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Analyse de sensibilité de modèles spatialisés :
application à l’analyse coût-bénéfice de projets de prévention des inondations

L’analyse de sensibilité globale basée sur la variance permet de hiérarchiser les sources d’incertitude présentes dans un
modèle numérique et d’identifier celles qui contribuent le plus à la variabilité de la sortie du modèle. Ce type d’analyse
peine à se développer dans les sciences de la Terre et de l’Environnement, en partie à cause de la dimension spatiale
de nombreux modèles numériques, dont les variables d’entrée et/ou de sortie peuvent être des données distribuées
dans l’espace. Le travail de thèse réalisé a pour ambition de montrer comment l’analyse de sensibilité globale peut
être adaptée pour tenir compte des spécificités de ces modèles numériques spatialisés, notamment la dépendance
spatiale dans les données d’entrée et les questions liées au changement d’échelle spatiale. Ce travail s’appuie sur une
étude de cas approfondie du code NOE, qui est un modèle numérique spatialisé d’analyse coût-bénéfice de projets
de prévention du risque d’inondation. On s’intéresse dans un premier temps à l’estimation d’indices de sensibilité
associés à des variables d’entrée spatialisées. L’approche retenue du « map labelling » permet de rendre compte de
l’auto-corrélation spatiale de ces variables et d’étudier son impact sur la sortie du modèle. On explore ensuite le lien
entre la notion d’« échelle » et l’analyse de sensibilité de modèles spatialisés. On propose de définir les indices de
sensibilité « zonaux » et « ponctuels » pour mettre en évidence l’impact du support spatial de la sortie d’un modèle sur
la hiérarchisation des sources d’incertitude. On établit ensuite, sous certaines conditions, des propriétés formelles de
ces indices de sensibilité. Ces résultats montrent notamment que l’indice de sensibilité zonal d’une variable d’entrée
spatialisée diminue à mesure que s’agrandit le support spatial sur lequel est agrégée la sortie du modèle. L’application
au modèle NOE des méthodologies développées se révèle riche en enseignements pour une meilleure prise en compte
des incertitudes dans les modèles d’analyse coût-bénéfice des projets de prévention du risque d’inondation.

Mots clés : Modèle Spatialisé ; Analyse de Sensibilité ; Incertitude ; Échelle ; Géostatistique ; ACB ; Inondations ;
Dommages.

Sensitivity analysis of spatial models:
application to cost-benefit analysis of flood risk management plans

Variance-based global sensitivity analysis is used to study how the variability of the output of a numerical model can
be apportioned to different sources of uncertainty in its inputs. It is an essential component of model building as it
helps to identify model inputs that account for most of the model output variance. However, this approach is seldom
applied in Earth and Environmental Sciences, partly because most of the numerical models developed in this field
include spatially distributed inputs or outputs . Our research work aims to show how global sensitivity analysis can
be adapted to such spatial models, and more precisely how to cope with the following two issues: i) the presence of
spatial auto-correlation in the model inputs, and ii) the scaling issues. We base our research on the detailed study of
the numerical code NOE, which is a spatial model for cost-benefit analysis of flood risk management plans. We first
investigate how variance-based sensitivity indices can be computed for spatially distributed model inputs. We focus
on the “map labelling” approach, which allows to handle any complex spatial structure of uncertainty in the model
inputs and to assess its effect on the model output. Next, we offer to explore how scaling issues interact with the
sensitivity analysis of a spatial model. We define “block sensitivity indices” and “site sensitivity indices” to account
for the role of the spatial support of model output. We establish the properties of these sensitivity indices under some
specific conditions. In particular, we show that the relative contribution of an uncertain spatially distributed model
input to the variance of the model output increases with its correlation length and decreases with the size of the spatial
support considered for model output aggregation. By applying our results to the NOE modelling chain, we also draw
a number of lessons to better deal with uncertainties in flood damage modelling and cost-benefit analysis of flood risk
management plans.

Key words: Spatially distributed model; Sensitivity analysis; Uncertainty; Scale; Geostatistics; CBA; Flood; Damage.
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« La connaissance est une navigation dans un océan d’incertitudes
à travers des archipels de certitudes. »

Edgar Morin (1921 - )

Les passes du Bassin d’Arcachon

À mon grand-père paternel.
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Notes au lecteur

Franglais - Frenchglish

Afin d’en permettre la lecture à l’ensemble des membres du jury, la majeure partie de ce manuscrit de
thèse a été rédigée en anglais. L’introduction est présente en deux versions, en français et en anglais.
Seuls le préambule et certaines des annexes sont uniquement rédigés en français.

Most of this thesis manuscript is written in English, so that all the thesis committee members can read it.
Only the preamble and some of the appendices are written in French.

Publications

Ce manuscrit de thèse est pour partie composé de publications dont une est parue dans « Mathematical
Geosciences » (section §4.1) et une autre est en cours d’évaluation par « Journal of Flood Risk Manage-
ment » (section §3.3). Un papier court publié dans les actes de la conférence « Accuracy 2010 » est aussi
intégré au manuscrit (section §3.2.4). D’autres publications, non intégrées au corps du document, ont été
en revanche insérées en annexe pour information. Pour vous procurer les versions finales de ces diverses
publications, vous pouvez m’envoyer un courriel.

This thesis manuscript contains two publications, one of which has already been published in « Mathe-
matical Geosciences » (section §4.1), and the second one is currently being reviewed by « Journal of
Flood Risk Management » (section §3.3). A short paper published in the proceedings of the « Accuracy
2010 » international conference is also included (section §3.2.4). Other publications were inserted in the
Appendices for information. If you want a copy of the final versions of these papers, please send me an
email and I will keep you updated on the publication progress.
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Introduction

Modèles numériques spatialisés

Les termes « modèle » et « modélisation » peuvent recouvrir des pratiques variées qui selon Armatte and
Dalmedico (2004) visent à « représenter un système concret ou réel par un objet formel qui permette
de penser ce réel mais aussi d’agir sur lui ». Dans ce mémoire, nous utiliserons le terme « modèle » de
manière très restrictive pour désigner un code numérique, considéré comme une boîte noire, qui calcule
des variables de sortie à partir de plusieurs variables d’entrée. Nous nous limiterons plus précisément aux
modèles qui s’appuient sur une description mécaniste des processus étudiés, par opposition aux modèles
empiriques ou statistiques, et parmi eux aux modèles déterministes uniquement (non stochastiques). Avec
l’essor de l’informatique et l’explosion des capacités de calcul, la modélisation numérique s’est peu à peu
imposée comme une activité incontournable dans les sciences de la nature et les sciences de l’ingénieur.
Pour répondre aux grands défis environnementaux de notre époque, une part significative de l’effort de
recherche est ainsi dédiée à la construction de modèles capables de décrire (modèles diagnostiques) des
systèmes physiques, biologiques, environnementaux, économiques ou sociaux complexes, simuler ou
prédire leur comportement (modèles pronostiques), proposer des stratégies d’action aux décideurs publics
(modèles d’aide à la décision), voire même défendre des positions lors de négociations internationales
(sur le climat ou le devenir de l’agriculture mondiale, par exemple). Ainsi que l’expliquent Bouleau et al.
(2004), la modélisation est une activité qui est aujourd’hui devenue le vecteur principal des passages entre
Science et Société.

Parmi les modèles numériques utilisés pour l’exploration des problématiques environnementales, nom-
breux sont ceux qui s’appuient sur des données distribuées spatialement, telles que des Modèles Numé-
riques de Terrain, des cartes de sol, des cartes d’occupation du sol, etc. (Ostendorf 2011). Ces modèles
que nous qualifierons de « spatialisés » tirent parti du développement rapide des outils et méthodes per-
mettant d’acquérir, de structurer, d’exploiter et de diffuser l’information géographique. Le scientifique
comme le citoyen ou le décideur ont aujourd’hui à leur disposition un ensemble de données environne-
mentales spatialisées toujours plus grand, ainsi que des outils toujours plus nombreux et plus performants
pour utiliser ces données : Systèmes d’Information Géographique (SIG), imagerie satellitaire, cartogra-
phie interactive sur le Web, technologies de géolocalisation embarquées, etc. Les modélisateurs se sont
appropriés ces nouvelles données et construisent aujourd’hui des modèles spatialisés qui permettent une
description explicite des structures, des dépendances et des dynamiques spatiales intervenant dans les
processus physiques, biologiques ou anthropiques qu’ils étudient.
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Analyses d’incertitude et de sensibilité

Cependant, à mesure que la modélisation numérique prend une place prépondérante dans de nombreux
champs de la Science, un discours critique se construit et souligne les défauts et limites de cette dé-
marche (Oreskes et al. 1994). Parmi les points soulevés, ces critiques soulignent l’importance des incer-
titudes qui interviennent dans tout processus de modélisation. Ces incertitudes peuvent être liées à un
manque de connaissance sur certains des phénomènes étudiés, à la variabilité naturelle des grandeurs
représentées, à des erreurs de mesure, à des choix de modélisation simplificateurs ou encore à des ap-
proximations numériques (Walker et al. 2003). Elles se combinent et se propagent à travers le modèle et
entraînent une incertitude sur les résultats et indicateurs fournis par celui-ci. Lorsqu’un modèle est utilisé
comme appui à des décisions de nature opérationnelle ou stratégique, il faut alors s’interroger, comme le
soulignent Vasseure et al. (2005), sur « la valeur d’une décision basée sur des données dont la qualité est
mal connue ou mal comprise par le décideur ». Les modèles spatialisés n’échappent pas à ce questionne-
ment et « quiconque utilise une information incertaine (c’est-à-dire l’écrasante majorité des utilisateurs
de données cartographiées) doit réfléchir avec attention aux sources possibles de l’incertitude et à la
manière de s’en occuper » (Fisher et al. 2005).

Afin de répondre au moins partiellement à ces difficultés, la communauté scientifique a développé des mé-
thodes qualitatives et quantitatives qui permettent d’étudier comment réagissent les sorties d’un modèle à
des perturbations sur ses variables d’entrée : ce sont des méthodes regroupées sous les termes d’« analyse
de sensibilité » et d’« analyse d’incertitude ». L’analyse d’incertitude se concentre sur la propagation des
incertitudes à travers le modèle, et vise à quantifier l’incertitude résultante qui existe sur la sortie. Elle per-
met typiquement d’associer un intervalle de confiance aux résultats fournis par un modèle. L’analyse de
sensibilité va plus loin : elle cherche à mesurer l’influence de l’incertitude de chacune des variables d’en-
trée sur la précision du résultat du modèle. Elle permet de hiérarchiser les variables d’entrée en fonction
de leur contribution à la variabilité de la sortie du modèle. Elle vise ainsi à identifier les variables d’entrée
critiques, celles qui conditionnent la décision finale de l’utilisateur du modèle, et sur lesquelles il faut
orienter les efforts de recherche futurs. Les méthodes d’analyse d’incertitude et d’analyse de sensibilité
ont peu à peu été adoptées par les modélisateurs dans différents champs disciplinaires, notamment dans
la recherche environnementale (Cariboni et al. 2007; Tarantola et al. 2002), et sont aujourd’hui recon-
nues comme des étapes essentielles dans la construction d’un modèle numérique (European Commission
2009a; CREM 2009).

Pourtant, ces méthodes d’analyse de sensibilité sont peu souvent appliquées à l’étude de modèles numé-
riques spatialisés. Parmi les raisons qui freinent leur utilisation dans ce domaine, on peut citer l’explosion
des problèmes de dimensionnalité, ainsi que le manque de maturité de certains modèles. Nous nous in-
téresserons plus particulièrement aux deux autres limites que voici : i) les données d’entrée des modèles
spatialisés présentent généralement une auto-corrélation spatiale, alors que les méthodes classiques d’ana-
lyse de sensibilité ne considèrent que des variables scalaires indépendantes ; ii) les notions d’échelle, de
support ou de résolution, qui jouent un rôle prépondérant dans les modèles spatialisés, sont ignorées dans
les cadres formels des méthodes d’analyse de sensibilité classiques. Le besoin d’adaptation des méthodes
d’analyse de sensibilité au contexte spécifique des modèles spatialisés apparaît donc important. Naturel-
lement, des éléments de réponse ont déjà été apportés à ce problème. Ainsi on trouve dans la littérature
dédiée à l’analyse de sensibilité des travaux portant sur les variables d’entrées corrélées, mais ces études
ne s’intéressent que rarement au cas particulier de la dépendance spatiale. Par ailleurs les statistiques spa-
tiales, et plus particulièrement la géostatistique, proposent des cadres théoriques pour décrire l’incertitude
pesant sur des variables spatialisées et pour appréhender les notions d’échelle, de support ou de résolu-
tion. Elles fournissent aussi des outils pour simuler ces incertitudes. Cependant, ce corpus théorique n’a
jamais été rapproché de celui de l’analyse de sensibilité de modèles numériques.
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Un exemple : l’analyse coût-bénéfice des projets de prévention du
risque d’inondation

Nous nous sommes intéressés dans cette thèse à un exemple particulier de situation où il est fait appel
à des modèles numériques spatialisés : ce contexte est celui de l’évaluation économique des projets de
prévention du risque d’inondation.a Plus précisément, notre travail a porté sur les démarches d’analyse
coût-bénéfice (ACB) qui visent à caractériser, au moyen d’un indicateur synthétique ou spatialisé, la per-
tinence économique de projets d’aménagement de protection contre les crues (barrages, digues, etc.).
La mise en œuvre ce type d’analyse passe généralement par le développement d’un modèle numérique,
qui fait intervenir divers modules à même de décrire l’ensemble de la chaîne menant au risque d’inon-
dation (modules hydrologiques, hydrauliques, d’occupation des sols, fonctions d’endommagement). Ces
modèles numériques ont généralement une forte composante spatiale, de part la nature de leurs données
d’entrée (topographie du terrain, réseau hydrographique, carte d’occupation du sol, etc.), la nature de leurs
sorties (indicateurs de risque spatialisés), et les traitements qu’ils mobilisent (notamment des opérations
d’analyse spatiale à l’aide de logiciels SIG).

La nécessité de mieux prendre en compte les incertitudes dans les modèles d’analyse économique du
risque d’inondation, et plus particulièrement dans les études ACB appliquées aux projets de prévention
des crues, fait consensus au sein de la communauté scientifique qui développe ces modèles (Apel et al.
2004). Les motivations pour une étude approfondie de ces incertitudes sont multiples. Dans une première
phase de développement d’un modèle, une telle étude permet au modélisateur de mieux comprendre le
comportement de l’outil qu’il construit, de faire émerger de nouvelles questions ou des pistes d’amélio-
ration. Dans une phase d’utilisation du modèle, l’analyse d’incertitude et de sensibilité peut permettre
d’améliorer la robustesse des indicateurs économiques qui sont produits, notamment en identifiant les va-
riables d’entrée clés dont il faut au mieux préciser la valeur. Enfin, dans une phase opérationnelle, la prise
en compte explicite des incertitudes permet de fournir aux utilisateurs finaux du modèle (pouvoirs pu-
blics, gestionnaires de territoire) une information plus complète pour les aider dans leur prise de décision
(Ascough et al. 2008).

On compte ainsi de nombreux travaux récents qui visent à appliquer des analyses d’incertitude et/ou
de sensibilité à tout ou partie de modèles numériques d’évaluation économique des crues. La plupart
de ces travaux se limitent à une analyse d’incertitude, dont le périmètre peut varier d’un unique « mo-
dule » du modèle complet—par exemple, l’occupation du sol (Te Linde et al. 2011), la simulation hy-
draulique (Bales and Wagner 2009), l’estimation des dommages (Merz et al. 2004)— jusqu’à la chaîne
de modélisation dans son intégralité (Apel et al. 2008). Quelques publications plus rares abordent aussi
le problème de la hiérarchisation des différentes sources d’incertitude dans ces modèles, en les soumet-
tant à une analyse de sensibilité (Koivumäki et al. 2010; de Moel and Aerts 2011; de Moel et al. 2012;
Pappenberger et al. 2008).

Cependant, trois remarques générales peuvent être formulées à l’encontre de ces études. Tout d’abord,
la majorité d’entre elles s’intéressent à la précision de l’estimation des dommages dus aux crues sur un
territoire, mais peu examinent l’incertitude qui en résulte sur les indicateurs de performance économique
des projets de prévention des crues produits dans le cadre d’une ACB. De plus, ces études ne s’appuient
que rarement sur les dernières avancées faites dans le domaine de l’analyse de sensibilité des modèles

aPour comprendre ce choix, il est nécessaire d’expliquer que ce travail de recherche a gravité autour de trois unités de recherche :
l’UMR TETIS, dont les compétences portent sur la maîtrise de la chaîne de l’information géographique ; l’UMR G-EAU, où sont
notamment développés des modèles spatialisés sur des problématiques liées à la gestion de l’eau à l’échelle des territoires ; l’Institut
de Mathématiques et de Modélisation de Montpellier (I3M), au sein duquel plusieurs travaux ont déjà été menés sur les méthodes
d’analyse de sensibilité.

http://www.tetis.teledetection.fr
http://www.g-eau.net
http://ens.math.univ-montp2.fr/
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numériques, et ont le plus souvent recours à des approches naïves dont les limites sont connues—ainsi, à
notre connaissance, seuls de Moel et al. (2012) utilisent dans leurs travaux l’analyse de sensibilité globale
basée sur la décomposition de la variance du modèle, qui est pourtant largement utilisée dans d’autres
champs thématiques. Enfin, elles font généralement peu de cas du caractère spatial des modèles étudiés,
et des problèmes spécifiques que ce caractère pose pour mener une analyse de sensibilité. Deux points
sont notamment passés sous silence, à savoir les problèmes liés à la dépendance spatiale dans les données
d’entrée, et les questions relatives à l’échelle spatiale à laquelle ces modèles sont construits. Ainsi, il
apparaît possible et souhaitable de progresser encore dans la prise en compte des incertitudes dans ces
modèles dédiés à l’analyse économique du risque d’inondation, et plus particulièrement dans les études
ACB appliquées aux projets de prévention des crues.

Objectifs de la thèse

Le but de ce travail de recherche est double. Un premier objectif est de nature méthodologique : il s’agit de
proposer des méthodes d’analyse de sensibilité adaptées à l’étude de modèles numériques dont les entrées
et/ou les sorties sont spatialisées. Ces méthodes doivent permettre d’appréhender les spécificités de ces
modèles spatialisés, notamment la présence de dépendance spatiale dans les données et les questions liées
aux notions d’échelle. Le second objectif est de nature appliquée : il s’agit, après avoir proposé un modèle
pour décrire les études ACB appliquées aux projets de prévention du risque d’inondation, d’étudier la
propagation des incertitudes dans ce modèle, et plus précisément d’identifier les sources d’incertitude
principales, à l’aide de méthodes d’analyse de sensibilité adaptées.

Méthode de recherche Pour tenter d’atteindre simultanément ces deux objectifs méthodologique et
appliqué, nous avons opté pour une approche essentiellement inductive. Nous nous sommes appuyés
sur l’examen approfondi d’une situation particulière : l’analyse de sensibilité d’une ACB d’un projet de
prévention des inondations dans la basse vallée de l’Orb (Hérault, France). Une première étape de notre
travail a ainsi consisté à proposer un cadre formel, baptisé NOE, pour modéliser les ACB appliquées aux
projets de prévention des crues, puis à implémenter un code numérique pour mettre en œuvre une analyse
coût-bénéfice sur le terrain d’étude de l’Orb. À partir de l’étude de ce modèle singulier, nous avons
tenté de faire émerger des questionnements, des méthodes et des énoncés plus généraux sur l’analyse de
sensibilité de modèles spatialisés. Ainsi, plus qu’un simple cas d’étude, le modèle NOE et son application
à la basse vallée de l’Orb ont servi de base à notre réflexion : ils occupent donc une large place dans ce
mémoire de thèse.

Limites Nous avons fait le choix de restreindre notre recherche à une unique famille de méthodes d’ana-
lyse de sensibilité, celles basées sur la décomposition de la variance de la sortie du modèle (« variance
based global sensitivity analysis » ou VB-GSA). Ces méthodes produisent des indices de sensibilité qui
mesurent la contribution de chaque entrée du modèle à la variabilité de la sortie, en tenant compte à la
fois de la structure (ou des équations) du modèle étudié, mais aussi de la plage de variabilité des entréesb.
Trois raisons principales motivent notre choix : i) ces méthodes ne nécessitent aucune hypothèse préa-
lable sur la nature du modèle étudié (linéarité, régularité), qui est considéré comme une simple « boîte
noire » ; ii) elles explorent largement l’espace des incertitudes sur les variables d’entrée du modèle (ca-
ractère global) ; et iii) elles décrivent non seulement l’impact des variables d’entrée incertaines prises

bElles diffèrent en ce sens des notions de sensibilité usuellement utilisées en physique, qui s’appuient uniquement sur le calcul
de dérivées partielles locales.
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une à une, mais aussi l’impact des interactions entre ces variables d’entrée. Ensuite, nous nous sommes
intéressés uniquement au cas où le modèle étudié présente des temps de calcul faibles, qui permettent
notamment de recourir à un très grand nombre de simulations dans des approches de type Monte Carlo.
Les méthodes d’analyse de sensibilité s’appuyant sur la construction d’émulateurs ou de méta-modèles
ne seront donc pas abordées dans ce mémoire. Enfin, les caractéristiques du modèle NOE nous ont amené
à examiner plus particulièrement les modèles spatialisés dit « ponctuels » et « spatialement additifs » (ces
termes seront définis plus loin dans ce document).

Questions de recherche Dans ce cadre restreint, des questions plus précises émergent : comment peut-
on définir et estimer des indices de sensibilité basés sur la variance pour des variables d’entrées présentant
une auto-corrélation spatiale ? Quelles sont les stratégies d’échantillonnage et de simulation de ces va-
riables spatialisées les plus appropriées pour estimer leurs indices de sensibilité ? L’analyse de sensibilité
basée sur la variance permet-elle de rendre compte de manière pertinente des questions d’échelle spatiale
pour des modèles ponctuels et spatialement additifs ? Voilà les questions auxquelles nous tenterons de
répondre dans ce document.

Structure du document

Ce mémoire est composé de quatre chapitres. Nous avons pris le parti de mêler dans ces chapitres des
développements d’ordre théorique ou méthodologique et des résultats numériques obtenus sur le modèle
NOE. Deux raisons motivent ce choix : d’une part, cette articulation reflète le déroulement réel de notre
travail de recherche, où les développements méthodologiques et appliqués se sont nourris mutuellement ;
d’autre part, cette présentation croisée permet d’enrichir la discussion en fin de chaque chapitre sur les
questions de recherche abordées. La Figure 1 en page 7 résume la structure du document.

Dans un premier chapitre, nous posons un certain nombre de définitions et de notations pour mieux cerner
notre objet de recherche méthodologique que sont les modèles numériques spatialisés. Nous y présentons
également une brève revue sur les méthodes d’analyse de sensibilité en général et l’analyse de sensibilité
basée sur la variance en particulier. Une fois ces bases posées, nous formulons de manière plus détaillée
nos questions de recherche dans la conclusion de ce chapitre.

Dans un second chapitre, nous présentons le travail de modélisation qui a conduit à la constitution de notre
cas d’étude. Nous proposons d’abord un cadre de modélisation baptisé NOE pour décrire les études ACB
des projets de prévention des crues basée sur l’approche des dommages évités. Nous précisons ensuite
comment ce cadre de modélisation a été décliné sur le site d’étude particulier de la basse vallée de l’Orb.

L’objet du troisième chapitre est de proposer des méthodes pour intégrer des variables d’entrée spatiali-
sées dans l’analyse de sensibilité basée sur la variance. Une revue des approches existantes y est complétée
par une étude numérique de ces approches, par des développements sur les problèmes d’échantillonnage
des variables spatialisées dans ces approches et par l’application d’une des méthodes présentées au mo-
dèle NOE sur le terrain d’étude de l’Orb.

Le quatrième chapitre est quant à lui dédié à l’étude des liens entre les notions d’échelle spatiale (telles que
définies par Blöschl and Sivapalan (1995)) et l’analyse de sensibilité basée sur la variance. On s’intéresse
plus spécifiquement à l’influence du support de la sortie d’un modèle spatialisé sur la hiérarchisation des
sources d’incertitude. Les développements théoriques proposés se limitent au cas des modèles ponctuels
et spatialement additifs ; ils sont illustrés par une application au modèle NOE sur le terrain d’étude de
l’Orb.
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Enfin, nous concluons ce document par i) des remarques générales sur la portée et les perspectives d’utili-
sation de nos contributions méthodologiques pour l’analyse de sensibilité de modèles numériques spatia-
lisés ; ii) des enseignements plus appliqués sur les incertitudes dans les analyses coût-bénéfice d’aména-
gements de protection contre les inondations ; et iii) quelques retours d’expérience sur la mise en œuvre
pratique d’une analyse de sensibilité d’un modèle environnemental d’aide à la décision.
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Introduction

Spatially distributed models

According to Armatte and Dalmedico (2004), the terms “model” and “modelling” can cover diverse prac-
tices that aim “to represent a real system by a formal object allowing one to both consider and act on
this system”. In this thesis, we will use the term “model” in a very restrictive way to designate a numer-
ical code, which is considered as a “black box”, that calculates output variables based on a set of input
variables. More precisely, we limit ourselves to models that are based on a mechanistic description of
the processes under study, as opposed to those which are empirical or data-based, and of these models,
we focus solely on deterministic ones (non-stochastic). With the dramatic rise of computer performances
over the last decades, numerical modelling has expanded steadily and has now established itself as a
key activity in earth and environmental sciences. Numerical models are widely recognized as valuable
tools to describe complex physical, biological, ecological, economic or social systems, to understand
their drivers (diagnostic models), to simulate and predict their future behaviour (prognostic models), to
make informed management decisions (decision-support models), and even to defend positions during
international negotiations (on the climate or the future of world agriculture, for example). As Bouleau
et al. (2004) clearly state it, modelling has now won recognition as the main bridge between Science and
Society.

Among the numerical models used to explore environmental issues, many rely on spatially distributed
data, such as Digital Terrain Models, soil maps, land use maps, etc. (Ostendorf 2011). These models,
which we will refer to as “spatial models”, have benefited from the recent development of tools and
methods allowing the acquisition, structuring, exploitation and diffusion of geographic information. Sci-
entists today, like citizen and policy makers, have at their disposal a continually expanding set of spatial
environmental data, as well as an ever rising number of increasingly efficient tools to use these data: Ge-
ographic Information Systems (GIS), satellite images, webmapping, on-board geolocation technologies,
etc. Modellers have quickly learnt how to master these new data and tools, and now build spatial models
that allow an explicit description of the spatial structures, inter-dependencies, and dynamics involved in
the physical, biological, and anthropogenic processes under study.

Uncertainty and sensitivity analysis

However, as numerical modelling assumes a leading role in numerous scientific fields, criticism highlight-
ing the weaknesses and limits of this approach has arisen (Oreskes et al. 1994). Among the points raised
is the importance of the uncertainties involved in any modelling process. These uncertainties may stem
from a lack of knowledge about some of the phenomena studied, the natural variability of the quantities
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of interest, measurement errors, model assumptions, or numerical approximations (Walker et al. 2003).
These combine together and propagate throughout the model, leading to uncertainty regarding the outputs
and indicators produced by it. When a model is used as a support tool for operational or strategic decision-
making, one must then question, as emphasized by Vasseure et al. (2005), “the value of a decision based
on data, the quality of which is unknown or poorly understood by the decision-maker”. Spatial models are
not exempt from these questions and “anyone using uncertain information—meaning the overwhelming
majority of mapped data users—should consider carefully the possible sources of uncertainty and how to
deal with them” (Fisher et al. 2005).

To adress this issue, the scientific community has developed qualitative and quantitative methods that
allow the study of how model outputs react when input variables are uncertain; they are usually refered
to as “uncertainty and sensitivity analysis” methods. Uncertainty analysis focuses on the propagation
of uncertainties throughout the model and aims to quantify the resulting uncertainty on the output. It
typically allows a confidence interval to be associated with model outputs. Sensitivity analysis goes one
step further: it seeks to study how the uncertainty in a model output can be apportioned to the uncertainties
in each of the model inputs. It allows input variables to be ranked according to their contribution to the
variability of model outputs. Sensitivity analysis thus helps to identify the key input variables, those
that determine the final decision of the model end-user, and on which further research should be carried
out. Uncertainty analysis and sensitivity analysis methods have been gradually adopted by modellers
in different disciplinary fields, notably in environmental research (Cariboni et al. 2007; Tarantola et al.
2002), and today are widely recognized as essential steps in model building (European Commission
2009a; CREM 2009).

However, these sensitivity analysis methods have not been applied frequently to the study of spatial mod-
els. Among the factors hindering their use in this domain are the explosion of dimensionality problems
and the lack of maturity of certain models. We will examine in special detail two other limits: i) spatial
model input data generally exhibit some auto-correlation, yet conventional sensitivity analysis methods
only consider independent scalar variables; ii) notions of scale, support, and resolution, which play a
prominent role in spatial modelling, are ignored in the formal frameworks of conventional sensitivity
analysis methods. Hence, there appears to be a great need to adapt sensitivity analysis methods to the
specific context of spatially distributed modelling. Some ideas have already been provided in the liter-
ature to adress this issue. First, in existing research related to sensitivity analysis, one may find some
publications that deal with correlated input variables, but these studies rarely examine the particular case
of spatial dependence. In addition, spatial statistics, and more specifically geostatistics, offer theoretical
frameworks to describe the uncertainty weighing on spatially distributed data and to grasp the notions of
spatial scale, support, or resolution. Geostatistics also provide tools to simulate these spatial uncertain-
ties. However, this theoretical corpus has never been linked to that of sensitivity analysis of numerical
models.

An example: cost-benefit analysis of flood risk management plans

In this thesis, we look into a particular situation where spatial models are used: the economic assessment
of flood risk management plans.c More precisely, our work focuses on cost-benefit analysis (CBA) ap-
proaches that aim to characterize, using a scalar or spatially distributed indicator, the economic relevance
of flood mitigation plans (dams, dikes, etc.). Such CBA studies usually require the development of a
numerical model, which combines a number of modules (hydrological module, hydraulic module, land
use module, damage functions) able to describe the entire chain leading to flood risk. These numerical
models generally have a strong spatial component owing to the nature of their input data (topography,
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map of water system, land use map, etc.), the nature of their outputs (spatial risk indicators), and the
calculations that they use (notably spatial analysis operations with the help of GIS software).

Meanwhile, there is a growing consensus (Apel et al. 2004) that flood economic assessment models, and
more particularly CBA studies applied to flood risk management plans, are fraught with uncertainties.
There are numerous motivations for an in-depth study of these uncertainties. In the first stage of model
development, such a study allows the modeller to better understand the behaviour of the tool that s/he
is building, and to bring to light new questions or paths for improvement. During the model use stage,
uncertainty and sensitivity analyses can lead to increase the robustness of the economic indicators pro-
duced, notably by identifying the key input variables whose values should be better specified. Lastly,
during the operational stage, explicitly taking into account uncertainties allows the provision of more
complete information to the model end-users (public authorities, water managers) to help them in their
decision making (Ascough et al. 2008).

A number of recent studies aim to apply uncertainty and/or sensitivity analyses to all or parts of flood
economic assessment models. Most of these studies are limited to the forward propagation of uncertainty
(uncertainty analysis), the perimeter of which can vary from a single module of the complete model—e.g.,
land use (Te Linde et al. 2011), hydraulic simulation (Bales and Wagner 2009), estimation of damages
(Merz et al. 2004)—up to the entire modelling chain (Apel et al. 2008). Fewer publications address the
issue of ranking the various sources of uncertainty in these models by performing sensitivity analysis
(Koivumäki et al. 2010; de Moel and Aerts 2011; de Moel et al. 2012; Pappenberger et al. 2008).

However, we can make three general comments regarding these studies. First, the majority of these
studies are interested in the accuracy of the flood damage estimates on an area, but few examine the
resulting uncertainty on the economic performance indicators of flood mitigation plans produced in a
CBA. Next, these studies only rarely make use of the most recent advances in the field of sensitivity
analysis, turning more frequently to naive approaches whose limits are well known—e.g., only de Moel
et al. (2012) use a variance-based global sensitivity analysis in their research, although this approach
is widely used in other fields. Finally, these studies generally disregard the spatial nature of the model
they scrutinize, and the specific problems that this nature raises when performing sensitivity analysis. In
particular, the following two points are ignored: i) the issue of spatial dependence in the input data, and
ii) the issues related to the spatial scale at which these models are built. It thus appears both possible and
desirable to further improve the treatment of uncertainties in numerical models dedicated to the economic
assessment of flood risk, and more particularly in CBA studies applied to flood risk management plans.

Objectives of the thesis

This research work has two goals. The first objective is methodological: we want to investigate the use of
sensitivity analysis methods in spatially distributed modelling. These methods should allow to grasp the
specific features of spatial models, notably the presence of spatial dependence in the data and the scaling
issues. The second objective is of an applied nature: after proposing a modelling framework to describe
CBA studies applied to flood risk management plans, it involves studying the propagation of uncertainties
in this model, and, more precisely, identifying the main sources of uncertainty with the help of suitable
sensitivity analysis methods.

cThe main reason for this choice lies in the fact that this research work revolved around three different research units: the joint
research unit TETIS, that undertakes research on the use of geospatial data for the monitoring and modelling of environmental
systems; the joint research unit G-EAU, which deals with the modelling of hydrosystems; and the Institute of Mathematics and
Modelling in Montpellier (I3M).

http://www.tetis.teledetection.fr
http://www.g-eau.net
http://ens.math.univ-montp2.fr/
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Research method In an attempt to simultaneously achieve both our methodological and applied objec-
tives, we chose an essentially inductive approach. We worked from the in-depth examination of a specific
situation: the sensitivity analysis of a CBA of a flood risk management plan in the Orb Delta (Hérault,
France). The first step of our work involved designing a modelling framework, named NOE, to describe
CBA studies applied to flood risk management plans, followed by the implementation of a numerical code
to carry out a CBA study on the Orb Delta. Based on the sensitivity analysis of this single model, we
attempted to bring to light more general questions, methods, and statements regarding sensitivity analysis
of spatial models. Rather than being a simple case study, the NOE model and its application to the Orb
Delta thus served as a basis for our discussion: hence, they take up a large part of this thesis.

Limits We chose to focus our research on a single family of sensitivity analysis methods, namely
variance-based global sensitivity analysis (VB-GSA). These methods produce sensitivity indices that
measure the contribution of each model input to the variance of the model output, taking into account
both the structure (or the equations) of the model under study and the uncertainty range of inputs. Three
main arguments motivated our choice: i) these methods do not require any preliminary hypothesis re-
garding the nature of the model under study (linearity, regularity), which is considered as a simple “black
box”; ii) they widely explore the space of input uncertainties (global methods); and iii) they describe not
only the impact of uncertain input variables considered one at a time, but also the impact of interactions
between these input variables. We also focused our attention on models with low CPU cost, which allow
a large number of simulations to be run in Monte Carlo approaches. Therefore, we do not adress in this
thesis the sensitivity analysis methods based on emulators or meta-models. Finally, the characteristics of
the NOE model led us to look more specifically at “point-based” and “spatially additive” models—we
will define these terms later in the document.

Research questions Within this restricted framework, more specific questions emerge: how can one
define and estimate variance-based sensitivity indices for spatially distributed model inputs that exhibit
spatial auto-correlation? What are the most appropriate simulation and sampling strategies for these
spatially distributed inputs to estimate their sensitivity indices? Can variance-based global sensitivity
analysis account for scaling issues, in particular for point-based and spatially additive models? These are
the research items that we will try to adress in this thesis.

Outline of the thesis

This thesis is divided into four chapters. In these chapters, we intentionaly mixed methodological or
theoretical developments with the numerical results obtained on the NOE case study. The reasons for
this choice are twofolds: first, this articulation mirrors the actual unfolding of our research, in which
methodological and applied work mutually enriched each other; next, this intertwined presentation allows
us to discuss both sides of our work at the end of each chapter. Figure 2 on page 14 displays the outline
of this document.

Chapter 1 starts with some relevant background information. We first give a number of definitions and
notations on spatial models. We also display a brief introduction to the concepts of sensitivity analysis,
and portray into more details the mathematical basics of variance-based global sensitivity analysis (VB-
GSA). Once these foundations have been established, we articulate in greater detail our research questions
in the conclusion of the chapter.
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Chapter 2 presents the modelling process that led to the constitution of our case study: the cost-benefit
analysis of a flood risk management plan on the Orb Delta. We first design a modelling framework named
NOE to describe CBA studies of flood risk management plans based on the “avoided damage” approach.
We then specify how the NOE modelling framework was implemented for the Orb Delta case study.

Chapter 3 concentrates on the first research question: “how to handle spatially distributed inputs in VB-
GSA?”. We survey the existing approaches to compute variance-based sensitivity indices for spatially
distributed inputs, then compare these approaches on some analytical test cases. This review is completed
by some developments on the sampling of spatially distributed inputs, and by the application of VB-GSA
to the NOE model on the Orb Delta case study.

Chapter 4 puts forward the second research question, by investigating the links between the spatial scale—
as defined by Blöschl and Sivapalan (1995)—and variance-based global sensitivity analysis. We discuss
how the ranking of the uncertain model inputs may depend on the “support” and the “spacing” of the
spatially distributed model output. The theoretical developments are restricted to point-based and spa-
tially additive models only; they are illustrated by an application to the NOE model on the Orb Delta case
study.

Finally, this document is concluded by: i) general comments on the significance of our theoretical re-
sults and the possible use of our methodological contributions for sensitivity analysis of spatial models;
ii) some lessons not only on the NOE modelling framework, but more generally on uncertainties in
cost-benefit analyses applied to flood risk management plans; and iii) some feedback on the practice of
sensitivity analysis in environmental modelling.
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Chapter 1

Theoretical background



∎ 16 CHAP 1. THEORETICAL BACKGROUND

THE goal of this first chapter is to define a number of notions that will be used throughout the
thesis. In a first section §1.1, we clarify the term “spatial models”, giving a number of notations
(§1.1.1), discussing how space is represented in numerical models (§1.1.2) and presenting the

various meanings of “scale” in this context (§1.1.3). We then focus on two specific families of spatial
models that are often encountered in the literature: i) “spatially additive models”, in which the model end
user is interested in the spatial linear average or the sum of some quantity of interest over a given spatial
unit (§1.1.4), and ii) “point-based models”, in which spatial interactions in the physical processes under
study can be neglected in a first approximation (§1.1.5).

In the second section §1.2, we give an overview of sensitivity analysis (SA) of numerical models. We
first display the general flowchart of most SA methods (§1.2.1). We then focus on variance-based global
sensitivity analysis (VB-GSA), introduce the mathematical basis of this approach and explain how to
estimate variance-based sensitivity indices (§1.2.2).
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1.1 Spatial models

1.1.1 Definitions and notations

Our work is devoted to the study of numerical models where some of the model inputs and/or some of
the model outputs are spatially distributed: we will use the term “spatial model” to refer to such models.
They are encountered in many disciplines related to earth and environmental sciences. These models
allow for a spatially explicit description of the physical or anthropogenic processes under study. Their
development over the last decade is partly due to the increasing availability of spatially distributed data, to
the boom of GIS tools and to the overall growth of available computing power. Here are a few examples
of fields in which spatial models are often used: flood modelling (e.g., LISFLOOD, Van Der Knijff et al.
(2010)), groundwater quality modelling (e.g., AquiferSim, Landcare Research (2011)), crop modelling
(e.g., GLAM, Challinor et al. (2004)), air pollution modelling (e.g., AirGIS, Jensen (1998)), habitat
modelling in ecology (e.g., HABITAT, Haasnoot and Van Dewolfshaar (2009)), global change modelling
(Global Circulation Models), traffic modelling, etc.

In our work, we will only consider models that are: i) process-based models, i.e. models that describe
the behaviour of a system in terms of lower-level mechanisms in a bottom-up approach, as opposed
to empirical models, which are often based on statistical relationships extracted from observed data;
ii) deterministic models, as opposed to stochastic models; and iii) models that are defined on a two-
dimensional spatial domaina. We give here some notations that will be used throughout the document.

Numerical model For the sake of clarity, we will use in this document the term “model” in a very
restrictive way, to denote a numerical code, considered as a black-box, which calculates a number of
outputs (response variables) as a deterministic function of a given set of inputs. We will use the following
general notation:

Y = F(U1, . . . , UK) (1.1)

where K denotes the total number of model inputs, Uj denotes a given input of the model, Y denotes the
model output and F denotes the deterministic computer code. When the numerical code F is based on a
mathematical function, we will use the notation f to refer to this function.

Spatial domain: Ω ⊂ R2 denotes a spatial domain, x ∈ Ω is a point of the spatial domain (or a “lo-
cation”), and v ⊂ Ω is a connected subset, or “block”, “support”, “spatial unit”, “zone” or “region”, of
spatial domain Ω (Figure 1.1 on the facing page). ∣v∣ denotes the surface area of block v.

Spatially distributed model inputs: When a model input is spatially distributed over a spatial domain
Ω, we will often denote it by Zi instead of Ui— in order to stick to classical notations used in geostatisics.
The overall model input is denoted by {Zi(x) ∶ x ∈ Ω} or simply Zi, while Zi(x) denotes the value of
the model input at a particular point x ∈ Ω. Nevertheless, for sake of simplicity, we will sometimes
imprecisely use the notation Zi(x) to refer to the overall model input. Non spatially distributed inputs
will be refered to as “scalar inputs”, numbered from U1 to Uk, while spatially distributed inputs will be
numbered from Zk+1 to ZK . U = (U1, . . . , Uk) will denote the set of non spatially distributed inputs
only.

aWe will later discuss in §2.4 on page 72 how our case study, the NOE modelling chain, fits or not in these different categories.
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x

Figure 1.1: Spatial domain Ω

Spatially distributed model output: When a model output is spatially distributed over a spatial domain
Ω, we will denote the overall model output by {Y (x) ∶ x ∈ Ω} or simply Y , while Y (x) will denote the
value of the model output at a particular point x ∈ Ω. Nevertheless, for sake of simplicity, we will
sometimes imprecisely use the notation Y (x) to refer to the overall model output.

A spatial model with both spatially distributed inputs and output will thus be represented by the equa-
tion (Figure 1.2):

Y = F[U1, . . . , Uk, Zk+1, . . . , ZK]

= F[U, Zk+1, . . . , ZK]

numerical
model     

Figure 1.2: A spatial model with both spatially distributed inputs and output

1.1.2 Representing space in numerical models

In spatial models, spatially distributed data (model inputs or output) can be represented in various ways.
The choice of a space representation depends on the nature of the data handled. The two most common
types of representation are (Bordin 2002):

○ a regular grid of cells often refered to as a “mesh” or “grid”, denoted by G. Data are given or
computed at each centre point xi of cell ci of the mesh. This grid representation is mostly chosen
for continuous physical quantities of interest, such as temperature, rainfall or soil properties. Data
represented on a grid are usually stored as so-called “raster data” or simply “raster” in a GIS
software (Figure 1.3 on the following page, left);

○ a continuous and object-oriented representation, where objects under study are located in the usual
2D Euclidian space endowed with a Cartesian coordinate system. Objects can be point-shaped,
linear, polygonal or have a more complex shape. This representation is usually chosen for discrete
objects, such as trees, buildings, roads, plots of land. A convenient storage format for this type of
representation is a vector layer in a GIS software (Figure 1.3 on the next page, right).
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0 1 km

N

Figure 1.3: Representation of spatially distributed data: raster data (left: a zoom on the Digital Terrain Model of the
Orb Delta, cell size 5 m by 5 m); vector data (right: a zoom on the map of flood-exposed buildings and plots of land
on the Orb Delta)

In a single numerical model, these two ways of representing space (raster/vector) may be combined. It
is not in the scope of this document to describe other types of more complex space representations, in
which ad-hoc topologies are designed based on the properties of the system and processes under studyb.

1.1.3 Scale issues

A key notion in spatially distributed modelling is that of “scale”, and more specifically “scale in space”.
This vague term can refer to a number of characteristic lengths related to a process, a set of observations,
or a model. We offer to clarify this notion based on the work of Blöschl and Sivapalan (1995), who wrote
an exhaustive review on scale issues in hydrology and Wu et al. (2006) who discuss scaling in ecology.

Types of scale Blöschl and Sivapalan (1995) make a first distinction between i) the “process scale” or
“intrinsic scale”, which is the scale at which the phenomenon of interest operates, it cannot be chosen or
modified by the modeller; ii) the “observational scale”, “measurement scale” or “sampling scale” which
is the scale at which measurements are taken; and iii) the “modelling scale” or “analysis scale” which
is the scale at which a model is built. These various types of scales are of course related in some ways;
generally speaking, they must be commensurate with each other in order to build a relevant spatial model:
processes should ideally be observed and modelled at the scale they occur.

Components of scale: the scale triplet In addition, Blöschl and Sivapalan (1995) also suggest to
distinguish between three components of scale, which they refer to as the “scale triplet”. The components
of this triplet depend on the type of scale considered (process, observational or model scale). The scale
triplet related to the “process scale” is composed of:

bFor example, such ad-hoc topologies can be found in many 1D hydraulic models, in which the river stream is used as a spatial
reference and side storage cells are only positionned by a scalar distance away from the origin of the stream.
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○ the “spatial extent” of the process, that is, the overall spatial expanse of the phenomenon under
study (e.g., the total surface area of a floodplain);

○ the “space period” of the process, if it is periodic (e.g., the distance between dunes in the desert);

○ the “correlation length” for a stochastic process that exhibits some spatial correlation (e.g., the
range parameter of a Gaussian Random Field).

The scale triplet for the “observational scale” and the “modelling scale” is slightly different; it is com-
posed of (Figure 1.4):

○ the “spatial extent”, that is, the overall spatial expanse of a dataset or the study area covered by a
model;

○ the “support” (or “resolution”, “grain”), which is the finest resolution in space of a dataset within
which homogeneity is assumed. When data is represented on a regular grid (raster data), spatial
support is governed by the size ∣c∣ of cells ci. When data is represented in a continuous space
with an object-oriented approach (vector data), spatial support is related to the size of the smallest
resolvable objects (the minimum mapping units);

○ the “spacing”, that is, the characteristic spatial gap between two data points. For raster data,
the spacing coincides with the notion of support, and is governed by the size ∣c∣ of cells ci. For
vector data, the notion of spacing is relevant only if the objects do not entirely cover the 2D space:
spacing is then the characteristic distance between two objects.

All these notions are different but are often named with the same term “scale” in the literature. In this
thesis, we will try to clarify the meaning of “scale” anytime we use it.

Scaling “Scaling” is a major issue in spatially distributed modelling. This term is used to refer to
the problem of translating knowledge from one scale to another scale (Heuvelink 1998). For example,
numerical models are sometimes developed at small spatial scale (e.g., the scale of a single plant) but are
expected to produce indicators at a larger scale (e.g., a plot of cultivated land): this problem is known
as “upscaling”. The opposite issue (translating information from large scale to smaller) is known as
“downscaling”. In this thesis, we will focus on the procedure of “upscaling”; Blöschl and Sivapalan
(1995) suggest to split this procedure into two steps (Figure 1.5 on the next page): first step consists of

extent support spacing

Figure 1.4: Three alternative definitions of scale in space: spatial extent (a), support (b), and spacing (c)
Source : Blöschl and Sivapalan (1995)
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Figure 1.5: Upscaling as a two-steps procedure
Source : Blöschl and Sivapalan (1995)

“distributing” a number of small scale values to cover a large spatial extent with many small scale values
(e.g., producing a regular grid of harvestable yield across a plot of cultivated land from a small set of
point values); second step consists of “aggregating” these small scale values to produce a single large
scale value (e.g., calculating the total yield of a plot of cultivated land). We will use these notions of
“upscaling” and “aggregating” in the following chapters.

1.1.4 Spatially additive models

A family of spatial models will receive a particular attention in our research: the “spatially additive
models”.

In the case where model output Y (x) is spatially distributed, an important issue is the choice of the spatial
support over which it is observed. Model end-users may be interested in the overall spatially distributed
output {Y (x) ∶ x ∈ Ω} over spatial domain Ω (e.g., a map of annual rainfall over a catchment, a flood risk
map or a pollution map). But they may also want to study a single scalar property of the output over a
given spatial unit v ⊂ Ω: for example, the sum of Y (x) over v (e.g., total rainfall over a catchment), the
average value of Y (x) over v (e.g., the average porosity of a geological block), the maximum value of
Y (x) over v (e.g., the maximal pollutant concentration over a study area), some quantile of Y (x) over
v, or the percentage of v for which Y (x) exceeds a certain threshold, etc. As mentioned in §1.1.3 on the
preceding page, moving from spatially distributed Y (x) to a single scalar property over a given spatial
support ν is known as “aggregating”, which is one of the two steps of the “upscaling” procedure.

Aggregating many small scale values into a single large scale value may be very complicated, especially
when non-linearities are involved: for example, computing the hydraulic conductivity of a large support
v from many values of conductivity on smaller supports is not straightforward. Nevertheless, in many
environmental models, the physical quantities considered are spatially additive, that is, their large-scale
properties derive from small-scale properties by simple linear averaging (Chilès and Delfiner 1999). For
example, porosity, evapotranspiration or the daily amount of rainfall are spatially additive variables.

In this document, we will say that a spatial model F is “spatially additive” when two conditions are met,
as shown in Figure 1.6 on the next page:
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numerical
model     

Figure 1.6: A spatially additive model

○ it has a spatially distributed output {Y (x) ∶ x ∈ Ω};

○ the model end user is interested in the spatial linear average or the sum of the model output
{Y (x) ∶ x ∈ Ω} over a given spatial unit v ⊂ Ω.

We will denote by Yv the spatial average of the model output over a zone v ⊂ Ω:

Yv =
1

∣v∣
∫
x∈v

Y (x)dx (1.2)

When the spatially distributed output Y (x) is only computed at a number of point xi of the domain Ω,
then the output of interest is a weighted sum of the form ∑

i
wiY (xi).

1.1.5 Point-based models

In our work, particular attention will also be paid to another limited class of spatial models, in which
(Figure 1.7 on the following page):

○ at least some of the model inputs are spatially distributed;

○ model output is spatially distributed;

○ the value of model output Y (x) at a given location point x ∈ Ω depends on the set of scalar inputs
U = (U1, . . . , Uk) and on the value of spatially distributed inputs Zk+1(x), . . . , ZK(x) at that
same location x only.

Following Heuvelink et al. (2010a), we will use the term “point-based models” to refer to this class of
models. They are encountered in various fields of environmental and earth sciences, whenever spatial in-
teractions in the physical processes under study can be neglected in a first approximation. Some examples
of point-based models are: models that predict crop growth, evapotranspiration, pesticide leaching (Geo-
PEARL model, Tiktak et al. (2002)) or greenhouse gas emission. On the contrary, non point-based models
involve some spatial interactions in the description of the physical processes under study: for example,
models that simulate river flow routing are usually not point-based, as the water flow at a location x ∈ Ω

depends on the flow at other locations x′ ∈ Ω upstream.
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local
model    loc

Figure 1.7: A point-based model

In a point-based model, the model output Y (x) at a given point x ∈ Ω is a deterministic function of scalar
inputs U and of the values of spatially distributed inputs Zk+1(x), . . . , ZK(x) at that same location x;
we will use the terms “local code” or “local model”, denoted by Floc, to refer to this function. Hence, we
will say that a numerical model F is “point-based” if there exists a local code Floc such that:

∃Floc ∶ RK → R, ∀x ∈ Ω, Y (x) = Floc [U, Zk+1(x), . . . , ZK(x)] (1.3)

We insist on the fact that F and Floc are not the same functions: F is a function that takes as inputs the
overall spatially distributed inputs {Zi(x) ∶ x ∈ Ω} and the scalar inputs U and gives as an output the
overall field {Y (x) ∶ x ∈ Ω}. Floc is a function from RK to R that computes Y (x) at a single point x ∈ Ω

from the scalar inputs U and from the values Zi(x) of spatially distributed inputs at that same point x.

1.2 Sensitivity analysis

This second section aims to briefly introduce the reader to sensitivity analysis (SA) and to describe into
more details one specific family of sensitivity analysis methods, on which we focused in our work: the
variance-based global sensitivity analysis (VB-GSA). This section is a literature review without any inno-
vative content. We give a broad overview rather than an exhaustive review of SA and VB-GSA methods:
the interested reader will find more details in Saltelli et al. (2008) or de Rocquigny et al. (2008).

1.2.1 An overview of sensitivity analysis methods

“Sensitivity analysis” (SA) is better defined in relation to “uncertainty analysis” (UA). Both terms are
closely related but refer to distinct approaches. They gather a number of methods that aim at understand-
ing how sensitive models are to uncertain knowledge of inputs. “Uncertainty analysis” focuses on the
propagation of uncertainty sources through the model, and tries to quantify the resulting uncertainty on
model output. It allows robustness of model results to be checked. “Sensitivity analysis” goes one step
further: it is used to study how the uncertainty of a model output can be apportioned to different sources of
uncertainty in the model inputs. Sensitivity analysis aims at ranking sources of uncertainty according to
their influence on the variability of the model output. This ranking helps to identify inputs that should be
better scrutinized in order to reduce the variability of the model output. More generally, SA is also useful
to explore the response surface of a numerical model and to prioritize the possibly numerous processes
that are involved in it.
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Figure 1.8: General flowchart for sensitivity analysis
Source : adapted from de Rocquigny et al. (2008)

SA is now recognized as an essential component of model building (European Commission 2009b;
CREM 2009) and is widely used in different fields of environmental and earth sciences (Tarantola et al.
2002; Cariboni et al. 2007). