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Abstract

Advanced mobile communication systems are characterized by an increasingly
dense deployment of different types of wireless access points. Since these systems
are primarily limited by interference, multiple-input multiple-output (MIMO)
techniques as well as coordinated transmission and detection schemes are nec-
essary to mitigate this limitation. As a consequence, mobile communication
systems become more complex which requires that also the mathematical tools
for their theoretical analysis must evolve. In particular, these must be able
to take the most important system characteristics into account, such as fad-
ing, path loss, interference, and imperfect channel state information. The aim
of this thesis is to develop such tools based on large random matrix theory
and to demonstrate their usefulness with the help of several practical applica-
tions. These include the performance analysis of network MIMO and large-scale
MIMO systems, the design of low-complexity polynomial expansion detectors,
and the study of random beamforming techniques as well as multi-hop relay and
double-scattering channels. In summary, the methods developed in this work
provide deterministic approximations of the system performance (e.g., in terms
of mutual information, achievable rates, or signal-to-interference-plus-noise ra-
tio (SINR)) which become arbitrarily tight in the large system regime with an
unlimited number of transmitting and receiving devices. This leads in many
cases to surprisingly simple and close approximations of the finite-size system
performance and allows one to draw relevant conclusions about the most sig-
nificant parameters. One can think of these methods as a way to provide a
deterministic abstraction of the physical layer which substantially reduces the
system complexity. Due to this complexity reduction, it is possible to carry out
a system optimization which would otherwise be intractable.
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Abstract (français)

Les futurs systèmes de communication mobile sont caractérisés par un déploie-
ment de plus en plus dense de différents types de points d’accès sans fil. Étant
donné que ces systèmes sont principalement limitée par les interférences, les
techniques aux entrées multiples, sorties multiples, dit “multiple-input multiple-
output (MIMO)” ainsi que la cooperation entre les émetteurs et/ou les récepteurs
sont nécessaires pour atténuer cette limitation. En conséquence, les systèmes
de communication mobiles deviennent plus complexes, qui exige que aussi les
outils mathématiques pour leur analyse théorique doit évoluer. En particulier,
ces outils doivent être en mesure de prendre en compte les caractéristiques du
système les plus importants, tels que l’affaiblissement de propagation, les in-
terférences, et l’information imparfaite d’état du canal. Le but de cette thèse est
de développer de tels outils basés sur la théorie des grandes matrices aléatoires
et de démontrer leur utilité à l’aide de plusieurs applications pratiques. Il s’agit
notamment de l’analyse des performances des systèmes “network MIMO” et
des systèmes MIMO à grande échelle, dit “massive MIMO”, la conception de
détecteurs de faible complexité à expansion polynomiale, l’étude des techniques
de precodage unitaire aléatoire ainsi que l’analyse de canaux à relais multiples
et de canaux à double diffusion. En résumé, les méthodes développées dans
ce travail fournissent des approximations déterministes de la performance du
système (par exemple, en termes d’information mutuelle, des taux réalisables,
ou du rapport signal sur bruit plus interférence) qui deviennent arbitrairement
serrés dans une régime asymptotique avec un nombre illimité d’émetteurs et de
récepteurs. Cette approche conduit souvent à des approximations de la per-
formance du système étonnamment simples et précises et permet de tirer des
conclusions importantes sur les paramètres les plus pertinents. On peut penser
à cette méthode comme un moyen pour fournir une abstraction déterministe
de la couche physique qui réduit significativement la complexité du système.
Grâce à cette réduction de la complexité, il est par exemple possible d’optimiser
certains paramètres du système, ce qui aurait été impossible autrement.
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Introduction

La demande croissante en applications multimédia mobiles a engendré une très
forte augmentation du flux de données échangées entre les systèmes de commu-
nication sans fil [1]. L’usage des “smartphones” a notamment contribué au pas-
sage des communications traditionnelles vers des communications multimédia à
haute vitesse, partout et à tout moment. Par conséquent, les attentes des utilisa-
teurs évoluent également dans le sens d’une interconnexion continue, aussi bien
à domicile qu’en déplacement. Cependant, du fait de cette pénétration crois-
sante des “smartphones”, les réseaux atteignent déjà leurs limites de capacité
lorsque la demande est forte. En effet, des problèmes de congestion apparaissent
à la fois au niveau du lien sans fil et du réseau physique filaire.

L’intérêt porté aux technologies écologiques a récemment été suscité par
l’étude “SMART 2020” [2], décrivant les effets potentiels des technologies de
l’information et des communications (TIC) sur les émissions mondiales de dioxy-
de de carbone. Bien que les TIC ne semblent que modérément contribuer aux
émissions mondiales, avec 1,25% en 2002 et une prévision d’environ 2,5% en
2020, cela représente tout de même une augmentation de 10% par an. Ceci
signifie qu’en dépit de progrès significatifs dans le domaine des technologies
économes en énergie, notre capacité à réduire (ou du moins à maintenir) la
consommation énergétique et les émissions associées, sera très vite contrariée
par l’augmentation des flux de données. Ainsi l’augmentation de la capacité des
réseaux d’une part et la réduction de la consommation en énergie d’autre part
sont deux besoins futurs, a priori contradictoires. D’où la question : comment
les opérateurs mobiles peuvent-ils satisfaire les futures demandes de transport
de données d’un point de vue aussi bien économique qu’écologique ? Dans
un premier temps, regardons les différentes options afin d’augmenter l’efficacité
spectrale des réseaux mobiles.

Plus de spectre

Presque tous les systèmes de communication mobile actuels utilisent des fréquen-
ces entre 300MHz–3GHz. Ceci est dû aux caractéristiques de propagation des
ondes électromagnétiques qui sont favorables dans cette bande. Par conséquent,
cette partie du spectre est quasiment complètement allouée et les ressources
spectrales libres se trouvent uniquement dans des fréquences plus élevées. Pour
cette raison, les systèmes de communication dits “millimeter-wave (mmWave)”
exploitant le spectre entre 3-300GHz attirent de plus en plus l’attention [3]. Au-
jourd’hui, seuls les systèmes de communication non-mobile ou à courte distance
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Résumé

utilisent ces bandes. En raison d’un très grand affaiblissement de propagation,
la communication avec des signaux de très courte longueur d’onde est essen-
tiellement limitée aux liens à visibilité directe, dits “line-of-sight (LOS)”. Ainsi,
assurer une couverture du réseau à l’intérieur à partir de stations de bases
(SBs) déployées à l’extérieur semble impossible. Néanmoins, plusieurs projets
de recherches actuels étudient la possibilité d’utilisation de mmWaves pour des
réseaux mobiles [4]. Cependant, cette recherche en est encore à ses premiers
balbutiements.

Meilleurs codages et techniques de modulation

Grâce aux “low-density parity check” (LDPC) [5] et turbo codes [6], l’“orthogo-
nal frequency-division multiplexing” (OFDM), l’adaptation de lien et l’“hybrid
automatic request” (HARQ), les systèmes modernes de communication mobile
tels que LTE [7] ou WiMAX [8] atteignent déjà des efficacités spectrales proches
des limites théoriques. Ainsi, aucune percée scientifique dans les domaines du
codage et de la modulation n’est attendue dans les années à venir. Parmi les
objectifs de recherche en cours on trouve des techniques de modulation non-
orthogonales comme l’“Isotropic Orthogonal Transform Algorithm” (IOTA)-
OFDM [9], ou des techniques comme le “Vandermonde frequency-division mul-
tiplexing” (VFDM) [10] qui exploitent le préfixe cyclique de l’OFDM pour per-
mettre des émissions à un réseau secondaire sans interférence. En outre, les
“Fountain codes” ou les “rateless codes” [11] qui généralisent dans un certain
sens la notion de HARQ, ainsi que les codes polaires [12] promettent une aug-
mentation supplémentaire de l’efficacité spectrale. Toutefois, en dépit de ces
efforts, il est peu probable que les progrès en matière de codage ou de modu-
lation soient le principal moteur d’une augmentation de la capacité des futurs
systèmes de communication mobile.

Plus d’antennes

Depuis les articles fondateurs [13, 14] dans les années 1990, les systèmes à
“entrées multiples, sorties multiples” des communications sans fil, dits MIMO
(“multiple-input multiple-output”), ont suscité un grand intérêt de la part des
chercheurs et de l’industrie. A l’heure actuelle, les bénéfices générés par des
émetteurs et/ou récepteurs à plusieurs antennes sont bien compris [15]. Les
techniques MIMO peuvent apporter des gains de puissance, améliorer la fia-
bilité des liaisons et augmenter le débit par un multiplexage spatial de plusieurs
flux de données sur la même ressource temps-fréquence. Pour cette raison, les
techniques MIMO font déjà partie intégrante des normes modernes de communi-
cation sans fil [7, 8], permettant aux SBs et aux terminaux d’utilisateurs (TUs)
de supporter jusqu’à huit antennes. Une autre option intéressante, qui fait
l’objet de nombreux projets de recherche [16, 17, 18], réside dans les systèmes
MIMO de grande échelle, dits “large-scale MIMO” ou “massive MIMO”, où
les SBs sont équipées de centaines d’antennes. En théorie, ceci peut permettre
une réduction significative de la puissance d’émission, tout en réalisant une très
grande efficacité spectrale. Bien que ne ressortissant pas directement des tech-
niques MIMO, la sectorisation de cellule d’ordre supérieur [19] et l’utilisation
d’antennes directives et intelligentes, dits “3D beamforming”, [20, 21], appa-
raissent comme des moyens efficaces pour augmenter l’efficacité spectrale. Ces
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Résumé

techniques visent à accrôıtre la répartition spatiale tout en concentrant l’énergie
transmise vers les TUs destinataires et en réduisant l’interférence vers les autres
TUs.

Plus de cellules

Il est bien connu que la réduction de la taille des cellules est le moyen le
plus simple et le plus efficace pour augmenter le débit sans fil [22, 23]. La
physique nous apprend que rapprocher un émetteur et un récepteur réduit la
puissance d’émission nécessaire pour surmonter l’affaiblissement de propagation
et d’autres phénomènes, tels que le “fading” (des évanouissements rapides de
la puissance reçue) et le bruit thermique. En outre, le débit par unité de sur-
face augmente en théorie linéairement avec la densité cellulaire. Cependant,
le déploiement de SBs traditionnelles, telles que les macro- ou microcellules,
nécessite des dépenses d’investissement de capital (CAPEX) et d’exploitation
(OPEX) colossales pour l’acquisition de sites, la planification du réseau, la four-
niture d’un réseau de transport, dit “backhaul”, l’exploitation et la maintenance
de ce réseau. Ainsi, on constate une popularité croissante des femto-cellules [24],
i.e., des SBs de petite taille installées par l’utilisateur lui-même à son domicile
ou sur son lieu de travail, en utilisant la connexion internet existante comme
“backhaul”. Celles-ci permettent de décharger les réseaux de données mobiles
et d’assurer une bonne couverture à l’intérieur à coût minimal pour l’opérateur.

Actuellement, les milieux universitaires et industriels portent un intérêt con-
sidérable aux réseaux à petites cellules, dits “small-cell networks” (SCNs). Pour
simplifier, les SCNs reposent sur un déploiement extrêmement dense de SBs à
faible coût et faible puissance d’émission, qui sont bien plus petites que les
équipements des macro-cellules traditionnelles. L’action des SCNs est rendue
possible grâce au partage du lien filaire avec les réseaux sans fil et les points
d’accès filaires existants (FTTx (“fiber to the x”) ou les points d’accès filaires
VDSL (“very-high-bitrate digital subscriber line”) par exemple), mais aussi
grâce à l’installation des SBs sur les équipements urbains (lampadaires et abris
bus par exemple). Par ailleurs, le fonctionnement des SCNs repose sur les fonc-
tionnalités d’auto-organisation des petites cellules. Ainsi, les SCNs permettent
d’éviter l’acquisition de sites d’installation, la planification détaillée du réseau
et la maintenance continue. Les SCNs permettent par conséquent de réduire
le CAPEX et l’OPEX tout en assurant de hauts débits délivrés de manière
uniforme dans la zone de couverture du réseau [25, 26].

Coopération et coordination

Les réseaux cellulaires sont avant tout limités par les interférences intercellu-
laires. Dans le cas où les SBs seraient autorisées à coopérer ou à coordonner,
ces interférences pourraient être exploitées ou réduites [27]. En général, on fait la
distinction entre la coopération (également “network MIMO” ou “multi-cell pro-
cessing”), i.e. plusieurs SBs sont reliées entre elles par un réseau de transport et
traitent conjointement leurs données, et la coordination, i.e. des groupes de SBs,
dits “clusters”, décident conjointement des stratégies de précodage/décodage
mais ne partagent pas les données des utilisateurs. Les deux techniques, com-
munément désignées sous le terme “coordinated multi-point (CoMP)”, peuvent
améliorer la couverture et le débit, en particulier pour les TUs au bord de la
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cellule, et ce sans la nécessité de déployer de nouveaux sites ou des antennes
supplémentaires. Cependant, de nombreux défis techniques doivent être résolus
avant que les techniques CoMP puissent voir le jour [28]. En outre, les gains
effectifs générés par ces techniques sont moins prometteurs à partir du moment
où les frais généraux relatifs à l’obtention d’information d’état du canal (CSI)
sont pris en compte [29]. La recherche actuelle fait également état d’autres
techniques intéressantes telles que les schémas d’alignement d’interférences [30],
les concepts de relais [31], et les réseaux “cloud” sans fil, dits “wireless network
clouds” [32]. Ce dernier concept diffère radicalement de l’architecture classique
des réseaux les SBs sont désormais remplacées par des têtes de radio à distance
connectées par des fibres optiques, le traitement du signal étant effectué sur des
serveurs centralisés.

Radio cognitive

“La plupart des bandes de fréquences est sous-utilisée dans la plupart des en-
droits, la plupart du temps” [33, 34]. L’idée de radios cognitives [35] émane
de cette observation, celles-ci sont autorisées à se servir de certaines parties du
spectre sous licence, étant donné qu’elles peuvent détecter de manière fiable
si une bande est utilisée ou non. Dans ce contexte, on fait souvent référence
aux trous du spectre (“spectrum holes”) dans le temps, dans la fréquence, ou
dans l’espace, que les radios cognitives cherchent à exploiter. Malgré l’intensité
de la recherche sur ce sujet au cours de la dernière décennie, les radios cog-
nitives n’ont en pratique pas encore connu de succès. Ceci est dû à plusieurs
raisons, à savoir un manque d’algorithmes de détection fiables, de protocoles,
d’équipements, et de contraintes réglementaires. Il semble ainsi peu probable
que les radios cognitives joueront un rôle majeur dans la prochaine génération
de systèmes de communication mobile. Cependant, le concept de radios intel-
ligentes ou flexibles, capables d’interagir avec l’environnent et de prendre des
décisions intelligentes, est une idée prometteuse [36].

D’autres techniques

Il y a bien sûr beaucoup d’autres techniques qui offrent des possibilités intéressan-
tes pour l’amélioration de l’efficacité spectrale. Parmi elles, on trouve les émet-
teurs-récepteurs full-duplex, qui pourraient théoriquement doubler la capacité
des réseaux actuels [37], la polarisation électromagnétique [38, 39], qui pourrait
conduire à une triplement de la capacité, et les approches croix-couche, dites
“cross-layer”, tel que le décodage conjoint de la source et du canal [40], dit “joint
source-channel decoding”, qui exploite la redondance aux différentes couches de
protocole.

Comme mentionné ci-dessus, il devient clair que les futurs systèmes de com-
munication mobile sont susceptibles d’être constitués d’un déploiement dense de
différents types de points d’accès sans fil (macro-, micro-, femto-cellules) avec
des caractéristiques différentes (puissance d’émission, nombre d’antennes, in-
stallé par l’operateur/l’utilisateur, accès fermé/ouvert). De plus, les techniques
CoMP ont le bénéfice d’atténuer les interférences croissantes dans ces réseaux
denses. Afin d’évaluer lesquelles des techniques présentées ci-dessus sont les plus
adaptées pour atteindre un objectif fixé (augmentation de la capacité, réduction
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de la consommation d’énergie ou réduction des coûts), une analyse théorique de
la performance est indispensable. Toutefois, les modèles de canaux et les outils
qui ont été développés pour l’analyse de liens point à point ne parviennent que
rarement à fournir des indications pertinentes dans le cas de grands réseaux
hétérogènes de plus en plus denses. Il est donc nécessaire de développer de nou-
veaux outils théoriques pour leur analyse, ceci étant l’objectif principal de cette
thèse. Dans ce qui suit, nous allons nous concentrer presque exclusivement sur
la caractérisation des limites de performance théorique. L’efficacité énergétique,
malgré son importance, ne sera pas prise en compte dans ce travail.

Pourqoui aller à l’infini ?

La principale difficulté d’une analyse de la performance théorique significative
réside à la fois (i) dans le choix du modèle le plus simple qui reflète suffisamment
les caractéristiques principales du système étudié et (ii) dans le choix de l’outil
mathématique qui permet de tirer des conclusions générales et, éventuellement,
de fournir des lignes techniques directrices. Par exemple, il est difficile de justi-
fier pourquoi les conclusions établies par un modèle de canal sans affaiblissement
de propagation et sans interférence devraient être valables pour des scénarios
plus complexes combinant ces deux aspects. Les caractéristiques les plus im-
portantes des systèmes de communication sans fil considérées dans cette thèse
sont résumées ci-dessous :

� Fading : L’évanouissement ou “fading”, décrivant les fluctuations aléatoi-
res de la force du signal reçu dans le temps et en fréquence, constitue
l’une des caractéristiques principales des canaux sans fil. On distingue
généralement l’évanouissement à petite échelle, dit “fast fading”, de celui
à grande échelle, dit “shadowing”. Le premier est causé par des petits
mouvements du récepteur, de l’émetteur ou des diffuseurs, tandis que le
second est dû au “shadowing” par des obstacles importants, tels que des
bâtiments ou des murs.

� Affaiblissement de propagation : L’intensité moyenne du signal reçu
est principalement déterminée par l’affaiblissement de propagation, dit
“path loss”, dépendant de la distance entre l’émetteur et le récepteur. La
façon dont l’affaiblissement de propagation est calculé dépend de l’environ-
nement (urbain ou rural par exemple) et des conditions de propagation
radio (conditions météorologiques par exemple). Les effets du “path loss”
sont particulièrement importants lorsque les techniques coopératives sont
considérées, car leur avantage dépend de la position des TUs dans une
cellule.

� Interférences : Les réseaux mobiles sont limités par les interférences
créées par les transmissions d’autres stations de base et des TUs. Par
conséquent, cet aspect ne peut être ignoré et doit être explicitement pris
en compte.

� Information imparfaite d’état du canal : L’hypothèse d’une connais-
sance parfaite de l’état du canal, dit “channel state information (CSI)”,
est pratique pour l’analyse théorique, mais conduit souvent à des résultats
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Figure 1: Illustration de modele de système: Deux stations de base reliées par
un réseau de transport de capacité infinie décodent conjointement les messages
des deux TUs.

trop optimistes. Ainsi, l’acquisition de CSI doit être modélisée en prenant
en compte les ressources nécessaires. En particulier, dans les systèmes mul-
ticellulaires, la réutilisation des séquences d’apprentissage ou de symboles
pilotes dans les cellules adjacentes peut conduire à une source supplémen-
taire d’interférence, souvent désignée comme “ pilot contamination” [41].

� Réseau de transport (“backhaul”) d’une capacité finie : Si les tech-
niques COMP sont analysées, il est nécessaire d’être précis sur la quantité
de données qui doivent être échangées entre les SBs coopérantes. Dans
certains cas, la capacité du réseau de transport, dite “backhaul capacity”,
peut être un facteur limitant et donc non négligeable.

� Liens à visibilité directe et corrélation d’antennes : Plus un réseau
est dense, plus il est probable que le lien entre un émetteur et un récepteur
soit à visibilité directe, dite “line-of-sight (LOS)”. Ainsi, le canal sans
fil qui les sépare est constitué d’une composante déterministe LOS et
d’une composante aléatoire liée aux évanouissements rapides. En outre,
l’hypothèse d’un environnement de diffusion riche et d’antennes non corré-
lées peut s’avérer fausse pour des systèmes MIMO de grande échelle. Il est
donc nécessaire de modéliser les liens à visibilité directe et la corrélation
d’antennes qui peuvent avoir un impact significatif sur les performances
du système.

Afin de se faire une idée de la difficulté liée à l’analyse théorique lorsque
seulement l’un de ces aspects est pris en compte, nous considérons l’exemple
simple suivant, qui se concentre exclusivement sur les effets d’affaiblissement de
propagation. Comme le montre la figure 1, deux stations de base reliées par
un réseau de transport de capacité infinie décodent conjointement les messages
des deux TUs. Les SBs et les TUs sont tous équipés d’une antenne unique. Le
vecteur y = [y1, y2]

T ∈ C
2 des signaux reçus par les deux stations de base à un

instant donné est

y =
√
ρHx+ n

=
√
ρ

(
g1,1

√
α g1,2√

α g2,1 g2,2

)(
x1
x2

)
+

(
n1

n2

)
(1)
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où gi,j ∼ CN (0, 1) est le coefficient du canal entre TU j et SB i, xj ∼ CN (0, 1)
est le signal transmis de TU j, ni ∼ CN (0, 1) est un bruit thermique, ρ est la
puissance d’émission et α ∈ [0, 1] est un facteur d’affaiblissement de propagation.
Ce modèle de canal représente le fait qu’un TU est généralement relié par un
canal fort à sa plus proche SB, tandis que le canal qui le relie à l’autre SB
est faible. Par simplicité, nous considérons un scénario symétrique par rapport
aux deux TUs. Nous supposons, en outre, que la matrice H est inconnue aux
TUs, mais parfaitement connue aux SBs. Sous ces hypothèses, le meilleur taux
possible est l’information mutuelle ergodique E [I(ρ)] entre x et y, qui s’écrit
comme [42]

E [I(ρ)] = E
[
log det

(
I2 + ρHHH

)]
(2)

où l’espérance est calculée par rapport à la matrice H. Même sur ce simple ex-
emple, une expression exacte de l’information mutuelle E [I(ρ)] n’est connue que
dans le cas dégénéré où α = 1 (cf. [43]). De toute évidence, α a un effet signifi-
catif sur la performance du système et on pourrait s’attendre à ce que E [I(ρ)]
soit une fonction croissante de ce paramètre. Comme aucune expression analy-
tique de l’information mutuelle ergodique n’est disponible, cette affirmation est
difficile à vérifier. Pour contourner ce problème, on peut soit s’appuyer sur des
simulations, soit considérer des régimes asymptotiques ρ → 0 ou ρ → ∞, pour
lesquels E [I(ρ)] devient facilement calculable. Toutefois, les régimes asympto-
tiques de puissance d’émission infiniment faible ou infiniment grande n’ont pas
d’application pratique pour les systèmes de communication, les simulations ne
permettant pas non plus une analyse plus approfondie. Sans aucun autre outil
d’évaluation de E [I(ρ)] disponible, l’histoire s’arrêterait à ce stade.

L’approche adoptée dans cette thèse est de considérer une autre limite asymp-
totique, à savoir la limite lorsque les dimensions de la matrice H tendent vers
l’infini à la même vitesse. Sous cette hypothèse, quelque peu artificielle, on peut
montrer que pour plusieurs modèles de canal, des fonctionnelles de la matrice
H peuvent être approximées par des quantités déterministes qui ne dépendent
que des propriétés statistiques de H. Ces quantités sont souvent données sous
formes concises, qui permettent alors de comprendre les principaux paramètres
du système. Par ailleurs, pour des petites dimensions de H, ces approxima-
tions asymptotiques sont souvent très bonnes, ce qui les rend intéressantes d’un
point de vue pratique. Le principal outil mathématique conduisant à ce type
de résultats est la théorie des grandes matrices aléatoires, qui sera largement
discuté dans les sections 2.2, 2.3 et 2.4. Pour en revenir au modèle de canal
(1), on peut obtenir une approximation asymptotique de E [I(ρ)] en utilisant le
théorème 14 (iv) de la section 2.3, qui s’exprime comme

E [I(ρ)] ≈ 2 log
(
1 + 2(1 + α)ρ+

√
1 + 4(1 + α)ρ

)
− 2 log(2e)

+
4

1 +
√
1 + 4(1 + α)ρ

. (3)

Il est naturel de se demander si une telle approximation est justifiée dans le
cas de systèmes de petites dimensions comportant seulement deux émetteurs et
deux récepteurs, chacun d’eux étant équipé d’une antenne. Étonnamment, la
réponse est “oui”, comme le montre la figure 2, qui représente E [I(ρ)] et son ap-
proximation asymptotique (3) en fonction de ρ pour α = 0.5. Les deux courbes
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Figure 2: L’information mutuelle ergodique E [I(ρ)] et son approximation
asymptotique (3) en fonction de ρ pour α = 0.5.

sont quasiment superposées, même si le rapprochement devient moins précis
pour les grandes valeurs de ρ. On peut aussi montrer que (3) est effectivement
une fonction croissante de α.

Ceci constitue bien sûr un exemple extrême et, en fonction de ρ et de α, le
rapprochement peut être moins précis. Toutefois, cet exemple suggère qu’une
analyse asymptotique peut s’avérer utile pour l’étude de systèmes complexes,
dont l’analyse exacte est impossible. En outre, ce type de résultats asymp-
totiques offre un intérêt pratique car il permet une approximation proche de
la performance des systèmes de petite taille à des points de fonctionnement
réalistes. Dans cette thèse, nous développons et appliquons ces approximations
asymptotiques à l’étude de modèles de systèmes complexes qui intègrent (en
partie) les caractéristiques décrites précédemment.

Résumé des contributions

Cette thèse est divisée en trois parties distinctes mais interdépendantes: la
théorie (chapitre 2), les applications (chapitre 3) et les conclusions et perspec-
tives (chapitre 4). La structure de la thèse et des relations entre les différentes
sections est illustré par un schéma en figure 3.
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Le chapitre 2 donne un aperçu de plusieurs outils et techniques mathémati-
ques qui seront fréquemment utilisés dans la suite. Parmi eux, nous trouvons
quelques notions de base de la théorie des probabilités, de la théorie des ma-
trices aléatoires (RMT) et des outils d’analyse réelle et complexe. Nous allons
également rappeler quelques résultats importants asymptotiques de RMT qui
seront nécessaires ou approfondis dans les sections suivantes. Ensuite, nous
allons introduire la notion d’équivalents déterministes en présentant certains
des résultats existants, mais aussi en en établissant de nouveaux. Ces résultats
seront appliqués à des problèmes pratiques dans les sections 3.1, 3.2 et 3.3. Nous
allons également élaborer une nouvelle approche pour le calcul des équivalents
déterministes pour certaines fonctionnelles de matrices unitaires aléatoires. Les
applications pratiques de ces résultats sont présentées dans la section 3.6. En-
fin, nous allons expliquer le concept d’équivalents déterministes itératifs qui a
été développé dans cette thèse, avant de présenter plusieurs résultats basés sur
cette notion. Plusieurs applications pratiques seront discutées dans les sections
3.4, 3.5 et 3.6.

Dans le chapitre 3, nous appliquons les résultats théoriques du chapitre 2
aux problèmes des communications sans fil. Tous ces problèmes adressent de
manière différente certaines des principales caractéristiques des futurs systèmes
de communication avancés, comme décrits ci-dessus.

L’apprentissage optimal de l’état du canal dans les systèmes “network
MIMO”

Comme la coopération des SBs est l’une des techniques les plus prometteuses
pour accrôıtre l’efficacité spectrale des réseaux cellulaires, nous commençons
dans la section 3.1 avec une étude des systèmes “network MIMO”, où les SBs
sont connectées par un réseau de transport. Plusieurs contraintes pratiques
sont considérées, à savoir une connaissance imparfaite de l’état du canal, un
“backhaul” de capacité finie et les affaiblissements de propagation arbitraires
entre les SBs coopératives et les TUs. Le but de cette section est de calculer
la fraction optimale du temps de cohérence du canal qui doit être utilisée pour
l’apprentissage du canal afin de maximiser une borne inférieure de l’information
mutuelle. Nous utilisons la RMT (Théorème 12) pour fournir une approxima-
tion de cette borne, qui est ensuite optimisée par rapport à la longueur des
séquences pilotes. Notre principale contribution est la prise en compte simul-
tanée de plusieurs contraintes pratiques des systèmes “network MIMO” tout
en considérant un modèle de canal réaliste. L’utilisation de la RMT dans le
contexte de ce problème d’optimisation est également une idée originale qui
pourrait être appliquée à d’autres scénarios. Par exemple, la longueur optimale
des séquences pilotes pour les systèmes MIMO de grande échelle (voir section
3.3) qui souffrent de “pilot contamination” pourrait être obtenue de manière
similaire.

Les résultats de cette section ont été publiés dans les articles suivants :

� J. Hoydis, M. Kobayashi, M. Debbah, “Optimal channel training in uplink
network MIMO systems,” IEEE Trans. Signal Process., vol. 59, no. 6, pp.
2824–2833, Juin 2011.

� J. Hoydis, M. Kobayashi, M. Debbah, “On optimal channel training for
uplink network MIMO systems,” Proc. IEEE International Conference on
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Acoustics, Speech and Signal Processing (ICASSP), Prague, République
Tchèque, Mai 2011, pp. 3056–3059.

Détecteurs à expansion polynomiale

Comme le nombre d’observations conjointement traitées augmente (par ex-
emple, dans le système “network MIMO” ou les systèmes MIMO de grande
échelle), la mise en œuvre de récepteurs optimaux devient un défi. Ceci fait
donc apparâıtre un besoin de structures de récepteurs moins complexes qui est
adressée dans la section 3.2. Ici, nous considérons la conception et l’analyse des
récepteurs à expansion polynomiale de faible complexité, adaptés à des canaux
sans fil caractérisés par un profil de variance généralisé. Dans ce modèle de
canal, le vecteur de canal entre chaque émetteur et le récepteur considéré peut
avoir une matrice de covariance différente. Ce type de détecteur est pertinent
pour des systèmes MIMO de grande échelle ou des réseaux MIMO distribués,
où le récepteur MMSE nécessiterait l’inversion d’une grande matrice, méthode
coûteuse en temps de calcul. La principale difficulté de cette section réside dans
le calcul des moments asymptotiques d’un type particulier de matrices aléatoires
(voir les théorèmes 19 et 20). Les simulations montrent qu’un tel détecteur peut
fournir une bonne performance tout en réduisant la complexité numérique.

Les résultats de cette section ont été publiés dans l’article suivant :

� J. Hoydis, M. Debbah, M. Kobayashi, “Asymptotic moments for interfer-
ence mitigation in correlated fading channels,” Proc. IEEE International
Symposium on Information Theory (ISIT), Saint Petersbourg, Russie,
Août 2011, pp. 2796–2800.

Les systèmes “massive MIMO”

Dans la section 3.3, nous faisons l’analyse de la performance des systèmes MIMO
de grande échelle ou “massive MIMO” qui sont caractérisés par un plus grand
nombre d’antennes par SB que de TUs par cellule. Bien que “massive MIMO”
soit une technique non-coopérative, elle peut théoriquement atteindre de très
hautes efficacités spectrales avec un traitement du signal linéaire et simple.
Pour un modèle de canal très général qui représente la connaissance impar-
faite de l’état du canal, la “pilot contamination”, la corrélation d’antennes
et l’affaiblissement de propagation, nous dérivons des approximations asymp-
totiques des taux atteignables en liaisons montante et descendante avec des
détecteurs et précodeurs linéaires. Notre analyse, basée sur les théorèmes 14 et
21, fournit des approximations de la performance qui sont faciles à calculer et
précises pour les systèmes de dimensions finies, comme le montre les simulations
effectuées. En outre, nous démontrons que, dans certains scénarios, l’utilisation
du récepteur MMSE ou du précodeur RZF (dit “regularized zero-forcing”) peut
réduire le nombre d’antennes d’un ordre de grandeur tout en atteignant les
mêmes performances qu’un filtre adapté (dit “matched filter”) dans la liaison
montante ou descendante.

Les résultats de cette section ont été publiés dans les articles suivants :

� J. Hoydis, S. ten Brink, M. Debbah, “Massive MIMO in the UL/DL of
cellular networks: How many antennas do we need?” IEEE J. Sel. Areas
Commun., Jan. 2012, soumis.
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� J. Hoydis, S. ten Brink, M. Debbah, “Comparison of linear precoding
schemes for the massive MIMO downlink,” Proc. IEEE International
Conference on Communications (ICC), Ottawa, Canada, Juin 2012.

� J. Hoydis, S. ten Brink, M. Debbah, “Massive MIMO: How many antennas
do we need?” Proc. IEEE Allerton Conference on Communication, Con-
trol, and Computing (ALLERTON), Urbana-Champaign, IL, Etas-Unis,
Septembre 2011.

Dans les trois dernières sections, nous présentons des applications pratiques
des équivalents déterministes itératifs (cf. section 2.4), à savoir l’analyse de
la performance asymptotique (cf. 3.4) de canaux à double diffusion (“double-
scattering”) à accès multiples (“multiple access channel (MAC)”), le calcul d’un
équivalent déterministe de l’information mutuelle d’un canal MIMO à relais
multiples “amplify-and-forward” (cf. section 3.5) et l’analyse de la performance
du précodage unitaire aléatoire pour des canaux quasi-statiques et pour des
canaux avec évanouissement et à antennes corrélées (cf. section 3.6).

Canaux à double diffusion

Le modèle de canal à double diffusion, dit “double-scattering”, peut expli-
quer l’existence de canaux de rang bas, sans corrélation entre les antennes de
l’émetteur ou du récepteur. C’est par exemple le cas si l’émetteur et le récepteur
sont entourés par des anneaux de diffuseurs locaux, dont les diamètres sont de
petite taille par rapport à leur distance. Cet effet peut devenir visible dans les
systèmes MIMO de grande échelle, où un grand réseau d’antennes est monté
sur un bâtiment haut ou une tour, et où la plupart des TUs est entourée par
des obstacles. Notre analyse asymptotique (en termes d’information mutuelle
et de taux réalisables avec détection MMSE), reposant principalement sur le
théorème 22, montre que l’approche par les équivalents déterministes itératifs
peut faciliter l’étude de ce modèle de canal plutôt complexe. En outre, ces
résultats pourraient être utilisés pour étendre l’analyse des systèmes “massive
MIMO” présentés dans la section 3.3 à des modèles de canaux encore plus
réalistes.

Les résultats de cette section ont été publiés dans les articles suivants :

� J. Hoydis, R. Couillet, M. Debbah, “Iterative deterministic equivalents
for the capacity analysis of communication systems,” IEEE Trans. Inf.
Theory, Décembre 2011, soumis.

� J. Hoydis, R. Couillet, M. Debbah, “Asymptotic analysis of double-scatter-
ing channels,” Proc. IEEE Asilomar Conference on Signals, Systems, and
Computers (ASILOMAR), Pacific Grove, CA, Etas-Unis, Novembre 2011.
Finaliste du concours du meilleur article étudiant.

Canaux à relais multiples “amplify-and-forward”

Comme mentionné précédemment, les techniques de relais pourraient jouer un
rôle important dans les futures architectures de réseau et sont déjà utilisées
dans les normes actuelles des systèmes de communication mobile [31]. Ainsi,
leur compréhension théorique est aussi pertinente en pratique. La performance
asymptotique du canal à relais multiples ”amplify-and-forward” a été étudiée

xxiii



Résumé

dans de nombreux ouvrages (cf. [44, 45]), qui soit ignorent les effets d’amplifica-
tion du bruit à chaque relais, soit ne conduisent pas à des expressions faciles
à manipuler. En s’appuyant sur les équivalents déterministes itératifs, nous
sommes en mesure de trouver une expression simple et récursive de l’information
mutuelle asymptotique de ce modèle de canal (théorème 24). Des simulations
démontrent que les approximations asymptotiques sont valables pour un nombre
d’antennes raisonnable à chaque nœud.

Les résultats de cette section ont été publiés dans l’article suivant :

� J. Hoydis, R. Couillet, M. Debbah, “Iterative deterministic equivalents
for the capacity analysis of communication systems,” IEEE Trans. Inf.
Theory, Décembre 2011, soumis.

Précodage unitaire aléatoire

Les précodeurs unitaires ont suscité un intérêt majeur grâce à leur capacité
à réduire la quantité de données échangées sur le chemin retour, nécessaires
à la formation de faisceaux, dite “beamforming”. Pour cette raison, ils sont
déjà considérés dans des futures normes de réseaux mobiles [46, 47, 48]. Ainsi,
l’évaluation de la performance des systèmes qui utilisent les précodeurs uni-
taires est obligatoire et constitue un domaine de recherche très actif [49]. Une
nouvelle approche pour les modèles de matrices aléatoires impliquant des matri-
ces unitaires via les équivalents déterministes (itératifs) nous permet de traiter
des canaux quasi-statiques et des canaux corrélés avec évanouissement et d’en
déduire ainsi des approximations précises de l’information mutuelle et de la
somme des taux avec un détecteur MMSE. Les résultats théoriques apparentés
sont résumés dans les théorèmes 15, 18 et 23.

Les résultats de cette section ont été publiés dans les articles suivants :

� R. Couillet, J. Hoydis, M. Debbah, “Random beamforming over quasi-
static and fading channels: A deterministic equivalent approach,” IEEE
Trans. Inf. Theory, Novembre 2011, accepté.

� J. Hoydis, R. Couillet, M. Debbah, “Deterministic equivalents for the
performance analysis of isometric random precoded systems,” Proc. IEEE
International Conference on Communications (ICC), Kyoto, Japan, Juin
2011, pp. 1–5.

D’autres contributions

Par ailleurs, les publications suivantes ont résulté de cette thèse :

� J. Hoydis, M. Debbah, “Random Matrix Methods for Cooperation in Small-
cell Networks” dans Femtocell Networks: Deployment, PHY Techniques,
and Resource Management. Cambridge University Press, 2012, édité par
: T. Q. S. Quek, G. de la Roche, I. Guvenc, M. Kountouris.

� J. Hoydis, M. Debbah, “Green small-cell networks,” IEEE Veh. Technol.
Mag., vol. 6, no. 1, pp. 37–43, Mars 2011.

� J. Hoydis, R. Couillet, M. Debbah, “Les réseaux a petites cellules économes
en energie,” Techniques de l’Ingénieur, no. Reference IN 141, Août 2011.
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� J. Hoydis, R. Couillet, M. Debbah., “Les réseaux a petites cellules économes
en energie,” Revue de l’Electricité et de l’Electronique, no. 11, pp. 51–55,
Décembre 2010.

� J. Hoydis, A. Müller, R. Couillet, M. Debbah, “Analysis of multicell co-
operation with random user locations via deterministic equivalents,” Proc.
Workshop on Spatial Stochastic Models for Wireless Networks (SPASWIN),
Paderborn, Germany, Mai 2012.

� A. Müller, J. Hoydis, R. Couillet, M. Debbah, “Optimal 3D cell planning:
A random matrix theory approach,” Proc. IEEE Global Communications
Conference (GLOBECOM), Anaheim, CA, Etats-Unis, Décembre 2012,
soumis.

� J. Hoydis, R. Couillet, P. Piantanida, M. Debbah, “A random matrix
approach to the finite blocklength regime of MIMO fading channels,”
Proc. IEEE International Symposium on Information Theory (ISIT),
Cambridge, MA, Etats-Unis, Juillet 2012, soumis.

� J. Hoydis, A. Kammoun, J. Najim, M. Debbah, “Outage performance
of cooperative small-cell systems under Rician fading channels,” Proc.
IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), San Francisco, CA, Etats-Unis, Juin 2011,
pp. 551–555.

� J. Hoydis, M. Kobayashi, M. Debbah, “Asymptotic performance of linear
receivers in network MIMO,” Proc. IEEE Asilomar Conference on Sig-
nals, Systems, and Computers (ASILOMAR), Pacific Grove, CA, Etats-
Unis, Novembre 2010, pp. 942–948.

� J. Hoydis, M. Kobayashi, M. Debbah,“Random matrix theory for small-
cell networks,” 25th Meeting of the Wireless World Research Forum, Lon-
don, Royaume-Uni, Novembre 2010.

� J. Hoydis, J. Najim, R. Couillet, M. Debbah, “Fluctuations of the mutual
information in large distributed antenna systems with colored noise,” Proc.
IEEE Allerton Conference on Communication, Control, and Computing
(ALLERTON), Urbana-Champaign, IL, Etats-Unis, Septembre 2010, pp.
240–245.

� S. Lakshminaryana, J. Hoydis, M. Debbah, M. Assaad, “Asymptotic anal-
ysis of distributed multi-cell beamforming,” Proc. IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIM
RC), Istanbul, Turquie, Septembre 2010, pp. 2105–2110.

Conclusions et perspectives

Afin de faire face à une demande croissante de services mobiles, les systèmes
avancés de communication mobile seront caractérisés par un déploiement dense
des différents types de points d’accès sans fil. Celui-ci sera probablement un
mélange de petites cellules à faible puissance, de femto cellules et de macro SBs
équipées de centaines d’antennes intelligentes. L’atténuation des interférences

xxv
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et la réduction de la consommation d’énergie dans de tels réseaux sont d’une
importance primordiale. Pour cette raison, les techniques COMP ainsi que
les fonctionnalités de l’auto-optimisation sont non seulement souhaitables, mais
aussi nécessaires. Comme les réseaux mobiles deviennent plus complexes, les
méthodes requises pour l’analyse de leur performance théorique doivent évoluer.
Cela implique qu’elles doivent tenir compte des caractéristiques les plus impor-
tantes de ces réseaux, à savoir le “fading”, l’affaiblissement de propagation, les
interférences, l’information imparfaite de l’état du canal, le “pilot contamina-
tion”, la corrélation d’antennes, les liens à visibilité directe et la coopération avec
échange de données limité. Dans cette thèse, nous avons développé de nouvelles
méthodes basées sur la théorie des grandes matrices aléatoires qui sont capables
de prendre ces caractéristiques en considération. En particulier, le concept des
équivalents déterministes basé sur un système de grande taille conduit souvent
à des approximations de la performance du système étonnamment simples et
précises et permet de tirer des conclusions importantes sur les paramètres les
plus pertinents. On peut penser à cette méthode comme un moyen pour fournir
une abstraction déterministe de la couche physique qui réduit significativement
la complexité du système. Grâce à cette réduction de la complexité, il est par
exemple possible d’optimiser certains paramètres du système (la longueur des
pilotes, les matrices de précodage, etc.), ce qui aurait été impossible autrement.
Cette approche pourrait aussi s’avérer bénéfique pour l’optimisation conjointe
de plusieurs couches de la pile des protocoles.

Nous avons démontré l’utilité des équivalents déterministes dans le contexte
de plusieurs scénarios d’intérêt pratique, tels que l’analyse de la performance et
l’optimisation des systèmes CoMP et “massive MIMO”, et l’étude de canal à
plusieurs relais. En outre, plusieurs nouvelles contributions au domaine de la
théorie des matrices aléatoires proviennent de cette thèse. Les plus importants
sont le concept des équivalents déterministes itératifs et le calcul des équivalents
déterministes pour une certaine classe de fonctionnelles de matrices unitaires
aléatoires.

Quelques mots de prudence sont nécessaires en ce qui concerne la nature
asymptotique de nos résultats. Nous avons mis l’accent sur le fait que la plu-
part des équivalents déterministes fournissent des approximations très précises
pour des systèmes de dimensions finies. Il est parfois impossible de faire la dis-
tinction entre des résultats asymptotiques et exacts dans le cas d’un système où
l’émetteur et le récepteur sont équipés avec seulement deux antennes chacun.
Toutefois, rien ne garantit que ce soit le cas pour tous les choix de paramètres
possibles. En général, les approximations deviennent moins précises pour les
grandes valeurs de SNR (cf. [50] qui explique cet effet pour l’information
mutuelle d’un canal point à point MIMO). Parmi les indicateurs importants
de la précision des approximations asymptotiques, nous trouvons les taux de
convergence de certaines quantités vers leurs limites asymptotiques. Par ex-
emple, tandis que la variance de l’information mutuelle normalisée de certains
canaux MIMO N × N diminue à la vitesse de 1/N2 [51], la variance du SINR
avec un détecteur MMSE diminue à la vitesse de 1/N [52]. Ainsi, la précision
des équivalents déterministes ne dépend pas uniquement de la taille du système,
mais davantage de la fonctionelle de la variable aléatoire en considération.

Dans ce qui suit, nous allons exposer quelques sujets intéressants pour des
travaux futurs :
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Topologies aléatoires du réseau

Tout au long du document, nous avons implicitement supposé que les émetteurs
et les récepteurs sont situés à des positions fixes et connues. Cependant, cette
hypothèse est rarement rencontrée dans la pratique. Les TUs se déplacent na-
turellement et les positions des points d’accès déployés par l’utilisateur, tels
que les femto-cellules, ne sont ni connues, ni vouée à rester statiques. Ainsi, la
topologie du réseau est un paramètre aléatoire supplémentaire des systèmes de
communication mobile qui doit aussi être pris en considération. Une approche
récente pour s’attaquer à ce problème est la géométrie stochastique [53]. Dans
ce cadre, les TUs et les points d’accès sont considérés comme des processus
ponctuels aléatoires dans l’espace. Ces processus ponctuels sont généralement
caractérisés par leur densité et leur tendance à former des “clusters”, c’est à
dire, des points d’attraction à densité plus élevée. Bien que cette technique
ait conduit à de nombreux résultats intéressants sur la performance moyenne
de réseaux à plusieurs couches [54, 55], dits “multi-tier networks”, ce n’est que
très récemment que la coopération entre les points d’accès a été considérée
[56, 57]. Cependant, l’examen de la coopération entre les nœuds introduit des
interdépendances complexes entre les points du processus de point sous-jacent
qui sont difficilement résolubles par les techniques existantes. Une combinaison
de la RMT et de la géométrie stochastique pourrait surmonter ce problème. La
RMT pourrait supprimer le caractère aléatoire causé par le “fading” dans de tels
réseaux, tandis que la géométrie stochastique pourrait moyenner toutes les po-
sitions possibles prises par les utilisateurs. Ceci est particulièrement important
si l’on veut maximiser le rendement moyen du système par rapport à certains
paramètres, tels que les positions optimales des SBs. Les premiers résultats
utilisant ces concepts sont établis dans les publications suivantes :

� J. Hoydis, A. Müller, R. Couillet, M. Debbah, “Analysis of multicell co-
operation with random user locations via deterministic equivalents,” Proc.
Workshop on Spatial Stochastic Models for Wireless Networks (SPASWIN),
Paderborn, Germany, Mai 2012.

� A. Müller, J. Hoydis, R. Couillet, M. Debbah, “Optimal 3D cell planning:
A random matrix theory approach,” Proc. IEEE Global Communications
Conference (GLOBECOM), Anaheim, CA, Etats-Unis, Décembre 2012,
soumis.

Codes de longueur finie

L’information mutuelle et les taux réalisables considérés dans cette thèse sont
tous basés sur l’hypothèse cruciale de mots de code de longueur infinie. Ainsi,
bien que le temps de cohérence du canal soit limité, les messages sont supposés
être codés et transmis sur un nombre infini de blocs de cohérence. Dans la pra-
tique, cette hypothèse impliquerait un délai infini. Récemment, les publications
[58, 59] ont suscité un grand intérêt pour les limites ultimes de la performance
de codes de longueur finie. Toutefois, les limites précises et explicites de la
probabilité d’erreur pour une longueur de bloc donnée sont en général difficiles
à établir pour des canaux MIMO. L’application de la RMT à ce domaine de
la théorie de l’information pourrait conduire à de significatives simplifications.
Nous avons fourni quelques premiers résultats sur ce sujet dans :
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Résumé

� J. Hoydis, R. Couillet, P. Piantanida, M. Debbah, “A random matrix
approach to the finite blocklength regime of MIMO fading channels,”
Proc. IEEE International Symposium on Information Theory (ISIT),
Cambridge, MA, Etats-Unis, Juillet 2012, soumis.

Utilisation intelligente des antennes “excédentaires”

Dans la section 3.3, nous avons analysé la performance des systèmes MIMO
de grande échelle (“massive MIMO”) où le SBs sont équipées d’un nombre
d’antennes beaucoup plus important que le nombre de TUs par cellule. Toute-
fois, ce type de réseaux d’antennes de grande taille est plus ou moins une ap-
proche de type force brute pour contrer l’interférence intercellulaire et réduire les
puissances d’émission. Cependant, il serait intéressant d’étudier d’autres façons
d’utiliser plus intelligemment les antennes supplémentaires ou “excédentaires”
dans un réseau. Par exemple, une macro SB pourrait sacrifier certaines de ses
antennes pour l’annulation d’interférence vers des couches inférieures du réseau,
comme les femto-cellules. En supposant un protocole duplex par séparation
temporelle inversée, dit “time-division duplex (TDD)”, entre des macro- et
femto-cellules [60], la connaissance de l’état du canal à la macro-SB pourrait
être obtenue “gratuitement”. Dans ce contexte, il serait intéressant d’étudier si
la perte de performance dans la macro-cellule est suffisamment compensée par
les améliorations des taux résultants dans le réseau femto. Il serait également
intéressant de se pencher sur la question du placement optimal des antennes:
pour une région donnée, avec une distribution des TUs donnée, quelle est la
meilleure façon de déployer N antennes pour couvrir cette région ?

Les canaux variant dans le temps

Les modèles de canaux que nous avons utilisés dans cette thèse ne présentent
pas de corrélation dans le temps. Autrement dit, les réalisations de canaux
à deux instants différents sont des variables aléatoires indépendantes. En ex-
ploitant les résultats récents sur les matrices aléatoires variant dans le temps
[61, 62], il serait intéressant d’étudier comment la performance du réseau varie
au fil du temps pour un processus stochastique donné. Toutefois, la recherche à
ce sujet en est encore à ses balbutiements et il faudra encore un certain temps
et un certain effort jusqu’à ce que ces méthodes soient suffisamment bien com-
prises pour envisager des modèles de matrices pertinents pour les systèmes de
communication.
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Chapter 1

Introduction

1.1 Mobile communications: Future challenges

During the last years, mobile data traffic has skyrocketed, paralleling the devel-
opment of the wired Internet traffic at the beginning of this millennium. Since
2008, the total global mobile data volume has more than doubled every year
and is expected to grow at a similar rate in the future [1]. The main drivers
of this massive growth are smartphones, tablet PCs, and laptops, whose promi-
nent usage is about data rather than voice. Soon, there will be as many wireless
devices as humans on earth. As a result of this development, current networks
reach their capacity limits, especially in highly populated metropolitan areas.
Congestion problems arise in the wireless and the backhaul networks alike.

At the same time, there is a growing concern about the possible effects of
information and communication technology (ICT) on global carbon emissions
[2, 18]. Although ICT’s contribution to the global emissions is and will remain
a rather small percentage of the global figures (with 1.25% in 2002 and around
2.5% in 2020), the general trend of a 10% yearly increase in ICT-related carbon
emissions is alarming. This means that, despite significant progresses in energy-
efficient technologies, the growth in data traffic will outpace our ability to reduce
or even maintain the overall energy consumption and related emissions. Thus,
more network capacity on the one hand and less energy consumption on the
other are two seemingly contradictory future requirements on ICT. This begs
the question how mobile operators can satisfy the future traffic demands, both
economically and ecologically.

Let us now have a look at several different ways how the capacity of wireless
networks could be generally increased:

More spectrum

Essentially all commercial mobile communication systems are operated on fre-
quency bands in the range from 300MHz–3GHz. This is due to the favorable
radio propagation conditions at these frequencies. As a consequence, this part
of the spectrum is almost entirely allocated and new spectral resources can
only be found at higher frequencies. For this reason, there is a growing inter-
est in millimeter-wave (mmWave) communication systems [3] which exploit the
spectrum from 3–300GHz. Today, mainly short-range indoor and fixed-wireless
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communication systems are operated in these bands. Owing to high reflection
and penetration losses, the communication at very short wavelength is more or
less limited to line-of-sight (LOS) conditions. Providing indoor coverage from
outdoor base stations (BSs) seems impossible. Nevertheless, there are current
research activities which assess the feasibility of mmWaves for mobile commu-
nications [4]. However, this research is still in its infancy.

Better coding and modulation schemes

With low density parity-check (LDPC) [5] and Turbo [6] codes, orthogonal
frequency-division multiplexing (OFDM), link adaptation, and hybrid auto-
matic repeat request (HARQ), modern mobile communication systems like LTE
[7] or WiMAX [8] operate at spectral efficiencies close to the theoretical limits.
Thus, revolutionary breakthroughs in coding or modulation are not to be ex-
pected in the near future. Current research targets, for example, non-orthogonal
modulation schemes which do not require a cyclic prefix, such as Isotropic Or-
thogonal Transform Algorithm (IOTA)-OFDM [9], or techniques like Vander-
monde frequency-division multiplexing (VFDM) [10] which exploit the cyclic
prefix of OFDM to allow for interference-free underlay networks. Also rate-less
or Fountain codes [11], which generalize in some sense the concept of HARQ,
as well as Polar codes [12] promise further improvements in spectral efficiency.
However, despite these efforts, advances in coding or modulation are unlikely to
be the main capacity driver of future mobile communication systems.

More antennas

Since the seminal papers [13, 14] in the mid–1990s, multiple-input multiple-
output (MIMO) wireless communications have attracted enormous interest from
researchers and industry alike. By now, the benefits of multiple antennas at the
transmitters and/or receivers are well understood [15]. MIMO techniques can
provide power gains, improve the link reliability, and increase the throughput
by multiplexing several independent data stream on the same time-frequency
resource. Simple MIMO schemes are already an integral part of modern mobile
communication standards [7, 8] which support today up to eight antennas at
the BSs and the user terminals (UTs). Large-scale MIMO systems where BSs
are equipped with hundreds of antennas are the subject of numerous ongoing
research projects [16, 17, 18]. In theory, large-scale or “massive” MIMO can
significantly reduce transmit powers while achieving high spectral efficiencies.
Although not directly MIMO techniques, one needs to consider also higher-
order cell-sectorization [19] and 3D-beamforming [20, 21] as effective means to
increase the spectral efficiency. These techniques aim at increasing the spatial
reuse by focusing the transmitted energy towards the intended UTs and by
reducing interference to other UTs at the same time.

More cells

It is well known that cell-size shrinking is the simplest and most effective way
to increase wireless throughput [22, 23]. Physics tells us that bringing a radio
transmitter and receiver closer together reduces the necessary transmit power
to overcome path loss and other phenomena, such as fading and noise. More-
over, the area throughput increases theoretically linearly with the cell density.
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However, the deployment of traditional BSs, such as macro and micro cells,
requires huge capital and operational expenditures for cell-site acquisition, net-
work planning, backhaul provisioning, operation, and maintenance. Hence there
is a growing popularity of femto cells [24], i.e., user-deployed home-BSs utilizing
the existing Internet connection as backhaul. Femto cells allow to offload traffic
from the macro cells and to provide high-capacity indoor coverage at minimal
cost for the network operator. Currently, also “small cells”, i.e., self-organizing
operator-deployed outdoor/indoor femto cells, receive considerable interest from
academia and industry as a promising means to provide localized high-capacity
coverage at low energy-consumption and cost [25, 26].

Cooperation and coordination

Cellular networks are first and foremost limited by intercell interference. If the
BSs were allowed to cooperate or to coordinate, this interference could be ei-
ther exploited or reduced [27]. One distinguishes generally between cooperation
(also network MIMO or multi-cell processing), i.e., multiple BSs are connected
together via backhaul links and jointly process their data, and coordination, i.e.,
clusters of BSs jointly decide on precoding/decoding strategies but generally do
not share user data. Both techniques, commonly referred to as coordinated
multi-point (CoMP), can improve the coverage and throughput, especially for
cell-edge UTs, without the need to deploy new cell sites or additional anten-
nas. However, many technical challenges need to be overcome before CoMP
can be successfully introduced in practice [28]. Moreover, the effective gains of
CoMP are less promising once the overhead for the acquisition of channel state
information (CSI) is taken into account [29]. Other interesting techniques un-
der current research are interference alignment schemes [30], relaying concepts
[31], and wireless network clouds [32] where BSs are replaced by fiber-connected
remote radio heads and the processing is carried out on centralized server-farms.

