

Centre

de Recherche

en Automatique

de Nancy

UMR 7039

Soutenance de Thèse 7 Septembre 2012

ArHyCo

Analyse de stabilité et de performances d'une classe de systèmes non-linéaires à commutations en temps discret

Carlos Alberto CAVICHIOLI GONZAGA Directeur : Jamal DAAFOUZ Codirecteur : Marc JUNGERS

Plan de la présentation

Concept de problème de Lur'e

Une fonction de Lyapunov du type Lur'e adaptée au temps discret Analyse de stabilité globale Analyse de stabilité locale

Systèmes Lur'e à commutations

Cadre de commutation arbitraire Stabilité globale - système Lur'e non-saturé Stabilité locale - système Lur'e saturé

Cadre de commutation commande Stabilisation globale Stabilisation locale

Conclusions et perspectives

Concept de problème de Lur'e

Une fonction de Lyapunov du type Lur'e adaptée au temps discret Analyse de stabilité globale Analyse de stabilité locale

Systèmes Lur'e à commutations

Conclusions et perspectives

Le problème de Lur'e classique

Système Lur'e en temps discret :

Hypothèse :

- Matrice A est supposée stable ;
- La non-linéarité $\varphi(y)$ vérifie la condition de secteur borné :

$$SC(\varphi(\cdot), y, \Lambda) = \varphi'(y)\Lambda[\varphi(y) - \Omega y] \le 0,$$
(3)

avec $0_p < \Omega \in \mathbb{R}^{p \times p}$ diagonale et donnée. Objectif :

Étudier la stabilité asymptotique du système (1)-(2) sous l'hypothèse de la condition de secteur.

Problème originalement étudié en temps continu¹.

Particularités des approches classiques Les fonctions de Lyapunov les plus utilisées :

- Quadratique en l'état (critère du Cercle/Tsypkin) : x'Px ;
 - traite le cas lorsque la non-linéarité varie dans le temps $\varphi(t, x)$.
- Fonction de Lur'e (critère de Popov) :

$$\mathbf{v}(\mathbf{x}) = lpha \mathbf{x}^2 + 2\eta \int_0^{C'\mathbf{x}} \varphi(\mathbf{s}) \mathrm{d}\mathbf{s}, \ lpha > \mathbf{0}, \ \eta \ge \mathbf{0};$$

- $\varphi(\cdot)$ doit être invariante dans le temps ;
- seulement (3) est utilisée en temps continu pour conclure $\dot{v} < 0$.

Concept de problème de Lur'e

Une fonction de Lyapunov du type Lur'e adaptée au temps discret

Analyse de stabilité globale Analyse de stabilité locale

Systèmes Lur'e à commutations

Conclusions et perspectives

Une fonction de Lyapunov du type Lur'e en temps discret

$$V: \begin{cases} \mathbb{R}^n \times \mathbb{R}^p & \longrightarrow & \mathbb{R}, \\ (x; \varphi(Cx)) & \longmapsto & x' P x + 2\varphi(Cx)' \Delta \Omega C x, \end{cases}$$
(4)

• avec $0_n < P = P' \in \mathbb{R}^{n \times n}$ et $0_p \le \Delta \in \mathbb{R}^{p \times p}$ diagonale inconnues.

• Fonctions quadratiques encadrantes :

$$\underline{V}(x) \le V(x; \varphi(Cx)) \le \overline{V}(x), \tag{5}$$

CRAI

où $\underline{V}(x) = x' P x$ et $\overline{V}(x) = x' (P + 2C'\Omega' \Delta \Omega C) x$.

Propriétés basiques

Fonction candidate à fonction de Lyapunov :

- V(x; φ(Cx)) > 0 (∀x ≠ 0) car P > 0_n et la condition de secteur (3) de φ(·);
- $V(x; \varphi(Cx)) = 0 \Leftrightarrow x = 0$, car $P > 0_n$;
- Relation (5) implique que la fonction (4) est radialement non-bornée ;
- La différence de Lyapunov : $\delta_k V = V(x_{k+1}; \varphi(y_{k+1})) V(x_k; \varphi(y_k)).$

La ligne de niveau de la fonction (4) :

$$L_{V}(\gamma) = \left\{ x \in \mathbb{R}^{n}; V(x; \varphi(Cx)) \leq \gamma \right\}.$$
(6)

- Considérons les fonctions de l'exemple et $\gamma = 0.7$;
- L'ensemble *L_V*(0.7) peut être non-convexe et non-connexe.
- De la relation (5), nous avons : $\mathcal{E}(P + 2C'\Omega'\Delta\Omega C, 0.7) \subseteq L_V(0.7) \subseteq \mathcal{E}(P, 0.7);$

CRA

Concept de problème de Lur'e

Une fonction de Lyapunov du type Lur'e adaptée au temps discret Analyse de stabilité globale Analyse de stabilité locale

Systèmes Lur'e à commutations

Conclusions et perspectives

Le problème de Lur'e en temps discret

Théorème 1 : Analyse de stabilité globale

S'il existe des matrices solutions de la LMI suivante

$$\begin{bmatrix} P - G' - G & G'A & G'F & 0_{n \times p} \\ \star & -P & C'\Omega[T - \Delta] & A'C'\Omega[W + \Delta] \\ \star & \star & -2T & F'C'\Omega[W + \Delta] \\ \star & \star & \star & -2W \end{bmatrix} < 0_{2n+2p}, \quad (7)$$

on a

$$\delta_k V - 2SC(\varphi(\cdot), y_{k+1}, W) - 2SC(\varphi(\cdot), y_k, T) < 0, \ \forall x_k \neq 0,$$

alors la fonction $V(x; \varphi(Cx))$ est une fonction de Lyapunov et l'origine du système (1)-(2) est globalement asymptotiquement stable.

