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Abstract

This thesis addresses the challenges encountered when dealing with signal decomposi-

tion problems with an unknown number of components in a Bayesian framework. Particu-

larly, we focus on the issue of summarizing the variable-dimensional posterior distributions

that typically arise in such problems. Such posterior distributions are defined over union of

subspaces of differing dimensionality, and can be sampled from using modern Monte Carlo

techniques, for instance the increasingly popular Reversible-Jump MCMC (RJ-MCMC)

sampler. No generic approach is available, however, to summarize the resulting variable-

dimensional samples and extract from them component-specific parameters. One of the

main challenges that needs to be addressed to this end is the label-switching issue, which

is caused by the invariance of the posterior distribution to the permutation of the compo-

nents.

We propose a novel approach to this problem, which consists in approximating the

complex posterior of interest by a “simple”—but still variable-dimensional parametric dis-

tribution. We develop stochastic EM-type algorithms, driven by the RJ-MCMC sampler,

to estimate the parameters of the model through the minimization of a divergence mea-

sure between the two distributions. Two signal decomposition problems are considered,

to show the capability of the proposed approach both for relabeling and for summarizing

variable dimensional posterior distributions: the classical problem of detecting and esti-

mating sinusoids in white Gaussian noise on the one hand, and a particle counting problem

motivated by the Pierre Auger project in astrophysics on the other hand.
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Résumé

Cette thèse porte sur le problème de la décomposition de signaux contenant un nombre

inconnu de composantes, envisagé dans un cadre bayésien. En particulier, nous nous

concentrons sur la question de la description des lois a posteriori qui ont la spécificité,

pour les problèmes de ce genre, d’être définies sur une union de sous-espaces de dimensions

différentes. Ces lois peuvent être échantillonnées à l’aide de techniques de Monte Carlo

récentes, telles que l’échantillonneur MCMC à sauts réversibles (RJ-MCMC), mais aucune

approche générique n’existe à l’heure actuelle pour décrire les échantillons produits par

un tel échantillonneur et en extraire les paramètres spécifiques des composantes. L’un des

principaux obstacles est le problème de la commutation des étiquettes (label-switching),

causé par l’invariance de la loi a posteriori vis-à-vis de permutations de ses composantes.

Nous proposons une nouvelle approche pour résoudre ce problème, qui consiste à ap-

procher la loi a posteriori d’intérêt par une loi paramétrique plus “simple”, mais toujours

définie sur un espace de dimension variable. Nous développons des algorithmes de type

SEM (Stochastic Expectation-Maximization), s’appuyant sur la sortie d’un échantillonneur

RJ-MCMC, afin d’estimer les paramètres du modèle par minimisation d’une divergence

entre les deux lois. Deux problèmes de décomposition de signaux illustrent la capacité

de la méthode proposée à résoudre le problème de commutation des étiquettes et à pro-

duire des résumés de lois a posteriori définies sur des espaces de dimension variable : le

problème classique de détection et d’estimation de composantes sinusoïdales dans un bruit

blanc d’une part, et un problème de comptage de particules motivé par le projet Pierre

Auger en astrophysique d’autre part.
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Introduction (en français)

Le problème de la décomposition des signaux

Décomposer un signal, une image, ou plus généralement des données observées, en un

ensemble d’« atomes » ou de « composantes » est une tâche fondamentale dans le domaine

du traitement du signal et des images. Il est important de faire la distinction entre deux

types de problèmes de décomposition, selon que l’objectif est la prédiction ou le débruitage

d’une part, ou l’inférence sur les composantes d’autre part.

Dans le premier type de problème, l’objectif est d’obtenir une représentation parci-

monieuse du signal observé en utilisant dictionnaire (généralement redondant) de signaux

élémentaires. Ce type de technique trouve principalement ses applications en débruitage,

en compression, en séparation de sources, en segmentation et en déconvolution. Le diction-

naire peut être soit appris à partir des données (voir, par exemple, Lewicki and Sejnowski,

2000 ; Elad and Aharon, 2006), soit construit à l’aide de familles classiques de signaux

élémentaires (ou « atomes ») tels que la base de Fourier, les bases d’ondelettes, ou encore

les curvelets (voir, par exemple, Mallat, 2009). Parmi les algorithmes permettant d’effec-

tuer de telles décompositions, on peut citer par exemple Matching Pursuit (Mallat and

Zhang, 1993), Basis Pursuit/LASSO (Chen et al., 1999 ; Tibshirani, 1996), ou encore le

« sélecteur de Danzig » (Candes and Tao, 2007). Le même type de problème a également

été abordé dans un cadre bayésien, en utilisant des idées venant de la littérature de la

sélection variables bayésienne (voir, par exemple, Wolfe et al., 2004 ; Fevotte and Godsill,

2006 ; Dobigeon et al., 2009).

Dans le deuxième type de problème, le signal observé est supposé être une superposition

de plusieurs signaux élémentaires (ou « composantes ») d’intérêt. Dans ce cas, l’objectif

est à la fois la détection du nombre réel de composantes et l’estimation de leurs para-

mètres (alors que, dans le premier point de vue, l’estimation précise du nombre d’atomes

est généralement secondaire). On rencontre ce type de problème en analyse spectrale,

en traitement d’antennes (traitement de signal pour les réseaux de capteurs), en spec-

1



Introduction (en français)

trométrie, ou encore pour la détection d’objets dans des images et l’analyse de données

hétérogènes par des modèles de mélange. Des critères de sélection du modèle tels que les

critères AIC (Akaike Information Criterion) ou BIC (Bayesian Information Criterion) ont

été largement utilisés dans des problèmes de détection et d’estimation jointes (voir Stoica

and Selen, 2004, pour une analyse). L’approche bayésienne a également été utilisée pour

analyser ce genre de problèmes (voir, par exemple, Richardson and Green, 1997 ; Andrieu

and Doucet, 1999 ; Lacoste et al., 2005), afin de mieux prendre en compte les différentes

sources d’incertitudes.

Dans cette thèse, nous nous concentrons sur les défis rencontrés dans la deuxième type

de problèmes de décomposition de signaux, avec un nombre inconnu de composants, en

particulier quand ils sont traités dans un cadre bayésien.

Exemple : détection et estimation des muons dans le projet Auger

A titre d’illustration du type de problème de décomposition de signaux qui nous intéresse,

considérons maintenant un problème de détection et d’estimation qui a été porté à notre

attention par M. Balázs Kégl (Laboratoire de l’Accélérateur Linéaire (LAL), Université

Paris Sud 11) dans le cadre du projet Auger (voir, par exemple, Auger Collaboration,

1997, 2004). Dans ce projet, l’objectif est d’étudier les rayons cosmiques d’ultra-haute

énergie (on entend par là des énergies de l’ordre de 10 19 eV, c’est-à-dire les particules les

plus énergétiques trouvées à ce jour dans l’Univers). Lorsque les particules contenues dans

les rayons cosmiques entrent en collision avec celles de l’atmosphère terrestre, des gerbes

atmosphériques contenant des particules secondaires appelées muons sont générées. Pour

les détecter, l’Observatoire Pierre Auger (Pierre Auger Cosmic Ray Observatory) a été

construit en Argentine. L’observatoire est composé de deux détecteurs indépendants : une

matrice de détecteurs de surface et un certain nombre de détecteurs de fluorescence.

Quand un muon traverse un détecteur de surface, il génère le long de sa trajectoire des

photo-électrons (PE) Cherenkov, dont le taux dépend de l’énergie du muon. Ces photo-

électrons sont capturés par des détecteurs et créent un signal analogique, qui est ensuite

discrétisé par un convertisseur analogique-numérique. Sachant le nombre k de muons, le

signal observé peut être modélisé (Kégl, 2008 ; Bardenet et al., 2010) par un processus de

Poisson non homogène d’intensité

h(t | aµ, tµ) =
k∑

j=1

aµ,j pτ,td(t− tµ,j),

où pτ,td(t) est la loi des temps de réponse, paramétrée par son temps de montée td

2



Introduction (en français)

et sa décroissance exponentielle τ . Les paramètres inconnus de ce modèle sont les am-

plitudes aµ = (aµ,1, . . . , aµ,k), les temps d’arrivée tµ = (tµ,1, . . . , tµ,k), ainsi que le

nombre k de muons. La figure 0.1 montre le signal observé et l’intensité h(t | aµ, tµ) pour

une exemple simulé avec k = 3 muons.

#
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100 200 300 400 500 600
0
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Figure 0.1 – Signal observé (en haut) et intensité du modèle h(t | aµ, tµ) (en

bas) pour un exemple avec k = 3 muons. Les vrais temps d’arrivée, i.e., tµ =

(162, 291, 328), sont indiqués par les lignes pointillées verticales.

On s’attend à ce que le nombre de muons reçus par les détecteurs de surface, ainsi

que leurs caractéristiques individuelles (particulièrement les temps d’arrivée), soient des

informations utiles pour inférer la composition chimique de la particule qui était au l’ori-

gine de la gerbe observée. Il s’agit d’un problème de sélection du modèle et d’estimation

des paramètres, aussi connu comme un problème “trans-dimensionnel” dans la littéra-

ture (voir, par exemple, Green, 2003), où un ensemble dénombrable de modèles concur-

rents, M = {M1, M2, · · · }, indexé par k ∈ K ⊂ N, est considéré pour décrire les données

observées. Le modèle Mk suppose que le signal observé est une superposition de k signaux

élémentaires (correspondant à k muons). Le vecteur correspondant aux paramètres spéci-

fiques à chacune des composantes est θk = ((tµ,1, aµ,1), . . . , (tµ,k, aµ,k)) ∈ Θk, où Θ = R2
+.

Par conséquent, le problème est défini sur l’espace X =
⋃
k≥0{k} × Θk, qui est une union

disjointe de sous-espaces de dimensions différentes.

3
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Un état de l’art succinct des approches pour la sélection de modèle

Les problèmes trans-dimensionnels et le choix de modèle (bayésien) ont une longue histoire

en science et en ingénierie. Lahiri (2001) et Burnham and Anderson (2002) fournissent des

discussions exhaustives des méthodes existantes, tandis que Congdon (2006) et Robert

(2007, Chapitre 7) se focalisent plus particulièrement sur les méthodes bayésiennes. Un

principe commun à toutes les méthodes existantes est la recherche de la parcimonie du

modèle sélectionné par rapport à la taille de l’échantillon observé.

Par exemple, les méthodes classiques de la sélection de modèle tels que AIC et BIC

comprennent l’évaluation de deux termes : un terme d’attache aux données, qui vise à me-

surer la proximité des données observées et le modèle supposé, et un terme de pénalisation

qui vise à pénaliser la complexité du modèle. Plus précisément, les méthodes AIC / BIC

sélectionnent

k̂ = arg max
k∈K

{
− L(θ̂k) + F (k)

}
,

où y est le signal observé, L(θ̂k) est la fonction de log-vraisemblance évaluée en l’estimateur

du maximum de vraisemblance, et θ̂k et F (k) est la pénalité associée au modèle Mk.

Dans le paradigme bayésien, des lois a priori exprimant les croyances a priori sont

attribués aux paramètres inconnus (i.e., dans l’exemple précédent, au nombre k de muons

et à leur vecteur de paramètres θk = (tµ,aµ)). Puis la sélection de modèle et l’estimation

des paramètres sont effectuées en utilisant la loi a posteriori, définie sur un espace de

dimension variable,

p(k, θk | y) =
p(y | k, θk) p(k, θk)∑

k′∈K

∫
Θk

p(y | θ′
k, k

′) p(k′, θ′
k) dθ′

k

,

où Θk est l’espace des paramètres pour le modèle Mk.

Avant l’introduction des échantillonneurs de Monte Carlo trans-dimensionnels, le choix

de modèle bayésien a souvent été effectué par le calcul des facteurs de Bayes, qui peuvent

être vus comme une généralisation des arguments de test d’hypothèse (voir Kass and

Raftery (1995) pour une analyse exhaustive et des commentaires utiles). Par exemple, la

comparaison des modèles Mk et Mk′ peut se faire en calculant le facteur de Bayes dans

les cas k de k′

B(k : k′) =
p(y | k)
p(y | k′)

,

où

p(y | k) =
∫

Θk

p(y | θk, k) p(θk | k) dθk.

4
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Néanmoins, pour calculer cette intégrale pour chaque modèle, dans la plupart des cas,

on doit utiliser des méthodes de simulation Monte Carlo, comme les méthodes de chaîne

de Markov Monte Carlo (MCMC) ou les méthodes de Monte Carlo séquentielles (voir,

par exemple, Robert and Casella, 2004), qui sont coûteuses en temps de calcul (voir, par

exemple, Han and Carlin, 2001).

L’échantillonneur de MCMC à sauts réversibles (RJ-MCMC) proposé par Green (1995)

a finalement permis d’approcher ce type de lois a posteriori p(k, θk | y), définies sur

une union de sous-espaces de dimensions différentes, en toute généralité. L’échantillon-

neur de RJ-MCMC peut être vu comme une généralisation du célèbre échantillonneur de

Metropolis-Hastings (Metropolis et al., 1953 ; Hastings, 1970), qui est capable d’explo-

rer non seulement l’espace des paramètres Θk, mais aussi l’espace K de tous les modèles

considérés.

Ré-étiquetage et résumé des lois a posteriori trans-dimensionnelles

Résumer une loi a posteriori consiste à fournir quelques statistiques simples mais interpré-

tables et/ou des graphiques à l’utilisateur final d’une méthode statistique. Par exemple,

dans le cas d’un paramètre scalaire avec une loi a posteriori unimodale, des statistiques

de positions et de dispersion (par exemple, la moyenne et l’écart-type, ou la médiane et

l’intervalle interquartile) sont généralement fournies en plus d’un résumé graphique de la

distribution (par exemple, un histogramme ou une estimation à noyau de la densité).

Dans la plupart des problèmes de décomposition de signaux, l’une des principales dif-

ficultés rencontrées lorsqu’on essaie de résumer la loi a posteriori est le problème de la

commutation des étiquettes (label-switching), causé par l’invariance de la loi a posteriori

vis-à-vis de permutations des composantes. Ce problème a surtout été étudié pour les mo-

dèles de mélange gaussien dans la littérature (voir, par exemple, Richardson and Green,

1997 ; Celeux et al., 2000 ; Stephens, 2000 ; Jasra et al., 2005). En raison de ce pro-

blème, toutes les lois marginales a posteriori des paramètres spécifiques des composantes

sont identiques, rendant ainsi les moyennes a posteriori, habituellement utilisé pour le

résumé, inexploitables. Toutes les méthodes proposées jusqu’à présent dans la littérature

pour résoudre le problème de la commutation des étiquettes sont limitées aux modèles

de dimension fixée. (Ces méthodes peuvent néanmoins êtres utilisées dans des problèmes

trans-dimensionnels, en effectuant préalable un choix de modèle puis en résumant les lois

posteriori sachant le modèle sélectionné.)

La figure 0.2 montre les lois marginales a posteriori du nombre k de muons (à gauche)
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et des temps d’arrivée triés sachant k (à droite), obtenues en utilisant un échantillonneur

RJ-MCMC sur l’exemple représenté dans la section précédente. Chaque ligne correspond

à un valeur de k, pour 2 ≤ k ≤ 4. Trier les composantes — la plus simple des stra-

tégies de ré-étiquetage (voir, par exemple, Richardson and Green, 1997) — en fonction

de leur temps d’arrivée, i.e.,tµ,1 < . . . < tµ,k, permet de briser la symétrie de la loi a

posteriori. On peut voir à partir de la figure que le modèle M3 a la plus grande pro-

babilité a posteriori p(k = 3 | y) = 0, 43. En choisissant M3, ce qui serait le résultat de

l’utilisation de l’approche que nous nommerons BMS (Bayesian Model Selection) dans la

suite, tous les échantillons correspondant aux autres modèles seraient écartés (notez que

p(k = 2 | y) = 0, 38 et p(k = 4 | y) = 0, 16). Ce faisant, nous perdrions l’incertitude concer-

nant le nombre k de muons. Par ailleurs, résumer la composante centrale apparaissant

sous le modèle M3 (représentée en bleu clair) par sa moyenne a posteriori n’aurait pas de

sens, cette composante étant fortement bimodale en raison de l’effet de « commutation

trans-dimensionnelle » des étiquettes. Remarquez que, sous le modèle M4, la densité de

cette composante est divisée en deux parties relativement « compactes ». Ainsi, lors du

déplacement entre les modèles de l’algorithme RJ-MCMC par la naissance (ajout) ou la

mort (suppression) d’une composante, l’étiquette correspondante est insérée ou supprimée.

Nous appelons ce problème “naissance, mort, et commutation des étiquettes”.

La principale contribution de cette thèse est une nouvelle approche pour le ré-étiquetage

et le résumé des lois a posteriori trans-dimensionnelles, qui consiste à approcher la loi a

posteriori d’intérêt par un modèle paramétrique original, lui aussi trans-dimensionnel.

Plan de la thèse

Le chapitre 1 décrit brièvement des techniques de simulation de Monte Carlo avancées,

telles que les méthodes de Monte Carlo par chaînes de Markov (MCMC) et les méthodes

de Monte Carlo séquentielles (SMC), qui sont, de nos jours, couramment utilisée dans la

littérature bayésienne. Ces méthodes seront utilisées tout au long de la thèse. Nous four-

nissons également dans ce chapitre des énoncés clairs et rigoureux de certains résultats

mathématiques, probablement pas totalement nouveaux mais jamais vraiment explicités,

qui permettent une justification propre du taux d’acceptation des mouvements de nais-

sance ou de mort dans les problèmes de décomposition du signaux (entres autres). Nous

corrigeons ainsi une erreur concernant ce type de mouvements qui s’est glissée dans le do-

cument fondateur de Andrieu and Doucet (1999, équation (20)) et s’est ensuite largement

propagée dans la littérature du traitement du signal (Andrieu et al., 2000, 2001a, 2002 ;
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Figure 0.2 – Des lois a posteriori du nombre k de muons (à gauche) et des temps d’ar-

rivée triés, tµ sachant k (à droite) construit en utilisant 60 000 échantillons de fourni

par RJ-MCMC. Le nombre réel de composants est trois. Les lignes verticales en poin-

tillés dans la figure de droite localisent les temps d’arrivée, i.e., tµ = (163, 291, 328).

Larocque and Reilly, 2002 ; Larocque et al., 2002 ; Ng et al., 2005 ; Davy et al., 2006 ;

Rubtsov and Griffin, 2007 ; Shi et al., 2007 ; Melie-García et al., 2008 ; Ng et al., 2008 ;

Hong et al., 2010 ; Schmidt and Mørup, 2010).

Le chapitre 2 introduit le problème de « naissance, mort, commutation des étiquettes »

dans des lois a posteriori trans-dimensionnelles, et décrit la nouvelle approche que nous

proposons pour le ré-étiquetage et le résumé de ces lois a posteriori. Cette approche consiste

à approcher la loi a posteriori d’intérêt par un modèle paramétrique « simple »— mais

toujours trans-dimensionnel — dans l’esprit de l’approche développée par Stephens (2000)

pour le ré-étiquetage en dimension fixée. L’approximation est réalisée par minimisation

d’une mesure de divergence entre les lois. Nous considérons, successivement, le divergence

de Kullback-Leibler (KL) et une mesure de divergence plus robuste proposé par Basu et al.

(1998). Des algorithmes de type EM stochastique (SEM), entraînés par l’échantillonneur

RJ-MCMC, sont développés afin d’estimer les paramètres du modèle d’approximation.
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Le chapitre 3 revisite le problème de la détection et l’estimation de composantes si-

nusoïdales observées dans un bruit blanc. Nous discutons brièvement le problème de la

spécification des lois a priori pour l’hyperparamètre réglant le rapport signal sur bruit

et l’analyse de sensibilité bayésienne. La partie principale de ce chapitre étudie la capa-

cité de l’approche proposée dans le chapitre 2 à ré-étiquer et résumer les lois a posteriori

trans-dimensionnelles rencontrées dans ce problème. Plus précisément, nous illustrons la

convergence de l’algorithme et le ré-étiquetage à travers trois exemples de détection de

composantes sinusoïdales. Nous discutons également de l’aide de simulations, un certain

propriétés fréquentistes des résumés obtenus.

Le chapitre 4 aborde le problème de la détection et l’estimation des muons dans le

projet Auger. Comme dans le chapitre 3, nous étudions en utilisant cette application

la capacité de l’approche proposée à ré-étiqueter et résumer des lois a posteriori trans-

dimensionnelles. Cette étude est menée sur des données simulées fournis par M. Balázs

Kégl. En outre, dans ce chapitre, nous discutons des questions relatives à l’initialisation

des algorithmes de type SEM que nous avons proposés et à l’interprétation des résumés

obtenus.

Enfin, nous concluons la thèse et donnons des orientations possibles pour les travaux

futurs.
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The problem of signal decomposition

Decomposing an observed signal, image, or data, into a set of “atoms” or “components” is

an important task in the fields of signal/image processing and data analysis. Depending on

whether the objective is prediction, denoising or inference about individual components, it

is helpful at this point to distinguish between two kinds of signal decomposition problems.

In the first kind of problem, the objective is to obtain a sparse representation of the

observed signal using a large (possibly over-complete) dictionary. It has applications in

denoising, compression, source separation, deconvolution and segmentation, to name a

few. The dictionary can either be learned from the data (see, e.g., Lewicki and Sejnowski

(2000) ; Elad and Aharon (2006)) or constructed based on elementary bases or atoms such

as Fourier basis, wavelet basis, or curvelets for instance (see, e.g., Mallat, 2009). Influential

algorithms include the matching pursuit algorithm of Mallat and Zhang (1993), the basis

pursuit or lasso algorithm of Chen et al. (1999) ; Tibshirani (1996), and the more recent

Dantzig selector of Candes and Tao (2007). The problem has also been addressed in a

Bayesian framework using ideas from the Bayesian variable selection literature (see, e.g.,

Wolfe et al., 2004 ; Fevotte and Godsill, 2006 ; Dobigeon et al., 2009).

In the second kind of problem, the observed signal is assumed to be a superposition of

number of fundamental elementary signals or components of interest. In this case, the ob-

jective is both to detect the true number of components and to estimate their parameters

(whereas, in the first point of view, estimating accurately the number of included atoms is

usually of minor importance). Applications include sensor array processing, spectral anal-

ysis, spectrometry, detection of objects in images, and mixture modeling of heterogeneous

observed data. Model selection criteria such as the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC) have been extensively used in these joint

detection and estimation problems (see Stoica and Selen, 2004, for a review). Bayesian

approaches have also been used to analyze this kind of problems (see, e.g., Richardson and
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Green, 1997 ; Andrieu and Doucet, 1999 ; Lacoste et al., 2005).

In this work, we concentrate on the challenges encountered in the second kind of signal

decomposition problems with unknown number of components, specifically when they are

treated in a Bayesian framework.

Example: Detection and estimation of muons in the Auger project

As an illustrative example of the kind of signal decomposition problems we are interested

in, let us now describe a problem of detection and estimation that was brought to our

attention by professor Balázs Kégl from the Laboratoire de l’Accélérateur Linéaire (LAL),

Université Paris Sud 11, in connection with the Auger project (see, e.g., Auger Collabora-

tion, 1997, 2004). In this project, the goal is to study ultra-high energy cosmic rays, with

energies of the order of 1019eV, the most energetic particles found so far in the universe.

When these cosmic ray particles collide the earth’s atmosphere, air showers containing

secondary physical particles among which “muons” are of particular importance are gen-

erated. To detect the muons, the Pierre Auger Cosmic Ray Observatory was built in

Argentina. The observatory consists of two independent detectors; an array of surface

detectors and a number of fluorescence detectors.

When a muon crosses a surface detector, it generates “Cherenkov photons”, the rate

of which depends on the muon’s energy, along its track. These photoelectrons (PE’s) are

then captured by detectors and create an analog signal which is consequently discretized

using an analog-to-digital converter. Given the number k of muons, the observed signal is

modeled (Kégl, 2008 ; Bardenet et al., 2010) by a non-homogeneous Poisson point process

with intensity

h(t | aµ, tµ) =
k∑

j=1

aµ,j pτ,td(t− tµ,j),

where pτ,td(t) is a known time response distribution, parametrized by its risetime td and

its exponential decay τ (both measured in ns). The unknown parameters are the muons’

amplitudes aµ = (aµ,1, . . . , aµ,k) and arrival times tµ = (tµ,1, . . . , tµ,k), along with the

number k of muons. Figure 0.3 shows the observed signal and the intensity h(t | aµ, tµ)

for a simulated example with k = 3 muons.

The number of muons and their component-specific parameters, particularly the arrival

times, are expected to be useful for making inference about the chemical composition

of the particle that was at the origin of the observed shower. This is a joint model

selection and parameter estimation problem, also known as a “trans-dimensional” problem

10
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Figure 0.3 – Observed signal (top) and intensity of the model h(t | aµ, tµ) (bottom)

for an example with k = 3 muons. The true arrival times, i.e., tµ = (162, 291, 328),

are indicated by the vertical dashed lines.

in the literature (see, e.g., Green, 2003), where a countable set of competing models,

M = {M1, M2, · · · }, indexed by k ∈ K ⊂ N, are considered to describe the observed data.

The model Mk assumes that the observed signal is a superposition of k elementary signals

(corresponding to k muons). The corresponding vector of component-specific parameters

is θk = ((tµ,1, aµ,1), . . . , (tµ,k, aµ,k)) ∈ Θk, where Θ = R2
+ is the space of component-

specific parameters. Hence, the problem is defined over the space X =
⋃
k≥0{k} × Θk,

which is a disjoint union of subspaces of differing dimension.

A short review of model selection approaches

Trans-dimensional problems and (Bayesian) model selection have a long history in sci-

ence and engineering. Lahiri (2001) and Burnham and Anderson (2002) provide in-depth

discussions of the existing methods for model choice and analysis; while Congdon (2006)

and Robert (2007, Chapter 7) are more concentrated on the context of Bayesian model

analysis. A common principle in all existing methods is parsimony of the selected model

with respect to the sample size of the observed data. This idea is often referred to Occam’s

razor—“Shave away all but what is necessary”.

For example, classical model selection methods such as AIC and BIC comprise evalu-
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ating two terms: a data term which aims at measuring the closeness of the observed data,

denoted by y, and the assumed model, and a penalty term which aims at penalizing the

model complexity. More precisely, AIC/BIC select

k̂ = arg max
k∈K

{
− L(θ̂k) + F (k)

}
,

where L(θ̂k) is the log-likelihood function evaluated at the Maximum Likelihood (ML)

estimate θ̂k and F (k) is the so-called dimensionality penalty.

In the Bayesian paradigm, prior distributions expressing prior beliefs are assigned

over the unknown parameters, i.e., in the previous example, the number k of muons and

the component-specific parameters θk = (tµ,aµ). Then, model selection and parameter

estimation is carried out using the variable-dimensional posterior distribution

p(k, θk | y) =
p(y | k, θk) p(k, θk)∑

k′∈K

∫
Θk

p(y | θ′
k, k

′) p(k′, θ′
k) dθ′

k

,

where Θk is the parameter space for model Mk.

Prior to the introduction of trans-dimensional Monte Carlo samplers, Bayesian model

comparison has been, often, carried out by computing Bayes factors, which can be seen

as a generalization of hypothesis testing arguments (see Kass and Raftery (1995) for a

comprehensive review and useful comments). For example, comparing Mk against Mk′ is

achieved through computing the Bayes factor of k from k′

B(k : k′) =
p(y | k)
p(y | k′)

,

where

p(y | k) =
∫

Θk

p(y | θk, k) p(θk | k) dθk.

Nonetheless, to compute this integral for each model, in most cases, one should use Monte

Carlo simulation methods, such as Markov Chain Monte Carlo (MCMC) and Sequen-

tial Monte Carlo (SMC) methods (see, e.g., Robert and Casella, 2004), that might be

computationally expensive (see, e.g., Han and Carlin, 2001).

The Reversible Jump MCMC (RJ-MCMC) sampler proposed by Green (1995) make it

possible to approximate the posterior distribution p(k, θk | y) defined over a union of sub-

spaces of differing dimensions. Green’s RJ-MCMC sampler can be seen as a generalization

of the well-known Metropolis-Hastings sampler (Metropolis et al., 1953 ; Hastings, 1970),

which is capable of exploring not only the fixed-dimensional parameter spaces Θk, but also

the space K of all models under consideration. However, in many applications, practical

challenges remain in the process of making inference, from the generated samples, about

the quantities of interest.
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Relabeling and summarizing variable-dimensional posterior distributions

Summarization consists, loosely speaking, in providing a few simple yet interpretable pa-

rameters and/or graphics to the end-user of a statistical method. For instance, in the

case of a scalar parameter with a unimodal posterior distribution, measures of location

and dispersion (e.g., the empirical mean and the standard deviation, or the median and

the interquartile range) are typically provided in addition to a graphical summary of the

distribution (e.g., a histogram or a kernel density estimate).

In most signal decomposition problems, the main challenge encountered in the sum-

marization process is switching of components’ labels due to the invariance of the poste-

rior distributions with respect to permutation of component labels. This issue is called

“label-switching” in the literature and has mostly been investigated for Gaussian mixture

models (see, e.g., Richardson and Green, 1997 ; Celeux et al., 2000 ; Stephens, 2000 ;

Jasra et al., 2005). Because of this permutation invariance, all marginal posterior dis-

tributions of the component-specific parameters are equal, thus making posterior means,

usually used for summarization, meaningless. To the best of our knowledge, all the meth-

ods proposed so far in the literature to solve the label-switching issue are restricted to the

fixed-dimensional framework. (They have, however, been used in the trans-dimensional

problems by, first, selecting a model, e.g., by the highest posterior probability, and then,

summarizing the posterior distributions given the selected model.)

Figure 0.4 shows the marginal posterior distributions of the number k of muons (left)

and sorted arrival times given k (right) obtained using an RJ-MCMC sampler on the

example shown in the previous section. Each row corresponds to one value of k for 2 ≤
k ≤ 4. Sorting the components—the simplest relabeling strategy (see, e.g., Richardson

and Green, 1997)—based on their arrival times, i.e., tµ,1 < . . . < tµ,k, allows to break

the symmetry in the posterior distribution. It can be seen from the figure that model M3

has the maximum posterior probability p(k = 3 | y) = 0.43. However, by choosing M3,

which is the result of using the Bayesian Model Selection (BMS) approach, all the samples

corresponding to the other models would be discarded (note that p(k = 2 | y) = 0.38

and p(k = 4 | y) = 0.16). As a result, we would lose the uncertainty concerning the

number k of muons. Moreover, summarizing the middle component under M3, (shown in

light blue color), which is highly bimodal because of the effect of the trans-dimensional

label-switching, by its posterior mean would be meaningless. Observe that, under M4,

that component is split to two relatively compact components. Thus, when moving across

models by the birth or death of a component, the corresponding label is either inserted or
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deleted. We call this issue “birth, death, and switching of labels”.
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Figure 0.4 – Posterior distributions of the number k of muons (left) and the sorted

arrival times, tµ, given k (right) constructed using 60 000 RJ-MCMC output samples.

The true number of components is three. The vertical dashed lines in the right figure

locate the arrival times, i.e., tµ = (163, 291, 328).

The main contribution of this thesis is a novel approach for relabeling and summarizing

variable-dimensional posterior distributions. It consists in fitting a new parametric model

to the posterior distribution of interest encompassing all the uncertainties provided by the

variable-dimensional samples generated, e.g., using the RJ-MCMC sampler.

Outline of the thesis

Chapter 1 briefly describes advanced Monte Carlo simulation techniques, such as MCMC

and SMC methods, that are, nowadays, routinely used in the Bayesian literature, since

they will be used to analyze the problems encountered throughout the thesis. Moreover,

due to the existence of a lasting mistake in the computation of the acceptance ratio

of “Birth-or-Death” moves, the most elementary type of trans-dimensional move, in the

seminal paper of Andrieu and Doucet (1999, Equation(20)) and its followers in the signal
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processing literature (Andrieu et al., 2000, 2001a, 2002 ; Larocque and Reilly, 2002 ;

Larocque et al., 2002 ; Ng et al., 2005 ; Davy et al., 2006 ; Rubtsov and Griffin, 2007 ; Shi

et al., 2007 ; Melie-García et al., 2008 ; Ng et al., 2008 ; Hong et al., 2010 ; Schmidt and

Mørup, 2010), we provide, in this chapter, clear statements of some mathematical results,

certainly not completely new but never stated explicitly, which can be used for a clean

justification of the acceptance ratio of Birth-or-Death moves in signal decomposition (and

similar) problems.

Chapter 2 introduces the issue of birth, death, and switching of labels in variable-

dimensional posterior distributions and describes the novel approach that we propose

for relabeling and summarizing variable-dimensional posterior distributions. This ap-

proach consists in approximating the posterior of interest by a “simple”—but still variable-

dimensional—parametric distribution, in the spirit of the relabeling approach developed

by Stephens (2000). We fit this parametric model to the posterior distributions of in-

terest through the minimization of a divergence measure between them. We consider,

successively, the Kullback-Leibler (KL) divergence and a more robust divergence measure

proposed by Basu et al. (1998). Stochastic EM-type algorithms, driven by the RJ-MCMC

sampler, are developed to estimate the parameters of the approximate model.

Chapter 3 revisits the problem of joint Bayesian detection and estimation of sinusoidal

components observed in white Gaussian noise. We first show the effect of using the erro-

neous Birth-or-Death acceptance ratio provided by Andrieu and Doucet (1999). We also

briefly discuss the issue of prior specification for the signal-to-noise ratio hyperparameter

and Bayesian sensitivity analysis. The main part of the chapter is devoted to investigat-

ing the capability of the summarizing approach we proposed in Chapter 2 for relabeling

and summarization of the variable-dimensional posterior distributions encountered in this

problem. More precisely, we illustrate the convergence and relabeling properties the pro-

posed algorithms along with the goodness-of-fit of the fitted approximate model on three

specific sinusoid detection examples. We also discuss, using simulations, some frequentist

properties of the summaries obtained using the proposed approach.

Chapter 4 discusses the problem of joint detection and estimation of muons in the

Auger project. As in Chapter 3, we investigate using this application the capability of the

proposed summarizing approach in relabeling and summarizing the variable-dimensional

posterior distributions. This study is conducted on simulated data kindly provided by Prof.

Balázs Kégl. Moreover, in this chapter, we discuss issues concerning the initialization of

the proposed SEM-type algorithms and the interpretation of the obtained summaries.
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Finally, we conclude the thesis and give possible directions for future work.

List of publications

The publications that resulted from this work are as follows:

i) Alireza Roodaki, Julien Bect, and Gilles Fleury. Summarizing posterior distribu-

tions in signal decomposition problems when the number of components is unknown

In 37th IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’12), Kyoto, Japan, March 25-30, 2012.

This paper briefly describes the proposed approach for relabeling and summarizing

variable-dimensional posterior distributions with preliminary results on the problem of

joint Bayesian detection and estimation of sinusoidal components in white Gaussian

noise. The content of this paper is presented, in much more detail, in Chapters 2

and 3.

ii) Alireza Roodaki, Julien Bect, and Gilles Fleury. Note on the computation of the

Metropolis-Hastings ratio for Birth-or-Death moves in trans-dimensional MCMC algo-

rithms for signal decomposition problems. Technical report, École Supérieur d’Électri-

cité (Supélec), Gif-sur-Yvette, France, 2012.

This note provides results concerning the computation of the acceptance ratio in the

Metropolis-Hastings algorithm, with a focus on the Birth-or-Death moves used in

trans-dimensional MCMC samplers. The theoretical results provided in this note are

expressed in Section 1.4.

iii) Alireza Roodaki, Julien Bect, and Gilles Fleury. An empirical Bayes approach for joint

Bayesian model selection and estimation of sinusoids via reversible jump MCMC. In:

European signal Processing Conference (EUSIPCO’10), Aalborg , Denmark, 2010.

iv) Alireza Roodaki, Julien Bect, and Gilles Fleury. On the joint Bayesian model selection

and estimation of sinusoids via reversible jump MCMC in low SNR situations. In:

10th International Conference on Information Sciences, Signal Processing and their

Applications (ISSPA’10) Kuala Lumpur, Malaysia, 2010.

The last two papers address the issue of the prior specification over the signal-to-

noise ratio hyperparameter in the problem of joint Bayesian detection and estimation

of sinusoidal components in white Gaussian noise. Assigning a weakly-informative

conjugate Inverse Gamma prior over it, as recommended in Andrieu and Doucet
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(1999), the results provided in the above papers reveal that the value of its scale

parameter has a significant influence on 1) the mixing rate of the Markov chain and

2) the posterior distribution of the number k of components. In iii), we investigated

an Empirical Bayes approach to select an appropriate value for this hyperparameter

in a data-driven way. In iv), we took a different approach and used a truncated

Jeffreys prior. However, both approaches failed in low SNR situations, while in high

SNR situations the sensitivity to βδ2 is negligible.

This problem is briefly discussed in Section 3.2.5 of this thesis, where we propose

to use an SMC sampler to study the sensitivity of the posterior distribution to the

variations of this hyperparameter (following an idea of Bornn et al. (2010)). The

papers are provided in Appendix B.
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Chapter 1

Monte Carlo Sampling Methods

1.1 Introduction

1.1.1 Why are advanced sampling methods required?

Let π denotes the posterior distribution of interest defined over a measurable space (X, B)

with vector x ∈ X. The space X might be quite general, and, in particular, it might con-

tain some discrete and some continuous components, as in variable-dimensional problems

discussed in Section 1.4. Given the observed data y, suppose we are interested in com-

puting the posterior expectation of a π-integrable function h written as

E{h(x) | y} =
∫

X

h(x)π(x | y)dx

=
∫

X
h(x)P(y | x)π0(x)dx∫
X

P(y | x)π0(x)dx
, (1.1)

where P(y | x) and π0 denote, respectively, the likelihood function and the assigned prior

distribution.

Bayesian data analysis often involves high dimensional and/or intractable integrals

when studying the posterior distributions’ quantities of interest, such as the ones shown

in (1.1)—making thus the inference infeasible. This has indeed been the main obstacle

for Bayesian statisticians to use the Bayes approach for treating their problems. However,

advanced computational methods developed in the previous decades—in parallel with

developments in computing machines—have lead to major breakthroughs in Bayesian data

analysis.

Assuming that the integrals in (1.1) are intractable, using “classical” Monte Carlo

sampling methods (see, e.g., Robert and Casella, 2004), the posterior expectation (1.1)

can be approximated by the empirical average

Ê{h(x) | y} =
1
M

M∑

m=1

h(x(m)), (1.2)
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1. Monte Carlo Sampling Methods

where x(1), . . . ,x(M) are independent random variables generated from the target posterior

distribution π. However, drawing random samples directly from π—which can be complex

and/or known up to a normalizing constant—is not possible in most problems.

In this chapter, we will present advanced Monte Carlo sampling techniques extensively

used in statistics, signal and image processing and machine learning to generate random

samples from complex distributions.

1.1.2 Metropolis-Hastings algorithms for variable-dimensional problems

In many practical problems, the posterior distribution is of varying-dimensions where

use of simple MCMC and IS methods is inappropriate. Green (1995) proposed a trans-

dimensional MCMC sampler named Reversible Jump MCMC (RJ-MCMC) for generating

samples from variable-dimensional posterior distributions. Green’s RJ-MCMC sampler

can be seen as a generalization of the well-known Metropolis-Hastings sampler (Metropolis

et al., 1953 ; Hastings, 1970), which is capable of exploring not only the fixed-dimensional

parameter spaces but also the space of all models under consideration. At the heart of

this algorithm lies an accept/reject mechanism, with an acceptance ratio calibrated in

such a way that the invariant distribution of the chain is the target distribution π. The

computation of this acceptance ratio for trans-dimensional moves is in general a delicate

issue, involving measure theoretic considerations. (Fortunately, the simple and powerful

“dimension matching” argument of Green (1995) allows to bypass this difficulty for a large

class of proposal distributions.)

Andrieu and Doucet (1999) pioneered the use of RJ-MCMC sampling in “signal de-

composition” problems, by tackling joint model selection and parameter estimation for an

unknown number of sinusoidal signals observed in white Gaussian noise. (At the same

period, RJ-MCMC also became popular for image processing tasks such as segmentation

and object recognition; see, e.g., (Hurn and Rue, 1997 ; Nicholls, 1998 ; Pievatolo and

Green, 1998 ; Rue and Hurn, 1999 ; Descombes et al., 2001).) This seminal paper was

followed by many others in the signal processing literature (Andrieu et al., 2000, 2001a,

2002 ; Larocque and Reilly, 2002 ; Larocque et al., 2002 ; Ng et al., 2005 ; Davy et al.,

2006 ; Rubtsov and Griffin, 2007 ; Shi et al., 2007 ; Melie-García et al., 2008 ; Ng et al.,

2008 ; Hong et al., 2010 ; Schmidt and Mørup, 2010), relying systematically on the original

paper Andrieu and Doucet (1999) for the computation of the acceptance ratio of “Birth-

or-Death” moves—the most elementary type of trans-dimensional move, which either adds

or removes a component from the signal decomposition. Unfortunately, the expression of

20
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the acceptance ratio for Birth-or-Death moves provided by (Andrieu and Doucet, 1999,

Equation (20)) turns out to be erroneous, as will be explained later. Worse, the exact

same mistake has been reproduced in most of the following papers, referred to above.

1.1.3 Outline of the chapter

This chapter is organized as follows. In Section 1.2, Markov Chain Monte Carlo (MCMC)

methods are introduced with a brief description of the properties of Markov chains that are

essential for the study of MCMC methods. Moreover, two well-known fixed-dimensional

MCMC samplers, namely, the Metropolis-Hastings (MH) and Gibbs samplers, are de-

scribed. Next, Importance Sampling (IS) based methods are described in Section 1.3

where we specifically explain Sequential Monte Carlo (SMC) samplers that have found

many applications in scenarios that the distribution of interest is evolving over “time”.

A toy example is provided to illustrate how MCMC and SMC sampler work in practice.

Owing to the existence of the lasting mistake in the computation of birth-or-death move’s

acceptance ratio in Andrieu and Doucet (1999), Section 1.4 is devoted to explain elab-

orately the procedure of between-models moves in trans-dimensional MCMC samplers.

Finally, Section 1.5 summarizes the arguments discussed in this Chapter.

1.2 Markov Chain Monte Carlo methods

1.2.1 Basic principles of MCMC methods

A Markov chain in discrete time is a sequence of random variables
(
x(n)

)
n≥0

=
(
x(0), x(1), . . .

)
,

with x(n) ∈ X, respecting the Markovian property, that is, conditional on the current

state x(n), the distribution of the next state x(n+1) is independent of the previous states
(
x(1), x(2), . . . , x(n−1)

)
. A time-homogeneous Markov chain can be more formally speci-

fied using its transition kernel defined as

Definition 1.1. A transition kernel is a function P on X × B such that

i) ∀x ∈ X, P (x, · ) is a probability measure;

ii) ∀A ∈ B, P ( · , A) is measurable.

