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Résumé

Dans le cadre du nucléaire civil, la modélisation des écoulements diphasiques est nécessaire a la
représentation de nombreuses configurations d’écoulements fluides dans les circuits primaire et
secondaire des centrales s’appuyant sur des réacteurs a eau pressurisée (REP). Les applications
visées concernent non seulement le fonctionnement nominal, mais aussi et surtout les configurations
incidentelles, parmi lesquelles on peut citer 'accident par perte de réfrigérant primaire (APRP),
les phénoménes de crise d’ébullition, mais aussi le renoyage des coeurs. En régime nominal dans
le circuit primaire, le fonctionnement est trés proche du fonctionnement monophasique pur, la
vapeur étant a priori absente. En revanche, le taux de présence de vapeur peut devenir de faible &
conséquent dans les situations incidentelles.

Cette thése s’intéresse plus particuliérement au modéle diphasique de Baer-Nunziato qui entre
dans la classe des modéles bifluides hyperboliques. L’objectif de ce travail est de proposer quelques
techniques de prise en compte de la disparition de phase, régime qui occasionne d’importantes
instabilités tant au niveau du modéle qu’au niveau de sa simulation numérique.

L’enseignement principal de la thése est que dans ces régimes, il est possible des stabiliser
les solutions en introduisant une dissipation de l'entropie totale de mélange. D’un point de vue
numérique, cette dissipation d’entropie supplémentaire permet en effet d’obtenir des approxima-
tions stables dans ces régimes. Les méthodes d’analyse et d’approximation proposées reposent de
fagon intensive sur les techniques d’approximation par relaxation de type Suliciu, et les méthodes
numériques qui en découlent. Deux approches sont principalement étudiées.

Dans une premiére approche dite approche Eulerienne directe, la résolution exacte du probléme
de Riemann pour le systéme relaxé permet de définir un schéma numérique extrémement précis
pour le modéle de Baer-Nunziato. Nous montrons que dans les régimes de fonctionnement normal
(i.e. sans disparition de phase), la méthode numérique ainsi obtenue est bien plus économique en
terme de cotut CPU (& précision donnée) que le schéma classique trés simple de Rusanov. De plus,
nous montrons que ce nouveau schéma est trés robuste puisqu’il permet la simulation des régimes de
disparition de phase. Les travaux furent initialement développés sur la version 1D du modéle, pour
laquelle une inégalité d’entropie discréte vérifiée par le schéma fut démontrée. Ils furent ensuite
étendus en 3D et intégrés a un prototype de code industriel développé par EDF.

La deuxiéme approche, dite approche par splitting acoustique, propose a travers un opérateur de
splitting temporel, de séparer les phénoménes de propagation d’ondes acoustiques et les phénoménes
associés au transport matériel. Cette approche a le double objectif d’éviter la résonance due a



I'interaction entre ces deux types d’ondes, mais surtout de permettre a long terme un traitement
implicite des phénoménes acoustiques, tout en explicitant la discrétisation des phénoménes de trans-
port. On parle alors de méthodes semi-implicites. Le schéma que nous proposons admet une mise
en oeuvre remarquablement simple. De plus, nous montrons qu’il permet la prise en compte sim-
ple de la disparition de phase. Une des principales nouveautés de ce travail est d’exploiter des
fermetures dissipatives du couple vitesse et pression d’interface, et de montrer que ces fermetures
permettent le controle de la taille des solutions du probléme de Riemann associé & I’étape acoustique.



Abstract

This thesis deals with the Baer-Nunziato two-phase flow model. The main objective of this work is
to propose some techniques to cope with phase vanishing regimes which produce important insta-
bilities in the model and its numerical simulations. Through analysis and simulation methods using
Suliciu relaxation approximations, we prove that in these regimes, the solutions can be stabilised
by introducing some extra dissipation of the total mixture entropy.

In a first approach, called the Eulerian approach, the exact resolution of the relaxation Riemann
problem provides an accurate entropy-satisfying numerical scheme, which turns out to be much more
efficient in terms of CPU-cost than the classical and very simple Rusanov’s scheme. Moreover, the
scheme is proved to handle the vanishing phase regimes with great stability. The scheme, first
developed in 1D, is then extended in 3D and implemented in an industrial code developed by EDF.

The second approach, called the acoustic splitting approach, considers a separation of fast
acoustic waves from slow material waves. The objective is to avoid the resonance due to the
interaction between these two types of waves, and to allow an implicit treatment of the acoustics,
while material waves are explicitly discretized. The resulting scheme is very simple and allows to
deal simply with phase vanishing. The originality of this work is to use new dissipative closure laws
for the interfacial velocity and pressure, in order to control the solutions of the Riemann problem
associated with the acoustic step, in the phase vanishing regimes.
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0.1 Contexte général

La modélisation des écoulements diphasiques est nécessaire a la représentation de nombreuses con-
figurations d’écoulements fluides et, si ’on se restreint au cadre nucléaire civil, devient essentielle
dans le contexte des écoulements dans les circuits primaire et secondaire des centrales s’appuyant
sur des réacteurs a eau pressurisée (REP) (pour une représentation schématique d’une centrale de
type REP, voir la figure 0.1). Ceci justifie l'intérét constant porté par EDF, le CEA et 'IRSN
depuis de nombreuses années a ce domaine. Les applications visées concernent non seulement le
fonctionnement nominal, mais aussi et surtout les configurations incidentelles, parmi lesquelles on
peut citer 'accident par perte de réfrigérant primaire (APRP), les phénomeénes de crise d’ébullition,
mais aussi le renoyage des coeurs. Le fonctionnement des générateurs de vapeur et des condenseurs
constitue un autre champ d’application de cette classe de modéles fluides.

Dans cette optique, les acteurs mentionnés précédemment mais aussi AREVA développent con-
jointement, au sein du projet NEPTUNE, une plateforme de codes de simulation des écoulements
diphasiques, ayant pour objectif de fournir des approximations discrétes des solutions de plusieurs
modeéles diphasiques, et autorisant le couplage de ces codes ([26]). En régime nominal dans le circuit
primaire, le fonctionnement est trés proche du fonctionnement monophasique pur, la vapeur étant
a priori absente. En revanche, le taux de présence de vapeur peut devenir de faible & conséquent
dans les situations incidentelles. Dans ce cas, les inhomogénéités spatiales et temporelles deviennent
importantes, et il convient alors, si I’on souhaite associer un caractére prédictif aux simulations,
disposer de modéles conduisant a minima & des problémes de Cauchy bien posés.

Deux grandes classes de modéles moyennés, (i.e. proposant des équations d’évolution pour les
moments statistiques d’ordre un au moins) ont été proposées dans la littérature depuis les années
1970 (voir parmi d’autres références les ouvrages [29, 21]). Une premiére classe correspond a une
représentation homogéne monofluide, décrivant essentiellement les propriétés moyennes du mélange
eau-vapeur (masse, débit, énergie), et éventuellement le déséquilibre de titre masse. Les codes
francais THYC (EDF), FLICA et GENEPI (CEA), sont basés sur de tels modeéles d’écoulements
diphasiques. Une autre approche possible repose sur l'utilisation de l’approche & deux fluides,
c’est le cas pour les codes CATHARE et NEPTUNE CFD (France) et RELAP (USA). Dans cette
derniére formulation, les moments d’ordre un associés a la densité, au débit, et & I’énergie sont
prédits par des lois d’évolution pour chaque phase, le taux de présence statistique de phase étant
fourni par une équation d’évolution ou une fermeture algébrique. L’approche monofluide permet
d’éviter le recours & de nombreuses lois de fermeture, hormis sur le plan des lois d’état thermody-
namique et des transferts de masse interfaciaux. Les systémes fermés associés ont en général une
structure convective assez proche de celle des équations d’Euler, et 'on peut dans certains cas (les
plus simples) s’appuyer sur des résultats de caractérisation des solutions de ces équations. Un incon-
vénient évident est qu’ils ne fournissent pas d’information précise et pertinente sur les déséquilibres
de vitesse/pression/température entre phases. Enfin, dans les cas optimaux, l'obtention de solu-
tions numeériques raisonnablement proches de la convergence ne requiert pas obligatoirement des
maillages trés fins. Inversement, 'approche & deux fluides fournit a priori une représentation plus
fine de la réalité en prenant en compte les déséquilibres entre phases, mais elle nécessite de fournir
des lois de fermeture cohérentes (notamment par rapport a la caractérisation entropique) et suf-
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fisamment renseignées (pour ce qui concerne les échelles de temps de relaxation par exemple). En
outre, il n’existe pas de consensus actuellement concernant la forme optimale des lois de fermeture
des termes de transfert interfacial, ou des échelles de temps de relaxation. Selon que 1’on considére
telle ou telle loi de fermeture, les propriétés des modéles peuvent clairement différer. Au-dela de
la difficulté du traitement des phases évanescentes, probléme sur lequel tout le monde s’accorde,
des discussions perdurent sur la nature hyperbolique du systéme au premier ordre. Ce systéme
s’écrivant sous forme non conservative, I’analyse des fermetures des produits non conservatifs a fait
l'objet de peu d’études jusqu’alors.

On s’attachera dans cette thése plus particuliérement & proposer quelques techniques de prise en
compte des phases évanescentes, en caractérisant au mieux les solutions discontinues des modéles
diphasiques considérés, ainsi que leur caractérisation entropique.

Containment
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— ;
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Cantrol B S b :
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Figure 1: Schéma d’une centrale nucléaire de type REP.
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0.2 Les modéles diphasiques de type Baer-Nunziato

Les modéles que nous considérons dans ce mémoire s’inscrivent dans la classe des modéles bifluides
a deux pressions qui permettent de prendre en compte le cas plus général de déséquilibre entre les
pressions phasiques. Ce type de modéle fut par exemple étudié par Ransom et Hicks [36] ainsi que
Stewart et Wendroff [41]. L’évolution de I'interface, identifiée & ’évolution des fractions statistiques
est alors décrite par une équation aux dérivées partielles supplémentaire. Cette loi est générale-
ment une équation de transport avec terme source ou la vitesse de transport est appelée vitesse
interfaciale. Intervient également dans ces modéles une pression interfaciale qui est possiblement
différente des deux pressions phasiques. L’existence d’une équation de transport sur les taux de
présence donne & ces modéles & deux pressions la propriété d’avoir une structure convective faible-
ment hyperbolique. Ils ne sont donc pas susceptibles a priori de développer de fortes instabilités
non physiques liés & Iexistence d’une zone elliptique.

Le modéle considéré ici est une généralisation du modéle introduit par Baer et Nunziato [7] pour
I’étude de matériaux granulaires réactifs. Ce premier modéle visait & modéliser des mélanges de deux
phases compressibles ol 'une des deux phases est présente en petite quantité devant ’autre. On
parle de phase diluée et de phase dominante. Dans ce contexte, la vitesse interfaciale est identifiée
a la vitesse de la phase diluée et la pression interfaciale a la pression de la phase dominante. Ce
modéle fut généralisé par Coquel et al. [16] puis Gallouét et al. [23] & d’autres fermetures pour
le couple pression-vitesse interfaciales, tandis que d’autres fermetures sont proposées par Saurel et
al. [39], Abgrall-Saurel [2] et Papin-Abgrall [35]. Dans ce cadre citons également les travaux de
Gallouét et al. [22], Gavrilyuk-Saurel [24], Kapila et al. [30, 31].

Le modéle homogéne de Baer-Nunziato fait 'objet d'un nombre croissant de contributions a
la simulation numérique. Des solveurs basés sur le probléme de Riemann exact ou approché ont
été notamment proposés par Schwedeman et al. [40], Deledicque-Papalexandris [20], Saurel-Abgrall
[38], Ambroso et al. [6], Kroner et al. [42], Karni-Hernandez-Duenas [32], Tokareva-Toro [43].

Dans tout ce mémoire, nous désignerons le modéle étudié par modéle de Baer-Nunziato, méme
s’il résulte de diverses extensions du modéle initial introduit dans [7].

0.2.1 Le modéle avec énergie en plusieurs variables d’espace

Le modéle a pour inconnues physiques une masse volumique p(x,t), une vitesse u(x,t), et une
pression pg(x,t) pour chaque phase k € {1,2} ainsi que le taux de présence statistique aq(x,t) qui
indique la probabilité de présence de la phase 1 en x a la date ¢ (avec ag = 1 —a1). On se donne par
ailleurs une loi d’état thermodynamique pour chaque phase k sous la forme (pg,px) — er(pr, Pk),
ou ey, est 'énergie interne spécifique de la phase k. On note Fj 1’énergie massique totale de la phase
k, définie par

_ wef?

Ey 5

+ex(pr,pe), k€ {1,2}. (0.2.1)
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En l’absence de diffusion visqueuse, le modéle de Baer-Nunziato s’écrit alors en dimension d sous
la forme d’un systéme de 5 + 2d équations aux dérivées partielles: pour x € R, d > 1 et t > 0,

O:a1 + Vi-Va; = @,

Or(a1p1) +V - (arprar) =0,

Oi(rprur) + V- (arprug @ uy) + V(aipr) — PrVay = Dy,

Ot(a1p1Er) + V- (a1prErug + agpiug) — PV - Vag = ¥y, (0.2.2)
O(azp2) + 'V - (azpauz) = 0,

Oi(agpauz) + V- (a2pauz ® ug) + V(agps) — PrVas = Do,

Oi(azp2E2) +V - (azp2 Eaug + agpauz) — PrVy- Vag = V.

Les lois de fermeture retenues pour le couple vitesse-pression d’interface (Vi, Pr) sont celles
proposées dans [23] par Gallouét et al. :

_ X1p1

~ xaapr + (1= x)azps
_ pIi

S pT A+ (1= )Ty’

Vi=(1—-pu +pus, p , x €4{0,1/2,1}, (0.2.3)

Pr=08p1+(1—B)p2, B (0.2.4)

ou Ty est la température de la phase k. Le choix de la fermeture de Vi est motivé par l'exigence
naturelle que le taux de présence soit porté par un champ linéairement dégénéré. Quant au choix
de la fermeture de Py, il est motivé par l'existence pour le systéme (0.2.2) d’une équation d’entropie
conservative. En effet, en invoquant le second principe de la thermodynamique, on peut introduire
lentropie spécifique par phase si(pg, px) dont la différentielle exacte est donnée par

1
dsi(pr,pr) = deek(kapk) + %dm, (0.2.5)

ot 7, = p;'. On montre (voir [23]) que, si 'on omet les termes sources (i.e. si I'on prend ® = 0,
D, =0, k€ {1,2} et ¥;, =0, k € {1,2}), alors les solutions réguliéres de (0.2.2) vérifient les deux
équations supplémentaires suivantes:

(px — Pr)

T (VI — llk) -Vai = 0, ke {1,2} (026)
k

O(akprsk) + V- (akprspur) +

Or, en sommant ces deux équations, le terme non conservatif Zizl %k(pk — P) (Vi —ug) - Vo
s’annule par le choix (0.2.4), ce qui donne la loi de conservation supplémentaire

Om+V - Fy =0, (0.2.7)

ol ) = —ap181 — Qap2sSe et F = —a1p1s1u1 — appasaUa. La fonction 7 est convexe (voir Pannexe
A pour une preuve de la convexité de 7). Bien que non strictement convexe (la convexité est perdue
dans la direction de a1), n sera considérée comme une entropie mathématique pour le systéme
homogene (0.2.2).

Considérons a présent les fermetures des termes sources d’ordre zéro. Le terme source ® est un
terme de relaxation sur la différence entre les pressions p; — ps. Les termes Dy, k € {1,2} sont
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des termes de forces volumiques appliquées (gravité, etc.) et des termes d’échange de quantité de
mouvement par friction entre les phases. Ces termes de friction étant généralement proportionnels
a la différence u; — uy, ils agissent également comme des termes de relaxation sur la différence des
vitesses. Enfin, les termes Uy, k € {1,2} modélisent 'apport éventuel d’énergie au systéme (par
gravité par exemple) ainsi que les échanges d’énergie entre les phases. Notant V = (u; +uy)/2, un
choix usuel pour ces termes sources est donné par

(D = @p(pl 7[)2), (028)
Dk = O PEE — @u(uk — U3_k), (029)
\Ifk = QEpPEg - U — @T(Tk — T3,k) — P[(—l)k+1¢ — V Dk, (0210)

oil ©p, O, et O sont des termes positifs pouvant étres pris comme suit:

- — r .
T P1+ D2’ L aipr + asps 71 01 p1C1 + a2p2Co

1& 0. — 1M o :i(alplcl)(OZZPZCZ) (0.2.11)

Les grandeurs 7,, 7, et 7r sont des temps caractéristiques liés aux phénoménes de relaxation
en pression, vitesse et température. Le coefficient C} est homogéne & une capacité thermique
massique. Notons qu’en ’absence de forces extérieures, tous ces termes d’ordre zéro doivent assurer
la conservation de la quantité de mouvement totale ainsi que de 1’énergie totale si bien que

2
> Dp=0, et Y ¥p=0. (0.2.12)
k=1

Ces termes sources sont compatibles avec 'équation d’entropie (0.2.7). En effet, sans termes de
gravité, les solutions réguliéres du systéme (0.2.2) muni des fermetures (0.2.3)-(0.2.4) et (0.2.8)-
(0.2.9)-(0.2.10) vérifient I’équation de bilan suivante :

6{17 + V- .7:17 = —®p(p1 —p2)2 — ®u|u1 — U.2|2 — @T(Tl — T2)2 S 0. (0.2.13)

Notons enfin que toutes ces fermetures préservent l'invariance par rotation du systéme.

0.2.2 Le modéle avec énergie en une dimension d’espace

Dans le cadre d’'une approximation numérique par des techniques de volumes finis, il suffit, grace
a linvariance par rotation, de savoir traiter ces équations dans une direction quelconque. En
choisissant par exemple la direction = (mais toute autre direction aurait convenu), on se rameéne a
I’étude du cas 1D, qui s’écrit de maniére condensée :

0;U + 0, F(U) + C(U)9,U=8(U), ze€R,t>0, (0.2.14)
ot U= (a1, 1p1, a1p1u1, a1p1 E1, aopa, anpatiz, aopaFs)T est le vecteur d’état et
[ 0 i v ] [ @]
101U 0 0
a1p1uf + arpr —Pr D,
F(U) = |aap1Erus + arprur |, CU),U = |-ViPr| 8pon, S(U)= |¥1|.  (0.2.15)
Q2 P2U2 0 0
Q2pau3 + s Py D,
| 2p2 Eaug + capaus | L ViPr | | Vo |
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Les lois de fermeture (0.2.3) et (0.2.4) sur le couple vitesse et pression d’interface, de méme que
les lois de fermeture pour les termes sources (0.2.8)-(0.2.9)-(0.2.10) se déduisent directement dans le
cas unidimensionnel. De méme que dans le cas multidimensionnel, en ’absence de termes sources,
les solutions réguliéres du systéme (0.2.14) admettent comme entropie mathématique la projection
de I’équation (0.2.7) dans la direction x et si les termes sources sont présents, c’est la projection de
Péquation de bilan (0.2.13) dans la direction x qui est vérifiée.

A présent, précisons quelques définitions que nous serons amenés a utiliser par la suite. Nous
dirons qu’un systéme de taille N est faiblement hyperbolique s’il n’admet que des valeurs propres
réelles. Si de plus, la famille associée de vecteurs propres & droite engendre tout 'espace RY, alors le
systéme est dit hyperbolique. La proposition suivante permet de caractériser la structure convective
de ce systéme:

Proposition 0.1. La partie homogéne du systéme (0.2.14) est faiblement hyperbolique et admet
les valeurs propres réelles suivantes:

Vi, et wug, ugp—ck, up+c, ke{l,2} (0.2.16)

ol ¢ = pik (%Z — pr0,, ek) (Bpeex)” ", k€ {1,2}, est le carré de la vitesse du son dans la phase k.

Le systeme est hyperbolique si et seulement si
ap #0 et |up—Vi| #ck, pourke{1,2}. (0.2.17)

Les champs associés auzx valeurs propres ug, k € {1,2} sont linéairement dégénérés, et les champs
associés auz valeurs propres uy £ cg, k € {1,2} sont vraiment non linéaires. De plus, si Vi est
défini comme dans (0.2.3) alors le champ associé est linéairement dégénéré.

Ainsi, la perte d’hyperbolicité du sytéme peut étre due a deux causes distinctes. La premiére
est Pannulation d’un des taux de présence ay, k € {1,2} et la seconde est la superposition de la
valeur propre Vj, associé a ’onde de taux de présence, avec I'une des valeurs propres des champs
acoustiques uy, £ ¢, k € {1,2}. Dans ces deux cas, on dit alors que le systéme est résonnant. Le
traitement des difficultés liées & cette perte de base, notamment celle conséquente & ’annulation
d’un taux de présence, concerne 1’essentiel des travaux réalisés dans cette thése.

0.2.3 Le modéle barotrope en une dimension d’espace

En ce qui concerne les solutions réguliéres, le systéme (0.2.14) muni de la fermeture (V;, Pr) =
(u2,p1) peut étre décrit de fagon équivalente en remplagant les équations d’énergie par les équations
d’entropie par phase:

at(akpksk) + V- (akpkskuk) =0, ke {1, 2}. (0.2.18)

Dans ce contexte, les lois d’états thermodynamiques de chaque phase s’expriment alors en fonction
des variables py et de lentropie spécifique si. On a par exemple pr, = pr(pk, Sk) et ex = ex(pk, Sk)-

Le modéle barotrope correspond a I’évolution isentropique par phase du mélange, pour laquelle
les deux équations (0.2.18) disparaissent, et la pression p; de méme que I’énergie interne spécifique
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ek, ne dépend plus que de la variable densité. Le modéle est alors composé de cinq équations sur le
taux de présence aq, les masses partielles apg, et les quantités de mouvement partielles g pruy:

Oyar + Vi0za1 = O,(p1 — p2),
O(a1pr) + Oz (a1prur) =0,
at(alplul) + 3.1(041P1U§ + Oélpl) — Pr0ya1 = *@u(ul - Uz)a (0-2~19)
O(avap2) + Oz (a2paus) =0,
Oe(apatin) + Oy (2p2u3 + op2) + Propay = =0y (uz — uy).
Ce systéme admet cing valeurs propres réelles qui sont V; et uy + g, k € {1,2} ot ¢z = p}(px). 1l

est hyperbolique si et seulement ajan # 0 et |ug — V| # ¢k, k € {1,2}. Les champs associés aux
valeurs propres uy + ¢, k € {1,2}, sont vraiment non linéaires. De plus, muni des fermetures

Xa1p1
Vi=(1—pus + pus, p= , e {0,1/2,1}, 0.2.20
1= (1—pur+puz, p ot (—Joam’ X {0,1/2,1} ( )

PI = up1 + (]. — u)pg, (0221)

le champ associé a V; est linéairement dégénéré et il existe une entropie mathématique pour le
systéme, qui cette fois-ci est I’énergie totale de mélange. Sans les termes sources, les solutions
réguliéres de (0.2.19) vérifient 'équation de conservation supplémentaire

2 2
O {Z akpkEk} + 0y {Z agprErug + appr (pk)uk} = 0. (0.2.22)

k=1 k=1

Avec les termes sources, I’équation de bilan vérifiée par les solutions réguliéres est

2 2
Oy {Z akpkEk} + 0y {Z kP Lpur + akpk(/)k)uk} = —0,(p1 —p2)* — Ou(ur —up)?. (0.2.23)
k=1 k=1

0.3 Produits non conservatifs, entropie et résonance

Les modéles de type Baer-Nunziato, présentent des produits non conservatifs. Pour le cas barotrope
par exemple, les termes du premier ordre en espace ne peuvent pas étre mis sous forme conservative
a cause du terme P;0,aj. En général, la définition de ce type de produits n’est pas immédiate dans
le contexte des solutions faibles puisqu’ils peuvent impliquer le produit de fonctions discontinues
avec des mesures.

Dans le cas du systéme barotrope sans termes sources, une éventuelle discontinuité du taux de
présence oy, est seulement portée par 'onde associée a la valeur propre V;. Or, ayant considéré les
fermetures (0.2.20) pour Vi, le champ associé est linéairement dégénéré. Ceci implique qu’il n’y
a pas d’ambiguité dans la définition du produit non conservatif tant que le systéme
est hyperbolique. En effet, pour définir le produit non conservatif a travers une discontinuité
de «ay, on décompte les relations de Rankine-Hugoniot issues des lois de conservation vérifiées
par les solutions faibles du systéme. Afin d’illustrer ceci, plagons nous dans le cadre barotrope,
et supposons que la fermeture choisie est (Vi, P;) = (u2,p1). On obtient trois relations de saut

24



correspondant & la conservation de la valeur propre Vi = wuo & travers 'onde, a I’équation de
conservation de la masse partielle de phase 1 ajp1, et & ’équation de conservation de la quantité
de mouvement totale aypiu; + agpous. La valeur propre V; = wy étant simple, il manque alors
une relation supplémentaire (& noter que la conservation de la masse partielle de la phase 2 ne
donne pas d’information). Or, un résultat classique (voir [34, 9, 23]) sur les systémes hyperboliques
énonce que toute loi de conservation supplémentaire pour les solutions réguliéres est encore une
loi de conservation au sens faible le long des champs linéairement dégénérés. Ainsi, la relation de
Rankine-Hugoniot pour la loi de conservation de I’énergie totale (0.2.22) fournit la derniére relation
permettant de définir le saut a travers la discontinuité de «j et donc le produit non conservatif
Pro,ap = p10,a. Evidemment, tout ceci ne vaut que dans le cadre hyperbolique.

En ce qui concerne le systéme avec énergie, il y a a priori deux produits non conservatifs a
définir : P;O,ap = p10zap et PrVid,ar = prusdyay. En réalité, comme la valeur propre V; = uq
est continue le long de ce champ linéairement dégénéré, il n’y a qu’un seul produit non conservatif
a définir qui est P;d,ap = p10zap. Les relations de Rankine-Hugoniot a travers une discontinuité
de «ay, sont données par la continuité de V; = uq, la conservation de la masse partielle de phase 1,
de la quantité de mouvement totale et de I’énergie totale. Il ne manque alors de nouveau qu’une
information. Celle-ci est obtenue, toujours dans le cadre hyperbolique, en appliquant la relation
de Rankine-Hugoniot a I’équation de conservation de l’entropie du mélange (0.2.7). Un décompte
analogue peut étre mené dans le cas plus général des fermetures (0.2.20).

Pour résumer, dans le cadre hyperbolique, le caractére linéairement dégénéré du champ Vj
implique que la connaissance de I’ensemble des invariants de Riemann suffit & fermer le produit
non conservatif. Soulignons de nouveau que contrairement & une croyance ancrée, il n’y a pas ici
d’ambiguité, contrairement au cas de produits non conservatifs associés a des champs non linéaires

(voir [37, 19]).

Lorsque la résonance apparait, le systéme n’est plus que faiblement hyperbolique. Les valeurs
propres sont toutes réelles mais il y a perte de la base de vecteurs propres. Pour (V7, Pr) = (ug, p1),
les relations de saut sur us, a1p1 et agpius + aspaus dans le cas barotope (ainsi que sur 1'énergie
totale dans le cas avec énergie) restent vrai. On perd cependant un invariant de Riemann et c’est
nécessairement celui exprimant la conservation de ’entropie mathématique. Autrement dit, la loi
de conservation de I’entropie mathématique du systéme n’a donc plus aucune raison d’étre vérifiée
a travers I'onde V;. Dans ce cas résonnant, il apparait nécessaire de garantir que si ’entropie ne
peut pas étre conservée, elle doit diminuer strictement, pour des raisons évidentes de stabilité. 1l
faut donc modéliser des mécanismes de régularisation le long du champ V;. A ces mécanismes,
est associée a priori ou a posteriori une dissipation de ’entropie mathématique, conduisant a la
définition d’une relation cinétique, qui est une relation de type Rankine-Hugoniot supplémentaire
permettant en pratique de calculer les sauts a travers la discontinuité de taux de présence. Notons
par exemple que ces relations cinétiques interviennent dans le contexte des transitions de phases
afin de les caractériser (voir [1]). Si la solution est loin de la résonance, cette relation cinétique doit
naturellement se réduire & la conservation de I’entropie mathématique a travers ’onde.

Evidemment, il n’y a pas unicité du choix des mécanismes de régularisation. Une modélisation
usuelle qui concerne une classe de modéles incluant le modeéle de Baer-Nunziato (voir [25, 28]), re-
vient & supposer une évolution monotone de a, a travers la discontinuité. Ceci conduit en particulier
a l'existence de plusieurs solutions auto-semblables du probléme de Riemann en présence de réso-
nance. D’autres mécanismes de régularisation ont été introduits dans le contexte du couplage non
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conservatif de systémes hyperboliques conduisant & des situations résonnantes (voir [5, 4, 11, 12]).
De nouveau, il n’y a génériquement pas unicité de la solution, chaque solution étant associée a
un taux de dissipation particulier. Notons que toutes les situations de résonance évoquées dans
ces travaux correspondent & un type de résonance lié & 'interaction entre un champ linéairement
dégénéré et un champ vraiment non linéaire.

Le phénoméne de résonance lié & la disparition de phase dans le cadre d’un modéle diphasique
(avec au moins une phase compressible) a été étudié¢ dans un travail de Bouchut et al. [10]. Le
modéle considéré est un modéle & quatre équations pour un liquide incompressible (i.e. de densité
constante) et un gaz barotrope. La motivation de ce travail est d’examiner les équations obtenues
asymptotiquement dans la limite de disparition du gaz. A cet effet, les auteurs ont montré que
le mécanisme de régularisation par friction joue un roéle crucial dans I'obtention du modéle limite.
Le modéle asymptotique est de type incompressible au sens ou il implique un multiplicateur de
Lagrange assurant la contrainte d’un taux de présence (celui du liquide) inférieur ou égal a un.

Dans le cas des modéles moyennés incluant au moins une phase compressible, nous n’avons pas
connaissance d’autres travaux. Ceci n’est pas surprenant car ’ensemble des résultats mathématiques
d’existence concernant les systémes différentiels s’arrétent au premier instant ou 'inconnue atteint
la frontiére de I’espace des états. Nous renvoyons en particulier & [37] ou 'utilisation de mécanismes
de régularisation visqueuse permet d’obtenir une existence locale en temps, le temps étant fini dés
que I'un des taux de vide s’annule. Citons également les résultats de Bresch et al. [13] utilisant des
mécanismes de régularisation d’ordre plus élevé.

D’autres mécanismes de régularisation peuvent étre envisagés dans le cadre des modéles de type
Baer-Nunziato, notamment les termes sources de relaxation sur 1’écart des pressions et les termes de
friction sur ’écart des vitesses, par ailleurs incontournables pour obtenir une description réaliste des
écoulements diphasiques. Ces mécanismes dissipent tous deux ’entropie et ils ont pour conséquence
de faire tendre les écarts vers zéro en temps. De nombreux travaux, dont ceux par exemple de Yong
[44], de Kawashima-Yong [33] ou encore Chen et al. [15], sont consacrés au caractére stabilisant
des termes d’ordre zéro dans un cadre des systémes d’équations de bilan a structure convective
strictement hyperbolique. Cependant, I’absence de stricte convexité de ’entropie du modéle de
Baer-Nunziato et la résonance rendent difficile ’exploitation de ces travaux.

Dans cette thése, nous proposons d’examiner mathématiquement des mécanismes originaux de
stabilisation permettant de résoudre le probléme de Riemann dans le régime des phases évanescentes.
Ces mécanismes sont basés d’une part sur 'emploi d’une relaxation de type Suliciu et d’autre
part sur des mécanismes de dissipation & travers I’onde de taux de présence. Nous montrons que
dissiper peut étre & nouveau nécessaire dans certains cas. Les approches proposées sont notamment
motivées par la simulation numérique des écoulements diphasiques, et la prise en compte, lors de
ces simulations, des cas difficiles de phases évanescentes.
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0.4 Approximation par relaxation et passage du barotrope a
I’énergie

L’approximation des modéles par relaxation de type Suliciu est un outil largement utilisé dans cette
thése. Cette approximation consiste en une linéarisation partielle du modéle, en ne relaxant que les
lois de pression. Ceci aboutit & un systéme, certes plus large, mais uniquement composé de champs
linéairement dégénérés, ce qui simplifie grandement la résolution du probléme de Riemann. Dans le
cas des équations d’Euler barotrope par exemple, cela conduit & des schémas positifs trés simples et
faisant diminuer I’entropie mathématique sous une condition sous-caractéristique dite de Whitham.
Une modification introduite par Bouchut [9] permet d’étendre la méthode dans le cas d’apparition
du vide.

L’un des grands intéréts de ce type de solveurs est qu’il admet une formulation indépendante
de la loi de pression, ce qui permet de l'utiliser pour tout type de loi d’état, considérée thermody-
namiquement admissible.

L’autre grand intérét de ces solveurs de relaxation est qu’ils admettent une généralisation im-
meédiate du cas barotrope au cas avec énergie, grace a la dualité énergie/entropie [17, 9]. Pour les
équations d’Euler, les formules définissant la solution auto-semblable dans le cas avec énergie sont
virtuellement les mémes que dans le cas barotrope, ces formules conduisant & mettre a jour de
maniére conservative I’énergie en faisant augmenter I’entropie physique. Enfin, la méthode préserve
la positivité de chaque énergie interne phasique.

Nous montrons dans cette thése que cette situation est inchangée pour le modéle de Baer-
Nunziato dans le cadre des fermetures (V7, Pr) = (ug2,p1) ou (Vi, Pr) = (u1,p2). Ceci explique
pourquoi une grande partie du travail de cette thése a été consacré a ’étude du cas barotrope.
Nous montrons également comment un schéma numérique peut étre immédiatement obtenu dans le
cadre avec énergie, méme si dans le cadre de la thése, nous n’avons pas eu le temps d’approfondir
extensivement les simulations numériques dans ce cas.

Dans les quatre sections suivantes, nous donnons une présentation détaillée des travaux de la
these, organisés sous la forme de quatre chapitres.

0.5 Chapitre 1: Approximation par relaxation pour les équa-
tions d’Euler en tuyére

L’analyse menée dans ce premier chapitre constitue la pierre angulaire de ’étude du chapitre 2 sur
une approximation par relaxation du systéme diphasique de Baer-Nunziato. Cependant, il s’agit
aussi d’une étude indépendante d’une approximation par relaxation des équations d’Euler en tuyére,
aboutissant & un schéma de relaxation précis et robuste pour ce systéme.

Dans ce chapitre, nous construisons donc une approximation par relaxation pour le systéme
des équations d’Euler en tuyére en configuration barotrope. Ce systéme étant composé de champs
vraiment non linéaires liés aux ondes acoustiques qui rendent la résolution du probléme de Riemann
difficile (mais néanmoins possible), nous proposons une approximation par relaxation de type Suliciu

27



qui prend la forme suivante:

8ta5 = 0,

O(ap)® + Oz (apw)® =0,

O (apw)® + Ox(apw? + an(1,T))e — (1, T) 0z = 0, (0.5.1)
1

9 (apT)" + 0z (apTw)® = —(ap)*(T = T)*,

€
avec 77(7,T) = p(T) +a*(T — 1), 7= p~1, ol a est un paramétre strictement positif représentant
une vitesse lagrangienne gelée. Ce systéme a des propriétés de résonance similaires & celles du
modéle de Baer-Nunziato. Il admet toujours quatre valeurs propres réelles associées a des champs
linéairement dégénérés qui sont 0, w et w + ar. Cependant, la base de diagonalisation dégénére
dans deux cas distincts. Premiérement lorsque la section « s’annule et deuxiémement lorsque 'onde
stationnaire interagit avec les ondes acoustiques. Notons que l'interaction entre les ondes 0 et w
n’est pas résonnante car la base de diagonalisation est préservée et que 'interaction entre 'onde w
et les ondes acoustiques w =+ a7 est exclue pour des raisons de positivité de la densité.

Nous menons une étude approfondie du probléme de Riemann associé a la partie homogéne
de ce sytéme (i.e. sans le terme source). L’objectif est de fournir une résolution compléte dans
tous les régimes d’écoulement, qu’ils soient subsoniques (|w| < a7), supersoniques (Jw| > at)
ou méme résonnants (|w| = a7). Nous introduisons une classe de solutions généralisées assurant
Iexistence dans tous les régimes d’écoulement. Dans le but de prendre en compte la résonance
due a I’annulation de «, les solutions considérées sont susceptibles d’introduire une dissipation de
lénergie de relaxation du systéme (0.5.1) & travers 'onde stationnaire, alors que ce systéme est
a champs linéairement dégénérés. FEn effet, rapportons que l’existence de rapports des sections
droite et gauche g—; (ou le rapport inverse) trés grands, conduit & des valeurs anormalement basses
voire négatives, du volume spécifique a U'intérieur du céne d’ondes de la solution du probléme de
Riemann. Nous proposons de dissiper 1’énergie & la traversée de l'onde stationnaire et montrons
qu’il est ainsi possible de restaurer la positivité de ces volumes spécifiques. Nous proposons en
annexe de ce chapitre une relation cinétique particuliére permettant d’assurer cette propriété.

En ce qui concerne la résonance due a 'interaction de ’onde stationnaire avec les ondes acous-
tiques linéarisées, les solutions considérées peuvent prendre des valeurs mesures lorsqu’une onde
w + at voit sa vitesse s’annuler. Cette apparition d’une mesure stationnaire (valeurs ponctuelles
infinies en = 0 mais masse L' bornée) est tout a fait naturelle dans un contexte ot toutes les
ondes sont linéairement dégénérées. Voir par exemple [8] dans le contexte des gaz sans pression ou
des solutions d-choc sont construites.

Le résultat principal de ce chapitre est un théoréme d’existence de solutions au probléme de
Riemann dans la classe de solutions introduites (solutions dissipatives et éventuellement mesures).
En particulier, nous exposons une cartographie basée sur des conditions algébriques explicites
portant sur les conditions initiales, dont on déduit I'ordre des ondes et la valeur des états inter-
médiaires. Nous montrons en fait que dans chaque configuration d’onde, il existe un continuum
de solutions paramétrées par un nombre de Mach qui pilote directement le taux de dissipation
d’énergie a travers ’onde stationnaire. La relation cinétique que nous proposons permet de choisir
une solution en fixant la valeur de ce nombre de Mach.

Nous attirons également ’attention du lecteur sur le fait que malgré une analyse du probléme
de Riemann qui peut paraitre compliquée, le solveur de Riemann qui en résulte est extrémement
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simple dans la mesure ou la solution s’exprime de fagon explicite par des relations algébriques
fonctions des données initiales.

En nous basant sur ce solveur de Riemann, nous construisons un schéma numérique de type
Harten-Lax-van Leer (HLL) [27] pour les équations d’Euler barotrope en tuyére. Outre la discréti-
sation conservative de ’équation de masse, I'autre propriété classique de positivité de la densité
est facilement démontrée grace au formalisme HLL. Nous prouvons aussi que le schéma vérifie la
propriété de préserver de fagon exacte les équilibres stationnaires (vitesse nulle et densité con-
stante). Nous prouvons également la stabilité non linéaire du schéma sous une condition de type
Whitham affaiblie. Classiquement, I’analyse par entropie améne & imposer une condition dite sous-
caractéristique sur la taille du parameétre a. La condition revient & définir une valeur locale de a
pour chaque probléme de Riemann, qui majore les valeurs ponctuelles de la vitesse du son lagrang-
ienne y/—0,p(7). Or pour les configurations qui sont proches de la résonance (interaction entre
ondes), les valeurs mesure de la densité imposeraient un a potentiellement infini sous une telle con-
dition restrictive. Pour contourner cet obstacle, nous menons ’analyse sur des inégalités d’entropies
discrétes en moyenne. Cela permet de définir une condition de Whitham «faible» portant sur des
valeurs moyennées des densités. Les solutions mesures ayant des masses bornées, on garantit alors
la stabilité non linéaire du schéma avec des valeurs de a raisonnables.

Enfin, des tests numériques illustrent 'intérét de la méthode pour I'approximation des équations
d’Euler barotrope en tuyére.

0.6 Chapitre 2: Approximation par relaxation pour le modéle
de Baer-Nunziato

Dans ce chapitre, on étend les travaux du chapitre 1 au cadre du modéle de Baer-Nunziato avec la
fermeture (V;, Pr) = (u2,p1). De méme que pour le premier chapitre, I’étude se fait sur un systéme
de relaxation pour le modéle, qui consiste en une linéarisation sélective des lois de pression:

o] + u50za5 =0,

Or(arpr)® + Ox(apprur)® =0,
O (agprug)® + Oz (pru? + i (T, Ti)) — m1 (71, T1)2 005 = 0, (0.6.1)

1
O(cuprTi)? + Oz (cupr Thur)® = g(akpk)E(Tk — k)",

avec aq + as = 1 et (1, Te) = pk(T) + a2(Tr — 7k), k € {1,2}, ot les ay, k € {1,2} sont des
parameétres strictement positifs. Ce systéme admet les valeurs propres réelles uy et uy & ax7, pour
k € {1,2}, la valeur propre us étant double. Il est hyperbolique si et seulement si ajas # 0 et
|u1 — ua| # a;71. On s’intéresse a nouveau au probléme de Riemann pour la partie homogéne de
(0.6.1).

Etant données les applications qui nous intéressent (mélanges liquide/vapeur dans les réacteurs
nucléaires), ne seront considérées dans ce chapitre que les solutions ayant un ordre subsonique
des ondes c’est-a-dire les solutions pour lesquelles u; — a171 < us < w1 + a17. En conséquence,
I'interaction des ondes ainsi que 'apparition d’éventuelles solutions mesure sont exclues de facto.
La résonance liée a ’évanescence de phase (o; — 0 ou oy — 1) est quant a elle toujours possible et
cette difficulté retient ici toute notre attention.
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Comme dans le chapitre précédent, nous introduisons pour le probléme de Riemann une classe
de solutions généralisées qui autorise une dissipation de 1’énergie de relaxation du systéme (0.6.1) a
la traversée de 'onde de taux de présence us. En effet et a 'instar du premier chapitre, de grandes
valeurs du rapport des taux de présence droit et gauche peuvent conduire les volumes spécifiques a
prendre des valeurs anormalement basses voires négatives. Nous montrons a nouveau que dissiper
I’énergie de mélange permet de contourner cette difficulté dans les régimes de phases évanescentes.
La relation cinétique que nous proposons est similaire & celle du chapitre 1, elle consiste & choisir
le taux de dissipation de maniére & imposer une borne inférieure sur les volumes spécifiques. La
donnée du taux de dissipation d’énergie par cette relation cinétique caractérise alors une unique
solution dans cette classe de solutions dissipatives.

Le résultat princial de ce deuxiéme chapitre est un théoréme d’existence de solutions au pro-
bléme de Riemann dans la classe de solutions considérée (solutions subsoniques en vitesse relative
éventuellement dissipatives), sous certaines conditions explicites sous forme de relations al-
gébriques portant sur les données initiales. Ces conditions d’existence prennent la forme d’une
condition de subsonicité:

—ayr! < U* < ayrh, (0.6.2)

ot les quantités ! dépendent explicitement de la condition initiale et o la vitesse U mesure les
différences de vitesse u; — us et de pression m; — 7o dans la donnée initiale (voir le chapitre 2 pour
Pexpression exacte de ces quantités). L’unicité de la solution est également assurée une fois spécifiée
une relation cinétique indiquant le taux d’énergie dissipée a travers I’onde de taux de présence. Par
ailleurs, nous obtenons des conditions explicites portant sur les conditions initiales, caractérisant
I'ordre des ondes les unes par rapport aux autres. Ainsi, au vu uniquement des conditions initiales
du probléme de Riemann, il est possible de savoir s’il existe ou non une solution subsonique en
vitesse relative, et de prédire quel ordre des ondes a 1’éventuelle solution. La valeur des états
intermédiaires est également obtenue trés facilement. A notre connaissance, ce type de résulat
n’existe pas dans la littérature concernant le systéme équilibre de Baer-Nunziato.

Donnons quelques indications sur la stratégie utilisée pour la preuve de ce théoréme. L’idée
de départ (qui était déja présente dans un travail de Ambroso et al. [3]) est de remarquer que si
I’on peut prédire la valeur du produit non conservatif 710,71 en fonction des données, alors il est
possible de résoudre le systéme (0.6.1) puisque les deux phases sont alors découplées. En particulier,
si 'on note 770y la prédiction du produit non conservatif, alors les équations de la phase 2 sont
indépendantes de la phase 1 et s’écrivent

Orag + g0z = 0,

Or(aap2) + Oy (aapaus) = 0,

O (aapatin) + Oy (ool 4 aoms) + midpar = 0,
Ot (aapaTa) + Ox(aapaTauz) = 0.

(0.6.3)

En résolvant le probléme de Riemann pour ce systéme, on peut alors calculer une prédiction u3 de
la vitesse de propagation de 'onde de taux de présence. Les équations de la phase 1, réécrites dans
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le référentiel galiléen se déplacant a la vitesse constante v’ donnent alors le systéme

Oraqr =0,

O¢(a1p1) + Oz (1prwr) = 0,

(a1 prwr) + Oz (arprwi + aqmy) — mOpa = 0,
(1,1 Th) + Oz(rprTiwr) = 0,

(0.6.4)

ol w1 = uy — uj. Ce systéme n’est autre que le systéme de relaxation pour les équations d’Euler
en tuyére introduit dans le chapitre 1 et pour lequel le probléme de Riemann est complétement
résolu. En particulier, la résolution fournit une nouvelle valeur pour la prédiction du produit non
conservatif 779, a1. La technique consiste alors a faire un point fixe sur le couple (77, u3), consistant
a résoudre tour a tour les phases 1 et 2. En réalité, ce point fixe se raméne de maniére remarquable
& un point fixe de la forme :

Trouver M7 € (—1,1) tel que ¥(M;}) =0, (0.6.5)

ou ¥ est une fonction scalaire strictement monotone dépendant de la condition initiale et M7}
est un nombre de Mach relatif construit sur la différence u; —uy. Les conditions de subsonicité (0.6.2)
qui sont données dans le théoréme sont alors des conditions d’existence d’une solution au point fixe
(0.6.5). Le fait que ¥ soit une fonction scalaire monotone est crucial car dans les applications
pratiques utilisant ce solveur de Riemann, il sera possible d’utiliser les algorithmes classiques de
recherche de racine pour déterminer la solution M7 . Une fois déterminée la valeur de M7 solution
de (0.6.5), il est alors possible de construire un autre Mach relatif M pilotant directement la
dissipation d’énergie a travers 'onde de taux de présence. Ce deuxiéme nombre de Mach relatif
M, qui paramétrise tous les états intermédiaires, évolue dans un intervalle, ce qui explique la non-
unicité de la solution. Une fois spécifié le taux de dissipation, le nombre M est alors fixé, ce qui
aboutit & 'unicité.

0.7 Chapitre 3: Un schéma numérique de relaxation pour le
modéle de Baer-Nunziato

Dans ce troisiéme chapitre, la solution du probléme de Riemann construite au chapitre 2 est exploitée
dans le but de construire un solveur de Riemann approché pour les solutions subsoniques en vitesse
relative du modeéle de Baer-Nunziato, c’est-a-dire les solutions telles que |u; — uz| < ¢1 (rappelons
qu’ici (Vr, Pr) = (us2,p1)). Ce solveur est congu dans le but de gérer les cas de phases evanescentes
quitte a dissiper I’énergie de relaxation a travers 'onde de taux de présence.

Nous soulignons que si 'analyse mathématique développée au chapitre 2 peut paraitre com-
pliquée, le solveur de Riemann qui en résulte est la encore extrémement simple. En effet, une fois
déterminée la valeur de M7, solution du point fixe (0.6.5), grace a un algorithme classique de
recherche de racine, la solution du probléme de Riemann s’exprime par des relations algébriques
simples faisant intervenir M7 et les données initiales du probléme de Riemann. Notons que dans
le cadre de nos applications (mélanges liquide/vapeur fortement subsoniques en vitesse relative),
les conditions de subsonicité (0.6.2) du théoréme sont toujours vérifiées.
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Dans un premier temps, le solveur de Riemann ainsi construit est exploité pour approcher
des solutions du modéle barotrope homogéne de Baer-Nunziato en une dimension d’espace. Nous
montrons que ce solveur de type HLL (voir [27]) admet une formulation volumes finis classique a
deux flux par interface (voir [9]) ce qui permet une extension simple et naturelle du schéma a des
cas multi-dimensionnels. Nous prouvons le caractére conservatif de la discrétisation des équations
de masses partielles et de la quantité de mouvement totale, de méme que la positivité des taux
de présence et des densités. Nous démontrons aussi que le schéma vérifie une inégalité d’entropie
discréte sous des conditions de type Whitham sur les paramétres a; et as. Les solutions mesures
étant exclues du cadre d’application, il n’est pas nécessaire ici de faire appel & une version affaiblie
de la condition de Whitham, comme c’était le cas au chapitre 1.

La précision de ce schéma de relaxation est évaluée en comparant la solution approchée calculée
par le schéma a la solution exacte d’'un probléme de Riemann. Il apparait que sur un maillage
grossier de cent mailles, la précision obtenue est trés bonne dans la mesure ou les états intermédiaires
sont correctement capturés.

La nécessité d’utiliser une procédure de résolution itérative a chaque interface pour le calcul de
M (en réalité, seules les interfaces ol a1, # 1, g sont concernées) nous a amenés & évaluer les
performances du schéma en terme de temps CPU. Dans ce but, nous avons comparé les performances
du schéma de relaxation a celles d’un schéma dont les cotits sont réputés trés faibles : le schéma
de Rusanov (pour une référence sur le schéma de Rusanov, voir [23]). L’outil classique de calcul
scientifique utilisé pour cette étude de performance est le suivant : considérant une solution exacte
connue, il s’agit de se donner un niveau de précision (en terme d’erreur L' par exemple) et de
comparer alors les temps CPU nécessaires a chaque schéma pour atteindre ce niveau de précision.
Il apparait que malgré le calcul du point fixe & chaque cellule oil a1, 1, # o, g, le schéma de relaxation
est beaucoup plus rapide que le schéma de Rusanov a précision égale. A titre d’exemple, la figure
2 présente les courbes (erreur L') = f(temps CPU) obtenues pour deux variables d’intérét. On y
voit par exemple que concernant le taux de présence aq, le schéma de relaxation est 12 fois plus
rapide que le schéma de Rusanov, & précision égale.

Nous avons également évalué la robustesse du schéma dans les régimes de phases evanescentes.
Pour cela, nous avons construit deux solutions exactes de problémes de Riemann & phases evanes-
centes. Dans un premier cas, la phase 2 est absente de la donnée gauche du probléme de Riemann
tandis que dans la donnée droite, les deux phases sont en présence. Le deuxiéme cas est plus délicat
encore. Il consiste en une donnée gauche ou seule la phase 1 est présente et une donnée droite ol
seule la phase 2 est présente. La construction de telles solutions exactes est détaillée en annexe de
ce chapitre, elle fut notamment abordée dans l'article de Schwedeman et al. [40]. En pratique, il
est impossible de considérer des valeurs réellemement nulles des taux de présence mais I’objectif ici
était de prescrire des valeurs extrémement petites des taux de présence (de I'ordre de aj, ~ 1072, &
comparer & aj ~ 1075 dans Schwedeman etal [40]) et d’observer le comportement qualitatif de la
solution approchée vis-a-vis de la solution exacte. L’étude numérique montre une grande robustesse
du schéma de relaxation, en particulier pour les variables phasiques se trouvant dans une zone ot
la phase en question est quasiment absente, et ce malgré les divisions par aj. Nous observons aussi
une stabilité de la solution approchée quand des perturbations non négligeables sont apportées aux
données de la phase quasiment absente.

Dans un deuxiéme temps, le schéma est naturellement étendu, grace a sa formulation volumes
finis & deux flux, a des applications 2D sur maillage non structuré général. Ce solveur 2D hérite alors
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Figure 2: Erreur L' en fonction du cotit CPU (en secondes) pour les variables a; (4 gauche) et
a1p1 (& droite).

sous CFL des mémes propriétés de positivité du schéma 1D ainsi que de la propriété de stabilité
non linéaire sous une condition de Whitham adaptée. En vue de la réalisation d’applications 2D
réalistes, nous avons également discrétisé les termes sources de relaxation en pression et en vitesse
ainsi que la force de gravité. L’application numérique étudiée en 2D considére un cas de ballotement
d’une poche de liquide dans une citerne. La encore, la robustesse du schéma dans des configurations
de phases évanescentes est vérifiée. A cet égard, les résultats sont trés satisfaisants.

Enfin, la derniére partie de ce chapitre considére I’extension du schéma au modéle complet avec
énergie, en une dimension d’espace. Aprés avoir expliqué comment le schéma barotrope s’étend
naturellement au cas avec énergie grace a la dualité énergie/entropie, nous illustront la méthode
avec un cas test. Soulignons de nouveau qu’il importe de dissiper ’entropie mathématique via un
argument de dualité énergie/entropie, pour définir une méthode de volumes finis stable, positive et
entropique, y compris dans le régime des phases évanescentes.

0.8 Chapitre 4: Une méthode a pas fractionnaires pour le
modéle de Baer-Nunziato

Le schéma de relaxation introduit aux chapitres 2 et 3 est conc¢u pour I'approximation du modéle de
Baer-Nunziato muni de la fermeture (V7, Pr) = (u2,p1). Nous proposons dans ce chapitre un schéma
numérique, reposant sur une décomposition en opérateurs, permettant de prendre en compte tout
type de fermeture sur le couple (V7, Pr). Le schéma est d’abord construit pour le cas barotrope
pour toute fermeture (V7, Pr), il est ensuite étendu au cas avec énergie dans le cadre de la fermeture
(V1, Pr) = (ug2,p1). L'extension au cas avec énergie est possible pour des fermetures plus générales,
mais elle nécessite un travail supplémentaire qui n’a pas été mené ici.

Suivant les travaux de Chalons et al. [14], le splitting considéré propose un traitement séparé

33



des ondes acoustiques rapides et des ondes de transport matériel lentes. Cette séparation des
phénomeénes propagatifs selon leurs célérités respectives a pour objectif ultime (non réalisé dans
cette thése) d’impliciter le traitement des ondes rapides, ce qui permettrait d’adapter la condition
CFL aux ondes lentes, traitées elles de facon explicite de maniére & minimiser la diffusion numérique
sur ces derniéres. L’autre objectif recherché par ce splitting est de s’affranchir de l'interaction
résonnante entre ondes lentes et ondes rapides. Ainsi, le schéma que nous proposons permet de
traiter tous les régimes d’écoulement (subsoniques et supersoniques en vitesses relatives ug — V7),
sans se soucier de I'interaction entre les ondes. Partant du systéme

O + Vi0z0q = 0,
Ot (arpr) + Oz (arprug) = 0,
O (aprug) + Oy (pprui + agpy) — Prozay = 0,

la décomposition proposée pour le cas barotrope est motivée par un calcul simple:
8ta1 + ‘/Iaxal = 07

Os(arpr) + prOz(arur) — (prVr)Ovar + ar(ur — V1)Oupr — arpr0:Vr + 0z (arpr Vi) = 0,

(agpr)Orur, + aOyppr + (i — Pr)Osou + (aepr) (ug, — Vi)Optusy —up 0 (e pre Vi) + O (e prour V)
+uy {Orarpr + Ozarprur} = 0.

=0

Ceci aboutit & la décomposition suivante:

Premier pas : Propagation des ondes acoustiques dues aux déséquilibres de pression:

atal = 07
O¢(arpr) + prOz(arur) — (pxVi)Opar = 0, ke {12}
(arpr)Opur + O0upr + (pr — Pr)Ozay, = 0.

Deuxiéme pas : Transport a la vitesse ug — Vi:

atal = 07
Orpr + (ur, — V1)Oupr — pr0.Vi = 0, ke {1,2}
Opug + (ur, — Vi)Opuy = 0.

Troisiéme pas : Mise & jour de ay et convection par Vi:
Oran + Vi0zap =0,

8t(akpk:) + az(akPkVI) = 07 ke {17 2}
5‘t(akpkuk) + 8m(akpkukV[) =0.

En revanche, on n’évite toujours pas le probléme de résonance lié a la disparition d’une ou
des deux phases, difficulté sur laquelle ici encore nous concentrons nos efforts. Ainsi, il apparait

N

impératif de développer une discrétisation de chacun de ces trois pas de maniére & supporter les
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régimes de phases évanescentes. Dans le pas 2, qui traite des phénoménes de convection par les
vitesses ug — V7, les taux de présence se simplifient des équations. Pourvu que l'on puisse définir
correctement les quantités physiques (densités et vitesses) a la sortie du premier pas, on peut alors
les mettre & jour dans le pas 2 sans faire intervenir aj. On peut donc assurer lors de ce deuxiéme
pas la stabilité de la méthode dans les régimes de phases évanescentes. Le dernier pas est consacré
a la mise & jour de ay. Une adaptation d’un schéma trés simple et classique (le schéma décentré
amont) permet de discrétiser ce dernier pas de maniére a préserver la positivité des densités et un
principe du maximum sur les taux de présence et ce méme dans les cas de phases évanescentes.

Reste alors le traitement du premier pas. Motivés par les résultats du chapitre 2, nous intro-
duisons un nouveau mécanisme de dissipation d’énergie reposant sur des corrections des lois de
fermeture (V7, Pr). Certaines fermetures dissipant 'entropie ont déja été proposées par Saurel et
al. [39], Abgrall-Saurel [2] et Papin-Abgrall [35]. La correction que nous proposons donne un cadre
général a ces travaux en faisant intervenir une matrice symétrique positive de la forme

D= ( b D dDﬂ/b ) (0.8.1)

Etant donnée une loi de fermeture
VIC = (1 - :u)ul + pug, PIC = up1 + (1 - ;Uf)an e [Oa ]-]7 (082)

assurant une conservation de I’énergie (pour les solutions réguliéres), nous proposons de la corriger
localement dans les régimes de phases évanescentes de la fagon suivante:

VI _ VIC . d Dﬂ-/b UL — U
( Py ) = ( pr ) +51gne(—8$a)( bD, d pi—ps ) (0.8.3)

-1, sid,a>0,

+1, sinon. (0-84)

signe(—0ya) = {
Ainsi, la matrice D permet de recoupler les vitesses et pressions relatives u; — us et p; — ps dans
la définition du couple (V7, Pr). De plus, grace au résultat suivant, on montre que cette matrice
permet de piloter directement la dissipation d’énergie a la traversée de 'onde de taux de présence
(Ponde stationnaire dans le pas 1):

Propriété 0.2. Si la matrice symétrique D est positive, alors la correction (0.8.3) des vitesse et
pression d’interface fait décroitre ’énergie dans le premier pas au sens ot les solutions réguliéres
du pas 1 satisfont :

2 2
Oy {Z OékpkEk}+az {; Oékpk(/)k)’uk} = *(U17u27p1 *pQ)D ( le :;;2 > |0za1] <0, (0.8.5)

k=1

2
avec B, = 7%’“ + eg.

Le premier pas est approché & ’aide d’un systéme de relaxation. L’analyse du probléme de
Riemann de relaxation montre que les corrections (0.8.3) peuvent étre nécessaires quand les rapports
Z:—’; (ou leurs inverses) tendent vers +oo. En effet, pour certaines relations de fermeture, les vitesses
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et pressions relatives de la solution du probléme de Riemann peuvent devenir non bornées dans ces
régimes de phases évanescentes. Afin d’assurer que ces quantités restent bornées dans ces régimes,
nous obtenons des conditions de dissipation trés simples portant sur la matrice D et le coefficient p
de (0.8.2). On vérifie alors que les fermetures usuelles (0.2.3) correspondant & un champ linéairement
dégénéreé pour 'onde de taux de présence vérifient automatiquement cette condition dans les régimes
de phases évanescentes, et ce sans avoir a dissiper de 1’énergie. Autrement dit, en prenant la
matrice D nulle, il est possible d’assurer une discrétisation stable du premier pas dés lors qu’on a
choisi une des fermetures classiques (0.2.3). Cet argument mathématique semble accréditer ce choix
de fermeture, par ailleurs largement préconisé par des spécialistes des écoulements diphasiques, selon
qui 'onde de taux de présence devrait étre linéairement dégénérée. Soulignons qu’avec ou sans la
correction, les formules donnant la solution du probléme de Riemann sont explicites, ce qui rend
facile la mise en oeuvre du schéma.