Pas d'hypothèse sur la variation de $\varphi(\cdot)$.

CRAI

Exemple 1 : analyse de stabilité globale

• Système Lur'e en temps discret avec $n = 2, p = 1, \Omega = \frac{1}{\sqrt{2}}$:

$$A = \begin{bmatrix} 0.5 & 0.1 \\ 0.3 & -0.4 \end{bmatrix}; F = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}; C' = \begin{bmatrix} 1 \\ 0 \end{bmatrix};$$

- La non-linéarité est φ(y) = 0.5Ωy(1 + cos(10y)) (dérivée n'est pas bornée sur tout le domaine y ∈ ℝ);
- Notre fonction de Lyapunov (4) existe pour ce système et les paramètres sont donnés par :

$$P = \begin{bmatrix} 0.9825 & -0.0846 \\ -0.0846 & 0.9476 \end{bmatrix}; \ \Delta = 0.7503.$$

Une condition initiale x_0 k = 0

Contractivité de la ligne de niveau $L_V(\gamma = V(x_0, \varphi(y_0)));$ k = 0

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 1$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 2$

$$L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 3$$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 4$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 5$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 6$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 7$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 8$

 $L_V(\gamma = V(x_{k-1}, \varphi(y_{k-1}))) \text{ et } L_V(\gamma = V(x_k, \varphi(y_k))); \qquad k = 9$

Concept de problème de Lur'e

Une fonction de Lyapunov du type Lur'e adaptée au temps discret Analyse de stabilité globale Analyse de stabilité locale

Systèmes Lur'e à commutations

Conclusions et perspectives

Système Lur'e avec la saturation de commande

$$\begin{aligned} x_{k+1} &= Ax_k + F\varphi(y_k) + B\text{sat}(u_k), \quad \forall k \in \mathbb{N} \\ y_k &= Cx_k \end{aligned} \tag{8}$$

Pour la classe de lois de commande non-linéaire : $u_k = Kx_k + \Gamma \varphi(y_k)$.

Saturation d'entrée :

- Seulement la stabilité locale peut être assurée généralement ;
- Le bassin d'attraction \mathcal{B}_0 peut être non-convexe et non-connexe.

Objectifs :

- Analyse de stabilité et synthèse de commande ;
- Considérer l'ensemble $L_V(1)$ afin d'estimer le bassin d'attraction \mathcal{B}_0 ;

Outils :

 La zone-morte Ψ(u_k) = u_k - sat(u_k), associée à la saturation, vérifie une condition de secteur généralisée locale :

$$\mathrm{SC}_{u_k} = \Psi'(u_k) U\left[\Psi(u_k) - J_1 x_k - J_2 \varphi(y_k)\right] \le 0, \tag{10}$$

pour des matrices diagonales $0_m < U \in \mathbb{R}^{m \times m}$.

dans l'ensemble

$$\mathcal{S}(\hat{K} - \hat{J}, \rho) = \{\theta \in \mathbb{R}^{n+\rho}; -\rho \le (\hat{K} - \hat{J})\theta \le \rho\},\tag{11}$$

avec $\hat{K} = [K \ \Gamma]$ et $\hat{J} = [J_1 \ J_2]$, on a $\mathrm{SC}_{u_k} \leq 0$ vérifiée.

Modèle en boucle fermée :

$$x_{k+1} = A_{cl}x_k + F_{cl}\varphi(y_k) - B\Psi(u_k), \qquad (12)$$

où $A_{cl} = A + BK$ et $F_{cl} = F + B\Gamma$.

Idée principale

Des inclusions décrites sous forme d'inégalités matricielles :

IM1) Une boule de rayon $1/\sqrt{\mu}$ incluse dans l'ensemble $L_V(1)$; IM2) $L_V(1) \subset S(\hat{K} - \hat{J}, \rho)$ tel que l'on ait $SC_{u_k} \leq 0$; IM3) Un majorant pour $\delta_k V : \delta_k V - 2SC_{u_k} - 2SC(\varphi(\cdot), y_{k+1}, W) - 2SC(\varphi(\cdot), y_k, T) < 0$.

Conclusion : dans $L_V(1)$, $\delta_k V < 0$, $\forall x_k \neq 0$.

12/42

Inégalités assurant les inclusions :

• La faisabilité de la LMI

$$\begin{bmatrix} \mu I_n - P & -C'\Omega \left[R + \Delta \right] \\ \star & 2R \end{bmatrix} > 0_{n+p}, \tag{13}$$

implique l'inclusion $\mathcal{E}(I_n, \frac{1}{\mu}) \subset L_V(1)$.