Cognitive radio

“Most bands in most places are underused most of the time” [33, 34]. This
observation stimulated the idea of cognitive radios [35] which are allowed to
use parts of the licensed spectrum, given that they can reliably sense if it is
currently used or not. In this context, one often speaks about “spectrum holes”
in either time, frequency, or space which cognitive radios try to exploit. Despite
the heavy research on this topic during the last decade, cognitive radios have
not yet been successful in practice. This is mainly due to a lack of reliable
sensing algorithms, protocols, hardware, and regulatory constraints. Thus, it is
unlikely that cognitive radio will play a major role in next generation mobile
communication systems. However, the concept of more “intelligent” or “flexible”
radios, which moves away from the classical centralized network architecture
to self-organizing networks with intelligent decision making at the nodes, is a
promising idea [36].

Other techniques

There are of course many other techniques which provide interesting oppor-
tunities for spectral-efficiency improvements. Among them are for example
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full-duplex transceivers [37] which could theoretically double the capacity of cur-
rent networks, a consequent exploitation of electromagnetic polarization [38, 39]
which could lead in principle to a threefold capacity increase, and cross-layer
approaches like joint source-channel decoding [40] which exploits redundancy
and side information at different protocol layers.

From the discussion above, it becomes clear that advanced mobile communi-
cations systems are likely to consist of a dense deployment of different types of
wireless access points (macro/micro/femto/small cells) with different character-
istics (transmit powers, number of antennas, open/closed access, user/operator
deployed). Additionally, CoMP techniques will be a desirable feature to miti-
gate the increasing interference in such networks. In order to assess which of
the possible techniques presented above is the most appropriate with respect to
a given goal, it is necessary to provide a fundamental theoretical performance
analysis. However, channel models and tools which were developed for the anal-
ysis of simple point-to-point links often fail to provide meaningful insights for
large, increasingly dense, heterogeneous networks. New theoretical tools for
their analysis are needed and the development of these tools is the main goal
of this thesis. In what follows, we will focus almost exclusively on the char-
acterization of theoretical performance limits. Energy efficiency, although an
important parameter, will not be considered in this work.

1.2 Why go to large dimensions?

The main difficulty of a meaningful theoretical performance analysis is (i) to
find the simplest model which sufficiently reflects the main characteristics of
the system under study and (ii) to choose the right mathematical tool which
allows one to draw general conclusions and, possibly, to provide engineering
guidelines. For example, it is hard to justify why conclusions which are drawn
for a channel model without path loss and interference should hold for more
complex scenarios where both aspects are taken into account. Some of the most
important characteristics of the wireless communication systems considered in
this thesis are:

� Fading: Fading describes the random fluctuations of the received signal
strength over time and frequency and is a main characteristic of all wireless
channels. One generally distinguishes between small-scale and large-scale
fading. The former is caused by small movements of the receiver, the
transmitter, or the scatterers while the latter is due to shadowing by large
obstacles, such as buildings or walls.

� Path loss: The average received signal strength is mainly determined by
the distance-dependent path loss between a transmitter and a receiver.
How this path loss is calculated depends on the environment (e.g., urban
or rural) and the radio propagation conditions (e.g., precipitation). The
effects of path loss are especially important once CoMP techniques are
considered. This is because the benefit of these techniques depends on the
positions of the UTs within a cell.

� Interference: Mobile networks are limited by interfering transmissions
from other BSs and UTs. Consequently, this aspect cannot be ignored
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Figure 1.1: Schematic illustration of the uplink system model: Both BSs jointly
decode the messages from both UTs.

and must be explicitly taken into account.

� Imperfect CSI : The assumption of perfect CSI is convenient for the
theoretical analysis but often leads to overoptimistic results. Thus, the
acquisition of CSI must be modeled and the necessary resources must
be accounted for. In particular, in multi-cell systems, the reuse of pilot
sequences in adjacent cells can lead to an additional source of interference,
often referred to as pilot contamination [41].

� Backhaul capacity: If CoMP techniques are analyzed, it is necessary
to be specific about the amount of data which needs to be exchanged
between the cooperating BSs. In some cases, the backhaul capacity might
be a limiting factor which cannot be overlooked.

� Line-of-sight channels and antenna correlation: The denser a net-
work, the more likely it is that a transmitter and a receiver are under
LOS conditions. Hence, the wireless channel between them is composed
of a deterministic LOS component superimposed with random channel
fluctuations due to fading. Moreover, the assumption of a rich scattering
environment and uncorrelated antennas might fail to hold once large-scale
MIMO systems are considered. Both LOS channels and antenna correla-
tion can have a significant impact on the system performance.

In order to provide an idea why already some of these aspects taken alone are
difficult problems for a theoretical analysis, let us consider the following simple
example which focuses exclusively on the effects of path loss. A schematic system
model is sketched in Fig. 1.1. Two BSs, connected via backhaul links of infinite
capacity, cooperate to jointly decode the messages from two UTs. Both the BSs
and the UTs are equipped with a single antenna. The vector y = [y1, y2]

T ∈ C
2

of the received base-band signals at the two BSs at a given time reads

y =
√
ρHx+ n

=
√
ρ

(
g1,1

√
α g1,2√

α g2,1 g2,2

)(
x1
x2

)
+

(
n1

n2

)
(1.1)

where gi,j ∼ CN (0, 1) is the fast-fading channel coefficient between UT j and
BS i, xj ∼ CN (0, 1) is the transmitted signal of UT j, ni ∼ CN (0, 1) is thermal
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noise at BS i, ρ is the transmit power per UT, and α ∈ [0, 1] is a path loss
factor. This channel model accounts for the fact that a UT has generally a
strong channel to its closest BS while it has a weaker channel to the other BS.
For simplicity, we consider a scenario which is symmetric with respect to both
UTs. We further suppose that H is unknown to the UTs but perfectly known
to the BSs. Under these assumptions, the best possible achievable rate is the
ergodic mutual information E [I(ρ)] between x and y, given as [42]

E [I(ρ)] = E
[
log det

(
I2 + ρHHH

)]
(1.2)

where the expectation is with respect to the matrix H. Even in this simple set-
ting, an exact expression of E [I(ρ)] is only known in the degenerate case α = 1
(see e.g., [43]). Obviously, α has a significant effect on the system performance
and one would expect that E [I(ρ)] is an increasing function of α. Since no
analytic expression of the ergodic mutual information is available, this claim is
difficult to verify. To circumvent this problem, one could either rely on simula-
tions or consider the asymptotic regimes ρ → ∞, ρ → 0, where E [I(ρ)] has a
tractable expression. However, the asymptotic regimes of infinitely low or high
transmit powers are generally not the relevant operating points of communica-
tion systems and simulations do not allow for further analysis. The story would
normally end here if no other tools to evaluate E [I(ρ)] were available.

The approach taken in this thesis is to consider another asymptotic limit,
namely the limit when the dimensions of H grow infinitely large at the same
speed. Under this somewhat artificial assumption, one can show for many chan-
nel models of interest—much more complicated than the one considered in this
example—that functionals of the random matrix H can be well approximated
by deterministic quantities which only depend on the statistical properties of
H. These quantities are often given in concise form and allow one to draw in-
sight about the most important system parameters. Moreover, the asymptotic
approximations are often very tight for small dimensions of H and, therefore,
of practical value. The main mathematical tool to derive these kinds of results
is the theory of large random matrices which will be discussed in detail in Sec-
tions 2.2, 2.3, and 2.4. Coming back to the channel model (1.1), one can derive
from Theorem 14 (iv) in Section 2.3 a large-system approximation of E [I(ρ)]
which is given as

E [I(ρ)] ≈ 2 log
(
1 + 2(1 + α)ρ+

√
1 + 4(1 + α)ρ

)
− 2 log(2e)

+
4

1 +
√
1 + 4(1 + α)ρ

. (1.3)

It is natural to ask whether such an approximation is justified for small sys-
tems with only two single-antenna transmitters and receivers. Surprisingly, the
answer is yes! This can be seen from Fig 1.2 which shows E [I(ρ)] and its
large-system approximation by (1.3) as a function of ρ for α = 0.5. The match
between both curves is almost perfect, although the approximation becomes
less accurate for large ρ. One can also show that (1.3) is indeed an increasing
function of α.

This is of course a very extreme example and, depending on ρ and α, the
approximation can be less accurate. However, this example suggests that a
large-system analysis is useful for the study of complex systems which could not
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Figure 1.2: Ergodic mutual information E [I(ρ)] and its large system approxi-
mation by (1.3) versus transmit SNR ρ for α = 0.5.

have been treated by exact analysis. Moreover, these types of asymptotic results
are of practical interest as they provide tight performance approximations for
small system dimensions at realistic operating points. This thesis develops and
applies these asymptotic approximations to the study of involved system models
which integrate (some of) the characteristic features detailed above.

1.3 Outline and contributions

This thesis is divided into three separate but interdependent parts: Theory
(Chapter 2), Applications (Chapter 3), and Conclusions & Outlook (Chapter 4).
A schematic diagram of the thesis’ structure and the relations between different
sections is shown in Figure 1.3 (see p. 10).

In Chapter 2, we will first provide an overview of several mathematical tools
and techniques which will be of repeated use. These are in particular some basic
notions of probability theory, random matrix theory (RMT), and the Stieltjes
transform. We will also recall some important asymptotic results of RMT which
will be either needed or extended in the following sections. Then, we will in-
troduce so called “deterministic equivalents” and present some existing as well
as novel results. These will be applied to practical problems in Sections 3.1,
3.2, and 3.3. We will also elaborate on a novel approach to the derivation of
deterministic equivalents for certain functionals of random unitary matrices.
Practical applications of these results are presented in Section 3.6. Finally, we
will explain the concept of “iterative deterministic equivalents” which has been
developed in this thesis and present several related results. Applications will we
discussed in Sections 3.4, 3.5, and 3.6.

7



1.3. Outline and contributions

Chapter 3, is dedicated to applications of the theoretical results of Chap-
ter 2 to problems in wireless communications. All of these problems address
in different ways some of the main characteristics of advanced communication
systems outlined in Section 1.2:

As BS-cooperation is one of the most promising techniques to increase the
spectral efficiency of cellular networks, we begin in Section 3.1 with a study
of uplink network MIMO systems under several practical constraints. These
are imperfect CSI, limited backhaul capacity, and arbitrary path losses between
the cooperative BSs and the UTs. The aim of this section is to derive the
optimal fraction of the channel coherence time which should be used for channel
training in order to maximize a lower bound on the mutual information. We
use RMT (Theorem 12) to provide an approximation of this bound which is
then optimized with respect to the length of the pilot sequences. Our main
contribution is the simultaneous consideration of several practical constraints
of network MIMO systems together with a realistic channel model. The use
of RMT in the context of this optimization problem is also an original idea
which could be applied to other scenarios. For example, the optimal amount of
channel training for large-scale MIMO systems (Section 3.3) which suffer from
pilot contamination could be obtained in a similar manner.

As the number of jointly processed observations grows (e.g., in network
MIMO or large-scale MIMO systems), the implementation of optimal receivers
becomes a challenge. Thus, there is a need for less complex receiver structures
which is addressed in Section 3.2. Here, we consider the design and analysis
of low-complexity polynomial expansion receivers, suitable for wireless channels
with a generalized variance profile structure, i.e., the channel vector between
each transmitter and the receiver is allowed to have a different covariance ma-
trix. This type of detector is relevant to large-scale MIMO or distributed an-
tenna systems where the minimum-mean-square-error (MMSE) detector would
require the computationally expensive inversion of a large matrix. At the heart
of this section is the derivation of the asymptotic moments of a particular type
of random matrices (see Theorem 19, 20). Simulations show that such a detector
can provide a good performance with reduced implementation complexity.

Section 3.3 is about the performance analysis of large-scale MIMO or “mas-
sive MIMO” systems which are characterized by a much larger number of BS-
antennas than UTs per cell. Although massive MIMO is a non-cooperative
technique, it can theoretically provide very high spectral efficiencies with sim-
ple linear signal processing. For a very general channel model which accounts
for imperfect CSI, pilot contamination, antenna correlation, and path loss, we
derive asymptotic approximations of achievable up- and downlink rates with
linear detectors and precoders. Our analysis is fundamentally based on The-
orems 14 and 21 and provides easy computable performance approximations
which are shown to be accurate for finite system dimensions. Moreover, we
demonstrate that, in certain scenarios, the use of MMSE detection or regular-
ized zero-forcing (RZF) can reduce the number of antennas by one order of
magnitude to achieve the same performance as a matched filter (MF) in the
uplink or eigen beamforming (BF) in the downlink.

In the last three sections, we present practical applications of iterative de-
terministic equivalents as detailed in Section 2.4. These are the asymptotic
performance analysis of double-scattering multiple access channels (MACs) in

8
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Section 3.4, the derivation of a deterministic equivalent of the mutual informa-
tion of theK-hop amplify-and-forward (AF) MIMO relay channel in Section 3.5,
and the performance analysis of random unitary beamforming over correlated
fading channels in Section 3.6:

The double-scattering channel model can explain the existence of low-rank
channels without receive and transmit antenna correlation. This is for example
the case if the transmitter and the receiver are surrounded by rings of local
scatterers whose diameters are small compared to their distance. This effect
might become visible in large-scale MIMO systems where a large antenna array
is mounted on a high building or tower while most of the UTs are located in
an irregular clutter environment. Our asymptotic analysis (in terms of mutual
information and achievable rates with MMSE detection) is mainly based on
Theorem 22 and shows that the iterative deterministic equivalent approach can
facilitate the study of this rather involved channel model. These results could
be further used to extend the analysis of massive MIMO systems in Section 3.3
to even more realistic channel models.

As mentioned earlier, relaying techniques might play an important role in
future network architectures and are already considered in current cellular stan-
dards [31]. Thus, their theoretical understanding is also of practical relevance.
The asymptotic performance of the AF multi-hop relay channel has been in-
vestigated in numerous works (see e.g., [44, 45]). However, these ignore either
the effects of noise amplification at each relay stage or do not lead to tractable
expressions. Based on the iterative deterministic equivalent approach, we are
able to find a simple, recursive expression of the asymptotic mutual information
of this channel model (Theorem 24). Simulations demonstrate that the asymp-
totic results provide valid approximations for reasonable numbers of antennas
at each node.

The last practical application we consider are unitary precoders which have
gained significant interest in wireless communications as limited feedback beam-
forming solutions for future wireless standards [46, 47, 48]). Thus, the perfor-
mance evaluation of unitary precoded systems is compulsory and a field of active
research [49]. A novel approach to random matrix models involving unitary ma-
trices via (iterative) deterministic equivalents allows us to treat both quasi-static
and correlated fading channels and to derive tight approximations of the mu-
tual information and the MMSE sum rate. The related theoretical results are
summarized in Theorems 15, 18, and 23.

The thesis is concluded in Chapter 4 which summarizes some of the main
results and provides an outlook to future work. This comprises in particular the
application of RMT to the error analysis of MIMO block-fading channels in the
finite blocklength regime and the combination of RMT and stochastic geometry
for the study of cooperative multicell systems with random user locations.
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Chapter 2

Theory

In this chapter, we will first provide some necessary background on probability
and random matrix theory. This includes several standard inequalities, conver-
gence types, the continuous mapping, Fubini, Vitali, and dominated convergence
theorems. We will also discuss some trace lemmas, results on unitary matrices,
the Stieltjes transform and its properties. Then, we will introduce and mo-
tivate the concept of deterministic equivalents and present some known and
novel results. The chapter is concluded with a section on iterative deterministic
equivalents which extend deterministic equivalents to a broader class of random
matrix models. The theoretical results presented in this chapter find several
practical applications which are detailed in Chapter 3.

2.1 Some notions of probability theory

Consider a probability space (Ω,F , P ) with sample space Ω, a σ-field F on Ω
and probability measure P on F . Denote ω ∈ Ω a sample point of Ω. Let
(R,G) be a measurable space. A random variable X = X(ω) is a map X :
Ω 7→ R. As we will deal with random matrices and associated functionals in
this thesis, the observation space R is typically either the set of real RN×K

or complex numbers C
N×K and G are the Borel sets of R. If X ∈ R is an F-

measurable random variable, i.e., X−1(A) ∈ F ∀A ∈ G, we define the probability
distribution function F (x) of X as

F (x) = P (X ≤ x) = P ({ω : X(ω) ≤ x}). (2.1)

The expected value E [X] of X is the integral of X with respect to P , i.e.,

E [X] =

∫

Ω

X(ω)P (dω) =

∫

Ω

X(ω)dP (ω). (2.2)

Several standard inequalities related to the expected value will be needed:

Lemma 1 (Markov’s inequality [63, (5.31)]). Let X be a nonnegative random
variable and ǫ > 0. Then,

P (X ≥ ǫ) ≤ 1

ǫ
E [X] .
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2.1. Some notions of probability theory

In particular, for an arbitrary random variable X and some integer k,

P (|X| ≥ ǫ) ≤ 1

ǫk
E
[
|X|k

]
.

Lemma 2 (Hoelder’s inequality [63, 5.35]). For X,Y two arbitrary random
variables and p, q > 1, satisfying 1

q + 1
p = 1,

E [|XY |] ≤ (E [|X|p])1/p (E [|Y |q])1/q .

In particular, for two sets {x1, . . . xn} and {y1, . . . yn} of complex numbers,

∑

i

|xiyi| ≤
(
∑

i

|xi|p
)1/p(∑

i

|yi|q
)1/q

.

We will often deal with infinite sequences X1(ω), X2(ω), . . . of random vari-
ables defined on a probability space (Ω,F , P ). Here, each ω generates the entire
sequence (Xn(ω))n≥1 and not only a single random variable Xn(ω). Similarly,
we consider sequences of distribution functions (Fn)n≥1, e.g., when Xn has dis-
tribution Fn. One can define several types of convergence behavior related to
both types of sequences.

Definition 1 (Weak convergence). The sequence of distribution functions (Fn)n≥1

converges weakly to the function F , if

lim
n→∞

Fn(x) = F (x)

for each x ∈ R at which F is continuous. This is denoted by Fn ⇒ F . If Xn

and X have distributions Fn and F , respectively, we also write Xn ⇒ X or
Xn ⇒ F .

Definition 2 (Convergence in probability). The sequence of random variables
(Xn)n≥1 converges in probability to X, if for all ǫ > 0

lim
n→∞

P (|Xn −X| > ǫ) = 0.

This is denoted by Xn
P−→ X.

The notion of convergence in probability does not play a role in this thesis.

Definition 3 (Almost sure convergence). The sequence of random variables
(Xn)n≥1 converges almost surely to X, if

P

(
lim sup
n→∞

|Xn −X| = 0

)
= 1.

This is denoted by Xn
a.s.−−→ X.

Definition 4 (Convergence in the rth mean). The sequence of random variables
(Xn)n≥1 converges in the rth mean to X, if for r ≥ 1

lim sup
n→∞

E [|Xn −X|r] = 0.
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Remark 1. It will be of particular interest in this thesis to prove the almost
sure weak convergence of sequences of “random” distribution functions (Fn)n≥1

generated by some probability space (Ω,F , P ). That is, we will show that for all
ω ∈ A, A ⊂ Ω with P (A) = 1, limn→∞ Fn(x, ω) = F (x), for some distribution
function F .

Remark 2. Note that the almost sure convergence of some sequence of random
variables implies their convergence in probability, while convergence in probabil-
ity implies weak convergence. Convergence in the rth mean implies convergence
in the (r − 1)th mean and convergence in probability.

In order to prove the almost sure convergence of (Xn)n≥1 to some constant
X, one often relies on the combination of Markov’s inequality (Lemma 1) and
the first Borel-Cantelli lemma:

Lemma 3 (First Borel-Cantelli lemma [63, Theorem 4.3]). Let (An)n≥1 be a
sequence of sets, An ∈ F for some probability space (Ω,F , P ). If

∑
n P (An) ≤

∞, then P (lim supnAn) = 0.

One first defines Aǫ
n = {ω : |Xn(w) − X| ≥ ǫ}, for some ǫ > 0, and shows

by Markov’s inequality that P (Aǫ
n) ≤ 1

ǫk
E
[
|Xn −X|k

]
= fn, where

∑
n fn <

∞. In many cases, we have k = 4 and fn = O(n−2). This implies by the
Borel-Cantelli lemma that P (lim supnA

ǫ
n) = 0. In particular, let ǫp,q = p

q for

p, q ∈ N
⋆. Thus, P (∪p,q∈N⋆ lim supnA

ǫp,q
n ) = 0 since the countable union of sets

of probability zero has also zero measure [63]. For each p, q ∈ N
⋆ and ω in the

complement of this set (a set of probability one), there exists n0(ω), such that,

for all n ≥ n0(ω), |Xn(w) − X| < p
q . Thus, Xn

a.s.−−→ X. Note that all proofs

relying on this technique automatically establish the convergence of (Xn)n≥1 to
X in the kth mean.

We are often interested in the behavior of functions f of random variables
Xn. The portmanteau lemma provides an important equivalent description if
(Xn)n≥1 converges weakly to X:

Lemma 4 (A Portmanteau lemma [64, Lemma 2.2 (i) and (ii)]). Let (Xn)n≥1

be a sequence of random variables, where Xn has distribution Fn, and let X be
a random variable with distribution F . The following statements are equivalent:

(i) limn→∞ Fn(x) = F (x) for all continuity points x ∈ R of F ;

(ii) limn→∞ E [f(Xn)] = E [f(X)] for all bounded continuous functions f .

The continuous mapping theorem is a very useful result if f is continuous:

Theorem 1 (Continuous mapping theorem [64, Theorem 2.3]). Let (Xn)n≥1

be a sequence of real random variables and let f : R 7→ R be continuous at every
point of a set A such that P (X ∈ A) = 1, for some random variable X.

(i) If Xn ⇒ X, then f(Xn) ⇒ f(X);

(ii) If Xn
P−→ X, then f(Xn)

P−→ f(X);

(iii) If Xn
a.s.−−→ X, then f(Xn)

a.s.−−→ f(X).
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2.2. Background on random matrix theory

In several cases, one is able to prove that Xn
a.s.−−→ X, but one would like to

show that (Xn)n≥1 converges also in the mean to X, i.e., limn E [|Xn −X|] = 0.
This can often be done by the dominated convergence theorem:

Theorem 2 (Dominated convergence theorem [63, Theorem 16.4]). Let (fn)n≥1

be a sequence of real measurable functions on some measure space (Ω,F , P ).
Assume that for all ω ∈ A ⊂ Ω with P (A) = 1, limn→∞ fn(ω) → f(ω) for
some measurable function f and |fn| ≤ g for some integrable function g, i.e.,∫
Ω
|g(ω)|dP (ω) <∞. Then,

lim
n→∞

∫

Ω

fn(ω)dP (ω) =

∫

Ω

f(ω)dP (ω).

Define the functions fn(ω) = |Xn(ω) − X| for all n. Since Xn
a.s.−→ X, it

follows that fn
a.s.−→ f = 0. If one can show that fn ≤ g and E [|g|] <∞, it follows

from the dominated convergence theorem that limn→∞ E [|Xn(ω)−X|] = 0.
Sometimes we will deal with functions of two (or more) random variables X

and Y , defined on the probability spaces (Ω,F , P ) and (Ω′,F ′, P ′), respectively.
Denote by (Ω×Ω′,F×F ′, Q) their product space (see [63, Sec. 18]). The Fubini
theorem (also referred to as Tonelli’s theorem for nonnegative functions) allows
us to evaluate expectations with respect to the product measure Q by two
iterated integrals with respect to the measures P and P ′. The most important
application of the Fubini theorem in this thesis will be described in detail in
Section 2.4 where we deal with functional of products of random matrices.

Theorem 3 (Fubini theorem [63, Theorem 18.3]). Let (Ω,F , P ) and (Ω′,F ′, P ′)
be two probability spaces. Denote (Ω × Ω′,F × F ′, Q) their product space. Let
f : Ω × Ω′ → R be (F × F ′)-integrable, i.e.,

∫
Ω×Ω′ |f(ω, ω′)|dQ(ω, ω′) < ∞.

Then,
∫

Ω×Ω′

f(ω, ω′)dQ(ω, ω′) =

∫

Ω

[∫

Ω′

f(ω, ω′)dP ′(ω′)

]
dP (ω)

=

∫

Ω′

[∫

Ω

f(ω, ω′)dP (ω)

]
dP ′(ω′).

2.2 Background on random matrix theory

Before we present concepts and results related to random matrices, we first recall
some standard lemmas and identities which will be of repeated use throughout
the thesis.

Lemma 5 (Resolvent identity). For invertible matrices A and B, we have the
following identity:

A−1 −B−1 = A−1(B−A)B−1.

Lemma 6 (Matrix inversion lemma 1 [65, Eq. (2.2)]). Let A ∈ C
N×N be

invertible. Then, for any vector x ∈ C
N and any scalar c ∈ C such that A+cxxH

is invertible,

xH
(
A+ cxxH

)−1
=

xHA−1

1 + cxHA−1x
.
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2.2. Background on random matrix theory

Lemma 7 (Matrix inversion lemma 2). Under the assumptions of Lemma 6,

(
A+ cxxH

)−1
= A−1 − A−1cxxHA−1

1 + cxHA−1x
.

Proof. By Lemmas 5 and 6, we have

(
A+ cxxH

)−1 −A−1 = −
(
A+ cxxH

)−1
cxxHA−1

= −A−1cxxHA−1

1 + cxHA−1x
.

Adding A−1 to both sides of the last equation concludes the proof.

Lemma 8 (Rank-1 perturbation lemma [66, Lemma 2.1]). Let z ∈ C\R+, A ∈
C

N×N and B ∈ C
N×N with B Hermitian nonnegative definite, and x ∈ C

N .
Then,

∣∣∣tr
(
(B− zIN )

−1 −
(
B+ xxH − zIN

)−1
)
A
∣∣∣ ≤ ‖A‖

dist(z,R+)

where dist is the Euclidean distance.

Lemma 9 (A trace inequality). For any A ∈ C
N×N and B ∈ C

N×N ,

|trAB| ≤
√
trAAH trBBH ≤ N‖A‖‖B‖.

Lemma 10 (A matrix norm inequality). For any A ∈ C
N×N and B ∈ C

N×N ,

‖AB‖ ≤ ‖A‖‖B‖.

Lemma 11 ([67, Lemma B.26]). Let A ∈ C
N×N be deterministic and x =

[x1 . . . xN ]
T ∈ C

N be a random vector of independent entries. Assume E [xi] = 0,
E
[
|xi|2

]
= 1, and E

[
|xi|ℓ

]
≤ νℓ. Then, for any p ≥ 1,

E

[∣∣xHAx− trA
∣∣p
]
≤ Cp

(
trAAH

) p
2

(
ν

p
2
4 + ν2p

)

where Cp is a constant which only depends on p.

A sometimes useful result, similar to Lemma 11, can be stated as follows:

Lemma 12 ([68, Lemma 3]). Let A ∈ C
N×N be deterministic and x = [x1 . . . xN ]

T ∈
C

N be a random vector of independent entries. Assume E [xi] = 0, E
[
|xi|2

]
=

1
N , and E

[
|
√
Nxi|l

]
≤ νl. Then, for any integer p, q ≥ 1,

E

[∣∣∣∣
(
xHAx

)q −
(

1

N
trA

)q∣∣∣∣
p]

≤ ‖A‖pq
N

p
2

qp−
1
2

√√√√C2p (ν
p
4 − ν4p)

q−1∑

k=0

ν4pk

where C2p is a constant which only depends on p.

Proof. The proof is provided in Appendix 2.5.1.
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2.2. Background on random matrix theory

From now on, we will consider sequences of random matrices (AN )N≥1 and
vectors (xN )N≥1 with growing dimensions, e.g., AN ∈ C

N×N and xN ∈ C
N .

Therefore, a sample point ω ∈ Ω of the underlying probability space (Ω,F , P )
is assumed to create the entire sequences (AN (ω))N≥1 and (xN (ω))N≥1 rather
than a single realization of AN and xN . One of the most important results,
which can be easily obtained from Lemma 11 (originally proved in [69]), is given
by the next lemma:

Lemma 13 (A trace lemma [69, Lemma 2.7]). Let (AN )N≥1, AN ∈ C
N×N ,

be a sequence of matrices and (xN )N≥1, xN = [x1,N . . . xN,N ]
T ∈ C

N , a se-
quence of random vectors of i.i.d. entries, independent of (AN )N≥1. Assume
that E [xi,j ] = 0, E

[
|xi,j |2

]
= 1, E

[
|xi,j |8

]
< ∞, and lim supN‖AN‖ < ∞.

Then,

1

N
xH

NANxN − 1

N
trAN

a.s.−→ 0.

Proof. By Lemma 11, we have

E

[∣∣∣∣
1

N
xH

NANxN − 1

N
trAN

∣∣∣∣
4
]

≤ C4

N2

(
1

N
trANAH

N

)2 ((
E
[
|x1,N |4

])2
+ E

[
|x1,N |8

])

≤ C4

N2
‖AN‖4

((
E
[
|x1,N |4

])2
+ E

[
|x1,N |8

])
(2.3)

where the last inequality follows from Lemma 10. By assumption, for every
ǫ > 0, there exists an N0, such that for all N > N0, ‖AN‖ < D + ǫ for some
finite constant D. Thus, for N > N0, the RHS of (2.3) is a O(N−2) and hence

summable. By Lemma 3, it follows that 1
N xH

NANxN − 1
N trAN

a.s.−→ 0.

Remark 3. Several refinements of Lemma 13 are possible. First, the elements
of xn do not need to be independent and identically distributed (i.i.d.) but only
independent. Second, in [70, Lemma 4], the condition lim supN‖AN‖ < ∞ is
relaxed to hold only almost surely. Third, the lemma also holds if the condition

lim supN‖AN‖ <∞ is replaced by lim supN E

[
1
N tr

(
ANAH

N

)2]
<∞ as can be

seen by (2.3), since 1
N2 (trAAH)2 ≤ 1

N tr
(
AAH

)2
.

In a similar spirit, the next lemma shows under which conditions terms of
the form xH

NANyN for independent sequences of random vectors (xN )N≥1 and
(yN )N≥1 vanish.

Lemma 14 ([71, Lemma 3.7]). Let (AN )N≥1, AN ∈ C
N×N , be a sequence of

matrices and (xN )N≥1, x [x1,N . . . xN,N ]
T ∈ C

N , and (yN )N≥1 two sequences of
random vectors of independent entries, independent of (AN )N≥1. Assume that
E [xi,j ] = 0, E

[
|xi,j |2

]
= 1, E

[
|xi,j |4

]
<∞, and lim supN‖AN‖ <∞. Then,

1

N
xH

NANyN
a.s.−→ 0.

A special class of random matrices which will play an important role in this
thesis are the so-called Haar matrices, isometric matrices or unitarily invariant
unitary matrices:

19



2.2. Background on random matrix theory

Definition 5 (Unitary matrix). A matrix U ∈ C
N×N is unitary if it satisfies

UUH = UHU = IN . We denote by U(N) the set of N ×N unitary matrices.

Definition 6 (Haar matrix). A Haar matrix U ∈ C
N×N , is a matrix-valued

random variable which takes its values uniformly from U(N). In particular, the
eigenvalues of U are uniformly distributed on the complex unit circle.

Remark 4. There are several ways to create Haar matrices. Let X ∈ C
N×N be

random of i.i.d. entries Xi,j ∼ CN (0, 1). Then, the matrix W ∈ C
N×N , defined

as W = X
(
XHX

)− 1
2 is a Haar matrix. Alternatively, let Y ∈ C

N×N be random
of i.i.d. entries Yi,j ∼ CN (0, 1). Denote by Y = QR its QR-decomposition such
that R has nonnegative diagonal entries. Then, Q is a Haar matrix.

Definition 7 (Unitarily invariant matrix). Let W ∈ C
N×n be a random matrix

and let U ∈ C
N×N , V ∈ C

n×n be two unitary matrices, independent of W.
The matrix W is said to be left-unitarily invariant (right-unitarily invariant) if
the distribution of UW (WV) equals that of W. The matrix W is bi-unitarily
invariant if it is both left- and right-unitarily invariant.

An important trace lemma which can be seen as the counterpart to Lemma 13
for i.i.d. matrices, is given as follows:

Lemma 15 (Trace lemma for Haar matrices [72, 73] (see also [71])). Let
(WN )N≥1, WN ∈ C

N×n, be a sequence of random matrices, where WN con-
sists of n < N columns of an N ×N Haar matrix, and suppose that wN ∈ C

N

is a column of WN . Let (BN )N≥1, BN ∈ C
N×N , be a sequence of random

matrices, where BN depends on all columns of WN except wN . Let (AN )N≥1,
AN ∈ C

N×N , be a sequence of random matrices independent of (WN )N≥1.
Assume that N and n grow infinitely large, such that c = lim supN n/N < 1,
lim supN‖BN‖ <∞, and lim supN‖AN‖ <∞. Then,

(i) E

[∣∣∣∣w
H

NBNwN − 1

N − n
trΠNBN

∣∣∣∣
4
]
= O

(
1

N2

)

(ii) wH

NBNwN − 1

N − n
trΠNBN

a.s.−→ 0

(iii) wH

NBNwN − 1

N − n
tr
(
IN −WNWH

N

)
BN

a.s.−→ 0

(iv) wH

NANwN − 1

N
trAN

a.s.−→ 0

where ΠN = IN −WNWH

n +wNwH

N .

2.2.1 The Stieltjes transform

Definition 8 (Stieltjes transform). Let µ be a finite nonnegative measure with
support supp(µ) ⊂ R, i.e., µ(R) < ∞. The Stieltjes transform m(z) of µ is
defined for z ∈ C \ supp(µ) as

m(z) =

∫

R

1

λ− z
dµ(λ).

We denote by S(R+) the class of Stieltjes transforms of probability measures
carried by R

+, i.e., µ(R+) = 1.
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2.2. Background on random matrix theory

We will now summarize several important properties of the Stieltjes trans-
form. These results can be found for example in [74] or [75].

Property 1. Let m(z) be the Stieltjes transform of a finite nonnegative measure
µ on R. Then,

(i) m(z) is analytic over C \ supp(µ),

(ii) z ∈ C
+ implies m(z) ∈ C

+,

(iii) if z ∈ C
+, |m(z)| ≤ 1

ℑ{z} and ℑ{ 1
m(z)} ≤ −ℑ{z},

(iv) if µ((−∞, 0)) = 0, then m(z) is analytic over C\R+. In addition, z ∈ C
+

implies zm(z) ∈ C
+ and the following inequalities hold:

|m(z)| ≤





1
ℑ{z} , z ∈ C \ R
|z|−1 , z < 0

1
dist(z,R+) , z ∈ C \ R+

where dist is the Euclidean distance.

There is another set of properties which allow one to recover µ when only
its Stieltjes transform m(z) is known.

Property 2. Let m(z) be the Stieltjes transform of a finite measure µ on R.
Then,

(i) µ(R) = limy→∞ −iym(iy),

(ii) µ([a, b]) = limy→0+
∫ b

a
ℑ{m(x+ iy)}dx, if a, b are continuity points of µ.

The following property is useful if one wants to prove that a given function
is the Stieltjes transform of a finite measure.

Property 3. Let m(z) be an analytic function over C
+ such that m(z) ∈ C

+

if z ∈ C
+. If lim supy→∞ |iym(iy)| < ∞, then m(z) is the Stieltjes transform

of a finite nonnegative measure on R. If additionally, zm(z) ∈ C
+ for z ∈ C

+,
then µ(R−) = 0 and m(z) has an analytic continuation on C \ R+.

Finally, the Stieltjes transform of a probability measure can be related to
the moments of the underlying distribution.

Theorem 4 ([71, Theorem 3.3]). Let µ be a probability measure on R and denote
by m(z) and F its Stieltjes transform and distribution function, respectively.
Assume that supp(µ) ⊂ [a, b] for 0 < a < b <∞. Then, for z ∈ C \ R, |z| > b,

m(z) = −1

z

∞∑

k=0

Mk

zk

where Mk are the moments of F , defined as

Mk =

∫

R

λkdµ(λ) =

∫

R

λkdF (λ).
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2.3. Deterministic equivalents

Remark 5. The function G(z) = 1
zm(−1/z) =

∑∞
k=0(−1)kzkMk can be seen

as a moment generating function of F , since Mk = (−1)k

k! G(k)(0), where G(k)(z)
is the kth derivative of G(z).

We will now discuss the important relation of the Stieltjes transform and
the eigenvalue distribution or the empirical spectral distribution (e.s.d.) of
Hermitian matrices:

Definition 9 (Empirical spectral distribution). Let A ∈ C
N×N be a Hermitian

matrix with eigenvalues λ1, . . . , λN . The e.s.d. FA(x) of the eigenvalues of A
is defined as

FA(x) =
1

N

N∑

i=1

1{λi ≤ x}.

The Stieltjes transform mA(z) of the of the e.s.d. FA of some Hermitian
matrix A can be written in several ways:

mA(z) =

∫

R

1

λ− z
dFA(λ)

=
1

N

N∑

i=1

1

λi − z

=
1

N
tr (A− zIN )

−1
(2.4)

since the eigenvalues of A− zIN equal λ1 − z, . . . , λN − z and the trace equals
the sum of the eigenvalues of a matrix. For the sake of brevity, we will call
mA(z) the Stieltjes transform of A, rather than the Stieltjes transform of FA.
This is also consistent with our notation as we write mA instead of mFA . Once
mA(z) is known, one can recover the moments Mk of A by Theorem 4 since

Mk =
1

N
trAk =

∫

R

λkdFA(λ). (2.5)

2.3 Deterministic equivalents

Let us begin with a rigorous definition of a deterministic equivalent:

Definition 10 (Deterministic equivalent). Let (Ω,F , P ) be a probability space
and (fn)n≥1 a series of measurable complex-valued functions, fn : Ω × C → C.
Let (gn)n≥1 be a series of complex-valued functions, gn : C → C. Then, (gn)n≥1

is said to be a deterministic equivalent of (fn)n≥1 on D ⊂ C, if there exists a
set A ⊂ Ω with P (A) = 1, such that

fn(ω, z)− gn(z) −−−−→
n→∞

0

for all ω ∈ A and for all z ∈ D. This will be denoted by fn ≍ gn.

Otherwise stated, a deterministic equivalent for (fn)n≥1 is a series (gn)n≥1

such that gn(z) approximates fn(ω, z) arbitrarily closely as n grows, for every
z ∈ D and almost every ω. In particular, if (fn)n≥1 converges almost surely to
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2.3. Deterministic equivalents

a limiting function f , i.e., for all (ω, z) ∈ A × D with A ⊂ Ω, P (A) = 1 and
D ⊂ C, we have

fn(ω, z) −−−−→
n→∞

f(z) (2.6)

then (gn)n≥1 defined by gn = f , for all n, is also a deterministic equiva-
lent of (fn)n≥1. In many cases of practical interest, one can also show that∫
Ω
fn(ω, z)dP (ω) − gn(z) → 0 as n → ∞. Thus gn is also an approximation of

the expected value of fn.
In order to further illustrate the difference between deterministic equiva-

lents and asymptotic limits, let us consider the infinite sequence (xn)n≥1 of
random numbers, where xn ∼ CN

(
(−1)n, 1

n

)
. Clearly, there is no x̄ such that

xn → x̄, almost surely. However, we can define the deterministic series (x̄n)n≥1,
where x̄n = (−1)n, which satisfies xn − x̄n → 0, almost surely. The last result
follows directly from the Markov inequality and the Borel-Cantelli lemma since
E[|xn−x̄n|4] = 2n−2. Thus, a deterministic equivalent of (xn)n≥1 can be defined
although the sequence has no asymptotic limit (in the almost sure sense). Note
that in this example, (x̄n)n≥1 is also a deterministic equivalent of (E[xn])n≥1,
since x̄n = E[xn]).

We have already seen several deterministic equivalents for functionals of ran-
dom vectors and matrices in Section 2.2. For example, in Lemma 13, 1

N trAN

is a deterministic equivalent of the quadratic form xH

NANxN . In wireless com-
munications, one is often interested in the behavior of functionals fn(Hn, z),
where Hn ∈ C

N×n is a matrix describing the input-output relation of a wire-
less channel. In particular, fn(Hn, z) = 1

N log det(IN + zHnH
H

n), z ∈ R
+, is

the (normalized) mutual information of the MIMO channel Hn between an n-
antenna transmitter and an N -antenna receiver at signal-to-noise ratio (SNR) z.
Other quantities of interest are the signal-to-interference-plus-noise ratio (SINR)
with linear detectors or precoders and the associated rates. The goal of a large
system analysis based on RMT is to provide deterministic approximations of
these random quantities, which become arbitrarily tight as the system dimen-
sions grow. Thus, deterministic equivalents provide a deterministic abstraction
of the physical layer. This is particularly interesting for involved channel models
which are intractable by exact analysis.

The next lemma is important when one deals with products or ratios of
deterministic equivalents.

Lemma 16. [76, Lemma 1] Let (an)n≥1, (an)n≥1, (bn)n≥1, and (bn)n≥1 four
infinite sequences of complex random variables. Assume that an ≍ an and
bn ≍ bn.

(i) If |an|, |bn| and/or |an|,|bn| are almost surely bounded, then

anbn ≍ anbn.

(ii) If |an|, |bn|−1 and/or |an|,|bn|−1 are almost surely bounded, then

an/bn ≍ an/bn.

Another important result shows that the weak convergence of two distribu-
tions implies the convergence of their respective Stieltjes transforms, and vice
versa.
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2.3. Deterministic equivalents

Theorem 5 ([67, Theorem B.9]). Let (Fn)n≥1 be a sequence of bounded real
functions, satisfying limx→−∞ Fn(x) = 0. Then, there exists a sequence (F̄n)n≥1

such that limx→−∞ F̄n(x) = 0 and |Fn(x)− F̄n(x)| −−−−→
n→∞

0 for all x ∈ R, if and

only if

mFn(z)−mF̄n
(z) −−−−→

n→∞
0 ∀z ∈ C

+

where mFn
(z) and mF̄n

(z) are the Stieltjes transforms of Fn and F̄n, respec-
tively.

Often, one is only able to show the almost sure point-wise convergence
mFn

(z) −mF̄n
(z) → 0 for a given z ∈ A ⊂ C

+, e.g., |z| > ǫ. Since |mFn
(z)| ≤

|z|−1 for all z ∈ C \ supp(Fn), the next theorem can be used to prove that this
convergence holds on a larger region, e.g., all regions excluding supp(Fn).

Theorem 6 (Vitali’s convergence theorem [77, Theorem 5.21]). Let (fn)n≥1 be
a sequence of functions, analytic on D ⊂ C, such that |fn(z)| ≤M ∀n, ∀z ∈ D.
Assume that fn(zj) converges for a countable set z1, z2, . . . ∈ D, having a limit
point in D. Then fn(z) converges uniformly in any region bounded by a contour
interior to D. Moreover, this limit is an analytic function.

From now on, all matrices and vectors should be understood as sequences of
matrices and vectors with growing dimensions. For notational convenience, we
drop the index n, e.g., we write X instead of (Xn)n≥1.

2.3.1 Existing results

One of the most famous examples is the Marc̆enko-Pastur law which provides
a deterministic equivalent of the e.s.d. of the random matrix XXH, where
X ∈ C

N×n has i.i.d. entries with zero mean and variance 1/n. It was first
proven in [78], but then generalized to the following theorem:

Theorem 7 (Marc̆enko-Pastur law [67, Theorem 3.10]). Let X ∈ C
N×n be a

random matrix of independent entries, satisfying E [Xi,j ] = 0, E
[
|Xi,j |2

]
= 1

n ,

and E
[
|√nXi,j |2+ǫ

]
< ∞, for ǫ > 0. Denote by FN the e.s.d. of XXH and let

c = N
n . Assume that N,n → ∞ such that 0 < lim infN c ≤ lim supN c < ∞.

Then, almost surely,

FN − Fc ⇒ 0

where Fc has density

dFc(x) =
(
1− c−1

)+
1{x = 0}+ 1

2πcx

√
(x− a)+(b− x)+

where a = (1−√
c)2 and b = (1+

√
c)2. Moreover, the Stieltjes transform mc(z)

of Fc is given by

mc (z) =
1− c

2cz
− 1

2c
−
√
(1− c− z)2 − 4cz

2cz

where the branch of

√
(1−c−z)2−4cz

2cz is chosen such that mc (z) ∈ C
+ for z ∈ C

+

and mc(z) > 0 for z < 0.
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2.3. Deterministic equivalents

By Lemma 4, FN − Fc ⇒ 0, almost surely, implies that
∫

R+

f(λ)dFN (λ)−
∫

R+

f(λ)dFc(λ)
a.s.−→ 0 (2.7)

for any bounded continuous function f(x). However, even in some cases where
f(x) is not bounded, e.g., f(x) = log(1 + x), the convergence can be shown to
hold since the support of FN lies almost surely within a compact interval [a, b].

Theorem 8 (No eigenvalues outside the support [69, Theorem 1.1] (see also [79,
Theorem 3])). Let X be defined as in Theorem 7 and assume that E

[
|√nXi,j |4

]
<

∞. Denote by λmax and λmin the largest and smallest eigenvalue of XXH, re-
spectively. Then,

(i) λmax − (1 +
√
c)2

a.s.−→ 0,

(ii) λmin − (1−√
c)21{c ≤ 1} a.s.−→ 0.

By Theorem 8, f(x) can then be replaced by the function f(x)1{x ≤ M},
for some M > λmax, for which (2.7) holds. This leads to the following result:

Theorem 9 (see e.g. [80]). Let X be defined as in Theorem 7 and assume that
E
[
|√nXi,j |4

]
<∞. For x > 0, define IN (x) = 1

N log det
(
IN + 1

xXXH
)
. Then,

IN (x)− ĪN (x)
a.s.−→ 0

where

ĪN (x) =
1

c
log(1 + cmc(−x)) + log

(
1 +

1

x

1

1 + cmc(−x)

)
− mc(−x)

1 + cmc(−x)
.

Remark 6. One can also show that the convergence holds in the first mean,
i.e., E [IN (x)]− ĪN (x) → 0 (see for example [74, Theorem 4.1]. Moreover, if the
entries of X are complex Gaussian random variables, one can prove the stronger
result [81, Theorem 1]: E [IN (x)] = ĪN (x) +O(N−2).

Once a deterministic equivalent of a random quantity is established, it is of
interest to study its fluctuations around its deterministic approximation. This
is often done in the form of a central limit theorem (CLT) as exemplarily shown
in the next theorem:

Theorem 10 ([71, Theorem 3.18]). Let IN (x) be defined as in Theorem 9.
Then,

N

Θc
(IN (x)− E [IN (x)]) ⇒ N (0, 1)

where

Θ2
c = − log

(
1− cmc(−x)2)

(1 + cmc(−x))2
)
+ κ

cmc(−x))
(1 + cmc(−x))2

κ = E

[
|√nX1,1|4

]
− 2 and mc(z) is the Stieltjes transform of the Marc̆enko-

Pastur law as given by Theorem 7.

Based on Theorem 4, it is also possible to establish deterministic equivalents
for the moments of certain random matrix models:
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2.3. Deterministic equivalents

Theorem 11 (Moments of the Marc̆enko-Pastur law [82]). Let X be defined as

in Theorem 9 and denote by Mk = 1
N tr

(
XXH

)k
its kth moment. Then,

Mk − M̄k
a.s.−→ 0

where

M̄k =

k−1∑

i=0

(
k

i

)(
k

i+ 1

)
ci

k
.

The following theorem provides a deterministic equivalent of the ergodic mu-
tual information for channel matrices with a variance profile and non-centered
entries. This model is also referred to as the Rician model and can be used
to account for LOS components in a channel. The fluctuations of the mutual
information for this channel model are described by Claim 1.

Theorem 12. [74, Theorems 2.4, 2.5, 4.1] Let X ∈ C
N×n be random, A ∈

C
N×n deterministic, and define BN = (X+A) (X+A)

H
. Assume that X has

i.i.d. entries satisfying E [Xi,j ] = 0, E [|Xi,j |] = σ2
i,j

n , and E
[
|√nXi,j |4+ǫ

]
< ∞

for some ǫ > 0. Assume that supN maxi,j σi,j < ∞ and and that the Eu-
clidean norms of the rows and columns of A are bounded. Denote Dj =

diag
(
σ2
1,j , . . . , σ

2
N,j

)
and D̃i = diag

(
σ2
i,1, . . . , σ

2
i,n

)
∀i, j.

(i) The following set of N + n deterministic equations,

ψi(z) =
−1

z
(
1 + 1

n tr D̃iT̃(z)
) , 1 ≤ i ≤ N

ψ̃j(z) =
−1

z
(
1 + 1

n trDjT(z)
) , 1 ≤ j ≤ n

where

Ψ(z) = diag (ψ1(z), . . . , ψN (z))

Ψ̃(z) = diag
(
ψ̃1(z), . . . , ψ̃n(z)

)

T(z) =
(
Ψ(z)−1 − zAΨ̃(z)AH

)−1

T̃(z) =
(
Ψ̃(z)−1 − zAHΨ(z)A

)−1

admits a unique solution (ψ1(z), . . . , ψN (z), ψ̃1(z), . . . , ψ̃n(z)) ∈ S(R+)N+n

for z ∈ C \ R+.

(ii) For x > 0, let IN (x) = 1
N log det

(
IN + 1

xBN

)
and consider the quantity:

ĪN (x) =
1

N
log det

(
Ψ(−x)−1

x
+AΨ̃(−x)AH

)
+

1

N
log det

(
Ψ̃(−x)−1

x

)

− x

Nn

∑

i,j

σ2
ijTii(−x)T̃jj(−x).

Then, for N,n→ ∞, such that 0 < lim infN
N
n ≤ lim supN

N
n <∞,

E [IN (x)]− ĪN (x) −−−−→
N→∞

0.
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Deterministic equivalents for another random matrix model with numer-
ous applications to wireless communications are provided by the next theorem.
This model is the so-called Kronecker model where random matrices with in-
dependent entries are multiplied from the left and right side by deterministic
correlation matrices. This result is fundamental for the analysis of the double-
scattering channel model in Section 3.4 and the proof of Theorem 22.

Theorem 13 ([83, Corollary 1 and Theorem 2]). For k ∈ {1, . . . ,K}, let Rk ∈
C

N×N , Tk ∈ C
nk×nk , and DN ∈ C

N×N be Hermitian nonnegative definite,
satisfying lim supN‖Rk‖ < ∞, lim supN‖Tk‖ < ∞, and lim supN‖DN‖ < ∞.
Let Xk ∈ C

N×nk have i.i.d. elements satisfying E [Xi,j ] = 0, E
[
|Xi,j |2

]
= 1

nk
,

and E
[
|√nkXi,j |8

]
<∞. Denote BN =

∑
k R

1/2
k XkTkX

H

kR
1/2
k and, for x > 0,

define IN (x) = 1
N log det

(
IN + 1

xBN

)
. Let ck = nk

N and assume that nk, N →
∞, such that that 0 < lim infN ck ≤ lim supN ck <∞ ∀k.

(i) The following set of K equations (1 ≤ k ≤ K),

ēk =
1

nk
trTk (ekTk + Ink

)
−1

ek =
1

nK
trRk

(
K∑

i=1

ēiRi + xIN

)−1

has a unique solution such that ēk, ek > 0 for all k.

(ii) 1
N trDN (BN + xIN )

−1 − 1
N trDN

(∑K
i=1 ēiRi,N + xIN

)−1
a.s.−−−−→

N→∞
0

(iii) IN (x)− ĪN (x)
a.s.−−−−→

N→∞
0, where

ĪN (x) =
1

N
log det

(
IN +

1

x

K∑

k=1

ēk,NRk,N

)

+

K∑

k=1

1

N
log det (Ink

+ ek,NTk,N )− 1

N

K∑

k=1

nkek,N ēk,N .

The next theorem extends Theorem 13 to a more general class of random ma-
trices where each column of X can have a different covariance matrix. Moreover,
a deterministic matrix S is added. This matrix model will be used extensively
in Sections 3.2, 3.3 and 3.6. Additionally, we derive deterministic equivalents of
the matrix moments in Theorem 20.

Theorem 14 ([70, Theorem 1],[84, Theorem 2.3]). Let BN = XXH+SN , where
X ∈ C

N×n is random and SN ∈ C
N×N is Hermitian nonnegative definite. The

jth column xj of X is given as xj = R̃jzj, where zj = [zj,1, . . . , zj,N ]
T ∈ C

N has

i.i.d. elements and R̃j ∈ C
N×N is deterministic. Denote Rj = R̃jR̃

H

j and as-

sume that E [zj,i] = 0, E
[
|zj,i|2

]
= 1

N , E
[
|
√
Nzi,j |8

]
<∞, and lim supN‖Rj‖ <

∞. Let DN ∈ C
N×N be a deterministic Hermitian which satisfies lim supN‖DN‖ <

∞. Then, as n,N → ∞ such that 0 < lim inf N/n ≤ lim supN/n <∞, the fol-
lowing holds for any z ∈ C \ R+:
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2.3. Deterministic equivalents

(i) The following set of n equations (1 ≤ j ≤ n),

δj(z) =
1

N
trRj

(
1

N

n∑

k=1

Rk

1 + δk(z)
+ SN − zIN

)−1

(2.8)

has a unique solution such that (δ1(z), . . . , δn(z)) are Stieltjes transforms
of nonnegative finite measures on R

+. For z < 0, δ1(z), . . . , δN,n(z) are
the unique nonnegative solutions to (2.8) and can be obtained by a standard

fixed-point algorithm with initial values δ
(0)
j (z) > 0 for j = 1, . . . , n.

(ii) 1
N trDN (BN − zIN )

−1 − 1
N trDNTN (z)

a.s.−→ 0, where

TN (z) =


 1

N

n∑

j=1

Rj

1 + δj(z)
+ SN − zIN




−1

.

(iii) Let FN be the e.s.d. of BN and denote by F̄N the distribution function
with Stieltjes transform 1

N trTN (z). Then, almost surely,

FN − F̄N ⇒ 0.

(iv) For x > 0, let IN (x) = 1
N log det

(
IN + 1

xBN

)
. Then,

E [IN (x)]− ĪN (x) → 0

where

ĪN (x) =
1

N
log det


IN +

1

x
SN +

1

x

1

N

n∑

j=1

Rj

1 + δj(−x)




+
1

N

n∑

j=1

log (1 + δj(−x))−
1

N

n∑

j=1

δj(−x)
1 + δj(−x)

.

2.3.2 New results

In this section, we present several new deterministic equivalents which were
derived in the context of different application scenarios. Let us begin with the
following theorem which can be seen as an analogous result to Theorem 13 where
the matrices Xk are replaced by Haar matrices. Applications of this result to
the performance analysis of random beamforming over quasi-static channels can
be found in Section 3.6.

Theorem 15 ([85, Theorem 7]). For i ∈ {1, . . . ,K}, let Pi ∈ C
ni×ni be Her-

mitian nonnegative, satisfying lim supni
‖Pi‖ < ∞, and let Wi ∈ C

Ni×ni be
ni < Ni columns of a Haar distributed random matrix. Let Hi ∈ C

N×Ni be a
random matrix such that Ri , HiH

H

i ∈ C
N×N satisfies lim supN‖Ri‖ < ∞,

almost surely. Define ci =
ni

Ni
, c̄i =

Ni

N ,

BN =
K∑

i=1

HiWiPiW
H

i H
H

i

and denote FN the e.s.d. of BN .
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(i) For z ∈ D , {z = x + iy : x < 0, |y| ≤ |x| 1−ci
ci

}, the following system of
2K equations (1 ≤ i ≤ K)

ēi(z) =
1

N
trPi (ei(z)Pi + [c̄i − ei(z)ēi(z)]Ini)

−1

ei(z) =
1

N
trRi




K∑

j=1

ēj(z)Rj − zIN




−1

(2.9)

has a unique solution such that (e1(z) . . . , eK(z)) are Stieltjes transforms
of finite nonnegative measures over R+ which satisfy for z < 0, 0 ≤ ei(z) <
cic̄i/ēi(z) ∀i, where they are explicitly given by

ēi(z) = lim
t→∞

ē
(t)
i (z)

ei(z) = lim
t→∞

e
(t)
i (z)

ē
(t)
i (z) = lim

k→∞
ē
(t,k)
i (z)

where for k ≥ 1,

e
(t)
i (z) =

1

N
trRi




K∑

j=1

ē
(t−1)
j (z)Rj − zIN




−1

ē
(t,k)
i (z) =

1

N
trPi

(
e
(t)
i (z)Pi + [c̄i − e

(t)
i (z)ē

(t,k−1)
i (z)]Ini

)−1

with the initial values ē
(t,0)
i (z) = 0 and e

(0)
i (z) = 0 ∀i.