Note that in the time-inhomogeneous case the transition kernel itself depends on the

index n of the current state. However, throughout this thesis, we only consider the time-

homogeneous case unless otherwise stated. Then, the conditional distribution of x(n+1)
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1. Monte Carlo Sampling Methods

given the previous states is

P

(
x(n+1) ∈ A | x(1), x(2), . . . , x(n)

)
= P

(
x(n+1) ∈ A | x(n)

)
= P

(
x(n), A

)
.

In what follows, the properties of Markov chains that are essential for the study of

MCMC methods are briefly described. For further information see Meyn and Tweedie

(1993) ; Tierney (1994, 1998) ; Robert and Casella (2004) ; Roberts and Rosenthal (2004) ;

Liu (2001) ; Roberts and Rosenthal (2006). Let ν be a positive measure on (X, B).

Definition 1.2. A Markov chain is said to have invariant or stationary distribution ν if

ν = νP , where (νP ) (A) ,
∫
ν(dx)P (x , A), for all measurable sets A ∈ B.

Definition 1.3. A Markov chain is ν-irreducible if for all A ∈ B, ν (A) > 0 induces

P (x, A) > 0 for all x ∈ X.

In other words, a ν-irreducible Markov chain, starting from any state, is able to visit

any A ∈ B, such that ν (A) > 0, in a finite number of steps.

Definition 1.4. Let
(
x(n)

)
n≥0

be a ν-irreducible Markov chain on X. Then, the transition

kernel P is periodic if there exist an integer d ≥ 2 and a sequence {A1, . . . , Ad} of d

nonempty disjoint sets in B (a “d-cycle”) such that

i) for x ∈ Ai, P (x, Ai+1) = 1, i = 0, . . . , d− 1 (mod d);

ii) the set
(⋃d

i=1 Ai
)c

is ν-null.

Otherwise, the kernel is aperiodic.

Definition 1.5. A π-irreducible Markov chain
(
x(n)

)
n≥0

with the invariant distribution

π is recurrent if, for any A ∈ B with π(A) > 0, the probability of visiting A infinitely

often, denoted by P(A i.o. | x(0) = x), is positive for all x and equals to one for π-almost

all x. The chain is Harris recurrent if P(A i.o. | x(0) = x) = 1 for all x. The chain is

called positive recurrent if π is a proper measure.

We can now state the following theorem (taken from (Tierney, 1994, Theorem 1) with

appropriate notational modifications):

Theorem 1.6. If the transition kernel P is π-irreducible and π = πP , then P is positive

recurrent and π is its unique invariant distribution. If, in addition, P is aperiodic, then,

the chain converges in total variation to π for π-almost all starting states x, that is,

‖Pn(x, ·) − π ‖TV → 0,
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where ‖ · ‖TV denotes the total variation distance1. If P is also Harris recurrent, then

convergence occurs for all initial distributions (see also Robert and Casella, 2004, Theo-

rem 6.51).

Definition 1.7. A Markov chain is ergodic if it is positive Harris recurrent and aperiodic.

Now, we can state the following theorem concerning the ergodic Markov chains (Tier-

ney, 1994, Theorem 3):

Theorem 1.8. If
(
x(n)

)
n≥0

is an ergodic Markov chain with invariant distribution π,

and assuming that h is a real-valued function such that
∫

X
|h(x)|π(dx) < ∞, then,

1
M

M∑

m=1

h(x(m)) −−−−−−−→
M→+∞

∫

X

h(x)π(dx).

This theorem asserts that under regularity assumptions on h, the sample path aver-

age (1.2) will converge almost surely to the integral (1.1) if the samples x(1), . . . ,x(M) are

generated according to an ergodic Markov chain with invariant distribution π.

MCMC sampling methods, generally, proceed by constructing a time-homogeneous

Markov chain
(
x(n)

)
n≥0

with invariant distribution π, using a transition kernel P fulfilling

the conditions of Theorem 1.6. One sufficient, but not necessary, condition to ensure that

π is the invariant distribution of the transition kernel P , is the reversibility of P with

respect to π. A kernel that satisfies the detailed balance condition

π (dx)P
(
x,dx′) = π

(
dx′)P

(
x′,dx

)
, (1.3)

is reversible. For all measurable sets A ∈ B, integrating (1.3) on X ×A yields
∫

X

π (dx) P (x, A) = π (A) ,

which means that π is an invariant distribution for the kernel P (it is also said that “P

leaves π invariant”).

Remark 1.1. Some of the above requirements on the chain
(
x(n)

)
n≥0

can be relaxed.

Most notably, time-inhomogeneous chains are used in the context of “adaptive MCMC”

algorithms; see, e.g., Atchadé and Rosenthal (2005) ; Andrieu and Moulines (2006) ;

Roberts and Rosenthal (2009) and the references therein . It is also possible to depart

1Assume that µ1 and µ2 are two probability measures on the measurable space (X,B). Then, for A ∈ B,

the total variation norm is

‖ µ1 − µ2 ‖T V = sup
A

| µ1(A) − µ2(A) |.
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from the reversibility assumption, which a sufficient but not necessary condition for π to

be an invariant distribution (see, e.g., Diaconis et al. (2000)), though the vast majority of

MCMC algorithms considered in the literature are based on reversible kernels.

Practical considerations: burn-in and convergence monitoring

Despite the fact that theoretical results prove the convergence of MCMC methods provided

satisfying the conditions of Theorem 1.6, in practice, with naturally finite number of

simulated samples, one should care about the properties of the MCMC sampler. In fact,

Theorems 1.6 and 1.8 state asymptotic results advocating validity of MCMC algorithms

in theory. However, they do not provide adequate information to answer the following

questions concerning the Markov chain under study: how to choose the starting point,

i.e., x(0)? When to stop the algorithm? What is the rate of convergence? Has the chain

visited the entire support—or even likely regions—of the target distribution π ?

The first point is the initialization of the sampler. Although the Markov chains used

in MCMC methods are assumed to be π-irreducible by construction and, consequently,

it is unnecessary to worry about starting points, it turns out that in practice starting

points become quite influential. Gelman et al. (2004, Chapter 12) discuss techniques for

approximating the target distribution to assess appropriate starting points for the MCMC

algorithms. Nonetheless, often, in high dimensional complex problems, there is no generic

approach to choose the initial state of the Markov chain x(0). Therefore, in order to reduce

the dependence of the Markov chain to the initial points, it is conventional to discard a

portion of the whole generated samples from the beginning of the chain. These discarded

samples are called burn-in period in the literature.

Moreover, there is no standard stopping rule in MCMC algorithms in the case of com-

plex problems. However, there are several methods in the literature to monitor the conver-

gence of the Markov chains; see for example Cowles and Carlin (1996) and Mengersen and

Robert (1999) for comprehensive reviews of the existing methods. Despite these methods

need usually problem-specific analytical work and programming, which can be difficult,

intricate, or even impossible in certain cases, none of them is foolproof. It is indeed con-

cluded by Cowles and Carlin (1996, Section 5) that “... although many of the diagnostics

often succeed at detecting the sort of convergence failure they were designed to identify,

they can also fail in this role—even in low-dimensional idealized problems far simpler

than those typically encountered in statistical practice.” Therefore, in this document, as

many other work, the behavior of the Markov chain is empirically assessed by means of
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monitoring the graphical plots of the evolution of the parameters and the corresponding

autocorrelation function (see, e.g., Roberts and Rosenthal, 2001 ; Thompson, 2010).

1.2.2 Two fixed-dimensional MCMC samplers

This Section presents two well-known fixed-dimensional MCMC samplers, namely, the

Metropolis-Hastings and Gibbs sampler, since they are used throughout this work and,

furthermore, they can be considered as basis for trans-dimensional MCMC algorithms

described later in Section 1.4.

The Metropolis-Hastings sampler

The very popular Metropolis-Hastings kernels proposed by Metropolis et al. (1953) and

Hastings (1970) correspond to the following two-stage sampling procedure: first, given

that the current state of the Markov chain is x ∈ X, a new state x′ ∈ X is proposed from

a proposal transition kernel Q (x, dx′); second, this move is accepted with probability

α (x, x′) and rejected otherwise—in which case the new state is equal to x. More formally,

for all x ∈ X and B ∈ B, the transition kernel is given by

P (x, B) =
∫

B
Q
(
x, dx′) α

(
x,x′) + s (x) 1B (x) , (1.4)

where 1B denotes the indicator function of B, and

s (x) =
∫

X

Q
(
x, dx′) (1 − α

(
x,x′))

is the probability of rejection at x. It is easily seen that the detailed balance condition (1.3)

holds if and only if (Tierney, 1994 ; Green, 1995 ; Tierney, 1998)

π (dx)Q
(
x,dx′)α

(
x,x′) = π

(
dx′)Q

(
x′,dx

)
α
(
x′,x

)
. (1.5)

This is achieved, for instance, by the acceptance probability

α
(
x,x′) = min

{
1, r

(
x,x′)} , (1.6)

where r(x,x′) denotes the Metropolis-Hastings-Green (MHG) ratio

r
(
x,x′) =

π (dx′)Q (x′,dx)
π (dx)Q (x,dx′)

· (1.7)

The right-hand side of (1.7) is the Radon-Nykodim derivative of π (dx′)Q (x′,dx) with

respect to π (dx)Q (x,dx′); see Tierney (1998, Section 2) for technical details. In fact, the

general form of the acceptance ratio presented is (1.7) is also valid in the trans-dimensional
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case (Green, 1995) which we will discuss later in Section 1.4. Assuming further that

the posterior distribution π and the proposal transition kernel Q (x, dx′) admit densities

denoted by f and q(x, x′), respectively, with respect to a σ-finite measure denoted dx,

the ratio can be written as

r
(
x,x′) =

f (x′) q (x′, x)
f (x) q (x,x′)

· (1.8)

Remark 1.2. It is proved in Tierney (1998, Section 4) that the acceptance probability (1.6)

is optimal in the sense of minimizing the asymptotic variance of sample path averages

among all acceptance rates satisfying (1.5).

The general MH sampler is presented in the following pseudo-code:

Algorithm 1.1. Metropolis-Hastings sampler

Initialization Select randomly or deterministically x(0).

For n ≥ 0 iterate Given x(n),

i) Generate x′ ∼ Q(x(n), · ).

ii) Generate an auxiliary uniform variable u ∼ U (0, 1).

iii) x(n+1) =





x′ if α
(
x(n),x′

)
> u ,

x(n) otherwise,

where α
(
x(n),x′

)
is the acceptance probability defined in (1.6).

Several MH samplers can be derived by using proposal distributions q (x, · ) of dif-

ferent natures. For instance, provided that the proposal distribution is symmetric, that

is, q (x,x′) = q (x′,x), such as symmetric random walk proposal, then, we recover the

Metropolis sampler with the simplified acceptance ratio r (x,x′) = f (x′) /f (x). More-

over, the Independent MH (I-MH) sampler is achieved by using a proposal distribution

which does not depend on the current state x, i.e., q (x,x′) = q (x′). Then, the I-MH

acceptance ratio reads r (x,x′) = f(x′)q(x)
f(x)q(x′) .

Sufficient conditions for the Markov chain constructed by Algorithm 1.1 to satisfy the

conditions of Theorem 1.6 are given in the following proposition (see Robert and Casella,

2004, Section 7.3.2):

Proposition 1.9. i) It enjoys the aperiodicity property if the algorithm allows rejection

of the proposed moves with non zero probability, i.e., s(x) > 0 π-almost everywhere.
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ii) It is π-irreducible provided that the proposal distribution is positive on the support of

the target distribution π, that is, for every (x,x′) ∈ X × X such that π(x′) > 0, then,

q(x,x′) > 0.

The Gibbs sampler

The Gibbs sampler is one of the most famous MCMC samplers proposed in the sem-

inal paper Geman and Geman (1984); see Gelfand and Smith (1990) and Casella and

George (1992) for statistical discussion. Because of its simplicity, it has been used in

many Bayesian data analysis problems, specifically, when conditionally conjugate prior

distributions are used.

Suppose that, for some r > 1, the vector of unknown parameters x ∈ X can be

partitioned into (possibly multidimensional) blocks (x1, . . . ,xr) ∈ X1 × . . . × Xr. For

convenience, we introduce the notation

x−i , (x1, . . . ,xi−1,xi+1, . . . ,xr)

to indicate the vector of parameters x without the ith block. Then, the conditional dis-

tribution f (xi | x−i) is called the full conditional distribution of the block xi. Assume

further that it is possible to sample (directly) form the full conditional distributions

f (x1 | x−1) , . . . , f (xi | x−i) , . . . , f (xr | x−r) ·

Then, the Gibbs sampler algorithm is as follows:

Algorithm 1.2. One iteration of the Gibbs sampler

Given x(n) =
(
x

(n)
1 , . . . ,x

(n)
r

)
, generate x(n+1) in the following r steps

Step 1. x
(n+1)
1 ∼ f

(
x1 | x

(n)
2 , . . . , x

(n)
r

)
,

Step 2. x
(n+1)
2 ∼ f

(
x2 | x

(n+1)
1 , x

(n)
3 , . . . , x

(n)
r

)
,

...

Step r. x
(n+1)
r ∼ f

(
xr | x

(n+1)
1 , . . . , x

(n+1)
r−1

)
·

Remark 1.3. Note that each step of the Gibbs sampler presented in Algorithm 1.2 can

be regarded as a MH step where both the target and proposal distributions are equal to
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the corresponding full conditional distribution. Thus, the acceptance ratio (1.7) is one.

Conversely, the MH sampler can be used in any step of Algorithm 1.2 when direct sampling

is impossible. The resulting algorithm is then called Metropolis-within-Gibbs sampler; see,

e.g., Roberts and Rosenthal (2006) or Robert and Casella (2004, Section 10.3).

1.2.3 A toy example

We present a toy Bayesian example in order to illustrate the aforementioned MCMC algo-

rithms and terminology. The objective of this example is to estimate the mean of a normal

distribution from an observed sample y of length N . So, y1, . . . , yN
i.i.d.∼ N(µ, 1), where

N(a, b) denotes a normal distribution with a and b as its mean and variance parameters,

respectively. From the Bayes formula, we obtain the posterior distribution of the mean µ

given the observed data y

p(µ | y) =
p(y |µ) · p(µ)

p(y)
,

where p(µ) is the prior distribution assigned over µ and p(y) is the marginal distribution

of y

p(y) =
∫
p(y |µ) · p(µ)dµ.

Though it is natural to put a conjugate prior over µ, in this example, for instructive

reasons, a non-conjugate standard Cauchy distribution, that is,

p(µ) =
1

π (1 + µ2)
, (1.9)

is assigned as a prior distribution over the mean parameter µ. Note that in this case the

marginal distribution p(y) cannot be computed analytically. Thus, the posterior distribu-

tion of the mean µ is available only up to a normalizing constant which reads

p(µ | y) ∝
exp

(
−‖y−µ1N ‖2

2

)

1 + µ2
, (1.10)

where ∝ denotes proportionality.

It is not possible to directly draw samples from this posterior distribution, but, cor-

related samples can be generated from the target distribution (1.10) by constructing a

Markov chain (µ(n))n≥0 which leaves the posterior distribution (1.10) invariant. For this

purpose, a proposal distribution q(µ, µ′) has to be designed, first. Here, we use a normal

random walk proposal distribution centered at the current state of the Markov chain, that

is, µ′ ∼ N(µ, σ2). Therefore, owing to symmetricity of the proposal distribution q, the

acceptance ratio becomes

r
(
µ, µ′) =

p(µ′ | y)
p(µ | y)

·
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Figure 1.1 – Histogram and kernel density estimate of the observed data.

In the experiment, we set the true mean µ = 5 and generated N = 100 i.i.d. samples

from N(5, 1) which serve as the observed signal y. Figure 1.1 illustrates the distribution of

the observed data. The Markov chain was initialized, deliberately, to the value of µ(0) = 2

(far away from the true value), to clearly see how the algorithm approaches to the true

value. Indeed, it is well-known that the standard deviation of the proposal distribution

σ controls the rate of convergence and mixing of the chain (see for example Roberts and

Rosenthal, 2001). For very “small” values of σ, the proposed jumps, which are mostly

accepted, will be too short to explore rapidly the space and, thus, the convergence time

will be so long. On the other hand, when σ is set to an extremely “large” value, the

sampler will propose large jumps, even to regions of low posterior density. Thus, the

acceptance probability will be low and the sampler will stand still for many iterations.

Here, we used three different values for σ to show this fact. The length of the chain were

set to M = 5000 and the first 1000 samples were discarded as burn-in period.

Figures 1.2, 1.3, and 1.4 illustrate the performance of the normal random walk sampler

for the cases of “small” σ = 0.01, “large” σ = 10, and “good” σ = 0.25, respectively.

From Theorem 1.8 and descriptions in Section 1.2.1, we chose to monitor the sample path

average and the 25th and 75th percentiles of the chain, which are shown with red and

green lines, respectively, to assess the behavior of the chain. One way to determine that

the Markov chain has converged to its stationary distribution is to look for the locations

where the sample path average and the percentiles become constant. This can be more

easily detected in the zoomed figures demonstrated in the middle left panels. Moreover, the

mean acceptance probability are shown in the right panel of the middle row to highlight the

effect of the scale parameter σ. Finally, the bottom right panel in the figures demonstrate

the autocorrelation function indicating the “mixing” of the Markov chains.
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It can be inferred from the figures that the proposal distribution’s scale parameter σ

has a significant influence on the behavior of the Markov chain. This can be observed, for

example, from the AFC plots shown in the bottom right panels of the figures; for either

small or large σ, the ACF decayed very slowly. Whereas, for the case of “good” scale

parameter σ = 0.25, the chain mixes and explores the support of the target distribution

rapidly and, thus, the autocorrelation fades to zeros after a few lags.
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Figure 1.2 – Performance of the normal random walk sampler with σ = 0.01 on the

toy example. The top figure show the Markov chain (µ(n))n≥0 (blue line), its average

(red line), 25th, and 75th percentiles (green dashed line) (the left panel of middle row

is a zoomed version of the last 1000 iterations of the top figure). The middle row

right panel illustrates the mean acceptance probability. The bottom figures show the

histogram intensity (on the left) and the ACF (on the right) of the output chain after

discarding the first 1000 samples as burn-in period. The estimated mean is µ̂ = 5.15

with the mean acceptance probability of ᾱ = 0.9.

The sensitivity issue of the MCMC samplers to the parameters of the proposal dis-

tributions has motivated many researchers for developing adaptive MCMC methods; see,

e.g., Haario et al. (2001) ; Atchadé and Rosenthal (2005) ; Andrieu and Moulines (2006) ;

Roberts and Rosenthal (2009) and references therein for more information. In the spe-
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Figure 1.3 – Performance of the normal random walk sampler with σ = 10 on the

toy example. The top figure show the Markov chain (µ(n))n≥0 (blue line), its average

(red line), 25th, and 75th percentiles (green dashed line) (the left panel of middle row

is a zoomed version of the last 1000 iterations of the top figure). The middle row

right panel illustrates the mean acceptance probability. The bottom figures show the

histogram intensity (on the left) and the ACF (on the right) of the output chain after

discarding the first 1000 samples as burn-in period. The estimated mean is µ̂ = 5.13

with the mean acceptance probability of ᾱ = 0.05.

cial case of normal random walk Metropolis sampler, Gelman et al. (1996) ; Roberts and

Rosenthal (2001) provided results for optimal scaling of proposal distribution. The mean

acceptance rate corresponding to the case of σ = 0.25 is close to 0.44 which is the optimal

value for one dimensional normal random walk sampler (note that its optimal value in

higher dimensions becomes 0.234 (see, e.g., Roberts and Rosenthal, 2001)).
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Figure 1.4 – Performance of the normal random walk sampler with σ = 0.25 on the

toy example. The top figure show the Markov chain (µ(n))n≥0 (blue line), its average

(red line), 25th, and 75th percentiles (green dashed line) (the left panel of middle row

is a zoomed version of the last 1000 iterations of the top figure). The middle row

right panel illustrates the mean acceptance probability. The bottom figures show the

histogram intensity (on the left) and the ACF (on the right) of the output chain after

discarding the first 1000 samples as burn-in period. The estimated mean is µ̂ = 5.11

with the mean acceptance probability of ᾱ = 0.44.

1.3 Importance sampling and sequential Monte Carlo meth-

ods

1.3.1 Importance sampling

Assume that we are interested in computing the integral given in (1.1) and, as before,

it is not possible to compute it analytically. When generating samples directly from the

distribution π is expensive or impossible, Importance Sampling (IS) is another Monte

Carlo sampling strategy to resort to (Liu, 2001 ; Robert and Casella, 2004). Again we

denote by f the density of π with respect to a dominating measure on (X, B). Let us
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rewrite the integral (1.1) as below

Eπ{h(x) | y} = Eg

{
h(x)

f(x)

g(x)

}
=

∫

X

h(x)
f(x)

g(x)
g(x)dx (1.11)

where g is an easy-to-sample instrumental distribution. In the IS method, the integral

is approximated by first generating M samples x(1), . . . , x(M) from g, and then com-

pensating for the discrepancy between the target and instrumental distributions by using

importance weights

w(m) =
f(x(m))

g(x(m))
,

for m = 1, . . . , M . We will call the pair (x(m), w(m)) the weighted samples, hereafter.

Then, using the weighted samples, an unbiased and consistent approximation of the inte-

gral (1.1) is

Ê
IS
π [h(x)] =

1

M

M∑

m=1

w(m)h(x(m)).

If f is only known up to a normalizing constant, and consequently, the importance

weights become w(m) ∝ f(x(m))/g(x(m)), for m = 1, . . . ,M , the following approximation

called “self-normalized” IS, which is biased but yet consistent, is usually used

Ẽ
IS
π [h(x)] =

M∑

m=1

W (m)h(x(m)), (1.12)

where W (m) = w(m)/
∑M
i=1w

(i) is the normalized weights. Note that when in addition

to f , sampling directly from g is impossible, for example when g is only available up to

a multiplicative constant, the “self-normalized” IS estimator (1.12) can be used through

constructing a Markov chain—using one of the MCMC methods—which has g as its sta-

tionary distribution. This has applications for example in using Monte Carlo Expectation

Maximization (MCEM) method for estimating model’s hyperparameters in the Empirical

Bayes (EB) approach (see for example Quintana et al., 1999 ; Levine and Casella, 2001).

Remark 1.4. We stress here that the application of IS method is not limited to the cases

that generating samples directly from π is impossible. Indeed it is also a variance reduction

technique (see, e.g., Robert and Casella, 2004, Chapter 4). Moreover, it can be useful in

studying rare events such as sampling from the tail of a heavy-tailed distribution; for more

information see, e.g., Asmussen et al. (2000).

In order to have finite importance weights and thus preventing degeneracy, f should be

absolutely continuous with respect to g, that is, for all x ∈ X, if g(x) = 0 then f(x) = 0.

In other words, this condition supp(f) ⊂ supp(g) must always hold. Moreover, to ensure
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that inference made by means of the IS estimator is reliable, it is recommended in the

literature to monitor several criteria. For example, a “rule of thumb” proposed by Liu

(2001, page 34) is to monitor Efficient Sample Size (ESS) defined as

ESS ,
M

1 + Vg(w(x))
, (1.13)

where Vg (w(x)) is the variance of the unnormalized importance weights with respect to

the distribution g. When M is large, the variance Vg (w(x)) can be approximated by

Vg(w(x)) ≃ 1

M

M∑

m=1

(w(m))2 − 1 ≃ M
M∑

m=1

(W (m))2 − 1. (1.14)

Then, plugging (1.14) into (1.13), the estimated value of ESS becomes 1/
∑M
m=1

(
W (m)

)2
.

This criterion tells us that the M i.i.d. weighted samples generated from g are worth of

M/(1 + Vg (w(x))) i.i.d. samples drawn from the target distribution π.

Remark 1.5. An interesting property of the IS based methods is that the weighted samples

generated from the instrumental distribution can be reused when the target distribution

is slightly changed by just updating the weights. This concept is one of the principles of

the Sequential Monte Carlo (SMC) samplers introduced in the following section (see, e.g.,

Bornn et al., 2010).

1.3.2 Sequential Monte Carlo samplers

In many applications, the goal is to generate samples from a sequence of distributions

{πt}t∈T, where πt is defined on some Xt and t ∈ T = {1, 2, . . . , T}. In a Bayesian setting,

this sequence of (posterior) distributions might arise either by observing sequentially input

data (see, for example, Gordon et al., 1993 ; Liu and Chen, 1998 ; Doucet et al., 2001 ;

Liu, 2001), that is,

f1(x) = p(x | y1), f2(x) = p(x | y1:2), . . . , fT (x) = p(x | y1:T ),

where y1:T simply denotes (y1, . . . , yT ), for example, in target tracking, or by the fact

that a certain hyperparameter θ of the model is evolving over “time”, that is,

f1(x) = p(x | θ1,y), f2(x) = p(x | θ2,y), . . . , fT (x) = p(x | θT ,y),

for example in Bayesian sensitivity analysis (Bornn et al., 2010). In addition, one may be

interested in artificially partitioning a huge set of observed data into several batches to

reduce the computational complexity (Chopin, 2002).
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Although ergodic Markov kernels could be designed to generate samples from each of

the distributions πt, for t ∈ T, separately using MCMC methods, this would be very time

demanding when T is large and considering further the fact that one should generate a

large number of samples from each distribution πt to have an acceptable approximation.

However, importance sampling concept can be used, in these situations, to efficiently

draw samples from the sequence of distributions {πt}t∈T. Sequential Monte Carlo (SMC)

samplers, also known as Particle filters, (elaborated mainly in Gordon et al., 1993 ; Liu

and Chen, 1998 ; Doucet et al., 2000, 2001 ; Liu, 2001 ; Gilks and Berzuini, 2001 ; Chopin,

2002 ; Del Moral et al., 2006, among others) are particular algorithms developed for this

purpose by generalizing the idea of importance sampling.

In fact, considering the state space that defines the model and parameter space, the

sequential problems can be divided into two main groups: “dynamic” and “static” models.

In the former case the target distribution, at time t, is defined on Xt, where, often,

Xt−1 ⊂ Xt, such as target tracking problem while in the latter one the target distributions

are all defined on the same space X such as Bayesian sensitivity analysis. In this section

and, thus, throughout this thesis we will concentrate on the static case. Refer to (Gordon

et al., 1993 ; Liu and Chen, 1998 ; Doucet et al., 2000, 2001 ; Liu, 2001) for information

concerning “dynamic” models.

We briefly explain the Sequential Importance Sampling (SIS) technique (see, e.g.,

Del Moral et al., 2006, Section 2), as it will be helpful in presenting the principles of

the SMC samplers. For t ∈ T, let

ft(x) =
γt(x)

zt
, (1.15)

where γt(x) is the unnormalized density assumed to be known and zt is the unknown

normalizing constant. Assume further that there is a density gt(x) on X which will be used

as the instrumental distribution. Thus, for example, ft−1(x) can be approximated by the

set of weighted samples (x
(m)
t−1, w

(m)
t−1), or simply particles, form = 1, . . . ,M , generated from

gt−1(x), as described in Section 1.3.1. TheM particles (x
(m)
t−1, w

(m)
t−1), then, can be reused to

approximate ft(x) in two steps; first the particles x
(m)
t−1—currently distributed according

to ft−1(x)—are moved using a Markov kernel Pt(x,x′) to x
(m)
t which are distributed

according to

gt(x
′) =

∫

X

gt−1(x)Pt(x,x
′)dx,

and, subsequently, reweighted to be distributed according to ft(x). The corresponding
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instrumental distribution is

gt(xt) =

∫
g1(x1)

t∏

i=2

Pi(xi−1,xi)dx1:n−1. (1.16)

This is, in fact, a major drawback of SIS method, as the integral (1.16) is, in most practical

problems, impossible to compute; furthermore, the proposed methods to approximate it

are intricate (see Del Moral et al., 2006, for more details).

The idea proposed in the seminal paper by Del Moral et al. (2006) to side-step this

difficulty is to employ an auxiliary backward Markov kernel Lt−1 (xt,dxt−1) that allows

us to carry out proper reweighting by approximating “surrogate” joint target distributions

π̃t (x1:t) =
γ̃t (x1:t)

zt
,

where

γ̃t (x1:t) = γt (xt)
t−1∏

i=1

Li (xi+1,dxi) ·

The key observation here is that that the surrogate joint distribution π̃t (x1:t) admits

πt (x) as a marginal distribution. The general expression for the updated unnormalized

importance weights reads

wt(x1:t) = wt−1(x1:t−1) w̃t(xt−1, xt), (1.17)

with the unnormalized incremental weight

w̃t(xt−1, xt) =
γt(xt)Lt−1(xt, dxt−1)

γt−1(xt−1)Pt(xt−1, dxt)
· (1.18)

As in importance sampling, a routine procedure in the SMC samplers is to monitor

the ESS criterion (1.13) to avoid degeneracy of particles. Then, when it becomes less

than a certain threshold, say, M/2, the particles are resampled. The aim of this step is

to duplicate the particles with significant importance weights and discard the ones with

negligible weights. In the resampling procedure, the particles x
(m)
t , for m = 1, . . . ,M , are

copied mm
t times—m

(m)
t can be even zero—such that

∑M
m=1 m

(m)
t = M , depending on

the corresponding normalized weights W (m)
t . Then, all the unnormalized weights are set

to one. There are various resampling algorithms in the literature (see for example Liu,

2001 ; Doucet et al., 2000, pages 72–75), though, we use the one consisting of generating

random numbers m
(m)
t , for m = 1, . . . ,M , from a multinomial distribution of parameters

W
(m)
t . A general SMC sampler is described in Algorithm 1.3.

An important case of the SMC samplers extensively used in the literature is the one in

which the Markov kernel Pt is a MCMC kernel of invariant distribution πt. A suboptimal
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Algorithm 1.3. Sequential Monte Carlo sampler:

initialization :

• set t = 1;

• for m = 1, . . . ,M draw particles x
(m)
1 from g1(x);

• compute importance weights w(m)
1 ∝ f1(x

(m)
1 )/g1(x

(m)
1 ) and normalize them

to obtain normalized weights W (m)
1 ;

for t = 2 : T do

resampling :

If ESS= 1/
∑
W

(m)
t−1 is less than a certain threshold, resample the particles

and set all normalized weights w(m)
t = 1;

move :

• for m = 1, . . . ,M move particles x
(m)
t ∼ Pt(x

(m)
t−1, ·);

• compute the unnormalized weights using expressions (1.17) and (1.18);
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backward kernel often used in this case is the so-called “reverse Markov kernel” (Del Moral

et al., 2006, page 422)

Lt−1(xt,dxt−1) =
πt(dxt−1)Pt(xt−1,dxt)

πt(dxt)
· (1.19)

In this case, the expression of the unnormalized incremental weight (1.18) boils down to

w̃t(xt−1, xt) =
γt(xt−1)

γt−1(xt−1)
∝ ft(xt−1)

ft−1(xt−1)
· (1.20)

Remark 1.6. The asymptotic variance of the SMC sampler, under regularity assumptions,

is computed in Del Moral et al. (2006, Proposition 2) and it is stated that the variance

is upper bounded while the one of IS method goes to ∞ with t. Moreover, the mixing

behavior of the Markov kernel has a direct influence on the variance of SMC sampler.

Toy example revisited

As an illustration of the SMC sampler, we revisit the toy example of Section 1.2.3 using

the SMC sampler developed by Chopin (2002). Recall that the posterior distribution of

interest is given by

p(µ | y) ∝
exp

(
−‖y−µ1N ‖2

2

)

1 + µ2
.

Let us construct, as in Chopin (2002), a sequence of posterior distributions by partitioning

the observed data y into T sections. More precisely, the sequence of posterior distributions

is {ft (µ)}t∈T, where

ft(µ) = p
(
µ | y1: tN

T

)
.

Observe that, at each step of the algorithm, N/T observed samples are added to the

model.

To initialize the SMC sampler, we need to generate M particles denoted by µ(m)
1 from

an instrumental distribution denoted by g1 in Algorithm 1.3. It is possible to draw directly

samples from the prior distribution, i.e., standard Cauchy prior distribution (1.9), using

the inverse transform approach (see, e.g., Robert and Casella, 2004, Section 2.1.2). It

turns out that, however, due to the heavy-tailedness of the Cauchy distribution, many

of the generated samples would be far away from the region of interest. Therefore, we

opt for using a normal distribution N(µy, σ
2
y), where µy and σ2

y are, respectively, the

empirical mean and variance estimates of the observed data y. Note that this is much

faster than applying the MCMC sampler to generate M particles from p
(
µ | y1: N

T

)
. Then,
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for m = 1, . . . ,M , the unnormalized importance weights becomes

w
(m)
1 =

exp


−

∥∥∥y
1: N

T

−µ
(m)
1 1N

∥∥∥
2

2




(
1 + (µ

(m)
1 )2

)
· N(µ

(m)
1 |µy, σ2

y)
·

Next the unnormalized weights are updated using the unnormalized incremental weight

given by, for m = 1, . . . ,M and t = 1, . . . , T ,

w̃
(m)
t ∝

ft
(
µ

(m)
t−1

)

ft−1

(
µ

(m)
t−1

) = exp

(
−1

2

∥∥∥∥y (t−1)N

T
+1: tN

T

− µ
(m)
t−1

∥∥∥∥
2
)

·

We use ESS defined in (1.13) as a criterion to monitor the efficiency of the sampler. When

ESS is smaller than M/2, to avoid degeneracy, the particles are resampled according to a

multinomial distribution with the normalized weights as its probabilities. Next, the parti-

cles are moved according to a symmetric normal random walk kernel, as in Section 1.2.3.

We use the same generated data of length N = 100. The number of partitions, and

thus the number of SMC iterations, T is set to 20, to ensure that ft−1 ≈ ft, while the

number of particles M is chosen to be 1000. Thus, at each SMC step, five observation

are added to the model and only when ESS is less than 500 we resample the particles.

The variation of ESS is shown in Figure 1.5. It can be seen that in only four out of 20

iterations the resampling procedure is used (shown by red squares). Figure 1.6 illustrates

the evolution of the particles through 20 iterations of SMC sampler. It can be observed

from the depicted densities of the weighted samples that in the beginning the samples

generated from the instrumental distribution N(µy, σ
2
y) are quite spread; then, as more

observations are added the particles are more concentrated around the true mean, i.e,

µ = 5. The final estimated mean µ̂ =
∑M
m=1W

(m)
T µ

(m)
T = 5.13.

Remark 1.7. Note that we didn’t aim at comparing the performance of the MCMC and

the SMC samplers for the toy example. If so, repeated simulations are needed to give

statistics such as bias, variance, and MSE of the final estimated values. Rather, this toy

example was intended to illustrate how Monte Carlo sampling strategies work in practice.

We will use the SMC sampler for Bayesian sensitivity analysis of the posterior distri-

bution to a certain hyperparameter (similar to the algorithm developed by Bornn et al.

(2010)) in Chapter 3.
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Figure 1.5 – Efficient sample size (ESS) of SMC sampler applied for the toy example.

The dark dashed line shows the threshold, that is, 500, used for deciding where to

resample and the red squares highlight the resampled iterations.
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Figure 1.6 – Density of the weighted samples (gray) along with the estimated mean

of the normal distribution (black) for each SMC iteration. The final estimated value

is µ̂ = 5.13.

1.4 Trans-dimensional MCMC sampler

In many problems of science and engineering “the number of things that we don’t know

is one of the things that we don’t know”(Green, 1995, 2003). These variable-dimensional
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problems are also called “trans-dimensional” problems in the literature. In these prob-

lems, we are interested in making inference about a countable set of models, M =

{M1, M2, · · · , Mkmax}, indexed by k ∈ K ⊂ N. In the general case, the model k has

associated vector of parameters θk ∈ Xk of length nk, where Xk is some nk-dimensional

space. Then, the objective is to make inference about the joint posterior distribution

π (k, θk) defined on the union of subspaces with different dimension X =
⋃
k∈K{k} × Xk,

of course after defining prior distributions over both k and θk.

In this Section, we restrict ourselves to signal decomposition problems in which the

observed signal is assumed to be the superposition of a number of fundamental elementary

signals or components of interest. To indicate that this restriction holds and to be consis-

tent with the existing literature, we replace Xk with Θk ⊆ Rnk . Thus, X =
⋃
k∈K{k}×Θk

with pairs x = (k,θk) ∈ X. Then, the objective is, in addition to exploring the model

space M, assessing the vector of unknown component-specific parameters2, denoted by

θk ∈ Θk under Mk, given the observed data (signal), y. The variable-dimensional poste-

rior distribution of interest is

π (k, θk) =
p (y | k, θk) p (k, θk)

p (y)
∝ p (y | k, θk) p (k, θk) . (1.21)

This joint posterior distribution, then, can be used to express uncertainty about the can-

didate models and the vector of unknown parameters (see for example Clyde and George,

2004).

Simultaneous inference on both the model and parameter spaces through analyzing the

joint posterior π (k, θk) requires exploring the space X defined over the union of subspaces

of varying-dimensionalities. Studying efficiently such posteriors has not been feasible until

the introduction of Reversible Jump MCMC (RJ-MCMC) sampler by Green (1995). This

sampler can be seen as a generalized version of Metropolis-Hastings sampler introduced

in Section 1.2.2. In effect, it is not only capable of exploring the parameter space under

Mk but also designed to span the model space by jumping between plausible models. To

this end, in addition to fixed-dimensional (within-model) moves, as in standard MCMC

methods, the RJ-MCMC sampler is equipped with trans-dimensional (between models)

moves, which, under certain conditions, leaves the joint posterior distribution of interest,

i.e. π (k, θk), invariant.

2Note that, in addition to the component-specific parameters θk, one can further consider parameters

that are common to all models. However, these parameters enjoy a fixed-dimensional space and usually are

easily sampled using simple MH or Gibbs samplers. Thus, in this section, for clarity, we only concentrate

on the variable-dimensional part and consider the case where there is no common parameter.
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In this Section, due to the existence of erroneous Birth-or-Death moves acceptance ratio

in signal processing society (see, e.g., Andrieu and Doucet, 1999), we aim at providing clear

statements of some mathematical results, certainly not completely new but never stated

explicitly, which can be used for a clean justification of the acceptance ratio of Birth-or-

Death moves in signal decomposition (and similar) problems. For further information,

see Green (1995) ; Richardson and Green (1997, 1998) ; Sisson (2005) ; Green (2003) ;

Hastie and Green (2011).

Remark 1.8. Note that in some signal decomposition problems in which the goal is de-

composing the observed signals into atoms, such as wavelet basis, the situation is different

(see, e.g., George and Foster, 2000 ; Wolfe et al., 2004 ; Fevotte and Godsill, 2006 ; Do-

bigeon et al., 2009). The key feature in their approach is the introduction of auxiliary

“indicator” variables to embed all models as special case of fixed-dimensional “big model”.

As a result, plain Gibbs or Metropolis-within-Gibbs sampling is sufficient to explore the

augmented posterior distributions.

1.4.1 Mixture of proposal kernels

Metropolis-Hastings-Green ratio for mixture of proposal kernels

To generalize the MH sampler of Section 1.2.2 to the trans-dimensional case, it is of-

ten convenient to consider a proposal kernel Q built as a mixture of simpler transition

kernels Qm, with m in some finite or countable index set M. In this case we have

Q
(
x, dx′) =

∑

m∈M

j (x, m) Qm
(
x, dx′) , (1.22)

where j (x, m) is the probability of choosing the move type m given that the current state

is x. Note that the actual value of Qm(x, · ) is irrelevant when j(x,m) = 0.

It turns out that, under some assumptions, the MHG ratio for a mixture kernel Q

can be conveniently deduced from the elementary ratios computed for each individual

kernel Qm using the formula

r
(
x,x′) =

j (x′, m′)

j (x, m)
· π (dx′)Qm′ (x′,dx)

π (dx)Qm (x,dx′)
. (1.23)

where m ∈ M denotes the specific move that has been used to propose x′, and m′ ∈ M

is the corresponding “reverse move”. Equation (1.23) is routinely used in applications

of the RJ-MCMC algorithm, and is alluded to in Green’s paper (Green, 1995, p. 717)

in the sentence : “If [other] discrete variables are generated in making proposals, the
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probability functions of their realised values are multiplied into the move probabilities”.

Note that, however, the acceptance ratio (1.23) is not true in the general case when

a single MH kernel is used with mixture of proposal distributions (see, e.g., Tierney,

1998, Section 4). In the general case, to compute the MH acceptance ratio, evaluation

of all transition kernels Qm, m ∈ M, is usually necessary, which can be computationally

expensive. Sufficient conditions for Equation (1.23) to hold are provided by the following

result:

Proposition 1.10. Let Rm(dx,dx′) = j(x,m)π(dx)Qm(x,dx′). Assume that there ex-

ists a family of disjoint sets Wm ∈ B ⊗ B, indexed by M, such that :

i) For each m ∈ M, Rm is supported by Wm, which means Rm
(
X2 \ Wm

)
= 0.

ii) Each move m ∈ M has a unique “reverse move” ϕ(m) ∈ M in the sense that

Wϕ(m) = WT
m, where WT

m = {(x′,x) : (x,x′) ∈ Wm}.

Then, then MHG ratio (1.7) is given by Equation (1.23) with m′ = ϕ(m).

Proof. For π(dx)Q(x,dx′)-almost everywhere on X2, there is a unique m = mx,x′ ∈ M

such that (x,x′) ∈ Wm. Indeed, the sets Wm, m ∈ M, are disjoint and

∫∫

X2\∪Wm

π(dx)Q(x,dx′) =
∑

m∈M

Rm(X
2\ ∪ Wm)

≤
∑

m∈M

Rm(X
2\Wm) = 0.

Equation (1.23) can be rewritten as:

r
(
x,x′) =

Rϕ(m
x,x′ )(dx′,dx)

Rm
x,x′ (dx,dx′)

·
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Then, for all A ∈ B ⊗ B,
∫∫

A
r(x,x′)R(dx,dx′)

=

∫∫

A

Rϕ(m
x,x′ )(dx′,dx)

Rm
x,x′ (dx,dx′)

·
∑

m0∈M

Rm0(dx,dx′)

=
∑

m0∈M

∫∫

A∩Wm0

Rϕ(m0)(dx′,dx)

Rm0(dx,dx′)
Rm0(dx,dx′)

=
∑

m0∈M

∫∫

A∩Wm0

Rϕ(m0)(dx′,dx)

=
∑

m0∈M

∫∫

AT∩WT
m0

Rϕ(m0)(dx,dx′)

=

∫∫

AT
R(dx,dx′) because W

T
m0

= Wϕ(m0)

=

∫∫

A
R(dx′,dx) .

Mixture representation of trans-dimensional kernels

Consider the case of a variable-dimensional space , that can be written as X = ∪k∈K{k} ×
Θk. A point x ∈ X is a pair (k,θk) with k ∈ K and θk ∈ Θk.

Set Xk = {k} × Θk. Any kernel Q on X admits a natural representation as a mixture

of fixed-dimensional and trans-dimensional kernels :

Q
(
x,dx′) =

∑

(k,l)∈K2

pk,l(x)Qk,l
(
x,dx′) , (1.24)

where

pk,l(x) = 1Xk
(x)Q(x,Xl) ,

Qk,l(x, · ) =
1

pk,l(x)
Q (x, · ∩ Xl) .

(An arbitrary value can be chosen for Qk,l(x, · ) when pk,l(x) = 0 to make it a completely

defined transition kernel.) The kernels Qk,k, k ∈ K, correspond to the “fixed-dimensional”

part of the transition kernel Q; while the kernels Qk,l, (k, l) ∈ K2, k 6= l, correspond to

the “trans-dimensional” part.

The mixture representation (1.24) satisfy the assumptions of Proposition 1.10 with

M = K2 , Wk,l = Xk × Xl for all (k, l) ∈ M and ϕ(k, l) = (l, k). Therefore, if the current

state x is in Xk and the proposed state x′ in Xl, the MHG ratio (1.23) reads

r(x,x′) =
pl,k(x

′)

pk,l(x)
· π(dx′)Ql,k(x

′,dx)

π(dx)Qk,l(x,dx′)
. (1.25)
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In most “tutorial” papers about the RJ-MCMC method, this expression is directly written

in the special case where Green’s dimension matching argument can be applied (see, e.g.,

Green (2003), Sections 2.2 and 2.3). Unfortunately, the dimension matching argument

does not apply directly to the commonly used Birth-or-Death kernels (see next section) if

the mixture representation (1.24), which leads to (1.25), is used.

1.4.2 Birth-or-Death kernels

Birth-or-Death kernels on (unsorted) vectors

Let us consider the situation where a point x ∈ X describes a set of k objects s1, . . . , sk ∈ S,

with (S, ν) an atomless3 measure space and k ∈ N. One possible—and commonly used—

way of representing this is to consider pairs (k, s), where the objects si, 1 ≤ i ≤ k,

have been arranged in a vector s = (s1, . . . , sk) ∈ Sk. The corresponding space is X =

∪k≥0Xk, Xk = {k} × Θk, with Θk = Sk and using the convention that S0 = {∅}.

Birth-or-death kernels are the most natural kind of trans-dimensional moves in such

spaces. Given k ∈ N, s = (s1, . . . , sk) ∈ Sk and s∗ ∈ S, we introduce the notations

s−i = (s1, . . . , si−1, si+1, . . . , sk) ∈ S
k−1,

s ⊕i s
∗ = (s1, . . . , si−1, s

∗, si, si+1, . . . , sk) ∈ S
k+1,

where 1 ≤ i ≤ k in the first case and 1 ≤ i ≤ k + 1 in the second case. Starting from

x = (k, s), a birth move inserts a new component s∗ ∈ S, generated according to some

proposal distribution q(s) ν(ds), at a randomly selected location:

Qb (x, · ) =
1

k + 1

k+1∑

i=1

∫

S

δ(k+1,s⊕is∗) q(s
∗) ν(ds∗) . (1.26)

A death move, on the contrary, removes a randomly selected component form the current

state:

Qd (x, · ) =
1

k

k∑

i=1

δ(k−1,s−i) . (1.27)

Finally, the birth-or-death kernel is a mixture of the two:

Q(x, · ) = pb(x)Qb(x, · ) + pd(x)Qd(x, · ) , (1.28)

with pb(x), pd(x) ≥ 0, pb(x) + pd(x) = 1, and pd ((0,∅)) = 0. Moreover, if K has an

upper bound kmax then pb ((kmax, s)) = 0.

3See, e.g., Fremlin (2001). As a concrete example, think of S = R
d endowed with its usual Borel

σ-algebra and ν equal to Lebesgue’s measure. We will use the following property in the proof of Proposi-

tion 1.11: if (S, ν) is atomless, then the diagonal ∆ = {(s, s) : s ∈ S} is ν ⊗ ν-negligible in S × S.
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Expression of the MHG ratio

The following proposition provides the expression of the MHG ratio for the Birth-or-Death

kernel.

Proposition 1.11. Assume that, for all k ≥ 1, the target measure π restricted to Xk

admits a probability density function fk with respect to ν⊗k. Then the MHG ratio is

r(x,x′) =
fk+1(x′)

fk(x)
· pd(x′)

pb(x)
· 1

q(s∗)
(1.29)

for a birth move from x = (k, s) to x′ = (k + 1, s ⊕i s
∗).

Proof. Although a direct computation of the MHG ratio would be possible based on Equa-

tions (1.26)–(1.28), we find it much more illuminating to deduce the result from Proposi-

tion 1.10 using kernels which are simpler than Qb and Qd. To do so, let us consider the

family of elementary kernels Qm, with m in the index set

M =
{

(α, k, i) ∈ {0, 1} × N
2 : 1 ≤ i ≤ k + α

}

where Q1,k,i is the kernel from Xk to Xk+1 that inserts a new component s∗ ∼ q(s)ν(ds)

in position i, and Q0,k,i is the kernel from Xk to Xk−1 that removes the ith component.

Then we can write

Q(x, · ) =
∑

m∈M

j(x,m)Qm(x, · ), (1.30)

with j(x,m) defined for all x = (k, s) ∈ X as

j(x,m) =





pb(x)/(k + 1) if m = (1, k, i), 1 ≤ i ≤ k + 1,

pd(x)/k if m = (0, k, i), 1 ≤ i ≤ k,

0 otherwise.

Denote by X̃k the set of all x ∈ Xk in which no two components are equal. For all k,

π(Xk \ X̃k) = 0, since π|Xk
admits a density with respect to the product measure ν⊗k.

The mixture representation (1.30) thus satisfies the assumptions of Proposition 1.10 with

W(1,k,i) =
{

(x,x′) ∈ X̃k × X̃k+1 : ∃s ∈ S
k, ∃s∗ ∈ S,

x = (k, s), x′ = (k + 1, s ⊕i s
∗)
}
,

W(0,k,i) = WT
(1,k−1,i), ϕ(1, k, i) = (0, k+1, i) and ϕ(0, k, i) = (1, k−1, i). As a consequence,

the MHG ratio for a birth move m = (1, k, i) is

r(x,x′) =
pd(x′)

pb(x)
· π(dx′)Q0,k+1,i(x

′,dx)

π(dx)Q1,k,i(x,dx′)
.
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Observe that the 1/(k + 1) terms, in the move selection probabilities, cancel each other.

To complete the proof, it remains to show that

π(dx′)Q0,k+1,i(x
′,dx)

π(dx)Q1,k,i(x,dx′)
=

fk+1(x′)

fk(x)
· 1

q(s∗)
. (1.31)

This can be obtained, in the general case, by a direct computation of the densities with

respect to the symmetric measure

ξ
(
d(k, s),dx′) = ν⊗k(ds)

[
δ(k−1,s−i)(dx′)

+

∫

S

δ(k+1,s⊕is∗) ν(ds∗)

]
.

In the important special case where S ⊂ Rd and ν is (the restriction of) the d-dimensional

Lebesgue measure, (1.31) can be seen as the result of Green’s dimension matching ar-

gument (Green, 1995, Section 3.3), in a very simple case where the Jacobian is equal to

one.

Remark 1.9. We emphasize that (1.30) is not the usual mixture representation of trans-

dimensional kernels introduced in Section 1.4.1. Indeed, starting, e.g., from Xk, there are

several elementary kernels that can propose a point in Xk+1.

Birth-or-Death kernels on sorted vectors

Let us assume now that the objects are “sorted”, in some sense, before being arranged

in the vector s = (s1, . . . , sk) ∈ Sk. This happens, in practice, either when there is a

natural ordering on the set of objects (e.g., the jump times in signal segmentation or

multiple change-point problems Green (1995) ; Punskaya et al. (2002)) or when artificial

constraints are introduced to restore identifiability in the case of exchangeable components

(see Richardson and Green (1997, 1998) ; Stephens (2000) ; Cappé et al. (2003) ; Jasra

et al. (2005) for the case of mixture models).

To formalize this, let us consider the same space X as in Section 1.4.2. Assume that S

is endowed with a total order and that the corresponding “sort function” ψ : X → X is

measurable. What we are assuming now is that the target measure, denoted by π̃ in this

section, is supported by ψ(X)—in other words, the components of x ∈ X are π̃-almost

surely sorted.

In such a setting, the definition of the Birth-or-Death kernel has to be slightly modified

in order to accommodate the sort constraint: the death kernel is unchanged, but new

components are inserted deterministically at the only location that makes the resulting
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vector sorted (instead of being added at a random location). Mathematically, for x =

(k, s) ∈ Xk, we now have:

Q̃b (x, · ) =

∫

S

δψ(k+1,s⊕1s∗) q(s
∗) ν(ds∗) ,

Q̃d (x, · ) =
1

k

k∑

i=1

δ(k−1,s−i) = Qd (x, · ) .

Proceeding as in the proof of Proposition 1.11, it can be proved that the MHG ratio for a

birth move from x = (k, s) to x′ = (k + 1, s ⊕i s
∗) is

r(x,x′) =
f̃k+1(x′)

f̃k(x)
· pd(x′)/(k + 1)

pb(x) ηi(x)
· 1

q(s∗)/ηi(x)
, (1.32)

where f̃k denotes the pdf of π̃ on Xk and ηi(x) the probability that s∗ ∼ q(s) ν(ds) is

inserted at location i in x. (Note that pb(x) ηi(x) is the probability of performing a birth

move at location i, and pd(x′)/(k+1) the probability of the reverse death move; this is the

appropriate way of decomposing this kernel as mixture in order to use Proposition 1.10.)

Let us now consider the case where, in the setting of Section 1.4.2, the target probability

measure π is invariant under permutations of the components indices (in other words, the

corresponding random variables are exchangeable (Bernardo and Smith, 2000, Chapter 4)).

Sorting the components (as an identifiability device) is equivalent to looking at the image

measure π̃ = πψ, which has the pdf f̃k = k! fk 1ψ(X) on Xk. As a consequence, the MHG

ratios (1.29) and (1.32) are equal.

Remark 1.10. Another option, when the components of the vector (s1, . . . , sk) are ex-

changeable, is to forget about the indices and consider the set {s1, . . . , sk} instead. The

object of interest is then a (random) finite set of points in S—in other words, a point pro-

cess on S. The expression of the MHG ratio for Birth-or-Death moves in the point process

framework, with the Poisson point process as a reference measure, has been given in Geyer

and Møller (1994) (one year before the publication of Green (1995)). Point processes have

been widely used, since then, in image processing and object identification (see, e.g., Rue

and Hurn (1999) ; Descombes et al. (2004) ; Stoica et al. (2004) ; Lacoste et al. (2005)).

1.5 Summary

In this chapter, we reviewed different Monte Carlo sampling methods with a focus on

Markov Chain Monte Carlo techniques. We presented two well-known fixed-dimensional

MCMC samplers, namely the Metropolis-Hastings (Metropolis et al., 1953 ; Hastings,
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1970) and Gibbs samplers (Geman and Geman, 1984) in Section 1.2.2. Through a toy

example in Section 1.2.3, we emphasize the influence of proposal distributions in the per-

formance of the MH sampler. Algorithms for tuning parameters of proposal distributions

are clearly important, but were beyond the scope of this review. We also discussed impor-

tance sampling based methods, esp. sequential Monte Carlo samplers (see, e.g., Doucet

et al., 2001 ; Liu, 2001 ; Chopin, 2002 ; Del Moral et al., 2006) in Section 1.3. We will use

the SMC sampler in Section 3.2.5 for analyzing the sensitivity of posterior distributions

to the parameters of prior distributions.

Due to the widespread existence of wrong acceptance ratios in the signal processing

literature, in Section 1.4, we explicitly presented the process of between-models moves,

particularly the birth-or-death moves, in trans-dimensional MCMC samplers to clarify in

what manner these moves can be correctly employed. More precisely, in Section 1.4.2, we

established results asserting under what conditions the trans-dimensional MCMC sampler

admits the target distribution π as a stationary distribution. Furthermore, in Section 1.4.2,

we extended the results to the case of sorted vectors and stated that the MHG ratio

would be similar. We finish the discussion by an interesting quotation from Jannink and

Fernando (2004): “The fact that this error has remained in the literature for over 5 years

underscores the view that while Bayesian analysis using Markov chain Monte Carlo is

incredibly flexible and therefore powerful, the devil is in the details. Furthermore, incorrect

analyses can give results that seem quite reasonable.” Surprisingly, this mistake last more

than 12 years in this community. In Section 3.2.4, to illuminate the arguments concerning

trans-dimensional samplers stated in Section 1.4, we will study the effect of using the

erroneous acceptance ratio in the trans-dimensional example of joint Bayesian detection

and estimation of sinusoids in white Gaussian noise (Andrieu and Doucet, 1999).
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Chapter 2

Summarizing Variable-dimensional

Posterior Distributions

2.1 Introduction

In Chapter 1, we described Monte Carlo sampling methods that enable us to draw samples

from posterior distribution of interest. Nevertheless, practical challenges remain at the

inference level to extract, from the (possibly very large number of) generated samples,

quantities of interest to summarize the posterior distribution.

Summarization consists, loosely speaking, in providing a few simple yet interpretable

parameters and/or graphics to the end-user of a statistical method. For instance, in the

case of a scalar parameter with a unimodal posterior distribution, measures of location and

dispersion (e.g., the empirical mean and the standard deviation, or the median and the in-

terquartile range, respectively) are typically provided in addition to a graphical summary

of the distribution (e.g., a histogram or a kernel density estimate); see the toy example of

Section 1.2.3 of Chapter 1. In the case of multimodal distributions summarization becomes

more difficult but can be carried out using, for instance, the approximation of the posteri-

ors by Gaussian Mixture Models (GMMs); see, for example, West (1993) ; McLachlan and

Peel (2000) ; Frühwirth-Schnatter (2006) ; Mengersen et al. (2011). Summarizing or ap-

proximating posterior distributions has also been used in designing proposal distributions

of MH samplers in an adaptive MCMC framework; see, e.g., Bai et al. (2011).

In this chapter, we address the issue of summarizing variable-dimensional posterior

distributions defined over a union of subspaces with differing dimension. These distribu-

tions are encountered in the “trans-dimensional problems” in which the observed signal,

or, its distribution, is assumed to be made of an unknown number of individual compo-

nents. In these problems, there is a countable set of models, M = {M1, M2, · · · }, indexed
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by k ∈ K ⊂ N, to describe the observed data y. The model Mk assumes that y is

made up of k components and a noise parameter. Thus, Mk has an associated vector of

component-specific parameters θk ∈ Θk, where Θ is the space over which the component-

specific parameters are defined. Then, the posterior distribution of interest operates over

a measurable space (X, B) where X = ∪k≥0Xk, Xk = {k} × Θk, with the convention that

Θ0 = {∅}. The problems of signal decomposition and Gaussian mixture modeling when

the number of components is unknown are two important examples of such problems.

Remark 2.1. Observe that, for example, the problem of estimating the coefficients of the

Autoregressive (AR) models when the AR order is unknown cannot be considered in the

above framework.

One of the most challenging issues when summarizing posterior distributions, that

even occurs in fixed-dimensional situation, is the “label-switching” phenomenon (see, e.g.,

Jasra et al., 2005 ; Stephens, 2000 ; Celeux et al., 2000 ; Mengersen et al., 2011), which

is a consequence of the lack of identifiability of component labels. Hence, to summarize

variable-dimensional posteriors, the proposed method should be able to “undo” switching

of labels.

For this purpose, in Section 2.2.1, we will explain the label-switching phenomenon and

briefly review the proposed relabeling algorithms in the case of fixed-dimensional posterior

distributions (indeed, all the proposed methods are limited to the fixed-dimensional pos-

teriors). Then, we will show that in the variable-dimensional posteriors, label-switching

shows up in a more complicated form due to the fact that the trans-dimensional sam-

pler jumps from one model to another one leading to “birth” or “death” of component

labels—in addition to the usual fixed-dimensional label-switching.

Next, in Section 2.2.2, classical Bayesian approaches for summarizing posteriors de-

fined over the union of subspaces of varying-dimensions, namely Bayesian model selection

and Bayesian model averaging approaches, are described and their limitations, which en-

couraged us for designing a novel method, are pointed out. In the rest of the Chapter,

the method we propose to summarize variable-dimensional posterior distributions is in-

troduced. In the following chapters, we will use the proposed method for summarizing

posterior distributions of varying-dimensions in three different applications.
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2.2 State-of-the-art and outline of the proposed approach

2.2.1 The label-switching problem and its extension to variable-dimensional

posteriors

The so-called label-switching issue arises when attempting to make inference from a poste-

rior distribution that is invariant to the permutation of the components’ labels, inducing a

problem of identifiability. More precisely, in many fixed-or variable-dimensional problems,

such as sinusoid detection in white Gaussian noise (described in Chapter 3) or parameter

estimation in mixture models (see, for example, Diebolt and Robert, 1994 ; Richardson

and Green, 1997), the likelihood is invariant under relabeling of the components. Then, in

a Bayesian context, if the assigned prior distribution does not provide enough information

to distinguish the components, e.g., when exchangeable prior distributions are used, the re-

sulting posterior distribution will also be invariant under permutation of the components’

labels.

A fixed-dimensional posterior distribution that is invariant under permutation of the

labels, assuming that the model has k components, has k! symmetric modes. As a result,

during Monte Carlo simulation, e.g., using MCMC methods, the interpretation of the

components corresponding to a given label switches from one iteration to another one;

thus, leading to the marginal posteriors of the component-specific parameters being highly

multimodal which consequently makes the process of drawing inference more difficult (see,

e.g., Celeux et al., 2000 ; Stephens, 2000 ; Jasra et al., 2005).

Figure 2.1 illustrates the marginal posterior density estimates of the radial frequencies

conditional to the number k of components from the output of the RJ-MCMC sampler for

a sinusoid detection experiment that will be defined later (see Table 3.1, second experiment

with SNR = 7dB). It can be observed that all marginal posterior distributions depicted

in one row, that is, conditional to one value of k, are “nearly identical”.

Identifiability Constraints (ICs), such as sorting the sinusoidal components based on

radial frequencies, are one of the first—and simplest—remedies to deal with the label-

switching problem used in mixture model analysis literature (see, for example, Diebolt

and Robert, 1994 ; Richardson and Green, 1997). It breaks the symmetry of the posterior

distribution by imposing a constraint, that is only satisfied by one relabeling C(x), for

each x ∈ X. Assuming that the posterior π restricted to Xk admits a probability density

fk, the constrained posterior density f̃k becomes

f̃k (x) = k! fk (x) 1C(Xk)(x).
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Figure 2.1 – Marginal posterior density estimates of the unsorted radial frequen-

cies ωk given k from the output of the RJ-MCMC sampler for the second sinusoid

detection experiment defined in Table 3.1 with SNR = 7dB. Each row is dedicated to

one value of k, for 2 ≤ k ≤ 4. Note that in this figure, the components are not sorted

to highlight the label-switching phenomenon.

Remark 2.2. Imposing identifiability constraints indeed amounts to modifying the prior

distribution by restricting the space X.

For example, a possible IC for the problem of sinusoid detection is to sort the samples

based on the radial frequencies. However, comparing the unsorted marginal densities

illustrated in Figure 2.1 with the sorted ones shown in Figure 2.2, it can be seen that

ICs cannot always be fruitful (see the rows related to k = 3 and k = 4 in Figure 2.2).

Moreover, selecting an appropriate IC is not possible when there is no prior information to

elicit one, particularly in multivariate problems, and inappropriate ICs can lead to results

which are at odd with anticipation (see, e.g., the arguments in Celeux et al., 2000 ; Jasra

et al., 2005). In the following, we will review briefly the relabeling algorithms that have

been proposed so far for the fixed-dimensional case (see Jasra (2005) ; Celeux et al. (2000) ;

Sperrin et al. (2010) ; Yao (2011) ; Papastamoulis and Iliopoulos (2010) for more details).

In relabeling algorithms, the goal is to permute each sample point of MCMC sampler

so that the marginal posteriors become as unimodal and normally distributed as possible.

Apart from ICs, in general, the proposed relabeling algorithms can be divided into two

main classes; deterministic and probabilistic algorithms. The former category includes

many of the proposed algorithms such as the ones similar to k-means clustering algorithm

proposed by Stephens (1997a) and Celeux (1998) and decision theoretic approaches that

select a relabeling for each sample point by optimizing the posterior expectation of some
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loss function; see, the relabeling algorithms of Stephens (2000) and Celeux et al. (2000)

which aim at finding an appropriate IC for each sample point, as examples of the decision

theoretic algorithms. Furthermore, the allocation-based algorithm of Papastamoulis and

Iliopoulos (2010) and pivotal reordering algorithm of Marin et al. (2005) can also be clas-

sified into this category. One of the main drawbacks of both the ICs and the deterministic

methods is that they are assuming that there is a “single” (or even “true”) relabeling and

the objective is to find it. This leads to neglecting the uncertainty of permutations.

On the other hand, in the more recently developed probabilistic algorithms, the permu-

tation of the labels are assumed to be random variables to account for their uncertainty.

This idea has been first developed in Jasra (2005, Chapter 4.5) by approximating the

posterior distribution of interest and then, using it to derive conditional posterior dis-

tributions for permutations. Later, Sperrin et al. (2010) and Yao (2011) continued this

idea and proposed EM-type algorithms for fitting an approximate model to the fixed-

dimensional posterior distribution. Nevertheless, both methods proposed in Sperrin et al.

(2010) and Yao (2011) study the uncertainty of all k! possible permutations which is

practically restrictive when the number k of components takes a moderate value.

Turning to the specific type of variable-dimensional posterior distributions introduced

in Section 2.1, it is evident that the lack of identifiability of components together with un-

certainty concerning their “presence” in the model leads to a more complicated situation

for making inference about their labels. More explicitly, the trans-dimensional sampler

jumps between models, with different number of components, from one iteration to an-

other, in addition to switching the labels. Consequently, as described in Section 1.4, in a

between models birth move, say, from Mk to Mk+1, a component is added to the model;

thus, we have a “birth” in the set of labels too. In contrary, when moving from Mk+1 to

Mk, a component is removed from the model and, consequently, we have a “death” in the

set of labels. We call this phenomenon “birth, death, and switching of labels”.

This notion is illustrated in the Figure 2.2 (same data as Figure 2.1). It can be observed

that, when going from M2 to M3, an additional sinusoidal component appears between

the two others. In other words, in this specific example, the second component in M2 is

not the second one in M3, it is indeed the third one! Following colors associated to the

labeled components in the Figure 2.2 makes this issue more tangible. This indicates that

a method designed for summarizing variable-dimensional posteriors should be capable of

dealing with this change of dimensions in both the parameter and label spaces.

Therefore, in variable-dimensional posterior distributions, there is an extra uncertainty

55



2. Summarizing Variable-dimensional Posterior Distributions

about the “presence” of components, in addition to their location. This challenging prob-

lem has hindered previous attempts to “undo” label-switching in the variable-dimensional

scenario, where, according to Robert (1997) “the meaning of individual components is

vacuous”.

2.2.2 Variable-dimensional summarization: classical Bayesian approaches

In a Bayesian setting, model uncertainty is studied through the posterior model probabil-

ities

p(k | y) =
p(y | k)p(k)∑
k′ p(y | k′)p(k′)

, (2.1)

where

p(y | k) =

∫
p(y | θk, k)p(θk | k)dθk

is the marginal likelihood of Mk. Then, the posterior (2.1) can be used to analyze and com-

pare models (or even select one “best” model). Roughly speaking, two classical Bayesian

approaches co-exist in the literature for such situations: Bayesian Model Selection (BMS)

and Bayesian Model Averaging (BMA).

The BMS approach ranks models according to their posterior probabilities p(k|y),

selects one model (with the highest posterior support), say, MkMAP
, where MAP stands for

Maximum A Posteriori, and then summarizes the posterior of parameters under the (fixed-

dimensional) selected model, i.e., p(θkMAP
| y, kMAP). Due to the simplicity of the BMS

approach, it has been used extensively in the literature, particularly when a new method is

developed for a trans-dimensional problem and a comparison with the previous ones seems

to be necessary to justify the efficiency of it (see Andrieu and Doucet (1999) ; Larocque and

Reilly (2002) ; Davy et al. (2006) ; Punskaya et al. (2002) ; Andrieu et al. (1998) ; Hong

et al. (2010) for signal processing, and George and Foster (2000) ; Chipman et al. (2001),

and references therein, for Bayesian variable selection examples). Nevertheless, this is at

the price of losing valuable information provided by the other (discarded) models.

To highlight the pros and cons of both the BMS and BMA approaches, we use again

the example of sinusoid detection in white Gaussian noise. Figure 2.2 illustrates the pos-

terior of the number k of components along with the posterior of sorted radial frequencies

obtained from the output of the RJ-MCMC on the sinusoid detection problem discussed

in Chapter 3. In this experiment, there are three sinusoidal components with the param-

eters ωk = (0.63, 0.68, 0.73)t (see Table 3.1 for more details ). The SNR is set to the

moderate value of 7 dB. Following the BMS approach, by inspecting the posterior of k

shown in the left panel of the Figure 2.2, the model with two sinusoidal components with
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Figure 2.2 – Posteriors of k (left) and sorted radial frequencies given k (right) from

the output of the RJ-MCMC sampler for the second sinusoid detection experiment

defined in Table 3.1 with SNR = 7dB. The true number of components is three. The

vertical dashed lines in the right figure locate the true radial frequencies.

p(k = 2|y) = 59.5% would be selected. As a result, all information about the small—and

therefore harder to detect—middle component would be lost, while it is clearly present

in the posterior of sorted radial frequencies given M3 and M4, despite less posterior sup-

port (p(k > 2|y) = 40.5%). Therefore, in certain situations, selecting just one model and

discarding all the others might not only be restricting but also be undesirable.

An alternative Bayesian approach to the BMS approach is the BMA in which the un-

certainties of different models are incorporated—rather than selecting one “best” model—

by reporting the results that are averaged over all possible models (see, e.g., Clyde and

George, 2004 ; Hoeting et al., 1999 ; Kass and Raftery, 1995, and references therein).

Suppose ∆ is some quantity of interest, then, its posterior given the observed data y is

p(∆ | y) =
∑

k∈K

p(∆ | y, k)p(k | y). (2.2)

For example, the quantity ∆ can be a future observation or the noiseless signal. Note

that, however, it cannot be a component-specific parameter, the number of which changes
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2. Summarizing Variable-dimensional Posterior Distributions

in each model. Thus, we conclude here that the BMA approach is not appropriate for the

kind of variable-dimensional posterior summarization we are interested in, while rather

well-suited for predictive purposes.

Nonetheless, the BMA approach can still be used to produce informative summaries;

for example, in the sinusoid detection problem, one may opt for dividing the interval (0, π)

into T bins denoted by ∆t, for t = 1, . . . , T , and report the expected number of sinusoidal

components in the bin ∆t as

E(N(∆t) | y) =
kmax∑

k=1

E(N(∆t) | k,y) p(k | y). (2.3)

As an illustration, using the BMA approach to compute expected number of components

from the RJ-MCMC output samples shown in Figure 2.2, as explained above, we obtain

a histogram estimator of the intensity of radial frequencies illustrated in Figure 2.3. It

can be seen from the histogram that the RJ-MCMC samples are concentrated around two

peaks.
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Figure 2.3 – Histogram of the expected number of components for the second sinusoid

detection experiment defined in Table 3.1 with SNR = 7dB obtained using the BMA

approach (2.3) on the output samples of the RJ-MCMC sampler; see Figure 2.2 for

the posterior distributions of the number k of sinusoidal components and sorted radial

frequencies given k.

To the best of our knowledge, no generic method is currently available, that would allow

to summarize the information that is easily read on Figure 2.2 for this simple example:

namely, that there seem to be three sinusoidal components in the observed noisy signal,

the middle one having a smaller probability of presence than the others.

Remark 2.3. Note that there is also one more recent Bayesian approach named “Median
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2. Summarizing Variable-dimensional Posterior Distributions

Probability Model” (MPM) proposed by Barbieri and Berger (2004) for Bayesian variable

selection problems. Since it depends on the posterior probability of presence of individual

components—the property that is not yet available in the problems we are addressing

such as signal decomposition and mixture modeling—we will not discuss it here. Later in

Chapter 3, we will however return to this idea, as the technique we propose in this chapter

assigns to each component a probability of presence.

2.2.3 Variable-dimensional summarization: the proposed approach

In this chapter, we will propose a novel approach to summarize the posterior distribu-

tions over variable-dimensional subspaces that typically arise in signal decomposition and

mixture modeling problems with an unknown number of components. In a nutshell, it

consists in approximating the complex posterior distribution with a parametric model of

varying-dimensionality, by minimization of a divergence measure between the two distri-

butions. We use two divergence measures, namely the Kullback-Leibler (KL) (Kullback

and Leibler, 1951) and the more robust α-divergence measure proposed by Basu et al.

(1998)—called hereafter BHHJ α-divergence. Then, a Stochastic EM (SEM)-type algo-

rithm (Broniatowski et al., 1983 ; Celeux and Diebolt, 1985), driven by the output of an

RJ-MCMC sampler, is used to estimate the parameters of the approximate model.

Our approach shares some similarities with the relabeling algorithms proposed in Stephens

(2000) ; Sperrin et al. (2010) ; Yao (2011) to solve the label switching issue, and also with

the EM algorithm used in Bai et al. (2011) in the context of adaptive MCMC algorithms

(all in a fixed-dimensional setting). The main contribution of the proposed algorithm

is the introduction of an original variable-dimensional parametric model, which allows

to tackle directly the difficult problem of approximating a distribution defined over a

union of subspaces of differing dimensionality—and thus provides a first solution to the

“trans-dimensional label-switching” problem, so to speak. Perhaps, the algorithm that we

proposed can be seen as a realization of the idea that M. Stephens had in mind when he

stated (Stephens, 1997b, page 94):

“This raises the question of whether we might be able to obtain an alternative view

of the [variable-dimensional] posterior by combining the results for all different ks, and

grouping together components which are “similar”, in that they have similar predictive den-

sity estimates. However, attempts to do this have failed to produce an easily interpretable

results.”
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2.3 Variable-dimensional parametric model

In this section, we describe the original parametric model used for approximating the

posterior π of interest defined on X =
⋃
k≥0 {k}×Θk. One point in X is a pair x = (k,θk)

with k ∈ K and θk = (θ1,k, . . . ,θk,k) ∈ Θk. The special point (0, ()) will be denoted

by ∅. Let ρ denote the natural reference measure on X, which is defined by ρ(A) =

δø(A) +
∑
k≥1

∫
Θk 1A(k,θk) dθk for all measurable A ⊂ X. The integral of a measurable

function ϕ : X → R with respect to ρ is given by
∫
ϕ dρ = ϕ(ø) +

∑
k≥1

∫
Θk ϕ(k,θk) dθk.

We assume that π admits a pdf f , with respect to ρ. The proposed parametric model

will also be defined on the variable-dimensional space X (i.e., it is not a fixed-dimensional

approximation as in the BMS approach).

We introduce the proposed parametric model in two steps; first, a “simple” version

consisting of only Gaussian components is introduced in Section 2.3.1. Then, we argue

the sensitivity of the “simple” parametric model to the observed samples that can be con-

sidered as “outliers” with respect to the majority of the observed samples. A “robustified”

parametric model equipped with a Poisson point process component to account for the

outliers is proposed in Section 2.3.2.

2.3.1 “Simple” parametric model

The proposed parametric model is established on two arguments. First, we have seen in

Section 2.1 that summarizing fixed-dimensional posterior distributions is, often, implicitly

or explicitly carried out by fitting Gaussian distributions or Gaussian mixture models.

Hence, as in a traditional GMM, we assume that there is a certain number L of “Gaussian

components” in the (approximate) posterior, i.e., parametric model, each generating a

d-variate Gaussian vector with mean µl and covariance matrix Σl, 1 ≤ l ≤ L. Second, it

has been mentioned that in order for a summarizing method to be capable of dealing with

“birth, death, and switching” of components labels, the parametric model should be able

to generate variable-dimensional samples (see Section 2.2.1). We thus introduce in the

parametric model binary indicator variables ξl ∈ {0, 1} corresponding to each Gaussian

component, for l = 1, . . . , L, where ξl = 1 indicates that Gaussian component l is present;

otherwise it is absent. These binary variables are assumed to be independently Bernoulli

distributed, and we denote by πl ∈ (0; 1] the “probability of presence” of the lth Gaussian

component. Therefore, the probability distribution of the binary indicator vector ξ reads

p (ξ | π) =
L∏

l=1

Ber(ξl|πl) =
L∏

l=1

πξl

l (1 − πl)
(1−ξl), (2.4)
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where, Ber(·|a) denotes a Bernoulli distribution with probability a and π = (π1, . . . , πL).

x

ξl µl Σl

πl

ξL+1

λ

l = 1, 2, · · · , L

Figure 2.4 – The proposed variable-dimensional parametric model in a generative

viewpoint. It is assumed that there are L Gaussian components in the model with

individual parameters µl and Σl, 0 ≤ l ≤ L. Each component can be either present

or absent according to a binary indicator variable ξl ∈ {0, 1}, where ξl is Bernoulli

distributed with the probability πl. The red part shows the intensity parameter λ and

the indicator variable ξL+1 of the Poisson point process component added to account

for diffuse observed samples in Section 2.3.2.

Let us describe the proposed parametric model from a generative point of view; An

X-valued random variable x = (k,θk), with 0 ≤ k ≤ L, is generated as follows. First, each

of the L Gaussian components can be either present or absent according to the binary

indicator variable ξl ∈ {0, 1} drawn from Ber(·|πl). Second, given the indicator variables ξ,

k =
∑L
l=1 ξl Gaussian vectors are generated by the Gaussian components that are present

(that is, ξl = 1) and randomly arranged in a vector θk = (θk,1, . . . ,θk,k). Figure 2.4

illustrates the corresponding DAG (parameter λ and indicator variable ξL+1 are related

to the Poisson point process component, which will be explained in Section 2.3.2).

Remark 2.4. Observe that the proposed variable-dimensional parametric model is not a

GMM. In GMMs, only one component is present at a time (i.e., k = 1 in our notations),

while in the proposed model at each realization up to L components can be present (see

Example 2.1). As a consequence, in contrast with GMMs, there is no constraint here on

the sum of the probabilities of presence. That is,
∑L
l=1 πl 6= 1 in general.

Example 2.1. This simple example illustrates what the random samples generated from

such a variable-dimensional parametric model look like. We assume that there are L =

3 univariate Gaussian components in the model, the individual parameters of which

(means µl, variances s2
l , and probabilities of presence πl, with 1 ≤ l ≤ L) presented

in Table 2.1. Figure 2.5 depicts the pdf’s of the three Gaussian components along with
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six random samples generated from this parametric model. Moreover, the kernel density

estimates of 10 000 random samples generated from the “simple” parametric model of Ta-

ble 2.1 are depicted in Figure 2.6 (a). It can be seen from both figures that the dimension

of the generated samples varies from k = 0 to k = L = 3.

Observe also that the distributions of the sorted generated samples from the parametric

models shown in Figure 2.6 (a) do not follow completely a Gaussian pattern. Note the tails

of the distributions when k = 2 caused due to both the presence of samples generated from

the middle Gaussian component, with less frequency, and sorting the random generated

samples. An interesting point to mention is that there are bimodal distributions in the

figure under M1.

l µ s2 π

1 0.63 0.01 0.8

2 0.68 0.02 0.3

3 0.73 0.01 0.8

Table 2.1 – Parameters of the model used in the Example 2.1.

Contemplating the posterior distributions of the sorted radial frequencies depicted in

the right panel of Figure 2.2, particularly the plots related to the models with three and

four sinusoidal components, it can be observed that there are “diffuse parts” in the RJ-

MCMC output samples resulting in the heavy asymmetric tails of some components. It is

evident that a model constructed by only Gaussian components is not capable of describing

these diffuse samples, at least not in a parsimonious way. These abnormal observations,

with respect to the bulk of the observed data, or, simply outliers, can adversely influence

the process of fitting the approximate posterior to the true posterior distribution of interest

and consequently lead to meaningless parameter estimates.

We will propose two solutions to cope with this critical robustness issue: one in the

modeling and another in the parameter estimation steps. In the next section, a modifica-

tion in the parametric model towards a “robustified” parametric model will be proposed,

while other solutions in the estimation procedure will be described in Sections 2.4 and 2.5.

2.3.2 “Robustified” parametric model

At this step, to robustify the “simple” parametric model of the previous section, we pro-

pose to include a Poisson point process (see, e.g., Karr, 1991 ; Van Lieshout, 2000, for
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Figure 2.5 – Generated samples from an example of the proposed “simple” variable-

dimensional parametric model. There are L = 3 Gaussian components in the model

with the parameters presented in Table 2.1. The × signs indicate the location of the

random generated samples. (a) ξ = (1, 0, 1) and θ2 = (0.63, 0.72), (b) ξ = (1, 1, 0)

and θ2 = (0.63, 0.66), (c) ξ = (0, 0, 1) and θ1 = (0.71), (d) ξ = (1, 0, 0) and

θ1 = (0.62), (e) ξ = (1, 1, 1) and θ3 = (0.62, 0.70, 0.73), (f) ξ = (0, 0, 0) and

θ0 = ().
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Figure 2.6 – (a) Estimated kernel densities of 10 000 sorted random samples gener-

ated from the “simple” model of Example 2.1. (b) Estimated kernel densities of 10 000

sorted random samples generated from the parametric model of Example 2.1 equipped

with a Poisson point process component with λ = 0.5 and uniform intensity on (0, π).
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more information) component to account for the outliers in the observed samples. More

precisely, the samples generated from the point process component, the number of which

follows a Poisson distribution of mean λ > 0 , are assumed to be uniformly distributed on

the space Θ of component-specific parameters. Therefore, they can present non-Gaussian

patterns.

To be consistent with our previous notations, we denote by ξL+1 ∈ N the number of

points generated from the Poisson point process. Hence, it is distributed according to

p(ξL+1|λ) =
e−λ · λξL+1

ξL+1!
. (2.5)

Note that other elements of ξ, i.e., ξ1, . . . , ξL, still take their values in {0, 1}. Then,

from (2.4) and (2.5), we obtain the following distribution for the vector ξ of length L+ 1

p (ξ | π, λ) =
e−λ · λξL+1

ξL+1!

L∏

l=1

πξl

l (1 − πl)
(1−ξl). (2.6)

Finally, given ξ, ξL+1 random samples are generated uniformly on Θ and randomly

inserted among the samples drawn from the present Gaussian components.

Figure 2.4 demonstrates the DAG of the “robustified” parametric model. Setting Θ

to the interval (0, π) and λ = 0.5, Figure 2.6(b) shows the intensities of generated sam-

ples from the parametric model of Example 2.1 equipped with the Poisson point process

component. It can be observed that the robustified model is capable of generating diffuse

samples and thus, provides a better approximation to the distribution of the observed

samples in practice (see, for example, Figure 2.2). Another interesting point that can be

seen in Figure 2.6(b) is that the model with the Poisson point process component is able

to generate samples with dimensions greater than the number L of Gaussian components.

This latter point allows to deal with the vector of observed samples with dimension greater

than L (We will clarify it in the process of parameter estimation in following sections).

Henceforth, we only use the robustified variable-dimensional parametric model shown

in Figure 2.4. Therefore, we define the parameters η of the model as η = (η1, . . . ,ηL, λ),

where ηl = (µl,Σl, πl) is the vector of parameters of the lth Gaussian component, 1 ≤ l ≤
L. Thus, the space of parameters for the lth Gaussian component, in the uni-variate case,

is Nl = R × R+ × (0, 1] and N =
∏L
l=1 Nl × R+.

Remark 2.5. For some parameters, distributions other than Gaussians could be used in

the parametric model; for example, one could use a log-normal or an inverse gamma

distribution for a variance parameter, as in Stephens (1997a). In fact this is a heuristic

assumption, which is quite common in label-switching literature (see, for example, Yao,
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2011 ; Stephens, 2000 ; Celeux, 1998 ; Celeux et al., 2000), that, if there is no genuine

multimodality (see, e.g., Grün and Leisch, 2009), suitably relabeled MCMC samples should

be approximately unimodal and normally distributed.

2.3.3 Distribution of the labeled samples

Allocation vectors and space of labeled samples

To estimate the parameters η ∈ N, we first introduce a latent variable interpretation of

the parametric model shown in Figure 2.7 by defining latent allocation vectors z(i) =

(z
(i)
1 , . . . , z

(i)

k(i)), with the same length as x(i), corresponding to the observed sample x(i),

for i = 1, . . . ,M . The element z(i)
j = l indicates that x

(i)
j comes from the lth Gaussian

component, if 1 ≤ l ≤ L; otherwise, if l = L + 1, x
(i)
j is assumed to have arisen from the

Poisson point process component. Note that we had already the vector of latent indicator

variables ξ. However, for estimation purposes it is more convenient to work with allocation

vectors. In order to better present the problem, we introduce the following notations.

x
(i)
j

z
(i)
j

µl

Σl

πlλ

j = 1, 2, · · · , k(i) l = 1, 2, · · · , L

i = 1, 2, · · · , M

Figure 2.7 – Latent variable presentation of the proposed parametric model. There

are L Gaussian components with the mean µl, the covariance matrix Σl, and the

probability of presence πl in the model, 1 ≤ l ≤ L. The proposed model also includes

a Poisson point process component with the intensity parameter λ to account for out-

liers. For i = 1, . . . ,M , x(i) of length k(i) denotes the observed samples (e.g., output

of RJ-MCMC) while z(i) is the corresponding allocation vector. The element z(i)
j = l

indicates that x
(i)
j is allocated to the lth Gaussian component, if 1 ≤ l ≤ L; otherwise,

if l = L+1, x
(i)
j is assumed to have arisen from the Poisson point process component.

Set of labeled samples. Let XL = ∪k≥0 {k} × (Θ × L)k denote the set of labeled

samples, where L = {1, 2, . . . , L + 1} for some L ∈ N. This is the set where the “com-

pleted” or “augmented” samples live. One point in XL can also be considered as a triplet
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(k,θk, z) = (x, z) with (k,θk) ∈ X and z = (z1, . . . , zk) ∈ Lk. Such a z will be called an

allocation vector. The special point (0, (), ()) will be denoted by øL.

Allocation vectors. An allocation vector z = (z1, . . . , zk), which allocates the ele-

ments of the vector of the observed sample x to the components in the parametric model,

is a point in the set Z = ∪k≥0L
k. To each z ∈ Z of length k we associate a “counting

vector” n(z) = (n1(z), . . . , nL+1(z)), where

nl(z) =
k∑

j=1

1zj=l.

Note that n(z) corresponds to the vector ξ in the generative model point of view introduced

in Section 2.3. We define by Z0 the set of all z ∈ Z such that nl(z) ≤ 1 for all l ≤ L.

In other words, for z ∈ Z0, for each vector of the observed samples x, the allocation

vector z ∈ Z0 is imposed to not allocate more than one observed element xj , 1 ≤ j ≤ k,

to one individual Gaussian component. On the other hand, several observed elements can

be allocated to the Poisson point process component (L+ 1).

Reference measure on XL. Let ρL denote the natural reference measure on XL,

which is defined by ρL(A) = δøL
(A) +

∑
k≥1

∑
z∈Lk

∫
Θk 1A(k,θk, z) dθk for all measurable

A ⊂ XL. The integral of a measurable function ϕ : XL → R with respect to ρL is given

by
∫
ϕ dρL = ϕ(øL) +

∑
k≥1

∑
z∈Z

∫
Θk ϕ(k,θk, z) dθk.

Derivation of the distribution of the labeled samples

Let π be a (variable-dimensional) probability distribution on the set of unlabeled samples

X. Let
{
QL

η , η ∈ N
}

be a parametric family of probability distributions on the set of

labeled samples XL. Each QL
η induces a probability measure Qη on X through the mapping

(x, z) 7→ x. The measure Qη is the probability distribution of the unlabeled sample x

when (x, z) ∼ QL
η .

Observing that the vector ξ = (ξ1, . . . , ξL+1) is a deterministic function of z : ξ = n(z),

with nl =
∑k
j=1 1zj=l, for 1 ≤ l ≤ L+ 1, we can write

qη(z) = qη(z | ξ) qη(ξ). (2.7)

To compute the first term, remember that the points generated by both the Gaussian

components and the Poisson component are randomly arranged in θk. Therefore, for

all ξ ∈ {0, 1}L × N such that
∑L+1
l=1 ξl = k,

qη(z | ξ) =
(L+ ξL+1 − k)! ξL+1!

L!
1ξ=n(z),
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since two arrangements that differ only by the position of the points corresponding to the

point process component give rise to the same allocation vector. The second term in (2.7)

is given by (2.6):

p (ξ) =
e−λ · λξL+1

ξL+1!

L∏

l=1

πξl

l (1 − πl)
(1−ξl) 1{0,1}L × N(ξ)

and therefore,

qη(z) =
(L+ ξL+1 − k)!

L!
× λnL+1e−λ

L∏

l=1

πnl

l (1 − πl)
1−nl 1Z0(z) , (2.8)

since Z0 = n−1({0, 1}L × N).

The other density needed to be defined is the conditional likelihood of the parametric

model, i.e., qη(x|z). Recall that the generated points from the point process component

are distributed uniformly over Θ and they are independent given their number ξL+1 (see

Section 2.3.2). Thus for each element of the vector of the observed samples x, we have

qη(xj | zj) =





N
(
xj | µzj

, Σzj

)
if zj ≤ L,

1
|Θ| if zj = L+ 1.

(2.9)

As a result, we obtain

qη(x | z) = |Θ|−ξL+1
∏

1≤j≤k
zj 6=L+1

N
(
xj | µzj

,Σzj

)
, (2.10)

and the joint pdf of (x, z) under QL
η reads

qη(x, z) = qη(x | z) qη(z). (2.11)

2.4 Estimating the model parameters: Algorithm I

In this section, we propose a first algorithm to estimate the parameters η ∈ N of the

variable-dimensional parametric model qη shown in Figure 2.4. This algorithm, loosely

speaking, consists in fitting qη to the true variable-dimensional posterior density f through

minimizing the KL divergence from f to qη, denoted by DKL (f ‖ qη). Remember that both

densities are defined on X =
⋃
k≥0{k} × Θk, k ∈ K. In what follows, we assume that M

variable-dimensional samples x(i) of length k(i), i = 1, . . . ,M , have been generated from

the true posterior π, with density f , by a trans-dimensional MCMC sampler (such as the

RJ-MCMC sampler explained in Section 1.4).
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Figure 2.8 illustrates the block diagram of the proposed summarization approach. Note

that there are two models in the problem we are dealing with here; one is the hierarchical

model of the observations y from which the true posterior f is defined (see Figure 3.1 for

an example such a hierarchical model in the problem of sinusoid detection). The other one

is the variable-dimensional parametric model qη we proposed as an approximate posterior

to summarize f .

y

θk

k

Model of the observations

x(i)

i = 1, 2, · · · , M

Generated samples from

the ture posterior f

using, e.g., RJ-MCMC

x(i)

ξ(i) η

i = 1, 2, · · · , M

Approximate posterior qη

Figure 2.8 – Block diagram showing the structure of the proposed summarization ap-

proach that consists in fitting an approximate model qη to the posterior f of interest by

minimizing a divergence measure of f from qη using samples x(i) generated from f .

The left block illustrates the DAG of the observations y of length N for the trans-

dimensional problem under study where the unknown parameters are the number k

of components and the vector of component-specific parameters. The empty dashed

nodes present other unknown parameters, which are not to be summarized (hyperpa-

rameters, for instance). See Figure 3.1 for an example such a hierarchical model in

the problem of sinusoid detection. The middle block represents the process of drawing

samples, x(i) of length k(i), for i = 1, . . . ,M , from the posterior f of interest using,

e.g., RJ-MCMC. The right block demonstrates the graphical model of the approximate

posterior (the parametric model) qη introduced in Section 2.3. Note that the generated

samples x(i) are considered as the observed data for the parametric model qη.

We derive a criterion based on the KL divergence from f to qη using the observed

samples x(i), i = 1, . . . ,M , in Section 2.4.1. Next, Section 2.4.2 describes a SEM-type

algorithm proposed to estimate the parameters of the model.
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2.4.1 Divergence measures and randomized allocation procedures

We propose to fit the parametric distribution qη to the posterior f of interest by minimiz-

ing a divergence measure from f to qη. We use the KL divergence as a divergence measure

in this Section and a more robust α-divergence measure proposed by Basu et al. (1998)

(BHHJ α-divergence) in Section 2.5. Minimizing the KL divergence is used in the deriva-

tion of Maximum Likelihood Estimator (MLE). Other examples of parameter estimation

methods based on minimizing density-based divergences can be found in the recent work

of Broniatowski and Keziou (2009) and Basu et al. (1998).

Let P and Q be two probability measures on (X,B) such that P ≪ Q, i.e., P is

absolutely continuous with respect to Q. We first introduce the family of “φ-divergence”

measures which have the KL divergence as a special case (see, e.g., Parclo, 2005 ; Csiszár,

1967):

Definition 2.1. The φ-divergence measure from the probability distributions P to Q is

Dφ (P ‖Q) =

∫

X

φ

(
dP

dQ

)
dQ, (2.12)

where φ is a convex functions, such that, φ(1) = 0.

Then, the KL divergence is a special case of the above family of φ-divergence measures

obtained by setting φ(x) = x log(x) in (2.12) which reads

DKL (P ‖Q) =

∫

X

log

(
dP

dQ

)
dP. (2.13)

Now, in order to provide a meaningful summary of the (variable-dimensional) proba-

bility distribution π on the set X, we want to approximate it by a member of the family

{Qη, η ∈ N}. Working with the distributions Qη directly is not convenient, however, since

they are defined as the marginal distribution of x in a sample (x, z) ∼ QL
η and, therefore,

involve summations over the set of all possible allocation vectors.

Proposition 2.2. For the family of φ-divergence measures defined in Definition 2.1, min-

imizing the divergence measure from π to Qη is equivalent to minimizing the ones from

the augmented distribution πLη (dxdz) = π(dx)QL
η (dz|x) on XL to QL

η .
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Proof.

Dφ (π ‖Qη) =

∫

X

φ

(
dπ

dQη

)
dQη

=

∫

X

φ

(
π(dx)QL

η (dz|x)

QL
η (dxdz)

)
Qη(dx)

=

∫

XL

φ

(
dπLη
dQL

η

)
dQL

η = Dφ

(
πLη ‖QL

η

)
.

Proposition 2.2 allows us to calculate the φ-divergence measure from π to Qη by

augmenting the unlabeled observed samples x using the allocation vectors z which are

distributed according to the conditional posterior distribution QL
η ( · |x). The conditional

distribution QL
η (dz|x) can be thought of as a randomized allocation procedure that allows

to draw an allocation vector z ∼ QL
η ( · |x) given an unlabeled sample x.

Remark 2.6. The general relabeling algorithm proposed in (Stephens, 2000, Section 4) can

be understood in this framework as trying to minimize a posterior expected loss, e.g., the

KL divergence measure with respect to the labeled posterior π̃Lη (dxdz) = π(dx) aη(dz|x)

on XL, where aη is a deterministic allocation procedure related to the chosen model.

Now, setting f = dπ
dρ and qη =

dQη

dρ , we can define the criterion to be minimized based

on the KL divergence (2.13) as

J(η) = DKL (π ‖Qη) =

∫

X

f log

(
f

qη

)
dρ.

Furthermore, using available (variable-dimensional) samples x(i), for i = 1, . . . ,M , gener-

ated according to the posterior f , the above criterion can be approximated by

ĴM (η) = DKL (π ‖Qη) ≃ − 1

M

M∑

i=1

log
(
qη(x(i))

)
+ C, (2.14)

where C is a constant that does not depend on the parameters η. One should note that

minimizing (2.14) amounts to estimating η by

η̂ = argmaxη

M∑

i=1

log
(
qη(x(i))

)
, (2.15)

which is formally the MLE of η for an iid samples distributed according to qη.

In the following section, we propose an SEM-type algorithm to compute this estimator.
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2.4.2 SEM-type algorithm

To estimate the model parameters η ∈ N, one of the extensively used algorithms for Maxi-

mum Likelihood (ML) parameter estimation in latent variable models is the EM algorithm

proposed by Dempster et al. (1977) (see, e.g., McLachlan and Krishnan, 2008, for more

information). It consists of two steps; the Expectation (E)-step and the Maximization

(M)-step. The E-step, at iteration (r + 1), consists in computing the expectation of the

completed-data log-likelihood, i.e.,

M∑

i=1

log
(
qη(x(i), z(i))

)
,

where qη(x, z) is defined in (2.8)–(2.11), with respect to the conditional posterior of the

latent variables given the estimated parameters in the previous step, η̂(r), that is,

qη̂(r)(z(i) | x(i)) =
qη̂(r)(x(i), z(i))

qη̂(r)(x(i))
· (2.16)

It turns out, however, that the EM-type algorithms, which have been used in similar

works (Stephens, 2000 ; Sperrin et al., 2010 ; Bai et al., 2011), but only when k is small,

are not appropriate for solving this problem, as computing the expectation in the E-step is

intricate. More explicitly, in the problem we are dealing with, the computational burden

of the summation in the E-step over the set of all possible allocation vectors z increases

very rapidly with L and k. In fact, even for moderate values of L and k, say, L = 15 and

k = 10, the summation is far too expensive to compute as it involves L!
(L−k)! ≈ 1.1 × 1010

terms, assuming ξL+1 = 0.

In the literature, there are a few methods proposed for overcoming this limitation

based on approximating the E-step by Monte Carlo simulation, such as the SEM algorithm

developed by Broniatowski et al. (1983) ; Celeux and Diebolt (1985, 1992) and the Monte

Carlo EM (MCEM) algorithm proposed by Wei and Tanner (1990). It is also possible, in

a Bayesian setting, to assign prior distributions over the unknown parameters and study

their posterior distributions, for example, using MCMC methods, in the spirit of the “data

augmentation” algorithm proposed by Tanner and Wong (1987). Here, we opt for the SEM

algorithm to estimate the unknown parameters. We describe briefly the SEM algorithm

and derive a SEM-type algorithm to estimate the model parameters η in the following

sections.
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Stochastic EM

In the SEM algorithm (Broniatowski et al., 1983 ; Celeux and Diebolt, 1985, 1992) (see

also Gilks et al. (1996, Chapter 15) for a more recent review), the E-step of the EM

algorithm is substituted with stochastic simulation of the latent variables or missing data

from their conditional posterior distributions given the previous estimates of the unknown

parameters, i.e., qη̂(r)(z | x) in our notations. This step is called Stochastic (S)-step. Then,

these random samples are used to construct the so-called pseudo-completed log-likelihood,

that is,
M∑

i=1

log
(
qη̂(r)(x(i), z(i))

)
.

Next, in the M-step, the sum over all pseudo-completed log-likelihoods is maximized.

The “proposed SEM-type” algorithm for the problem we are dealing with is described in

Algorithm 2.1.

Algorithm 2.1. At the (r + 1)th iteration of the SEM algorithm,

S-step: For i = 1, . . . , M ,

• draw allocation vectors z(i) ∼ qη̂(r)( · | x(i)) defined in (2.16).

E-step: construct the pseudo-completed log-likelihood

ĴM (η) = −
M∑

i=1

log
(
qη(x(i), z(i))

)
.

M-step: Estimate η̂(r+1) such that

η̂(r+1) = argminη ĴM (η). (2.17)

Stochastic step

Here, it is assumed that we are at iteration (r + 1) of the SEM-type algorithm. As

explained in Algorithm 2.1, the S-step of the SEM-type algorithm consists in generating the

allocation vectors z(i) from the conditional posterior distribution qη̂(r)( · | x(i)) expressed

in (2.16), for i = 1, . . . ,M . Unfortunately, there seem to be no “easy” way to sample

directly from qη̂(r)( · | x(i)), which is a complex discrete distribution on Z0. Moreover, we
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have to deal with the unnormalized conditional posterior distribution

q̂η̂(r)(z | x) ∝ qη̂(r)(x, z), (2.18)

since computing the normalizing constant involves summing over all possible permutations

of the allocation vector z(i) circumventing which has been the main reason for using the

SEM algorithm (note that this summation is the one encountered in the E-step of the EM

algorithm).

Therefore, we propose to carry out this step using MCMC methods. We develop an

Independent-MH (I-MH) sampler (see Section 1.2.2) in which the proposition of the next

state does not depend on the current state of the Markov chain. The elements of the

allocation vector z(i) are sampled using a “sampling without replacement” strategy, as

one element of the vector of the observed samples cannot be allocated to more than one

Gaussian component (see the conditions imposed on the allocation vector in Section 2.3.3).

Let PC be the set of possible components that the elements of the vector of the

observed samples can be allocated to. When sampling each allocation vector, at the very

beginning PC = {1, . . . , L+ 1}. But, as we proceed allocating samples to the (Gaussian)

components, PC will be modified to respect the one-to-one allocation condition of Gaussian

components. Moreover, let

g̃η(xj , l) =





N (xj | µl, Σl)
πl

1−πl
if 1 ≤ l ≤ L

λ
|Θ| if l = L+ 1.

(2.19)

Then, we can rewrite qη(x, z) as

qη(x, z) ∝
∏

1≤j≤k
l= zj

g̃η(xj , l) =
λ

|Θ|
nL+1 ∏

1≤j≤k
zj 6=L+1

N
(
xj | µzj

,Σzj

) πzj

1 − πzj

, (2.20)

which serves as the target distribution for the proposed I-MH sampler. The mechanism to

propose an allocation vector z⋆ = (z⋆1 , . . . , z
⋆
k) given the vector of the observed samples x

and the previous estimated parameters η̂(r) in the proposed I-MH sampler is described in

Algorithm 2.2.

Next, the proposed vector of allocations z⋆ is accepted and replaced the old one denoted

by zo with the MH acceptance probability of

α (zo, z⋆) =





1,
qη̂(r)(x, z⋆)

qη̂(r)(x, zo)
︸ ︷︷ ︸

target ratio

×

∏
1≤j≤k
l= zo

j

gη̂(r)(xj , l)

∏
1≤j≤k
l= z⋆

j

gη̂(r)(xj , l)

︸ ︷︷ ︸
proposal ratio





, (2.21)
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Algorithm 2.2. Mechanism to propose an allocation vector z⋆:

Set PC = {1, . . . , L+ 1}, then, for j = 1, . . . , k, do

i) Compute unnormalized probabilities g̃η̂(r)(xj , l), for l ∈ PC, as expressed

in (2.19).

ii) Normalize g̃η̂(r)(xj , l) to sum to one to obtain normalized probabilities gη̂(r)(xj , l).

iii) Draw the jth element of the allocation vector z⋆j using a multinomial random

generator with {gη̂(r)(xj , l)}l∈PC as probabilities.

iv) If z⋆j ≤ L, remove the selected label from PC (to respect the one-to-one allocation

condition of the Gaussian components).

with gη̂(r)(xj , l) is defined in Algorithm 2.2.

In our experiments, we observed that the performance of the algorithm can be improved

if the order in which the elements of the vector of observed sample are scanned is chosen

randomly. In other words, in the proposition of z⋆, instead of systematically scanning the

elements of the observed sample x from 1 to k, they are scanned randomly with equal

probabilities. In particular, this scanning strategy becomes beneficial when there are two

(or more) elements in the vector of observed sample competing for the same Gaussian

component, i.e., they both (all) have non negligible probabilities of being allocated to the

Gaussian component l, say. Then, by random scan strategy, we grant both (all) rather

“fair” situation1. We use the random scan strategy in the I-MH sampler hereafter.

Remark 2.7. Selecting the random scan order is not considered as part of the proposal

distribution. In other words, we are using a mixture of I-MH moves rather than an I-MH

move with a mixture of proposal distributions (which would make the computation of the

MH ratio very expensive).

Remark 2.8. One might think that the self normalized importance sampling method in-

troduced in Section 1.3.1 can be used as well to generate the allocation vectors from the

unnormalized density (2.18), using Algorithm 2.2 as a instrumental distribution. This is

not possible in an SEM algorithm, however, since the unknown normalizing constant de-

pends on x(i). A possible workaround would be to generate several allocation vectors z(i,j)

1Similar scanning strategies, but with different justifications, exist in the literature of the Gibbs sampler;

see, for example, (Liu, 2001, pages 130–131).
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for each x(i), in the spirit of the MCEM algorithm, but the computational cost would be

much more important.

Maximization step

Turning to the M-step of the SEM-type algorithm described in Algorithm 2.1, the param-

eters η = {ηl}1≤l≤L, with ηl = {πl,µl,Σl}, of the model together with the intensity λ

of the Poisson point process component are estimated by maximizing (2.17) through the

following equations:

µ̂
(r+1)
l =

1

Ml

Ml∑

i=1

x
(i)
→l,

Σ̂
(r+1)
l =

1

Ml

Ml∑

i=1

(
x

(i)
→l − µ̂

(r+1)
l

) (
x

(i)
→l − µ̂

(r+1)
l

)t
,

π̂
(r+1)
l =

Ml

M
,

λ̂(r+1) =

∑M
i=1 n

(i)
L+1

M
,

(2.22)

where Ml is the number of observed samples in which one element is allocated to the

Gaussian component l and x
(i)
→l is the element of the ith observed samples where z(i) = l,

with 1 ≤ l ≤ L.

Convergence of the SEM algorithm

The following convergence results have been proved for the SEM algorithm in the general

form by Nielsen (2000a,b) and in the particular example of mixture analysis problems by

Diebolt and Celeux (1993). Assume that, for i = 1, . . . ,M , the observed data samples x(i)

are i.i.d and it is possible to sample the latent variables z(i) independently. Then, under

the assumptions given in Nielsen (2000a), for a fixed number M of observed samples:

i) For each i, the Markov chain {z
(i)
(r)}r∈N is irreducible and aperiodic.

ii) The random sequence {η̂(r)}r∈N generated by the SEM algorithm is a homogeneous

Markov chain.

iii) The Markov chain {η̂(r)}r∈N is ergodic, in most cases, with ΨM as its stationary

distribution.

Moreover, denoting by ΨM the stationary distribution of {η̂(r)}r∈N and by η̂SEMM =

mean(ΨM ) the estimated value of the unknown parameters provided by the SEM algo-

rithm, and letting M tends to infinity, the following asymptotic results are proved
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i) η̂SEMM is a consistent estimator of η,

ii)
√
M (η̃M − ηM ) is asymptotically normal distributed with zero mean and positive

variance matrix, where η̃M is a random variable drawn from the stationary distribu-

tion ΨM and ηM is the unique consistent solution of the likelihood.

Unfortunately, the assumptions in Diebolt and Celeux (1993) ; Nielsen (2000a,b) do

not hold in the problem we are dealing with as, 1) the observed samples x(i) are corre-

lated owing to the fact that they are generated from the complex posterior distribution

using some MCMC methods, e.g., the RJ-MCMC sampler; 2) an I-MH sampler is used in

Algorithm 2.2 to draw z(i) from the conditional posterior distribution (2.16). Empirical

evidence of the “good” convergence properties of our SEM-type algorithm will be provided

in the next two chapters.

2.5 Estimating the model parameters: Algorithms II & III

2.5.1 Robustness issue

Preliminary experiments with the SEM-type algorithm described in Section 2.4 were not

satisfactory, because the sample mean and (co)variance estimates expressed in (2.22) ob-

tained from minimizing the KL divergence from the posterior distribution f to the para-

metric model qη still suffers from sensitivity to the outliers in the observed samples, even

after including the Poisson point process component (see Section 2.3). In this section, we

propose two robustified SEM-type algorithms which differ mainly from Algorithm 2.1 in

the M-step.

First solution: using robust estimators in the M-step

The first solution is to use robust estimates of the mean and (co)variance parameters in the

spirit of “robust statistics” literature (Huber and Ronchetti, 2009 ; Maronna et al., 2006).

More explicitly, in the univariate case, i.e., when the dimension d of the observed sample x

is one, we use the median and the Normalized InterQuartile Range (N-IQR) instead of

the empirical mean and variance estimates (2.22) in the M-step. Denoting by x→l the

samples allocated to the lth Gaussian component, as in (2.22), N-IQR is the estimator of

the standard deviation defined by

N-IQR(x→l) =
Q3(x→l) −Q1(x→l)

2 Φ−1(0.75)
,
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where Φ is the CDF of standard normal distribution and Qj is the jth empirical quartile.

Similar robustness concerns are widespread in the clustering literature; see, e.g., Davé

and Krishnapuram (1997) and the references therein. In the multivariate case (i.e., d > 1),

if we assume that the covariance matrix is diagonal, then, we can still use the median and

interquartile range of each coordinate separately as robust alternatives. Otherwise, more

complicated (iterative) robust algorithms should be used; see, e.g., Maronna et al. (2006,

Chapter 6), for more information.

To clarify the benefit of this modification, we ran 100 iterations of the SEM-type

algorithm on the sinusoid detection example for the experiment shown in Figure 2.2, twice:

once with the empirical mean and variance estimates (2.22) in the M-step (called Algorithm

I) and once with the corresponding robust estimates (called Algorithm II). Note that we

only focus here on the radial frequencies of sinusoidal components; see Chapter 3 for more

information. Hence, d = 1 and Θ = (0, π). The number L of Gaussian components was

set to three (the posterior probability of {k ≤ 3} is approximately 90.3%) and the initial

values for means µl and variances s2
l , with 1 ≤ l ≤ L, were estimated from the posterior

distribution of sorted radial frequencies given k = L.

Figures 2.9 and 2.10 illustrate the histogram of the “labeled samples” (x(i), z(i)) ∈ XL,

with i = 1, . . . ,M , i.e., the samples allocated to the Gaussian and Poisson point process

components (see Section 2.3.3 for more information), along with the pdf’s of the estimated

Gaussian components. To obtain those histograms, we ran the randomized allocation

procedure, i.e., the I-MH sampler described in Algorithm 2.2 developed for generating the

allocation vectors z(i), with i = 1, . . . ,M , given the estimated parameters η̂. To reduce

the randomness effect of the allocation procedure, we generated 10 allocation vectors for

each vector of observed sample. Furthermore, the final estimated parameters after running

both algorithms for 100 iterations are presented in the corresponding panels. The true

values of radial frequencies were ωk = (0.628, 0.677, 0.726). It can be easily read from both

figures that the most notable difference between using the robust and simple estimates

in the M-step is in summarizing the information pertaining to the middle component,

particularly its dispersion (variance) parameter.

Comparing the histogram of the allocated samples to the middle (or second) Gaussian

component and the corresponding pdf of fitted distribution obtained using simple estimates

with the ones obtained using robust estimates shown in the top right panel of Figures 2.9

and 2.10, respectively, it can be observed that in the former case not only the resulting

Gaussian distribution has a larger variance but also the distribution of its allocated samples
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is bimodal. This is indeed due to the fact that using simple estimates allows a Gaussian

component to have a large variance by considering the samples located in the tails of the

distribution. As a consequence, it makes the probability of catching samples located far

away from its mean—allocating which expands the pdf by increasing again its variance—

non-negligible. In this specific example, this phenomenon results in two modes in the

histogram of the labeled samples to the second Gaussian component (see the top right

panel of Figure 2.9) around the means of the other two adjacent components. On the

other hand, using robust estimates in the M-step, the estimated means and variances are

not significantly affected neither by the existing outliers nor by the samples of the adjacent

components; as a result, the middle component does not catch samples located too far

away from its mean that indeed should be allocated to the other components. .

Second solution: Modifying the divergence measure

In the following, we propose to deal with this robustness issue in a theoretically sounder

way by replacing the KL divergence with a divergence measure that enjoys robustness

properties. In the literature, there have been several attempts at estimating model pa-

rameters by minimizing robust divergence measures. However, in most of the proposed

robust divergences, it is necessary to use some nonparametric smoothing method, e.g.,

kernel density estimation, of the true density from the observed data samples which con-

sequently makes the algorithm sensitive to the parameters of the smoothing method; for

more information see Basu et al. (1998) ; Jones et al. (2001) and references therein.

Remark 2.9. Another approach to avoid using kernel density estimates, called dual φ-

divergence estimates, has been proposed by Broniatowski and Keziou (2009). However, in

this work, we only use the divergence proposed by Basu et al. (1998) as a robust divergence.

We describe briefly the BHHJ α-divergence and its properties in Section 2.5.2. Then,

we propose a new SEM-type algorithm to fit the parametric model qη to the posterior f

of interest by minimizing the BHHJ α-divergence. In fact, it turns out that by modify-

ing the divergence measure only the M-step of the SEM-type algorithm is changed. In

other words, the I-MH sampler described in Section 2.4.2 for stochastic simulation of the

allocation vectors in the S-step remains unaltered. The optimization procedure devel-

oped for minimizing the obtained criterion based on BHHJ α-divergence is explained in

Section 2.5.3.

79



2. Summarizing Variable-dimensional Posterior Distributions

µ = 0.62, s = 0.020, π = 1.00
p

df
Gaussian Comp. #1

µ = 0.69, s = 0.062, π = 0.28

p
df

Gaussian Comp. #2

µ = 0.72, s = 0.015, π = 1.00

ωk

p
df

Gaussian Comp. #3

λ = 0.24

ωk

in
te

ns
it

y

point process Comp.

0 1 2 30.5 0.75 1

0.5 0.75 10.5 0.75 1

0

2

4

0

20

40

0

10

0

20

40

Figure 2.9 – Histograms of the labeled samples (x(i), z(i)), with i = 1, . . . ,M , that

is, the samples allocated to the Gaussian and Poisson point process components, ver-

sus the pdf’s of estimated Gaussian components in the model (black solid line) for

the summarizing algorithm derived from minimizing the KL divergence from p(k,ωk)

to qη without using the robust estimators. Moreover, the estimated parameters of each

component are presented in the corresponding panel. To generate these histograms the

randomized allocation procedure was run 10 times.

2.5.2 BHHJ α-divergence measures

Basu et al. (1998) have proposed a robust divergence measure indexed by a parameter α ≥
0, called BHHJ α-divergence throughout the thesis, as a robust alternative to the KL

divergence. For example, Fujisawa and Eguchi (2006) and Miyamura and Kano (2006)

have derived robust estimators using the BHHJ α-divergence to estimate the parameters

of Gaussian mixture models. This divergence has also been used in Mihoko and Eguchi

(2002) to separate sources in a robust fashion.

To allow for an easier comparison with the family of φ-divergence measures defined in

Definition 2.1, we describe the BHHJ α-divergence as follows. Let (X,B, ρ) be a measure

space and let P and Q be two probability measures on (X,B) such that P ≪ Q ≪ ρ
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Figure 2.10 – Histogram of the labeled samples (x(i), z(i)), with i = 1, . . . ,M , that

is, the samples allocated to the Gaussian and Poisson point process components, ver-

sus the pdf’s of estimated Gaussian components in the model (black solid line) for

the summarizing algorithm derived from minimizing the KL divergence from p(k,ωk)

to qη with using the robust estimators. Moreover, the estimated parameters of each

component are presented in the corresponding panel. To generate these histograms the

randomized allocation procedure was run 10 times.

(for instance both P and Q admit a strictly positive pdf with respect to ρ). As a natural

generalization of the BHHJ α-divergence (Basu et al., 1998) in this setting, we define the

α-divergence from P to Q as

Dα(P ‖Q) =

∫

X

φα

(
dP

dQ

) (
dQ

dρ

)1+α

dρ (2.23)

where

φα(u) = 1 − (1 + α−1)u+ α−1u1+α. (2.24)

Observe that this is not a φ-divergence because of the exponent (1 + α) on dQ
dρ . Observe

also that the definition relies on the choice of a reference measure ρ on (X,B), which is

not the case for the family of φ-divergences.
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Proposition 2.3. Let P and Q be probability measures on (X,B) such that P ≪ Q ≪ ρ.

Set p = dP
dρ and q = dQ

dρ . Then, for α ≥ 0,

i) Dα(P ‖Q) ≥ 0.

ii) Dα(P ‖Q) = 0 iff (if and only if) Q = P iff p = q ρ-almost everywhere.

iii) φα(u) → u log u− u+ 1 when α → 0. Or, equivalently,

lim
α→0

Dα(P ‖Q) = DKL(P ‖Q).

iv) Dα=1(P ‖Q) = DMSE(P ‖Q), where

DMSE(P ‖Q) =

∫

X

(p− q)2dρ (2.25)

is the mean squared error (MSE) divergence measure.

v) Plugging (2.24) into (2.23), the expression of the BHHJ α-divergence from p to q

becomes

Dα(P ‖Q) =

∫

X

(
q1+α −

(
1 +

1

α

)
pqα +

1

α
p1+α

)
dρ. (2.26)

In other words, Dα is a divergence, in the sense that it is positive and vanishes iff

P = Q. We recover the KL divergence in the limit α → 0, and the method is the

maximum likelihood which is efficient but not robust; while when α = 1, the method

is the MSE estimator which is robust but inefficient. Therefore, the parameter α can be

considered as a tuning parameter that controls the compromise between efficiency (α → 0)

and robustness (α → 1). Thus, the obtained estimator is sensitive to the chosen value

of α. However, it is indicated in Basu et al. (1998), that for α > 1, the estimator suffers

from a great loss of efficiency; thus, the region of interest is 0 < α ≤ 1.

An interesting feature of this divergence measure is that, as in the KL divergence, to

approximate the divergence there is no need to carry out any smoothing of the data. More

precisely, given that x(1), . . . ,x(M) are samples from P , (2.26) becomes

Dα(P ‖Q) ≃
∫

X

q1+αdρ−
(

1 +
1

α

)
1

M

M∑

i=1

qα(x(i)) + C. (2.27)

2.5.3 Algorithm III: Using the BHHJ α-divergence in the SEM-type

algorithm

According to Proposition 2.2, the M-step of Algorithm 2.1 can be seen as minimizing

(approximately) the KL divergence from πLη̂(r) to QL
η . We propose to replace the KL
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divergence by the BHHJ α-divergence between the labeled distributions. (Note that the

equivalence result stated in Proposition 2.2 for φ-divergences does not hold for the BHHJ

α-divergence). Setting P = πLη and Q = QL
η in (2.26), and assuming that both πLη and QL

η

have pdf’s with respect to ρL, denoted respectively by fη and qη, we have the following:

i) The BHHJ α-divergence from πLη to QL
η reads

Dα(πLη ‖QL
η ) =

∫

XL

q1+α
η dρL − (1 +

1

α
)

∫

XL

qαη dπLη +
1

α

∫

XL

f1+α
η dρL . (2.28)

ii) Moreover, according to (2.27), given samples x(1), . . . ,x(M) from π, possibly using

some Monte Carlo method, and the corresponding allocation vectors, z(1), . . . , z(M),

distributed according to qη̂( · | x(i)), the second integral can be approximated, and we

derive the following criterion

ĴαM (η) =

∫

XL

q1+α
η dρL − (1 +

1

α
) · 1

M

M∑

i=1

qαη (x(i), z(i)). (2.29)

Note that in the process of the SEM-type algorithms, the third integral in (2.28)

depends on η̂ and thus, becomes irrelevant when estimating η. Now, we can introduce

the third SEM-type algorithm to fit the parametric model qη to the posterior f of interest

by minimizing the BHHJ α-divergence as follows:

Algorithm 2.3. At the (r + 1)th iteration of the SEM-type algorithm based on the

BHHJ α-divergence,

S-step: For i = 1, . . . , M ,

• draw allocation vectors z(i) ∼ qη̂(r)( · | x(i)) defined in equations (2.8)–

(2.16).

E-step: Construct the criterion

ĴαM (η) =

∫

XL

q1+α
η dρL − (1 +

1

α
) · 1

M

M∑

i=1

qαη (x(i), z(i)).

M-step: Estimate η̂(r+1) = argminη∈N ĴαM (η).

As mentioned before, the S-step is the same as the one used in Algorithm 2.1. However,

the M-step, described in the next section, is more involved. For the M-step, we propose to
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use the BFGS optimization method which is the most popular quasi-Newton method (for

more information, see Nocedal and Wright, 1999, Chapter 6). In this method, the Hessian

matrix of the second-order partial derivatives of objective function is approximated using

the first-order partial derivatives.

Remark 2.10. Asymptotic and robustness properties of estimators based on the BHHJ

α-divergence can be found in Basu et al. (1998) ; Jones et al. (2001) ; Fujisawa and Eguchi

(2006).

In the following, we derive the expressions to evaluate the objective function (2.29)

and its first-order partial derivatives.

Computation of the criterion and its gradients

Recall the parametric model densities expressions derived in (2.8)–(2.11). To carry out

the optimization of the objective function (2.29), first, the integral term should be dealt

with. It can be written as

∫

XL

q1+α
η dρL =

∑

k≥0

∑

z∈Z

q1+α
η (z)

k∏

j=1

∫

Θ
q1+α

η (k,θj,k|zj) dθj,k , (2.30)

where qη(z) is the density of allocation vectors and qη(k,θj,k|zj) is the conditional likeli-

hood of the element j of the vector of the observed samples x = (k, θk) defined, respec-

tively, in (2.8) and (2.9). The integral with respect to θj,k on the right hand side of (2.30)

have a closed-form expression

∫

Θ
q1+α

η (k,θj,k|zj) dθj,k , q̃αη (zj) =





(1 + α)−1/2
∣∣∣2πΣzj

∣∣∣
−α/2

if zj ≤ L ,

|Θ|−α otherwise.

Hence, we can rewrite (2.30) as

∫

XL

q1+α
η dρL =

∑

k≥0

∑

z∈Z

q1+α
η (z)

k∏

j=1

q̃αη (zj) . (2.31)

Note that the summation in (2.31) involves an infinite number of terms. We pro-

pose two approaches, one “exact” computation and another one based on Monte Carlo

approximation, to evaluate (2.31) and compute its partial derivatives. The former one

is appealing for moderate values of the number L of Gaussian components, while for the

problems with large L the latter one is recommended. These two approaches are explained

in Appendix A.1.
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With some computations, we obtain the following first-order partial derivatives with

respect to the model parameters η = {ηl}1≤l≤L, with ηl = {πl,µl,Σl}, along with the

mean λ of the Poisson point process component:

∂ ĴαM (η)

∂ µl
= −α+ 1

M

∑

1≤i≤M

n
(i)
l

=1

(x
(i)
→l − µl) q

α
η (x(i), z(i)),

∂ ĴαM (η)

∂Σl
=

∂
∫
q1+α

η dρ

∂Σl

− α+ 1

2M
Σ−1
l

∑

1≤i≤M

n
(i)
l

=1

(
(x

(i)
→l − µl)(x

(i)
→l − µl)

t Σ−1
l − 1

)
qαη (x(i), z(i)),

∂ ĴαM (η)

∂ πl
=

∂
∫
q1+α

η dρ

∂ πl
− α+ 1

M πl(1 − πl)

M∑

i=1

(n
(i)
l − πl) q

α
η (x(i), z(i)),

∂ ĴαM (η)

∂λ
=

∂
∫
q1+α

η dρ

∂ λ
− α+ 1

M

M∑

i=1


n

(i)
L+1

λ
− 1


 qαη (x(i), z(i)),

(2.32)

where, as before, x
(i)
→l is the element of the ith vector of observed samples where z(i) = l

and n
(i)
l shows the number of samples allocated to the component l. Recall that, for

1 ≤ l ≤ L, i.e., the Gaussian components, n(i)
l is binary, while for the Poisson point

process component, n(i)
L+1 ∈ N. Moreover, note that from (2.31), it can be observed that

the integral term in (2.29), i.e.,
∫
q1+α

η dρ, does not contribute in estimating the mean

parameters, µl, 1 ≤ l ≤ L. Its partial derivatives with respect to the other parameters is

expressed in Appendix A.1.

Remark 2.11. At each iteration of the SEM-type algorithm, we use the robust estimates

of the parameters as initial values for the BFGS algorithm (fminunc() in Matlab).

2.6 Summary

In this chapter, we have proposed a novel approach to summarize posterior distribu-

tions defined over union of subspaces of differing dimensionality that typically arise, in

a Bayesian framework, when the number of components is unknown. We pointed out

the limitations of the two well-known classical Bayesian approaches, i.e., the Bayesian

model selection and Bayesian model averaging. Using the BMS approach leads to not

only losing information from the discarded models but also ignoring the uncertainties con-

cerning the presence of components. On the other hand, the BMA approach, which uses

the information from all (plausible) models, is not appropriate to study the posterior of

component-specific parameters, the number of which changes in each model.
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An “ideal” summarization approach should be able to provide posterior summaries

for component-specific parameters along with measures of uncertainties about presence

of components using information from all (plausible) models. It should also be capable

of dealing with label-switching problem in a variable-dimensional setting. Indeed, as

discussed in Section 2.2.1, the lack of identifiability along with the uncertainty about the

number of components results in a phenomenon that we called “birth, death, and switching

of labels”.

For this purpose, we proposed a novel approach which consists in fitting an original

variable-dimensional parametric model to the true posterior distribution. The variable-

dimensional parametric model qη, which serves as an approximate posterior, consists of

a certain number L of Gaussian components, the presence of which controlled by binary

indicator variables ξl Bernoulli distributed with probabilities πl, with 1 ≤ l ≤ L. Fur-

thermore, due to robustness issues, a Poisson point process component of intensity λ was

added to the model to account for the observed outliers and allow for a number L of

Gaussian components smaller than the maximum observed k(i).

Turning to the estimation of the model parameters η ∈ N, we proposed three SEM-

type algorithms to fit the approximate model qη to the true posterior f by minimizing

divergence measures from f to qη, using samples from the posterior f generated by a

trans-dimensional Monte Carlo sampler, e.g., RJ-MCMC. We used the KL divergence and

the BHHJ α-divergence for this purpose. We discussed that there is a serious robustness

issue in the problem we are dealing with. In order to cope with the lack of robustness

of maximum likelihood-type estimates resulting from minimizing the KL divergence, in

addition to introducing the Poisson point process component to capture the outliers, mod-

ifications of the first SEM-type algorithm have been proposed. More specifically, first, as

an intuitive solution, the empirical mean and (co)variance estimates in the M-step are

substituted with the robust estimators (see Section 2.5.1). Second, in Section 2.5, we used

a robust divergence measure, i.e., the BHHJ α-divergence proposed by Basu et al. (1998),

instead of the KL divergence. Using the BHHJ α-divergence resulted in the third SEM-

type algorithm with a difference in the M-step which was carried out using the BFGS

optimization algorithm. In this case, we get a tangible criterion to be minimized, which

might be used later, for example, to study the behavior of the proposed algorithm.

Following chapters investigate the performance of the proposed algorithm, both for

summarizing and for relabeling variable-dimensional posterior distributions, on two prob-

lems:
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i) detection and estimation of sinusoidal components in white Gaussian noise (Chap-

ter 3).

ii) detection and estimation of astrophysical particles in the Auger project (Chapter 4).
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Chapter 3

Bayesian Detection and Estimation of

Sinusoids in White Gaussian Noise

3.1 Introduction

In this chapter, we present the problem of detection and estimation of sinusoids in white

Gaussian noise and use it to illustrate the performance of the summarizing approach

proposed in Chapter 2. Methods for detecting and estimating frequencies in a noisy signal

have applications in various fields including communications, seismology, and radar—to

name but a few.

A host of frequency estimation techniques have been proposed in the literature since

Schuster’s celebrated periodogram (Schuster, 1898), including for instance correlation-

based methods, such as the Yule-Walker algorithm, and maximum likelihood methods

(see, e.g., Stoica et al., 1989, and references therein for more information). It was shown

much later (Jaynes, 1987 ; Bretthorst, 1988) that the periodogram is in fact a special case

of a more general Bayesian estimator. However, the Bayes estimator of Bretthorst (1988)

is based on crude approximations of the posterior distribution to avoid computing high-

dimensional integrals, which do not hold in the case of small sample size or closely located

radial frequencies (see, e.g., Dou and Hodgson, 1996). Dou and Hodgson (1995, 1996)

derived an MCMC sampler to approximate the posterior distribution of the parameters.

Turning to the detection of sinusoidal components, Djurić (1996) provides a review

of criterion-based methods along with proposing a new penalty term that can be seen as

“corrected BIC” for this specific problem. Dou and Hodgson (1995, 1996) carried out the

model selection part by comparing the Bayes factors using the MCMC samples generated

from the posterior distribution of the parameters for each model separately. Later, Andrieu

and Doucet (1999) proposed an original hierarchical model and RJ-MCMC sampler for the
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problem of joint Bayesian model selection and estimation of sinusoids in white Gaussian

noise. Concerning this problem, in this thesis, we follow the model and RJ-MCMC sampler

proposed in Andrieu and Doucet (1999) unless otherwise stated.

This chapter is organized as follows. In Section 3.2, we describe the problem and

the ingredients of the Bayesian method, i.e., the hierarchical model and the RJ-MCMC

sampler, developed by Andrieu and Doucet (1999). Then, we explain issues regarding

both the computation of the birth-or-death ratio (Section 3.2.4), following the discussions

in Section 1.4, and specification of the model hyperparameters (Section 3.2.5). In the rest

of the chapter, we investigate the capability of the approach we proposed in Chapter 2

for summarizing variable-dimensional posterior distributions encountered in this problem.

For this purpose, Section 3.3 provides illustrative results and discusses the performance

of the proposed algorithms in detail whereas Section 3.4 studies the performance of the

proposed approach “on average”. Finally, Section 3.5 provides a summary of the chapter

and discusses the obtained results.

3.2 Bayesian framework

In this section, we first present the problem of joint detection and estimation of sinu-

soidal components in white Gaussian noise in Section 3.2.1. Then, we briefly describe

the hierarchical model (Section 3.2.2) and RJ-MCMC sampler (Section 3.2.3) proposed

by Andrieu and Doucet (1999) for this problem. Then, following our result in Section 1.4

concerning the mistake committed in the computation of the birth-or-death ratio by An-

drieu and Doucet (1999) and their followers, in Section 3.2.4, we provide an experiment

and study its influence on the posterior of the number k of components. Finally, in Sec-

tion 3.2.5, we briefly address the sensitivity of the posterior distributions to the model’s

hyperparameters.

3.2.1 Problem statement

Let y = (y1, y2, . . . , yN )t be a vector of N samples of an observed signal. We consider

a finite family of embedded models {Mk, k ∈ K}, with K = {0, . . . , kmax}, where Mk

assumes that y can be written as a linear combination of k sinusoids observed in white
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Gaussian noise, as follows:

M0 : y(i) = n(i),

Mk : y(i) =
k∑

j=1

(
acj,k

cos(ωj,ki) + asj,k
sin(ωj,ki)

)
+ n(i).

Let ωk = (ω1,k, . . . , ωk,k) and ak =
(
ac1,k

, as1,k
, . . . , ack,k

, ask,k

)
be the vectors of radial

frequencies and amplitudes under model Mk, respectively; moreover, let Dk be the corre-

sponding N × 2k design matrix defined by

Dk(i+ 1, 2j − 1) , cos(ωj,ki), Dk(i+ 1, 2j) , sin(ωj,ki) (3.1)

for i = 0, . . . , N − 1 and j = 1, . . . , k. Then, the observed signal y follows under Mk a

normal linear regression model:

y = y0 + n = Dk.ak + n ,

where y0 is the noiseless signal and n is a white Gaussian noise of variance σ2. The un-

known parameters are, then, assumed to be the number k of components, the component-

specific parameters θk = (ak,ωk) and the noise variance σ2 which is common to all models.

Hence, the space of unknown component-specific parameters is Θk = Θk, under Mk, with

Θ = R2 × (0, π) and the convention that Θ0 = {∅}, and the overall parameter space is

X =
(⋃kmax

k=0 {k} × Θk

)⋃
R+.

3.2.2 Hierarchical model and prior distributions

Assuming that no (or little) information is available about the vector of amplitudes ak and

the noise variance σ2, it is usually recommended to use Zellner’s conditionally conjugate g-

prior as a default prior in the Bayesian variable selection literature (Zellner, 1986 ; George

and Foster, 2000 ; Fernández et al., 2001 ; Cui and George, 2008 ; Liang et al., 2008).

Under this prior, the distribution of ak, conditionally to σ2, k and ωk, is a multivariate

Gaussian distribution with σ2δ2 (Dt
kDk)

−1 as its covariance matrix, where δ2 is a possible

hyperparameter. Moreover, the noise variance σ2 is endowed with Jeffreys’ improper prior,

i.e. p(σ2) ∝ 1/σ2. Note that δ2 is the inverse of the conventional g parameter in the g-

prior, i.e., δ2 = 1/g. Following Andrieu and Doucet (1999), a zero-mean g-prior for ak

and σ2 will be used in this thesis. Conditional on k, the radial frequencies ωk are assumed

independent and identically distributed with a uniform distribution on the interval (0, π).

The number of components k is given a Poisson distribution with mean Λ, truncated

to {0, 1, . . . , kmax}, where Λ and kmax are two additional hyperparameters.
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Furthermore, the hyperparameters δ2 and Λ are also treated as random variables. In

fact, the parameter δ2, called the Expected SNR (ESNR) by Andrieu and Doucet (1999),

controls the expected size of the amplitudes. Owing to its influence on the performance of

the algorithm, and assuming again that no (or little) information is available, the hyper-

parameter δ2 is given in Andrieu and Doucet (1999) a conjugate inverse gamma prior with

parameters αδ2 and βδ2 , that we denote hereafter by IG (αδ2 , βδ2). The hyperparameter Λ

is endowed with a conjugate Gamma distribution with parameters αΛ and βΛ denoted by

G (αδ2 , βδ2). Such a hierarchical Bayes approach is usually hoped to increase the robust-

ness of the statistical analysis; see Robert (2007, Section 10.2) for more information. We

will discuss more about prior specification arguments and the sensitivity of the posterior

distribution to their parameters in Section 3.2.5.

Figure 3.1 shows the DAG of the complete hierarchical model designed for this problem

using graphical model conventions: filled (solid) circles denote deterministic parameters,

that are either observed or set to a fixed value, while unfilled circles are used for random

variables. The full joint prior distribution of the unknown parameters has the following

hierarchical structure:

p
(
k,ak,ωk, σ

2, δ2,Λ
)

= p
(
ak | k,ωk, σ

2, δ2) p
(
ωk | k

)
p
(
k | Λ

)
p
(
σ2) p

(
δ2) p

(
Λ
)
. (3.2)

In fact, due to using conditionally conjugate prior distributions, it is possible to analytically

integrate ak and σ2 out. Therefore, doing so, the target distribution for the RJ-MCMC

sampler becomes

p
(
k,ωk, δ

2,Λ | y
)

∝ (ytPky)−N/2 Λkπ−k

k! (δ2 + 1)k
1(0,π)k(ωk) p

(
δ2) p

(
Λ
)
, (3.3)

with

Pk = IN − δ2

1 + δ2
Dk

(
Dt
kDk

)−1
Dt
k

when k ≥ 1 and P0 = IN .

3.2.3 RJ-MCMC sampler

In the following, the RJ-MCMC sampler proposed by Andrieu and Doucet (1999) to

generate samples from the target distribution (3.3) is briefly described. For more detailed

expressions refer to Andrieu and Doucet (1999).

The MH-within-Gibbs sampler, that leaves the target density (3.3) invariant, consists

of a MH move for updating the value of k and ωk, followed by a sequence of Gibbs moves

to update the hyperparameters δ2 and Λ. The proposal kernel of the MH move designed
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y

akωk σ2

k δ2

Λ
αδ2 βδ2

βΛαΛ

Figure 3.1 – DAG showing the hierarchical model used for the problem of sinusoid

detection in white Gaussian noise. Filled and unfilled circles indicate deterministic

and random variables, respectively.

for updating k and ωk is in fact a mixture of proposal kernels performing within-model

moves (updating radial frequencies without changing k) and between-models moves (birth

and death moves, which respectively add and remove components). More explicitly, the

proposal kernel is

Q(x, · ) = pb(x)Qb(x, · ) + pd(x)Qd(x, · ) + pu(x)Qu(x, · ) (3.4)

where the probabilities for choosing birth, death, and update moves are

pb(k,ωk) =





c · min
{

1, p(k+1)
p(k)

}
if k < kmax,

0 otherwise,

pd(k + 1,ωk+1) =





c · min
{

1, p(k)
p(k+1)

}
if k > 0,

0 otherwise,

pu(x) = 1 − pb(x) − pd(x).

(3.5)

where c is set to 0.5. Note that kmax = N/2 here to avoid occurrence of linearly dependent

columns in Dk. The birth and death kernels, i.e., Qb(x, · ) and Qd(x, · ), respectively, are

as defined in expressions (1.26) and (1.27). The proposal distribution used to generate a

new radial frequency ω∗ in the birth kernel (1.26), denoted by q(ω), is a uniform distribu-

tion on the interval (0, π). Then, following Proposition 1.11 and setting x = (k, ωk) and

93



3. Bayesian Detection and Estimation of Sinusoids in White Gaussian Noise

x′ = (k + 1, ωk ⊕i ω
∗), the birth ratio becomes

r(x,x′) =
p
(
k + 1,ωk ⊕i ω

∗, δ2,Λ | y
)

p (k,ωk, δ2,Λ | y)
· pd(x′)

pb(x)
· 1

q (ω∗)
=

(
ytPk+1y

ytPky

)−N/2
1

1 + δ2
·

(3.6)

In the within-model move for updating the radial frequencies assuming k is fixed,

Andrieu and Doucet (1999) proposed to update each component’s radial frequency using

a mixture of MH moves, that is, a Fourier Transform (FT) based global move and a local

normal random walk move. Then, the update move acceptance ratio follows from the

simple MHG ratio (1.7).

Turning to the Gibbs sampler for updating the hyperparameter δ2, one should note

that direct sampling from the conditional posterior distribution

p(δ2 | y, k,ωk) ∝ (ytPky)−N/2

(δ2 + 1)k
p
(
δ2)

is not feasible. On the other hand, the conditional posterior distribution of δ2 given y, k, ak

, ωk, σ
2 can be written as

p(δ2 | y, k, ak, ωk, σ
2) ∝ IG

(
k + αδ2 ,

atkD
t
kDkak

2σ2
+ βδ2

)
,

from which direct samples can be generated. Therefore, to be able to carry out the Gibbs

move, Andrieu and Doucet (1999) proposed to demarginalize σ2 and ak, in the spirit of

data augmentation arguement. Finally, Λ is updated by a Gibbs move. Algorithm 3.1

presents the RJ-MCMC sampler used for generating samples from (3.3). Samplers having

this structure are also known as partially collapsed Gibbs samplers (see Van Dyk and Park,

2008, for more discussion).

3.2.4 The effect of using the wrong birth-or-death ratio on the results

One should note that the birth ratio computed in Andrieu and Doucet (1999) differs from

the one expressed in (3.6) by a 1/(k + 1) factor. A similar mistake in computing RJ-

MCMC ratios has been reported in the field of genetics (Jannink and Fernando, 2004 ;

Sillanpaa et al., 2004). In fact, using the expression of the birth ratio with an additional

factor of 1/(k + 1), as in Andrieu and Doucet (1999), amounts to assigning a different

prior distribution over k called “accelerated Poisson distribution” (Sillanpaa et al., 2004)

which reads

p2(k) ∝ e−ΛΛk

(k!)2
1N(k). (3.7)
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Algorithm 3.1. RJ-MCMC sampler for the problem of joint detection and estimation

of sinusoids in white Gaussian noise.

Trans-dimensional move: the birth, death, and update moves

• Generate a random number u ∼ U(0, 1).

• If pb(x) ≥ u do a birth move;

◦ Generate the insertion location i on {1, . . . , k + 1}.

◦ Propose a new radial frequency ω∗ ∼ U(0, π).

◦ Accept the proposed move with the probability α(x,x′) =

min{1, r(x,x′)}, where r(x,x′) is the acceptance ratio expressed

in (3.6).

• Else if pb(x) + pd(x) ≥ u do a death move;

◦ Generate the index of the component to be removed i on {1, . . . , k}.

◦ Accept the proposed move with the probability α(x,x′) =

min{1, 1/r(x,x′)}, where r(x,x′) is the acceptance ratio expressed

in (3.6).

• Otherwise, update the radial frequencies without altering the k number of

components using the within-model move.

Demarginalization: updating the noise variance and amplitudes

• σ2 | y, k, ωk ∼ IG
(
N/2, ytPky

2

)

• ak | y, k,ωk, σ
2 ∼ N

(
mk, σ

2Mk

)
with M−1

k =
(
1 + δ−2

)
Dt
kDk and

mk = MkD
ty

Hyperparameters: update δ2 and Λ using

• δ2 | y, k, ak, ωk, σ
2 ∼ IG

(
k + αδ2 ,

at
k

Dt
k

Dkak

2σ2 + βδ2

)

• Λ | y, k ∼ G (αΛ + k, 1 + βΛ)
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Figure 3.2 illustrates the difference between both the accelerated (black) and the usual

(gray) Poisson distributions when mean Λ = 5. It can be observed that the accelerated

Poisson distribution (3.7) puts a stronger emphasis on “sparse” models, i.e., models with

a small number of components.

p
df

k

0 2 4 6 8 10
0

0.2

0.4

Figure 3.2 – Probability distribution functions of the Poisson (gray) and the accel-

erated Poisson (black) distributions with mean Λ = 5.

To highlight the influence of using an erroneous birth ratio on the posterior distribution

of k, let us consider an observed signal y of length N = 64 from the first experiment defined

in Table 3.1 consisting of k = 3 sinusoidal components with a moderate value SNR of 7dB.

Samples from the posterior distribution of k are obtained using the RJ-MCMC sampler

described in Algorithm 3.1, with an inverse Gamma prior IG(2, 100) on δ2 and a Gamma

prior G(1, 10−3) on Λ. For each observed signal in 100 replications of the experiment,

the sampler was run twice: once with the correct expression of the ratio, given by (3.6),

and once with the erroneous expression from Andrieu and Doucet (1999). Figure 3.3

shows the frequency of selection of each model using MAP under both the Poisson and

the accelerated Poisson distribution as a prior for k. It appears that the (unintended) use

of the accelerated Poisson distribution, induced by the erroneous expression of the MHG

ratio, can result in a significant shift to the left of the posterior distribution of k.

Remark 3.1. Working with “sorted” vectors of frequencies would be quite natural in this

problem, since the frequencies are exchangeable under the posterior (3.3). As explained

in Section 1.4.2, the expression of the MHG ratio would be the same.

Remark 3.2. The reason why the ratio in Andrieu and Doucet (1999) is wrong can be

understood from a subsequent paper (Andrieu et al., 2001b), where the same computation

is explained in greater detail. There we can see that the authors, working with an “unsorted
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Figure 3.3 – Frequency of selection for each model Mk using MAP for 100 replica-

tions of the experiment described in Section 3.2.4, using the expression of the ratio

given in Andrieu and Doucet (1999, Equation (20)) (black) and the corrected ra-

tio (3.6) (gray). There are k = 3 sinusoidal components in the observed signal y and

the SNR = 7dB. 100k samples were generated using RJ-MCMC sampler and the first

20k were discarded as burn-in period.

vector” representation, consider that the new component in a birth move is inserted at

the end. The death move, however, is defined as in the present paper: a sinusoid to be

removed is selected randomly among the existing components. Here is the mistake: if the

new component is inserted at the end during a birth move, then any attempt at removing

a component which is not the last one should be rejected during a death move. In other

words, the acceptance probability should be zero when any component but the last one is

picked to be removed during a death move.

3.2.5 Prior specification for signal-to-noise ratio hyperparameter and

Bayesian sensitivity analysis

Every Bayesian method contains the delicate step of prior specification over the model’s

unknown parameters; refer to, e.g., Kass and Wasserman (1996) and Robert (2007, Chap-

ter 2) for more discussion. Here, we discuss briefly the issues concerning the sensitivity of

the posterior distributions to the values of the hyperparameter δ2 and its scale βδ2 in the

hierarchical model defined in Section 3.2.2. Using the g-prior over the amplitudes, the task

of prior specification boils down to the selection of the scalar parameter g. Nevertheless, it

is well-known from the Bayesian variable selection literature that the g parameter—or, δ2

in our notation—of the Zellner’s g-prior, which controls the expected relative size of the
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amplitudes with respect to σ, plays an important role from the model selection view-

point (Zellner, 1986 ; George and Foster, 2000 ; Fernández et al., 2001 ; Cui and George,

2008 ; Liang et al., 2008 ; Celeux et al., 2012). Indeed, fixing δ2 is not recommended in

the literature, as not only there is no default value for δ2 (setting δ2 to a large value, in an

attempt of being non-informative, results in the Barlett or Lindley-Jeffreys paradoxes (see,

e.g., Liang et al., 2008 ; Celeux et al., 2012)) but also it results in underestimating the

uncertainties.

In a fully Bayesian solution, one assigns a prior distribution over δ2. Often, assuming

that no (or little) prior information is available, prior distributions are chosen to be as non-

informative as possible to reduce their influence on the resulting posterior distributions.

Usual Bayesian default non-informative prior distributions are the Jeffreys and “Reference”

priors (see, e.g., Bernardo et al., 1992 ; Berger et al., 2009). Following Berger et al. (2001),

both the Jeffreys and reference (improper) prior distributions for δ2 are

pREF(δ2) ∝ 1

1 + δ2
.

Note that, however, the use of improper prior distributions over δ2 is not allowed, be-

cause δ2 is not included under M0, and, consequently, using improper priors results in

indeterminate Bayes factors. Celeux et al. (2012) sidestepped this limitation by includ-

ing the intercept parameter in the design matrix D, at the price of loosing the location

invariance. Other attempts at making the prior pREF(δ2) proper can be found in Cui and

George (2008) and Liang et al. (2008) by introducing a power factor b as follows

pREF⋆(δ2) ∝
(

1

1 + δ2

)−b/2

,

where they recommended to set b = 3 and b = 4. However, Berger et al. (2001) strongly

advise against making improper priors proper by truncating or adding extra parameters,

owing to the fact that the resulting posterior would be very sensitive to its parameters.

Therefore, neither can δ2 be fixed to a default value, nor can an improper non-

informative reference prior distribution can be assigned over it. Moreover, the proposed

proper priors are not completely satisfactory. The other possibility, that we have decided

to use in this chapter, is to use a weakly-informative conjugate IG(αδ2 , βδ2) prior distribu-

tion as proposed by Andrieu and Doucet (1999). However, it is expected that the posterior

distribution would be sensitive to βδ2 but with lesser extent. Results of numerical exper-

iments provided in Appendix B show that the posterior distribution is sensitive to the

value of βδ2 in moderate to low SNR situations. We have proposed to either estimate an
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appropriate value for βδ2 from the observed data in the spirit of the EB approach using

an IS based Monte Carlo EM (MCEM) algorithm (see, e.g., Quintana et al., 1999 ; Levine

and Casella, 2001) or to integrate it out by assigning a conjugate Gamma prior over it.

However, both approaches failed in low SNR situations, while in high SNR situations the

sensitivity to βδ2 is negligible (see Appendix B for numerical results).

Using the SMC sampler for Bayesian sensitivity analysis

Instead of fixing βδ2 to an arbitrary value, one can opt for communicating the sensitivity

of the posterior distribution to its variations; see, e.g., Berger (1990). For this purpose,

a sequence of reasonable values of βδ2 , say, {βtδ2}t∈T, T = {1, 2, . . . , T}, is considered.

Then, we are interested in generating samples from the sequence of posterior distribu-

tions {πt}t∈T, where πt = p
(
k,ωk, δ

2,Λ | y, βtδ2

)
. It is evident that, for large values of T ,

using the RJ-MCMC sampler to draw samples from every posterior distribution in the

sequence would be computationally very expensive.

The SMC sampler described in Section 1.3.2 is well suited to generate samples effi-

ciently from the sequence of posterior distributions {πt}t∈T in order to investigate the

sensitivity of the posterior distribution to βδ2 following the idea developed by Bornn et al.

(2010). For this purpose, we use the RJ-MCMC sampler described in Algorithm 3.1 to

generate samples from π1 corresponding to β1
δ2 which, after discarding the burn-in period,

serve as particles for the SMC sampler. Moreover, choosing a large T , we can assume

that πt−1 ≈ πt. Then, as in Bornn et al. (2010), to reduce the computational burden, we

only resample and move the particles when ESS = 1/
∑M
i=1(W

(i)
t )2 is lower than a certain

threshold, say, M/2, where W (i)
t , i = 1, . . . ,M , are the normalized weights. Otherwise,

we simply copy the particles and update the corresponding weights.

To show the performance of the sensitivity analysis algorithm, we consider the first

experiment of Table 3.1 with k = 3 sinusoidal components and SNR = 5 dB. Figure 3.4

illustrates the sensitivity of the posterior distribution of k to the variations in the scale

parameter βδ2 . It can be seen that, for example, if one is interested in selecting a model

with the highest posterior probability, then the obtained result would be different by

modifying the values of βδ2 . Observe also the decreasing behavior of the posterior mean

of k shown on Figure 3.4 (b). An interesting point to note is that, only four times the

particles were resampled and moved, and in the rest they were simply copied. Similar

graphics could be produced for any posterior quantity of interest.

As a concluding remark, we recommend, in practice, to use the described SMC sam-
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Figure 3.4 – Sensitivity of the posterior distribution of k to the variations in the scale

parameter βδ2 for the first experiment of Table 3.1 with SNR = 5dB. We consider

T = 10 000 points in [1, 1 000] for βδ2 and used M = 40 000 particles.

pler for analyzing the sensitivity of posterior distributions to the hyperparameters. Nev-

ertheless, in the rest of the chapter, since our goal is the summarization of the posterior

distributions, we set βδ2 to a fixed value of 20.

3.3 Summarizing variable-dimensional posteriors: illustra-

tive examples

3.3.1 Objectives

In this section, we investigate the capability of the algorithms proposed in Chapter 2

for summarizing variable-dimensional posterior distributions encountered in the problem

of joint detection and estimation of sinusoids in white Gaussian noise. We emphasize

again that the output of the trans-dimensional Monte Carlo sampler, i.e., the RJ-MCMC

sampler described in Algorithm 3.1, is considered as the observed data for the proposed

algorithms (see Figure 2.8). For the sake of simplicity, we concentrate here on summarizing

the joint posterior distribution of the number k of components and the radial frequencies,

i.e., p(k, ωk). As a result, the Gaussian components used in the parametric model, qη,

shown in Figure 2.4 are considered to be univariate, and the space of component-specific

parameters is Θ = (0, π) ⊂ R. Therefore, in this section, each Gaussian component in qη

has a mean µ, a variance s2, and a probability of presence π to be estimated.

We consider three summarizing algorithms in this chapter. Two of them are derived

from minimizing the KL divergence from the true posterior p(k, ωk) to the approximate
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posterior qη, with a difference in the M-step: the first one uses the empirical mean and vari-

ance estimates, expressed in (2.22), and the second one uses the median and interquartile

range as their robust alternatives (see Section 2.5.1). They will be denoted by TAP-

KL1 and TAP-KL2, respectively, where TAP stands for “Trans-dimensional Approximate

Model”. The third summarizing algorithm, called TAP-BHHJ, is the one derived from

minimizing the BHHJ α-divergence from p(k, ωk) to qη described in Section 2.5. More-

over, we compare the obtained results with the ones obtained using the BMS and BMA

approaches. In the BMS approach, the radial frequencies are estimated using the median

of the posterior distributions of the sorted radial frequencies given the selected model.

In this section, we concentrate on both the summarization and the relabeling prop-

erties of the proposed algorithms. For this purpose, the performance of the proposed

summarizing algorithms is illustrated on three specific examples. The objectives are:

i) to study the behavior of the proposed algorithms and the impact of the solutions

proposed to deal with the robustness issue caused by the outliers (see Section 2.5.1),

ii) to assess the convergence properties of the proposed algorithms,

iii) to assess whether the proposed algorithms are able to solve the label-switching issue

in the trans-dimensional problems,

iv) to assess how well the information contained in the true posterior distribution is

captured by the approximate parametric model.

In all the experiments, the RJ-MCMC sampler explained in Algorithm 3.1 was used to

generate 100 000 samples from the target distribution (3.3) and the first 20 000 iterations

were discarded as the burn-in period. Next, to reduce both the correlation of the sam-

ples and the computational burden of the summarization algorithms, we “thinned” the

generated samples to every fifth. Hence, the total number M of samples used as observa-

tion for the summarizing algorithms was 16 000. The hyperparameters were set as follows

(see Section 3.2.5); the shape parameter of the prior distribution over δ2, i.e., p(δ2), was

set to αδ2 = 2, in order to have a heavy-tailed “weakly informative” prior (with infinite

variance). We set its scale parameter, βδ2 , to an arbitrary moderate value of 20, while

acknowledging the fact that the sampler is sensitive to its value in low SNR situations.

Furthermore, the parameters of the Gamma prior over Λ are set to αΛ = 1 and βΛ ≈ 0 to

have a flat prior over the number k of components.

Following (Djurić, 1996 ; Andrieu and Doucet, 1999), two experiments are considered

in this section to demonstrate both the performance of the summarizing algorithms and
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the usefulness of the obtained new summaries. The parameters of both experiments are

given in Table 3.1. We set the number N of observations to 64. The parameter r in the

second experiment defines the resolution of the problem.

First experiment (k = 3)

j Ej φj ωj,k/2π

1 20 0 0.2

2 6.3246 π/4 0.2 + 1/N

3 20 π/3 0.2 + 2/N

Second experiment (k = 2)

j Ej φj ωj,k/2π

1 20 0 0.2

2 20 π/4 0.2+ 1
r·N

Table 3.1 – Parameters of the experiments in the problem of detection and estimation

of sinusoids in white Gaussian noise. We define the energy E2 , a2
c + a2

s, the phase

φ , − arctan(as/ac), and SNR ,
‖Dkak‖2

Nσ2 .

As illustrative examples, we show results on three specific observed signals. One from

the first experiment defined in Table 3.1, where there is a hard-to-detect component.

Next, an observed signal from the second experiment of Table 3.1, where there are two

very closely located sinusoidal components. Finally, as third illustrative example, we study

the performance of the proposed summarizing approach in situations where the number k

of components is large.

3.3.2 First illustrative example

The first illustrative example is an instance of the first experiment defined in Table 3.1

with SNR = 7dB. The goal of this example is to detect a hard-to-detect sinusoidal

component located in the middle of two other “stronger” ones. So, the true number k of

components is three. Figure 3.5 shows the observed and noiseless signals, i.e., y and y0,

along with the periodogram of y. It can be observed from the periodogram that there are

two significant peaks corresponding to the two strong sinusoidal components, whereas the

middle harder-to-detect sinusoidal component is masked by them.

Figure 3.6 shows the posterior distributions of the number k of components and the

sorted radial frequencies ωk obtained from the output of the RJ-MCMC sampler for this

sinusoid detection example. We ran the algorithms proposed in Chapter 2 on the specific

example shown in Figure 3.6, for 100 iterations, with L = 3 Gaussian components (the

posterior probability of {k ≤ 3} is approximately 90.3%). To initialize the means and

variances of the Gaussian components, we used the median and normalized interquartile

range of the marginal posterior distributions of sorted radial frequencies given k = L
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Figure 3.5 – The top panel shows the observed (solid curve) and the noiseless (dashed

curve) signals for the first experiment expressed in Table 3.1 with SNR = 7 dB. The

bottom panel illustrates the periodogram of y. The vertical dashed lines show the

location of the true radial frequencies.

(middle row of the right panel of Figure 3.6). We will call this approach of initialization

the “naive” initialization procedure, hereafter.

Convergence assessment

Figures 3.7–3.9 illustrate the evolution of the model parameters, i.e., ηl = {µl, s2
l , πl},

with 1 ≤ l ≤ L, and the mean parameter λ of the Poisson point process component

together with the criteria to be minimized. Two substantial facts can be deduced from

these figures:

i) the “generally” decreasing behavior of the criteria obtained from minimizing both the

KL divergence and the BHHJ α-divergence, defined in Equations (2.14) and (2.29),

respectively. They are almost constant after the 20th iteration of the SEM-type algo-

rithms.

ii) the convergence of the parameters of the parametric model, esp. the means µ and

the probabilities of presence π, though using a naive initialization procedure. Indeed
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Figure 3.6 – Posterior distributions of k (left) and sorted radial frequencies, ωk,

given k (right) from the output of the RJ-MCMC sampler for the second sinusoid

detection experiment defined in Table 3.1 with SNR = 7dB (i.e., the first illustrative

example). The true number of components is three. The vertical dashed lines in the

right panel locate the true radial frequencies.

after the 50th iteration there is no significant move in the parameter estimates. Note

that TAP-KL1 shows to be the fastest algorithm in the sense of convergence rate,

but careful inspection in the obtained summary presented in Figure 3.10 reveals that

it has converged to a solution that is not desirable due to the bimodality of the

distribution of the samples allocated to the second Gaussian component (top right

panel of Figure 3.10). The other two relatively robust algorithms, i.e., TAP-KL2 and

TAP-BHHJ, have converged to similar solutions; see the estimated values presented

in Figures 3.11 and 3.12. However, the latter one, converged in fewer iterations.

To inspect better the convergence of the algorithms, Table 3.2 presents the values

of the KL and BHHJ criteria evaluated at the estimated model parameters using TAP-

KL1, TAP-KL2, and TAP-BHHJ algorithms. Comparing the presented values of the KL

criterion (2.14), it can be seen that, TAP-KL1 algorithm, which minimizes directly this
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Figure 3.7 – Evolution of the model parameters along with the criterion Ĵ defined

in (2.14) using TAP-KL1 with L = 3 on the first illustrative sinusoid detection

example.

criterion, has converged to a (local) minimum with the lowest value of the criterion. On

the other hand, despite the summary obtained by TAP-KL2 presented in Figure 3.11 is

preferable to the one of TAP-KL1, it has converged to a point in the parameter space

with a greater value of the KL criterion. This might be due to the fact that, in TAP-KL2,

the KL criterion is minimized indirectly by plugging the robust estimators of the mean

and variance into the M-step. Tuning to the BHHJ criterion (2.29), one can see that both

TAP-KL2 and TAP-BHHJ have converged to summaries with comparative values of the

criterion; whereas, the evaluated value of the criterion at the solution of TAP-KL1 is quite

higher than the others.

Relabeling properties

Figures 3.10–3.12 show the histograms of the labeled samples, i.e., (x(i), z(i)), with i =

1, . . . ,M , along with the pdf’s of the estimated Gaussian components (black solid line).

Moreover, the summaries provided by the proposed algorithms for each component are

presented in its corresponding panel. We used the average of the last 50 SEM iterations
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Figure 3.8 – Evolution of the model parameters along with the criterion Ĵ defined

in (2.14) using TAP-KL2 with L = 3 on the first illustrative sinusoid detection

example.

Criterion KL BHHJ

TAP-KL1 -2.39 -13.97

TAP-KL2 -2.20 -15.27

TAP-BHHJ -2.17 -15.34

Table 3.2 – KL and BHHJ criteria evaluated at the solutions obtained using differ-

ent summarizing algorithms for the first illustrative sinusoid detection example. The

smallest value for each criterion is highlighted in bold.

as parameter estimates, as recommended in the SEM literature (see, for example, Celeux

and Diebolt, 1992 ; Nielsen, 2000a). To reduce the variability of the histograms of the

labeled samples due to randomness of allocation procedure, we labeled each sample 10

times using the S-step of the SEM-type algorithm given the estimated parameters of the

model and then produce the histograms using all 10 labels.

The efficiency of the proposed algorithms for relabeling the variable-dimensional output

samples of the RJ-MCMC sampler can be well observed in these figures. Comparing the

106



3. Bayesian Detection and Estimation of Sinusoids in White Gaussian Noise

µ s2

π λ

J

SEM iteration

0 20 40 60 80 100
−20

−15

−10

−5

0

0.25

0.5

0.25

0.5

0.75

1

10−4

10−3

10−2

0.6

0.65

0.7

0.75

Figure 3.9 – Evolution of the model parameters along with the criterion Ĵ defined

in (2.29) using TAP-BHHJ with α = 0.5 and L = 3 on the first illustrative sinusoid

detection example.

distributions of the labeled samples with the ones of the posterior distributions of the

sorted radial frequencies given k = 3 shown in Figure 3.13(a), which are highly multimodal,

reveals the capability of the proposed summarizing algorithms to solve the label-switching

in a variable-dimensional setting. Note, however, that the histogram of the allocated

samples to the second Gaussian component, which corresponds to the middle harder-to-

detect sinusoidal component of the example under study, is bimodal when using TAP-KL1

(see the top right panel of Figure 3.10). On the other hand, using the robust algorithms

resulted in distributions of the samples labeled as the second Gaussian component to be

nearly unimodal and enjoy compact dispersion; see the top right panel of Figures 3.11

and 3.12.

Looking at the bottom right panels, the role of the point process component in cap-

turing the outliers in the observed samples that cannot be described by the Gaussian

components becomes clearer. Note that, without the point process component, these out-

liers would be allocated to the Gaussian components which can, consequently, yield a

significant deterioration of the parameter estimates.
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Figure 3.10 – Histograms of the labeled samples, that is, the samples allocated to

the Gaussian and Poisson point process components, versus the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-KL1 on the first

illustrative sinusoid detection example. The estimated parameters of each component

are presented in the corresponding panel. To generate these histograms the randomized

allocation procedure was run 10 times.

Turning to the comparison of the provided summaries using the proposed algorithms

with the ones of the BMS approach, the first point to note is that using the BMS approach

on this specific example results in loosing the middle sinusoidal component by selecting

M2. Then the estimated summaries for the two detected components using the robust

estimates of the posterior distributions of the sorted radial frequencies given M2 are:

µ = (0.62, 0.73) and s = (0.016, 0.012). Contrary to the BMS approach, the approach

that we proposed enabled us to benefit from the information of all probable models to

give summaries about the middle harder-to-detect component. It can be seen from the

estimated summaries presented in Figures 3.10–3.12 that the estimated means are compat-

ible with the true radial frequencies, i.e., (0.628, 0.677, 0.727). Furthermore, the estimated

probabilities of presence are consistent with the uncertainties of the sinusoidal components
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Figure 3.11 – Histogram of the labeled samples, that is, the samples allocated to

the Gaussian and Poisson point process components, versus the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-KL2 on the first

illustrative sinusoid detection example. The estimated parameters of each component

are presented in the corresponding panel. To generate these histograms the randomized

allocation procedure was run 10 times.

in the experiment; that is, there are two components with high “confidence” and one in the

middle with less “confidence”. One should also note that the obtained summaries using

TAP-KL2 and TAP-BHHJ with α = 0.5 are identical.

Validation of the fitted models

To observe better the “goodness-of-fit” of the estimated Gaussian components, Figure 3.13(b)

depicts the normalized densities 1 of them underneath the posterior distributions of the

1To obtain the normalized densities, first, we normalized the estimated pdf’s to have their maximum

equal to one. Then, we multiplied the estimated probability of presence of each Gaussian component to

its corresponding normalized estimated pdf. Thus, the height of the normalized densities amounts to the

corresponding estimated probability of presence.
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Figure 3.12 – Histogram of the labeled samples, that is, the samples allocated to

the Gaussian and Poisson point process components, versus the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-BHHJ with α = 0.5

on the first illustrative sinusoid detection example. The estimated parameters of each

component are presented in the corresponding panel. To generate these histograms the

randomized allocation procedure was run 10 times.

sorted radial frequencies given k illustrated in Figure 3.13(a). These figures can be used to

validate the coherency of the estimated summaries with the information in the variable-

dimensional posterior distribution. It can be seen from the figures that the shape of the

pdf’s of the estimated Gaussian components are coherent in both the location and disper-

sion with the ones of the posterior of the sorted radial frequencies. Note also the effect of

using the robust algorithms on the estimated variance of the middle Gaussian component.

It is also useful for validating the estimated summaries to compare the intensity of the

estimated parametric model qη defined, in general, as

h(η) =
L∑

l=1

πl · N( · | µl,Σl), (3.8)

where we ignore the point process component, with the histogram intensity of all radial
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Figure 3.13 – (a) The posterior distributions of the sorted radial frequencies given k.

(b) corresponding normalized pdf’s of fitted Gaussian components for three proposed

summarization algorithms with L = 3 Gaussian components. The estimated parame-

ters can be read in Figures 3.10–3.12. The dashed lines locate the true radial frequen-

cies.
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frequencies obtained using the BMA approach explained in Section 2.2.2. Figure 3.14

shows such figures for the specific example of this section where the solid black line in-

dicates the intensity of the estimated parametric model. These figures also indicate the

“goodness-of-fit” of the fitted approximate posterior and the true one. It can be seen from

the figures that the robust algorithms, i.e., TAP-KL2 and TAP-BHHJ, capture better the

posterior information of the radial frequencies in comparison with TAP-KL1.

Finally, to validate both the estimated probabilities of presence of the Gaussian com-

ponents and the mean parameter λ of the Poisson point process component, Figure 3.15

illustrates the posterior distribution of the number k of components together with its ap-

proximated versions using the proposed summarizing algorithms. It can be seen from the

figure that the summarizing algorithms well captured the information provided in the true

posterior of the number k of components.

Remark 3.3. The expected number of components in the approximate posterior qη is given

by
L∑

l=1

πl + λ.

The posterior mean of p(k | y) is 2.51, while the expected number of components in the

approximate posteriors for all algorithms equal to 2.52 (see the estimated parameters

presented in Figures 3.10–3.12).

Remark 3.4. Recall that the binary indicator variables ξl, 1 ≤ l ≤ L, introduced in

Chapter 2 to control the presence of the Gaussian components, are assumed to be inde-

pendently Bernoulli distributed. Hence, the approximate posterior qη by definition is not

capable of reproducing the existing correlation in the presence of components in the true

variable-dimensional posterior distribution. More precisely, for example, the presence of

component, say, a, in the true posterior might preclude the presence of component, say,

b. Although this characteristic cannot be preserved by the proposed approximate model,

we can recover this information from the labeled samples (x(i), z(i)), i = 1, . . . ,M , given

the estimated parameters η̂. Noting the fact that the vector of indicator vectors ξ can

be obtained given the simulated allocation vector z, we can easily compute their correla-

tion. For the labeled samples shown in Figure 3.12, the matrix of correlation coefficients

becomes 


1 −0.01 0

−0.01 1 −0.37

0 −0.37 1


 .
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(c) TAP-BHHJ with α = 0.5

Figure 3.14 – Histogram intensity of all radial frequencies samples using BMA ap-

proach along with the intensity of the fitted parametric model obtained using the pro-

posed summarizing algorithms.
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Figure 3.15 – Posterior distribution of the number k of sinusoidal components along

with its approximated ones using the proposed algorithms on the first illustrative si-

nusoid detection example.

The above correlation coefficients can be justified as follows; the first component has the

probability of presence equal to one, so it is always present no matter the presence of the

others. The other two components are correlated, as, for example, when k = 2, presence

of one of them forces absence of the other one.

Remark 3.5. As discussed in Section 2.5, the parameter α of BHHJ-α divergence can be

considered as a tuning parameter that controls the compromise between efficiency (α → 0)

and robustness (α → ∞) of the derived estimator. Thus, the obtained summary is sensitive

to the chosen value of α. Basu et al. (1998) recommended to choose a value in the region

0 < α ≤ 1.

Figure 3.16 shows the effect of the parameter α on both the second fitted Gaussian

component and its labeled samples when using TAP-BHHJ on the first illustrative example

along with the results obtained using TAP-KL1 and TAP-KL2. The parameters of the

other two Gaussian components were almost similar for all cases (not shown here). It can

be seen from the figure that for small values of α, i.e., α = 0.1 and 0.25, the obtained

summaries are close to the one of TAP-KL1. On the other hand, when α takes a larger

value, i.e., α = 0.5 and 1, the obtained summaries are completely identical—in this specific

example—to the one of TAP-KL2.
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(f) TAP-BHHJ with α = 1

Figure 3.16 – Effect of α on the second fitted Gaussian component when applying

TAP-BHHJ on the first illustrative sinusoid detection example.

3.3.3 Second illustrative example

The second illustrative example highlights a situation in which the proposed summarizing

approach might have difficulties. Figure 3.17 illustrates the variable-dimensional posterior
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distribution for this example, which is an instance of the second experiment given in

Table 3.1 with SNR = 7dB and r = 2. A remarkable feature of this example is that

the location of the sinusoidal component under M1 is not “coherent” with the locations

of the two sinusoidal components under M2. Moreover, both models are a posteriori

nearly equiprobable (p(M1 | y) = 0.48 and p(M2 | y) = 0.41). Obviously, the RJ-MCMC

output samples under M1 cannot be described by the two sinusoidal components under M2

properly. Therefore, this example can be considered as a challenging problem for the

summarization approach we have developed.

k

p(k|y) ωk

0.5 0.75 10 0.25 0.5

1

2

3

4

Figure 3.17 – Posterior distributions of the number k of components (left) and the

sorted radial frequencies, ωk, given k (right) constructed using the 80 000 RJ-MCMC

samples after discarding the first 20 000 samples as the burn-in period. The true

number of components is two. It is indeed an example of the observed signal from the

second experiment explained in Table 3.1 with SNR = 7dB and r = 2. The vertical

dashed lines in the right figure locate the true radial frequencies, i.e., (0.628, 0.653).

We ran the algorithms on the variable-dimensional samples generated using RJ-MCMC

shown in Figure 3.17, for 100 iterations, with L = 3 Gaussian components (the posterior

probability of {k ≤ 3} is approximately 98.7%). To initialize the parameters of the Gaus-

sian components, we used the robust estimates of the mean and variance of the posterior

distributions of the sorted radial frequencies given k = L, as in the previous example.

Figure 3.18 illustrate the evolution of the model parameters, i.e., ηl = {µl, s2
l , πl},
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with 1 ≤ l ≤ L, and the mean parameter λ of the Poisson point process component

together with the criterion J when using TAP-BHHJ with α = 0.5 to summarize the

posterior samples shown in Figure 3.17. The decreasing behavior of J and convergence of

the parameters can be observed from the figure.
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Figure 3.18 – Evolution of the model parameters along with the criterion Ĵ defined

in (2.29) using TAP-BHHJ with α = 0.5 and L = 3 on the second illustrative

sinusoid detection example.

The histograms of the labeled samples along with the pdf’s of the estimated Gaussian

components (black solid line) are shown in Figures 3.19 and 3.20, respectively, when TAP-

KL2 and TAP-BHHJ with α = 0.5 were used. Moreover, the summaries obtained by

the proposed algorithms for each component are presented in its corresponding panel.

We used the average of the last 50 SEM iterations as parameter estimates. As in the

previous illustrative example, we ran the randomized allocation procedure 10 times to

reduce variations in the histograms of the labeled samples.

The first point to note is that both summarizing algorithms have associated a Gaussian

component to the RJ-MCMC output samples around the sinusoidal component under M1

concentrated around 0.64 (see Figure 3.17). Moreover, this Gaussian component is in

the obtained summaries with a very high “confidence” (it has the probability of presence
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greater than 0.9 in both cases).
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Figure 3.19 – Histogram of the labeled samples versus the pdf’s of estimated Gaussian

components in the model (black solid line) using TAP-KL2 with L = 3 on the second

illustrative sinusoid detection example. The estimated parameters of each component

are presented in the corresponding panel. To generate these histograms the randomized

allocation procedure was run 10 times.

Comparing the two summaries shown in Figures 3.19 and 3.20, we observe that the

one obtained using TAP-KL2 algorithm seems to be more appropriate as its Gaussian

components enjoy smaller variances. The reason of the difference can be

i) TAP-BHHJ with α = 0.5 was not robust enough;

ii) the model qη with L = 3 Gaussian components was not a suitable approximate

posterior to capture the information in the variable-dimensional posterior distribution

shown in Figure 3.17;

iii) the naive initialization procedure used so far was not applicable in this example and

the algorithm has been trapped in a local minimum.
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Figure 3.20 – Histogram of the labeled samples versus the pdf’s of estimated Gaussian

components in the model (black solid line) using TAP-BHHJ with α = 0.5 and L = 3

on the second illustrative sinusoid detection example. The estimated parameters of

each component are presented in the corresponding panel. To generate these his-

tograms the randomized allocation procedure was run 10 times.