• La LMI suivante :

$$\begin{bmatrix} P & C'\Omega \left[\Delta - Q\right] & (K - J_1)'_{(\ell)} \\ \star & 2Q & (\Gamma - J_2)'_{(\ell)} \\ \star & \star & \rho_{(\ell)}^2 \end{bmatrix} > 0_{n+p+1}, \quad (14)$$

implique l'inclusion $L_V(1) \subset S((\hat{K} - \hat{J}), \rho)$, avec $\hat{K} = [K \ \Gamma]$ and $\hat{J} = [J_1 \ J_2]$.

Inégalité définissant le majorant pour $\delta_k V$

Si l'inégalité suivante

est vérifiée, avec $\Pi_1 = C'\Omega[T - \Delta]$; $\Pi_2 = C'\Omega[W + \Delta]$, alors elle implique

$$\delta_k V - 2\mathrm{SC}_{u_k} - 2\mathrm{SC}(\varphi(\cdot), y_{k+1}, W) - 2\mathrm{SC}(\varphi(\cdot), y_k, T) < 0.$$
(16)

Les inégalités (14)-(15) impliquent stabilité asymptotique dans $L_V(1)$.

Problème d'optimisation pour déterminer le plus grand $L_V(1)$

Théorème 2 : Analyse de stabilité locale S'il existe des matrices $G \in \mathbb{R}^{n \times n}$, $J_1 \in \mathbb{R}^{m \times n}$, $J_2 \in \mathbb{R}^{m \times p}$, des matrices $0_n < P = P' \in \mathbb{R}^{n \times n}$; des matrices diagonales $0_p \le \Delta \in \mathbb{R}^{p \times p}$, $0_p < R, Q, T, W \in \mathbb{R}^{p \times p}$, et un scalaire μ solutions du problème d'optimisation convexe suivant :

 $\min_{\textit{G},\textit{P},\textit{J}_1,\textit{J}_2,\textit{Q},\textit{R},\textit{T},\textit{W},\textit{\Delta},\textit{\mu}}\mu$

sous les contraintes (13), (14) et (15)

alors une estimation de \mathcal{B}_0 est donnée par l'ensemble $L_V(1)$.

Exemple 2 : Analyse de stabilité locale

• Système Lur'e avec la saturation : n = 2 ; p = m = 1 ; $\rho = 1.5$; $\Omega = 0.9$.

$$A = \begin{bmatrix} 0.85 & 0.4 \\ 0.6 & 0.95 \end{bmatrix}; B = \begin{bmatrix} 1.3 \\ 1.2 \end{bmatrix}; F = \begin{bmatrix} 1.3 \\ 1.2 \end{bmatrix}; C = \begin{bmatrix} -0.5 & 0.9 \end{bmatrix}.$$

• La méthode fondée sur la fonction quadratique fournit les gains :

$$\mathcal{K} = \begin{bmatrix} -0.3324 & -1.0006 \end{bmatrix}$$

• En appliquant le théorème 2, notre fonction de Lyapunov existe :

$$P = \begin{bmatrix} 0.0418 & 0.0173 \\ 0.0173 & 0.2305 \end{bmatrix}; \ \Delta = 0.0381.$$

Sans avoir accès à $\varphi(y_k)$, notre méthode fournit une estimation donnée par :

$$\mathcal{E}(P+2C'\Omega\Delta\Omega C)$$

Estimation $L_V(1)$ pour différentes non-linéarités : $\varphi(y) = 0.5\Omega y (1 + \exp(-0.5y^2)).$

Conditions initiales x_0 menant à des trajectoires instables Bassin d'attraction \mathcal{B}_0 change aussi.

Estimation $L_V(1)$ pour différentes non-linéarités : $\varphi(y) = \Omega y.$

Conditions initiales x_0 menant à des trajectoires instables Bassin d'attraction \mathcal{B}_0 change aussi.

Estimation $L_V(1)$ pour différentes non-linéarités : $\varphi(y) = 0.5\Omega y(1 + \cos(20y)).$

Conditions initiales x_0 menant à des trajectoires instables Bassin d'attraction \mathcal{B}_0 change aussi.

Concept de problème de Lur'e

Systèmes Lur'e à commutations

Cadre de commutation arbitraire Stabilité globale - système Lur'e non-saturé Stabilité locale - système Lur'e saturé Cadre de commutation commande Stabilisation globale Stabilisation locale

Conclusions et perspectives

Systèmes Lur'e à commutations en temps discret Systèmes Lur'e à commutations :

$$\begin{aligned} x_{k+1} &= A_{\sigma(k)} x_k + F_{\sigma(k)} \varphi_{\sigma(k)}(y_k) \quad (17) \\ y_k &= C_{\sigma(k)} x_k, \quad (18) \end{aligned}$$

où $x_k \in \mathbb{R}^n$, $y_k \in \mathbb{R}^p$, $k \in \mathbb{N}$, $\sigma(\cdot) : \mathbb{N} \to \mathcal{I}_N = \{1, ..., N\}.$

Motivation :