(ii) Assume that N → ∞, such that 0 < lim inf c̄i ≤ lim sup c̄i < ∞ and
0 ≤ lim inf ci ≤ lim sup ci < 1 for all i. Then, almost surely,

FN − F̄N ⇒ 0

where F̄N is the distribution function whose Stieltjes transform m̄N (z) is
defined for z ∈ D as

m̄N (z) =
1

N
tr

(
K∑

i=1

ēi(z)Ri − zIN

)−1

.

Proof. The proof is given in Appendix 2.5.2.

Remark 7. An important aspect of Theorem 15 (i) is that we provide an explicit
algorithm to compute the solution of the fundamental equations (2.9) for z < 0.
This is achieved by proving that the implicit equations in ei(z) (2.9) belong to
the class of so-called standard interference functions, defined as follows:

Definition 11 (Standard interference function [86]). A K-variate function
h(x) = [h1(x), . . . , hK(x)]T ∈ R

K for x ∈ C
K is said to be standard if it fulfills

the following conditions:

1. Positivity: if x ≥ 0, then h(x) > 0;
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2.3. Deterministic equivalents

2. Monotonicity: if x ≥ x′, then h(x) ≥ h(x′);

3. Scalability: if α > 1, then αh(x) > hj(αx).

The next theorem then ensures that the solution to (2.9) can be computed by
a standard fixed-point algorithm.

Theorem 16 (Fixed-point theorem [86, Theorem 2]). If a K-variate function
h(x) is standard and there exists x such that x ≥ h(x), then the algorithm that
consists in setting

x(t+1) = h
(
x(t)

)
, t ≥ 1

for any initial value x(0) ≥ 0, converges to the unique fixed point of x = h(x).

This result ensures the uniqueness of solutions to (2.9) for z < 0. However,
since the functions ei(z) have analytic extensions on C \ R

+ which satisfy the
fundamental equations for z ∈ D and can be shown to be Stieltjes transforms of
finite nonnegative measures on R

+, it follows by the identity theorem that (2.9)
has also a unique functional solution:

Theorem 17 (Identity theorem [87, Theorem 3.2.6]). Let f(z) and g(z) be
two functions, analytic in a common domain D. If f(z) and g(z) coincide on
D′ ⊂ D and D′ has a limit point, then f(z) = g(z) everywhere in D.

The approach of proving the point-wise and functional uniqueness of funda-
mental equations via standard interference functions and the identity theorem is
an original contribution of this thesis which has been successfully applied to var-
ious random matrix models (see also Theorems 22, 23, 24). Moreover, having
an explicit algorithm to compute such solutions is of practical importance.

The next result provides a deterministic equivalent of the (ergodic) mutual
information associated with the matrix model of Theorem 15.

Theorem 18 ([85, Theorem 4]). For BN as defined in Theorem 15, denote
IN (x) = 1

N log det
(
IN + 1

xBN

)
for x > 0. Assume that N → ∞, such that

0 < lim inf c̄i ≤ lim sup c̄i < ∞ and 0 ≤ lim inf ci ≤ lim sup ci < 1 for all i.
Then,

(i) E [IN (x)]− ĪN (x) → 0

(ii) IN (x)− ĪN (x)
a.s.−→ 0

where

ĪN (x) =
1

N
log det

(
IN +

1

x

K∑

k=1

ēk(−x)Rk

)

+

K∑

k=1

1

N
log det ([c̄k − ek(−x)ēk(−x)]Ink

+ ek(−x)Pk)

+
K∑

k=1

(1− ck)c̄k log(c̄k − ek(−x)ēk(−x))− c̄k log(c̄k)

with ek(−x), ēk(−x) ∀k as given by Theorem 15 (i).
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2.3. Deterministic equivalents

Proof. The proof is provided in Appendix 2.5.3.

Based on the relation of the Stieltjes transform of a distribution function
and its moments (see Theorem 4 and Remark 5), one can derive the following
result from Theorem 14 (ii):

Theorem 19. Let BN be defined as in Theorem 14 for SN = 0 and let F̄N

be the distribution function as defined in Theorem 14 (iii). Denote by M̄k ,∫∞
0
λkdF̄N (λ) the kth moment of F̄N . Then,

M̄k =
(−1)k

k!

1

N
trTN,k, n ≥ 0

where TN,k, k ≥ 0 is defined recursively by the following set of equations:

TN,k+1 =

k∑

i=0

i∑

j=0

(
k

i

)(
i

j

)
TN,k−iQi−j+1TN,j

Qk+1 =
k + 1

N

n∑

j=1

fj,kRj

fj,k+1 =
k∑

i=0

i∑

l=0

(
k

i

)(
i

l

)
(k − i+ 1)fj,lfj,i−lδj,k−i , 1 ≤ j ≤ n

δj,k+1 =
1

N
trRjTN,k+1 , 1 ≤ j ≤ n

with the initial values TN,0 = IN , fj,0 = −1 and δj,0 = 1
N trRj ∀j.

Proof. The proof can be found in Appendix 2.5.4.

Remark 8. While Theorem 19 allows us to compute the moments M̄k of F̄N ,
it does not imply that the difference between the empirical moments Mk ,
1
N trBk

N =
∫∞
0
λkdFN (λ) and M̄k converges almost surely to zero. The next

theorem provides some sufficient conditions for which this convergence holds.

Remark 9. Although difficult to show analytically, one can verify numerically
that Theorem 19 coincides with [88, Theorem 1] for Rj = diag(r1j , . . . , rNj) ∀j.
Moreover, for Rj = IN our result can be shown to coincide with Theorem 11.
Note that we assume a normalization of the variance of the matrix entries by
1/N while Theorem 11 assumes a normalization of 1/n.

If the matricesRj are drawn from a finite set of matrices, we get the following
stronger result:

Theorem 20. For fixed L > 0, let R = {R̃1, . . . , R̃L} be a set of complex N×N
matrices and let DN ∈ C

N×N be nonnegative definite Hermitian. Consider the
matrix BN as defined in Theorem 14 and assume that Rj ∈ R ∀j. Assume that

lim supN‖DN‖ < ∞, lim supN maxl‖R̃l‖ < ∞, and that N,n → ∞, such that
0 < lim inf n

N ≤ lim sup n
N <∞. Then,

1

N
trDNBk

N − (−1)k

k!

1

N
trDNTN,k

a.s.−−→ 0, k ≥ 0
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Figure 2.1: Histogram of the random variable N(IN (x)− ĪN (x))Θ−1
N,n versus the

standard normal distribution N (0, 1) for x = −5 dB.

where TN,k is given by Theorem 19. This implies in particular,

1

N
trBk

N − M̄k
a.s.−−→ 0, k ≥ 0.

Proof. The proof is provided in Appendix 2.5.5.

In the next claim, we provide the fluctuations of the mutual information for
the Rician matrix model of Theorem 12 in form of a CLT .

Claim 1 ([89, Theorem 3], [90, Claim 1]). Under the assumptions of Theo-

rem 12 (ii) and the condition that Xi,j ∼ CN
(

σ2
i,j

n

)
, the following holds:

N

ΘN,n

(
IN (x)− ĪN (x)

)
⇒ N (0, 1)

where
Θ2

N,n = − log det(IN+n − J)

and the matrix J ∈ C
(N+n)×(N+n) is defined as

J =

(
J1 J2

J3 J4

)
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where J1 ∈ C
n×n, J2 ∈ C

n×N , J3 ∈ C
N×n, and J4 ∈ C

N×N have entries

[J1]k,m =
1

n(1 + δm)2
aHmT(−x)DkT(−x)am

[J2]k,m = −x
n
tHmDktm

[J3]k,m = −x
n
t̃HmD̃k t̃m

[J4]k,m =
1

n(1 + δ̃m)2
bH

mT̃(−x)D̃kT̃(−x)bm

and ai, bi, ti, and t̃i denote the columns of A, AH, T(−x), and T̃(−x).

Proof. A justification of this claim is provided in Appendix 2.5.6.

Remark 10. Consider the matrix model B′
N = (X+A) (X+A)

H
+ S where

S ∈ C
N×N is a deterministic Hermitian nonnegative matrix. Define X′ =

(X 0N×N ) and A′ =
(
A S1/2

)
. Then B′

N = (X′ +A′) (X′ +A′)H. Since
the matrices X′ + A′ and X + A are of the same form, both Theorem 12 and
Claim 1 also hold for this extended matrix model. This is useful for the analysis
of channels with colored noise (see [90]).

In order to give some further validation of Claim 1, let us provide a short
numerical example. Let x = −5 dB, N = 8, n = 4, and let A ∈ C

N×n be
a random realization of a complex Gaussian matrix where Ai,j ∼ CN (0, 1/n).
Further, let σ2

i,j be a random realization of a uniformly distributed random
variable over the interval [0, 1]. Fig. 2.1 compares the empirical histogram of
N(IN (x) − ĪN (x))Θ−1

N,n as obtained by Monte Carlo simulations against the
standard normal distribution. The overlap between both results is surprisingly
good for the rather small matrix dimensions 8 × 4. Also note that Claim 1
was used in [89] to calculate an approximation of the outage probability in a
cooperative small cell network with Rician fading channels.

The last theorem of this section provides a deterministic equivalent of a
slightly more involved type of functionals of random matrices. This result will
be needed in Section 3.3 for the performance analysis of linear detectors and
precoders in large-scale MIMO systems.

Theorem 21. Let ΘN ∈ C
N×N be a Hermitian nonnegative definite matrix

satisfying lim supN‖ΘN‖ < ∞. Then, under the same conditions as in Theo-
rem 14, the following holds true for z < 0:

1

N
trDN (BN + SN − zIN )

−1
ΘN (BN + SN − zIN )

−1 − 1

N
trDNT′

N (z)
a.s.−−→ 0

where

T′
N (z) = TN (z)ΘNTN (z) +TN (z)

1

N

n∑

j=1

Rjδ
′
j(z)

(1 + δj(z))
2TN (x)

with TN (z), δj(z) ∀j as defined in Theorem 14 (i) and δ′(z) = [δ′1(z) · · · δ′K(z)]
T
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given by

δ′(z) = (IK − J(z))
−1

v(z)

[J(z)]kl =
1
N trRkTN (z)RlTN (z)

N (1 + δk(z))
2

[v(z)]k =
1

N
trRkTN (z)ΘNTN (z)

where J(z) ∈ C
K×K and v(z) ∈ C

K .

Proof. The proof is given in Appendix 2.5.7.

2.4 Iterative deterministic equivalents

2.4.1 Definition and motivation

Deterministic equivalents are convenient to study the performance of wireless
communication systems when a single system parameter can be modeled by a
random matrix, e.g., the fading channel or a precoding matrix. In order to tackle
the performance analysis of more complex systems which are characterized by
functionals of several random matrices, e.g., products, it is necessary to extend
the notion of deterministic equivalents. In this section, we develop a systematic
approach to generalize deterministic equivalents (see Definition 10) to iterative
deterministic equivalents.

At the heart of the concept of iterated deterministic equivalents is the Fubini
theorem (see Theorem 3 in Section 2.1). Let (Ω,F , P ) and (Ω′,F ′, P ′) be two
probability spaces and denote (Ω × Ω′,F × F ′, Q) their product space. Let us
consider now a set A ∈ F × F ′. Then, we have from Theorem 3 that

Q(A) =

∫

Ω×Ω′

1A(ω, ω
′)dQ(ω, ω′)

=

∫

Ω′

[∫

Ω

1A(ω, ω
′)dP (ω)

]
dP ′(ω′). (2.10)

Equation (2.10) is the core ingredient for the definition of iterative deterministic
equivalents: Let (Hn(ω))n≥1 and (H′

n(ω
′))n≥1 be two series of random matrices

generated by the spaces (Ω,F , P ) and (Ω′,F ′, P ′), respectively, and denote by
Q the product-space measure. Let fn((Hn(ω),H

′
n(ω

′)), z) be a functional of
the matrices Hn(ω) and H′

n(ω
′). Assume that there is a function g̃n(Hn(ω), z),

such that, for each ω ∈ A ⊂ Ω with P (A) = 1, there exists a subset B(ω) ⊂ Ω′

with P ′(B(ω)) = 1, on which

fn((Hn(ω),H
′
n(ω

′)), z)− g̃n(Hn(ω), z) → 0. (2.11)

Although g̃n(Hn(ω), z) is a random function (as it depends on ω), it is indepen-
dent of H′

n(ω
′). Thus, we can see g̃n(Hn(ω), z) as a deterministic equivalent of

fn((Hn(ω),H
′
n(ω

′)), z) with respect to (H′
n(ω

′))n≥1. Now, let us assume that
there is a second function gn(z), such that for ω ∈ C ⊂ Ω with P (C) = 1,

g̃n(Hn(ω), z)− gn(z) → 0. (2.12)
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Call D = {(ω, ω′) : ω ∈ A ∩ C , ω′ ∈ B(ω)} ⊂ Ω × Ω′, the space on which
fn((Hn,H

′
n), z)− gn(z) → 0. Then, from (2.10), this space has probability

Q(D) =

∫

Ω

[∫

Ω′

1D(ω, ω′)dP ′(ω′)

]
dP (ω)

(a)

≥
∫

A∩C

[∫

B(ω)

1D(ω, ω′)dP ′(ω′)

]
dP (ω)

(b)
=

∫

A∩C

dP (ω)

(c)
= 1 (2.13)

where (a) is due to A ∩ C ⊂ Ω and B(ω) ⊂ Ω′, (b) follows since P ′(B(ω)) = 1
for ω ∈ A and (c) holds since P (A ∩ C) = P (A) + P (C)− P (A ∪ C) = 1.

To summarize, if a deterministic equivalent gn exists for a functional fn of
a random series (H′

n)n≥1 and a deterministic series (Hn)n≥1 of matrices, and
if additionally it can be proved that this deterministic equivalent holds true for
almost every such (Hn)n≥1 generated by a space Ω, then the latter is also a
deterministic equivalent for the random series ((Hn,H

′
n))n≥1.

This is the mathematical key idea behind our method to derive iterative
deterministic equivalents of functionals fn((Hn(ω),H

′
n(ω

′)), z) of two (or more)
random matrices. First, one considers one of the sequences of random matrices,
e.g., (Hn(ω))n≥1, to be deterministic and derives a deterministic equivalent with
respect to (H′

n(ω
′))n≥1. In the example above, this was the role of the functional

g̃n(Hn(ω), z) which is independent of H′
n(ω

′). In a second step, one assumes
the matrices (Hn(ω))n≥1 to be random and derives an iterative deterministic
equivalent gn(z) of g̃n(Hn(ω), z). Of course, this procedure can be carried out
for any finite number of random matrices where in each step the “randomness”
related to one of the matrices is removed. From the above construction, we will
call (gn)n≥1 an iterative deterministic equivalent.

As application examples, we will provide deterministic equivalents of the
(ergodic) capacity as well as the sum-rate with MMSE detection of double-
scattering MACs (Section 3.4), deterministic equivalents of the mutual informa-
tion of the multi-hop AF MIMO relay channel (Section 3.5), and an asymptotic
performance analysis of random beamforming over correlated fading channels
(Section 3.6). These applications are based on the novel theoretical results, sum-
marized in the next section. We recall that all matrices should be understood
as sequences of matrices with growing dimensions. For notational convenience,
we drop the index n, e.g., we write H instead of (Hn)n≥1.

2.4.2 Results

Our first result is related to the double-scattering channel model as introduced
in [91]. We provide a set of fundamental equations whose solutions are needed
to compute a deterministic equivalent of the mutual information. The analysis
is based on the crucial observation that this random matrix model can be seen
as the Kronecker model considered in Theorem 13 with random correlation
matrices.
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Theorem 22 ([92, Theorems 4 and 5]). For k ∈ {1, . . . ,K}, let Hk ∈ C
N×nk

be defined as

Hk =
1√
Nknk

R
1
2

kW1,kS
1
2

kW2,kT
1
2

k

where Rk ∈ C
N×N and Tk ∈ C

nk×nk are Hermitian nonnegative definite,
Sk = diag(sk,1, . . . , sk,Nk

) ∈ (R+)Nk×Nk , and W1,k ∈ C
N×Nk , W2,k ∈ C

Nk×nk

are independent standard complex Gaussian matrices. Let Qk ∈ C
nk×nk be

Hermitian nonnegative definite, x > 0, and assume that lim supN‖Rk‖ < ∞,
lim supN‖Sk‖ <∞ and lim supN‖TkQk‖ <∞.

(i) The following system of 3K implicit equations (1 ≤ k ≤ K):

ḡk =
1

nk
trT

1
2

kQkT
1
2

k

(
gkT

1
2

kQkT
1
2

k + Ink

)−1

gk =
1

nk

Nk∑

j=1

sk,jδk
1 + ḡksk,jδk

(2.14)

δk =
1

Nk
trRk

(
K∑

i=1

ni

Ni

ḡigi
δi

Ri + xIN

)−1

has a unique solution satisfying ḡk, gk, δk > 0 ∀k.

(ii) Let BN =
∑K

k=1 HkQkH
H

k and denote IN (x) = 1
N log det

(
IN + 1

xBN

)
.

Assume that N , Nk, and nk grow infinitely large, satisfying 0 < lim inf Nk

N ≤
lim sup Nk

N <∞ and 0 < lim inf nk

N ≤ lim sup nk

N <∞ ∀k. Then,

(a) IN (x)− ĪN (x)
a.s.−→ 0

(b) E [IN (x)]− ĪN (x) → 0

where

ĪN (x) =
1

N
log det

(
IN +

1

x

K∑

k=1

nk

Nk

ḡkgk
δk

Rk

)

+
1

N

K∑

k=1

log det (INk
+ ḡkδkSk)

+
1

N

K∑

k=1

[
log det

(
Ink

+ gkT
1
2

kQkT
1
2

k

)
− 2nkgkḡk

]
.

Proof. The proof is given in Appendix 2.5.8.

Remark 11. The values of ḡk, gk, and δk can be computed by a standard fixed-
point algorithm which iteratively computes (2.14), starting from some arbitrary

initialization ḡ
(0)
k , g

(0)
k , δ

(0)
k > 0. This algorithm is proved to converge, generally

terminates within a few iterations (depending on the system size and the desired
accuracy), and does not pose any computational challenge.
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Our next result is an extension of Theorem 15 to the case where the matrices
Wk and Hk are random. This is an example which demonstrates that iterative
deterministic equivalents can be also computed for combinations of random
correlated and random unitary matrices. Further practical applications of this
result can be found in Section 3.6.

Theorem 23 ([85, Theorem 2 and 4]). For k ∈ {1, . . . ,K}, let Pk ∈ C
nk×nk be

Hermitian nonnegative, satisfying lim supnk
‖Pk‖ < ∞, and let Wk ∈ C

Nk×nk

be nk < Nk columns of a Haar distributed random matrix. Let Hk ∈ C
N×Nk be a

random matrix whose jth column vector hkj ∈ C
N is modeled as hkj = R

1/2
kj zkj,

where Rkj ∈ C
N×N are Hermitian nonnegative definite and zkj ∈ C

N have i.i.d.
elements with zero mean, variance 1/N and finite (4 + ǫ)th moment, ǫ > 0.
Assume that lim supN maxk,j‖Rkj‖ < ∞ and lim supN maxi‖HkH

H

k ‖ < ∞,

almost surely. Denote BN =
∑K

k=1 HkWkPkWkHk, ck = nk

Nk
, c̄k = Nk

N and
assume that N,Nk, nk → ∞, such that 0 ≤ lim inf ck ≤ lim sup ck < 1 and
0 < lim infN c̄k ≤ lim supN c̄k <∞ ∀k.

(i) Let x > 0. Then, the system of equations (1 ≤ k ≤ K, 1 ≤ j ≤ Nk):

b̄k =
1

N
trPk

(
bkPk +

[
c̄k − bk b̄k

]
Ink

)−1

bk =
1

N

Nk∑

j=1

ζkj
1 + b̄kζkj

ζkj =
1

N
trRkj

(
1

N

K∑

i=1

Nk∑

l=1

b̄iRi,l

1 + b̄iζil
+ xIN

)−1

has a unique solution satisfying ζkj , bk, b̄k ≥ 0 and 0 ≤ bk b̄k < ck c̄k ∀k, j.

(ii) For x > 0, denote IN (x) = 1
N log det

(
IN + 1

xBN

)
. Then,

(a) IN (x)− ĪN (x)
a.s.−→ 0

(b) E [IN (x)]− ĪN (x) → 0

where

ĪN (x) = V̄N (x) +
1

N

K∑

k=1

log det
([
c̄k − bk b̄k

]
Ink

+ bkPk

)

+

K∑

k=1

(1− ck)c̄k log(c̄k − bk b̄k)− c̄k log(c̄k)

V̄N (x) =
1

N
log det


IN +

1

x

1

N

K∑

k=1

Nk∑

j=1

b̄kRk,j

1 + b̄kζkj




−
K∑

k=1

b̄kbk +
1

N

K∑

k=1

Nk∑

j=1

log
(
1 + b̄kζkj

)
. (2.15)

Proof. The proof is given in Appendix 2.5.9.
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Remark 12. The solution to the fundamental equations is given explicitly by
the following fixed-point algorithm

bk = lim
t→∞

g
(t)
k , b̄k = lim

t→∞
b̄
(t)
k , ζkj = lim

t→∞
ζ
(t)
kj

where

b̄
(t)
k = lim

l→∞
b̄
(t,l)
k , ζ

(t)
kj = lim

l→∞
ζ
(t,l)
kj

b
(t)
k =

1

N

Nk∑

j=1

ζ
(t)
kj

1 + b̄
(t−1)
k ζ

(t)
kj

b̄
(t,l)
k =

1

N
trPk

(
b
(t−1)
k Pk +

[
c̄k − b

(t−1)
k b̄

(t,l−1)
k

]
Ink

)−1

ζ
(t,l)
kj =

1

N
trRkj

(
1

N

K∑

i=1

Nk∑

l=1

b̄
(t−1)
i Ri,l

1 + b̄
(t−1)
i ζ

(t,l−1)
il

+ xIN

)−1

with initial values ζ
(t,0)
kj = 1/x, b̄

(t,0)
k = 0 and b

(0)
k = 0 ∀k, j.

Our last result will be used in Corollary 7 (Section 3.5) to compute a deter-
ministic equivalent of the mutual information of the K-hop AF relay channel.
In contrast to the previous results of this section, the concept of iterative deter-
ministic equivalents is applied here multiple times (one time for each hop) and
leads to a set of recursive fixed-point equations.

Theorem 24 ([92, Theorem 2 and 3]). For k ∈ {1, . . . ,K}, let Hk ∈ C
nk×nk−1

be a standard complex Gaussian matrix and define

Rk

(
βk−1

)
= Ink

+
αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH

k (2.16)

where R0 = In0 , αk > 0 and βk = [β0 . . . βk] ≥ 0. Denote ck = nk−1
nk

and let
n0, . . . , nk → ∞ such that 0 < lim inf ck ≤ lim sup ck < ∞ ∀k. Assume that
there is β̄k = [β̄0 . . . β̄k], satisfying βk − β̄k

a.s.−→ 0 ∀k. Consider the quantities:

mk (x,βk) =
1

nk+1
tr

(
αk+1βk
nk

Hk+1Rk

(
βk−1

)
HH

k+1 +
1

x
Ink+1

)−1

Jk

(
x,βk−1

)
=

1

nk
log det

(
Ink

+ x
αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH

k

)
.

(i)

mk (x,βk)− m̄k

(
x, β̄k

) a.s.−→ 0

where m̄k

(
x, β̄k

)
is recursively defined for k ≥ 1 as

m̄k

(
x, β̄k

)
=

xck+1

ck+1 + ēk
(
x, β̄k

)

and ēk
(
x, β̄k

)
≥ 0 is the unique solution to the fixed point equation

ēk
(
x, β̄k

)
= ck+1

(
ck+1 + ēk

(
x, β̄k

))
− ck+1

(
ck+1 + ēk

(
x, β̄k

))2

xαk+1β̄k

× m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ēk
(
x, β̄k

) , β̄k−1

)
.
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The initial values m̄0(x, β̄0) and ē0(x, β̄0) are given in closed form:

m̄0(x, β̄0) =
c1

α1β̄0

c1+ē0(x,β̄0)
+ 1

x

+ (1− c1)x

ē0
(
x, β̄0

)
= −xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c21

2
.

(ii)

Jk

(
x,βk−1

)
− J̄k

(
x, β̄k−1

) a.s.−→ 0

where J̄k

(
x, β̄k−1

)
is recursively defined for k ≥ 2 as

J̄k

(
x, β̄k−1

)
= ckJ̄k−1

(
xαkβ̄k−1

ck + xαkβ̄k−1 + ēk−1

(
x, β̄k−1

) , β̄k−1

)

+ ck log

(
1 +

xαkβk−1

ck + ēk−1

(
x, β̄k−1

)
)

+ log

(
1 +

ēk−1

(
x, β̄k−1

)

ck

)
− ēk−1

(
x, β̄k−1

)

ck + ēk−1

(
x, β̄k−1

) .

The initial value J̄1

(
x, β̄0

)
is given in closed form:

J̄1

(
x, β̄0

)
= c1 log

(
1 +

xα1β̄0

c1 + ē0
(
x, β̄0

)
)

+ log

(
1 +

ē0
(
x, β̄0

)

c1

)

− ē0
(
x, β̄0

)

c1 + ē0
(
x, β̄0

) .

Proof. The proof is provided in Appendix 2.5.10.

Remark 13. The quantity mk (x,βk) can be seen as the Stieltjes transform
of the e.s.d. of the matrix αk+1βk

1
nk

Hk+1Rk(βk−1)H
H

k+1 evaluated at − 1
x .

One can further show that Theorem 24 (i) implies the weak convergence of the
e.s.d. αk+1βk

1
nk

Hk+1Rk(βk−1)H
H

k+1 to a distribution function, whose Stieltjes
transform is given by m̄k, for almost every H1, . . . ,HK .

Remark 14. The values of J̄k and m̄k can be very easily numerically computed.
However, due to the recursive structure, the computational complexity grows
quickly with k. Calculating J̄k and m̄k with high precision for large values of k
(> 10) seems therefore impractical.
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2.5 Appendices

2.5.1 Proof of Lemma 12

Let us begin with the following inequality:

E

[∣∣∣∣
(
xHAx

)q −
(

1

N
trA

)q∣∣∣∣
p]

(a)
= E

[∣∣∣∣
(
xHAx− 1

N
trA

)∣∣∣∣
p
∣∣∣∣∣

q−1∑

k=0

(
1

N
trA

)q−1−k (
xHAx

)k
∣∣∣∣∣

p]

(b)

≤

√√√√E

[∣∣∣∣
(
xHAx− 1

N
trA

)∣∣∣∣
2p
]√√√√√E



∣∣∣∣∣

q−1∑

k=0

(
1

N
trA

)q−1−k

(xHAx)
k

∣∣∣∣∣

2p



(2.17)

where (a) follows from xn − yn = (x− y)
∑n−1

k=0 x
n−1−kyk and (b) follows from

Hoelder’s inequality. For the first factor, we have from Lemmas 11 and 9

E

[∣∣∣∣
(
xHAx− 1

N
trA

)∣∣∣∣
2p
]
≤ C2p

Np
‖A‖2p (νp4 + ν4p) . (2.18)

For the second factor, we have again by Hoelder’s inequality and Lemma 9

E



∣∣∣∣∣

q−1∑

k=0

(
1

N
trA

)q−1−k (
xHAx

)k
∣∣∣∣∣

2p



≤ q2p−1

q−1∑

k=0

‖A‖2p(q−1−k)
E

[∣∣xHAx
∣∣2pk

]
. (2.19)

Let us treat the terms E
[∣∣xHAx

∣∣2pk
]
separately. For every even integer r ≥ 2,

E

[∣∣xHAx
∣∣r
]
=

∑

i1,...,ir
j1,...,jr

E
[
x∗i1 · · ·x∗irxj1 · · ·xjr

]
Ai1,j1 · · ·A∗

ir,jr

(a)

≤ ν2r

∣∣∣∣∣∣
1

N

∑

i,j

Ai,j

∣∣∣∣∣∣

r

(b)

≤ ν2r‖A‖r (2.20)

where (a) is due to E
[
x∗i1 · · ·x∗irxj1 · · ·xjr

]
≤ 1

NrE

[
|
√
Nxi|2r

]
≤ ν2r

Nr and (b)

follows from
∣∣∣ 1N
∑

i,j Ai,j

∣∣∣ ≤ ‖A‖. Using (2.20), (2.19) and (2.18) in (2.17)

concludes the proof.

2.5.2 Proof of Theorem 15

We first provide an outline of the proof for better understanding.
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Sketch of the proof

As a first step, we wish to prove that there exists a matrix F of the form
F =

∑K
i=1 f̄iRi, with f̄i ∈ C, such that, for all nonnegative A with ‖A‖ < ∞

uniformly on N and z < 0,

1

N
trA (BN − zIN )

−1 − 1

N
trA (F− zIN )

−1 a.s.−→ 0.

Taking A = Ri and denoting fi , 1
N trRi (BN − zIN )

−1
, we will have in

particular that

fi −
1

N
trRi




K∑

j=1

f̄jRj − zIN




−1

a.s.−→ 0.

Contrary to classical deterministic equivalent approaches for random ma-
trices with i.i.d. entries, finding the approximation 1

N trA (F− zIN )
−1

for
1
N trA (BN − zIN )

−1
is not straightforward. The reason is that, during the

derivation, terms such as 1
Ni−ni

tr
(
INi

−WiW
H

i

)
HH

i (BN − zIN )
−1

Hi with

the
(
INi

−WiW
H

i

)
prefix will naturally appear and will be required to be con-

trolled. We proceed as follows.

� We first denote, for all i, δi ,
1

Ni−ni
tr
(
INi −WiW

H

i

)
HH

i (BN − zIN )
−1

Hi

some auxiliary variable. Then we prove

fi −
1

N
trRi (G− zIN )

−1 a.s.−→ 0,

with G =
∑K

j=1 ḡjRj and

ḡi =
1

(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilδi

1

N

ni∑

l=1

pil
1 + pilδi

,

where pil denotes the lth eigenvalue of Pi, and δi is linked to fi through

fi −
(
(1− ci)c̄iδi +

1

N

ni∑

l=1

δi
1 + pilδi

)
a.s.−→ 0.

� This expression of ḡi, which is not convenient under this form, is then
shown to satisfy

ḡi−
1

N

ni∑

l=1

pil
c̄i + pilfi − fiḡi

= ḡi−
1

N
trPi (fiPi + [c̄i − fiḡi]Ini

)
−1 a.s.−→ 0,

which induces the 2K-equation system

fi −
1

N
trRi




K∑

j=1

ḡjRj − zIN




−1

a.s.−→ 0

ḡi −
1

N
trPi (ḡiPi + [c̄i − fiḡi]Ini

)
−1 a.s.−→ 0.
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� These relations are sufficient to infer the deterministic equivalent, but
will be made more attractive for further considerations by introducing
F =

∑K
i=1 f̄iRi, and proving that

fi −
1

N
trRi




K∑

j=1

f̄jRj − zIN




−1

a.s.−→ 0

f̄i −
1

N
trPi

(
f̄iPi + [c̄i − fif̄i]Ini

)−1
= 0,

where, for z < 0, f̄i lies in [0, cic̄i/fi) and is now uniquely determined
by fi. In order to establish this convergence, it is necessary to define an
analytic extension of f̄i in a neighborhood of R−. The function fi can
be immediately extended to C \ R

+ where it verifies the properties of a
Stieltjes transform of a finite measure supported by R

+.

This is the very technical part of the proof. We then prove in a second step
the existence and uniqueness of a solution to the fixed-point equation

ei −
1

N
trRi




K∑

j=1

ējRj − zIN




−1

= 0

ēi −
1

N
trPi (ēiPi + [c̄i − eiēi]Ini

)
−1

= 0,

for all finite N , z < 0 and for ēi ∈ [0, cic̄i/ei). This unfolds from a property of
so-called standard functions. We will show precisely that the vector application
h = (h1, . . . , hK) defined for z < 0 by

hi : (x1, . . . , xK) 7→ 1

N
trRi




K∑

j=1

x̄jRj − zIN




−1

with x̄i the unique solution to

x̄i =
1

N
trPi (x̄iPi + [c̄i − xix̄i]Ini

)
−1

lying in [0, cic̄i/xi), is a standard function. It will unfold, from [86, Theorem
2], that the fixed-point equation in (e1, . . . , eK) has a unique solution with
positive entries and that this solution can be determined as the limiting iteration
of a classical fixed point algorithm. We will further establish that the ek(z)
are Stieltjes transforms of finite measures supported by R

+ which satisfy the
fundamental equations for z ∈ D.

The last step proves that the unique solution (e1, . . . , eN ) is such that

ei − fi
a.s.−→ 0,

which is solved by standard arguments. This will entail immediately by classical
complex analysis arguments that mN (z)− m̄N (z)

a.s.−→ 0 for all z ∈ C\R+, form
which the almost sure convergence FN − F̄N ⇒ 0 unfolds.
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Complete proof

We remind that, as N grows, the ratios ci = ni

Ni
for i = {1, . . . ,K} satisfy

lim supN ci < 1. We also assume for the time being that for all i, ‖Ri‖ is
uniformly bounded. The case where ‖Ri‖ is uniformly bounded only in the
almost sure sense will be treated subsequently.

Step 1: Convergence
In this section, we take z < 0, until further notice. Let us first intro-

duce the following parameters. We will denote P = maxi{lim sup ‖Pi‖}, R =
maxi{lim sup ‖Ri‖}, c+ = maxi{lim sup ci}, c̄− = mini{lim inf c̄i} and c̄+ =
maxi{lim sup c̄i}.

Let A ∈ C
N×N be a Hermitian nonnegative definite matrix with spectral

norm uniformly bounded by A. Recall the definition Ri = HiH
H

i . Taking

G =
∑K

j=1 ḡjRj , with ḡ1, . . . , ḡK scalars left undefined for the moment, we
have

1

N
trA(BN − zIN )−1 − 1

N
trA(G− zIN )−1

(a)
=

1

N
tr

[
A(BN − zIN )−1

K∑

i=1

Hi

(
−WiPiW

H

i + ḡiINi

)
HH

i (G− zIN )−1

]

(b)
=

K∑

i=1

ḡi
1

N
trA(BN − zIN )−1Ri(G− zIN )−1

− 1

N

K∑

i=1

ni∑

l=1

pilw
H

ilH
H

i (G− zIN )−1A(BN − zIN )−1Hiwil

(c)
=

K∑

i=1

ḡi
1

N
trA(BN − zIN )−1Ri(G− zIN )−1

− 1

N

K∑

i=1

ni∑

l=1

pilw
H

ilH
H

i (G− zIN )−1A(B(i,l) − zIN )−1Hiwil

1 + pilwH

ilH
H

i (B(i,l) − zIN )−1Hiwil
(2.21)

with wil ∈ C
Ni the lth column of Wi, pi1, . . . , pini the eigenvalues of Pi and

B(i,l) = BN − pilHiwilw
H

ilH
H

i . The equality (a) follows from Lemma 5, (b)

follows from the decomposition WiPiW
H

i =
∑ni

l=1 pilwilw
H

il, while the equality
(c) follows from Lemma 6.

The idea now is to infer the values of the ḡi such that the differences in (2.21)
go to zero almost surely as N grows large. We will therefore proceed by studying
the quantities wH

ilH
H

i (B(i,l) − zIN )−1Hiwil and wH

ilH
H

i (G − zIN )−1A(B(i,l) −
zIN )−1Hiwil in the denominator and numerator of the second term in (2.21).
For every i ∈ {1, . . . ,K}, denote

δi ,
1

Ni − ni
tr
(
INi −WiW

H

i

)
HH

i (BN − zIN )
−1

Hi . (2.22)

Introducing the additional term (G− zIN )−1A in the argument of the trace in
δi, we denote

βi ,
1

Ni − ni
tr
(
INi

−WiW
H

i

)
Hi (G− zIN )

−1
A (BN − zIN )

−1
Hi . (2.23)
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With these notations, according to Lemma 15 (iii), the term wH

ilH
H

i (B(i,l) −
zIN )−1Hiwil is asymptotically close to δi, and, if G is independent of wil, the
term wH

ilH
H

i (G− zIN )−1A(B(i,l) − zIN )−1Hiwil is asymptotically close to βi.
We also define

fi ,
1

N
trRi (BN − zIN )

−1
(2.24)

for z ∈ C \ R
+. Note that fi(z) ≥ 0 for z < 0. Remark first, from standard

matrix inequalities and the fact that wHAw ≤ ‖A‖ for any Hermitian matrix
A and any unitary vector w, that we have the following bounds on δi, βi and
fi,

δi ≤
R

|z| , βi ≤
RA

|z|2 , fi ≤
R

|z| . (2.25)

From Lemma 6, we have that

(1− ci)c̄iδi = fi −
1

N

ni∑

l=1

wH

ilH
H

i (BN − zIN )
−1

Hiwil

= fi −
1

N

ni∑

l=1

wH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

. (2.26)

Since z < 0, δi ≥ 0, so 1
1+pilδi

is well defined. By adding the term 1
N

∑ni

l=1
δi

1+pilδi

on both sides, (2.26) can be re-written as

(1− ci)c̄iδi − fi +
1

N

ni∑

l=1

δi
1 + pilδi

=
1

N

ni∑

l=1

[
δi

1 + pilδi
− wH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

]

=
1

N

ni∑

l=1


 δi −wH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

(1 + pilδi)
(
1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

)


 . (2.27)

We now apply Lemma 15 and Lemma 8, which together with δi ≤ R|z|−1

ensures that

E



∣∣∣∣∣(1− ci)c̄iδi − fi +

1

N

ni∑

l=1

δi
1 + pilδi

∣∣∣∣∣

4

 ≤ 8

C

N2
(2.28)

for some constant C > 0. This determines the asymptotic behavior of δi and,
thus, the asymptotic behavior of the quantity wH

ilH
H

i (B(i,l) − zIN )−1Hiwil in
the denominator of (2.21).

We now proceed similarly with βi as with δi. Assuming first that G is
independent of wil, we first obtain

βi =
1

Ni − ni
trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi

− 1

Ni − ni

ni∑

l=1

wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

(2.29)
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from which we have

1

Ni − ni
trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi −
1

Ni − ni

ni∑

l=1

βi
1 + pilδi

− βi

=
1

Ni − ni

ni∑

l=1

[
wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

− βi
1 + pilδi

]
.

(2.30)

With the same inequalities as above, and with

wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil ≤

RA

|z|2 (2.31)

we have that

E



∣∣∣∣∣
wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

− βi
1 + pilδi

∣∣∣∣∣

4



= E

[∣∣∣∣∣
wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil − βi

(1 + pilδi)(1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil)

+
pilδi

[
wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil − βi

]

(1 + pilδi)(1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil)

+
pilβi

[
δi −wH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

]

(1 + pilδi)(1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil)

∣∣∣∣∣∣

4



≤ 8
C ′

N2

(
1 +

P 4R4

|z|4
(
1 +

A4

|z|4
))

(2.32)

for some C ′ > C. Multiplying (2.30) by Ni−ni

N , we obtain

E

[∣∣∣∣
1

N
trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi

−βi
(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pilδi

)∣∣∣∣∣

4



≤ 8
C ′

N2

(
1 +

P 4R4

|z|4
(
1 +

A4

|z|4
))

. (2.33)

This now provides us with the asymptotic behavior of βi or equivalently of the
quantity wH

ilH
H

i (G−zIN )−1A(B(i,l)−zIN )−1Hiwil in the numerator of (2.21).

We are now in position to infer the ḡi such that 1
N trA(BN − zIN )−1 −

1
N trA(G − zIN )−1 is asymptotically small. For the previous derivations to
hold, the scalars ḡk, k ∈ {1, . . . ,K}, were assumed independent of wil. It is
however easy to see that these derivations still hold true (up to the choice of

larger constants C, C ′) if ḡk = ḡ
(il)
k + ε

(il)
k,N with ḡ

(il)
k independent of wil and
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|ε(il)k,N | ≤ C ′′/N , for C ′′ constant independent of k, i, j. This follows from the
fact that

∥∥∥∥∥

K∑

k=1

ḡkRk −
K∑

k=1

ḡ
(il)
k Rk

∥∥∥∥∥ =

∥∥∥∥∥

K∑

k=1

ε
(il)
k,NRk

∥∥∥∥∥ ≤ KRC ′′

N
.

We choose

ḡk =
1

(1− ck)c̄k + 1
N

∑nk

m=1
1

1+pkmδk

1

N

nk∑

m=1

pkm
1 + pkmδk

(2.34)

and remark that ḡk− ḡ(il)k = O(1/N) with ḡ
(il)
k defined similar to ḡk (2.34), with

column wil removed from the expression of BN . Indeed, when wil is removed,

pim = 0 and δi = 0 are no longer defined, while the term δ
(il)
k , k 6= i, defined

equivalently as ḡ
(il)
k , satisfies |δ(il)k − δk| ≤ 1

Nk

1
(1−ck)|z| from Lemma 8, from

which the result unfolds.
Summing the previous results over i and l, we then have

1

N
trA(BN − zIN )−1 − 1

N
trA(G− zIN )−1

=
K∑

i=1

1

(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilδi

× 1

N

ni∑

l=1

pil
1 + pilδi

1

N
trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi

− 1

N

K∑

i=1

ni∑

l=1

pilw
H

ilH
H

i (G− zIN )−1A(B(i,l) − zIN )−1Hiwil

1 + pilwH

ilH
H

i (B(i,l) − zIN )−1Hiwil

=

K∑

i=1

1

N

ni∑

l=1

pil

[
1
N trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pil′δi
)(1 + pilδi)

−wH

ilH
H

i (G− zIN )−1A(B(i,l) − zIN )−1Hiwil

1 + pilwH

ilH
H

i (B(i,l) − zIN )−1Hiwil

]
. (2.35)

Notice now that 1 + pilδi ≥ 1 and

(1− ci)c̄i < (1− ci)c̄i +
1

N

ni∑

l=1

1

1 + pilδi
≤ c̄i (2.36)

which ensure that we can divide the term in the expectation of the left-hand
side of (2.33) by 1 + pilδi and (1 − ci)c̄i +

1
N

∑ni

l=1
1

1+pilδi
without taking the

risk of the denominator getting close to 0. This leads to

E




∣∣∣∣∣∣
βi

1 + pilδi
−

1
N trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi(
(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilδi

)
(1 + pilδi)

∣∣∣∣∣∣

4



≤ 8
C ′

N2(1− ci)4c̄4i

(
1 +

P 4R4

|z|4
(
1 +

A4

|z|4
))

. (2.37)
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From (2.32) and (2.37), we therefore have that

E



∣∣∣∣∣∣

1
N trHH

i (G− zIN )
−1

A (BN − zIN )
−1

Hi(
(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilδi

)
(1 + pilδi)

−wH

ilH
H

i (G− zIN )
−1

A
(
B(i,l) − zIN

)−1
Hiwil

1 + pilwH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil

∣∣∣∣∣

4



≤ 128
C ′

N2(1− ci)4c̄4i

(
1 +

P 4R4

|z|4
(
1 +

A4

|z|4
))

. (2.38)

We finally obtain

E

[∣∣∣∣
1

N
trA(BN − zIN )−1 − 1

N
trA(G− zIN )−1

∣∣∣∣
4
]

≤ 128K4 C ′

N2(1− c+)4c̄4−

(
1 +

P 4R4

|z|4
(
1 +

A4

|z|4
))

. (2.39)

This provides a first convergence result as a function of the parameters δi,
from which a deterministic equivalent can be determined. Nonetheless, the
expression of ḡi is rather impractical as it stands and we need to go further.

Observe in particular that ḡi can be written under the form

ḡi =
1

N

ni∑

l=1

pil

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pil′δi
) + pilδi((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pil′δi
)
.

(2.40)
We will study the denominator of the above expression and show that it can be
synthesized into a much more attractive form.

From (2.28), we first have

E



∣∣∣∣∣fi − δi

(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pilδi

)∣∣∣∣∣

4

 ≤ 8C

N2
. (2.41)

Multiplying (2.34) by −δi
(
(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilδi

)
and adding c̄i to

both sides yields

c̄i − ḡiδi

(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pilδi

)
= (1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pilδi
. (2.42)

By definition, ḡi ≤ P
(1−ci)c̄i

, and we therefore also have

E



∣∣∣∣∣(c̄i − fiḡi)−

(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pilδi

)∣∣∣∣∣

4

 ≤ 8

C

N2

P 4

(1− c+)4c̄4−
.

(2.43)
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The equations (2.41) and (2.43) can now be used to approximate the de-
nominator of ḡi as follows

E



∣∣∣∣∣ḡi −

1

N

ni∑

l=1

pil
c̄i − fiḡi + pilfi

∣∣∣∣∣

4



= E



∣∣∣∣∣∣
1

N

ni∑

l=1

p2il

[
fi − δi((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pil′δi
)
]

[
(1 + pilδi)((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pil′δi
)
]
[c̄i − fiḡi + pilfi]

+
pil

[
c̄i − fiḡi − ((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pil′δi
)
]

[
(1 + pilδi)((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pil′δi
)
]
[c̄i − fiḡi + pilfi]

∣∣∣∣∣∣

4

 .

(2.44)

Before providing a useful bound, we need to ensure here that the term c̄i −
fiḡi + pilfi is uniformly away from zero, for all random fi and for all N . For
this, we recall the bounds 0 ≤ fi ≤ R

|z| and 0 ≤ ḡi ≤ P
(1−ci)c̄i

.

Let us consider 0 < ε < 1 and take from now on z < − RP
(1−c+)c̄−(c̄−−ε) , so

that c̄i − fiḡi > ε for all i. From (2.41), (2.43) and (2.44), we have

E



∣∣∣∣∣ḡi −

1

N

ni∑

l=1

pil
c̄i − fiḡi + pilfi

∣∣∣∣∣

4

 ≤ 64

C

N2

P 8

(1− ci)4c̄4i ε
4

(
1 +

1

(1− ci)4c̄4i

)

(2.45)

which is of order O(1/N2) since we assumed lim supN ci < 1.
We are now ready to introduce the matrix F. Consider

F =

K∑

i=1

f̄iRi, (2.46)

with f̄i defined as the unique solution to the equation in x

x =
1

N

ni∑

l=1

pil
c̄i − fix+ fipil

(2.47)

within the interval 0 ≤ x < cic̄i/fi. To prove the uniqueness of the solution
within this interval, note simply that

cic̄i
fi

>
1

N

ni∑

l=1

pil
c̄i − fi(cic̄i/fi) + fipil

0 ≤ 1

N

ni∑

l=1

pil
c̄i − fi · 0 + fipil

(2.48)

and that the function x 7→ 1
N

∑ni

l=1
pil

c̄i−fix+fipil
is convex for x ∈ [0, cic̄i/fi).

Hence the uniqueness of the solution in [0, cic̄i/fi). We also show that this
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solution is an attractor of the fixed-point algorithm, when correctly initialized.
Indeed, let x0, x1, . . . be defined by

xn+1 =
1

N

ni∑

l=1

pil
c̄i − fixn + fipil

(2.49)

with x0 ∈ [0, cic̄i/fi). Then, xn ∈ [0, cic̄i/fi) implies c̄i − fixn + fipil > (1 −
ci)c̄i + fipil ≥ fipil and therefore fixn+1 ≤ cic̄i, so x0, x1, . . . is contained in
[0, cic̄i/fi). Now observe that

xn+1 − xn =
1

N

ni∑

l=1

pilfi(xn − xn−1)

(c̄i + pilfi − fixn)(c̄i + pilfi − fixn−1)
(2.50)

with all terms being nonnegative in the sum, so that the differences xn+1 − xn
and xn − xn−1 have the same sign (we also have from the above remarks that
xn+1−xn ≤ ci(xn−xn−1)). The sequence x0, x1, . . . is therefore monotonic and
bounded: it converges. Calling x∞ this limit, we have that

x∞ =
1

N

ni∑

l=1

pil
c̄i + pilfi − fix∞

(2.51)

as required.
To be able to finally prove that 1

N trA(BN−zIN )−1− 1
N trA(F−zIN )−1 a.s.−→

0, we want now to show that ḡi − f̄i tends to zero at a sufficiently fast rate. For
this, we write

E

[∣∣ḡi − f̄i
∣∣4
]

≤ 8


E



∣∣∣∣∣ḡi −

1

N

ni∑

l=1

pil
c̄i − fiḡi + pilfi

∣∣∣∣∣

4



+E



∣∣∣∣∣
1

N

ni∑

l=1

pil
c̄i − fiḡi + pilfi

− 1

N

ni∑

l=1

pil
c̄i − fif̄i + pilfi

∣∣∣∣∣

4





= 8


E



∣∣∣∣∣ḡi −

1

N

ni∑

l=1

pil
c̄i − fiḡi + pilfi

∣∣∣∣∣

4



+E


∣∣ḡi − f̄i

∣∣4
∣∣∣∣∣
1

N

ni∑

l=1

pilfi
(c̄i − fif̄i + pilfi)(c̄i − fiḡi + pilfi)

∣∣∣∣∣

4



 (2.52)

where we have simply written ḡi − f̄i = (ḡi − 1
N

∑ni

l=1
pil

c̄i−fiḡi+pilfi
)

+ ( 1
N

∑ni

l=1
pil

c̄i−fiḡi+pilfi
− f̄i) and used the triangle inequality on the fourth

power of each term.
We only need to ensure now that the coefficient multiplying

∣∣ḡi − f̄i
∣∣ in the

right-hand side term is uniformly smaller than 1. For this, observe that, as
z → −∞, |pilfi| ≤ PR

|z| → 0 in the numerator. In the denominator, we already

know that c̄i − fif̄i + pilfi ≥ (1− ci)c̄i and we also have that c̄i − fiḡi + pilfi ≥
c̄i − RP

(1−ci)|z| , which is greater than some η > 0 for |z| taken large.
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Take η > 0 and smaller than 1, and choose z to be such that, for all i,

∣∣∣∣∣
1

N

ni∑

l=1

pilfi
(c̄i − fif̄i + pilfi)(c̄i − fiḡi + pilfi)

∣∣∣∣∣ ≤
PR

|z|(1− ci)c̄iη
<

1− η

8
(2.53)

That is, from now on, we take z < min
(
− 8PR

η(1−η)(1−c+)c̄−
,− RP

(1−c+)c̄−(1−ε)

)
.

From the inequality (2.52), gathering the terms in E

[∣∣ḡi − f̄i
∣∣4
]
on the left

side, we finally have

E

[∣∣ḡi − f̄i
∣∣4
]
≤ 512

η4
C

N2

P 8

(1− ci)4c̄4i ε
4

(
1 +

1

(1− ci)4c̄4i

)
. (2.54)

We can now proceed to prove the deterministic equivalent relations:

1

N
trA (G− zIN )

−1 − 1

N
trA (F− zIN )

−1

=

K∑

i=1

1

N

ni∑

l=1

pil

[
1
N trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pi,l′δi
)(1 + pilδi)

−
1
N trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

c̄i − fif̄i + pilfi

]

=

K∑

i=1

1

N

ni∑

l=1

pil

[(
1
N trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pi,l′δi
)(1 + pilδi)

−
1
N trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

c̄i − fiḡi + pilfi

)

+

(
1
N trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

c̄i − fiḡi + pilfi

−
1
N trHH

i (G− zIN )
−1

(F− zIN )
−1

Hi

c̄i − fif̄i + pilfi

)]

=

K∑

i=1

1

N
trHH

i A (G− zIN )
−1

(F− zIN )
−1

Hi

× 1

N

ni∑

l=1

pil

[
fi(ḡi − f̄i)

(c̄i − fif̄i + pilfi)(c̄i − fiḡi + pilfi)

+

(
(c̄i − fiḡi)− ((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pi,l′δi
)
)

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pi,l′δi
)(1 + pilδi)(c̄i − fif̄i + pilfi)

+
pil

(
fi − δi((1− ci)c̄i +

1
N

∑ni

l′=1
1

1+pi,l′δi
)
)

((1− ci)c̄i +
1
N

∑ni

l′=1
1

1+pi,l′δi
)(1 + pilδi)(c̄i − fif̄i + pilfi)


 . (2.55)
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Therefore, from (2.41), (2.43) and (2.54),

E

[∣∣∣∣
1

N
trA (G− zIN )

−1 − 1

N
trA (F− zIN )

−1

∣∣∣∣
4
]

≤ 64R4P 4A4K

|z|8(1− c+)8c̄8−

C

N2

(
1 +

1

(1− c+)4c̄4−

)4 [
1 +

64R4P 4

|z|4η4ε4
]

(2.56)

which is of order O(1/N2). Together with (2.39), applying Markov inequality
and the Borel Cantelli lemma, we finally arrive at

1

N
trA (BN − zIN )

−1 − 1

N
trA (F− zIN )

−1 a.s.−→ 0 (2.57)

as N grows large for realizations of {W1, . . . ,WK} taken from a set Az ⊂ Ω
of probability one (we use Ω here to denote the sample space of the probability
space generating the sequences of matrices {W1, . . . ,WK} of growing sizes).
This therefore holds true for countably many z (smaller than the established
bound) with a cluster point in R

−, on a set A ⊂ Ω of probability one.
Before we can extend the convergence on the entire negative real axis, we

need to define an analytic extension of f̄i in a neighborhood of R−. Take D ={
z = x+ iy : x < 0, |y| ≤ |x| 1−ci

ci

}
. For z ∈ D, the following holds

ℜ{fi} ≥ 0 and |ℑ{fi}| ≤ ℜ{fi}
1− ci
ci

. (2.58)

To see this, consider BN = UDUH the eigenvalue decomposition of BN , where
U = [u1 . . .uN ] ∈ C

N×N is unitary and D = diag(d1, . . . , dN ) contains the
nonnegative eigenvalues of BN . Denoting z = x+ iy, we have

fi =
1

N
trRi (BN − zIN )

−1

=
1

N
trRi (BN − zIN )

−1
(BN − z∗IN ) (BN − z∗IN )

−1

=
1

N

N∑

j=1

dj − x

|dj − z|2u
H

j Riuj + iy
1

N

N∑

j=1

1

|dj − z|2u
H

j Riuj . (2.59)

From the last equation, it follows that x < 0 and |y| ≤ |x| 1−ci
ci

imply ℜ{fi} ≥ 0

and |ℑ{fi}| ≤ ℜ{fi} 1−ci
ci

.
Consider now the sequence {qi,n}n≥0 of complex numbers, recursively de-

fined as

qi,n =
fi

(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

, n ≥ 1 (2.60)

and qi,0 = 0. We will now show that |qi,n| ≤ |fi|
(1−ci)c̄i

for all n and z ∈ D. First,

notice that

|qi,n| ≤
|fi|

(1− ci)c̄i
(2.61)
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whenever ℜ{qi,n−1} ≥ 0. After some simple algebra, one arrives at

ℜ{qi,n} =
ℜ{fi}

[
(1− ci)c̄i +

1
N

∑ni

l=1
1

|1+pilqi,n−1|2
]

∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2

+

1
N

∑ni

l=1
pil(ℜ{fi}ℜ{qi,n−1}−ℑ{fi}ℑ{qi,n−1})

|1+pilqi,n−1|2∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2 (2.62)

ℑ{qi,n} =
ℑ{fi}

[
(1− ci)c̄i +

1
N

∑ni

l=1
1

|1+pilqi,n−1|2
]

∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2

+

1
N

∑ni

l=1
pil(ℑ{fi}ℜ{qi,n−1}+ℜ{fi}ℑ{qi,n−1})

|1+pilqi,n−1|2∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2 . (2.63)

Now, if we assume ℜ{qi,n−1} ≥ 0, we have

ℜ{qi,n} ≥
ℜ{fi}(1− ci)c̄i − |ℑ{fi}| 1N

∑ni

l=1
pil|ℑ{qi,n−1}|
|1+pilqi,n−1|2∣∣∣(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2

≥ ℜ{fi}(1− ci)c̄i − |ℑ{fi}|cic̄i∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n−1

∣∣∣
2 . (2.64)

The right-hand side of the last equations is nonnegative whenever

|ℑ{fi}| ≤ ℜ{fi}
1− ci
ci

.

As this condition is always satisfied for z ∈ D and we have defined qi,0 = 0, we
can conclude that (2.61) and ℜ{qi,n} ≥ 0 hold for all n.

Additionally, we have from (2.62) and (2.63) that

ℜ{fi}ℜ{qi,n−1}+ ℑ{fi}ℑ{qi,n−1}

=

(
ℜ{fi}2 + ℑ{fi}2

) [
(1− ci)c̄i +

1
N

∑ni

l=1
1+pilℜ{qn−2}
|1+pilqn−2|2

]

∣∣∣(1− ci)c̄i +
1
N

∑ni

l=1
1

1+qilxn−2

∣∣∣
2 ≥ 0. (2.65)

Until here, we have proved that {qi,n} is a sequence of bounded analytic
functions on z ∈ D (the analyticity follows from the fact that fi is analytic on
C \ R

+ and qi,n is a rational function with no pole in D). Let us now focus
on the negative real axis, i.e., z < 0, which lies in the interior of D. Here, the
following holds

qi,n+1 − qi,n

= (qi,n − qi,n−1) fi

×
1
N

∑ni

l=1
1

(1+pilqi,n)(1+pilqi,n−1)[
(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilqi,n

] [
(1− ci)c̄i +

1
N

∑ni

l=1
1

1+pilqi,n−1

] . (2.66)
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As fi and all terms in the fraction of the right-hand side of the last equation
are nonnegative, the differences qi,n+1 − qi,n and qi,n − qi,n−1 have the same
sign. Thus, {qi,n} is either monotonically increasing or decreasing. Since {qi,n}
is also bounded, it must converge. This implies by Vitali’s convergence theorem
that {qi,n} converges uniformly on all closed subsets of D and that this limit is
an analytic function. Call this limit qi = limn qi,n.

We now define f̃i,n by the quantities fi and qi,n:

f̃i,n =
1

fi

1

N

ni∑

l=1

pilqi,n
1 + pilqi,n

. (2.67)

Clearly, {f̃i,n} is a sequence of analytic bounded functions, converging for z ∈ D
to

f̃i ,
1

fi

1

N

ni∑

l=1

pilqi
1 + pilqi

. (2.68)

With the above definition, qi,n+1 satisfies

qi,n+1 =
fi

(1− ci)c̄i +
1
N

∑ni

l=1
1

1+pilqi,n

=
fi

c̄i − 1
N

∑ni

l=1
pilqi,n

1+pilqi,n

=
fi

c̄i − fif̃i,n
. (2.69)

Thus, we can write, from (2.67),

f̃i,n+1 =
1

N

ni∑

l=1

pil

(c̄i − fif̃i,n)
(
1 + pilfi

c̄i−fif̃i,n

) =
1

N

ni∑

l=1

pil

c̄i − fif̃i,n + pilfi
.

(2.70)

As a consequence, the restriction of f̃i to z < 0 is identical to f̄i and the
fixed-point algorithm defined by (2.70) with f̃i,0 = 0 converges to f̃i for z ∈ D.

From this point on, we therefore extend the definition of f̄i toD by f̄i(z) = f̃i(z).
From (2.65) and for z ∈ D, we have

ℜ{f̄i} =
1

N

ni∑

l=1

pil
pil|qi|2ℜ{fi}+ ℜ{fi}ℜ{qi}+ ℑ{fi}ℑ{qi}

|fi + pilqifi|2
≥ 0. (2.71)

Since F =
∑

k=1K f̄kRk and the matrices Rk are Hermitian nonnegative defi-

nite, it follows that
∣∣∣ 1N trA (F− zIN )

−1
∣∣∣ ≤ ||A||

|x| for z ∈ D.

From the Vitali convergence theorem, the identity theorem, the analytic-
ity of the functions under study, and the fact that 1

N trA (BN − zIN )
−1

and
1
N trA (F− zIN )

−1
are uniformly bounded on all closed subsets of z ∈ D, we

have that the convergence

1

N
trA (BN − zIN )

−1 − 1

N
trA

(
K∑

i=1

f̄iRi − zIN

)−1

a.s.−→ 0 (2.72)
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holds true for all z ∈ D.
Applying the result for A = Rj , this is in particular

fj −
1

N
trRj

(
K∑

i=1

f̄iRi − zIN

)−1

a.s.−→ 0 (2.73)

where we remind that f̄i is the unique solution to

x =
1

N

ni∑

i=1

pil
c̄i − fix+ pilfi

(2.74)

within the set [0, cic̄i/fi). For A = IN , this implies

mN (z)− 1

N
tr

(
K∑

i=1

f̄iRi − zIN

)−1

a.s.−→ 0 (2.75)

which proves the convergence.

Step 2: Existence and Uniqueness
We will now prove the existence and the uniqueness of positive solutions

e1(z), . . . , eK(z) for z < 0 and the convergence of the classical fixed point al-
gorithm to these values. In addition, we will show that the ei(z) have analytic
extensions on C \ R+ which are Stieltjes transforms of finite measures over R+

and satisfy the fundamental equations for z ∈ D. We first introduce some nota-
tions and useful identities. Until stated otherwise, we assume z < 0. Note that,
similar to the auxiliary variables δi and qi in Step 1, we can define, for any pair of
variables xi and x̄i, with x̄i defined as the solution y to y = 1

N

∑ni

l=1
pil

c̄j−xjy+xjpil

such that 0 ≤ y < cj c̄j/xj , the auxiliary variables ∆1, . . . ,∆K , with the prop-
erties

xi = ∆i

(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pil∆i

)

= ∆i

(
c̄i −

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)
(2.76)

and

c̄i − xix̄i = (1− ci)c̄i +
1

N

ni∑

l=1

1

1 + pil∆i

= c̄i −
1

N

ni∑

l=1

pil∆i

1 + pil∆i
. (2.77)

Indeed, firstly, there exists a unique mapping between xi and ∆i. This
unfolds from noticing that

d xi
d∆i

=
d

d∆i

[
∆i

(
(1− ci)c̄i +

1

N

ni∑

l=1

1

1 + pil∆i

)]

= (1− ci)c̄i +
1

N

ni∑

l=1

1

(1 + pil∆i)2
> 0 (2.78)
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and therefore xi and ∆i are one-to-one. Additionally, xi is a strictly growing
function of ∆i with ∆i = 0 for xi = 0. This ensures that ∆i > 0 if and only if
xi > 0.

Secondly, from the definition of x̄i, we have

c̄i − xix̄i = c̄i − xi
1

N

ni∑

l=1

pil
(c̄i − xix̄i) + pilxi

= c̄i −∆i

(
c̄i −

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)

× 1

N

ni∑

l=1

pil

c̄i − xix̄i + pil∆i

(
c̄i − 1

N

∑ni

l=1′
pil′∆i

1+pil′∆i

) . (2.79)

Note in particular that for xix̄i = 1
N

∑ni

l=1′
pil′∆i

1+pil′∆i
, the above equation

simplifies to

c̄i −∆i

(
c̄i −

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)

× 1

N

n1∑

l=1

pil(
c̄i − 1

N

∑ni

l=1′
pil′∆i

1+pil′∆i

)
+ pil∆i

(
c̄i − 1

N

∑ni

l′=1
pil′∆i

1+pil′∆i

)

= c̄i −
1

N

ni∑

l=1

pil∆i

1 + pil∆i
(2.80)

and therefore c̄i− 1
N

∑ni

l=1
pil∆i

1+pil∆i
is one of the solution of the implicit equation

in u,

u = c̄i − xi
1

N

ni∑

l=1

pil
u+ pilxi

. (2.81)

Equivalently, writing u = c̄i − xiy, it follows that 1
xi

1
N

∑ni

l=1
pil∆i

1+pil∆i
is one of

the solutions of the equation in y

y =
1

N

ni∑

l=1

pil
c̄i − xiy + pilxi

. (2.82)

Since

xi

(
1

xi

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)
< cic̄i (2.83)

this solution lies in [0, cic̄i/xi) and is exactly equal to x̄i. This proves that the
equations in (xi, x̄i) can be written under the form of the equations in (∆i, x̄i),
as presented above.

We take the opportunity of the above definitions to notice that, for xi > x′i
and x̄′i, ∆

′
i defined similarly as x̄i and ∆i,

xix̄i − x′ix̄
′
i =

1

N

ni∑

l=1

pil(∆i −∆′
i)

(1 + pil∆i)(1 + pil∆′
i)
> 0 (2.84)
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whenever Pi 6= 0. Therefore xix̄i is a growing function of xi (or equivalently of
∆i). This will turn out to be a useful remark later.

We are now in position to prove the step of uniqueness. Define for i ∈
{1, . . . ,K}, the functions

hi : (x1, . . . , xK) 7→ 1

N
trRi




K∑

j=1

x̄jRj − zIN




−1

(2.85)

with x̄j the unique solution of the equation in y

y =
1

N

nj∑

l=1

pjl
c̄j + xjpjl − xjy

(2.86)

such that 0 ≤ x̄j < cj c̄j/xj .
We will prove in the following that the multivariate function h = (h1, . . . , hK)

is a standard interference function as introduced in Definition 11. In order to
prove that there exist x1, . . . , xK such that xj ≥ hj(x1, . . . , xK) for all j, it is
sufficient to notice that hj(x1, . . . , xK) ≤ R/|z| for all j. Thus, for xj ≥ R/|z|
for all j, xj ≥ hj(x1, . . . , xK) holds for all j. Therefore, by showing that

h , (h1, . . . , hK) is a standard function, we will prove with the help of Theo-
rem 16 that the classical fixed point algorithm converges to the unique set of
positive solutions e1, . . . , eK , when z < 0.

The positivity condition is straightforward as x̄i is positive for xi positive and
therefore hj(x1, . . . , xK) is always positive whenever x1, . . . , xK are nonnegative.

The scalability is also rather direct. Let α > 1, then

αhj(x1, . . . , xK)− hj(αx1, . . . , αxK)

=
1

N
trRj

(
K∑

k=1

x̄k
α
Rk − z

α
IN

)−1

− 1

N
trRj

(
K∑

k=1

x̄
(α)
k Rk − zIN

)−1

(2.87)

where we denoted x̄
(α)
j the unique solution to (2.86) within [0, cj c̄j/(αxj)) with

xj replaced by αxj .
At this point, we will require the following lemma:

Lemma 17. Let A,B,R ∈ C
N×N , where A and B are nonnegative-definite,

satisfying B ≻ A, and R is nonnegative-definite. Then

trR
(
A−1 −B−1

)
> 0. (2.88)

Proof. Note that B ≻ A implies by [93, Corollary 7.7.4] B−1 ≺ A−1. Thus, for
any vector x ∈ C

N ,

xH
(
A−1 −B−1

)
x > 0. (2.89)

Consider now the eigenvalue decomposition of the matrix R = UΛUH, where
U = [u1, . . . ,uN ] and Λ = diag(λ1, . . . , λN ). Since λi ≥ 0 ∀i, we have

trR
(
A−1 −B−1

)
=

N∑

i=1

λiu
H

i

(
A−1 −B−1

)
ui > 0. (2.90)
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From Lemma 17, it suffices to show that

K∑

k=1

[
x̄
(α)
k − x̄k

α

]
Rk +

[
z − z

α

]
IN (2.91)

is positive definite. Since αxi > xi, we have from the property (2.84) that

αxkx̄
(α)
k − xkx̄k > 0 (2.92)

or equivalently

x̄
(α)
k − x̄k

α
> 0. (2.93)

Along with 1 − 1/α > 0 and z < 0, this ensures that αhj(x1, . . . , xK) >
hj(αx1, . . . , αxK).

The monotonicity requires some more calculus. This unfolds from consider-
ing x̄i as a function of ∆i, by verifying that d

d∆i
x̄i is negative.

d

d∆i
x̄i

=
1

∆2
i

(
1− c̄i

c̄i − 1
N

∑ni

l=1
pil∆i

1+pil∆i

)
+

c̄i
∆2

i




1
N

∑ni

l=1
pil∆i

(1+pil∆i)2(
c̄i − 1

N

∑ni

l=1
pil∆i

1+pil∆i

)2




=
1

∆2
i

(
c̄i − 1

N

∑ni

l=1
pil∆i

1+pil∆i

)2

[
− 1

N

(
ni∑

l=1

pil∆i

1 + pil∆i

)(
c̄i −

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)

+
c̄i
N

ni∑

l=1

pil∆i

(1 + pil∆i)2

]

=
1

∆2
i

(
c̄i − 1

N

∑ni

l=1
pil∆i

1+pil∆i

)2



(

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)2

− c̄i
N

ni∑

l=1

pil∆i

1 + pil∆i
+
c̄i
N

ni∑

l=1

pil∆i

(1 + pil∆i)2

]

=
1

∆2
i

(
c̄i − 1

N

∑ni

l=1
pil∆i

1+pil∆i

)2



(

1

N

ni∑

l=1

pil∆i

1 + pil∆i

)2

− c̄i
N

ni∑

l=1

(pil∆i)
2

(1 + pil∆i)2


 .

(2.94)

From the Cauchy-Schwarz inequality (or Hoelder’s inequality for p = q = 2), we
have

(
ni∑

l=1

1

N

pil∆i

1 + pil∆i

)2

≤
ni∑

k=1

1

N2

ni∑

l=1

(pil∆i)
2

(1 + pil∆i)2

= cic̄i
1

N

ni∑

l=1

(pil∆i)
2

(1 + pil∆i)2

<
c̄i
N

ni∑

l=1

(pil∆i)
2

(1 + pil∆i)2
(2.95)
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which is sufficient to conclude that d
d∆i

x̄i < 0. Since ∆i is an increasing function

of xi, we have that x̄i is a decreasing function of xi, i.e.,
d

dxi
x̄i < 0. Therefore,

for two sets x1, . . . , xK and x′1, . . . , x
′
K of positive values such that xj > x′j ,

defining x̄′j equivalently as x̄j for the terms x′j , we have x̄′k > x̄k. Therefore,
from Lemma 17, we finally have

hj(x1, . . . , xK)− hj(x
′
1, . . . , x

′
K)

=
1

N
trRj

(
K∑

k=1

x̄kRk − zIN

)−1

− 1

N
trRj

(
K∑

k=1

x̄′kRk − zIN

)−1

> 0. (2.96)

This proves the monotonicity condition and, finally, that h = (h1, . . . , hK) is a
standard function.

It follows from Theorem 16 that (e1, . . . , eK) is uniquely defined and that the
classical fixed-point algorithm converges to this solution from any initialization
point (remember that, at each step of the algorithm, the set ē1, . . . , ēK must be
evaluated, possibly thanks to a further fixed-point algorithm).

We will now show that ei(z) has an analytic extension on z ∈ C \R+ which
is the Stieltjes transform of a finite measure supported by R

+. For this proof,
consider the matrices P[p],i ∈ C

nip and H[p],i ∈ C
Np×Nip for all i defined as

the Kronecker products P[p],i , Pi ⊗ Ip, H[p],i , Hi ⊗ Ip, such that P[p],i and

R[p],i = H[p],iH
H

[p],i have the same spectral distributions as the matrices Pi and

Ri, respectively. It is easy to see that the solutions of the implicit equations (2.9)
for z ∈ C \R+ remain unchanged by substituting the P[p],i and R[p],i to the Pi

and Ri, respectively, for any p. Denoting similarly f[p],i the fi adapted to P[p],i

and H[p],i, from the convergence result of Step 1, we can choose f[1],i, f[2],i, . . . a
sequence of the set of probability one where convergence is ensured as p grows
large (N and the ni are kept fixed). This sequence is uniformly bounded (by
R/|z|) in C\R+, and we can, therefore, extract a converging subsequence f[φ(p)],i
out of it. Call e′i(z) this limit.

We wish to prove that e′i, seen as a function of z, is the Stieltjes transform
of a distribution function, whose restriction to R

− matches ei. For this, we
prove the defining properties of a Stieltjes transform, provided in Property 3.
By Vitali’s convergence theorem [77], e′i is analytic on C

+ since e′i is the limit
of a sequence of analytic functions, bounded on every compact of C \ R

+. It
is clear that for z ∈ C

+, ℑ[f[p],i(z)] > 0, ℑ[zf[p],i(z)] > 0 and |yf[p],i(iy)| ≤ R
for y > 0. This implies that for z ∈ C

+, ℑ[e′i(z)] ≥ 0, zℑ[e′i(z)] ≥ 0 and
limy→∞ −iye′i(iy) ≤ R. In addition, note that, for z ∈ C

+,

ℑ[f[p],i] ≥
1

N

r

(RP + |z|)2ℑ[z] > 0 (2.97)

and

ℑ[zf[p],i] ≥
1

N

Kr2t

(RP + |z|)2ℑ[z] > 0 (2.98)

with r a lower bound on the smallest non-zero eigenvalues of R1, . . . ,RK (we
naturally assume all Rk non-zero) and t a lower bound on the smallest non-zero
eigenvalues of T1, . . . ,TK (again, none assumed identically zero). Take z ∈ C

+

and ε < 1
2 min( 1

N
r

(RP+|z|)2ℑ[z], 1
N

Kr2t
(RP+|z|)2ℑ[z]). There now exists p0 such that
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p ≥ p0 implies |ℑ[f[φ(p)],i] − ℑ[e′i]| < ε/2 and |ℑ[zf[φ(p)],i] − ℑ[ze′i]| < ε/2, and
therefore ℑ[e′i] > ε/2 and zℑ[e′i(z)] > ε/2 so that e′i(z) is the Stieltjes transform
of a finite measure on R

+. Moreover, since e′i(z) = lim f[φ(p)],i(z) on D, from
(2.73), e′i(z) satisfies the equations (2.9) for all z ∈ D.

Consider now two sets of Stieltjes transforms (e′1(z), . . . , e
′
K(z)) and (e′′1(z),

. . . , e′′K(z)), z ∈ C\R+, which are solutions of the fixed-point equation for z < 0.
Since e′i(z) = e′′i (z) for all z < 0, and e′i(z) − e′′i (z) is holomorphic on C \ R

+

as the difference of Stieltjes transforms, e′i(z) = e′′i (z) over C \ R+ [94] by the
identity theorem. This therefore proves, in addition to point-wise uniqueness
on the negative half-line, the uniqueness of the Stieltjes transform solution of
the functional implicit equation such that, for z < 0, 0 ≤ ēi < cic̄i/ei for all i.
Moreover, this solution satisfies the fundamental equations for z ∈ D.

Step 3: Convergence of ei − fi
For this step, we follow the same approach as in [74]. Denote

εN,i , fi −
1

N
trRi

(
K∑

k=1

f̄kRk − zIN

)−1

(2.99)

and recall the definitions of fi, ei, f̄i and ēi:

fi =
1

N
trRi (BN − zIN )

−1
(2.100)

ei =
1

N
trRi




K∑

j−1

ējRj − zIN




−1

(2.101)

f̄i =
1

N

ni∑

l=1

pil
c̄i − fif̄i + pilfi

, f̄i ∈ [0, cic̄i/fi) (2.102)

ēi =
1

N

ni∑

l=1

pil
c̄i − eiēi + pilei

, ēi ∈ [0, cic̄i/ei) . (2.103)

From the definitions above, we have the following set of inequalities

fi ≤
R

|z| , ei ≤
R

|z| , f̄i ≤
P

(1− ci)c̄i
, ēi ≤

P

(1− ci)c̄i
. (2.104)

We will show in the sequel that

ei − fi
a.s.−→ 0, (2.105)

for all i ∈ {1, . . . , N}. Write the following differences

fi − ei =

K∑

j=1

(ēj − f̄j)
1

N
trRi

(
K∑

k=1

ēkRk − zIN

)−1

Rj

(
K∑

k=1

f̄kRk − zIN

)−1

+ εN,i (2.106)

ēi − f̄i =
1

N

ni∑

l=1

p2il(fi − ei)− pil
[
fif̄i − eiēi

]

(c̄i − ēiei + pilei)(c̄i − f̄ifi + pilfi)
(2.107)

fif̄i − eiēi = f̄i(fi − ei) + ei(f̄i − ēi) . (2.108)
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For notational convenience, we define the following values

α , sup
i

E
[
|fi − ei|4

]
(2.109)

ᾱ , sup
i

E
[
|f̄i − ēi|4

]
. (2.110)

It is thus sufficient to show that α is summable to prove (2.105). By applying
(2.104) to the absolute of the first difference, we obtain

|fi − ei| ≤
KR2

|z|2 sup
i

|f̄i − ēi|+ sup
i

|εN,i| (2.111)

and hence

α ≤8K4R8

|z|8 ᾱ+
8C

N2
(2.112)

for some C > 0 such that E[supi |εN,i|4] ≤ 8K supi E[|εN,i|4] ≤ C/N2. Similarly,
we have for the third difference

|fif̄i − eiēi| ≤ |f̄i||fi − ei|+ |ei||f̄i − ēi|

≤ P

(1− c+)c̄−
sup
i

|fi − ei|+
R

|z| supi
|f̄i − ēi| . (2.113)

This result can be used to find an upper bound on the second difference term,
which writes

|f̄i − ēi| ≤
1

(1− c+)2c̄2−

(
P 2 sup

i
|fi − ei|+ P |fif̄i − eiēi|

)

≤ 1

(1− c+)2c̄2−

(
P 2 sup

i
|fi − ei|

+P

[
P

(1− c+)c̄−
sup
i

|fi − ei|+
R

|z| supi
|f̄i − ēi|

])

≤ P 2(c̄− + 1)

(1− c+)3c̄3−
sup
i

|fi − ei|+
RP

|z|(1− c+)2c̄2−
sup
i

|f̄i − ēi| . (2.114)

Hence

ᾱ ≤ 8P 8(c̄− + 1)4

(1− c+)12c̄12−
α+

8R4P 4

|z|4(1− c+)8c̄8−
ᾱ . (2.115)

For any z satisfying |z| > 2RP
(1−c+)2 , we have 8R4P 4

|z|4(1−c+)8 < 1/2 and thus

ᾱ <
16P 8(c̄− + 1)4

(1− c+)12c̄12−
α . (2.116)

Plugging this result into (2.112) yields

α ≤ 128K4R8P 8(2− c)4

|z|8(1− c+)12
α+

8C

N2
. (2.117)
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Take 0 < ε < 1. It is easy to check that for |z| > 1281/8RP
√

K(c̄−+1)

(1−c+)3/2c̄
3/2
− (1−ε)1/8

,

128K4R8P 8(c̄−+1)4

|z|8(1−c+)12c̄12−
< 1− ε and thus

α <
8C

εN2
. (2.118)

Since C does not depend on N , α is clearly summable which, along with the
Markov inequality and the Borel Cantelli lemma, concludes the proof.

Finally, taking the same steps as previously, we also have

E

[
|mN (z)− m̄N (z)|4

]
≤ 8C

εN2
(2.119)

for some |z| large enough. For these z, the same conclusion holds: mN (z) −
m̄N (z)

a.s.−→ 0. From Vitali convergence theorem, since fi and ei are uniformly
bounded on all closed sets of C \ R

+, we finally have that the convergence is
true for all z ∈ C \ R+. The almost sure convergence of the Stieltjes transform
implies the almost sure weak convergence of FN − F̄N to 0, uniformly over every
compact set of R+, which is our final result.

This concludes the proof of Theorem 15 for the matrices Ri with surely
bounded spectral norms.

Almost sure boundedness of ‖Ri‖
To extend Theorem 15 to the case where ‖Ri‖ is only almost surely bounded,
we merely apply the Fubini theorem.

Call (ΩR,FR, PR) the probability space that generates the sequences of
matrices of growing sizes {Ri, 1 ≤ i ≤ K,Ni ∈ N} and (ΩW ,FW , PW ) the
probability space that generates the sequences of matrices of growing sizes
{Wi, 1 ≤ i ≤ K,Ni ∈ N} and (ΩR ×ΩW ,FR ×FW , Q). Denote A the subspace
of FR ×FW for which FN − F̄N → 0. Then, from the Fubini theorem,

Q(A) =

∫

ΩR×ΩW

1A(r, w)Q(d(r, w)) =

∫

ΩR

∫

ΩW

1A(r, w)PW (dw)PR(dr).

(2.120)
Take r such that the ‖Ri‖ are all uniformly bounded with growing N . Then,
from Theorem 15, for this r,

∫
ΩW

1A(r, w)PW (dw) = 1. But these r ∈ ΩR belong
to a space of probability one, as the intersection of K spaces of probability one,
and finally Q(A) = 1.

2.5.3 Proof of Theorem 18

It is easy to see (e.g. [71, Definition 3.2]) that, for F a probability distribution
function with support in R

+

∫ ∞

0

log

(
1 +

t

x

)
dF (t) =

∫ ∞

x

(
−1

t
+mF (−t)

)
dF (t) (2.121)

wheremF (z) is the Stieltjes transform of F (this is sometimes called the Shannon-
transform in 1/x). In particular,

IN (x) =
1

N
log det

(
IN +

1

x
BN

)
=

∫ ∞

x

(
−1

t
+mN (−t)

)
dFN (t) (2.122)
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where mN (z) = 1
N tr (BN − zIN )

−1
.

We will first show that the expression ĪN (x) given in Theorem 18 satisfies
the same property with F̄N . For notational simplicity, we will write ei = ei(−x)
and ēi = ēi(−x).

First note that the system of equations in Theorem 15 (i) is unchanged if we
extend the Pi matrices into Ni ×Ni diagonal matrices filled with Ni − ni zero
eigenvalues. Therefore, we can assume that all Pi have size Ni × Ni although
we restrict the FPi to have a mass 1− ci in zero. Since this does not alter the
equations in Theorem 15 (i), we have in particular ēi < c̄i/ei for x > 0.

This being said, ĪN (x) is given by

ĪN (x) =
1

N
log det

(
IN +

1

x

K∑

i=1

ēiRi

)

+
K∑

i=1

[
1

N
log det ([c̄i − eiēi]IN + eiPi)− c̄i log(c̄i)

]
. (2.123)

Calling Ī the function

Ī : (x1, . . . , xK , x̄1, . . . , x̄K , x)

7→ 1

N
log det

(
IN +

1

x

K∑

i=1

x̄iRi

)

+

K∑

i=1

[
1

N
log det ([c̄i − xix̄i]IN + xiPi)− c̄i log(c̄i)

]
, (2.124)

we have

∂Ī

∂xi
(e1, . . . , eK , ē1, . . . , ēK , x) = ēi − ēi

1

N

Ni∑

l=1

1

c̄i − eiēi + eipil
(2.125)

∂Ī

∂x̄i
(e1, . . . , eK , ē1, . . . , ēK , x) = ei − ei

1

N

Ni∑

l=1

1

c̄i − eiēi + eipil
. (2.126)

In order to proceed, note that we can write c̄i in the following way:

c̄i =
1

N

Ni∑

l=1

c̄i − eiēi + eipil
c̄i − eiēi + eipil

= (c̄i − eiēi)
1

N

Ni∑

l=1

1

c̄i − eiēi + eipil
+

1

N

Ni∑

l=1

eipil
c̄i − eiēi + eipil

= (c̄i − eiēi)
1

N

Ni∑

l=1

1

c̄i − eiēi + eipil
+ eiēi (2.127)

from which it follows that

(c̄i − eiēi)

(
1− 1

N

Ni∑

l=1

1

c̄i − eiēi + eipil

)
= 0. (2.128)
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But we also know that 0 ≤ ēi < c̄i/ei and therefore c̄i − eiēi > 0. This entails

1

N

Ni∑

l=1

1

c̄i − eiēi + eipil
= 1. (2.129)

From (2.129), we can conclude that

∂Ī

∂xi
(e1, . . . , eK , ē1, . . . , ēK , x) = 0 (2.130)

∂Ī

∂x̄i
(e1, . . . , eK , ē1, . . . , ēK , x) = 0. (2.131)

We therefore have, from the chain rule of differentiation,

d

dx
ĪN (x) =

K∑

i=1

[
∂Ī

∂ei

∂ei
∂x

+
∂Ī

∂ēi

∂ēi
∂x

]
+
∂Ī

∂x

=
∂Ī

∂x

= − 1

x2

K∑

i=1

ēi
1

N
trRi


IN +

1

x

K∑

j=1

ējRj




−1

= − 1

x

1

N
tr



(

K∑

i=1

1

x
ēiRi + IN − IN

)
IN +

1

x

K∑

j=1

ējRj




−1



= − 1

x
+

1

N
tr


xIN +

K∑

j=1

ējRj




−1

(2.132)

Recognizing the Stieltjes transform of F̄N , we therefore have, along with the
fact that ĪN (∞) = 0,

ĪN (x) =

∫ ∞

x

(
1

t
− 1

t2
m̄N

(
−1

t

))
dt (2.133)

and therefore

ĪN (x) =

∫ ∞

0

log

(
1 +

t

x

)
dF̄N (t). (2.134)

In order to prove the almost sure convergence IN (x) − ĪN (x)
a.s.−→ 0, we

simply need to remark that the support of the eigenvalues of BN is bounded.
Indeed, the non-zero eigenvalues of WiW

H

i have unit modulus and therefore
‖BN‖ ≤ KPR. Similarly, the support of F̄N is the support of the eigenvalues

of
∑K

i=1 ēiRi, which are bounded by KPR as well.
As a consequence, for B1,B2, . . . a realization for which FN − F̄N ⇒ 0 (these

lie in a space of probability one), we have, from Lemma 4

∫ ∞

0

log

(
1 +

t

x

)
d[FN − F̄N ](t)

a.s.−→ 0 (2.135)

Hence the almost sure convergence of the instantaneous mutual information.
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Because of sure boundedness of ‖BN‖, an immediate application of the dom-
inated convergence theorem on the probability space Ω that engenders the se-
quences of matrices B1(ω),B2(ω), . . ., ω ∈ Ω, entails convergence in the first
mean as well.

2.5.4 Proof of Theorem 19

Let z > 0. From Theorem 4, it is easy to see that the moments M̄k of the
distribution function F̄N can be obtained through successive differentiation of
the function 1

z
1
NTN (− 1

z ) (where TN (z) is given by Theorem 14 (ii)), i.e.,

M̄k =
(−1)k

k!

dk

dzk

(
1

z

1

N
trTN (−1/z)

)∣∣∣∣
z=0

=
(−1)k

k!

dk

dzk
1

N
tr


 1

N

n∑

j=1

zRj

1 + δj(−1/z)
+ IN




−1
∣∣∣∣∣∣∣
z=0

=
(−1)k

k!

1

N
trTN,k(0) (2.136)

where

TN,0(z) ,


 1

N

n∑

j=1

zRj

1 + δj,0(z)
+ IN




−1

(2.137)

and (δ1,0(z), . . . , δn,0(z)) is the unique positive solution to

δj,0(z) =
1

n
trRH

j T0(z), j = 1, . . . , n. (2.138)

Denote TN,k(z) =
dkTN,0(z)

dzk . In order to find the derivatives TN,k(z), we need
the following additional definitions. For j ∈ {1, . . . , n}, let

gj,0(z) = zδj,0(z) (2.139)

fj,0(z) = − 1

1 + gj,0(z)
(2.140)

tj,0(z) = zfj,0(z) (2.141)

and denote δj,k(z), gj,k(z), fj,k(z), and tj,k(z) their kth derivatives, respectively.
Furthermore, let

Q0(z) =
1

N

n∑

j=1

tj,0(z)Rj (2.142)

and denote Qk(z) =
dkQ0(z)

dzk . With theses definitions, we arrive at

TN,1(z) = TN,0(z)Q1(z)TN,0(z)︸ ︷︷ ︸
,G0(z)

. (2.143)
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From the Leibniz-rule for the kth derivative of the product of two functions1

TN,k+1(z) =

k∑

i=0

(
k

i

)
TN,k−i(z)Gi(z), n ≥ 0 (2.144)

Gk(z) =

k∑

i=0

(
k

i

)
Qk−i+1(z)TN,i(z), n ≥ 0 (2.145)

where Gk(z) =
dkG0(z)

dzk . Replacing the last equation in the second last yields

TN,k+1(z) =
k∑

i=0

i∑

j=0

(
k

i

)(
i

j

)
TN,k−i(z)Qi−j+1(z)TN,j(z). (2.146)

Straight-forward differentiation of Q0(z) leads to

Qk(z) =
1

N

n∑

j=1

tj,k(x)Rj , k ≥ 0. (2.147)

The last step is to find explicit expressions of tj,k(z). From the Leibniz-rule

tj,k(z) = kfj,k−1(z) + zfj,k(z) , k ≥ 0. (2.148)

Consider now fj,1(z) the first derivative of fj,0(z):

fj,1(z) =
gj,1(z)

(1 + gj,0)
2 = f2j,0(z)︸ ︷︷ ︸

,rj,0(z)

gj,1(z). (2.149)

The higher order derivatives are calculated as

fj,k+1(z) =

k∑

i=0

(
k

i

)
rj,i(z)gj,k−i+1(z) (2.150)

where

rj,k(z) =
k∑

i=0

(
k

i

)
fj,i(zk)fj,k−i(z). (2.151)

Combining the last two equations yields

fj,k+1(z) =

k∑

i=0

i∑

l=0

(
k

i

)(
i

l

)
fj,l(z)fj,i−l(z)gj,k−i+1(z) (2.152)

where gj,k(z) can be easily calculated as

gj,k(z) = kδj,k−1(z) + zδj,k(z) (2.153)

1For two functions u(x) and v(x),
dn(u(x)v(x))

dxn =
∑n

i=0

(

n
i

) dn−iu(x)

dxn−i
div(x)

dxi .
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and δj,k(z) is given by

δj,k(z) =
1

N
trRjTN,k(z). (2.154)

Since we are only interested in the case z = 0, we will drop from now on the
dependence on z and write, e.g., TN,k instead of TN,k(0). In this case, the
expressions of gj,k(z) and tj,k(z) simplify to

gj,k = kδj,k−1 (2.155)

tj,k = kfj,k−1. (2.156)

Replacing these quantities in (2.147) and (2.152), together with (2.146) and
(2.154) leads to the desired result. Note that TN,0 = IN , fj,0 = −1 and δj,0 =
1
N trRj . Moreover, TN,k+1 depends on TN,0, . . . ,TN,k and Q1, . . . ,Qk+1.
Since Qk+1 depends only on fj,k, TN,k+1 can be recursively calculated.

2.5.5 Proof of Theorem 20

Both 1
N trDN (BN − zIN )

−1
and 1

N trDNTN (z) as defined in Theorem 14 are
Stieltjes transforms of finite measures which we denote by π and π, respectively.
Thus, Theorem 14 and Theorem 5 imply together that, almost surely,

π − π ⇒ 0.

Similar to the proof of Theorem 19 we can express the moments of π and π as

∫
λkπ(dλ) =

(−1)k

k!

dk

dzk

(
1

z

1

N
trDN

(
BN +

1

z
IN

)−1
)∣∣∣∣∣

z=0

=
1

N
trDNBk

N

and

∫
λkπ(dλ) =

(−1)k

k!

dk

dzk

(
1

z

1

N
trDNTN (−1/z)

)∣∣∣∣
z=0

=
(−1)k

k!

1

N
trDNTN,k.

The support of π is almost surely compact as DN has bounded spectral norm
and the spectral norm of BN is almost surely bounded due to the following
inequalities:

‖BN‖ ≤
L∑

l=1

∥∥∥R̃l

∥∥∥
∥∥∥∥
1

N
ZlZ

H

l

∥∥∥∥

≤ LRmax
l

nl

N

∥∥∥∥
1

nl
ZlZ

H

l

∥∥∥∥

a.s.−−→ LRmax
l

(
1 +

√
nl

N

)2

<∞
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for some R ≥ lim supN maxl‖R̃l‖, nl ,
∑n

j=1 1{Rj = R̃l}, and Zl ∈ C
N×nl

being random matrices of i.i.d. elements with zero mean, unit variance and finite
eighth moment. The almost sure convergence of the spectral norm in the last
step follows from Theorem 8. The almost sure weak convergence of π − π → 0
implies by Lemma 4, that

∫
f(λ)π(dλ)−

∫
f(λ)π(dλ)

a.s.−−→ 0 (2.157)

for any bounded, continuous function. Since the support of π is almost surely
bounded and the support of π can be shown to be bounded following similar
steps as in [83, Proof of Theorem 2, Part B], the convergence in (2.157) also
holds f(λ) = λk. This concludes the proof.

2.5.6 Justification of Claim 1

In the following, z = −x. If we define δj = 1
n trDjT(−x), δ̃i = 1

n tr D̃iT̃(−x),
and let ∆ = diag (δj , 1 ≤ j ≤ n) and ∆̃ = diag

(
δ̃i, 1 ≤ i ≤ N

)
, then, the sys-

tem of N + n equations in Theorem 12 (i) can be written in an equivalent way
as:

δj = Γj(∆, ∆̃) , 1 ≤ j ≤ n (2.158)

δ̃i = Γ̃i(∆, ∆̃) , 1 ≤ i ≤ N (2.159)

where

Γj(∆, ∆̃) ,
1

n
trDj

[
x
(
IN + ∆̃

)
+A (In +∆)−1

A
H

]
−1

(2.160)

Γ̃i(∆, ∆̃) ,
1

n
tr D̃i

[
x (In +∆) +A

H

(
IN + ∆̃

)
−1

A

]
−1

. (2.161)

It turns out that the functions Γj and Γ̃i will help in providing a concise ex-
pression for the asymptotic variance of the random variable N(IN (x)− ĪN (x)).

Consider the (N + n)-variate function Γ(∆, ∆̃) =
(
Γ1, . . .Γn, Γ̃1, . . . , Γ̃N

)
. It

has been shown in several cases, e.g., for a separable variance profile with cen-
tered Gaussian entries [95, 81] and for a general variance profile with centered
entries [51] (see also Theorem 10 for a degenerate case), that the asymptotic
variance Θ2

N,n can be written in the following way

Θ2
N,n = − log det (IN+n − J) (2.162)

where J is the Jacobian matrix of the function Γ(∆, ∆̃). Thus, we claim that
also in our case, the last expressions holds.

2.5.7 Proof of Theorem 21

The proof for ΘN invertible is given in [70] (see also [84, Proof of Lemma 3]).
Assume now ΘN to be a non-invertible Hermitian nonnegative-definite matrix.
Denote by T′ (z,A) the matrix T′(z) as given by Theorem 21 for ΘN = A and
denote by m′(z,A) the function

m′(z,A) =
1

N
trDN (BN + S− zIN )

−1
A (BN + S− zIN )

−1
. (2.163)
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Then, the following convergence holds

m′ (z,ΘN + IN )− 1

N
trDNT′ (z,ΘN + IN )

a.s.−→ 0. (2.164)

It is straight-forward to show that

m′ (z,ΘN + IN )−m′ (z,ΘN ) = m′ (z, IN ) (2.165)

1

N
trDNT′ (z,ΘN + IN )− 1

N
trDNT′ (z,ΘN ) =

1

N
trDNT′ (z, IN ) .

(2.166)

Hence,

m′ (z,ΘN )− 1

N
trDNT′ (z,ΘN ) = m′ (z,ΘN + IN )− 1

N
trDNT′ (z,ΘN + IN )

−
(
m′ (z, IN )− 1

N
trDNT′ (z, IN )

)

a.s.−→ 0. (2.167)

2.5.8 Proof of Theorem 22

Part (i)

The proof follows essentially the same steps as the proof of Theorem 23 (i) and
will not be given in full detail here. In order to prove the uniqueness of solutions
(ḡk, gk, δk), it is sufficient to show by Theorem 16 that the K-variate function
h : (x1, . . . , xK) 7→ (h1, . . . , hK) as defined below, is a standard interference
function (see Definition 11). For k = 1, . . . ,K, we define

hk(x1, . . . , xK) 7→ 1

nk

Nk∑

j=1

sk,jδk
1 + ḡksk,jδk

(2.168)

where

ḡk =
1

nk
trT

1
2

kQkT
1
2

k

(
xkT

1
2

kQkT
1
2

k + Ink

)−1

(2.169)

and δk, k = 1, . . . ,K, form the unique jointly positive solution to the following
fixed-point equations

δk =
1

Nk
trRk

(
K∑

k=1

nk
Nk

ḡkxk
δk

Rk + xIN

)−1

. (2.170)

The only difference to Theorem 23 (i) is the definition of ḡk. In our case, ḡk is
directly defined as a function of xk, whereas b̄k in Theorem 23 (i) is given as
the solution of another fixed point equation. However, the behavior of b̄k and
ḡk as seen as functions of xk is identical. In particular, let xk > x′k > 0 and
denote by ḡk and ḡ′k the corresponding values of (2.169), respectively. One can
easily verify that the following conditions hold:(i) ḡk < ḡ′k and (ii) xkḡk > x′kḡ

′
k.

The remaining steps are identical to the proof of Theorem 23 (i) and will not be
repeated here. By showing h(x1, . . . , xK) to be a standard interference function,
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we have proved by Theorem 16 that the following fixed-point algorithm, which
iteratively computes

xt+1
k = hk(x

(t)
1 , . . . , x

(t)
K ), k = 1, . . . ,K (2.171)

for t ≥ 0 and some set of initial values x
(0)
1 , . . . , x

(0)
K , converges as t→ ∞ to the

unique fixed point (g1, . . . , gK).

Part (ii)

The key idea is that the random matrix model can be considered as the Kro-
necker channel model as considered in Theorem 13 with random correlation
matrices. Assume now a Kronecker model, for which the matrices Hk are given
as

Hk =
1√
nk

ZkW2,kT
1
2

k (2.172)

where Zk ∈ C
N×Nk is a deterministic matrix and W2,k and Tk are defined as

in the statement of the theorem. Further assume that lim supN‖Zk‖ < ∞ for
all k. Thus, we can apply Theorem 13 (iii) to obtain the following deterministic
equivalent V̄N (x) of IN (x):

V̄N (x) =
1

N
log det

(
IN +

1

x

K∑

k=1

ēkZkZ
H

k

)
+

K∑

k=1

1

N
log det

(
Ink

+ ekT
1
2

kQkT
1
2

k

)

− 1

N

K∑

k=1

nkekēk (2.173)

where ēk, ek, k = 1, . . . ,K, are given as the unique solutions to the following
equations

ēk =
1

nk
trT

1
2

kQkT
1
2

k

(
ekT

1
2

kQkT
1
2

k + Ink

)−1

ek =
1

nk
trZkZ

H

k

(
K∑

i=1

ēiZiZ
H

i + xIN

)−1

(2.174)

such that ēk, ek > 0 for all k. Note that this matrix model is equivalent to the

model Hk = 1√
nk

ZkW2,kT̃
1
2

k , where T̃
1
2

k = T
1
2Q

1
2

k .

For our matrix model, the matrices Zk are random and defined as

Zk =
1√
Nk

R
1
2

kW1,kS
1
2

k . (2.175)

Let (Ω,F , P ) be the probability space generating the random sequences of ma-
trices (W1,k(ω))N≥1. There exists A ⊂ Ω with P (A) = 1, such that for each

ω ∈ A, we have lim supN‖Zk(ω)Zk(ω)
H‖ <∞ (see Theorem 8). Thus, for each

of these ω, the matrices ZkZ
H

k satisfy the criteria of the correlation matrices
of Theorem 13. Let (Ω′,F ′, P ′) the probability space generating the matrices
W2,k. Thus, for every ω ∈ A, there exist a A′(ω) ⊂ Ω′ with P ′(A′) = 1, such
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that for all ω′ ∈ A′(ω), V̄N (x) is a deterministic equivalent of IN (x). Denote
by (Ω×Ω′,F ×F ′, Q) the product space generating the matrices W1,k(ω) and
W1,k(ω

′) and denote by B ⊂ Ω × Ω′ the space of all tuples (ω, ω′), such that
ω ∈ A and ω′ ∈ A′(ω). By the Fubini theorem, we have Q(B) = 1, which
proves that V̄N (x) − IN (x) → 0, almost surely. However, V̄N (x) is a random
quantity, which depends on the matrices Zk. Therefore, we will need to obtain
an iterative deterministic equivalent ĪN (x) of V̄N (x).

The first step is to replace the fixed-point equations (2.174) that depend
on Zk by deterministic ones. Let us define the quantities ēk,i,j , ek,i,j , for i ∈
{1, . . . ,K}, j ∈ {1, . . . , Nk}, which are given as the unique solutions to the
following set of fixed-point equations:

ēk,i,j =
1

nk
tr T̃k

(
ek,i,jT̃k + Ink

)−1

ek,i,j =
1

nk
trZk,i,jZ

H

k,i,j

(
K∑

ℓ=1

ēℓ,i,jZℓ,i,jZ
H

ℓ,i,j + xIN

)−1

(2.176)

where

Zk,i,j =

{
Zk , i 6= k

[zk,1 · · · zk,j−1zk,j+1 . . . zk,Nk
] , i = k

. (2.177)

Obviously, ēk,i,j and ek,i,j are independent of the vector zi,j . In addition, we
define

Z = max
k

lim sup
N

‖ZkZ
H

k ‖, T = max
k

lim sup
N

‖T̃k‖, n = min
k
nk, c =

N

n
(2.178)

and

αi,j = max
k

|ek,i,j − ek| , ᾱi,j = max
k

|ēk,i,j − ēk| . (2.179)

Thus, we have for N large,

|ēk,i,j − ēk| =
∣∣∣∣
1

nk
tr T̃k

(
ek,i,jT̃k + Ink

)−1 (
(ek − ek,i,j)T̃k

)(
ekT̃k + Ink

)−1
∣∣∣∣

≤ αi,jT
2. (2.180)

Since the right-hand side (RHS) of the last inequality is independent of k, we
have

ᾱi,j ≤ αi,jT
2. (2.181)
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On the other hand, for i 6= k, we have for N sufficiently large,

|ek,i,j − ek|

=

∣∣∣∣∣∣
1

nk
trZkZ

H

k

(
K∑

ℓ=1

ēℓ,i,jZℓ,i,jZ
H

ℓ,i,j + xIN

)−1

×
(

K∑

ℓ=1

(ēℓ − ēℓ,i,j)ZℓZ
H

ℓ + ēi,i,jzi,jz
H

i,j

)(
K∑

ℓ=1

ēℓZℓZ
H

ℓ + xIN

)−1
∣∣∣∣∣∣

≤ cKZ2

x2
ᾱi,j +

ēi,i,j
n

∣∣∣∣∣∣
zHi,j

(
K∑

ℓ=1

ēℓZℓZ
H

ℓ + xIN

)−1

ZkZ
H

k

×
(

K∑

ℓ=1

ēℓ,i,jZℓ,i,jZ
H

ℓ,i,j + xIN

)−1

zi,j

∣∣∣∣∣∣

≤ cKZ2

x2
ᾱi,j +

Z2T

x2n
(2.182)

where the last inequality is due to ēk,i,j ≤ T and
∣∣zHi,jAzi,j

∣∣ ≤ ‖zi,j‖2‖A‖ ≤
Z‖A‖, for any matrix A.

Similarly, one can show that

|ek,k,j − ek| =
cKZ2

x2
ᾱk,j +

Z2T

x2n
+

Z

xn
. (2.183)

It follows from (2.182), (2.183) and (2.181), that

αi,j ≤
cKZ2

x2
ᾱi,j +

Z2T

x2n
+

Z

xn
≤ cKZ2T 2

x2
αi,j +

Z2T

x2n
+

Z

xn
. (2.184)

Now, for any x ≥
√

cKZ2T 2

1−ǫ and ǫ > 0, we have

αi,j ≤
Z

ǫxn

(
1 +

ZT

x

)
, ᾱi,j ≤

ZT 2

ǫxn

(
1 +

ZT

x

)
.

Let µ = max{ Z
ǫx

(
1 + ZT

x

)
, ZT 2

ǫx

(
1 + ZT

x

)
}, then we finally have

αi,j ≤
µ

n
, ᾱi,j ≤

µ

n
. (2.185)

The last result establishes that for sufficiently large x, the differences between
the solutions (ēk,i,j , ek,i,j) to (2.176) and the solutions (ēk, ek) to (2.174) are
uniformly bounded by µ and vanish as n→ ∞. Moreover, ek and ek,i,j have an
analytic continuation on z = −x ∈ C \ R

+ and are uniformly bounded on all
closed subsets of z ∈ C \ R

+. Thus, in particular for x > 0 and all k, i, j, we
have by the Vitali convergence theorem

ek − ek,i,j → 0 and hence ēk − ēk,i,j → 0. (2.186)
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As a consequence of (2.186), we can now write

ek =
1

nk

Nk∑

j=1

zHk,j

(
K∑

i=1

ēiZiZ
H

i + xIN

)−1

zk,j

(a)≍ 1

nk

Nk∑

j=1

zHk,j

(
K∑

i=1

ēi,k,jZiZ
H

i + xIN

)−1

zk,j

(b)
=

1

nk

Nk∑

j=1

zHk,j

(∑K
i=1 ēi,k,jZiZ

H

i − ēk,k,jzk,jz
H

k,j + xIN

)−1

zk,j

1 + ēk,k,jzHk,j

(∑K
i=1 ēi,j,kZiZH

i − ēk,k,jzk,jzHk,j + xIN

)−1

zk,j

(c)≍ 1

nk

Nk∑

j=1

sk,j

Nk
trRk

(∑K
i=1 ēi,j,kZiZ

H

i + xIN

)−1

1 +
sk,j ēk,k,j

Nk
trRk

(∑K
i=1 ēi,j,kZiZH

i + xIN

)−1

(d)≍ 1

nk

Nk∑

j=1

sk,j

Nk
trRk

(∑K
i=1 ēiZiZ

H

i + xIN

)−1

1 +
sk,j ēk
Nk

trRk

(∑K
i=1 ēiZiZH

i + xIN

)−1 (2.187)

where (a) follows from (2.186) since

∣∣∣∣∣∣
zHk,j

(
K∑

i=1

ēiZiZ
H

i + xIN

)−1

zk,j − zHk,j

(
K∑

i=1

ēi,k,jZiZ
H

i + xIN

)−1

zk,j

∣∣∣∣∣∣

≤ µKZ

nx2
−−−−→
N→∞

0, (2.188)

(b) is due to Lemma 6, (c) is a consequence of Lemmas 13 and 8 and (d) is
obtained by applying (2.186) a second time. Next, we would like to find deter-

ministic equivalents of the terms 1
Nk

trRk

(∑K
i=1 ēiZiZ

H

i + xIN

)−1

. We cannot

directly apply Theorem 13 at this point since the ēk are defined as functions of
Zk. However, based on the relations (2.185) and (2.188), Theorem 13 (see [83,
Theorem 1]) can be shown to hold also for the matrix model under study. Thus,

1

Nk
trRk

(
K∑

i=1

ēiZiZ
H

i + xIN

)−1

≍ fk (2.189)

where fk for k ∈ {1, . . . ,K} are defined as the unique solution to the following
fixed-point equations

f̄k =
1

Nk

Nk∑

j=1

sk,j ēk
1 + ēksk,jfk

(2.190)

fk =
1

Nk
trRk

(
K∑

i=1

f̄iRi + xIN

)−1

(2.191)
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such that fk > 0 for all k. Replacing (2.190) in (2.191) leads to

fk =
1

Nk
trRk




K∑

i=1

ēi
Ni

Ri

Ni∑

j=1

si,j
1 + si,j ēifi

+ xIN




−1

. (2.192)

Thus,

ek =
1

nk

Nk∑

j=1

sk,jfk
1 + sk,j ēkfk

+ ǫk (2.193)

where ǫk is a sequence of random variables, satisfying ǫk
a.s.−−−−→

N→∞
0. Consider

now the following system of equations

ēk =
1

nk
tr T̃k

(
ekT̃k + Ink

)−1

(2.194)

ek =
1

nk

Nk∑

j=1

sk,jfk
1 + sk,j ēkfk

+ ǫk (2.195)

fk =
1

Nk
trRk




K∑

i=1

ēi
Ni

Ri

Ni∑

j=1

si,j
1 + si,j ēifi

+ xIN




−1

(2.196)

and its deterministic counterpart

ḡk =
1

nk
tr T̃k

(
gkT̃k + Ink

)−1

(2.197)

gk =
1

nk

Nk∑

j=1

sk,jδk
1 + sk,j ḡkδk

(2.198)

δk =
1

Nk
trRk




K∑

i=1

ḡi
Ni

Ri

Ni∑

j=1

si,j
1 + si,j ḡiδi

+ xIN




−1

=
1

Nk
trRk

(
K∑

i=1

ni

Ni

ḡigi
δi

Ri + xIN

)−1

. (2.199)

Define the quantities:

γ1 = max
k

|ek − gk| , γ2 = max
k

|ēk − ḡk| , γ3 = max
k

|fk − δk| , ǫ = max
k

|ǫk| .

Straight-forward calculations lead to the following bounds:

γ1 ≤ cSγ3 +
cS2R2

x2
γ2 + ǫ, γ2 ≤ γ1T

2, γ3 ≤ KSR2

x2
γ2 +

KS2R2T 2

x2
γ1.

(2.200)

Combining these results and using the fact that ǫ
a.s.−→ 0 yields for x sufficiently

large,

γ1, γ2, γ3
a.s.−−−−→

N→∞
0. (2.201)

73



2.5. Appendices

Since ek, gk, ēk, ḡk, fk, δk have analytic extensions in a neighborhood of R+ on
which they are all (almost surely) bounded, we have by the Vitali convergence
theorem that (2.201) holds for any x > 0.

Coming now back to V̄N (x) as given in (2.173), we have from the continuous
mapping theorem that

1

N

K∑

k=1

[
log det

(
Ink

+ ekT̃k

)
− nkekēk

]

− 1

N

K∑

k=1

[
log det

(
Ink

+ gkT̃k

)
− nkgkḡk

]
a.s.−→ 0. (2.202)

Moreover, since ‖∑K
k=1 (ēk − ḡk)ZkZ

H

k ‖
a.s.−→ 0, we have

1

N
log det

(
IN +

1

x

K∑

k=1

ēkZkZ
H

k

)
− 1

N
log det

(
IN +

1

x

K∑

k=1

ḡkZkZ
H

k

)
a.s.−→ 0.

(2.203)

Applying Theorem 13 to the last term yields

1

N
log det

(
IN +

1

x

K∑

k=1

ḡkZkZ
H

k

)
− 1

N
log det

(
IN +

1

x

K∑

k=1

nk

Nk

ḡkgk
δk

Rk

)

− 1

N

K∑

k=1

log det (INk
+ ḡkδkSk) + nkḡkgk

a.s.−→ 0. (2.204)

Combining (2.202) and (2.204) finally leads to

V̄N (x)− ĪN (x)
a.s.−→ 0 (2.205)

where

ĪN (x) =
1

N
log det

(
IN +

1

x

K∑

k=1

nk
Nk

ḡkgk
δk

Rk

)
+

1

N

K∑

k=1

log det (INk
+ ḡkδkSk)

+
1

N

K∑

k=1

[
log det

(
Ink

+ gkT̃k

)
− 2nkgkḡk

]
. (2.206)

This concludes the proof of part (ii) (a).
In order to show the convergence in the first mean (part (ii) (b)), we will

pursue the same approach as in [74]. Define the following functions:

mN (z) =
1

N
tr

(
K∑

k=1

HkQkH
H

k − zIN

)−1

(2.207)

m̄N (z) =
1

N
tr

(
K∑

k=1

nk
Nk

ḡkgk
δk

Rk − zIN

)−1

. (2.208)
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One can show that

E [IN (x)]− ĪN (x) =

∫ ∞

x

([
1

ω
− E [mN (−ω)]

]
−
[
1

ω
− m̄N (−ω)

])
dω.

