSNR computed
at image level over the 1,000 images for the different tP SNR values. As expected,
the PSNR increases with tP SNR, as fewer keypoints are modified.

tP SNR 15.3 16.3 17

Avg PSNR on 1,000 images 28.39 29.24 29.93

Table 6.5: Average PSNR vs tP SNR

Having a closer look on how the keypoints are modified by the orientation
attack shows that keypoints can be divided into three categories:

1. unchanged keypoints (slight change (or unchange) in location, scale and
orientation)

2. keypoints having their orientation changed (slight change (or unchange) in
location and scale, but significantly change orientation)

3. new keypoints created as a side-effect of the distortions introduced by the
attack.

In detail, we evaluate how many keypoints fall into each class as follows. Let
kpo = {xo, yo, σo, θo} be an original keypoint, (x, y, σ, θ) a keypoint in attacked
image, and d(., .) the Euclidean distance.

• A keypoint falls into the first category if there is a kpo such that
d ((x, y), (xo, yo)) ≤ 5 and 0.7 ≤ σ/σo ≤ 1.3 and |θ − θo| ≤ π/18. These
values have been determined because any keypoint in that class remains
pretty close to its original keypoint in the feature space (at a distance lower
than 200, see Figure 6.5(d)), allowing easy matching.
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Table 6.6: Number of keypoints for each category in attacked images over all
octaves; PSNR between original and attacked images. In 5th column, some key-
points are unchanged only because they belong to higher scales, and then are not
attacked.

Image # KP before tP SNR # KP after # KP # KP # KP PSNR
attack attack cat.1 cat. 2 cat. 3

LENA
15.3 1388 258 (18.6 %) 712 (51.3 %) 418 (30.1 %) 27.88

1218 16.3 1360 287 (21.1 %) 688 (50.6 %) 385 (28.3 %) 28.57
17 1321 321(24.3 %) 668 (50.5 %) 332 (25.2 %) 29.14

AVG
1000
IM

15.3 1224 229 (18.7 %) 653 (53.3 %) 342 (28 %) 28.39
1026 16.3 1198 266 (22.2 %) 623 (52 %) 309 (25.8 %) 29.24

17 1177 290 (24.7 %) 604 (51.3 %) 283 (24 %) 29.93

• A keypoint falls into the second category if there is a kpo such that
d ((x, y), (xo, yo)) ≤ 5 and 0.7 ≤ σ/σo ≤ 1.3 and |θ − θo| ≥ π/18.

• The remaining keypoints fall into the third category. They can be seen as
new keypoints as they are far in position or scale with respect to the original
keypoints.

Table 6.6 shows the number of keypoints belonging to each category. It also
shows the PSNR between original and attacked images. The value of tP SNR has
not a big impact on the number of keypoints having their orientation changed:
whatever the value tP SNR, almost half of keypoints belongs to the second category.
However, as mentioned previously, the higher tP SNR, the more unchanged key-
points, and the better the global PSNR. Corollary, the number of new keypoints
decreases when tP SNR increases. As presented, the attack is applied to keypoints
belonging to octaves {−1, 0, 1} so some keypoints are unchanged because they
belong to higher scales.

Figure 6.6 illustrates the unchanged keypoints, keypoint changed in orien-
tation and nearest original keypoints (in same scale) to keypoints changed in
orientation on Lena image. We can see that keypoints changed in orientation
(green) are located near to original keypoints (yellow) but have a significantly
different orientation.

6.3.4 Impact on Large-Scale Recognition

This section evaluates the proposed attacks on the system given in section 4.1.
The search process uses multiple voting scheme of NVTree. The geometric veri-
fication is not considered in this experiment. The same 1,000 images are used as
queries and we ran the proposed orientation attack on them resulting in quasi-
copies. The variant modifying the center of support regions is used and controlled
by the tP SNR threshold.
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Figure 6.6: Illustration for orientation attack of keypoints belonging to octaves
{−1, 0, 1} with tP SNR = 17: unchanged keypoints (blue), keypoints changed
in orientation (green), nearest original keypoints (in same scale) to keypoints
changed in orientation (yellow).

Each query probes the system which returns the top 100 images with associ-
ated scores. We then compute the average score of the original image.

Figure 6.7 shows average score of original image (red line) and the three top
matching images for some different tP SNR values. From right to left, the gap
between original image and best competitor scores decreases, as the strength of
the attack increases. The attack succeeds for tP SNR = 15.3 dB. Even if the
attacked image is not completely concealed, the original image has not the best
score anymore, and gets hidden behind another image that better matches.

6.4 Combination of Attack

In chapter 5, we presented some strategies to delude the recognition of CBIRS sys-
tem, focusing on attacks at keypoint detection step. It includes keypoint removal
methods as GS, LS and forging new keypoints method as FMD. This chapter
proposed an attack at keypoint descriptor computation step that tries to change
orientation of keypoints. Hence, it is likely to change keypoint descriptor. To
craft stronger attacks, these single attacks should be combined together. We first
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Figure 6.7: X-axis: orientation attacks with tP SNR ∈ {15.3, 16.3, 17} in dB. Y-
axis: the average scores over the 1,000 queries of the original images and of the
three other best matching images.

detail the way we combine them. We then evaluate the attack combination on the
system using both multiple and single voting. We also evaluate this combination
when geometric verification is included in the system.

6.4.1 Global System

We combine the attacks DS, LS and FMD proposed in chapter 5 and the orien-
tation attack. To keep an acceptable visual of the forged image, the attacks are
applied to keypoints belonging to octaves {−1, 0, 1}.

At first, the DS attack is applied on the image, because it removes most of
the keypoints, while minimizing the distortion as seen in section 5.1.2. Keypoints
unchanged by the DS attack are then subjected to an orientation attack. The
orientation attack is less time consuming than LS attack2. Hence, the orientation

2Reminder: The LS attack replaces the n × n region around the current keypoint by its
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attack is applied before the LS attack. For every keypoint, the patch ǫ is applied
to its support region if this changes its orientation by at least π/6. This, in turn,
ensures that the descriptors computed from this tweaked support region and from
the original support region are far enough in the high-dimensional space.

The keypoints unchanged by orientation attack are then subjected to a LS
attack. Finally, once the image has been washed from as many keypoints as
possible, the FMD attack is performed to forge new keypoints.

The visual impact of these different attacks is shown in Figure 6.8. We can
see that the DS attack blurs regions (Lena’s hair) in the image. The orientation
and LS attack have the same effect. They produce some very small square noise
regions. The new keypoints by FMD are resulted in small salt and pepper noise
artifacts.

For each single attack, the keypoints are modified iff the PSNR computed be-
tween the original and modified support regions does not drop below a threshold,
called tP SNR. A different tP SNR is used for each attack, given in Table 6.7. These
values of tP SNR were set empirically by conducting many experiments. They yield
a good trade-off between visual and score (or number of unchanged keypoints) of
attacked images. In the previous section, tP SNR equals to 15.3, 16.3, or 17 for the
orientation attack. However, in the combination of attacks, we can set a higher
threshold tP SNR. The keypoints not impacted by orientation attack are likely re-
moved by the LS attack after. Hence we can get same results3 as in section 6.3.4
even for a higher tP SNR.

Attack orientation attack LS FMD

tP SNR 19 19 21

Table 6.7: tP SNR in dB for the single attacks of the combination.

Table 6.8 gives the average number of detected keypoints after each single
attack is applied sequentially on 1,000 images. It also gives the average PSNR
between attacked and original images. We can see that the DS attack removes
about 11.3% of keypoints. However, after applying the orientation attack, the
number of keypoints slightly increases because some new keypoints are created.
After applying the LS attack, the number of keypoints is 694. It equals 67.6% of
keypoints in the original image. Because the FMD creates some new keypoints,
the number of keypoints increases again, resulting in 896 keypoints in the final
attacked image.

smoothed version and checks whether this keypoint is still detected or not. This is performed
iteratively using regions of growing sizes, until the keypoint is no longer detected. In orientation
attack, the equation 6.2 is fastly solved by interior-point method

3The original image is not on the top of result list
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(a) after DS + orientation attack (b) after DS + orientation attack +
LS

(c) DS + orientation attack + LS +
FMD

Figure 6.8: Visual rendering along the successive attacks.

Attack # keypoints PSNR

Original image 1026 ∞
DS 910 34.07

+Orientation attack 961 31.77
+LS 694 29.99

+FMD 896 29.60

Table 6.8: Number of keypoints on average over 1,000 images. Attacks are applied
in sequel.
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6.4.2 Experiments With Multiple Voting and Single Vot-
ing

With the same setup as described in section 4.1, we now evaluate the improve-
ment of attacks combination against the results obtained when the attacks are
considered independently (the geometric verification is still not used for the mo-
ment).

Table 6.9 shows the average score of the original image and the three top
matching images when using multiple or single voting, respectively. When mul-
tiple voting is on, the combination of attacks is more efficient than both the
orientation and the GS+LS+FMD attack: The original image is ranked below
the 3 best competitor images, while with the latter attack, the original image is
ranked 2nd in the result list (see Figure 5.9 and Figure 6.7).

Furthermore, the average PSNR of attacks combination is 29.60 dB, while
with GS+LS+FMD and the orientation attack, it is 28.23 dB (see Table 5.1) and
28.39 dB (see Table 6.6), respectively. However, when single voting is on, we can
see in Table 6.9 that the original images are still on top of the result list for the
same reasons as those discussed in Sect. 5.4.3: each best competitor image in the
database just gets a maximum of one vote when each keypoint created by FMD
is queried. In general, the systems using multiple voting is easier to circumvent
than the systems with single voting.

original image 1st competitor 2nd competitor 3rd competitor

Multiple voting 83 214 143 124
Single voting 75 43 39 36

Table 6.9: Scores of the original images and of the three other best matching im-
ages, averaged over the 1,000 queries, when attacks are combined. The geometric
verification is not considered.

6.4.3 Geometric Verification

In this section, we evaluate the combination of attacks when a geometric verifica-
tion is used as a post-filtering to rerank images in the result list. The description
of the geometric verification and the reranking are described in section 4.1.4.

Table 6.10 shows the average score of the original image and the three top
matching images for multiple voting and single voting, respectively. When geo-
metric verification is used, the original image is still at the top of the result list
for both multiple voting and single voting. There is a very big gap between the
scores of the original and the best competitor images. The main reason is that
the new keypoints created as side effect by removal method GS, LS or orientation
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attack or deliberately by FMD do not mimic the geometrical pattern present in
the best competitor images. Therefore, these competitor images are pruned out.
In the other hand, although many keypoints in the attacked image are removed,
the unchanged keypoints are still geometrically consistent with the original im-
age and they are enough of them to vote for the original image. Hence, only the
original image stays on the top of the list.

original image 1st competitor 2nd competitor 3rd competitor

Multiple voting 52 5 4 3
Single voting 52 5 3 2

Table 6.10: The average scores over the 1,000 queries of the original and of the
three other best matching images. The geometric verification is considered.