- Chaque mode est associé à une non-linéarité φ_i(y);
- La non-linéarité active est définie par la loi de commutation ;
- Les conditions de secteur sont dépendantes du mode, ∀i ∈ I_N :

$$\mathrm{SC}(\varphi_i(\cdot), y, \Lambda_i) = \varphi_i'(y)\Lambda_i[\varphi_i(y) - \Omega_i y] \leq 0$$
(19)

Une fonction de Lyapunov du type Lur'e commutée en temps discret

Définitions :

$$V: \begin{cases} \mathcal{I}_N \times \mathbb{R}^n \times \mathbb{R}^p & \longrightarrow & \mathbb{R}, \\ (i; x; \varphi_i(C_i x)) & \longmapsto & x' P_i x + 2\varphi_i(C_i x)' \Delta_i \Omega_i C_i x. \end{cases}$$
(20)

- $P_i = P'_i > 0_n$ and $\Delta_i \ge 0_p$ (diagonales), $\forall i \in \mathcal{I}_N$;
- Pas d'hypothèse supplémentaire sur les non-linéarités $\varphi_i(\cdot), \forall i \in \mathcal{I}_N$;
- Des fonctions quadratiques commutées encadrantes

$$x'P_{i}x = \underline{V}_{i}(x) \leq V(i;x;\varphi_{i}(C_{i}x)) \leq \overline{V}_{i}(x) = x'(P_{i}+2C'_{i}\Omega'_{i}\Delta_{i}\Omega_{i}C_{i})x, \quad \forall i \in \mathcal{I}_{N}.$$
(21)

Concept de problème de Lur'e

Systèmes Lur'e à commutations

Cadre de commutation arbitraire Stabilité globale - système Lur'e non-saturé Stabilité locale - système Lur'e saturé

Cadre de commutation commande Stabilisation globale Stabilisation locale

Conclusions et perspectives

Stabilité globale dans le cas des commutations arbitraires

Système Lur'e non-saturé

Outils	Non commuté	Commuté
Fonction de	$V(\mathbf{x}; c(\mathbf{C}\mathbf{x}))$	$V(i; \mathbf{x}; o(\mathbf{C}; \mathbf{x}))$
Lyapunov	$V(X, \varphi(OX))$	$\mathbf{V}(\mathbf{I},\mathbf{X},\varphi_{\mathbf{I}}(\mathbf{O}_{\mathbf{I}}\mathbf{X}))$
$L_V(\gamma)$	$\{x \in \mathbb{R}^n; V(x; \varphi(Cx)) \leq \gamma\}$	$\bigcap_{i\in\mathcal{T}_{i}} \{x\in\mathbb{R}^{n}; V(i;x;\varphi_{i}(C_{i}x))\leq\gamma\}$
nh I MIs	4	N ²
		/*
Bornes L _V	Ellipses	Intersections Ellipses

Système Lur'e à commutations arbitraires et la saturation

$$\begin{aligned} x_{k+1} &= A_{\sigma(k)}x_k + F_{\sigma(k)}\varphi_{\sigma(k)}(y_k) + B_{\sigma(k)}\operatorname{sat}(u_k), \quad \forall k \in \mathbb{N} \\ y_k &= C_{\sigma(k)}x_k \end{aligned}$$
(22)

Pour la classe de lois de commande non-linéaire commutée :

$$u_{k} = K_{\sigma(k)} x_{k} + \Gamma_{\sigma(k)} \varphi_{\sigma(k)}(y_{k}), \quad \forall \ \sigma \in \mathcal{I}_{N}.$$
(24)

CRAN

But :

• Analyse de stabilité (pour *K_i* et Γ_i donnés) ou bien synthèse de commande ;

Estimer le \mathcal{B}_0 du système (22)-(23), assurant la stabilité locale pour toute loi de commutation.

Stabilité locale dans le cas des commutations arbitraires

Système Lur'e avec la saturation

Outils	Non commuté	Commuté
Fonction de	$V(\mathbf{x}; c(\mathbf{C}\mathbf{x}))$	$V(i; \mathbf{x}; o(\mathbf{C}; \mathbf{x}))$
Lyapunov	$V(x, \varphi(\mathbf{O}x))$	$V(I, X, \varphi_i(O_iX))$
$L_{V}(1)$	$\{x \in \mathbb{R}^n; V(x; \varphi(Cx)) \leq 1\}$	$\bigcap_{i\in\mathcal{I}_N} \{x\in\mathbb{R}^n; V(i;x;\varphi_i(C_ix))\leq 1\}$
nb LMIs	2+m	$N^2 + N.(1 + m)$
Bornes L _V	Ellipses	Intersections Ellipses
Correcteur	<i>К</i> et Г	K_i et Γ_i ($\forall i \in \mathcal{I}_N$)

Exemple 4 : synthèse de commande commutée

• Système Lur'e à commutations arbitraires avec deux modes N = n = 2; p = m = 1; $\rho = 1.5$, $C_1 = \begin{bmatrix} 0.9 & 0.5 \end{bmatrix}$; $C_2 = \begin{bmatrix} 1 & -0.7 \end{bmatrix}$; $\Omega_1 = 0.7$; $\Omega_2 = 1.3$.