(2.209)

Since both mN (ω) and m̄N (ω) are uniformly bounded by 1
ω , it follows from

dominated convergence arguments, Theorem 13 (ii) and (2.201) that, for all
ω > 0,

[
1

ω
− E [mN (−ω)]

]
−
[
1

ω
− m̄N (−ω)

]
→ 0. (2.210)

Moreover,
∣∣∣∣
[
1

ω
− E [mN (−ω)]

]
−
[
1

ω
− m̄N (−ω)

]∣∣∣∣

≤
∣∣∣∣
[
1

ω
− E [mN (−ω)]

]∣∣∣∣+
∣∣∣∣
[
1

ω
− m̄N (−ω)

]∣∣∣∣ (2.211)

≤ 1

ω2

(
1

N
trE

[
K∑

k=1

HkQkH
H

k

]
+

1

N
tr

(
K∑

k=1

nk

Nk

ḡkgk
δk

Rk

))

≤ 2KRST

ω2
(2.212)

whereR = maxk lim sup‖Rk‖, S = maxk lim sup‖Sk‖, T = maxk lim sup‖TkQk‖.
Since 2KRST

ω2 is finite and integrable over [x,∞), it follows from the dominated
convergence theorem that

E [IN (x)]− ĪN (x)
a.s.−→ 0. (2.213)

2.5.9 Proof of Theorem 23

Part (i)

It was shown in (2.86) that, for any fixed bk ≥ 0, the equation in b̄k:

b̄k =
1

N
trPk

(
bkPk +

[
c̄k − bk b̄k

]
Ink

)−1

has a unique solution, satisfying 0 ≤ b̄k < ck c̄k/bk. Thus, b̄k is uniquely de-
termined by bk. Consider now the following functions for k ∈ {1, . . . ,K} and
x > 0:

hk(x1, . . . , xK) 7→ 1

N

Nk∑

j=1

ζkj
1 + b̄kζkj

where b̄k ∈ [0, ck c̄k/xk) and ζkj ≥ 0 are the unique solutions to the following
fixed-point equations:

b̄k =
1

N
trPk

(
xkPk +

[
c̄k − xk b̄k

]
Ink

)−1

(2.214)

ζkj =
1

N
trRkj

(
1

N

K∑

i=1

Nk∑

l=1

b̄iRi,l

1 + b̄iζil
+ xIN

)−1

. (2.215)
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Similar to the proof of Theorem 15, it is now sufficient to prove that the K-
variate function h : (x1, . . . , xK) 7→ (h1, . . . , hK) is a standard interference func-
tion (see Definition 11) and to apply Theorem 16 to conclude on the existence
and uniqueness of a solution to xk = hk(x1, . . . , xK) for all k. The associated
fixed-point algorithm follows the recursive equations

x
(t+1)
k = hk(x

(t)
1 , . . . , x

(t)
K ), k = 1, . . . ,K

for t ≥ 0 and for any set of initial values x
(0)
1 , . . . , x

(0)
K > 0, which then converge,

as t→ ∞, to the fixed-point.
Showing positivity is straightforward: For x > 0, we have ζkj > 0 by

Theorem 14 and b̄k ≥ 0 by its definition. Thus, hk(x1, . . . , xK) > 0 for all
x1, . . . , xK > 0.

To prove monotonicity of hk(x1, . . . , xK), we first recall the following result
from (2.84). Let xk > x′k, and consider b̄k and b̄′k the corresponding solutions
to (2.214). Then,

(i) b̄k < b̄′k (ii) xk b̄k > x′k b̄
′
k. (2.216)

We now prove a further result.

Lemma 18. Let x > 0 and assume b̄k > b̄′k. Consider ζkj and ζ ′kj as the unique

solutions to (2.215) for b̄k and b̄′k, respectively. Then,

(i) ζkj ≤ ζ ′kj (ii) b̄kζkj > b̄′kζ
′
kj . (2.217)

Proof. The proof is based on the consideration of an extended version of the
random matrix model assumed in Theorem 14. Let us consider the following
random matrices HL

k ∈ C
LN×LNk , given as

HL
k =

1√
LN

[(
RL

k1

) 1
2 ZL

k1, . . . ,
(
RL

kNk

) 1
2 ZL

kNk

]
(2.218)

where RL
kj = diag(Rkj , . . . ,Rkj) ∈ C

LN×LN are block-diagonal matrices con-

sisting of L copies of the matrix Rkj and ZL
kj ∈ C

LN×L are random matrices
composed of i.i.d. entries with zero mean, unit variance and finite 8th order
moment. We define the following matrices which will be of repeated use:

B̃L =

K∑

k=1

b̄kH
L
k

(
HL

k

)H
, B̃′L = b̄′kH

L
k

(
HL

k

)H
+

K∑

l=1,l 6=k

b̄lH
L
l

(
HL

l

)H

Q =
(
B̃L + xINL

)−1

, Q′ =
(
B̃′L + xINL

)−1

.

One can verify from Theorem 14 that for any fixed N,N1, . . . , NK , the following
limit holds:

1

LN
trRL

kj

(
B̃L + xINK

)−1 a.s−−−−→
L→∞

ζkj . (2.219)

Thus, any properties of the random quantities on the left-hand side of the pre-
vious equation also hold for the deterministic quantities ζkj . We will exploit

this fact for the termination of the proof. The matrices B̃L and B̃′L differ only

76



2.5. Appendices

by b̄k. This assumption will be sufficient for the proof since the case b̄l > b̄′l
for l ∈ {1, . . . ,K} follows by simple iteration of the case b̄l = b̄′l for l 6= k and
b̄k > b̄′k.

To prove (i), it is now sufficient to show that, for any L,

1

N
trRL

k,j (Q−Q′) < 0. (2.220)

By Lemma 17, this is equivalent to proving (Q)
−1 − (Q′)−1 ≻ 0, which is

straightforward since

(Q)
−1 − (Q′)

−1
= B̃L − B̃′L = (b̄k − b̄′k)H

L
k

(
HL

k

)H ≻ 0. (2.221)

Thus,

1

NL
trRL

k,j (Q−Q′)
a.s−−−−→

L→∞
ζkj − ζ ′kj ≤ 0 (2.222)

since ζkj and ζ ′kj do not depend on L.
For (ii), we need to show that

b̄k
1

LN
trRL

kjQ− b̄′k
1

LN
trRL

kjQ
′ > 0. (2.223)

Similarly to the previous part of the proof, it is sufficient to show that
(
b̄kQ

)−1−(
b̄′kQ

′)−1 ≺ 0. Hence,

(
b̄kQ

)−1 −
(
b̄′kQ

′)−1
=

1

b̄k

(
B̃L + xINL

)
− 1

b̄′k

(
B̃′L + xINL

)

= x

(
1

b̄k
− 1

b̄′k

)
INL +

(
1

b̄k
− 1

b̄′k

) K∑

l=1,l 6=k

b̄lH
L
l

(
HL

l

)H

≺ 0 (2.224)

since x > 0, b̄k > b̄′k and b̄l ≥ 0 for all l.

Consider now (x1, . . . , xK) and (x′1, . . . , x
′
K), such that xk > x′k ∀k, and de-

note by (b̄1, . . . , b̄K) and (b̄′1, . . . , b̄
′
K) the corresponding solutions to (2.214).

Denote by ζkj and ζ ′kj the unique solutions to (2.215) for (b̄1, . . . , b̄K) and

(b̄′1, . . . , b̄
′
K), respectively. It follows from (2.216), that b̄k < b̄′k ∀k. Equa-

tion (2.217) now implies that ζkj ≥ ζ ′kj and b̄kζkj < b̄′kζ
′
kj . Combining these

results yields

hk(x1, . . . , xK) =
1

N

Nk∑

j=1

ζkj
1 + b̄kζkj

>
1

N

Nk∑

j=1

ζ ′kj
1 + b̄′kζ

′
kj

= hk(x
′
1, . . . , x

′
K)

(2.225)

which proves monotonicity.
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To prove scalability, let α > 1, and consider the following difference:

αhk(x1, . . . , xK)− hk(αx1, . . . , αxK)

=
1

N

Nk∑

j=1

αζkj
1 + b̄kζkj

−
ζ
(α)
kj

1 + b̄
(α)
k ζ

(α)
kj

=
1

N

Nk∑

i=1

[
αζkj − ζ

(α)
kj

]
+ ζkjζ

(α)
kj

[
αb̄

(α)
k − b̄k

]

[
1 + b̄kζkj

] [
1 + b̄

(α)
k ζ

(α)
kj

] (2.226)

where we have denoted by b̄
(α)
k the solution to (2.214) with xk replaced by αxk

and by ζ
(α)
kj the solution to (2.215) for b̄

(α)
k . We have from (2.216)-(i) that

b̄
(α)
k < b̄k and from (2.216)-(ii) that

αxk b̄
(α)
k > xk b̄k ⇐⇒ αb̄

(α)
k − b̄k > 0. (2.227)

It remains now to show that also αζkj − ζ
(α)
kj > 0. To this end, consider the

following difference:

αζkj − ζ
(α)
kj =

1

N
trRkj

(
αT−T(α)

)
(2.228)

where

T =


 1

N

K∑

k=1

Nk∑

j=1

b̄kRk,j

1 + b̄kζkj
+ xIN




−1

(2.229)

T(α) =


 1

N

K∑

k=1

Nk∑

j=1

b̄
(α)
k Rk,j

1 + b̄
(α)
k ζ

(α)
kj

+ xIN




−1

. (2.230)

By Lemma 17, it is now sufficient to show that
(
T(α)(z)

)−1 ≻ (αT(z))
−1

. Write
therefore

(
T(α)

)−1

− (αT)
−1

(2.231)

= x

(
1− 1

α

)
IN +

1

N

K∑

k=1

Nk∑

j=1

[
αb̄

(α)
k − b̄k

]
+ b̄

(α)
k b̄k

[
αζkj − ζ

(α)
kj

]

α
[
1 + b̄kζkj

] [
1 + b̄

(α)
k ζ

(α)
kj

] Rkj .

(2.232)

The first summand is positive definite since x > 0 and α > 1. All other terms

are also positive definite since αb̄
(α)
k − b̄k > 0 from (2.227) and αb̄

(α)
k b̄kζkj >

b̄k b̄
(α)
k ζ

(α)
kj , since αb̄

(α)
k > b̄k and b̄kζkj > b̄

(α)
k ζ

(α)
kj by (2.217)-(ii) and (2.216)-

(i). Since the sum of positive definite matrices is also positive definite, we have

αζkj − ζ
(α)
kj > 0. This terminates the proof of scalability.

Thus, we have shown h : (x1, . . . , xK) 7→ (h1, . . . , hK) to be an interference
standard function. Moreover, from the series convergence in Theorem 15 and
Theorem 14

b̄k = lim
t→∞

b̄
(t)
k , ζkj = lim

t→∞
ζ
(t)
kj (2.233)
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where

b̄
(t)
k =

1

N
trPk

(
xkPk +

[
c̄k − xk b̄

(t−1)
k

]
Ink

)−1

(2.234)

ζ
(t)
kj =

1

N
trRkj

(
1

N

K∑

i=1

Nk∑

l=1

b̄iRi,l

1 + b̄iζ
(t−1)
il

+ xIN

)−1

(2.235)

and b̄
(0)
k can take any value in [0, ck c̄k/xk) and ζ

(0)
kj = 1/x for all k, j.

Part (ii)

We begin by proving the following result:

max
k

|ēk − b̄k| a.s.−→ 0 (2.236)

max
k

|ek − bk| a.s.−→ 0 (2.237)

where ēk, ek are defined in Theorem 15 and b̄k, bk are defined in Theorem 23.
From standard lemmas of matrix analysis, we have

ek =
1

N
trHkH

H

k

(
K∑

i=1

ēiHiH
H

i + xIN

)−1

=
1

N

Nk∑

j=1

hH

kj

(
K∑

i=1

ēiHiH
H

i + xIN

)−1

hkj

=
1

N

Nk∑

j=1

hH

kj

(∑K
i=1 ēiHiH

H

i − ēkhkjh
H

kj + xIN

)−1

hkj

1 + ēkhH

kj

(∑K
i=1 ēiHiHH

i − ēkhkjhH

kj + xIN

)−1

hkj

where the last step follows from Lemma 6. If ēi were not dependent on hkj , we
could now simply proceed by applying Lemma 13 to the individual quadratic
forms, i.e.:

hH

kj

(
K∑

i=1

ēiHiH
H

i − ēkhkjh
H

kj + xIN

)−1

hkj

≍ 1

N
trRkj

(
K∑

i=1

ēiHiH
H

i − ēkhkjh
H

kj + xIN

)−1

. (2.238)

However, in order to show that this step is correct, in a similar manner as in
the proof of Theorem 22, we need the following intermediate arguments. Define
ēi,kj and ei,kj as the unique solutions to the following fixed-point equations:

ei,kj =
1

N
trHi,kjH

H

i,kj

(
K∑

l=1

ēl,kjHl,kjH
H

l,kj + xIN

)−1

(2.239)

ēi,kj =
1

N
trPi (ei,kjPi + [c̄k − ei,kj ēi,kjIni ])

−1
(2.240)
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for i ∈ {1, . . . ,K}, where

Hi,kj =

{
Hi, k 6= i

(hk1 · · ·hkj−1hkj+1 · · ·hkNi) , k = i
. (2.241)

Thus, ēi,kj and ei,kj are independent of hkj . Following similar steps as in
the proof of Theorem 22 (starting from (2.176)), one can show that for i ∈
{1, . . . ,K} and all k, j,

ei,kj − ei → 0, ēi,kj − ēi → 0. (2.242)

Thus, we have

1

N

Nk∑

j=1

hH

kj

(∑K
i=1 ēiHiH

H

i − ēkhkjh
H

kj + xIN

)−1

hkj

1 + ēkhH

kj

(∑K
i=1 ēiHiHH

i − ēkhkjhH

kj + xIN

)−1

hkj

(a)≍ 1

N

Nk∑

j=1

hH

kj

(∑K
i=1 ēi,kjHiH

H

i − ēk,kjhkjh
H

kj + xIN

)−1

hkj

1 + ēkhH

kj

(∑K
i=1 ēi,kjHiHH

i − ēk,kjhkjhH

kj + xIN

)−1

hkj

(b)≍ 1

N

Nk∑

j=1

1
N trRkj

(∑K
i=1 ēi,kjHiH

H

i − ēk,kjhkjh
H

kj + xIN

)−1

1 + ēk
1
N trRkj

(∑K
i=1 ēi,kjHiHH

i − ēk,kjhkjhH

kj + xIN

)−1

(c)≍ 1

N

Nk∑

j=1

1
N trRkj

(∑K
i=1 ēiHiH

H

i + xIN

)−1

1 + ēk
1
N trRkj

(∑K
i=1 ēiHiHH

i + xIN

)−1

(d)≍ 1

N

Nk∑

j=1

1
N trRkjT̄

1 + ēk
1
N trRkjT̄

(2.243)

where (a) follows from (2.242), (b) follows from Lemma 13 and Lemma 16, (c)
is again due to (2.242) and Lemma 8, and (d) follows from an application of
Theorem 14, where we have defined

T̄ =


 1

N

K∑

k=1

Nk∑

j=1

ēkRkj

1 + ēk
1
N trRkjT̄

+ xIN




−1

. (2.244)

Note again that Theorem 14 cannot be directly applied here since the quantities
ēi depend on the matrices Hi. However, it is immediate to show that the result
extends to this case, by replacing ēi by ēi,kj at each necessary step of the proof.

Hence, we can write

ek =
1

N
trHkH

H

k

(
K∑

i=1

ēiHiH
H

i + xIN

)−1

=
1

N

Nk∑

j=1

1
N trRkjT̄

1 + ēk
1
N trRkjT̄

+ ǫN,k

(2.245)

for some sequences of reals ǫN,k, satisfying ǫN,k → 0.
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Recall now the following definitions for k = 1, . . . ,K:

ek =
1

N

Nk∑

j=1

1
N trRkjT̄

1 + ēk
1
N trRkjT̄

+ ǫN,k (2.246)

bk =
1

N

Nk∑

j=1

1
N trRkjT

1 + b̄k
1
N trRkjT

(2.247)

ēk =
1

N

nk∑

j=1

pkj
c̄k − ekēk + ekpkj

, 0 ≤ ēk < ck c̄k/ek (2.248)

b̄k =
1

N

nk∑

j=1

pkj
c̄k − bk b̄k + bkpkj

, 0 ≤ b̄k < ck c̄k/bk (2.249)

where

T̄ =


 1

N

K∑

k=1

Nk∑

j=1

ēkRkj

1 + f̄N,k
1
N trRkjT̄

+ xIN




−1

(2.250)

T =


 1

N

K∑

k=1

Nk∑

j=1

b̄kRkj

1 + b̄k
1
N trRkjT

+ xIN




−1

. (2.251)

Denote P = maxk{lim sup‖Pk‖}, R = maxm{lim sup‖R̃m‖}, c+ = maxk{lim sup ck}
and c̄− = mink{lim inf c̄k}, c̄+ = maxk{lim sup c̄k}. Since we are interested in
the asymptotic limit N → ∞, we assume from the beginning that N is suffi-
ciently large, so that the following inequalities hold for all k:

ck ≤ c+, c̄− ≤ c̄k ≤ c̄+, ‖Pk‖ ≤ P, ‖Rkj‖ ≤ R. (2.252)

We then have the following properties:

ēk ≤ P

(1− c+)c̄−
, b̄k ≤ P

(1− c+)c̄−
, bk b̄k < c+c̄+, ekēk < c+c̄+. (2.253)

For notational simplicity, we define the following quantities:

ξ = max
k

|ek − bk|, ξ̄ = max
k

|ēk − b̄k|. (2.254)

We will show in the sequel that ξ
a.s.−→ 0 and ξ̄

a.s.−→ 0 as N → ∞.
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Consider first the following difference:

sup
k,j

∣∣∣∣
1

N
trRkj

(
T− T̄

)∣∣∣∣

=sup
k,j

∣∣∣∣∣
1

N
trRkjT

(
1

N

K∑

l=1

Nl∑

m=1

ēlRlm

1 + ēl
1
N trRlmT̄

− b̄lRlm

1 + b̄l
1
N trRlmT̄

)
T̄

∣∣∣∣∣

= sup
k,j

∣∣∣∣∣
1

N

K∑

l=1

Nl∑

m=1

ēl − b̄l + ēlb̄l
(

1
N trRlmT− 1

N trRlmT̄
)

(
1 + ēl

1
N trRlmT̄

) (
1 + b̄l

1
N trRlmT̄

) 1

N
trRkjT̄RlmT

∣∣∣∣∣

≤ R2

x2
Kmax

k
c̄k

[
max

k
|ēk − b̄k|+max

k
|ēk b̄k| sup

k,j

∣∣∣∣
1

N
trRkj

(
T− T̄

)∣∣∣∣

]

≤ R2

x2
Kc̄+

[
ξ̄ +

P 2

(1− c+)2c̄2−
sup
k,j

∣∣∣∣
1

N
trRkj

(
T− T̄

)∣∣∣∣

]
(2.255)

where the first equality follows from Lemma 5. Rearranging the terms yields:

sup
k,j

∣∣∣∣
1

N
trRkj

(
T− T̄

)∣∣∣∣ ≤
P 2Kc̄+

x2 − R2P 2

(1−c+)2c̄2−

ξ̄ (2.256)

for x > RP
(1−c+)c̄−

.

Consider now the term ξ = maxk |ek − bk|:

ξ = max
k

∣∣∣∣∣∣
1

N

Nk∑

j=1

1
N trRkj

(
T̄−T

)
+ (b̄k − ēk)

1
N trRkj

1
N trRkjT̄(

1 + ēk
1
N trRkjT̄

) (
1 + b̄k

1
N trRkjT

) + ǫN,k

∣∣∣∣∣∣

≤ c̄+ sup
kj

∣∣∣∣
1

N
trRkj

(
T− T̄

)∣∣∣∣+ c̄+
R2

x2
max

k
|ēk − b̄k|+max

k
|ǫN,k|

≤ P 2Kc̄2+

x2 − R2P 2

(1−c+)2c̄2−

ξ̄ +
c̄+R

2

x2
ξ̄ +max

k
|ǫN,k|

=


 P 2Kc̄2+

x2 − R2P 2

(1−c+)2c̄2−

+
c̄+R

2

x2


 ξ̄ +max

k
|ǫN,k| (2.257)

where the last inequality follows from (2.256). Similarly, we have for ξ̄ =
maxk |ēk − b̄k|:

ξ̄ = max
k

∣∣∣∣∣∣
1

N

nk∑

j=1

pkj
ekēk − bk b̄k + pkj(bk − ek)

(c̄k − ekēk + ekpkj)(c̄k − bk b̄k + bkpkj)

∣∣∣∣∣∣

≤ 1

N

nk∑

j=1

p2kj maxk |ek − bk|
(1− c+)2c̄2−

+ pkj
maxk [ēk|ek − bk] |+maxk

[
bk|ēk − b̄k|

]

(1− c+)2c̄2−

≤ P 2

(1− c+)2c̄2−

(
1 +

1

(1− c+)c̄−

)
ξ +

PRc̄+
x(1− c+)2c̄2−

ξ̄. (2.258)
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Thus, for x ≥ max
{

2PRc̄+
(1−c+)2c̄2−

, RP
(1−c+)c̄−

}
, we have

ξ̄ ≤ 2P 2

(1− c+)2c̄2−

(
1 +

1

(1− c+)c̄−

)
ξ. (2.259)

Replacing (2.259) in (2.257) leads to

ξ ≤


 P 2Kc̄2+

x2 − R2P 2

(1−c+)2c̄2−

+
c̄+R

2

x2


 2P 2

(1− c+)2c̄2−

(
1 +

1

(1− c+)c̄−

)
ξ +max

k
|ǫN,k|.

(2.260)

For x sufficiently large, we therefore have

0 ≤ ξ ≤ CǫN,k → 0

for some C > 0. This implies that ξ
a.s.−→ 0 and, by (2.259), that ξ̄

a.s.−→ 0 . Since
bk, ēk, b̄k have analytic extensions in a neighborhood of R+ on which they are
(almost surely) bounded, we have from the Vitali convergence theorem that the
almost sure convergence holds true for all x > 0.

Convergence of the mutual information

Consider now the first term of ĪN (x) in Theorem 18. Due to the convergence

of ēk − b̄k
a.s.−→ 0 and the almost sure boundedness of the HkH

H

k matrices,

‖∑K
k=1(ēk − b̄k)HkH

H

k ‖
a.s.−→ 0, and we have immediately that

1

N
log det

(
IN +

1

x

K∑

k=1

ēkHkH
H

k

)
− 1

N
log det

(
IN +

1

x

K∑

k=1

b̄kHkH
H

k

)
a.s.−→ 0.

(2.261)

Applying Theorem 14 (iv) to the second term yields

1

N
log det

(
IN +

1

x

K∑

k=1

b̄kHkH
H

k

)
− V̄N (x)

a.s.−→ 0. (2.262)

Consider now Ī
(a)
N (x) = ĪN (x) as defined in Theorem 18 and ĪN (x) as defined

in Theorem 23 (ii). It follows from (2.236), (2.237) and (2.262), that

Ī
(a)
N (x)− ĪN (x)

a.s.−→ 0. (2.263)

This implies also that

IN (x)− ĪN (x)
a.s.−→ 0. (2.264)

To prove convergence in the mean, we will use the same arguments as in [74].
Denote

mN (z) =
1

N
tr(BN − zIN )−1 (2.265)

m̄N (z) =
1

N
tr


 1

N

K∑

k=1

Nk∑

j=1

b̄k(−z)Rk,j

1 + bk(−z)ζkj(−z)
− zIN




−1

(2.266)
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where mN (z) is the Stieltjes transform of BN . It is easy to see that

E [IN (x)]− ĪN (x) =

∫ ∞

x

([
1

ω
− E [mN (−ω)]

]
−
[
1

ω
− m̄N (−ω)

])
dω.

(2.267)

We now apply the argument from [74, pp. 923] which shows that
∣∣∣∣
∫ ∞

x

([
1

ω
− E [mN (−ω)]

]
−
[
1

ω
− m̄N (−ω)

])
dω

∣∣∣∣

≤
∫ ∞

x

1

ω2



∣∣∣∣E
[∫ ∞

0

tdFN (t)

]∣∣∣∣+

∣∣∣∣∣∣
1

N
tr


 1

N

K∑

k=1

Nk∑

j=1

b̄k(ω)Rk,j

1 + bk(ω)ζkj(ω)



∣∣∣∣∣∣


 dω

(2.268)

the right-hand side of which exists for all N and is uniformly bounded by
2
x (KPR). Since mN (−ω) − m̄N (−ω) a.s.−→ 0 (as a consequence of the conver-

gence ēk − b̄k
a.s.−→ 0), the boundedness of mN (−ω) then ensures (by dominated

convergence) that E [mN (−ω)] − m̄N (−ω) → 0. Since the integrand tends to
zero and is summable independently of N , the dominated convergence theorem
now ensures that

E [IN (x)]− ĪN (x) → 0. (2.269)

2.5.10 Proof of Theorem 24

We need several auxiliary results in the course of the proof.

Corollary 1 (Special case of Theorem 13, see also [65]). Let RN ∈ C
n×n be

Hermitian nonnegative definite, satisfying lim supN‖RN‖ < ∞, and let XN ∈
C

N×n have i.i.d. complex Gaussian entries with zero mean and variance 1/n.

For x > 0, define the following functions mN (x) = 1
N tr

(
XNRNXH

N + 1
xIN

)−1

and JN (x) = 1
N log det

(
IN + xXNRNXH

N

)
. Denote c = n

N and assume that
N,n→ ∞ while 0 < lim infN c ≤ lim supN c <∞. Then,

(i) mN (x)− m̄N (x)
a.s.−→ 0, (ii) JN (x)− J̄N (x)

a.s.−→ 0

where

m̄N (x) =
1

N
tr

(
RN

c+ ēN
+

1

x
In

)−1

+ (1− c)x

J̄N (x) =
1

N
log det ([c+ ēN ] In + xRN ) + (1− c) log (c+ ēN )− ēN

c+ ēN
− log(c)

and ēN is defined as the unique positive solution to the implicit equation

ēN =
1

N
trRN

(
RN

c+ ēN
+

1

x
In

)−1

. (2.270)

Lemma 19. Let the matrices Rk(βk−1), be defined as in (2.16). Then, almost
surely:

lim sup
n

‖Rk(βk−1)‖ <∞, k = 0, . . . ,K.
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Proof. For k ∈ {1, . . . ,K}, denote by (Ωk,Fk, Pk) the probability space gener-
ating the sequences of random matrices Hk. By Theorem 8, we have on a space
Bk ⊂ Ωk with Pk(Bk) = 1,

1

nk−1

∥∥HkH
H

k

∥∥−
(
1 +

1√
ck

)2

→ 0. (2.271)

Obviously, we have ‖R0‖ = ‖In‖ = 1. Thus, almost surely,

lim sup
n

‖R1(β0)‖ ≤ 1 + lim sup
n

α1β0
n

∥∥H1H
H

1

∥∥

= 1 + α1β0 lim sup
n

(
1 +

1√
c1

)2

<∞. (2.272)

Consider now the product space (Ω1×Ω2,F1×F2, Q2). By the Fubini theorem,
we have on a subspace C2 ⊂ Ω1 × Ω2 with Q2(C2) = 1,

lim sup
n

‖R2(β1)‖ ≤ 1 + lim sup
n

α2β1
n1

∥∥H2R1(β0)H
H

2

∥∥

≤ 1 + lim sup
n

α2β1‖R1(β0)‖
1

n1

∥∥H2H
H

2

∥∥

= 1 + α2β1 lim sup
n

(
1 + α1β0

(
1 +

1√
c1

)2
)(

1 +
1√
c2

)2

<∞. (2.273)

Repeating the last step k − 2 times concludes the proof.

Lemma 20. Let R ∈ C
N×N be Hermitian with smallest eigenvalue λmin ≥ 1

and a, b, c, d > 0. Then

1

N
trR (aR+ bIN )

−1
R (cR+ dIN )

−1 ≥ 1

(a+ b)(c+ d)
.

Proof. Let R = U∆UH, where the matrix U ∈ C
N×N is unitary and ∆ =

diag (δ1, . . . , δN ) ≥ 1. Thus,

1

N
trR (aR+ bIN )

−1
R (cR+ dIN )

−1

=
1

N
tr∆2 (a∆+ bIN )

−1
(c∆+ dIN )

−1

=
1

(a+ b)(c+ d)

1

N

N∑

i=1

δ2i (a+ b)(c+ d)

(aδi + b)(cδi + d)

≥ 1

(a+ b)(c+ d)
. (2.274)
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Part (i)

From standard matrix inequalities and (2.296), it follows that
∣∣mk (x,βk)−mk

(
x, β̄k

)∣∣

≤ x2αk+1

∥∥∥∥∥
Hk+1H

H

k+1

nk

∥∥∥∥∥
∥∥βkRk

(
βk−1

)
− β̄kRk

(
β̄k−1

)∥∥

a.s.−→ 0. (2.275)

Thus, we can replace from now on βk by β̄k, for almost every (H1, . . . ,HK).
From Corollary 1, Lemma 19 and the Fubini theorem, it follows that

mk

(
x, β̄k

)
− m̃k

(
x, β̄k

) a.s.−→ 0 (2.276)

where

m̃k(x, β̄k) =
1

nk+1
tr

(
αk+1β̄kRk

(
β̄k−1

)

ck+1 + ek
(
x, β̄k

) +
1

x
In

)−1

+ (1− ck+1)x (2.277)

and ek
(
x, β̄k

)
is given as the unique positive solution to

ek
(
x, β̄k

)
=

1

nk+1
trαk+1β̄kRk

(
β̄k−1

)
(
αk+1β̄kRk

(
β̄k−1

)

ck+1 + ek
(
x, β̄k

) +
1

x
Ink

)−1

.

(2.278)

In particular, we have m̃0(x, β̄k) = m̄0(x, β̄k), where

m̄0(x, β̄0) =
c1

α1β̄0

c1+ē0(x,β̄0)
+ 1

x

+ (1− c1)x (2.279)

ē0
(
x, β̄0

)
= −xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c21

2
.

(2.280)

ReplacingRk

(
β̄k−1

)
in (2.278) by its recursive definitionRk

(
β̄k−1

)
= Ink

+
αkβ̄k−1

nk−1
HkRk−1

(
β̄k−2

)
HH

k (2.16) yields after straightforward calculus

ek
(
x, β̄k

)
= ck+1

(
ck+1 + ek

(
x, β̄k

))

− ck+1

(
ck+1 + ek

(
x, β̄k

))2

xαk+1β̄k
mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ek
(
x, β̄k

) , β̄k−1

)
.

(2.281)

Similarly, one obtains

m̃k(x, β̄k)

=
ck+1

(
ck+1 + ek

(
x, β̄k

))

αk+1β̄k
mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ek
(
x, β̄k

) , β̄k−1

)

+ (1− ck+1)x. (2.282)
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Combining the last two equations leads to

m̃k(x, β̄k) =
xck+1

ck+1 + ek
(
x, β̄k

) . (2.283)

Consider now ēk
(
x, β̄k

)
, k ≥ 1, defined as a positive solution to

ēk
(
x, β̄k

)
= ck+1

(
ck+1 + ēk

(
x, β̄k

))

− ck+1

(
ck+1 + ēk

(
x, β̄k

))2

xαk+1β̄k
m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ēk
(
x, β̄k

) , β̄k−1

)

(2.284)

where m̄k

(
x, β̄k

)
is recursively defined for k ≥ 1 as

m̄k

(
x, β̄k

)
=

xck+1

ck+1 + ēk
(
x, β̄k

) . (2.285)

It remains to show that a unique solution to (2.284) exists and that ek
(
x, β̄k

)
−

ēk
(
x, β̄k

) a.s.−→ 0. Let us first define the following functions for k ≥ 1:

fk(z) = ck+1 (ck+1 + z)− ck+1 (ck+1 + z)
2

xαk+1β̄k
mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + z
, β̄k−1

)

(2.286)

f̄k(z) = ck+1 (ck+1 + z)− ck+1 (ck+1 + z)
2

xαk+1β̄k
m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + z
, β̄k−1

)
.

(2.287)

From (2.278) and with the help of Lemma 20 (note that the smallest eigen-
value of Rk is greater or equal to 1 for all k), one can easily verify that fk(z)
satisfies the following properties for z ≥ 0:

(i)

fk(z) ≥ ck+1(ck+1 + z)

[
1− ck+1 + z

ck+1 + z + xαk+1β̄k

]
> 0 (2.288)

(ii) for z > z′ ≥ 0,

fk(z)− fk(z
′)

≥ (z − z′)ck+1α
2
k+1β̄

2
k

(ck+1 + z′)(ck+1 + z)

× 1

nk
trRk

(
αk+1β̄kRk

ck+1 + z
+

1

x
Ink

)−1

Rk

(
αk+1β̄kRk

ck+1 + z′
+

1

x
Ink

)−1

≥ (z − z′)ck+1α
2
k+1β̄

2
k(

αk+1β̄k + ck+1+z′

x

)(
αk+1β̄k + ck+1+z

x

)

> 0 (2.289)
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(iii) for α > 1,

αfk(z)− fk(αz)

≥ (α− 1)c2k+1α
2
k+1β̄

2
k

(ck+1 + αz)(αck+1 + αz)

× 1

nk
trRk

(
αk+1β̄kRk

αck+1 + αz
+

1

αx
Ink

)−1

Rk

(
αk+1β̄kRk

ck+1 + αz
+

1

x
Ink

)−1

+
(α− 1)ck+1αk+1β̄k

αx

× 1

nk
trRk

(
αk+1β̄kRk

αck+1 + αz
+

1

αx
Ink

)−1(
αk+1β̄kRk

ck+1 + αz
+

1

x
Ink

)−1

≥ (α− 1)c2k+1α
2
k+1β̄

2
k(

αk+1β̄k + ck+1+αz
x

)(
αk+1β̄k + αck+1+αz

x

)

+
(α− 1)ck+1αk+1β̄k

αx
(

αk+1β̄k

αck+1+αz + 1
αx

)(
αk+1β̄k

ck+1αz
+ 1

x

)

> 0 (2.290)

where Rk = Rk

(
β̄k−1

)
. All properties are independent of Rk and therefore

hold for n→ ∞.
Assume now k = 1. For any sequence of bounded non-negative real numbers

zn, we have by (2.276) and the continuous mapping theorem,

f1(zn)− f̄1(zn)
a.s.−→ 0. (2.291)

Thus, properties (i) − (iii) of f1(z) also hold for f̄1(z). By Definition 11 and
Theorem 16, these properties imply the uniqueness of positive solutions to the
fixed point equations z = f1(z) and y = f̄1(y), and hence the uniqueness of
solutions to (2.284) for k = 1. Moreover, note that

|fk(a)− fk(b)| ≤
α2
k+1β̄

2
kx

2

ck+1
‖Rk

(
β̄k−1

)
‖2|a− b|. (2.292)

Hence,

∣∣ē1
(
x, β̄1

)
− e1

(
x, β̄1

)∣∣
=
∣∣f̄1
(
ē1
(
x, β̄1

))
− f1

(
e1
(
x, β̄1

))∣∣
≤
∣∣f̄1
(
ē1
(
x, β̄1

))
− f1

(
ē1
(
x, β̄1

))∣∣+
∣∣f1
(
ē1
(
x, β̄1

))
− f1

(
e1
(
x, β̄1

))∣∣

≤ ǫn +
α2
2β̄

2
1x

2

c2
‖R1

(
β̄0
)
‖2
∣∣ē1
(
x, β̄1

)
− e1

(
x, β̄1

)∣∣ (2.293)

for some sequence of real numbers ǫn, satisfying ǫn
a.s.−→ 0. By Lemma 19,

‖R1

(
β̄0
)
‖ < M , almost surely, for some M > 0. Thus, for x ≤

√
c2(1−δ)

α2
2β̄

2
1M

2

and some δ > 0, we have

∣∣ē1
(
x, β̄1

)
− e1

(
x, β̄1

)∣∣ ≤ ǫn
δ

a.s.−→ 0. (2.294)
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Since ē1
(
x, β̄1

)
and e1

(
x, β̄1

)
are (almost surely) bounded on any closed subset

of R+ \ {0} and have analytic continuations for x ∈ C \R−, we have by Vitali’s
convergence theorem that the convergence holds for any x ∈ R

+ \ {0}.
The last convergence implies by the continuous mapping theorem that

m1(x, β̄1)− m̄1

(
x, β̄1

) a.s.−→ 0. (2.295)

We now assume k = 2. The last convergence implies f2(z) → f̄2(z), almost
surely. The same steps can therefore be applied to show that m2(x, β̄1) −
m̄2

(
x, β̄1

) a.s.−→ 0. This terminates the proof as this process can be iterated k
times.

Part (ii)

First, notice that

ηk ,
∥∥Rk(βk−1)−Rk(β̄k−1)

∥∥

=

∥∥∥∥
αkβk−1

nk−1
HkRk−1(βk−2)H

H

k − αkβ̄k−1

nk−1
HkRk−1(β̄k−2)H

H

k

∥∥∥∥

≤ αk

∥∥∥∥
HkH

H

k

nk−1

∥∥∥∥
∥∥βk−1Rk−1(βk−2)− β̄k−1Rk−1(β̄k−2)

∥∥

≤ αk

∥∥∥∥
HkH

H

k

nk−1

∥∥∥∥
[
|βk−1 − β̄k−1|

∥∥Rk−1(βk−2)
∥∥

+β̄k−1

∥∥Rk−1(βk−2)−Rk−1(β̄k−2)
∥∥] . (2.296)

Since, almost surely, lim sup
∥∥R1(β0)−R1(β̄0)

∥∥ ≤ lim supα1|β0−β̄0|
∥∥∥H1H

H

1

n

∥∥∥ =

0 and lim sup
∥∥Rk−1(βk−2)

∥∥ <∞ (see proof of Lemma 19), one can iteratively
show that ηk → 0, almost surely. Thus,

∣∣Jk

(
x,βk−1

)
− Jk

(
x, β̄k−1

)∣∣ a.s.−−−−→
n→∞

0. (2.297)

This means that we can from now on replace βk by β̄k and focus on Jk

(
x, β̄k−1

)
.

As a consequence of Corollary 1, Lemma 19, and the Fubini theorem, we
obtain the following relation

Jk(x, β̄k−1)− J̃k(x, β̄k−1)
a.s.−→ 0, k ≥ 1 (2.298)

where

J̃k

(
x, β̄k−1

)
=

1

nk
log det

([
ck + ek−1

(
x, β̄k−1

)]
Ink−1

+ xαkβ̄k−1Rk−1

(
β̄k−2

))

+ (1− ck) log
(
ck + ek−1

(
x, β̄k−1

))

− ek−1

(
x, β̄k−1

)

ck + ek−1

(
x, β̄k−1

) − log (ck) (2.299)

and ek−1

(
x, β̄k−1

)
is given as the unique positive solution to

ek−1

(
x, β̄k−1

)

=
1

nk
trαkβ̄k−1Rk−1

(
β̄k−2

)
(
αkβ̄k−1Rk−1

(
β̄k−2

)

ck + ek−1

(
x, β̄k−1

) +
1

x
Ink−1

)−1

. (2.300)
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In particular, for k = 1, we have

J̃1

(
x, β̄0

)
= J̄1

(
x, β̄0

)
(2.301)

where

J̄1

(
x, β̄0

)
= c1 log

(
1 +

xα1β̄0

c1 + ē0
(
x, β̄0

)
)

+ log

(
1 +

ē0
(
x, β̄0

)

c1

)

− ē0
(
x, β̄0

)

c1 + ē0
(
x, β̄0

) (2.302)

ē0
(
x, β̄0

)
= − xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c21

2
(2.303)

according to Corollary 1. Note that (2.270) permits a closed-form solution
(2.303) in this case.

Using the recursionRk−1

(
β̄k−2

)
= Ink−1

+αk−1β̄k−2

nk−2
Hk−1Rk−2

(
β̄k−3

)
HH

k−1

(2.16) in (2.299), we obtain

J̃k(x, β̄k−1) = ckJk−1

(
xαkβ̄k−1

ck + xαkβ̄k−1 + ek−1

(
x, β̄k−1

) , β̄k−2

)

+ ck log

(
1 +

xαkβ̄k−1

ck + ek−1

(
x, β̄k−1

)
)

+ log

(
1 +

ek−1

(
x, β̄k−1

)

ck

)
− ek−1

(
x, β̄k−1

)

ck + ek−1

(
x, β̄k−1

) . (2.304)

In the proof of Part (i), it is shown that

ek−1

(
x, β̄k−1

)
− ēk−1

(
x, β̄k−1

) a.s.−→ 0. (2.305)

By the continuous mapping theorem, we therefore have

Jk−1

(
xαkβ̄k−1

1 + xαkβ̄k−1 + ek−1

(
x, β̄k−1

) , β̄k−2

)

− Jk−1

(
xαkβ̄k−1

1 + xαkβ̄k−1 + ēk−1

(
x, β̄k−1

) , β̄k−2

)
a.s.−→ 0. (2.306)

Applying the last result together with Corollary 1, Lemma 19, the continuous
mapping theorem and the Fubini theorem to (2.304) concludes the proof for
k = 2 since J̃1

(
x, β̄0

)
= J̄1

(
x, β̄0

)
by (2.301). The convergence for k > 2 is

shown by successive iterations of the last steps.
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Chapter 3

Applications

In this chapter, we will present numerous practical applications of the theo-
retical results developed in Chapter 2. In Section 3.1, we study the impact
of channel training on the performance of uplink network MIMO system with
finite capacity backhaul links. Assuming a block-fading channel model with
finite coherence time, there is an interesting trade-off between the time used
for training and data transmissions. We build upon Theorem 12 to determine
the optimal amount of channel training which maximizes a deterministic equiv-
alent of the net ergodic achievable rate. In Section 3.2, we use the asymptotic
moment results of Theorem 19 and 20 for the implementation and analysis of
a polynomial expansion receiver. Simulations suggest that this receiver type
could potentially reduce the computational complexity of the MMSE detector
while achieving a large fraction of its performance. Section 3.3 deals with the
analysis of the up- and downlink performance of large-scale MIMO systems. We
derive tight approximations of achievable rates with different linear precoders
and detectors for a very general channel model which accounts for imperfect
CSI, pilot contamination, path loss, and arbitrary antenna correlation. The
analysis relies to a large extent on Theorems 14 and 21. We further critically
discuss several assumptions in existing works on large-scale MIMO and inves-
tigate if additional antennas can compensate for sub-optimal signal processing.
Sections 3.4, 3.5, and 3.6 are mainly based on the concept of iterative deter-
ministic equivalents. In Section 3.4, we apply Theorem 22 to the analysis of
double-scattering MACs. We also establish a deterministic equivalent of the
sum-rate with MMSE-detection and find the asymptotically optimal precoding
matrices. For the special case of Rayleigh-product channels all results can be
given in closed form. In Section 3.5, we consider the AF multihop relay chan-
nel with noise at each stage. Theorem 24 allows us to provide a deterministic
equivalent of the mutual information after each hop. Although this problem
has been received considerable research interest, it has not been solved in the
literature before. In the last section of this chapter, Section 3.6, we present an
asymptotic analysis of random beamforming over quasi-static and fading chan-
nels. The analysis relies to a large extent on Theorems 15, 18, and 23. For both
scenarios, we derive deterministic equivalents of the mutual information, the
SINR and associated rates with MMSE detection. Especially the derivation of
deterministic equivalents for random matrix models combining random unitary
and i.i.d. matrices is new.
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3.1. Optimal channel training in uplink network MIMO systems

3.1 Optimal channel training in uplink network
MIMO systems

Abstract: We consider a multi-cell frequency-selective fading uplink channel from K
single-antenna UTs to B cooperative BSs with M antennas each. The BSs, assumed to
be oblivious of the applied codebooks, forward compressed versions of their observations
to a central station (CS) via capacity limited backhaul links. The CS jointly decodes the
messages from all UTs. Since the BSs and the CS are assumed to have no prior CSI,
the channel needs to be estimated during its coherence time. Based on a lower bound
of the ergodic mutual information, we determine the optimal fraction of the coherence
time used for channel training, taking different path losses between the UTs and the
BSs into account. We then study how the optimal training length is impacted by the
backhaul capacity. Although our analytical results based on random matrix theory are
proved to be tight in the large system limit, we show by simulations that they provide
very accurate approximations for even small system dimensions.

3.1.1 Introduction

Network MIMO has become the synonym for cooperative communications in
the cellular context and is regarded as an important concept to boost the inter-
ference limited performance of today’s cellular networks. It is often also referred
to as multi-cell processing or distributed antenna systems and corresponds to a
communication system where multiple BSs, connected via high speed backhaul
links to a CS, jointly process data either received over the uplink or transmitted
over the downlink. If the BSs could cooperate without any restrictions with
regards to the backhaul capacity, processing delay, computing complexity and
the availability of CSI , the multi-cell interference channel would be transformed
into a MAC (uplink) or broadcast channel (downlink) without multi-cell inter-
ference. This argument motivated the concept of network MIMO and it has
been shown in many works, e.g., [96, 97], that BS-cooperation has the potential
to realize significant gains in throughput and reliability.

So far, the treatment of multi-cell cooperation in the literature has been
either information-theoretic but limited to simple models [98, 99] or based on
simulations to account for more realistic and complex network structures [100,
101, 102]. The most common and analytically tractable network models are the
Wyner model [103, 104] and the soft-hand-off model [105, 106] which consider
cooperation between either two or three adjacent BSs on an infinite linear or
circular cellular array. Variants of both models have been studied under various
assumptions on the transmission schemes and the fading characteristics.

In practical systems, perfect BS-cooperation or global processing is very
difficult, if not impossible, to achieve. The main limitations are threefold: (i)
limited backhaul capacity, (ii) local connectivity and (iii) imperfect CSI at the
CS and the BSs.1 Therefore, most of recent research targets the problem of
constrained cooperation. For a detailed overview of this topic we refer to the
surveys [27, 107, 108]. Information-theoretic implications of limited backhaul
capacity have been studied separately for the uplink and downlink in [109] and
[110]. Recently, the optimal amount of user data sharing between the BSs for

1Also the synchronization of the BSs as well as processing complexity and delay are lim-
iting factors from an implementation perspective but are so far more or less neglected in the
literature.
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the downlink with linear beamforming and backhaul constraints was studied in
[111]. The difficulties related to connecting a large number of BSs to a single CS
have motivated the study of systems with only locally connected BSs [110, 112,
113]. Several distributed algorithms for the uplink [114] and downlink [115, 116]
have been proposed and it was shown that even with local BS-connection near-
optimal performance can be achieved with a reasonable amount of message
passing and computational complexity.

One of the most critical limitations of a practical network MIMO system,
somehow overlooked compared to (i) and (ii), arises from the substantial over-
head related to the acquisition of CSI (iii), indispensable to achieve the full
diversity or multiplexing gains. This overhead becomes paramount, in partic-
ular for fast fading channels, when the number of antennas, sub-carriers, UTs
or BSs grows [16, 101, 102, 29]. Usually, CSI for the uplink is acquired through
pilot signals sent by the UTs . This implies that a part of the coherence time of
the channel needs to be sacrificed to obtain CSI with a sufficiently high quality.
The inherent trade-off between the resources dedicated to channel estimation
and data transmission has been studied for the point-to-point MIMO channel
[117, 118] and the multi-user downlink [119, 120]. Recently, this problem was
also addressed in the context of network MIMO systems, although with a differ-
ent focus. In [29, 101, 102], the authors compare several multi-cellular system
architectures and conclude that the downlink performance of network MIMO
systems is mainly limited by the inevitable acquisition of CSI (rather than by
limited backhaul capacity). They also demonstrate that a conventional cellular
system might outperform a network MIMO system under some circumstances
assuming that the number of coordinated antennas and the used training over-
head for both systems are the same. This means in essence that simply installing
more antennas per BS can lead to higher performance improvements than in-
stalling costly backhaul infrastructure.

The imperfections detailed above call for robust strategies adapted to re-
stricted BS-cooperation. Some schemes [121, 122] rely on local CSI at the BSs
and statistical CSI at the CS, whereas others [123, 100] consider to serve only
certain subsets of UTs with multiple BSs. Several BS-cooperation schemes have
been studied in [124, 125] for the combination of limited backhaul capacity and
imperfect CSI .

In this section, we also consider limited BS-cooperation by focusing especially
on the effects of imperfect CSI (iii). More precisely, we study the performance
of the multi-cell uplink with partially restricted cooperation assuming that:

� The BSs act as oblivious relays which forward compressed versions of their
received signals to the CS via orthogonal error- and delay-free backhaul
links, each of fixed capacity C bits/channel use.

� The CS estimates the channel based on pilot tones sent by the UTs .

� The CS jointly processes the received signals from all BSs.

We consider a lower bound of the normalized ergodic mutual information of
the network MIMO uplink channel with imperfect CSI and limited backhaul
capacity, called the net ergodic achievable rate Rnet(τ). For a given channel
coherence time T , we attempt to find the optimal length τ∗ of the pilot sequences
for channel training which maximizesRnet(τ). As this optimization problem is in

93



3.1. Optimal channel training in uplink network MIMO systems

general intractable, we study a deterministic approximation Rnet(τ) of Rnet(τ),
based on large random matrix theory.

Our main contribution is to show that optimizing Rnet(τ) instead of Rnet(τ)
is optimal in the large system limit. To this end, we provide a closed-form
expression of the derivative of Rnet(τ) (Theorem 26), prove the concavity of
Rnet(τ) for channel matrices with a doubly regular variance profile (Theo-
rem 27), and show that τ∗ which maximizes Rnet(τ) converges to τ∗ in the
large system limit (Theorem 28). We further demonstrate by simulations that
our asymptotic results yield tight approximations for systems of small dimen-
sions with as little as three BSs and UTs. In addition, we study the effects
of limited backhaul capacity on the optimal channel training length. Since we
assume that the CS estimates all channels based on the compressed observa-
tions from the BSs, the channel estimates are impaired by thermal noise and
quantization errors. Thus, increasing the backhaul capacity leads to improved
channel estimates and, hence, smaller values of τ∗.

The determination of the optimal training length τ∗ in an uplink network
MIMO setting with arbitrary path loss between the UTs and BSs and limited
backhaul capacity appears to be a novel result, although we limit our investiga-
tion to a simple setting where B cooperative BSs do not suffer from interference
outside the network. The extension of this work to more realistic networks,
such as clustered systems, is left to future investigations. Although the use
of random matrix theory in the context of network MIMO is not new, see e.g.,
[126, 127], we present a novel application to an optimization problem in wireless
communications.

3.1.2 System Model

Channel Model

We consider a multi-cell frequency-selective fading uplink channel fromK single-
antenna UTs to B BSs with M antennas each.2 A schematic diagram of the
channel model for M = 2 is given in Fig. 3.1. Communication takes place
simultaneously from all UTs to all BSs on L parallel sub-carriers assuming an
OFDMtransmission scheme. The stacked receive vector of all BSs on the ℓth
sub-carrier y(ℓ) = [y1(ℓ), . . . , yBM (ℓ)]

T ∈ C
BM at a given time reads

y(ℓ) = H(ℓ)x(ℓ) + n(ℓ), ℓ = 1, . . . , L (3.1)

where x(ℓ) = [x1(ℓ), . . . , xK(ℓ)]
T ∈ C

K is the vector of the transmitted signals
of all UTs on sub-carrier ℓ, n(ℓ) ∼ CN (0, IBM ) is a vector of additive noise and
H(ℓ) ∈ C

BM×K is the aggregated channel matrix from all UTs to all BSs on
the ℓth sub-carrier.

We consider a discrete-time block-fading channel model where the channel
remains constant for a coherence block of T channel uses and then changes
randomly from one block to the other. We let T = TcWc, where Wc is the
bandwidth per sub-carrier in Hz and Tc the channel coherence time in seconds.
Presuming that the bandwidth of each sub-carrier Wc is on the order of the
channel coherence bandwidth, that the antenna spacing at the BSs is sufficiently

2Our results can be easily extended to the case where each BS has a different number of
antennas.
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Figure 3.1: Schematic system model for M = 2 antennas per BS. The BSs
compress and forward their received signals to the CS via orthogonal backhaul
links of capacity C bits/channel use. The CS jointly processes the received data
from all BSs.

large and that the channels from the UTs to the BSs are uncorrelated, the
channel matrices Hb(ℓ), b = 1, . . . , B, from the UTs to the BSs can be modeled
as

Hb(ℓ) = Wb(ℓ) diag (
√
ab1, . . . ,

√
abK) , ℓ = 1, . . . , L (3.2)

where Wb(l) ∈ C
M×K is a standard complex Gaussian matrix and abk denotes

the inverse path loss between UT k and BS b.3 For later use, we define the
matrix V ∈ (R+)BM×K in the following way:

V = A⊗ 1M (3.3)

whereA ∈ (R+)B×K is the inverse path loss matrix with elements {abk} and 1M

is a M -dimensional column vector with all entries equal to one, such that the
elements {vij} of V satisfy vij = a⌈M

i ⌉j . Under these assumptions, the elements

{hij(ℓ)} of the matrix H(ℓ) are independent circular symmetric complex Gaus-
sian random variables with zero mean and variance vij , i.e., hij(ℓ) ∼ CN (0, vij).
We refer to V as the variance profile of the channel matrix H(l) and assume in
the sequel that V is perfectly known at the CS while each BS b only knows the
distribution of its local channels Hb(ℓ), ℓ = 1, . . . , L. In a practical system, the
channel coherence bandwidth might be significantly larger than the bandwidth
of a sub-carrier so that {hij(ℓ)} would exhibit some correlation with respect to
ℓ. From a channel estimation perspective, the assumption of i.i.d. channel coef-
ficients represents a worst case since sub-carrier correlation cannot be exploited
in the estimation process.

3Note that the path loss is independent of the sub-carrier index ℓ. This might not be
the case for extremely large bandwidth but it is a reasonable assumption for most practical
scenarios.
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For simplicity, we assume Gaussian signaling with uniform power allocation,
i.e., xk(ℓ) ∼ CN (0, P/L), i.i.d. over ℓ and k, which is not necessarily optimal in
the presence of channel estimation errors [128, 117]. Although optimal power
allocation over the sub-carriers would provide significant gains, it would require
perfect channel knowledge at the UTs or some sort of feedback from the BSs/CS.
Since we assume neither feedback nor CSI at the UTs and since the channel
statistics are the same for all sub-carriers, uniform power allocation seems to be
a reasonable choice.

Compression at the BSs

The BSs are assumed to be oblivious to the applied codebooks of the UTs
and forward compressed versions y′i(ℓ) of their received signal sequences yi(ℓ)
to the CS via orthogonal backhaul links, each of capacity C bits per channel
use.4 We also assume that the BSs and the CS have no prior knowledge of the
instantaneous channel realizations. Under this setting, we consider a simple,
sub-optimal compression scheme which neither exploits correlations between
the received signals at different antennas nor adapts the employed quantization
codebook to the actual channel realization. Thus, a single quantization code-
book for the compression of each sequence yi(ℓ) is used. This is in contrast to
existing works, e.g., [129], which rely on the assumption of full CSI at the BSs
and the CS to apply optimized and channel dependent compression schemes.
For a more detailed discussion of different (distributed) compression schemes,
we refer to [129, 130, 131, 125] and references therein.

The rate-distortion function for the source yi(ℓ) with squared error distortion
is given as [42, Theorem 10.2.1]

RD

(
σ2
i (ℓ)

)
= min

fy′
i
(ℓ)|yi(ℓ)

:E[|y′
i(ℓ)−yi(ℓ)|2]≤σ2

i (ℓ)
I (y′i(ℓ); yi(ℓ)) (3.4)

where the minimization is over all conditional probability density functions
fy′

i(ℓ)|yi(ℓ) satisfying the expected distortion constraint σ2
i (ℓ). Similar to the

so-called “elementary compression scheme” in [129], our compression scheme is
based on an underlying complex Gaussian “test channel” defined by

y′i(ℓ) = yi(ℓ) + qi(ℓ) (3.5)

where qi(ℓ) ∼ CN (0, σ2
i (ℓ)). Note that the test channel (3.5) used for the gen-

eration of the quantization codebooks is not optimal since the distribution of
yi(ℓ) =

∑K
j=1 hij(ℓ)xj(ℓ) + ni(ℓ) is not Gaussian. However, one can argue that

in a large system with many UTs, the random variable yi(ℓ) is almost Gaussian
distributed and the performance degradation due to the sub-optimal choice of
fy′

i(ℓ)|yi(ℓ) is small. A simple upper bound of the rate distortion function is given

4By orthogonal backhaul links we mean here that there is no inter-backhaul interference.
This is for example the case for a wired backhaul network with a dedicated link between the
CS and each BS.
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by

I(y′i(ℓ); yi(ℓ)) = h(y′i(ℓ))− h(y′i(ℓ)|yi(ℓ))
≤ log

(
πe
(
E
[
|yi(ℓ)|2

]
+ σ2

i (ℓ)
))

− log
(
πeσ2

i (ℓ)
)

= log

(
1 +

1 + P
L

∑K
j=1 vij

σ2
i (ℓ)

)
(3.6)

where the inequality is obtained by upper-bounding the entropy of y′i(ℓ) by the
entropy of a complex Gaussian random variable with the same variance. We
assume further that each BS uses C/(ML) bits for the compression of each re-
ceived complex symbol per antenna per sub-carrier. Replacing the left-hand side
(LHS) of (3.6) by C/(ML), we can consequently overestimate the quantization
noise variance σ2

i (ℓ) by choosing

σ2
i = σ2

i (ℓ) =
1 + P

L

∑K
j=1 vij

2
C

ML − 1
. (3.7)

Since the statistical distribution of yi(ℓ) is the same for all sub-carriers, the
quantization noise power σ2

i is also independent of ℓ. One can easily verify that
the quantization noise vanishes for infinite backhaul capacity, i.e., σ2

i → 0 for
C → ∞, and grows without bounds when the backhaul has zero capacity, i.e.,
σ2
i → ∞ for C → 0.
We would like to point out that the field of distributed compression with

imperfect CSI is to the best of our knowledge a largely unexplored area. It is
for example not clear if each BS should estimate its local channels and forward
compressed versions of its estimates to the CS or if the CS should estimate all
channels based on compressed signals from the BSs, as assumed here.