Indeed, as discussed in Section 2.5, TAP-BHHJ downweights the influence of the outliers

and samples located at the tails of the distributions at a rate which depends on α, whereas

TAP-KL2 “ignores” those samples using robust quantile-based estimators. Thus, one

might attempt at increasing the value of α, say, set α = 1, to obtain results close to the

one of TAP-KL2. Although this approach improves the obtained summary on this specific

example (results not shown here), in the following, we choose to investigate the effect of

both the number L of Gaussian components and the initialization procedure.

Increasing the number L Gaussian components

Contemplating the top panels of Figure 3.17, i.e., the posterior distributions of the sorted

radial frequencies given k = 3 and 4, it can be observed that there are non-negligible

amount of samples concentrated around ω = 0.5. Those samples were completely allocated

119



3. Bayesian Detection and Estimation of Sinusoids in White Gaussian Noise

to the point process component by TAP-KL2 algorithm, whereas TAP-BHHJ with α = 0.5

allocated a portion of them to the Gaussian component with the largest estimated variance;

see the histograms of the labeled samples shown in Figures 3.19 and 3.20, particularly the

peak concentrated around 0.5 in the bottom right panels. Generally, having such large

peaks in the histogram of the samples allocated to the point process component indicates

that the chosen value of L was not sufficient. Therefore, we ran TAP-BHHJ with α = 0.5

on the posterior shown in Figure 3.17 again, but this time using a parametric model qη

with L = 4 Gaussian components.

Remark 3.6. To initialize, however, using the naive initialization procedure is not reason-

able here, as not only the amount of the posterior samples given k = 4 is not sufficient

(note that p(k = 4 | y) = 0.01) but also the posterior distributions under M4 exhibit a

“severe” label-switching. Hence, we used an “advanced” initialization procedure that will

be explained in Section 4.3. In a nutshell, it consists in allocating all the samples to the

point process component and then, extracting Gaussian components from it progressively.

After adding each Gaussian component, a few, say, five, iterations of TAP-KL2 is per-

formed to estimate all parameters of the parametric model, including the probabilities

of presence πl, 1 ≤ l ≤ L and the mean λ (note that in the naive initialization, these

parameters are set to arbitrary constants values).

Figure 3.21 shows the resulting summary when L = 4 and the advanced initializa-

tion was used. It can be seen that the first Gaussian component shown on the top left

panel caught the samples concentrated around ω = 0.5 which consequently resulted in

the other Gaussian components to be of small dispersion. Figure 3.22 shows the posterior

distributions of the sorted radial frequencies given k (on top) and the normalized pdf’s of

the fitted Gaussian components using the three summarizing algorithms (on bottom). In

TAP-KL1 and TAP-KL2, L was set to three, whereas in TAP-BHHJ we set L = {3, 4, 5}.

When L = 3, all algorithms were initialized using the naive initialization procedure; while,

for L > 3, we used the advanced initialization procedure. These results allow us to study

both the impact of the robust algorithms and the number L of Gaussian components.

It can be seen from Figure 3.22(b) that the summary obtained using TAP-KL1 con-

tains a component with a very large variance. This large variance component exists in the

summary obtained using TAP-BHHJ with α = 0.5 and L = 3, but its variance is much

lower than the one in summary of TAP-KL1. However, by increasing the number L of

Gaussian components to four and five, it can be seen from the figure that the obtained

summaries become fairly similar to the one of TAP-KL2, for the three Gaussian compo-
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nents with large probabilities of presence, but with additional components at ω = 0.54

and ω = 1, both with small probabilities of presence.
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Figure 3.21 – Histogram of the labeled samples versus the pdf’s of estimated Gaussian

components in the model (black solid line) using TAP-BHHJ with α = 0.5 and L = 4

on the second illustrative sinusoid detection example. The estimated parameters of

each component are presented in the corresponding panel. To generate these his-

tograms the randomized allocation procedure was run 10 times.

To compare the convergence of the algorithms, Table 3.3 presents the KL and BHHJ

criteria evaluated at the estimated model parameters for different summarizing algorithms.

For TAP-BHHJ, different values of L are considered. The first point to note from the table

is that, in this specific example, the evaluated KL criterion for TAP-KL1 is greater than

that of TAP-KL2. This suggests that TAP-KL1 might have been trapped in a local

minimum. The second point is that by increasing the number L of components, when

using TAP-BHHJ, the evaluated KL and BHHJ criteria decrease. Moreover, when there

are L = 5 components in the model, both criteria have their lowest values.

Based on the presented results of the summarizing algorithms on the two sinusoid

detection examples so far (and our exhaustive experiments not shown here), we can con-
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Figure 3.22 – (a) Posterior distributions of the sorted radial frequencies given k.

(b) corresponding normalized pdf’s of fitted Gaussian components for three proposed

summarization algorithms applied on the second illustrative sinusoid detection exam-

ple. In TAP-KL1 and TAP-KL2, L was set to three, whereas in TAP-BHHJ we set

L = {3, 4, 5}. The dashed lines locate the true radial frequencies.
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Criterion KL BHHJ

TAP-KL1 -1.69 -6.72

TAP-KL2 -1.78 -6.93

TAP-BHHJ-L3 -1.63 -6.92

TAP-BHHJ-L4 -1.81 -7.20

TAP-BHHJ-L5 -1.86 -7.26

Table 3.3 – KL and BHHJ criteria evaluated at the solutions obtained using different

summarizing algorithms for the second illustrative sinusoid detection example. The

smallest value for each criterion is highlighted in bold.

clude that TAP-KL1 is less appropriate among the other two algorithms for this task. It

often results in summaries containing large variance Gaussian components with the cor-

responding distribution of labeled samples being multimodal. On the other hand, both

comparatively robust TAP-KL2 and TAP-BHHJ algorithms provide desirable summaries

with compact components. Furthermore, since in TAP-BHHJ, the criterion is directly

minimized, it allows for analyzing convergence of the algorithm.

Diagnosis of the lack-of-fit

As a concluding remark for this illustrative example, which has been intended to show

situations where using the proposed summarizing approach has difficulties, we recall again

the kind of trans-dimensional problems that using the proposed approach is meaningful.

The notion of “birth, death, and switching of labels” introduced in Section 2.2.1 supposes

that there is a certain relation between the locations of components when moving across

models. More specifically, when moving from Mk to Mk+1, it is assumed that the locations

of the k components are aligned with the corresponding ones under Mk and only a new

component with a new label is born. This is the phenomenon that is well illustrated in,

for example, Figure 3.13. But, in the example presented in Figure 3.22, the component

under M1 is not aligned with the two components under M2. As a results, the samples

under M1 cannot easily be described by the two components under M2.

To detect such challenging situations, one should inspect both the posterior distribu-

tions of the number k of components and the sorted radial frequencies given k. Existence of

discrepancies in the location of components across models together with nearly equiprob-

able models can be an indication of such situations. Note that, in the second illustrative

example, if one the models had a lower posterior probability, then, it would have less af-
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fected the obtained summary. Finally, the correlation between the indicator variables can

reveal also useful information about this kind of discrepancy. For TAP-BHHJ with α = 0.5

and L = 3 (see Figure 3.20 for the obtained summary), the matrix of correlation coeffi-

cients is 


1 −0.27 −0.41

−0.27 1 −0.06

−0.41 −0.06 1


 .

Whereas, for TAP-BHHJ with α = 0.5 and L = 4 (see Figure 3.21 for the obtained

summary), the matrix of correlation coefficients is



1 0.05 −0.35 0.07

0.05 1 −0.48 0.05

−0.35 −0.48 1 −0.37

0.07 0.05 −0.37 1



.

From both correlation matrices, it can be seen that the component at µ̂ = 0.64 (first row

for L = 3 and third row for L = 4) has a significant correlation with the others.

Did the proposed approach completely fail?

In this specific example, the summaries, particularly, the estimated probabilities of pres-

ence, obtained using the summarizing algorithms are not in accordance with the variable-

dimensional posterior distribution. For example, all the obtained summaries assert that

there is a component with high probability of presence at ω = 0.64,; whereas this is not

the case in the true posterior distribution shown in Figure 3.17. Hence, one might argue

that the obtained summary can result in misinterpretation.

Nonetheless, some features of the posterior distribution such as the location and disper-

sion of the sinusoidal components are well estimated. Moreover, the posterior distribution

of the number k of components is preserved by the approximate parametric model (see

Figure 3.23). Furthermore, we provided diagnoses of the lack-of-fit that warn us about

this kind of situations. For example, existence of Gaussian components presence of which

are highly correlated with the others in the matrix of correlation can be a sign of such

issues.

3.3.4 Third illustrative example: Many components

In this section, we investigate the capability of the proposed SEM-type algorithms in deal-

ing with challenging situations where the number k of components is large, say, k > 10. In
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Figure 3.23 – Posterior distribution of k, i.e., p(k|y), along with its approximated

versions for different scenarios for the second illustrative sinusoid detection example..

these situations, the EM-type relabeling algorithms, such as the ones developed in Jasra

et al. (2005) ; Sperrin et al. (2010) ; Papastamoulis and Iliopoulos (2010) ; Yao (2011) for

the fixed-dimensional problems, cannot be used, as the summation over all possible per-

mutation of the allocation vector z in the E-step is of cardinally L!
(L−k)! , assuming ξL+1 = 0,

which is computationally prohibitive; see discussions in Section 2.4.2 for more information.

For this purpose, we use here an experiment in which the observed signal y of lengthN =

1024 consists of k = 30 sinusoidal components, observed in white Gaussian noise with SNR =

10dB. To locate the sinusoidal components, 10 blocks, each containing three components

distributed according to the ones of the first experiment expressed in Table 3.1, situated

0.3 radian apart from each other, are considered. More precisely, the distance between

the three sinusoidal components inside each block is π/N and they have the same am-

plitudes and phases as described in Table 3.1. Therefore, there are a total number of 10

hard-to-detect components, one in each block.

We generated 500 000 samples using the RJ-MCMC sampler described in Algorithm 3.1,

initialized at the null model, and discarded the first 100 000 samples as the burn-in period.

Next, we thinned the RJ-MCMC samples to one every 20th. The posterior distribution

of the number k of components is shown in Figure 3.24 (black bars). It can be seen from

Figure 3.24 that kMAP is 28. Thus, using the BMS approach, the model with k = 28 com-

ponents will be selected. However, the resulting summary, not only contains components

with “intra-block” label-switching but also a few ones with “inter-block” label-switching
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(see Figure 3.25). As a consequence, their estimated locations are meaningless and their

estimated variances are large.
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Figure 3.24 – Posterior distribution of the number k of sinusoidal components, i.e.,

p(k|y), (black) along with its approximated one obtained using 500 iterations of TAP-

KL2 algorithm (gray) for the third illustrative sinusoid detection example. The mean

of both posterior distributions equal 27.

We ran 500 iterations of the TAP-KL2 algorithm with the number L = 30 of Gaussian

components (p(k ≤ 30 | y) ≃ 1). To initialize, we used the robust estimators of the mean

and variance of the posterior distributions of the sorted radial frequencies given k = 30.

Moreover, we set πl = 0.5, with 1 ≤ l ≤ L, and λ = 0.1. Figure 3.26 illustrate the

evolution of the model parameters together with the criterion J. It can be seen from the

figure that, besides the means of the Gaussian components, other model parameters are

evolving with SEM-iterations.

Remark 3.7. There is a remarkable move in the parameter space around the iteration

210 of the stochastic algorithm in which the variance of a component was substantially

decreased. This also resulted in a spike in the evolution curve of the criterion J. This

behavior is a result of not initializing appropriately the parameters of the model. To

improve this issue, a new initialization procedure will be proposed in Section 4.3.

Figure 3.27 illustrates the obtained summaries for six out of ten blocks. Each panel

corresponds to a block of three components. For each block, the histogram intensity of the

RJ-MCMC samples obtained using the BMA approach along with the intensity of the fitted

parametric model are show on the top, while the normalized pdf’s of the fitted Gaussian

components are shown in the bottom. It can be seen from the depicted summaries that the

proposed approach provided a good fit to the true posterior distributions by solving both

intra-block and inter-block label-switching issues (for comparison see the components with
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Figure 3.25 – Posterior distributions of sorted radial frequencies given k = kMAP =

28 (BMS) for some components with inter-block label-switching. The vertical dashed

lines indicate the location of true radial frequencies.

inter-block label-switching shown in Figure 3.25). Note that the probabilities of presence of

the middle components in each block varies from π̂11 = 0.1 (see Figure 3.27(c)) to π̂26 = 1

(see Figure 3.27(f)).

The estimated model parameters, i.e., η̂l = {π̂l, ŝl, µ̂l}, 1 ≤ l ≤ L, are presented in

Figure 3.28. The left panel shows the estimated probabilities of presence versus the esti-

mated means for the L = 30 Gaussian components in the model. The vertical dotted lines

indicate the locations of each block of three components (so, there are three crosses around

each vertical line). It can be seen that there are four Gaussian components with π̂l < 0.5,

for l ∈ {5, 11, 14, 17}. The right panel shows the estimated probabilities of presence ver-

sus the estimated standard deviations. It reveals that the estimated variances are small.
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Figure 3.26 – Evolution of the model parameters along with the criterion J using

TAP-KL2 with L = 30 on the third illustrative sinusoid detection example.

Indeed, the largest variance is ŝ2
5 = 8.24 × 10−6.

One important point is that 500 iterations of TAP-KL2 implemented in MATLAB

took 7862 seconds on a laptop with Intel Core i5 M540 running at 2.53 GHz and 4 GB

of RAM. Given that the computation time of the SEM iterations are almost similar, each

iteration of the algorithm took around 15.7 seconds which is justifiable considering the

number L = 30 of components and number M = 20 000 of observed samples.
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Figure 3.27 – Results for six out of ten blocks; histogram intensity of the total ob-

served samples along with the intensity of the fitted model, i.e., qη̂, (top). Normalized

pdf’s of the estimated Gaussian components in each block (bottom). The vertical

dashed lines indicate the locations of true radial frequencies.
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Figure 3.28 – Estimated model parameters η̂l = {π̂l, ŝl, µ̂l}, 1 ≤ l ≤ L, using 500

iterations of TAP-KL2 with L = 30 on the third illustrative example. (a) Estimated

probabilities of presence versus estimated means. The vertical dotted lines indicate the

locations of of each block of three components. (b) Estimated probabilities of presence

versus estimated standard deviations.
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3.4 Summarizing variable-dimensional posteriors: average

performance

3.4.1 Objectives

In the illustrative results shown in the previous section, we showed results confirming the

capability of the proposed approach to summarize variable-dimensional posterior distri-

butions encountered in the problem of joint detection and estimation of sinusoids in white

Gaussian noise. In this section, we investigate using Monte Carlo simulations the frequen-

tist properties of the proposed approach for summarizing variable-dimensional posterior

distributions. The main question that we address in this section is: can the summary

provided by the proposed approach be considered as a faithful substitute for the “large” set

of RJ-MCMC samples? To answer this question, the following points need to be verified:

i) Goodness-of-fit of the approximate posterior (Section 3.4.2): Studying how

faithfully the approximate posterior distribution represents the true posterior dis-

tribution. To do so, we will look at various features of the posterior distributions

(posterior probabilities, reconstruction errors, . . . ).

ii) Comparison of the estimated vector of radial frequencies by the proposed

approach with the ones obtained using the BMS approach (Section 3.4.3):

Considering the first sinusoid detection experiment defined in Table 3.1 with a middle

hard-to-detect, we study the frequentist properties of the estimated vector of radial

frequencies using both the proposed and the BMS approaches.

To begin, in what follows, we describe the experimental setup, the estimators of vector

of radial frequencies, and the procedures to reconstruct the noiseless signal.

Experimental setup

We will consider the first sinusoid detection experiment defined in Table 3.1 with SNR =

5, 7, 10, 12 dB. Remember that the goal of this experiment is to detect the middle hard-

to-detect sinusoidal component. To study the performance of the approaches when the

middle component does not exist, we simply remove the middle component. We name

these experiments H1 and H0, respectively. We ran the RJ-MCMC sampler explained

in Algorithm 3.1 on 100 realizations of both experiments. The number of RJ-MCMC

iterations was set to 100 000 and the first 20 000 samples were discarded as the burn-
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in period. Then, the samples were thinned to one every fifth. The parameters of the

hierarchical model shown in Figure 3.1 were set as in the previous section.

Turning to the summarizing algorithms, first, we need to initialize the parametric

model qη in a systematic fashion. It is natural to deduce the number L of Gaussian

components from the posterior distribution of k. In this section, we set L to the largest k

such that its posterior probability is not less than 0.05. Then, during the process of

the SEM-type algorithms, if sufficient number of samples, say, 10, is not allocated to a

Gaussian component (or, equivalently, its probability of presence fades to zero), we will

remove it from the parametric model and decrease L by one. Using this approach results

in “richer” estimated parametric models in the sense that L ≥ kMAP , where kMAP =

argmax
k

p(k|y)—the selected model using the BMS approach. (Later, in a post-processing

step, since each Gaussian component has been endowed with a probability of presence πl,

with 1 ≤ l ≤ L, one can decide to discard the ones with πl smaller than a certain threshold.)

To initialize the Gaussian components’ parameters, i.e., the mean µ and the variance s2,

we used the robust estimates of the posterior of the sorted radial frequencies given k = L.

Point estimates of the vector of radial frequencies

To estimate the vector of radial frequencies from the fitted parametric model qη̂, in addition

to Gaussian components’ means µ̂l, we have to take into account their probabilities of

presence π̂l, with 1 ≤ l ≤ L. We propose an estimator consisting in discarding the

Gaussian components with the probabilities of presence smaller than a certain threshold,

denoted by tπ, with 0 ≤ tπ ≤ 1. Then, the means of the remaining components are used

as the estimated frequency vectors.

This estimator can be seen as a post-processing procedure in which one can have a

range of possible summaries by changing the value of the threshold tπ. For two extreme

values of tπ = 0 and tπ = 1, there are, respectively, L(0) = L and L(1) = 0 components in

the parametric model, where L(tπ) denotes the number components kept in the model after

discarding the ones smaller than the threshold tπ. Furthermore, setting the threshold tπ to

the special value of 0.5, the selection procedure becomes similar to the Median Probability

Model approach introduced in Barbieri and Berger (2004) for Bayesian variable selection

problems; see Section 2.2.2 for more discussions.

When using the BMS approach, a model with the highest posterior probability, i.e.,

kMAP , is selected and, then, the estimated vector of radial frequencies is set to the median

of the posterior distributions of the sorted radial frequencies given k = kMAP .
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Reconstructing the noiseless signal

To compare the performance of the approaches in reconstructing the noiseless signal y0, we

first need to explain the reconstruction procedure for different approaches. To reconstruct

the noiseless signal y0 from the summary provided by the proposed summarizing approach,

we do as follows; for r = 1, . . . , R,

i) generate independent Bernoulli indicator variables ξ(r) = (ξ
(r)
1 , . . . , ξ

(r)
L ) given the

estimated probabilities of presence π̂.

ii) set the number of components k̂(r) =
∑L
l=1 ξ

(r)
l .

iii) generate random variables denoted by ω̂
(r)

j,k̂(r)
, with j = 1, . . . , k̂(r), from the esti-

mated Gaussian components that are present, i.e., their corresponding indicator vari-

able ξ(r)
l = 1. Then, arrange them in a vector ω̂

(r)

k̂(r)
= (ω̂

(r)

1,k̂(r)
, . . . , ω̂

(r)

k̂(r),k̂(r)
).

iv) estimate the corresponding amplitudes from their posterior mean, that is

â
(r)

k̂(r)
=

δ̂2

1 + δ̂2
· ((D̂(r))tD̂(r))−1(D̂(r))ty,

where D̂(r) is the design matrix of the vector ω̂
(r)

k̂(r)
as expressed in (3.1) and δ̂2 is the

estimated value of the amplitudes hyperparameter obtained from the median of the

samples generated from p(δ2|y).

Then, the reconstructed signal using the parameters of the fitted parametric model is

ŷTAP0 =
1

R

R∑

r=1

D̂(r).â
(r)

k̂(r)
.

For comparison, we use both the BMS and BMA approaches. In the BMS approach,

first, the vector of radial frequencies is estimated as explained before. Then, the amplitudes

are estimated using their posterior mean. Finally, the reconstructed signal using the BMS

approach is

ŷBMS
0 = D̂BMS âBMS

k .

In the BMA approach, we have

ŷBMA
0 = E(y0 | y) =

kmax∑

k=1

E(y0 | k,y) · p(k | y) =
1

M

M∑

i=1

D(i)â
(i)
k , (3.9)

where D(i) is the design matrix of the ith vector of the sampled radial frequencies ω
(i)
k

given in (3.1) and â
(i)
k is the posterior mean of the amplitudes given ω

(i)
k and δ2(i).
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3.4.2 Verification of the goodness-of-fit of the approximate posterior

distribution

In this section, we investigate how faithfully the approximate posterior distribution pre-

serves the information of the true posterior distribution. In Section 3.3, such property has

been studied on a few examples by comparing the posterior of k with its approximated

version (see, e.g., Figure 3.15), and the histogram intensity of the observed samples with

the intensity of the fitted parametric model (see, e.g., Figure 3.14).

Here, we compare the two posterior distributions using indicators that are explained

in follows. Figures 3.29 and 3.30 show the comparisons of the fitted approximate posterior

distribution qη̂ obtained using 100 iterations of TAP-BHHJ with α = 0.5 with the true

variable-dimensional posterior distribution for the first sinusoid detection experiment with

SNR = 5 and 7dB, respectively. The results of the other algorithms and other values of

SNR were similar and thus are not shown here.

The scatter plots shown in panels (a), (b), and (c) of both figures compare the posterior

distribution of the number k of components, i.e., p(k|y), with its approximated version,

i.e., p̂(k|y), in 100 runs. We only show the probabilities of k = 2 and k = 3 in this

comparison as the other probabilities were close to zero. The digits situated on the right

of the points in the panel (a) indicate the number of occurrence of the corresponding event

in 100 runs and kTAP = argmax
k

p̂(k|y). It can be seen from these three panels that the

information in p(k|y) was well preserved by the approximated posterior distributions.

Panel (d) of the figures compares the normalized reconstruction errors using TAP-

BHHJ with the ones of the BMA approach in dB, defined as

10 log10

(
‖ŷ0 − y0‖2

‖y0‖2

)
, (3.10)

where ‖ · ‖ is the L2-norm and we set ŷ0 = ŷBMA
0 and ŷ0 = ŷTAP0 , when using the BMA

approach and the proposed approach, respectively. It can be seen from the figures that the

error of the reconstructed noiseless signals using the compact summary obtained by the

proposed approach are quite comparable with the ones obtained using the BMA approach.

Moreover, the normalized errors in both approaches are concentrated between -10 and -20

dB indicating a good reconstruction performance considering the values of SNR.

Finally, the scatter plots in the last two panels compare the expected number of com-

ponents, i.e., E(N(·)), in the intervals (0, π/4) and (π/4, π/2) using the proposed approach

with the ones obtained using the BMA approach as expressed in (2.3). For the proposed

approach, the expected number of components in the interval ∆j , for j = 1, . . . , J , is given
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by

Eη̂ (N(∆j)) =
L∑

l=1

π̂l(CDFη̂l
(ωj+1) − CDFη̂l

(ωj)) +
λ̂

|Θ| |∆j |, (3.11)

where CDFη̂l
(ω) is the CDF of the Gaussian component l with the estimated parameters η̂l

at the point ω. The figures confirm that the expected number of components in the chosen

intervals computed using both approaches are very similar.

The results shown in this section confirmed that the approximate posterior distribu-

tion qη̂ obtained using the proposed summarizing approach preserves faithfully the infor-

mation lied in true posterior distribution. Moreover, the proposed approach has similar

reconstruction performance to the BMA and BMS approaches.

3.4.3 Frequentist comparison of the estimated vector of radial frequen-

cies

In this section, we address the frequentist performance of the proposed summarizing ap-

proach in detecting the middle hard-to-detect sinusoidal component. For comparison, we

use the BMS approach.

In fact, there is no natural distance between the estimated vectors of radial frequen-

cies of possibly different dimensions obtained using the approaches aforementioned in a

systematic way. In the following, we define such a distance and study the frequentist

properties of the proposed approach by measuring two possible kinds of detection errors

one can make; namely, we count the number of detected False Positives (FP’s) and the

number of omissions, denoted by NFP and NO, respectively.

Let us partition the parameter space Θ into J subsets. Then, we define

NFP ,

J∑

j=1

max{0, N̂ j −N j
True},

NO ,

J∑

j=1

max{0, N j
True − N̂ j}, (3.12)

where N̂ j and N j
True are the estimated and the true number of components in the parti-

tion j, for j = 1, . . . , J . Recall that when estimating the vector of radial frequencies from

the fitted parametric model qη̂, the estimated number of components depends on the value

of the threshold tπ on the probabilities of presence.

When the number of partitions J is set to one, we have a general view of the parameter

space, though, we can use the characteristics of the experiment under study to introduce

more partitions and, consequently, present refined results. For example, in this experiment,
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Figure 3.29 – Comparison of the true posterior distribution with its approximated

version when using TAP-BHHJ with α = 0.5 on the experiment with SNR = 5dB.
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Figure 3.30 – Comparison of the true posterior distribution with its approximated

version when using TAP-BHHJ with α = 0.5 on the experiment with SNR = 7dB.
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we define a Region Of Interest (ROI) ⊂ Θ, out of which any detected component will

be considered as a FP. We set the ROI = (0.55, 0.8) and count the number of Gaussian

components with the estimated means inside and outside this region when the summarizing

approach is used. We denote the regions inside and outside ROI by j = 1 and j = 2,

respectively. Hence, under H1, we have N1
True = 3. On the other hand, under H0, there

are two components in the ROI, i.e., N1
True = 2 and zero outside.

Panels (a) and (b) of Figures 3.31–3.32 present the expectations of the number of

detected FP’s, i.e, NFP, and the number of omissions, i.e., NO, when using TAP-BHHJ

with α = 0.5 versus the threshold tπ in 100 runs for both experiments H1 and H0 with

SNR = 5 and 7 dB. Moreover, the expectations of NFP and NO using the BMS approach

are shown by the horizontal lines. The results of the other summarizing algorithms and

for the other values of SNR were qualitatively similar and, thus, are not shown here.

Since both numbers NFP and NO measure the errors committed by the estimators,

we want both of them to be close to zero. For the proposed summarizing approach, the

expectations of both NFP and NO will change by altering the threshold of probabilities of

presence tπ, due to the fact that some Gaussian components are removed. It can be seen

from the figures that when tπ = 0, E(NTAP
FP ) has its maximum value. As we increase the

value of the threshold tπ, the value of E(NTAP
FP ) decreases until a point around tπ = 0.5

that it becomes equal to E(NBMS
FP ). On the other hand, E(NBMS

FP ) has its minimum

at tπ = 0 and it increases by increasing the threshold tπ. Again, at a certain point

around tπ = 0.5, it coincides with the corresponding line of the BMS approach. Note

that when tπ = 1, the number of Gaussian components L(1) becomes zero. This is why,

in the figures, when tπ = 1, we have E(NO) = NTrue and E(NFP) = 0. It other words,

when tπ = 1, we lose even the two easy-to-detect sinusoidal components.

A remarkable point concerning the results illustrated in Figures 3.31 and 3.32 is that,

the results of the proposed approach when tπ = 0.5 are comparable with the ones of the

BMS approach. Thus, we conjecture that deriving an estimator in the spirit of the median

probability model of Barbieri and Berger (2004), that is, discarding the Gaussian com-

ponents with the probabilities of presence πl < 0.5, the proposed summarizing approach

would perform almost as well as the BMS approach in detecting the middle hard-to-detect

component of this specific experiment. Note also that in the Bayesian variable selection

problem, the MPM and BMS approaches coincide in some cases (see Barbieri and Berger,

2004, for more discussion).

In order to derive an effective comparison of the performance of the approaches, we
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Figure 3.31 – Comparison of the frequentist performances of TAP-BHHJ with α =

0.5 and the BMS approach when SNR = 5dB. (a) and (b) show the expected num-

ber of detected FP’s and omissions under H1 and H0, respectively. (c) illustrates

the frequentist risks of the estimators derived from the compact summary under H1

versus H0 for different values of tπ. The filled square and asterisk, respectively, cor-

respond to the risks of the BMS approach and TAP-BHHJ when tπ = 0.5.
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Figure 3.32 – Comparison of the frequentist performances of TAP-BHHJ with α =

0.5 and the BMS approach when SNR = 7dB. (a) and (b) show the expected num-

ber of detected FP’s and omissions under H1 and H0, respectively. (c) illustrates

the frequentist risks of the estimators derived from the compact summary under H1

versus H0 for different values of tπ. The filled square and asterisk, respectively, cor-

respond to the risk of the BMS approach and TAP-BHHJ when tπ = 0.5.
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define a loss function in the spirit of decision theory literature (see, e.g., Robert, 2007,

Chapter 2, for more discussion). A possible loss function can be defined based on the two

error measures NFP and NO as

L , NFP + NO. (3.13)

Note that the proposed loss function penalizes both type of errors equally. Panel (c)

of Figures 3.31 and 3.32 illustrate the frequentist risk (or average loss) under H1, i.e.,

E(L |H1), versus the one under H0, i.e., E(L |H0), when using TAP-BHHJ with α = 0.5

for different values of the threshold tπ. Moreover, the corresponding risk of the BMS

approach is shown by a filled square. It can be seen from the figures that by changing the

threshold in the range [0.12, 0.99] (or [0.14, 0.99] in the case of SNR = 7dB), indicated by

the filled circles, a family of admissible estimators, with respect to the class containing the

BMS estimator and the whole family for tπ ∈ [0, 1], is obtained that contains the solution

attained using the BMS approach. Observe also that moving on the curve for tπ > 0.99,

both risks increase, and for tπ < 0.12 (or tπ < 0.14 in Figure 3.32), E(L |H0) increases.

3.5 Summary and discussion

In this chapter, we addressed the important signal decomposition problem of joint de-

tection and estimation of sinusoidal components in white Gaussian noise. We used the

hierarchical model and the RJ-MCMC sampler developed by Andrieu and Doucet (1999),

with a modification in the expression of the birth-or-death acceptance ratio (3.6), to gen-

erate samples from the target posterior distribution (3.3). We also discussed the issues

concerning prior specification for the hyperparameter δ2 (or, the g parameter in Zellner’s

g-prior). Moreover, assuming assigning a weakly-informative conjugate IG(αδ2 = 2, βδ2)

prior distribution over δ2, as in Andrieu and Doucet (1999) we studied the sensitivity

of the posterior distribution to the variations of the scale parameter βδ2 using the SMC

sampler developed by Bornn et al. (2010).

In the rest of the chapter, we used the problem of joint detection and estimation of

sinusoids in white Gaussian noise as an example to investigate the capability of the summa-

rizing algorithms we proposed in Chapter 2 for summarizing variable-dimensional posterior

distributions. To this end, we presented two kinds of results, namely, the illustrative and

average results.
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3.5.1 Discussion of the illustrative results

Several properties of the proposed summarizing approach have been studied in Section 3.3

using three specific sinusoid detection examples. In the first example, we saw how using

the proposed approach resulted in extracting useful information concerning the middle

hard-to-detect sinusoidal component, while it was completely lost in the summary of the

BMS approach.

The second illustrative example was chosen to highlight a situation where the proposed

algorithms have difficulties. More precisely, posterior distributions in which the location of

the component-specific parameters are not coherent across models (see Figure 3.17 for an

example of such a posterior) can cause problem for the proposed summarizing approach.

The results showed that the components’ estimated probabilities of presence are not in

accordance with their uncertainties in the true posterior distribution. But, their location

and dispersion parameters were well estimated. Moreover, we provided diagnoses to detect

this kind of situation; for example, existence of significant correlation between the presence

of fitted components indicates the lack-of-fit of the fitted model. As a future work, one way

to improve the performance of the proposed algorithms in this situation is to introduce

correlation between the presence of components in the parametric model.

The third illustrative example investigated the usefulness of the proposed SEM-type

algorithms in dealing with challenging situations where the number k of components is

large, say, k > 10. In these situations, the EM-type algorithms cannot be used as the

E-step is computationally prohibitive. For this purpose, in Section 3.3.4, we designed an

experiment in which there were k = 30 sinusoids. From the posterior distributions of the

sorted radial frequencies given k = kMAP = 28, we saw that there are some components

exhibiting severe label-switching. The obtained summary using the proposed approach

confirmed that it is capable of not only dealing with challenging situations where k is

large but also removing severe label-switching issues.

We particularly studied the following properties:

Convergence of the algorithms: To study the convergence of the proposed algorithms,

we showed the evolution of the model parameters versus the SEM iterations. It was

shown that both the KL and BHHJ criteria have “generally” decreasing behavior

and the evolution of the models’ estimated parameters become almost constant after

a reasonable number of iterations.

Relabeling properties: In all the three example, comparing the distributions of the
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samples allocated to the fitted Gaussian components with the ones of the sorted

radial frequencies given k, which are highly multimodal, revealed the capability of

the proposed algorithms to provide the first solution, in the literature, to the “trans-

dimensional label switching” problem.

Validation of the fitted model: Comparing the intensities of the fitted approximate

models with the histogram intensities of the RJ-MCMC output samples confirmed

the goodness-of-fit of the fitted models. Moreover, we saw that the information in

the true posterior distribution of k was well preserved by its approximated versions.

Effect of the number L of Gaussian components: In the second example, we also

showed the effect of the number L of Gaussian components on the obtained sum-

maries. In fact, in general, to choose an appropriate value for L, in addition to the

posterior of the number k of components, one should inspect the posterior distri-

butions of the sorted component-specific parameters. Moreover, significant peaks in

the distribution of the samples allocated to the point process component, i.e., the

residuals of the fitted model, is another indication that the chosen value of L was

small. We will discuss this issue in more detail in the next chapter.

3.5.2 Discussion of the average results

In the second kind of results presented in Section 3.4, we studied the average performance

of the proposed approach. The results presented in Section 3.4.2 confirmed that the

approximate posterior distribution qη̂ obtained using the proposed approach faithfully

preserves the information of the true variable-dimensional posterior distribution. As an

example, the obtained summaries have comparable signal reconstruction performance with

respect to the BMA approach.

Section 3.4.3 was devoted to compare the frequentist performance of the proposed sum-

marizing approach with the one of the BMS approach in 100 runs. To estimate the vector of

radial frequencies from the fitted parametric model, we introduced the threshold 0 ≤ tπ ≤ 1

on the probabilities of presence. Then, the Gaussian components with π̂l ≥ tπ were kept

in the model and their estimated means were used as frequency estimates. The presented

results showed that for a wide range of tπ, a family of admissible estimators is attained

from the obtained summary containing the one of the BMS approach. Most notably, set-

ting tπ to 0.5, provided estimators with comparable frequentist performance as the ones

of the BMS approach.
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Therefore, from the presented results, it can be inferred that the information provided

by the approximate posterior distribution, esp. the probabilities of presence, is meaningful

and can be used to construct estimates with good frequentist properties.

3.5.3 Choice of summarizing algorithms

Concerning the choice of summarizing algorithms, we do not recommend the use of the

TAP-KL1 algorithm, as the summaries obtained using it, often, contained large variance

components with corresponding distribution of labeled samples being multimodal. While

on the contrary, both TAP-KL2 and TAP-BHHJ algorithms are capable of providing

desirable summaries in which the effect of label-switching has been completely removed.

An advantage of TAP-KL2 is that, in contrary to TAP-BHHJ, it does not depend on a

tuning parameter. Moreover, it is less computationally involved and easier to implement

in comparison with TAP-BHHJ.

On the other hand, TAP-BHHJ often converges faster than TAP-BHHJ. Moreover, the

fact that it is a criterion driven algorithm (note that TAP-KL2 does not minimize directly

the KL criterion) make it possible for further analysis of the convergence of the SEM-type

summarizing algorithm.

In the next chapter, we will apply the proposed summarizing algorithms to another

variable-dimensional problem encountered when analyzing cosmic rays signal in the Auger

project.
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Chapter 4

Bayesian Detection and Estimation of

Astrophysical Particles in the Auger

Project

4.1 Introduction

Auger project (see, e.g., Auger Collaboration, 1997, 2004) is an international project in-

volving collaborators from more than 19 countries and 46 institutions. This project is

aimed at studying ultra-high energy cosmic rays, with energies in order of 1019eV, the

most energetic particles found so far in the universe. The long-term objective of the

Auger project is to answer the following questions:

1. What is the nature of the ultra-high energetic particles (Proton, Iron, etc.)?

2. Where is their origin in the universe?

When these cosmic ray particles collide the earth’s atmosphere, air showers covering

a vast surface are generated. However, such rays are quite rare, hitting an area of the

size of a football field once every 10 000 years. Hence, an enormous observatory is needed

to detect these ultra-high energy particles. To detect them, the Pierre Auger Cosmic

Ray Observatory was built in Argentina. The observatory consists of two independent

detectors; an array of Surface Detectors (SD) and a number of Fluorescence Detectors

(FD). Each SD is a tank filled with around 11 000 liters of pure water and sit about

1.5 km away from the next tank. This array covers a surface of about 3000 km2 which

is about ten times the size of Paris. The second detection system, i.e., the FD’s, consists

of 24 fluorescence telescopes located on hills that on dark nights capture a faint light

or fluorescence caused by the shower particles colliding with the atmosphere. Figure 4.1

illustrates a conceptual view of both detectors and an incoming shower.
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Figure 4.1 – The conceptual picture of a fluorescence detector and surface detectors

(tanks) with an incoming cosmic ray shower (source: http://www.auger.org/).

In this work, we concentrate on analyzing the SD signal captured in the surface of

the earth. The goal of this study is to count the number of generated muons, that is,

the particles produced from the collision of cosmic rays and the earth’s atmosphere, and

estimate their individual parameters. In fact, determining the number of muons and

their arrival times can be used as indications of the chemical composition of the original

particles; for example, iron showers generate, in general, about 40% more muons than

proton ones. Moreover, the proton showers are usually deeper which can be identified by

the estimated arrival times.

A Bayesian algorithm for the trans-dimensional problem of joint detection and esti-

mation of muons has been developed in Kégl (2008) ; Kégl and Veberic (2009) ; Bardenet

et al. (2010, 2012). In this chapter, we address the problem of summarizing the variable-

dimensional posterior distribution occurred in this problem. To show results, we use

the data provided by Prof. Balázs Kégl from the Laboratoire de l’Accélérateur Linéaire

(LAL), Université Paris Sud 11, containing several observed signals along with the samples

generated from the corresponding variable-dimensional posterior distributions.

This chapter is outlined as follows. Section 4.2 is devoted to describing the hierarchical

model and the RJ-MCMC sampler developed for this problem in Kégl (2008) ; Kégl and

Veberic (2009) ; Bardenet et al. (2010, 2012). It turns out that the “naive” initialization

procedure for the summarizing algorithms used in Chapter 3 causes convergence issues in

some experiments. Section 4.3 shows the convergence issues caused by the “naive” initial-
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ization using an illustrative example and, then, describes a new initialization procedure for

the proposed summarizing algorithms. Section 4.4 presents the results of the approach we

proposed in Chapter 2 for summarizing the variable-dimensional posterior distributions

encountered in this problem. Finally, Section 4.5 discusses the results presented in the

chapter.

4.2 Hierarchical Model and RJ-MCMC sampler

When a muon crosses a SD tank, it generates “Cherenkov photons”, the rate of which

depends on the muon’s energy, along its track. These photoelectrons (PE’s) are then cap-

tured by detectors and create an analog signal which is consequently discretized using an

analog-to-digital converter (ADC). The real signal from Pierre Auger observatory contains,

in addition to the muonic part, a noise-like background part created by electromagnetic

components (mostly gamma photons). In this work, we concentrate only on analyzing the

muonic part of the observed signal.

Here, as observed signals, we have only been provided with the vector n = (n1, . . . , nN ) ∈
NN of the number of PE’s in each bin simulated from the generative model for the muonic

part of the signal (as in Bardenet et al. (2012)). The element ni indicates the number of

PE’s deposited by the muons in the time interval

[ti−1, ti) , [t0 + (i− 1)t∆, t0 + i t∆),

where t0 is the absolute starting time of the signal and t∆ = 25 ns is the signal resolution

(length of one bin).

In the following, we briefly describe the model and RJ-MCMC sampler developed for

the problem of Bayesian detection and estimation of muons in the Auger project; see Kégl

(2008) ; Kégl and Veberic (2009) ; Bardenet et al. (2010, 2012) for more information.

4.2.1 Hierarchical model

Each muon has two component-specific parameters; the arrival time tµ and the signal

amplitude aµ. Conditioning on the number k of muons and the vector of parameters tµ =

(tµ,1, . . . , tµ,k) and aµ = (aµ,1, . . . , aµ,k), and assuming that the numbers of PE’s in each

bin are independent, the likelihood is written as

p(n | k, tµ, aµ) =
N∏

i=1

p(ni | n̄i(k,aµ, tµ)), (4.1)
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where p(ni | n̄i(k,aµ, tµ)) is a Poisson distribution with the mean n̄i(k,aµ, tµ). Then,

assuming independence of the muons, the expected number of PE’s in the ith bin, i.e.,

n̄i(k,aµ, tµ), given k, tµ, and aµ becomes

n̄i(aµ, tµ) =
k∑

j=1

n̄i(aµ,j , tµ,j). (4.2)

To define n̄i(aµ,j , tµ,j), one needs to model the absorption procedure of a photon in

the detector. For this purpose, Bardenet et al. (2010, Section 2.2) modeled PE arrivals by

a non-homogeneous Poisson point process with intensity

h(t | aµ, tµ) = aµ pτ,td(t− tµ), (4.3)

where pτ,td(t) is the time response distribution given by

pτ,td(t) =
1

td
·





0 if t < 0,

1 − exp(− t
τ ) if 0 ≤ t < td,

exp(− t−td
τ ) − exp(− t

τ ) if td ≤ t,

(4.4)

where td is the risetime and τ is the exponential decay (both measured in ns). Figure 4.2(a)

shows a typical time response distribution with parameters td = 10 ns and τ = 60 ns.