•
$$\varphi_1(y) = 0.5\Omega_1 y (1 + \sin(30y)); \varphi_2(y) = 0.5\Omega_2 y (1 + \cos(\frac{100y}{3}))$$

$$A_{1} = \begin{bmatrix} 0.4 & 0.4 \\ 0.2 & 1 \end{bmatrix}; B_{1} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}; F_{1} = \begin{bmatrix} 1 \\ 1.2 \end{bmatrix};$$
$$A_{2} = \begin{bmatrix} 1.1 & 0.6 \\ 0.3 & 0.4 \end{bmatrix}; B_{2} = \begin{bmatrix} 0.7 \\ 0.5 \end{bmatrix}; F_{2} = \begin{bmatrix} 1.2 \\ 1 \end{bmatrix}.$$

La méthode proposée fournit les gains commutés suivants :

$$\begin{split} \mathcal{K}_1 &= \begin{bmatrix} -0.72 & -1.01 \end{bmatrix}; \Gamma_1 = -1.2636; \\ \mathcal{K}_2 &= \begin{bmatrix} -1.27 & -0.74 \end{bmatrix}; \Gamma_2 = -1.4744. \end{split}$$

 $\{x \in \mathbb{R}^n; V(1; x; \varphi_1(C_1 x) \leq 1\}.$

 $\{x \in \mathbb{R}^n; V(2; x; \varphi_2(C_2 x) \le 1\}.$

 $L_V(1)$ et estimation donnée par la fonction quadratique commutée.

Deux trajectoires sous deux réalisations différentes de commutation arbitraire.

Question sur l'écart entre une estimation donnée par $L_V(1)$ et le \mathcal{B}_0 .

4 réalisations de différentes de loi de commutation sont considérées.

• $\sigma_a(2k) = 1$; $\sigma_a(2k+1) = 2 \forall k \in \mathbb{N}$; • $\sigma_b(k) = 1$; $\forall k \in \mathbb{N}$;

•
$$\sigma_c(2k) = 2; \sigma_c(2k+1) = 1 \ \forall k \in \mathbb{N};$$

•
$$\sigma_d(k) = 2; \forall k \in \mathbb{N}.$$

 $x_0 \notin L_V(1)$ menant à des trajectoires instables pour la loi de commutation : $\sigma_a(k)$.

 $x_0 \notin L_V(1)$ menant à des trajectoires instables pour les lois de commutation : $\sigma_a(k), \sigma_b(k), \sigma_c(k)$.

 $x_0 \notin L_V(1)$ menant à des trajectoires instables pour les lois de commutation : $\sigma_a(k), \sigma_b(k), \sigma_c(k), \sigma_d(k)$.

Concept de problème de Lur'e

Systèmes Lur'e à commutations

Cadre de commutation arbitraire Stabilité globale - système Lur'e non-saturé Stabilité locale - système Lur'e saturé

Cadre de commutation commande Stabilisation globale Stabilisation locale

Conclusions et perspectives

Formulation du problème

• Systèmes Lur'e à commutations :

$$x_{k+1} = A_{\sigma(k)} x_k + F_{\sigma(k)} \varphi_{\sigma(k)}(y_k)$$
(25)

$$y_k = C_{\sigma(k)} x_k. \tag{26}$$

• Système Lur'e à commutations avec la saturation de commande :

$$\begin{aligned} x_{k+1} &= A_{\sigma(k)} x_k + F_{\sigma(k)} \varphi_{\sigma(k)}(y_k) + B_{\sigma(k)} \operatorname{sat}(u_k), \quad \forall k \in \mathbb{N} \\ y_k &= C_{\sigma(k)} x_k \end{aligned}$$
(27)

- Objectif :
 - o synthétiser une loi de commutation dépendante de l'état

$$\sigma(k) = g(x_k), \qquad g : \mathbb{R}^n \to \mathcal{I}_N, \tag{29}$$

qui stabilise globalement (localement) et asymptotiquement l'origine.

Idées principales :

Nouvelle fonction de Lyapunov du type Lur'e

Stratégie du type min-switching

Stabilisation globale

Outil principal :

• Considérons la fonction, héritant les propriétés de V :

$$V_{\min}(x_k) = \min_{i \in \mathcal{I}_N} V(i, x_k, \varphi_i(C_i x_k)).$$
(30)

CRAN

Méthode min-switching est formulée dans le cas linéaire² en utilisant :

• des matrices de Metzler en temps discret :

$$\mathcal{M}_{\mathsf{d}} = \left\{ \mathsf{\Pi} \in \mathbb{R}^{N \times N}, \ \pi_{ii} \geq 0, \ \sum_{\ell \in \mathcal{I}_N} \pi_{\ell i} = 1, \forall i \in \mathcal{I}_N \right\}.$$

 inégalités de Lyapunov-Metzler fondées sur des fonctions quadratiques commutées : min x'_kP_ix_k.

Matrices du système et vecteur d'état étendu :

$$\begin{split} \mathbb{A}_{i} &= \begin{bmatrix} A_{i} & F_{i} & \mathbf{0}_{n \times Np} \end{bmatrix} \in \mathbb{R}^{n \times (n + (N+1)p)}; \\ \mathbb{E}_{i} &= \begin{bmatrix} \mathbf{0}_{p \times (n+ip)} & I_{p} & \mathbf{0}_{p \times (N-i)p} \end{bmatrix} \in \mathbb{R}^{p \times (n + (N+1)p)}; \\ \mathbf{z}_{k}^{\prime} &= \begin{pmatrix} \mathbf{x}_{k}^{\prime} & \varphi_{i}^{\prime}(\mathbf{C}_{i}\mathbf{x}_{k}) & \varphi_{1}^{\prime}(\mathbf{C}_{1}\mathbf{x}_{k+1}) & \dots & \varphi_{N}^{\prime}(\mathbf{C}_{N}\mathbf{x}_{k+1}) \end{pmatrix}^{\prime} \in \mathbb{R}^{(n + (N+1)p)}. \end{split}$$

2. Geromel et Colaneri, Stability and stabilization of discrete-time switched systems, IJC-06.

Théorème : Stratégie du type *min-switching* **Théorème 3 : Approche** *min-switching* fondée sur $V(i, x_k, \varphi_i(C_i x_k))$ S'il existe une matrice $\Pi \in \mathcal{M}_d$; matrices $0_n < P_i = P'_i \in \mathbb{R}^{n \times n}$ et des matrices diagonales $0_p < T_i, W_i, 0_p \le \Delta_i \in \mathbb{R}^{p \times p}$, $(i \in \mathcal{I}_N)$, telles que les inégalités de Lyapunov-Metzler sont satisfaites, $\forall i \in \mathcal{I}_N$,

$$\mathbb{A}_{i}^{\prime}(\boldsymbol{P})_{p,i}\mathbb{A}_{i} + \operatorname{He}(\mathbb{A}_{i}^{\prime}(\boldsymbol{C}^{\prime}\Omega\Delta\mathbb{E})_{p,i}) - \sum_{q\in\mathcal{I}_{N}} \left(2\mathbb{E}_{q}^{\prime}\boldsymbol{W}_{q}\mathbb{E}_{q} - \operatorname{He}(\mathbb{E}_{q}^{\prime}\boldsymbol{W}_{q}\Omega_{q}\boldsymbol{C}_{q}\mathbb{A}_{i})\right) - \left[\begin{array}{cc}\boldsymbol{P}_{i} & \star & \star \\ (\Delta_{i}-T_{i})\Omega_{i}\boldsymbol{C}_{i} & 2T_{i} & \star \\ 0_{Np\times n} & 0_{Np\times p} & 0_{Np}\end{array}\right] < 0_{n+(N+1)p}, \quad (31)$$

où $(P)_{p,i} = \sum_{\ell \in \mathcal{I}_N} \pi_{\ell i} P_{\ell}$, alors la stratégie du type *min-switching*

$$\sigma(k) = g(x_k) = \arg\min_{i \in \mathcal{I}_N} V(i, x_k, \varphi_i(C_i x_k))$$
(32)

stabilise globalement et asymptotiquement le système (25)-(26).

Pareillement au cas linéaire :

Inégalité sous forme LMI pour matrice ∏ fixée Recherche en ligne possible.

Partition de l'espace d'état

Partition de l'espace d'état associée à la stratégie min-switching :

• Soit les ensembles $S_i \subset \mathbb{R}^n$ définissant l'activation des modes $i \in \mathcal{I}_N$:

$$S_{i} = \left\{ x \in \mathbb{R}^{n}, \ V_{min}(x) = V(i, x, \varphi_{i}(C_{i}x)) \right\}, \quad \forall i \in \mathcal{I}_{N}.$$
(33)

- Quelques commentaires relatifs à ces ensembles S_i :
 - $0 \in S_i, \forall i \in I_N;$
 - $\cup_{i \in \mathcal{I}_N} S_i = \mathbb{R}^n$, car le minimum est atteint au moins par un mode ;
 - Les ensembles S_i ne sont pas nécessairement disjoints.

Particularité des partitions Si associées à des fonctions de Lyapunov :

- Quadratique commutée :
 - toujours des régions coniques ;
 - délimitées par des droites.
- Lur'e commutée :
 - partitions pas restreintes à des cônes;
 - régions limitées par des courbes
 - allure dépend de $\varphi_i(\cdot)$.

Exemple 5 : stabilisation globale

• Système Lur'e à commutations avec $N = n = 2, p = 1, \Omega_1 = 0.6$; $\Omega_2 = 0.4$:

$$A_{1} = \begin{bmatrix} 1.08 & 0 \\ 0 & -0.72 \end{bmatrix}; F_{1} = \begin{bmatrix} 0.5 \\ 0.2 \end{bmatrix}; C'_{1} = \begin{bmatrix} 1 \\ 0.4 \end{bmatrix};$$
$$A_{2} = \begin{bmatrix} -0.48 & 0.8 \\ 0 & 0.8 \end{bmatrix}; F_{2} = \begin{bmatrix} 0.2 \\ 0.5 \end{bmatrix}; C'_{2} = \begin{bmatrix} 0.4 \\ 1 \end{bmatrix}.$$

• Les non-linéarités sont :
$$\varphi_1(y) = 0.5\Omega_1 y(1 + \cos(2y))$$

et $\varphi_2(y) = 0.5\Omega_2 y(1 - \sin(2.5y)).$

• En appliquant le théoreme 3, les valeurs numériques sont obtenues :

$$P_{1} = \begin{bmatrix} 1.1490 & -0.0832 \\ -0.0832 & 1.9764 \end{bmatrix}; P_{2} = \begin{bmatrix} 0.3508 & -0.4489 \\ -0.4489 & 3.1440 \end{bmatrix};$$
$$\Delta_{1} = 0.2585; \ \Delta_{2} = 1.0509; \text{ avec la matrice de Metzler } \Pi = \begin{bmatrix} 0.2 & 0.8 \\ 0.8 & 0.2 \end{bmatrix}.$$

Partition de l'espace d'état et une trajectoire pour $x_0 = (14; 11)'$

 $\begin{array}{l} \mbox{L'ensemble } \mathcal{S} = \mathcal{S}_1 \cap \mathcal{S}_2 \mbox{ encadré par les} \\ \mbox{cônes } \mathcal{C}_1 \mbox{ et } \mathcal{C}_2. \end{array}$

Trajectoire x_k et les modes choisis à chaque instant k.

CRAI

Stabilisation locale

Outils :

• La ligne de niveau de notre fonction $V_{min}(x)$ est définie par :

$$\begin{split} \mathcal{L}_{V_{\min}}(\gamma) &= & \left\{ x \in \mathbb{R}^n; \, V_{\min}(x) \leq \gamma \right\} \\ &= & \bigcup_{j \in \mathcal{I}_N} \left\{ x \in \mathbb{R}^n; \, V(j;x;\varphi_j(\mathcal{C}_j x)) \leq \gamma \right\}. \end{split}$$

et l'ensemble $L_{V_{min}}(1)$ sera considéré comme une estimation de \mathcal{B}_0 .

 Considérer la condition de secteur SC_{uk} pour la zone-morte associé au *i*-ème mode actif :

$$SC_{u_k} = \Psi'(u_k) U_i [\Psi(u_k) - J_{1,i} x_k - J_{2,i} \varphi_i(y_k)] \le 0,$$
(34)

• qui n'est vérifiée que localement dans l'ensemble :

$$\mathcal{T}_{i}(\hat{\mathcal{K}}_{i}-\hat{\mathcal{J}}_{i},\rho) = \left\{\theta \in \mathbb{R}^{n+p}; -\rho \leq (\hat{\mathcal{K}}_{i}-\hat{\mathcal{J}}_{i})\theta \leq \rho\right\},\tag{35}$$

CRA

seulement pour le *i*-ème mode actif.

Particularités des deux cadres selon hypothèses sur σ

Système Lur'e à commutations saturé

Outils	σ – arbitraire	σ – commande
Fonction de	$V(i; x; \varphi_i(C_i x))$	$V_{min}(x_k) = \min_{i \in \mathcal{I}_N} V(i; x; \varphi_i(C_i x))$
Lyapunov		
$\delta_k V$	Lyapunov	Lyapunov-Metzler
Estimation \mathcal{B}_0^{3}	$\bigcap_{i\in\mathcal{I}_N}L_{V_i}(1)$	$\bigcup_{i\in\mathcal{I}_N}L_{V_i}(1)=L_{V_{\min}}(1)$
SC en <i>k</i>	mode actif	mode actif
en <i>k</i> + 1	mode actif	$\forall j \in \mathcal{I}_N$
Stabilité des modes	oui	non
Critère	<u>μ</u> t.q.	$\sum_{i\in\mathcal{I}_N}\mu_i$ t.q
d'optimisation	$\mathcal{E}(\mu I_n) \subset \bigcap_{i \in \mathcal{I}_N} L_{V_i}(1)$	$\bigcup_{i\in\mathcal{I}_N}\mathcal{E}(\mu_iI_n)\subset L_{V_{\min}}(1)$

Exemple 6 : stabilisation locale

• Système Lur'e à commutations entre deux modes avec saturation N = n = 2, p = 1, $\rho = 5$; $\Omega_1 = 0.7$; $\Omega_2 = 0.5$:

$$\begin{array}{rcl} A_1 & = & \left[\begin{matrix} 1.4 & 0.4 \\ 0.2 & 1 \end{matrix} \right] ; F_1 = \left[\begin{matrix} 1 \\ 1.2 \end{matrix} \right] ; B_1 = \left[\begin{matrix} 0.5 \\ 0.5 \end{matrix} \right] C_1' = \left[\begin{matrix} 0.9 \\ 0.5 \end{matrix} \right] ; \\ A_2 & = & \left[\begin{matrix} 1.1 & 0.6 \\ 0.3 & 1.5 \end{matrix} \right] ; F_2 = \left[\begin{matrix} 1.2 \\ 1 \end{matrix} \right] ; B_2 = \left[\begin{matrix} 0.7 \\ 0.5 \end{matrix} \right] C_2' = \left[\begin{matrix} 1 \\ 0.7 \end{matrix} \right] .$$

• Les non-linéarités $\varphi_i(y)$ sont définies par, $\forall y \in \mathbb{R}$: $\varphi_1(y) = 0.5\Omega_1 y (1 - \sin(25y)); \varphi_2(y) = 0.5\Omega_2 y (1 + \cos(20y)).$

• Les gains de la commande et la matrice de Metzler fixée sont donnés par :

$$K_{1} = \begin{bmatrix} -0.7168 & -1.0136 \end{bmatrix}; \Gamma_{1} = -1.2923; \Pi = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$
$$K_{2} = \begin{bmatrix} -1.2581 & -0.7326 \end{bmatrix}; \Gamma_{2} = -1.4650;$$

Partition de l'espace d'état dans l'ensemble $L_{V_{min}}(1)$ mode 1 est la région bleue et le mode 2 est la région rouge.

2 trajectoires, dont une est associée à x_0 située dans $L_{V_{min}}(1)$ non-connexe. Cercle rouge (étoile noire resp.) représente le mode 1 actif (mode 2 resp.).

Analyse des x₀ associées à des trajectoires instables.

L'ensemble $L_{V_{min}}(1)$ est adapté à la forme de \mathcal{B}_0 , pour notre stratégie du type *min-switching*.

CRAN

38 / 42

Concept de problème de Lur'e

Systèmes Lur'e à commutations

Conclusions et perspectives

Conclusions

Système Lur'e en temps discret :

$$\begin{array}{rcl} x_{k+1} & = & Ax_k + F\varphi(y_k), \\ y_k & = & Cx_k, \end{array}$$

- Une nouvelle fonction de Lyapunov du type Lur'e adaptée au temps discret a été proposée :
 - permettant de résoudre le problème de Lur'e en temps discret seulement sous l'hypothèse de la condition de secteur;
 - o relaxant les hypothèses classiques sur la variation de la non-linéarité ;
 - o donnant des lignes de niveau non-connexes et non-convexes;
 - fournissant une estimation adaptée au B₀ de systèmes Lur'e avec commande satures

Conclusions

Système Lur'e à commutations en temps discret :

$$\begin{array}{rcl} x_{k+1} & = & A_{\sigma(k)} x_k + F_{\sigma(k)} \varphi_{\sigma(k)}(y_k), \\ y_k & = & C_{\sigma(k)} x_k, \end{array}$$

- La version étendue de notre fonction Lur'e au cadre de fonctions de Lyapunov commutées nous a permis de :
 - · Incorporer le cas des non-linéarités dépendantes du mode ;
 - Traiter deux problèmes de base des systèmes à commutations :
 - analyse de stabilité globale/locale lorsque la loi de commutation est arbitraire ;
 - stratégie de commutation du type min-switching menant à des partitions de l'espace d'état notes streintes à des régions coniques;
 - light de niveau non-connexe et non-convexe adaptée au B₀ de systèmes Lur'e à commutations avec la saturation, dans les deux cadres.

Perspectives :

Système Lur'e classique

- étude des fonctions de Lyapunov-Lur'e pour des non-linéarités vérifiant une condition de secteur locale ;
- considérer d'autres aspects de performance (ex. : gain \mathcal{L}_2 induit pour un bruit additif) ;
- correcteur du type retour dynamique de sortie.

Système Lur'e à commutations

- Commutation arbitraire :
 - correcteur du type retour dynamique de sortie ;
 - critères de performance gain \mathcal{L}_2 induit ;
 - supposer des contraintes sur les lois de commutations. Ex. : temps de maintien.
- Commutation commande :
 - commande conjointe (correcteur + loi de commutation);
 - o correcteur du type retour dynamique de sortie ;
 - critère de performance gain \mathcal{L}_2 induit.

CRA

Merci de votre attention.

Références associées aux travaux de la thèse

Articles de revue :

- M. Jungers, C. A. C. Gonzaga and J. Daafouz. Min-switching local stabilization for discrete-time switching systems with non-linear modes. *submitted*.
- C. A. C. Gonzaga, M. Jungers and J. Daafouz. Stability analysis of discrete-time Lur'e systems. *Automatica*, 48(9) : pp. 2277-2283, 2012.
- C. A. C. Gonzaga, M. Jungers and J. Daafouz. Stability analysis and stabilization of discrete-time switched non-linear systems. *International Journal of Control*, Vol. 85, Issue 7, pp. 822-829, 2012.

Conférences internationales :

- M. Jungers, C. A. C. Gonzaga and J. Daafouz. Min-switching stabilization for discrete-time switching systems with non-linear modes. In *4th IFAC-ADHS*, pp. 234-239. Eindhoven, the Netherlands, 6-8th June 2012.
- C. A. C. Gonzaga, M. Jungers, J. Daafouz and E. B. Castelan. A new class of Lyapunov functions for nonstandard switching systems : the stability analysis problem. In *50th IEEE CDC-ECC'11*, pp. 411-416. Orlando, USA, December 2011.
- C. A. C. Gonzaga, M. Jungers, J. Daafouz and E. B. Castelan. Stabilization of Discrete-time Nonlinear Systems subject to Input Saturations : a New Lyapunov Function Class. In *IFAC World Congress*, pp. 3403-3408. Milan, Italy, 2011, August 28 -September 2, 2011.