Channel Training

Similar to [117], each channel coherence block of length T is split into a phase for
channel training and a phase for data transmission. During the training phase
of length τ , allK UTs broadcast orthogonal sequences of known pilot symbols of
equal power P/L on all sub-carriers. The orthogonality of the training sequences
imposes τ ≥ K. We assume that the CS estimates the channels hij(ℓ) from all
UTs to all BSs based on the observations

rij(ℓ) =

√
τP

L
hij(ℓ) + sij(ℓ) (3.8)

where sij(ℓ) ∼ CN (0, 1 + σ2
i ) captures the effects of the thermal noise at the

BS-antennas and the quantization error on the backhaul links. For details on
how the scalar estimation channel (3.8) is obtained, we refer the reader to [117].
It becomes clear from the last equation that the quantization noise degrades
the channel estimate. Thus, the backhaul capacity C has a significant influ-
ence on the optimal training length τ∗. This point will be further discussed in
Section 3.1.4. Computing the MMSE estimate of hij(ℓ) given the observation

rij(ℓ), we can decompose hij(ℓ) into the estimate ĥij(ℓ) and the independent

estimation error h̃ij(ℓ), such that

hij(ℓ) = ĥij(ℓ) + h̃ij(ℓ). (3.9)
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The variance of the estimated channel v̂ij(τ) and the variance of the estimation
error ṽij(τ) are respectively given as

v̂ij(τ) , E

[
|ĥij(ℓ)|2

]
=

τ P
L v

2
ij

τ P
L vij + 1 + σ2

i

∀ℓ (3.10)

ṽij(τ) , E

[
|h̃ij(ℓ)|2

]
=

vij(1 + σ2
i )

τ P
L vij + 1 + σ2

i

∀ℓ . (3.11)

Denote V̂(τ) and Ṽ(τ) the variance profiles of the estimated channel Ĥ(ℓ) and
the estimation error H̃(ℓ), respectively. One can easily verify that the total
energy of the channel is conserved since

V = V̂(τ) + Ṽ(τ). (3.12)

Data Transmission

In each channel coherence block, the UTs broadcast their data simultaneously
during T − τ channel uses. The CS jointly decodes the messages from all UTs,
leveraging the previously computed channel estimate Ĥ(ℓ). With the knowledge

of Ĥ(ℓ), the CS “sees” in its received signal y′(ℓ) = [y′1(ℓ), . . . , y
′
BM (ℓ)]

T
the

useful term Ĥ(ℓ)x(l) and the overall noise term z(ℓ) = H̃(ℓ)x(ℓ) + n(ℓ) + q(ℓ),
i.e.,

y′(ℓ) = Ĥ(ℓ)x(ℓ) + z(ℓ) (3.13)

where the quantization noise vector q = [q1(ℓ), . . . , qBM (ℓ)]
T
is defined by (3.5).

Since the statistical distributions of all sub-carriers, signals and noise are i.i.d.
with respect to the index ℓ, we will hereafter omit the dependence on ℓ and
consider a single isolated sub-carrier.

3.1.3 Net Ergodic Achievable Rate

The capacity of the channel (3.13) is not explicitly known. We consider therefore

a lower bound of the normalized ergodic mutual information 1
BM I(y′;x|Ĥ),

referred to hereafter as the ergodic achievable rate R(τ). This lower bound is
in essence obtained by overestimating the detrimental effect of the estimation
error, treating the total noise term z as independent complex Gaussian noise
with covariance matrix Kz(τ) ∈ (R+)BM×BM , given as

Kz(τ) = E
[
zzH

]
= diag


1 + σ2

i +
P

L

K∑

j=1

ṽij(τ), i = 1, . . . , BM


 . (3.14)

Thus, the ergodic achievable rate can be written as [128, 117]

R(τ) =
1

BM
E
Ĥ

[
log

∣∣∣∣IBM +
P

L
H(τ)H(τ)H

∣∣∣∣
]

[nats/channel use] (3.15)

where we have defined the effective channel H(τ) as

H(τ) = K
− 1

2
z (τ)Ĥ. (3.16)
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Note that the ergodic achievable rate does not account for the fact that
only a fraction (1 − τ/T ) of the total coherence block length can be used for
data transmission. Our goal is thus to find the optimal training length τ∗,
maximizing the net ergodic achievable rate

Rnet(τ) ,

(
1− τ

T

)
R(τ). (3.17)

Here, the difficulty consists in computing the ergodic achievable rate R(τ) explic-
itly. Since a closed-form expression of R(τ) for finite dimensions of the channel
matrix H seems intractable, we resort to an approximation based on the theory
of large random matrices. We will demonstrate shortly that this approxima-
tion, although only asymptotically tight, yields very close approximations for
even small values of B,M,K and L.

Deterministic Equivalent

In this section, we present a deterministic equivalent approximationR(τ) ofR(τ)
in the large system limit, i.e., for K,BM,L → ∞ at the same speed. Denote
N = BM the product of the number of BSs and the number of antennas per
BS. The notation K → ∞ will refer in the sequel to the following two conditions
on K,N and L:

0 < lim inf
K→∞

N

K
≤ lim sup

K→∞

N

K
<∞ , 0 < lim inf

K→∞

L

K
≤ lim sup

K→∞

L

K
<∞. (3.18)

Define V(τ) = K−1
z (τ)V̂(τ) the variance profile of the effective channel H(τ)

with elements

vij(τ) =
v̂ij(τ)

1 + σ2
i +

P
L

∑K
ℓ=1 ṽiℓ(τ)

(3.19)

and consider the following N ×N matrices

Dj(τ) = diag (v1j(τ), . . . , vNj(τ)) , j = 1, . . . ,K. (3.20)

We are now in position to state the deterministic approximation R(τ) of R(τ)
based on a direct application of Theorem 12 (ii) to our channel model (see also
Theorem 14 (iv) and [51, Theorem 2.3]).

Theorem 25 (Deterministic equivalent of the ergodic achievable rate). Let
τ > 0. Assume that K, N and L satisfy (3.18) and 0 ≤ vij(τ) < vmax <∞∀i, j.
Then:

(i) The following implicit equation:

T(z) =


 1

K

K∑

j=1

Dj(τ)

1 + 1
K trDj(τ)T(z)

− zIN




−1

(3.21)

admits a unique solution T(z) = diag (t1(z), . . . , tN (z)) such that (t1(z), . . . ,
tN (z)) ∈ S(R+)N .
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(ii) Let P > 0. Denote TP = T(− L
KP ) and consider the quantity:

R(τ) =
1

N

K∑

j=1

log

(
1 +

1

K
trDj(τ)TP

)
− 1

N
log det

(
L

KP
TP

)

− 1

N

K∑

j=1

1
K trDj(τ)TP

1 + 1
K trDj(τ)TP

. (3.22)

Then, the following holds true:

R(τ)−R(τ) −−−−→
K→∞

0.

Optimization of the training length τ

In this section, we consider the optimization of the training length τ with the
goal of maximizing the net ergodic achievable rate Rnet(τ). In order to find
the optimal training length τ∗ for a given coherence block length T , we wish to
solve the following optimization problem:

maximize Rnet(τ) ,

(
1− τ

T

)
R(τ) (3.23)

subject to K ≤ τ ≤ T.

As this optimization problem is intractable for finite dimensions, we pursue the
following approach:

1. We find τ∗ maximizing Rnet(τ) =
(
1− τ

T

)
R(τ).

2. We show that Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 and τ∗ − τ∗ −−−−→
K→∞

0.

3. We verify by simulations that τ∗ is very close to τ∗ for even small values
of K,N and L.

We start by establishing the concavity of Rnet(τ), our new objective function.
Denote5

v′ij(τ) =
v̂′ij(τ)

[
1 + σ2

i +
P
L

∑K
j=1 ṽij(τ)

]
− v̂ij(τ)

P
L

∑K
j=1 ṽ

′
ij(τ)

[
1 + σ2

i +
P
L

∑K
j=1 ṽij(τ)

]2 (3.24)

where

v̂′ij(τ) = −ṽ′ij(τ) =
P
L v

2
ij

(
1 + σ2

i

)
(
1 + σ2

i + τ P
L vij

)2 (3.25)

and define the matrices

D′
j(τ) = diag

(
v′1j(τ), . . . , v

′
Nj(τ)

)
, j = 1, . . . ,K . (3.26)

5We use f ′(x) to denote the first derivative of the function f(x), i.e., f ′(x) =
d f(x)
d x

.
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A simple composition rule [132, Exercise 3.32 (b)] states that the product of
a positive decreasing linear function and a positive increasing concave function
is also concave. In order to prove the concavity of Rnet(τ) = (1 − τ

T )R(τ), it

is thus sufficient to show that R(τ) is an increasing concave function in τ . A

sufficient condition for concavity is R
′′
(τ) ≤ 0. We begin by considering the

first derivative R
′
(τ), which allows for a simple concise closed-from expression

as provided by the next theorem:

Theorem 26 (Derivative). Under the same conditions as for Theorem 25, the
first derivative of R(τ) permits the explicit expression

R
′
(τ) =

1

N

K∑

j=1

1
K trD′

j(τ)TP

1 + 1
K trDj(τ)TP

where TP = T(− L
KP ) is given by Theorem 25 (i). Moreover, for any P, τ > 0,

R(τ) is an increasing function, i.e.,

R
′
(τ) > 0.

Proof. See Appendix 3.7.1.

Despite the simplicity of the expression of R
′
(τ) in Theorem 26, it seems

intractable to show that R
′′
net(τ) ≤ 0 for channel matrices with a general variance

profile. This is due to the fact that not only Dj(τ) depends on τ , but also TP .
The matrix TP is in general given as the solution of an implicit equation which
can only be determined numerically, e.g., by a fixed-point algorithm. It is thus
difficult to infer the behavior of TP with respect to τ . However, one can show
for the particular case of a doubly regular variance profile that R(τ) is indeed
concave.

Theorem 27 (Concavity). Let P, τ > 0. Assume that N = K and that V(τ)
is a doubly regular matrix which satisfies the following regularity condition:

K(τ) =
1

N

N∑

i=1

vik(τ) =
1

N

N∑

j=1

vℓj(τ) ∀k, ℓ . (3.27)

Then, R(τ) is a strictly concave function.

Proof. See Appendix 3.7.2.

Remark 15. Based on our simulation results, we conjecture that Theorem 27
also holds for non doubly regular variance profiles V(τ). Intuitively, R(τ) being
a concave function means nothing else than that channel training shows dimin-
ishing returns. That is, the marginal benefit of each training symbol decreases
until the channel estimation becomes nearly perfect. The previous argument can
be made clear considering the two extreme cases τ = 0 and τ → ∞. One can

easily verify that Dj(0) = 0 while D′
j(0) > 0. This implies R

′
(0) > 0, i.e.,

channel training increases the ergodic achievable rate. On the other hand, for

τ → ∞, D′
j(τ) → 0, so that also R

′
(τ) → 0, i.e., the marginal benefit of chan-

nel training vanishes. It is thus justified to conjecture that R
′
(τ) is a decreasing

function of τ and hence R(τ) a concave function.
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As a consequence of Theorem 27 and Remark 15, we assume that Rnet(τ)
takes its global maximum in (0, T ] and the optimal training length τ∗ can be
determined as the solution of

R
′
net(τ) =

(
1− τ

T

)
R

′
(τ)− 1

T
R(τ) = 0 . (3.28)

The value τ∗ can now be easily found, e.g., via the bisection method. It re-
mains to show that the optimal training length τ∗ which maximizes Rnet(τ) is
asymptotically optimal for the original objective function Rnet(τ). This is done
in the next Theorem.

Theorem 28. Let τ∗ = argmaxτ∈[0,T ]Rnet(τ) and τ
∗ = argmaxτ∈[0,T ]Rnet(τ).

Then, under the same conditions as for Theorem 25, the following holds true:

(i)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0.

(ii) Further assume that V(τ) is a doubly regular matrix which satisfies the
conditions of Theorem 27. Then,

τ∗ − τ∗ −−−−→
K→∞

0

where τ∗ is given as the solution to

R
′
net(τ) =

(
1− τ

T

)
R

′
(τ)− 1

T
R(τ) = 0

with R(τ) and R
′
(τ) given by Theorem 25 (ii) and Theorem 26, respec-

tively.

Proof. See Appendix 3.7.3.

Theorem 28 (i) merely states that the maximum point of Rnet(τ) can be ar-
bitrarily closely approximated by the maximum point of Rnet(τ). This result is
independent of the structure of the variance profile V(τ). Theorem 28 (ii) pro-
vides a simple way to compute τ∗ and states that this value is also asymptotically
optimal for Rnet(τ). However, this result requires V(τ) to be a doubly regular
matrix. Both results together imply that optimizing Rnet(τ) is asymptotically
identical to optimizing Rnet(τ). We show in the next section via simulations
that Theorem 27 and Theorem 28 also hold for non doubly regular variance
profiles.

3.1.4 Numerical Results

In order to show the validity of our analysis in the preceding sections, we consider
a simple cellular system consisting of B = 3 BSs with M = 2 antennas and
K = 3 UTs, as shown in Fig. 3.2. The locations of the UTs are randomly
chosen according to a uniform distribution. The inverse path loss factor abk
between UT k and BS b is given as abk = d−3.6

bk , where dbk is the distance
between UT k and BS b, normalized to the maximum distance within a cell.
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Figure 3.2: Cellular example with B = 3 BSs and K = 3 UTs.

We consider one random snapshot of user distributions, resulting in the inverse
path loss matrix

A =



2.9775 0.0385 1.6055
0.2512 2.7826 0.1759
0.0615 0.0492 1.6376


 . (3.29)

In the sequel, we assume A fixed while we average over many independent real-
izations of the channel matrix H. The cell edge signal-to-noise-ratio is defined
as SNR = E

[
|xi(ℓ)|2

]
/E
[
|ni(ℓ)|2

]
= P/L. Unless otherwise stated, we assume

T = 1000 and L = 1.
Fig. 3.3 depicts the net ergodic achievable rate Rnet(τ) and its deterministic

equivalent approximation Rnet(τ) by Theorem 25 (ii) as a function of the SNR
for a fixed training length of τ = 40 and different values of the backhaul capacity
C = {1, 5, 10} bits/channel use. Clearly, Rnet(τ) gives a very tight approxima-
tion of Rnet(τ) over the full range of SNR. The effect of limited backhaul is
particularly visible at high SNR where all curves saturate.

For the same set of parameters and SNR = 0dB, we show in Fig. 3.4 Rnet(τ)
and Rnet(τ) as a function of the training length τ . This plot validates Theo-
rem 27 and the corresponding remark as Rnet(τ) is obviously a concave function.
Moreover, since the curves of Rnet(τ) and Rnet(τ) match very closely, it is rea-
sonable to assume that both take a similar maximum value at a similar value
of τ . The validity of Theorem 28 is demonstrated in Fig. 3.5 which shows the
optimal training length τ∗, found by an exhaustive search based on Monte Carlo
simulations, and the training length τ∗ which maximizes Rnet(τ) as a function
of the SNR for C = 1bits/channel use and T = 100. The differences between
both values, although very small, are mainly due to the exhaustive search over
a necessarily discrete set of values of τ .

Fig. 3.6 shows the dependence of the optimal training length τ∗ on the back-
haul capacity C for a fixed SNR = 10dB. One can see that τ∗ is a decreasing
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Figure 3.3: Net ergodic achievable rate Rnet(τ) vs SNR for τ = 40 and T =
1000. The markers are obtained by simulations, the solid lines correspond to
the deterministic equivalent Rnet(τ).

function of C which converges quickly to particular value corresponding to in-
finite capacity backhaul links. The reason for this is the following. The CS
estimates the channel coefficients based on the quantized training signals re-
ceived by the BSs. The channel estimate is hence impaired by thermal noise
and quantization errors. Therefore, increasing C results in better channel esti-
mates and reduces the necessary training length. For infinite backhaul capacity,
the optimal training length is only dependent on the SNR. In a similar flavor,
Fig. 3.7 depicts Rnet(τ

∗) as a function of the backhaul capacity C. We notice the
inefficient utilization of the backhaul links due to sub-optimal compression since
the net ergodic achievable rate per BS, i.e.,M×Rnet(τ

∗), is much lower than the
necessary backhaul capacity. For example, it takes C = 20bits/channel use of
backhaul capacity to achieve a rate per BS of 2×Rnet(τ

∗) ≈ 5.2 bits/channel use.

3.1.5 Conclusions

We have considered a frequency-selective fading network MIMO uplink chan-
nel with arbitrary path losses between the UTs and BSs and finite capacity
backhaul links. Using a close approximation of the net ergodic achievable rate
based on random matrix theory, we have studied the optimal trade-off between
the resources used for channel training and data transmission. Although the
asymptotic results are proved to be tight only in the large system limit, our
numerical examples show that they provide close approximations even for small
system dimensions. Our results also show that limited backhaul capacity has
a significant impact on the optimal training length. We wish to conclude this
section by pointing out some shortcomings of our system model which remain
as future investigations:
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Figure 3.4: Net ergodic achievable rate Rnet(τ) vs training length τ for SNR =
0dB and T = 1000. The markers are obtained by simulations, the solid lines
correspond to the deterministic equivalent Rnet(τ).
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Figure 3.5: Optimal training length τ∗ and τ∗ vs SNR for C = 1bits/channel use
and T = 100. The solid line corresponds to τ∗ maximizing Rnet(τ), the dashed
line corresponds to τ∗ maximizing Rnet(τ) and is obtained by an exhaustive
search based on Monte Carlo simulations.
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Figure 3.6: Optimal training length τ∗ vs backhaul capacity C for SNR = 10 dB
and T = 1000.
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Figure 3.7: Net ergodic achievable rate Rnet(τ
∗) with optimal channel training

τ∗ vs backhaul capacity C for SNR = 10dB and T = 1000.
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Backhaul links and cooperation

A relevant question is how a BS should decide whether to cooperate by for-
warding its received data to some central processor or to process its received
signals alone. In our model, the net throughput vanishes with a decreasing
backhaul capacity although each BSs could theoretically decode a part of the
received messages alone. Future work, also motivated by the recent results
in [125, 133], comprises the investigation of flexible schemes which adapt the
degree of cooperation according to some statistical side-information about the
channels, backhaul limitations, quality of CSI, etc.

Inter-cluster interference

We have considered a multi-cell network composed of B cooperative cells with-
out inter-cell interference. In a real system, also the effects of non-orthogonal
training sequences leading to “pilot contamination” [41, 16] constitute an im-
portant issue for practical system design. Very recently, both aspects have been
addressed in [134].

3.2 Polynomial expansion detectors

Abstract: We consider a certain class of large random matrices, composed of indepen-
dent column vectors with zero mean and different covariance matrices. This random
matrix model arises in several wireless communication systems of recent interest, such
as distributed antenna or large-scale MIMO systems. Computing the linear MMSE
detector in such systems requires the inversion of a large covariance matrix which be-
comes prohibitively complex as the number of antennas and users grows. We apply the
asymptotic moment result of Theorems 19 and 20 to the design of a low-complexity
polynomial expansion detector which approximates the matrix inverse by a matrix poly-
nomial and study its asymptotic performance. Simulation results corroborate the anal-
ysis and evaluate the performance for finite system dimensions.

3.2.1 Introduction

Distributed antenna systems and large antenna arrays have recently attained
significant research interest [27, 16]. Both are considered as promising solutions
to counter intercell interference and to increase the spectral efficiency of cur-
rent cellular networks. Since these techniques rely in essence on a significant
increase of the number of coordinated antennas, the computational complexity
of the joint precoding/detection of the transmitted/received signals grows. This
calls for low-complexity solutions. In this section, we address this need by as-
sessing the performance of a polynomial expansion detector [135] adapted to
the following general channel model.

Consider a discrete-time N ×K MIMO channel with output vector y ∈ C
N :

y = Hx+ n (3.30)

where x = [x1, . . . , xK ]T is the complex channel input vector satisfying E
[
xxH

]
=

IK ,H = [h1 · · ·hK ] ∈ C
N×K is the random channel matrix and n ∼ CN (0, σ2IN )
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is a vector of additive noise. The jth column hj ∈ C
N of H is modeled as

hj =
1√
N

Rjgj , j = 1, . . . ,K (3.31)

where Rj ∈ C
N×N is a deterministic matrix and the elements of gj ∈ C

N

are i.i.d. random variables with zero mean, unit variance and finite eighth order
moment. This channel model captures different types of wireless communication
systems and generalizes several well-known channel models as discussed below:

Distributed Antenna Systems: Let Rj = diag (r1j , . . . , rNj) with elements

rij =
√
pj/d

β/2
ij , where dij is the (normalized) distance between transmitter j

and receive antenna i, β is the path loss exponent and pj is the transmit power
of transmitter j. This model is suitable for distributed antenna systems [27]
where each transmitter sees a different path loss to each of the receive antennas
since d1j , . . . , dNj are different.

Large-scale MIMO: Assume a receiver equipped with a very large antenna
array (N ≫ 1) as in [16]. Unless the antenna spacing is sufficiently large, it is
likely that the received signals at different receive antennas are correlated. Our
model allows to assign a different correlation matrix Rj to each transmitter.

MIMO Multiple Access Channel (MAC): Consider a MIMO MAC from M
transmitters equipped with Km, m = 1, . . . ,M , antennas to a receiver with N
antennas. Each point-to-point link has a different transmit and receive correla-
tion matrix [83]:

y =

M∑

m=1

Φ
1
2

R,mGmΦ
1
2

T,mxm + n

where ΦR,1, . . . ,ΦR,M ∈ C
N×N are deterministic correlation matrices, ΦT,1 ∈

C
K1×K1 , . . . ,ΦT,M ∈ C

KM×KM are nonnegative definite diagonal matrices,
G1 ∈ C

N×K1 , . . . ,GM ∈ C
N×KM are random channel matrices with i.i.d. en-

tries with zero mean and variance 1/N , and x1 ∈ C
K1 , . . . ,xM ∈ C

KM are

the transmit vectors. Let
∑M

m=1Km = K. Setting Rj = Φ
1/2
R,m[Φ

1/2
T,m]ii for

j ∈ {1 +
∑m−1

l=1 Kl, . . . ,
∑m

l=1Kl} and i = j −∑m−1
l=1 Kl, we fall back to the

model in (3.31).
In the sequel, we will study the asymptotic behavior of the moments Mk of

the matrix BN , HHH, defined as

Mk ,
1

N
trBk

N , k = 0, 1, 2, . . . (3.32)

under the assumption that N and K grow infinitely large at the same speed.
In particular, we will derive deterministic approximations M̄k of Mk , such
that Mk − M̄k → 0 almost surely, for N,K → ∞. This result can be used,
for example, to compute low-complexity approximations of the matrix inverse
(BN +σ2IN )−1. The computation of this matrix arises in many practical appli-
cations, such as for linear multiuser detectors and beamforming strategies. We
will focus exemplary on the linear MMSE (LMMSE) detector.

The LMMSE estimate x̂ of x, assuming perfect knowledge of H at the re-
ceiver, is given as [136]

x̂ = HH(BN + σ2IN )−1y. (3.33)
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The computational complexity of this estimate is of order O(r2) [137], where r =
min(N,K). A reduced complexity estimate can be obtained by approximating
the matrix inverse in (3.33) by the following matrix polynomial [135]

(BN + σ2IN )−1 ≈
L−1∑

l=0

wlB
l
N (3.34)

for some coefficients wl, where the filter rank L ≤ r is chosen according to
the allowable complexity. For a given transmitter k, the above polynomial
expansion detector can be seen as a projection of y on the Lth Krylov sub-
space associated to the pair (BN ,hk), i.e., the subspace of C

N spanned by
the vectors {hk,BNhk, . . . ,B

L−1
N hk}, and a weighting of the joint projections

by the coefficients wl. Depending on L, the polynomial expansion detector
achieves a performance between the matched filter (L = 1) and the LMMSE
detector (L = r) [135] and allows, consequently, to trade-off performance for
complexity. Moreover, (3.34) allows for an efficient multistage implementation
[135, 138, 137], where each stage l consists of a matched filter HH and subse-
quent “re-spreading” by the matrix H. In [139], it was shown that the SINR at
the filter output converges in certain cases exponentially in the filter rank L to
the SINR output of the LMMSE detector. Thus, L does not need to scale with
the system size to achieve close to optimal performance [140].

The optimal weight vector w = [w0 · · ·wL−1]
T
can be chosen to minimize

the mean square error of the estimated vector x̂, i.e.,

w = arg min
u=[u0,...,uL−1]T

E



∥∥∥∥∥x−HH

L−1∑

l=0

ulB
l
Ny

∥∥∥∥∥

2

2


 . (3.35)

The solution to this optimization problem is given as [135]

w = Φ−1ϕ (3.36)

where Φ ∈ (R+)L×L and ϕ ∈ (R+)L are defined as

[Φ]ij =Mi+j + σ2Mi+j−1 (3.37)

[ϕ]i =Mi.

The computation of the weight vector w requires the calculation of the mo-
mentsM1, . . . ,M2L which is still computational expensive for large L. However,
under the assumption that the dimensions of H grow infinitely large, it was
shown for several random matrix models (e.g., [138, 140, 88]) that the moments
Mk can be closely approximated by their asymptotic counterparts M̄k. These
are independent of a particular realization of H and can be calculated based on
the statistical properties of the channel matrix. If these properties change on
a much slower timescale than the fast-fading channel fluctuations, the weight
vector w can be precomputed using M̄k instead ofMk. Thus, the detector com-
plexity depends only on the complexity of the projection on the Krylov subspace
which is of order O(r) [137].

Multistage or reduced-rank multiuser detectors were mainly considered in
the context of code-division multiple access (CDMA) systems as low-complexity

109



3.2. Polynomial expansion detectors

solutions to the joint detection of a large number of user terminals with long
spreading sequences [135]. The asymptotic (universal) weight design was first
studied in [138] for the equal transmit power case and then extended to more
involved models, such as different transmit powers [140], multi-path fading [88]
and random unitary spreading sequences [141]. These results were then put on
a common ground in [137] which compares different types of linear multistage
detectors in terms of their complexity and asymptotic performance. Recently,
multistage detectors for asynchronous CDMA systems were considered in [142].

The asymptotic results in the above works are based on the almost sure
convergence of the e.s.d. of the matrix BN to a compactly supported limit dis-
tribution. This limit distribution is in general given implicitly by its Stieltjes
transform which can be computed based on the statistical properties of the un-
derlying random matrix model. The asymptotic moments are then obtained by
writing the Stieltjes transform as a moment generating function (see Theorem 4)
and relying on combinatorial arguments [88] or free probability theory [141].

Our technique is different in two aspects. First, we do not require the ex-
istence of a limiting eigenvalue distribution of the matrix BN . Instead, we
provide for each pair (N,K) a deterministic approximation M̄k of the moments
Mk which becomes arbitrarily tight as N,K → ∞. Second, the moments are
derived through iterated differentiation of the Stieltjes transform and can be
computed by simple recursive equations. This is in contrast to [88] which re-
quires an exhaustive search over complicated sets of indices. Hence, our results
are more practical from an implementation perspective. Moreover, the asymp-
totic moments of the random matrix model (3.31) have not been considered in
the literature before.

Our main technical results are Theorems 19 and 20 which can be found
in Section 2.3.2. Loosely speaking, Theorem 20 states that, for large matrix
dimensions, the e.s.d. FBN of the matrix BN can be closely approximated by
a deterministic distribution function FN . Thus, the optimal weighting vector
w can be approximated by replacing the moments Mk of FBN in (3.37) by
the moments M̄k of FN . Using the result of Theorem 19, we can compute an
approximate weight vector w̄ = [w̄0 . . . w̄L−1] as

w̄ = Φ̄
−1

ϕ̄ (3.38)

where Φ̄ ∈ (R+)L×L and ϕ̄ ∈ (R+)L are defined by

[
Φ̄
]
ij
= M̄i+j + σ2M̄i+j−1 (3.39)

[ϕ̄]i = M̄i.

3.2.2 Asymptotic Performance Analysis

We consider now the asymptotic performance of the polynomial expansion re-
ceiver in terms of the received SINR γm for a given transmitter m. With weight
vector w, the mth element x̂m of the estimated vector x̂ reads

x̂m = hH

m

L−1∑

l=0

wlB
l
N (Hx+ n) . (3.40)
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One can easily show that the associated SINR γm can be expressed as [137, Eq.
(18)]

γm =
wTϕmϕT

mw

wT (Φm −ϕmϕT
m)w

(3.41)

where Φm ∈ (R+)L×L and ϕm ∈ (R+)L are given as

[Φm]ij =
[
Bi+j

N

]
mm

+ σ2
[
Bi+j−1

N

]
mm

(3.42)

[ϕm]i =
[
Bi

N

]
mm

.

The next theorem provides a tight deterministic approximation of the terms[
Bk

N

]
mm

= hH

mBk−1
N hm in the asymptotic limit.

Theorem 29. Under the assumptions of Theorem 20, the following convergence
holds: [

Bk
N

]
mm

− M̄m
k

a.s.−−→ 0

where

M̄m
k =

k−1∑

i=0

M̄m
k−i−1

(−1)i

i!

1

N
trRmRH

mTN,i, k ≥ 1

and TN,k is given by Theorem 19. The initial values of the recursion are M̄m
0 =

1 and TN,0 = IN .

Proof of Theorem 29. The proof follows the same steps as [137, Theorem 1] and
will not be given here.

Replacing
[
Bk

N

]
mm

in (3.42) by M̄m
k and w in (3.41) by w̄, we can obtain

a deterministic approximation of the SINR γm at the output of the polynomial
expansion receiver.

3.2.3 Numerical Results

Consider a MAC from K = 40 single-antenna transmitters to a receiver with
N = 100 antennas. We use an extended version of Jake’s model [83] for the

generation of the matrices Rj . Let Rj = Θ
1/2
j and Θj ∈ C

N×N be defined as

[Θj ]kl =
1

φjmax − φjmin

∫ φj
max

φj
min

exp

(
2πi

λ
dkl cos(x)

)
dx

where dkl = 2λ(k−l) and φjmin, φ
j
max are drawn independently from the intervals

[−π, 0] and [0, π], respectively. The interval [φjmin, φ
j
max] can be seen as the

angular spread of the signal from transmitter j, λ is the wave length, and dkl is
the spacing between the receive antennas k and l. We assume Rayleigh fading
channels, i.e., gj in (3.31) are independent standard complex Gaussian vectors.
The covariance matrices Θj are chosen at random at the beginning and then
kept fixed while we average over many realizations of the channel matrix H. We
denote by SNR = 1/σ2 the transmit SNR .

Fig. 3.8 shows the average received SINR E[γm] of a randomly chosen trans-
mitter as a function of the SNR for the matched filter, the LMMSE detector and
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the polynomial expansion detector with approximate weights for L = {2, 3, 6}.
Markers correspond to simulation results and solid lines to the deterministic
SINR approximations. The error bars indicate one standard deviation of γk in
each direction. Similar to [68], the asymptotic SINR of transmitter m for the
LMMSE detector can be easily shown to satisfy

γLMMSE
m =

1

N
trRmRH

mTN (−1/SNR)

where TN (z) is given by Theorem 14 (ii). We observe a good fit between the
deterministic approximations and the simulation results for the average SINR .
However, the standard deviation of the SINR increases with L. This is because
the higher order moments converge slower to their deterministic approximations
and exhibit therefore stronger fluctuations. Nevertheless, the average SINR
performance of the polynomial expansion detector with L = 6 is already close
to the performance of the LMMSE detector.

Fig. 3.9 depicts the theoretical average bit-error rate (BER) over SNR for
the different detectors. Assuming binary phase-shift keying (BPSK) modulation
and Gaussian interference, the BER is given as E[Q(

√
γk)] where Q(x) is the

Gaussian tail function. We can clearly see a performance increase of the poly-
nomial expansion detector with L, although the BER saturates at high SNR.
Although not explicitly shown here, one can even observe a performance decrease
for large values of L. As mentioned before, this is due to the low accuracy of the
approximate weights caused by a slow convergence of the higher-order moments
to their deterministic approximations.

3.2.4 Conclusions

We have derived asymptotically tight deterministic approximations of the mo-
ments of a certain class of large random matrices, useful for the study of dis-
tributed antenna systems and large antenna arrays. We have applied these
moment results to the design of a polynomial expansion detector which signif-
icantly reduces the computational complexity of multiuser detection compared
to the LMMSE detector. Moreover, we have derived an explicit expression of
the asymptotic SINR at the output of this detector and verified its accuracy
and performance for finite system dimensions by simulations.
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Figure 3.8: Average received SINR versus SNR at the output of the matched
filter, LMMSE detector and the polynomial expansion detector with approxi-
mate weights for different values of L. Markers correspond to simulation results,
solid lines to the deterministic SINR approximations. Error bars indicate one
standard deviation of the simulation results in each direction.
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Figure 3.9: Average theoretical bit error rate versus SNR for the matched fil-
ter, LMMSE detector and the polynomial expansion detector with approximate
weights for different values of L.
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3.3 Large-scale MIMO systems

Abstract: We provide a unified performance analysis of the up- and downlink of
noncooperative multi-cellular time-division duplexing (TDD) systems where both the
number of antennas per BS N and the number of UTs per cell K are assumed to be
large. Our system model accounts for channel estimation, pilot contamination, as well
as an arbitrary path loss and antenna correlation for each link. We derive determinis-
tic approximations of achievable rates with several linear precoders and detectors which
are asymptotically tight, but accurate for realistic system dimensions, as shown by sim-
ulations. It is known from previous work that as N → ∞ while K/N → 0, the system
performance is limited by pilot contamination, the simplest precoders/detectors, i.e.,
BF and MF, are optimal and the transmit power can be made arbitrarily small. We
analyze to which extent these conclusions hold if N is large but finite. In particular,
we derive how many antennas per UT are needed to achieve η% of the ultimate per-
formance limit and how many antennas more are needed with MF and BF to achieve
the performance of MMSE detection and RZF, respectively. Simulations suggest that
the use of RZF/MMSE can reduce the number of antennas by one order of magnitude
in certain scenarios.

3.3.1 Introduction

Very large MIMO or “massive MIMO” TDD systems [16, 17] are currently inves-
tigated as a novel cellular network architecture with several attractive features:
First, the capacity can be increased by simply installing additional antennas
to existing cell sites. Thus, massive MIMO provides an alternative to cell-size
shrinking, the traditional way of increasing the network capacity [24]. Sec-
ond, large antenna arrays can potentially reduce uplink and downlink transmit
powers through coherent combining and an increased antenna aperture [143].
This aspect is not only relevant from a business point of view but also ad-
dresses environmental as well as health concerns related to mobile communica-
tions [144, 145]. Third, if channel reciprocity is exploited, the overhead related
to channel training scales linearly with the number of UTs per cell K and is
independent of the number of antennas per BS N . Consequently, additional
antennas do not increase the feedback overhead and therefore “always help”
[146]. Fourth, if N ≫ K, the simplest precoder/detectors are optimal, noise,
interference and channel estimation errors vanish, and the only performance
limitation is pilot contamination [16], i.e., residual interference caused by the
reuse of pilot sequences in adjacent cells.

The features described above are based on several crucial but optimistic as-
sumptions about the propagation conditions, hardware implementations, and
the number of antennas which can be deployed in practice. Therefore, recent
papers study massive MIMO under more realistic assumptions, e.g., a physi-
cal channel model with a finite number of degrees of freedom (DoF) [147] or
constant-envelope transmissions with per-antenna power constraints [148].

In this section, we provide a unified performance analysis of the up- and
downlink of multicell TDD systems. We consider a realistic system model which
accounts for channel estimation, pilot contamination, antenna correlation, and
path loss. Assuming that N and K are large, we derive asymptotically tight
approximations of achievable rates with several linear precoders/detectors, i.e.,
BF and RZF in the downlink, MF and MMSE detector in the uplink. These ap-
proximations are easy to compute and shown to be accurate for realistic system
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Figure 3.10: System model: In each of the L cells is one BS and K UTs. The
BSs are equipped with N antennas. We assume channel reciprocity, i.e., the
downlink channel hH

jlk is the complex conjugate transpose of the uplink channel

hjlk ∈ C
N .

dimensions. We then distinguish massive MIMO from “classical” MIMO as a
particular operating condition of cellular networks where multiuser interference,
channel estimation errors and noise are small compared to pilot contamination.
Whether this condition is satisfied or not depends on several system parameters,
such as the number of UTs per DoF the channel offers (we denote DoF the rank
of the antenna correlation matrix which might be smaller than N), the number
of antennas per BS, the SNR and the path loss. We then study how many
antennas per UTs are needed to achieve η% of the ultimate performance limit
and how many antennas more are needed with BF/MF to achieve RZF/MMSE
performance. Our simulations suggest that RZF/MMSE can perform as well as
BF/MF with one order of magnitude fewer antennas.

3.3.2 System model

Consider a multi-cellular system consisting of L > 1 cells with one BS and K
UTs in each cell, as schematically shown in Fig. 3.10. The BSs are equipped with
N antennas, the UTs have a single antenna. We assume that all BSs and UTs
are perfectly synchronized and operate a TDD protocol with universal frequency
reuse. We consider transmissions over flat-fading channels on a single frequency
band or sub-carrier. Extensions to multiple sub-carriers are straightforward.

Uplink

The received base-band signal vector yul
j ∈ C

N at BS j at a given time reads

yul
j =

√
ρul

L∑

l=1

Hjlx
ul
l + nul

j (3.43)

where Hjl = [hjl1 · · ·hjlK ] ∈ C
N×K is the channel matrix from the UTs in cell

l to BS j, xul
l =

[
xull1 · · ·xullK

]T ∼ CN (0, IK) is the transmit vector from the
UTs in cell l, nul

j ∼ CN (0, IN ) is a noise vector and ρul > 0 denotes the uplink

SNR. We model hjlk ∈ C
N as

hjlk = R̃jlkwjlk (3.44)
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where Rjlk , R̃jlkR̃
H

jlk ∈ C
N×N are deterministic and wjlk ∼ CN (0, IN ) are

fast fading channel vectors. Our channel model is very versatile as it allows us
to assign a different antenna correlation to each channel vector. This is espe-
cially important for large antenna arrays with a significant amount of antenna
correlation due to either insufficient antenna spacing or a lack of scattering. The
channel model is also valid for distributed antenna systems since we can assign
a different path loss to each antenna. Moreover, (3.44) can represent a physical
channel model with a fixed number of dimensions or angular bins P as in [147],
by letting R̃jlk =

√
ℓjlk [A 0N×N−P ], where A ∈ C

N×P and ℓjlk denotes the
inverse path loss from UT k in cell l to BS j.

Downlink

The received signal ydljm ∈ C of the mth UT in the jth cell is given as

ydljm =
√
ρdl

L∑

l=1

hH

ljmsl + ndljm (3.45)

where sl ∈ C
N is the transmit vector of BS l, ndl

jm ∼ CN (0, 1) is receiver noise
and ρdl > 0 denotes the downlink SNR. We assume channel reciprocity, i.e., the
downlink channels are the complex conjugate transpose of the uplink channel
hljm. The transmit vector sl is given as

sl =
√
λl

K∑

k=1

wlkx
dl
lk =

√
λlWlx

dl
l (3.46)

whereWl = [wl1 · · ·wlK ] ∈ C
N×K is a precoding matrix and xl =

[
xdll1 · · ·xdllK

]T ∈
C

K ∼ CN (0, IK) contains the data symbols for theK UTs in cell l. The parame-
ter λl normalizes the average transmit power of BS l per UT to E

[
ρdl

K sHl sl
]
= ρdl,

i.e.,

λl =
1

E
[
1
K trWlWH

l

] . (3.47)

Channel estimation

During a dedicated uplink training phase, the UTs in each cell transmit orthog-
onal pilot sequences which allow the BSs to compute estimates Ĥjj of their local
channels Hjj . The same set of orthogonal pilot sequences is reused in every cell
so that the channel estimate is corrupted by pilot contamination from adjacent
cells [16]. Under these assumptions, BS j estimates the channel vector hjjk

based on the observation yτ
jk ∈ C

N , given as

yτ
jk = hjjk +

∑

l 6=j

hjlk +
1√
ρτ

nτ
jk (3.48)

where nτ
jk ∼ CN (0, IN ) and ρτ > 0 is the effective training SNR. In general, ρτ

depends on the pilot transmit power and the length of the pilot sequences. Here,
we assume ρτ to be given. Assuming MMSE estimation, we can decompose hjjk

as hjjk = ĥjjk + h̃jjk, where ĥjjk ∼ CN (0,Φjjk) is the channel estimate and
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h̃jjk ∼ CN (0,Rjjk −Φjjk) is the independent estimation error. The matrices
Φjlk ∈ C

N×N are defined as

Φjlk = RjjkQjkRjlk, Qjk =

(
1

ρτ
IN +

L∑

l=1

Rjlk

)−1

. (3.49)

For the analysis later on, it will be useful to write ĥjjk as

ĥjjk = RjjkQjky
τ
jk = RjjkQjk

(
L∑

l=1

hjlk +
1√
ρτ

nτ
jk

)
. (3.50)

Achievable uplink rates with linear detection

We consider linear single-user detection, where the jth BS estimates the symbol
xuljm of UT m in its cell by computing the inner product between the received

vector yj and the linear filter rjm ∈ C
N . Two particular filters are of practical

interest, namely the matched filter rMF
jm and the MMSE detector rMMSE

jm , which
we define as

rMF
jm = ĥjjm, rMMSE

jm =
(
ĤjjĤ

H

jj + Zul
j +Nϕul

j IN

)−1

ĥjjm (3.51)

where ϕul
j > 0 and Zul

j ∈ C
N×N is and arbitrary Hermitian nonnegative definite

matrix. Natural choices are ϕul
j = 1

ρulN
and

Zul
j = E


H̃jjH̃

H

jj +
∑

l 6=j

HjlHjl


 =

∑

k

(Rjjk −Φjjk) +
∑

l 6=j

∑

k

Rjlk. (3.52)

Note that BS j could theoretically estimate all channel matrices Hjl from
the observations (3.48) to improve the performance. Nevertheless, high path
loss to neighboring cells is likely to render these channel estimates unreliable
and the potential performance gains small. Our formulation of rMMSE

jm allows us

to treat ϕul
j and Zul

j as design parameters which could be optimized.
Using a standard bound based on the worst-case uncorrelated additive noise

yields the ergodic achievable uplink rate Rul
jm of UT m in cell j [117]:

Rul
jm = E

[
log2

(
1 + γuljm

)]
(3.53)

with the associated signal-to-interference-plus-noise ratio (SINR) γuljm, given by

γuljm =

∣∣∣rHjmĥjjm

∣∣∣
2

E

[
rHjm

(
1
ρul

IN + h̃jjmh̃H

jjm − hjjmhH

jjm +
∑

l HjlHH

jl

)
rjm

∣∣∣ Ĥjj

] .

(3.54)

We will denote by γMF
jm and γMMSE

jm the SINR with MF and MMSE detection,
respectively.
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Achievable downlink rates with linear precoding

Since the UTs do not have any channel estimates, we provide an ergodic achiev-
able rate based on the techniques as developed in [149]. To this end, we decom-
pose the received signal ydljm as

ydljm =
√
ρdlλjE

[
hH

jjmwjm

]
xdljm +

√
ρdlλj

(
hH

jjmwjm − E
[
hH

jjmwjm

])
xdljm

+
∑

(l,k) 6=(j,m)

√
ρdlλlh

H

ljmwklx
dl
kl + ndljm (3.55)

and assume that the average effective channels
√
λjE

[
hH

jjmwjm

]
can be per-

fectly learned at the UTs. Thus, an ergodic achievable rate Rdl
jm of UT m in

cell j is given as [149, Theorem 1]

Rdl
jm = log2

(
1 + γdljm

)
(3.56)

with the associated SINR γdljm:

γdljm =
λj
∣∣E
[
hH

jjmwjm

]∣∣2

1
ρdl

+ λjvar
[
hH

jjmwjm

]
+
∑

(l,k) 6=(j,m) λlE

[∣∣∣hH

ljmwlk

∣∣∣
2
] (3.57)

where var [x] , E[(x− E[x]) (x− E[x])
H
] for some random variable x. We con-

sider two different linear precoding strategies Wj of practical interest, namely
eigenbeamforming (BF) WBF

j and regularized zero-forcing (RZF) WRZF
j , which

we define as

WBF
j = Ĥjj , WRZF

j =
(
ĤjjĤ

H

jj + Zdl
j +Nϕdl

j IN

)−1

Ĥjj (3.58)

where ϕdl
j > 0 is a regularization parameter and Zdl

j ∈ C
N×N is an arbitrary

Hermitian nonnegative definite matrix. As the choice of Zdl
j and ϕdl

j is arbitrary,
they could be further optimized (see e.g., [149, Theorem 6]). This aspect is left
to future work.

We will denote by γBF
jm and γRZF

jm the SINR with BF and RZF, respectively.

Remark 16. Under a block-fading channel model with coherence time T , one
can account for the rate loss due to channel training by considering the net
ergodic achievable rates κ(1 − τ/T )Rul

jm and (1 − κ)(1 − τ/T )Rdl
jm for a given

training length τ ∈ [K,T ] and some κ ∈ [0, 1] which determines the fraction of
the coherence time used for uplink transmissions.

3.3.3 Asymptotic analysis

In this section, we present our main technical results. As the ergodic achievable
rates Rul

jm and Rdl
jm are difficult to compute for finite system dimensions, we

consider the large system limit, where N and K grow infinitely large while
keeping a finite ratio K/N . This is in contrast to [16] which assumes that the
number of UTs K remains fixed while the number of antennas grows without
bound. We will retrieve the results of [16] as a special case. The large system
limit implicitly assumes that the coherence time of the channel scales linearly
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with K (to allow for orthogonal pilot sequences of the UTs in a cell). However,
as we use the asymptotic analysis only as a tool to provide approximations for
finite N,K, this does not pose any problem. In what follows, we will derive
deterministic equivalents γ̄uljm (γ̄dljm) of the SINR γuljm (γdljm) for MF and MMSE
detector (BF and RZF precoder), respectively, such that

γuljm − γ̄uljm
a.s.−−→ 0, γdljm − γ̄dljm −→ 0. (3.59)

One can then show by the dominated convergence theorem and the continuous
mapping theorem, respectively, that (3.59) implies that

Rul
jm − log2

(
1 + γ̄uljm

)
−→ 0, Rdl

jm − log2
(
1 + γ̄dljm

)
−→ 0. (3.60)

These results must be understood in the way that, for each given set of
system parameters (N,K), we provide deterministic approximations of the SINR
and the associate rate which become increasingly tight as N and K grow. We
will show later by simulations that these approximations are already very tight
for realistic system dimensions.

In the sequel, the notation “N → ∞” will refer to K,N → ∞ such that
0 ≤ lim infK/N ≤ lim supK/N < ∞. Moreover, we assume that the following
conditions hold:

A 1. lim supN‖Rjlk‖ <∞ for all j, l, k.

A 2. lim infN
1
N trRjlk > 0 for all j, l, k.

A 3. lim supN‖Zul
j ‖ <∞, lim supN‖Zdl

j ‖ <∞ for all j.

The next theorems provide SINR approximations in the sense of (3.59) for
MF and MMSE detection in the uplink and for BF and RZF precoding in the
downlink. The results for MMSE/RZF require Theorems 14 and 21 which are
provided in Sections 2.3.1 and 2.3.2, respectively. Due to the similarity of the
SINR expressions for the up- and downlink, we only provide the proofs for BF
and RZF in the appendix. The proofs for MF and MMSE are very similar and
will be omitted.

Theorem 30 (Matched filter).

γ̄MF
jm =

(
1
N trΦjjm

)2

1
ρulN

1
N trΦjjm + 1

N

∑
l,k

1
N trRjlkΦjjm +

∑
l 6=j

∣∣ 1
N trΦjlm

∣∣2 .

Theorem 31 (Eigenbeamforming).

γ̄BF
jm =

λ̄j
(

1
N trΦjjm

)2

1
ρdlN

+ 1
N

∑
l,k λ̄l

1
N trRljmΦllk +

∑
l 6=j λ̄l

∣∣ 1
N trΦljm

∣∣2

where λ̄j =
(

1
K

∑K
k=1

1
N trΦjjk

)−1

.

Proof. The proof is provided in Section 3.7.4.
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Theorem 32 (MMSE detector).

γ̄MMSE
jm =

δ2jm
1

ρulN
1
N trΦjjmT̄′

j +
1
N

∑
l,k µjlkm +

∑
l 6=j |ϑjlm|2

where

µjlkm =
1

N
trRjlkT

′
jm −

2ℜ
(
ϑ∗jlkϑ

′
jlkm

)
(1 + δjk)− |ϑjlk|2 δ′jkm

(1 + δjk)
2

ϑjlk = 1
N trΦjlkTj, ϑ

′
jlkm = 1

N trΦjlkT
′
jm, and where

(i) Tj = TN (ϕul
j ) and δj = [δj1 · · · δjK ]T = δ(ϕul

j ) are given by Theorem 14

for SN = Zul
j /N , DN = IN , Rk = Φjjk ∀k,

(ii) T̄′
j = T′

N (ϕul
j ) is given by Theorem 21 for SN = Zu;

j /N , ΘN = IN ,
DN = IN , and Rk = Φjjk ∀k,

(iii) T′
jm = T′

N (ϕul
j ) and δ′jm =

[
δ′j1m · · · δ′jKm

]T
= δ′(ϕul

j ) are given by The-

orem 21 for SN = Zul
j /N , ΘN = Φjjm, DN = IN , Rk = Φjjk ∀k.

Theorem 33 (Regularized Zero-Forcing).

γ̄RZF
jm =

λ̄jδ
2
jm

(1+δjm)2

ρdlN
+ 1

N

∑
l,k λ̄l

(
1+δjm
1+δlk

)2
µljmk +

∑
l 6=j λ̄l

(
1+δjm
1+δlm

)2
|ϑljm|2

where

µljmk =
1

N
trRljmT′

lk −
2ℜ
(
ϑ∗ljmϑ

′
ljmk

)
(1 + δlm)− |ϑljm|2 δ′lmk

(1 + δlm)
2

λ̄l =
K

N

(
1

N
trTl −

1

N
tr

(
Zdl

j

N
+ ϕdl

l IN

)
T̄′

l

)−1

ϑljm = 1
N trΦljmTl and ϑ

′
ljmk = 1

N trΦljmT′
lk, and where

(i) Tl = TN (ϕdl
l ) and δl = [δl1 · · · δlK ]T = δ(ϕdl

l ) are given by Theorem 14
for SN = Zdl

l /N , DN = IN and Rk = Φllk ∀k,

(ii) T̄′
l = T′

N (ϕdl
l ) is given by Theorem 21 for SN = Zdl

l /N , ΘN = IN ,
DN = IN and Rk = Φllk ∀k,

(iii) T′
lk = T′

N (ϕdl
l ) and δ′lk = [δ′l1k · · · δ′lKk]

T
= δ′(ϕdl

l ) are given by Theo-
rem 21 for SN = Zdl

l /N , ΘN = Φllk, DN = IN and Rk = Φllk ∀k.

Proof. The proof is provided in Section 3.7.5.

Remark 17. Observe the similarity between the results for MF/BF and MM-
S/RZF, respectively: In the downlink, all transmit powers are multiplied by the
power normalization factors λ̄j. Moreover, the indices j, l and k,m are swapped
for the interference terms.
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Remark 18. The expressions of γ̄MMSE
jm and γ̄RZF

jm can be greatly simplified
under a less general channel model, e.g., no antenna correlation, Wyner-type
models with a simple path loss factor. We will provide later on a special case in
which γ̄MMSE

jm and γ̄RZF
jm can be given in closed form.

Next, we consider the case of an infinite number of antennas per UT, i.e.,
K/N → 0.

Corollary 2. Let N → ∞, such that K/N → 0. Denote βjlk = limN
1
N trΦjlk,

whenever the limit exists, and define λ̄∞,BF
j =

(
1
K

∑K
k=1 βjjk

)−1

and λ̄∞,RZF
j =

(
1
K

∑K
k=1

βjjk

(ϕdl
j +βjjk)

2

)−1

. Then,

γ̄MF
jm →

β2
jjm∑

l 6=j |βjlm|2

γ̄BF
jm →

λ̄∞,BF
j β2

jjm∑
l 6=j λ̄

∞,BF
l |βljm|2

γ̄MMSE
jm →

β2
jjm

∑
l 6=j

(
ϕul

j

ϕul
l

)2
|βjlm|2

γ̄RZF
jm →

λ̄∞,RZF
j β2

jjm

∑
l 6=j

(
ϕdl

l ϕdl
j +ϕdl

l βjjm

ϕdl
l ϕdl

j +ϕdl
j βllm

)2
λ̄∞,RZF
l |βljm|2

.

Proof. Note that the first and the second term in the denominator of all SINR
expressions vanish as N → ∞ while K/N → 0. For the remaining terms,
note that Tj(ϕ) → ϕ−1 and T̄′

j(ϕ) → ϕ−2. Lastly, for RZF, we can write λ̄j

equivalently as λ̄j =

(
1
K

∑
k

1
N trΦjjkT

′
j

(1+ 1
N trΦjjkTj)2

)−1

.

Remark 19. As already observed in [16, Eq. (13)], the performance of MF
and MMSE detector coincide with an infinite number of BS-antennas per UT
if ϕul

j = ϕul
l ∀l. However, even for λ̄∞j = λ̄∞l and ϕdl

j = ϕdl
l ∀l, the SINR

under RZF and BF are not necessarily identical. This is because the received
interference power depends on the correlation matrices Φllm.

3.3.4 On the massive MIMO effect

Let us now consider the simplified channel model

Hjj =

√
N

P
AWjj , Hjl =

√
α
N

P
AWjl, l 6= j (3.61)

where A ∈ C
N×P is composed of P ≤ N columns of an arbitrary unitary

N × N matrix, Wjl ∈ C
P×K are standard complex Gaussian matrices and

α ∈ (0, 1] is an intercell interference factor. Note that this is a special case of
(3.44). Under this model, the total energy of the channel grows linearly with the
number of antennas N and UTs K, since E

[
trHjjH

H

jj

]
= KN

P trAAH = KN .
The motivation behind this channel model is twofold. First, we assume that
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the antenna aperture increases with each additional antenna element. Thus,
the captured energy increases linearly with N . This is in contrast to existing
works which assume that more and more antenna elements are packed into a
fixed volume, see e.g., [150]. An insufficiency of this channel model is that the
captured energy grows without bounds as N → ∞. However, we believe that
linear energy gains can be achieved up to very large numbers of antennas if the
size of the antenna array is scaled accordingly. Second, the number of DoF P
offered by the channel does not need to be equal to N [147]. One could either
assume P to be large but constant or to scale with N , e.g., P = cN , where
c ∈ (0, 1]. In general, P depends on the amount of scattering in the channel
and, therefore, on the radio environment. A saturation of P for large N was
recently confirmed by channel measurements in [151]. Let us further assume that
the transmit powers per UT in up- and downlink are equal, i.e., ρul = ρdl = ρ,
and that the matrices Zdl

j and Zul
j used for precoding and detection are equal

and given by (3.52). Under these assumptions, the performance of MF and BF
(MMSE and RZF) coincides and Theorems 30–33 can be given in closed form:

Corollary 3. For the channel model (3.61) and ρul = ρdl = ρ, γ̄MF
jm and γ̄BF

jm ,
∀k,m, are given as

γ̄MF = γ̄BF =
1

1
ηρN + K

P
L̄
η + α(L̄− 1)

=
1

L̄

ρN︸︷︷︸
noise

+
1

ρτ

(
P/N

ρN
+
K

N
L̄

)

︸ ︷︷ ︸
imperfect CSI

+
K

P
L̄2

︸ ︷︷ ︸
interference

+ α
(
L̄− 1

)
︸ ︷︷ ︸

pilot contamination

(3.62)

where L̄ = 1 + α(L− 1) and η =
ρτ

N
P

1+ρτ
N
P L̄

.