6.5 Summary

In this chapter, we proposed a new angle of attack of CBIRS based on SIFT
descriptors. The proposed attack focuses on the influence of the orientation dis-
turbance on the recognition of an image. The orientation shift in descriptor com-
putation is accomplished by introducing locally non-affine modifications, through
the addition of patches that are learned by an SVMs process. The main results
of proposed orientation attack has been published in [17]. We also evaluate the
combination of this attack and single attacks presented in chapter 5.

There are some lessons learned from this work.

• The results in Figure 6.7 shows that the orientation attack lowers enough
the score of the original image so that it is no longer returned at first position
by the system. To be truly effective, this attack must be combined with
other attacks presented in chapter 5.

• Based on results in section 6.4.2, attacking the system using multiple voting
is easier than attacking system using single voting.

• As presented in section 6.4.2, the single voting improves the security of the
system even if it is attacked by a combination of many attacks. By this
conclusion, in next chapter, we will focus on attack system using
single voting scheme.

• When geometric verification is included in the system as a post-filtering, the
attacks combination can not delude the recognition of the system anymore.
This is because the new keypoints created by FMD are not geometrically
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consistent with those of the original image. Hence, FMD is not used in the
remaining of the thesis.

• In the next chapter, we introduce a strategy to attack the system
when geometric verification is included. The attack is similar to
Picture in Picture modification. Some small pictures are inserted into the
attacked images. These patches are likely to share a geometric consistency
with patterns present in some images of the database. Hence, these images
are likely to have a higher rank than original image.
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Chapter 7

Attacking geometry

In the previous chapter, when geometric verification is included in the system
as a post-filtering, the proposed attacks can not delude the recognition of the
system. The main reason is that the new keypoints in the attacked image do not
have a geometric consistency with the lure image. To circumvent the geometric
verification, the attacked image should contain numerous keypoints that can be
matched in a geometric consistent way with another image of the database than
the original one.

A straightforward way to proceed is to insert in the attacked image distrac-
tors such that those distractors must contain a number of matches (with some
images in database) greater than the number of matches retained by the geo-
metric verification for the original image. This attack is a kind of Picture in
Picture (PiP) attack. A PiP visual modification tries to preclude the recogni-
tion of a copyrighted picture by modifying that picture by two ways defined in
TRECVID1 [84] as follows. The first one (referred to as PiP-Type 1) embeds the
severely downscaled version of the protected image in a distractor content, which
dominates recognition. In the second one (referred to as PiP-Type2), a small dis-
tractor image is embedded in the protected image. In this chapter, we propose a
PiP attack similar to PiP-Type 2. However, in PiP-Type 2, the distractor image
is chosen randomly, while in the proposed attack, the small distractor is carefully
determined such that it will catch almost all matches avoiding the full resolution
image to be identified, hence deluding recognition.

This chapter is structured as follows. Section 7.1 briefly describes how PiP
visual modification schemes are created and how existing CBIRS recognize con-
tents despite PiP. Section 7.2 describes how these security-oriented PiP visual
modifications are produced . Section 7.3 shows the effectiveness of the proposed
scheme through large scale image recognition experiments. Finally, Section 7.4

1TRECVID defines PiP attack on video but PiP problems in video raises very similarly to
image. The PiP term we use here refers to both video and image.

77
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concludes.

7.1 PiP Visual Modifications

This section gives a brief overview of the typical process that eventually creates
a Picture in Picture visual modification. It then discusses about the two families
of solutions found in the literature recognizing contents despite PiP attacks.

7.1.1 Producing PiP Visual Modifications

The way TRECVID produces PiP modifications is quite generic and works as
follows [84, 70]. In PiP-Type 1, first, an image (or video) is randomly picked
from a collection of distracting contents, in practice unlikely to match with the
database of protected material. Then, the image (or the video) that the modifi-
cation process tries to hide from recognition is scaled down and is inserted in the
distracting contents. TRECVID specifies the rules driving the downscaling as
well as the location of the inserted contents. The downscaled size ranges from 0.3
to 0.5 of its original size; the downscaled protected content can be inserted at five
locations, the four corners or the center of the distracting image. Furthermore,
the aspect ratio of the inserted image/video is typically fixed. In PiP-Type 2,
a small distractor image (or video) is inserted in front of the protected image.
The size of distractor ranges from 0.2 to 0.5 times the size of the protected im-
age. Again, it can be inserted at five location as for PiP-Type 1. TRECVID
benchmark includes several hundreds of such PiP material. Figure 7.1 shows two
examples from TRECVID for PiP-Type 1 and PiP-Type 2 modifications.

It is interesting to compute the PSNR between the original and modified ver-
sions. PSNR is naturally very small as pixels are very different. For the examples
given in Figure 7.1, PSNR(7.1(a),7.1(b))=12.67 dB, PSNR(7.1(c),7.1(d))=15.72
dB

7.1.2 Recognizing Contents Despite PiP

Overall, there are two families of techniques trying to identify the protected con-
tents. The first family heavily relies on some prior knowledge to facilitate identi-
fication, because it knows the PiP procedure sticks to the predefined rules. The
second family has no particular ad-hoc mechanism but it rather finely analyzes
the candidate list of similar material returned by the database search during a
post-processing step. We detail these two families below.
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(a) (b)

(c) (d)

Figure 7.1: Two examples from TRECVID for PiP-Type 1 and PiP-Type 2:
(a) and (c) are the images to be protected, kept inside the database; (b) is
TRECVID PiP-Type 1 visual modifications; (d) is TRECVID PiP-Type 2 visual
modifications

7.1.2.1 Prior Knowledge for Separating Images

The first family makes use of the PiP construction rules to separate the two
images, isolating the distracting image from the one possibly protected. Once
separated, the protected image is typically up-scaled and then used to query the
CBIRS.

Some image separation techniques use edge/line information to detect the
boundaries of the inserted image. The detection typically relies on a Canny
edge detector or on a Hough transform [69, 53, 78]. In [53], to detect PiP in
video, they first segment the attacked video into shots, where each shot contains
homogeneous content. The first frame within each shot is selected as a keyframe.
All next processes are applied on keyframes2. A Canny edge detector is run to
locate horizontal and vertical edges which can possibly be at the boundaries of the

2At this time, PiP detection in video is turned to PiP detection in image
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(a) (b)

(c) (d)

Figure 7.2: PiP detection: (a): protected video is embedded in a distractor video;
(b): enlarged version of protected video; (c): horizontal edge image; (d) vertical
edge image. Figures are from [53].

inserted image. Candidate regions which will later be used as queries are obtained
by grouping four edges in pairs made of two horizontal and two vertical edges.
Some candidate regions are then eliminated according to some additional criteria
such as their aspect ratio as well as their location. This process is illustrated in
Figure 7.2 [53]. Finally, the remaining candidate regions are extracted from the
global image, up-scaled and they probe the system. The one with the highest
similarity score is returned as the final answer. [69] uses a Hough transform on
keyframes to detect persistent strong horizontal lines from which the candidate
regions are determined.

In [78], both Canny edge detector and Hough transform are used for PiP de-
tection. In their work, instead of applying Canny edge detector on keyframes, the
detector is directly run on every single frame of the video, which in turns creates a
series of detected edge images. A time-sliding window processes consecutive edge
images and produces average edge images. A Hough transform is then applied on
these average edge images to detect persistent lines, and short lines as well as non
horizontal or vertical lines are eliminated. The remaining lines create candidate
regions, probing the system one after the other.

Some other methods detect corners of regions instead of lines. In [10, 4], a
Sobel operator and a Laplacian kernel are applied to video frames. Pixels in
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frames that are found to be part of either horizontal or vertical edges are flagged.
The corners of candidate regions are thus the pixels in images where the maximum
accumulation of edge points on horizontal and vertical directions are found.

Other methods make an even more rough use of the prior knowledge of the
rules driving the creation of PiP visual modifications. For example, [50] extracts
from the whole image a series of candidate regions located at the four corners as
well as around the center, having sizes of 30%, 40% and 50% of the whole image.
These regions are then used to probe the database.

Overall, these methods too much rely on the prior knowledge to be usable in
practice from a security perspective. While these PiP detection techniques are
somehow robust, they are not at all secure. Once the TRECVID rules are known,
it is easy to create a PiP visual modification that diverges enough from these
rules to make recognition more problematic. Inserting the protected content at
a random location, rotating it by few degrees or stretching it by different scaling
factors are sufficient to delude recognition.

7.1.2.2 Identification Without Prior Knowledge

In contrast to the approaches mentioned above, some other techniques do not
separate the images. They rather compute feature vectors over the whole image
and then query the database with every single descriptor, without separating any-
thing [35, 26, 66, 89]. Once all the query descriptors have probed the database, the
list of candidate images is then post-processed in order to identify the potential
protected contents. This post-processing step typically checks the geometry con-
sistency between the query and all images in the candidate list. Very robust tools
estimating the geometrical consistency are used, such as RANSAC [24, 52, 72] or
the Generalized Hough Transform [3, 56].

Three comments are in order, however. First, the feature vectors (typically
SIFT) are so powerful that the search process is likely to put in the candidate
list the protected image corresponding to the one quasi-copied in the PiP, despite
its downscaling. Finding that image inside the list of candidates is thus a matter
of eliminating the other candidate images that are false positives. Second, the
robustness of the geometrical verification process is so high that if the query
indeed contains some pieces of protected contents, then it will be classified as
containing inliers (mostly, if not only). Third, because the distracting image in
the query does not match with any image in the database, then no consistency
will be found there and the distracting part of the query image is thus classified
as containing outliers only.

These techniques strongly assume that the distracting part of the image/video
query does not belong to database–this is a very serious drawback. Otherwise,
when the distracting part is in (or turns out to be in) the database, then the
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result returned by the CBIRS is much more ambiguous.

7.2 CBIRS-aware PiP Creation

The proposed PiP attack has the same philosophy as PiP-Type 2. However, in
contrast to the generic way of creating PiP visual modifications, we now detail a
technique producing PiP attacks deluding the recognition capabilities the system.

The main ideas of the proposed attack are the following ones:

• To make the distractor part dominates the recognition,

• To make it difficult to separate distractor and protected content.

The first idea includes two steps. The first step is to “wash” the image. The goal
is to reduce the number of matches between the forged and the original image
and in order to make the protected content more difficult to be recognized. The
second step is to insert some specific distractors into the washed image. The goal
is to make the distractor strongly recognized and so that the protected content
is badly ranked. The details of two steps are presented in the next sections.

7.2.1 Image Washing Before PiP

Because there are approximately 1,000 keypoints in a protected image, a forged
copy of a protected image should be “washed” before doing PiP attack to reduce
as much as possible the number of matches between the forgery and its original
version. We apply the combination of DS, orientation attack and LS attack in
the sequel as presented in the previous chapter (see Section 6.4.1) to reduce the
number of matches satisfying Lowe’s criterion (see section 4.1.4) between the
attacked image and its original version. The number of keypoints in the washed
image, the number of matches between and the PSNR of the washed images are
given in Table 7.1.

Attack # keypoints # matches PSNR

Original image 1026 1026 ∞
DS 910 833 34.07

+Orientation attack 961 505 31.77
+LS 694 115 29.99

Table 7.1: Number of keypoints and number of matches between the washed
images and their original version. Average over 1,000 images. Attacks are applied
in sequel.
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As mentioned in the previous chapter, the FMD attack is useless when geo-
metric verification is included in the system. Hence, it is not considered in this
chapter. In Table 7.1, after the washing, the number of matches between the
forged and the original image image is 115. It means that only 11.2% of the
matches remain. The number of points compliant with the geometric verifica-
tion (section 4.1.4) is thus decreased. Overall, after the washing, the forged copy
has (i) few descriptors that perfectly match with its original version, (ii) many
descriptors that are unlikely to match since they have been moved away in the
high-dimensional space and (iii) several new keypoints created as a side effect of
visual artifacts that may or may not match. Querying the CBIRS with such a
washed image is likely to identify the original but with a very low score, making
the system less confident.

7.2.2 Creating the PiP Attack

Washing even more reduces the number of keypoints that still match and it breaks
recognition. Yet, so severely washed images are much too distorted to remain
usable in practice and to keep any commercial value. In contrast, as highlighted
in the Section 7.1, making sure the distracting part dominates the recognition is
one option; making it difficult to separate the two images is another. For these
reasons, our scheme for producing CBIRS-aware PiP attacks adopts the following
guidelines:

• The relative locations of the protected contents and the distracting part
have to be as free as possible. Corners and centers should not be the only
options.

• The frontier between the protected and the distracting contents must not
boil down to straight segments (this includes not being strictly vertical or
horizontal).

• The distracting part must always strongly match with some contents that
is protected in the database, even if the contents of this database remain
absolutely unknown. Making sure the recognition has ambiguities is key to
this attack scheme.

• The PSNR computed between the original image and its forgery must be
high to preserve visual quality.

From these guidelines, our PiP attack inserts inside the image to be forged
a small visual distractor carefully determined such that it is extremely likely to
strongly match with some of the (possible unknown) contents of the database.
The sequel describes how such visual distractors are determined, how they are
inserted into the images and why more than one distractor might be inserted.
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7.2.2.1 Determining Candidate Visual Distractors

After the washing, the forged image still contains several keypoints matching
with their original counterparts (eg. 115 matches in Table 7.1). To make sure
this original image does not get ranked first by the CBIRS, more matches than
this number must be created between another image from the database and some
visual elements in the query image. Furthermore, there must be a good geo-
metrical consistency between these matching keypoints to pass the geometrical
verification.

In general, the distractors are selected such that the forged image (after dis-
tractor insertion) should have strong matches passing the geometric verification
with some images (not original version of forged image) that are protected in the
database. The creation of distractors can be seen under two situations.

First situation, it is easy to identify such matches when the database of pro-
tected contents is known. The contents to be protected might be copyrighted
material such as blockbusters or other images that are somehow known from ev-
eryone. In another case, the CBIRS might return images that are similar to the
ones used for querying the system. In this case, it is possible to patiently send
queries and accumulate results.

Analyzing these disclosed images bootstraps the creation of CBIRS-aware PiP
attacks. Given these images, we crop the densest keypoint regions at various sizes
eg. 10 × 10 pixels, 15 × 15, 20 × 20, . . . .

This, somehow, creates a dictionary of visual distractors that are sorted by the
number of keypoints still matching their origin image after cropping. Note that,
a 50 × 50 pixels distractor containing m keypoints can have number of matches
with its origin image less than m. The difference comes from the keypoints near
the borders of the distractor which can not match anymore. Figure 7.3 illustrates
the matching between a distractor and its original image.

Then, we select a distractor from this dictionary containing more keypoints
than the number of remaining matching keypoints after the washing of the forgery.
Inserting this distractor in the washed image is going to produce enough geomet-
rically consistent matches to push the original image down in the result list (at
least with rank #2, see 7.2.2.4).

Second situation, in some applications, it might be impossible to disclose what
is inside the database. It is however possible to create a set of visual distractors
that are extremely likely to match with some images from this unknown database.
Many images include textures that are very repetitive, such as tiles, bricks, tree
leaves, window shutters, windows on a facade seen from far enough, friezes, fab-
rics, clothes, etc. Downloading a fair number of pictures from Flickr provides an
easy way to bootstrap the construction of a dictionary of keypoint-dense visual
distractors, as described above. These distractors typically contain regular and
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Figure 7.3: Matching between a distractor and the image it is extracted from.
The number of keypoints in the distractor is 148. There are 120 matches between
the distractor and its original image.

repetitive patterns. The pirate bets that these patterns will match with some of
the database images even if no images from the database are known. Further-
more, it is likely that these distractors will be geometrically consistent with some
of the database contents.

Overall, our strategy starts by building a dictionary of visual distractors.
Examples are given in Table 7.2. The distractors have different sizes since their
keypoint density varies. It then picks from the dictionary the distractors that
have more keypoints than what remains in the washed image. This gives a list
of candidate distractors. The next sections describe the selection of one or more
distractors in that list and their insertion in the washed image.

7.2.2.2 Inserting a Visual Distractor

Given a distractor, we define four policies for determining where the distractor
is inserted inside the washed image. In contrast to TRECVID, the insertion is
not driven by a simple rule, but rather by the content of the washed image, and
therefore its place significantly varies from one image to the other. For simplicity,
we detail the policies assuming there is only one distractor candidate for insertion.

Policy #1: PSNR-Oriented The first policy finds the place in the washed
image where the distractor can be inserted while reducing the PSNR as little
as possible. Let Iw be the washed image into which the distractor Ip has to be
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# of Visual Examples
keypoints

20–50

50–100

100–200

200–300

300–400

400–500

Table 7.2: Dictionary of keypoint-dense visual distractors.

inserted, eventually producing the image I ′

w. Ip is a p×p pixel square. First, Ip is
centered Ĩp = Ip − Īp, with Īp denoting the average luminance. Ĩp is then sled over
the washed image. Because SIFT is invariant to illumination changes (provided
the local contrast is not too small), it is possible to adjust the illumination of
Ĩp to be as close as possible to Iw(x, y, p) the p × p region of Iw around position
(x, y). This boils down to finding parameter a and b such that:

min
a,b

‖aĨp + b − Iw(x, y, p)‖2, subject to: a ≥ amin. (7.1)

The constraint a ≥ amin avoids small values of a which flattens Ĩp removing most
(if not all) of its keypoints. Solving (7.1) gives a and b:

b = Īw(x, y, p),

a = max



amin,
Ĩp

T
Iw(x, y, p)

‖Ĩp‖2



 . (7.2)

Once the best illumination of Ĩp is determined at position (x, y), the PSNR be-
tween aĨp + b and Iw(x, y, p) is computed. Once Ĩp has been sled all over Iw, it
is inserted at the place where the maximum PSNR was observed. At that time,
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after having inserted the distractor Ĩp with the appropriate values for a and b,
the washed image becomes I ′

w. Figure 7.4 illustrates a distractor Ip before and
after illumination adjustment.

(a) (b)

Figure 7.4: Illustration for illumination adjustment: (a) original distractor; (b)
after illumination adjustment

Policy#2: Matching Density-Oriented The second policy determines where
to insert based on the number of matches that still exist between the washed im-
age Iw and its original, non modified version. It moves a sliding window having
size equal to size of distractor over Iw to identify the region with a maximum
of matches. Then, Ip is centered, a and b are determined as in Policy#1 and
then aĨp + b replaces the appropriate region of Iw. Generating I ′

w this way tends
to dramatically reduce the number of matches, making recognition harder. Fig-
ure 7.5 shows the number of matches between a washed image and its original
version before and after distractor insertion.

Policy#3: Visual Attention-Oriented & PSNR Care must be taken to
move away the distractor from being inserted in the middle of, or close to, the
visual centers of interest that exist in the image. This third policy therefore
computes a visual saliency map for Iw using the Graph-Based Visual Saliency
(GBVS) approach [29]. In [29], some saliency regions are extracted in three
steps. The first step extracts some feature vectors over the image, resulting in
feature images (feature maps). In their experiment, the feature maps are formed
by the convolution of input image with some Gabor filters at various scale and
orientations. The second step forms an “activation map” using the feature maps.
Each feature map M is resized to a smaller size. Let the new size be n × n. A
fully-connected graph GA is obtained by connecting every node of the lattice M ,
labelled with two indices (i, j) ∈ [n]2, with all other n − 1 nodes. The weight for
an edge between two nodes is computed as3:

d((i, j), (p, q)) =

∣

∣

∣

∣

∣

log
M(i, j)

M(p, q)

∣

∣

∣

∣

∣

3In their experiment, the edge weight is further multiplied by a Gaussian function
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(a)

(b)

Figure 7.5: Matching density-oriented distractor insertion (Policy#2): (a) The
number of matches between a washed and original image is 156; (b) The number
of matches between images after distractor insertion is 144.

They run a Markov chain over the graph GA, and regard its equilibrium distri-
bution over the map as the saliency values. In the final step, the activation map
is normalized using a Markovian algorithm. The normalized activation maps are
summed to form a master saliency map. The values of the master saliency map
is mapped to [0,1]. Then, the master map is interpolated to the size of the in-
put image. In our experiments, saliency regions include pixels having saliency
value higher than 0.7. Policy#3 then simply determines salient-enough regions
and then applies Policy#1, forbidding the sliding window to enter inside these
regions, as illustrated in Figure 7.6.

Policy#4: Visual Attention & Matching Density Once the salient-enough
regions have been determined, then Policy#2 is applied. This inserts the distrac-
tor where the largest number of matching keypoints is found, outside the salient
regions.

7.2.2.3 Blurring Boundaries

The systems that separate pictures to cope with PiP attacks heavily rely on hor-
izontal and vertical segment detection. Challenging their security is possible by



CBIRS-aware PiP Creation 89

(a) (b)

Figure 7.6: (a) shows the map of salient regions according to GBVS. (b) shows
in white the area where high-saliency forbids the distractor insertion.

modifying the images such that the detection of segments becomes very difficult
with their approaches. One option is to blur the boundaries separating the two
images. After insertion of the distractor, a small and local Gaussian (σ = 1) blur-
ring around the frontier does the job. The blurring makes intensity of pixels on
distractor boundary and their neighbors similar. Hence, vertical and horizontal
edges are much harder to detect.