Le schéma global qui résulte de cette décomposition en opérateurs est trés simple, et il admet
une formulation volumes finis & sept points. On montre que sous une condition CFL naturelle, il
vérifie les propriétés classiques de consistance et de positivité des grandeurs concernées. De plus, la
définition des trois pas est menée de telle sorte que globalement, les masses partielles ainsi que
la quantité de mouvement totale sont discrétisées de maniére conservative, ceci grace
4 une définition judicieuse des vitesses uy — V7 dans le second pas. De méme, dans la version du
schéma étendu au modéle avec énergie, ’énergie totale est aussi discrétisée de maniére conservative.

Les performances du schéma en fonctionnement «normal» (i.e. sans phase évanescente) sont
testées sur un probléme de Riemann dans le cas barotrope. De méme qu’au chapitre 3, on trace
les courbes (erreur L') = f(temps CPU) de maniére & comparer les cotits CPU & précision donnée
avec le schéma de Rusanov. Non seulement le schéma & pas fractionnaires obtenu apparait alors
bien plus performant que le schéma de Rusanov, mais il est aussi plus performant que le schéma de
relaxation introduit au chapitre 3. Cela est probablement di & "absence de procédure itérative de
calcul de racine & chaque interface, dans le cas de la décomposition en opérateurs.

Enfin, la derniére partie de ce chapitre considére I’extension du schéma, grice a la dualité
énergie/entropie, au modéle complet avec énergie dans le cas (Vi, Pr) = (ug,p1). Par manque de
temps, cette partie n’est pas rédigée, mais nous proposons néanmoins des résultats numériques qui
illustrent la méthode.

0.9 Publications

Les travaux présentés dans ce manuscrit ont fait 'objet de publications.

1. Les travaux du chapitre 1 ont fait 'objet d’un article soumis & la revue Mathematics of
Computations, et actuellement en révision: F. Coquel, K. Saleh, N. Seguin. Relazation and
numerical approximation for fluid flows in a nozzle.

Par ailleurs, ils ont été présentés au congrés FVCA 6 et sont référencés dans les actes du
congrés: F. Coquel, K. Saleh, N. Seguin. A relazation approach for simulating fluid flows in
a nozzle. Finite volumes for complex applications VI, Vol 1, pp 273-281, 2011.
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. Un article reprenant les travaux du chapitre 2 est en cours de finalisation: F. Coquel, J-M.
Hérard, K. Saleh, N. Seguin. Relazation and numerical approzimation for the isentropic model
of Baer-Nunziato with vanishing phases.

. Les travaux du chapitre 3 ont été soumis a la revue Mathematical Modelling and Numerical
Analysis: K. Saleh. An entropy-satisfying and efficient relaxation scheme for the isentropic
Baer-Nunziato model.

Par ailleurs, une partie des travaux associés a ces deux chapitres doit faire I'objet de pro-
ceendings du congres HYP 2012.

. Les travaux du chapitre 4 font 'objet d’un article en cours de finalisation.

. Un article présentant un schéma a pas fractionnaires similaire a celui du chapitre 4 (mais
ne traitant pas les cas de phases évanescentes) a été accepté pour publication dans la revue
ESAIM Proceedings. Il est présenté en annexe. F. Coquel, J-M. Hérard, K. Saleh. A splitting
method for the isentropic Baer-Nunziato two-phase flow model. ESAIM Proceedings.

. Enfin, nous joignons en annexe un travail complémentaire présenté dans les actes du congreés
ATAA [18] sur un modéle bifluide & huit équations, visant a généraliser le modeéle de Baer-
Nunziato en considérant une fermeture dynamique pour le couple (Vr, Pr): Frédéric Coquel,
J-M. Hérard, K. Saleh, N. Seguin. A class of two-fluid two-phase flow models. ATAA paper
2012-3356, https://www.aiaa.org/.
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RELAXATION AND NUMERICAL APPROXIMATION FOR FLUID
FLOWS IN A NOZZLE!

Frédéric Coquel, Khaled Saleh, Nicolas Seguin

Abstract

We propose in this work an original numerical scheme for the system of gas dynamics in a nozzle.
The method is based on a piecewise constant discretisation of the cross-section and on a linearized
Riemann solver. Such a solver is obtained by the use of a relaxation approximation and therefore,
this leads to a positive and entropy satisfying numerical scheme. The solution of the relaxation
Riemann problem and the stability properties of the numerical scheme are deeply investigated, in
particular in the case of resonance. Some numerical illustrations are provided at the end.

1.1 Introduction

The design of stable and accurate numerical schemes for hyperbolic systems is still a difficult prob-
lem and the challenge becomes much more difficult in presence of stiff source terms. Such an issue
may occur in the frame of flows which are influenced by external effects, due for instance to the
surrounding domain, another fluid, external forces... We are interested here in the numerical ap-
proximation of the solutions of a model describing one-dimensional barotropic flows in a nozzle. In
this model, p and w are respectively the density and the velocity of the fluid while « stands for the
cross-section of the nozzle, which is assumed to be constant in time. Under the classical assump-
tion that o (and its variations) is small with respect to a characteristic length in the mainstream
direction, the flow can be supposed to be one-dimensional and described by the following set of
partial differential equations:

Ot (ap) + Oy (apw) = 0,
{ O (apw) + am(apr + ap(r)) — p(T)dza = 0, (1.1.1)

where 7 = p~! is the specific volume and 7 +— p(7) is a barotropic pressure law. The first equation

is the classical conservation of mass and the second equation governs the dynamics of the horizontal
mean momentum.

1Les travaux de ce chapitre font ’'objet d’un article soumis & la revue Mathematics of Computations, et actuelle-
ment en révision.
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We propose a new numerical scheme for gas dynamics in a nozzle. Even if many numerical
methods have already been proposed for System (1.1.1), very few of them possess all the features
which could guarantee accurate results even for very complex flows. Among these features, we
emphasize properties of numerical stability: preservation of the positivity of the density p and
decrease of the total energy. The numerical scheme we develop here possesses all these properties
(see later for precise statements). The two main ingredients which enable us to obtain them are: a
piecewise constant discretisation of the cross-section « and the construction of a simple Riemann
problem to compute the numerical fluxes. The idea of taking a constant-by-cell cross-section goes
back to the works of LeRoux and co-workers [14, 13] and also to the paper of Isaacson and Temple
[16]. The consequence of such a discretisation is to concentrate the source term at the interfaces
of the mesh and to ease the construction of well-balanced schemes. In all these pioneer works,
the numerical fluxes are obtained by solving each interfacial Riemann problem exactly, which is
not an easy task because of the presence of a singular source term. Several attempts to simplify
this Riemann solver have been proposed (see for instance [10]), but the overall resulting numerical
scheme may lack for stability properties for severe test cases. Here, we construct a simple Riemann
solver, in the spirit of [15]. It is only composed by constant states separated by discontinuities,
which makes its practical implementation easy. In order to ensure the positivity of the density and
the decrease of the total energy, we interprete this simple solver as the exact solver of a relaxation
approximation of System (1.1.1), following [7, 6].

The cornerstone of this scheme is the resolution of the Riemann problem associated with the
homogeneous relaxation model for arbitrary data. Even if the relaxation approximation provides
a linearly degenerate system, the resonance phenomenon persists since the source term is singular
(the cross-section is discontinuous at the interface). In few words, resonance in hyperbolic systems
consists in the superimposition of an acoustic wave on the discontinuity of the cross-section, also
called the standing wave, leading the associated eigenvectors to be colinear (as a consequence, the
system is no longer hyperbolic). In the frame of the original model of gas dynamics in a nozzle, the
resonance causes nonuniqueness of the solution of the Riemann problem, as proved in [16] and [11]
(see also [18]). Here, the troubles are different. Global existence still remains true but, for particular
initial data, measure solutions have to be considered. They naturally appear when resonance occurs,
as parts of the solution in some limit regimes for given patterns of solutions. Measure solutions have
been studied in the context of conservation laws by DiPerna [9] and Bouchut and James [4] (see also
the references therein). Even if such solutions appear here, we are able to circumvent these solutions
by slightly increasing the relaxation coefficient a which governs the acoustic part of the relaxation
model. As a result, the solutions we consider for the final numerical scheme belong the the classical
setting of piecewise constant solutions seperated by linearly degenerate waves. Therefore, despite
this difficulty, we can obtain a positive and entropy satisfying relaxation numerical scheme.

The outline of this paper is the following. The next section is devoted to the presentation of
the main features of the model for gas dynamics in a nozzle. Section 1.3 is the core of this work:
the relaxation approximation is presented and the associated Riemann solver is solved. With the
help of this analysis, the numerical approximation is studied in Section 1.4. Basic and more tricky
properties are described with a special care to non linear stability and the computation of the CFL
condition. Some numerical tests are also presented to attest the good behavior of our numerical
scheme. Two appendices about some technical developments complete this work.
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1.2 The Euler equations in a nozzle with variable cross-section

1.2.1 Presentation and main properties

The model describing one-dimensional barotropic flows in a nozzle can be described by the following
set of partial differential equations:

(9toz = O,
O(ap) + 0z (apw) =0, (1.2.1)
O (apw) + 0 (apw? + ap(r)) — p(T)0za = 0,

where 7 = p~! is the specific volume and 7 ~ p(7) is a barotropic pressure law. The first equation

expresses the constancy of the section «, while the second and the third equations are respectively
the mass and the momentum conservation equations. All along this paper, we assume that the
pressure p is a smooth function of 7 satisfying the following classical properties. For all 7 > 0,
p(T) >0, p'(7) <0, and lim,_,o p(T) = 400 and lim,_, ;- p(7) = 0. An example of such a pressure
law is an ideal gas barotropic pressure law p(r) = S7~7 with S > 0 and v > 0. System (1.2.1)
takes the following condensed form:

0U + 9,£(U) + ¢(V)9,U = 0, (1.2.2)
where U = (o, ap, apw)? is the vector of unknowns and the functions f and c¢ are given by
0 0
f(U) = apw , ¢(1)0,U = 0 . (1.2.3)
apw? + ap(T) —p(1)0x

In practice, the constant section « is determined once and for all by the initial condition, and
thus it is not properly speaking an unknown function. However, the section « appears in the
mass and momentum equations, especially in the pressure terms. Therefore, in the numerical
simulations, where the solutions of system (1.2.1) are approximated by a Finite Volume method, it
is more appropriate to consider « as an unknown function, since it allows us to use the convenient
machinery of hyperbolic systems theory. In particular, we will be able to construct self-similar
solutions to system (1.2.1) (i.e. solution depending only on x/t). The following proposition holds,
that characterizes the fields of this system.

Proposition 1.2.1. For any U in the phase space Q defined by
Q= {U=(a,ap,apw)” € R*,a > 0,ap > 0}, (1.2.4)
system (1.2.1) admits the three following eigenvalues
oo(U) =0,
01(U) = w — ¢(7), o2(U) = w + ¢(71), (1.2.5)

where ¢(T) = 74/ —p'(7) is the speed of sound. The system is hyperbolic on Q) (i.e. the corresponding
right eigenvectors span R3) if, and only if (w — (7)) (w + ¢(7)) # 0. Moreover, the characteristic
field associated with o is linearly degenerate, while the characteristic fields associated with o1 and
oo are genwinely nonlinear.

44



Proof. The proof is classical and it results from direct calculations that are left to the reader. [

The phase space Q introduced in (1.2.4) is the physically relevant domain where the solutions
of (1.2.1) have to lie. Indeed, the section « has to be positive (which is trivially imposed by the
initial condition) as well as the fluid density p. In the sequel Q will be referred to as the phase
space of positive solutions. As regards the smooth solutions of system (1.2.1), we have the following

property:

Proposition 1.2.2. The smooth solutions of (1.2.1) obey the following additional conservation law

Ot (apE) + 0, (apEw + ap(T)w) = 0, (1.2.6)

2
where E = % +e(7) is the total energy and where the function T +— e(1) is given by €' (1) = —p(7).

Proof. This follows from classical manipulations of system (1.2.1). O

When one considers non-smooth weak solutions of system (1.2.1), it is well known that there is
no uniqueness of such solutions and one has to add a so-called entropy selection criterion in order
to select the relevant physical solutions of (1.2.1).

Definition 1.2.1. A solution of system (1.2.1) is said to be an entropy solution if it satisfies the
following inequality in the weak sense

Ot (apE) + 0, (apEw + ap(m)w) < 0. (1.2.7)

As the function («, ap, apw) — apFE is convex, this selection criterion can be formally justified
by the vanishing viscosity method (see for example [12]). When the solution contains strong shocks,
inequality (1.2.7) is strict, and this accounts for the loss of energy due to viscosity.

1.2.2 Standing wave and resonance

For the sake of numerical applications, one has to consider the case of discontinuous cross-sections
a, the simpler example of which is given by a Riemann-type initial condition a(z) = ap if x < 0
and a(x) = ag if x > 0. Since « is constant throughout time, this gives rise to a standing
discontinuity across which one has to define jump relations. The main difficulty lies in the treatment
of the non-conservative product p(7)d,« since this product cannot be represented in the sense
of distributions. Nevertheless, in the region of hyperbolicity of system (1.2.1), i.e. when w #
+¢(7), this non-conservative product is supported by the standing wave associated with the linearly
degenerate field oo = 0, and the natural definition of p(7)0,a is drawn from the conservation
of the Riemann invariants associated with og. These two Riemann invariants are obtained by
applying the Rankine-Hugoniot jump conditions to the mass conservation equation and to the
energy conservation equation (1.2.6):

[apw]’ = [apEw + ap(t)w]’ = 0, (1.2.8)
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where [X]Y denotes the jump of any quantity X across the standing wave.

When the resonance phenomenon appears, i.e. when there exists in the solution a state
(a, ap, apw) such that w = £e¢(7), the hyperbolicity of the system is lost, and the standing wave
superimposes with a non linear field associated with one of the extreme eigenvalues o1 or os. In
this very particular case, defining the non-conservative product is difficult and the uniqueness of
solutions is lost in general (even with the entropy criterion given by Definition 1.2.1), see [11, 16].
Besides, if the standing wave superimposes with a stationary shock, the energy is no longer preserved
across the wave and we rather have

[apEw + ap(t)w]® < 0 (1.2.9)

since the energy strictly decreases through the shock.

1.2.3 Numerical approximation and Riemann solvers

One of the most classical approaches for the numerical approximation of the solutions of (1.2.1) is
the so-called well-balanced approach (see [14, 13, 5]) which relies on the construction of the exact
solution of system (1.2.1) for the particular case where the initial condition is given by a constant
state Uy, for x < 0 and a constant state Ug for 2 > 0 (one speaks of a Riemann problem):

[ UL if z<0,
Uo(l‘) = { UR if x>0. (1.2.10)

Unfortunately, the exact solution of this Riemann problem is quite uneasy to obtain (see [18, 2])
due to the non linearities of the pressure law and to the difficulties linked with the resonance
phenomenon (definition of the non-conservative product, non-uniqueness...). Therefore, an other
approach is preferred, where solving the Riemann problem for system (1.2.1) is replaced by solving
an easier Riemann problem for an enlarged system obtained by a relaxation approximation method.

1.3 Relaxation approximation

1.3.1 The relaxation system and its main properties

In this section, we propose a suitable relaxation approximation of the entropy weak solutions of
system (1.2.1). For this purpose, we first recall that the genuine nonlinearity of the two extreme
fields (also referred to as the {07, o2 }-fields in the sequel) is closely related to the nonlinearities of the
pressure law 7 — p(7). In the spirit of [17], we consider an enlarged system involving an additional
unknown 7 associated with a linearization 7 of the pressure law. This linearization is designed
to get a quasilinear enlarged system, shifting the initial nonlinearity from the convective part to a
stiff relaxation source term. The relaxation approximation is based on the idea that the solutions
of the original system are formally recovered as the limit of the solutions of the proposed enlarged
system, in the regime of a vanishing relaxation coefficient € > 0. As a relaxation approximation of
(1.2.1), we propose the following system:
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8t0[5 = O,
9 (@p)® + Oz (apw)® =0,
O (apw)® + 0, (apw? + arn(r,T))E — (1, T)?0,af = 0, (1.3.1)

0U(apT)" +ulapTw)® = (ap) (r — T,
where the linearization of the pressure law is given by
m(r,T)=p(T) +a*(T — 7). (1.3.2)
System (1.3.1) takes the following condensed form:

1
OWE + D:g(W°) + d(W)9, W = ~R(W), (1.3.3)

where W = (o, ap, apw, apT)T is the vector of unknowns and the functions g, d and R are given
by

0 0 0
— apw . 0 _ 0
g(W) = oapw? + an AW W =\ o | R(OW) = 0 : (1.3.4)
apTw 0 ap(t —=T)

To ease the notation hereafter, we will omit the superscript €. From this point, we will refer to
the original system (1.2.1) as the equilibrium system, while system (1.3.1) will be referred to as the
relazation system. We can see that in the formal limit ¢ — 0, the additionned variable 7 tends
towards the specific volume 7, and the linearized pressure m tends towards the original nonlinear
pressure p (seen as a function of 7), thus recovering the equilibrium system (1.2.1) in the first three
equations of (1.3.1). The constant a in (1.3.2) is a constant positive parameter that must be taken
large enough to prevent system (1.3.1) from instabilities in the regime of small values of . This
will be clarified in section 1.4.4.

It is relevant to focus on the convective part of system (1.3.1) since a fractional step method
is commonly used in the implementation of relaxation methods: the first step is a time-advancing
step using the solution of the Riemann problem for the convective part of (1.3.1):

Oy = 0,
d(ap) + du(apw) =0,
0y (apw) + O (apw? + an(r,T)) — (1, T)Opax = 0, (1.3.5)
O (apT) + Oy (apTw) =0,

while the second step consists in an instantaneous relaxation towards the equilibrium system by
imposing 7 = 7 in the solution obtained by the first step. This second step is equivalent to sending
e to 0 instantaneously (see section 1.4 for details).

We now state the main property that motivates the introduction of the proposed relaxation
system:

Proposition 1.3.1. For any W in the phase space Q" defined by
Q" ={W = (o, ap, apw, apT)" € R*, a0 > 0,p > 0,0pT > 0}, (1.3.6)
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system (1.3.5) admits the four following eigenvalues
a5(W) =0,

o1 (W) =w —ar, oy (W) = w, o (W) = w+ ar, (1.3.7)

and is hyperbolic on Q" (i.e. the corresponding right eigenvectors span R*) if, and only if (w —
at)(w + at) # 0. Moreover, all the characteristic fields associated with {o]},_, 5 are linearly
degenerate.

Proof. The proof results from direct calculations that are left to the reader. O

Note that the crucial property here is the linear degeneracy of the two extreme fields. This
enables us to easily define jump relations across these originally nonlinear fields. More precisely,
the first equation of (1.3.5) shows that for any solution of the Riemann problem, the jump of « only
occurs through the oy standing wave, therefore « is a Riemann invariant for both acoustic fields.
Similarly, equation four in (1.3.5) shows that 7 is also a Riemann invariant for the acoustic fields
and the last Riemann invariant is determined by remarking that for any linearly degenerated wave,
the eigenvalue is also constant through this field (any other invariant of the field can be expressed
as a continuous function of these three Riemann invariants). Thus it is much easier to connect two
intermediate states by an acoustic field since the whole discussion of the definition and calculation
of rarefaction and shock waves is avoided.

Remark 1.3.1. System (1.3.5) could be studied for itself without relaxation consideration, i.e.
without considering that it is precisely designed to approximate the natural physical system (1.2.1).
In that case, there is no reason to impose the positivity of the density in the solutions and the phase
space for (1.8.5) turns to be larger than Q7 defined in (1.3.6). For our relazation approximation
purposes though, we ask the solutions of 1.3.5 to stay within the phase space Q)". The positivity of
the additioned variable T is necessary in order for the relazed pressure w(7,T) to be well-defined.
Subsequently, any vector W is said to be positive if it satisfies W € Q, and any solution (x,t) —
W(x,t) is said to be a positive solution if for all (x,t) in Ry x RS, W(x,t) belongs to Q.

1.3.2 Jump relations across the stationary contact discontinuity

We now focus on the definition of jump relations across the standing wave in the PDE model
(1.3.5). Applying the Rankine-Hugoniot jump relation to the mass conservation equation as well as
to the transport equation of 7 yields two Riemann invariants for the standing wave provided that
system (1.3.5) is hyperbolic (see hereafter). But as the non conservative product = (7, T )0y« is not
well defined across the standing wave (7(7,7T) may not be continuous across this wave), we cannot
apply the Rankine-Hugoniot relation to the momentum conservation equation. Instead, we seek an
additional conservation law satisfied by the smooth solutions of (1.3.5) eventually leading to a full
set of jump relations. We have the following statement:

Proposition 1.3.2. The smooth solutions of (1.3.5) obey the following additional conservation law
O (ap€) + 0y (apEw + an (T, T)w) = 0, (1.3.8)
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where

w2 (1, T) = p*(T)

2
E=2 1e(T)+

1.3.9
5 53 : (1.3.9)
is the total energy and where the function T — e(T) is given by €' (1) = —p(7).

Proof. This follows from classical manipulations. The details are left to the reader. O]

For a hyperbolic conservative system, the conservation of energy (1.3.8) holds true in the weak
sense for any solution presenting only contact discontinuities, and the Riemann invariant obtained by
applying the Rankine-Hugoniot jump relation to equation (1.3.8) can be expressed as a continuous
function of the other Riemann invariants. Nevertheless, system (1.3.5) is not conservative in the
neighborhood of the standing wave and this is the reason why applying the Rankine-Hugoniot
relation to (1.3.8) yields a new jump relation. Note that there are no theoretical results that
impose relation (1.3.8) to be exactly maintained across the standing wave when the resonance
occurs (i.e. when w = +ar), and we will see that, if equation (1.3.8) is exactly satisfied in the weak
sense, we will not be able to impose the invariance of the domain €2". Indeed, it will be proved that
keeping domain )" invariant requires the decrease of the energy in general. This is related to the
fact that Q7 is not the natural space for the solutions of system (1.3.5) (see Remark 1.3.1). These
considerations motivate the construction of solutions to the Riemann problem where the energy
decreases (in the weak sense) across the standing wave:

O (ap€) + 0 (apEw + am(1,T)w) <0, in D, (1.3.10)

as it may happen for the equilibrium system.

1.3.3 Solving the Riemann problem for the relaxation system
Definition of the solutions and existence theorem

Let be given Wy, and Wg, two positive states in 2". We are now interested in solving the Riemann
problem for system (1.3.5), i.e. we seek solutions satisfying the initial condition

_ Wy if z<0,
Wo(x) = { Wp if >0 (1.3.11)

Before defining the solutions of the Riemann problem (1.3.5)-(1.3.11), let us first define the
solutions of a slightly more general Cauchy problem where the initial data Wy is in L, (R,), and
where only the variable « is a Heavyside function:

_Joap it 2<0, . 1 r
ag(z) = { on if >0 and (w0, (ap)o, (apw)o, (apT)o) is in Ly, (Ry, Q7).
(1.3.12)

Thus, by the first equation of (1.3.5), the non conservative product 7(7, 7).« is supported by the
half line {z = 0,t > 0}. We also introduce the initial energy:

(@p€)(Wo) = (ap)o (wo (T + = (70’7'3212—19 (To)> ’

5 (1.3.13)
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which we assume to be in L. (R,) for the initial data Wy under consideration.

loc

Definition 1.3.1. A solution of the Cauchy problem (1.8.5)-(1.3.12) is a function W : (x,t) €
R, x Rf — W(z,t) € Q" such that W = (a, ap, apw,apT) belongs to Ll (R;* x RS, Q") N
L. (R xRS, Q") and (apwT, apE, apwé + amw) belongs to

loc

(L. (Ry* x RS R) N LL, (RS x Rf,R)).

x

Besides o is such that

_Joap if <0,
alz,t) = { ap if >0 forall t>0, (1.3.14)

and for all test functions (¢1,p2) in (D(R} X R;L))Q

/ (apw)Oppr +/ (apw? + am)dyp1 + /(ozpw)o(x)apl (x,0)dx =0, (1.3.15)
R, xR} Ry xR} R

/ (apT)Orpa —|—/ (apwT)0zpa + /(ap’T)O(x)gog(x, 0)dz =0, (1.3.16)
R, xR R, xR R
while for all v in D(R, x R,

+oo
0 _
/ (a0 / o (o | om0t [ @phla)ita.0)dz = 0. (13.17)

where
lapw]® (t) = lim (apw)(z,t) — lim (apw)(z, ), a.e. t>0. (1.3.18)

z—0t z—0~

Remark 1.3.2. The space D(R: x R}Y) is the space of functions ¢ that can be written as a sum
© = @ + @t where ¢~ is a C> function with compact support in R;* x R} and ¢t is a C>®
function with compact support in R * x R;F. In particular all the derivatives of ¢ vanish at x =0,
L0} p(0,t) = 0 for all i and j in N and all t in R.

We draw the reader’s attention on the fact that Definition 1.3.1 is not enough to wholly determine
the solution with respect to the initial data. As a matter of fact, few specifications have been given
so far for the treatment of the stationary discontinuity at = 0 (except equation (1.3.17)), and
some choices have to be made in order to calculate a solution, especially for the Riemann problem
for which the solution is self-similar. However, before giving a more complete definition of self-
similar solutions for the Riemann problem, we first discuss Definition 1.3.1 which indeed deserves
a few comments. Let us start with a property satisfied by the solutions of the Cauchy problem
(1.3.5)-(1.3.12).

Proposition 1.3.3. Assume that W : (z,t) € R, x R} — W(x,t) € Q" is a solution of the
Cauchy problem (1.8.5)-(1.5.12) in the sense of Definition 1.3.1. Then, for all test function @3 in
D(R; x R/)

/ (ap€) O3 + / (apw€ + amw) Oyps + /(apg)o(x)gog(m,O)dx =0. (1.3.19)
Re xRS Re xRS R
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Proof. Equations (1.3.15), (1.3.16) and (1.3.17) imply that outside a neighborhood of 2 = 0, any
solution satisfies
O(ap) + 0z (apw) =0,
O (apw) + 0 (apw? + an(r,T)) = 0, (1.3.20)
O (apT) + 0z (apTw) = 0,

in the usual weak sense (take 1 in D(R: x R/)), i.e. W(x,t) is the solution of a conservative
hyperbolic system whose fields are linearly degenerate. Hence, any additional conservation law
satisfied by the smooth solutions is also satisfied in the weak sense. Thus, the result follows from
Proposition 1.3.2. O

On the one hand, equations (1.3.15) to (1.3.17) imply that outside of a neighborhood of 2 = 0,
any solution satisfies
O(ap) + 0z (apw) =0,
O (apw) + 0 (apw? + an(r,T)) =0, (1.3.21)
O (apT) + 0z (apTw) = 0,

in the usual weak sense, and the energy is also exaclty preserved:
O (ap€) + 0 (apEw + an (T, T)w) = 0. (1.3.22)

On the other hand, equation (1.3.17) shows that the mass conservation equation is modified by
a non classical term which can be seen as the consequence of a Dirac measure supported by the
half-line {z = 0,¢ > 0}. Indeed, if [apw]® (t) is independent of ¢, we can write

+oo
| lanul @000t = fopul® ot (1.3.23)

Remark 1.3.3 (Important remark). In the literature concerning hyperbolic systems of conserva-
tion laws, several approaches have been implemented to consider measure-valued solutions. One of
the most common approaches is the measure-valued solutions introduced by Diperna [9] where the so-
lution consists in a measurable family of probability measures. Another approach is introduced in [3]
by Bouchut, where the solutions of a system describing pressureless gas flows are expressed in terms
of so-called §-shocks. Here again, the solution is defined in the sense of measures. In our particular
case, we decided not to consider measure-valued solutions in the usual sense. Indeed the solutions
given by Definition 1.5.1 are functions belonging to Li. . (R;’* x R, QT) NLL. (Rj* x R, QT),
and the non-classical term supported by the half-line {x = 0,t > 0} is accounted for by a direct mod-
ification of the mass conservation equation (1.3.17). This is motivated by the fact that the measure
solutions that may arise when solving the Riemann problem have a very simple form. They are
L™ functions with a non-zero mass flur across the standing wave, which can be interpreted as a
mass concentration at x = 0. In fact, it will be shown that these measure solutions only arise
when the resonance phenomenon occurs (i.e. when w = tat ), whereas in most cases, we will have

[apw]’ = 0.

Note that [apw]” () is well defined. Indeed, if a balance law d,u + 9, F(u) = 0 is satisfied on a
bounded open subset Z of R, x R}, then its flux F(u) is well defined as a measurable function on
02 (see Theorem 1.2.1 in [8]).

We may now state the following definition for the solutions of the Riemann problem (1.3.5)-
(1.3.11).
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Definition 1.3.2. A solution of the Riemann problem (1.3.5)-(1.3.11) is a function W : (z,t) €
Ry x R = W(z,t) € Q" in LY (Ry* x RS, Q") N L, (RF* x R, Q") satisfying the following
properties:

1. W is a self similar mapping and we can write W(x/t; W, Wg),

2. W is a solution of the Cauchy problem determined by the initial condition (W, Wg) in the
sense of Definition 1.3.1,

3. W s composed with constant intermediate states separated by waves whose constant speeds
are eigenvalues {o]},_, 5 of the system, and each eigenvalue o} appears at most once in W.

4. The dissipation of energy across the standing wave is non-positive in the sense that

[apwE + arw]” < 0. (1.3.24)
Moreover, we impose the following alternative
o if [apw]® = 0 then [apwT]’ =0,

o if [apw]® £ 0 then [T]° = 0.

Here again, this definition deserves some comments. We will see that, on the one hand, the
conditions on the solution that are imposed by definition 1.3.2 are restrictive enough to enable us
to calculate all the intermediate sates of the solution. But on the other hand, these restrictions
are broad enough to guarantee a global existence theorem on Q" for the Riemann problem, even
when resonance occurs (see theorem 1.3.4 below). The solution is built so as to preserve the energy
equality (1.3.8) at the interface z = 0 or at least to be dissipative, even if we have to accept a non
zero mass flux [apw]” # 0 in order to ensure this dissipation. For any solution, we may formally
write

O (ap€) + 0y (apEw + an (1, T)w) = — fo, (1.3.25)

where f is a positive function. Again, despite the linear degeneracy of the 0-field, we here allow a non
zero energy dissipation through the standing wave recalling that for the equilibrium system, such a
dissipation of energy may occur when the resonance appears. To be more precise, in the resonant
cases (where [apw]o may be non zero), we will see that f is a given function wholly determined by
the initial states Wy and Wg, whereas in the non resonant cases (where [apw]’ = 0), f depends
on a parameter and will be chosen so as to guarantee the positivity of the intermediate states (c.f.
remark 1.3.1).

Let us now define some notations depending only on the physical data Vy, := (pr,wr, 71,) and
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Vg := (pr,wr, Tr) and that will be useful afterwards:

1 1
g = _ _
w : 2(wL +U)R) 2a(7TR 7TL), (1326)
1 a
o= 5(7TR+7TL)—§(’U}R—1UL), (1.3.27)
o= 7'L—i—l(wﬁ —wp) :TL—l—i(wR—wL)— L(71'3—7@) (1.3.28)
L a 2a 2a2 ’
1 1 1
T}i% = TR—E(wu—wR) ZTR—F%(U}R—U)L)—F@(WR—WL). (1.3.29)

In fact, these quantities are respectively the speed, the linearized pressure, and the specific
volumes of the solution obtained with a constant initial section a;, = ag, provided that the specific
volumes 7'2 and T?% are positive. Let stress from now on that a will be chosen large for stability
matters (see section 1.4.4) and in particular large enough to enforce the positivity of T% and Tlﬁ{. In
the sequel, we always assume that the constant a is such that Tﬁ and sz are positive. It can be
seen that this is equivalent to the natural ordering of the waves w;, — ar, < w < wg + atg.

wh
wr — aTL
A S
T, W, T y 4 4 WR4+aTr
TR, W, T
TL,WL,TL TR, WR, TR

> T

Self-similar solution in the case of an initial data with oy = ag.

Thereafter, the self-similar function depicted above will be referred to as the constant section
solution. We also introduce the Mach numbers of the intermediate states for the constant section

solution:

# #
My =2 My = Mhy = Mp = (1.3.30)
aTr, aty, aTp aTRr

The main result of this section is the following existence theorem for the Riemann problem.

Theorem 1.3.4. Let Wi, and Wg be two positive states in Q7. Assume that a is such that Té >0
and T?% > 0. Then the Riemann problem (1.5.5)-(1.5.11) admits a positive solution in the sense of
or

Definition 1.5.2, whatever the ratio v = oL s

The proof of this existence theorem follows from an actual construction of the solution for
every given initial data Wy and Wg. For strictly hyperbolic systems of conservation laws, the
characteristic eigenvalues are naturally ordered (see for example the Euler equations). Consequently,
if all the characteristic fields are linearly degenerate, the solution is sought in the form of constant
states separated by contact discontinuities whose speeds are equal to the corresponding eigenvalues.
For system (1.3.5), the eigenvalues are not naturally ordered because of the existence of a standing
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wave, and a resonance phenomenon does appear for sonic flows (i.e. flows with vanishing (w —
at)(w + at)). Therefore, the classical proof must be slightly modified. We first focus our attention
on a particular non resonant ordering of the eigenvalues (for instance w—a7 < 0 < w < w+ar) and
we determine sufficient conditions (that sometimes appear to be necessary) on the initial states Wy,
and W g, for the solution to have this particular ordering. We do the same for the other possible non
resonant orderings (that may be supersonic). Resonant solutions are then studied as limits of non
resonant solutions as the acoustic speeds tend to zero. Eventually, we check a posteriori that the
determined conditions totally cover the entire domain of initial conditions 2" x Q". We show that
the conditions that give the ordering of the wave speeds can be expressed in terms of the physical
data V1,V and of the ratio of left and right sections : v = g‘—; In addition, for certain values of
v (large or small values depending on the flow direction) the solution may have to dissipate energy
in the standing wave in order to preserve the positivity of the densities (again, see Remark 1.3.1).

The following figure provides a schematic representation of the solution given by Theorem 1.3.4.
It represents the map of the admissible solutions with respect to the initial states Wy and Wg.
The right part of the chart corresponds to the solutions with positive material speed, while the left
part depicts the symmetric configurations with negative material speed. The blue lines represent
the solutions whose structure needs to refer to a measure concentrated at = = 0.

In the sequel, a solution of the Riemann problem is said to have signature < i,j > with ¢ and
jin {0,1,2,3} if it is composed with i left-going waves and j right-going waves. For example, the
solution with the ordering of the eigenvalues w — a7 < 0 < w < w + a7 is said to have signature
<1,2>.

Non resonant solutions

Solutions with signature < 1,1 >:

We first seek solutions with the subsonic non resonant ordering of the eigenvalues w —ar < 0 =
w < w + aT i.e. solutions with signature < 1,1 >.
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w — at w + at

WL WR

Signature < 1,1 >

We have the following result:

Proposition 1.3.5. Let Wy, and Wg be two positive states in Q2". The Riemann problem (1.3.5)-
(1.3.11) admits a positive solution in the sense of Definition 1.3.2 with signature < 1,1 >, if

w® = 0. (1.3.31)
The intermediate states of this solution are given by:

= we =0, T =T, (1.3.32)
7t =1k wt =0, T = Tx, (1.3.33)

and the energy equality (1.5.8) is exactly preserved across the standing wave.

Proof. We assume that w® = 0. Let us prove that the intermediate states given by equations
(1.3.32)-(1.3.33) determine a positive solution of signature < 1,1 >. For the left-going acoustic
wave, we have a = cst = oy, and 7 = cst = 7. Besides, we have wy — ar, = wh — arﬁ = —aTg =
—at” = w~ — ar~. Thus the Rankine-Hugoniot jump relations for (1.3.21) are clearly satisfied.
Similarly, we prove that the jump relations corresponding to the right-going acoustic wave are also

satisfied. As for the 0-w wave, the fact that w™ = w™ = 0, clearly yields
[apw]’ =0, [apwT]® =0 and [apwE + arw]’ = 0. (1.3.34)

Thus Definition 1.3.2 is satisfied. ]

Solutions with signature < 1,2 >:

Let us now turn on to solutions with the subsonic non resonant ordering of the eigenvalues w—ar <
0 < w < w+ ar i.e. solutions with the wave signature < 1,2 >.
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0 w
w — aTt
WA Wt
Ws w + at
WL WR
> T

Signature < 1,2 >

The following result shows that, provided a sufficient (and necessary) condition on the initial
states, one can build a one-parameter family of solutions (in the sense of Definition 1.3.2) of signature
< 1,2 >, and the dissipation of energy across the standing wave is directly driven by the underlying
parameter.

Proposition 1.3.6. Let Wy, and Wg be two positive states in Q". The Riemann problem (1.5.5)-
(1.3.11) admits positive solutions in the sense of Definition 1.5.2 with signature < 1,2 >, if and

only if

w*>0 and My <1, (1.3.35)
where w* and My, are defined respectively in (1.5.26) and (1.3.30). These solutions are parametrized
by M == M~ = ;1;7‘_’ the Mach number of the state on the left of the standing wave, and the
intermediate states are given by:

_ 1- M _ _ _
ol M womaMe. TeT (a)
14+ M}
U Ay vE w vaMt™, T TL, (1.3.37)
M —vM
T3 = T}g + TﬁiL v w3 = vaMTtT, T3 = Tr- (1.3.38)

1+vM "’

Besides, there exists a critical value v* in (1,+00] depending only on the physical data (Vi,Vg)
and possibly infinite such that the following alternative holds

e Either v < V%, and in this case, M belongs to the interval (0, Mo(w,v)] C (0,min(1,1/v))

with
1(1+w? 1 14+ w2\’ 1\? 4
— == (142) = 1+4-) - = 1.3.
Moo = L [ (14 1) ¢<1_w2> (el 1) g
where .
1—
W= 7M§ €(0,1). (1.3.40)
1+ M

The value M = Mq(w,v) gives the unique solution that exactly preserves the energy equality
(1.8.8) across the standing wave, and for M < Mo(w,v), the energy is dissipated.
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e Orv >t and in that case, no positive solution can preserve the energy equality (1.3.8). The
i
M < Mo (w,v) where Mo(w,v) is given by (1.3.39). M must

v
t
be strictly less than Mo(w,v), and by taking M close enough to % we ensure that all the
densities remain positive.

initial data is such that 0 <

In both cases, the choice of the value of M determines the dissipation of energy across the standing
wave through

[apwé + arw]’ = %(w% + ari)2Qo(M)¥(M; v, w) <0, (1.3.41)

where Qo(M) = arp~w™ = agpTwt > 0 is the mass flur across the standing wave and ¥ is a
nonpositive function defined by

L UM—1 G M4 _1-M]
W(M’V’w)_yM—l—l_wM—l’ with w_l—f—MﬁL. (1.3.42)

Proof. The proof relies on lengthly but easy calculations and therefore, we only sketch it. We
look for a classical weak solution i.e. we impose the mass conservation across the standing wave
[apw]® = 0. We first focus our attention on energy preserving solutions and we express the jump
relation corresponding to the energy conservation equation (1.3.8) across the standing wave in terms
of the left and right states W~ and W, which reads

[apwE + amw]’ = —f  with  f=0. (1.3.43)

This, combined with the mass conservation implies that
(M) —1) = (M2 1) = 0. (1.3.44)
In addition, the solution must satisfy equations (1.3.21) outside a neighborhood of & = 0 which
results in a full set of classical Rankine-Hugoniot jump relations. Using these jump relations through

the other waves, we can wind up the information to the initial left and right states, showing that
(1.3.44) is equivalent to

U(M;v, M5) = pMZL 2 MEL (1.3.45)

TuM+1l Mot
= (M -1)M-1) =M+ 1)(M+1) =0, (1.3.46)

where the expression of w is given in (1.3.40). Then we observe that for the solution to be of signature
< 1,2 >, wT has to be positive and so has to be w™ (by the mass conservation). Moreover, the
{w — a7}-wave must be negative which means that w;, — a7, = w™ —ar~ <0, i.e. My <1 and
M < 1. By (1.3.44), this implies that M < 1/v. Consequently, M must be sought in the interval
(0, min(1,1/v)). Let us now check that (1.3.46) has a (unique) root in (0, min(1,1/v)) if and only
if w® > 0, and that this root is given by (1.3.39). Defining 9(M) = (vM — 1)(M — 1) — w? (v M +
1)(M + 1), its first derivative reads

O M) =vM =1+ WM —1) =M +1) +vM+1),
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which is negative on the interval (0, min(1,1/v)). In addition, we have ¢(min(1,1/v)) = —2w?(1 +
min(v, 1/v)) < 0. Hence, by the intermediate value theorem, ¢ has a unique root in (0, min(1,1/v))
if and only if p(0) = 1 —w? > 0. From the definition (1.3.40) of w, we have w? < 1 & /\/lﬂL >
0 < w' > 0. The expressions of the intermediate states follow from the Rankine-Hugoniot jump
relations. Conversely, if w® > 0, then (1.3.46) has a unique root My in (0,min(1,1/v)), and
formulas (1.3.36)-(1.3.38) give a positive solution of signature < 1,2 > provided that wy, —at, <0
i.e. Mp <1.

The existence of v* is related to the expression of 73 in (1.3.38) which is the only intermediate
specific volume that may be nonpositive. It is possible to show that for fixed V; and Vg, the
function

t_
Vi ’7'3(1/,./\/10((4), l/)) = 7—?3 4 T]i ML Z/MO((,U, y)

S VPN (1.3.47)

is a non-increasing function that may become negative for large values of v. Then, in order to
impose the positivity of 73 we must no longer exactly conserve the energy at the standing wave (by
taking M = My(w, v)) but dissipate it by taking M smaller than Mg(w, ). The expression of 73

t
clearly shows that if M is taken close enough to %, we have 73 close to 7'?% which is positive. [J

Remark 1.3.4. We can compute explicitly the expression of vi: it is the value of v which cancels
T3 in equation (1.3.47) If we introduce

1- M
750 = lim 73(v, Mo(w,v)) = rh — M — L 1.3.48
3 v—sFoo 3( 0( )) R LV'L 1t MﬁL ( )
we can prove that
400 it 75°>0,
# o A o

T M (-0 ) - (- w)(ME ) (1.3.49)

= i , Lo>1 if 75° <0.

- -0 -w?) - AWML+ F)

Moreover, for v > vt appendicz A gives a procedure to choose the value of M and determine the

corresponding energy dissipation.

Solutions of signature < 0,3 >:

We now seek solutions with the supersonic non resonant ordering of the eigenvalues 0 < w—ar <

w < w + a1 i.e. solutions of signature < 0,3 >.
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0 w—ar

W3 w+ at

Wr

Signature < 0,3 >

Again, a one-parameter family of solutions is built, the involved parameter being directly related
to the energy dissipation across the standing wave.

Proposition 1.3.7. Let Wi, and Wg be two positive states in Q". The Riemann problem (1.3.5)-
(1.3.11) admits positive solutions in the sense of Definition 1.3.2 with signature < 0,3 > if and
only if

w* >0, Mp>1 and vMp>1. (1.3.50)

These solutions can be parametrized by a real parameter 8 € (0,1] measuring the dissipation of
energy across the standing wave, and the intermediate states are given by:

M3 -1

7'+ = OTL RV EEER w+ = VGMLT+, T+ = 7—[,7
vPMy -1

(1.3.51)

Mp+ 1D (Mg —1
72T§+TQL(ML1)<19\/EM2_1;EW\42+1;>, wr=w" +a(rn—-1"), T2=Tr,

(1.3.52)
7'3:7'?%4-%(./\/([/—1) (1—9\/Eﬁit1§EZﬁi;1;>, w3 = Wy, E:TR
(1.3.53)

Besides, there exists a critical value v* € (1,400] depending only on the physical data (Vi,Vg) and
possibly infinite such that the following alternative holds

o Either v < v*, and in this case the value § = 1 gives the unique solution that exactly preserves
the energy equality (1.5.8) across the standing wave.

e Orv > vt and in that case, no positive solution can preserve the energy equality (1.3.8). The

parameter 6 must be strictly less than 1, and by taking 0 close enough to 0, we ensure that all
the densities remain positive.

In both cases, the choice of the value of 8 determines the dissipation of energy across the standing
wave through

1
[apwé + arw]” = §G2TL2(ML2 —1)(6% = Dapprwr, <0. (1.3.54)
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Proof. Here again, we only sketch the proof. We look for a classical weak solution by imposing
the mass conservation across the stationary wave [apw]® = 0. The jump relation corresponding to
the energy inequality (1.3.10) leads to nearly the same equation as (1.3.44):

T (WML)? = 1) =72 (M2 —1) <0. (1.3.55)

Hence there exists ¢ in (0,1) such that

(1.3.56)

and the value 8 = 1 corresponds to the exact preservation of energy. The intermediate states are
then computed thanks to the Rankine-Hugoniot jump relations. Eventually, we observe that the
functions

> , (1.3.58)

v oo T 0) =75+ (Mg — 1) (1 - 9\/(ML il 1;2’”\“ -1 (1.3.57)

)
2 (ML—l Z/ML+1)
)
)

SN (W et

with 6 identically equal to 1, are non-increasing functions that may become negative for large values
of v. Then, in order to impose the positivity of 75 and 73, we must no longer exactly preserve the
energy at the standing wave but dissipate it by taking € in the interval (0, 1) close enough to 0. O

Remark 1.3.5. We can compute explicitly the expression of v*. If we introduce

T = min( lim 7,0 =1), lim 73(r,0 = 1)) = min(Tﬁ,Tﬁ)—%(ML—l) ( M+l 1> )

v—+400 v——+o00 ML —_ 1
(1.3.59)
we can prove that
400 if 7 >0,

2 2min('ru,'ru) 2
1 ML—1+(%+ML—1>
Mg

5 >1 if 7°<0.
2 2min(rf %)
ML—l—(#—i—ML—l)
Moreover, for v > vt appendiz A describes a procedure to choose the value of @ and determine the
corresponding energy dissipation.

Resonant solutions

We now study resonant solutions that are obtained by formally passing to the limit in non resonant
configurations < 1,2 > or < 0,3 > when letting the acoustic wave speed w — a7 tend to zero. We
distinguish the case of a divergent section ar > ay, i.e. ¥ < 1 and the case of a convergent section
ar < arp t.e. v > 1.
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Resonant solution for v < 1:

We consider initial left and right states Wy, and W g such that w? > 0 and M, < 1 which means
that the corresponding solution is of signature < 1,2 > according to Proposition 1.3.6. Then, we
study the formal limit of the solution as My, goes to 1~ which is equivalent to sending wy — a7y,
to 07. We expect the {w — ar}-wave to cross the standing wave and reappear on its right, thus
letting the solution to shift from signature < 1,2 > to signature < 0,3 >. However, Proposition
1.3.7 shows that signature < 0,3 > is possible only if vM > 1. This implies that in the case of a
divergent section v < 1, there exists a range of values of M, namely [1, %], on which the acoustic
wave w — a7 does not appear in the solution. Therefore, we are brought to study the resonant
signature < 0,2 > represented in the figure below.

Wy
Wr

w + at

Wr

Signature < 0,2 >

Proposition 1.3.8 shows that in this resonant case where v < 1, one can build a dissipative solution
in the sense of Definition 1.3.2 where the w — a7-wave does not appear.

Proposition 1.3.8. Let Wi, and Wg be two positive states in 2". The Riemann problem (1.3.5)-
(1.3.11) admits a unique positive solution in the sense of Definition 1.3.2 with signature < 0,2 >,

if
wh >0, Mp>1 and vMp<1. (1.3.61)

The intermediate states are given by

. 2T§/+TL(ML—1)

T2 = 1 + I/ML 9 Wo = VGIMLT27 7-2 = 7-L, (1.3.62)
1—vM Mp—1
_ i L L _ _ _
T3—TR+TL1+VML TL1+VML7 w3 = wg = vaMrpTo, T3 = Tr. (1.3.63)

This solution dissipates energy across the standing wave and the dissipation is given by

QVML—l

1
[apwé + arw]” = B (a2(27'£ + 7, (Mg —1)) M1

a’ti (M3 — 1)) arprwyr, < 0.
(1.3.64)

Proof. There are eight unknowns since we have to determine only two intermediate states. Thus
we need eight independent jump relations in order to calculate these intermediate states. For the
discontinuities located at ¥ = wp and ¥ = w3 + a73, we use the classical Rankine-Hugoniot jump
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relations associated with system (1.3.5) which provides us with six independent equations (three
for each wave). And for the stationary discontinuity, we use the mass conservation equation (i.e.
[apw]® = 0) as well as the conservation equation of T (i.e. [apwT]? = 0) which provides us with
two more equations. It is then possible to verify that for given Wy and Wg, there exists a unique
solution of signature < 0,2 > given by equations (1.3.62)-(1.3.63). Eventually, we calculate the flux
related to the energy equation (1.3.10) on the standing wave:

2
[apwE + aﬁw]o = % (722 ((1/./\/lL)2 — 1) — 72 (ML2 — 1)) appLwr,. (1.3.65)

This dissipation is wholly determined by W; and Wg, and is nonpositive since My > 1 and
vMp <1. ]

Resonant solution for v > 1:

Following similar steps as previously, we consider initial left and right states Wy and Wg such
that w* > 0 and My < 1 .The corresponding solution is of signature < 1,2 >, and we study the
formal limit of the solution as M, goes to 1~ which is equivalent to sending wy — a7t to 0. It is
easy to verify that for M, close to 1, ¥ = +00 which means that the Mach number of the state on
the left of the standing wave is given by M = Mg (w, v) (see equation (1.3.39)). Simple calculations
show that )

lim My(w,v)= lim Mo(w,v)= lim My(w,v)=— (1.3.66)
Mp—1— MﬁL_>1— w—0t v
as soon as v > 1. This implies that the specific volume on the left of the standing wave tends to
Zero:

1- M
li “= i i~ L 1.3.67
MLITI—T Mnngllf TLl *Mo(w,l/) ’ ( )
which means that the partial mass tends to infinity:
lim o p~ =+o0. (1.3.68)

ML—)1’

However, the Lebesgue measure of the cone supporting this intermediate state tends to zero as M,
goes to 1~

X
- - 1.3.
,u{(:c,t), wp — a1y < 5 < 0} ML——>>1* 0, (1.3.69)
and we expect a Dirac measure to appear whose weight is given by
0 0
li “p)(&)d = li “p)(&)d
o wﬁm(a p)(&)dE i w_im_(a p)(&)dE
_ I - _
Mngl— (w ar”)aLp
= lim —a(M() - 1)0[L
MLﬁlf

1
= a<1>aL
v

= —alag —ar)>0.



Therefore, we are brought to study the resonant signature < 0,2 > + g, with little abuse in the
notation, depicted in the figure below,

Wr

Signature < 0,2 > + Jo

This non classical solution may be represented by a function that however does not satisfy the
mass conservation across the standing wave. The missing mass between the states at the left and
right of the standing wave is precisely supported by a Dirac measure on the half-line (x = 0,¢ > 0)
represented in blue in the above figure. Thus Proposition 1.3.9 shows that there exists a solution in
the sense of Definition 1.3.2 which is a piecewise constant function with non zero mass flux across
the standing wave [apw]” = a(ag — ap) # 0.

Proposition 1.3.9. Let Wi, and Wg be two positive states in Q". The Riemann problem (1.3.5)-
(1.8.11) admits a solution in the sense of Definition 1.5.2 with signature < 0,2 > + do, if

v>1, w*>0 and Mp=1. (1.3.70)

The intermediate states are given by
™ =T}, wy = w' = ar}, T =Tr, (1.3.71)
T3 = Tg, ws = wh = arﬁ, T3 = Tr. (1.3.72)

The mass flur across the standing wave is non zero:
[apw]” = alag — az). (1.3.73)
Moreover, this solution dissipates energy across the standing wave, and the dissipation is completely
determined by the initial condition:
2

[apwE + arw]’ = a(ar — ar) <a Z-E +e(TL) —|—pL7'L> , (1.3.74)

which is negative since ar < ay,.

Proof. The intermediate states are obtained by passing to the limit as M — 17 in the expressions

(1.3.36)-(1.3.38) of the intermediate states of signature < 1,2 >. Note that when M, — 17,

we have MﬁL — 17 and M = M, — L. Easy manipulations show that the jump relations

1%
corresponding to the w and w + ar waves are satisfied. Indeed 7o = 71'(7'2, T) =t = W(T}{z, Tr) =
73, and therefore we have

[, w, 7] =0 and [, w + a7, T = 0. (1.3.75)
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This implies that equations (1.3.15) and (1.3.16) are satisfied for all test functions (o1, 2) in
D(R: x R"), as well as equation (1.3.17) for any given 1 in D(R* x R}"). If ) belongs to D(R x R}"),
it is sufficient to assume that supp(¢)) does not contain any other wave than the standing one. We
denote by 2~ = supp(y)) N {(x < 0,t > 0)} and QT = supp(¢y)) N {(z > 0,¢t > 0)}. We also divide
the boundary of supp(¢) into three curves 'y, I'" and I't, as shown in the figure below. Finally,
we denote ¥ = supp(¢) N{z =0,¢ > 0}.

O ! w + art

I'o

As we decided to represent the solution by functions, any integral of the solution on a bounded
domain is well-defined and we can write

/ {(ap)dip + (apw)0xtp} dxdt = / {(ap)0ep + (apw)O0yyp} dadt
Ro xR} Q-

+ - {(ap)0ep + (apw)Oy3p} dadt (1.3.76)

with

/7 {(ap)dp + (apw)Oyx1p} dadt /7 divy z (appr, apprwpt) dedt

g {(azpry)n: + (apprwry)ng} dlo

/z {(arpr)ne + (apprwr)ng } dE

+

+ / {(appr)n: + (apprwp)ng } dU~
-

=0
where (n,,n;) is the unit normal vector to the boundary pointing outside of supp(v’). Hence

0

+oo
/ {(ap)Or) + (apw)dpth} dadt = —/ (ap)o(x)(x,0)dx + / (apprwr)y(0,t)dt (1.3.77)
Q- 0

— 00

and in the same way, we show that

+oo
/ {(ap)Ou + (apw) Dot} dudt — — / (o powa) (0, £)dt. (1.3.78)
Q+ 0

Casting this in (1.3.76), we get (1.3.17). O
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Proof of the main result Theorem 1.3.4

In sections 1.3.3 and 1.3.3, we constructed solutions for w? > 0. These solutions correspond to
a material wave with positive speed w > 0. We can also construct the symmetric solutions for
w? < 0 which are denoted by < 2,1 >, < 3,0 >, < 2,0 > and < 2,0 > + & with clear
notations. Thanks to the Gallilean invariance of system (1.3.5) (see [12]), the intermediate states of
these symmetric solutions are obtained by exchanging the subscripts L and R and by applying the
mapping (a, ap, apw, apT) — (a, ap, —apw, apT) to the solutions constructed above. The details
are left to the reader. Finally the proof of theorem 1.3.4 is straightforward. If the constant a is
such that Tﬁ > 0 and Tg > 0, then Propositions 1.3.5, 1.3.6, 1.3.7, 1.3.8 and 1.3.9 as well as their
symmetric counterparts show that, for all positive initial sates W and Wg, there exists a solution
in the sense of Definition 1.3.2. Indeed, the conditions stated in the propositions cover the whole
domain of initial conditions Q" x Q". O

1.4 Numerical approximation

In this section, we use the relaxation approximation defined in section 1.3 in order to derive a
numerical scheme for approximating the entropy weak solutions of the equilibrium system (1.2.1).
We consider a Cauchy problem

U(z, 0) = Ug(x). (1.4.1)

{ 0, U + 9,£(U) + ¢(U)0,U =0, reRt>0,

For simplicity in the notations, we assume a constant positive time step At and a constant space step

Az > 0 and we define A = %. We introduce a partition of the space R = 'Lejz[xjfé’%#%[ where
J

Tijg1—a; 1= Ax for all j in Z. We also introduce the discrete intermediate times t™ = nAt, n € N.
The approximate solution at time t", x € R — Uy (z,t"™) € Q is a piecewise constant function whose

value on each cell C; = [xj_%,xj_%[ is a constant value denoted by U7:

Ux(z,t") =07, forall 2inCj;, jinZ, innéeN, (1.4.2)

j b

Endwise, we denote by z; = %(a:j_; +2;, 1) the center of each cell C;. At time t = 0, we use the
2 2

initial condition Uy to define the sequence (U9);cz by

0 L [T+ .
U; = N Uy (z)dz, jin Z. (1.4.3)

Z .

1.4.1 The relaxation method

We now describe the two-step splitting method associated with the relaxation system (1.3.1) in
order to calculate Uy(-,t"*!) from Uy(-,¢"). The first step consists in a time-advancing step for
the convective part of the relaxation system (1.3.1), and the second step takes into account the
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relaxation source term. We first introduce the piecewise constant approximate solution at time ¢™
of system (1.3.5) z = Wy (z,t") = W? in C; with

n (ap)}
W7 = |- (1.4.4)
At time t = 0, Wg is set at equilibrium which means that (apT)? = oz?. The two steps are defined

as follows.

Step 1: Evolution in time (t" — t"+17)

In the first step, the following Cauchy problem is exactly solved for ¢ € [0, At] with At small enough
(see condition (1.4.6) below)

{ W + 0,8(W) + d(W)0, W = 0, (1.4.5)

W(z,0) = Wy (z, 7).

Since x — Wy (z,t™) is piecewise constant, the exact solution of (1.4.5) is obtained by gluing
together the solutions of the Riemann problems set at each cell interface x; 1 provided that these
solutions do not interact during the period At, i.e. provided the following classical CFL condition

1

for all the W under consideration. More precisely,

If (2,t) € [aj,2501) X [0,At], then Wi (z,t) =W, (””xtﬂ“/"’ W, g+1), (1.4.7)

where (z,t) — W, (%, WL,WR) is the solution of the Riemann problem

OW + 0,g(W) + d(W)0, W = 0,
(1.4.8)

W i z<0,
W(x’o)_{wR if x>0

constructed in section 1.3. In order to define a piecewise constant approximate solution at time
t"+1= the solution W, (z,t) is averaged on each cell C; at time At:

n+17
+1— T. 1
n+l—y\ _ pynt+l— _ (ap)n _i Ty i .
Wi (z,t ) =W = (apw)”+1 N . Wi(z, At)dx, VxeC;, VjeL.
(apT)”“’ o

(1.4.9)
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Step 2: Instantaneous relazation (t"T1= — tnt1)

In the second step, we solve at time t"™ + At the ordinary differential equation
1
W = —R(W*?), (1.4.10)
€

in the asymptotic regime ¢ — 0. As an initial condition, we take the function Wy (z,#""1~) obtained
at the end of the first step. Using the definition (1.3.4) of the relaxation term R, we see that this

amounts to imposing '7;-”“ = T;H_l, thus we have

wett — | (@P)iT (1.4.11)

tn—‘rl

and the new cell value at time of the approximate solution Uy (-, " %) is given by

O('(H-l—
J
Uttt = | (ap)*' |. (1.4.12)

]n+17
(apw)’

This completes the description of the two-step relaxation method.

Remark 1.4.1 (Choice of the parameter a). In the first step, the solution of the Riemann
problem at each interface Tip1 always exists if the constant a is chosen large enough. As a matter
of fact, at each interface, since W, and Wg are set to equilibrium, we have Tp, = 71, and Tgp = Tgr.
Thus

i 1 1

T = Tt g (wr—wr) = 5 (p(TR) —p(71)). (1.4.13)
o= Tt o lwn —wr) + 5y ((7) — plra)) (1.4.14)

and if a is taken large enough, we ensure that TE > 0 and Tlﬁ% > 0 since 71, and TR are strictly positive.
Besides, a can be chosen locally at each interface Tip1 since the Riemann problems do not interact
under the CFL condition (1.4.6), and it can be chosen so as to avoid any non classical solution
with a mass concentration at one of the interfaces, this in order to guarantee the conservativity of
the partial mass ap in the method (see Property 1.4.3 and section 1.4.5).

1.4.2 Finite volume formulation

It this section, we show that the two-step relaxation method described in the previous section can
be written in the form of a non conservative finite volume scheme
At
n+l _ gt _ =% — _ T+
Ut =0y - o (Fy - F) (1.4.15)
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where f+1 = F~(U3,U0%,,) and ]__+ = FH(un

at the cell interfaces z;_ 1 and z; Iy Here the left and right fluxes 7~ and F* are two distinct

functions in order to take into account the non conservative product.

?_1,U}) are the left and right numerical fluxes

The first step of the relaxation method shows that Wy (z,¢) is the exact solution of
W + 9,g(W) + d(W)9, W = 0, (1.4.16)
on R x [t", "] with the initial data Wy (z,t") = W7 for all z in Cj, with j in Z. Integrating on
the rectangle C; x [t™, "], we get
At

Wn-‘rl— _ Wn - A (g(W ( W W]+1)) (W (O+ W] 17VV;I))) , (1.4.17)

since a = of is constant on Cj x [t", "] so that the product d(W)d, W identically vanishes
within C;. We then recall that the initial values Wi are set to equilibrium which means that
W = (U” ay), i.e. Wi = .4 (U}) where the mapping /// is defined as

M R3 — R*
(z,y,2)  — (2,9,2,2). (1.4.18)

This mapping, which happens here to be linear, maps U to its so-called mazwellian equilibrium
A (U) according to the terminology used in [4]. Moreover, the relaxation step shows that U}’H =

QZW?H_ where £ is the linear operator
P . R* — R3
(xay>z7t) — (x7yuz)‘ (1419)

Eventually, when applying operator & to equation (1.4.17) (note that & o # = Idgs) we obtain
the finite volume formulation of our scheme

At

Upt =15 - & (P05, U) = FHUR, 7)) (1.4.20)

with
FE(UL,Ug) = 2 g (W, (05,4 (Uy), #(Ug))) . (1.4.21)
In the sequel, F©, Fi i and FE  are respectively the first, the second and the third coordinates

apw
of the fluxes vectors ]: and ]'?"r In practice, it is the finite volume formulation that is used
to implement the numerical simulation. Subsequently, we denote by (RS) the relaxation scheme
described in sections 1.4.1-1.4.2, and whose finite volume form is given by equations (1.4.20)-(1.4.21).
In the following two sections, we state the main properties of the relaxation scheme.

1.4.3 Basic properties of the scheme

The relaxation approximation method provides a very convenient framework for the L'-stability
of finite volume methods since the preservation of the phase space ) by the scheme is almost
straightforward. Indeed, the following property states the positivity of the approximated values of
the section o} as well as the the positivity of the partial masses (ap)7.
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Property 1.4.1 (L!-stability). Under the CFL condition (1.4.6), the relaxation Finite Volume
scheme (RS) preserves positive values for the section and for the density. Indeed, if the initial
condition x — Ug(z) is in 2, then the values (U});jeznen computed by the scheme are such that,

_ 0 . . .
af =a; >0, (ap)j >0, for all j in Z and all n in N, (1.4.22)

that is to say, the section « is preserved throughout time at the discrete level, and the piecewise
constant approzimate solution Uy(x,t) is also in 2.

Proof. The first line of equation (1.4.20) reads a}”’l = af for all j in Z and all n in N. Thus,
if 049 > 0, this gives the result on 7. For the positivity of the partial masses (ap)}, it is more
convenient to consider the two-step splitting formulation of the scheme. The second line of equation
(1.4.9) shows that (ozp)?'H is the Py projection of the partial mass in the solution Wy (z, At) of the
relaxation system. Under the CFL condition (1.4.6), this solution is obtained by gluing together the
Riemann solutions arising from each interface /2. Since these solutions are positive according
to Theorem 1.3.4, this concludes the proof. O

We also have the following classical consistency property for the relaxation scheme (RS) which
guarantees that the constant solutions of system (1.2.1) are exactly computed.

Property 1.4.2 (Consistency). The relazation Finite Volume scheme (RS) is consistent in the
sense that, for all U in the phase space §, the numerical fluzes F~ and F+ satisfy

F~(U,U0) = F(U,U) = £(U), (1.4.23)
where £(U), which is defined in (1.2.8), is the conservative part of the exact flux of the equilibrium
system (1.2.1).

Proof. The proof is almost straightforward, denoting W = #(U), we immediately see that
W, (0%; W, W) = W (see equations (1.3.32) and (1.3.33)). And & g(W) = f(U) since W = .#(U)
is at equilibrium. O

addition, under some condition on the choice of the numerical parameter a, the relaxation
method is conservative for the mass equation:

Property 1.4.3 (Conservativity). Denote v;, 1 = =*—. If for each interface Tii1, the local
J+1

vl
Q

value of the parameter a = Q1 18 chosen so as

n

_ J
Vil >1:>'ML,j+% = oo #1,
Jt3'J
(1.4.24)
Wiy
J
Vj+%<1:>MR,j+%: 7&71,

T4 1T
then the relazation scheme (RS) is conservative for the partial mass ap, in the sense that

Fop(U3, U7, ) = FHL (U, U ) forall j in Z. (1.4.25)
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Proof. We have
Fb (U8, UL) = Fa (U2 U2,) = [apu]® (W, (5.t (UD), A(U,)) (1.4.26)

If ;1 is chosen as in (1.4.24), then the solution W.( . ;.#(U}), .#(U},,)) of the relaxation

Riemann problem is a classical solution without mass concentration at v =z, 1 Hence [apw]® =
0. O

Property 1.4.4 (Well-balanced property). The relaxation scheme (RS) exactly preserves the
steady states at rest w = 0 and p = cst. Indeed, if there exists w® € R and p° > 0 such that

(apw)- —0 and ’ = p° for all j in Z then
0 (@p)? o .
(apw)] =0 and ——=p, foralljinZ and alln in N. (1.4.27)
J
Proof. Let us assume that at time ", (apw)} = 0 and (ap)f = p® for all j in Z, i.e. wi =0 and

p; = pY for all j in Z. At each interface, one has wy = wgr = O and 77, = 7p = 1/p°. Hence w! =0

and the solution has the signature < 1,1 > with w™ = w* = 0 and TE = Tj‘% =1/(p°) i.e. all the
intermediate states are at equilibrium (w = 0 and p = p%). After averaging the solution we obtain

(apw)n+1 =0 and (a p)

T = = pY for all j in Z. The proof follows from an induction argument. [J
J

1.4.4 Non linear stability
General points

Non linear stability matters are usually dealt with through a so-called discrete entropy inequality.
Before describing what a discrete entropy inequality is, let us briefly recall what an entropy is:

Definition 1.4.1. An entropy associated with the system
0;U + 0. f(U) + ¢(U)d,U = 0, (1.4.28)

is a real valued function n(U) such that there exists G(U) € R such that the smooth solutions of
(1.4.28) satisfy the following additional conservation law

9im(U) + 8,G(U) = 0. (1.4.29)

The real valued function G(U) is called the entropy flux associated with the entropy 7.

Of course, if U(x, t) is a discontinuous solution, (1.4.29) cannot be exactly satisfied and a common
criterion to select weak solutions is to impose an entropy inequality

9m(U) + 8,6(U) < 0. (1.4.30)
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for non smooth weak solutions. If 7 is convex, this can be formally justified by the vanishing
viscosity method (see [12]). Let us now assume that a non conservative finite volume scheme is
used to approximate the solutions of (1.4.28):

n At
Upt =15 - o (U5, U7 - FHURL, 7)) - (1.4.31)
We have the following stability definition
Definition 1.4.2. We say that the numerical scheme (1.4.31) satisfies a discrete entropy inequality
associated with the entropy n if there exists a numerical entropy flux G(Ur, Ug) which is consistent
with the exact entropy flur G (in the sense that G(U,U) = G(U) for all U in Q) such that, under
some CFL condition, the discrete values computed by (1.4.31) automatically satisfy

BUPH) = n(U7) + - (G(U}, Upy) = G(U},, U})) < 0. (1.4.32)

This can be seen as a stability condition because if we denote by > n(U})Az the discrete
JEL
L'-norm of the total entropy at time ", then summing inequality (1.4.32) over the cells yields
Zn(U?H)A:B < Zn(U?)Agc, for all n in N, (1.4.33)
JEL JEZ

which means that the total entropy is decreasing in time.

According to Definition 1.2.1, apFE with E(U) = “’72 + e(7) is an entropy for the equilibrium
system and the associated entropy flux is given by G(U) = apwE + awp. Similarly, by Proposition

2

1

1.3.2, ap€ with E(W) = % +e(T)+ ﬁ(ﬂQ(T, T)—p?(T)) is an entropy for the relaxation system
a

and the associated entropy flux reads G,.(W) = apwé + awn.

Sufficient conditions for the discrete entropy inequality

The aim of this section is to exhibit sufficient conditions on the constant a, which so far is still not

determined, that ensure a discrete entropy inequality of the form
(aPE)(Uj ) - (apE)(U}) + E(G(UJ‘ Ui) = GUT,,U7)) <0, (1.4.34)

with the numerical entropy flux G(Ur,Ug) to be determined. Recall that the non conservative
numerical fluxes of the scheme are given by

F(U}LUY,) = 2 g(Wo(07;.4(UF), 4 (U}4y))), (1.4.35)

FHULLUY) = 2 g(Wo(0F;.4(U),),.#(U})), (1.4.36)

where each Riemann solution W,.(&; .2 (U?_,), #(U})) and W,.(§; .4 (U}), # (U}, 1)) clearly de-
pends on the local choice of the constant a, denoted by a, 1 A classical condition on a; 1 is the
so-called Whitham condition reading (see [4, 1])
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Definition 1.4.3. The parameter a1 s said to satisfy the classical Whitham condition if
g1 is such that

a§+% > max (—0,p(1), —0-p(T)), (1.4.37)

for all 7 and all T encountered in the solution W,.(§; .4 (U} ), # (U} ,)) of the relazation Riemann
problem defined by U} and U},

A well-known result is that if a; +1 satisfies this condition for all j in Z and at every time t"
then the relaxation approximation method satisfies a discrete entropy inequality (1.4.34) (see again
[4]). However, for solutions near the resonance phenomenon, we have seen that the specific volume
7 might be close to zero near the standing wave, thus making it meaningless to enforce the classical
Whitham condition. Indeed, —0,p(7) tends to 400 as 7 goes to 0. In the sequel, we exhibit a less
restrictive condition on a that still ensures a discrete entropy inequality of the form (1.4.34) but
that can also handle resonant solutions. This new condition will be referred to as the weak Whitham
condition. We start by defining some useful notations.

Definition 1.4.4. Let Ax and At be respectively a space and a time steps, and let o be a real

number in the interval |—&&, SZ[. For any given self-similar function X (z/t) in L}, (Re¢) with
& = x/t, we introduce the following space averages of X at time t = At:
2 [° _2At
L —_
=2 [ X(/ande =22 " X(€)d, (1.439)
_2At
(X" = 2 / X(a/ands = o0 [T x(©ae, (1.4.39)
If 0 > 0, define
1
(X) = aAt/ X (z/At)dz / X (&)de, (1.4.40)
L
(X)? = / X(z/At)dx = X (€)de, (1.4.41)
O'At m - o
then (X)" is a convex combination of (X)' and (X)?:
R, At 1 At 2
() =20 (X)! 4 (1-20 ) (%)%, (1.4.42)
If 0 <0, define
- 1 1 oAt 1 a
XV X (z/At)dz = / X (€)de, 1.4.43
W= x|, Xesnw= e [ X (1443
0 1 /0
(X)? = / X(z/At)de = — / X(€)de, (1.4.44)
|0|At oAt ‘U| o
then (X)* is a convex combination of (X)' and (X)*:
L _ At 1 At 2
(X)) = (1+2UA{E (X) +2\0|A:E (X)”. (1.4.45)
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Provided that 1/X belongs to Lzloc(Ré)7 we also define the harmonic mean of a strictly positive
self-similar function X (xz/t) as

Tio

ie{L,1,2,R}. (1.4.46)

77?

~
M= | =
~

Hereunder, we state the weak Whitham condition on a which ensures that the relaxation scheme
satisfies the discrete entropy inequality (1.4.34).

Definition 1.4.5. Let (Ur,Ug) be two admissible initial states, and let
Uapp(§; UL, Ur) = PW,(§; 4 (Ur), # (Ur))

be the approrimate solution of the Riemann problem obtained by the relazation approrimation. We
denote by o the material speed of the Riemann solution for the relaxation system i.e. the effective
value of the w-wave speed in W,.(&; #(Uy), # (Ur)). Let Ax and At be respectively a space and a
time steps satisfying the CFL condition (1.4.6).

We say that the parameter a satisfies the weak Whitham condition for (Up,Ug) if

i the case o = 0, a is such that

1 1
a? > max (—2/ 0-p(s Tapp” + (1 — 8)71) (1 — s)ds, —2/ O, p(s Tapp 4+ (1 = 8)7R) (1 — s)ds) ,
0 0
(1.4.47)

in the case o > 0, a is such that

1 1
a® > max (2/ Brp(s Tapp” + (1 — 8)71) (1 — s)ds, 72/ 0-p(5 Tapp + (1 — 8)71)(1 — 5)ds,
0 0

1
72/0 0-p(s Tapp” + (1 —s)TR)(1 — s)ds) ,
(1.4.48)

in the case o < 0, a is such that

1 1
a® > max <2/ 8-p(s Tapp + (1 — 8)71)(1 — 5)ds, 72/ 0-p(s Tapp- + (1 — 8)7)(1 — s)ds,
0 0

1
—R
—2/0 0:p(8 Tapp + (1 —38)TR)(1 — s)ds) .
(1.4.49)

Remark 1.4.2. For strictly convexr pressure laws, the weak Whitham condition is indeed less re-
strictive than the classical Whitham condition since we have for all i € {L,1,2, R}

Vs €[0,1], s 7app +(1—5)77 > min(7apy’,72) > min 7 = min (s Famp. + (1 — S)’TL) > min 7.
T T

s€[0,1]
(1.4.50)
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where min 7 denotes the smaller specific volume in W,.(§; # (Uy), #(Ug)). Thus, we have

T

- - - < - 4.
sren[gﬁ] D (s Tapp + (1 S)’TL) < mﬁx( 0:p(T)) (1.4.51)

since T — —0-p(T) decreases by the strict convexity of the pressure law. Hence

1 ‘ ‘ 1
_ 2/ 0rp(8 Tapp' + (1 —8)7L)(1 —8)ds < max —0.p (s Tapp + (1 — S)TL) 2/ (1—s)ds
o s€[0,1] 0
< max( —9;p(7)). (1.4.52)

1 .
In the same way, we find that for i € {L,1,2, R}, —2/ 0rp(s Tapp' + (1 — 8)7R)(1 — 8)ds <

0
max ( —0;p(7)) which proves that the weak Whitham condition is less restrictive than the classical
T
one.

Theorem 1.4.5 shows that the weak Whitham condition is still a sufficient condition to guarantee
an entropy inequality.

Theorem 1.4.5. Under the CFL condition (1.4.6), the weak Whitham condition guarantees a
discrete entropy inequality for the relazation Finite Volume scheme (RS). Indeed, assume that for
alln € N and 5 € Z, a1 satisfies the weak Whitham condition for (U}, U},,) in the sense of
Definition 1.4.5, then the relaxation scheme (RS) satisfies the discrete entropy inequality

(apE)(UF*) — (apE)(U}) + %(G(U% 1) — G(U7_,U7)) <0, (1.4.53)

where the numerical entropy flur G(Uy,, Ug) is given by G(Ur,Ug) = G (W, (07;.# (UyL), . # (Ug))).

In order to prove theorem 1.4.5, we first establish the following Lemma

Lemma 1.4.6. Let (Uy,Ug) be two given admissible states in 2, and let
Uapp(g; ULa UR) = gZWr(& %(UL)v %(UR))

be the approrimate solution of the Riemann problem obtained by the relaxation approximation. We
denote by o the material speed of the Riemann solution for the relaxation system i.e. the effective
value of the w-wave speed in W.,.(&; 4 (Uyr), #(Ug)). Let Az and At be respectively a space and
a time steps satisfying the CFL condition (1.4.6). In order to ease notations, we write Uypy,(§)

instead of Ugpp(&; UL, Ur) and W,.(€) instead of W,.(§; 4 (Ur), # (Ug)).

If the parameter a satisfies the weak Whitham condition for (U, UR) in the sense of Definition
1.4.5, then

if 0 =0, the following inequalities hold
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2At

(@PB)(Uapp)") — (@pB)(Ur) + o (6:(W,(0%)) ~ G(U1)) <0, (1.4.54)
(0P ) (Uagp)™) — (0pE)(Ug) + o (G(Un) ~ Gu(W, (0%))) <0, (1.4.55)
if o0 > 0, the following inequalities hold
(@ B)((Uapy)") ~ (@pB)(U1) + 2 (G.(W,(07)) - 6(U2)) <0, (1.4.56)
At
(0pE) (Uapp)') ~ (apB)(Ur) + - (Alt O gxwr«am)/mdt—gr<wr<o+>>> <0, (1.457)
At
(@pE)(Uapp)?) — (apE)(Un) + Ml_g <g(UR) _ é 0 g,(w,«am)/t))dt) <0, (14.58)
2At

if 0 <0, the following inequalities hold

At
(@PB)(Uapp)) — (apE)(Uz) + — 5 (1 QT<WT<<aAt>/t>>dt—g<UL>>so, (1.4.59)

+ on At Jg
At
(0pE) (Uapp)?) — (apB)(U) + — (gr<wr<o+>> -~ 0 gAWr((aAt)/t»dt) <0, (1.4.60)
(0P E) (Uagp)™) — (0pB)(Un) + 2t (G(UR) ~ G (W,(0%))) < 0. (1.4.61)

Proof. We only give the proof for ¢ > 0. The proofs for ¢ = 0 and ¢ < 0 are similar and
are left to the reader. We consider the Riemann problem for the relaxation system with initial
conditions at equilibrium (Wr, Wg) = (#(Ur),.#(Ug)). Since the CFL condition (1.4.6) holds,

all the wave speeds of the Riemann solution W,.(¢; W, Wg) lie in [—%, %]. In particular, we
have 0 < 0 < %.
Ly
At o
| A

>

8
L.
8

Within each rectangle ] — 4%, 0[x]0, At[, ]0,0A¢[x]0, At[, and JoAt, §Z[x]0, At[, the function
W, (x/t; Wi, Wg) satisfies exactly the scalar conservation law, valid for the relaxation equations

(0]



(1.3.5)

O ((Ong)(wr)) + O (gr(wr)) =0. (1'4'62)
Integrating this equation over | — %, 0[x]0, At[, and dividing by %, we get
2At [0 2At
2o @r )W) — (ap) (1) + 2 (G W 07) ~ Go(W)) =0, (1469

Now, as (W, Wpr) are at equilibrium, we have (ap€)(Wr) = (apE)(Ur) and G, (W) = G(Uyr).
Moreover, the Riemann solution is constructed such that G,.(W,.(0")) —G,.(W,.(07)) < 0. Replacing
in (1.4.63) this yields

0
—(pB)(Ug) + e (G (09) ~ G(U1)) < 20 [ ()W)t (1464)

2At

Hence, in order to prove inequality (1.4.56) of the Lemma, it is sufficient to establish that

0
(@B} ()~ 5 [ (ap) (€ < 0. (1.4.65)

2A¢t

which we can rewrite (apE)((Uapp>L) — <(ap5)(WT)>L < 0. In the same way, integrating equation
(1.4.62) over |0, 0 At[x]0, At[ and dividing by oAt gives

1 1(1 &

; /Oa(apg)(wr(f))df - (Otpg)(WR) + g (At 0 gr(wr((UAt)/t))dt — gr(Wr<O+))> =0.

(1.4.66)
As the initial states are at equilibrium and using the notations of Definition 1.4.4, this reads

At
~ (apB)(Ur) + (Alt G W (o0t~ growr(o*))) = — (apE)(W,)' . (L467)

Therefore, in order to prove inequality (1.4.57) of the Lemma, it is sufficient to show that
(apE)(<Uapp>l) - <(ap5)(wr)>l < 0. (1.4.68)
Similarly, integrating equation (1.4.62) over JcAt, SZ[x]0, At[ shows that it is sufficient to establish
(@PE)(Uapp)?) — {(@p€)(W,))? <0, (1.4.69)
in order to prove inequality (1.4.58) of the Lemma. Thus it remains to show that for all ¢ € {L, 1,2},
(@pE) (Uapp)) — ((ap€) (W) <0, (1.4.70)
which is equivalent to proving

(PE)(Uapp)') = ((pE)(W,.))" <0 (1.4.71)

since on each domain of integration « is a positive constant.
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We have
(PE) ((Uapp)') — {(pE)(W,))’

((pw)app)" o7 . (pw); e 1 a2 (r 2
= (pos) <z<pa,,,,>2 F el >> (r (G + T+ 5z (T =270 ) )

(1.4.72)

The relaxation method is such that (papp, (PW)app) = (pr, (pw),) and we omit the subscripts for

2
more clarity. Besides, as the function (p, pw) — (e 2“; )~ s convex, Jensen’s inequality implies that it
is sufficient to prove

1

(p)' e(7) — <p (e(T) + 53 (72(1,T) —pQ(T))) >z <0. (1.4.73)

Let Z be the expression on the left hand side of inequality (1.4.73). Then,

7= <p (e(?i) —e(T) — % (m*(r,T) — p2(T))> >Z : (1.4.74)
with

(r,T)=p*(T) = (a(r T) p(T)) (7 (T T)+P(T))
= d(T (Zp('T )
= 2 (TIT —7)+ (T )%,

by definition of e. Casting this in (1.4.73), we get

T - <P (eﬁi)—e(T)—e’(T)(T—T)—aQ(T‘T)2>>i

+ S ((T-7)2 = (T-7?))" (1.4.75)

As the variable 7 only jumps through the w-wave whose speed is equal to o, 7T is constant in each
one of the integration areas at time ¢ = At (equal to 71, if i = L or i = 1 and to 7 if i = 2), and

any function of 7 can be factored out of the averages which gives, for the second term of equation
(1.4.75),

(p(T)F =1)) = (T (pF = 1)) = (T)F {p)’ = (pr)') = (T)A = (1)) =0, (1.4.76)



since by Definition 1.4.4, 78 = 1/ < p >%. For the third term of equation (1.4.75), we can write

a? L g2

ST =7 (T =) =5 (p (T =7 = (T =) (T =7+ (T =7)))’
=S (-7 @T -7 7))

T and 7' are two constants we can factor out

a2 PN a2 7
=5 @T=7)(p(r=7)) 5 (p(r=7)7)
=0
=5 (-7
-5 (-
<0, (1.4.77)

since the harmonic mean of a strictly positive function is always less than its average. Finally, for
the first term of equation (1.4.75), a Taylor expansion with integral remainder gives

(F) = e(T) = (T)F = T) = (T =7 [ /(s 7+ (1= 5)T)(1 = 5)ds (1.4.78)

Then, observing that ¢” = —0,p and replacing in the first term of (1.4.75), we get
. . a2 . i
(o (e = el) — NG =1 = ST =72) )
= (p)’ </ —0:p(s T4+ (1 — 8)T)(1 — s)ds — a?> (T — 792 (1.4.79)
0

which is negative since the parameter a is supposed to verify the weak Whitham condition. Thus
Z < 0 and we have proved that inequality (1.4.70) holds for all ¢ € {L, 1,2} which concludes the
proof of the Lemma. O

We have the following consequence of Lemma 1.4.6

Lemma 1.4.7. With the same notations as in Lemma 1.4.06, if a satisfies the weak Whitham
condition for (Ur,Ug) in the sense of Definition 1.4.5, then

(pE)((Uapp)™) = (apE)(UL) + %A; (Gr (W.(07;.#(Up), #(Ur)) —G(Ur)) <0,  (1.4.80)
(pE)((Uapp)™) = (apE)(Ug) + %A; (G(Ug) — G, (W,.(0F;.4(Uy), #(Ug))) <0.  (1.4.81)

Proof. Let o be the material speed of the Riemann solution for the relaxation system. If o = 0,
the result is straightforward from Lemma 1.4.6. If o > 0, multiplying inequality (1.4.57) by 2(7%:j
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and inequality (1.4.58) by 1 — 202 t then summing gives

2Ug(apE)(<Uapp>l) + (1 - 20257) (CYPE)(<UGPP>2)

~ (@pE)(Un) + 2 (G(UR) ~ G, (W,(0%))) <0 (1.4.82)

which yields inequality (1.4.81) since apFE is convex . The case o < 0 follows similar steps. O

Remark 1.4.3. Following the terminology used in [}], Lemma 1.4.7 says that the numerical scheme
satisfies an entropy inequality by interface.

We can now prove Theorem 1.4.5. A proof is given in [4], but we reproduce it here for the sake
of completeness.

Proof of theorem 1./.5. We first define the averages for each half-cell [z; 1, x;] and [z}, 2, 1]:
R 2 (" n
(Uapp)j_y = A—x/ Uapp (2/At; U7y, U%) dz for the half-cell [2;_1, 2], (1.4.83)
1
T2
L 2 +% n
(Uapp>j+% = X Uapp (x/At; U7, U}y, ) dx for the half-cell [, @;11].(1.4.84)
x;j

R L .
Thus we have Ut = 3 <Uapp>7 + 3 (Uapp>j+% , and as apF is convex

1

(0pB) (U ™) < 5(apB) ({Uap) ) ) + 5(00B) (Uap), ). (1.4.85)

As aj_1 satisfies the weak Whitham condition, we can apply inequality (1.4.81) of Lemma 1.4.7

with UL = TU] ; and Ug = U” which yields

(@) ({Uag) ) ~ @pE)UP) + 220 (G(UF) — Gy (W (0% A(Uf,), A (U))) < 0. (1456)

In the same way, as a;, 1 satisfies the weak Whitham condition, we can apply inequality (1.4.80)
of Lemma 1.4.7 with Uy, = U} and Ur = U7}, which gives

2A¢
(00E) (Ut ) — @E)U) + 28 (G, (W, (0% (V). A (U},.)) — G(U)) < 0. (L4ST)
Summing equations (1.4.86) and (1.4.87) and using (1.4.85) we obtain

(0pE)U}™) — (apE)(U}) + 5o (G(UF, Uy) — G(UR,
where the numerical entropy flux G(Uy,, Ug) is given by G(U, Ug) = G, (W,. (0%; .#(Uy), # (Ug))).
Finally, it remains to prove that the numerical entropy flux G(Ur,Ug) is consistent with the exact
entropy flux G. We notice that for any W in Q7, we have W, (07; W, W) = W. And if W = .#(U)
is at equilibrium, we get G"(W) = G(U). This concludes the proof of Theorem 1.4.5. O

7)) <0, (1.4.88)
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For general equations of state 7 — p(7), evaluating explicitly the integrals involved in the weak
Witham condition might be difficult or even impossible. A notable exception though is obtained in
the case of an ideal gas p(7) = A7~7 for which the integrals can be calculated explicitly. In practice,
for general strictly convex equations of state, the weak Whitham condition will be replaced by a
stronger condition for the sake of numerical applications. This new condition will be referred to as
the weak? Whitham condition. It reads

Definition 1.4.6. Let (Ur,Ugr) be two admissible initial states, and let

Uapp(§; UL, Ur) = PW,.(& .4 (Uy), #(Ur))
be the approrimate solution of the Riemann problem obtained by the relaxation approximation. We
denote by o the material speed of the Riemann solution for the relaxation system i.e. the effective

value of the w-wave speed in W,.(&; 4 (Uy), #(Ug)). Let Az and At be respectively a space and a
time steps satisfying the CFL condition (1.4.6).

We say that a satisfies the weak! Whitham condition for (Up,Ug) if
e in the case o = 0, a is such that
a? > masx (=0,p(r1), ~0,p( Tap" ), =0 Tapy"), ~0rp(7R)) (1.4.89)
e in the case 0 > 0, a is such that
a® > max (~0rp(r1). ~0,p( Tam" ). ~0:2( '), ~0rp(Fags ), ~0rp(r) ) . (1.4.90)
e in the case o < 0, a is such that

a® > max (—arp(TL), —0:p( @1)7 —GTp(ip\ﬁ), —0-p( ﬁp\pR)7 —8Tp(TR)) ) (1.4.91)

The fact that the weak! Whitham condition implies the weak Whitham condition for strictly
convex equations of states directly comes from the monotonicity of 7 — —d;p(7). Indeed, we have
for instance

IN

ma (~0,p( 7). ~0rp(r1)) 2 /0 1 9)ds

— max (—an( 7 by, _anm)) . (1.4.92)

1
_ 2/ 0rp(s T E 4 (1 — 8)71)(1 — 5)ds
0

Comparison between the classical Whitham condition and the weak Whitham condi-
tion

In section 1.4.5, we prove that we can always determine a constant a so as to satisfy the weak
Whitham condition, even if we have to take a — +o0, thus falling in subsonic wave configurations

with large acoustic speeds. However, for subsonic wave configurations with large acoustic speeds,
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the classical Whitham condition a? > max (—9,p(7), —0,p(T)) for all 7 and T, is possible to sat-
isfy since in that case, the specific volumes are not close to zero. Besides, the classical Whitham
condition is easier to implement since it does not require the calculation of the averages and the
simultaneous coupling of the time step calculation (see section 1.4.5). Consequently, a legitimate
question does arise: is it relevant to try to satisfy the weak Whitham condition instead of the classi-
cal one 7 An answer to this question can be formulated by saying that, when the flow described by
the equilibrium system, which we intend to approximate, is supersonic or near the resonance, it ap-
pears more interesting to approximate it with supersonic relaxation Riemann solutions. Therefore,
it is relevant to choose a constant a large enough to ensure the non linear stability of the scheme
but small enough to stay in the supersonic regime for the relaxation system. In addition, the larger
is the parameter a, the more dissipative is the numerical scheme and it is always preferable, for
precision purposes, to guarantee the non linear stability of the scheme all the while minimizing the
numerical dissipation.

Hereunder we show that for some initial states (U, Ug), the classical Whitham condition cannot
be fulfilled in the supersonic regime while the weak Whitham condition still allows an entropy
inequality. In order to build such an initial condition, we have to locate near the resonance where
some specific volume is close to zero. For this purpose, we first consider an initial condition with
constant section ay = ag, i.e. v = 1, and we build the initial specific volumes and speeds so as
to be in a supersonic regime and to satisfy the classical Whitham condition. We take 7, = 7y,
T = Tr = 71 and we fix a := ap > \/—0;p(7). Let € be a small positive parameter (intended to
be close to zero), we fix wy, = ap7r(1 + ¢€), and wr = 2wy, = 2a7.(1 4 €). Thus,

1 3 3
(pr—pL) = iwL = iaoﬂ;(l—l—e) >0 and M = afiL

20,0

1
wh = §(WL+IUR)— =1+e, (1.4.93)

which means that the left Mach number is slightly supersonic. Besides, as the intermediate specific

volumes are larger than 7: Tﬁ = }ﬂ% =77 + §TL(1 + &) > 71, the classical Whitham condition is

satisfied by aq:

a2 > max (—an(TL), —0,p(rh), —0,p(rh), —an(TR)) = —0.p(11). (1.4.94)

The idea then is to take oy > ag, i.e. v > 1, so as to give rise to a standing wave at ¢ = 0
while all the other initial variables are fixed as described above. As v > 1 and M = 1 + ¢, the
solution of the relaxation system is of signature < 0,3 > and is close to the resonance if ¢ is small.
Consequently, if € is small, the specific volume 7% on the right of the standing wave is close to zero

since equation (1.3.51) gives
M2 —1 2
= — L _—_ 1.4.
T \ v2M2 —1 T\ Ve (1.4.95)

and the classical Whitham condition a2 > —d,p(71) will be impossible to satisfy unless the param-
eter a is taken significantly larger than ag, thus falling in the subsonic regime and increasing the
numerical dissipation. Nevertheless, we can prove that with the same constant a = ag, the weak
Whitham condition (in fact the weak? Whitham condition) still holds thus allowing an entropy
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inequality. Indeed, let be given At a time step satisfying the CFL condition

A
TAxt > max (|lwg — ao7L|, |wr + aprr|), forall e<1. (1.4.96)

Let us prove that for some v > 1, ag satisfies the weak? Whitham condition that is to say
——L — —
ag > max (~0:p(r1), ~0rp( Tapy" ), ~0eb( Tapp')s 0D (g ), ~Orp(7m) ) (1.4.97)

— L —1 —2
We already have 7o, = 7, = 7g and ad > —0,p(71,). As for 7., and 7o, , we can prove that

— 3 - Az 3, -
Tap' = 5oL+ O(VE)  and 7" = TL2AA;7;0L +0(/3). (1.4.98)
3AL  440TL

Hence, for 1 < v < 3, if we take ¢ small enough, we ensure that T/a;,l > 717, and @,2 > 77, which

implies that the weak? Whitham condition is satisfied for ag. Therefore, this example points out
the advantages in considering the weak Whitham condition instead of the classical one.

1.4.5 Practical choice of the parameter a

In the numerical applications, the parameter ¢ must be chosen locally at each interface, i.e. for
each given pair of two positive initial states (U, Ug), so as to satisfy the three following conditions

C1: The specific volumes Tg and Tg must be strictly positive so that Theorem 1.3.4 ensures the
existence of a positive solution to the relaxation Riemann problem built on (U, Ug).

C2: Ifv = g—; > 1 then M} = “’—LL must be different from 1 and if v < 1 then Mpr = “& must

ar aTR
be different from —1 so as to impose the conservativity of the numerical method.

C3: The parameter ¢ must satisfy the weak? Whitham condition in order to guarantee the non
linear stability of the scheme.

In this section, we prove that being given two positive initial states U; and Ug, there exists
a parameter a, large enough, satisfying conditions C1, C2 and C3, and we propose an iterative
procedure to calculate such an a. In fact, the determination of a must be carried out with special
carefulness since it must be coupled simultaneously with the calculation of the time step At. Indeed,
on the one hand, a depends on At through the weak Whitham condition since the averaged specific
volumes 712 involved in definition 1.4.6 clearly depend on At. On the other hand, At depends
on a because it must be small enough to ensure the CFL condition (1.4.6) which amounts to

Az
IA; > max (|wy — atr|, |Jwr + atr]) . (1.4.99)

In order to reduce the problem to a single variable, we take a time step explicitly depending on
the parameter a according to

At(a) := (1 - fi)%(max (lwr, — a7, |lwr + aTR|)> , (1.4.100)
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where 0 < k < 1 denotes a fixed parameter. Thus, for the couple (a, At(a)), the CFL condition
(1.4.99) is automatically satisfied. Besides, hr—s{l At(a) = 0, and we have the following proposition
a—r+00

Proposition 1.4.8. Let (Up,Ug) be two admissible states in Q. Let be given 0 < k < 1 and
assume (1.4.100). We have the following limit values as a goes to infinity.

. # _ : # —
aEI—&I-loo L (CL) =L aEI—iI-loo TR(CL) = TR
. —— L . ——R
al}rf}m Tapp (@, At(a)) = 71, al}rf}m Tapp (@, At(a)) = Tk, (1.4.101)
L1 . 2
aEToo Tapp (@, At(a)) = T, or Tg, algpoo Tapp (@, At(a)) = 1, or Tg.
Proof. The proof is given in appendix B. [

Hence, for any couple of positive initial states (Ur, Ug), it is always possible, by taking a large
enough, to find a parameter a and the corresponding time step At(a) in such a manner that rﬁ > 0,

Tﬁ—c > 0, and that the weak! Whitham condition is satisfied for (Up,Ug). Indeed, in the expression
0 > max (=0,p(r1), ~0rp( Tapy P ), ~0rp(rm)) (1.4.102)

the left-hand side goes to infinity while the right-hand side remains bounded. Fulfilling the re-
maining condition C2 is easy since it is sufficient to perturb the parameter a so that My # 1 or

Mg # —1.

It remains now to apply these observations to the relaxation method. Thereafter, we give a
procedure that describes precisely the advancement of the scheme during a time step ™ — t"+1.
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Beginning of the time step t" — ™11,
e Chose £ and k' two (small) parameters in the interval (0,1).
e For all interface Tjyl, j €Z, calculate aji1 and Atﬂ_% as follows
* Initialize a;,1 and Atﬁ_%:

Cli_é > max (_aﬂ—p(Tjn)a —8Tp(T}7;rl)) )

Ax -1
At i = (1- m)T(maX (|w§l —aj 17} Jwiyy + aj+%7j”+1|) ) )

* while ( the pair (a;,1,At; 1) is such that:

1
2
T}i/(a’j‘i*%) <0 or 7'1'{2(%4%) <0,

or the weak! Whitham condition is not satisfied for

(U7, U1
or (a?/a?_,'_l > 1 and ML(U;-L7U;-L+1) =1),
or (af/a%, ; <1 and Mg(U},U%, ;) =~1)

) ao

ajp1 = (1+n’)aj+%,
A . €z n n n n -1
tiry = (1= ”)7 max ([wj —a; 177 Wiy +a 17| )

End of the while loop.

End of the loop on the interfaces z;, 1, JEZ.

e Set At:IJnel% Atj_,_%.

e Apply the relaxation scheme with the time step At.

End of the time step t" — t"t!.

Remark 1.4.4. The reader is invited to verify that for a fived parameter a, if a satisfies the weak?

Whitham condition for a time step At, then it still satisfies this condition for any time step At < At.

Therefore, when we set At = mi% Atj+% without changing the parameters aj 1 at each interface,
je

the weak! Whitham condition is not deteriorated. This observation follows from the monotonicity

of the harmonic means 7@ with respect to At, holding for every wave configuration.

1.4.6 Numerical results

In this section we present two test cases in which we compare the results obtained with the relaxation
approximation method with those obtained with the Rusanov scheme. The chosen pressure law is
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an ideal gas pressure law
p(r)=71"", (1.4.103)

where the heat capacity ratio - is taken equal to 3. The computations have been run on a refined
mesh of 10° cells, and the CFL condition is fixed to 0.45.

A subsonic Riemann problem

We consider the Riemann problem where the initial left and right states are given by

oy, = 3 R — 4
pr = .2 and pr=0.1 (1.4.104)
wr, = 0. WR = 0.

for which the solution is composed of the standing wave associated with the constant section «,
a left-going o;-rarefaction wave and a right-going oy-shock. Figure 1.1 displays the cell values, at
the final time T" = 1.0, of some classical quantities. The Cell entropy budget (top left of Figure
1.1)denotes the cell value

(OpE)U}™) — (0pB) (U}) + £ (G(U, Uy) — G(UR, U)) (1.4.105)

computed for the Relaxation scheme.

As expected, we can see that the cell entropy budget is nonpositive. Especially, it is strictly
negative across the shock, which is natural, and also across the standing wave since the approximate
relaxation Riemann solution has been allowed to dissipate energy across this wave. The Rusanov
scheme and the Relaxation scheme provide similar results. However, it appears that the intermediate
states captured by the two schemes are slightly different. Note that, at x = 0, i.e. where the cross-
section jumps, the Rusanov scheme generates over and under-shoots. Such a behavior, which is
”dangerous” since the computed values of the density might come close to zero, does not occur with
the relaxation scheme.

A transonic Riemann problem

We consider the Riemann problem where the initial left and right states are given by

oy = 3. aR = 1.
pr = L. and pr=0.1 (1.4.106)
wyr, = 0. WR = 0.

for which the solution is composed of the standing wave associated with the constant section «, a
left-going o;-rarefaction wave, a sonic right-going oi-rarefaction wave and a right-going os-shock.
Figure 1.2 displays the cell values, at the final time T = 0.2, of some classical quantities.

Again, we can see that the cell entropy budget (computed for the relaxation scheme) is nonpos-
itive, and that it is strictly negative across the shock and across the standing wave. Note that this
transonic case is much more energy dissipative than the sonic case (the order of magnitude of the
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cell entropy budget is much higher). This is due to the resonance phenomenon which imposes more
energy dissipation for the stability of the scheme. It appears on this case that the Rusanov scheme
provides a notably unsatisfactory result compared with the Relaxation scheme. The intermediate
states and the wave speeds are not correctly captured by the Rusanov scheme and there is no trace
of the sonic rarefaction wave.

Appendix A

Choice of M for signature < 1,2 > and corresponding dissipation

When v# < +o00 and v > ¥, M must be chosen in the open interval (0, Mq(w,v)), small enough
so as to guarantee the positivity of 75. Being given a fixed real number p in (0,1), we may choose
M by prescribing 73 to a fixed strictly positive value

Ty = uT}%, (1.4.107)
for every v > v, where v, is the only value of v that satisfies

# M% — VM()(UJ7 I/)

_ =yt 1.4.1
(V) =T + 7] 1+ v Mo(w,v) WTp (1.4.108)
and whose expression is
ot o i’
M+ (=7 (1= (1= @) )1 +w?) = (1 =) (ML + (1 - p)7F)
Ve = - L — (1.4.109)
1—(-mZ (== B0 - w?) - (1 + )M+ (1 - 0D

Hence, for v < v., we take M = My(w,v) and for v > v,, the chosen value of M is obtained by
evaluating the inverse function of M +— 73 at 73 = ,m'}%, which gives

M=~ £, (1.4.110)
1-(1-p)F
and the corresponding dissipation reads
0
1
[apw (5 + Z)} = §(wﬁL + aT}i)QQO(MM)\I!(MM; v,w). (1.4.111)

Choice of 6 for signature < 0,3 > and corresponding dissipation

When ¥ < +00 and v > v# the parameter § must be chosen in the open interval (0,1) small
enough so as to guarantee the positivity of 7 and 73. For the sake of clarity, let us assume that
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TIﬁJ < T]ﬁ%. The case Tg > Tlﬁ% is straightforward. Being given a fixed real number p in (0,1), we may

choose 6 by prescribing 75 to a fixed strictly positive value
Ty = m'g, (1.4.112)

for every v > v, where v, is the only value of v that satisfies

_ ¢ 7L _ (ML+1)(VML — 1) _ _ Tﬁ
monT g Mty <\/(ML —1)(wMp+1) 1) N (1.4.113)

and whose expression is

)t 2
LM -1 (20 g )

T
M,

Ve

e . (1.4.114)
M3 =1 (2 My - 1)

TL

Hence, for v < v, we take § = 1 and for v > v,, the chosen value of # is obtained by evaluating the
inverse function of 6 — 75 at ™ = /M'ﬁ, which gives

(20— w7 (Mg + DM, —1)\ 2
HM = (TL(ML — 1) + 1) ((ML — 1)(1/ML T 1)> , (1.4.115)

and the corresponding dissipation reads

0
{apw (5 + Z)} = ~(w? — a®>1.2)(0,° — Vapprwr. (1.4.116)

Appendix B : Proof of Proposition 1.4.8

We have
i) = TL—|—i(wR—wL) - L(71'R—7TL) — 7L (1.4.117)
L 2a 2a2 ’
1 1
# —
Tha) = TR—i-%(wR—wL)—Fﬁ(wR—ﬂ'L) — TR- (1.4.118)

We then notice that as a goes to infinity, we have M — 0 and Mg — 0. Thus, the possible
signatures in the regime of large parameters a are the subsonic signatures < 1.2 >, < 1,1 > and
< 2,1 >. In order to know which one of these configurations holds in the regime of large a, we have
to investigate the sign of w®. Recall that

wh = S(wr +wr) — oo (plrw) — p(72)) (1.4.119)

Thus, there are three different cases to take into account:

(i) 3(wr+wg) > 0or (3(wy +wgr) =0 and 7z > 7) in which case the solution is of signature
< 1,2 > for large parameters a,
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(1) $(wr+wgr) <0or (3(wp +wgr) =0 and 7g < 71) in which case the solution is of signature
< 2,1 > for large parameters a,

(iti) §(wr + wg) =0 and 7 = 71 in which case the solution is always of signature < 1,1 > for

all a.

Let us focus on the first case (i). After some calculation using formulae (1.3.36) we get the expres-
sions of Tapp”, Tapp and Tapp’:

Az .+
Tt =71 ! 1 LML e i ()
" 1+2280 () — rpaMo(a)) 7 P TR Mo(a)” AL —wr

(1.4.120)
We have T%(a) — 71, and we can prove that My(a) — 0, /\/lnL(a) — 0 and that the quantities
aMy(a) and w'(a) are bounded. As At(a) — 0, this yields the result for the first case (i). The
second case (ii) can be obtained as a corollary of the first one by invoking the Galilean invariance
of the system. As for the third and last case (%), we have

_—— L 1 _ R 1
Tapp :TLma Tapp :TRm, (1.4.121)
Ax Ax

which gives the result for case (i) since At(a) — 0.
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Figure 1.1: Solution of the subsonic Riemann problem (1.4.104) at time T" = 1.0. Space step
Az = 107°. Straight line: relaxation scheme, circles: Rusanov scheme.
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Figure 1.2: Solution of the transonic Riemann problem (1.4.106) at time 7" = 0.2. Space step
Az = 107°. Straight line: relaxation scheme, circles: Rusanov scheme.
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Chapter 2

Approximation par relaxation pour le
modéle de Baer-Nunziato
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RELAXATION APPROXIMATION FOR THE ISENTROPIC
BAER-NUNZIATO MODEL WITH VANISHING PHASES

Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh, Nicolas Seguin

2.1 Introduction

The two-fluid approach is relevant for a detailed investigation of some patterns occurring in water-
vapor flows such as those encountered in pressurized water reactors. In this framework, a major
issue is the prediction of the boiling crisis, where the flow is initially dominated by the liquid phase
while the vapor phase is dilute. Due to a failure in the heat evacuation, the liquid may reach the
boiling point in some areas of the flow (mainly near the fuel rods) thus causing a phase transition
towards vapor that could possibly isolate the fuel rods from the liquid. The modeling as well as the
numerical simulation of such phenomena remains challenging since both models that can handle
phase transitions and robust numerical schemes are needed.

This paper is concerned with the isentropic version of the two-fluid model introduced by Baer
and Nunziato in [1], in the context of reactive granular materials, and studied in various papers
[4, 10, 14] (see also [16] for a related framework). This model is a suitable candidate that enables the
computation of two-phase flows in which few bubbles are statistically present in a liquid phase. It
consists in two sets of partial differential equations accounting for the evolution of mass, momentum
and total energy for each phase, in addition to an evolution equation for the phase fraction. A
major feature of the Baer-Nunziato model is to assume two different velocities and two different
pressures for the two phases. This approach is not genuinely usual in the nuclear industry where the
commonly implemented methods assume the same pressure for the two phases at every time and
everywhere in the flow. This latter assumption is justified by the very short time-scale associated
with the relaxation of the phasic pressures towards an equilibrium. In the two-fluid two-pressure
models (such as Baer & Nunziato’s), source terms are explicitly written in order to account for this
pressure relaxation phenomenon as well as friction terms for the relaxation of the phasic velocities
towards an equilibrium. However, this work is mainly concerned with the convective effects and
these relaxation source terms are not considered here (see [4] for some modeling choices of these
terms and [12] for their numerical treatment). Contrary to the single pressure models, the Baer-
Nunziato model provides a pleasant property which is the hyperbolicity of its convective part.
Indeed, unlike single pressure models, where the characteristic eigenvalues may be complex, the
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Baer-Nunziato model admits seven real eigenvalues and the associated right eigenvectors form a
basis unless the relative velocity between the phases equals the sound speed in the liquid (see [8]).
However, such a situation is unlikely to arise in the context of nuclear reactor simulations and
therefore, the present paper is restricted to the cases where the relative velocity between the phases
remains small compared to the liquid speed of sound.

In the present work, we introduce a larger system, in which the pressure laws have been lin-
earized, and which relaxes towards the actual system of Baer-Nunziato in the regime of a small
relaxation parameter (for a general framework on relaxation schemes we refer to [5, 7, 6, 2|). The
Riemann problem associated with the relaxation system is exactly solved, in the framework of solu-
tions with subsonic wave ordering, i.e. solutions for which the relative velocity between the phases
is less than the acoustic wave speeds. Moreover, for this relaxation Riemann problem, it is proved
that the relative ordering of the waves can be determined a priori with respect to the initial data.

2.1.1 The isentropic model of Baer-Nunziato

In the present work, we consider a model formulated in Eulerian coordinates where balance equa-
tions account for the evolution of mass and momentum of each phase. For compressible isentropic
one-dimensional flows there are five unknowns that describe the evolution of the two-phase flow:
the velocities of each phase u; (where i € {1,2}), the densities of each phase p; and the phase
fractions «; (with the saturation constraint a; + cs = 1). The isentropic version of the model
-firstly introduced by Baer & Nunziato in [1]- reads

Orory + us0pc01 = 0,

Oi(a1p1) + Oz (c1prur) = 0,

de(onprur) + Oz (arpruf + arpi(pr)) — pi(p1)decn =0, (2.1.1)
0s(aap2) + Oz (apouz) = 0,

Ot (aapauz) + Oy (a2p2u3 4+ aopa(p2)) — p1(p1)dzae = 0.

We assume barotropic pressure laws for each phase p; — p;(p;), i € {1,2} with smooth depen-
dence on the density, and which satisfy the following natural assumptions for all p; > 0:

dpi
dpi

pi(pi) >0, (pi) >0, pligopi(m) =0, lim pi(p;) = +oo0. (2.1.2)

pi——+oo

In practice, the usually considered pressure laws, also satisfy the following condition which implies
the genuine non-linearity of the acoustic fields in each phase:

d*p; 2 dp;

This system can be written in condensed form as
0,U + 9,f(U) + ¢(V)9,U = 0, (2.1.4)
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where

a1 0 ugacal
a1p1 Qip1uy 0
U= [a1prur ]|, f(U) = |a1p1u? + aapi(p1) |, c(0)0,U = | —p10z01 | . (2.1.5)
QP2 Q2 P22 0
QP2 aapau3 + aapa(p2) —p10z0e2

The following proposition characterizes the fields of this system:

Proposition 2.1.1. System (2.1.1) is weakly hyperbolic since it admits the following real eigenval-
ues

or=ui —ci1(p1), o2=u+ci(p1), 03=uz—ca(p2), 0a=1u2, 05=1us+ca(p2), (2.1.6)

where ¢;(p;) = /P (p;) is the speed of sound for phase i. The corresponding right eigenvectors are
linearly independent if, and only if

(&3] 7é O7 (6%} 75 0, |’U,1 — UQ| 7é 61(,01). (217)
The characteristic fields associated with o1, o2, o3 and o5 are genuinely non-linear, while the

characteristic filed associated with o4 is linearly degenerate.

2
We donote the phasic energies by E; := E;(u;, 7;) = “7@ +ei(r;), ¢ € {1,2}. Here, the function
7+ e;(7) is such that e}(7) = —P;(7), where P;(7) = p;(7~!) is the pressure seen as a function of
the specific volume 7 = p~!'. And we have the following proposition:

Proposition 2.1.2. The smooth solutions of system (2.1.1) satisfy the following phasic energy
equations:

O(ipiE;) + 03 (ipi Ei 4+ aipi(ps)) ui — uapr(p1)0z05 =0, i€ {1,2}. (2.1.8)

Summing over i = 1,2 yields the following additional conservation law, also satisfied by the smooth
solutions of system (2.1.1):

O (a1p1 By + azpaFEs) + 0y ((a1p1 By 4 aapi(p1)) ur + (apaEs + aspa(p2)) uz) = 0. (2.1.9)

As regards the non-smooth weak solutions of (2.1.1), there is no uniqueness results and one
has to add a so-called entropy criterion in order to select the relevant physical solutions. Thus, an
entropy weak solution of (2.1.1) is a function U(z, t) that satisfies (2.1.1) in the sense of distributions
as well as the following entropy inequality:

O (a1p1Er + agpaE2) + 0, ((a1p1 E1 + axpi(p1)) ur + (epaBa + aopa(p2)) uz) < 0. (2.1.10)

When the solution contains strong shocks, inequality (2.1.10) is strict in order to account for the
physical loss of energy due to viscous phenomena that are not modeled in system (2.1.1).

96



2.1.2 A relaxation approximation

In this section, we consider a suitable relaxation approximation of the entropy weak solutions
of system (2.1.1). For this purpose, we first recall that the genuine non-linearity of the acous-
tic fields is closely related to the non-linearities of the pressure laws p; — p;(p;), as seen in
(2.1.3). In the spirit of [13], we consider an augmented system involving two additional phasic
unknowns 77 and 7> associated with some linearization of the pressure laws. This linearization
is designed to get a quasi-linear enlarged system, shifting the initial non-linearity from the con-
vective part to a stiff relaxation source term. The relaxation approximation is based on the idea
that the solutions of the original system are formally recovered as the limit of the solutions of
the proposed enlarged system, in the regime of a vanishing relaxation coefficient € > 0. Denoting
W = (a1, a1p1, @1 p1us, agpa, aapats, alphaipi Ty, asz’TQ)T the relaxation state vector, we propose
the following approximation for system (2.1.1):

0 W° + 0, g(WF) + d(W)9, W* — éR(WE), (2.1.11)
where
[ 0 i i 90,01 i [ 0 i
Q1p1U1 0 0
arpruf + anmy (71, Tr) —71(71, T1)0z 01 0
g(W) = O P2U2 , d(W)o,W = 0 , R(W) = 0
Qapou3 + anma (T2, T2) —m1 (711, T1)Ozuo 0
ayp1Tiun 0 aipi(r —Th)
azp2Tauz | i 0 | | 2p2(T2 — T2) |
(2.1.12)

For each phase i in {1,2} the linearized pressure 7;(7;, T;) is a function defined as
(75, To) = Pi(Te) + ai(Ti — 7a), (2.1.13)

where 7; = p; 1 is the specific volume of phase i. We can see that in the formal limit £ — 0, the
additional variable 7; tends towards the specific volume 7;, and the linearized pressure ; tends
towards the original nonlinear pressure p;, thus recovering system (2.1.1) in the first five equations
of (2.1.11). From this point and to ease the notation, we will omit the superscript €. In the sequel,
the original system (2.1.1) will be referred to as the equilibrium system as opposed to the relazation
system. The constants a; in (2.1.13) are two constant positive parameters that must be taken large
enough to prevent system (2.1.11) from instabilities in the regime of small values of .

Let us now focus on the convective part of system (2.1.11):
0w + 0,g(W) + d(W)9, W = 0. (2.1.14)

Proposition 2.1.3. System (2.1.14) is weakly hyperbolic since it admits the following real eigen-
values

01 =u1 —a17T1, O2=1U1, O03=1Uu]+a17T1, 04 =U2—A2T2, O05=0g = U2, 07 = U+ A2T2.
(2.1.15)
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The corresponding right eigenvectors are linearly independent if, and only if
a1 7é 0, (65) 7é O, |U1 - U2| 7£ ai17y. (2116)

All the characteristic fields associated with these eigenvalues are linearly degenerate.

Uunlike system (2.1.1), one remarkable property of the relaxation system (2.1.14) is the linear
degeneracy of all the characteristic fields. This has the helpful consequence that jump relations
can be easily derived through each wave. The relaxation approximation is therefore a pleasant way
to get around the difficulties due to non-linearity (discrimination between shocks and rarefaction
waves, jump relations for shocks...) which arise when solving the Riemann problem for (2.1.1).

In a similar way to that for the equilibrium system, we have balance equations on the phasic
energies as well as a total mixture energy conservation equation satisfied by the smooth solutions
of system (2.1.14):

Proposition 2.1.4. The smooth solutions of system (2.1.14) satisfy the following phasic energy
equations:

O (Oéipigi) + Oy (aipigi + aim) U; — UQ7T1(T1, Tl)&gai =0, 1€ {1, 2}. (2.1.17)

where the phasic energies are defined as

2 2(+. T — P2(T;
Ei = Ei(ui, 7, Ti) = % +ei(Ti) + i (T”Z)QQ Pi (7;), i€ {1,2}. (2.1.18)

Summing over i = 1,2 yields the following additional conservation law, also satisfied by the smooth
solutions of system (2.1.14):

5‘t (011/)151 + 042/)252) + 8I ((041,0151 —+ (117’(1) uy + (OLQPQSQ + OtQT('g) UQ) = O, (2119)

Regarding the discontinuous solutions, as system (2.1.14) has only linearly degenerate fields,
one would expect to see no energy dissipation in the solutions, which makes it natural to construct
discontinuous solutions that also satisfy equation (2.1.19) (see [15, 2, 9]). In particular, any solution
composed of constant states separated by contact discontinuities should satisfy the corresponding
Rankine-Hugoniot’s jump relation associated with (2.1.19). Nevertheless, building solutions with
strict energy dissipation appears to be compulsory when solving the Riemann problem for (2.1.14),
especially in the vanishing phase regimes. Indeed, as discussed in section 2.2.5, computing solutions
with positive densities while exaclty preserving the total energy in the weak sense, is in some cases
impossible when one of the phase fractions is close to zero. Instead, one has to weaken this condition
by authorizing strict energy dissipation. It is not surprising to lose energy-conservation in these
particular regimes of vanishing phases, since the hyperbolicity property, which is necessary for using
an additional conservation law as a Riemann invariant is lost in these regimes.

2.2 The Riemann problem for the relaxation system

The aim of this section is to solve the Riemann problem associated with the homogeneous part
of the relaxation system. Being given a pair of initial states (W, Wg), we seek solutions of the

98



following Cauchy problem:
OW + 9, g(W) + d(W)9, W = 0, (2.2.1)

with the initial condition

o (W, if z<0,
W(x,t—O)—{WR e eo (2.2.2)

We recall that m;(7;, T;) = Pi(Ti) + a2(T; — 7i), with 7; = p; 71, i € {1,2}, and where a;, i € {1,2}
are two positive constant parameters. The solutions are sought in the domain of positive densities
p; and positive 7;:

Q= {W ERT,0< a1 <1, agpi >0, aipiT; >0, i € {1,2}}. (2.2.3)

2.2.1 Definition of the solutions to the Riemann problem

The solution is sought in the form of a self-similar function only depending on the variable § = 7,
that’s to say W(z,t) = W,.(z/t), where £ — W,.(§) is a weak solution of

— EW'(§) + g(W(&))" + d(W(£))W'(§) = 0. (2.2.4)

As all the fields are linearly degenerate, the function W,.(£) is a piecewise constant function, where
each discontinuity corresponds to a traveling wave in the (z,t)-plane. In addition, if the solution
remains in the domain of hyperbolicity, W, (£) is expected to be composed of at most six discon-
tinuities, associated with the six eigenvalues u; + a171, us £ as7a, u; and ug, separating (at most)
seven constant intermediate states (see Lax’s theory for Riemann problems [11]). In the &-line, the
position of each discontinuity is equal to the propagation speed of the corresponding traveling wave
in the (z,t)-plane.

Wgr

U1, —@1T1,L U2, [ — G272 L uy u U2 g+ G272 R U1R T QITLR

In our application context (nuclear flows), we are only interested in solutions which have a
subsonic wave ordering, i.e. solutions for which the propagation velocity u3 of the void fraction
aq lies in-between the acoustic waves of phase 1 namely u; 1 — a7, and u; g + a171,r- In the
sequel, these solutions are classified in three categories depending on the ordering between the
ui-contact discontinuity, and the us-contact discontinuity.
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VRS
[

Uz + a2T2

Ul JpaiT1

-
-
-

A solution with u3 < uj. A solution with u5 = uj. A solution with u5 > uj.

Remark 2.2.1. We draw the reader’s attention on the fact that the considered solutions are allowed
to have phasic supersonic speeds |u;| > a;7; as represented here. Indeed, the subsonic property
considered here is related to the relative velocity u, — us.

For each one of these discontinuous waves, one has to provide jump relations that ensure the
constructed solution to be an entropy weak solution. For all the discontinuities except the one
associated with the eigenvalue ug, the system is locally conservative (the product m9,c; locally
vanishes) and the jump conditions are simply obtained by the Rankine-Hugoniot relations applied
to each equation of the system (except the transport equation on al).

On the contrary, for the us-wave, we have 0,«; # 0. In fact 0,«; identifies with a Dirac measure
given by

Opa; = Aa;0o(z — ust), with Aa; :=a;r — a1, (2.2.5)

where u3 is the constant propagation speed of this wave. Hence, as the pressure m; may be dis-
continuous across this wave, the product m10,¢; is not clearly defined at this stage. Actually, as
long as the system is hyperbolic, there is non ambiguity in its definition since the classical the-
ory [15, 2, 9] shows that the jump relations across this discontinuity is totally determined by the
Riemann invariants of this linearly degenerate field. A first relation is given by the continuity of
the eigenvalue uy across this linearly degenerate wave, and we get three more independent jump
relations by applying Rankine-Hugoniot’s formula to the conservative equations of phase 1 and to
the total momentum conservation:

ug lonpile_ys + loaprua]e_,s =0,

—uj [

2.2.6
—usj [01,017'1]5:76 + [alplulTﬂgzu; =0, ( )
—uy [

Uy |1 p1U1 + 042P2U2]5:u; + [Oélpw% + a1 + aopaul + o) 0.

§=uj

Here, [X]emyy = X" = X ! denotes the difference between the values taken by the quantity X on the
right and on the left of the us-wave. Finally, if the system is hyperbolic, a last jump relation (recall
that the eigenvalue us has multiplicity 2) is obtained by applying Rankine-Hugoniot’s formula to
the total energy preservation (2.1.19) which yields

_ u; [041/J151 + OZQpQgQ}&:u; + [(041/)151 + C¥17T1) up + (Olgpggz + 0427T2) ug]gzu3 =0. (227)

Hence, each wave is equipped with a set of independent jump relations which enables the res-
olution of the Riemann problem in the hyperbolic case, provided that one is capable of finding a
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solution to such a non-linear set of equations. On the basis of this discussion, we give the following
definition for the solutions of the Riemann problem (2.2.1)-(2.2.2) for the relaxation system. Note
that in this work, we only consider solutions with subsonic wave ordering, as specified in the
following definition:

Definition 2.2.1. Let (W5, Wg) be two states in Q7. A solution to the Riemann problem (2.2.1)-
(2.2.2) with subsonic wave ordering is a self-similar mapping W(x,t) = W, (x/t; W, Wg)
where the function & — W,.(&; Wy, Wg) belongs to L1, (R, Q) and satisfies the following properties:

(i) W.(&; W5, Wg) is a piecewise constant function, composed of (at most) seven intermediate
states separated by (at most) siz contact discontinuities associated with the eigenvalues uq +
a1T1, Us * asTo, U1, us and such that

lim Wr(§§WL7WR) ZWL, lim Wr(g;WL,WR) :WR. (228)

£——o0 £—+o0

(ii) There exists two real numbers uy and ©} depending on (W, Wg) such that, for all test
function ¢ in D(R),

/]RWT(S; Wi, Wgr)e(§)ds+ A {EW, (& WL, Wg) — g(W,(§& W, Wg))} ¢’ (§)dE+D"p(uz) = 0,

(2.2.9)
where D* = Aay (ub,0, —7F,0,0,75,0)T.
(iii) The solution has a subsonic wave ordering in the following sense:
UL —a1m,L < u§ <u1,r+ ai7iR. (2210)

(iv) The energy jump across the us-contact discontinuity is non-positive:
— U; [a1p151 + Oézngg]gzu; + [(a1p151 + Cklﬂ'l) up + (agngg + 0127'(2) ug}g:u; <0. (2211)

If (2.2.11) is a strict inequality, the solution is said to be energy-dissipating. Otherwise the
solution is energy-preserving.

This definition deserves a few comments. Equation (2.2.9) in the second item, provides some
important information. In particular, it implies for all the waves except us, that the discontinuities
are defined by the Rankine-Hugoniot jump relations. It also defines rigourously the non-conservative
product d(W,.(£))W’.(£) by introducing u}, the propagation velocity of the void fraction wave and
75, the weight of the non-conservative product w10, 1. Actually, this weight is obtained by the
Rankine-Hugoniot jump relation applied to any of the momentum equations:

*
. = 7T1AC¥Z'.

—ub [ piug] + [aipiuf + aim]{:%

The third item states that the solution has the expected subsonic wave ordering. Observe that this

requirement prevents the loss of hyperbolicity due to wave interactions. However, the system may
still be resonant in the regimes of vanishing phases.
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The fourth required property (iv) expresses that the total energy is either preserved or dissipated
through the us-contact discontinuity. As this discontinuity is associated with a linearly degenerate
field, the total energy is actually expected to be preserved when the system is hyperbolic. However,
in the regimes of vanishing phases, where the system becomes resonant, there are no more reasons for
this exact energy conservation to hold true. In the sequel, we will see that in most cases, preserving
the total energy (2.2.7) through the us-contact is possible for constructing admissible solutions
of the Riemann problem. In this case, one may speak of energy-preserving solutions. However,

it appears that when the ratio 31; (or its inverse) is large, constructing solutions with positive

densities while maintaining the exact energy conservation across the us-contact discontinuity is
impossible. It will be shown that positive solutions cannot be obtained unless one authorizes
some dissipation of the total energy through the us-contact, and one speaks of energy-dissipating
solutions in that particular case. Once again, it is not surprising to lose energy-conservation in
these particular regimes of vanishing phases, since the hyperbolicity property, which is necessary
for using an additional conservation law as a Riemann invariant is lost in these regimes. Through
all the waves except us, the energy conservation (2.1.19) is exactly satisfied as a consequence of the
other jump relations. Hence, the global energy equation may be formally written as

O (a1p1&1 + azp28€s) + 0r ((a1p1&1 + aamr) ur + (a2p2€s + aome) ug) = —Q(Wr, Wgr)do(x — uit).

(2.2.12)
where Q(W,, Wg) > 0 is a non-negative real number measuring the dissipation of the total energy
through the us-wave.

Before describing the strategy for solving the Riemann problem (2.2.1)-(2.2.2), let us give a
technical result which will be useful in the sequel. It aims at giving an equivalent alternative choice
for the fifth jump relation.

Lemma 2.2.1. Let Q be a given non-negative number, and consider the jump relations

(1) —uj ;&1 + agpgé‘g]gzu; + [(a1p1&1 + armr) ug + (aepels + agms) ’U;2]§:u; =—0Q,
(2.2.13)

(ZZ) [a1p1§1(ul — U;) + (117T1(U1 — u;)]gzu; =-0Q,
(2.2.14)

where €1 1= M +e(Th) + W. Then, the set of jump relations (2.2.6)-(2.2.13)
1
across the ug-wave is equivalent to the set of jump relations (2.2.6)-(2.2.14).

Proof. The proof follows from easy manipulations and is therefore left to the reader. O

2.2.2 The resolution strategy: an iterative procedure

Following Definition 2.2.1, the non-conservative product of the momentum equations identifies with
the following Dirac measure
WTAOQ(SO(LU - u;t) (2215)

The key challenge to solving the Riemann problem for the relaxation system consists in de-
termining this non-conservative product 7 Aaido(z — u3t) in the case a1, # aq,gr. Indeed, if
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a1,1, = o R, the two phases are decoupled and the resolution is straightforward as stated in the
following lemma.

Lemma 2.2.2. Consider the Riemann problem (2.2.1)-(2.2.2) with oq,, = a1, r. Then, a self-
similar solution & — W(&; Wy, Wg) is such that a1(§) = cst = a1, = a1,r, so that the non-
conservative product m1(11, T1)0zc; vanishes. As a consequence, the evolutions of the two phases
are completely decoupled and the intermediate states for each phase are given for i € {1,2} by

1 1
uf = 5 (Ui +uiR) — Tai(m’R — L), (2.2.16)
1 a;
= §(m,R + L)~ E(ui,R — ui,r), (2.2.17)
1 1
f o - ) =T 4+ — (U p— Ui 1) — —= (T — T 2.2.1
L - Ti,L + @ (u; —usp) =TiL + 24, (wi,r — Us,L) 2%2 (Ti,r — Ti,L)s (2.2.18)
T-ﬁ = TiR_i(un_uiR):TiR"‘i(uiR_UiL)"_il (WiR—WiL)- (2'2'19)
iR ) a; (3 ) ) 2ai 5 5 2a12 ) s
Uﬁ ug

U2,R + Q2T2,R

T2,R, U2,R, T2, R

T1,L,U1,L, 1 T1,R,U1,R, T1,R T2,L,U2,L, T2}
> T

- T
Phase solutions in the case of constant initial phase fractions a1, = ai,R.
In each case, 7:ﬁL = Ti,L and 7?113 =TiRr.

The value of us is given by ug and the solution has a subsonic wave ordering if and only if, these
quantities satisfy the following constraint:

uf — ale’L <ub <ub + ale’R. (2.2.20)

Observe that the quantities defined in (2.2.16) to (2.2.19) are independent of the phase fractions
a1, = a1 r. They only depend on the pair (V,Vg) where V is the vector of physical variables
V = (p1,u1, p2,u2,T1,T2)T. On the contrary, if o1, # o4 R, the evolutions of both phases are
affected by the us-wave (which has multiplicity 2) and the physical quantities of the two phases are
coupled through this wave.
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u1,r + a1T1,R u2,R + G272, R
U1, — a1T1,L ? U2, — A2T2 L ’ ?

> X > T

Phase solutions in the case of non-constant initial phase fractions «; 1 # o gr.

Starting from the known solution in the decoupled case |a1,1, — a1, gr| = 0, we seek to construct a
branch of solutions with subsonic wave ordering, in the non-conservative cases |a1,, — a1 g| # 0.
Actually the aim is to expose a subsonic type condition, similar to (2.2.20) which accounts for the
subsonic ordering requirement

ul — alrf’L <uy <ul + ale,R, (2.2.21)

and ensures the existence of such a solution. Of course, the main difficulty here is that the value of
u3 is not a priori known with respect to the initial data unlike in the case a1, = a1,r. However,
the analysis carried out in this paper will expose a very simple generalization of condition (2.2.20)
valid for the case a1, # aq g and that can be explicitely tested with respect to the initial data just
as (2.2.20).

For this purpose, we make the following key remark, which is the cornerstone of the whole
resolution strategy.

Key remark: Consider the case a1, 1, # o r. If one is able to make a prediction of the pressure
7§ that defines the non-conservative product m10z; and therefore shift it to a known right hand
side of the system, then one can see that the governing equations for phase 2 are completely
independent of the phase 1 quantities, namely p1,uy and T7.

Indeed, the governing equations for phase 2 form the following independent system:

8t042 + U26xa2 = Oa

at(agpg) + 51(012021@) = 07 (2 2 22)
O (azpaus) + Op(2paul + azma (12, To)) = 7 Ozaa, -
Or(a2paT2) + 0x(azpaTaug) = 0,

where 77 is here assumed to be known. Hence, the Riemann problem for (2.2.22) can be solved
regardless of the quantities related to phase 1. A pleasant property is the hyperbolicity of this
system. Thus, knowing a prediction of the pressure 7}, one can explicitly compute the value of the
kinematic speed u3 by solving the Riemann problem associated with phase 2.

Based on this important remark, we decide to adopt an iterative procedure for the resolution
of the Riemann problem (2.2.1)-(2.2.2) for a given pair of initial left and right data (Wr, Wg) €
07 x Q. Formally, it amounts to iterating on the pair (u3, 77):
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First step: The pressure 7 defining the non-conservative product m 0,1 = 75 Aaido(z — udt) is
first assumed to be known, and one determines u3 by solving the Riemann problem for the governing
system (2.2.22) of phase 2. This first step enables to define a function

R — R

(2.2.23)

Second step: The advection velocity u3 of the phase fraction «y is then assumed to be known. Thus,
the governing equations for phase 1 read

Oy + ub0,aq = 0,

Oi(a1p1) + Oz (c1prur) = 0,

Oy(a1prur) + 8x(a1/)1U% +armi(m, Th)) = mozan,
Or(a1p1Th) + Oz(a1p1Tiur) = 0.

(2.2.24)

In addition to the kinematic velocity u; and the acoustic speeds u; + aq71, the Riemann problem
for (2.2.24) involves an additional wave whose known constant velocity is u3. This wave is weighted
with an unknown weight 77 Ay (only for the momentum equation) which is calculated by solving
the Riemann problem for (2.2.24) and then applying Rankine-Hugoniot’s jump relation to the
momentum equation for the traveling wave u5. This second step amounts to defining a function

R — R
g[WvaR;al} : { *

. (2.2.25)
u; —> 7.

Performing an iterative procedure on these two steps actually boils down to the following fixed-
point research.

Find u} in (uf — ale,L,uﬁ + alrﬁR) N(ub — angjL,ug + agrgﬂ) such that
us = (F[We, Wi azl 0 9 [W, Was ) (u3). (2:2.26)

The interval where u} must be sought corresponds to the subsonic wave ordering condition (2.2.10)
in the one hand, and to the positivity of the intermediate states of phase 2 in the other hand (see
Proposition (2.2.6)). It is worth noting that, within each step 1 and 2, where a Riemann problem
is solved for each phase, one will have to introduce some restrictions on the initial data (Wp, Wg)
so as to guarantee the existence of admissible solutions. Actually, these restrictions will provide
sufficient conditions for an existence theorem (see section 2.2.3). As a matter of fact, the ultimate
objective would be to establish a partition of the space of initial conditions Q" x Q", each element
of this partition corresponding to a particular ordering of the waves. In this paper however, we
only consider subsonic wave orderings according to Definition 2.2.1.

Section 2.2.3 is devoted to presenting and commenting the main results of the paper while in
sections 2.2.4 to 2.2.6, the iterative procedure described above is handled. As a matter of fact, in
section 2.2.4, the first step of the iterative process is performed and we give the explicit formula
of function F (W, Wg;as] defined in (2.2.23). Then, in section 2.2.5, we perform a change of
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variables which facilitates the resolution of the governing equations for phase 1. Once, the value
of w3 is predicted by the first step, this change of variables consists in re-writing the governing
equations of phase 1 in the moving frame associated with the traveling wave of velocity u5. In
section 2.2.4 however, we restrict the presentation to the wave configurations uj < uj. This second
step allows us to define an explicit formula for function 4[Wr, Wg;a] introduced in (2.2.25).
Finally, in section 2.2.6, we prove that, under some assumptions on the initial data (W, Wg)
(see Theorem 2.2.3), there exists a unique energy-preserving solution to the fixed point problem
(2.2.26). This unique solution corresponds to the exact conservation of the total energy across the

ug-contact discontinuity. It will be shown however that in some cases where the ratio =% ; is large,

this solution may have non-positive densities. By relaxing the conservation of the total energy, we
recover the existence of positive solutions.

The results for the other wave configurations u3 = v} and u3 > u} can be obtained through the
same process, or can be inferred from the Galilean invariance of the equations.

2.2.3 An existence theorem for solutions with subsonic wave ordering

We may now state the main result of this paper, an existence theorem for the Riemann problem

(2.2.1)-(2.2.2). We refer to equations (2.2.16) to (2.2.19) for the definition of the quantities ¥ used in

the theorem, an we define the following number which solely depends on the initial phase fractions:
A Q2 R — Q2L

=0 (2.2.27)
Qo R+ Qo

Theorem 2.2.3. Let be given a pair of admissible initial states (W, Wgr) € Q" x Q" and assume
that the parameter a; is such that TnL >0 and T g >0 foriin {1,2}. There exists solutions with

subsonic wave ordering to the Riemann problem (2.2.1)-(2.2.2) in the sense of Definition 2.2.1 if
the following condition holds:

U§ - Uz ! Aa(“l - Wg)

A —art <
(4) a17Ty R 1+%|Ao¢|

#
< a7y r-

In addition, if the ratio zi; is in a neighbourhood of 1, condition (A) is a necessary and suf-

al; is too large,

ficient condition for the existence of a unique energy-preserving solution. If
or too small depending on the wave ordering, ensuring positive densities for phase 1 may require
strict energy dissipation, and it is always possible under assumption (A) to ensure the posivity of
the phase 1 densities by dissipating the total energy. The densities of phase 2 are positive if and
only if,

(B) ub — a27§7L <up < ub+ angyR. (2.2.28)

Moreover, we have the following proposition which specifies the wave ordering of the solution
depending on the sign of the quantity

uj —uf — G A (] — )

Ut =
1+g—;\Aa\
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Proposition 2.2.4. Let (W, Wg) € Q" xQ" be two initial states satisfying the existence conditions
of Theorem 2.2.3. Condition (A) can be decomposed into the three following conditions defining the
wave configuration:

1.

2.

3.

FEither
= uh— Aa(ed - )

Al
(41)  0< 1+ 2[A]

i
< alTl,L7

and the solutions have the wave configuration us < uj.

Or
uf —uf — LA (wf — )

A N f
(A2) a17] g < e

<0,

and the solutions have the wave configuration us > uj.

Or

1 «
(A3)  uf—ub - oA (rf — ) =0,

and the solutions have the wave configuration us = uj.

The proofs of these two results follow from the steps described in the three following sections
2.2.4 2.2.5 and 2.2.6. Before giving the details of these steps, let us first make some comments on
these results:

(i)

(i)

(iii)

(iv)

Assumption (A) (actually (A1), (A2) or (A3)) can be very easily tested in terms of the
initial data and the parameters a;, ¢ € {1,2}. To our knowledge, there is no similar result
concerning the Riemann problem for the isentropic non-relaxed Baer-Nunziato system (2.1.1).

Assumption (A) allows to compute the value of the wave propagation velocity w3, while
assumption (B) is not needed for this computation. Actually, with the obtained value of u3,
one has to check that assumption (B), which is equivalent to the positivity of the phase 2
densities, is satisfied. In the numerical applications using this Riemann solver (see chapter
3), it will always be possible to ensure condition (B) by taking a large enough value of the
relaxation parameter as.

Assumption (A) reduces to (2.2.20) when oy, = a1 g since in this case A = 0. In this sense,
assumption (A) is a generalization of (2.2.20) for the non-conservative case a1, # o1 g.
The quantities a;m{ ;, and alrf7 g can be seen as two sound propagation speeds, while the
quantity U?, which has the dimension of a velocity, measures the difference between the
pressures and kinematic velocities of the two phases, in the initial data. Observe that if the
initial data is close to the pressure and velocity equilibrium between the two phases, this
quantity is expected to be small compared to alrf’ ;, and anf’ R
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(v) One may formulate a geometrical interpretation of Theorem 2.2.3. Assuming that there exists
a solution with subsonic relative speeds when o g — a1,| = 0 (i.e. assuming (2.2.20)), the
theorem shows that if | g — a1,.] # 0 is sufficiently small, then the Riemann problem
still admits energy-preserving subsonic solutions. Provided that one allows some energy-
dissipation across the us-wave, this branch of solutions can be followed for Riemann problems
in which |a1 r — 1,1 | increases (holding the other quantities in the initial left and right data
fixed) until assumption (A) is violated, or until |a1 g —a1,1| = 1.

(vi) Again, we emphasize that for most of the initial data (W, Wg), it is possible to construct
energy-preserving solutions that exactly preserve the total energy conservation in the weak
sense:

O (a1 p1&1 + a2pa&a) + 0x (1 p1€1 + anmy) ur + (a2p2€a + aama) ug) = 0. (2.2.29)

However, in some cases where the ratio 31; (or its inverse depending on the wave ordering

between u} and wu}) is large, it may be necessary to dissipate some energy across the kinematic
wave uz in order to enforce positive densities for phase 1. In section 2.2.6, we propose a kinetic
relation for the determination of one solution, among all the admissible dissipative solutions
given by the theorem. Actually, the total mixture energy is dissipated only because of the
dissipation of the phase 1 energy. Indeed, according the Proposition 2.2.7 thereafter, the
energy of phase 2 is preserved in the sense that it still satisfies the equation

Oy (0&2p252) + Oy (OéQpQ(‘:Q + 04271'2) Ug — u;ﬂ'f@waz =0, (2230)
in the weak sense, while the energy of phase 1 satisfies
O (a1p1&1) + Op (a1p1&1 + aqmy) g — uymi Opan < 0, (2.2.31)

thus dissipating the total mixture energy.

2.2.4 The Riemann problem for phase 2 with a predicted value of 7}

In this step, we assume that the pressure n} defining the non-conservative product m0yc1 =
w5 Aoy dp(z — uit) is known while the propagation speed w3 is an unknown that must be calculated.
Thus, the governing equations for phase 2 form the following system

Oravg + ugOpaig = 0,

at(azpz) + c%;(azpzuz) =0,

Or(apaua) + Oz (aapaus + aoma(1a, T2)) = w10z,
Ot (a2p2T2) + Oz (a2p2Toug) = 0,

(2.2.32)

with mo(72,T2) = Pa(T2) + a3(T2 — 72), T2 = p2~!. The following proposition characterizes the
convective behavior of system (2.2.32).

Proposition 2.2.5. System (2.2.32) is a hyperbolic system of conservation laws, with linearly
degenerate fields associated with the eigenvalues us — asTe, us and us + asTo.

Proof. The proof is left to the reader. O
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Denoting Wy = (ag, aapa, aapauz, azpaTz)T, the state vector for phase 2, we consider the fol-

lowing Riemann initial condition

WQ’L if x <0,

WQ’R if x>0, (2233)

Wz(I,t = O;WQ,L,WQJQ) = {

where (Wy 1, Wy r) are the restriction of the complete initial data (Wr, Wg) to the phase 2 vari-
ables. When solving this Riemann problem, the source term in (2.2.32) is to be understood as a
known weight 7] Aa; supported by the existing contact discontinuity associated with the ug-wave.
Hence, there is no additional wave due to this source term, and the solution of the Riemann problem
(2.2.32)-(2.2.33) is sought in the form of four constant states separated by three discontinuities:

We have the following existence result for the governing equations of phase 2:

Proposition 2.2.6. Assume that the parameter as is such that Tzﬁ)L > 0 and Tzﬁ’R > 0. Then the
Riemann problem (2.2.32)-(2.2.33) admits a unique solution whose intermediate states are defined
by:

Ay 7rg — 7 Aoy ’ﬂ'g — 7

_ 1t
T2,Lx = To 1, T —5

v Tors =T, (2.2.34
a; Qg1 + Q2R 2,L 2,L ( )

*
;U2 Lx = Ug = ug +
az o2+ Q2R

Aoy wg —
T2,R+ =T R — ~ 3

—=————, U R« = U3, To.rs = To.r. (2.2.35)
ay; Qo + QR

Moreover, the intermediate densities pa 1+« and pa r« are positive if and only if

ub — a27§7L <y < ub+ GQTS,R. (2.2.36)

Proof. We only sketch the proof. The expressions of the intermediate states directly follow from
classical manipulations of Rankine-Hugoniot’s jump relations. The only non classical relation is the
jump relation across the us-wave for the momentum equation, where the source term is taken into
account:

— ul [aapaus] + [agpgug + a27r2] =7 Aag = =i Aay. (2.2.37)

The densities ps 1+ and pa gs are positive if and only if u3 — asm 1. < u5 < u3 + as7 r+. As the
fields are linearly degenerate, the corresponding eigenvalues are Riemann invariants and we have
US — QT [« = U2, [ — QT2 = Uy — 2Ty - In the same way, u3 + a2To g« = U2,R + G2T2.R =

ug + CLQTQﬂ,R. O
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Observe that the expression of u} given in equation (2.2.34) defines the function #[Wp, Wg; as]
introduced in (2.2.23), since uj is expressed as a function of nj. It clearly appears that if oy, =
o1,Rr, the non-conservative product vanishes and the resolution of the Riemann problem yields

uy = ug as seen in Lemma 2.2.2.

Moreover, we have the following property satisfied by the unique solution given in Proposition
2.2.6.

Proposition 2.2.7. The unique solution of the Riemann problem (2.2.32)-(2.2.33) given in Propo-
sition 2.2.6 satisfies the following energy equation in the usual weak sense:

Oy (Oznggg) + 0y (OéQPQSQ + O[27T2) Uy — ugwfé)mag =0. (2238)

Proof. The proof is left to the reader. O

2.2.5 The Riemann problem for phase 1 with a predicted value of u}

In this step, we assume that the velocity u3 of the wave supporting the oy discontinuity is known,
while the pressure 7] defining the non-conservative product m10,01 = 7fAaido(x — ujt) is an
unknown that must be calculated. Thus, the governing equations for the evolution of phase 1 read

Oy + ub0yaq = 0,

O¢(a1p1) + Ox(a1pruy) =0,

di(orprur) + Oz (arprui + armi (11, Th)) = mdzan,
Ot(a1p1Th) + Oz (1 p1Tiur) = 0,

(2.2.39)

with 7 (71, 71) = Pi(T1) + a?(T1 — 71), 1 = p1~%. The following proposition characterizes the
convective behavior of system (2.2.39).

Proposition 2.2.8. System (2.2.39) admits four real eigenvalues uy — ay71, u1, u1 +a17 and uj,
this last eigenvalue being a known constant. All the fields are linearly degenerate and the system is
hyperbolic (i.e. the corresponding right eigenvectors are linearly independent) if and only,

a1 #0, and |up —ui| # arm. (2.2.40)
Proof. The proof is left to the reader. O

Denoting Wy = (a1, a1p1,a1p1us,a1p1T1)T, the state vector for phase 1, we consider the fol-
lowing Riemann initial condition

Wl,L if x <0,

Wl(l',t == O;Wl,Lawl,R) = { Wl R lf xr > 0

(2.2.41)
where (Wy 1, Wy r) are the restriction of the complete initial data (W, Wg) to the phase 1 vari-

ables. The solutions we are interested in are solutions with subsonic wave ordering i.e. solutions

for which

uti - ale’L <uy < uﬁ + ale,R. (2.2.42)

As for the global Riemann problem (2.2.1)-(2.2.2), these solutions are classified in three categories
depending on the ordering between the u;-contact and the us-contact in the solution.
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a1Ti

uy > uj

us < uj

Actually, we only consider the solutions with the wave ordering u3 < wj since the other possible
wave orderings can be obtained by the Galilean invariance of the equations. Solving the Riemann
problem requires three jump relations for each one of the four contact discontinuities associated
with the eigenvalues u; — @171, u1, w1 + a1 and u3. These jump relations are inherited from the
jump relations of the global system (2.2.1). In particular, for all the eigenvalues except uj, the three
jump relations directly follow from Rankine-Hugoniot’s formula applied to the three last equations
of (2.2.39) as the system is locally conservative away from the uj-wave.

Concerning the us-wave, two jump relations are obtained by applying Rankine-Hugoniot’s for-
mula to the mass conservation and to the conservation equation on 7;. The last jump relation is
provided by the total energy conservation equality taken in its second form (see Lemma 2.2.1):

. =0, (2.2.43)

[0410131 (’LLl — U;) + Q1T (U1 — U;)] %:uQ

with &1 := M +e1(T)+ w. However, it will appear that if this energy conserva-
tion is exaclty satisfied, non-positive d(lansities may appear in the solutions with the wave ordering
us < uj for large values of the ratio % (For the wave ordering uj > uj large values of the inverse
ratio should be considered). In these vanishing phase cases, one must relax the energy conservation
by allowing

lo1p1€1(ur — u3) + i (ug — u3)] . Q. (2.2.44)

uj
with @ > 0. In practice, the solutions are built so as to preserve the energy equality (2.2.43) through
the us-wave whenever it is possible, or at least to be dissipative. In most of the cases, conservative
solutions may be built. Nevertheless, for some cases, ensuring positive densities involves a strict
energy dissipation through the u3-wave.

A convenient change of variables: Before actually solving the Riemann problem, it is judicious
to rewrite equations (2.2.39) in the moving frame of constant speed u5. For this purpose, we perform
the following change of variables: (z,t) — (y,t) = (z — ujt,t). Any function W of the variables
(z,t), is associated with a function W of the variables (y,t) such that

W(y,t) = Wz, t) = Wy + uit,t) <= W(x,t)=W(z—ujt,t). (2.2.45)
The following differentiation formulae hold

9:W(z,t) = 0,W(y,1),
(2.2.46)
atW(l', t) = fu§8yW(y, t) + atW(ya t)'
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Denoting w; = u; — u} the fluid velocity of phase 1 in the frame of the uj-wave, system (2.2.39)
rewrites
Opory =0,
O(c1p1) + Oy(a1prwr) =0,
O (arprwr) + Oy (a1 prwi + agmi(m, Th)) = mOyan,
6‘t(a1p17'1) + 33,(041P17-1w1) =0,

As a direct consequence of Proposition 2.2.8, we may assert that system (2.2.47) admits four real
eigenvalues that are wi — a7y, wy, wy + ay7; and 0. All the fields are linearly degenerate and the
system is hyperbolic if and only a1 # 0 and |w;| # a17. The uj-wave in (2.2.39) corresponds to
the standing wave in (2.2.47) across which the the energy jump relation (2.2.44) becomes

(2.2.47)

[alplflwl + almwl] v_g =-0. (2248)

Hence, we actually calculate a solution W(y,t) of the Riemann problem associated with sys-
tem (2.2.47), and the solution for the original Riemann problem (2.2.39)-(2.2.41) is obtained by
W(z,t) = W(x — udt,t), and by adding u} to the velocities w;.

Remark 2.2.2. System (2.2.47) is exactly the relazation system introduced for the approximation
of nozzle flows in [3[*. Moreover, the jump relation (2.2.48) can be formally written as

Ot (041/)1?1) + 8y (051p131wl + 0417'&'111)1) = —Qdp(y), (2.2.49)

thus taking the same form of the energy equation satisfied by the solutions of the relaxation nozzle
flow system introduced in [3]. Hence, one may reproduce the very same analysis developed in [3]
for the resolution of the Riemann problem.

As already mentioned, we only consider solutions with the subsonic wave ordering u3 < uj since
the other possible wave orderings can be obtained by the Galilean invariance of the equations:

w1 —a17T1

=
Let us introduce the following notations,
Q1.1 N ut{ —ub
v=—— M; = P (2.2.50)
Q1,R a17] g,

Lemma 2.2.9 and Proposition 2.2.10 prove that, one can build a one-parameter family of solutions
with the subsonic wave ordering us < w; for the Riemann problem (2.2.39)-(2.2.41), and the
dissipation of energy across the standing wave is directly driven by the underlying parameter.

Li.e. in the first chapter of this thesis.
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Lemma 2.2.9. Assume that there exists a solution to the Riemann problem (2.2.39)-(2.2.41) with
the subsonic wave ordering us < uy. Then, denoting M the relative Mach number of the state on
the left of the standing wave:

M=t T (2.2.51)

a17y a7y

all the intermediate states can be expressed in terms of M as follows:

1— M3

=TT A wi = a My, T= T (25
1+ M7
= fL v wi = va M, T =T, (2.2.53)
M —vM
T1,Rx = Tf rt TleL_i_in Wi gy = vayMT{, Ti,r« = TR (2.2.54)
Besides, denoting
o(M;v,w) = PM+ 1M +1) — (WM — 1)(M — 1), (2.2.55)

the energy jump across the standing wave is given by

- 1 Qp(M) 1-M3
arprE1wi oy Tiw ] = —(upp—ui4ari )2 My, ——= ), (2.2.56
[ wirwitaamun |, = st am ) G o e T e T3 )0 (2290
where Qo(M) = a1 Lpywy = a1 gpfwy > 0 is the mass fluz across the standing wave. Hence,

(/\/l v, 1+ﬁ* ) and the energy jump across the standing wave have the same sign.

Proof. This Lemma directly follows from applying Rankine-Hugoniot’s jump relations to the four
waves of the solution. These easy but tedious calculations are left to the reader. O

Proposition 2.2.10. Assume that a; is such that 7'1 > 0 and 7'1 r > 0. Then the Riemann
problem (2.2.39)-(2.2.41) admits solutions with the subsonic wave ordering wy > 0 (i.e. u} < ul),
if and only if

0< M < 1. (2.2.57)

These solutions can be parametrized by M, the Mach number of the state on the left of the standing
wave as seen in Lemma 2.2.9. Besides, there exists a critical value v* in (1,40c] independent of
(o1,1, 1, r) and possibly infinite such that the following alternative holds.

e Either v < v*, and in this case, M belongs to the interval (0, Mo(v,w)] € (0,min(1,1/v))
with

1[14w? 1 1+w?)? 1\*> 4 1— M3
— oY (i) () (e 2) 22 h - L
Mo (v,w) 5 1w2< —l—y) \/(1w2> +7 ~ |, where w 1AM

(2.2.58)
lies in the open interval (0,1). The value M = Mo(v,w) gives the unique solution that exactly
preserves the energy equality (2.2.43) across the standing wave, and for 0 < M < Mo(v,w),
the energy is dissipated.
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e Or v > V¥, and in that case, no solution with positive densities can preserve the energy

equality (2.2.43). The initial data is such that 0 < /\;[*L < Mo(v,w) where Mo(v,w) is given
by (2.2.58). M must be strictly less than Mo(v,w), and by taking M close enough to MTE it
is always possible to ensure that all the densities remain positive.

In both cases (v < v* or v > 1), the choice of M determines the value of p (M;v,w) < 0 i.c. the
energy dissipation across the standing wave through equation (2.2.56) in Lemma 2.2.9.

Proof. The proof is exactly the same as in [3] for the wave configuration < 1,2 > (see chapter 1
Proposition 1.3.6 for the details). It is not reproduced here. O

As explained in [3] (chapter 1), the existence of /¥ is related to the expression of 71 g. in (2.2.54)
which is the only intermediate specific volume that may be non-positive. It is possible to show that
for fixed physical quantities V;, and Vg, the function

4 g vMo(v,w) — M7 _1-M7

N - L 2.2.59
TR T LT  M(rw) T TR M) (2:2.59)

is a non-increasing function that may become negative for large values of v. Observe that for v = 1,
we have vMy(v,w) = M3 which implies that the pathological values of v are larger than one
(i.e. v > 1). In such pathological cases, in order to impose the positivity of 7 g, we must no
longer exactly conserve the energy at the standing wave (by taking M = M(v,w)) but dissipate
it by taking M smaller than My(v,w). Indeed, ¢ (M;v,w) < 0 for all M € (0, My(v,w)]. The

expression of 7y g. clearly shows that if M is taken close enough to % (remember that v > 1),

we have 7y g, close to T{i, g Which is positive. Actually, the function

# VM—ME

_ -7 L 2.2.60
L 1+vM '’ ( )

./\/l»—>7'1ﬂ’R

is a non-increasing function. Hence, as in [3] (chapter 1), being given a fixed real number y in (0, 1),
we may choose M by prescribing the following lower-bound for 71 g.:

TLRe > UT) p. (2.2.61)

For M = M, (v, M} ) where

Tf R

M-

M(v, M) = - = e (2.2.62)
1—(1—p)5

L
1L

expression (2.2.60) gives 71 g+« = m—f - As a result, the lower-bound (2.2.61) on 7; r. may be

obtained by replacing the function M, (1/, %) with the new function M (v, M7 ) given by
L
* : 1- Mz *
M(V,ML) = 1min MO v, m ’MM(V7ML) . (2263)
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. 1—M7;
Note that if v < 1, then M, (V, 1+M£

tion is added since the lower-bound on 7 g, is already satisfied by the energy-preserving choice
Mo (v,w). If v > 1, for p close enough to one, one has M, (v, M]) close to ﬁ and then
M(v, M3) € (0, Mo(v,w)] which implies that the energy is now dissipted since ¢ (/\/l v,w) < 0 for

all M € (0, Mo (v,w)].

) < M, (v, M3), which means that no dissipative correc-

Expression of 77Aa;: We may now give the expression of 77 Aay. For this purpose, we write
the jump relation across the standing wave for the momentum equation in (2.2.47):

T Aoy = [alplw% + 041771] #g (2.2.64)
= (of pfwi” —orprui’) —dd(afrf — a7 ) (2.2.65)
+ (p(Ti,L) 4+ aiTi,L)Aan, (2.2.66)
because 77 is constant across the standing wave and is equal to 7; 1. Moreover, o] = oy, and
af = a1 r. Thus
w2 w2
i Aay = a} <a17R+27'1+ - 041,L2_271_> —af(ai,rm —a1Lm)
ajm aiTy
+ (p1(Th,L) + aiTh,L) Ay
2 _
=a} (011,1%(/\/1+ — D —ay, (M= 1)1y ) + (p1(TiL) + aiThL)Aay,
_ . . o, - _t 1-M3
where M*T = vM thanks to the mass conservation equation, and v = ai; s T = T LT

+ B LM
T =T 1+uM Hence

+ —
iAoy = —a? ((1 — VZMZ)% —v(l - M?) Tul ) q RTl .+ (01(Ti,) + aiTh ) Ay
T,L T1,L
= —a? (1 — v M)A+ M) — v(1+ M)(1 — M) arrri, + (p1(TiL) + a3Ti L) Ay

2
ay
=—a} (1 + M} —vM — v MM}, — v+ vM} — UM + UMM}) o1,rTh
+ (p1(Ti,L) + aiTi,L) Aay

= (p(Ti,0) +aiTiL)Aar — af (1L — v+ (L + )M} — 2wM) ey g7i |
(

= (p(Thp) +ai(Tp =7 1)) Aar —ai (1 + )M — 20M) arpri 1,
with 7r1 pi(Thi) +a3 (T — 7} L) Finally:

mi Aoy = mAat — ai ((o1,r + o1,L) M, — 201 LM) 7] L. (2.2.67)

In this expression, the value of M may be taken equal to My (v,w), w = 1 Hﬁl* in order to exactly
preserve the energy across the standing wave as long as 71 g« > 0. However in some cases, ensuring
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positive densities for phase 1 requires that M be taken sufficiently smaller than Mg (v, w) so as to
ensure positive densities. As explained above, this can be achieved by prescribing a lower-bound
on 71 g« which amounts to taking M = M(v, M3}) (see equation (2.2.63)) instead of My (v,w).
Finally, observe that expression (2.2.67) defines the function 4[Wp, Wg; aq] introduced in (2.2.25).

2.2.6 Solution of the fixed point problem and proof of Theorem 2.2.3

In this section, we prove that condition (A1) is a necessary and sufficient condition for the existence
of solutions to the fixed point problem :

Find uj in (uf — alTlu,L,u% + alriR) N(uh — ang)L,ug + GQT§7R) such that
uy = (f[WL,WR;a,g] og[WL,WR;al])(ug), with uj < uf, (2.2.68)

and therefore, for the existence of solutions to the Riemann problem (2.2.1)-(2.2.2) with the subsonic
wave ordering u;,;, —a171,1 < u3 < uj. Let us first introduce some non-dimensional numbers built
on the quantities defined in (2.2.16)-(2.2.19) :

# # # # # # # #

o uf —ug uj —ug o — T ) — Ty
ME = T M, = — Ph = 42, PL = — (2.2.69)
a17y 17Ty R a1 r 1T R

Solving the fixed-point (2.2.68) amounts to recoupling the two phases that have been decoupled
for a separate resolution. We start by rewriting the expression of 77 Aa; obtained for phase 2 in
(2.2.34):

T Aoy Aalﬂg + as(ag,, + ag,r) (ug — ug)

= Ayl +as(asp + o r) (u% — ub 4 ub — uﬁ) , (2.2.70)

Hence, solving the fixed point problem (2.2.68) amounts to seeking u} such that the two expressions
of mfAa; given in (2.2.67) and (2.2.70) are equal, i.e. such that

ngal — CL% ((Oél’R + al,L)Mz — 20[17LM) Tlu,L = ﬁgAal + ag(OéZL + ag,R)ale’LM*L

—ag(ag. + g p)(uf —ub). (2.2.71)

The energy-preserving case :

We first look for solutions that exactly preserve the energy equality across the ui-wave. Therefore,

we take M := Mg (Zi;, ﬁﬁi), where My(v,w) is defined in (2.2.58). Introducing the non-

dimensional quantities MuL, ’PE and A%, equation (2.2.71) re-writes as

a1\ ot . 01 1 . a1, 1—M7
ML — ZLpaept = M —I—(a + a1 ) M7 — 209 LM ( ——= .
L NP Lt e foan (o1,r + a1,) M7, LMo\ S TR A
(2.2.72)
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-
Now, considering the change of variables uj5 — M7} = ZlTnUQ, solving the fixed point problem
17,L

(2.2.68) is equivalent to finding M7 such that equation (2.2.72)’ holds. Observe that by Proposition
2.2.10, the solution has the subsonic wave ordering u; — a7 < uz < w; if and only if M7 belongs
0 (0,1). Defining the function

(0,1) — R
Uy aq 1 aLL 1-m
m me @m,L + ag R <(a1’R +an)m =201, Mo (%R’ 1+m)) ’

(2.2.73)

the following proposition proves that condition (A1) is equivalent to the existence of a unique
solution M7 in (0,1) to our fixed point problem:

Proposition 2.2.11. Function m — Wy(m) is a differentiable and strictly increasing function from
0 to 1, whose limit values are

. - . o ﬂ @
T}Lu_)nO To(m) =0, 7111511 To(m) =1+ o |[A%]. (2.2.74)
Hence, if the following condition, which is equivalent to (A1) holds,

0< M — A“P” <1 + \A‘X\ (2.2.75)

then there exists a unique M7 in (0,1) such that

Wo(M;) = ME — Z—;AQPQ. (2.2.76)

Proof. The function ¥ is clearly differentiable on the interval (0,1). Differentiating w.r.t m, one

gets
a1 o1 g+« a 2 d « 1-m
Uy(m) =14 LA TTLE T nt {Mo <1’L : >} (2.2.77)
az o + 02 r a2 o + az g dm o 1+m
2 oM 1-— d
—ppaoLRT L G Sl L <O”’L, m) Rl (2.2.78)
az Q2. 1, + Q2 R az Q2.1 + Q2 R ow Q1R 1+m dm
where w = L‘_—Z‘L We have j—; = —W, hence
2 oM 1-— 2
W(m) =14 LOLRTNLL | 01 201 - <a17Lv m) ' 5 (2279)
as o +asp  asasr+asp Ow \or 14+m (1+m)

The ratio ¢ is a positive number that somehow measures the distance between the acoustic waves
of the two phabes 1 and 2. In numerical applications, this ratio may take small or large values
depending on the physical test-case. Nevertheless, it is sufficient for the derivative ¥y(m) to be

positive, that the term before Z—im is positive, i.e. that
oMy (a1, 1—m 2 .
2 L : >0, for all 0,1), 2.2.80
ayr+ oy + 201 o <CV1,R T=m A+m)? = or all m in (0,1) ( )
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or in an equivalent manner (again denoting v = “2£ and w = 1=2) that
a1,R 14+m

1+v+v(l+w)? aé\/lo (v,w) >0, for all w in (0,1), (2.2.81)
0 v
2= > i ) 2.
= 1+(1+4w) aw{1+uM°<V’”)}—0’ for all w in (0,1) (2.2.82)

With the expression of Mo(v,w) in (2.2.58), one gets

v 1[{14+w? 14 w? 2 4v
1+VMO(V’W)_§ 1—w2_\/<1—w2) (1 +v)?

Differentiating this with respect to w yields

—1/2
0 Ly (,w) b = 1 4w A 1+ w? 1+ w? 2_ 4dv Y
dw \1+v 0T g (1-w?)?2 (1-w?)?1-w? 1—w? (1+v)2

2w 4y 1—w2\? —1/2
A-w?p 1_<1_(1+V)2 (1+w2>> - (2.2.83)

Casting this in (2.2.82), the sufficient condition for the function ¥ to be strictly increasing becomes

2\ —1/2
(1+ w)? 4v 1—w? .
1+2w—-—5[1-[1— > for all 1). 2.2.84
+ w(l—uﬂ)? 0502 152 >0, forallwin (0,1) (2.2.84)

Now, isolating the terms in v and those in w, (2.2.84) is equivalent to

4 14 w?)? 1
v < tw l-— = |, forallwin (0,1). (2.2.85)
(1+wv)? 1—w? (1-w?)?

(1 + 2w(1+w)2>

An easy calculation shows that the right-hand side term of (2.2.85) is independent of w and equals
1. Hence, a sufficient condition for the function ¥q to be strictly increasing is

4
— < 2.
A0S 1, (2.2.86)

which is true for any v in R*. As for the limit values of ¥q, observe that the function Mg (v, w) is
such that limO My(v,w) = min (1, 1) and lim1 Mo (v,w) = 0. Hence the limits (2.2.74) as m tends
w—r w—r

to 0 and 1. Finally, Proposition 2.2.11 follows from the intermediate value theorem. O

Thus, provided positive values of the densities, Proposition 2.2.11 proves that (A1) is a necessary
and sufficient condition for the existence and uniqueness of an energy-preserving solution. If the
phase 1 densities are not positive, one must authorize some energy dissipation as detailed hereunder.
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The energy-dissipating case :
It may happen that the solution M} of the fixed point problem (2.2.68) is such that

1-M;
Z/M() (1/, W) - Mz

<0. (2.2.87)

_ A
T1,Rx = Tl,R - Tl,L 1-M% —
1 + VMO v, W

In such pathological case, which may occur when the ratio v = gi; is large, any energy-preserving
solution is not admissible since the phase 1 densities cannot be pbsitive. Consequently, one has to
authorize energy dissipation introducing some kinetic relation which defines the dissipation rate.
This kinetic relation is obtained by prescribing a lower-bound on 7 g, through the definition of
a new value of the Mach number M. Following section 2.2.5, we propose to take M := M (v, m)

where

M(v,m) = min (Mo (V, 11:) M (v, m)) : (2.2.88)
with
m+ (1— u):}i—R
M, (v,m) = ;—T;L (2.2.89)
e

If p is close enough to one, then M, (v,m) is close to m/v which implies that the solution has
positive densities for phase 1 according to Proposition 2.2.10. With these definitions, the fixed
point research must now be performed for the new function

(0,1) — R
: 1
v m > m+ L - ((a1,R + a1,.)m — 20y LM (gl’L ,m)) . (2:2.90)
a2 Q2.1 + Q2 R 1,R

’ 1+m
if a1, < oq,g, then ¥ identifies with ¥y on the whole interval (0,1). We have the following
proposition which shows that, provided an appropriate choice of the parameter p € (0, 1), there
still exists a unique solution M7 € (0,1) under condition (A1).

Observe that if m is such that M, (V 1_7") < M, (v,m) then ¥(m) = ¥o(m). In particular,

Proposition 2.2.12. If the parameter p € (0,1) is close enough to one, the function m — W(m)
is a Lipschitz-continuous strictly increasing function on the interval (0,1), whose limit values are

lim U(m) =0,  lim U(m) =1+ “L[A"]. (2.2.91)
m—1 as

m—0

Hence, if condition (A1) holds, then there exists a unique M3 in (0,1) such that
T(M;) = Mb — %AQP}. (2.2.92)
2
Proof. If a;,;, < o g then ¥ = ¥ and the result follows from the energy-preserving case. Let us

turn to the case a1, > aq,g. As the minimum of two differentiable functions, M (v, m) is Lipschitz-
continuous and so is ¥. Actually, ¥ is almost everywhere differentiable on (0, 1). For the limit values

119



of ¥, we know from the energy-preserving case that lim Mg (1/ 1_’”) =0, lim M, (1/ 1‘—’") =
m—0 m—1

min(1,1/v), and if p is close enough to one, we have

= =
1 (T=p)== T+ =)= 1
M, (v,0) = ;—“n >0, Myl = ;—;L > min <1, V) . (2.2.93)
L= (1—p)+* 1= (1—p)*

1L 1,L

Hence, ¥ and ¥ share the same limit values at 0 and 1. As for the monotony of function ¥, we
may write that for almost every m in (0, 1):

1
\I//(m) 2 min %(m% 1+ %ﬁ Q1R + al, L — 2 1L.R .
2 Q21 2,R 1— (1 . M) T}’R

(2.2.94)

,L

a1 lor g — «
For ;1 = 1, this expression gives ¥'(m) > min (\Ilg(m), 1+ 1|1’R1’L> since av1.r, > a1,R -

a2 Qo1 + Q2R
As U((m) > 0 by the study of the energy-preserving case, this proves that ¥ is strictly increasing

if u is close enough to one, which conludes the proof. O

In practice, the parameter y € (0,1) which determines the lower-bound on 7y g, is chosen
small enough so as to minimize the energy-dissipation, but close enough to one so as to ensure the
uniqueness of the solution in the fixed point research procedure.

Proof of Theorem 2.2.3 :

ai,r

We may now complete the proof of Theorem 2.2.3. If the ratio o

is close to one, Proposition
2.2.10 concerning phase 1, asserts that no energy-dissipation is needed for ensuring the positivity of

the densities. Hence, for Zi; in a neighbourhood of 1, by Proposition 2.2.11, condition (A1) is a

necessary and sufficient condition for the existence of a unique solution to the fixed point problem
(2.2.72), i.e. for the existence and uniqueness of an energy-preserving solution to the Riemann
problem (2.2.1)-(2.2.2) with the subsonic wave ordering uj < uj. For large values of the ratio
Zi; , Proposition 2.2.10 shows that ensuring positive densities for phase 1 may require strict energy
dissipation across the us-wave. In this case, still assuming condition (A1), Proposition 2.2.12 proves

a1 L
Q1. R ’
possible to ensure the existence of a solution with positive densities for phase 1 by dissipating the

total energy. Condition (B) on the positivity of the phase 2 densities is proved in Proposition 2.2.6.

that using the kinetic relation (2.2.88) defining M with respect to the pair M7 ), it is always

Finally, thanks to the Galilean invariance of system (2.2.1), one can prove that the symmetric
wave-configuration u > uj is implied by (A3) by exchanging the subscripts L and R and changing
the velocities to their opposite values. As for condition (A3), it can be obtained by passing to the
limit in (A1). The corresponding M3 is equal to zero, and we obtain the u5 = u} configuration.
This observation consludes the proof of Theorem 2.2.3.
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2.2.7 Expression of the Riemann solution

In this section, we construct the solution W(x,t; Wy, Wg) = W,.(z/t; W, Wg) for a given pair
of initial conditions (W, Wg) in Q" and two parameters a; and as such that the conditions of
Theorem 2.2.3 are met. We distinguish the three different cases corresponding respectively to
(A1), (A2) and (A3).

e If (A1) holds, the phasic solutions have the following form:

Wa, 1« U2, R + A2T2,R

U2, — G2T2,L

The values uj and 7] are calculated as follows. First use an iterative method (Newton’s
method or a dichotomy algorithm for instance) to compute M7 such that

T(M) = Mh — %AQPE.
2

According to section 2.2.6, M} always exists under (A1) and is unique if y is close enough to
one. We then obtain u} by uj = u§ - ale M, while 7} is obtained through (2.2.70). Then
the intermediate states for phase 2 are givén by equations (2.2.34) and (2.2.35) in Proposition
2.2.6. Once prescribed the value M := M(v, M3}) according to (2.2.88), the intermediate
states for phase 1 are given in equations (2.2.52) to (2.2.54) of Lemma 2.2.9, except for the
velocities to which one must add ub: u] = w] + ub, uf = wl +ub, us g = w1 e + us.

e If (A2) holds, we exploit the Galilean invariance of the equations. The solution is obtained
by the transformation

W, (& WL, Wg) = VW, (=§ VWEg, VW), (2.2.95)
where the operator V changes the velocities into their opposite values:
V: (x1,22,23, %4, x5, Te, T7) — (T1, T2, —T3, T, —T5, Te, T7). (2.2.96)

Of course, the function W,.(—&; VW g, VW) is computed through the first case, since for these
new initial data (VWpg, VW), it is condition (A1) that holds.

e If (A3) holds, uj is equal to u} (i.e. % = 0). The intermediate states for phase 2 are
obtained through equations (2.2.34) and (2.2.35) in Proposition 2.2.6, and the intermediate
states for phase 1 are computed by passing to the limit as M7} goes to zero (i.e. w — 1 )in
equations (2.2.52) to (2.2.54), for M = Mg (v,w).

121



Acknowledgements. The authors would like to thank Jean-Paul Daniel for his helpful re-
marks. The third author receives a financial support by ANRT through an EDF-CIFRE contract
529/2009. The forth author is partially supported by the LRC Manon (Modélisation et Approxi-
mation Numérique Orientées pour I’énergie Nucléaire — CEA DM2S/LJLL).

References

[1] M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation
transition (DDT) in reactive granular materials. International Journal of Multiphase Flow,
12(6):861 — 889, 1986.

[2] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws and
well-balanced schemes for sources. Frontiers in Mathematics. Birkhaduser Verlag, Basel, 2004.

[3] C. Coquel, K. Saleh, and N. Seguin. Relaxation and numerical approximation for fluid flows
in a nozzle. Under revision.

[4] F. Coquel, T. Gallouét, J-M. Hérard, and N. Seguin. Closure laws for a two-fluid two pressure
model. C. R. Acad. Sci., 1-334(5):927-932, 2002.

[5] F.Coquel, E. Godlewski, B. Perthame, A. In, and P. Rascle. Some new Godunov and relaxation
methods for two-phase flow problems. In Godunov methods (Ozford, 1999), pages 179-188.
Kluwer/Plenum, New York, 2001.

[6] F. Coquel, E. Godlewski, and N. Seguin. Relaxation of fluid systems. Math. Models Methods
Appl. Sci., 22(8), 2012.

[7] F. Coquel and B. Perthame. Relaxation of energy and approximate Riemann solvers for general
pressure laws in fluid dynamics. STAM J. Numer. Anal., 35(6):2223-2249 (electronic), 1998.

[8] P. Embid and M. Baer. Mathematical analysis of a two-phase continuum mixture theory.
Contin. Mech. Thermodyn., 4(4):279-312, 1992.

[9] T. Gallouét, J-M. Hérard, and N. Seguin. Numerical modeling of two-phase flows using the
two-fluid two-pressure approach. Math. Models Methods Appl. Sci., 14(5):663-700, 2004.

[10] S. Gavrilyuk and R. Saurel. Mathematical and numerical modeling of two-phase compressible
flows with micro-inertia. Journal of Computational Physics, 175(1):326 — 360, 2002.

[11] E. Godlewski and P.-A. Raviart. Numerical approzimation of hyperbolic systems of conserva-
tion laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

[12] J-M. Hérard and O. Hurisse. A fractional step method to compute a class of compressible
gas-luiquid flows. Computers & Fluids. An International Journal, 55:57-69, 2012.

[13] S. Jin and Z. P. Xin. The relaxation schemes for systems of conservation laws in arbitrary
space dimensions. Comm. Pure Appl. Math., 48(3):235-276, 1995.

[14] A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart. Two-phase modeling of
DDT: Structure of the velocity-relaxation zone. Physics of Fluids, 9(12):3885-3897, 1997.

122



[15] P.G. LeFloch. Shock waves for nonlinear hyperbolic systems in nonconservative form. IMA,
Minneapolis, Preprint 593, 1991.

[16] R. Saurel and R. Abgrall. A multiphase godunov method for compressible multifluid and
multiphase flows. Journal of Computational Physics, 150(2):425 — 467, 1999.

123



124



Chapter 3

Un schéma numérique de relaxation
pour le modéle de Baer-Nunziato
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AN ENTROPY-SATISFYING AND EFFICIENT RELAXATION
SCHEME FOR THE BAER-NUNZIATO MODEL!

Khaled Saleh

Abstract

In this work, we present a relaxation scheme for computing approximate solutions of the isentropic
Baer-Nunziato two-phase flow model. The scheme is derived from the relaxation approximation of
the model introduced in [10]?, which has been shown to be particularly suitable for subsonic flows,
meaning that the relative velocity between the phases remains moderate compared to the speed
of sound. The method is proved to satisfy a discrete entropy inequality and to preserve positive
values of the statistical fractions and densities. The numerical simulations show that this first
oder scheme provides a much higher precision than Rusanov’s scheme, and a much more moderate
computational cost, assuming the same level of precision. Finally, two test-cases assess the good
behavior of the scheme when approximating vanishing phase solutions.

3.1 Introduction

The two-fluid approach is relevant for a detailed investigation of some patterns occurring in water-
vapor flows such as those encountered in pressurized water reactors. In this framework, a major
issue is the prediction of the boiling crisis, where the flow is initially dominated by the liquid phase
while the vapor phase is dilute. Due to a failure in the heat evacuation, the liquid may reach the
boiling point in some areas of the flow (mainly near the fuel rods) thus causing a phase transition
towards vapor that could possibly isolate the fuel rods from the liquid. The modeling as well as the
numerical simulation of such phenomena remains challenging since both models that can handle
phase transitions and robust numerical schemes are needed.

This paper is concerned with the isentropic version of the two-fluid model introduced by Baer
and Nunziato in [4], in the context of reactive granular materials, and studied in various papers

1Les travaux de ce chapitre font I'objet d’un article soumis & la revue M2AN: Mathematical Modelling and
Numerical Analysis.
2Dans tout ce chapitre, la référence [10] renvoie en fait aux travaux du chapitre 2.
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[6, 16, 20] (see also [22] for a related framework). This model is a suitable candidate that enables
the computation of two-phase flows in which few bubbles are statistically present in a liquid phase.
It consists in two sets of partial differential equations accounting for the evolution of mass, momen-
tum and total energy for each phase, in addition to an evolution equation for the phase fraction.
A major feature of the Baer-Nunziato model is to assume two different velocities and two different
pressures for the two phases. This approach is not genuinely usual in the nuclear industry where the
commonly implemented methods assume the same pressure for the two phases at every time and
everywhere in the flow. This latter assumption is justified by the very short time-scale associated
with the relaxation of the phasic pressures towards an equilibrium. In the two-fluid two-pressure
models (such as Baer & Nunziato’s), source terms are explicitly written in order to account for
this pressure relaxation phenomenon as well as friction terms for the relaxation of the phasic ve-
locities towards an equilibrium. However, this work is mainly concerned with the convective effects
and these relaxation source terms are not considered here (see [6] for some modeling choices of
these terms and [19] for their numerical treatment). Contrary to the single pressure models, the
Baer-Nunziato model provides a pleasant property which is the hyperbolicity of its convective part.
Indeed, unlike single pressure models, where the characteristic eigenvalues may be complex, the
Baer-Nunziato model admits seven real eigenvalues and the associated right eigenvectors form a
basis unless the relative velocity between the phases equals the sound speed in the liquid (see [13]).
However, such a situation is unlikely to arise in the context of nuclear reactor simulations and
therefore, the present paper is restricted to the cases where the relative velocity between the phases
remains small compared to the liquid speed of sound.

Several schemes have already been proposed in the literature in order to build consistent and sta-
ble approximations of the Baer-Nunziato model. Many of them rely on the construction of interface
Riemann solvers. Schwendeman, Wahle and Kapila [23] propose a Godunov scheme relying on an
exact Riemann solver for the Baer-Nunziato model; see also Deledicque and Papalexandris [12] for
an exact Riemann solver constructed through a different approach, and Andrianov and Warnecke
[3], for a related work. The major drawback of such approaches is the difficulty of calculating the
exact solution of the Riemann problem. One main hindrance is that the characteristic eigenvalues
of the system are not naturally ordered, and no method has been found yet that could determine
a priori their ordering, with respect to the initial data. In addition, the strong non-linearities of
the pressure laws make even more difficult the derivation of exact Riemann solvers. Following the
pioneering work of Harten, Lax and van Leer [18], other approaches consider approximate Riemann
solvers. Tokareva and Toro [26] design an HLLC-type approximate Riemann solver that considers
all of the seven characteristic waves. Ambroso, Chalons and Raviart [2] propose an approximate
Riemann solver where the acoustic waves are linearized and which takes into account the relax-
ation source terms. Finally, we also mention some other finite volume techniques that have been
used. In [15], the authors extend Rusanov’s scheme and the VFRoe method to the context of non-
conservative systems. Lastly, some schemes grounded on operator splitting techniques have been
recently used [9, 25, 21].

The method considered in the present paper relies on a relaxation approrimation of the isen-
tropic version of the model, similar to that in Ambroso, Chalons, Coquel and Galié [1]. Actually,
the numerical scheme, which reveals to be robust and highly precise, is grounded on a relaxation
approach introduced and studied in a previous work [10]. The main idea consists in introducing a
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larger system, in which the pressure laws have been linearized, and which relaxes towards the actual
system of Baer-Nunziato in the regime of a small relaxation parameter (for a general framework
on relaxation schemes we refer to 7, 11, 8, 5]). In [10], the Riemann problem associated with
the relaxation system has been exactly solved, in the framework of solutions with subsonic wave
ordering. Moreover, for this relaxation Riemann problem, it is proved that the relative ordering
of the waves can be determined a priori with respect to the initial data. In the present paper,
we implement a numerical scheme which is naturally derived from this relaxation approximation.
The scheme is proved to satisfy a discrete entropy-inequality under a sub-characteristic condition
(Whitham’s condition). In addition, for the same level of refinement, the scheme is shown to be
much more accurate than Lax-Friedrichs type schemes (such as Rusanov’s scheme), and for a given
level of approximation error, the relaxation scheme is shown to perform much better in terms of
computational cost than Lax-Friedrichs type schemes. Finally, two test-cases assess that the scheme
provides a robust numerical treatment of vanishing phase solutions, which is an important step to-
wards the simulation of challenging phenomena such as the boiling crisis.

The paper is organized as follows. In section 3.2, we first recall the isentropic Baer-Nunziato
two-phase flow model and we introduce the relaxation approximation studied in [10]. Section 3.3
then considers the Riemann problem for the relaxation system. The main results of [10] (necessary
and sufficient conditions for the existence and uniqueness of solutions with subsonic wave ordering)
are reminded and the construction of the exact solution is provided in details. In section 3.4,
the relaxation Riemann solver is used to derive a numerical scheme whose main properties are
described and proved, and notably a discrete entropy inequality. Finally, section 3.5 is devoted
to the numerical applications. In the first test-case, a classical Riemann solution is approximated.
A mesh refinement is implemented in order to prove the convergence of the method and its good
performances in terms of precision and computational cost. The last two test- cases consider quite
difficult configurations of vanishing phases.

3.2 The model and its relaxation approximation

The isentropic Baer-Nunziato model is a model formulated in Eulerian coordinates where balance
equations account for the evolution of mass and momentum of each phase. The velocities of each
phase are denoted wu;, i € {1,2}, while the densities are denoted p;, i € {1,2}. Each phase has a
statistical presence fraction «;, ¢ € {1,2}, with the saturation constraint «; + as = 1. The model
reads:

U+ 9,f(U) + c(V)0,U=0, zeR,t>0, (3.2.1)
with
a1 0 u9
Q1p1 Q1p1Ul 0
U= |apiur ]|, f(U) = |aiprui +api(pr) | c(U)9, U= |=pi(p1)| Opar.  (3.2.2)
Q202 Q202U2 0
Q2 p2U2 2 pau3 + capa(p2) +p1(p1)
The state vector U is expected to belong to the natural physical space
Q={UeR’0<a; <1landa;p; >0 forie{1,2}}. (3.2.3)
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We assume barotropic pressure laws for each phase p; — p;(p;), @ € {1,2} with smooth dependence
on the density, and which satisfy the following natural assumptions for all p; > 0:

pi(pi) >0, pi(pi) >0, F)liglopi(Pi) =0, lim pi(p;) = +oo. (3.2.4)

pi—+00

We define the mapping 7 — P;(7) := p;(7~!) which is the phasic pressure seen as a function of the
specific volume 7 = p~!. In the whole paper, this smooth function is assumed to be strictly convex:

Pl (1) >0, forallr >0,i€{l,2}. (3.2.5)

For the main mathematical properties of system (3.2.1), we refer to appendix A. Let us just recall
that the entropy weak solutions of (3.2.1) satisfy the following energy inequality in the weak sense:

9m(U) + 9, F,(U) <0, (3.2.6)
where n(U) := Z?:l a;p;iB; and F,(U) := 25:1 a;(p:E;i+pi(pi))u;. The phasic energies are defined
2

for i € {1,2} by E; :== % + €;(7;) where the function 7 — e;(7) is such that €] = —P;. In addition,
the following crucial property holds:

s . Q — R ;
Proposition 3.2.1. The mapping n : { U — gU) s convez.
Proof. The proof is tedious but involves no particular difficulties. It is left to the reader. O

The numerical scheme presented in this paper is directly derived from the relaxation approxi-
mation of system (3.2.1) introduced in [10]. It is shown in [10] that this approach is particularly
suitable for the cases of interest since it provides a very accurate relaxation Riemann solver for
solutions with subsonic wave ordering. The considered relaxation system reads

1
W + D, g(W) + d(W)0,W = “R(W), = €R,1>0, (3.2.7)

where W = (a1, aqp1, a1 prug, aeps, aapatis, a1 p1 71, agpng)T is the relaxation state vector and

0 U 0
alplul 0 0
arprui + armi (71, Th) —m1 (11, Th) 0
g(W) = Q202U ) d(W)aIW = 0 amah R(W) = 0
agpous + agma (7o, T2) +m1(71, Th) 0
arprTiu 0 arp1(mi —Ti)
aop2Tous | i 0 | | 2p2(T2 — T2) |
(3.2:8)
For each phase i in {1,2} the linearized pressure 7;(7;, T;) is a function defined as

In the formal limit ¢ — 0, the additional variable 7; tends towards the specific volume 7;, and
the linearized pressure 7; tends towards the original non-linear pressure p;, thus recovering system
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(3.2.1) in the first five equations of (3.2.7). Actually, the solution of (3.2.7) should be parametrized
by € as in W¢(x,t). However, in order to ease the notation, we omit the superscript €. The
constants a; in (3.2.9) are two positive parameters that must be taken large enough so as to satisfy
the following sub-characteristic condition (also called Whitham’s condition):

a? > max(—P/(r;), —P/(T:)), 4in {1,2}, (3.2.10)

for all 7; and 7; encountered in the solution of (3.2.7). Performing a Chapman-Enskog expansion,
we can see that Whitham’s condition expresses that system (3.2.7) is a viscous perturbation of
system (3.2.1) in the regime of small €. Hence, it aims at enforcing the stability of the relaxation
approximation (see section 3.4.4 for details).

At the numerical level, a fractional step method is commonly used in the implementation of
relaxation methods: the first step is a time-advancing step using the solution of the Riemann
problem for the convective part of (3.2.7):

W + 9,g(W) + d(W)d, W = 0, (3.2.11)

while the second step consists in an instantaneous relaxation towards the equilibrium system by
imposing 7; = 7; in the solution obtained by the first step. This second step is equivalent to sending
¢ to 0 instantancously (see section 3.4 for the details).

3.3 The relaxation Riemann solver

This section summarizes the main results of [10] concerning the relaxation Riemann problem:

OW + 0,g(W) + d(W)0, W =0,

W, if z <0, (3.3.1)

W(x’o):{WR if x>0

As required by the numerical method (see section 3.4), the initial states (W, Wg) considered here
are assumed to be at equilibrium which means that 7; 1 = 7; 1 and T; g = 7; g for ¢ = 1,2. The
solutions are sought in the domain of positive densities p; and positive 7;:

= {W ERT,0< a1 <1, aip; >0, aipsT; >0, fori e {172}}. (3.3.2)

After introducing some notations and recalling the existence and uniqueness theorem for sub-
sonic solutions proved in [10], the construction of the self-similar solution of (3.3.1) is fully displayed.

3.3.1 An existence theorem for subsonic solutions

It is shown in [10] that (3.2.11) has only linearly degenerate characteristic fields with uniquely
defined jump relations across each field. Hence, the solution constructed in [10] is a self-similar
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piecewise constant function W(x,t; Wr, Wg) = W,.(z/t; W, Wg). Each discontinuity of £ +—
W..(&; Wr, Wg) corresponds to a contact discontinuity in the solution. More precisely, the position
of each discontinuity in the &-line, is equal to the propagation speed of the corresponding contact
discontinuity in the (z,t)-plane.

e e e B

U1, —Q1T1,, U2 [ — A2T2 L ul u U2 R+ G2T2 R  UL,R+ QITIR

Figure 3.1: Representation of a solution with subsonic wave ordering. The velocities are such that
uy L —a17,L < uy < U1,R + 0171, R-

Following the framework of [10], we restrict to a class of solutions referred to as solutions with
subsonic wave ordering (see [10] for details). Essentially, it means that the kinematic velocity 3
lies in between the acoustic speeds of phase 1, u1,;, — a171,1, and uy g + a171,z. In most cases, the
constructed solutions preserve the following equation on the total energy which is exactly conserved
for the smooth solutions of (3.2.11):

0’ (W) + 0, F5 (W) = 0, (3.3.3)

where n"(W) := Zle a;ipi€; and F (W) := Z?Zl a;(pi&i + mi (13, Ti))ui. The relaxation phasic
2

energies are defined for i € {1,2} by & = % +€;(T;) + ﬁ(wf(n,’ﬁ) — p2(T;i)). Nevertheless, it

is shown in [10] that, in some rare cases, the construction of solutions with subsonic wave ordering

requires that the total energy be dissipated through the ui-wave in order to ensure the positivity

of phase 1 densities. Hence, in such cases, the constructed solution satisfies the equality

atnT(W) + 8I‘F;(W) = _Q(WvaR)émfugh (334)

where Q(WL,WR)éw_ugt is a positive measure supported by the discontinuity associated with u3,
and the weight Q(Wp, Wg) is strictly positive.

Before stating the existence theorem for solutions with subsonic wave ordering, let us introduce
some notations built on the initial states (Wr, Wg).

131



For ¢ in {1, 2},

W ) - 5 (i)~ pi(r) (335
W? = %(pi(Ti,R) +pi(miL)) — %(Uz’,R — U 1), (3.3.6)
i Tt () =T (e ) - mi?(pi(n,m —pilmin), (337)
Tiﬁ,R ‘= TR~ ;i(ug —U,R)=TiR+ 221 (ui,r — uir) + %ilg(pi(Ti,R) —pi(7i,n))- (3.3.8)

We also introduce the following dimensionless number that only depends on the initial phase frac-

tions:

Ao = SR O2L (3.3.9)
Qo R+ Q2L

We have the following result:

Theorem 3.3.1. Let be given a pair of admissible initial states (Wp, Wg) € Q" x Q" and assume
that the parameter a; is such that TﬁL > 0 and 7' g >0 foriin {1,2}. There exists solutions with
subsonic wave ordering to the Riemann problem (2 2.1)-(2.2.2) (see Definition 2.2.1 in chapter 2)
if the following condition holds:

U§ - U2 ! Aa(ﬁ - Wg)
T+ e

(A) — alrfyR < < alTlﬁ,L.

In addition, if the ratio zi; is in a neighbourhood of 1, condition (A) is a necessary and suf-

ficient condition for the existence of a unique energy-preserving solution. If al; is too large,

or too small depending on the wave ordering, ensuring positive densities for phase 1 may require
strict energy dissipation, and it is always possible under assumption (A) to ensure the posivity of
the phase 1 densities by dissipating the total energy. The densities of phase 2 are positive if and
only if,

(B) ub — a27‘2ﬁ7L <uj < ub+ ang_’R. (3.3.10)

Now, given (W, Wg, a1,az2) (verifying 7;, = 7,1 and T; g = 7 r for i = 1,2) such that
the conditions of Theorem 3.3.1 are met, we may display the expression of the piecewise constant
solution & — W,.(&; Wr, Wg).

3.3.2 Construction of the solution

Following [10], we distinguish three different cases corresponding to different orderings of the kine-
matic waves, uj < u3, uj = u3 or uj > u3. With each one of these wave configurations, is associated
a different expression of assumption (A) depending on the sign of

=~ LA (e )

14 2H|A|

Ut .= (3.3.11)

132



Solution with the wave ordering uj < uj

If together with (B), assumption

#

(A1) 0< U< a7y g,

holds, the solution has the wave ordering u3 < uj.

t t
*
usy Ul u3
‘\ T1+ ‘\
J T1,Rx* '
+ il
TR T2,Lx T2,R+x s g + aaT2 R
Ul,L — a17T1,L vt Ul,R+ U1,R + Q1T1,R U2,I, — 272 L \ ’ o
U v/ 1 U2,Lx v U2, R+
1 Ti
) )
T1,L T= 1, R T1,R T2,L Tone Tor T2,R
1 [y 3 * [y 5 Lk
UL,L ' UL,R U2, L ' U2,R
) )
Tip=mL \ Tir =TLR To,r. = T2,L \ To,r = T2,r
- T > T

Phase 1 solution. Phase 2 solution.

The intermediate states and the velocities uj and w3 are computed through the following steps
performed in the very same order.
at—rd

2,4
a7, L

# #

1L u; — U

1. Define v := ——, uL =21 72 and 7)% —
Q1,R a17q g,

2. Define successively the functions
1[14w? 1 14+w?\? 1\> 4
== I+=) =y (—=) (1+=) ==
Mo(w) 2\ 1—w? ( +1/> \/(1—w2 7 v’

1 m+ (1 _N)TfyL
Myu(m) = —————,
1—(1—p)z*

T1,L

M(m) := min <Mo (:_Z) 7Mu(m)) )

ai Q1 R
— (1 4+v)m —2vM (m)).
PR (( ) (m))

(3.3.12)

with ¢ € (0,1). For instance p = 0.1, (3.3.13)

(3.3.14)

W(m) :=m + (3.3.15)
3. Use an iterative method (e.g. Newton’s method or a dichotomy algorithm) to compute M} €

(0,1) such that
(3.3.16)

T(M) = Mh — %A&Pﬁ.
2

According to [10], M7 always exists under (A1) and is unique if x is close enough to one. In
practice, the iterative method is initialized at m® = max(0, min(/\/lﬁL7 1)).
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4. The velocity u3 is obtained by

uy = ub — alrﬁLMz. (3.3.17)
5. The velocity u] is obtained by
M*
’LLl = U2 + alTl LM(M )T(ML*) (3318)
L
6. The intermediate states for phase 1 are given by
1-M; 1 - Mj
— ﬁ — ok ﬁ * L e
T =T 7*, uy =uy+arry (MM ———F——~, T, = 7L,
1 1,Lq M(ML) 1 2 1,L L 1—M(ML) 1
(3.3.19)
1+ M7 *
7—1+ le—'—T(/\/{*) 'Ll;lF = Uy, TY = Ti1,L,
(3.3.20)
T1,Rx* 7'134-7'1,; 1—|—VM(M ) U1, Rx = Uq, T1 R+ T1,R-
(3.3.21)
7. The intermediate states for phase 2 are then given by
1 * *
To.Lx = T2,I + ;(Uz —u2,1.), U L+ = Us, To.L« = To,L, (3.3.22)
2
1, .
T2,Rx = T2 R — ;(uz — Uz R), U2 pe = U3,  T2,R« = T2.R- (3.3.23)
2

Remark 3.3.1. In [10], a kinetic relation is designed in order to define the Mach number M that
parametrizes the phase 1 solution. It consists in imposing the lower-bound p,Tf)R on the specific

volume 1 g« If M(M]) =M, <1+M* ) is such that this lower-bound is satisfied, then the chosen

solution is the unique energy-preserving solution. Otherwise, maintaining the lower-bound ,uTl R
for T1 r« Tequires an energy dissipation which is ensured by taking M(M7) = M, (M7]) (see [1 (}/
for more details).

Solution with the wave ordering uj > uj

If together with (B), assumption
(A2)  —airf, <U* <0

holds, then the solution has the wave ordering u3 > uj. For the determination of the wave velocities
and the intermediate states, the simplest thing to do is to exploit the Galilean invariance of the
equations. In this case indeed, the solution is obtained by the transformation

Wi (& W, Wg) := VW, (=& VWg, VW), (3.3.24)
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where the operator V changes the velocities into their opposite values:
V: (21,22, 23,24, T5, Te, T7) — (L1, T2, —T3, T4, —T5, Tg, T7). (3.3.25)

Of course, the function W,.(—&; VWg, VW) is computed through the first case, since for these new
initial data (VWg, VW), it is condition (A1) that holds.

Solution with the wave ordering uj = uj

If together with (B), assumption
(A3) U'=0

holds, then the solution has the wave ordering uj = uj.

t, t
* * *
U = Uy Uz
‘\ ‘\
\ T1,R* 1
- T2,L*" T2,R
ui,L — a1, Tl ULR+ UL,R+ G1TLR U2, — a2To,L * U2,R T+ G2T2R
— 1Y 1
u U2, L« U2, R*
T1,L oA 1. R T1,R T2, L \ T2,R
’ 7~1 \ ’ ! ,TQ,L* \ 7—2,R* ’
U1, L “ U1,R U2, “ U2, R
A} 1
TiL=T1,L \ Ti,rR =TLR To,L =To,L ' T2,r = T2,R
- T - T
Phase 1 solution. Phase 2 solution.
The kinematic velocities are given by
uy =ut =l (3.3.26)

The intermediate states for phase 2 are obtained by the same formulas as in (3.3.22) and (3.3.23)
while the intermediate states for phase 1 read

T = Tf7L, uy =uj, T = 1,1, (3.3.27)

TLRe =T po ui gy =, Tire = TLR. (3.3.28)

The non-conservative product d(W)o,W

When a1,1, # a1 g, the non-conservative product d(W)9, W identifies with a Dirac measure prop-
agating at the constant velocity w3. This Dirac measure is given by

D* (W, Wg)dz—ust, (3.3.29)

where D*(Wp, Wg) = (ayp — ai.) (u3,0,—75,0,0,47F,0)". The pressure 77 is defined for

1R i 1L by
Qo R+ Qo
7= wg —ag———= (ul — ug)

(3.3.30)
Q1R — Q1L
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3.4 The relaxation scheme

In this section, the relaxation Riemann solver is used in order to derive a numerical scheme, the
aim being to approximate the entropy weak solutions of a Cauchy problem associated with system
(3.2.1):

{ 0:U + 0,£(U) + ¢(U)0,U = 0, zeRt>0,

U(x,0) = Uo (), Y (3.4.1)

For simplicity in the notations, we assume constant positive time and space steps At and Az, and
we define A = %. The space is partitioned into cells R = (J;c5 C; where C; = [z F%,xﬂr%[ with
Tjp1 = (j+ %)Az for all j in Z. The centers of the cells are denoted z; = jAz for all j in Z.
We also introduce the discrete intermediate times t" = nAt, n € N. The approximate solution at
time t", € R — Uy (z,t") € Q is a piecewise constant function whose value on each cell C; is a
constant value denoted by U7:

Ux(z,t") =Uj, forall zinCj, jinZ, ninN. (3.4.2)

3.4.1 Description of the relaxation algorithm

We now describe the two-step splitting method associated with the relaxation system (3.2.7) in
order to calculate Uy(-,t"*!) from Uy(-,t"). The first step consists in a time-advancing step for
the convective part of the relaxation system (3.2.11), and the second step takes into account the
relaxation source term. We first introduce the piecewise constant approximate solution at time ¢
of system (3.2.11) x > Wy (x,t") = W} in C; with

n n n n n n n n T
Wj = (Oél,ja (Oélpl)j , (alplul)j , (a2p2)j s (042P2U2)j s (041P17—1)j > (a2P275)j 7) . (3~4'3)

At time t = 0, WY is set at equilibrium which means that (a;p;7;)] = of ; for i in {1,2}. The two
steps are defined as follows.

Step 1: Evolution in time (t" — t"+1:7)

In the first step, the following Cauchy problem is exactly solved for ¢ € [0, At] with At small enough
(see condition (3.4.5) below)

W(z,0) = Wi (x,1"). (3.4.4)

{ AW + 9,g(W) + d(W)a,W = 0,
Since x +— Wy (z,t™) is piecewise constant, the exact solution of (3.4.4) is obtained by gluing
together the solutions of the Riemann problems set at each cell interface 41 provided that these
solutions do not interact during the period At, i.e. provided the following classical CFL condition

—_

At
Ax Le{linza}.),ijez max(\(ui — G,Z‘Ti)j|, |(U'L + aiTi)jJrl') < —. (345)

[\
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More precisely,
If (2,t) € [zj,201] x [0,A8], then Wi (z,t) = W, (W wr, ;lﬂ) (3.4.6)

where (z,t) — W, (£; W, Wg) is the solution of the Riemann problem (3.3.1) whose construction

is detailed in section 3.3. Then, we get a piecewise constant function by averaging WA (z,t) on each
cell C; at time At:

W (z,t" ") = W}LH’_ = E/ " Wi (z, At)dz, VzeC;, Vjel (3.4.7)

-2

Step 2: Instantaneous relazation (t"TH= — ¢+l

In the second step, we solve at time t"™ + At the ordinary differential equation

oW = %R(W), in the asymptotic regime € — 0, (3.4.8)
W(x,0) = Wy (z,t" 7). o

Using the definition (3.2.7) of the relaxation term R, we see that this amounts to imposing 'T"H =

"H for 4 in {1,2} and j in Z. Hence we have

T
W?H = (0/11;1 (alm)?ﬂ’? (041P1U1);l+1’77 (042/)2);&1’7, (Olzpzw)?ﬂ’i, (041);&1’7, (Olz);l“’f
(3.4.9)
and the new cell value at time t"*! of the approximate solution Uy (-,#"*1) is obtained by dropping
the variables T;, i € {1, 2}:

T
U?“ = (a’fjl , (a1p1 )”Jr (Oélmul)?ﬂ’ s (2p2 )n+ . (0‘2/’2“2)?“’7) (3.4.10)

This completes the description of the two-step relaxation method.

3.4.2 Finite volume formulation

It this section, we show that the two-step relaxation method described in the previous section can
be written in the form of a non-conservative finite volume scheme

At
n+1l _ — +
Ut =1 - (F”? Fjié), (3.4.11)
where F;+2 F~(U},U%,,) and FJr 1= = FH(U}_;,U}) are the left and right numerical fluxes

at the cell interfaces x;_ 1 and x JIE Here the left and right fluxes F~ and F' are two distinct
functions in order to take into account the non-conservative product. In practice, it is the finite
volume formulation that is used when implementing the scheme. Note that such a formulation
allows a straightforward extension of the method to the multi-D framework (see [17] for instance).
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The first step of the relaxation method states that W) (z,t) is the exact solution of
W + 9,g(W) + d(W)9,W =0, (3.4.12)
on R x [t", "] with the initial data Wy (z,t") = W7 for all z in Cj, with j in Z. Integrating on

the rectangle C; x [t", "], we get

Wt — - 2 (61, -ar,)- 2 (Dﬂ 1

I Az \Tits I- Az \ 72 {u217%>
where
Gl 1 = G(WF, Wi, ) = g(W,(0; W7, W7 ,)), (3.4.14)
T = DI (WP W) = (Aan)y (u3,0, =71, 0,0, 47,0)1, 1 , (3.4.15)
with (Aal)]+1 = af ;41 — af ;. See section 3.3.2 for the expressions of uj and 7j. The non-

conservative term has zero, one or two contributions, depending on whether the us-contact waves
from the Riemann problems centered respectively at x;_ 1 and z 41 enter cell C; respectively from
the left and from the right or not. We then recall that the 1n1t1a1 values W7 are set to equilibrium
which means that W' = .#(U}) where the mapping .# is defined as

M R — R7

3.4.16
(21,2, 73,4, 25) > (T1,%2,T3, 74,75, 71,1 — 7). ( )

Moreover, the relaxation step shows that [U;H'l = @W}‘H_ where & is the linear operator

P R7 — RS
(2131@27%37904,!175,136@7) — (171,172,9&37564@5)-

(3.4.17)

Eventually, when applying operator &2 to equation (3.4.13) (note that & o # = Idgs) we obtain
the finite volume formulation of our scheme

At

Ut = Uy — e (F~(U}, U}, — FH(Up_,,U})), (3.4.18)

with
F~(Up,Ur) = # G (#(Ur), #(Ur)) + P D* (A (Ur), #(Ur)) 11,: o} (3.4.19)
F"(U.,Ug) =2 G (M (UL), #(Ug)) — P D* (M (Uy), #(Ug)) Liuss0)- (3.4.20)

3.4.3 Basic properties of the scheme

The relaxation approximation method provides a very convenient framework for the preservation
of the invariant domain . Indeed, the following property states a maximum principle on the
approximated phase fraction af; as well as the positivity of the approximated partial masses

(O‘z‘pi)?'
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Property 3.4.1. Under the CFL condition (5.4.5), if the initial condition x — Uy(z) is in Q, then
the values (U?)jEZmeN computed by the scheme are such that,

0<ai; <1, and (aip;)} >0, for alli in {1,2}, j in Z and n in N. (3.4.21)
that is to say, the piecewise constant approximate solution Uy (x,t™) is also in Q.
Proof. Let us consider the two-step splitting formulation of the scheme. The second line of equation
(3.4.7) shows that a'lﬁl is the L?-projection of the phase fraction a; in the solution Wy (z, At) of
the homogeneous relaxation system. Under the CFL condition (3.4.5), this solution is obtained by
gluing together the Riemann solutions arising from each interface x; /5. Thus, by Theorem 3.3.1,
we have 0 < aj(x,t""17) < 1 for all = in R before the projection. The conclusion follows from

the convexity of the L?-projection. The same argument can be reproduced for the positivity of the
partial masses. O

We also have the following classical consistency property for the relaxation scheme which guar-
antees that the constant solutions of system (3.2.1) are exactly computed.

Property 3.4.2 (Counsistency). The relazation scheme is consistent in the sense that, for all U
in the phase space ), the numerical fluzes F~ and FT satisfy

F~(U,U) = F(U,U) = f(U), (3.4.22)

where £(U), which is defined in (3.2.2), is the conservative part of the exact flux of the equilibrium
system (3.2.1).

Proof. The proof is almost straightforward, denoting W = .#(U), we can check that W, (0; W, W) =
W and & g(W) = f(U) since W = .#(U) is at equilibrium. In addition, we have D* (W, W) =0
since a1, = 1,R- O

Finally, the relaxation method is conservative for the partial masses and for the total momentum:

Property 3.4.3 (Conservativity). For all pair (Ug,Ug) in Q,

F, (Uy,Ug) =F} fork in {2,4}, (3.4.23)
Fg(UL,UR) + Fg (UL,UR) = F;(U[”UR) + F;(UL,UR)7 (3424)

where F,f is the k™ component of vector F*.

Proof. The proof is left to the reader. O

3.4.4 Non-linear stability

In the first step of the relaxation method, the solution of the Riemann problem (3.3.1) is computed
at each interface x; 1 and therefore, one must determine the values of the numerical parameters
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a; and as. Observe that, under the CFL condition (3.4.5), the Riemann problems do not interact
and the parameters (aj,az2) can be chosen locally at each cell interface Tip1 In this section, we
prove that if a so-called sub-characteristic condition (also known as Whitham’s condition, see [5])
is verified by the parameters a; and as at each cell interface, then the discrete values computed by
the relaxation scheme satisfy a discrete entropy inequality, which is a discrete counterpart of the
energy inequality (3.2.6) verified by the exact solutions, thus assessing the stability of the method.

Definition 3.4.1. Consider (Up,Ug) € QxQ and let (Wr,Wg) = (#(Uyp), #(Ug)) € Q" xQ" be
the corresponding relaxation initial data. Let Ax and At be two space and time steps satisfying the
CFL condition (3.4.5). Denoting 1;(§) the specific volumes p[l(f) in the solution W,.(&; W, Wg)
of the Riemann problem (3.3.1), the parameters (a1,as) are said to satisfy Whitham’s condition
fO’l" (UL,UR) Zf

(3.4.25)

Azx Az
- 2o _ Pl R
foriin {1,2}, ai > —P;(1:(£)), for almost every & in { 5AL’ D J,

Recall that 7 — P;(7) = p;(171) is the pressure of phase i seen as a function of the specific
volume.

Lemma 3.4.4. With the same notations as in Definition 3.4.1 and denoting W,.(£) so as to ease
the notation, if (a1, aq) satisfy Whitham’s condition for (Ur,,Ug), then the relazation approximate
Riemann solver satisfies a discrete entropy inequality by interface (see [18]) in the sense that

2At

n((UY*) = n(Us) + ~, (F (Wi (07)) = 7 (U1)) <0, (3.4.26)
n((U)") = n(Ug) + %A; (Fy(Ug) — F} (W,.(07)) <0, (3.4.27)
where
2 [ 2At [°
(U)r = ae) s PW, (z/ At)dz = Z— e PW,(€)dE, (3.4.28)
(U)F = A% /0 N PW,(x)At)dx = %’5 Om PW,(€)dE. (3.4.29)

Proof. We only prove inequality (3.4.26) (the proof of (3.4.27) is similar). By Jensen’s inequality,
the convexity of the map U +— n(U) (see Proposition 3.2.1) implies that it is sufficient to prove

0
o | W) s — U1+ 22 (7 (W,(07) - () <0, (3.4.30)

2At

under Whitham’s condition (3.4.25). The solution W,.(£) of the Riemann problem (3.3.1) satisfies

on"(Wy) + 0. F 3 (W,) = —Q(Wr, WR)6z—uzt, (3.4.31)
in the weak sense, where Q(Wr,Wg)d, 3¢ is a positive measure. Integrating this equation over
] — &%,0[x]0, At[, and dividing by 4%, we get

0
% T WR(©)dE =" (W) + % (F5 (W.(07)) = Fp (W) < 0. (3.4.32)
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Now, as (W, Wg) = (#(UL), # (Ur)) are at equilibrium, we have n"(Wr) = n(Ur) and F(Wr) =
Fu(UL). Moreover, the Riemann solution is constructed such that F; (W,.(07)) — F/(W,.(07)) <0
(indeed, we have F)(W,(0%)) — F7(W,(07)) = 0 unless u5 = 0 in which case F(W,.(0%)) —
Fr(W.(07)) = —Q(Wr,Wg) <0). Replacing in (3.4.32) this yields

0
— (U2 + 20 (7 (9.00) - Fy(Un) < 50 [ (w(e)de (3.4.33)

T 24t

Hence, a sufficient condition for (3.4.30) (and thus for (3.4.26)) to hold true is

%A; / o (PW(E)) =" (Wi(€))} dE < 0. (3.4.34)

_ Ax
2A¢°

n(PW(§)) —n" (W (€)) =

> (@up)(©) (<lnl©) - eiTHE) - 51

i=1 7

Now, for almost every £ in [ O], we have

(3.4.35)

(n?(r:(€), T3 (€)) — P?(ﬁ(&)))) :

Omitting the dependence on £, we have for i = 1,2:

3 (73, i) — PE(Ti) (mi(73, Ti) — Pi(Ti)) (mi(7i, Ti) + Pi(Ti))
ai(Ti — m) (2Pi(To) + ai (T; — 7))
—2a7e(Ti)(Ti — 7) + a; (Ti — 1),

since ¢} = —P;. Hence,
ei(ri) —ei(Ti) — %1‘12 (72(7, T2) — PH(TD)) = ei(rs) —ei(Ti) — (Ti) (1 — To) — %12(72 —7;)2. (3.4.36)

A Taylor expansion with integral remainder gives
ei(ri) — ei(To) — ey(T)(1i = Ti) = (Ti — 71)* /01 ef (sti+ (1 —8)T;)(1 — s)ds. (3.4.37)

Then, replacing in (3.4.36) and observing that e/ = —P/ we get a sufficient condition for (3.4.30)
(and thus for (3.4.26)):

! / . Az
2/0 —Pl(s1; (&) + (1 — 8)T;(€))(1 — s)ds —a? <0 for a.e. £ in {—W,O]. (3.4.38)

Noticing that in the solution 7;(§) = 7; 1, or 7; g and using the strict convexity of 7 — P;(7), we
get for a.e. £ in P%,O]:

2 [ PO+ (1= T~ s < {Plon(©) + (1= TN} 2 [ (1 s)as
< esssup { —Pi(1(¢))}
g€l 5 555
< a% (3.4.39)
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by Whitham’s condition. This concludes the proof of inequality (3.4.26) under Whitham’s condition.
O

We may now prove the following theorem which states that under the CFL condition (3.4.5),
Whitham’s condition (3.4.25) guarantees a discrete entropy inequality for the relaxation finite vol-
ume scheme.

Theorem 3.4.5. Assume the CFL condition (3.4.5) and suppose that for alln € N and j € Z, the
pair (a1, az2), 1 satisfies Whitham’s condition for (U}, U, ). Then the relazation scheme satisfies

the following discrete entropy inequality:
At

W(UF) — n(U7) + S (U, U3,) - (U}, U03)) <0, (3.4.40)
where the numerical entropy fluz is given by H(Ur,Ug) = Fy (W, (0%;.#4(UL), .# (Ur))).

This can be seen as a stability condition because if one considers the discrete L'-norm of the
total mixture energy at time t": ., n(U})Az , then summing inequality (3.4.40) over the cells
yields

Zn(U;H'l)Ax < ZT}(U?)AI, for all n in N, (3.4.41)
j€z JET

which means that the total mixture energy is decreasing in time.

Proof. The proof is given in [5], but for the sake of completeness, we reproduce it here. Defining
the averages for each half-cell [z;_1,x;] and [z;,2;, 1]:

wE, - A% / le PW, () Aty A (UT_,), 4 (UT)) dz, (3.4.42)
i-%
Wk, = & /r %”% PW, () Aty 4 (U, .4 (U, ) de, (3.4.43)
we have, under the CFL condition (3.4.5): U?H =1 <U>f_% + 3 <U>]L+% , and as 7 is convex
n (U7F) < %77 () + %n (W) (3.4.44)

As the pair (ai,az);_ 1 satisfies Whitham’s condition for (U}_;,U}), we can apply inequality

(3.4.27) of Lemma 3.4.4 with U, = U?_; and Ug = U}, which yields

n () o) + 208 (F07) — Fy (W05 (U ), AU)) 0. (34.45)

In the same way, as (a1, a2) ;4 1 satisfies Whitham’s condition for (U7, U7, ;), we can apply inequality
(3.4.26) of Lemma 3.4.4 with U, = U} and Ug = U}, ;, which gives

2Oy (W05 A (U), A (US)) — Fy(U)) 0. (3.4.46)

n(O)y) -0 + = (7 ;
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Summing equations (3.4.45) and (3.4.46) and using (3.4.44) we obtain

n n At n mn n n
(U5 ™) = n(U3) + 1 (H (U}, Ujyy) — H(UG_,, U7)) <0, (3.4.47)

where the numerical entropy flux is given by H(Ur,Ug) = F; (W,. (0%;.#(Uy),.# (Ug))). Finally,
observe that H is consistent with the exact entropy flux F,, since H(U,U) = F,(U) for all U in .

Indeed, for any W in Q") we have W, (07; W, W) = W. And if W = .#(U) is at equilibrium, we
get F (W) = F,(U). This concludes the proof of Theorem 3.4.5. O

3.4.5 Practical choice of the pair (a;,as)

The pair of parameters (a1, az), which is computed at each interface Tj, 1 must chosen be large
enough so as to satisfy several conditions:

e In order to ensure the stability of the relaxation approximation, a; must satisfy Whitham’s
condition (3.4.25). For simplicity however, we do not impose Whitham’s condition everywhere
in the solution of the Riemann problem (3.3.1), but only for the left and right initial data at
each interface:

for i in {1,2}, a? > max(—P/(1i.r), ~P,(Ti.r))- (3.4.48)

In practice, no instabilities were observed during the numerical simulations due to this simpler
Whitham-like condition.

1, and Tﬂ r must be positive. As the initial conditions of the local

e The specific volumes 7'1»u I
Riemann problems in (3.3.1) are set to equilibrium, we have 7; ;, = 7;, 1 and 7; g = 7, g. Thus

i 1 1

T, = TiLTt 5q (ui,r — uiL) — a2 (pi(mi,r) — pi(Ti.L)), (3.4.49)
1 1
TZP’R = TR+ E(Ui’R - ui,L) + 202 (pi(Ti,R) — pi(Ti,L)) . (3450)

Equations (3.4.49) and (3.4.50) are two second order polynomials in a; ', and by taking a;
large enough, one can guarantee that T»l{ 5, > 0and Tﬁ g > 0, since the initial specific volumes

K2
7;,r and T; g are positive.

e Finally, (a1, a2) must be chosen so as to meet the two conditions (A) and (B) of Theorem
3.3.1.

Thereafter, we propose an iterative algorithm for the computation of the parameters (aj,as) at
each interface. Fixedpoint(aj,as) is a subroutine that computes a numerical approximation of
the solution u} of the fixed-point problem (3.3.16), using some numerical method such as Newton’s
method or a dichotomy algorithm. The notation not(P) is the negation of the logical statement P.
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Choose k a (small) parameter in the interval (0,1).

For all interface Tjyl, j €Z, calculate ay il and a9 j+i as follows

e For i in {1,2} initialize a;; 1:

aiﬂ_% := (14 k) max (*'P{(TZ—Z—), fPi’(TZ-’fjH)) .

e For ¢ in {1,2}, do {
gy = (L4 R)ag 41
compute uf, 7%, Tiﬁ’L and Tiﬁ,R

} while (TQ{L <0 or T,?R < O)

e do {
ty 1= (14 K)ag; 1
com # f # #
pute u;, 5, Ty L, and T3 R

do { ay jp1 = (1+K)ay ;11

compute ug, 7r§, Tlﬁ,L and TfAR
} while (not(A))
compute v, MﬁL and P?,
compute uj = Fixedpoint(a17j+%,a27j+%)

} while (not(B))

It is possible to prove that this algorithm always converges in the sense that there is non infinite
looping due to the while-conditions. Moreover, this algorithm provides reasonable values of a; and
as, since in all the numerical simulations, the time step obtained through the CFL condition (3.4.5)
remains reasonably large and does not go to zero. In fact, the obtained values of a; and ay are quite
satisfying since the relaxation scheme compares very favorably with Rusanov’s scheme, in terms of
CPU-time performances (see section 3.5).

3.5 Numerical tests for the barotropic 1D model

In this section, we present Riemann-type test-cases on which the performances of the relaxation
scheme are tested. The phasic equations of state are given by the following ideal gas pressure laws:

p1(p1) = k1p]*, with k3 =1 and 31 = 3, (3.5.1)
pa(p2) = Kopy?, with kg =1 and 75 = 1.5. e

All the exact Riemann solutions considered in the sequel are constructed through classical steps

that are reminded in Appendix B. In the sequel, U = (aq, p1,u1, pa,uz)” denotes the state vector
in non-conservative variables.
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3.5.1 Test-case 1: a complete Riemann problem

We consider the following initial data,

Uy, = (0.1,0.85,0.4609513139, 0.96, 0.0839315299) ifx <0,
Ur = (0.6,1.2520240113,0.7170741165, 0.2505659851, —0.3764790609) ifx >0,
for which the exact solution is composed of a {u; — ¢;}-shock wave, followed by a {us — co}-

rarefaction wave, followed by a wug-contact discontinuity, followed by a {us + c2}-shock and finally
followed by a {u; + ¢; }-rarefaction wave (see Figure 3.2). The intermediate states are given by:

U, = (0.1,1.,0.2,0.96,0.0839315299),

Us = (0.1,1.,0.2,0.8,0.3),

Us = (0.6,1.0016192090, 0.2833602765, 0.5011319701, 0.3),

Uy = (0.6,1.0016192090, 0.2833602765, 0.2505659851, —0.3764790609).

At each interface x; 1 Newton’s method is used in order to compute the solution Mj of
(3.3.16). The iterative procedure is stopped when the error is less than 10712

In Figure 3.2, the approximate solution computed with the relaxation scheme is compared with
both the exact solution and the approximate solution obtained with Rusanov’s scheme (a Lax-
Friedrichs type scheme see [15]). The results show that unlike Rusanov’s scheme, the relaxation
method correctly captures the intermediate states even for this rather coarse mesh of 100 cells. This
coarse mesh is a typical example of an industrial mesh, reduced to one direction, since 100 cells in
1D correspond to a 10%-cell mesh in 3D. It appears that the contact discontinuity is captured more
sharply by the relaxation method than by Rusanov’s scheme for which the numerical diffusion is
larger. We can also see that for the phase 1 variables, there are no oscillations as one can see for
Rusanov’s scheme: the curves are monotone between the intermediate states. As for phase 2, the
intermediate states are captured by the relaxation method while with Rusanov’s scheme, this weak
level of refinement is clearly not enough to capture any intermediate state. These observations as-
sess that, for the same level of refinement, the relaxation method is more accurate than Rusanov’s
scheme.

A mesh refinement process has also been implemented in order to check numerically the con-
vergence of the method, as well as it’s performances in terms of CPU-time cost. For this purpose,
we compute the discrete L!-error between the approximate solution and the exact one at the final
time T, normalized by the discrete L'-norm of the exact solution:

Zcellsj |¢;L — Pex (‘T_W T) |AJZ
Zcellsj e ($j7 T)|Az ’

where ¢ is any of the conservative variables (a1, a1 p1, @1p1u1, Q2p2, aapaus). The calculations
have been implemented on several meshes composed of 100 x 2™ cells with n = 0,1, .., 10 (knowing
that the domain size is L = 1). In Figure 3.3, the error E(Az) at the final time T' = 0.14, is plotted
against Az in a log —log scale. Only the error on the phase fraction o converges towards zero with

E(Az) =

(3.5.2)
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the expected order of Az'/2, while the other variables seem to converge with a higher rate. However,

Az'/? is only an asymptotic order of convergence, and in this particular case, one would have to im-
plement the calculation on much more refined meshes in order to reach the expected order of Az'/2.

Figure 3.3 also displays the error on the conservative variables with respect to the CPU-time of
the calculation expressed in seconds. Each point of the plot corresponds to one single calculation
for a given mesh size (going from 400 to 102400 cells for the relaxation scheme and from 800 to
102400 cells for Rusanov’s scheme). One can see that, for all the variables except ajpiuq, if one
prescribes a given level of the error, the computational cost of Rusanov’s scheme is significantly
higher than that of the relaxation method. For instance, for the same error on the phase fraction
a1, the gain in computational cost is more than 13 when using the relaxation method rather than
Rusanov’s scheme. For the variable oy piu1, even if the two methods seem to provide similar results,
the relaxation method seems to give slightly better results for mesh sizes beyond 10000 cells.

3.5.2 Test-case 2: a vanishing phase case

We now consider a Riemann problem in which one of the two phases vanishes in one of the initial
states, which means that the corresponding phase fraction a; or as is equal to zero. For this
kind of Riemann problem, the us-contact separates a mixture region where the two phases coexist
from a single phase region with the remaining phase. Assuming for instance that a; ; = 1 and
0 < aj,g < 1, the right state is a mixture of both phases while the left initial state is composed
solely of phase 1. This type of vanishing-phase Riemann solution is introduced in [23] in the more
general context of the complete Baer-Nunziato system with energy equations. The construction of
an exact solution with vanishing phase fraction is not classical and we choose to follow the natural
approach given in [23]|. For more details, see appendix B. Consider the intermediate states

Uy, = (1.0,1.8,0.747051068928543, 3.979765198025580, 0.6),

Uy = (1.0,2.0,0.4, 3.979765198025580, 0.6),

Us = (0.4,1.982040094756841, 0.095469338564172, 3.979765198025580, 0.6),

Us = (0.4,1.9820400948, 0.0954693386, 5.1736947574, 1.0690676047),

Ur = (0.4,2.081142099494683, 0.267119045902047, 5.173694757433254, 1.069067604724276).

The solution is composed of a {u; — ¢1}-shock wave from Uy, to U; in the left-hand side (LHS)
region where only phase 1 is present. This region is separated by a us-contact discontinuity from
the right-hand side (RHS) region where the two phases are mixed. In this RHS region, the solution
is composed of a {ug + ¢o }-rarefaction wave connecting Us to Us followed by a {u; + ¢; }-rarefaction
wave from Us to Ug (see Figure 3.2).

In practice, the numerical method requires values of a1, and oy, g that lie strictly in the interval
(0,1). Therefore, in the numerical implementation, we take a; , = 1—107?. The aim here is to give
a qualitative comparison between the numerical approximation and the exact solution. Moreover,
there is theoretically no need to specify left initial values for the phase 2 quantities since this phase
is not present in the LHS region. For the sake of the numerical simulations however, one must
provide such values. We choose to set pa 1 and ug 1 to the values on the right of the uy-contact

146



discontinuity. For the relaxation scheme, this choice enables to avoid oscillations of phase 2 quan-
tities in the region where phase 2 in not present. However, some tests have been conducted that
assess that taking other values of (p2 1, u2 1) has little impact on the phase 1 quantities as well as
on the phase 2 quantities where this phase is present.

At each interface z; 41,8 dichotomy algorithm is used in order to compute the solution M7
of (3.3.16). Indeed for such a vanishing phase test-case, Newton’s method fails to converge. The
dichotomy algorithm is stopped when the error is less than 10712, As for the first test-case, we can
see that for the same level of refinement, the relaxation method is more accurate than Rusanov’s
scheme, which can be seen especially for phase 1. As regards the region where phase 2 does not
exist, we can see that the relaxation method is much more stable than Rusanov’s scheme. Indeed,
the relaxation scheme behaves better than Rusanov’s scheme when it comes to divisions by small
values of a, since the solution approximated by Rusanov’s scheme develops important oscillations.

3.5.3 Test-case 3: Coupling between two pure phases

The last test-case considers the coupling between two pure phases. A left region, where only phase
1 exists (a1, = 1), is separated by a ug-contact discontinuity from a right region, where only phase
2 is present (a1,z = 0). The intermediate states are given by

Uy, = (1.0,0.861773876012754, 3.552800564555003, 4.641588833612778,1.0),
U; = (1.0,2.154434690031884, 1.,4.641588833612778, 1.),

Uz = (0.,2.154434690031884, 1.,4.641588833612778, 1.),

Ur = (0.,2.154434690031884, 1.0, 6.962383250419167, 1.767119653712349).

(3.5.3)

The exact solution is composed of a {u; — ¢; }-shock wave from Uy, to U; in the LHS region where
only phase 1 is present. U; is connected to Us by a us-contact discontinuity separating the two
pure phase regions. In the RHS region, where only phase 2 exists, Us is connected to Ur by a
{ug + co}-rarefaction wave. For more details on how the exact solution is constructed see appendix
B.

In the numerical implementation, we set oy = 1 — 1079 and QiR = 1079, A dichotomy
procedure is used in order to compute the solution Mj of (3.3.16) at each interface x, 1 The

dichotomy algorithm is stopped when the error is less than 10712

One can see that, in the LHS region, the quantities of the only present phase 1 are correctly
approximated while the quantities of the vanishing phase 2 remain stable despite the division by
small values of as. The same observation can be made for the RHS region. On the contrary, with
Rusanov’s scheme, strong oscillations pop up in the regions where a phase vanishes. Observe also
that unlike Rusanov’s scheme, the relaxation scheme does not fail to correctly approximate the
evolution of the phase fraction a;.
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3.6 The multidimensional case

We are now interested in the numerical approximation of the multidimensional Baer-Nunziato
model, on the basis of the numerical scheme developed before. Without loss of generality, we
consider the two-dimensional case and denote u; = (u;,v;) € R?, i € {1,2}, the two-dimensional
velocity of phase i: u; and v; respectively stand for the components of u; in the x direction and in
the y direction. All the variables depend on (z,y,t) and the 2D Baer-Nunziato model writes, using
the same notations as in (3.2.1)-(3.2.2),

U + 0,£,(U) + 8,8, (V) + ¢, (0)0,U + ¢, (U)9,U =0, (z,y) € R% ¢t >0, (3.6.1)
with
[ oy ] i 0 ] i 0 i
a1p1 a1p1Ul Q10101
~ Q1p1ul _ a1 pruf + arpr(pr) ~ Q1 p1UIVY
U= |aipivn |, £(U)= 1 p1u1 V1 , £,(U) = [aiprvf +aipi(pr) |, (3.6.2)
QP2 Q2 P2U2 Qg P22
Q2 p2U2 o paus + aapa(p2) Q2 P2U2V2
| 2202 | L Q2 P2U2V2 ] | apav3 + agpa(p2)
and _ - _ -
U2 V2
0 0
_ | m(p) o 0
c,(0)0,U = 0 01, c, (U)o, U = [ —p1(p1) | Oya1. (3.6.3)
0 0
+p1(p1) 0
L 0 ] | +p1(p1)]
The physical space is now
Q={UeR",0<a; <1and a;p; >0 fori € {1,2}} (3.6.4)

and the phasic energies become F; : ‘u’l

2 2 2
™, (Fya -Fny))(f[j) = <Z aipi B, (Z ai(pili + pi(pi))ui, Z ai(pili + m(m))%))
i=1

i=1 i=1

+ e;(;) so that

defines a Lax entropy-entropy flux pair: 7 is a convex function of U and entropy weak solutions of
(3.6.1) satisfy
0im(U) + 02 Fy.2(U) + 0, F,.,,(U) < 0. (3.6.5)

In section 3.4.2, the two-step relaxation method has been recast in a classical finite volume

formulation by the use of two numerical fluxes by interface, F i+ and FJF+ Moreover, one may

easily check that the 2D Baer-Nunziato model is invariant by Gahlean transformation. The classical
but important consequence is that the (one-dimensional) relaxation Riemann solver can still be used
to obtain a finite volume scheme on two-dimensional unstructured meshes.
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3.6.1 The two-dimensionnal finite volume scheme

Let us first introduce several notations, beginning with the mesh. We follow [14] where an admissible
mesh M is a family of disjoint polygonal subsets of R?, such that the union of the closure of its
elements (the cells) is R? and the common interface between two neighboring cells K and L of M
is a line segment, denoted ex . With each interface ex is associated two unit vectors nyy and
ny i which are orthogonal to ex; and such that ngy, is oriented from K to L and ng; = —npk.
We also define the neighborhood N(K) of a cell K as the set of the neighboring cells to K, i.e.
N(K) :={L e M\ {K}, ek # 0}.

Since we are dealing with cell-centered finite volume schemes, the initial datum wg is discretized
in this way:

~ 1 ~
VK € M, U9 = —/ Uo dz dy (3.6.6)
(K| Jk
and the finite volume scheme may be written in the following form:
Tin+1 TN At n
VK eM, vn>0, U =T - > ekl Fiy, (3.6.7)
| ‘ LeEN(K)

where the numerical fluxes F%; depend on I[NJ’}(, @Z and ngy and in the sequel, we also use the
notation L
xr = F(Ux, Uzingr).

Basically, F’%; for the cell K corresponds to F;r% for the cell C; while F} ;- for the cell L corre-

+

it
that one has a local 1D Riemann problem for (3.6.1) in the direction of ng . As a consequence, the
solution is expected to be constant in the direction which is orthogonal to ng; and the Riemann

problem then takes the form after rotation in the (x,y) frame

sponds to —F for the cell Cj41. In the neighborhood of an interface ek, it may be considered

U + 8,£,(U) + ¢,(0)d,U = 0,
ﬁ(o,m,y) _ O(HKL)HEK lf.T < 0, (368)
O(IIKL)U?I if ¢ > 0,

where O: R? — R7¥7 is defined by

0
I 02 0 02
ng ny 0
o) =| * —ny ngy 0 0z , Vn=(ngn,) €S, (3.6.9)
0 O 0 0 1 0 0
0 Ng Ny
L 0> 0> 0 —ny Ny |

where Iy and 04 respectively are the 2 x 2 identity matrix and the 2 x 2 null matrix. This Riemann
problem is composed of two parts. The first part is exactly the one-dimensional Baer-Nunziato
model, omitting the fourth and the seventh components of the system and of the data. The second
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part, which is composed of the fourth and the seventh components, can be easily solved since
they both are transport equations for the transverse velocities v; and vy with velocities u; and us,
computed from the first part. As a consequence, the numerical flux associated with this Riemann
problem can be obtained using the relaxation Riemann solver defined in section 3.3 for the first part,
completed with a classical upwind scheme for the transverse velocities. To do so, let us introduce

O R” — RS

3.6.10
($17$2,$37$47$5,$671‘7) — (961,562,3?3,335,366) ( )

and @? =00(nkr) ﬁ?, j = K, L. The local numerical flux (local in the sense that we still are in
the frame of the interface) with respect to cell K can be written using the 1D numerical flux F~
defined in (3.4.19):

F(O(HKL)IG?(’O(HKL) ﬁz) = (F;(~TIL<5§2>7F5(~%7@2>7F§(~%7§,2)’F;(N?{”@%) UT»
~ ~ ~ ~ ~ ~ T
R (Vie, V1), F5 (Vie, Vi), F7 (Vie, V) 03)

where the velocities v}, ¢ = 1,2, are given by a classical upwinding according to the sign of u;:

v] = [O(HKL)ﬁgh + <[O(HKL)®TIL<]4 _ [O(HKL)[B%L;) 1 -
o) U, \[Oman) TR, [Olmen) Uy, ) 10207
oy = [Omxe) Uiy ([O(m)ﬁ%]? ) [O<nm>®z]7> o
2 [O(nkr) 62]5 [O(nkr) 671?]5 [O(nky) 62]5 {F; (Vo V1)>0}°

and where the indices from 1 to 7 denote the component of the considered vector. It now remains
to go back to the initial (x,y) frame. This simply amounts to take

~’I'L NTL T Nn Nn
F(UK,UL;HKL) = [O(IIKL)] F(O(HKL)UK,O(HKL)UL). (3611)
Since F~ is consistent with the 1D physical flux (Property 3.4.2), we have the consistency relation

ﬁ((’)(n) U,O(n) [[j) =1, ((’)(n)fj) Hence, invoking the rotational invariance of system (3.6.1) which
implies

£, (0m)0) = 0(n) [£(0),£,(D)] -0 := Om) (£(0)n. + £,(0)n, )

for all U € Q, and all n = (nz,ny) in S', we can see that the numerical flux F is consistent with
the 2D physical flux, in the sense that

Ve vnes!, F(0,0n) = [0m)]" £(0m0) = [£(0),£,(0)] -n. (3.6.12)
On the other hand, using the classical geometric identity

Z lexr| ngr =0

LeN(K)
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and the consistency property (3.6.12), one can rewrite the finite volume scheme (3.6.7) as

~ e ~ At|OK ~, T T

U=y o {w{— O (e z;nm)—mw,w;nm)ﬂ (3.613)
LEN(K)| | | |

EKL T &n
S ||aK|| [Omg)]” Ty (3.6.14)
LeEN(K)
where
At|OK|

Uy, = Ongr) U —

e (F(O(nKL) U%, O(ng ) U7) — £, (Onk ) ru;;)) . (3.6.15)
The form (3.6.14)-(3.6.15) is the straightforward multidimensional extension of the one-dimensional
half-cell decomposition of Harten, Lax and van Leer [18]. Moreover, formula (3.6.15) corresponds to
the 1D Baer-Nunziato model completed by two transport equations for the transverse velocities, so
that the positivity result (Property 3.4.1) and the theorem of non-linear stability (Theorem 3.4.5)
can be extended to the 2D inequality (3.6.5) under a natural CFL condition, which is very similar
to the 1D CFL condition (3.4.5):

At max max max(u”K~nKLfaiT”K,unL'nKLqLaiT”L) <
mingepm(|K|/|0K]) KeM,ie{1,2} LEN(K) - LRI v

. (3.6.16)

N |

3.6.2 Numerical approximation of the source terms

In order to obtain a realistic modelling of compressible two-phase flows, the model (3.6.1) has to
be completed by source terms. The Baer-Nunziato model takes the form

8,U + 8,£,(U) + 8,£,(U) + ¢, (0)0,U + ¢, (U)9,U = s(U), (x,y) € R%, ¢ >0, (3.6.17)

and the vector-valued function s which represents the source terms writes

_ oo i
—(p1(p1) — p2(p2))
Tp
0
~ « 0%
s(0) = | 222272 1y — wyf(u — u) + (0, —aiprg)” (3.6.18)
0

(6] [0}
HPLTA2 1y — g (wg — ug) + (0, —a2pag)”

L u -

where g is the gravity constant. The first component of s corresponds to the so-called pressure
relaxation source term, which models the mechanical effects through the interfaces between the
phases. The other source terms correspond to the drag force between the phases and to the gravity
effects. The time scales 7, and 7, can be very small parameters, which leads to use implicit or semi-
implicit schemes to approximate them. On the contrary, the gravity source term can be discretized
by and explicit method.

Let us describe the different steps of the splitting method for the discretization of the source
terms. For simplicity, we drop the space index and respectively note U and U* the approximated
solutions at time t™ and at time ¢ + At.
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Discretization of the pressure relaxation source term

This source term only intervenes in the first equation. In order to be able to handle small 7, an
implicit Euler method is used:

a] = oy + ﬁOzf(l —aj) (101 (W) — D2 <(a2p2)**>> ; (3.6.19)

(ipi)* = (qips), ie{1,2}, (3.6.20)
(Oéipilli)* = (aipiui), 1€ {1,2} (3621)

Equation (3.6.19) is a nonlinear scalar equation to solve since, using (3.6.20), the partial masses
(cvip;)* are known. Assuming (3.2.4), 7, > 0, At > 0, (ap;)* > 0 and o € (0, 1), one may easily
check that the derivative of the function

oo e (227) o (2)

is positive and that lim,\ 0.4 < 0 and lim, ;A > 0.

As a consequence, the numerical scheme (3.6.19)-(3.6.21) ensures U* € € for any At > 0 and
T, > 0, provided that U € Q. In practice, equation A(aj) = 0 is solved with the help of the
bisection method.

Discretization of the drag force
In order to discretize the source term due to the drag force, we use the semi-implicit scheme

oy = ar, (3.6.22)
(Qipi)* = (@ipi), i€ {1,2}, (3.6.23)

(cvipi)* 1) pi ) u ;
aipr)* + (aopz)* (W + (=1)" (wrpir) ur) € {1,2}, (3.6.24)

(ai/)iui)* =
(
where i/ = 3 — 4 and

At
u, = g a;p;u; and  u, = (ug —uy)exp T—(alpl + agp2)|ug —uy]| .
ie{1,2} w

This numerical scheme obviously ensures U* € Q as soon as U € €.
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Discretization of gravity source term

The last source can be discretized by an explicit Euler method, which actually turns out to be
equivalent to the implicit Euler method:

ol = ag, (3.6.25)
(aipi)™ = (aip;), i€ {1,2}, (3.6.26)
(aipiui)* = (aipiug), i€ {1,2}, (3.6.27)
(ipivy)™ = (aipivy) — At(ayp;)™g, i€ {1,2}. (3.6.28)

Once again, we have U* € Q after this step if U e Q.

3.6.3 Numerical illustration

Let us now present a numerical test which has been performed with the splitting algorithm described
in the previous sections. In order to simply reproduce a liquid/vapor density ratio, the equations
of state are
pi(pr) = p1 (liquid),  pa(p2) = (p2)* (vapor).
4

The parameters in the source terms are 7, = 107, 7, = 107* and g = 9.81. The computational

domain is the unit disk and the initial condition is

B(z.p,0) = (0.99,0.99 x 81,0,0,0.01 x 3,0,0) ifz < 0andy <0,
Y0 = (0.01,0.01 x 81,0,0,0.99 x 3,0,0)  otherwise,

and wall boundary conditions are set on the whole frontier of the domain. These boundary condi-
tions are approximated by the classical mirror technique. The mesh is composed by 6888 triangular
cells and 3545 vertices (recall that a cell-centered discretization is used), see Figure 3.6.

We present in Figure 3.7 the void fraction «; and the partial mass «aqp; at different times. The
shapes of the approximate solution comply with the intuition: after the collapse of the initial step,
the heaviest phase (phase 1) remains in the bottom of the cylinder and tends to an oscillating
solution due to the inertia of the collapse. This solution is very similar to the Thacker’s planar
solution for shallow water equations [24], which is characterized by a plane surface with an exact
periodic behavior. Here, one can observe that the surface becomes more and more planar and that
the number of cells in the thickness of the interface decreases. Of course, for much larger time,
one can check that the numerical solution is not fully periodic due to the numerical diffusion which
introduces a small damping, letting the solution tend to a stationary solution with a horizontal
surface. It is also clear that the numerical scheme is very robust, since the void fraction oy varies
from about 1072 to 1. Morevoer, due to the different relaxation source terms, the relative speed of
the flow remains subsonic, so that our algorithm is applicable all along the simulation.

3.7 Extension to the full Baer-Nunziato model in 1D

In this section, we show how to extend the finite volume method devised in the barotropic setting
to the framework with phasic energies. The proposed extension relies on two key ingredients. The
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first one is the extension of the fixed point procedure based on two decoupled Euler like systems,
respectively for phase 1 and phase 2, which was at the corner stone of the resolution of the Riemann
problem for the Suliciu relaxation system in the barotropic setting. Such a strategy has been actually
promoted to permit an easy extension to the full setting. The second ingredient is a duality principle
in between entropy and energy that allows a trivial extension of Suliciu like approximations from
barotropic pressure laws to the framework with energy. The combination of these two ingredients
permits in turn a rather immediate extension, since most of the formulae derived in the barotropic
setting are virtually kept unchanged.

The full Baer-Nunziato model writes :

Orary + Vidgaq = 0,

O(a1pr) + Op(a1prur) =0,

O(orprur) + Oz (arprui + arpi(r, s1)) — Prozon =0,

8t(oz1p1E1) + 6$(a1p1E1u1 + alpl(ﬁ, sl)ul) — ViPro,aq =0, (371)
O(avap2) + Oz (a2paus) =0,

O (aapaus) + Oy (aopoud + aopa (T2, $2)) — Proyas =0,

O¢(aapaEy) + 0y (aapaEaug + agpa(T2, s2)uz) — ViProyas = 0.

Observe that the pressure closure laws p;(7;, s;) correspond to complete equations of state, namely
functions of the specific volume 7; = p; 1 and the specific entropy s;. Their evaluations follow from
the definition of the phasic energies :

2
U3 .
E; := Ei(ui, 7i,54) = ?z +ei(Tiy 8:), 1 € {1,2}, (3.7.2)

where the internal energy function (7;,s;) — e;(7, s;) allows to define the corresponding pressure
thanks to 0-,e;(7;, ;) = —pi(7i, s;). We assume the following classical thermodynamic assumptions :

{ (73, 8:) = ei(mi, 8;) s convex, (3.7.3)

T, = —0s,ei(73,8;) > 0.