Corollary 4. For the channel model (3.61), ρul = ρdl, ϕ
ul
j = ϕdl

j = ϕ, and

Zul
j = Zdl

j = Zj =
∑

l,k Rjlk−
∑

k Φjjk, ∀j, γ̄MMSE
jm and γ̄RZF

jm , ∀k,m, are given
as

γ̄MMSE = γ̄RZF =
1

1
ηρNX + K

P
L̄
η Y + α(L̄− 1)

(3.63)

where L̄ = 1 + α(L− 1), η =
ρτ

N
P

1+ρτ
N
P L̄

, X = Z2

Z2−K
P

, Z = 1+δ
δ , S = ϕ

η + KL̄
Pη ,

Y = X +
η(1 + α2(L− 1))(1− 2Z)

L̄(Z2 −K/P )
, δ =

1− S +
√

(1 + S)2 − 4K/P

2(S −K/P )
.

Sketch. First, notice that the matrices Φjlk and Zj can be simplified to Φjlk =
max(1l=j , α)

N
P AAH and Zj = K(L̄ − η)NP AAH ∀j, l, k. For these values, one

can show after some straight-forward but tedious calculus that Theorems 14
and 21 can be given in closed form.

One can make several observations from (3.62) and (3.63). Obviously, the
effective SNR ρN increases linearly with N . Thus, if the number of antennas
is doubled, the transmit power can be reduced by a factor of two to achieve
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the same SNR. However, if the transmit and the training power are reduced
as N grows, this conclusions fails to hold. As can been seen from the term
ηρN , the product of transmit and training SNR must satisfy ρρτ ≥ O(1/N).
Otherwise the SINR converges to zero as N → ∞. As already observed in [143],
if ρτ = ρ, the transmit power can be made only inversely proportional to

√
N .

Surprisingly, the interference depends mainly on the ratio P/K (number of DoF
per UT) and not directly on the number of antennas. Thus, interference can
only be mitigated by additional antennas if the environment provides sufficient
scattering. Moreover, noise, channel estimation errors and interference vanish
for N,P → ∞ while pilot contamination is the only performance-limiting factor:

γ̄MF, γ̄BF, γ̄MMSE, γ̄RZF −−−−−−−−−−−−→
N,P→∞, K/N→0

γ∞ =
1

α(L̄− 1)
. (3.64)

We denote by R∞ the ultimately achievable rate, defined as

R∞ = log2 (1 + γ∞) = log2

(
1 +

1

α(L̄− 1)

)
. (3.65)

It is interesting that even with more sophisticated linear single-user detec-
tion/precoding, such as MMSE and RZF, the ultimate performance limit γ∞
cannot be exceeded. Note that without pilot contamination, i.e., for L = 1 or
α = 0, the SINR grows without bounds as P,N → ∞. If P is fixed but large,
the SINR saturates at a smaller value than γ∞. In this case, adding additional
antennas only improves the SNR but does not reduce the multiuser interfer-
ence. Thus, with a finite number of DoF, MMSE/RZF remain also for N → ∞
superior to MF/BF.

Before we proceed, let us verify the accuracy of the approximations R̄MF

and R̄MMSE for finite N,K. In Fig. 3.11, we depict the ergodic achievable
rate Rjm of an arbitrary UT with MF and MMSE detection as a function of
the number of antennas N for K = 10 UTs, L = 4 cells, ρ = 0dB, ϕul

l =
1/(ρN) and intercell interference factor α = 0.1. We compare two different
cases: P = N and P = N/3. As expected, the performance in the latter scenario
is inferior due to stronger multiuser interference. Most importantly, our closed-
form approximations are almost indistinguishable from the simulation results
over the entire range of N . The results for the downlink with MF and RZF look
similar.

Based on our previous observations, we believe that it is justified to speak
about a massive MIMO effect whenever the SINR γjm (in UL or DL) is close
to γ∞, or in other words, whenever noise, channel estimation errors and in-
terference are small compared to the pilot contamination. It becomes evident
from (3.62) and (3.63) that the number of antennas needed to achieve this ef-
fect depends strongly on the system parameters P , K, L, α, ρτ and ρ. In
particular, there is no massive MIMO effect without pilot contamination since
γ∞ → ∞. Thus, massive MIMO can be seen as a particular operating condition
in multi-cellular systems where the performance is ultimately limited by pilot
contamination and MF/BF achieve a performance close to this ultimate limit.
To make this definition more precise, we say that we operate under massive
MIMO conditions if, for some desired “massive MIMO efficiency” η ∈ (0, 1),

R = log(1 + γ) ≥ ηR∞ (3.66)
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Figure 3.11: Ergodic achievable rate with MF and MMSE detection versus
number of antennas N for P ∈ {N,N/3} for ρ = 0dB.

where γ is the SINR in the UL/DL with any detection/precoding scheme. This
condition implies that we achieve at least the fraction η of the ultimate per-
formance limit. If we assume that ρτ ≫ 1, i.e., η ≈ L̄−1, the expressions of
γ̄MF, γ̄BF, γ̄MMSE, and γ̄RZF in Corollaries 3 and 4 depend on P,K, ρ, and N
only through the ratio P

K and the effective SNR ρN . Thus, for a given set of

parameters (ρ,N, α, L, ϕ), we can easily find the fraction P
K necessary to satisfy

(3.66).
Figs. 3.12 and 3.13 show the necessary DoF per UT P

K for a given effective
SNR ρN to achieve a spectral efficiency of ηR∞ with either MF/BF (solid lines)
or MMSE/RZF (dashed lines). We consider L = 4 cells, ϕ = 1/(ρN) and an
intercell interference factor α = 0.3 and α = 0.1, respectively. The plots must
be understood in the following way: Each curve corresponds to a particular
value of η. In the region above each curve, the condition (3.66) is satisfied.

Let us first focus on Fig. 3.12 with α = 0.3. For an effective SNR ρN =
20dB (e.g., ρ = 0dB and N = 100 = 20 dB), we need about P/K = 90 DoF
per UT with MF/BF to achieve 90% of the ultimate performance R∞, i.e.,
0.9 × 2.2 ≈ 2 b/s/Hz. If P ≈ N , only a single UT could be served (Note that
this is a simplifying example. Our analysis assumes K ≫ 1.). However, if we
had N = 1000 = 30 dB antennas, the transmit power ρ could be decreased by
10 dB and 10 UTs could be served with the same performance. At the same
operating point, the MMSE/RZF requires only ∼ 60 DoF per UT to achieve
90% of the ultimate performance. Thus, the use of MMSE/RZF would allow
us to increase the number of simultaneously served UTs by a factor 90

60 = 1.5.
This example also demonstrates the importance of the relation between N and
P . In particular, if P saturates for some N , adding more antennas increases the
effective SNR but does not reduce the multiuser interference. Thus, the number
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Figure 3.12: Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.3.
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Figure 3.13: Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.1.
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Figure 3.14: 7–cell hexagonal system layout. The distance between two adjacent
cells is normalized to 2. There are K = 10 UTs uniformly distributed on a circle
of radius 3/4 around each BS.

of UTs which can be simultaneously supported depends significantly on the
radio environment. We can further see that adding antennas shows diminishing
returns. This is because the distances between the curves for different values
of η grow exponentially fast. Remember that for η = 1, a ratio of P/K = ∞
would be needed. A last observation we can make is that the absolute difference
between MF/BF and MMSE/RZF is marginal for small values of η but gets
quickly pronounced as η → 1.

Turning to Fig. 3.13 for α = 0.1, we can see that for the same effective SNR
ρN = 20dB and the same number of DoF per UT P/K = 90 as in the previ-
ous example, only 80% of the ultimate performance are achieved by MF/BF.
However, since the intercell interference is significantly smaller compared to the
previous example, this corresponds to 0.9 × 5.1 ≈ 4.6 b/s/Hz. Thus, although
we operate further away from the ultimate performance limit, the resulting
spectral efficiency is still higher. With MMSE/RZF, only 35 DoF per UT are
necessary to achieve the same performance and, consequently, 90/35 ≈ 2.5 times
more UTs could be simultaneously served. With decreasing intercell interfer-
ence (and hence decreasing pilot contamination) the advantages of MMSE/RZF
become more and more important.

3.3.5 Numerical results

Let us now validate the accuracy of Theorems 31 and 33 for finite N,K in a more
realistic downlink scenario. Simulations for the uplink, i.e., Theorems 30 and
32, are omitted but provide very similar results (see Remark 17). We consider a
hexagonal system with L = 7 cells as shown in Fig. 3.14. The inner cell radius
is normalized to one and we assume a distance-based path loss model with path
loss exponent β = 3.7. To allow for reproducibility of our results, we distribute
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Figure 3.15: Average per-user rate versus number of antennas N for the RZF
and BF precoders. Solid and dashed lines depict the asymptotic approximations,
markers the simulation results.

K = 10 UTs uniformly on a circle of radius 3/4 around each BS and do not
consider shadowing. We further assume a training SNR ρτ = 6dB and transmit
SNR ρdl = 10dB. For RZF, we use a regularization factor ϕdl

j = 1/ρdl and

Zdl
j = 0. Average rates are then calculated for the UTs in the center cell.
First, we consider a simple channel model without antenna correlation, i.e.,

R̃jlk = d
−β/2
jlk IN , where djlk is the distance between BS j and the kth UTs

in cell l (cf. (3.44)). Both precoding schemes lead to the ultimate rate R∞ =
15.75 b/s/Hz for an unlimited number of antennas per UT. In Fig. 3.15, we show
the achievable rates under both precoding techniques and their approximations
by Theorems 31 and 33 as a function of the number of antennas N . Both
results match very well, even for small N . We can observe that RZF achieves
significant performance gains over BF as it reduces multiuser interference. As
a rule of thumb, RZF allows us to reduce the number of antennas by one order
of magnitude to achieve BF-performance. Nevertheless, even for N = 400 both
precoders are far away from the ultimate performance limit.

Second, we consider a physical channel model with a fixed number of dimen-
sions P as in [147]. For a uniform linear array, the matrices R̃jlk are given as

R̃jlk = d
−β/2
jlk [A 0N×N−P ], where A = [a(φ1) · · · a(φP )] ∈ C

N×P is composed

of the “steering vectors” a(φp) ∈ C
N defined as

a(φp) =
1√
P

[
1, e−i2πω sin(φ), . . . , e−i2πω(N−1) sin(φ)

]T
(3.67)

where ω is the antenna spacing in multiples of the wavelength and φp = −π/2+
(p− 1)π/P, p = 1, . . . , P , are the uniformly distributed angles of transmission.
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3.4. Double-scattering channels

We assume that the physical dimensions P scale with the number of antennas
as P = N/2 and let ω = 0.3. Since 1

N trAAH = 1, the ultimately achievable
rate under this channel model and both precoding schemes is equal to that of
a channel without antenna correlation. For comparison, we depict in Fig. 3.15
also the achievable rates and their approximations for this channel model. In-
terestingly, while the shapes of the curves for both precoders are similar to those
without antenna correlation, it becomes clear that low rank correlation matrices
severely degrade the performance.

3.3.6 Conclusions

We have provided a unified analysis of the UL/DL performance of linear de-
tectors/precoders in multicell multiuser TDD systems. Assuming a large sys-
tem limit, we have derived asymptotically tight approximations of achievable
UL/DL-rates under a very general channel model which accounts for channel
estimation, pilot contamination, path loss and individual antenna correlation.
These approximations were shown to be accurate for realistic system dimensions
and enable, consequently, future studies of realistic effects, such as antenna cor-
relation, spacing and aperture, without the need for simulations. Our results
are also directly applicable in the context of large distributed antenna systems.
For a simplified channel model, we have observed that the performance depends
mainly on the physical DoF per UT the channel offers and the effective SNR.
Moreover, we have determined how many antennas are needed to achieve η% of
the ultimate performance limit and how many more antennas are needed with
MF/BF to achieve MMSE/RZF performance. Simulations for a more realistic
system model suggest that MMSE/RZF can reduce the number of antennas
by one order of magnitude to achieve the performance of the simple MF/BF
schemes. Since massive MIMO TDD-systems are a promising network archi-
tecture, it seems necessary to verify the theoretical performance predictions by
channel measurements and prototypes.

3.4 Double-scattering channels

Abstract: We consider a MIMO MAC, where the channel between each transmit-
ter and the receiver is modeled by the double-scattering channel model. Based on the
concept of iterative deterministic equivalents as detailed in Section 2.4, we derive de-
terministic approximations of the mutual information, the SINR at the output of the
MMSE detector and the sum-rate with MMSE detection, which are almost surely tight
in the large system limit. Moreover, we derive the asymptotically optimal transmit co-
variance matrices. Our simulation results show that the asymptotic analysis provides
very close approximations for realistic system dimensions.

3.4.1 Introduction

Consider a discrete-time MIMO MAC from K transmitters, equipped with
nk, k = 1, . . . ,K, antennas, respectively, to a receiver with N antennas. The
channel output vector y ∈ C

N reads

y =

K∑

k=1

Hkxk + n (3.68)
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3.4. Double-scattering channels

where Hk ∈ C
N×nk and xk ∈ C

nk are the channel matrix and the transmit
vector associated with the kth transmitter, n ∼ CN (0, σ2IN ) is a noise vector
and ρ = 1

σ2 > 0 denotes the SNR. We assume Gaussian signaling, i.e., xk =
[xk,1, . . . , xk,nk

]T ∼ CN (0,Qk), where Qk ∈ C
nk×nk . The channel matrices Hk

are modeled by the double-scattering model [91]

Hk =
1√
Nknk

R
1
2

kW1,kS
1
2

kW2,kT
1
2

k (3.69)

where Rk ∈ C
N×N , Sk ∈ C

Nk×Nk and Tk ∈ C
nk×nk are deterministic corre-

lation matrices, while W1,k ∈ C
N×Nk and W2,k ∈ C

Nk×nk are independent
standard complex Gaussian matrices. Since the distributions of W1,k and W2,k

are unitarily invariant, we can assume Sk = diag(sk,1, . . . , sk,Nk
) to be diagonal

matrices, without loss of generality for the statistics of y.
The double-scattering model [91] was motivated by the observation of low-

rank channel matrices, despite low antenna correlation at the transmitter and
receiver, see e.g., [152, 153]. A special case of the double-scattering model is the
keyhole channel [154, 155], which exhibits null antenna correlation, i.e., Rk = IN
and Tk = nk for all k, but only a single degree of freedom. The existence of
such channels (under laboratory conditions) was confirmed by measurements in
[155]. Several theoretical works have studied the double-scattering model so far.
The authors of [156] derive capacity upper-bounds for the general model and a
closed-form expression for the keyhole channel. An asymptotic study of the out-
age capacity of the multi-keyhole channel was presented in [157]. The diversity
order of the double-scattering model was considered in [158] and it was shown
that a MIMO system with t transmit antennas, r receive antennas and s scat-
terers achieves the diversity of order trs/max(t, r, s). A closed-from expression
of the diversity-multiplexing trade-off (DMT) was derived in [159]. Beamform-
ing along the strongest eigenmode over Rayleigh product MIMO channels, i.e.,
the double-scattering model without any form of correlation, was considered in
[160]. Here, the authors derive exact expressions of the cumulative distribution
function (cdf) and the probability density function (pdf) of the largest eigen-
value of the Gramian of the channel matrix and compute closed-form results
for the ergodic capacity, outage probability and SINR distribution. In a later
paper [161], the MIMO MAC with double-scattering fading is analyzed. The
authors obtain closed-form upper-bounds on the sum-capacity and prove that
the transmitters should send their signals along the eigenvectors of the transmit
correlation matrices in order to achieve capacity. Despite the significant interest
in the double-scattering channel model, little work has been done to study its
asymptotic performance when the channel dimensions grow large. We are only
aware of [153], in which a model without transmit and receive correlation is
studied relying on tools from free probability theory. Implicit expressions of the
asymptotic mutual information and the SINR with MMSE detection are found
therein.

In the following, we provide deterministic equivalents of the mutual informa-
tion, the SINR with MMSE-detection and the associated sum-rate. In addition,
we derive the precoders which maximize the deterministic equivalent of the mu-
tual information and provide a simple algorithm for their computation. The
key idea behind the following proofs is that the double-scattering channel can
be interpreted as a Kronecker channel [83] with a random receive correlation
matrix, which itself is modeled by the Kronecker model. This observation allows
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3.4. Double-scattering channels

us to build upon [83] which provides an asymptotic analysis of the performance
of Kronecker channels with deterministic correlation matrices (see Theorem 13).
Based on the Fubini theorem, we extend this work by allowing the correlation
matrices to be random. A similar technique can be applied to more involved
channel models, such as channels with line-of-sight components or MIMO prod-
uct channels with an arbitrary number of matrices.

Denote IN (σ2) the instantaneous normalized mutual information of the chan-
nel (3.68), defined as [42]

IN
(
σ2
)
=

1

N
log det

(
IN +

1

σ2

K∑

k=1

HkQkH
H

k

)
. (3.70)

Moreover, denote γNk,j
(
σ2
)
the SINR at the output of the MMSE detector re-

lated to the transmit symbol xk,j , given by [162]

γNk,j
(
σ2
)
= hH

k,j

(
K∑

i=1

HiH
H

i − hk,jh
H

k,j + σ2IN

)−1

hk,j . (3.71)

We define the normalized sum-rate RN

(
σ2
)
with MMSE detection as

RN

(
σ2
)
=

1

N

K∑

k=1

nk∑

j=1

log
(
1 + γNk,j

(
σ2
))
. (3.72)

3.4.2 Asymptotic analysis

The notation “N → ∞” will be used to denote that N and all Nk, nk grow
infinitely large, satisfying 0 < lim inf Nk

N ≤ lim sup Nk

N <∞ and 0 < lim inf nk

N ≤
lim sup nk

N <∞. Additionally, we need the following technical assumption:

A 4. lim supN‖Rk‖ <∞, lim supN‖Sk‖ <∞, lim supN‖TkQk‖ <∞ ∀k.
Remark 20. This assumption implies in particular that the antenna correlation
at the transmitter and receiver side cannot grow with the system size, as it
would be the case for very dense antenna arrays [163]. Amendments to relax
this assumption can be made, following the work in [83]. Moreover, the last
constraint, lim supN‖TkQk‖ < ∞, implies that no transmitter is allowed to
focus an increasing amount of transmit power in a single direction.

Theorem 22 (i) introduces a set of 3K implicit equations which uniquely
determines some quantities (gk, ḡk, δk) (1 ≤ k ≤ K). These are needed later
on to provide deterministic equivalents of IN (σ2), γNk,j

(
σ2
)
, and RN

(
σ2
)
. A

deterministic equivalent of the (ergodic) mutual information is provided by The-
orem 22 (ii). The following result allows us to compute the asymptotically opti-
mal precoding matrices Qk which maximize ĪN

(
σ2
)
under individual transmit

power constraints.

Theorem 34 (Optimal power allocation). The solution to the following opti-
mization problem:

(
Q̄⋆

1, . . . , Q̄
⋆
K

)
= arg max

Q1,...,Qk

ĪN
(
σ2
)

s.t.
1

nk
trQk ≤ Pk ∀k
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where ĪN
(
σ2
)
is defined in Theorem 22, is given as Q̄⋆

k = UkP̄
⋆
kU

H

k , where Uk ∈
C

nk×nk is defined by the spectral decomposition of Tk = Ukdiag(tk,1, . . . , tk,nk
)UH

k

and P̄⋆
k = diag(p̄⋆k,1, . . . , p̄

⋆
k,nk

) is given by the water-filling solution:

p̄⋆k,j =

(
µk − 1

g⋆ktk,j

)+

(3.73)

where µk is chosen to satisfy 1
nk

tr P̄⋆
k = Pk and g⋆k = gk is given by Theorem 22

(i) for Qk = Q̄⋆
k.

Proof. The proof is provided in Appendix 3.7.6.

Remark 21. The optimal power allocation matrices P̄⋆
k can be calculated by

the iterative water-filling Algorithm 1 (see [83, Remark 2] and [85, Remark 3]
for a discussion on the convergence of this algorithm).

Algorithm 1 Iterative water-filling algorithm

1: Let ǫ > 0, n = 0 and p̄⋆,0k,j = Pk for all k, j.
2: repeat
3: For all k, compute g⋆,nk = gk according to Theorem 22 (i) with matrices

Qk = Ukdiag
(
p̄⋆,nk,j

)
UH

k .

4: For all k, j, calculate p̄⋆,n+1
k,j =

(
µk − 1

g⋆,n
k tk,j

)+
, with µk such that

1
nk

∑nk

j=1 p̄
⋆,n+1
k,j = Pk.

5: n = n+ 1
6: until maxk,j |p̄⋆,nk,j − p̄⋆,n−1

k,j | ≤ ǫ

Remark 22. Denote by (Q⋆
1, . . . ,Q

⋆
K) the precoding matrices which maximize

E
[
IN (σ2)

]
for a given set of power constraints. If the condition lim sup‖TkQ

⋆
k‖ <

∞ holds for all k, then E
[
IN (σ2,Q⋆

1, . . . ,Q
⋆
K)
]
− ĪN (σ2, Q̄⋆

1, . . . , Q̄
⋆
K) → 0, by

Theorem 22 and the strict concavity of ĪN (σ2) and IN (σ2) in the matrices Qk.
However, this condition is difficult to verify and is outside the scope of this
thesis. See [164] for such a technical discussion in the case of Rician fading
channels.

Next, we provide deterministic equivalents of the SINR γNk,j
(
σ2
)
at the out-

put of the MMSE detector and the associated sum-rate RN

(
σ2
)
.

Theorem 35 (SINR of the MMSE detector). Let Qk = diag (pk,1, . . . , pk,nk
)

and Tk = diag(tk,1, . . . , tk,nk
) for all k. Assume that A 4 holds. Then,

γNk,j
(
σ2
)
− γ̄Nk,j

(
σ2
) a.s.−→ 0

where γ̄Nk,j
(
σ2
)
= pk,jtk,jgk and gk is by given by Theorem 22 (i).

Proof. The proof is provided in Appendix 3.7.7.

Remark 23. Note that the theorem is also valid under the more general assump-
tion Tk = Ukdiag(tk,1, . . . , tk,nk

)UH

k and Qk = Ukdiag(pk,1, . . . , pk,nk
)UH

k .

131



3.4. Double-scattering channels

Corollary 5 (Sum-rate with MMSE decoding). Let Qk = diag (pk,1, . . . , pk,nk
)

and Tk = diag(tk,1, . . . , tk,nk
) for all k. Assume that A 4 holds. Then,

(i) RN

(
σ2
)
− R̄N (σ2)

a.s.−→ 0

(ii) E
[
RN

(
σ2
)]

− R̄N (σ2)
a.s.−→ 0

where

R̄N (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γ̄Nk,j

(
σ2
))

and the γ̄Nk,j
(
σ2
)
are given by Theorem 35.

Proof. The proof is provided in Appendix 3.7.8.

Remark 24. Careful inspection of Theorem 22 (ii) reveals that the third term
of ĪN

(
σ2
)
equals R̄N (σ2) since

1

N

K∑

k=1

log det
(
Ink

+ gkT
1
2

kQkT
1
2

k

)
=

1

N

K∑

k=1

nk∑

j=1

log (1 + pk,jtk,jgk) . (3.74)

Thus, all other terms in ĪN
(
σ2
)
correspond consequently to the gains of succes-

sive interference cancellation (SIC) [15] over simple MMSE detection.

A special case of the double-scattering channel is the Rayleigh product
MIMO channel [160] which does not exhibit any form of correlation between the
transmit and receive antennas or the scatterers. For this model, Theorems 22
(i), (ii), and 35 can be given in closed form as shown in the next corollary.

Corollary 6 (Rayleigh product channel). For all k, let Nk = S, nk = N and
assume Tk = IN , Sk = IS, Rk = IN , and Qk = IN . Then ĪN

(
σ2
)
and

γ̄Nk,j
(
σ2
)
as defined in Theorems 22 and 35 can be given in closed form as

ĪN
(
σ2
)
= log

(
1 +

NK

σ2S
ḡ

(
ḡ +

S

N
− 1

))
− KS

N
log

(
1 +

N

S
(ḡ − 1)

)

−K log (ḡ)− 2K (1− ḡ)

and

γ̄Nk,j
(
σ2
)
=

1− ḡ

ḡ

where ḡ is the unique root to

ḡ3 − ḡ2
(
2− S

N
− 1

K

)
+ ḡ

(
1− S

N
− 1

K
+

S

NK

(
1 + σ2

))
− S

NK
σ2 = 0

(3.75)

such that ḡ ∈
(
1−min

[
1
K ,

S
N

]
, 1
)
.

Proof. The proof is provided in Appendix 3.7.9.

Note that similar expressions for the asymptotic mutual information and
MMSE-SINR have been obtained in [153] by means of free probability theory.
However, these results require the numerical solution of a third order differential
equation.
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3.4.3 Numerical results

As a first numerical example, we consider the “multi-keyhole channel”, i.e.,
K = 1, S1 = IN1 , R1 = IN , T1 = Q1 = In1 , for N = n1 = 4. Fig. 3.16
depicts the normalized ergodic mutual information E

[
IN (σ2)

]
and its asymp-

totic approximation ĪN (σ2) versus SNR for different numbers of “keyholes”
N1 ∈ {1, 2, 3, 4, 100}. Surprisingly, the match between both results is almost
perfect although the channel dimensions are very small. As one expects, the
multiplexing gain increases linearly with N1 until N1 ≥ N = 4. Larger values
of N1 only change the statistical distribution of the channel matrix while the
degrees of freedom are limited by the number of antennas (for N1 → ∞, H1

becomes a standard Rayleigh fading channel [91]).
As a second example, we consider a MAC from K = 3 transmitters, as-

suming the double-scattering model in [91]. Under this model, the correla-
tion matrices are given as Rk = G(φr,k, dr,k, Nk), Sk = G(φs,k, ds,k, Nk) and
Tk = G(φt,k, dt,k, Nk), where G(φ, d, n) is defined as

[G(φ, d, n)]k,l =
1

n

n−1
2∑

j= 1−n
2

exp

(
i2πd(k − l) sin

(
jφ

1− n

))
. (3.76)

The values φt,k and φr,k determine the angular spread of the radiated and
received signals, dt,k and dr,k are the antenna spacings at the kth transmitter
and receiver in multiples of the signal wavelength, Nk can be seen as the number
of scatterers and ds,k as the spacing of the scatterers. For simplicity, we assume
N = 4, Pk = 1/nk, Nk = 11, nk = 3, dt,k = dr,k = 0.25 and ds,k = 50
for all k. We further assume φr,k = φt,k for all k, with φr,k ∈ {π/4, π/2, π}
and φs,k = π/8. Fig. 3.17 shows E

[
IN (σ2)

]
and ĪN (σ2) with uniform and

optimal power allocation versus SNR. Again, our asymptotic results yield very
tight approximations, even for small system dimensions. Note that we have
used the precoding matrices provided by Theorem 34 for the simulations as the
optimal precoding matrices are unknown. For comparison, we also provide the
sum-rate with MMSE detection E

[
RN (σ2)

]
and its deterministic approximation

R̄N (σ2). We observe a good fit between both results at low SNR values, but
a slight mismatch for higher values. This is due to a slower convergence of the
SINR γNk,j(σ

2) to its deterministic approximation γ̄Nk,j(σ
2), well documented in

the RMT literature, e.g., [52].

3.4.4 Conclusions

In this section, we have applied the concept of iterative deterministic equivalents
to the asymptotic analysis of a MIMO MAC under the double-scattering chan-
nel model. We have derived asymptotically tight deterministic approximations
of information theoretic quantities of interest, such as the mutual information
and the sum-rate with MMSE detection. These approximations can be eas-
ily computed by provably converging fixed-point algorithms and do not require
any numerical integration. As a special case, we have consider the Rayleigh
product channel in which all results are given in closed-form. Moreover, we
have provided the asymptotically optimal precoding matrices and an iterative
water-filling algorithm for their computation. Our simulation results suggest
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Figure 3.16: Ergodic mutual information E
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of the multi-keyhole chan-

nel and its deterministic equivalent ĪN (σ2) versus ρ = 1
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3.5. Multihop amplify-and-forward MIMO relay channels

Figure 3.18: Multi-hop amplify-and-forward MIMO relay channel.

that the asymptotic performance approximations are very accurate for finite
system dimensions with only a few antennas at each node.

3.5 Multihop amplify-and-forward MIMO relay
channels

Abstract: We derive a deterministic equivalent for the mutual information of the
K-hop AF MIMO relay channel, assuming that the number of antennas at each node
grows infinitely large. In contrast to previous works, we consider noise at each of the
relays such that the system performance rapidly diminishes as K grows. The analysis
is facilitated by the concept of iterative deterministic equivalents and fundamentally
based on Theorem 24. The result is given by a simple recursive algorithm and shown
to provide tight performance approximations for a small number of antennas at each
node.

3.5.1 Introduction and system model

Consider a multi-hop AF MIMO relay channel where a source node communi-
cates via K − 1 relays with a destination node. There is no direct link between
the source and the destination and each relay can only receive data from the
preceding hop. This is for example the case if the nodes follow a time-division
multiple access (TDMA) protocol where only one node is transmitting at any
given time and the path loss between relay k and k− 2 is large. Thus each data
symbol reaches the destination after K channel uses. The source and destina-
tion are respectively equipped with n and nK antennas while the kth relay has
nk antennas. The relays operate an AF-protocol where each node simply trans-
mits a scaled version of its received signal to the next hop. We will consider a
large system limit where n, n1, . . . , nK grow infinitely large at the same speed.
Define the following quantities:

c1 =
n

n1

ck =
nk−1

nk
, k = 2, . . . ,K. (3.77)

The notation “n→ ∞” must be understood from now on as n→ ∞, such that
0 < lim infn ck ≤ lim supn ck < ∞ for all k. We denote yk ∈ C

nk the received
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3.5. Multihop amplify-and-forward MIMO relay channels

base-band signal vector at the kth hop, given by

y1 =
√
α1H1

√
β0
n
x+ n1

yk =
√
αkHk

√
βk−1

nk−1
yk−1 + nk, k = 2, . . . ,K (3.78)

where Hk ∈ C
nk×nk−1 is a standard complex Gaussian matrix (let n0 , n),

x ∼ CN (0, In) is the channel input vector, nk ∼ CN (0, Ink
) is a noise vector,

αk is a path loss factor, and the parameter βk is chosen to normalize the transmit
power of the kth node according to its power budget ρk > 0, i.e.,

β0 =
ρ0

1
n trE [xxH]

= ρ0

βk =
ρk

1
nk

trE
[
ykyH

k

] , k = 1, . . . ,K − 1. (3.79)

The expectation in the last equation is with respect to the transmit and noise
vectors only.6 The channel matrices Hk and path loss factors αk are assumed
to be known to the relays and the destination. Since the received signal at each
relay is corrupted by noise, the system suffers from noise accumulation. This is
in addition to the linear rate loss 1

K related to the TDMA protocol. Thus, the
capacity decreases quickly with the number of hops K. Note that our system
model is different from existing works which consider either no noise [165], or
noise only at the destination [44]. An exception is [45], in which the authors con-
sider a similar system model, but do not provide closed-form expressions of the
asymptotic mutual information. Several other works deal with the asymptotic
capacity of the dual-hop relay channel [166, 167]. Recently, an exact expression
of the mutual information of the dual-hop channel for finite channel dimensions
was derived in [168]. Here, we will provide an explicit deterministic equivalent
of the mutual information at each relay for the general model (3.78).

Let us introduce the following, recursively defined matrices Rk

(
βk−1

)
:

R0 = E
[
xxH

]
= In

Rk

(
βk−1

)
= E

[
yky

H

k

]
= Ink

+
αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH

k , k = 1, . . . ,K

(3.80)

and the functionals Jk

(
x,βk−1

)
, x > 0, k ∈ {1, . . . ,K}, which are defined as

Jk

(
x,βk−1

)
=

1

nk
log det

(
Ink

+ x
αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH

k

)
(3.81)

where βk = [β0, · · · , βk]. With these definitions, we can express the normalized
mutual information Ik(βk−1) between yk and x as

Ik(βk−1) =
1

K

(
Jk(1,βk−1)− Jk(1,β

′
k−1)

)
(3.82)

where β′
k = [0, β1, · · · , βk]. Next, we demonstrate by a simple example that

(3.82) holds.

6Under a long-term power constraint, the expectation could be taken also with respect to
the matrices Hk. Asymptotically, both constraints are equivalent (see Lemma 21).
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Example 1 (2-hop Relay-channel). The normalized mutual information I2(β1)
between x and the channel output after the second hop y2 is given as

I2(β1) =
1

Kn2
log det

(
In2

+

(
In2

+
α2β1
n1

H2H
H

2

)−1
α2β1α1β0
n1n

H2H1H
H

1H
H

2

)

=
1

Kn2
log det

(
In2 +

α2β1
n1

H2

(
In +

α1β0
n

H1H
H

1

)
HH

2

)

− 1

Kn2
log det

(
In2

+
α2β1
n1

H2H
H

2

)

=
1

Kn2
log det

(
In2 +

α2β1
n1

H2R1(β0)H
H

2

)

− 1

Kn2
log det

(
In2

+
α2β1
n1

H2R1(0)H
H

2

)

=
1

K

(
J2(1,β1)− J2(1,β

′
1)
)
. (3.83)

3.5.2 Asymptotic analysis

In Theorem 24, we have derived deterministic equivalents J̄k(x, β̄k−1) of the
quantities Jk(x,βk−1). The recursive definition of the matrices Rk(βk−1) in
(3.80) allows us to calculate iterative deterministic equivalents of the mutual in-
formation after each hop. This is achieved by treating the matrixRk−1(βk−2) as
deterministic and deriving a deterministic equivalent of Jk(x,βk−1) with respect
to the matrixHk. This process can be iterated forRk−2(βk−3),Rk−3(βk−4), . . .
and Hk−1,Hk−2, . . . until the deterministic matrix R0 is reached. Let us first
derive deterministic equivalents β̄k of the power normalization factors βk:

Lemma 21 (Asymptotic power normalization). Let β0 = β̄0 = ρ0. Then,

βk
a.s.−−−−→

n→∞
β̄k =

ρk
1 + αkρk−1

, k = 1, . . . ,K − 1.

Proof. Recall the definition of βk = ρk
1

nk
trRk

, where Rk = Rk

(
βk−1

)
. For

k ≥ 1, we have

1

nk
trRk = 1 +

αkβk−1

nknk−1
trHkRk−1H

H

k

(a)
= 1 + αkβk−1

1

nk

nk∑

j=1

1

nk−1
h̃H

k,jRk−1h̃k,j

(b)≍ 1 + αk
ρk−1

1
nk−1

trRk−1

1

nk−1
trRk−1

= 1 + αkρk−1 (3.84)

where (a) is obtained by denoting h̃k,j ∈ C
nk−1 the jth row vector of Hk and

(b) is due to Lemma 13 and Lemma 19 and the definition of βk−1. By the
continuous mapping theorem, we finally have

βk =
ρk

1
nk

trRk

a.s.−−−−→
n→∞

ρk
1 + αkρk−1

. (3.85)
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Applying Theorem 24 (ii) and Lemma 21 to (3.82) yields the following
corollary which provides a deterministic equivalent of the mutual information
Ik(βk−1):

Corollary 7 (Asymptotic mutual information of the K-hop AF MIMO Relay
channel).

Ik
(
βk−1

)
− Īk

(
β̄k−1

) a.s−−−−→
n→∞

0, k = 1, . . . ,K

where

Īk
(
β̄k−1

)
=

1

K

(
J̄k(1, β̄k−1)− J̄k(1, β̄

′
k−1)

)

with β̄k−1 = [β̄0 · · · β̄k−1], β̄
′
k−1 = [0 β̄1 · · · β̄k−1] as given by Lemma 21, and

J̄k(x, β̄k−1) and J̄k(x, β̄
′
k−1) as given by Theorem 24 (ii).

3.5.3 Numerical results

We would now like to verify our analysis by some numerical results. To this end,
we consider a system with three relays, i.e., K = 4. We assume n = n4 = 4, n1 =
n3 = 8, n2 = 12, ρ1 = ρ3 = 0.7ρ0 and ρ2 = 0.5ρ0. The last assumption allows us
to control the transmit power of all nodes by the transmit SNR ρ0 of the source
node. We further assume the path loss factors α1 = 1, α2 = α4 = 0.7, α3 = 0.5.
Fig. 3.19 shows the average normalized mutual information E

[
nk

n Ik
(
βk−1

)]

after each hop (k = 1, . . . , 4) versus the transmit power ρ0 of the source node.
Note that we have re-normalized all results by nk

n to put them on a common
ground for comparison. The deterministic equivalents nk

n Īk
(
β̄k−1

)
as provided

by Corollary 7 are drawn by solid lines, simulation results are represented by
markers. The error bars represent one standard deviation of the simulation
results in each direction. We can observe a very good fit between the asymptotic
approximations and the simulation results for all k and the entire range of ρ0.
As expected, the performance decreases rapidly with each hop.

3.5.4 Conclusions

In this section, we have used the method of iterative deterministic equivalents for
the performance analysis of a multihop AF MIMO Relay channel with noise at
each relay. This approach has allowed us to derive easily computable recursive
expressions for the asymptotic mutual information after each hop. We have
verified our analysis by simulations which also demonstrate the accuracy of our
approximations for small system dimensions. Finally, we would like to remark
that, although we have considered a rather simple channel model with neither
antenna correlation nor precoding at the nodes, more involved channel models
can be treated in a straightforward fashion with the same techniques.
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Figure 3.19: Average normalized mutual information E
[
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n Ik(βk−1)
]
after the

kth hop versus the transmit SNR ρ0 of the source node. The deterministic
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are drawn by solid lines, the simulation results by

markers. The error bars correspond to one standard deviation of the simulation
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3.6. Random beamforming over quasi-static and fading channels

3.6 Random beamforming over quasi-static and
fading channels

Abstract: In this section, we study the performance of random isometric precoding
over quasi-static and correlated fading channels. We derive deterministic approxima-
tions of the mutual information and the SINR at the output of the MMSE receiver
and provide simple provably converging fixed-point algorithms for their computation.
Although these approximations are only proven exact in the asymptotic regime with in-
finitely many antennas at the transmitters and receivers, simulations suggest that they
closely match the performance of small-dimensional systems. In contrast to previous
works, our analysis does not rely on arguments from free probability theory which al-
lows us to consider random matrix models for which asymptotic freeness does not hold.
Thus, our results are also a novel contribution to the field of random matrix theory
and are shown to be applicable to a wide spectrum of practical systems. We specifically
characterize the performance of multi-cellular communication systems, MIMO MACs,
and MIMO interference channels.

3.6.1 Introduction

Consider the following discrete time wireless channel model

y =

K∑

k=1

HkWkP
1
2

k xk + n (3.86)

where

(i) y ∈ C
N is the channel output vector,

(ii) Hk ∈ C
N×Nk , k ∈ {1, . . . ,K}, are complex channel matrices, satisfying

either of the following properties:

(ii-a) The matrixHk ∈ C
N×Nk is deterministic. In this case, we will denote

Rk = HkH
H

k .

(ii-b) The matrix Hk ∈ C
N×Nk is a random channel matrix whose jth

column vector hkj ∈ C
N is modeled as

hkj = R
1
2

kjzkj , j ∈ {1, . . . , Nk} (3.87)

where Rkj ∈ C
N×N are Hermitian nonnegative definite matrices and

the vectors zkj ∈ C
N have independent and i.i.d. elements with zero

mean, variance 1/N and 4 + ǫ moment of order O(1/N2+ε/2), for
some common ǫ > 0.

(iii) Wk ∈ C
Nk×nk , k ∈ {1, . . . ,K}, are complex (signature or precoding)

matrices which contain each nk < Nk orthonormal columns of independent
Nk ×Nk Haar-distributed random unitary matrices,

(iv) Pk ∈ R
nk×nk , k ∈ {1, . . . ,K}, are diagonal (power loading) matrices with

nonnegative entries,

(v) xk ∼ CN (0, Ink
), k ∈ {1, . . . ,K}, are random independent Gaussian

transmit vectors,
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3.6. Random beamforming over quasi-static and fading channels

(vi) n ∼ CN (0, σ2IN ) is a white Gaussian noise vector.

In addition, we define the ratios of the matrix dimensions ci ,
ni

Ni
and c̄i ,

Ni

N
for i ∈ {1, . . . ,K}.

Remark 25. The statistical model (3.87) of the channel Hk under assump-
tion (ii-b) generalizes several well-known fading channel models of interest (see
[70, 169] for examples). These models comprise in particular the Kronecker
channel model with transmit and receive correlation matrices [170, 83], where
the matrices Hk are given by

Hk = R
1
2

kZkT
1
2

k (3.88)

with Zk ∈ C
N×Nk a random matrix whose elements are independent CN (0, 1/N)

and Rk ∈ C
N×N , Tk ∈ C

Nk×Nk antenna correlation matrices. Since both
Zk and Wk are unitarily invariant, we can assume without loss of generality
for the statistical properties of y that Tk = diag(tk1, . . . , tkNk

). Defining the
matrices Rkj = tkjRk for j ∈ {1, . . . , Nk}, we fall back to the channel model in
(3.87). Taking instead all Rkj to be diagonal matrices makes the entries of Hk

independent with [Hk]ij of zero mean and variance [Rkj ]ii/N . This corresponds
to a centered variance profile model, studied extensively in [74, 51, 164].

It is our objective to study the performance of the communication chan-
nel (3.86) in the large dimensional regime where N,N1, . . . , NK , n1, . . . , nK are
simultaneously large. In the following, we will consider both the quasi-static
channel scenario which assumes hypotheses (i), (ii-a), (iii)-(vi), and the fading
channel scenario which assumes (i), (ii-b), (iii)-(vi). The study of the latter nat-
urally arises as an extension of the study of the quasi-static channel scenario.
The respective application contexts of both scenarios are described below.

Quasi-static channel scenario (hypothesis (ii-a))

Possible applications of the channel model (3.86) under assumptions (i), (ii-
a), (iii)-(vi) arise in the study of direct-sequence (DS) or multi-carrier (MC)
CDMA systems with isometric signatures over frequency-selective fading chan-
nels or space division multiple access (SDMA) systems with isometric precoding
matrices over flat-fading channels. More precisely, for DS-CDMA systems, the
matrices Hk are either Toeplitz or circular matrices (if a cyclic prefix is used)
constructed from the channel impulse response; for MC-CDMA, the matricesHk

are diagonal and represent the channel frequency response on each sub-carrier;
for flat fading SDMA systems, the matrices Hk can be of arbitrary form and
their elements represent the complex channel gains between the transmit and
receive antennas. In all cases, the diagonal entries of the matrices Pk determine
the transmit power of each signature (CDMA) or transmit stream (SDMA).

The large system analysis of random i.i.d. and random orthogonal precoded
systems with optimal and sub-optimal linear receivers has been the subject of
numerous publications. The asymptotic performance of MMSE receivers for the
channel model (3.86) for the case K = 1,P1 = In1 and H1 diagonal with i.i.d.
elements has been studied in [72] relying on results from free probability theory.
This result was extended to frequency-selective fading channels and sub-optimal
receivers in [141]. Although not published, the associated mutual information
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3.6. Random beamforming over quasi-static and fading channels

was evaluated in [171] (this result is recalled in [71, Theorem 4.11]). The case
of i.i.d. and isometric MC-CDMA over Rayleigh fading channels with multiple
signatures per user terminal, i.e., K ≥ 1 and Hk diagonal with i.i.d. complex
Gaussian entries, was considered in [172], where approximate solutions of the
SINR at the output of the MMSE receiver were provided. Asymptotic expres-
sions for the spectral efficiency of the same model were then derived in [173].
DS-CDMA over flat-fading channels, i.e., K ≥ 1, nk = N and Hk = IN for all
k, was studied in [174], where the authors derived deterministic equivalents of
the Shannon- and η-transform based on the asymptotic freeness [71, Section 3.5]
of the matrices WkPkW

H

k . Besides, a sum-rate maximizing power-allocation
algorithm was proposed. Finally, a different approach via incremental matrix
expansion [76] led to the exact characterization of the asymptotic SINR of the
MMSE receiver for the general channel model (3.86). However, the previously
mentioned works share the underlying assumption that the spectral distribu-
tions of the matrices Hk and Pk converge to some limiting distributions or
the matrices HkH

H

k are jointly diagonalizable.7 Also, the computation of the
asymptotic SINR requires the computation of rather complicated implicit equa-
tions. These can be solved in most cases by standard fixed-point algorithms
but a proof of convergence to the correct solution was not provided. Finally, a
closed-form expression for the asymptotic spectral efficiency is missing, although
an approximate solution which requires numerical integration was presented in
[173].

The above works assume non-random communication channels and can there-
fore be only applied to the performance analysis of static or slow fading channels.
Turning the matrices Hk into random matrices instead allows for the study of
the ergodic performance of fast fading channels with isometric precoders. The
next section discusses the practical applications in this broader context.

Fading channel scenario (hypothesis (ii-b))

The second scenario considers the channel model (3.68) under assumptions (i),
(ii-b), (iii)-(vi). In contrast to the first scenario, the Hk matrices are now
assumed to be random. Thus, we aim at evaluating both the instantaneous
performance for a random channel realization and the ergodic performance of
these channels. These are appropriate performance measures in fast fading
environments.

Of particular interest in this setting is the evaluation of the MIMO channel
capacity under random beamforming. In point-to-point MIMO channels, the
ergodic channel capacity has been the object of numerous works and is by now
well understood [14, 175]. However, the ergodic sum-rate of more involved mod-
els, such as the MIMO MAC [83] under individual or sum power constraints,
has been studied only recently through the scope of random matrix theory. As
a by-product, we will extend the results of [83] to the transmit covariance opti-
mization in the class of scaled identity matrices under sum power constraints.
More fundamental is the capacity of MIMO channels with co-channel interfer-
ence, for which much less is known about the optimal transmission strategies
[176, 177].

The first interesting question relates to the problem of how many antennas

7That is, there exists a unitary matrix V such that VHkH
H

k
V

H is diagonal for all k.
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should be used for transmission and how many independent data streams should
be sent, which are the same problem when the channels have i.i.d. entries. With
transmit antenna correlation, however, it makes a difference which antennas are
selected for transmission and the question of the optimal number of antennas
to be used becomes a combinatorial problem. To circumvent this issue, random
beamforming can be used. The remaining question is then how many orthogonal
streams should be sent, using all available antennas. This is one of our key
motivations as our results enable the evaluation of the sum-rate of systems
composed of multiple transmitter-receiver pairs, each applying random isotropic
beamforming.

In summary, regardless of the specific application scenario of the model
(3.68), unitary precoders have gained significant interest in wireless communi-
cations [46] (see also the work on spatial multiplexing systems [47] and limited
feedback beamforming solutions in future wireless standards [48]). Thus, the
performance evaluation of isometric precoded systems is compulsory and a field
of active research [49].

Contributions

The object of this section is to propose a new framework for the analysis of large
random matrix models involving Haar matrices using the Stieltjes-transform
method. The analysis is fundamentally based on a trace lemma for Haar ma-
trices first provided in [72] and recalled in Lemma 15. Unlike previous contri-
butions, we dismiss most of the practical constraints of free probability theory,
combinatorial and incremental matrix expansion methods, such as the need for
spectral limits of the deterministic matrices in the model to exist, or the need
for the matrices HkH

H

k to be diagonalizable in a common eigenvector basis. The
expressions we derive appear to be very similar to previously derived expressions
when the precoding matrices Wk have i.i.d. entries instead of being Haar dis-
tributed (see in particular Remark 26). This allows for a unified understanding
of both models with i.i.d. or Haar matrices.

Before summarizing our main contributions, we introduce some definitions
which will be of repeated use. The central object of interest is the matrix
BN ∈ C

N×N , defined as

BN =

K∑

k=1

HkWkPkW
H

kH
H

k . (3.89)

We denote by IN (σ2) the normalized mutual information of the channel
(3.68), given by [42]

IN (σ2) =
1

N
log det

(
IN +

1

σ2
BN

)
. (3.90)

We further denote by γNkj(σ
2) the SINR at the output of the linear MMSE

detector for the jth component of the transmit vector xk, which reads [136]

γNkj(σ
2) = pkjw

H

kjH
H

k

(
BN (k,j) + σ2IN

)−1
Hkwkj (3.91)
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where BN (k,j) = BN −pkjHkwkjw
H

kjH
H

k and wkj is the jth column of Wk. We
then define the normalized sum-rate with MMSE detection as

RN (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γNkj(σ

2)
)
. (3.92)

Our technical contributions are as follows: In Theorems 18 and 23 (ii)
we provide deterministic equivalents of the mutual information for the quasi-
static and fading channel model, respectively. We further establish deterministic
equivalents of the SINR and the sum-rate with MMSE detection. The expres-
sions are easy to compute as they are shown to be the limits of simple (provably
converging) fixed-point algorithms, they are given in closed form and do not re-
quire any numerical integration, and they require only very general conditions
on the matrices Hk and Pk.

We then present several applications of our results to wireless communica-
tions. First, we consider a cellular uplink orthogonal SDMA communication
model with inter-cell interference, assuming independent codes in adjacent cells
and quasi-static channels at all communication pairs. We then study a MIMO
MAC from several multi-antenna transmitters to a multi-antenna receiver under
the fading channel scenario (hypothesis (ii-b)). The transmitters are unaware
of the channel realizations and send an arbitrary number of independent data
streams using isometric random beamforming vectors. The receiver is assumed
to be aware of all instantaneous channel realizations and beamforming vectors.
Under this setting, we derive the optimal power allocation under individual
or sum-power constraints which can be computed by an iterative water-filling
algorithm. Finally, we address the problem of finding the optimal number of
independent streams to be transmitted in a two-by-two interference channel.
Although the use of deterministic approximations in this context requires an
exhaustive search over all possible stream-configurations, it is computation-
ally much less expensive than Monte Carlo simulations. Extensions to more
than two transmit-receive pairs and possible different objective functions, e.g.,
weighted sum-rate or sum-rate with MMSE decoding, are straightforward and
not presented. For all these applications, numerical simulations show that the
deterministic approximations are very tight even for small system dimensions.
In the interference channel model, these simulations suggest in particular that,
at low SNR, it is optimal to use all streams while, at high SNR, stream-control,
i.e., transmitting less than the maximal number of streams, is beneficial.

Our work also constitutes a novel contribution to the field of random matrix
theory, as we introduce new proof techniques based on the Stieltjes transform
method in the context of random isometric matrices. Namely, we provide in
Theorem 15 a deterministic equivalent F̄N of the empirical spectral distribution
(e.s.d.) FN of BN . Although deterministic equivalents of e.s.d. are by now
more or less standard and have been developed for rather involved random
matrix models [74, 83, 70], results for the case of isometric (Haar) matrices are
still an exception. In particular, most results on Haar matrices are based on
the assumption of asymptotic freeness of the underlying matrices, a requirement
which is rarely met for the matrices in the channel model (3.86) of interest here.
The approach taken in this section is therefore novel as it does not rely on
free probability theory [178, 179] and we do not require any of the matrices in
(3.86) to be asymptotically free. Interestingly, a very recent extension of free
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probability theory, coined free deterministic equivalents [180], has come as a
response to the present article in which free probability tools are developed to
tackle the aforementioned limitations.

3.6.2 Main results

We will distinguish the results for the quasi-static and the fading channel sce-
narios. Since we will make limiting considerations as the system dimensions
grow large, some technical assumptions will be necessary:

A1 The notation N → ∞ denotes the simultaneous growth of N,Ni, ni for all i,
in such a way that 0 ≤ lim infN ci ≤ lim supN ci < 1 and 0 < lim infN c̄i =
Ni

N ≤ lim supN c̄i <∞.

In order to control the power loading matrices as the system grows large, we
need the following assumption:

A2 There exists P > 0 such that, for all k, lim supN‖Pk‖ ≤ P .

Under (ii-a), the channel gains will need to remain bounded for all large N :

A3-a There exists R > 0 such that maxk lim supN‖Rk‖ ≤ R, where we recall
that Rk = HkH

H

k .

The equivalent constraint under (ii-b) is that the channel correlations remain
bounded for all large N :

A3-b There exists R > 0 such that lim supN‖Rkj‖ ≤ R for all j, k.

Due to some technical issues, it will be sometimes necessary to require the
following condition:

A4 For all random matrices Hk within a set of probability one, there exists
M > 0 such that maxk ‖HkH

H

k ‖ < M for all large N .

Assumption A4 is met in particular in the situation when there exists m >
0, such that for all k, j,N , Rkj ∈ RN with RN a discrete set of cardinality
|RN | < m for all N (see the arguments in [83]). For example, this holds true
for a common correlation matrix at each receiver, i.e., Rkj = R̄k ∀j.

Fundamental equations and mutual information

The fundamental equations for the quasi-static and the fading channel model are
provided in Theorem 15 (i) and Theorem 23 (i), respectively. These Theorems
provide a set of deterministic quantities which are needed for the computation
of the deterministic equivalents of the mutual information and the SINR.

Remark 26. Assume c̄i = 1 for every i (e.g., when Hi is a Toeplitz matrix as
in the CDMA case). Then, extending every Pi ∈ C

ni×ni into N ×N matrices
filled with zeros, we can assume ci = 1 without affecting the final result. In this
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scenario, the fundamental equations under (ii-a) (see Theorem 15 (i)) become
for z = −x

ēi =
1

N
trPi (eiPi + [1− eiēi]IN )

−1
(3.93)

ei =
1

N
trRi




K∑

j=1

ējRj + xIN




−1

.

This can be compared to the scenario where the matrices Wi, instead of being
Haar matrices, have i.i.d. entries of variance 1/N . The fundamental equations
of this model are provided in Theorem 13 (i) and are given as follows:

ēi =
1

N
trPi (eiPi + IN )

−1
(3.94)

ei =
1

N
trRi




K∑

j=1

ējRj + xIN




−1

such that ei is positive for all i. The scalars ei and ēi are also defined as the
limits of a classical fixed-point algorithm. The only difference between the two
sets of equations lies in the additional term −eiēiIN in (3.93), not present in
(3.94).

Deterministic equivalents of the (ergodic) mutual information are provided
in Theorem 18 for the quasi-static and in Theorem 23 (ii) for the fading channel
model. Next, we will provide approximations of the SINR at the output of the
MMSE receiver.

Theorem 36 (SINR of the MMSE detector under (ii-a)). Consider the system
model (3.86) under assumptions (i), (ii-a), (iii)-(vi) and, for σ2 > 0, denote

γNkj(σ
2) = pkjw

H

kjH
H

k

(
BN (k,j) + σ2IN

)−1
Hkwkj . (3.95)

Assume A1, A2, and A3-a. Then, as N → ∞,

γNkj(σ
2)− γ̄Nkj(σ

2)
a.s.−→ 0

where
γ̄Nkj(σ

2) =
pkjek

c̄k − ekēk

with ek = ek(−σ2) and ēk = ēk(−σ2) defined in Theorem 15 (i).

Proof. The proof is provided in Appendix 3.7.10.

As an (almost immediate) corollary, we have

Corollary 8. Under the conditions of Theorem 36, denote

RN (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γNkj(σ

2)
)
.
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Then,

(i) E
[
RN (σ2)

]
− R̄N (σ2) → 0

(ii) RN (σ2)− R̄N (σ2)
a.s.−→ 0

where

R̄N (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γ̄Nkj(σ

2)
)
.