Then, the expected number of PE’s in the bin i is obtained by integrating the intensity (4.3)

in the corresponding bin, as follows

n̄i(aµ, tµ) = aµ

∫ ti

ti−1

pτ,td(t− tµ)dt. (4.5)

The muon’s amplitude aµ is defined by aµ = sµφµν, where sµ is the tracklength of

the muon, φµ is a factor that captures the energy dependence of the signal amplitude (see

Bardenet et al., 2010, Section 2.3), and ν is the average number of PE’s generated by a

muon with kinetic energy of 1 GeV on a tracklength of 1 m. The tracklength sµ depends

on the zenith angle θ, i.e., the angle in which the muons are arrived, and the dimensions

of the tank with the radius of 1.8 m and the height of 1.2 m. While in general the zenith

angle θ is treated as a random variable (see Kégl (2008) ; Kégl and Veberic (2009)), here

as in Bardenet et al. (2012), it is assumed to be fixed and set to θ = 45. Moreover, in the

generative model that our data was simulated from a simplified prior has been considered

by Prof. Kégl and his colleagues over the amplitudes in which a uniform prior distribution

was assigned over the tracklength, i.e., p(sµ) = U(0, 1.7), the energy factor φµ was set to

one, and the average number of PE’s was set to ν = 55.
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Figure 4.2 – (a) Time response distribution (4.4) with parameters td = 10 ns and

τ = 60 ns. (b) Inverse Gamma prior distribution IG(2.5, 350) over the muon’s arrival

time p(tµ).

Turning to the muon’s arrival time tµ, an Inverse Gamma distribution is used as

its prior distribution, i.e., p(tµ) = IG(a, b). To specify its parameters, the energy and

geometry of the shower, and the distance of the tank from the shower core should be

considered. The parameters of the Inverse Gamma prior are elicited by the disintegration

of the observed showers and set to a = 2.5 and b = 350. Figure 4.2(b) shows the prior

distribution assigned over the muon’s time of arrival p(tµ) = IG(2.5, 350). Finally, from

the expression of the likelihood (4.1) and the prior distributions mentioned above, the

posterior distribution of the unknown parameters becomes

p(k,aµ, tµ | n) ∝
N∏

i=1

p(ni | n̄i(k,aµ, tµ)) p(aµ, tµ | k) p(k), (4.6)

where owing to the independence of aµ and tµ given k, we have

p(aµ, tµ | k) = p(aµ | k) p(tµ | k) =
k∏

j=1

p(aµ,j) p(tµ,j),

and p(k) is a Poisson distribution.

4.2.2 RJ-MCMC sampler

This section describes the RJ-MCMC sampler used to draw samples from the variable-

dimensional posterior distribution (4.6). Similar to the RJ-MCMC sampler used in the

previous chapter for the sinusoid detection problem, the sampler developed in Kégl (2008) ;
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Bardenet et al. (2012) has both within-model moves, to update the model parameters

without changing the number k of muons, and between-models moves, to change the

dimension by adding or removing a muon.

For a given number k of muons, Bardenet et al. (2012) used an adaptive MCMC sampler

that simultaneously learn appropriate identifiability constraints (following the approach

of Celeux (1998)) and the covariance matrix of the normal random walk (similarly to the

work of Haario et al. (2001) ; Roberts and Rosenthal (2001)).

Turning to the between-models moves, in the birth move a new muon is proposed by

drawing its parameters, i.e., the amplitude aµ and arrival time tµ, from their corresponding

prior distributions. In the death move, a muon is selected randomly and removed. Then,

when a between-models move is accepted, the new vector of component-specific parameters

is permuted to satisfy the learned identifiability constraint under the new model. The

computation of the MHG acceptance ratio follows Proposition 1.11.

4.2.3 Related work

The problem of detection and estimation of the parameters, e.g., the locations and am-

plitudes, of filtered impulse (spike) trains (also known as deconvolution of filtered point

processes) has applications in many fields including communication (see, e.g., Hero III,

1991), spectrometry (see, e.g., Andrieu et al., 2002 ; Barat and Dautremer, 2006), seis-

mology (see, e.g., Rosec et al., 2003), and neural electrical activity (see, e.g., Mishchencko

et al., 2011), to name a few; see also Cappé et al. (1999) and references therein.

4.3 A New Initialization Procedure for the Proposed Sum-

marizing Algorithms

Before presenting the performance results of the proposed algorithms on the problem of

joint detection and estimation of muons in Auger project, an important point to note here

is that during our experiments, we observed that using the “naive” initialization procedure

often yielded summaries in which the SEM-type algorithms got stuck in local minimums

with inappropriate posterior summaries. In this section, we first show the convergence

issues encountered when using the “naive” initialization procedure. Then, we introduce

an “advanced” initialization procedure in which all the parameters of the model qη are

set be adding the Gaussian components progressively. Finally, in Section 4.3.3, we discuss

ideas for selecting an appropriate value for the number L of Gaussian components.
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4.3.1 Convergence issue with the naive initialization procedure

Recall that, in the “naive” initialization, after selecting the number L of the Gaussian com-

ponents, for example, using the information provided in the posterior distribution p(k | y)

(see Section 4.3.3 for more discussion), the parameters of the Gaussian components are

initialized using the robust estimates of the mean and variance of the posterior distribu-

tions of the sorted component-specific parameters given k = L. Observe that in the naive

initialization procedure, the point process component and the probabilities of presence of

the Gaussian components are neglected. The former one is of great importance, as it is

supposed to capture the outliers. Therefore, in some experiments, the algorithm might be

initialized near a local minimum in which some Gaussian components are of large variance

and their corresponding labeled samples being multimodal.

To show the convergence issue, we use the following experiment, called hereafter the

first illustrative example, in which there are k = 3 muons in the observed signal. Figure 4.3

shows the observed signal n in the top panel and the intensity of the model (4.3) in

the bottom panel. The true arrival times are indicated by the vertical dashed lines.

We were provided with 60 000 after burn-in variable-dimensional samples generated from

the posterior distribution (4.6) using the RJ-MCMC sampler described in Section 4.2.2.

Figure 4.4 demonstrates the posterior distribution of the number k of components together

with the posterior distributions of the sorted arrival times given k.

Here, as the component-specific parameters, we concentrate only on the arrival times tµ.

Thus, the state space X =
⋃
k∈K{k} × Θk, with Θ = R+ being the space of arrival times.

Moreover, we denote the samples on X by x = (k,θk), where the vector θk of component-

specific parameters only contains tµ. Now, to initialize the summarizing algorithms, we

choose, for example, L = 3 (note that p(k ≤ 3) = 0.82). Note that we deliberately

set L = 3 to highlight the convergence issue, while L = 4 is a more reasonable choice (see

the next section for the results with L = 4). Then, if we follow the naive initialization

procedure, we would use the robust estimates of the mean and variance of the posterior

distributions of the sorted arrival times given k = 3 as the initial estimates1. Next, we set

all the three probabilities of presence πl to 0.5 and the mean λ of the Poisson point process

component to 0.1 to avoid the point process component capturing too many samples in a

few starting iterations of the SEM-type algorithm.

As it can be seen from the second row of Figure 4.4, related to M3, the middle compo-

1Note that these initial values would be the summary obtained if the BMS approach had been used to

summarize the variable-dimensional posterior distribution shown in Figure 4.4.
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Figure 4.3 – (top) Observed signal n of the first illustrative example. (bottom)

Intensity of the model h(t | aµ, tµ) defined in (4.3). There are k = 3 muons in the

signal with the true arrival times, i.e., tµ = (163, 291, 328), indicated by the vertical

dashed lines.

nent (colored in light blue) is highly bimodal with a very large variance (s2
2 = 7045.9). We

ran 100 iterations of the TAP-BHHJ with α = 0.1 summarizing algorithm twice; once with

the naive initialization procedure and once with the advanced one that will be described

in Algorithm 4.1. Table 4.1 presents the initial and final estimated values of the model

parameters for this example obtained using TAP-BHHJ with the naive initialization pro-

cedure. From the table, it can be observed that, except for the probabilities of presence,

the final estimated values are very close to their corresponding initialized values. This

evokes the question that the algorithm might have been trapped in a local minimum.

Figure 4.5 illustrates the normalized pdf’s of the fitted Gaussian components for both

scenarios along with the posterior distributions of the sorted arrival times given k. It can

be seen that the main difference of the two summaries are in the second fitted Gaussian

component. Therefore, for a better comparison, the histograms of the samples allocated to

both the second Gaussian (the one with large variance in Table 4.1) and the point process

components are illustrated in Figure 4.6.

It can be observed by comparing the two attained summaries presented in the figures

that despite using the same SEM-type algorithms, clearly the summary obtained when the
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Figure 4.4 – Posterior distributions of the number k of muons (left) and sorted

arrival times, tµ, given k (right) constructed using 60 000 RJ-MCMC output samples

after discarding the burn-in period for the first illustrative example. The true number

of components is three. The vertical dashed lines in the right figure locate the arrival

times, i.e., tµ = (163, 291, 328).

k µ̂ ŝ π̂

Comp. 1 158.20 (156.84) 4.56 (5.30) 1 (0.5)

Comp. 2 274.92 (270.61) 67.49 (83.94) 0.57 (0.5)

Comp. 3 307.73 (309.89) 5.95 (7.13) 1 (0.5)

Table 4.1 – The initial (in parentheses) and final estimates of the proposed summa-

rizing algorithms for the first illustrative example (see Figure 4.4) using TAP-BHHJ

with α = 0.1 and the naive initialization procedures. The initialized and final esti-

mated values of the mean parameter λ of the Poisson point process component was

0.1 and 0.32, respectively.

advanced initialization was used is more desirable in the sense that the estimated middle

component has a reasonable variance and the distribution of its corresponding labeled

samples is unimodal. In fact, the Gaussian component with large variance shown on the
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Figure 4.5 – Normalized pdf’s of the L = 3 fitted Gaussian components using 100

iterations of TAP-BHHJ summarizing algorithm with α = 0.1 using once the naive

and once the advanced initialization procedures. The top panel shows the posterior

distributions of the sorted arrival times given k. The vertical dashed lines locate the

true arrival times.

top left panel of Figure 4.6 captured samples in a wide range, and thus, does not have a

compact pattern. This also affected the estimated mean parameter λ̂ of the Poisson point

process component.

To emphasize again why we prefer the summary obtained using the advanced initial-

ization shown in bottom row of Figure 4.5, Figure 4.7 compares the intensities of the

fitted parametric model qη defined in (3.8) with the histogram intensity of all arrival time

samples obtained using the BMA approach. It can be seen that the fitted model when the

advanced initialization procedure was used well captured the histogram intensity whereas

the one of the naive procedure did not fit very well.

Remark 4.1. The approximated values of the BHHJ-α divergence criterion (2.29) in both

cases are almost equal. This indicates that, in both cases, the SEM-type algorithm might

have converged to two different minima with approximately equal values of the BHHJ

criterion. Note that the results would have been different if we had introduced penalization

for large variance components.
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Figure 4.6 – Histogram of the samples allocated to both the second Gaussian and the

point process components, using once the naive initialization (top row) and once the

advanced initialization procedure described in Algorithm 4.1 (bottom row).

4.3.2 Advanced initialization procedure

In the advanced initialization procedure, as in the naive one, first, the maximum number

of Gaussian components, denoted by Lmax here, should be selected, for example, by in-

specting the posterior distribution of the number k of components. Then, the parameters

of both the Gaussian components and the Poisson point process component are initialized

in a step-by-step fashion as described in Algorithm 4.1.

At the very beginning, it is assumed that there is no Gaussian component in the

parametric model, i.e., L = 0, and all the observed samples are allocated to the point

process component. Let us denote the matrix containing the bulk of samples allocated to

the point process component by XL+1 of size (d×ML+1), where d is the dimension of θj,k,

with 1 ≤ j ≤ k, and

ML+1 =
M∑

i=1

k(i)∑

j=1

1
z

(i)
j

=L+1
.
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Figure 4.7 – Histogram intensity of all arrival time samples using BMA approach

along with the intensity of the fitted parametric model obtained using TAP-BHHJ

with α = 0.1.

Algorithm 4.1. The advanced initialization procedure.

• Set L = 0 and allocate all the observed samples to the Poisson point process

component.

• While L ≤ Lmax do,

i) Set L = L+ 1;

ii) Extract a Gaussian component from the matrix XL+1 containing the bulk

of samples allocated to the point process component;

iii) Estimate the parameters of the model by doing a few iterations of the

SEM-type algorithm (use robust estimators in the M-step). Update the ma-

trix XL+1.

We start by adding the first Gaussian component. To this end, a sample from the bulk

of samples in the matrix XL+1 is selected such that a dense population of samples is

concentrated around it. More precisely, we compute a distance matrix D of size (ML+1 ×
ML+1) for the columns of the matrix XL+1, each column x being a vector of observed
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sample allocated to the point process component, as

D(i, j) = ‖x(i) − x(j)‖.

Then, each row of the distance matrix D is sorted in an increasing order. Let us denote

by D̃ the sorted distance matrix. Next, the sample index m with the minimum sum of

the distances from its, say, r, nearest neighbors is chosen as the center of the cluster (or

population). That is,

m = argmin
i

r∑

j=1

D̃(i, j).

Finally, we estimate the parameters of the new Gaussian component from the selected x(m)

and its r nearest neighbors. After adding each Gaussian component, a few iterations, say,

three, of the SEM-type algorithm are carried out to estimate all the parameters of the

model qη. This procedure is repeated until there are L = Lmax Gaussian components in

the model.

To clarify the advanced initialization procedure, Figure 4.8 illustrates the normalized

pdf’s of the estimated Gaussian components together with the histogram of the samples

allocated to the point process component in different steps of the proposed initialization

procedure. We set Lmax to three and we used TAP-KL2 to estimate the parameters at

each step of the advanced initialization procedure.

Figure 4.8(a) shows the histogram of the samples allocated to the Poisson point process

component, i.e., XL+1, when L = 0. It can be seen that there are two regions of dense

population (or modes); one located around 150 and another one around 300. In the next

step, a Gaussian component was extracted from XL+1 and located at µ̂1 = 158 using the

distance matrix D as described before. Figure 4.8(b) shows the normalized pdf of the

new Gaussian component and updated histogram of the point process components after

estimating the parameters using three iterations of TAP-KL2 algorithm. As a result, the

samples distributed around the first mode of Figure 4.8(a) were captured by the added

Gaussian component and the mean λ was decreased from 2.88 to 2.42. Next, another

Gaussian component located close to the second mode of Figure 4.8(a) was added to the

model. Figure 4.8(c) shows the normalized pdf of both Gaussian components. Finally, a

third Gaussian component was added and the final estimated parameters are presented in

Figure 4.8(d).

Remark 4.2. The advanced initialization procedure can also be regarded as a complicated

summarizing algorithm itself that starts from scratch (with no Gaussian component in the

model), and, then, adds components progressively.
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Figure 4.8 – Normalized intensity of the estimated Gaussian components (left col-

umn) and histograms of the samples allocated to the point process component (right

column) for different steps of the advanced initialization procedure described in Algo-

rithm 4.1 used for the first illustrative example.
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Remark 4.3. We found that an approach which has some common features with the ad-

vanced initialization procedure has been developed independently by Melnykov and Mel-

nykov (2011) for initializing the EM algorithm in Gaussian mixture models.

4.3.3 Remarks on how to choose L

Choosing an appropriate value for the number L of Gaussian components, which is indeed

a model selection problem, is obviously a vital step in the approach that we proposed

for summarizing variable-dimensional posterior distributions; see Section 3.3 for similar

discussions. So far, we inspected visually both the posterior distributions of k and the

sorted component-specific parameters to select a value for L.

Nevertheless, we saw in the second illustrative example of the previous chapter (see

Section 3.3.3) that existence of the significant peaks in the distribution of samples allocated

to the point process component is an indication of insufficiency of the chosen value for L

(see the peak located around tµ = 150 in the distribution of the samples allocated to the

point process component shown in Figure 4.6 for a similar issue). In fact, the samples

allocated to the point process component can be regarded as the residuals of the fitted

model, that is, the observed samples which the L Gaussian components in qη have not been

able to describe. In the literature, it is always recommended to scrutinize residuals after

fitting a model to an observed data (see, e.g., Draper and Smith, 1981, Chapter 3). More

precisely, in our problem, existence of such peaks indicates our uniform assumption of the

distribution of the residuals have been violated. Therefore, increasing L is an attempt to

capture those non-uniform patterns (see Section 4.4 for more discussion). This approach

can be seen as the forward selection procedure of the variable selection literature (see, e.g.,

Draper and Smith (1981, Chapter 6) and Miller (2002)).

On the other hand, in repeated experiments discussed in Section 3.4, in a systematic

way, we set the value of L to the largest value of k such that under that model there is

at least 5% of the total number of observed samples 2. Then, during the process of the

summarizing algorithms, Gaussian components with estimated probabilities of presence

close to zero were removed. In other words, having Gaussian components with negligible

probabilities of presence indicates that L was overestimated. This approach is similar to

the backward elimination procedure in variable selection literature (see, e.g., Draper and

2Note that, however, when using the advanced initialization procedure, the chosen value for L can be

even larger than the maximum value of k visited by the Markov chain, as in this approach we are not

using the posterior distributions of component-specific parameters given k = L (see Section 4.4 for more

discussion).
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Smith (1981, Chapter 6) and Miller (2002)). Note also that one can also remove the

components with the estimated probabilities of presence smaller than a certain threshold

in a post-processing step (see Section 3.4 for more discussion).

In the following section, we use a combination of the both aforementioned approaches

to select an appropriate value for L. We run the summarizing algorithms with a “guess”

value for L, obtained by inspecting visually the posterior distributions of k and component-

specific parameters (for example, L = 3 was a guess value in the example analyzed in

this section). Then, we inspect the residuals and study the goodness-of-fit of the model,

e.g., through analyzing the intensity of the fitted model (see Figure 4.7), to see whether

additional Gaussian components are needed. If so, we increase L and run the algorithms

again. This procedure of adding Gaussian components might be repeated several times.

In the meanwhile, Gaussian components with estimated probabilities of presence close to

zero will be removed while running the algorithms.

4.4 Results

In this section, we investigate the performance of the proposed summarizing approach on

three examples (including the one discussed in the previous section). For each example,

we were provided with 60 000 post burn-in RJ-MCMC output samples from the posterior

distribution (4.6). We further thinned the samples to every fifth. Hence, the number M =

12 000 of RJ-MCMC samples used as observations for the summarizing algorithms. In all

examples, we use the advanced initialization procedure proposed in Section 4.3 to initialize

the algorithms.

4.4.1 First example

In the previous section, we saw the performance of the proposed summarizing approach on

the variable-dimensional posterior distribution of the first illustrative example shown in

Figure 4.4 when using a model with L = 3 Gaussian components. Nevertheless, inspecting

the distribution of samples allocated to the point process component (bottom right panel

of Figure 4.6), it can be seen that there is a dense population region of samples around

tµ = 160, though a Gaussian component with µ̂1 = 158.31 and π̂1 = 1 resides there.

This observation suggests that an additional Gaussian component should be added to the

parametric model for a better approximation of the true posterior distribution.

Hence, as described in Section 4.3.3, we increase L by one and study the solution
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obtained when there are four Gaussian components in the model. Figure 4.9 shows the

histogram of the labeled samples along with the pdf’s of the fitted Gaussian components

using 100 iterations of TAP-BHHJ with α = 0.1 and L = 4. Moreover, the estimated

parameters of components are presented in the corresponding panels. Comparing the

summary shown in the figure with the one shown in Figure 4.6, it can be seen that the

additional Gaussian component with π̂2 = 0.22 (see top right panel of Figure 4.9) captured

the extra samples around tµ = 160. As a result, the corresponding peak in the histogram

of residuals is removed and the estimated mean λ̂ goes from 0.55 to 0.31.
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Figure 4.9 – Histogram of the labeled samples along with the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-BHHJ with α = 0.1

and L = 4 to analyze the first example of Auger project. The estimated parame-

ters of each component are presented in the corresponding panel. To generate these

histograms the randomized allocation procedure was run 10 times.

It can be seen from the obtained summary presented in Figure 4.9 that there are

two muons with high probabilities of presence at µ̂1 = 158.42 and µ̂4 = 308.45 in the

variable-dimensional posterior distribution shown in Figure 4.4. There is also a third

muon at µ̂3 = 286.91 with probability of presence π̂3 = 0.39. Note that these are the same
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components as in the case when L was set to three. Finally, the posterior distribution

contains a fourth muon at µ̂2 = 159.44 with low probability of presence. Furthermore,

inspecting the distributions of the samples allocated to the Gaussian components shown

in Figure 4.9, it can be seen that the effects of label-switching were successfully removed

by the proposed algorithm (observe that all distributions are unimodal).

However, still a peak around tµ = 320ns is apparent in the distribution of the residuals

shown on the bottom panel of Figure 4.9. According to our discussion in Section 4.3.3,

an extra component is needed to catch those samples in the residuals. Thus, we ran 100

iterations of TAP-BHHJ with α = 0.1, this time with L = 5 Gaussian components in the

model. Figure 4.10 illustrates the normalized pdf’s of the fitted Gaussian components for

both cases of L = 4 and L = 5. For comparison, the posterior distributions of sorted

arrival times given k are also depicted. Comparing the two obtained summaries, it can be

seen that when L = 5 a Gaussian component, with π̂5 = 0.09, shown in orange is added

capturing samples around µ̂5 = 326.73. As a result, the estimated value of λ becomes 0.22.

The estimated parameters of the other four Gaussian components were almost identical

in both cases.
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Figure 4.10 – Normalized pdf’s of the fitted Gaussian components using 100 iterations

of TAP-BHHJ summarizing algorithm with α = 0.1 using once with L = 4 and once

with L = 5 on the first example. The top panel shows the posterior distributions of the

sorted arrival times given k. The vertical dashed lines locate the true arrival times.

To verify the goodness-of-fit of the approximate posterior distribution, i.e., qη̂, Fig-
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ures 4.11(a) and (b) depict the histogram intensities of the observed samples obtained us-

ing the BMA approach along with the intensities of the fitted Gaussian components when

there were four and five components in the model, respectively. It can be seen from the

figures that when L = 5, the fitted model better captured the samples around tµ = 320ns.

Moreover, Figure 4.11(c) compares the true posterior distribution of k with its approx-

imated versions. The means of all posterior distributions are equal to 2.83. All three

figures confirm that the approximate posterior distributions well captured the information

in the true one.
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Figure 4.11 – Goodness-of-fit of the approximate posterior distribution for the first

example: (a, b) histogram intensities of the observed samples along with the intensities

of the fitted Gaussian components for L = 4 and L = 5, respectively. (c) Posterior

distribution of the number k of muons (black) versus its approximated versions (gray).
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4.4.2 Second example

In the second example considered in this section, the observed signal consists of eight

muons located at tµ = (44, 46, 141, 266, 269, 346, 498, 644). Figure 4.12 shows both the

observed signal and the intensity of the model (4.3) for this example. Note that there

are two pairs of closely located components, i.e., one around tµ = 45ns and another one

around tµ = 267ns. The posterior distributions of the number k of muons and the sorted

arrival times are shown in Figure 4.13. Using the BMS approach, the model with k = 7

components would be selected (p(k = 7 | n) = 0.35). However, as can be inspected from

the figure, the second and third posterior distributions of sorted arrival times given k = 7

have large variances (ŝ2
2 = 2306 and ŝ2

3 = 80, using the normalized interquartile range

explained in Section 2.5.1 as variance estimates). The former is highly multimodal, whereas

the latter has a heavy tail on the right.
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Figure 4.12 – (top) Observed signal n of the second illustrative example. (bottom)

Intensity of the model h(t | aµ, tµ) defined in (4.3). There are k = 8 muons in the

signal with the true arrival times, i.e., tµ = (44, 46, 141, 266, 269, 346, 498, 644),

indicated by vertical dashed lines.

Considering the posterior probabilities given in p(k | n) and the posterior distributions

of the sorted arrival times shown in Figure 4.13, reasonable choices for L would be L =

{8, 9} (note that p(k ≤ 8 | n) = 0.88 and p(k ≤ 9 | n) = 0.97). Therefore, at a first
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Figure 4.13 – Posterior distributions of the number k of muons (left) and the sorted

arrival times, tµ, given k (right) constructed using 60 000 RJ-MCMC output samples

after discarding the burn-in period for the second example. The true number of com-

ponents is eight. The vertical dashed lines in the right figure locate the arrival times,

i.e., tµ = (44, 46, 141, 266, 269, 346, 498, 644).

attempt, we ran 100 iterations of TAP-BHHJ with α = 0.1 with different values of the

number L = {8, 9} of Gaussian components on the variable-dimensional posterior shown

in Figure 4.13.

When L = 8, Figure 4.14 shows the histogram of the labeled samples together with the

pdf’s of fitted Gaussian components. Moreover, the components’ estimated parameters

are presented in the corresponding panels. It can be seen from the figure that there

are six components in the fitted model with probabilities of presence equal to one that

correspond to the components shown in the last row of Figure 4.13. There is also the

second Gaussian component with large estimated variance of ŝ2
2 = 1225—almost half of

the variance estimated using the BMS approach—that captured samples distributed in the

range of [40, 180] (see Figure 4.15(c) for a zoomed view). Finally, a Gaussian component

is associated with the samples around µ̂4 = 150.83 but with low probability of presence.

Figure 4.15 shows the histogram of samples allocated to the Gaussian component with
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Figure 4.14 – Histogram of the labeled samples along with the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-BHHJ with α = 0.1

and L = 8 for the second example. The estimated parameters of each component are

presented in the corresponding panel. To generate these histograms the randomized

allocation procedure was run 10 times.

large estimated variance along with its fitted pdf’s for different values of L = {7, 8, 9}.

Moreover, the corresponding summary when the BMS approach was used is also illustrated

for comparison. It can be seen from Figure 4.15(c), corresponding to the case when L = 8,

despite a Gaussian component being located at µ̂1 = 44.67 with π̂1 = 1, some samples in

this region were allocated to the Gaussian component with the large estimated variance;

see the previous example for a similar discussion. Therefore, it is anticipated that by

increasing L, additional components might catch the extra samples in that region, and

thus, the variance of that component would be decreased.

It can be seen from the figures that going from L = 7 to L = 8, the mode on the

right of Figure 4.15(b) (around tµ = 150 ns) disappears from the histogram of the labeled

samples. Next, the mode on the left of Figure 4.15(c) was suppressed when L = 9, as

the corresponding samples were captured by the additional component at µ̂2 = 55.31
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(with corresponding probability of presence of π̂2 = 0.09). So, in each case, the estimated

variances were decreased. Furthermore, observe that in all cases the proposed approach

provided a better summary for this component in comparison with the BMS approach.
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Figure 4.15 – Histograms of the allocated samples to the Gaussian component with

large estimated variance and its fitted pdf’s using the BMS approach and TAP-BHHJ

with α = 0.1 and different values of L = {7, 8, 9} for the second example.

Inspecting the distribution of the samples allocated to the point process component

shown in the bottom row of Figure 4.14, one observes a mode around tµ = 270 ns. This

mode remained in the residual even for L = 9 (figure not shown here). In fact, computing

the probabilities of the number of muons in the interval tµ ∈ (260, 300) reveals that

there is a non-negligible probability of having two components in this interval. That is,

p(k = 1 | tµ ∈ (260, 300),n) = 0.89 and p(k = 2 | tµ ∈ (260, 300),n) = 0.10. These facts

suggest that a value of L = 10 can lead to a better approximation of the true posterior
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Figure 4.16 – (a) Posterior distributions of the sorted arrival times given k for the

second example. (b) Corresponding normalized pdf’s of fitted Gaussian components

using TAP-BHHJ with α = 0.1 and different values of L = {8, 9, 10}.

distribution. Therefore, we ran 100 iterations of TAP-BHHJ with α = 0.1 and L = 10

Gaussian components.
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Figure 4.16 illustrates the normalized pdf’s of the estimated components for different

values of L = {8, 9, 10} along with the posterior distributions of sorted arrival times. It

can be seen from the figure that, setting L to ten, an additional component is located

at µ̂7 = 273 with π̂7 = 0.08. Remarkably, in the true observed signal n, there were two

muons in this region (see Figure 4.12). Another point to note in the figure is that in

all the summaries corresponding to different values of L, there are six components with

probabilities of presence equal to one which are aligned with the ones in the bottom row

of Figure 4.16(a).

Finally, to verify the goodness-of-fit of the fitted approximate posterior distribution qη̂,

Figure 4.17(a) shows the histogram intensity of the observed samples obtained using the

BMA approach along with the intensity of the fitted Gaussian components when there

were L = 10 components in the model. Moreover, Figure 4.17(b) compares the true

posterior distribution of the number k of muons, i.e., p(k | n), with its approximated

versions obtained using TAP-BHHJ with different values of L. The true posterior mean

is 7.28, while the means of the approximated posteriors for L = 8 to 10 are 7.27, 7.26, and

7.28, respectively. Both figures confirm that the approximate posterior well captured the

information in the true posterior distribution.
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Figure 4.17 – Goodness-of-fit of the approximate posterior distribution for the second

example: (a) histogram intensity of the observed samples along with the intensity of the

fitted Gaussian components when L = 10. (b) Posterior distribution of the number k

of muons (black) versus its approximated versions.

Remark 4.4. Observe that in this specific example, there are a number of RJ-MCMC

samples non-concentrated distributed in the region [40, 180]; see Figure 4.13. Associating
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a Gaussian component to describe those samples by the algorithm resulted in its estimated

variance to be large (or equivalently it has an uncertain location).

4.4.3 Third example

The observed signal of the third illustrative example, shown in Figure 4.18, consists of

five muons located at tµ = (105, 169, 267, 268, 498). The posterior distributions of the

number k of muons and the sorted arrival times are shown in Figure 4.19. Note that,

in this example, there are two muons with almost equal arrival times, i.e., the third and

fourth muons.

#
P

E

t[ns]

in
te

ns
it

y

100 200 300 400 500 600
0

0.5

1

1.5

0

10

20

Figure 4.18 – (top) Observed signal n of the third illustrative example. (bottom)

Intensity of the model h(t | aµ, tµ) defined in (4.3). There are k = 5 muons in the

signal with the true arrival times, i.e., tµ = (105, 169, 267, 268, 498), indicated by

vertical dashed lines.

Using the BMS approach, the model with four muons would be selected (p(k = 4 | n) =

0.4), tough M5 has almost similar posterior probability of 0.38. However, the sorted

posterior distributions of the third component, shown in orange color, under both models,

particularly the one under M5, are bimodal. We ran TAP-BHHJ summarizing algorithm

with L = {6, 7} Gaussian components using the advanced initialization procedure on

the RJ-MCMC output samples shown in Figure 4.19 (note that p(k ≤ 6 | n) = 0.94 and

p(k ≤ 7 | n) = 0.97).
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Figure 4.19 – Posterior distributions of the number k of muons (left) and the sorted

arrival times, tµ, given k (right) constructed using 60 000 RJ-MCMC output samples

after discarding the burn-in period for the third example. The true number of com-

ponents is five. The vertical dashed lines in the right figure locate the arrival times,

i.e., tµ = (105, 169, 267, 268, 498).

When L = 6, Figure 4.20 shows the histogram of the labeled samples and the esti-

mated parameters of the components. From the figure, it can be seen that the “severe”

label-switching exhibited in Figure 4.19 is removed completely and the estimated Gaus-

sian components enjoy reasonable variances. In the presented summary, there are four

components with high probabilities of presence corresponding to the ones shown in the

bottom row of Figure 4.19. There are also two other components with comparatively low

probabilities of presence.

To discuss better the choice of L, Figure 4.21 illustrates the histograms of the residuals

of the fitted model for different values of L = {6, 7, 8, 9}. It can be seen from the top

left panel of Figure 4.21 that the distribution of the residuals corresponding to the case

where L = 6 contains a few peaks. The peaks are gradually removed by adding Gaussian

components. When L = 7, a component is added at µ̂ = 99.47 with π̂ = 0.06 that captured
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Figure 4.20 – Histogram of the labeled samples along with the pdf’s of estimated

Gaussian components in the model (black solid line) using TAP-BHHJ with α = 0.1

and L = 6 for the third example. The estimated parameters of each component are

presented in the corresponding panel. To generate these histograms the randomized

allocation procedure was run 10 times.

samples distributed at the left peak of the top left panel of Figure 4.21. This is also coherent

with the probabilities of having one or two components in the interval tµ ∈ (80, 120)

(p(k = 1 | tµ ∈ (80, 120),n) = 0.91 and p(k = 2 | tµ ∈ (80, 120),n) = 0.08.). Increasing the

number L of components to eight, the samples corresponding to the peak around tµ = 270

were captured by the additional component at µ̂ = 268.4 with π̂ = 0.12 (see the bottom

left panel of Figure 4.21). Furthermore, Figure 4.22 compares the estimated Gaussian

components for different values of L.

Figure 4.23 shows the histogram intensities of the observed samples along with the

intensities of the fitted Gaussian components for L = {8, 9} (note that the right column

panels are zoomed versions of left column ones). It can be seen from the left column panels

that, in both cases, the fitted model exhibits an acceptable fit to the distribution of the
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Figure 4.21 – Histograms of the residuals of the fitted model using TAP-BHHJ with

different values of L for the third example. To generate these histograms the random-

ized allocation procedure was run 10 times.

observed samples. Nevertheless, inspecting the top right panel, one can see that the model

with L = 8 components was not able to capture well the samples in the interval tµ ∈
(200, 300). Moreover, computing the probabilities of the number k of muons in that

interval reveals that there is a non-negligible probability of having four components in

that region (p(k = 4 | tµ ∈ (200, 300),n) = 0.01). These two facts suggest using a model

with L = 9 components for this example. The bottom row of Figure 4.22 shows the

normalized pdf’s of the estimated components. See the bottom right panel of Figure 4.23

for improvements in the goodness-of-fit of the approximate model when nine Gaussian

components were used.

Remark 4.5. Note that p(k = 9 | n) is almost equal to zero. Hence, the naive initialization

procedure cannot be used in this case.
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Figure 4.22 – (a) Posterior distributions of the sorted arrival times given k. (b)

Corresponding normalized pdf’s of fitted Gaussian components using TAP-BHHJ

with α = 0.1 and different values of L.
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Figure 4.23 – Histogram intensities of the observed samples along with the intensities

of the fitted Gaussian components using TAP-BHHJ with L = {8, 9} for the third

example.

4.5 Summary and Discussion

In this chapter, we studied the capability of the algorithms proposed in Chapter 2 for

relabeling and summarizing the variable-dimensional posterior distributions encountered

in Auger project. In Auger project, the objective is to count the number of muons and

estimate their parameters in order to characterize the composite of the observed ultra-

high energetic particles and to assess their origin in the universe. For this study, we have

been provided with the observed data n, i.e., the number of PE’s in the bins, and the

corresponding RJ-MCMC output samples by Prof. Balázs Kégl from the Laboratoire de

l’Accélérateur Linéaire (LAL), Université Paris Sud 11. Here, we only concentrated on

the muons’ arrival times, i.e., tµ.

In Section 4.3, we discussed two substantial methodological issues of the proposed

summarizing algorithms, namely, the initialization step and the selection of the number L

of Gaussian components. First, we showed that initializing the parametric model qη using
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the “naive” initialization procedure can cause convergence issues. For example, using the

naive procedure the algorithm might be initialized near a local minimum with a multi-

modal component that, consequently, might cause convergence issues (see Section 4.3.1).

Thus, in Section 4.3.2, we proposed the “advanced” initialization procedure consisting in

adding Gaussian components progressively from the residuals of the fitted model. The

effectiveness of the advanced initialization procedure was shown on the first example (see,

e.g., Figure 4.5).

In Section 4.3.3, we discussed two procedures for selecting an appropriate value for the

number L of Gaussian components. In the first procedure, we run the algorithm with a

“guess” value of L. Then, through analyzing both the distribution of the residuals and

the figures showing the goodness-of-fit of the approximate posterior, we decide whether

to increase L or not. For example, we recommended to increase L, provided there is a

significant peak in the distribution of the residuals. This approach is similar to the forward

selection procedure in the variable selection literature. The second procedure consists in

eliminating components with probabilities of presence close to zero while the algorithm is

running. This procedure can also be seen as the backward elimination procedure in variable

selection literature. In the results presented in this chapter, we used a combination of both

procedures.

We analyzed the variable-dimensional posterior distributions of three examples in this

chapter. The posterior distribution of sorted arrival times given k of all three examples

contained at least one large variance component with multimodal distribution. These

components, on the one hand, made the summaries obtained using the BMS approach

undesirable in the sense that the effects of label-switching was not removed by simply

sorting the components. On the other hand, when the summarizing algorithms were used

with the naive initialization procedure, because of those multimodal components, they

were trapped in local minima. However, we saw that, in all three examples, using the

advanced initialization procedure, the summarizing algorithm were capable of removing

the label-switching effects and the resulting summaries enjoy Gaussian components with

fairly reasonable variances.

In the results shown in Section 4.4, we particularly concentrated on how the goodness-

of-fit of the approximate posterior distribution can be improved through choosing an

appropriate value for L based on the remarks explained in Section 4.3.3. We saw that, in

order to have an acceptable fitting, the chosen value of L should often be larger than kMAP .

In fact in the third example, the final chosen value of L = 9 was even larger than the max-
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imum model visited by the Markov chain. As a result, the obtained summaries contained

a few components with low probabilities of presence. Nevertheless, the delicate process of

detection of muons can be carried out in a post-processing step, for example, by discarding

components with probabilities of presence smaller than a certain threshold (see Section 3.4

for more information).

177



4. Bayesian Detection and Estimation of Astrophysical Particles in the Auger Project

178



Conclusions and future work

In this thesis, we have addressed both computational and inferential issues related to the

use of trans-dimensional Bayesian approaches for signal decomposition problems with an

unknown number of components.

A substantial part of this thesis has been devoted to the inferential difficulties caused

by the issue of “birth, death, and switching of components’ labels” in trans-dimensional

problems. This issue makes the process of summarization of variable-dimensional pos-

terior distributions difficult. The algorithms developed so far in the literature to solve

the label-switching issue are all restricted to the fixed-dimensional posteriors (see, e.g.,

Celeux et al., 2000 ; Stephens, 2000 ; Jasra et al., 2005 ; Sperrin et al., 2010). Hence, in

variable-dimensional settings, the summarization has often been carried out by first se-

lecting a model with the highest posterior probability (i.e, using the BMS approach) and

then, applying the relabeling algorithms on the fixed-dimensional conditional posterior

distribution. Moreover, we have shown that using the BMS approach results in loosing

information from the discarded models and ignoring the uncertainties about the presence

of components.

In Chapter 2, we have proposed a novel approach for relabeling and summarizing pos-

terior distributions defined over union of subspaces of differing dimension. The proposed

approach consists in approximating the posterior distribution by an original variable-

dimensional parametric model. The proposed approach can be regarded as a continuation

of the work initiated by Stephens (2000). There have been several challenges that we have

solved towards obtaining an applicable approach.

The first challenge has been to develop an algorithm with reasonable computational

burden, to deal with problems where the number k of components is moderate to large.

More precisely, the EM-type relabeling algorithms developed in, for example, Celeux et al.

(2000) ; Stephens (2000) ; Sperrin et al. (2010) ; Yao (2011), are all computationally

prohibitive when k ≥ 10, owing to the computation of an expensive summation over
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the latent variables in the E-step. Alternatively, we proposed SEM-type algorithms to

estimate the parameters of the model. To this end, we designed an I-MH sampler to

generate samples from the conditional posterior distribution of the latent variables, i.e.,

the allocation vectors in our problem, in the S-step. Note that Sperrin et al. (2010) has also

proposed a SEM-type algorithm in a fixed-dimensional setting. But, since they work with

the normalized conditional posterior distribution of the latent variables, i.e., they compute

the computationally expensive summation, their algorithm cannot be applied when k is

large. We have shown that the SEM-type algorithm we proposed can be efficiently used

in the case where k = 30.

The second challenge we have encountered has been the sensitivity of maximum likeli-

hood-type estimators derived from minimizing the KL divergence to the observed outliers.

This issue has also been mentioned as future work in the recent paper of Yao (2011).

To robustify the algorithms, we have proposed solutions in both the modeling and the

parameter estimation stages. In the former we equipped the parametric model with a

Poisson point process component to capture the observed outliers. In the latter we pro-

posed modifications by either using robust estimators in the M-step or employing a more

robust divergence measure (specifically, we have used the α-divergence proposed by Basu

et al. (1998)). The resulting algorithms have desirable robustness properties.

The efficiency of the proposed approach, both for summarizing and for relabeling

variable-dimensional posterior distributions, has been illustrated on two problems: joint

detection and estimation of sinusoidal components observed in white Gaussian noise

(Chapter 3) and joint detection and estimation of muons in the Auger project (Chap-

ter 4). Most notably, the proposed approach has been shown to be the first approach in

the literature capable of solving the label-switching issue in trans-dimensional problems.

We have shown that the proposed parametric model provides a good approximation for the

posteriors encountered in both applications. Moreover, using the proposed approach can

provide the user with more insight concerning not only the component-specific parameters

but also the uncertainties about their presence in the model. The presented results have

confirmed that the estimated probabilities of presence are meaningful and can be used to

derive estimators with good frequentist properties.

We believe that the proposed approach will also be fruitful in other similar variable-

dimensional problems, including mixture model analysis and change point detection prob-

lems.
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Future work

Concerning the SEM-type algorithms we proposed for relabeling and summarizing variable-

dimensional posterior distributions, we consider the following potential areas of future

work.

Online selection of L: In Section 4.3, we proposed the advanced initialization proce-

dure whereby, after selecting the maximum number of components Lmax, the parametric

model has been built from scratch; that is, the Gaussian components were added to it pro-

gressively until L = Lmax. We selected Lmax by inspecting the posteriors of k and sorted

component-specific parameters and called it a guess value. Then, we used the residuals of

the fitted model to see whether the chosen value of L had been “appropriate”. As a future

work, one can develop a SEM-type algorithm in which the number L of components would

be selected online. The distribution of the residuals and the probabilities of presence, for

instance, could be used to decide when to increase or decrease L.

Theoretical convergence analysis of SEM-type algorithms: Although in the pre-

sented results of Chapter 3 and Chapter 4, we have empirically assessed the convergence of

the proposed SEM-type algorithms, we did not provide mathematical convergence results.

The main issues refraining us from using the results corresponding to the usual SEM algo-

rithm in the literature (see, e.g., Nielsen, 2000a) are the correlated observed samples, i.e.,

the samples generated by the RJ-MCMC sampler, and the I-MH sampler used to draw

the latent variables (i.e., the allocation vectors). Moreover, recall that we recommended

to use the robustified SEM-type algorithms, i.e., TAP-KL2 and TAP-BHHJ. Providing

convergence results for TAP-KL2 is expected to be harder than for TAP-BHHJ, however,

as in the M-step of TAP-KL2 the KL divergence is not exactly minimized.

Adaptive RJ-MCMC sampler: One of the most appealing perspectives of the ap-

proach we proposed for relabeling and summarizing variable-dimensional posterior distri-

butions is to design adaptive or automatic RJ-MCMC samplers for the problems where

the posterior distribution is invariant to the permutation of components labels (and thus

exhibits label-switching).

In the literature, there have been a few attempts at improving the performance of the

RJ-MCMC sampler by learning the parameters of the between-models moves’ proposal

distributions (see, e.g., Brooks et al., 2003 ; Green, 2003 ; Hastie, 2005 ; Fan et al., 2009 ;

Hastie and Green, 2011). The proposed approaches so far, however, cannot be applied to
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the problems with label-switching. To deal with such problems, Bardenet et al. (2012)

has developed an RJ-MCMC sampler whereby only the with-in model moves has been

adapted.

Since the fitted parametric model is a close approximation of the target posterior

distribution, we believe that it can be used to design both with-in model and between

models proposal distributions and the resulting adaptive RJ-MCMC sampler would enjoy

a promising performance on signal decomposition and similar problems.
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Appendix A

Optimization of the BHHJ α-divergence

A.1 Computation of the integral term in the BHHJ α-divergence

A.1.1 Option 1: Monte Carlo approximation

Let PZ
η denote the marginal distribution of z when (x, z) ∼ QL

η and let z̃(1), . . . , z̃(M̃)

denote iid draws from PZ
η . Then, the integral (2.31) can be approximated as

∫

XL

q1+α
η dρL ≈ 1

M̃

M̃∑

m=1

qαη (z̃(m))
k̃(m)∏

j=1

q̃αη (z̃
(m)
j ) ,

where k̃(m) denote the length of z̃(m). The criterion ĴαM (η) defined in (2.29) can be

approximated as

ĴαM (η) ≈ 1

M̃

M̃∑

m=1

qαη (z̃(m))
k̃(m)∏

j=1

q̃αη (z̃
(m)
j )

−
(

1 +
1

α

)
· 1

M

M∑

i=1

qαη (z(i))
k(i)∏

j=1

qαη (x
(i)
j | z

(i)
j ) . (A.1)

Note that we cannot re-use the allocation vectors z(i) of the vector of the observed sam-

ples x(i), with i = 1, . . . ,M , in the first term; indeed, they don’t have the correct marginal

distribution. For computing partial derivatives of (A.1), we can proceed as in Section 2.5.3.
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A.1.2 Option 2: “exact” computation

Let us consider once more the first term in the BHHJ α-divergence:
∫

XL

q1+α
η dρL =

∑

k≥0

∑

z∈Z

q1+α
η (z)

k∏

j=1

q̃αη (zj)

=
∑

k≥0

∑

z∈Z

q1+α
η (z) |Θ|−αnL+1

L∏

l=1

q̃αnl
η (l)

=
∑

b≥0

∑

n∈{0,1}L

Cbb+|n| |n|! q1+α
η (z) |Θ|−αb

L∏

l=1

q̃αnl
η (l) ,

where |n| =
∑L
l=1 nl and z denotes any allocation vector with nL+1 = b for the Poisson

point process component and n = (n1, . . . , nL) ∈ {0, 1}L for the other Gaussian compo-

nents (the order does not matter). Using expression of qη(z) (2.8), we obtain
∫

XL

q1+α
η dρL =

∑

b≥0

∑

n∈{0,1}L

Cb
b+|n|

|n|!

((b+|n|)!)1+α e−λ(1+α)
(
λ1+α |Θ|−α

)b

L∏

l=1

(
π1+α
l q̃αη (l)

)nl
(
(1 − πl)

1+α
)1−nl

,

and thus ∫

XL

q1+α
η dρL = e−λ(1+α)

∑

n∈{0,1}L

φ (|n|)
L∏

l=1

ψnl,l (A.2)

with

φ(m) =
∑

t≥0

ut

t! ((t+m)!)α
, u = λ1+α |Θ|−α ,

ψ0,l = (1 − πl)
1+α and ψ1,l = π1+α

l q̃αη (l) .

Remark A.1. A few remarks about Equation (A.2) :

i) The series φ(m) converges very fast (faster than the exponential series) and therefore

can be computed very precisely using a small number of terms. Moreover, only L+1

values of this functions are required (m = 0, 1, . . . , L).

ii) The sum has 2L terms : it is no longer infinite and can be implemented efficiently.

In a naive implementation, both the computation time and the memory requirement

grow exponentially with L.

iii) Taking advantage of the special structure of this sum, we could devise a recursive

implementation that has a linear memory requirement and a slightly better—but

still exponential—computational cost. But for larger values of L the Monte Carlo

approximation is a more feasible approach.
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Appendix B

Prior specification for the detection

and estimation of sinusoids in Gaussian

white noise

This appendix contains two papers addressing the issue of the prior specification over the

signal-to-noise ratio hyperparameter, i.e., δ2, in the problem of joint Bayesian detection

and estimation of sinusoidal components in white Gaussian noise:

i) Alireza Roodaki, Julien Bect, and Gilles Fleury. An empirical Bayes approach for joint

Bayesian model selection and estimation of sinusoids via reversible jump MCMC. In:

European signal Processing Conference (EUSIPCO’10), Aalborg, Denmark, 2010.

ii) Alireza Roodaki, Julien Bect, and Gilles Fleury. On the joint Bayesian model selection

and estimation of sinusoids via reversible jump MCMC in low SNR situations. In:

10th International Conference on Information Sciences, Signal Processing and their

Applications (ISSPA’10) Kuala Lumpur, Malaysia, 2010.

Assigning a weakly-informative conjugate Inverse Gamma prior, i.e., IG(αδ2 = 2, βδ2),

over δ2, as recommended in Andrieu and Doucet (1999), the results provided in the above

papers reveal that the value of its scale parameter has a significant influence on 1) the

mixing rate of the Markov chain and 2) the posterior distribution of the number k of

components. In i), we investigated an Empirical Bayes approach to select an appropriate

value for this hyperparameter in a data-driven way. In ii), we took a different approach and

used a truncated Jeffreys prior. However, both approaches failed in low SNR situations,

while in high SNR situations the sensitivity to βδ2 is negligible. In Section 3.2.5 of the

present document, we propose instead to assess the sensitivity of the posterior distribution

to βδ2 using an SMC sampler, following an idea of Bornn et al. (2010).
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ON THE JOINT BAYESIAN MODEL SELECTION AND ESTIMATION OF SINUSOIDS
VIA REVERSIBLE JUMP MCMC IN LOW SNR SITUATIONS

Alireza Roodaki, Julien Bect and Gilles Fleury

Department of Signal Processing and Electronic Systems,
SUPELEC, Gif-sur-Yvette, France.

ABSTRACT

This paper addresses the behavior in low SNR situations
of the algorithm proposed by Andrieu and Doucet (IEEE
T. Signal Proces., 47(10), 1999) for the joint Bayesian
model selection and estimation of sinusoids in Gaussian
white noise. It is shown that the value of a certain hyper-
parameter, claimed to be weakly influential in the origi-
nal paper, becomes in fact quite important in this context.
This robustness issue is fixed by a suitable modification
of the prior distribution, based on model selection consid-
erations. Numerical experiments show that the resulting
algorithm is more robust to the value of its hyperparame-
ters.

Index Terms— Bayesian model selection; reversible
jump MCMC; prior calibration; Bayesian sensitivity anal-
ysis; spectral analysis.

1. INTRODUCTION

Detection and separation of signals in low SNR conditions
has many applications in various fields such as communi-
cation, radar and sonar—to name but a few. Moreover, si-
nusoids are one of the most common kind of signals used
in these applications. The problem of joint detection and
estimation of sinusoids in low SNR situations, assuming
unknown number of components, is therefore of general
importance.

A fully Bayesian algorithm based on Reversible Jump
Markov Chain Monte Carlo (RJ-MCMC) technique [1]
for handling this problem, not specifically in low SNR
situations, has been proposed in [2]. This algorithm, of
course with appropriate modifications, has been used for
other applications such as polyphonic signal analysis [3],
array signal processing [4], and nuclear emission spectra
analysis [5]. However, to the best of our knowledge, the
behavior of this algorithm in low SNR situations has never
been studied. To present the problem more explicitly, in
the following we will introduce the notations used in the
algorithm.

Let y= (y1, y2, . . . , yN )
t be a vector ofN indepen-

dent observations. Based on the modelMk (for k =
0, 1, . . . , kmax), y can be represented by summation ofk
sinusoids together with a white Gaussian noise. Defining
theN × 2k matrix containing the sinusoids with different
radial frequencies,Dk, as below

Dk(i+1, 2j−1) , cos(ωj,ki),Dk(i+1, 2j) , sin(ωj,ki)

for i = 0, . . . , N − 1 andj = 1, . . . , k, one can write the
normal linear regression model for the current problem

with k components:

y = Dk.ak + n,

wheren is the white Gaussian noise of varianceσ2. The
unknown parameters are assumed to be the number of
componentsk andθk = {ak,ωk, σ

2}.
As in many Bayesian model selection approaches for

normal linear regression problem, the well-known con-
ditionally conjugateg-prior [6, 7, 8], which provides
tractable computations, has been assigned as a prior over
the amplitudes in the model proposed in [2]. Theg-
prior is a zero mean multivariate normal distribution with
σ2/g(Dt

kDk)
−1 as its covariance matrix. The variable

calledg controls the expected size of the amplitudes. This
parameter has been substituted byδ−2 in [2] and δ2 has
been called the Expected SNR (ESNR).

Owing to the influence of the ESNR on the per-
formance of the algorithm, particularly in the Bayesian
model selection part, several approaches for setting or
estimating it have been proposed in the variable selec-
tion literature; see [7, 8, 9] and references therein. To
keep the Fully Bayesian spirit, a vague conjugate Inverse-
Gamma (IG) prior has been assigned over ESNR in [2],
i.e. p

(

δ2|αδ2 , βδ2
)

= IG ( · |αδ2 , βδ2). Although it was
mentioned that the performance of the proposed algorithm
is not sensitive to the value of the scale parameterβδ2 , our
experiments have shown that this parameter becomes in-
fluential when dealing with low SNR signals.

The structure of this article is as follows. Section 2
briefly recalls the Bayesian algorithm proposed in [2].
Section 3 discusses first the “dimensionality penalty” in-
duced by the hyperparameterδ2 and then the effect ofβδ2

on the posterior distribution ofk andδ2. Section 4 dis-
cusses solutions to the problem of choosingβδ2 : since
the usual data-driven approaches fail in low SNR situa-
tions, we propose to use a truncated Jeffrey prior instead.
Section 5 presents numerical results that support the pro-
posed method and discusses its sensitivity to the lower
boundδ2min of the truncated prior. Finally, Section 6 con-
cludes the article and addresses possible future works.

2. BAYESIAN FRAMEWORK

The full joint distribution of the observed signal and the
unknown parameters, in the model proposed by [2], has
the following hierarchical structure:

p(y, k,θk, δ
2) = p(y | k,θk) p(θk | k, δ

2)

× p(k) p(δ2).
(1)
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2.1. Prior distributions

As proposed by [2], the prior overk is a Poisson distribu-
tion with meanΛ, truncated to{0, 1, . . . , kmax}. Condi-
tional onk, theωk ’s are independent and identically dis-
tributed, with a uniform distribution on(0, π). The noise
varianceσ2 is endowed with Jeffrey’s uninformative prior,
i.e. p(σ2) ∝ 1/σ2, where the symbol∝ denotes propor-
tionality.

Furthermore, they have suggested to assign a conju-
gateIG(αδ2 , βδ2) prior over ESNR and to setαδ2 to two
for having an infinite variance. However, as it can be seen
in Figure 1, the posterior overδ2 is severely sensitive to
the value ofβδ2 .

δ2
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Fig. 1: CDFs of priors overδ2 for different values ofβ
δ2

.

The hyperparameterΛ has been assigned in [2] a
Gamma prior, i.e.p(Λ) = G(αΛ, βΛ), with αΛ ≈ 1

2 as
a shape parameter andβΛ ≈ 0 as a scale parameter. This
is equivalent to using a negative binomial prior overk that
puts more emphasis on small values. In this paper, in or-
der to have an almost flat prior overk, the parameterαΛ

is set to a value close to1.

2.2. Sampling structure

Based on (1) and Bayes Theorem, after simply integrating
ak andσ2 out, the joint posterior distribution ofk andωk,
up to a normalizing constant, can be written as

p
(

k,ωk, δ
2,Λ |y

)

∝ (ytPky)
−N/2 Λkπ−k

k! (δ2 + 1)k

× 1(0,π)k(ωk) p(δ
2) p(Λ) ,

(2)

with

Pk = IN −
δ2

1 + δ2
Dk

(

Dt
kDk

)−1
Dt

k. (3)

In the following, different steps for sampling from the
above distribution are briefly described. For more detailed
expressions, please refer to [1, 2].

The sampler consists of a Metropolis-Hastings (MH)
move for the target density (2), which updates the values
of k andωk, followed by a sequence of Gibbs moves to
updateδ2 andΛ. The proposal kernel, in the MH step,

is a mixture of within-model moves, which update the ra-
dial frequencies without changingk, and between-models
moves, which change the value ofk by adding or remov-
ing a component (so-called birth/death move). The Gibbs
move forδ2 if performed by demarginalization ofσ2 and
ak and then sampling from the “uncollapsed” posterior
of δ2.

Except for a modification in the birth/death ratio, the
moves implemented in our sampler are the same as in [2].
In the birth move, after proposing a new component by
sampling its radial frequency fromU(0, π), it is randomly
located among the previous components. Then, the move
is accepted with probabilityαbirth = min{1, rbirth},
where

rbirth =

(

ytPk+1y

ytPky

)−N/2
1

1 + δ2
. (4)

One should note that the birth ratio (4) differs from the
one reported in [2] by a multiplicative factor of1/(k+1).
A similar mistake for a similar algorithm has been found
in the field of genetics [10]. Note that using the ratio given
in [2] amounts to changing the prior distribution onk.
This issue will be dealt with in greater detail in a forth-
coming paper. In the meantime, the reader is referred to
[11] for more information on the role of permutations and
sorting in the computation of RJ-MCMC ratios.

3. SENSITIVITY TO THE VALUE OF βδ2

In this section, the effect ofβδ2 on the performance of the
algorithm in low SNR situations is discussed.

To better understand the importance ofβδ2 , the role
of δ2 will be discussed first, following the ideas intro-
duced in [9, 12] to make a connection between Bayesian
algorithms and model selection criteria. Let us assume,
for the sake of simplicity, a flat prior over the number of
components. Then, the log-posterior can be written as

log p
(

k,ωk |y, δ
2
)

= −
N

2
log (ytPky)− F · k + C,

(5)
whereF = log

(

π
(

1 + δ2
))

andC is a constant which
does not depend onk andωk. F can be interpreted as
a dimensionality penalty, which penalizes complex mod-
els. Therefore, large values ofδ2, which result in large
values ofF , cause the algorithm to neglect small compo-
nents with respect to the noise. Conversely, “small” val-
ues ofδ2 result in an algorithm which does not penalize
enough “small” components and leads to overfitting.

In addition to—and partly because of—its role in the
model selection properties of the algorithm, the value
of δ2 has a strong influence on the behavior of the result-
ing algorithm. For low values ofδ2, the Markov chain
has to visit much more often regions of the state space
corresponding to high values ofk, where the algorithmic
complexity of running the chain is much higher. For high
values ofδ2, the posterior distribution has sharper peaks
and valleys, which makes it much more difficult for the
chain to explore, resulting in a slower convergence rate.

Turning to the role ofβδ2 , first, one should note that
theIG prior used in [2], although chosen to be weakly in-
formative, is not really “vague” (see Figure 1). In fact, it

188



has a mode atβδ2/(αδ2 + 1). By changing its scale pa-
rameter the behavior of the algorithm can be controlled
just like changing the values ofδ2 itself, esp. in the
low SNR situations where likelihood does not provide
much information aboutδ2. Figure 2 displays the sen-
sitivity of the posteriors ofk andδ2 to the hyperparam-
eterβδ2 in an experiment of signal detection underM1

with SNR = −1 dB, which is not very low. In this
study, SNR is defined as‖Dkak‖

2
/
(

Nσ2
)

. It can be
seen in this figure that the posterior ofδ2 is moving to
the right by increasing the value ofβδ2 . Moreover, if
one is interested in model selection based on the maxi-
mum of the posterior of the number of components, i.e.
argmaxk∈{0,··· ,kmax} p(k |y), the selected models under
βδ2 = 1, βδ2 = 10, andβδ2 = 100 would beM2, M2,
andM1, respectively. The differences in the results for
Bayesian model averaging (not shown in this paper) are
even more important.

βδ2 = 1
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Fig. 2: The posteriors ofk andδ2 under the experiment of signal de-
tection withSNR = −1 dB and different values ofβ

δ2
. In the second

row, the gray dotted lines show the prior and the black lines show the
posterior ofδ2. The length of the chain was set to 100k, with a burn-in
period of 20k samples.

4. PROPOSED METHODS

In the following possible methods for either estimating a
reasonable value forβδ2 from the observed data or stabi-
lizing the algorithm by modifying the prior are introduced.

4.1. Data-driven methods

In order to estimate a proper value forβδ2 the first two
approaches that may come to mind are the Fully Bayesian
and the Empirical Bayes (EB) methods. The former one is
constructed by assigning a vague conjugate Gamma prior
overβδ2 , that is,βδ2 ∼ G(a, b). Then, one can update it
by performing a Gibbs move withG(a+ αδ2 , b+ δ−2) as
proposal distribution. On the other hand, the EB method
is a data-driven approach in which the marginal likeli-
hood of the parameter given the data, i.e.p (y |βδ2), is
maximized. This idea has been used in [7, 9, 12] for es-
timating δ2. However, since in this problem,p (y |βδ2)

does not exist in closed form, one should use Monte Carlo
methods to estimateβδ2 as in [13].

4.2. Using a truncated Jeffrey prior over δ2

The idea of using an improper Jeffrey prior over ESNR,
which provides a flat prior over thelog

(

δ2
)

in contrary
to the current prior, has been mentioned in [2] but it is not
used asδ2 = 0 would become an absorbing state of the
Markov chain. Here, we propose to truncate the Jeffrey
prior using a lower boundδ2min and an upper boundδ2max.
The sensitivity of the algorithm toδ2max can be reduced by
setting it to a large value, say 10000. However, choosing
the value of the lower bound is less trivial, since it controls
the minimal dimensionality penalty induced by the prior;
a numerical sensitivity analysis will be carried out in the
next section.

5. SIMULATION RESULTS AND DISCUSSION

In this section, we study the performance of the proposed
solutions for reducing the sensitivity of the Bayesian al-
gorithm to the prior overδ2. Simulations are carried out
with the observed signal of lengthN = 64. In this pa-
per, the problem of signal detection in low SNR situation
is considered. The parameters of the single sinusoid are
as follows:ω1,1 = 0.2π, − arctan(as1/ac1) = π/3, and
a2s1 +a2c1 = 20. The length of chain in all simulations was
100k, with a burn-in period of 20k samples.

The data-driven approaches estimate a reasonable
value for the hyperparameterβδ2 in high SNR situations
but do not perform satisfactorily in low SNR situations.
In fact, in these situations, our numerical experiments
showed thatβδ2 is estimated to be very close to0, which
imposes too smallδ2, using both methods. It has also been
reported in [7] that the EB method tends to estimateδ2 as0
under the null model in a similar framework.

On the other hand, in the case of using a truncated Jef-
frey prior overδ2, the value ofδ2min determines the mini-
mal dimensionality penalty. One should note that, a rea-
sonable range of values for the lower bound is restricted,
since having a high minimal penalty is not suitable. More-
over, settingδ2min to a large value might cause convergence
issues. Thus, up to now, we have translated the problem
of estimating a proper value for the hyperparameterβδ2 to
the problem of finding a reasonable value forδ2min. In the
sequel, the sensitivity of the algorithm to the variations of
this parameter is studied.

Figure 3 shows the posterior distributions fork andδ2

for the same observed signal as Figure 2. As depicted
in this figure, the sensitivity of the algorithm to the vari-
ations ofδ2min is much less than that ofβδ2 . In fact no
matter what the value ofδ2min is, the modelM1 would be
selected based on the MAP ofk. For further studying the
sensitivity of the algorithm to the parameterδ2min, the prob-
abilities of selected models based onargmax p(k |y) in
100 realizations of the sampler for different values of SNR
were estimated. Figure 4 shows the sensitivity of the algo-
rithm to this parameter for the cases ofSNR = −3 dB and
SNR = −4 dB. In this figure, the algorithm was run with
δ2min = 0.5. The probabilities for other values ofδ2min were
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obtained using importance sampling. This method has al-
ready been used for the sensitivity analysis of Bayesian
algorithms to their priors; see for instance [14]. It can
be concluded from figure 4 that the probabilities are not
very sensitive to the choice ofδ2min. However, as the value
of the lower bound increases,P2 decreases whileP0 in-
creases: this was predictable, asδ2min controls the minimal
dimensionality penalty.

6. CONCLUSION

The main contribution of this paper has been to explain
the lack of robustness, in low SNR situations, of the al-
gorithm proposed in [2] and to propose solutions for fix-
ing it. Simulation results showed that a truncated Jeffrey
prior over δ2 significantly improves the performance of
the sampler in situations where the usual data-driven ap-
proaches (Empirical Bayes and Fully Bayes) fail. Sensi-
tivity analyses, which are efficiently carried out using im-
portance sampling, reveal that the resulting algorithm is
rather robust to variations of the lower boundδ2min in a rea-
sonable range. A natural direction for future work would
be to propose a data-driven approach for the automatic se-
lection of this threshold and to assess more systematically
the performances of this algorithm.
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Fig. 3: The posteriors ofk andδ2 under the experiment of signal detec-
tion with SNR = −1 dB and different values ofδ2min.
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Fig. 4: Probabilities ofargmax p(k |y) = 0, argmax p(k |y) = 1,
andargmax p(k |y) ≥ 2 are denoted, respectively, byP0, P1, andP2

in 100 realization of the algorithm usingδ2min = 0.5. The probabilities
for other values ofδ2min, i.e. δ2min ∈ (0.5, 20], are estimated using the
importance sampling method.
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ABSTRACT
This paper addresses the sensitivity of the algorithm proposed by
Andrieu and Doucet (IEEE Trans. Signal Process., 47(10), 1999),
for the joint Bayesian model selection and estimation of sinusoids
in white Gaussian noise, to the values of a certain hyperparameter
claimed to be weakly influential in the original paper. A deeper
study of this issue reveals indeed that the value of this hyperparam-
eter (the scale parameter of the expected signal-to-noise ratio) has
a significant influence on 1) the mixing rate of the Markov chain
and 2) the posterior distribution of the number of components. As
a possible workaround for this problem, we investigate an Empiri-
cal Bayes approach to select an appropriate value for this hyperpa-
rameter in a data-driven way. Marginal likelihood maximization is
performed by means of an importance sampling based Monte Carlo
EM (MCEM) algorithm. Numerical experiments illustrate that the
sampler equipped with this MCEM procedure provides satisfactory
performances in moderate to high SNR situations.

1. INTRODUCTION

In this paper, we address the problem of detection and estimation
of sinusoids in white Gaussian noise, assuming that the number
of component is unknown. A fully Bayesian algorithm, based on
the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) tech-
nique [8, 9], has been proposed for this problem in [1]. Similar algo-
rithms have also been used for other applications such as polyphonic
signal analysis [3], array signal processing [12], and nuclear emis-
sion spectra analysis [10]. However, to the best of our knowledge,
the sensitivity of the algorithm to the value of its hyperparameters
has never been clearly discussed.

Let y= (y1, y2, . . . , yN)
t be a vector ofN observations of an

observed signal. We consider the finite family of embedded mod-
els{Mk, 0≤ k ≤ kmax}, whereMk assumes thaty can be written
as a linear combination ofk sinusoids observed in white Gaussian
noise. Letωk =

(

ω1,k, . . . ,ωk,k
)

be the vector of radial frequencies
in modelMk, and letDk be the correspondingN×2k design matrix
defined by

Dk(i+1,2 j−1), cos(ωj,ki), Dk(i+1,2 j), sin(ωj,ki)

for i = 0, . . . ,N − 1 and j = 1, . . . ,k. Then the observed signaly
follows underMk a normal linear regression model:

y =Dk.ak +n ,

wheren is a white Gaussian noise with varianceσ2. The unknown
parameters are assumed to be the number of componentsk andθk =
{ak,ωk,σ2}.

Assuming that no (or little) information is available about the
vector of amplitudesak, the conditionally conjugateg-prior is usu-
ally recommended as a default prior in the Bayesian variable selec-
tion literature [14, 21]. Under this prior, the distribution ofak con-
ditionally to σ2, k andωk is Gaussian withσ2/g (Dt

kDk)
−1 as its

covariance matrix, whereg is a positive parameter. Following [1],
a zero-meang-prior for ak will be used in this paper. Our results,
however, are likely to remain relevant for any covariance matrix of
the formσ2/g Σk (with Σk possibly depending onk andωk).

The parameterδ2 = 1/g, called the Expected SNR (ESNR),
controls the expected size of the amplitudes. Owing to its influence
on the performance of the algorithm, and assuming again that no (or
little) information is available, the hyperparameterδ2 is given in [1]
a conjugate inverse gamma prior with parametersαδ2 andβδ2, that
we denote byIG (αδ2,βδ2). Such a hierarchical Bayes approach is
usually hoped to increase the robustness of the statistical analysis;
see [18, Section 10.2] for more information. The first parameter is
set toαδ2 = 2, in order to have an heavy-tailed “weakly informa-
tive” prior (with infinite variance). It is claimed in [1, Section V.D]
that the value ofβδ2 has a weak influence on the performance of the
algorithm.

The contribution of this paper, which can be seen as a contin-
uation of [1], is twofold. First, on the basis of extensive numerical
experiments, we argue that the value ofβδ2 can have a strong in-
fluence on 1) the mixing rate of the Markov chain and 2) the poste-
rior distribution of the number of components. Second, instead of
using a fixed value for the hyperparameterβδ2, we investigate the
capability of an Empirical Bayes (EB) approach to estimate it from
the data, in the spirit of the approach used in [2, 6] to estimateδ2.
More precisely, since the marginal likelihood ofβδ2 is not avail-
able in closed form, we implement an Importance Sampling (IS)
based Monte Carlo Expectation Maximization (MCEM) algorithm
[13, 20] to maximize it numerically.

The paper is outlined as follows. Section 2 recalls the hierar-
chical Bayesian model and the RJ-MCMC sampler proposed in [1].
Section 3 discusses the influence ofβδ2 on both the mixing rate of
the Markov chain and the posterior distribution of the numberk of
components. Section 4 explains the fundamentals of the MCEM al-
gorithm, which is used for estimatingβδ2. Section 5 presents the
results of our numerical experiments and discusses the pros and
cons of the Empirical Bayes approach in estimatingβδ2. Finally,
Section 6 concludes the paper and gives directions for future work.

2. BAYESIAN FRAMEWORK

This section describes the prior distribution and the RJ-MCMC
sampler considered in this paper, following [1] unless explicitly
stated otherwise.

2.1 Prior distributions

The joint prior distribution of the unknown parameters is chosen to
have the following hierarchical structure:

p
(

k,θk,δ2
)

= p
(

ak | k,ωk,σ2,δ2) p
(

ωk | k
)

× p
(

k
)

p
(

σ2) p
(

δ2) .
(1)
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Figure 1: Truncated negative binomial prior onk corresponding
to αΛ = 1.0 (upper plot) andαΛ = 0.5 (lower plot), withkmax= 32
andβΛ = 0.001.

The conditional distribution ofak is theg-prior distribution already
described in the introduction. Conditional onk, the components
of ωk are independent and identically distributed, with a uniform
distribution on(0,π). The noise varianceσ2 is endowed with Jef-
frey’s improper prior, i.e.p(σ2) ∝ 1/σ2, where the symbol∝ de-
notes proportionality.

The prior distribution ofk is defined in [1] in two steps, follow-
ing once again the hierarchical Bayes philosophy. First,k is given
a Poisson distribution with meanΛ, truncated to{0,1, . . . ,kmax}.
Then, to increase the robustness of the inference in a context of
weak prior information onk, the hyperparameterΛ is given a con-
jugate Gamma prior, with shape parameterαΛ ≈ 1

2 and scale param-
eterβΛ ≈ 0. This is equivalent to using fork a (truncated) negative
binomial prior1 that puts a strong emphasis on small values. In this
paper, we setαΛ = 1 in order to have an almost flat prior fork
over{0, . . . ,kmax}; see Figure 1 for a comparison of the two prior
distributions.

2.2 Sampling structure

The hierarchical structure and prior distributions just described
make it possible to integrate parametersak andσ2 out of the poste-
rior distribution analytically. Thismarginalization step [17] yields
the following marginal posterior distribution:

p
(

k,ωk,δ2,Λ |y
)

∝ (ytPky)
−N/2 Λkπ−k

k! (δ2+1)k

× p(δ2) p(Λ)1(0,π)k (ωk) ,

(2)

with
Pk = IN −

δ2

1+δ2 Dk
(

Dt
kDk

)−1
Dt

k

whenk ≥ 1 andP0 = IN .
The joint posterior distribution (2) is the target distribution of

the RJ-MCMC sampler. In the following, different steps for sam-
pling from the target distribution are briefly described. For more
detailed expressions please refer to [1, 8].

The RJ-MCMC sampler, that leaves the target density (2) in-
variant, consists of a Metropolis-Hastings (MH) move for updating

1Indeed, the marginal prior distribution ofk is given by

p(k) =
Γ (k+αΛ)

Γ (αΛ) k!

(

βΛ
βΛ +1

)αΛ
(

1
βΛ +1

)k

,

which is a negative binomial distribution. See, e.g., [5, Section 2.7 and 17.2],
where the negative binomial distribution is advocated as a robust alternative
to the Poisson distribution.

the value ofk andωk, followed by a sequence of Gibbs moves to
updateδ2 andΛ. (The conditional distribution ofδ2 givenk, ωk, Λ
andy is sampled from by firstdemarginalizing [17] σ2 andak and
then sampling from the full conditional distribution.)

Since the problem under consideration is trans-dimensional,
the proposal distribution for the MH move updatingk and ωk
is in fact a mixture of proposal distributions performing within-
model moves (updating radial frequencies without changingk) and
between-models moves (“birth” and “death” moves, which respec-
tively add and remove components). Except for a modification de-
scribed below, the moves implemented in our sampler are the same
as in [1].

2.3 Correction of the birth ratio in [1]

In the birth move proposed in [1], and also used in this paper, the
insertion of a new sinusoid is proposed as follows: first a new radial
frequency is sampled from the uniform distribution on(0,π) and,
then, it is inserted at a random location2 among the existing ones.
According the theory of RJ-MCMC samplers [8] and using the same
proportion of birth and death moves as in [1], the move is accepted
with probabilityαbirth = min{1,rbirth}, where

rbirth =

(

ytPk+1y

ytPky

)−N/2 1
1+δ2 · (3)

One should note that the birth ratio computed in [1] differs from (3)
by a 1/(k+1) factor. A similar mistake in computing RJ-MCMC
ratios has been reported in the field of genetics [11]. Note that this
additional factor is equivalent to using a different prior distribution
over k. A detailed justification of (3) will be provided in a forth-
coming paper.

3. SENSITIVITY OF THE ALGORITHM TO βδ2

This section first reviews related work concerning the role ofδ2

in the Bayesian variable selection literature, and then proceeds to
describing the role ofβδ2 in the present problem.

3.1 Review of related work in Bayesian variable selection

It has been highlighted in the variable selection literature that the
parameterδ2, which controls the expected relative size of the am-
plitudes with respect toσ , implicitly defines a “dimensionality
penalty” from the model selection point of view [2, 6]. Indeed,
considering thatp(k) is approximately constant fork ∈ [0, kmax],
we have

log p
(

k,ωk |y,δ2
)

≈ −
N
2

log(ytPky)−F · k+C, (4)

whereF = log
(

π
(

1+δ2
))

andC is a constant which does not de-
pend onk andωk. F can be interpreted as a dimensionality penalty,
which penalizes complex models. Thus,δ2 plays the role of a reg-
ularization parameter, “large” values of which favor sparse signal
representations at the expense of detection sensitivity. Conversely,
“small” values ofδ2 typically lead to the selection of overfitting
models (i.e., in terms of detection performance, false positives).

In the Bayesian variable selection literature, many researchers
have tried to either set an appropriate fixed value toδ2 or estimate
it using different approaches. In [4], several fixed values forδ2 are
compared in a model averaging framework, andδ2 = max{N, p2}
is recommended as a default (“benchmark”) value, wherep denotes
the number of variables. Several approaches for the estimation
of δ2, both EB or fully Bayesian, have been proposed and compared

2Note that the same ratio would be obtained if the radial frequency were
sorted instead [16].
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Figure 2: Mixing of the chain for different values ofβδ2. The true
model isM15, and the sampler is initialized inM0.

in [2, 6, 14]. It is concluded in [2] that the Maximum Marginal Like-
lihood (MML) approach is superior to the others (in terms of mean
square error), but the conclusions of [14]—in a slightly different
setting—suggest that some fully Bayesian approaches can perform
just as well.

3.2 Role of βδ2

Our numerical experiments have revealed that the value ofβδ2 can
have a significant influence on 1) the posterior distribution of the
number of components and 2) the convergence rate of the Markov
chain.

The former fact can be understood in light of Section 3.1 where
the role ofδ2 as a dimensionality penalty has been highlighted. In-
deed, sinceβδ2 is a scale parameter for the prior distribution ofδ2,
it can be expected that, probably to a lesser extent,βδ2 should play
a similar role. In other words, high values ofβδ2 are expected to
favor sparse solutions, with a risk of omitting low SNR compo-
nents, whereas low values ofβδ2 are expected to allow solutions
with many components (high values ofk). This point will be fur-
ther discussed in Section 5 on the basis of numerical results.

Let us now discuss the influence ofβδ2 on the mixing of the
sampler. We have found that large values ofβδ2 lead to a sam-
pler that has severe mixing issues and often gets trapped in local
modes of the target distribution. This issue is illustrated in Fig-
ure 2, which shows the mixing of the chain for different values of
βδ2 in a case where the true model isM15, the number of samples
N = 64, and the sampler is initialized inM0. The mixing issue of
the chain whenβδ2 > 100 is highlighted in this figure, which causes
the sampler to get stuck for many iterations at a local mode. In fact,
whenβδ2 = 1000 the sampler cannot escape from the local mode af-
ter 100k iterations. This convergence issue might similarly happen
when the true signal is near null model and the sampler is initial-
ized near full model. So, for large values ofβδ2, the algorithm is
sensitive to the initialized state. On the other hand, too small values
of βδ2 which corresponds to assuming low ESNR, would cause the
algorithm to explore many regions of low probability of the space in
low SNR situations which can be really computationally expensive
and causes convergence problems.

A possible solution to the mixing issue would be to use a com-
bination of simulated annealing and MCMC sampler as is done, for
example, in [7]. In the next section we follow a different path and
use an EB approach to estimateβδ2 from the data.

4. IMPORTANCE SAMPLING BASED MCEM
ALGORITHM

Hierarchical models are commonly used in Bayesian model (or vari-
able) selection problems. However, this hierarchy should stop at
some point with all remaining parameters assumed fixed. Then,
based on some prior beliefs, these parameters can be set. However,
for some parameters which no information is provided beforehand,
rather than setting them to a fixed value, the EB approach uses the
observed data to estimate them. It avoids using arbitrary choices
which may be at odds with the observed data.

In this method, one tries to estimateβδ2 such that the marginal
likelihood is maximized. In other words,

β̂δ2 = argmaxβδ2
p(y|βδ2).

This is similar to MML method proposed in [6] for estimatingδ2.
The maximum likelihood may be easier to compute when the data is
augmented by a set of latent variables,u say. These latent variables,
in our case, are{ωk,k,δ2,Λ}. Then, one can use the EM algorithm
that entails, at iterationr+1, an E-step for computing the expected
log-likelihood

Q(βδ2|β̂ r
δ2) = Eβ̂ (r)

δ2

{

ln p(y,u|βδ2)|y
}

(5)

and, an M-step, for maximization ofQ(βδ2|β̂ r
δ2) overβδ2 in order

to obtain the MLE of it,β̂ r+1
δ2 .

However, in our case, computing the E-step is not possible an-
alytically. Therefore, here, we propose to use Monte Carlo approx-
imation of (5), which is called MCEM [13, 15], by simulating sam-
ples fromp(u|y, β̂ r

δ2). Moreover, the Monte Carlo estimation of (5)
can be implemented in a more efficient way using the idea of Impor-
tance Sampling (IS). As is explained in [13, 15], in this framework,
samples are just generated fromp(u|y, β̂0

δ2), whereβ̂0
δ2 is the initial

value. Then, form number of generated samples, the E-step can be
written as

Q(βδ2|β̂ r
δ2) =

m

∑
t=1

wt ln p(y,ut |βδ2)
/

m

∑
t=1

wt (6)

where

wt =
p(ut |y,β

(r)
δ2 )

p(ut |y,β
(0)
δ2 )

are the weights which in our case would simplify to

wt =





β (r)
δ2

β (0)
δ2





αδ2

exp



−
β (r)

δ2 −β (0)
δ2

δ2
t



.

Since the RJ-MCMC sampler introduced in Section 2 can easily
generatem samples fromp(u|y, β̂0

δ2), these samples can be used to
perform the IS based MCEM procedure. So, in each MCEM itera-
tion, a batch ofm samples is generated from the RJ-MCMC sampler
in order to compute (6). The computationally efficient point of this
procedure is that once the IS based MCEM algorithm is stopped,
the generated samples are not discarded. They can be used to gen-
erate the desired posterior distribution of the unknown parameters
by using the importance weights.

However, one should note that this procedure is sensitive to the
value ofβ̂0

δ2. In order to reduce the variations ofwt , it is proposed in
[13] to run a few burn-in iterations using a simple MCEM method
without importance reweighting.
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Figure 3: Estimated values ofβδ2 using the IS-based MCEM algo-
rithm. The signal is generated underM1 with N = 64,ω1,1 = 0.2π,
for several values of the SNR (see legend). The vertical line indi-
cates the burn-in period.

5. SIMULATION RESULTS AND DISCUSSION

In this section, we will investigate the capability of the IS based
MCEM algorithm for assessingβδ2 in different situations. More-
over, we will compare the performance of the sampler with several
fixed values ofβδ2. Simulations are performed on two different
sample sizesN = 64 andN = 256 generated according toM1 with
different SNRs. The SNR is defined as

SNR,
‖Dkak‖

2

Nσ2 .

The parameters of the single sinusoid are as follows:ω1,1 = 0.2π,
−arctan(a2,1/a1,1) = π/3, anda2

11+a2
2,1 = 20.

In the IS based MCEM algorithm, first, 20 burn-in iterations
with m = 100 samples were carried out. Then, the 20 IS based
MCEM procedure iterations withm = 5000 were performed to es-
timateβδ2. So, finally, in addition to an approximate estimate of
βδ2, 100k samples from the RJ-MCMC sampler are obtained and
can be used to produce the posterior distributions of the unknown
parameters, of course by using the importance weights. Figure 3
shows the performance of the IS based MCEM algorithm in esti-
mating the value ofβδ2 for different observed signals. This relation
between the value ofβδ2 and SNR, that is illustrated in figure 3, is
remarkably consistent with expectations. It is worthwhile to note
that variation of the estimated values ofβδ2 is substantially reduced
after the burn-in period, as it is shown in figure 3, which illustrates
the convergence of the algorithm.

Table 1 presents the probabilities of argmaxp(k|y) in 100 re-
alizations of the algorithms. In each realization, 100k samples were
generated and the first 20k samples were discarded as the burn-in
period. The results are presented for different fixed values ofβδ2

together with the results obtained by applying the IS based MCEM
algorithm for estimatingβδ2.

First, let us consider the case of fixedβδ2. From the results
presented in Table 1, it can be concluded that the value ofβδ2 has
a strong influence on the posterior distribution of the number of
components. Indeed choice ofβδ2 would become more critical as
the SNR decreases. Though the sampler produces reasonable re-
sults for a wide range of values ofβδ2, i.e. 10≤ βδ2 ≤ 1000, in
high SNR situations (not shown here), the behavior of the sam-
pler significantly varies by changing the value of this parameter
in low SNR situations. For instance, when SNR= −5 dB, while
the probability of detecting one component is almost the same for
the mentioned interval, settingβδ2 = 10 provides a sampler which

overestimates the number of components. On the other hand, larger
values ofβδ2 leads to a sampler that underestimates the number of
components. According to the obtained results, choosing a very
small value forβδ2, one say, is not suitable. For the values of
SNR< 0 dB, it makes convergence problems for the sampler by
accepting most of proposed birth or death moves. More precisely,
it leads to a sampler which explores all possible regions, even low
probable ones, which would be really computationally expensive
whenkmax is large. However, one should note that for all simula-
tions the samplers were initialized near null model, otherwise for
values ofβδ2 > 100 the results would definitely changed. In the
case thatN = 256, the sensitivity of the sampler to the choice of
βδ2 is less critical. This may be caused by the fact that the ob-
served signal is more informative in this case. Finally, a fixed value
of βδ2 ∈ [50,100] provides a sampler with more reasonable perfor-
mance for most values of SNR.

Turning to the results of the EB approach used here to automati-
cally estimate the value ofβδ2 from the data, it can be seen from the
table that the sampler equipped with the IS-based MCEM algorithm
has a quite satisfactory behavior in moderate to high SNR situations
(0 dB,−2 dB, and even−5 dB for N = 256). However, it is clear
that the algorithm fails to select an appropriate value forβδ2 in low
SNR situations (−10 dB, and−5 dB forN = 64): the selected value
is typically much too small, leading to severe overfitting. A similar
behavior is observed in experiments under the null modelM0 (not
shown here).

In fact, based on Table 1, it seems that usingβδ2 = 50 gives,
in all the situations considered here, results that are similar to or
better than the results of the EB approach. Additional experimental
results under various configurations and sample sizes are required,
however, to issue a general recommendation regarding the choice of
an appropriate fixed value forβδ2 (possibly depending onN) and,
also, to confirm the capability of the EB approach to automatically
select such a value in moderate to high SNR situations.

6. CONCLUSION

In this paper, first, the sensitivity of the RJ-MCMC algorithm pro-
posed in [1] for detection and estimation of sinusoids to the hyper-
parameterβδ2 has been investigated. Then, an IS-based MCEM
algorithm has been used to estimate this parameter given the data,
following an empirical Bayes (EB) approach. The IS-based MCEM
method has proved able to automatically estimate an appropriate
value forβδ2 in moderate to high SNR situations.

The main limitation of the EB approach is that it cannot esti-
mate a proper value forβδ2 in very low SNR situations. This limita-
tion was, however, predictable as in such cases the observed signal
carries very little information about the parameter of interest. To
overcome this limitation and avoid the problem of choosing ascale
for p(δ2), a truncated Jeffrey prior has been proposed in [19] and
very promising results have been obtained.

As mentioned in Section 1, this model and RJ-MCMC sampler
have also been used in other applications such as polyphonic sig-
nal analysis [3], array signal processing [12], and nuclear emission
spectra analysis [10]. The contributions of this paper are likely to
be useful in these applications as well.
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