Thanks to these thermodynamic assumptions, the first order system (3.7.1) can be shown to be
(weakly) hyperbolic. In addition, the specific entropy s; can be understood as a function of (7;,€;)
with the property that the mapping (7;, e;) — s;(7,e;) is convex.

At last, the closure laws on the interfacial velocity and pressure laws are prescribed according
to the original Baer-Nunziato proposal :

(V1, Pr) = (uz2,p1), (3.7.4)

so that smooth solutions of (3.7.1) can be seen to obey the additional conservation laws

(3.7.5)

O (a1p181(m1,e1) + Oz (a1 p151(11,€1)ur) =0,
8t(0[2p252(72, 62) -+ am(OLQPQSQ(TQ, 62)u2) = 0

The existence of these two additional conservation laws will play a central role in the numerical
approximation of the solutions of the full Baer-Nunziato model. They permit an energy-entropy
duality principle which we briefly revisit in the setting of the Euler equations. Recall that the fixed
point procedure is precisely based on Euler like equations. Readers, familiar with this principle,
can skip this section.
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3.7.1 Entropy-Energy duality for the Euler equations

Let us consider the classical Euler equations

Op + 9z (pu) = 0,
¢ (pu) + 0, (pu? + p(7,5)) = 0, (3.7.6)
(pE) + 0z(pEu + p(7,5)u) =0,

closed with a complete equation of state, namely a pressure law p(7,s) function of the specific
volume 7 = p~! and the specific entropy s. We again assume the following stability thermodynamic
conditions :

{ (1,5) = e(7, s) is convex, (3.7.7)

T = —0se(1,s) > 0.

in symmetry with the assumptions stated in (3.7.3). Again, classical arguments allow to define
the mapping (7,e) — s(7,e) with a convexity property inherited from the positiveness of the
temperature T in (3.7.7). Smooth solutions of the hyperbolic system (3.7.6) are known to obey the
additional conservation law

O (ps(T,€)) + 0z (ps(T,e)u) = 0, (3.7.8)

while in view of the convexity property of the mapping (p, pu, pE) — {ps}(p, pu, pE), the relevant
weak solutions are asked to obey the following differential entropy inequality

9l pst(p, pu, pE) + 0 ({ps}(p, pu, pE)u) <0, (3.7.9)

for the sake of uniqueness.

In order to approximate at the discrete level the weak entropy solutions of (3.7.6)—(3.7.9), it is
interesting to consider the following auxiliary system

Oep + 9 (pu) = 0,
Oy (pu) + 0. (pu? + p(1,8)) =0, (3.7.10)
9e(ps) + Oz (psu) = 0,

where the entropy ps now plays the role of an independent conservative variable. Since the mapping
(p, pu, ps) = {pE}(p, pu, ps) is convex, it turns natural to select weak solutions of the hyperbolic
model (3.7.10) according to the differential inequality

O{pE}(p; pu, ps) + 0x({pE}(p, pu, ps)u + p(7, s)u) < 0. (3.7.11)

The Riemann solutions of this auxiliary model are simpler to approximate than those of (3.7.6),
because the specific entropy is now just advected by the flow

Ops +u0ys =0, (3.7.12)

so that the derivation of the self-similar solutions is very close to the barotropic setting. But clearly,
if smooth solutions of (3.7.6) and (3.7.10) are the same, their shock solutions are of course distinct.
Hence, a numerical scheme for advancing in time discrete solutions of the original PDEs (3.7.6)—
(3.7.9) based on solving a sequence of Riemann solutions for the auxiliary model (3.7.10)—(3.7.11)
must be given a correction.
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The required correction step turns in fact immediate because of the general thermodynamic
assumptions made on the complete equation of state. Assuming an entropy satisfying Riemann
solver for the auxiliary equations (3.7.10), we can in a first step update in conservation form the
density p and momentum pu, while preserving the entropy at the discrete level

(ps);iﬂ— = (ps)} — % ((PSU)?Jr% - (PSU);-L_%), (3.7.13)

with standard notations. Since the scheme is entropy satisfying with respect to the energy inequality
(3.7.11), one gets at the discrete level

n+1l— n At
(pE)I 1~ < (pB)? -

E((PEU+I)U)?+% — (pEqupu)?i%). (3.7.14)

The correction step to perform readily follows : it simply consists in keeping unchanged the updates
of the density and momentum,

Pt =i (o) = (pu)p (3.7.15)

while enforcing energy conservation in defining the energy update by

()™ = (pE); — <= ((pEu +pu)l,y — (pEu +pu)j7%). (3.7.16)
Obviously
n+1 n+1—
(PE);T > (pE); . (3.7.17)
Of course, the entropy (,os);?+1 = {ps}(p, ,0u7pE);”r1 has changed. But observe from the thermo-
dynamic assumption (3.7.7) that 0,g{ps}(p, pu, pE) = —1/T < 0, we infer from (3.7.17) that

(ps); ™ < (ps)i*i7, (3.7.18)
that is A
(o) < (p3)} = - ((psu)y g = (5w}, ). (3.7.19)

We thus has defined a fully conservative and entropy satisfying scheme for the Euler equations while
using the auxiliary model (3.7.10). This exchange step in between entropy and energy is referred
as to a duality principle.

Application of this principle to the Suliciu relaxation procedure is straightforward. Indeed, the
relaxation PDEs for approximating the solutions of the auxiliary model (3.7.10) read

Op + Oz (pu) = 0,
8t(pu) + ax(p’LLQ + 71—(7—7 T7 S)) = 07

1 3.7.20
OpT) + 0u(pTu) = (7 = T), (37.20)
O1(ps) + Da(psu) = 0,
where the relaxation pressure law is the direct extension of the barotropic linearization
(1, T,s) =P(T,s) +a*(T — 7). (3.7.21)
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For non-linear stability reasons, the frozen lagrangian sound speed «a is asked to obey the following
Whitham like condition
a’® > —0.P(T,s), (3.7.22)

for all the (7, s) under consideration. An central property of the homogeneous equations stems from
the following additional balance law for ruling the time evolution of the relaxation pressure

Oy (pr(1,T,8)) + Ou(pr (7, T, 8)u + a*u) = 0. (3.7.23)

Under the sub-characteristic condition (3.7.22), the relaxation pressure can thus clearly serve as an
admissible independent variable in place of T solving

P(T,s) + a*T =7+ a’r, (3.7.24)

with root 7 such that 0,P(T,s) + a?> > 0. This leads to the following equivalent form of the
homogeneous part of (3.7.20)

p
O¢(pu) + 0y EPUQ +m) =0, (3.7.25)

0 (p) + O, (pru + au) = 0,
Ot(ps) + O (psu) = 0.

Obviously, the first three equations are decoupled from the entropy PDE. In other words, they can
be solved independently
Op + 0z (pu) =0,
O (pu) + 9z (pu® + ) = 0, (3.7.26)
0 (p) + O, (pru + au) = 0.

These set of PDEs is nothing but the Suliciu relaxation model in the barotropic framework. Let
be given two states Uy, and Ugr with n;, and 7g defined at equilibrium : 7w = P(7rz,sr) and
mr = P(7r, sr). Then the self-similar solution of the corresponding Riemann problem for (3.7.26)
is made of four states U, Ur., Ug., Ugr separated by three contats discontinuities, respectively
propagating with speed vy — a7, u* = u} = vy and ugr + atg, with

* 1 *

u* = 3(ur +uR) — 5= (7r —7L), 7w =3(rp+7R)— $(ur —ur),
(3.7.27)
TLe = T + a—lg(ﬂL —7*), Tr«=TR+ a%(ﬂ'R — 7).

As expected, these formulae are identical to those derived in the barotropic setting, except of
course that 7, = P(1p,s1) = P and mg = P(7r, sgr) = Pr. In other words and within the Suliciu
framework, the entropy (or say the energy) is entirely wrapped in the initial data for 7 !

To end up the derivation of the approximate solver, one needs to define the update of the
total energy. In that aim, we observe that the solutions of the relaxation model (3.7.20) obey the
additional energy like equation in the usual weak sense (all the fields are indeed LD)

O{pE} + 0x{pEu+ mu} =0, (3.7.28)
with

p€ = p(% +e(T,s)+ %(ﬂ'z(ﬂ T,s) —p*(T, s)) (3.7.29)
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Under the Whitham condition (3.7.22), one can infer from (3.7.28) the following discrete energy
inequality

n+1— n At n n
(PB); 1™ < (oB); — 1 ((pEu + ),y — (pEu+ ﬂu)j_%). (3.7.30)

For the details, we refer for instance the reader to the monograph by Bouchut. Restoring energy
conservation at the discrete level yields the final update of the total energy

(pE); ™ = (0E)} — X ((pgu +mu)?, ) — (p€u+ m)j_%). (3.7.31)

To conclude the method, we have to define the relaxation energy associated with the two interme-
diate states U} and U%. The required values readily follow from the jump relations associated to
the energy conservation law (3.7.28) :

1 1
gL*:EL—*(ﬂ'*u*—ﬂ'LuL), Enx :ER—I—*(T('*U*—?TR’U,R). (3732)
a a

This concludes the presentation of the method.

3.7.2 Extension to the Baer-Nunziato equations

Equipped with the additional laws (3.7.5) for the entropies a;p;s;, and motivated by the previous
section, we introduce the following auxiliary system

Orory + ug0pc01 = 0,

Or(aip1) + Oz (arpriur) =0,

O(crprur) + Oz (arpruf + caapi (1, 81)) — p1(71, 81)0p01 =0,

Or(a1p1s1) + Oz (cupisiur) =0, (3.7.33)
8,5(042/)2) + (9w(052p2’(,L2) = O7

Or(aapaug) + Oz (aapau3 + aopa (T2, 52)) — p1(T2, $2)0z00 = 0,

O¢(azp2s2) + Op(q2pasauz) = 0,

where «;p;s; play the role of independent conservative variables. Again smooth solutions of (3.7.1)
also solve (3.7.33) in a classical sense but weak solutions of (3.7.1) and (3.7.33) do differ. Advancing
in time discrete approximate solutions for (3.7.1) can be nevertheless performed when solving in each
time slab (¢, t"*1) a sequence of Riemann problems for the auxiliary model (3.7.33). Consistency
with the exact PDEs (3.7.1) is then recovered thanks to a duality principle in between energy and
entropy, entirely similar to the one described in the previous section. We propose to approximate
the Riemann problem for (3.7.33) by the self similar solution of a Suliciu relaxation model :

1
OW + 0,g(W°) + d(WF)O, W = —R(W"), (3.7.34)

158



with state vector W = (aq, aqp1, @1p1u1, Qape, apata, a1 p1 71, aapaTa, alplshagpng)T and
I 0 i [ Ugazal i I 0
Q1p1U] 0 0
arpruf + anmi (71, 71, 81) —m1(71, T, 51)0z00 0
Q2 P2UD 0 0
g(W) = agpgu% + 04271'2(7'2, 7—2, 82) s d(W)@wW = | =T (Tl, 7-1, 81)8950[2 s R(W) = 0
a1 p1Tiug 0 aipi(nn —Th
azpaTausg 0 azp2(T2 — T2
a1pP1851U1 0 0
L Q20252U2 | L 0 J 0
(3.7.35)
For each phase i in {1,2} the (partially) linearized pressure 7;(7;, 7, s;) are defined by
7 (7iy Tiw 8i) = Pi(To, 81) + ai (T — 75). (3.7.36)

Formally, the exact pressure laws P;(7;, s;) are recovered in the limit ¢ — 07. Again, the frozen
lagrangian sound speeds a; in (3.7.36) have to be taken large enough to prevent the relaxation
approximation from instabilities in the regime of a vanishing relaxation parameter (see the Whitham
conditions in the next Lemma).

Let us now state simple but central properties of the homogeneous (weakly) hyperbolic relaxation
system
W + 0,g(W) + d(W)9, W = 0. (3.7.37)

Such properties are directly inherited from the fact that both the relaxation volume fraction 7; and
the specific entropy s; are just advected by the flow velocity u;

Orsi + u;0ys; = 0, (3.7.38)

so that any given nonlinear combination of these, say ¢(7T;, s;), is also advected by w;. It is important
to observe that for self-similar initial data, the Riemann solution, as soon as it exists, necessarily
obeys

no={ g S wo={ P ST emeeo={ o 5

(si)Ru u;,k < fa PR, ,u’;k < 5
(3.7.39)

Lemma 3.7.1. Solutions of (3.7.37) obey the following additional laws in a usual weak sense

Or(a1p1&r) + Ox(arpr&rur + armi(71, T, 81)ur) — uami (71, 71, 81)0z01 = 0, (3.7.40)
Or(aapa&a) + Or(aapalouy + aama(T2, Ta, 82)u2) — uami (71, T2, 51)0pte = 0, o
where the relazation phasic energies read
2 201 Ti8:) — p2(T7. s
&= Ei(ui, 1, Tiy 8:) = % +ei(Tirs0) + (71,7;,55)(12 pil “52), i€ {1,2}. (3.7.41)
Under the Whitham like conditions
a? > —0.,pi(Ti,si), i€{1,2}, (3.7.42)
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to be met for all the (T;, s;) under consideration, the following Gibbs principles are satisfied

7 = Argmin {E;(7i, wi, Ti, i), with (7i,u;,5;) kept fizedy,  Ei(7i,uq, 8i) = Ei(Ti, wiy Tiy 8i)-
(3.7.43)
In addition, the following balance equations for governing the relaxation pressure laws m;(7;, T, S;)
hold
Oraipimi (75, Tiy 8i) + Ou(ipimi(Ti, Toy 8i)ui + af au;) — aiusdpa; = 0. (3.7.44)

Besides standard algebraic manipulations, this statement basically holds because of the advec-
tion equations (3.7.38). Details are left to the reader. From (3.7.39), let us stress that the laws
under consideration evolve in the Riemann solution, virtually the same way as within the barotropic
setting : entropies s; are systematically involved in non-linear functions already depending on the
variable 7; : namely P;(T;, s;), e;(T;, s;). Such functions are solely evaluated on the left and right
states in the self-similar initial data and hence always contribute to any given jump conditions in
terms of (P;,e;)r, or (P, e;)R.

In the regime of vanishing phases and following the strategy devised in the previous chapter, we
intend to dissipate the mixture energy when needed :

8t(0‘1P151 + 042/)252) +5'm(041P151U1 + a17Tl(7177-1, 81)“1)

+0z (2p2€aus + aama(T2, T2, s2)uz) < 0. (8.7.45)
Let us express the associated jump relation at the void fraction wave
[ p1E1(ur — u3) + oy (ug — u3)]e—uz <0, (3.7.46)
where
g M=) oy T — (T ) (3.7.47)

2 2a?

Let us again observe, from (3.7.39), that the jump relation (3.7.46) exactly coincides with the one
derived within the barotropic setting.

We will prove that the duality principle in between energy and entropy will allow to restore at
the discrete level the expected balance laws that govern both energies a;p; E; (namely finite volume
updates consitent with (3.7.40)) while dissipating the mixture entropy

at(alplsl + 042p282) + 8m(a1p131u1 + a2p252u2) § O, (3748)

in a convenient discrete sense.

The strategy for solving the Riemann problem for the homogeneous relaxation system (3.7.37) re-
lies on a straightforward extension of the fixed point procedure we have devised within the barotropic
framework. This procedure basically aims at defining an interfacial velocity u3 and an interfacial
pressure 7; at the void fraction wave, involving mixture energy dissipation when needed. The
extension to the energy setting is analyzed in the next section with the following first important
result.
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Proposition 3.7.2. The mathematical formulae for defining the phasic quantities 7;,u;, 7™ and
the void fraction «; within the Riemann fan read exactly the same as in the barotropic framework,
provided that the relazation pressures in the initial data are evaluated at equilibrium, namely

() = { Eﬁ;; reo (3.7.49)

The next statement allows to easily derive the values of the phasic energies within the Riemann
fan, provided that some entropy-energy duality principle is used in case the mixture energy is
dissipated at the void fraction wave. This is the matter of the last section.

Proposition 3.7.3. Values of the phasic energies & within the Riemann fan are recovered when
solving at each contact discontinuity, the jump relations associated with

Or(ipi&i) + O (ipiini + cimiu;) = usmy Acip st (3.7.50)

Here, the interfacial velocity w3 and the interfacial pressure 7} are defined from the fized point
procedure at convergence, and possibly corrected thanks to mixture energy dissipation.

Choosing the CFL number less than 1/2, the updates of the phasic energies then read
(ipi BT = (upi )7 — REA(ipi€iui + Wiui);-l+%

(3.7.51)

+ar (r] max(u3, 0))7 ;s Alas)]_; + 2% (7] min(u5, 0))7, 3 Ae)7, 5

Provided that the frozen lagrangian sound speeds a; are chosen large enough, the positiveness of
the phasic internal energies e; is preserved and we have in addition the following discrete entropy
inequalities per phase :

At
n+1 n n .
(aipis,»)j — (qipisi)} + EA(aipisiui)jJr% <0, e{l,2}, (3.7.52)

3.7.3 The fixed point procedure

Let us describe in details the resolution of the Riemann problem for the homogeneous (weakly)
hyperbolic relaxation system

W + 0,g(W) + d(W)0, W =0,

L [ W, if z<o0, (3.7.53)
W(z’t—o)_{wg it 2>0,

for given states (Wp,, Wg) prescribed so that the self-similar solution exhibits subsonic wave ordering
uy —a1m < us < up+a17. We adopt a direct extension of the strategy described in the barotropic
cases, namely a fixed point procedure in between two Euler like models for defining the velocity u3
and the pressure 7] at the void fraction wave. The proposed extension thus reads as follows.
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e Solve the system for phase 2 with corresponding self-similar data

O + u20,a2 =0,
O¢(a2p2) + Oz (azpauz) =0,
i (a2paus) + Op(aapaud + aama(m2, Ta, $2)) — T 0zan = 0, (3.7.54)
O¢(a2p2T2) + Oz (a2p2Tauz) = 0,
Os(a2p2s2) + Oz (a2pasauz) = 0,
for a prescribed value of the interfacial pressure n7 and define the interfacial velocity 3.
Recall that u3 is nothing but the velocity of the void fraction wave in the Riemann solution.

e Solve for this velocity u3, the system for phase 1

Oray + us0za1 =0,

O(anp1) + Oz (a1prur) =0,

8t(041p1u1) + 5‘m(a1p1u% “+ a1y (Tl, ’Tl, 51)) — (7'17 ﬂ, 51)61011 = 0, (3755)

(a1 p1Th) + Ox(c1p1Thug) = 0,

Oy(a1p151) + Oz (a1prsiur) =0,
so as to define a new value of the interfacial pressure 77. The linear degeneracy of all the
fields make the non-conservative product w1 0,aq well defined despite that 7 is discontinuous
across the void fraction wave. By definition, this product reads 77 Aa;10,—y3¢, With

Ay = —ujlarprug] + [arprud + arm], (3.7.56)

where the right-side is known since the Riemann solution is explicitely known. This in turn
defines 7.

e Iterate till convergence.

To further proceed, we observe that under the Whitham conditions (3.7.42), each relaxation pressure
7 can serve as new variables in place of the relaxation specific volume 7; :

Pi(Tiy si) + a; Ty = mi + aimi. (3.7.57)

Using the proposed change of variable, we can recast the fixed point procedure as follows :

e For a prescribed 77, solve for u3

Oravg + usdpag = 0,

O(avap2) + Oz (apaus) =0,

at(agpqu) + 5x(a2p2u% + 0427T2) — ’/Tikaxag = O, (3758)
8t(a2p27r2) + ax(agpgmw + CKQG,%’LLQ) - G%UQ(?ICVQ = 0,

O¢(aapasa) + Oz (2pasaug) = 0.

e For a prescribed u3, solve for 7}

Ora; + us0zaq = 0,

Or(a1p1) + Ox(a1prur) =0,

Oy (a1prur) + Ox (a1 prul + aymy) — m0pa = 0, (3.7.59)
Oy (ar1p1m) + O (a1 p1miug + adoquy) — aduidyar = 0,,

8t(()41p131) + 83;(01,0181U1) =0.
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e Iterate till convergence.

Clearly in (3.7.58) and (3.7.59), the corresponding specific entropy s; is absent from the first four
PDEs. Some coupling nevertheless exists via the Whitham condition a% > —071,;Pi(T;, s;) but as
soon as a; is prescribed, the advection equation for s; is entirely decoupled from the PDEs governing
the phasic quantities 7;, u;, ; and the void fraction «;. Put in other words and focusing for instance
on the system (3.7.59), one can first solve

Oy + u;aqu =0,
Or(a1p1) + Oz (arprur) =0,

3.7.60
O(cprur) + Oz (arpruf + aqmy) — mOyar =0, ( )
O (arpim) + 0u(rprmiur + afoyur) — afusdyan =0,
and then the advection equation for s;
81551 + U18$81 =0. (3761)

Observe that the PDEs (3.7.60) have exactly the same PDE structure as those studied within the
barotropic framework : indeed each relaxation pressure ;(7;, 7;) = Pi(T;)+a?(T;—7;) can also serve
there as an independent variable in place of 7; to give rise to the equivalent formulation (3.7.60). The
only difference stays in the initial data for the respective Cauchy problems : mo(x) = P;((:)o(x))
versus mo(z) = P;((7:)o(x), (si)o(z)) and the correct prescription of the frozen Lagrangian sound
speeds a; ! This exactly means that the formulae for defining the phasic quantities p;,u;, m; and
the void fraction a; in the Riemann fan are exactly the same in the barotropic setting and
in the framework with energies. Thus solving the respective Cauchy problems yields identical
mathematical expressions for the phasic quantities 7;, u;, m; and the void fraction «; (of course, up to
the precise definition of the quantities evaluated on the initial data), that can be again conveniently
parametrized by the same relative Mach number M = (uy — u})/(a17 ) = 7(M), u; (M), m; (M)
(recall that its precise value dictates the jump of the mixture energy across the void fraction wave).

Recall that solving the fixed point problem (3.7.54)—(3.7.55) relies on an iterative real parameter
w given by
_1-M3 « U1 —ub
71+Mz, L= alTl,L.
It again amounts to solve a scalar non-linear equation in w which has the same form as in the
barotropic setting. As a consequence, there exists a unique solution to the fixed point problem
(3.7.54)—(3.7.55) under the assumptions stated in Chapter 2. Keeping unchanged the notations
introduced in this chapter, the main output of the fixed point procedure is a relative Mach number
Mo (v,w). Due to galilean invariance, it again suffices to restrict attention to Mo (v,w) > 0. Recall
that promoting this value in the formulae defining the Riemann solution, the mixture energy is by
construction preserved at the void fraction wave :

w (3.7.62)

Or(c1p1&1 + aapa&s)  +0z(cipr&iur + armi (T, Ti, $1)un)

+0,(aap2baus + aama (T2, T2, S2)us) = 0. (3.7.63)

In full symmetry with Chapter 2, positiveness of some specific volumes 7; (namely 71 g.) may be

violated if we persist to preserve the mixture energy conservation law across the void fraction wave,
in the case of a very large ratio of void fraction v in the Riemann data.
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As already claimed, we propose the same cure : namely dissipate the mixture energy to restore
positivity

O (a1p1&1 + app2€2)  +0x(a1p1&iur + aqmi (11, T, s1)u1) (3.7.64)

+0x (aap2Eaus + aama (T2, T2, S2)us) < 0. o

The corresponding kinetic relation again amounts to enforce a lower bound /nfy g on some specific

volume in the Riemann fan. In order to implement this energy dissipation rule, we adopt exactly

the same strategy : namely preserve the phasic energy for phase 2 and dissipate energy across the

void fraction wave for phase 1 once the fixed point procedure has achieved convergence. This again

amounts to prescribe in place of My (v, w), a relative Mach number M, (v, w) conveniently chosen

in the interval (0, Mo(v,w)[. Small enough values of M again systematically guarantee that the
Riemann solution achieves subsonic relative Mach number within the Riemann fan.

Let us now address how to handle the duality principle in between energy and entropy so as
to restore consistency with the exact Baer-Nunziato equations. We propose to proceed into two
steps, first assuming that My (v, w) gives rise to a solution with subsonic relative velocities and then
addressing the case of energy dissipation at the void fraction wave in order to achieve the lower
bound m{ R

First case : My(v,w) is relevant

Let us first observe that self-similar solutions of (3.7.54) obey the following energy like equation
8,5(042/0252) —+ 817(0[2/)25211,2 —+ O[Q’]TQ(TQ, 7-2, SQ)UQ) = U;’R’TACH(;()(% — U;t), (3765)

where the relaxation energy is defined in (3.7.40). Again, note that the non-conservative product
us X dp(x — udt) is not ambiguous since us stays constant across the void fraction wave, and takes
the value uj. Similarly, self-similar solutions of (3.7.55) verify the following energy like equation :

5‘t(a1p151) + ﬁm(alplglul —+ a7 (7'1, 7-1, sl)ul) = u§Aa1 (’/T1 X (50(1’ — u;t)>, (3766)

where by definition the mass of the product m x do(z — ust) equals 7§ with 77 given by (3.7.56).

The energy-entropy duality principle is now at hand. We use classical notations from the
framework of finite volume methods. The CFL condition is set to 1/2. Assume a the discrete
solution at time ¢" for the Baer-Nunziato PDEs (3.7.1). Defining from this discrete solution an
initial data Wa (z,t™) at equilibrium, that is with m;(x,t") = P;(1, s;)(z, ™), we solve a sequence
of non-interacting Riemann problems for the relaxation system (3.7.37) to define an approximate
solution W (z,#"T1=) at time ¢t"*1= = " + At. This solution is then classically averaged in each
computational cell and in particular, gives conservative updates for both entropies

At
n+l— __ P e AT
(aipisi)j = (alpzsz)j xA(azpzsluz)jJr%. (3.7.67)
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Averaging (3.7.65) and (3.7.66), one easily gets :

1 i+l t
— p) 7A(Ozipigiui + Oéiﬂ'iui)n

Oéipigi(WA(JC,tn+1:)dI = (Ozzszz);l — Ax j+%

[N

(3.7.68)

At * * n At * . * 7 n
+E(7r1 max(u270))?_%A(ai)j_% + E(?Tl mln(uz,O));+%A(ai)j+l,

since (&;)7 = (E;)’} because the initial data Wa (x,") is at equilibrium. Then we set 7;(z, t"*"~)
at equilibrium, pointwisely in x at time t"*1= : namely we define 7;(z,t"*17) = 7;(x, t"TH7).

Assuming the frozen lagrangian sound speed a; large enough so that the Gibbs principles stated in
(3.7.43) hold true, one gets as a by-product

1 [Ti+d
A—/ = ipi Bi(Ua(z, ") dx < — @ipi&(Wa(z, t" 1) du, (3.7.69)
€ X .

_1

1
2

l\J

where Un (z,t"*17) denotes a piecewise constant approximate solution of the auxiliary system
(3.7.33). Invoking the convexity of the mapping U; — (a;p;E;)(U;), one deduces

1 (%t} _
(aipi ;)" < Ar / " ipi B;(Ua (x, "5 dx. (3.7.70)
mj71

N

It now suffices to exchange energy and entropy along the lines developed in the first section to
conclude.

To check that the proposed algorithm preserves the positiveness of the internal energies, namely
(el)”+1 > 0, it suffices to notice that before the exchange in between entropy and energy, the update
(sl)?"’l obeys a discrete local maximum principle so that (el)?"’l_ = ei((n)?ﬂ_ (si)?"’l_
defined and thus positive provided that (ozzp,)"Jrl > 0. But this last property holds true since
we are dealing with positive intermediate spec1ﬁc volume 7;, and thus p;, everywhere within the
wave fan since no energy dissipation is needed here. Then the exchange step correction results in

(E; )”Jrl > (Ei);”rl* while the kinetic energy has been kept unchanged. As a consequence, we infer

) is well

(el)”+1 > (ei);-”rl* > 0 and hence the required positiveness property for the proposed algorithm.

Second case : My(v,w) is irrelevant

Let us at last address the situation where one needs to dissipate energy for phase 1 across the void
fraction wave

B(a1p1E1) + Ou(arpr&1us + armiug) — whAay (m x 0o(x — u;t)) <0, (3.7.71)
thanks to some conveniently chosen value of M,,(v,w) € (0, M(v,w)]. Here again and by definition
1 X dp(x — udt) = 7y do(x — uit) (3.7.72)
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with 7} given by (3.7.56) and evaluated for the choice of the relative Mach number M, (v,w) under
consideration. Recall that this procedure is energy preserving for phase 2, in the sense that :

8t(a2p2€2) + 8x(a2p252u2 -+ O[Q’ITQ’lLl) — ﬂ‘u;Aal&)(aﬂ — 'U,;t) = 0, (3773)

for the pair (uj,77) under consideration.

Here thanks to an energy-entropy duality principle, we propose to slightly modify the local
Riemann solution of (3.7.55)—(3.7.71) so that it no longer solves these equations but instead

O + us0zap = 0,

O¢(a1p1) + Ox(c1prur) = 0,

¢ (a1 prur) + Op (1 pru? + aymy) — Ti A6zt = 0, (3.7.74)

Ot(c1p1Th) + Ox(crprThur) = 0,

¢ (a1p1&E1) + Oz (a1 pr1&1uy + adaqmy) — us Ty A dp—yzt = 0,
with

Ot(a1p181) + Oz (a1 p1siur) <0, (3.7.75)

where entropy dissipation for phase 1 only takes place at the void fraction wave. In other words,
energy conservation is restored at the expense of entropy dissipation. The main reason for restoring
energy conservation at the PDE level stems from the need to assess clear conservative jump relations

for defining the traces of £ at the void fraction wave. Note that the Riemann solution for phase 2
is kept unchanged thanks to (3.7.73).

The duality principle under consideration relies on the following technical result

Lemma 3.7.4. Under the Whitham condition, define the following admissible change of variables
W; = (ai7aipiaaipiuiyaipiﬂ,aipisi) - W; = (aiaaipiaOéipz'uhaipi{iaaipivsi) with I; = pi('ﬁ) +
a?T;. Then understanding the phasic energy c;p;&; as a function of W;, one has

Dovpiss (ipi€i) (W) = =T5(Ti, s:) < 0. (3.7.76)

The proof of this statement is a straightforward adaptation of a result established by Christophe
Chalons in his PhD dissertation (see Lemma 4, page 173). We skip the details.

In order to use this technical result, we propose to re-express the energy inequality (3.7.66) in
the frame of the void fraction wave, as already performed in the barotropic setting. Introducing
wi = u1 — uj, this inequality reads

Oy (1p1&1) + Oz (1 prE1w1 + aymiwy) — Tius Ay So(z) <0, (3.7.77)

with & given in (3.7.46). Using the notation of Chapter 2, we denote by W~ and W+ the left and
right traces at the standing wave (namely the void fraction wave in the proposed new frame). The
jump relation at this standing wave coming with (3.7.77) reads

(alplgwl)(Wf) < (alplgwl)(Wf) — [alﬂ'lwl] + WTUEAO@. (3778)
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By contrast, the entropy ajp1s; satisfies
(a1p151w1)+ = (alplslwl)f (3779)

We propose to modify the self similar Riemann solution Wy (&, Wy, Wg) of (3.7.55)—(3.7.66) into
another self-similar function denoted by Wl (&, Wy, Wg). This function is defined when keeping
unchanged all the intermediate states except W . This new state is built keeping unchanged the
phasic quantities a, 71, u1, ™ of WT By contrast, the phasic entropy s; is changed so that the
energy for phase 1 is now preserved across the standing wave

(Oélplgl’wl)(Wf) = (alplz‘flwl)(Wf) — [ozlmwl] + FTU;AOQ. (3780)

Since we focus ourselves on positive relative Mach number M = (u; — u})(ay7; ) without loss of
generality, we have af pJwi = a7 pyw; > 0 so that we infer from (3.7.78) and (3.7.80)

E\(W) > & (W). (3.7.81)

Recall that the modified inner state W+ is built so as to keep unchanged a7, (a1p1)*, (a1 prws )t
and 7] that is to say (a1p1Z)] = (a1p1) (7] +a?7]"). So that Lemma 3.7.4 applies to prove that
the entropy s; in the modified right trace W+ actually obeys

sl(Wf) <s7 thatis (alplslwl)(Wf) < (a1p181w1)~. (3.7.82)

Turning back to the original frame, we have therefore defined a self similar function W, (&, W, Wg)
which is solution of the Riemann problem (3.7.74)—(3.7.75) as expected.

The numerical procedure then follows when averaging the modified Riemann solution W1 () in
place of Wy (€) in order to get in the one hand

n+1— n At n
(Cvlplsl)j +1 < (alplsl)j — EA(alplslul)j+%’ (3783)

and in the other hand

Lo [hs ; - At
Az /z +3 a1p1E1(Wa(z, t" %) de = (up1&r)y — EA(alplglul + 0417T1U1)?+%
Jj—

=

(3.7.84)

s 1 (i min(u3, 07, Adan)

At .
+—— (7] max(uQ,O))jféA(al) 1 el

Az

n
j7

Using similar arguments to those developed in the previous section devoted to a relevant relative
Mach number Mg (v,w), we pointwisely in x set 77 at equilibrium assuming a large enough value
of a1 so that energy for phase 1 is dissipated on average. Then the usual energy-entropy duality
principle again applies to prove that energy for phase 1 can be preserved while further dissipating
the entropy s; in (3.7.83)

(a1p1s1)t < (arprs1)} — EA(Q10181U1)J»+%- (3.7.85)
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As far as phase 2 is concerned, the situation is exactly the same as in the previous section. Exactly
the same steps apply.

Checking the positiveness preserving property of the resulting algorithm comes along similar lines
as those proposed in the previous section. It suffices to notice in the one hand that («; pi);‘ﬂf >0
since energy dissipation ensures this property. In a second hand, one has to notice that we could
directly average the Riemann solution without correction, then apply the standard entropy-energy
duality principle to actually get an equivalent formula for the final update (ozipiEi)?H. The
intermediate entropy-energy duality principle just aimed at proving that we can solve standard
jump relations at the void fraction wave to get the requested traces. In other words and for the
final update under consideration, the situation is just equivalent to the one treated in the previous

section !

This concludes the proof.

3.7.4 Numerical illustration

In this section, we present the Riemann test-case for the complete model with energies, which is
considered in [23]. The two phases follow two ideal gas equations of state with v = 75 = 1.4.
Denoting U = (a1, p1,u1, p1, p2, Uz, p2) the initial data is given by

U, =(0.2,0.2,0,0.3,1.0,0,1.0)  ifz <0,
Ur = (0.7,1.0,0,1.0,1.0,0,1.0)  if z > 0.

The computation has been implemented on three different meshes of respectively 100, 1000 and
10000 cells. The results are presented in Figure 3.8. As for the isentropic test-cases, we observe
a very good behavior on the very coarse 100-cell mesh. Moreover, although the exact solution is
not represented here, the scheme seems to be convergent as the space step tends to zero (with a
constant CFL).

Appendix A: Mathematical properties of system (3.2.1)

Characteristic fields

Denoting U = (aq, p1,u1, p2, UQ)T the state vector of non-conservative variables, the smooth solu-
tions of system (3.2.1) are equivalent to the following system

U + AU)d,U = 0, (3.7.86)
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where

Ug 0 0 0 0
Bur—u2)  w p 0 0
AU) = 0 B 000 (3.7.87)
0 0 0 Uz P2
p1(p1)—p2(p2) p5(p2)
W 0 0 272 U
This matrix admits five real characteristic eigenvalues which are:
g1 (U) = U2,
UQ(Z/{) = U1 —Cl(pl), 05(1/{) = U1 +01(p1), (3788)

o4(U) = uz — c2(p2), o5(U) = ua + ca(p2),

where ¢;(p;) = \/Pi(p:i), ¢ in {1,2} are the phasic speeds of sound. The corresponding right
eigenvectors are denoted 7 (U), k = 2,3,4,5. With a suitable normalisation, one can easily verify
that

VZ,(O'l(u).Tl(U) = 0,

3.7.89
VuO'k(U).Tk(U):l, k:2,3,4,5. ( )

Hence, the first characteristic field is linearly degenerate while the four others are genuinely non-
linear. Observe that the system is hyperbolic, i.e. the five eigenvectors r(U), k in {1,..,5} span
R® if and only if (u; — ug)? # c3(p1).

Appendix B: Exact solutions to the Riemann problem

We are now interested in Cauchy problems for system (3.2.1) where the initial data (in non-
conservative variables) is of the form

Uz, t=0) = (3.7.90)

Ur ifz<0,
UR if z > 0.

In the domain of hyperbolicity, the solution is self-similar (i.e. U(x,t) = V(x/t)) and composed
of five isolated waves separating six constant intermediate states, each wave corresponding to one
characteristic field. In the sequel, we describe the different types of waves connecting two constant
intermediate states. We restrict to solutions composed of isolated waves.

Rarefaction waves
A rarefaction wave is a continuous and piecewise smooth solution of system (3.2.1) of the form
Ulz,t) =V(E), €= % z€eR, t>0. (3.7.91)
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Substituting this in (3.7.86), one can see that a rarefaction wave is a solution of the following
Cauchy problem for ordinary differential equations:

dv(§)
dé
V(ow(Uo)) = Up.

A solution V' (), &€ > oi(Up) of (3.7.92) consists of all the right-hand states V(§) that can be con-
nected to a given left-hand state Uy by a oi-rarefaction wave. Considering the second characteristic
field for example, system (3.7.92) is equivalent to the preservation of the following quantities, called
the Riemann invariants of the field:

dai(§) _ dpa(§) _ dua(§) _ d2U)(E) _ (3.7.93)

dg dg dg dg
where ®(U) = ui+ [ P ¢1(y)/ydy. Consequently, a1, pz and ug are constant through a oo-rarefaction
wave, while p; and u; are respectively decreasing and increasing. The same study can be done for
the other rarefaction waves associated with the genuinely non-linear fields oy, k = 3,4, 5.

=m(V(), &2 owllho), k=2,3,4,5, (3.7.92)

Shock waves

Shock waves are discontinuous solutions associated with one of the genuinely non-linear fields
ok, k=2,3,4,5. As we restrict to hyperbolic solutions, «; is constant across this type of disconti-
nuity and the system reduces to two independent subsystems of isentropic gas dynamics equations
for each phase. Two states U~ and U™ (or their conservative counterparts U~ and U") are con-
nected by an admissible shock whose velocity is equal to o, if and only if the discontinuity satisfies
the two following jump relation:

o [U] + [f(U)] =0, (3.7.94)
together with the Lax admissibility condition. Such a discontinuous wave is purely phasic since if
it is associated with one of the characteristic fields of phase i (09 or o3 for ¢ = 1 and o4 or o5 for
1 = 2 ), all the quantities related to the other phase are constant through the discontinuity. For
instance, if the thermodynamics of phase 1 follow an ideal gas pressure law: pi(p1) = K1p]", then
given a left-hand state &/ ~, the shock curves consisting of all the right-hand states /T that can be
connected to U~ by an admissible shock associated to o2 or o3 are given by

1/2
_ _ _ 1 1 _ _
02! ’U;:'Ugv p§=f927 UT:U1 _(51 (_) ((/)T)’Yl_(p1 )’Yl)> ) /)T>p1a

propt
(3.7.95)
1 1 1/2
o3t Uy =uy, py =py, uf =up — (m (_ - +) (o) = (m‘)“)) , pi < pr-
P1 P1 (3.7.96)

Contact discontinuity

A oq-contact discontinuity is associated to a jump in the phase fraction o between ay,1 and o1 g,
a1 being constant in both the regions left and right of this discontinuity. Through such a contact

170



discontinuity, the eigenvalue us is constant and we have the following jump relations (see for instance
[13, 23] or [25])

[ug] = 0, (3.7.97)
[a1p1(ur —ug)] =0, (3.7.98)
[1p1(ur — u2)ur + aapi(p1) + azpa(p2)] = 0, (3.7.99)
[a1p1 (w1 — u2) By + capi(p1)ur + azpa(p2)us] = 0. (3.7.100)

Hence, two states i~ and U™ are connected by a oj-contact discontinuity if they satisfy the four
jump relations (3.7.97) to (3.7.100).

Vanishing-phase solution of test-case 2

The vanishing phase solution of test-case 2 is constructed as follows. First of all, two states U/~ and
UT are constructed so as to be connected by a o;-contact discontinuity with o] =or;, =1and
af = a1 r =04 (U™ resp. UT is denoted Uy resp. Us in (3.5.2)). For this purpose, observe that
the jump relations associated with the contact discontinuity reduce to

Uy = uQL,
pr (uy —
py (uy —uy )uy +p1(py) = of pf (uf — ud)uf + of p1(pf) + a3 p2(p3),

py (uy —uz ) By +pi(pr Juy = of pf (uf —ud )BT + o pr(p )ul + a5 pa(p3 )ug,

uy) = oy pi (uf’ —ug),

since o; = 1 and a; = 0. Thanks to these jump relations, given the values p;” = 2.0, u; = 0.4
and u, = 0.6 (no value of p, is needed), we compute the values of pi, u, p5 and uj which are
given in the intermediate state Uy in (3.5.2). The value of p, is then imposed to be equal to py .
Then the state Y~ = U; is connected on its left with the state Uy through a os-shock. The state
Us is connected to Uz through a os-rarefaction wave, and finally U3 is connected to Ur through a
os-rarefaction wave.

Coupling solution of test-case 3

The same procedure is implemented for the construction of the exact solution of test-case 3, which
corresponds to a coupling between a pure phase 1 (a; = a1, = 1) on the right and a pure phase 2
(041+ = a1,z = 0) on the left. This time, the jump relations of the oi-contact discontinuity reduce
to

A solution is given by u; = uj =u; = 1.0 and p; = p;*(p), p3 = py *(p) where p = p; = p5 =10
is the common pressure. The values of pf and uf, which are of no importance since phase 1 in
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not present on the right of the contact discontinuity, are taken equal to p; and w; . Similarly, we
set p, := p3. This concludes the construction of the intermediate states U~ = U' and UT = U>.
Then the state U; is connected on its left with the state Uy, through a os-shock and the state Us is
connected to Ug through a os-rarefaction wave.
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Wave structure of the exact Riemann solution Phase fraction o
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Figure 3.2: Test-case 1: Structure of the solution and space variations of the physical variables at
the final time T = 0.14. Mesh size: 100 cells.
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Wave structure of the exact Riemann solution

Phase fraction o

1.2
t 4 11 r 1
U2 1 i
. U c
Uy —C ' 2+ e 09 1
08 i
0.7 F
Uy + c1
only phase 1 061
05 | Rusanov —&—
' Relaxation —e—
ur, 04 Exact solution
> $ .
0.3 L L L L L
-0.4 -0.2 0 0.2 0.4
Phase 1 velocity u, Phase 2 velocity u,
0.9 25
08 I’ Rusanov —&— No phase 2
07 Relaxation —e— ]
: Exact solution 2r Rusanov —&— |
06} Relaxation —e—
Exact solution
05
0.4+
03+
02
01 r
0 L L L L L L L L L L
0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4
Phase 1 density p, Phase 2 density p,
2.1 55
2.05 5 No phase 2
P — 45
1.95 4
19 1 35
1.85 3
18 Rusanov —&— 2.5 Rusanov —&— |
Relaxation —e— Relaxation —e—
175 ¢ Exact solution 1 2r Exact solution
17 L L L L L 15 L L L L L

-0.2 0 0.2 0.4

0.2 0.4
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the final time T = 0.1. Mesh size: 100 cells.
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Wave structure of the exact Riemann solution
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A SPLITTING METHOD FOR STABLE NUMERICAL
APPROXIMATIONS OF THE BAER-NUNZIATO MODEL WITH
VANISHING PHASES

Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh

4.1 The isentropic Baer-Nunziato model

In the present work, we consider a model formulated in Eulerian coordinates where balance equa-
tions account for the evolution of mass and momentum of each phase. For compressible isentropic
one-dimensional flows there are five unknowns that describe the evolution of the two-phase flow:
the velocities of each phase uy, the densities of each phase p, and the phase fractions ay, where
k € {1,2} (knowing that a1 + ap = 1). Denoting

U = (a1, a1p1, 1 pruy, agpz, azpatig)” (4.1.1)

the vector of unknowns, the isentropic version of the model —firstly introduced by Baer & Nunziato
[3]- reads

0, U+ 9,F(U) + C(U)0,an =S(U), z€R, t>0, (4.1.2)
where
0 Vi Oy (p1(p1) — p2(p2))
a1p1U1 0 0
F(U) = |a1pru? + a1pi(p1)|, CU)= |-Pr|, S(U)= O, (ug —uy) . (4.1.3)
Q2 P2U2 0 0
Qapau3 + apa(p2) Py Oy (ur — uz)

In the absence of vacuum (py > 0 for k € {1,2}) and if there exists no region of pure phases, i.e.
if both the phase fractions ay, k € {1,2} lie in the open interval (0,1), the vector of unkowns is
expected to belong the physical space:

Q={UecR’ ac(0,1),p>0,ke {1,2}}. (4.1.4)

We assume barotropic pressure laws for each phase py — pi(pr), k € {1, 2} with smooth dependence
on the density, and which satisfy the following natural assumptions for all p; > 0:

pe(pr) >0, prlex) >0, lim pp(p) =0,  lim  pi(py) = +o0. (4.1.5)
pr—0 Pr—>+00
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We define the mapping 7 + Py (7) := prp(7~1) which is the phasic pressure seen as a function of
the specific volume 7 = p~!. In the whole paper, this smooth function is assumed to be strictly

convex:
Py (1) >0, forall 7, >0, ke {1,2}. (4.1.6)

Vi and P; are the so-called interfacial velocity and pressure for which one must provide closure
laws as well as for the relaxation coefficients ©,, and ©,, in the source term S(U). Before turning to
these closure laws, we may state the following important hyperbolicity property satisfied by system
(4.1.2).

Proposition 4.1.1. For every state vector U in Q2 and whatever is the closure for Vi, the convective
part of system (4.1.2) (i.e. system (4.1.2) with S(U) =0 ) admits the following real eigenvalues:

Ul(U) :V[, UQ(U) =u; —C1, Jg(U) ZU1+01, O'4(U) = Uy — Ca, O'5(U) :U2+CQ, (417)

c1 =/pi(p1), c2 = \/P5(p2), (4.1.8)

are the speeds of sound in each phase. The system is hyperbolic (i.e. the corresponding family of
right eigenvectors spans R®) if and only if a1 (1 — ay) # 0 and |V; — ug| # cx for both k = 1 and
k = 2. In addition, the fields associated with the eigenvalues {o;},_, - are genuinely non linear.

where

Proof. The proof follows from classical calculations that are left to the reader. O

4.1.1 Classical Closure laws for the pair (V;, P)

Choice of V;: In the existing literature, a classical choice for the interfacial velocity is

_ 5041/)1
Baipr + (1 = B)azp:

Vi =1 -pui+ puz, p . Belo1] (4.1.9)

This choice is driven by several considerations among which a consistency requirement that states
that (uy = ug = VFf = u3 = ug). An other important property which is often required is the
linear degeneracy of the associated field. In the original model introduced by Baer and Nunziato
[3], where a mixture of a dilute and a dominant phase is considered, the interfacial velocity is equal
to the velocity of the dilute phase. This corresponds to taking a constant coefficient g = 1 if phase
1 is the dilute phase (or symmetrically 5 = 0 if phase 2 is dilute). This choice ensures the linear
degenaracy of the field associated with o1 (U) = VF£. In [7], the authors prove that the choice 5 = %
also provides a linearly degenerate field for oq(U). In a recent work [6], the coefficient 8 is driven
by an additional PDE of the form

0B+ Wi(U, B)0,8 = s(8,U), (4.1.10)
while still ensuring the linear degeneracy of the oy (U)-field.
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Choice of Pr: Once the choice for the closure of V; is made in the form (4.1.9), the closure for
the interfacial pressure P; may be derived by energy considerations. Indeed for every pair (V7, Pr)
the following energy equation is satisfied by the smooth solutions of system (4.1.2) with S(U) = 0:

2
Proposition 4.1.2. Denoting Ey, := %5 +ey(7k), the phasic energies, where the function T — ey ()
is such that €}, = —Py, the smooth solutions of the homogeneous part of system (4.1.2) ( i.e.
assuming S(U) = 0) satisfy the equality:
O {Eizl akPkElc} +0, {Zizl ar(prEr +pk(pk))Uk}

(4.1.11)
+(prur — paua — Pr(ur —ug) — Vi(p1 — p2))3xa1 = 0.

Hence, if Pr is chosen according to

Pf = pp1 + (1 — p)p2, (4.1.12)

where p is the same as in the definition (4.1.9) of V7, then the total energy is conserved.

4.1.2 Closure laws for S(U) and stabilization effects

A first physical effect of the source term S(U) is to bring the phasic pressures and velocities towards
an equilibrium by deacreasing the relative pressure between the phases p; — p2 and the relative
velocity u; — ug. One classical choice in the existing literature (see [8]) for the coefficients ©, and
0, is

Q1009
o — 0 4.1.13
P 1(py 4 p2) ( )
0. - L (ap1)(azps) (4.1.14)

b
Ty Q1P1 + Qi2P2

where 7, and 7, are two characteristic times of the pressure and velocity relaxation processes. As
0, > 0 and ©, > 0, the source term acts as a relaxation term which deacreases the relative pressure
p1 — p2 and the relative velocity u; — us.

Another important feature of these relaxation source terms is to come up with a dissipative
effect on the model. Indeed, the following property is satisfied by system (4.1.2):

Proposition 4.1.3. Considering the closure laws (4.1.9)-(4.1.12) for the pair (Vi, Pr), the smooth
solutions of system (4.1.2) satisfy the equality:

2 2
Oy {Z akpkEk} + Oy {Zak(pkEk +pk(pk))uk} =—0,(p1 — p2)2 — O, (u; — uQ)Q, (4.1.15)

k=1 k=1

while the entropy-weak solutions satisfy the inequality

k=1

O {Z akPkEk} + 0, {Zak(PkEk +pk(Pk))uk} < —0,(p1 — p2)® — Ou(ur —uz)?.  (4.1.16)
=1

Hence, the coefficients ©, and ©,, being positive, S(U) dissipates the total energy of the mixture.
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4.1.3 Dissipative correction of the closure laws (V;, P)

In the sequel, we assume a zero source term S(U) = 0, so that the system of interest is homogeneous
and reads

8,U + 0,F(U) + C(U)dya1 =0, z€R, t> 0. (4.1.17)

Among all the dissipative processes that can be added to the model, we explore some dissipative
correction of the classical closure laws for (V7, Pr) that may ensure bounded solutions in the regime
of vanishing phases. We recall the classical pairs

Vi=(1—-pu +pua, P;f=ppr+(1—p)pe, with pel0,1]. (4.1.18)
Such classical pairs (4.1.18) satisfy the Leibniz rule :
p1ur — paug = Pr(ur —u2) + Vi (p1 — p2), (4.1.19)

which actually implies energy conservation across the void fraction’s wave as already seen. We pro-
pose a simple dissipative correction of the pairs (4.1.18) which is achieved introducing the following

symmetric matrix
bD, d
D= ( d D /b ) . (4.1.20)

Here b > 0 stands for some frozen Lagrangian sound speed. Then parameters D,, D, and d are
dimensionless numbers to be prescribed so that the symmetric matrix D is non-negative :

D,>0, D.>0, D,D;—d*>0. (4.1.21)

The interplay between the matrix D and the weight p in (4.1.18) will actually ask for a slightly
strengthened condition introduced on due time. The interfacial pairs we promote then read :

Vr o V[C . d Dﬂ./b Uy — Us
< Py > B ( Py ) +s1gn(8xa)< bD, d ) ( PL— po ), (4.1.22)

-1, if O, >0,
+1, otherwise.

where

sign(—0, ) = { (4.1.23)

The dissipative nature of the proposed interfacial pairs (4.1.22) is revealed by the following
preliminary result.

Lemma 4.1.4. Assuming the non-negative condition (4.1.21) on the symmetric matriz D, the
closure (4.1.22) for the interfacial velocity and pressure decreases the energy in the sense that the
smooth solutions od system (4.1.17) satisfy :

2 2
O {ZakPkEk}+am {Zak(PkEk +pk(Pk))uk} = —(U1—U2,p1 —p2)D ( le :;;22 ) |0zc1| < 0.
k=1 k=1
(4.1.24)

185



Proof. Smooth solutions of system (4.1.17) are easily seen to obey the following balance energy
law for each phase

atakpkEk + 8zak(pkEk +pk(pk))uk + (pkuk — Pruy, — V[pk)amak =0. (4.1.25)

Summing these two equations gives the expected result

O {Ei:l O‘kPkEk} + O {Zizl ar(ppEr + pk(ﬂk))uk}
= —(p1ur — paus — Pr(ur —u2) — Vi(p1 — p2) | Or01
= —((Pf = Pr)(ur —u2) + (VF = Vi)(p1 — p2) ) Oz

= +(b Dy (u1 — uz)? + %(pl — p2)® + 2d(u1 — u2)(p1 *pz)) (53xa1)

Up — U2
= —(uy —ug,p1 —p2)D Oy
(1 2,P1 p2) <p1_p2>|xl|

(4.1.26)
where we have successively used the Leibniz’s rule (4.1.19) verified by the classical pair (Vf, Pf), the
definition (4.1.22) of the modified interfacial closure (V7, Pr) together with the sign of s prescribed

in (4.1.23) so that (s@xal) = —|0za1], and at last the non-negative assumption (4.1.21) on the
matrix D. O

Similar dissipative closure laws for the pair (V;, P;) were proposed in previous works [10, 1, 9].

The correction we introduce here provides a general framework by considering the positive matrix
D.

4.2 An operator splitting method for the Baer-Nunziato model

In this section, we propose a numerical method for approximating the solutions of the homogeneous
system (4.1.17). The main objective is to implement a method which allows a stable extension of
the solution to the regimes of vanishing phases, by taking advantage of the new closure laws intro-
duced in (4.1.22).

We start by writing the fluid transport in the frame of the V;-wave which amounts to shifting
the transport velocities by the quantity V;:

8150[1 = 0,
O (apr) + Oz (appr(ur — Vi) =0, ke {1,2}. (4.2.1)
Oy (arprur) + O (arprur(ur — Vi) + agpr) — Prozag =0,

After solving system (4.2.1), going back to the original frame is done through solving
Orag + Vidyay =0,
at(akpk) + 8x(ozkka1) =0, ke {1, 2} (422)
5‘t(akpkuk) + Bm(akpkuk‘/}) =0.
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One first advantage of this decomposition, is that the void fractions a4 are stationary in the first
step which eases the resolution of (4.2.1) while the last step (4.2.2) can be suitably approximated
even in the regimes of vanishing phases a; — 0 as it is shown in section 4.5. Observe that system
(4.2.1) has similar characteristic features as system (4.1.17). Indeed, the system is still hyperbolic
and the acoustic waves for instance are still genuinely non-linear. The only difference is that the
Vi-wave whose nature depends on the chosen closure law for V7 is replaced here by a standing wave
which is always linearly degenerate.

Actually we do not consider the approximation of system (4.2.1) directly. Inspired by the
Lagrange-projection method for Euler’s equations, we rather operate a further splitting of system
(4.2.1) based on a separate treatment of fast propagation speeds related to the acoustic waves, and
slow propagation speeds linked with the transport by ui —V;. Eventually, this further decomposition
is aimed at designing a large time-step method by treating the acoustic effects with an implicit
scheme while keeping a sensible precision for the appoximation of the material waves by treating
the slow propagation speeds with an explicit scheme. This approach is similar to that studied in
[4]. The decomposition of system (4.2.1) is motivated by the simple calculation

8,5@1 = 0,
O¢(arpr) + pr0z(anur) — (prVr)Ozog + (s, — Vi)O0ppr — agpr0,Vr = 0,
(g pr)Opur, + apOrpi + (Pk — Pr)0zar + (arpr) (ur — Vi)Opur + up {Oroupr, + Opoprug} =0,

=0

which yields the following decomposition:

Lagrange step: propagation of acoustic waves due to pressure and phase fraction disequilibrium:

8tOél = O7
(BN1)  Orarpr + POz (anur) — (prVr)Ozan = 0, ke {1,2}
(g pr)Ogur, + Oupr + (Px — Pr)0z0 = 0.

Projection step: propagation of material waves due to the fluid motion:

8ta1 = 07
(BN 2) Opr + (ux — Vi)Owpr — pr0:Vr =0, ke {1,2}
Opug + (ug, — Vi)O0zuy = 0.

Remap step: going back to the original frame:

O + Vidgay, = 0,
(BN3)  Oulowpr) + Ou(awprVi) =0, ke{1,2}.
Oy (o prur) + Oz (arprurVy) = 0.

Before precisely describing the treatment of each step, let us emphasize a crucial point which
actually led to considering the fluid motion in the frame of V;. In the second step (#Z.4'3), the
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quantities pp and wy evolve independently of ay. This crucial feature clearly allows to consider
vanishing phase fractions ay, since the latter do not influence the updating of p; and uy in this step.
It is also shown in section 4.5 that the treatement of vanishing phase cases in the third step (#.4 3)
is rather easy using an adaptation of the classical upwind scheme. Actually, the main difficulty is
to approximate the solutions of system (#.4"1) while ensuring bounded solutions in the regimes of
small void fractions. To this extent the key tool is the dissipative corrections of the (V7, Pr) closure
laws introduced in section 4.1.3.

Numerical approximation

Let us first introduce some classical notations for the numerical approximation. Let At be the time
step and Ax the space step, which we assume here to be constant for simplicity in the notations.
In the sequel we denote \ = %. The space is partitioned into cells

R= UCj with C; = [z
jEL

.%‘4_%[, Vi €Z,

j—30t

where z; 1 = (j + 3)Az are the cell interfaces. We also denote z; = jAz the center of cell C;.
At the discrete times t" = nAt, the solution is approximated on each cell C; by a constant value
denoted by

n n n n n n T
Uy = ((a1)j7(041P1)j»(Oé1p1u1)j»(azp2)j7(azp2u2)j)

Before giving the precise description of the fractional step method, we state the following result
which summarizes the main properties of the scheme:

Theorem 4.2.1. Under some natural CFL restriction (see (4.3.60), (4.53.61), (4.4.5), (4.4.6) and
(4.5.4)), and a Whitham-like condition (see (4.3.56)), the fractional step numerical scheme pre-
sented in this paper has the following properties:

(i) It preserves the mazimum principle on the phase fractions ay.
(ii) It preserves positive values of the densities py.

(iii) The discretization of the partial masses aypy is conservative.

(iv) The discretization of the total momentum aqpiuy + aepaus is conservative.

(v) The physical quantities (py.)}

phases.

and (uk);-I have finite values even in the regime of vanishing

Proof. The result follows from Propositions 4.3.9, 4.4.1, and 4.5.2 stated in sections 4.3 and 4.4
and 4.5 below as well as Proposition 4.6.3. O

In the following three sections, we describe the fractional-step procedure associated with the
time operator-splitting method in order to calculate the values of the approximate solution at time
vt (U?H) jez from those at time ¢". In section 4.3 we provide an extensive analysis which proves
the existence of bounded approximate solutions for the first step (%.471). Section 4.4 deals with
the material transport step (#.42) and finally, in section 4.5 we consider the last step (Z.4'3).
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4.3 Analysis and numerical treatment of the first step

For regular solutions, the first step (#.4"1) is equivalent to

(9t011 = O,
(BN1)  (arpr)Oemi — ardpuy, — (ug — Vi)dzay = 0, ked{1,2}
(akpr)Orur, + akOupi + (P — Pr)0zou; = 0,
where 7, = p,:l. Dividing the last two equations by aj = ai(z) and "freezing" the densities py

before the time-derivatives to their initial values yields the following system which is still called
(#./1) with little abuse in the notation.

8,5041 = 0’
Oa ) v axak —0
@Byy) (P 0T = Do — (i = Vi) == = 0, ke {1,2}.
Opaig
(pr) " Byur, + Opy, + (px — Pr) a(,):k =0,

With a heuristic argument we can see that in the regimes of small phase fractions «y, the solution
has to ensure small values of uy — V; and py — P in order to remain bounded.

4.3.1 A relaxation approximation

We choose to treat this first step with a relaxation scheme. For this purpose, we introduce the
following relaxation system which relaxes towards (%.471) in the limit € — 0:

Doy =0, (4.3.1)
(1) Oy — Dy, — (ug — Vl)a:;jk =0, (4.3.2)
(pr) By + Oy + (o, — ) azj:’“ =0, (4.3.3)
(pk)oat%? + 0, (ug) + (g — V])azjk = é (Pr(pr) — k) - (4.3.4)

7y is an additional unknown which relaxes towards the actual pressure p; as ¢ — 0 and whose
evolution is governed by the additional partial differential equation (4.3.4). The numbers ar > 0
are two numerical parameters that need to be taken large enough so as to ensure the stability of the
relaxation approximation in the regime of small €. Typically, a; must follow the so-called Whitham
condition:

a? > max (—apk(m)> ,  ke{l,2}, (4.3.5)
(3'Tk

where the max is taken over all the specific volumes 74 = p, ' in the solution of (4.3.1)-(4.3.4). We
refer to [2] and [5] for a related framework.
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Let us now focus on the convective part of this relaxation system which reads:

O =0,
0 83;ak
(pr)"O¢Tie — Opug, — (ur — Vi) o =0,
BN Or ke {1,2}.
( 2 (pr)°Opuk + Oy + () — 111) ak’“ =0, {1,2}
Bmak

(Pk)oat% + 3z(uk) + (uk - V[) o

=0.

Denoting W = («ay, 71, u1, 71, T2, U2, m2) the enlarged vector of unknowns, it is expected to belong
to the phase state

Q={WeR" a; €(0,1),7 >0,k € {1,2}}. (4.3.6)
We are mostly interested in the Riemann problem associated with an initial condition:
N W, ifx <0,
W(z,t =0) = { Wp ifz>0. (4.3.7)

To this end, a first important result concerns the hyperbolicity of (#.471) :

Proposition 4.3.1. For all state vector W in Q,., system (BN"1) has five real eigenvalues which
are —ar/(pr)°, 0, ar/(pr)?, k € {1,2}. The system is hyperbolic (i.e. the corresponding family of
eigenvectors spans the whole space R”) if and only if anae # 0. Moreover, all the characteristic
fields are linearly degenerate.

Proof. The proof is left to the reader. [

We can see that the resonance due to the interaction between the acoustic waves and the Vj-wave
has disappeared, and only the resonance implied by vanishing phases remains. This is due to the
splitting procedure that has separated the fast phenomena from the slow ones. As a consequence,
as long as (ay)r, # 0 and (ag)g # 0 for k € {1, 2}, the solution of the Riemann problem consists in
six constant states separated by five contact discontinuities. The jump relations across each contact
discontinuity are given by the Riemann invariants of the corresponding wave. In the sequel, we
construct this solution and we study its asymptotic behavior as the ratios (a1)r/(a1)r, (@2)r/(a2)r
(or the inverse ratios) go to infinity. Actually, in order for the solution to remain bounded in these
regimes we chose to introduce the announced dissipative corrections to the classical closure laws
(VF.II5).

4.3.2 Dissipative closure laws for (V7,11;)
In order to ensure stable approximations in the regimes of small «y, we seek to construct solutions

to the Riemann problem which are uniformly bounded even for vanishing values of the initial void
fractions (ax)r, and (ag)g-

Q, ={WeR",a; €[0,1],7 >0,k € {1,2}}. (4.3.8)
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In this purpose, we introduce a dissipative correction of the classical interfacial pairs
Vi =1 —pur +puz, I = pm + (1 — p)ma, with p € [0, 1]. (4.3.9)

Dissipation is achieved introducing the following symmetric matrix

D= ( ZD“ dDw/b ) (4.3.10)

Here b > 0 stands for some frozen Lagrangian sound speed, i.e. b has the dimension of a; and
asz, and will be chosen later on. Then parameters D,,, D, and d are dimensionless numbers to be

prescribed for each Riemann data for (@T/_V/l) so that the symmetric matrix D is non-negative :
D,>0, D,>0, D,D.—d?>>0. (4.3.11)

The interplay between the matrix D and the weight p in (4.3.9) will actually ask for a slightly
strengthened condition introduced on due time. The interfacial pairs we promote then read :

Vi _ ([ Vf d D, /b U1 — Usg
(Hz)_(m)“(wu d m—m ) (4.3.12)

where s is the sign of —0,«; in the Riemann solution, namely

_J —L if () < (1),
°T { +1, otherwise. (4.3.13)

Note that the number p in the definition of (V7 II%) is assumed to be constant in both the space
and time variables for each Riemann problem. This is an important property for the determination
of the solution.

Remark 4.3.1. Let us again underline that the proper definition of p and D is to be performed
for each Riemann data. For a given Riemann problem, those coefficients are given real parameters
but whose values depend at least on the given void fractions (1), and (a1)gr. For simplicity in the
notations, such a dependence has been skipped but has to be kept in mind.

The dissipative nature of the proposed interfacial pairs (4.3.12) is revealed by the following
preliminary result.

Property 4.3.2. Assuming the non-negative condition (4.3.11) on the symmetric matriz D, the
closure (4.3.12) for the interfacial velocity and pressure decreases the energy

u2 7T2 —
5t{ > Oszpk(gk + o )} +0; Y (apupmy) = —(Ul — Uz, m —Wz)D( now ) |00 | < 0.

9,2 _
k=1,2 2aj, k=1,2 R
(4.3.14)

Proof. Smooth solutions of system (%.4'1) are easily seen to obey the following balance energy
law for each phase

U2 T
O0¢Cr + Op (cupmy) + (Wkuk —Hyuy — Vﬂk)azoék =0, = Oékpk(?k +-5), k=1,2. (4.3.15)
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Summing these two equations gives the expected result

O Y G A0 Yoy plonurmy) = —(mul — mous — My (uy —ug) — Vi(m — Wz))é’xcn,
k=1,2

= — (105 111 (1 = ) + (Vi = Vi) (1 = m2) ) Do,

Dy
= —|—(b Dy (up —ug)* + T(Tﬁ — m2)% 4+ 2d(uy — ug)(m — 71'2)) (saxoq),
<0
(4.3.16)
where we have successively used the Leibniz’s rule
iU — T2U2 :Hf~(u1 —Ug) +VIC(T1'1 —7'&'2), (4317)

verified by the classical pair (Vf£,II9), the definition (4.3.12) of the modified interfacial closure
(V,IIy) together with the sign of s prescribed in (4.3.13) so that (s@xal) = —|0za1], and at last

the non-negative assumption (4.3.11) on the matrix D. Observe that this inequality also holds
for weak solutions in a convenient sense thanks to the linear degeneracy of all the fields of the

hyperbolic model (ﬂ) O

4.3.3 Jump relations for the Riemann problem

Equipped with these corrected closure laws, we may now provide a careful study of the jump
relations defining the various waves of the Riemann solution. In order to shorten the notations, let
us first set

alf) :=a1(§), sothat (&) =(1—a)(€), (4.3.18)

where £ denotes the usual self-similar variable. Correspondingly, we denote their left and right
traces at the void fraction’s standing wave (i.e. respectively at 0~ and 07) by

a - =a(0)=az, o =a0")=ag. (4.3.19)
It is also convenient to promote Au(§) = (u1 — u2)(§) and An(€) = (m — m2)(§) while denoting
Aut = (uy —ug)(0%), ArnE = (711 — m)(0%). (4.3.20)

The following proposition displays the Riemann invariants of each wave. For the standing wave,
it is convenient to parametrize the associated wave curve by «, with a varying from a~ to a™.
Velocities and pressures along this wave curve are thus functions of the void fraction, a — ug(a)) and
o+ m(a) with @ € [a™,a™] so that by construction, the initial and final values (i.e. respectively
at @ = a~ and a = a™) coincide with the left and right traces of the Riemann solution at the
standing wave :

uk(Of) = uk(of), Wk(oi) = 7rk(of), while Uk(OJr) = uk(a+), 7Tk(0+) = 71'k(04+). (4321)
Proposition 4.3.3. Denoting

Ly = agup + 7, Rp=arur —mr, k=12, (4322)
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the Riemann invariants of the acoustic waves are given by

—a1/(p1)° : ai, T+ a3T, T + a3, ug, T, Li. (4.3.23)
—ay/(p2)° : a1, T +aiT, T+ a3Te, ui, T, Lo (4.3.24)
+as/(p2)? - a1, T +aiT, m 4+ a3T, ui, ™, Ro. (4.3.25)
+a1/(p1)° : a1, T +aiT, T+ a3Te, up, ma, Ri. (4.3.26)

As for the standing wave, we first define the following quantities parametrized by o :

L(a) =«

ur(a) + (1 — a)ug(a), Iz(a) =oam(a)+ (1 —a)m(a), (4.3.27)
Iz(a) = =«

K1 — o)™ Au(a), Ii(a) (1 — a)* Ar(a). (4.3.28)

Then, the jump relations across the standing wave are defined by a set of ODEs: Iy and Is are two
preserved Riemann invariants through the standing wave:

d[l(a) - dIQ(Oé)
da  da
while I3 and 14 solve the 2 x 2 ODE system

% ( ﬁggg ) - ﬁ ( Zg(a)pu dDﬂ/(bg(a)) ) ( ﬁgg; ) a€la”, 0] (43.30)

a \2¢ 1—2u
g(a)_(l_a) L 0=—5E (4.3.31)

and where the initial states Is(a™), I4(a™) are defined from (4.5.21).

=0, a€la,af], (4.3.29)

4.3.4 Boundedness of the solution in the regime of vanishing phases

We may now display sufficient and necessary conditions on the corrected pressure laws for the
boudedness of the solution in the asymptotic regimes of vanishing void fractions. Actually, in the
first place we restrict the study to the case where a; = as = a, since this assumption largely
simplifies the algebraic manipulations.

Proposition 4.3.4. Assume that a1 = as = a and define the lagrangian speed b in the dissipation
matriz D (4.3.10) to be equal to b = a\/Dy//D,. Define from the weight u € [0, 1] in the definition
(4.3.9) of (V[ Fr) :

1 =2pu

=

(4.3.32)

as well as the dimensionless exponents
A =d—s0—/DyD,+0%2 Ay =d—s0++/D,D,+ 02 (4.3.33)

The solution of the Riemann problem (ﬂ)—@g 7) remains bounded in the regime of vanishing
phases if and only if the following two functions hy, 1/h_ of (a™,a™) € (0,1) x (0,1) remain
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bounded as a~ /o™, (1 —a™)/(1 —a™) (or the inverse ratios) go to infinity

TNsAr—p ] — P\ —sAy+p—1
h+(0l_70[+): (ai) : ( - ) ' ’

a~ 1—a

(4.3.34)

1 ( n _) (a+)—SA—+#(1 _ a+)+sA_—,u+1
— a = — .
b) 1 _ ai

«

h_

Assume the following compatibility condition in between i, the coefficients of the dissipation matrix
D and the sign s in (4.3.13)
D,D, —d* +2s6d > 0, (4.3.35)

then
AT <0<AT, (4.3.36)

and hy(a~,a™) and 1/h_(a™, ™) are uniformly bounded as o~ and o run in (0,1) provided that
the two exponents AT and A~ verify

a” =0 at =0 a —1 at —1
a” =0 [ A" <—p AT >1—pu
at =0 At >p | A~ <—(1—p)
a” —1 At >p | A~ <—(1—p)
at =1 [ A~ <—p AT >1—p

Let us then briefly comment on the proposed table. Its main diagonal, starting from the upper
left corner to the bottom right one, gives the leading condition on one of the exponents A* : A~ has
to be sufficiently negative or A™ has to be sufficiently positive, depending on the weight yu. Observe
that compatibility requirement (4.3.35) makes relevant the corresponding sign on the exponents A*
since by assumption u belongs to [0,1]. A given diagonal condition on such an exponent is to be
read from the phase vanishing assumption stated in the corresponding row. The associated column
just states the same limiting behavior. If the other traces of the void fractions stay away from 0
and 1, only the condition stated on the main diagonal has to be met. The situation where the
traces a® and aT jump from 0 to 1 is examined in the counter-diagonal of the proposed table. The
corresponding element then asks for a new condition on the second exponent. In such an extreme
case, A~ and AT must be chosen respectively sufficiently negative and positive, depending on the
choice of p in (4.3.9). For example, let us focus on the first row, stating that « vanishes on the left
of the standing wave : o~ — 0 with a™/a™ — co. Since o~ < at, we have s = —1 according to
the definition (4.3.13). Boundedness of the mapping 1/h_(a™,a™) clearly asks for

p+A" <0, 1—p—A">0. (4.3.37)

The second inequality holds true under the compatibility condition (4.3.35) since A_ < 0 while
w € [0,1]. The remaining condition resumes to A~ < —u. Boundedness of hy (o™, a™) requires the
following additional conditions in the limit o™ — 1 :

—p—AT <0, pu—1+AT>0, (4.3.38)

which boils down to AT > 1 — pu as expected. Recall that we ask for strict version of the proposed
inequalities. The three last rows of Table 1, devoted to other phase vanishing regimes, are derived
following similar steps. Details are left to the reader.

194



Remark 4.3.2. We underline that an "if and only if statement” is obtained when changing all
the strict inequalities expressed in Table 1 into large ones. We indeed promote strict inequalities in
these boundedness conditions. As a consequence, both hy (o™, a™) and 1/h_(a™,a™) will be seen to
go to zero in the corresponding phase vanishing regimes. Such an asymptotic behavior is of interest
in the sequel.

From the definition of the exponents A* in (4.3.33), it is easily seen that one’s favorite closure
law for the energy preserving pair (VF, Py) can be corrected, if needed in terms of the underlying
weight p, when choosing d = 0 and a large enough product D, D, > 0. Observe that the choice
d = 0 makes valid the compatibility condition (4.3.35). More precisely, we have the following
remarkable result:

Theorem 4.3.5. Assume d =0, then the two functions hy and 1/h_ defined in Proposition 4.5./
are bounded if and only if the following simple condition holds

DyDy > u(l — p). (4.3.39)

Proof. The proof consists in considering each one of the configurations considered in Table 1
(replacing the strict inequalities by large ones). If a~ — 0 for instance, while o™ remains away
from 1, then we study the condition A~ < —p with A~ =60 —+/D,D, + 62 sinced =0 and s = —1.
This gives 6 + u < /D, D, + 62. Observing that 6 + x4 = 1/2 and raising to the power of two, we
obtain i < D, D, + 6%. Using again the definition of 6, this is equivalent to u(1 — ) < Dy D,. If
in addition ot — 1, one has also to ensure AT > 1 — pu with AT = 0 + /D, D, + 62 since s is still
equal to —1. As 1 — pu— 60 = 1/2, we clearly obtain the same condition p(1 — u) < D, D,. Similar
calculations (while being careful for the sign of s) prove the very same result for all the other cells
of Table 1. O

Thanks to this very simple expression (4.3.39) we may propose a guideline for the determination
of the dissipative correction of the closure laws (V7,1I;). Considering the usual closure laws

_ 504101
Barpr + (1 — B)azps

V= (1= pu + puz, g . Bep), (4.3.40)
that ensure the linear degeneracy of the V;-wave, it appears unnecessary to add a further dissipation
by taking D, D, > 0. Indeed, in the regimes where a; goes to zero or one, this choice of u goes also
to zero or one, which makes condition (4.3.39) to be easily satisfied by simply taking D, = D, =0,
i.e. by taking a zero dissipation matrix D. This observation seems to consolidate the requirement
of a linearly degenerate field for the phase fraction wave.

For the other closure laws, dissipating appears compulsory in order to guarantee the bounded-
ness of the solution. Of course, as u belongs to [0, 1], any constant values of D, and D, larger
than 1/2 suffice. However, it may be judicious to minimize the dissipation since taking non-zero
constant values of (D,,, D) brings an additional dissipation to the Riemann solution even in the
non-problematic regimes where both void fractions «; and s are away from zero. Instead, we
rather recommend the following procedure:

1. Define a tolerance level Ly for the number §(a™, ™) = max (hy(a™,a™),1/h_(a™,a™)).
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2. Define the function D(4) as follows:

0 if 6 < LTola
D((S) = (1 + K)\/ /1,(]. — ,u)(5 — LTol) if§ € [LToh Lo + 1], (4341)

(14 k) (1l —p) if 6§ > Lpo + 1,

where x is a small positive number.

=

3. Take d :==0,b:=a=ay; = as and D, = D := D(6(a™,a™)).

We may now turn to the proof of Proposition 4.3.4. The following preparatory statement asserts

that the Riemann solution for (%.471) is actually bounded as soon as that the relative velocities
and pressures (4.3.20) keep finite values at the standing wave. This Lemma actually holds even for
non-equal values of a; and as.

Lemma 4.3.6. Defining the following Riemann invariants for the extreme waves
Ly = agup,r + 7k, Ri=arurr—mrr, k=1,2. (4.3.42)

The left and right traces at the standing wave of the velocities and the pressures read

1 1 1 1
D S Sy W - A -
Uy = 2{@ (Au azAﬂ' ) a (Au azAﬂ' )+a2(R2+L2)},
uy = 1{ —at (Au+ + iA7r"") +a” (Au_ + iAﬂ'_) + i(RQ + Lg)}
2 2 az a2 a2 ’
7T5 = —agug -I-LQ,
71';' = agu; — Ry,
uy = 1{ -(1- a+)<Au+ - iA’iT-i_) +(1- a_)(Au_ - iA?T_) + i(R1 + L1)}
1 2 a1 a1 ai ’
ul = 1{(1 - oﬁ)(Azﬁ + iA7r+) - (1= of)(Aif + iAwf) + i(Rl + Ll)}
L 79 a ai ax ’
m = —ai1u; + Ly,
71';'_ = alui" - Rl.
(4.3.43)
Proof. See Appendix A. O

The next statement displays the formulae of the relative velocities and pressures Au® and An*
at the standing wave in the simple case where a; = as = a.
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Proposition 4.3.7. Assume a1 = as = a and choose b := a,/g—z in the definition (4.3.10) of the

dissipation matriz D. Define from the Riemann invariants (4.53.42) of the extreme waves
AL=1,—Ly, AR=R;— Rs. (4.3.44)

Then the relative pressures and velocities at the void fraction’s wave are explicitly given by

_ 1 1 1+ w? hy(a—,ay)
Au = o AR+ (14w 00%) - VAL
u 2a(1+mw2){ h_(a_,ay) R+( +w h_(a_,our)w( w)) },
_ 1 1 1—|—w2 h+(0é_,0é+)
Arm = (—F——F— ) 77— A 1-— T T (1 AL
' 2<1+2f8_123w2){ fasan o+ (- s a0 +@)ar)
(4.3.45)
with
1 1 hy(a_,ay)
teer (———— 2 _ DT ) _
At =5 (e O+ eDhasanaL 1 e and w)) AR},
+h7(a,,a+)w ( y St )
1 hy(a_,a
t=o (————— )5 — 2 — B Sl i o0 _
Ar ) (1 hila—,ay) 2){ (L+wHhi(a-, )AL (1+w h_(a_,«a )w(l w))AR}.
+h,(a,,a+)w s At

(4.3.46)

The proof of this claim comes as a corollary of the general case where a; # as and which is
studied thereafter for the sake of completeness. Observe that the proposed formulae clearly highlight
that the boundedness conditions expressed on h4(a™,a™) and 1/h_(a™,a™) in Proposition 4.3.4
are actually necessary and sufficient conditions.

Proposition 4.3.8. Let us introduce the following bounded averages of the lagrangian sound speeds
a1 and as as well as the new lagrangian speed r :

:I:):(liai)_‘_i r==o D,

1
~r + + +
( ) ( ) 1 2, ( 1 9 D7r

(4.3.47)

We also define the dimensionless number

sb
Y VDuD. + 2+ VDuD,

we[-1,1]. (4.3.48)

Then, the relative pressures and velocities at the void fraction’s wave are the solution of the 4 X 4
linear system :

r(1+w)Aut + (1 —w)Art — hy(a™, oﬁ){r(l +w)Au + (1 - w)Aﬂf} =0

m{m ~w)Aut — (Lt WAt} = (r(1 - w)Au” — (1 +w)Ar~) =0
’ (4.3.49)
a(aH)Aut — Art — (Zi(oz‘)Au_ n Aﬂ—) — (R — L1) — (Rs — L),

1 1 1 1
_ + (At + _ - (A -\ - _ - .
Au +a(a JAT (Au +a(a VAT ) o (R1+L1)+a2(R2+LQ).
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The associated determinant may be expressed as a second order polynomial in terms of the free
parameter r > 0 :

i 0 ) )
+{2(1 - a(a+)%(a+)) hy(a™,a™)

+(a<a )é(aﬂ(l —w)? +6<a+)z<a‘)<1 +w)?+2(1+ wz)) m (4.3.50)
+(alah) a1 - w)? +ae) a1 +w) + 201 +w?)) br
+(1 - w?)(aa*) +a@")) (1- Z*EZZR)

Proof. See Appendix A. O

It seems out of reach to prove that this determinant never vanishes whatever are the void
fractions and whatever is the value of the lagrangian sound speed r > 0. Let us first briefly discuss
this issue for close values of the void fraction : o™ —a~| << 1. Despite dissipation is not required
in such cases since both are close to unity, the determinant is seen to be strictly positive since when
at =a” =a with h + (a,a) = 1/h_(a,a) = 1, it resumes to :

2{1 —l—a(a)é(a) ((1 W (14wl 2w2) }r >0, (4.3.51)

as soon as r is strictly positive. Then considering the case of grossly different values of the left and
right void fractions. One first notice that

hy(o,op) (a+)s(A+A‘) (1 _a+)s(A+A_)

h_(a_,at) ~ \a— 1—a~

@
while this ratio gets closer to zero as at and o~ depart from each others. Indeed and according to
the compatibility condition (4.3.35), we have AT — A~ > 0. Hence in the limit a™/a™ — oo (i.e.
at > a~ — 0) with s = —1 according to the definition (4.3.13) and possibly 1 —a™/1 —a~™ — 0
(i.e. a= < at — 1), the estimate (4.3.52) follows. As a consequence, large enough values of r
systematically guarantee the unique solvability of the linear problem (4.3.49) provided that |w| < 1.
Observe that this requirement can be readily achieved from the definition (4.3.48) of w, choosing
positive values of D,,, D,. This explains why we promote strict inequalities in the boundedness
conditions stated in Table 1. Observe that as a side effect, we get a much strengthened version of
(4.3.52) :

<1, (4.3.52)

hy (o, o)

h_(a_,at)
when ratios of void fractions go to infinity, namely when energy dissipation is required. This comes
with the property that when hy (o, a4 )/h_(a_,a™) = O(e) the determinant (4.3.50) reads :

(1- w2)(:1;£oz+) + z(oz)) 2 .

+{ (@)1 - w? +a ) i) +w)? +20+0?) | r (4.3.54)
+(1 - w?) (a™) +aa)

+0(e).
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Hence in case of real roots for this second order equation in r, the sum and product of roots are
respectively negative and positive, so that both real roots must be negative. Since r > 0, the linear
system (4.3.49) turns solvable for a user-free choice of 7.

Of course, the solutions of the linear system (4.3.49) can be given exact formulae. But existence
of products in the form @(a*) x 1(a®) together with @(a®) x (aF) make the resulting expressions
somewhat cumbersome. In practice, we advocate the use of a linear solver to get numerical values for
the relative velocities and pressures under consideration. For completeness, we display in Appendix
A the exact expressions so that the reader can get convinced that these solely involve products by
hi(a_,ay), 1/ha_,ay) and hy(a—,ay)/h_(a_,ay). These formulae are indeed mandatory for
the proof of Proposition 4.3.4. The algebraic situation turns to considerably simplify in the case

*) = a together with 1(a*) =1

a1 = ag = a. As expected, simplicity arises from the identities ala n

so that all the incriminated cumbersome products a(« ) () boil down to 1.

4.3.5 Numerical approximation of the first step

Let us now describe the numerical treatment of the first step resulting from the relaxation Riemann
solver for (#.4'1). Starting from the given data at time ¢": U7, the updated data at the fictive

1
intermediate time ¢"F3: U;L+3 are computed as follows:
1. Take the additional variables (m)7 equal to py ((pr)})-

2. Apply the exact Godunov scheme to the relaxation system (%.4"1) with the initial data

(a1, T, ug, mg) (2,8 = 0) = (al,m,uk,wk) ifx e [xj_%,xﬂ%). (4.3.55)

At this level, as the Riemann problem has to be solved at each interface z; 1 the numerical
parameters aj should be chosen, interface by interface, so as to satisfy Whitham’s condition.
In practice, Whitham’s condition is replaced for simplicity by the following Whitham-like
condition:

ai > max <—g’;’; ((m)7) 7—27];: ((Tk);ql)> , ke{1,2}. (4.3.56)

This condition is less restrictive than the classical Whitham condition stated in (4.3.5) but it
appears that in practice, no instabilities pop up in the scheme.

3. Drop the additional variable m; by taking

1 1 1 1

+1 +1 +1 +1 +1 +\T
U; = ((041)? ()] (aaprn)y 7 (zp2)) T (2paus)) 3) :
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Points (1) to (3) provide the following scheme with non-conservative numerical fluxes at the inter-
faces:

(041)?+% = (1)}, (4.3.57)
(Pr)§ ((Tk)j+% - (Tk);l) - A ((uk)j;% - (uk)j_%) =0, (4.3.58)
(or)} ((uzc);’+l _ (uk)?) + A ((ﬂ'k);r% — (m);%) =0, (4.3.59)

;_% (resp. (uk);_% and (ﬂk)L%

(resp. on the right) of the standing wave in the Riemann problem (see Appendix A for their
formulae).

where (uk)j_+% and (m) ) are the values of uy and 7 on the left

Positivity of the densities and CFL restrictions

Or course, when applying Godunov’s scheme to the relaxation system, one has to restrict the time
step to a classical CFL condition in order for the waves coming from different Riemann problems
not to interact:

Amax max

1
<o 4.3.60
nax max (k)| < 3 (4.3.60)

Another CFL restriction must also be imposed for the densities to remain positive. A suitable
reformulation of (4.3.58) shows that under the following CFL restriction, the densities remain
positive in this first step:

- +
r?éauz)(kgizi);} {1 + A ((uk)j+% (uk)j_%)} > 0. (4.3.61)

The following proposition summarizes the main properties of the above discretization of the first
step:

Proposition 4.3.9. Under Whitham’s condition (4.3.56) and the CFL restrictions (4.3.60) and
(4.8.61), equations (4.3.57)-(4.5.58)-(4.53.59) provide a numerical scheme for the first step (BN 1)
of the splitting method which has the following properties:

(i) It preserves positive values of the densities py > 0.

n+%

n+i
)j ’ J

(1) The updated physical quantities (py
vanishing phases.

and (ug) have finite values even in the regime of

Some important notations

Based on this Riemann solver, let us define some interface values that are needed for the discretiza-
tion of the upcoming steps of the splitting method. In particular interface values of the velocities
(ur — V7) and V7 are needed for steps 2 and 3.
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Definition 4.3.1. If (ax)7,; # ()}, define

—(Olk)? (Uk);__,_% - (Uk)jJr% , if (Uk);_% - (Uk)j+% <0,
(k)1 — (o)} (o)} — (o)}
(ug, — VI);+% = . - (4.3.62)
(g e~ g
(or)fr = ()}

,  otherwise.

) (ak)?ﬂ(uk);:% - (ak)?(uk);_%
(VD)1 = CATRES AL : (4.3.63)

and if (o), = (ax)} these quantities are replaced by their limits as (ag)?, — (i)} — 0.

Observe that there is no ambiguity in the definition of (VI);T 41 and (HI);T 41 depending on
2 2
whether k =1 or k = 2. Indeed, as ajuj + aaus is conserved across the interface (it is an invariant
of the standing wave), one has

(arun)™ + (ou2)™ = (a1u1) ™ + (agug)”
<~ (a1u12r+ - (alul)_ = — S—(a2u2>+ - (OZQU/Q)_)
(qur) T —(a1u1)” _ (eou2)™ —(azus)”
o e - il
with (a1)” = (1)} and (a1)* = (a1)%,,. Hence the two definitions of (VI);T+l coincide.
2

We also define the following downwind-biased values of (ay,)*, (ux)* depending on the sign

of the velocity (up — V)%, 1:
J+ts3
Definition 4.3.2.
(o)fyrs if (ue = V)i, >0,
B = itz 4.3.64
()54 1 { (o)},  otherwise. ’ ( )
* (uk)j—i-%,-{-a Zf (uk - VI);+1 > 07
(Wediny =Y () therwt 2 (4.3.65)
k)jp1,—, otherwise,

and we have the following useful property, whose proof is left to the reader:

Property 4.3.10. With the above definitions of (uy — VI);Jrl, (VI);‘,Jrl and (uk);‘,Jrl , one has
2 2 2

Notice that these downwind-biased interface values (a)%, ; and (uk)J* 1 can be interpreted as
2 2

Jj+
if in the exact Godunov scheme, the interface x; 41 is included or not in the integration domain

depending on whether the fictitious wave of velocity (ug — VI); 41 enters or not into the cell Cj.
2

201



If (ug — VI);‘ 41 > 0 then the interface is included in the integration domain, otherwise it is not.
2

And the same criterion is applied to the interface Ti 1. This unusual manipulation appears to

be crucial for ensuring the conservativity of the method. Observe also that one does not have

(1), 1 + ()%, . = 1since (ug — V)%, . and (uz — V)%, . may have opposite signs. However,
Jts3 itz itz itz

this does not have any impact in the sequel.

4.4 Numerical approximation of the second step

We now consider the numerical treatment of the time evolution corresponding to the second step.
1

Starting from the output data of the first step, U?+37 we want to compute the updated data at

n+%

time ¢"F3: U, *. To this intent, we must discretize the following system:

atal = 07
(%JVQ) Ospr + (uk — V])axpk — pr0: Vi =0, ke {1,2}.
Orug + (ug — Vi)Orup, = 0,
Actually, in order to later impose the conservativity of the global method, we decide to discretize
the equation on pguy rather than the transport equation on ug. Hence, we rather consider the
following equivalent system which is still denoted (Z.4"5) with little abuse in the notation.
atal = 07
(%JVQ) 8tpk + (uk - V])aipk - pkagCV[ =0, ke {1,2}.
Ot (prur) + (ur — Vi)0z(prur) — (prux)0.Vr = 0,
Here (ur, — Vi) = (ux — V1)(z) and V; = Vi (z) are seen as two given velocity fields defined by the
first step and piecewise constant on shifted cells:
(ur = V) (@) = (uk = V)i 1, @ € [25,25401),

Vi(z) = (VI)j,1 T € [T, T41).

This allows to discretize the equation on pp Xy = pi(1,uy) with the first order upwind scheme for
the transport term (ug — V)0, (prXx) and with a centered discretization for the term (prXy)0,Vi:

2 1

()% = (o), (4.4.1)
n42 n+i

(okX1); 5 = (ouXk)] 5 =\ (g — Vi)?

where for all j in Z,

n+i (ﬁka)?Jr3 if (ug, — V])jJrl > 0,
(PrXk), 3 = TR i (4.4.3)
’ (PeXi)jr  if (ur — V)5, <0.
2



Observe that in this step, the evolution of py and wy is absolutely not affected by aj. Hence,
the statistical fractions «j, which are constant through this step, may take very small values
without impinging on the densities or on the time step. This latter must however be restricted to
a CFL condition in order to ensure the positivity of the densities out of this second step as studied
hereunder.

Positivity of the densities and CFL restrictions

Using the fact that (up — VI);+l = (uk)]+1 (Vl);’erl for all j in Z, the updating formula for
2 2
(pk.);.l+§ re-writes as follows:

1

e R Y ((uk —Vi)E 1)+} (o)t
+ {1+ <( i~ (VDj- ) ((Uk - VI);L%)Jr +A ((uk VI ) } (pk)?Jr%

Jr,
+ —/\(Uk—VI]_,_% } n+17

(4.4.4)
where for any real number r, (r); = max(0,7) and (r)— = min(0, r). Introducing the density
B L (= V) A (=05 )
(pk)j = (pk)j

L+ A ((VI);‘»Jr% - (‘/});_%> +A ((Uk - VI);_%)+ +A ((Uk = Vi)iis )
equation (4.4.4) becomes
7&% = A — V) n 3
(pk)] (Uk I)j—% i (pk»’)jfl
—n+1
+ 1+>\((uk—VI);,%>++>\ (uk—VI);Jré)}(Pk)j ’
* ntg
+ —A <(u;€ —Vl)j_,_;)_} (pk)jJrlS'
Hence, under the following double CFL condition, (pk)?+% is positive as a convex combination of
positive densities:
14 ((v,);;% - (V,);;%) +A ((uk - VI);7%)+ A ((uk - V,);;%)f >0, (4.4.5)
14 A ((uk . VI);_%)+ A ((uk - VI);+%>_ > 0. (4.4.6)

The following proposition summarizes the the main properties of the discretization of the second
step:

Proposition 4.4.1. Under the CFL restrictions (4.4.5) and (4.4.6), equations (4.4.1)-(4.4.2) pro-
vide a numerical scheme for the second step (BN 9) of the splitting method which has the following
properties:
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(i) It preserves positive values of the densities py > 0.

n+%

n+t2
)i ° j

(i) The updated physical quantities (px and (ug) have finite values even in the regime of

vanishing phases.

4.5 Numerical approximation of the third step

2
In the third and last step, we compute the evolution from the output data of the second step, [U;-H 5
to the updated data at time ¢"t1: U;»H'l. We recall the equations that need to be discretized:

Oray, + Vidpay, =0,
(BN 3) Ot (arpr) + Oz (arpr Vi) = 0, ke {1,2}.
Or(apprur) + Oz (cpprurVr) =0,

*

Here again, V; = Vi (x) is seen as a given velocity field defined as Vi(z) = (VI)jJr%, T € [T, Tjq1).

For regular solutions, system (#.43) is equivalent to

Oray, + Vi0pap = 0, (4.5.1)
Btpk + 895(ka1) =0, (4.5.2)
Opuy + Vidguy, = 0. (4.5.3)

The numerical scheme we propose for this third step preserves the maximum principle on «j and
ug, k € {1,2} and a conservative discretization of aypr and agprug. In addition we are able to
compute the densities pg, k € {1,2} even in the regimes of vanishing phases. The main idea is to
replace the discretization of ay in (4.5.1) by a discretization of py (4.5.2) when the phase fraction
ay is close to zero. The procedure mainly relies on the following Lemma whose proof is given in
Appendix B.

Lemma 4.5.1. Consider two physical quantities 0 > 0 and © € R such that the vector-valued
quantity [0, 00)] follows the convection equation 0[0,00]+ 0, ([0,00]Vr) = 0. Then under the strict
CFL condition

. 1
max Al(V1)jy 3] < 5, (4.5.4)
the classical upwind scheme
n n+2 n+2 * n+2 *
10,0017 = [0,60] % — A ([e,ee}j+ TVi)s —10,00]7) (v,)‘j_%) (4.5.5)

where for all j in 7Z,
n+2 . *
[970@]7 ? Zf (Vl)j+

0,00]" 75 = ’
! [0,60177F if (Vi):,

(4.5.6)

preserves the positivity of 8 in the following sense

(w €z, 0773 > 0) — (eZ, 07 >0) and Ve, (egf*% >0= 00t > o) ,
(4.5.7)
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and a mazimum principle on O:

(w €z, m<O' < M) — (VjeZ, m< O < M). (4.5.8)

Let us now use this lemma for the discretization of the third step under the strict CFL condition
(4.5.4). The numerical scheme we propose, which guarantees finite values of the physical quantities
pr and ug, is obtained by the following procedure:

1. For the updating of aypr and ayprug, apply Lemma 4.5.1 with 0 = agpr and 00 = agpruy
for k € {1,2}. This preserves the positivity of aypg, k € {1,2} and a maximum principle on
ug, k € {1, 2}

- n+2 n+2 . - . .

2. For the updating of ay, define k such that (ozg)jJr3 < (a375)j+3 (i.e. k is the possibly

vanishing phase) and apply the lemma with 6§ = p;- and #© = azpg. This gives (pE);H'l >0

n+1l (apﬁ);'lJrl

and (aE)j - (pF)‘;L‘Fl .

3. The other phase fraction is obtained by (a; )" = 1 — (az)""" and the other density by

T k/j J
( 7)n+1 _ (‘%—E%—E)?
Pa-k)i = ey pp

The following proposition summarizes the the main properties of the discretization of the third
and last step:

Proposition 4.5.2. Under the CFL restriction (4.5.4), the discretization of the third step (BN 3)
of the splitting method has the following properties:

(i) It preserves the mazimum principle for the phase fractions : 0 < oy, < 1.
(ii) It preserves positive values of the densities pi > 0.
(iii) The discretization of the partial masses agpy is conservative.

(iv) The discretization of the total momentum aqpiu; + aepaus is conservative.

n+1

(v) The updated physical quantities (pi);

and (uk)?Jr1 have finite values even in the regime of
vanishing phases.

4.6 Global conservativity of the scheme

In this section, we prove that the splitting scheme defined above for the three steps (Z.4"1), (B4 2)
and (#.43) provides a conservative discretization of the partial masses aypy, and of the total mo-
mentum agpiu; + agpeus. Actually, as the third step has already a conservative formulation for
these quantities, proving the global conservativity of the method amounts to proving that the com-
bination of the first and second steps is conservative.
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To this aim, we may first give an equivalent formulation of the discretization of the first step
(4.3.58)-(4.3.59) which is consistent with the following formulation at the continuous level:

815041 = 0,
Ot (ouwpr) + peOs(cuy) — (pxVi)Opou, = 0, ke {1,2}.
(e pie)*Opugs + Oy (cupmr) — Oy = 0,

Indeed, the following result holds:

il 1 il
Lemma 4.6.1. FEquations (4.3.58)-(4.3.59) for the updating of (pk);+3 = 1/(Tk>?+3 and (uk)jH_:‘
in the first step are equivalent to

+3 n n+i * * * *
(arp)] ™ = ()} = A ()] (@), ()], = ()] (), )
n+g * m
X )V (@) = @) L viy: 50 (4.6.1)
n+g * n n ’
+ A (pk)j,f(vf)j,l ((ak)j - (ak)j—l) ]l(uk—VI)’f ; <0-
2 2 i—z
n n—i—,l n —
(arpr)y ((we); ™ = @)y) = = A ((awmo),, = (wm)]_, ) (4.6.2)

where (uy, — VI);+%, (VI);T+%, (ozk);r%, (uk);+% are given in definitions 4.3.1 and 4.3.2.

Proof. See appendix C. O

In the same way, we may give an equivalent discrete formulation of the second step which is
consistent with the following formulation at the continuous level:

8,5041 = 07
O (cpr) + (opur)Ozpr — 0z (P Vi) = 0, ke {1,2}.
O(cuprug) + (agug) 0z (pruk) — a0z (prur Vi) = 0.

We have the following lemma:

2 2
Lemma 4.6.2. Fquation (4.4.2) for the updating of (kak);HB = (pg, pkuk);H?’ in the second step
is equivalent to

n4+2 nt+l n+l ntl
(akkak)j+3 = (akkak)j+3 A ()7 (ue) s ((Pka)j:%i - (kak)j+3)
—A (ak);,%(uk);ié (P Xk) T3 (kak);Lj%) (4.6.3)
n nt3 * n+3 *
+A ()] ((Pka)j+§ (Vi)js — (kak)j_g(VI)j_%) ;

where for j € Z, (VI);+%, (ak);+% and (uk);+% are given in definitions 4.3.1 and 4.5.2.

Proof. See appendix C. O
We are now able to prove the following crucial result:
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Proposition 4.6.3. The combination of the first and second steps (4.3.58)-(4.3.59) and (4.4.2) pro-

vides a conservative discretization of the partial masses agpr and of the total momentum aqpruy +
2

Qo pauy from t™ to t"Fs.

Proof. Considering firstly the discretization of the partial masses aypy, the combination of the
second (see (4.6.3)) and first (see 4.6.1)) steps gives

n+3 ntg * * * *
(anpr);* = (awpr)f = A (pn); ((ak)j+%(uk)j+% - (“’f)j—%(“k)j—%)
n+3 * n n
+ A (Pk)j+§ (VI)jJr% ((ak)j+1 - (ak)j) ]I(Uk*VI);+1 >0

1
Eliminating the terms (pk) nth (ak)j+ (Uk);+; and (,ok);H_ 3 (ak);,i (Uk);,i and factoring the terms
2 2 2

(Pk) (VI)j+1 and (pk) (V]) 1 one gets

(cwpr); ™0 = (awpr)y = A ((akrf Lo ),y — (o) <pk>j L) %)
+ A ()T jl (VI)]+1 ()} + (@)1 — (@)]) Leu— vi);, >0
- A (Pk);jg(vl);,% ()} = ((an)} = ()F—1) Luy— Vi)s ;<0

Now as by Definition 4.3.2, we have (ay)* il = (o) + ((ozk)}l+1 (o)} ) Ly Vi), >0 and

(ak);_% = (ar)? = ((w)} — (ar)} 1) L(u,—vy)= , <o, this re-writes in the conservative form
2

2

n+3 n * ntyg * * nt3 *
(arpr); ° = (arpr)] — A ((ak)j+%(pk)j+% (ur = VD)7 — (aw)i_y (pr); 3 (uk = Vi)j_%) .
(4.6.4)

Let us now turn to the discretization of the partial momentums ayprur. According to the
reformulation of the second step (4.6.3) we have:

(anprun)] ™ = (anprae); T =X (@)z,y )y (o) T = (o)
AkPrUk); ° = (QkPEUE); AN LUk ) L \PRUE) ;1 — \PRUE) )
A (an)i_y () (o)™ = (prun) ) (4.6.5)
n nt3 * n+3 *
A () (o) 17 VD)2, = (o) V)L ).



1
Using the expression of (akpk)?+3 given in (4.6.1), we have

1 1

3 )"""%

= (cnpr)) ? (ur)]
= (o) ) =M o)y ) (o), )7y — ()i ()7 )

M) @) E V) (@)~ (@0)F) Lviy: , 606.6)

FAG) T )] Vs (@0 = (@)3-1) Lvi:

(O‘kpkuk)?

1
2

1
As in the second step, (uk)j_tf is upwind-biased with respect to (ux — VI);‘+1, we may replace
2 2
1 n 1 n 1 . . .
(uk) 3 by (ug)” +13 in the second line of (4.6.6) and (uk)j+3 by (uk)]jf in the third line of
2
(4.6.6). Moreover, according to equation (4.6.2) of Lemma 4.6.1, we get

1

(arprur)] " = (awprun)j —X ((awk) +3 (akﬁk)j_%)
A (@) )y — )y (0,
+A(pkwc)]+1 V) 4y (@) fer = (@)F) Lu—viys >0

2

+)\<Pkuk) 3 (VI)J_% ((er)? = (o)1) Lu—vny:_, <o-

2

1 1
Casting this expression of (akpkuk)?+3 in (4.6.5) and eliminating the terms (pkuk);-H_ (ozk)J+ (u );‘,Jrl
2

+3 (00 ) * :
and (pkuk)? 3 (ak)j;% (Uk)j,%7 we obtain:

2

* * +
’ — (k)7 s (we);_ s (prue) ]

(S
(S

)

n * * n+
= (akprur)] —A (ak>j+l(uk)J+ (prur) ; j+

ity O‘W’“ %)
2 (ar)y (<pkuk> <v1>j+% = (o) P V7))
JF)\(PkUk)]Jrl (VI)j+1 ()71 = (r)}) Ly — Vi)',
"’)‘(Pkuk)j_% (V);_s (o)

(%Pkuk)?

—A (Oékﬂ'k)

2

— (o)1) ﬂ(uk—vnglsw
I=3

(4.6.7)
Again, using the downwind definitions of (ay)* P and (ag)* a1 We get:

2

- n . nt3 . . n+}
(wprur); = (arprur)f  —A((@r)f s (we = V)T (orun) ;7 — (aw) 7o (uy = VI)j,%(Pkuk)j_%>

-\ (akﬂ'k)Jrl (Oékﬂ'k);__%)-

(4.6.8)
Summing this last equation over k = 1,2 yields a conservative discretization of the total mo-
mentum since Y, (k)" = >,y o(axm)T by the conservation of the Riemann invariant
> k1 o(0xmy) across the standing wave in the first step. O
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4.7 Extension of the scheme to the model with energies

Although we provide some numerical illustration in the following section, the extension of the
scheme to the full model with energies has not been written yet. We refer to section 3.7 of chapter
3 for a similar extension.

4.8 Numerical applications

4.8.1 The isentropic case

In this section, we present a Riemann-type test-case on which the performances of the splitting
scheme are tested. The phasic equations of state are given by the following ideal gas pressure laws:

p1(p1) = k1p]*, with k; =1 and 91 = 3, (48.1)
pa(p2) = Kopy?, with ke =1 and o = 1.5. e

We consider the following initial data, where U = (a1, p1,u1, p2,u2)? denotes the state vector
in non-conservative variables.

Ur, = (0.1,0.85,0.4609513139, 0.96, 0.0839315299) ifx <0,
Ur = (0.6,1.2520240113,0.7170741165, 0.2505659851, —0.3764790609) ifz>0,
for which the exact solution is composed of a {u; — ¢;}-shock wave, followed by a {us — ca}-

rarefaction wave, followed by a wug-contact discontinuity, followed by a {us + ¢o}-shock and finally
followed by a {u; + ¢; }-rarefaction wave (see Figure 4.1). The intermediate states are given by:

Uy = (0.1,1.,0.2,0.96, 0.0839315299),

U = (0.1,1.,0.2,0.8,0.3),

Us = (0.6,1.0016192090, 0.2833602765, 0.5011319701, 0.3),

Uy = (0.6,1.0016192090, 0.2833602765, 0.2505659851, —0.3764790609).

In Figure 4.1, the approximate solution computed with the splitting scheme is compared with
both the exact solution and the approximate solution obtained with Rusanov’s scheme ( see [7]).
The results show that unlike Rusanov’s scheme, the splitting method correctly captures the inter-
mediate states even for this rather coarse mesh of 100 cells. This coarse mesh is a typical example
of an industrial mesh, reduced to one direction, since 100 cells in 1D correspond to a 10%-cell mesh
in 3D. It appears that the contact discontinuity is captured more sharply by the splitting method
than by Rusanov’s scheme for which the numerical diffusion is larger. We can also see that for the
phase 1 variables, there are no oscillations as one can see for Rusanov’s scheme: the curves are
monotone between the intermediate states. As for phase 2, the intermediate states are captured
by the splitting method while with Rusanov’s scheme, this weak level of refinement is clearly not
enough to capture any intermediate state. These observations assess that, for the same level of
refinement, the splitting method is more accurate than Rusanov’s scheme.

209



A mesh refinement process has also been implemented in order to check numerically the con-
vergence of the method, as well as it’s performances in terms of CPU-time cost. For this purpose,
we compute the discrete L'-error between the approximate solution and the exact one at the final
time T, normalized by the discrete L'-norm of the exact solution:

Ecellsj |()O;L — Pex (‘rﬁ T)|AJZ

E Am‘ = ’
( ) Zce]lsj |906I (xj, T)‘Agj

(4.8.2)

where @ is any of the conservative variables (ay, aqp1, @1p1u1, Qope, agpaus). The calculations
have been implemented on several meshes composed of 100 x 2™ cells with n = 0,1, .., 10 (knowing
that the domain size is L = 1). In Figure 4.2, the error E(Ax) at the final time T' = 0.14, is plotted
against Az in a log —log scale. Only the error on the phase fraction a; converges towards zero with
the expected order of Az'/2, while the other variables seem to converge with a higher rate. However,
Az'/? is only an asymptotic order of convergence, and in this particular case, one would have to im-
plement the calculation on much more refined meshes in order to reach the expected order of Axz'/2.

Figure 4.2 also displays the error on the conservative variables with respect to the CPU-time of
the calculation expressed in seconds. Each point of the plot corresponds to one single calculation
for a given mesh size (going from 400 to 102400 cells for the relaxation scheme and from 800 to
102400 cells for Rusanov’s scheme). One can see that, for all the variables, if one prescribes a given
level of the error, the computational cost of Rusanov’s scheme is significantly higher than that of
the splitting method.

4.8.2 Complete model with energies

In this section, we present the Riemann test-case for the complete model with energies, which is
considered in [11]. The two phases follow two ideal gas equations of state with 3 = v = 1.4.
Denoting U = (aq, p1,u1,Pp1, p2, U2, p2) the initial data is given by

U, =(0.2,0.2,0,0.3,1.0,0,1.0)  if z <0,
Ur = (0.7,1.0,0,1.0,1.0,0,1.0)  if z > 0.

The computation has been implemented on a coarse mesh of 200 cells and a more refined one of
10° cells. The results are presented in Figure 4.3. We observe a rather good behavior on the
coarse mesh. Moreover, although the exact solution is not represented here, the scheme seems to
be convergent as the space step tends to zero (with a constant CFL).
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Appendix A: Proofs related to the first step (section 4.3)

Proof of Proposition 4.3.3

Solving the jump relations at the void fraction’s wave is conveniently performed recasting the PDEs
in (#.41) under the following equivalent form :

Orauy, =0, ke {1,2},
(arpr)°0; (wk + a%Tk) =0,
(arpr) Opuy, + 0y (%m) — Proyap, =0,
(arpr)0 75 + Oy (akuk) —Vi0zar =0.

2
k

(4.8.3)

Expressing these PDEs in the self-similar variable £ = x/t, the non trivial jump conditions at the
standing wave, formally expressed in differential form, clearly resume to the following four equations

(aur)e = Vi(€) (ar)e =0, ke {12},
{ (a:w:)é - Pi(g) (a:)i —0, (4.8.4)

where the notation ( )¢ classically stands for the differentiation with respect to the self-similar
variable £&. Summing the velocity equations and the pressure ones respectively gives

(au1 +(1- (;u)ug),§ =0,
(0471'1 +(1- oz)m) . =0,

)

(4.8.5)

and yields the two Riemann invariants stated in (4.3.29). To exhibit the last two non trivial jump
conditions, let us re-express (4.8.4) as follows

{ ar(§) (uk)e + (uk = Vi)(€) (k) =0, ke{l,2}, (4.8.6)
ak(&) (mr) ¢ + (e — Pr)(§) (ar),e =0.
At this stage, it is convenient to re-parametrize the wave curves under consideration by « with

a € (a™,at) so as to arrive at the following EDOs :

Ul,a(a) + é (u1 = Vi)(a) =0, UQ’Q(CV) 7 ia

(uz = Vi)(a) =0,

(4.8.7)
1 1
T1ala) + 5(771 —Pr)(a) =0, ma(e)— T-a (m2 — Pr)(a) =0.
Here and by construction, the initial and final values (i.e. respectively at @« = o~ and o = a™)
coincide with the left and right traces of the Riemann solution at the standing wave as already stated
in (4.3.21). To shorten the notations, we will skip from now on the dependence on the parameter
« unless otherwise needed. Subtracting respectively the velocity equations and the pressure ones

while plugging the definition (4.3.12) of the interfacial pair (Vr, Pr) yield :

v l1—p 1 1
A = — Au—s(—+—)(dAu+ D, A =
u}a—&—(a 1—a) u s(a + 1_@)(d u+ Dy 7T/b> 0,

(4.8.8)

1—p W 1 1 B
A'/T,oé + (T — m)AT( — S(a + 1*)([) DUAU + dA?T) = O,
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where for convenience, we recall that Au = u; —us and Am = m; — 5. Invoking the definition of I3
and I, defined in (4.3.28), the ODEs (4.8.8) can be seen to recast equivalently in the form (4.3.30).
This concludes the proof.

Proof of Lemma 4.3.6

Let us start from the two Riemann invariants stated in (4.3.29)

atuf + (1—at)ug =a"uy +(1—-a")

Usg ,
atr +(1—at)ry =a~m + (1—a )my, (4.8.9)

which we rewrite as
atAut +uf = a"Au” +uy,
atArt + 75 =a " An™ 475 .

(4.8.10)
Then invoking the Riemann invariants for phase two in the corresponding two extreme waves :
Ty, = —aguy + Lo, 7 = asuj — Ry, (4.8.11)
allows to infer the following identities
uy —uy; = —atAut +a"Au.

1
ug +uy; = —(—a+A7r++a_A7T_+R2+L2).

ag

(4.8.12)

These are easily seen to give the expected traces uzi in terms of the jumps Au* and An*. Similar
calculations but promoting ui in place of uF from (4.3.29) to (4.8.10) yield

uf —ul = (1—at)Aut — (1 —a")Au",

1
ul +uy = a—l((l —aNArt —(1—a )A7n™ + Ry + Ll).

(4.8.13)

Details are left to the reader.

Proof of Proposition 4.3.8

The shape of the differential system (4.3.30), stated in Proposition 4.3.3, suggests to advocate the

new parameter § = log (a/ (1 —a)) so as to re-express (4.3.30) according to

( ﬁggg ),B =5 AB) < 2% ) A= ( Z”‘)ﬁ bD,, 2—2% Dnlt ) (4.8.14)

where the notation ( ) g stands for the differentiation with respect to 5. A straightforward analysis
of the eigenstructure of the matrix A(S) reveals under the non-negative assumption (4.3.11) on the
dissipative matrix D the existence of two constant real eigenvalues with opposite signs :

A\.=d—+/Dy,D, <0< X =d+/DyD,, (4.8.15)
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respectively associated to the (S-weighted) characteristic variables :
k- (8) =7 I3(8) = 7 14(B), r4(B) =71 () + e 14(B). (4.8.16)

with r = b,/ %. In these variables, direct calculations show that the non-homogenous ODE model

(4.3.30) actually takes the form of a constant coefficient ODE system (recall that s? = 1)

K _ Koy [ A —sO SO
(=) —a(e). a=(%" %) e

)

The characteristic polynomial of the underlying linear system B reads
P(A) = A% = 2(d — s6)A — { D, Dy — d* + 2504} (4.8.18)

and always ensures the existence of the following two real eigenvalues

A =d—5s0—/DyDy+62, Ap=d—3s0+/D,Dy+62, (4.8.19)

which we have already introduced in the main statement of this section, namely Theorem 4.3.4.
Under the compatibility condition (4.3.35) which we recall for convenience

D, D, —d? +2s6d > 0, (4.8.20)

the shape (4.8.18) of the polynomial P(A) asserts that the eigenvalues under consideration have
opposite sign, with

A~ <0< A% (4.8.21)
Their associated left eigenvectors respectively reads L™ = (—w, 1) and LT = (1,w) withw € (—1,1)
defined in (4.3.48), so that the diagonal form of the ODE system (4.8.17) is

(Zt >,ﬁ:‘9(3+ OL)(Zf) (4.8.22)

with ny = k4 +wk_, and n— = —wky + K_. We thus get once integrated in the S-parameter but
expressed in the a-variable :

mee) = ()" (122) " meen) et = (22) (B2)™ e,
(4.8.23)

To further proceed, let us observe from the characteristic variables x4 in (4.8.16) but re-expressed
in the a-parameter and developed according to the definition (4.3.28) of I3 and Iy :

ke(a) =7 at(l— o)l *Au(a) + {(L)_zeal_“(l — a)“}Aﬂ'(oz)

11—«

=ak(l— a)I*“{r Au+ AW}(@), (4.8.24)

since 20 = (1 — 2u). Hence, the variables n* in the linear system (4.8.22) just recast in terms of
the a-variable as

ni(a) =a*(1—a) " (14+w)r Au+ (1 —w)Arp(a),

IR o i (4.8.25)
n—(a) ak(1—a) (1 —-w)r Au— (1 +w)Ar ().
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The jump formulae (4.8.23) together with the identities (4.3.21) linking the initial and final values,
respectively at a~ and o, with the left and right traces of the Riemann solution at the standing
wave yield the expected definition of h_(a™,a™) and hy(a™,a™) :

N\ SA+—n +\ H—1=sAy
— « 11—«
th(a 7a+) - <a7> (17047) )

B ot SA_—p ot p—1—sA_
o = () ()

The developed form of the solutions (4.8.23) just give the first two equations of the linear system
(4.3.49). The last two equations can be derived as follows. Let us first rewrite the Riemann
invariants (4.3.42) for the extreme waves of phase 1 according to

(4.8.26)

aAu” + AT 4 (a1 uy +75) =Ly, aiAut — Ant 4 (a1 uf — 1) = Ry. (4.8.27)
Using the corresponding Riemann invariants for phase 2
7y = —aguy + Lo, 75 = asuy — Ro, (4.8.28)
we get
(a1 —ag)uy = Ly — Ly —a;Au™ — An~, (a1 — a2)ui = Ry — Ry — a; Aut + Ant. (4.8.29)
Then we recast the two invariants (4.3.29) at the standing wave as follows
atAut +uy =a Au” +uy, oAt +af =a ArT 475 (4.8.30)
Multiplying the above first equation by (a; — as) and plugging the identities (4.8.29) give the third
equation in the linear system (4.3.49) :

{(1 —aT)a; + Oé+a2}A’LL+ — At = {(1 —a)ar + OL7QQ}AU7 +An” +AR— AL, (4.8.31)

where we have set AR = Ry — Re and AL = L1 — Lo. The last equation of (4.3.49) is obtained
multiplying the Riemann invariants (4.8.28) by (a; — a2) while again using (4.8.29) :

{a+a1(1—a+)a2}A7r+—a1a2Au+ = {a_al—‘r(l—a_)az}Aﬂ'_—l—alagAU_—GQ(R1+L1)+661(R2+L2).
For the calculation of the determinant, let us define

1 1
Gr=E - L)~ B2~ La), Go=—(BitLo)+ ~(Ra+La), (4.8.32)
and
B 1
~ a(a~) +a(at)’
Then expressing the relative velocities in terms of the relative pressures from the last two equations
in (4.3.49) writes

(4.8.33)

Au~ = —c{gl +a(a)Gs + (1 +a(a+>%(a*))m* +(1 —6(a+)2(a*))m+},
(4.8.34)

~

At = +¢{6 ~a(a7)G> + (1 ~a(a7) 2 (a7 ) AT + (14 d(a7) (o) Ar* }
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Plugging these identities in the first two equations yields the following 2 x 2 linear system for the
relative pressures :

{ e LA (155
where
Ay = —(1=why (o, 0) +7 (1 +w)((1-aa) @) + (1 +ae) i )i (0, ah)
A= (1= w) +7 (1 +w) ((L+aa7) 1) + (1= a@h) L @h)hi (e ah),
Az = (14 w) +7 (1= w) (1 +a0") Ha7) + (1= ae) L 07) iatar ),

)
Agy = —(1+ w) kg + ¢ —w)((l aat)iah) + (1 +a(a—)§(a+))m)7
(4.8.36)
and
By =1 ((14+w)] (1+hi(a,a"))G + (alaMhy(a™,at) - 6(01*))92},
Byi=r((1-w)(1+ m)% + (a(a™) —a(a” )W)QQ}

Computing this 2 x 2 determinant det = A1 As9 — Aoy Ao gives the expected expression after

collecting the terms in powers of r. Using Cramer formulae, we obtain the expression of A7~ and
Art:

(4.8.37)

1
An™ = det (BlAQQ - BgAlg) An™ = @(BgAll - BlAgl). (4838)

The expressions of Au~ and AuT are obtained by plugging theses expressions in (4.8.34). And using
Lemma 4.3.6, we get the expression of all the intermediate states. Observe that all these expressions
are bounded as soon as the two functions hy and 1/h_ are bounded and the determinant is not
close to zero.

Appendix B: Proof of Lemma 4.5.1

Let us re-write the discretization of 8 as follows

9;&1 _ G;HE _\ (97-1+§(V1) +0n+3( Vi)Yt =0T (), — 9’”5(‘/1);4_“%) — (4.8.39)

j+1 il =Y j—3 -1
ot = {1-a (v, - <v1>;:%)}e;‘+§ {0 fer Dot et asao)

where for all j in Z, (V;)*T, = max(0 7(‘/1);_,_1) and (VI);_;
2

= . = min(0, (Vj);+%). As
M35, = V)3Z,) 2 1= AV | = A V)| > 0

by the CFL condition (4.5.4), we have proven (4.5.7). The discretization of 0O re-writes

9n+1@r}+1: "'*‘%@”"‘%

n+3 n+3 *— n-&-% n+§ * n-i-d n-&-3 n+d n+3 *
A(operti vy, ot ey, —ortier vy, —ortierti o, )
(4.8.41)

m
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In order to prove the maximum principle on ©, we distinguish two cases. First, if 9;-”1 = 0,

equation (4.8.40) implies that G;H% = 0 and (VI”‘);+ 9;1:13 = (V¢ )jL 9n+“" = 0 under the strict

CFL condition (4.5.4). Hence, equation (4.8.41) is trivially true Wthh means that @?‘H is not
updated and one has @?H =0, *5 and the maximum principle is staisfied for ©. Now, if 9?“ #0,
dividing equation (4.8.40) by 9;-”'1 yields

g.
— *+ *— J
1= {1 )\ ((VI)],+ (VI)]“)} el +Cjy1+D; s (4.8.42)
0Tl+% en+%
where O, 1 = {fA(vI);;l} Sl > 0and D;_; = {A(v,);jl} =t > 0. Thanks to (4.8.42),
2 h 2 i
one has C’+1 +D,_ 1 < 1.

2
Multiplying equation (4.8.40) by @;L+§ and substracting it from (4.8.41) yields

ort! (@;+1 - @’.”%) - —A(VI);%ef‘% (@“% _ @“%) AV ot} (@f&% _ @f&%) .

J J+1 Jj+1 J J ji—1
(4.8.43)
Dividing by 9;-”1 we get a convexe combination for @7-”1 which proves the maximum principle:
1 n+2 n+2 n+2
ort ={1-cpy - D,y bl 0,00 + D007 (4.8.44)

Appendix C: Proofs related to Section 4.6

Proof of Lemma 4.6.1

We first prove (4.6.1). Multiplying equation (4.3.58) by (7x)7 = 1/(px)}, one gets
()7 = oy {142 (), — ot )}
= =0 1 (), -t )
= o =07 = M ey () - )t
Multiplying by (ak)?Jr% (o)}, this gives

(arpr); T = (o)} = A (o)} (@) (i) y — (), ). (4.8.45)

Now, with the definitions of (ux — V)*

J1 (in 4.3.62), (uk);*,Jrl (in 4.3.65), we have
2

(o) ()7, = (w)?y) = (an)? (( Wiy~ i)
+Huk = Vi)j s ((ak 1= ()7) Tgueviye (4.8.46)
‘|‘ U — V] ((

o)} — (ak)}- 1) L Vi) lgo~
2
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Using (uy — VI);.‘+ = (u)j . —(VD)j, forj € Z and collecting the terms in (uk);TJrl and (uk);k 1
2 2
this re-writes

()} (w7, - <uk>jt%) = () y (an)s ey = )iy (), )
+(VI) é(( )J+1 ( ) )]l(mc Vi)* +§>0 (4847)
+(‘/I) %(( ) (ak)j 1) 1(Uk VI)* %§07
since by Definition 4.3.2, we have (ak);+% = ()74 ((ar) Ty — ()}) Ly Vs, >0 and (ak);i%

(o) — ((ak)? — (@) 1) Lup—vi)- , <o- Replacing in (4.8.45) yields
I72

(anpn); ™ = (anpn)y —Mon)) ™ ((aw): oy (i) y — (an)_y (un);_y)

+3 1) n
"‘)‘(Pk)? 3(Vl)j+% ((ak)j-H (ak) )]l(uk Vi)t 1 >0 (4.8.48)
2
n+g * n
+>\(pk)j 3(‘/1)'_1 ((ak)j - (O‘k)jfl) ]l(uk—VI)*. ; <0-
J—3 i3

1
Since (pk)ﬁr; is upwind-biased with respect to (ux — VI)*erl according to (4.4.3), we have

;
3

(Pk) Ty — Vi)s >0 = (Pk) 1]1(% Vi);, >0

+3 nt3
(r)) " " Ly V)T 4 < (Pk:) -1

Ty —viy-
3 J

150
2

1 1

Hence, in second line of (4.8.48), (p )n+§ can be repaced by (pk)n+f and in the third line of (4.8.48),
2

(pk);H_% can be repaced by (pk) . This concludes the proof of (4.6.1).

nal
Now for (4.6.2), the result is stralghtforward when multiply (4.3.59) by (ak)j+3 = (ax)}. 0

Proof of Lemma 4.6.2

n+2 n++
Multiplying equation (4.4.2) by (ak)j+3 = (ak)j+3 ()%, we obtain

n+42 n+ i n+i n—+1
(npeXi) " = (cwprXa)j * =X ()} (un = Vi3, (<pkxk>j:§ ~ (e Xi); )
n+-=x n 1
(o =V (0] — (X0 F)  (48.49)
2 2
A () o) (V) = )y
Using (ux — VI)j+1 = (uk) (VI) forj € Z and collecting the terms in (uk);% and (uk);%,
this re-writes
nt+g n+3 n * ntg n+3
(arprXi); ° = (arpeXr); —A (o) (uk)7, ((kak)j+%1 — (PeXk),
ey (X)) = (X))
1 n-+ 4+
X (o)} ((oeXe) 17 (V)34 y = (X2 (VD)5
(4.8.50)
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1
Now, by definition of (Ozk);'erl and since (kak)?:f is upwind-biased with respect to (ur — V)
2 2

*
J+3

according to (4.4.3), we get

n n+i n+i * n+i n+i
()] ((Pka)jJrg — (PrXk); 3) = (@)jy 1 L—vn: <o ((Pka)j+§ — (P Xk); 3)
2

. n+i n+i
= (a)}yy ((Pka)j+§ = (P X)), 3>’

and a similar argument gives

n-+
j_

(S

NI ol
SN—

(o)} ((kak);Hr% = (P X) ) = (ak)j_% ((kak)?Jr% - (kak);Lf‘

Replacing in (4.8.50) yields the result.

Acknowledgements. The third author receives a financial support by ANRT through an

EDF-CIFRE contract 529,/2009. The forth author is partially supported by the LRC Manon (Mod-
élisation et Approximation Numérique Orientées pour I’énergie Nucléaire — CEA DM2S/LJLL).

References

(1]

2]

13

4]

15]

[6]

7]

18]

R. Abgrall and R. Saurel. Discrete equations for physical and numerical compressible multi-
phase mixtures. Journal of Computational Physics, 186(2):361-396, 2003.

A. Ambroso, C. Chalons, F. Coquel, and T. Galié. Relaxation and numerical approximation of
a two-fluid two-pressure diphasic model. M2AN Math. Model. Numer. Anal., 43(6):1063-1097,
20009.

M.R. Baer and J.W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation
transition (DDT) in reactive granular materials. International Journal of Multiphase Flow,
12(6):861 — 889, 1986.

C. Chalons, F. Coquel, S. Kokh, and N. Spillane. Large time-step numerical scheme for the
seven-equation model of compressible two-phase flows. Springer Proceedings in Mathematics,
FVCA 6, 2011, 4:225-233, 2011.

F. Coquel, E. Godlewski, and N. Seguin. Relaxation of fluid systems. Math. Models Methods
Appl. Sci., 22(8), 2012.

F. Coquel, J-M. Hérard, K. Saleh, and N. Seguin. A class of two-fluid two-phase flow models.
ATAA paper 2012-3356. https://www.aiaa.org/.

T. Gallouét, J-M. Hérard, and N. Seguin. Numerical modeling of two-phase flows using the
two-fluid two-pressure approach. Math. Models Methods Appl. Sci., 14(5):663-700, 2004.

J-M. Hérard and O. Hurisse. A fractional step method to compute a class of compressible
gas-luiquid flows. Computers & Fluids. An International Journal, 55:57-69, 2012.

218



[9] M. Papin and R. Abgrall. Fermetures entropiques pour les systémes bifluides a sept équations.
Compt. Rendu. Acad. Sci. Mécanique, 333:838-842, 2005.

[10] R. Saurel, S. Gavrilyuk, and F. Renaud. A multiphase model with internal degrees of freedom:
application to shock—bubble interaction. Journal of Fluid Mechanics, 495:283-321, 2003.

[11] D.W. Schwendeman, C.W. Wahle, and A.K. Kapila. The Riemann problem and a high-
resolution Godunov method for a model of compressible two-phase flow. Journal of Com-
putational Physics, 212(2):490 — 526, 2006.

219



Wave structure of the exact Riemann solution
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Appendix A

Convexité de ’entropie
mathématique pour le modéle de
Baer-Nunziato

225



This appendix is devoted to proving the convexity of the mathematical entropy of the Baer-
Nunziato model.

Let us first introduce some notations:

Q=0 = 1 — O, c(u)T = (VI707_PI;_lefaoanVIPI)v
uj = (pr, prtis, prEr), fi(ur)" = (prun, prui /2 + Pr,ur(pr By, + Pr)),
uT = (av au{a (1 - O‘)“;% f(u)T = (av afl (ul)Ta (1 - a)f(UQ)T)'

We now define w = { (a1, az,as) € R® such that a; > 0,a3/a; — a3/(2a}) > 0} and from now on we
assume that u lies in 2 = (0,1) X w X w, which means that the phase fractions ay, the densities py
and the internal energies ey, are positive, for k =1, 2.

The two-velocity two-pressure system can be written as:

opa + 9. f(u) + c(u)d,a = 0. (A.0.1)

Let us introduce the entropy pair (Sk, F)) associated with the system dyug + 9,fx(u) = 0 and
defined by

Sp(up) = —prsr and  Fj(ug) = (Sy,(up))Tf) (uy), (A.0.2)

where sj is the physical entropy of phase k given by the second law of thermodynamics
dek = deSk — pdek.

It is well-known that the mathematical entropy Sy is strictly convex with respect to u; and that
the pair (Sg, F) verifies for smooth solutions

O0:Sk + 0. F), = 0.
We define now the entropy of the two-phase flow:
Definition A.0.1. The mixture entropy for the system (A.0.1) is
S(u) = aSi(ug) + (1 — @)S2(uz), (A.0.3)
and the associated mizture entropy flux

F(u) =aFi(u1) + (1 — a)Fa(ug). (A.0.4)

Observe that this definition does not account for any phenomenon at the interface between the
two phases.

We may now state the following important property of the mixture entropy:

Proposition A.0.1. The mizture entropy S is (non strictly) convez in Q.
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Proof. First, we write S as a function of (a, auy, (1 — a)us):

_ oy (1—a)uy
S(a’ aug, (1 - Q)UQ) = aS; (T) + (]— - Oé)SQ (ﬁ)
Then, the hessian matrix of S has the form
A BT coT
S”(u) =|B éS{/(ul) 0

C 0 ﬁSé’(uz)
with
1 T qn 1 T Qr
A= ! St (ur)u + 1= S (uz)uz,

1 1
B= —aS{’(ul)ul and C = mSél(ug)ug.

Let (a,b”,cT) be vector of R”. Let us check that the hessian S” is positive as soon as S} and Sy
are positive. We have

a
(a, b7, c¢T) 8" (u) [ b | =a?4A+aBTb+aC%c
c
T 1 T qn T 1 T N
+ab' B+ ab SY(u1)b+ac" C+ T a¢ S5 (uz)c.
Using the definitions of A, B and C we obtain
“Y 1
(a,7,cT) §"(n) [ b ] = = (b—auy)” Sy (u)(b — auy)
@
c
o (c+ augz)” S (ug)(c + auy).
This right-hand side is clear nonnegative since S; and S, are strictly convex. O

Let us rapidly study the case of the degeneracy of S”(u). One can easily check that

a
(a,b",cT) S"(n) | b | =0 <= (a,b,c) € span {(1,u;, —uy)}.
c

Finally, we observe that the main key of the proof is the convexity of the phasic mathematical
entropies. Hence, this proof can be immediately extended to the isentropic version of the Baer-

2
Nunziato model, replacing —sj; by the phasic energies Ej = %’“ + er(pk)-
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Appendix B

Un schéma a pas fractionnaires
simple pour le modéle de
Baer-Nunziato
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A SPLITTING METHOD FOR THE ISENTROPIC
BAER-NUNZIATO TWO-PHASE FLOW MODEL!

Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh
Abstract

In the present work, we propose a fractional step method for computing approximate solutions of
the isentropic Baer-Nunziato two-phase flow model. The scheme relies on an operator splitting
method corresponding to a separate treatment of fast propagation phenomena due to the acoustic
waves on the one hand and slow propagation phonomena due to the fluid motion on the other.
The scheme is proved to preserve positive values of the statistical fractions and densities. We also
provide two test-cases that assess the convergence of the method.

Résumé

Nous proposons ici une méthode a pas fractionnaires pour le calcul de solutions approchées pour
la version isentropique du modéle diphasique de Baer-Nunziato. Le schéma s’appuie sur un split-
ting de I'opérateur temporel correspondant & la prise en compte différenciée des phéno-ménes de
propagation rapide dus aux ondes acoustiques et des phénoménes de propagation lente dus aux
ondes matérielles. On prouve que le schéma permet de préserver des valeurs positives pour les
taux statistiques de présence des phases ainsi que pour les densités. Deux cas tests numériques
permettent d’illustrer la convergence de la méthode.

Introduction

The two-fluid approach is useful for a detailed investigation of some patterns occuring in gas-solid
two-phase flows, or alternatively in water-vapour flows such as those encountered in pressurised
water reactors. In the latter framework, a classical situation corresponds to the prediction of the
boiling crisis, where the flow is initially dominated by the liquid phase while the vapour phase
is dilute. Actually, the two-fluid model proposed in [2, 8, 6, 9, 11] is one suitable candidate that
enables the computation of two-phase flows in which few bubbles are statistically present in a liquid
phase. For other approaches relying on different assumptions, see [14, 4]. Several schemes have
already been proposed in the literature in order to build consistent and stable approximations of
the Baer-Nunziato model, among which we may cite those relying on interface Riemann solvers (see
for instance [15, 17, 12, 16]) and other schemes relying on relaxation techniques (see for instance [1]).

1Cette annexe reprend un article accepté pour publication dans la revue ESAIM Proceedings.
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However, one difficulty -among others- that immediately arises when computing approximations
of the Baer-Nunziato model is due to the fact that the convective effects in this non-conservative
model require accurate enough schemes ; otherwise, the numerical approximations provided by
standard solvers seem to be useless, and one reason for that failure is that the mix of "fast" waves
corresponding with acoustic waves and "slow" waves associated with material velocities requires
the development of schemes which should be accurate for quantities governed by either fast or
slow waves. We suggest here a possible way to tackle this difficult problem, which is grounded on
the use of a fractional step method. Before going further on, we recall that this idea has already
been used earlier within the framework of Euler equations (see for instance [3]), but also for the
Baer-Nunziato model (see [5]). Roughly speaking, a two-step algorithem is introduced in order to
account for acoustic waves in the two-phase medium within the first step, while the second step
handles material waves. In order to simplify the presentation, we will restrict in this paper to the
barotropic version of the BN model, but the extension to the standard BN model is straightforward.
Moreover, the numerical treatment of source terms will be disregarded, and we refer to relevant
references for that topic [10].

Actually, the paper is organized as follows. In Section B.1, we present the set of partial differen-
tial equations of the Baer-Nunziato two-phase flow model in the isentropic framework, and we recall
its main mathematical properties. In Section B.2, we propose an operator splitting method for this
model, and we describe the numerical treatment of each step. Finally, Section B.3 is devoted to
the numerical experiments, where two test cases have been implemented with a mesh refinement
procedure that proves the convergence of the method.

B.1 The Baer-Nunziato two-phase flow model and its math-
ematical properties

In the present work, we consider a model formulated in Eulerian coordinates where balance equa-
tions account for the evolution of mass and momentum of each phase. For compressible isentropic
one-dimensional flows there are five unknowns that describe the evolution of the two-phase flow:
the velocities of each phase uy (where k& € {1,2}), the densities of each phase p; and the phase
fractions «y, (knowing that a1 + g = 1). The isentropic version of the model —firstly introduced
by Baer & Nunziato— reads

O +v10za1 = ®p(p1 —p2),

Oi(a1p1) + Oz (1 prur) = 0,

A(arprur) + Ox(rpruf + capr) — prozoan = Oy (uz — uy), (B.1.1)
Or(azpz) + 0z (a2paus) = 0,

Oy (azpaus) + 0y (2pau3 + aaps) — prOyan = Oy (uy — us),

where vy and p; are the interfacial velocity and pressure for which one must provide closure laws
as well as for the relaxation coefficients ©, and ©,. One classical choice in the existing literature
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(see [10]) is

= B.1.2
0= (B.12)

o, — L (ap)(azpz) (B.1.3)

Ty Q1P1 + Q202
where Il has the dimension of a pressure, and 7, and 7, are two characteristic times of the pressure
and velocity relaxation processes. For liquid-vapor applications, where the vapor phase is assumed
to be dilute (we also refer to [2] where one of the phases is dilute), a meaningful choice for the pair

of interfacial velocity and pressure is

(vr,pr) = (u2, p1). (B.1.4)

In this case, the index 1 refers to the liquid phase while the index 2 refers to the vapor phase. We
also assume a barotropic pressure law for each phase py — pr(pr), k € {1,2} that can be deduced
from the complete set of equations of the Baer-Nunziato model when assuming formally a constant
entropy sy for each phase. We only consider a smooth dependence of pi(px) such that pr(pr) > 0,
pi(px) > 0, pil(p) + 24 (pr) > 0, lim py(px) =0, and lim pg(px) = +oo. We denote

pr—0 Pr—+00

U = (a1, a1p1, arprus, azps, azpausz) (B.1.5)
the unknown vector which is expected to belong to the natural physical space

Q= {U = (1, 1 p1, Q1p1ut, Qgpe, apas) € R? 0 < ap < 1,pp > 0,k € {1,2} ;04 + g = 1} )

(B.1.6)
System (B.1.1) takes the following condensed form
U+ 9, F(U)+ CU)0,.U=S(U), ze€R, t>0, (B.1.7)
where
0 U0, 001 O, (p1(p1) — p2(p2))
o1 p1U1 0 0
F(U) = alplu% + 1Py (,01) y C(U)@,UIU = *p18$041 s S(U) = @u(UQ — ul)
Q02U 0 0
a2 pau3 + aapa(p2) —p10z02 Oy (ur — uz)
(B.1.8)

The following proposition holds:

Proposition B.1.1. For every state vector U in §, the convective part of system (B.1.7) admits
the following real eigenvalues:

01(U) =ug, 02(U)=u1 —c1, 03(U) =us+c1, 04(U) =uz —cz, 05(U) =uz+c2, (B.1.9)

c=/Pi(p1),  c2=/ph(p2), (B.1.10)

are the speeds of sound is each phase. The system is hyperbolic (i.e. the corresponding family of
right eigenvectors spans R®) if and only if uy # uy + c1 and up # uy — c1. In addition, the fields
associated with the eigenvalues {o;},_, - are genuinely non linear while the field associated with oy
1s linearly degenerate.

where

Proof. The proof follows from classical calculations that are left to the reader. O
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B.2 A Splitting method for the Baer-Nunziato model

Let us introduce the following operator splitting method for the Baer-Nunziato equations. It con-
sists in separating the wave propagation phenomena according to their respective propagation speed.

The first step corresponds to the propagation of acoustic waves due to pressure and phase
fraction disequilibrium:
8ta1 = 0,
(yl) 8takpk =0, ke {1,2}
v pruy + Opagpy — p1Ozou = 0.

The second step considers the propagation of material waves due to the fluid motion:

Oray + ugdyap = 0,
(F)  Owagpr + Ozagpruy = 0, ke {1,2}

O prug + 8Iakpkui =0.

Finally, the third step takes into account the relaxation terms

Oray = Op(p1 — p2),
(#3)  Oragpr =0, ke {1,2}
O prur, = Oy (ug—k — ug).

Observe that the splitting steps (1) and () are an extension to the two-phase flow model of
the work performed in [3] in the framework of Euler’s equations. In the present work, we focus
on physical configurations for which the characteristic times 7, and 7, of the relaxation terms are
much larger than the simulation time 7. As a consequence, we do not treat this last step (-3) in
the present paper, and we refer to [10] for the numerical treatment of these terms. From this point,
we assume that S(U) = 0.

B.2.1 Numerical approximation

In this section, we use the operator splitting method in order to derive a fractional-step numerical
scheme, the aim being to approximate the weak solutions of a Cauchy problem associated with the
homogeneous part of system (B.1.7):

{ U+ 0, F(U)+C(U)o,U=0, z€R, t>0,

U(z, 0) = Uo(2). (B.2.1)

Let At be the time step and Ax the space step, which we assume here to be constant for simplicity
in the notations. The space is partitioned into cells

R:UC’j with Cj:[xj_%,xj+%[, Vj €7,
jez
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where z;,1 = (j + 3)Axz are the cell interfaces. At the discrete times t" = nAt, the solution of
(B.2.1) is approximated on each cell C; by a constant value denoted by

n n n n n n T
Uy = ((al)ja(alpl)jv(alplul)j,(a2p2)ja(a2p2u2)j)

Before giving the precise description of the fractional step method, we state the following result
which summarizes the main properties of the scheme:

Theorem B.2.1. Under some natural CFL restriction (see (B.2.25) and (B.2.39)), the fractional
step numerical scheme presented in this paper has the following properties:

(i) It preserves the mazimum principle on the phase fractions oy, in the sense that

Vn €N, (0<a27j<1,VjeZ) = (O<a231<1,VjeZ),

(ii) It preserves positive values of the densities in the sense that

Vn €N, (p;;j >0, Vje Z) — (p’,gjl >0, Vje Z),
(i) The discretization of the partial masses aypy is conservative,
(iv) The discretization of the total momentum aqpiuy + agpous s conservative.

Proof. The result follows from Propositions B.2.4 and B.2.5 stated in sections B.2.2 and B.2.3
below. O

In the following two sections, we describe the fractional-step procedure associated with the time
operator -splitting method in order to calculate the values of the approximate solution at time ¢+,
(U}LH) jez from those at time t"”. Section B.2.2 displays the numerical treatment of the Lagrangian
step (.1) while section B.2.3 deals with the material transport step (-#2).

B.2.2 Treatment of the first step

In this section, we consider the numerical treatment of the following set of PDE’s.

8ta1 = O,
(‘Sﬂl) 6t04kpk = Oa
Orau preur, + Opagpr — p10z oy = 0.
One can check that all the eigenvalues of this non conservative system are zero, which implies that

no numerical method relying on the spectral radius of the Jacobian matrix (such as Rusanov’s
scheme) can be applied in the present case. Therefore we choose to treat this first step with a
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relaxation scheme. For this purpose, we introduce the following relaxation system which relaxes
towards (.#1) in the limit £ — 0:

8,5041 = 0, (B.2.2)

atakpk = 07 (B.2.3)

8takpkuk + Opapmy — T 0z = 0, (B24)
1

O prTr + i Oy, — apu2dyon, = gakpk(pk — k). (B.2.5)

7 is an additional unknown which relaxes towards the actual pressure p; as € — 0 and whose
evolution is governed by the additional PDE (B.2.5). The numbers a; > 0 are two numerical
parameters that need to be taken large enough so as to ensure the stability of the relaxation
approximation in the regime of small . Typically, ax must follow the so-called Whitham condition:

a? > max <—p’“(7k)) . k=1,2, (B.2.6)
where the max is taken over all the specific volumes 73 in the solution of (B.2.2)-(B.2.5). We refer
to [1] and [7] for a related framework.

Let us now focus on the convective part of this relaxation system which reads:
8ta1 = 0, (B27
Oraupr, = 0, (B.2.8

(AXR) Orappruy + Opaymy — m0zay, = 0, (B.2.9

)
)
)
Orapprmr + ai@makuk — a%uzamak =0. (B.2.10)
We have the following property on the characteristic fields of the relaxation system.

Proposition B.2.2. For all state vector W = (aq,a1p1,a1p1U1, 01 p171, Qap2, Qg Paliz, Qg PaTs)
such that p1 > 0 and pa > 0, system (A X) has the following eigenvalues:

—QkTk, 0; AT, k S {172}7
where Ty, = p,?l is the specific volume of phase k. Moreover, all the characteristic fields are linearly

degenerate and system (A1) is hyperbolic in the sense that the corresponding family of eigenvectors
spans the whole space R7.

Proof. The proof is left to the reader. O

Thus, the solution of a Riemann problem for (% %) consists in six constant states separated
by five contact discontinuities. The calculation of such a solution is easy since the jump relations
across each contact discontinuity are given by the Riemann invariants of the corresponding wave.
In the following array, we display the Riemann invariants for each wave:

235



Wave’s velocity

Riemann invariants

—a17]1

a1, P1, P2, U2, T2, T1 + aA1U]

—a272

a1, P1, P2, UL, T1, T2 + QU2

0

QiU + QoUsg, 171 + QaTo, U2, T

az72

a1, P1, P2, UL, TT1, T2 — A2U2

a171

a1, P1, P2, U2, T2, T1 — A1U]

And we have the following proposition:

Proposition B.2.3. Let be given two initial states Wy and Wgr such that p1 > 0 and p2 > 0.
Then the Riemann problem for (1) where the initial condition is given by

N Wy, if z<0,
Wo(x) = { WR if >0 (B.2.11)

has a unique solution with positive densities py, for every intermediate state. The states W~ and
W respectively on the left and on the right of the standing wave are given in the Appendix.

Proof. We only sketch the proof. First of all, let us notice that from equations (B.2.7) and
(B.2.8), we deduce that the densities are constant in time d;pr = 0. As pr > 0 at time ¢t = 0, we
get pr > 0 for every time ¢ > 0. The solution is composed of constant states separated by contact
discontinuities:

t
—a2T2,L 0 a27T2 R
[N .
. ’
. ’
[N — + v
S W W TR
o WE N SOwWE e
-
~ \ ’ .
~~ AY 4 ¢’
v
Wi, So s ,’,’ Wgr

Note that the relative order of the acoustic waves (a7 < ag7s or a;7 > as7s ) is of no importance
here since it does not change the values of the intermediate states. The solution is calculated by
solving a linear system of eight equations where the eight unknowns are the values of (aguy)™,
and (agmg)~ evaluated on the left of the standing wave as well as (agug)™, and (agmg) T evaluated
on the right of the standing wave. In order to ease the notation, we define x := (apug) and
yr := (ag7mk). These quantities are linked together through the Riemann invariants of the standing
wave:

yi = pyi, with ¢=ai/af, ( )
yi +yz = v g, ( )
( )

.T1_+582_=$T+$;—.
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Note that (a; , ;) = (air,q;r) since a; only jumps through the standing wave. We get four
additional equations by linking these unknowns with the left and right data zj r, y& 1, and xj g,
yk,r. For example, since uq and m are invariants of the {—asm}-wave, we have 1] + aju; =
mi ; + aiuj ;. Moreover, 1 + ajuy is a Riemann invariant of the {—ay7 }-wave which yields
T +au; = WT,L + aluiL = mi,1 + a1u1,r.. Now, knowing that a1 = oy 1 on the left side of
the standing wave, we multiply this equation by oy 7 and we get y; + a127 = y1,1 + a121,. By
proceeding similarly, we get the three last equations of our system:

Y1 taixy =wyn,L +a1r L, (B.2.16)
Yo a2y =Y2,1 + G221, (B.2.17)
yi — a1zl = y1.r — @121 R, (B.2.18)
Y3 — a2T3 = Y2.r — A2T2 R. (B.2.19)

Then, we can prove (see the Appendix) that up to a nonzero multiplicative constant K, the deter-
minant of this linear system is equal to

_pa (A=) —v)ar
Det = K - ((1 V) 5 1) . (B.2.20)

WE — 1 =0, which is impossible since
(1+¢)1+v)a

1-9)1-¢) _ af +tag
(1+9)(1+v) ay +ay

This determniant vanishes if and only if

(af —ay)* <0.

Hence, the linear system is an invertible Cramer system which yields the existence and uniqueness
of the solution. O

Numerical scheme

Let us now describe the numerical treatment of the first step resulting from the relaxation approx-
imation of (#1). Starting from the given data at time ¢": U}, the updated data at the fictive

intermediate time ¢*: U§ are computed as follows:

1. Define W7 by taking the additional variables ()} equal to px (o} ;).

2. Apply the exact Godunov scheme to the relaxation system (1%) with the initial data W'
At this level, the numerical parameters a; should be chosen, interface by interface, so as to
satisfy Whitham’s condition. In practice, Whitham’s condition is replaced for simplicity by
the following Whitham-like condition:

ok | _n Pk, n
aﬁ>max<87_k(7'k7j),am(7k7j+l) , k=12 (B.2.21)

This condition is less restrictive than the classical Whitham condition stated in (B.2.6) but it
appears that in practice, no instabilities pop up in the scheme. This step yields the updated
value of Wg
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3. Drop the additional variable 7 by taking IU§ = ((041)2.7 (alpl)g, (alplul)g, (agpg)g-, (QQPQUQ)?-).

Points (1) to (3) provide the following finite volume scheme with non conservative numerical fluxes
at the interfaces:

#

ay; = o, (B.2.22)

(opr)’ = (cpr)], (B.2.23)
LAt _

(akpkuk)g. = (akpkuk)j — E ((akﬂ'k)j_i_% — (Ozkﬂ'k)j_%) s (B.2.24)

where (04;671'16)]._4_l (resp. (Oékﬂ'k);,:_l) are the values of (ag7m) on the left (resp. on the right) of
2 2
the standing wave in the Riemann problem defined by W} and W7, ; (see Appendix the for their

formulae). Or course, when applying Godunov’s scheme to the relaxation system, one has to restrict
the time step to a classical CFL condition which reads:

At

max max |(axTy)}| <

B.2.25
Ax jeZ ke{1,2} ( )

5.

We have the following proposition that summarizes the properties of the relaxation numerical
scheme designed for (.#7):

Proposition B.2.4. Under Whitham’s condition (B.2.21) and the CFL restriction (B.2.25), equa-
tions (B.2.22)-(B.2.23)-(B.2.24) provide a numerical scheme for the first step (1) of the splitting
method which has the following properties:

(i) It preserves the mazimum principle for the phase fractions : 0 < ap < 1, on the time step
tm — th,

(ii) It preserves positive values of the densities pr > 0, on the time step t™ — ¥,
(i4i) The discretization of the partial masses aypy is conservative,

(iv) The discretization of the total momentum aqpiuy + aepaus is conservative.

Proof. The only property which is not straightforward is the conservative discretization of the
total momentum. Summing equations (B.2.24) over k yields:

t -
(uprur + agpaug); = (uprur + arprug)} — Ar ((041771 + 042772)j+% — (onm + 042”2);;%) :

As aym; + aams is a Riemann invariant of the standing wave for system (.#1%), we have (a;m +

()[27T2)]._+l = (a1m + 0&271'2);_+l, which preserves the conservative form. O
2 2
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B.2.3 Treatment of the second step

We now consider the numerical treatment of the time evolution corresponding to the second step.
Starting from the output data of the first step, [Ug-, we want to compute the updated data at time
S JUs!

s UFT.

atOél + UanCkl = 0, (B226)
(5”2) atakpk + 8xozkpkuk =0, (B.2.27)
Orap prpug + amakpkui =0. (B.2.28)

Equations (B.2.27) and (B.2.28) can be written in the form of two decoupled systems, each one
corresponding to the material convection of mass and momentum in one of the two phases:
Oragpr + Ozapprur =0,

O pruk + (%ozkpkui =0,
for £ =1 or 2. Each one of these two systems takes the following generic form:

@0 + &cﬁv = 0,

B.2.29
000 + 0,00v = 0, ( )

where O is a vector of R™,n > 1 (here © = u; € R) and 6 is a scalar unknown that is assumed to be
positive (here § = agpy) and for which one has to provide a scheme which preserves its positivity.
Finally, v is a velocity field that is assumed to depend only on the space variable: wv(x) (here
v(x) = ug(th, x)). System (B.2.29) is only weakly hyperbolic, thus the numerical approximation of
such a system is a priori not classical.

A positive scheme for (B.2.29)

In order to easily handle the lack of hyperbolicity, we discretize (B.2.29) with a two-step splitting
operator method motivated by the following calculation:

0,0 + {00,v} + {v0,0} = 0,

B.2.30
{00 + 0,00} © + 0 {90 + v0,0} = 0. ( )
The proposed splitting method consists in solving at first the ODE:
df = 70%1;(1’), (B.2.31)
followed by
040 + 0,0 =0,
16 + v(a) (B.2.32)
0{0:0 4+ v(2)0,0} =0,
which can be re-written as n + 1 decoupled transport equations:
0,0 0,0 =0,
10 +v(z) (B.2.33)

8,00 + v(2)9,00 = 0.
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The objective here is to design a time explicit discretization of (B.2.31)-(B.2.33) which is conserva-
tive for both quantities 8 and #© and which preserves the positivity of § under some natural CFL
restriction. The ODE (B.2.31) is discretized with an implicit scheme as follows:

01/ — ¢

. V;yl —V;_1
J i _ _gl/29%s I3

ot
= 0= J . (B.2.34)

At J A J At
€L 1+*(”Uj+%fvj_%>

Hence, preserving the positivity of 6 in this step amounts to imposing the following CFL-like
condition:

At
L+ 5 (vag vy ) >0, (B.2.35)

As for the second step (B.2.33), it is discretized using the classical first order upwind scheme:

. At .
071 =07 = T (o)™ (08 - 0) + w7 (67 = 6)3)) (B.2.36)
n 1/2 At — (p1/2 1/2 1/2 1/2

(00);" = 0,207 — = ((v;13)™ (6,308, = 0,°0%) + (v;_)* (0)°01 — 6,36 ,)).

(B.2.37)

where for any real value X, we denoted (X)~ = min(0,X) and (X)* = max(0, X). Re-writing
equation (B.2.36) as

At B At ) At
— () O+ (1 + 5 ((vﬁ%) - (uj_%ﬁ)) 0%+ T-(0; )76, (B2.39)

n+1 __
6" = 1

we can see that this second step also preserves positive values of 8 provided the following CFL
condition

1+ % ((vj+%)* - (vj_%)+) > 0. (B.2.39)

Note that this last CFL condition may be more restrictive than (B.2.35).

We can now show that this two-step splitting operation provides a conservative discretization
of (B.2.29). Injecting the result of the first step (B.2.34) in equation (B.2.36), one gets

At At
ntl _ of 1/2 — (/2 1/2 +(al/2  pl/2
o = 6= gt (vt — ) - &, () (B4 - 67) + 0" (67 - 623))
At 1/2 _,1/2 At 1/2 _,1/2
_ 9§—Fm((vj+%)+ej/ + (v41) ejil)+A—I((vj,%)+ej£1+(vj,%) 0/ )

This can be re-written in the following conservative form:

At
+1 i 1/2 1/2
o+ =0 — = ( IRUE J_%ej%) : (B.2.40)
where for all j in Z,
1/2 .
gz )00 vy 20, (B.2.41)
Itz 0]-_/H otherwise.
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Similar calculations lead to

byt = gief - 2L (v430, 0"

12 o
= 0'/2 of %), (B.2.42)

; . —V;_1
JteTi+s ity IT2 -5 d—

where for all j in Z,

S if v,,1 >0,
o, =47 Bl = (B.2.43)
itz 0511 otherwise.

Application to equations (B.2.27) and (B.2.28)

Now, in order to apply this positive scheme to equations (B.2.27) and (B.2.28), one has to define
the values of the interface velocities at the initial time: wuy ;1 = ug (t, xj+%). Concerning phase
number 2, the velocity us is a Riemann invariant of the standing wave in the first step (7). Thus,
a natural choice for uy ;1 is uy = uj the constant value of the velocity of phase 2 across the
standing wave in (-#1). One could also take any other consistent choice for u, ;. 1 as for instance

a convex combination of ug ; and ug j+1 at the end of the first step:

U jpl = Buﬁz,j +(1- ﬁ)ug,jJrl’ B €0,1]. (B.2.44)

As for phase 1, whose velocity is not a Riemann invariant of the standing wave in (.#7), we decide
to take:

s =nub s+ (=)l n €0,1). (B.2.45)
In practice, we take § =n = 1/2.

Finally, with this definition of u, ;, 1 the advection equation on «; is discretized thanks to the
first order upwind scheme:

) At .
af it =al; - <(u2,j+§) (O‘g,j-&-l - O“i,j) + (g 1)" (O‘ﬁm - ag,j—l)) : (B.2.46)

This discretization ensures the maximum principle on «; if the CFL condition (B.2.39) with v = us
is imposed.

We have the following proposition that summarizes the properties of the relaxation numerical

scheme designed for (#):
Proposition B.2.5. Under the CFL restriction (B.2.39), equations (B.2.34)-(B.2.36)-(B.2.37)

applied to each one of the phasic systems (B.2.3) provide a numerical scheme for the second step
(S) of the splitting method which has the following properties:

(i) It preserves the maximum principle for the phase fractions : 0 < ap < 1, on the time step
th — gt

(ii) It preserves positive values of the densities py > 0, on the time step t* — t"+1,
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(iii) The discretization of the partial masses aypy is conservative,

(iv) The discretization of the total momentum aqpius + aepous is conservative.

Proof. The proposition directly follows from the above discussion. O

B.3 Numerical experiments

In this section, we present two test cases in which we compare the approximate solution, computed
with our fractional step numerical scheme, with the exact solution of a Riemann problem. In these
two cases, the phasic equations of state are given by the following ideal gas pressure laws:

= K1p]t, ith k1 =1 and 3, = 3,
p1(p1) 1P}Y W' 1 2! (B.3.1)
p2(p2) = Kapg®, with ke =1 and v, = 1.5.

The solutions are computed on the domain [—0.5, 0.5] of the z-space. For both tests 1 and 2, a mesh
refinement process is implemented in order to numerically check the convergence of the method.
For this purpose, we compute the discrete L'-error between the approximate solution and the exact
one at the final time 7', normalized by the discrete L'-norm of the exact solution:

ZCellsj ‘ujn - Uex(a:j, T)|Agj
Zcellsj |Z’{ex (Ij, T)‘Ax

error(Az) = , (B.3.2)

where U denotes the state vector in non conservative variables:

U= (041,/)1,U17P27U2)'

The calculations have been implemented on several meshes. The coarser mesh is composed of 100
cells and the more refined one contains 200000 cells. The error error(Az) is then plotted against
Ax in a log — log scale.

Notations:

® Ry, (U™ ,UT) stands for a o;-rarefaction wave, i = 2,3,4, 5, connecting the left-hand state U~
to the right-hand state U™.

o S,.(U™,UT) stands for a o;-shock, i = 2,3,4,5, connecting the left-hand state U~ to the
right-hand state U ™.

o Co, (U™ ,UT) stands for a op-contact discontinuity connecting the left-hand state U~ to the
right-hand state U ™.

Finally, a 0;-wave connecting a state Uf; to a state Up followed by a o;-wave connecting Us to Us
will be denoted W, (U1,Uz) — Wy, (Ua,U3), W =R, S,C.
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B.3.1 Test case 1: a contact discontinuity

The first test case is a Riemann problem with only a 01 = us contact discontinuity. In the exact
solution, all the physical quantities are transported with the constant velocity us = 0.1, except us
which is constant. The initial data in non conservative variables is defined as

Ur, = (0.3, 1.,0.2,0.8, 0.1) for x <0, (B 3 3)
Ur = (0.6, 1.0012502584,0.1499375651, 0.6302289018,0.1) for z > 0. e
t
Uz
Uy, ," Ur

> T

Wave structure of the exact Riemann solution

Figure B.1 shows that the moving contact is not exactly captured by our scheme. However, when
the exact solution of a Riemann problem contains a contact discontinuity, the expected order of
convergence in L'-norm is Az'/2 for a first order scheme. In Figure B.1, we can see that our splitting
method provides convergence towards the exact solution with the expected order of Az!/2. Note
that, to our knowledge, there exists no solver that is able to capture exactly a moving contact
discontinuity on coarse meshes, and our scheme compares rather well with other schemes (see [13]).
Nevertheless, the method proposed in [16] exactly captures stationary contacts, i.e. contacts with
U = 0.

The strange behavior of the scheme on the density variable of phase 1 is due to the present choice
of initial conditions on p; in which the left and right values are very close. This makes the jump
more difficult to be captured on this variable, and it is all the more difficult for coarse meshes.
Finally, we would like the reader to be aware that the number of visible points in the figure for the
50000-cell mesh (especially in the contact wave) is not the real one since some points have been
dropped for the clarity of the graph.

B.3.2 Test case 2: a complete case with all the waves
The second test case is a complete case with the contact discontinuity and all the acoustic waves.
The initial data in non conservative variables is set to

Uy, = (0.1,0.85,0.4609513139, 0.96, 0.0839315299) for x <0,

B.3.4
Ur = (0.6,1.2520240113,0.7170741165, 0.2505659851, —0.3764790609) for = > 0. ( )

Observe that this is a hard case to run since the difference between the left and right values of the
phase fraction «; is quite large. The intermediate states (also in non conservative variables) are
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given by:

Uy, = (0.1,1.,0.2,0.96,0.0839315299),

Us = (0.1,1.,0.2,0.8,0.3),

Us = (0.6,1.0016192090, 0.2833602765, 0.5011319701, 0.3),

Uy = (0.6,1.0016192090, 0.2833602765, 0.2505659851, —0.3764790609).

The Riemann solution is a {u; — ¢; }-shock wave from Uy, to U, followed by a {ug — ¢ }-rarefaction
wave from U to Us, followed by a ug-contact discontinuity from Us to Us, followed by a {us + co}-
shock from Us to Uy and finally followed by a {u; + ¢ }-rarefaction wave from Uy to Ug:

Sﬂz(uLvul) — RU4(u17u2) — Cffl (UQaZ/[d) — 805(u37u4) — RO’g(u47uR)‘

Wave structure of the exact Riemann solution

In Figure B.2, we can see that the intermediate states are correctly captured by the method even
for a quite coarse mesh of 100 cells. Figure B.2 also shows that the approximate solution computed
thanks to the splitting method converges towards the exact solution. Only the error on the phase
fraction oy converges towards zero with the expected order of Az'/2, while the other variables seem
to converge with a higher rate. However, the expected order of Az'/? is only an asymptotic order
of convergence, and in this particular case, one would have to implement the calculation on much
more refined meshes in order to recover this expected order Az'/2.

Here again, we warn the reader that the number of visible points in the figure for the 50000-mesh
(especially in the contact wave and in the shocks) is not the real one since some points have been
dropped for the clarity of the graph.

B.4 Conclusion

The explicit scheme presented here provides convergent aproximations of discontinuous solutions
of the barotropic Baer-Nunziato model, while preserving the maximum principle on the values of
the statistical fractions «y and positive values of the densities pi. A sequel of this work consists
in using the same fractional step strategy in order to derive an implicit version of the first step,
and thus to get rid of a rather constraining CFL condition due to the propagation of fast acoustic
waves.
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Appendix: Proof of Proposition B.2.3 and formulae of the in-
termediate states W~ and W+

We prove here that the determinant of the system composed of equations (B.2.12) to (B.2.19) has

the following expression
Det = KL ((190)(11/))(11 _ 1) , (B.4.1)
az \ (1 +¢)(1+v) az

for some constant K # 0. We first ease the notations by denoting the data in the right hand side
part of equations (B.2.16) to (B.2.19) as follows:

A=y +azig, (B.4.2)
B =y + a2wa L, (B.4.3)
C :=y1,r — a171,R, (B.4.4)
D :=ys g — azx2 R. (B.4.5)

We also denote u = x; and v = z]. We express all the other unknowns in terms of v and v in

order to bring this eight equation linear system to a system of two linear equations on u and v. We
note that provided that as # 0, equations (B.2.14), (B.2.15), (B.4.2), (B.4.3), (B.4.4) and (B.4.5)
form an autonomous system that can be solved with respect to u and v and whose solution is

y; = A—aqu, (B.4.6)
vy =C + ayv, (B.4.7)
- B+C+D-A
v = a1;-a2u+ a _ . + ;‘ , (B.4.8)
- A+B+D -
i = =1 G +a2v+ + B+ C, (B.A.9)
2 2 2
— 1 ay 1 al A+B—C—D
= (142 L frp-t2 B.4.10
T2 2( +a2>u+2< a2>v+ 2&2 ’ ( )
1 ay 1 al A+B—C—D
T=c-l1-— - = — _— B.4.11
Ty 2( a2)u 2( +a2>v+ 2, ( )

Denoting X = ay/ay and injecting these expressions in equation (B.2.12) and (B.2.13), we get

AXu@(C+Xv)<:>Xu+¢XUA¢C, (B.4.12)
a2 a az

and

A+B-C-D
+—

ag

- 1+X)u+(1-X)v :w<(1—X)u—(1+X)v+

A+B-C-D
a9 '

A+B—C—D)

ag

= WI-X)+1+X)u+ (X —1—p(1+X)v=1-1v)
(B.4.13)
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Equations (B.4.12) and (B.4.13) form a 2 x 2 linear system whose determinant is

Det = X(X — 1 — (1 + X)) — oX((1 — X) + 1 + X)

=1-p)A-PX* -1+ (1+¥)X (B.4.14)
=(1+¢)1+9)X (mmx - 1) )

which proves the expression of the determinant given in equation (B.2.20). Hence, using Cramer
formulae, we deduce the expressions of u and v:

- (A x _(_gpAtB-C-D

_Det< o (X—1-9(1+X))—(1-1) o goX), (B.4.15)
_ ! A+B-C—-D A-¢C

“Det<X(1¢) p -~ (1/)(1X)+1+X)>, (B.4.16)

which yields z = u, xf = v. The formulae of y; , yfr, Yy y;, x5 and :I:Sr are given in equations

(B.4.6) to (B.4.11).
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Error in L1-norm
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Figure B.1: Test 1: space variations of the physical variables at the final time 7' = 0.3, and L'-norm
of the error for several mesh sizes.
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Appendix C

Un modéle de type Baer-Nunziato
avec fermetures dynamiques des
quantités interfaciales
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Abstract

We introduce a class of two-fluid models that complies with a few theoretical requirements that
include : (i) hyperbolicity of the convective subset, (ii) entropy inequality, (iii) uniqueness of jump
conditions for non-viscous flows. These specifications are necessary in order to compute relevant
approximations of unsteady flow patterns. It is shown that the Baer-Nunziato model belongs to
this class of two-phase flow models, and the main properties of the model are given, before showing
a few numerical experiments.

C.1 Introduction

The Baer-Nunziato model (called BN model afterwards) was introduced in the early eighties in
order to provide a suitable representation of gas-particle granular flows, when compressible effects

1Cette annexe reprend un proceedings du congrés AIAA 2012 .
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cannot be neglected, and more precisely in order to tackle deflagration to detonation transition.
This model has been examined in detail since the early paper [4] ; we must at least mention Kapila
and co-workers ([23, 5, 22] ), Gavrilyuk and Saurel [12], but also Glimm and co-workers [15, 14, 21],
among others (see [24, 25, 28] also). Many papers have been devoted to the numerical simulation
of this model, among which we may point out those by Saurel and Abgrall [30], Gonthier and Pow-
ers [16], Toro [33], Andrianov and Warnecke [3], Lowe [27], Schwendemann et al [31], who proposed
various approximate Riemann solvers, but also Coquel et al 1, 2], who suggested to use relaxation
schemes as a keystone for such a purpose. Some recent computational results can be found in [32]
and [19] for instance.

It was in fact shown in [6, 11] that the BN model is one among a few two-fluid models that
benefit from several essential properties. Actually, noting as usual «y (such that o) + o, = 1), Uy,
Pk, Mk = arpr, B and Py the statistical void fractions, velocities, densities, partial masses, total
energies and pressures respectively (for k = [, v, where | and v subscripts respectively refer to the
liquid and vapour phases), but also:

W = (Oél, my, My, mth vav; OélEl, ava)
and starting from the open set of PDEs, for k = [, v:

O (ar) + ViW) 0y () = (W)

Ot (agpr) + Oz (axprUy) = 0 ; (C.1.1)
Oy (xprUx) + 05 (arprUR) + ardy (Pr) + (Pr — Pi(W))8, (ar) = Dp(W) ; o
6t (OékEk) + 693 (OékUk(Ek + Pk)) + Pi(W)at (Ozk) = T/)k(W) + V]Dk(W) .

where Dy(W) and v, (W) enable to take drag effects and heat transfer into account, authors of
the latter reference introduced three distinct couples (P;(W), V;(W)) which enable to achieve the
following requirements:

e The two-fluid model is hyperbolic without any restriction on the space of physical states (other
than those already existing for single-phase flow models);

e Smooth solutions of the whole set of partial differential equations are governed by a meaningful
entropy inequality;

e Unique jump conditions can be exhibited within each isolated field;

e The model generates smooth solutions that comply with positivity constraints.

The first point is physically relevant, and it is indeed mandatory to compute solutions of a well-
posed initial value problem, when tracking unsteady flow patterns. The second point is not only
desirable from a physical point of view, but it also introduces a nice tool in order to control smooth
but also shock solutions. The third one introduces an important difference with other classical two-
fluid models, for instance those that assume a local instantaneous pressure equilibrium between
phases: actually, this third property will also guarantee that (stable enough) schemes will converge
towards the same solution when refining the mesh, which is of course implicitly assumed by users...
We emphasize that these specifications have also been used in order to model granular flows and
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flows in porous media (see [17, 10, 13]). The BN model is suitable for many water-vapour flows,
for instance for standard computations in the primary circuit of nuclear power reactors, since the
liquid flow is expected to contain a very small amount of vapour bubbles in standard conditions.
It is also relevant for some applications where the vapour phase is dominant and when few liquid
droplets are present in the field. In the first case, the closure laws for the couple (P;(W), V;(W))
should be (P}, U,), and in the second case one should use (P,, U;) reversely.

However, there are some applications where the BN model can hardly be used. This may happen
in at least two distinct configurations:

e when the flow contains different regions in terms of topology at the beginning of the compu-
tation: this may happen in many practical cases;

e when some change occurs in the flow during the time interval which is of interest: this is the
case for instance when heating a liquid flow through a wall boundary (this will correspond to
the so-called boiling crisis in the nuclear safety framework).

These situations have led to the present proposition, which aims at providing a general framework
which:

e complies with the four above-mentionned criteria;

e contains the BN model.

We present in the sequel this general framework [18]. Next we detail the main properties of the two-
fluid model. We eventually discuss a few numerical experiments that illustrate the whole approach.

C.2 Governing set of equations of the two-fluid model

The new framework that is proposed in this paper introduces a non-dimensional scalar variable g
that characterizes the flow regime. This variable is lying in the interval [0, 1]. Setting my = agpk,
the governing set of equations reads:

o (B) + W(W, B)0 (B) = Ts(W, B) ;

O (o, )+V(Wﬁ) () = (W) ;

O (my) + (mkUk) =0; (C.2.1)
3t (miUp) + 0, (mrUZ) + ardy (Pr) + (P — Po(W, 8))0s (i) = Dp(W) ;
Oy (axBy) + 0z (U (Ex + Pr)) + Pi(W, 8)0; (ai) = (W) + V(W) Dy (W) .

for k = I, v, noting Ey, = py(ex(Py, px) +U?/2) the total energy within phase k, and assuming some
relevant equation of state for ey (P, pr). Terms on the right-hand side must follow the standard

rule:
Dk =0 5 Y Di((W)=0 ; Y @u(W)=0. (C22)

k=l,v k=l,v k=lv
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which means that these contributions account for interfacial transfer terms. The derivation of the
governing open equation for oy can be found in [18] ; the reader is also refered to [20] and [12] for
that particular topic. Source terms (W), D (W), ¢, (W) will be detailed in the next section, and
we note here:

V](W) = (Ul + Uv)/Q.
The so-called interface velocity V;(W, 8) will be defined according to:

Viw, B) = u(W, B)Ur + (1 = u(W, B))Us,  with p € [0,1]. (C.23)

A straightforward consequence is that U;(z,t) = Us(x,t) = U implies V;(z,t) = U locally. We will
also assume that the following holds:

Tg(W,8=0) =Ts(W,3=1) =Ts(W,5=1/2) =0,

whatever W would be.

C.2.1 Closure laws for P, and interfacial transfer terms

If we note ¢, and Sj, the sound velocity and the specific entropy within phase k, we may introduce
the entropy-entropy flux couple (S, fs) as follows :

S = myS; + mySy; fs =mS;U; + my, S, U, . (C.2.4)
We also introduce temperatures T}, such that :
1/ Ty, = (9p, (Sk(Prs px)))(Op, (er(Prs pr)) "1, (C.2.5)

for k=1,v.

Using these notations, we will assume that closure laws for ¢y, 1y, D; comply with the conditions:

0<Y(T, —T7) ;
0<¢i(P,—Py); (C.2.6)
0< DU, - 1)) .

We keep closure laws for ¢; and D; that are in agreement with those given in the standard
literature [20], setting:

mimy, (Cy) o (Cy
b= e (1o = T /7 5 (C.2.7)
D, = 7,7:;:31,:1) (U =U)/70 -

where 77, 71 respectively denote velocity and temperature relaxation time scales. The closure law
for ¢; is assumed to be non zero when P, # P,. A possible choice is:

o1 = aga (P — Py) /My /7p,
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where 7p represents the pressure relaxation time scale (see [4, 12] for instance), and T, is a pressure
reference.

Turning then to the interfacial pressure P;(W, f3), we introduce:

Pi(W, ) = (1 = (W, B)) P /Ty + (W, B) Py /T,) /(1 — (W, 8))/T1 + (W, )/ T,) ~ (C.2.8)

Actually, this closure law is mandatory in order to obtain a physically relevant entropy inequality.
Hence the interface pressure is totally determined as soon as the interface velocity is prescribed.
We recall that the same procedure applies when modelling three-phase flows (see [17]). Obviously,
the local balance P, = P, = P will imply P; = P.

C.2.2 Closure laws for V; and W

We define : W(W, 8) = W, or alternatively , W(W, 3) = W; where:
Wy =0 and: Wy = (myUp + m,Uy) /(my + my,), (C.2.9)

and we introduce the interfacial velocity V; such that p in (C.2.3) reads:

m 3
mlB + mv(]- - 5)

u(B, W) = (C.2.10)
We note that the specific value 5 = 0 (respectively S = 1) corresponds to the BN model, since
the associated values of the interface pressure and interface velocity become P; = P, and V; = U,
(respectively P; = P, and V; = U;), owing to (C.2.8). The BN model is appealing for many
scientists, since it guarantees that the interface velocity corresponds to the velocity of the vanishing
phase, and meanwhile it complies with the expected idea that the interface presssure should be
driven by the most present phase. Moreover, the value § = 1/2 was already pointed out in [11];
in that very special case V; and W; identify. Obviously, when considering an initial condition such
that B(z,t = 0) = 0 (respectively S(xz,t = 0) = 1), an obvious solution of the first equation in
(C.2.1) is simply : B(z,t) = 0 (respectively B(x,t) = 1). A similar remark holds for 8 = 1/2.
Within our nuclear framework, a typical situation where the initial condition may involve two
seperate regions Q4 and Qp with distinct values of 8, typically S(x € Q4,0) = 0 on the one
side and B(z € 2p,0) = 1 on the other side, is the LOCA situation (Loss Of Coolant Accident).
The governing set of equations is closed now, assuming that relaxation time scales 7y, 7p, 77 and
T3(W, B) are given.

C.3 Main properties of the two-fluid model

We provide now the main properties of the two-fluid model:

Proposition 1:
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Smooth solutions of (C.2.1) comply with the following entropy inequality:
9 (S) 4 0 (fs) = Sk(r + (Vi — Up) Dy — i (P; — Pr)) /Ty > 0 . (C.3.1)

The proof is straightforward (see [18]). This entropy inequality enables to select physically relevant
shocks in the non-viscous case. We may now give the following main result:

Proposition 2:

e System (C.2.1) is hyperbolic since it admits real eigenvalues:
)\1:‘/1', AZZW; >\3:Ul7 A4:Ul—Cl, >\5:Ul+cl7 )‘6:UU7 )\7:UU_C’U7 )‘8:U11+C'U-

and associated right eigenvectors span the whole space R® if and only if:
|VZ - Uk| 75 Ck and: |W - Uk| 75 Ck

for k =1,v. Otherwise, the resonance phenomenon occurs in the solution.

o Waves associated with A1, A2, A3, A¢ are linearly degenerate and those corresponding to Ay, As, A7, Ag
are genuinely nonlinear.

The most difficult part in the proof corresponds to the first claim in the second item (see [18]).
Proposition 3:

Field by field jump conditions are uniquely defined in system (C.2.1), unless resonance occurs

(if a GNL field overlaps with a LD field).

We note that for nuclear applications in pressurised water reactors, the resonance phenomenon
is very unlikely to appear. However, even in that framework, we emphasize that shock waves may
occur, due for instance to sudden high heating fluxes through wall boundaries, or due to modifica-
tions of inlet/outlet boundary conditions. Thus the third requirement is again relevant for these
applications. Jump conditions actually coincide with single-phase jump conditions within each
phase, on each side of the void fraction coupling wave associated with A = V;.

When focusing on solutions of the one-dimensional Riemann problem associated with the ho-
mogeneous part of (C.2.1), it appears that the contact discontinuity associated with V; separates
both regions Qp = {(z,t)/x/t < V;} where oq(z,t) = (), and Qr = {(z,t)/x/t > V;} where
ag(x,t) = (aq)r. In each subdomain Q g, the jump relations are:

—alpx]s + [prUsl; = 0
—alprUly + [prUf + Pi], = 0 (C3.2)
7J[Ek}g + [Uk(Ek + Pk)]g =0
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if o denotes the speed of the travelling shock wave separating states a and b, for £k = [,v. Note
also that the solution 3(z,t) in the Riemann problem is given by S(z,t) = (8)r in the subdomain
wr, = {(z,t)/x/t < W}, and : S(z,t) = (8)g in the subdomain wr = {(z,t)/x/t > W}. Eventually,
noting D the whole physical domain, we get the next expected result:

Proposition 4:

Assuming positive inlet boundary conditions and initial conditions for oy, and my ., then smooth
solutions of system (C.2.1) are such that void fractions oy, and partial masses my,, remain positive
over D x [0,T].

C.4 Numerical experiments

We provide here a numerical experiment that illustrates the behaviour of the two-fluid model. Nu-
merical schemes are those that are used in [19]. We focus here on the particular choice W(W, 8) =
W, and Ts(W, B) = —B(8% —33/2+1/2)/75(W) and we consider a very difficult test case, that is
very unlikely to happen in our framework, since it includes the resonance phenomenon.

We consider a 1D computational domain D = [0,1], and set the initial discontinuity at the
interface g = 0.5. The initial values of the function g8 are: f(z < xo,t = 0) = 0, and S(z >
Zo,t = 0) = 1. Thus it means that we assume that the flow on the left side (or left code) x < 0.5
is modeled with the BN model corresponding to (P;,U;) = (P, U,), and that we have retained the
couple (P;,U;) = (P,,U;) on its right-hand side. The initial conditions are the following:

Initial left state L | Initial right state R
Ié] 0 1
o 0.98 0.02
Qy 0.02 0.98
ol 1 0.125
P 4 0.5
U, 0
U, 0.
P, 10° 104
P, 4 x 10° 4 x 104

Initial condition in test case.

Perfect gas EOS have been considered within each phase: Py, = (V1,0 —1)p1v€i10, With 7, = 1.2 and
~v; = 1.2. The flow is at rest at the beginning of the computation and time scales 7y, 7p, 71 have
been set to 1, thus the solution is very close to the solution of a Riemann problem corresponding
to: Ty = Tp = T = +00, since the final time of the computation is T = 10~3. We use two regular
meshes with 10* and 4 x 10* cells respectively. Two shock waves (one within each phase) are created
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and move to the right side of the interface. The liquid (resp. vapour) rarefaction wave is subsonic
(resp. supersonic, see figure 1).

200

1e+05 r T .
80000
150 — B
60000 |-
100 — B
F 40000 [
s0b i
20000
0 | | 0 |
0 02 08 1 0 02
800 T T T T 4605 ‘
600~ 7| zeros-
400 — T 2e+05
200 — ] lev05(
o . I . | | I . |
0 02 04 06 08 1 % 02

Figure C.1: Velocity (left) and pressure (right) profiles for the vapour phase (down) and liquid
phase (top) respectively. The two regular meshes contain 10000 (dashed line) and 40000 (plain
line) cells.

Conclusion

The general class of two-fluid models that has been introduced herein may in fact be viewed as a
symetrized dynamical version of the BN model. It contains a scalar function S which specifies the
flow regime. The main properties of the two-fluid model have been given, and more details can
be found in the reference [18]; some first numerical experiments have been achieved, but there is
now of course a need for an extensive investigation and validation that requires a great amount of
work. Among others, the fractional step method introduced in [7] may be used for computational
purposes, and we refer to this reference which gives numerical rates of convergence obtained while
focusing on some particular Riemann problems. This method takes advantage of the LD structure
of the 1 and 2-waves, and it enables to retrieve expected rates of convergence.
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Figure C.2: Void fraction profiles.

We expect the model to be able to handle such flows as those encountered in the boiling crisis

and in some other specific situations occuring in the framework of nuclear safety analysis. We also
refer to the paper [19] , that presents some preliminary results of the flow along a heated wall,
which have been obtained in a 2D framework with the BN model.
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