Proof. The proof is provided in Appendix 3.7.11.

Theorem 37 (SINR of the MMSE detector under (ii-b)). Consider the system
model (3.86) under assumptions (i), (ii-b), (iii)-(vi) and, for σ2 > 0, denote

γNkj(σ
2) = pkjw

H

kjH
H

k

(
BN (k,j) + σ2IN

)−1
Hkwkj .

Assume A1, A2, A3-b, and A4. Then, as N → ∞,

γNkj(σ
2)− γ̄Nkj(σ

2)
a.s.−→ 0

where

γ̄Nkj(σ
2) =

pkjbk
c̄k − bk b̄k

with bk and b̄k, given by Theorem 23 (i) for x = σ2.

Proof. The proof is provided in Appendix 3.7.12.

Similar to the quasi-static channel scenario, we also have the following corol-
lary.

Corollary 9. Under the conditions of Theorem 37, denote

RN (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γNkj(σ

2)
)
.

Then,

(i) E
[
RN (σ2)

]
− R̄N (σ2) → 0

(ii) RN (σ2)− R̄N (σ2)
a.s.−→ 0

where

R̄N (σ2) =
1

N

K∑

k=1

nk∑

j=1

log
(
1 + γ̄Nkj(σ

2)
)
.

Proof. The proof is provided in Appendix 3.7.13
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Remark 27. Surprisingly, the fundamental equations of Theorems 15 (i) and
23 (i) cannot be solved with the proposed fixed-point algorithms for the case
ck = 1 (recall that assumption (iii) of the model imposes ck < 1). Moreover,
the proof of Theorem 15 cannot be easily extended to this case. However, if
Pk = pkINk

, for some pk > 0, the random matrix BN reduces to

BN =

K∑

k=1

pkHkH
H

k =

K∑

k=1

pkRk. (3.96)

For the quasi-static channel scenario, BN is thus entirely deterministic. A
careful inspection of the fixed-point equations of Theorem 15 reveals that ēk, with
definition extended to ck = 1, has two solutions in the adherence of [0, c̄k/ek),
i.e., ēk = c̄k

ek
or ēk = pk. Simulations suggest that, in this scenario, the fixed-

point algorithm proposed in Theorem 15 may converge to either of the solutions
depending on the choice of the system parameters. Note that, for ēk = pk,
Theorem 18 reduces to

ĪN (σ2) =
1

N
log det

(
IN +

1

σ2

K∑

k=1

pkRk

)

as it should be. As for ēk = c̄k
ek
, this cannot lead to a correct solution as ĪN (σ2)

would be independent of pk. These observations are consistent with the condition
ēk <

c̄k
ek
. Similarly, b̄k in Theorem 23 has the same two possible solutions in

this scenario. With b̄k = pk, the asymptotic mutual information reduces to

ĪN (σ2) = V̄N (σ2)

which is the asymptotic mutual information of a channel with a generalized
variance profile as provided in Theorem 14. Thus our results are consistent for
the case ck = 1 and Pk = pkINk

. However, if the entries of Pk are not all equal
and ck = 1, we cannot easily infer the solutions of ēk, b̄k and the proposed fixed
point algorithms may not converge to the correct solutions.

Remark 28. Based on the previous remark, under scenario (ii-b) with K = 1,
P1 = In1

, N1 = n1 = N , and R1j = IN for all j, the set of implicit equations
in Theorem 23 reduces to:

b̄(σ2) = 1, g(σ2) =
ζ(σ2)

1 + ζ(σ2)
, ζ(σ2) =

1
1

1+ζ(σ2) + σ2

which has a unique solution satisfying ζ(σ2) ≥ 0 and that can be given in closed-
form:

ζ(σ2) =
−1 +

√
1 + 4

σ2

2
.

We recognize that ζ(σ2) is the Stieltjes transform of the Marc̆enko-Pastur law
with scale parameter 1 [71, Equation (3.20)] evaluated on the negative real
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Figure 3.20: Three-cell example: The BS in the center cell decodes the n streams
from the UT in its own cell while treating the other signals as interference.

axis. This result is consistent with our expectations since BN = Z1Z
H

1 , where
Z1 ∈ C

N×N has i.i.d. entries with zero mean and variance 1/N . Moreover, the
expression of the normalized asymptotic mutual information as given in Theo-
rem 23 (ii) reduces to

ĪN (σ2) = V̄N (σ2) = log
(
1 + ζ(σ2) + 1/σ2

)
− ζ(σ2)

1 + ζ(σ2)

which is consistent with the asymptotic spectral efficiency of a Rayleigh-fading
N×N MIMO channel [80, Equation (9)] (see also [71, Section 13.2.2]). Equiva-
lently, the asymptotic SINR of the MMSE detector and the associated normalized
sum-rate can be given as (cf. [80, Proposition VI.1]):

γ̄Nj = ζ(σ2), R̄N (σ2) = log(1 + ζ(σ2)).

Remark 29. Technically, the results obtained for the quasi-static scenario un-
fold from the Stieltjes transform framework very similar to [83], [74]. However,
some new tools are introduced which simplify the analysis made in these pa-
pers, such as the method of standard interference functions to prove existence
and uniqueness of the derived deterministic equivalents. As for the results in the
fading channel scenario, they unfold from the conjugation of the results obtained
in the quasi-static scenario and the results obtained in [70] (recalled Theorem 14)
for a channel model similar to (3.86) but without the presence of the Wk ma-
trices. The central tool to allow this conjugation is the Fubini theorem on the
product probability space engendering both the Wk and Hk matrices.

3.6.3 Numerical results

Uplink orthogonal SDMA with inter-cell interference

In this first example, we apply the theoretical results of Section 3.6.2 under
the quasi-static channel scenario (hypothesis (ii-a)) to the uplink channel of an
orthogonal SDMA scheme with inter-cell interference. We consider a three cell
system with one active UT per cell. The UT in cell k is equipped with Nk
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transmit antennas. We focus on the central cell, whose BS is equipped with
N antennas, and assume that the the signals received from neighboring cells
are treated as noise. This setup is schematically depicted in Figure 3.20. The
received signal y at the BS reads

y = H2W2P
1
2
2 x2 +

√
αH1W1P

1
2
1 x1 +

√
αH3W3P

1
2
3 x3 + n︸ ︷︷ ︸

,z

(3.97)

with Hi ∈ C
N×Ni the channel matrix from UT i to the BS , xi ∼ CN (0, Ini

)
the transmit symbol of UT i, Wi ∈ C

Ni×ni the isometric precoding vectors
composed of ni orthogonal streams and 0 < α < 1 an inter-cell interference
factor. The vector z ∈ C

N combines the inter-cell interference and the thermal
noise. The covariance matrix Z ∈ C

N×N of z is given as

Z = E
[
zzH

]
= α

[
H1W1P1W

H

1H
H

1 +H3W3P3W
H

3H
H

i

]
+ σ2IN . (3.98)

We assume a SDMA system with channel matrices Hk ∈ C
N×Nk generated

as realizations of a random standard Gaussian matrix with entries of zero mean
and variance 1/Nk. For simplicity, we further assume that each UT uses nk = n
different transmit signatures to which it assigns equal unit power, i.e., Pk = In.
Under these assumptions, the mutual information IN (σ2) of the central cell
when the interference is treated as noise is given by

IN (σ2) =
1

N
log det

(
IN + Z− 1

2H2W2W
H

2H2Z
− 1

2

)

=
1

N
log det

(
IN +

1

σ2

3∑

k=1

HkWkW
H

kHk

)

− 1

N
log det


IN +

1

σ2

3∑

k=1
k 6=2

HkWkW
H

kHk


 . (3.99)

According to Theorem 8, the spectral norm of HkH
H

k is almost surely uni-
formly bounded. For such channel realizations, we are therefore in the conditions
of Theorem 15. As a consequence, IN (σ2) − ĪN (σ2)

a.s.−→ 0, with ĪN defined in
Theorem 15 (ii). An approximation of the SINR at the output of the MMSE
receiver for the jth entry of x2 can also be computed directly by Theorem 36.
We assume α = 0.25, N = 16, N1 = N2 = N3 = 8 and define SNR = 1/σ2. We
consider a single random realization of the matrices Hk, which is assumed to
be static and therefore deterministically known.

Figure 3.21 depicts IN (σ2) and the deterministic equivalent ĪN (σ2) versus
SNR for different values of n ∈ {1, 4, 8}, scaled to bits/s/Hz instead of nats.
Note that for the case n = 8, the matrix BN and, thus, the mutual information
are deterministic (see Remark 28). We observe a very accurate fit between
both results over the full range of SNR and n. This validates the deterministic
approximation of the mutual information for systems of even small dimensions.

In Figure 3.22, we compare the per-receive antenna sum rate RN (σ2) with
single-streamMMSE-detection to the associated deterministic equivalent R̄N (σ2),
for the same system conditions as in Figure 3.21. The sum rate RN (σ2) is ex-
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Figure 3.21: Mutual information IN (σ2) versus SNR for different numbers of
transmit signatures n, N = 16, Ni = 8, Pi = In, α = 0.5. Error bars represent
one standard deviation on each side.

plicitly given by

RN (σ2) =
1

N

n∑

k=1

log
(
1 + γN2,k(σ

2)
)

with γNij (σ
2) defined in (3.95). As for R̄N (σ2), from Corollary 8, it reads

R̄N (σ2) = c2c̄2 log

(
1 +

e2(−σ2)

c̄2 − e2(−σ2)ē2(−σ2)

)

with e2(−σ2) and ē2(−σ2) defined in Theorem 15 (i). For the case n = 8, we
have used ēk = 1 to compute the deterministic equivalents (see Remark 28).
Similar to the previous observations, the deterministic equivalent provides an
accurate approximation for all values of SNR and n, although the precision is
slightly less than for the mutual information in Figure 3.21.

Multiple access channel

In this and the following example, we apply the theoretical results of Section
3.6.2 under the fading channel scenario (hypothesis (ii-b)). We consider a MAC
from three transmitters to a single receiver as shown in Figure 3.23. The channel
from each transmitter to the receiver is modeled by the Kronecker model (see
Remark 25) with individual transmit and receive covariance matrices Tk and
Rk and we assume additionally a different path loss αk > 0 on each link. The
received signal vector y for this model reads

y =

3∑

k=1

√
αkR

1
2

kZkT
1
2

kWkP
1
2

k xk + n (3.100)
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Figure 3.22: Sum rate RN (σ2) at the output of the MMSE decoder for user 2
versus SNR for different numbers of transmit signatures n, N = 16, Ni = 8,
Pi = In, α = 0.5. Error bars represent one standard deviation on each side.

where xk ∼ CN (0, INk
) and n ∼ CN (0, σ2IN ). We create the correlation ma-

trices according to a generalization of Jakes’ model with non-isotropic signal
transmission, see e.g., [181, 182, 183], where the elements of Tk and Rk are
given as

[Tk]ij =
1

θt,kmax − θt,kmin

∫ θt,k
max

θt,k
min

exp

(
i2π

λ
dt,kij cos (θ)

)
dθ (3.101)

[Rk]ij =
1

θr,kmax − θr,kmin

∫ θr,k
max

θr,k
min

exp

(
i2π

λ
drij cos (θ)

)
dθ (3.102)

where (θt,kmin, θ
t,k
max) and (θr,kmin, θ

r,k
max) determine the azimuth angles over which

useful signal power for the kth transmitter is radiated or received, dt,kij and drij
are the distances between the antenna elements i and j at the kth transmitter
and receiver, respectively, and λ is the signal wavelength. We assume uniform
power allocation for all k, and define SNR = 1/σ2. All other parameters are
summarized in Table 3.1.

Figure 3.24 compares the normalized mutual information IN (σ2) and the
normalized rate with MMSE decoding RN (σ2), averaged over 10, 000 different
realizations of the matrices Hk and Wk, against their deterministic approxi-
mations ĪN (σ2) and R̄N (σ2) by Theorem 23 (ii) and Corollary 9. Although
we have chosen small dimensions for all matrices (see Table 3.1), the match
between both results is almost perfect. Also the fluctuations of IN (σ2) and
RN (σ2) are rather small as can be seen from the error bars representing one
standard deviation in each direction.
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Figure 3.23: MIMO MAC from three transmitters (k = 1, 2, 3) with Nk anten-
nas to a receiver with N antennas. Each transmitter sends nk streams with
precoding matrix Wk and power allocation Pk over the channel

√
αkHk.

Table 3.1: Simulation parameters for Figure 3.24: N = 10, drij = 8λ(i− j)

k Nk nk θt,kmin θt,kmax θr,kmin θr,kmax dt,kij αk

1 10 8 0 π/2 −π/4 0 4λ(i− j) 1

2 5 4 −π/4 π/4 0 π/3 4λ(i− j) 1/2

3 5 4 −π/2 0 −π/3 π/3 4λ(i− j) 1/2
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Figure 3.24: Comparison of the average normalized mutual information IN (σ2)
and the normalized rate with MMSE decoding RN (σ2) with their determin-
istic approximations ĪN (σ2) and R̄N (σ2). Error bars represent one standard
deviation in each direction.
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Figure 3.25: Interference channel from two transmitters with Nk (k = 1, 2)
antennas, respectively, to two receivers with N antennas each. Each transmitter
sends nk independent data streams to its respective receiver.

Stream-control in interference channels

Our last example considers a MIMO interference channel consisting of two
transmitter-receiver pairs as depicted in Figure 3.25. The received signal vectors
y1,y2 ∈ C

N are respectively given as

y1 = H11W1P
1
2
1 x1 +H12W2P

1
2
2 x2 + n1 (3.103)

y2 = H21W1P
1
2
1 x1 +H22W2P

1
2
2 x2 + n2 (3.104)

where Hqk ∈ C
N×Nk , Wk ∈ C

Nk×Nk , xk ∼ CN (0, INk
), Pk ∈ R

Nk×Nk
+ satisfy-

ing 1
Nk

trPk = 1, and nk ∼ CN (0, σ2IN ), for q, k ∈ {1, 2}. Assuming that the
receivers are aware of both precoding matrices and their respective channels but
treat the interfering transmission as noise, the normalized mutual informations
between x1 and y1, and x2 and y2, are respectively given as

I1(σ
2) =

1

N
log det

(
IN +

1

σ2

2∑

k=1

H1kWkPkW
H

kH
H

1k

)

− 1

N
log det

(
IN +

1

σ2
H12W2P2W

H

2H
H

12

)
(3.105)

I2(σ
2) =

1

N
log det

(
IN +

1

σ2

2∑

k=1

H2kWkPkW
H

kH
H

2k

)

− 1

N
log det

(
IN +

1

σ2
H21W1P1W

H

1H
H

21

)
. (3.106)

We adopt the same channel model as for the last example where the channel
matrices Hqk are given as

Hqk = R
1
2

qkZqkT
1
2

k (3.107)

where Zqk ∈ C
N×Nk have independent CN (0, 1/N) entries and Tk and Rqk are

calculated according to (3.101) and (3.102), respectively. We assume that no
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channel state information is available at the transmitters, so that the matri-
ces Pk are simply used to determine the number of independently transmitted
streams:

Pk =
Nk

nk
diag


1, . . . , 1︸ ︷︷ ︸

nk

, 0, . . . , 0︸ ︷︷ ︸
Nk−nk


 . (3.108)

We will now apply the previously derived results to find the optimal number of
streams (n⋆

1, n
⋆
2) maximizing the normalized ergodic sum-rate of the interference

channel above. That is, we seek to find

(n⋆
1, n

⋆
2) = max

n1,n2

E
[
I1(σ

2) + I2(σ
2)
]

(3.109)

s.t. 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2 (3.110)

where the expectation is with respect to both channel and precoding matrices.
Due to the complexity of the random matrix model, this optimization problem
appears intractable by exact analysis. At the same time, any solution based
on an exhaustive search in combination with Monte Carlo simulations becomes
quickly prohibitive for large N1, N2, since N1 ×N2 possible combinations need
to be tested. Relying on Theorem 23 (ii), we can calculate an approximation
of E

[
I1(σ

2) + I2(σ
2)
]
to find an approximate solution which becomes asymp-

totically exact as N1 and N2 grow large. Thus, we determine (n̄⋆
1, n̄

⋆
2) as the

solution to

(n̄⋆
1, n̄

⋆
2) = max

n1,n2

Ī1(σ
2) + Ī2(σ

2) (3.111)

s.t. 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2 (3.112)

where Ī1(σ
2), Ī2(σ

2) are calculated based on a direct application of Theorem 23
(ii) to each of the two log-det terms in I1(σ

2) and I2(σ
2), respectively. The

optimal values (n̄⋆
1, n̄

⋆
2) are then found by an exhaustive search over all possible

combinations. Although we still need to compute N1×N2 values, this is compu-
tationally much cheaper than Monte Carlo simulations. Although Theorem 23
(ii) does not hold for the case ni = Ni in general, we can compute a determin-
istic equivalent of the mutual information by letting b̄k = 1 since Pk = INk

(see
Remark 28). In this case, the matrices Wk vanish and ĪN (σ2) reduces to the
deterministic equivalent of the mutual information of a channel with a variance
profile as given by Theorem 14.

Figure 3.26 and Figure 3.27 show E
[
I1(σ

2) + I2(σ
2)
]
and the deterministic

approximation Ī1(σ
2)+ Ī2(σ

2), by Theorem 23 (ii), as a function of (n1, n2) for
the simulation parameters as given in Table 3.2. We have assumed SNR = 0dB
and SNR = 40dB in Figure 3.26 and Figure 3.27, respectively. In both figures,
the solid grid represents simulation results and the markers the deterministic
approximations. We observe here again an almost perfect overlap between both
sets of results for all values of (n1, n2). The optimal values (n⋆1, n

⋆
2) and (n̄⋆1, n̄

⋆
2)

coincide for both values of SNR and are indicated by large crosses. At low
SNR, both transmitters should send as many independent streams as transmit
antennas, i.e., n1 = n2 = 10. At high SNR, one transmitter should use only
a single stream (n2 = 1) and the other transmitter n1 = N − 1 = 9 streams.
These results are in line with the observations of [177].

155



3.6. Random beamforming over quasi-static and fading channels

Table 3.2: Simulation parameters for Figure 3.26 and 3.27: N = 10, dr,kij =

4λ(i− j), dt,kij = 4λ(i− j)

(q, k) Nk θt,kmin θt,kmax θr,q,kmin θr,q,kmax

(1,1) 10 0 π/2 −π/4 0

(1,2) 10 −π/2 0 0 π/4

(2,1) 10 0 π/2 −π/3 0

(2,2) 10 −π/2 0 0 π/3

Obviously, the last result is highly unfair and better solutions can be achieved
by using different objective functions, such as weighted sum-rate maximization.
Also optimal stream-control with MMSE decoding could be carried out in a
similar manner. Although we would still need to perform and exhaustive search
over all possible combinations of n1, n2, the computations based on determin-
istic equivalents are significantly faster than simulation-based approaches. The
development of more intelligent algorithms to determine (n̄⋆

1, n̄
⋆
2) is left to future

work. The extension to more than two transmitter-receiver pairs is straightfor-
ward.

3.6.4 Conclusions

We have studied a class of wireless communication channels with random uni-
tary signature or precoding matrices over quasi-static and fast fading channels
and with multiple users or cells. We have provided deterministic approxima-
tions of the mutual information, the SINR at the output of the MMSE receiver
and the associated sum-rate, which are asymptotically accurate as the system
dimensions grow large. Simulations in the contexts of multi-cell SDMA, MIMO-
MAC, and interference channels verify the accuracy of the approximations even
for systems of small dimensions.
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Figure 3.26: Sum-rate versus number of transmitted data-streams (n1, n2) for
SNR = 0dB and all other parameters as provided in Table 3.2. Solid lines
correspond to simulation results, markers to the deterministic approximation
by Theorem 23 (ii). As expected, both transmitters should send the maximum
number of independent streams.
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Figure 3.27: Sum-rate versus number of transmitted data-streams (n1, n2) for
SNR = 40 dB and all other parameters as provided in Table 3.2. Solid lines
correspond to simulation results, markers to the deterministic approximation
by Theorem 23 (ii). As co-channel interference is dominant there is a clear gain
of limiting the number of transmitted streams.
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3.7 Appendices

3.7.1 Proof of Theorem 26

We start by defining the following auxiliary variables δj = 1
K trDj(τ)TP , j =

1, . . . ,K. Using this definition, we can re-write R(τ) in (3.22) as

R(τ) =
1

N

K∑

j=1

[
log(1 + δj)−

δj
1 + δj

]
− 1

N
log det

(
L

KP
TP

)
. (3.113)

We define δ′j =
d δj
d τ = 1

K trD′
j(τ)TP + 1

K trDj(τ)T
′
P , where T′

P = d
d τTP .

Taking the derivative of R(τ) with respect to τ yields

R
′
(τ) =

1

N

K∑

j=1

[
δ′j

1 + δj
−
δ′j(1 + δj)− δjδ

′
j

(1 + δj)2

]
− 1

N
trT−1

P T′
P

=
1

N

K∑

j=1

[
δjδ

′
j

(1 + δj)2

]
− 1

N
trT−1

P T′
P . (3.114)

This expression can be further simplified by re-writing the definition of TP as
a function of δj :

TP =


 L

KP
IN +

1

K

K∑

j=1

Dj(τ)

1 + δj




−1

. (3.115)

Using this expression, we have

trT−1
P T′

P = − trT−1
P TP

d

d τ


 L

KP
IN +

1

K

K∑

j=1

Dj(τ)

1 + δj


TP

= − trTP


 1

K

K∑

j=1

(1 + δj)D
′
j(τ)− δ′jDj(τ)

(1 + δj)2




=

K∑

j=1

δ′jδj − (1 + δj)
1
K trD′

j(τ)TP

(1 + δj)2
(3.116)

Plugging this expression into (3.114) and replacing δj by 1
K trDj(τ)TP leads

to

R
′
(τ) =

1

N

K∑

j=1

1
K trD′

j(τ)TP

1 + 1
K trDj(τ)TP

. (3.117)

In [51, Proposition 5.3], it is proved that

(
L

KP
+max

i,j
vij(τ)

)−1

≤ [TP ]ii ≤
KP

L
. (3.118)

Since both vij(τ) and v′ij(τ) are positive for τ, P > 0, it follows from (3.118)

that 1
K trD′

j(τ)TP > 0 and 1
K trDj(τ)TP > 0. This implies R

′
(τ) > 0 which

concludes the proof.
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3.7.2 Proof of Theorem 27

We want to show that R
′′
(τ) < 0. Under the assumption of a doubly regu-

lar variance profile matrix V(τ), the implicit matrix equation T(z) (2.215) of
Theorem 25 (i) reduces to a scalar equation, such that T(z) = t(z)IN , where

t(z) =
1

−z + K(τ)
1+K(τ)t(z)

. (3.119)

The unique solution to this equation (such that t(z) ∈ S(R+)) can be given in
closed-form as

t(z) =

√
1− K(τ)

z − 1

2K(τ)
. (3.120)

Let tP = t(− L
KP ). By Theorem 26, the first derivative of R(τ) can be written

as

R
′
(τ) =

1

N

N∑

j=1

1
N trD′

j(τ)tP

1 + 1
N trDj(τ)tP

=
tPK′(τ)

1 + tPK(τ)
(3.121)

where K′(τ) = d
d τK(τ). Similarly, the second derivative writes

R
′′
(τ) =

[t′PK′(τ) + tPK′′(τ)][1 + tPK(τ)]− tPK′(τ)[t′PK(τ) + tPK′(τ)]

[1 + tPK(τ)]2

=
t′PK′(τ) + tPK′′(τ)[1 + tPK(τ)]− [tPK′(τ)]2

[1 + tPK(τ)]2
. (3.122)

We now need to verify that the numerator of the last equation is negative. One
can easily verify from (3.24) and (3.25) that K′(τ) > 0 and it follows from
(3.118) that tP > 0. It remains thus to check that t′P < 0 and K′′(τ) < 0. Write
therefore tP as

tP =

√
1 + KP

L K(τ)− 1

2K(τ)

=
KP

2L
(√

1 + KP
L K(τ) + 1

) (3.123)

which is a strictly decreasing function of τ since K′(τ) > 0. Hence, we have that
t′P < 0. In order to show that K′′(τ) < 0, define the two auxiliary functions

K̂(τ) = 1
N

∑N
i=1 v̂ij(τ) and K̃(τ) = 1

N

∑N
i=1 ṽij(τ) which are independent of the

column index j. It is a simple exercise to verify that v̂ij(τ) are positive increasing
concave functions and ṽij(τ) are positive decreasing convex functions. Due to
the regularity conditions of the variance profile, one can verify from (3.7) that

159



3.7. Appendices

the quantization noise σ2
i is the same for all BS-antennas, i.e., σi = σ2. Thus,

K(τ) =
1

N

N∑

i=1

vij(τ)

=
1

N

N∑

i=1

v̂ij(τ)

1 + σ2 + PN
L K̃(τ)

=
K̂(τ)

1 + σ2 + PN
L K̃(τ)

(3.124)

Since both K̂(τ) and (1+σ2+ PN
L K̃(τ))−1 are positive increasing concave func-

tions, it follows from [132, Exercise 3.32 (b)] that the same holds also for their

product. Hence, K′′(τ) < 0 and, thus, R
′′
(τ) < 0.

3.7.3 Proof of Theorem 28

We start by expanding the difference Rnet(τ
∗)−Rnet(τ

∗) as follows:

Rnet(τ
∗)−Rnet(τ

∗)

=
[
Rnet(τ

∗)−Rnet(τ
∗)
]
+
[
Rnet(τ

∗)−Rnet(τ
∗)
]
+
[
Rnet(τ

∗)−Rnet(τ
∗)
]
.

(3.125)

From Theorem 25 (ii), we have that the first and last term of the RHS of (3.125)
vanish asymptotically, i.e.,

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 and Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0. (3.126)

By the definition of τ∗ and τ∗, we have for the LHS of (3.125) and the second
term on the RHS of (3.125)

Rnet(τ
∗)−Rnet(τ

∗) ≥ 0 and Rnet(τ
∗)−Rnet(τ

∗) ≤ 0. (3.127)

Equations (3.125), (3.126) and (3.127) together imply that

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 (3.128)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0. (3.129)

Equation (3.128) together with Theorem 25 (ii) proves part (i).
Assume now that V(τ) is a doubly regular matrix. Since Rnet(τ) is by

Theorem 27 a strictly concave function which takes its unique maximum at
point τ∗, (3.129) implies that τ∗ − τ∗ −−−−→

K→∞
0. This proves part (ii).

3.7.4 Proof of Theorem 31

We start by dividing the denominator and numerator of γdljm by 1
N .

Signal power: Straight-forward computations yield

1

N
λj

∣∣∣E
[
hH

jjmĥjjm

]∣∣∣
2

=
1

E

[
1
K

∑K
k=1

1
N ĥH

jjkĥjjk

]
∣∣∣∣E
[
1

N
ĥH

jjmĥjjm

]∣∣∣∣
2

= λ̄j

(
1

N
trΦjjm

)2

(3.130)
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where λ̄j =
(

1
K

∑K
k=1

1
N trΦjjk

)−1

. By A 1 and A 2, we have 0 < lim inf λ̄j ≤
lim sup λ̄j <∞.
Interference power: As a direct consequence of Lemma 11, we have

λj
N

var
[
hH

jjmĥjjm

]
= λ̄jE

[∣∣∣∣
1

N
hH

jjmĥjm − 1

N
trΦjjm

∣∣∣∣
2
]
−−−−→
N→∞

0. (3.131)

For the remaining terms, we have by (3.50)

1

N
λlE

[∣∣∣hH

ljmĥllk

∣∣∣
2
]

= λ̄lE


 1

N2

∣∣∣∣∣h
H

ljmRllkQlk

(
L∑

i=1

hlik +
1√
ρτ

nτ
lk

)∣∣∣∣∣

2



= λ̄l





1
N2 trRljmΦllk , k 6= m

E

[

| 1
N hljmRllmQlmhljm|2

]

+ 1
N2 trRljm(Φllm−ΦljmQlmRllm)

, k = m
. (3.132)

By Lemma 12, E
[∣∣ 1

N hljmRllmQlmhljm

∣∣2
]
−
∣∣ 1
N trΦljm

∣∣2 → 0. Combining all

results yields

∑

(l,k) 6=(j,m)

1

N
λlE

[∣∣∣hH

ljmĥllk

∣∣∣
2
]

−


 1

N

∑

l,k

λ̄l
1

N
trRljmΦllk +

∑

l 6=j

λ̄l

∣∣∣∣
1

N
trΦljm

∣∣∣∣
2

 −−−−→

N→∞
0. (3.133)

Note that we have neglected the terms 1
N2 trRljmΦljmQlmRllm which appear

only L− 1 times and therefore vanish asymptotically. Moreover, we have added
the single term λ̄j

1
N2 trRjjmΦjjk which is also negligible for large N . Replacing

the deterministic equivalents for the useful signal and the interference power in
(3.57) finally yields

γdljm − λ̄j
(

1
N trΦjjm

)2

1
ρdlN

+ 1
N

∑
l,k λ̄l

1
N trRljmΦllk +

∑
l 6=j λ̄l

∣∣ 1
N trΦljm

∣∣2 −−−−→
N→∞

0.

(3.134)

3.7.5 Proof of Theorem 33

Define the following matrices for j = 1, . . . , L and k = 1, . . . ,K:

Σj =
(
ĤjjĤ

H

jj + Zdl
j +Nϕdl

j IN

)−1

(3.135)

Σjk =
(
ĤjjĤ

H

jj − ĥjjkĥ
H

jjk + Zdl
j +Nϕdl

j IN

)−1

. (3.136)
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Signal power: We divide the denominator and numerator of γdljm by 1
N . Thus,

√
λj
N

hH

jjmwjm =

√
λj
N

hjjmΣjĥjjm

(a)
=

√
K

N

√√√√
1

E

[
trΣjĤjjĤH

jjΣj

] hjjmΣjmĥjjm

1 + hjjmΣjmĥjjm

(b)≍
√
K

N

√
1

E
[
trΣj − tr

(
Zdl

j +Nϕdl
j IN

)
Σ2

j

]
1
N trΦjjmTj

1 + 1
N trΦjjmTj

(c)≍
√
K

N

√√√√
1

1
N trTj − 1

N tr
(

Zdl
j

N + ϕdl
j IN

)
T̄′

1
N trΦjjmTj

1 + 1
N trΦjjmTj

(d)
=
√
λ̄j

δjm
1 + δjm

(3.137)

where (a) follows from Lemma 6, (b) follows from Lemma 13, Lemma 8 and The-

orem 14 applied to the term hjjmΣjmĥjjm and (c) results from Theorem 14
applied to trΣj and Theorem 21 applied to tr

(
Zdl

j +Nϕdl
j IN

)
Σ2

j . Note that
both theorems do not only imply almost sure convergence but also convergence
in the mean. In the last step, we have used the definitions δjm = 1

N trRjjmTj

and λ̄j =
K
N

(
1
N trTj − 1

N tr

(
Zdl

j

N + ϕdl
j IN

)
T̄′
)−1

. By the dominated conver-

gence theorem and the continuous mapping theorem, it is straight-forward to
show that

λj
N

∣∣∣E
[
hH

jjmΣjĥjjm

]∣∣∣
2

− λ̄j
δ2jm

(1 + δjm)
2 −−−−→

N→∞
0. (3.138)

Interference power: Define the following quantities:

a = ĥH

jjmΣjĥjjm, ā = E

[
hH

jjmΣjĥjjm

]
, b = h̃H

jjmΣjĥjjm. (3.139)

By Lemma 6, we have 0 ≤ a, ā ≤ 1. Moreover, E [b] = 0 and E [ab] = E [ab∗] = 0.
Thus,

var
[
hH

jjmΣjĥjjm

]
= E

[
|a− ā+ b|2

]

= E [(a− ā)(a+ ā)] + E
[
|b|2
]

≤ 2 E [|a− ā|)] + E
[
|b|2
]
. (3.140)

We have shown in (3.137) (b) that a− δjm
1+δjm

a.s−−−−→
N→∞

0. Since a, ā are bounded,

it follows from the dominated convergence theorem that E [|a− ā|] −−−−→
N→∞

0.

Moreover, one can show that E
[
|b|2
]
≤ 1

N

(
1

ϕdl
j

)2
‖Rjjm‖2 −−−−→

N→∞
0. Thus,

1

N
λjvar

[
hH

jjmΣjĥjjm

]
−−−−→
N→∞

0. (3.141)
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Consider now the terms |hH

jlmwlk|2:

|hH

jlmwlk|2
(a)
=

ĥH

llkΣlkhjlmhH

jlmΣlkĥllk
(
1 + ĥH

llkΣlkĥllk

)2

(b)≍ 1

(1 + δlk)
2

{
hH

ljmΣlkΦllkΣlkhljm , k 6= m

|ϑljm|2 , k = m

where (a) is due to Lemma 6, (b) follows from Lemmas 13, 8, Theorem 14, and
where we have used the definitions δlk = 1

N trΦllkTl and ϑljm = 1
N trΦljmTl.

In order to treat the terms for k 6= m further, we need the following identity
from Lemma 7:

Σlk = Σlkm − ΣlkmĥllmĥH

llmΣlkm

1 + ĥH

llmΣlkmĥllm

, k 6= m (3.142)

whereΣlkm =
(
ĤjjĤ

H

jj − ĥjjkĥ
H

jjk − ĥjjmĥH

jjm + Zdl
j +Nϕdl

j IN

)−1

. Note that

Σlkm is independent of hjlm while Σlk is not. Using (3.142), we can write

hH

ljmΣlkΦllkΣlkhljm = hH

ljmΣlkmΦllkΣlkmhljm

+

∣∣∣hH

ljmΣlkmĥllm

∣∣∣
2

ĥH

llmΣlkmΦllkΣlkmĥllm

(
1 + ĥH

llmΣlkmĥllm

)2

− 2ℜ
{
ĥH

llmΣlkmhljmhH

ljmΣlkmΦllkΣlkĥllm

1 + ĥH

llmΣlkmĥllm

}
.

(3.143)

As already shown above, we have ĥH

llmΣlkmĥllm ≍ δlm and ĥH

llmΣlkmhljm ≍
ϑ∗ljm. From Lemmas 13, 8 and Theorem 21, we can similarly obtain

hH

ljmΣlkmΦllkΣlkmhljm ≍ 1

N2
trRljmT′

lk (3.144)

ĥH

llmΣlkmΦllkΣlkmĥllm ≍ 1

N2
trΦllmT′

lk =
δ′lmk

N
(3.145)

hH

ljmΣlkmΦllkΣlkmĥllm ≍ 1

N2
trΦljmT′

lk =
ϑ′ljmk

N
(3.146)

where T′
lk = T′(ϕdl

l ) and δ′lk = [δ′l1k . . . δ
′
lKk]

T
= δ′(ϕdl

l ) are given by The-
orem 21 for SN = Zdl

l /N , ΘN = Φllk, DN = IN and Rk = Φllk for all k.
Combining the last results yields to

hH

ljmΣlkΦllkΣlkhljm ≍ trRljmT′
lk

N2
−

2ℜ
{
ϑ∗ljmϑ

′
ljmk

}
(1 + δjm)− |ϑljm|2δ′lmk

N (1 + δlm)
2

=
µljmk

N
. (3.147)
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Note now that

∑

(l,k) 6=(j,m)

λl
N

|hH

jlmwlk|2 ≤
∑

l

λ̄lh
H

jlmΣlĤllĤ
H

llΣ
H

l hjlm

≤
∑

l

λ̄hH

jlmΣlmhljm. (3.148)

Since hH

jlmΣlmhljm ≍ 1
N trRljmTl, E

[
hH

jlmΣlmhljm

]
− 1

N trRljmTl → 0 by

Lemmas 13, 8 and Theorem 14, and 1
N trRljmTl ≤ 1

ϕdl
l

‖Rljm‖, we have by

dominated convergence arguments

∑

(l,k) 6=(j,m)

λl
N

E
[
|hH

jlmwlk|2
]
−
∑

l,k

λ̄l
N

µljmk

(1 + δlk)2
−
∑

l 6=j

λ̄j
|ϑljm|2

(1 + δlm)2
−−−−→
N→∞

0

(3.149)

where we have also subtracted the asymptotically negligible term
λ̄j

N
µjjmm

(1+δjm)2 .

Combining (3.138), (3.141) and (3.149) concludes the proof.

3.7.6 Proof of Theorem 34

The proof follows closely those of [164, Proposition 5] and [83, Proposition 3].
We first recall the following property of concave functions (see e.g. [132]):

Property 4. A function f (Q1, . . . ,QK) is strictly concave in the Hermitian
nonnegative matrices Q1, . . . ,QK , if and only if, for any couples (Q1a ,Q1b) , . . . ,
(QKa ,QKb

) of Hermitian nonnegative matrices, the function

φ(λ) = f (λQ1a + (1− λ)Q1b, . . . , λQKa
+ (1− λ)QKb) , λ ∈ [0, 1]

is strictly concave.

Consider now ĪN (σ2) seen as a function of λ for Qk = λQka − (1 − λ)Qkb
,

where Qka ,Qkb
are Hermitian nonnegative definite matrices, for k = 1, . . . ,K.

Thus, by the chain rule of differentiation,

dĪN (σ2)

dλ
=
∂ĪN (σ2)

∂λ
+

K∑

k=1

∂ĪN (σ2)

∂ḡk

∂ḡk
∂λ

+
∂ĪN (σ2)

∂gk

∂gk
∂λ

+
∂ĪN (σ2)

∂δk

∂δ

∂λ
.

(3.150)

One can verify that the partial derivatives of ĪN
(
σ2
)
with respect to gk, ḡk, δk,

respectively, satisfy

∂ĪN
(
σ2
)

∂gk
=
∂ĪN

(
σ2
)

∂ḡk
=
∂ĪN

(
σ2
)

∂δk
= 0, (3.151)
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due to the defining relation (2.14). Thus,

dĪN (σ2)

dλ

=
∂ĪN (σ2)

∂λ

=

K∑

k=1

1

N
trT

1
2

k

(
Ink

+ gkT
1
2

k (λQka + (1− λ)Qkb
)T

1
2

k

)−1

T
1
2

k (Qka −Qkb
) .

(3.152)

The second derivative therefore reads

d2ĪN (σ2)

dλ2
=

−
K∑

k=1

1

N
tr


T

1
2

k

(
Ink

+ gkT
1
2

k (λQka
+ (1− λ)Qkb

)T
1
2

k

)−1

T
1
2

k
︸ ︷︷ ︸

,Ak

(Qka
−Qkb

)︸ ︷︷ ︸
,Bk




2

(3.153)

where Ak are Hermitian nonnegative definite and Bk are Hermitian. Let Ak =
UkDkU

H

k be the eigenvalue decomposition of Ak, where Uk ∈ C
nk×nk are

unitary matrices and Dk = diag (dk,1, . . . , dk,nk
) � 0. Moreover, denote Zk =

BkUk = [zk,1 . . . zk,nk
]. Then,

1

N
tr [AkBk]

2
=

1

N
trDkU

HBkAkBkU

=
1

N
trDkZ

H

kAkZk

=
1

N

nk∑

j=1

dk,jz
H

k,jAkzk,j ≥ 0. (3.154)

If Tk ≻ 0, or equivalently, if Tk is invertible, we have Ak ≻ 0 and (3.154)
holds with strict inequality for Qka

6= Qkb
. Thus, if any of the matrices Tk is

invertible and Qka
6= Qkb

, we have

K∑

k=1

1

N
tr [AkBk]

2
> 0 (3.155)

and hence d2ĪN (σ2)
dλ2 < 0. Thus, ĪN (σ2) is strictly concave in the matrices Qk.

Due to (3.151) it is then sufficient to maximize

log det
(
Ink

+ gkT
1
2

kQkT
1
2

k

)
(3.156)

with respect to Qk and with the constraint 1
nk

trQk ≤ Pk. The solution to this

problem is well-known [42] and given by the water-filling solution stated in the
theorem. However, since gk depends on Qk, this solution must be computed
iteratively by Algorithm 1.
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3.7.7 Proof of Theorem 35

Similar to the proof of Theorem 22 (ii), let us consider the matrix model

Hk =
1√
nk

ZkW2,kT
1
2

kQ
1
2

k (3.157)

where

Zk =
1√
Nk

R
1
2

kWk,1S
1
2

k . (3.158)

Then,

γNk,j = pk,jtk,j
1

nk
wH

2,k,jZ
H

k

×
(

K∑

i=1

HiH
H

i − pk,jtk,j
1

nk
Zkw2,k,jw2,k,jZ

H

k + σ2IN

)−1

Zkw2,k,j .

(3.159)

It was shown in the proof of Theorem 22 (ii) that, almost surely, lim supN‖ZkZ
H

k ‖ <
0. From the Fubini theorem, Lemma 13 and Lemma 8, we therefore have

γNk,j − pk,jtk,j
1

nk
trZkZ

H

k

(
K∑

i=1

HiH
H

i + σ2Ink

)
a.s.−→ 0. (3.160)

Applying Theorem 13 (ii) leads to

γNk,j − pk,jtk,j
1

nk
trZkZ

H

k

(
K∑

i=1

ēiZiZ
H

i + σ2Ink

)−1

a.s.−→ 0 (3.161)

where ēi are given as the unique solutions to (2.174). Notice now from (2.174)
that

ek =
1

nk
trZkZ

H

k

(
K∑

i=1

ēiZiZ
H

i + σ2Ink

)−1

(3.162)

and that maxk |ek − gk| a.s.−→ 0 by (2.201). This finally implies

γNk,j − pk,jtk,jgk
a.s.−→ 0. (3.163)

3.7.8 Proof of Corollary 5

Part (i) is a consequence of Theorem 35 and the continuous mapping theorem.
For Part (ii), first notice that RN (σ2) ≤ IN (σ2) and R̄N (σ2) ≤ ĪN (σ2).

Thus,
∣∣∣∣∣∣
RN (σ2)− 1

N

K∑

k=1

nk∑

j=1

log (1 + pk,jtk,jgk)

∣∣∣∣∣∣
≤ IN (σ2) + ĪN (σ2) , φN (σ2).

(3.164)

Since E
[
φN (σ2)

]
< ∞ by Theorem 22 (ii) (b), it follows from dominated con-

vergence arguments that

E
[
RN (σ2)

]
− R̄N (σ2) → 0. (3.165)
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3.7.9 Proof of Corollary 6

Under the assumptions of the corollary, the fundamental equations in Theo-
rem 22 (i) reduce to

ḡ =
1

1 + g
(3.166)

g =
S

N

δ

1 + ḡδ
(3.167)

δ =
1

K ḡg
δ + S

N σ
2

(3.168)

From (3.166), we have

g =
1− ḡ

ḡ
. (3.169)

Solving (3.167) for δ and replacing g by (3.169) yields

δ =
1− ḡ

ḡ
(
ḡ + S

N − 1
) . (3.170)

Solving (3.168) for δ and replacing g by (3.169) leads to

δ =
1−K(1− ḡ)

S
N σ

2
. (3.171)

Equating (3.170) and (3.171) and rearranging the terms as a polynomial in ḡ
finally yields

ḡ3 − ḡ2
(
2− S

N
− 1

K

)
+ ḡ

(
1− S

N
− 1

K
+

S

NK

(
1 + σ2

))
− S

NK
σ2 = 0.

(3.172)

By Theorem 22 (i), only one of the roots of this polynomial satisfies ḡ, g, δ > 0.
Now, (3.169) implies ḡ < 1, (3.170) implies ḡ > 1− S

N (3.171) implies ḡ > 1− 1
K .

Hence ḡ ∈
(
1−min

[
1
K ,

S
N

]
, 1
)
.

Similarly, ĪN
(
σ2
)
reduces under the assumptions of the corollary to

ĪN
(
σ2
)
= log

(
1 +

NK

σ2S

ḡg

δ

)
+
KS

N
log (1 + ḡδ) +K log (1 + g)− 2Kḡg.

(3.173)

Replacing g
δ by ḡ + S

N − 1 in the first term, δ by (3.170) in the second term,
g by (3.169) in the third term and ḡg by (1 − ḡ) in the last term leads to the
desired result.

The simplification of Theorem 35 is immediate since γ̄Nkj = pk,jtk,jgk = 1−ḡ
ḡ

by (3.169).

3.7.10 Proof of Theorem 36

We will pursue a similar approach as for the proof of Theorem 15, but we can
now take advantage of all results derived so far.

167



3.7. Appendices

First denote di the unique positive solution, for ei > 0, to

ei = di

(
c̄i −

1

N

ni∑

l=1

pildi
1 + pildi

)
. (3.174)

This solution exists and is unique due to the arguments given in the introduction
of Step 2 of the proof of Theorem 15.

Whatever the value of ci, we will proceed as previously by extending the
matrix Pi to an Ni-dimensional matrix with the last Ni − ni diagonal entries
filled with zeros. This way, we can write

ei = di

(
1

N

Ni∑

l=1

1− pildi
1 + pildi

)
=

1

N

Ni∑

l=1

di
1 + pildi

. (3.175)

Since di is a continuous mapping of ei and ei ≤ P
|z| , it follows that di is

bounded from above.
Remember now that for lim sup ci < 1 for all i and, for some z0 < 0, we have

that z < z0 implies

E[|fi − ei|4] = E



∣∣∣∣∣fi −

1

N

Ni∑

l=1

di
1 + pildi

∣∣∣∣∣

4

 ≤ C

N2
(3.176)

for some constant C > 0. Also, from (2.28),

E



∣∣∣∣∣fi −

1

N

Ni∑

l=1

δi
1 + pilδi

∣∣∣∣∣

4

 ≤ C1

N2
(3.177)

for some C1 > C. From these two inequalities, we have

E



∣∣∣∣∣
1

N

Ni∑

l=1

δi
1 + pilδi

− 1

N

Ni∑

l=1

di
1 + pildi

∣∣∣∣∣

4

 ≤ 16C1

N2
. (3.178)

Also, from an immediate application of the Lemma 15, we remind that

E

[∣∣∣wH

ilH
H

i

(
B(i,l) − zIN

)−1
Hiwil − δi

∣∣∣
4
]
≤ C2

N2
(3.179)

for some C2 > C1.
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Together, this implies that for z small enough and for any k ∈ {1, . . . , nk},

E



∣∣∣∣∣
1

N

Ni∑

l=1

di
1 + pildi

− 1

N
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ikH
H
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(
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1 + pilwH

ikH
H

i

(
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)−1
Hiwik
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E
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1 + pildi

− 1

N
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δi
1 + pilδi
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1 + pilδi
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H
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(
B(i,k) − zIN

)−1
Hiwik

1 + pilwH
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H

i

(
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)−1
Hiwik
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= 8
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1 + pildi

− 1

N
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δi
1 + pilδi
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N
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δi −wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik

(1 + pilδi)(1 + pilwH

ikH
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i

(
B(i,k) − zIN

)−1
Hiwik)
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4





≤ 136C2

N2
. (3.180)

This ensures that for z < z0,

1

N

Ni∑

l=1

di
1 + pildi

− 1

N

Ni∑

l=1

wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik

1 + pilwH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik

a.s.−→ 0 (3.181)

irrespectively of the choice of k.
Since the function f : x 7→ 1

N

∑Ni

l=1
x

1+pilx
is continuous and has positive

derivative, it is a one-to-one continuous function. Therefore, for B1,B2, . . . a
realization such that the convergence of (3.181) is ensured, we also have by

continuity di −wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik → 0. Finally,

di −wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik

a.s.−→ 0. (3.182)

Noticing from (2.77) that di =
ei

c̄i−eiēi
, we have proved the convergence for

z < z0. The Vitali convergence theorem then ensures that the convergence holds
true for all z ∈ C \ R+.

Since the quantities di and wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik are uniformly

bounded for all N (a result that holds surely since we assumed the Hi deter-
ministic), the dominated convergence theorem also ensures that the convergence
holds in the first mean.

3.7.11 Proof of Corollary 8

In order to prove part (ii) we simply invoke the continuous mapping theorem

for the function φ : x 7→ 1
N

∑K
k=1

∑nk

i=1 log(1+pikx) on the convergence (3.182).
The convergence in the mean sense (part (i)) is obtained using the boundedness

of di and wH

ikH
H

i

(
B(i,k) − zIN

)−1
Hiwik uniformly on N and hence the bound-

edness of their image by φ. The dominated convergence theorem then gives the
result.
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3.7.12 Proof of Theorem 37

The proof follows directly from (2.236), (2.237), and Theorem 36.

3.7.13 Proof of Corollary 9

The almost sure convergence (part (ii)) follows directly from Theorem 37 and
the continuous mapping theorem.

For the convergence in mean, note first that, as a standard result of informa-
tion theory, IN (σ2)−RN (σ2) ≥ 0 for all N . Consider now the extended matrix
model where HL

k ∈ C
LN×LNk is defined in (2.218), PL

k = Pk ⊗ IL ∈ C
Lnk×Lnk

and WL
k ∈ C

LNk×Lnk is constructed from Lnk columns of a LNk×LNk random
unitary matrix. Denote IN,L(σ

2) and RN,L(σ
2) the associated mutual informa-

tion and MMSE sum-rate for this channel model. One can verify that for this
model and by Theorem 23 (ii) and the convergence of RN (σ2)− R̄N (σ2) in the
almost sure sense, the following holds

IN,L(σ
2)

a.s.−−−−→
L→∞

ĪN (σ2) (3.183)

RN,L(σ
2)

a.s.−−−−→
L→∞

R̄N (σ2). (3.184)

Thus,

IN,L(σ
2)−RN,L(σ

2)

= IN,L(σ
2)− ĪN (σ2) + ĪN (σ2)− R̄N (σ2) + R̄N (σ2)−RN,L(σ

2)
a.s.−−−−→

L→∞
ĪN (σ2)− R̄N (σ2) (3.185)

from which we can conclude that ĪN (σ2) − R̄N (σ2) ≥ 0 for all N . Using this
result, it follows that

∣∣RN (σ2)− R̄N (σ2)
∣∣ ≤ IN (σ2) + ĪN (σ2)

≤ IN (σ2)− ĪN (σ2) + 2 sup
N
ĪN (σ2)

, vN . (3.186)

Since vN
a.s.−→ 2 supN ĪN (σ2) < ∞ and E [vN ] → 2 supN ĪN (σ2) by Theo-

rem 23 (ii), it finally follows from [63, Problem 16.4 (a)] that

E
[
RN (σ2)

]
− R̄N (σ2) → 0. (3.187)
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Chapter 4

Conclusions & Outlook

In order to cope with the exploding demand for wireless data services, advanced
mobile communication systems will be characterized by a dense deployment of
different types of wireless access points. Likely is a mix of low-power small-cells,
indoor femto cells, and macro BSs which are possibly equipped with large arrays
of smart antennas. Mitigating interference and reducing the power consumption
in such networks is of paramount importance. Thus, CoMP techniques as well
as self-optimization functionalities are not only a desirable but also a necessary
feature. As mobile networks become more complex also the methods required
for their theoretical performance analysis must evolve. This implies that they
must be able to account for the most important characteristics of such networks,
namely fading, path loss, interference, imperfect CSI, pilot contamination, an-
tenna correlation, LOS conditions, and cooperation with limited data exchange.
In this thesis, we have developed novel methods based on large random matrix
theory which are able to take these characteristics into account. In particu-
lar, the concept of deterministic equivalents which is based on a large system
assumption leads often to surprisingly simple and tight approximations of the
system performance and allows one to draw important conclusions about the
most relevant parameters. One can think of this method as a way to provide
a deterministic abstraction of the physical layer which significantly reduces the
system complexity. Owing to this complexity reduction, it is for example possi-
ble to optimize certain system parameters (training length, precoding matrices,
etc.) which would have been intractable otherwise. This approach might also
be important for the joint optimization of multiple layers of the protocol stack.

We have demonstrated the usefulness of the deterministic equivalent ap-
proach in the context of several different scenarios of practical interest, such as
the performance analysis and optimization of network MIMO and large-scale
MIMO systems and the study of double-scattering and multi-hop relay chan-
nels. Moreover, several novel contributions to the field of random matrix theory
originate from this dissertation. The most important are the concept of iterative
deterministic equivalents and the derivation of deterministic equivalents for a
certain class of functionals of random unitary matrices.

Some words of caution are in order with regards to the asymptotic nature of
our results. We have put an emphasis on the fact that most of the deterministic
equivalents provide very accurate approximations for finite system dimensions.
Sometimes the asymptotic and exact results are already indistinguishable for
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systems with two transmit and receive antennas. However, nothing guarantees
that this is the case for all possible parameter choices. In general, the approx-
imations get worse in the high SNR regime (see [50] for a recent discussion of
this effect for the mutual information of a point-to-point MIMO channel). An
important indicator of the tightness of asymptotic approximations are scaling re-
sults which describe the converge rates of certain quantities to their asymptotic
limits. For example, while the variance of the normalized mutual information
of certain N × N MIMO channels can be shown to decrease as 1/N2 [51], the
variance of the SINR with an MMSE detector scales as 1/N [52]. Thus, the
accuracy of deterministic equivalents depends not only on the system size but,
more importantly, also on the random quantity under consideration.

In the following, we will outline some interesting topics for future work:

� Random network topologies: Throughout the entire document, we
have tacitly assumed that the transmitters and receivers are located at
fixed and known positions. However, this assumption is rarely met in
practice. UTs naturally move around and the positions of user-deployed
access points, such as femto cells, are neither known nor bound to remain
static. Thus, the network topology is an additional random parameter of
mobile communication systems which must be taken into consideration. A
recent approach to tackle this problem is stochastic geometry [53]. In this
framework, UTs and access points are seen as random point processes in
space. These point processes are generally characterized by their density
and their tendency to form clusters, i.e., attraction points of higher den-
sity. Although this technique has led to many interesting results on the
expected performance of randomly deployed multi-tier networks [54, 55],
only very recently cooperation between access points has been considered
[56, 57]. However, the consideration of cooperation between nodes intro-
duces complicated interdependencies between the points of the underly-
ing point process (e.g., association of UTs to cell clusters) which cannot
be easily resolved with existing techniques. A combination of RMT and
stochastic geometry might overcome this problem. RMT could remove
the randomness due to fading in such networks while stochastic geometry
would average over all possible user locations. This is especially important
if one wants to maximize the average system performance with respect to
a certain parameter, e.g., the optimal BS-placement or clustering. We
have reported first results in this direction in [184, 185].

� Coding over finite block length: The mutual information and the
achievable rates considered in this thesis are all based on the crucial as-
sumption of codewords of infinite length. Thus, although the channel
coherence time is limited, the messages are assumed to be encoded and
transmitted over infinitely many of such coherence blocks. In practice,
this assumption would imply an infinite delay. Recently, there has been
a growing interest in the ultimate performance limits of coding over finite
block lengths which was mainly spurred by the papers [58, 59]. However,
obtaining tight and explicit bounds on the error probability for a given
block length is difficult for fading MIMO channels. The application of
RMT to this field of information theory might lead to significant simplifi-
cations. We have provided some first results on this topic in [186].
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� Intelligent use of excess antennas: In Section 3.3, we have analyzed
the performance of large-scale MIMO systems where the BSs are equipped
with a much larger number of antennas than there are UTs per cell. How-
ever, this type of large antenna arrays is more or less a brute-force ap-
proach to counter inter-cell interference and to reduce transmit powers.
It would be interesting to investigate other ways to make a possibly more
intelligent use of additional or “excess” antennas in a network. For exam-
ple, a macro cell BS could sacrifice some of its antennas for interference
cancellation to lower network tiers, such as femto cells. Assuming a re-
versed TDD protocol between macros and femtos [60], CSI at the macro
BSs could be obtained “for free”. An interesting question in this context
would be if the performance loss in the macro cell is sufficiently com-
pensated for by the resulting rate improvements in the femto network.
Another interesting question in this context would be related to the opti-
mal placement of antennas: For a given area with a given distribution of
UTs, what is the best way to deploy N antennas to cover this area?

� Time-varying channels: The fading channel models we have used in
this thesis do not exhibit any correlation over time. That is, the channel
realizations at two different time instants are independent random vari-
ables. Building upon recent results on time-varying random matrices [61],
[62], it would be interesting to study how the network performance varies
over time for a given stochastic process. However, such research is still in
its infancy and it will take some effort and time until these methods are
sufficiently understood to consider matrix models which are relevant for
communication systems.
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