The Figure 7.7(a) shows a close view of distractor boundary after blurring.
Figure 7.7(b) shows edge image after applying a Canny edge detector on attacked
image 7.7(a). We can see that there are neither vertical, nor horizontal edges
around the distractor boundaries. Hence, the methods using prior knowledge as
presented in section 7.1 may fail.

7.2.2.4 Inserting Multiple Visual Distractor

Inserting one distractor in the washed image pushes the corresponding original
image at least at rank #2 in the result list. It might be desirable to push it
further. In this case, several distractors might be inserted in the washed image.
Two inserted distractors push the original image to rank#3, etc. Of course, it is
not possible to push it extremely far without too severely degrading the image.
Figure 7.8 shows examples where two distractors have been inserted. We can
see that the position of distractors can be anywhere in the image. This is very
different from PiP in TRECVID. When the distractor is a regular pattern as in
Figure 7.8, for policies #1 and #3, it is usually inserted in uniform regions. For
policies #2 and #4, it is inserted in nonuniform regions. This is expected because
there are many keypoints at these latter regions. As expected, the PSNR is “pre-
served” with policies #1 and #3 (higher than 29). We also see the disadvantage
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(a) (b)

Figure 7.7: Blurring the boundaries: (a) Close view of a distractor boundary ;
(b) Edge image after applying the Canny edge detector on the attacked image
(a)

of policies not including visual attention in Figure 7.8(b) where the distractor is
put in a saliency region (face of dog) of image.

7.3 Large-Scale Experiments

This section evaluates the proposed PiP attacks on the system given in section 4.1.
The search process use single voting scheme of NVTree, as it is the more difficult
to attack than multiple voting scheme (see section 6.5). After that the NV-Tree
returns a candidate list of the best 100 matching image, the list is processed in
order to re-rank the candidates by using geometric verification, as presented in
section 4.1.4.

7.3.1 Experiment 1: Inserting One Distractor

In this first experiment, we first wash the 1,000 query images and then deter-
mine which distractor should be inserted in each washed image. We then insert
distractors in images according to the four distractor-insertion policies defined
above, eventually ending-up with 4,000 CBIRS-aware PiP attacked images. Each
attacked image is used to query the database. We first discuss the effectiveness of
the attacks before giving details on the distractors used to produce these attacks.
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(a) (b)

(c) (d)

Figure 7.8: The four distractor insertion policies for 2 distractors. (a), (b), (c)
and (d) are Policies #1 to #4, respectively. PSNR are respectively 29.13, 24.77,
29.11, and 25.14 dB.

7.3.1.1 Effectiveness of the Attacks

Table 7.3 shows the effectiveness of the attack for each of the four policies as
given by the first column. The second column gives the average PSNR between
the original images and their attacked version. The third column gives the number
of times the PiP attack was not successful since the washed and attacked images
could still be identified by the system and be ranked first.

It turns out that some images can not be attacked in practice while preserving
their PSNR. They are too much textured, and still have too many unchanged
keypoints after washing. It would require the insertion of big visual distractors
to topple over recognition. An example of such an image is given in figure 7.9.

Note that the failure rate of this attack is very small ((25+17+20+13)/4000
= 1.88%, roughly, across policies). As expected, policies #2 and #4 have a light
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Policies PSNR rank=1 rank=2 rank>100

#1-PSNR 29.55 25 923 47

#2-Matching Dens. 28.14 17 921 60

#3-Visual Att. & PSNR 29.52 20 928 46

#4-Visual Att.& Matching Dens. 28.35 13 918 63

Table 7.3: The ranks of the identified images over 1,000 queries with one distractor
inserted.

Figure 7.9: This attacked image is still at on the top of the result list after
reranking

.

failure rate (lower than the one of policies #1 and #3), because these policies are
designed to remove more matches between washed image and original image. On
the other hand, policies #1 and #3 have an average PSNR higher than the one
of policies #2 and #4.

The fourth column of the Table gives the number of times the original image
is found at rank #2 in the final result. In this case, the PiP attack is successful.
The washing was strong enough to dramatically reduce the number of (good)
matches and the picked visual distractor triggered enough matches (geometrically
consistent) to dominate recognition.

The fifth column gives the number of times the original image is not found
in the top 100 most similar images. There are (47+60+46+63)/4000 = 5.4% of
the original images having rank ≥ 100. This happens when the washing removes
enough keypoints and/or triggers matches with other random images from the
database in addition to what produces the distractors. In other words, the wash-
ing process leaves too few keypoints identical to the original image. On average,
there are 4.75 original images ranked between 3 and 100.
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Overall, we observe that identifying the original image after the CBIRS-aware
PiP attacks is always problematic, the system having to deal with recognition am-
biguities or being unable to identify the correct images. This is a very encouraging
result.

7.3.1.2 Details on the distractors

In addition of keeping track of image similarities to determine the effectiveness
of the attacks, we also record some detailed information on the distractors used
to create the PiP visual modifications. Figure 7.10(a) shows the number of times
distractors of size given by the x-axis were used to produce the 1,000 attacks in
the case of Policy#1 (PSNR-oriented), quantized every 5 pixels. Figure 7.10(b)
displays the impact on the PSNR of such distractors. Overall, this shows that
most distractors are smaller than 50 × 50 pixels, which is to contrast with images
that are typically 512 × 384. Of course this in turn reduces the PSNR. It is
interesting to observe that, in some cases, very small distractors are picked from
the dictionary: their keypoint density is very high and they tend to contain small
repetitive visual patterns such as clothes or bricks. We conducted that same
study with the three other policies without seeing any significant changes.

(a) (b)

Figure 7.10: Analysis of used distractors for Policy#1: (a) histogram, (b) Impact
on PSNR.

7.3.2 Experiment 2: Inserting Two Distractors

This experiment demonstrates that it is possible to decrease the rank of the orig-
inal image by inserting more than one distractor. This allows to make even more
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difficult the identification of the protected picture as (potentially) many other un-
related pictures dominate recognition. Table 7.4 gives effectiveness results when
inserting two distractors in the images for different policies. This table reads
as the one given above. Here, the original image is (almost) never ranked first
(col 3), occasionally ranked #2 (col 4), very often ranked #3 as desired (col 5).
The failure rate is (1+32+15+29+11)/4000 = 2.2%, on average over the four
policies. This is very small.

In addition, it is quite often not even found among the 100 most similar images
(col 6). There are (274+331+282+393)/4000=32% original images having rank
≥ 100. It means that these images are lost. It is impossible to recognize the
forged version of these images.

Across the four policies, the policy #3 seems to be the best because of its
high PSNR and the conservation of the visual content.

Policies PSNR rank=1 rank=2 rank=3 rank>100

#1-PSNR 28.93 0 32 691 274

#2-Matching Dens. 26.80 0 15 653 331

#3-Visual Att. & PSNR 28.89 1 29 686 282

#4-Visual Att.& Matching Dens. 27.10 0 11 593 393

Table 7.4: The ranks of identified images over 1,000 queries with two distractor
inserted.

7.4 Summary

In this chapter, we proposed an attack against a complete CBIRS. The attack is
similar to the PiP-Type 2 modification, with a complex process including washing
the image, building the distractor dictionary, inserting a distractor, and blurring
the boundaries. The experiment results show that, from a security perspective,
the created Picture in Picture visual modifications is seriously challenging the
recognition power of a state-of-the-art CBIRS. A significant part of the work
presented in this chapter has been published in [16].

There are some lessons learned from this work.

• The attack can delude the recognition of a complete CBIRS even if the
system uses a single voting mechanism.

• The proposed attack is tested with various policies. The policy focusing on
visual attention and the PSNR of image is a good choice.

• Because the boundaries of the distractor are blurred, it can resist to the
PiP detection methods that use a prior knowledge for separating images.
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Conclusions and Perspectives

In this thesis, we have presented some techniques to attack a complete CBIRS.
The following sections summarize our contributions and discuss the potential
extensions of the thesis.

8.1 Conclusions

There are some lessons learnt from this work.

• As presented in chapter 2, if the pirates have knowledge about one stage
of CBIRS, they can perform attacks targeting that stage. They can also
design combination attacks against two or more stages of CBIRS. The better
knowledge pirates have, the more chance they have to break the system.

• The three main contributions of thesis are presented in chapters 5, 6 and 7.
In particular, chapter 5 presents two techniques to remove keypoints in
images. Removal with Minimum Local Distortion (RMD) is designed to
minimize the local distortion on images, ignoring any potential keypoint
creation, while removal by smoothing (global and local smoothing) takes
little care of the distortion but rather eliminates as many keypoints as
possible while lowering the number of creations. Chapter 5 also presents
the forging of new keypoint with minimum local distortion, called FMD.
The goal of this method is to pollute the search results with false positives.

A method to attack keypoint descriptor is presented in chapter 6. The
method tries to change orientation of a keypoint such that it changes its
final descriptor. A learning approach using SVMs is proposed to solve this
problem.

95
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Chapter 7 proposes a method to attack the complete CBIRS where geomet-
ric verification is used to rerank the images in the result list. The attack
includes some complex stages like determining candidate visual distractors,
inserting visual distractors, blurring their boundaries. The results show
that after the attack, the original images are not on the top of the result
list.

• As presented in chapter 6 and 7, the systems with multiple voting are easier
to attack than systems using single voting. The new keypoints created the
attacked image (e.g. by FMD) massively match keypoints of regular images
in the database thanks to the multiple voting mechanism. With the single
voting mechanism, each image in the database votes at most once for each
keypoint created by FMD. Hence it is difficult to outnumber the votes of
the original image. In other words, the single voting improves the security
of the systems.

• The Lowe criterion (section 4.1.4) in geometric verification (section 6.4.3)
also improve the security of the system. The keypoints in regular images
in the database are usually similar. The distances from a created keypoint
(e.g. by FMD) to its nearest neighbor and second-nearest neighbor is almost
equal. When the Lowe criterion is used as a pre-filtering of the keypoints
used for geometric verification, the matches between the created keypoints
and the keypoints of a regular image is pruned out. However, the Lowe
criterion has some known drawbacks: if an image in the database has similar
local descriptors (e.g. there are two logos in an image), the query descriptors
are also pruned out.

• The geometric verification is not only enhancing the robustness but also
improving the security of the system because the created fake keypoints
(eg. by FMD) do not mimic the geometrical pattern present in regular
images.

8.2 Perspectives

We discuss in this section further issues to be explored in the future works.

Attacking copy-move, near identical image detection. It is difficult to
push the original image far away in the result list. However, the attacks proposed
in chapter 5 and 6 can be applied to delude systems using local descriptors for
object recognition [56], copy-move attack detection [2], or near duplicate image
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search [12, 46]. These scenarios often consider interesting objects or small copied
images, whence there is a small number of keypoints to be processed. That small
number of keypoints weakens the security of the system.

Attacking database. In chapter 7, we know that the distractors inserted into
the forged image come from images inside or outside the database. The distractors
of images belonging to the database triggers many matches between the attacked
image and these images. This stems into a high probability of a successful attack.
The pirate wants to disclose images from the database. However, a CBIRS rather
stores the local descriptors extracted from images than the whole images. The
pirate would like to reconstruct image from local descriptors. In [88], the authors
show that the content of image can be reconstructed from its local descriptors. To
protect the database of descriptors from unauthorized parties, a normal approach
is to encrypt the data. This approach opens the problem on how to run a nearest
neighbor search like K-nn on an encrypted database. In [68], the authors propose
a distance-preserving encryption scheme: the distance between two encrypted
descriptors is same as the distance between the original descriptors. However,
this transformation is not secure to known-sample attack and know-plain text
attack [51].

Visual quality enhancement. While the PiP creation scheme and the various
policies detailed in chapter 7 are able to delude the system, substantial additional
work is needed to reduce the visual impact when washing images as well as when
inserting carefully chosen visual distractors. It is likely that inpainting methods
would help preserving the visual quality of the attacked images. It is part of our
plans to go one step beyond what is presented in that chapter by integrating our
security-oriented CBIRS attacks with inpainting strategies.

Attacking other indexing schemes. In the thesis, the database of local de-
scriptors was indexed by the NVTree scheme [48]. However, there are many
other state-of-the-art indexing schemes. Many of them use Bag of Feature - BoF
model [76, 36, 38]. An attack is to disrupt the quantization step. These schemes
perform the quantization with a K-means. If the pirates know the K-means vi-
sual words, they can modify the local descriptors of a query image to disturb the
distance between descriptors and visual words in order that the descriptors are
quantized in a wrong cell. The problem of changing distance between a descriptor
and a visual word can be summarized as follows.

Consider a descriptor p, and denote v1 and v2 the nearest and second nearest
neighbors, with d1 = ‖p − v1‖ and d2 = ‖p − v2‖, so that d1 ≤ d2. We look for
the minimum distortion to get the attacked descriptor pt = p + ǫ closer to visual
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word v2 than v1. A simple Lagrangian resolution gives:

ǫ =
d2

2 − d2
1

2‖v2 − v1‖2
(v2 − v1).

As often in this thesis, it is easy to find the appropriate modification in the
description space, and much more difficult to find the patch in the pixel domain
that produces this modification because the mapping is not linear at all.

Attacking Video Content−Based Copy Detection (VCBCD) systems.
There are many VCBCD systems based on a local description like SIFT [53, 54,
69, 22]. The processing and indexing of all frames from the query and/or database
videos is too costly. The system indeed selects few keyframes from the videos to
be processed. Intuitively, the approaches with keyframes can be attacked by
applying the type of modifications in the manuscript. But it requires a special
handling of the time dimension. As we have taken special care of the geometry
in chapter 7, the time robustification would certainly be the main difficulty for
attacking VCBCD systems.

Counter attack. The final goal of the research is not only to design the attacks.
After disclosing the flaws of the system, we should focus on the design of counter-
attacks. One of approach is to integrate cryptography techniques in CBIRS. For
example, instead of computing local descriptors in the pixel domain, it might
be possible to compute description in a protected domain which is the result of
a secret keyed transformation of the image. Without the secret key, the pirate
doesn’t know how to compute a descriptor, and therefore the attacks will be much
more difficult.



Chapter 9

Résumé étendu

9.1 Description du problème

La recherche d’images par le contenu fait référence au problème de recherche de
contenus numériques, ici des images, dans de grandes bases de données. Elle a
été utilisée jusqu’à présent dans des contextes très coopératifs et conviviaux pour
lesquels elle était bénéfique à la fois pour les fournisseurs de contenu et pour
les utilisateurs. Récemment, les systèmes de recherche d’images par le contenu
(Content-Based Image Retrieval System−CBIRS) ont été utilisés pour filtrer le
contenu multimédia afin de protéger la création de quelques-uns face à la piraterie
du plus grand nombre [46, 49, 73].

Le filtrage est une application des CBIRS qui est assez différente de son ob-
jectif premier : l’environnement est maintenant hostile en ce sens que le filtrage
restreint la liberté des utilisateurs, contrôlant et/ou interdisant la distribution
de contenus. Dans ce cadre, les systèmes ne magnifient plus toute la richesse
culturelle, mais protègent la valeur commerciale du contenu. Parce qu’il y a des
biens de valeur à protéger, les pirates vont essayer de contourner ces systèmes. Par
conséquent, il est légitime d’étudier soigneusement l’aspect sécurité des CBIRS
comme cela est fait dans cette thèse.

9.1.1 Objectif de la thèse

L’objectif de cette thèse est d’examiner ce nouveau problème de caractérisation
de la sécurité des systèmes existants de détection des copies basées sur le contenu.
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La thèse se concentre sur les modifications visuelles à apporter à une image
protégée afin de perturber ses descripteurs de façon à ce que le système ne puisse
pas détecter que l’image modifiée est une quasi-copie de l’image protégée lorsque
l’image modifiée est soumise au système.

Le modèle de description étudié dans cette thèse est SIFT (Scale Invari-
ant Feature Tranform) qui est aujourd’hui considéré comme un descripteur lo-
cal de référence, à l’origine de nombreux descripteurs état de l’art. Nous ap-
puyant sur une connaissance fine du processus de calcul des SIFT, nous avons
proposé quelques techniques pour tromper des CBIRS employant cette tech-
nique de description locale. Les modifications peuvent être effectuées à l’étape
de détection des caractéristiques, à l’étape de calcul des descripteurs, ou les
deux. Nous avons également proposé une technique pour attaquer la vérification
géométrique, utilisée comme post-filtrage afin de reclasser les résultats retournés
par la recherche.

9.1.2 Structure du manuscrit

Le manuscrit se divise en 8 chapitres. Après un chapitre introductif décrivant
le contexte général et la problématique abordée dans cette thèse, le chapitre 2
définit ce qu’est la notion de sécurité d’un CBIRS, en clarifiant la différence entre
les notions de robustesse et de sécurité. Le chapitre 3 décrit les différents éléments
composant un CBIRS et dresse un état de l’art des CBIRS actuels, ainsi que des
méthodes permettant d’attaquer du contenu et de détecter du contenu attaqué.

Le chapitre 4 présente le protocole expérimental utilisé et trois manières de
créer des modifications dans les images. Ces manières sont détaillées dans les
chapitres 5, 6 et 7, formant ainsi les principales contributions de cette thèse. Le
chapitre 5 étudie des attaques au niveau de la détection des points d’intérêt. Les
attaques visent à supprimer des points d’intérêt et/ou à en ajouter intention-
nellement. Le chapitre 6 propose une méthode permettant d’attaquer le calcul
du descripteur en changeant l’orientation principale des points d’intérêts. Enfin,
une attaque contre un CBIRS complet incluant la vérification géométrique est
proposée dans le chapitre 7. Le chapitre 8 conclut et propose un certain nombre
de perspectives à ce travail.

Le reste du présent chapitre est un résumé du manuscrit, chapitre par chapitre.
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9.2 Chapitre 2 : menaces sur la sécurité des

CBIRS

Dans le chapitre 2 du manuscrit, nous définissons et discutons la nature des
problèmes de sécurité des CBIRS.

La “sécurité” des CBIRS est mise à l’épreuve lorsque des pirates bâtissent
des attaques après avoir accumulé une connaissance approfondie sur un système
particulier, et s’être concentré sur des parties très spécifiques du système dans
lesquelles des défauts ont été identifiés.

Il y a au moins quatre classes importantes d’hypothèses qui influent sur la
sécurité des CBIRS.

Modèle de confiance : il y a généralement quatre acteurs différents qui
sont ou non dignes de confiance dans n’importe quel scénario impliquant des
CBIRS : (i) le titulaire légal de l’image qui a le droit de charger ses images ou leurs
caractéristiques de bas niveau dans la base de données ; (ii) le serveur d’images
où une collection de descriptions est indexée dans une base de données qui est
utilisée pour construire les réponses aux requêtes basées sur le contenu ; (iii)
l’utilisateur qui interroge le système avec une image particulière, et (iv) le logiciel
client qui traite l’image requête, se connecte au serveur, envoie les requêtes, reçoit
et traite les réponses avant de les afficher. Le scénario de détection de copie le
plus classique pour les attaques est celui où l’utilisateur est le pirate, tous les
autres acteurs étant considérés comme tiers de confiance.

Objectifs : le pirate peut avoir les deux grands objectifs suivants : (i) pro-
duire des faux négatifs en manipulant les images de façon à ce que le CBIRS ne
parvienne pas à les détecter par la suite comme étant des quasi-copies d’images
protégées ; (ii) produire de faux positifs en manipulant les images de telle sorte
qu’elles soient toujours détectées (donc retournées) par le système (même pour
les contenus inoffensifs).

Mesures : attaquer une image protégée entrâıne la manipulation du contenu
qui induit une distorsion. Le PSNR mesure cette distorsion à l’égard de l’image
originale en terme de distance euclidienne dans des échelles logarithmiques. Une
attaque est considérée comme réussie si le système ne peut pas reconnâıtre l’image
quasi-copie et si la qualité visuelle de la quasi-copie de l’image est acceptable.

Connaissances : la connaissance qu’ont les pirates sur le système a un
impact fort sur les attaques conçues. Plus le pirate a de connaissances, plus
l’attaque qu’il conçoit peut être malicieuse.

La connaissance que l’on peut acquérir est limitée lorsque l’on utilise des
techniques se fondant sur la présence de clés secrètes [40, 80]. Si un pirate dis-
pose d’un accès complet à un logiciel de calcul de caractéristiques extraites des
images, bien que ces caractéristiques et/ou le principe de leur extraction soient
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protégés par une clé secrète, il peut alors créer des images et observer leurs car-
actéristiques résultantes, ce qui confère des informations sur la clé secrète. Le
niveau de sécurité du système pourrait alors être mesuré par le nombre de cou-
ples (images, caractéristiques) nécessaire pour acquérir assez des connaissances
sur cette clé pour le mettre en danger.

La plupart des CBIRS n’emploient pas de clé secrète. En général, le pirate
connâıt le fonctionnement du système visé car les algorithmes le composant sont
connus, publiés. Leurs paramètres ne sont généralement pas pris au hasard, et
il est possible d’au moins estimer les fenêtres où se trouvent leurs valeurs en
utilisant le bon sens. Un point critique spécifique pour la sécurité des CBIRS est
de savoir si oui ou non le pirate connâıt partiellement le contenu de la base de
données. Générer artificiellement des fausses alarmes devient beaucoup plus facile
si le pirate a cette connaissance. Avec les connaissances sur la base de données,
le pirate peut concevoir des attaques à base d’oracle.

9.3 Chapitre 3 : état de l’art

Dans ce chapitre un état de l’art des composants principaux d’un CBIRS à
l’encontre duquel les attaques peuvent être menées est présenté, suivi d’un état
de l’art des méthodes liées à la sécurité des contenus eux-mêmes.

9.3.1 Vue générale des CBIRS

Il y a trois composants principaux dans un CBIRS qui prennent en charge (i)
l’extraction de caractéristiques des images, (ii) le processus d’indexation et de
recherche et (iii) l’amélioration du résultat par l’élimination d’autant de faux
positifs que possible.

La vie d’un CBIRS peut être divisée en deux étapes. La première étape
calcule les caractéristiques de toutes les images de la base de données. Ces car-
actéristiques sont insérées dans une structure d’index multidimensionnel pour
permettre des recherches rapides. Cette étape se fait hors ligne. Dans la deuxième
étape, en ligne, une image requête est proposée au système par l’utilisateur. Les
caractéristiques de cette image sont d’abord extraites puis utilisées pour inter-
roger l’index. La recherche retourne alors une courte liste d’images candidates,
ayant une ressemblance jugée suffisante par le système. Cette liste est analysée
ensuite afin de tenter d’y détecter des faux positifs et de reclasser les images de
cette liste, mettant en avant celles jugées comme vraiment similaires et en retrait
ces faux positifs. La liste est finalement renvoyée à l’utilisateur.
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Extraction de caractéristiques : une image peut être représentée par une
unique caractéristique globale ou un ensemble de caractéristiques locales. La plu-
part des CBIRS utilisent des caractéristiques locales (encore appelées descriptions
locales) pour représenter une image. L’extraction de ces caractéristiques locales
comprend deux étapes. Durant la première étape, les régions d’intérêt locales dans
l’image sont identifiées par un détecteur de région. Durant la deuxième étape,
des descriptions de ces régions locales sont calculées. Les détecteurs de région de
l’état de l’art sont principalement le détecteur de coins de Harris [30], le détecteur
de coins de FAST [74], l’approche par différences de Gaussiennes DOG [56], LOG,
Harris-Laplace, Harris-Affine, Hessian-Laplace, Hessian-Affine [61, 62]. Les tech-
niques de l’état de l’art pour décrire les régions repérées sont SIFT [56], PCA-
SIFT [41], SURF [5], DAISY[82, 83], GLOH [63].

Indexation : ce processus est chargé d’organiser dans une structure de
données performante les millions ou les milliards de descriptions issues des images
de la base de données. Il est en plus chargé de trouver le plus efficacement pos-
sible les k plus proches voisins de chaque descripteur calculé sur l’image requête.
Les schémas d’indexation peuvent être divisés en deux catégories. La première
catégorie contient des méthodes de recherche exactes, comme le KDTree [25] et le
R-Trees [28]. La deuxième catégorie contient des méthodes de recherche approx-
imatives comme celles s’appuyant sur le K-means [58] et ses descendants comme
les versions approximatives de K-means (Approximate K-means (AKM), Hier-
archical K-means (HKM) [72]). Certaines techniques emploient des approches
sacs de mots [76, 37]. D’autres utilisent des approches basées sur des projections
aléatoires comme le LSH (Locality-Sensitive Hashing) [15, 27] ou le NVTree [48].

Élimination des faux positif : un CBIRS utilise diverses techniques pour
améliorer la qualité des résultats de la recherche. Les approches habituelles
vérifient la cohérence géométrique entre l’image requête et les images dans la
liste résultat pour modifier le classement des images candidates dans cette liste.
Plus il est constaté de cohérence, meilleur est le classement. Les méthodes de
l’état de l’art pour ce reclassement sont la transformée généralisée de Hough
(GHT) [3, 56] ou encore l’approche RANSAC [24, 52, 72]

9.3.2 Sécurité du contenu

De manière générale, les CBIRS actuels arrivent à reconnâıtre des contenus
protégés bien que ceux-ci aient subi diverses distorsions. Cette capacité est
d’ailleurs ce qui est vérifié durant les campagnes d’évaluations (TRECVID et
autres). Il nous faut toutefois distinguer les distorsions crées dans le but de
tester la robustesse des systèmes de celles crées dans le but d’en tester les aspects
sécurité.
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Attaquer le contenu pour évaluer la robustesse : L’image quasi-copie
peut être créée par l’application de certains modifications normalisées telles que
la rotation, le rééchantillonnage, le redimensionnement, le recadrage, la compres-
sion, . . . Des moyens rendant possibles ces modifications peuvent être trouvés
dans de nombreux logiciels de traitement d’image comme Adobe Photoshop, Mi-
crosoft Paint ou encore Stirmark [71]. Toutes ces modifications sont très générales,
elles ne prennent jamais en compte les détails des systèmes qui vont ensuite ef-
fectuer les reconnaissances. Ce caractère général fait que ces approches se fo-
calisent sur les aspects robustesse des systèmes.

Attaquer le contenu pour évaluer la sécurité : a contrario, certaines
approches créent des distorsions dans les images qui tentent d’exploiter au maxi-
mum les failles des différents composants des systèmes (et c’est ce que nous faisons
dans cette thèse). Très peu de travaux explorent cette voie.

Dans [33], Hsu et al. attaquent un système d’authentification d’images basé
sur SIFT. Ils tentent notamment de faire disparâıtre certains points d’intérêt
en modifiant les pixels de telle sorte que les maximas locaux disparaissent. Leur
approche n’utilise toutefois pas de base d’images et ne s’appuie que sur le hachage
des caractéristiques. Ce problème étant très similaire à celui qui nous intéresse,
nous avons précautionneusement mis en oeuvre leur solution en utilisant une
grande base d’images et un CBIRS. Il s’avère que leurs attaques ne posent aucun
problème de reconnaissance au CBIRS. Leurs conclusions ne sont valides que dans
leur contexte, et ne s’appliquent pas au nôtre [20].

Détecter les contenus attaqués : pour détecter les contenus attaqués en
utilisant un CBIRS, il nous faut d’abord créer une “vérité terrain”. Autrement
dit, nous définissons un ensemble d’images protégées. Ces images là sont en-
suite distordues selon divers processus, formant autant de quasi-copies. Chaque
quasi-copie est alors utilisée en tant que requête pour interroger le système. Si
le système est suffisamment robuste, il retourne alors pour chaque quasi-copie
l’image originale ayant servi à sa création, celle appartenant à la vérité terrain.
La tâche de détection de copie TRECVID [84] est un bon exemple de ce type de
méthode. Notons que le but de cette thèse est de produire des quasi-copies qui
ne seront pas reconnues car leur création exploitera les failles liées aux techniques
employées dans un CBIRS particulier. Notons qu’il existe d’autres approches
pour détecter des contenus attaqués : le tatouage numérique [13, 57], dans une
certaine mesure le hachage d’image [80, 34, 42, 75] et les techniques de détection
d’images altérées [31, 1, 2].
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9.4 Chapitre 4 : contexte expérimental et sur-

vol des contributions

Ce chapitre présente le contexte expérimental puis les trois manières de créer des
quasi-copies destinées à prendre en défaut les capacités de reconnaissance d’un
CBIRS.

9.4.1 Critère d’évaluation

Le système échoue (c’est à dire, l’attaque est faite avec succès) lorsque la version
originale de l’image attaquée n’est pas sur le haut de la liste des résultats. Elle
est “cachée” derrière d’autres images. Dans les expériences présentées dans les
prochains chapitres, nous regarderons le score de l’image originale et les premières
meilleures images qui n’ont aucune raison d’être naturellement mises en corre-
spondance.

Pour mesurer la qualité (la distorsion visuelle) de l’image attaquée, nous cal-
culons le PSNR entre l’image attaquée et sa version originale.

9.4.2 Description de l’image, indexation et faux positif

Pour décrire une image, nous utilisons le descripteur SIFT proposé par Lowe [56,
63].

Pour effectuer une recherche rapide, les descripteurs SIFT sont indexés en
utilisant le NVTree [48]. Deux approches de vote sont prises en compte : vote
unique et vote multiple.

L’étape de filtrage des faux positifs repose sur l’estimation de la transfor-
mation affine entre la requête et chaque image candidate. Pour estimer cette
transformation, les points d’intérêt des deux images sont d’abord mis en relation
en utilisant le critère de Lowe [56]. La transformation affine sur les points mis en
correspondance est estimée par une transformée généralisée de Hough (GHT) [56].
Ensuite, une approche moindres carrés [56] est adoptée pour éliminer les points in-
cohérents par rapport au modèle. Le nombre de points restant, ceux en cohérence
avec le modèle, est utilisé pour donner un score aux images, de facto éliminant
de la tête du classement les faux positifs.
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9.4.3 Dataset et les requêtes

La base de données des images est composée de 100 000 images téléchargées
aléatoirement de Flickr. Cette collection donne 103 454 566 descripteurs SIFT
indexés par le NV-Tree. Nous avons ensuite choisi au hasard 1000 de ces images
que l’on considère dès lors comme des images protégées. C’est à partir de ces
images que nous créons des modifications spéciales visant à prendre en défaut le
système. Ainsi, les attaques dans les chapitres suivants sont effectuées sur ces
1000 images. Les images attaquées sont ensuite utilisées en tant que requêtes.
Pour chaque requête, nous avons gardé une trace des scores des 100 images les
plus ressemblantes. Le résultat final est la moyenne sur 1000 requêtes.

9.4.4 Trois manières d’attaquer les images et de créer des

quasi-copies

Cette section présente trois idées clé pour la conception des attaques.

1. Attaquer les points d’intérêt détectés. Nous empruntons deux pistes ici. La
première essaye de supprimer des points d’intérêt dans l’image. Cela rendra
l’image difficile à être reconnues. La deuxième insère des points d’intérêts
artificiels. Ces nouveaux points seront mis en correspondance avec des
images de la base différentes de la copie originale, rendant les scores plus
difficiles à trancher.

2. Attaquer les descripteurs. Le déplacement des descripteurs dans l’espace
des caractéristiques (feature space) rend la mise en correspondance plus
difficile, les plus proches voisins étant perturbés.

3. Attaquer la géométrie : le résultat des attaques doit être géométriquement
cohérent avec les images de la base pour tenter de faire passer devant dans
le classement final des images différentes de l’originale.

Chacun des trois angles d’attaque est le sujet de chaque chapitre ultérieur.

9.5 Chapitre 5 : attaque des points d’intérêts

Deux stratégies d’attaque des points d’intérêts pour leurrer la reconnaissance
d’un système sont présentées. La première consiste à modifier l’image devant être
dissimulée de façon à ce que son score avec l’image originale soit considérablement
réduit. La deuxième consiste à attaquer l’image en y introduisant des éléments
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visuels correspondant souvent à d’autres images de la base de données. L’image
attaquée votant alors pour d’autres images de la base, l’image originale peut être
classée loin dans la liste des résultats. Il est bien entendu possible de combiner
ces deux stratégies.

9.5.1 Réduction du scores par suppression des points d’intérêts

Deux approches pour supprimer des points d’intérêts sont présentées, évaluées
et discutées. La première, appelée ”Removal with Minimum Local Distortion”
(RMD), repose comme son nom l’indique, sur une minimisation de la distorsion
locale. La seconde consiste en un lissage de l’image.

Suppression par minimisation de la distorsion locale (Removal with
Minimum Local Distortion−RMD)

Pour le point d’intérêt x = (x, y, σ)T , cette approche détermine un patch ǫ à
appliquer sur la région support du point d’intérêt de telle sorte qu’il minimise la
distorsion locale. Àl’échelle σ, la différence de noyau gaussiens ∆Gσ considérée
pour la détection de points d’intérêt a un support spatial limité Sσ. Il s’agit alors
de déterminer le patch ǫ défini sur (x, y)+Sσ permettant de modifier la valeur de
la différence de gaussienne (DOG) au point x, D(x, y, σ), d’une quantité donnée
δ. En d’autres termes, pour (u, v) dans le voisinage de (x, y), l’image est modifiée
dans I ′(u, v) = I(u, v) + ǫ(u, v), de sorte que D′(x) = D(x) + δ. Le patch ǫ
doit être de norme Euclidienne minimale pour réduire la dégradation visuelle. Ce
problème fait appel à une optimisation sous contrainte :

ǫ = arg min
ǫ:D′(x)=D(x)+δ

1

2
‖ǫ‖2 (9.1)

La contrainte étant affine et la fonction à minimiser convexe, une simple
résolution de Lagrange donne le résultat suivant :

ǫ =
δ

‖∆Gσ‖2
t(x,y)(∆Gσ) (9.2)

où t(x,y) est l’opérateur de translation 2D d’un déplacement (x, y). La première
condition pour qu’un point d’intérêt x soit détecté est que la valeur de sa DOG
D(x) soit plus grande qu’un seuil de contraste C. La puissance de l’attaque par
RMD est contrôlée en ciblant un nombre limité de points d’intérêt à supprimer.
Ceci est réalisé en introduisant une valeurδ+ > 0 qui définit le sous-ensemble
Eδ+ = {x : C < |D(x)| < C + δ+}. Supprimer les points d’intérêts de Eδ+

signifie que |D(x)| est diminuée d’un montant |δ+| tel que sa nouvelle valeur soit
en-dessous du seuil C.
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La suppression des points d’intérêts par la méthode RMD donne une distorsion
minimale, cependant, un aspect indésirable de cette méthode est la création de
nombreux nouveaux points d’intérêts. L’étude de ces nouveaux points d’intérêts
montre qu’ils sont localisés à proximité des points d’intérêts d’origine et que leurs
descripteurs sont donc potentiellement similaires.

Suppression par lissage
Les extrema locaux de la DOG correspondent à des points d’intérêts localisés

sur des discontinuités importantes de l’image. Une façon simple d’éviter leur
détection consiste à lisser l’image. En n’introduisant pas de discontinuités fortes,
contrairement à RMD, le lissage permet de réduire le nombre de points d’intérêts,
tout en minimisant la création de nouveaux points d’intérêts.Trois mises en oeuvre
de lissage sont proposées.

(i) Lissage global (GS) : cette attaque effectue un lissage sur l’ensemble de
l’image.

(ii) Lissage local (LS) : cette attaque remplace la région de taille n × n autour
d’un point d’intérêt par sa version lissée avec un noyau gaussien dont la
variance est égale à l’échelle du point d’intérêt, et vérifie si ce point d’intérêt
est toujours détecté ou non. Ceci est en fait effectué itérativement à l’aide
les régions de taille croissante (n = {1; 3, 5, 7}) (attaques dénotées LS1,
LS3, LS5, LS7), jusqu’à ce que le point d’intérêt ne soit plus détecté.

(iii) Lissage basé sur la densité(DS) : il s’agit d’une variante de l’attaque globale.
Au lieu de lisser l’ensemble de l’image, cette attaque ne lisse que les régions
denses en points d’intérêts.

9.5.2 Création de nouveaux points d’intérêts

La stratégie que nous utilisons pour créer de nouveaux points d’intérêts avec
une distorsion locale minimale est symétrique à l’attaque RMD. Dans ce cas,
les extrema locaux modifiés sont dans le sous-ensemble Fδ− = {x : C − δ− <
|D(x)| < C}, par l’ajout de patchs qui renforcent le contraste dans le voisinage
des points d’intérêts.

9.5.3 Évaluation des attaques

La combinaison de GS, LS et FMD peut tromper le CBIRS dans le cas d’un
schéma de vote multiple : l’image originale n’est pas au sommet de la liste résultat.
Elle est ”cachée”’ derrière une autre image qui obtient un meilleur score. Le
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PSNR moyen sur 1000 images entre les images attaquées et l’image originale lors
de l’application d’une attaque GS +LS7 +FMD est de 28.23dB.

9.6 Chapitre 6 : attaque du descripteur

Le but de l’attaque proposée dans ce chapitre est de déplacer les descripteurs de
l’image attaquée dans l’espace de description loin de ceux de la version originale.
Ainsi, un descripteur attaqué aura moins de chance d’être mis en correspondance
le descripteur correspondant de l’image originale au travers d’une recherche de
plus proches voisins. Une façon de modifier le descripteur SIFT est de changer
l’orientation principale des points d’intérêt, cela ayant un impact direct sur le
calcul du descripteur.

L’attaque comprend deux étapes. À la première étape, un processus d’apprentis-
sage basé sur des SVM est utilisé pour apprendre l’hyperplan séparant les régions
support de points d’intérêts ayant des orientations différentes. Une fois l’hyperplan
appris, il est possible, étant donné un point d’intérêt situé d’un côté de l’hyperplan,
de calculer la déformation minimale à appliquer à sa région support de façon à
la ”pousser” vers l’autre côté de l’hyperplan.

9.6.1 Impact du changement de l’orientation sur les de-

scripteurs

Pour voir la relation entre l’orientation de points d’intérêts et le descripteur SIFT
résultant, nous avons modifié artificiellement les orientations des points d’intérêts
détectés sur l’image Lena, en modifiant le code source de calcul des descripteurs
utilisé (VLFeat [86]). Le résultat de ces simulations montre que la distance la
plus grande entre descripteurs est atteinte lorsque l’orientation principale de la
région support est modifiée de π/2 et 3π/2.

9.6.2 Utilisation d’un SVM pour modifier les orientations

Une collection de SVM différents nous servent à apprendre la déformation mini-
male ǫ des régions support pour en changer l’orientation de π/2. Chaque SVM
détermine l’hyperplan séparant les points d’intérêts ayant une orientation θ1 des
points d’intérêts ayant une orientation θ2 = θ1+π/2. Pour faciliter l’apprentissage,
réduire le bruit et être plus efficace, l’espace des orientations est quantifié en pas de
longueur π/18. Soit X1 = (ri, li)i l’ensemble d’apprentissage composé de régions
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support normalisées ri ayant une orientation θ1, formant la classe étiquetée par
li = +1. X2 = (rj, lj)j

est l’ensemble d’apprentissage composé de régions support
normalisées rj dont l’orientation est de θ2 = θ1 + π/2, formant la classe duale
marquée par ℓj = −1. durant la phase d’apprentissage, le SVM en charge de θ1

et θ2 apprend les paramètres lié à l’hyperplan (w, b) séparant X1 et X2 déterminé
en trouvant la solution à :

ℓk.(〈w, Φ(rk)〉 + b) ≥ 1 ∀rk ∈ {X1, X2},

with 〈w, Φ(x)〉 =
∑

k:αk>0 αkℓkK(x, rk),

où Φ projette x vers un espace de dimension supérieure, αk sont les multipli-
cateurs de Lagrange, et K est une fonction noyau radiale (RBF):

K(x, rk) = 〈Φ(x), Φ(rk)〉 = exp

(

−‖x − rk‖2

2σ2

)

. (9.3)

le SVM déterminé ainsi est utilisé pour calculer la déformation ǫ de norme
minimale devant être ajouté à une région r ∈ X1, de telle sorte que r + ǫ ∈ X2.

La trouver demande de résoudre l’optimisation suivante:

min
1

2
‖ǫ‖2 (9.4)

s.t.
∑

k:αk>0

αkℓkK(r + ǫ, rk) + b = −∆d, (9.5)

and 0 ≤ ri + ǫi ≤ 1, ∀i ∈ {1, . . . , L} (9.6)

où ∆d > 0 est la distance entre r + ǫ et l’hyperplan (w, d). La valeur de ∆d
est proportionnelle à la probabilité r + ǫ ∈ X2.

Eq. (9.6) assure que le région modifiée demeure dans la fourchette [0, 1]. En
réécrivant ak = αkℓkK(r, rk), et ck = 2(r − rk), Eq. (9.5) devient alors :

∑

k:αk>0

ak exp

(

−c⊤

k ǫ + ‖ǫ‖2

2σ2

)

+ b + ∆d = 0. (9.7)

en dérivant (9.7) :

∑

k:αk>0

ak(ck + 2ǫ)
−1

2σ2
exp

(

−c⊤

k ǫ + ‖ǫ‖2

2σ2

)

(9.8)

Cette minimisation de problème sous contraintes est résolue en utilisant une
approche interior point method [7, 8], donnant l’ǫ a appliquer.
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9.6.3 Évaluation

L’attaque d’orientation arrive à leurrer les CBIRS utilisant système de vote multi-
ple. L’image d’origine n’est pas au sommet de la liste résultat. Le PSNR entre les
images originales et leurs quasi-copies attaquées selon une approche orientation
comme décrit dans ce chapitre est de 28.39dB, en moyenne sur 1000 images.

9.7 Chapitre 7 : prendre en compte la cohérence

géométrique

Ce chapitre propose une méthode de modifications de quasi-copie qui prenne en
défaut des CBIRS employant un filtrage des faux positifs grâce à une prise en
compte de la cohérence géométrique entre la requête et les images candidates du
résultat. Cette méthode est de type image-dans-image (Picture in Picture–PiP,
voir TRECVID [84, 70]).

Cependant, contrairement à ce qui est fait en général avec les distorsions de
type PiP qui sont généralistes et testent la robustesse des systèmes, nous créons
ici des quasi-copies où l’image insérée l’est avec un but sécurité. Autrement dit, on
veut produire des attaques qui non seulement prennent la technique de description
en défaut (SIFT) mais aussi tirent parti de la connaissance du fonctionnement de
la phase de cohérence géométrique.

Pour résumer notre technique, nous insérons dans une image une petite im-
agette déterminée de manière à ce qu’elle attire le plus possible de mises en
correspondance avec une ou plusieurs images de la base, assurant ainsi une par-
faite cohérence géométrique. Nos objectifs sont donc de (i) faire en sorte que
l’imagette insérée domine la reconnaissance, (ii) qu’il soit complexe de séparer
cette imagette insérée de l’image dans laquelle elle est incrustée.

La méthode proposée ici est en deux étapes. D’abord nous “lavons” une copie
d’une image protégée comme nous l’avons expliqué dans les chapitres précédents,
cela afin de réduire autant que possible le nombre de descripteurs pouvant être
mis en correspondance. Ensuite nos déterminons les caractéristiques de l’imagette
à incruster avant de l’insérer, formant ainsi la quasi-copie. Nous montrons que
cette approche réussit à empêcher l’identification des images originales à partir
de telles quasi-copies.
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9.7.1 Lavage d’image

L’objectif de cette étape est de réduire le nombre de correspondances entre la
quasi-copie de l’image originale et l’image originale, ce qui rend plus difficile de
reconnâıtre le contenu protégé. Nous appliquons une combinaison de DS (voir
Section 9.5.1), de changement forcé d’orientation (voir Section 9.6) puis l’attaque
LS (voir Section 9.5.1) pour réduire le nombre de correspondances satisfaisant le
critère de Lowe (voir 9.4.2) entre la quasi-copie et sa version originale.

9.7.2 Création de l’attaque PiP

L’objectif de cette étape est de créer une imagette qui sera à incruster et qui
dominera la reconnaissance. Pour cela, nous créons d’abord un dictionnaire
d’imagettes puis déterminons où incruster.

Création du dictionnaire d’imagettes : nous analysons la base d’images
si cela est possible ou non téléchargeons un grand nombre d’images aléatoires,
de Flickr par exemple. Ces images sont analysées et on en extrait des régions
carrées de tailles variables très denses en points d’intérêt. Ces régions forment le
dictionnaire d’imagettes.

Insertion de l’imagette : étant donnée une imagette à insérer, quatre
stratégies sont proposées pour déterminer où celle-ci est à incruster dans la quasi-
copie lavée. L’idée générale est d’insérer l’imagette Ip dans l’image lavée Iw en
ajustant son illumination à chaque position Iw(x, y, p). Cet ajustement s’opère
ainsi : Ĩp = Ip − Īp. Déterminer cet ajustement exige de trouver les paramètres a
et b de aĨp + b tels que:

min
a,b

‖aĨp + b − Iw(x, y, p)‖2, subject to: a ≥ amin. (9.9)

a ≥ amin évite l’uniformisation de Ĩp par de trop petites valeurs pour a, ce qui
supprimerait la plupart (sinon tous) des points d’intérêts. Résoudre (9.9) donne
a et b:

b = Īw(x, y, p),

a = max



amin,
Ĩp

T
Iw(x, y, p)

‖Ĩp‖2



 . (9.10)

Les quatre stratégies sont :

• Stratégie #1 : orientée PSNR On trouve la place dans l’image lavée
où l’imagette ajustée peut être inséré en réduisant le PSNR aussi peu que
possible.
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• Stratégie #2 : orientée densité Cette politique détermine l’endroit où
insérer l’imagette ajustée en fonction du nombre de correspondances qui
existent entre l’image lavée et sa version d’origine. L’imagette est mise à la
position ayant le nombre maximum de correspondances.

• Stratégie #3 : orientée attention visuelle & PSNR Cette politique
détermine les régions saillantes de l’image, puis applique la stratégie #1.
L’imagette ne peut se mettre dans les régions saillantes.

• Stratégie #4 : orientée attention visuelle & densité Une fois que
les régions saillantes ont été déterminées, la stratégie #2 est appliqué.
L’imagette ne peut se mettre dans les régions saillantes.

9.7.3 Frontières floues

L’objectif de cette étape est de rendre la séparation des imagettes du contenu
lavé très difficile. Ceci est obtenu en brouillant les frontières de l’imagette par
une gaussienne.

9.7.4 Évaluation de la méthode

Le tableau 9.1 présente les résultats d’efficacité quand une imagette est insérée
dans une quasi-copie lavée. La deuxième colonne donne le PSNR moyen entre les
images originales et leur version attaquée, pour les quatre stratégies. La troisième
colonne donne le nombre de fois que l’attaque PIP est en échec car le système
retrouve tout de même l’image originale à partir de la quasi-copie contenant une
imagette.

stratégie PSNR rang=1 rang=2 rang>100

#1 29.55 25 923 47

#2 28.14 17 921 60

#3 29.52 20 928 46

#4 28.35 13 918 63

Table 9.1: Les rangs des images identifiées en moyenne sur 1000 images, 1 im-

agette insérée.
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Le taux d’échec de l’attaque est très faible ((25+17+20+13)/4000 = 1.88%.
La quatrième colonne donne le nombre de fois où l’image originale n’est pas
trouvée dans les 100 meilleurs images les plus similaires. Il y a (47+60+46+63)/4000
= 5.4% d’images originales ayant un rang supérieur à 100. Cela signifie que ces
images sont perdues. Il est impossible de reconnâıtre la version forgée de ces
images.

9.8 Chapitre 8: Conclusions et perspectives

Dans cette thèse, nous avons présenté quelques techniques pour attaquer un
système CBIR complet. Les sections suivantes résument nos contributions et
posent quelques extensions potentielles.

9.8.1 Conclusions

Si les pirates connaissent les briques techniques qui composent le système CBIR,
ils créent d’abord des attaques spécifiques mettant à mal chaque composante,
puis les combinent pour mettre à terre le système. Plus fine est leur connais-
sance, plus ils ont de chance d’atteindre leur but. Le chapitre 5 présente deux
techniques pour enlever des points d’intérêts dans l’image. Elles sont appelées
RMD (Removal with Minimum Local Distortion) et GS, DS ou LS pour le filtrage
passe-bas. Le chapitre 5 présente une technique de création artificielle de nou-
veaux points d’intérêt avec une distorsion locale minimale (FMD). Une méthode
d’attaque des descripteurs est détaillée dans le chapitre 6. La méthode tente de
changer l’orientation principale des régions supports pour perturber la descrip-
tion. Le chapitre 7 a proposé une attaque contre un système CBIR complet
où une vérification géométrique raffine la liste de résultats. L’attaque comporte
quelques étapes complexes pour déterminer les “distracteurs” visuels et les insérer
en estompant leurs frontières.

Les systèmes à vote multiple sont plus facile à attaquer que les systèmes à vote
simple. L’usage du critère de Lowe dans la vérification géométrique (chapitre 7)
améliore la sécurité du système. L’usage de la vérification géométrique accrôıt
non seulement la robustesse, mais aussi la sécurité du système.

9.8.2 Perspectives

Attaquer la base de données. Dans le chapitre 7, le distracteur inséré dans
l’image provient d’images riches en points d’intérêt. Cependant, si les distracteurs
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sont originaires des images de la base de données, il aura beaucoup plus de corre-
spondances entre l’image attaquée et l’image dont les distracteurs extraits. Cela
donnera une plus grande chance de succès.

Améliorer la qualité visuelle. La qualité des images attaquées par les
méthodes des chapitres 5, 6, et 7 peut être renforcée par des stratégies de type
“inpainting”.

Attaquer d’autres schémas d’indexation. ll y a de nombreux schémas
d’indexation dans l’état de l’art. Plusieurs d’entre eux utilisent notamment le
modèle “sac de mot” (Bag Of Feature−BoF) [76, 36, 38]. Il serait intéressant de
tester les attaques proposées et également de concocter d’autres attaques sur ces
techniques d’indexation.

Attaquer la vidéo. Il y a beaucoup de systèmes de détection de copies basés
sur le contenu vidéo (VCBCD) utilisant une description locale [53, 54, 69, 22].
Le succès de l’attaque sur CBIRS dans cette thèse lève aussi une alarme pour ces
systèmes VCBCD.

Contre attaquer. Connaissant mieux les vulnérabilités du système, nous
devrions nous concentrer sur le problème de la contre-attaque. Une des approches
possibles est d’intégrer des techniques de cryptographie pour CBIRS.
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Résumé

Les systèmes de recherche d’images par le contenu (Content-Based Image Re-
trieval System – CBIRS) sont maintenant couramment utilisés comme mécanismes
de filtrage contre le piratage des contenus multimédias. Ces systèmes utilisent
souvent le schéma de description d’images SIFT pour sa bonne robustesse face
à un large spectre de distorsions visuelles. Mais aucun de ces systèmes n’a en-
core abordé le problème du piratage à partir d’un point de vue “sécurité”. Cette
thèse a comme objectif d’analyser les CBIRS de ce point de vue sécurité. Il s’agit
de comprendre si un pirate peut produire des distorsions visuelles perturbant
les capacités de reconnaissances d’un système en créant ces distorsions en fonc-
tions des techniques que ce système utilise. Tout d’abord, nous présentons les
failles de sécurité des composantes typiques d’un CBIRS : composantes descrip-
tion d’image, indexation et filtrage des faux positifs. Ensuite, nous présentons
des attaques ciblant le schéma de description SIFT. Les attaques sont effectuées
durant l’étape de détection de points d’intérêt et de calculs des descripteurs. Nous
présentons également une attaque ciblant la mise en correspondance des images
sur un critère de cohérence géométrique. Les expériences menées avec 100 000
images réelles confirment l’efficacité des attaques proposées.

Abstract

Content-Based Image Retrieval Systems (CBIRS) are now commonly used as a
filtering mechanism against the piracy of multimedia contents. These systems of-
ten use the SIFT local-feature description scheme as its robustness against a large
spectrum of image distortions has been assessed. But none of these systems have
addressed the piracy problem from a “security” perspective. This thesis checks
whether CBIRS are secure: Can pirates mount violent attacks against CBIRS
by carefully studying the technology they use? First, we present the security
flaws of the typical technology blocks used in state-of-the-art CBIRS. Then, we
present very SIFT-specific attacks. The attacks are performed either during the
keypoint detection step or during the keypoint description step. We also present
a security-oriented Picture in Picture attack deluding CBIRS using post filtering
geometric verifications. Experiments with a database made of 100,000 real world
images confirm the effectiveness of proposed attacks.
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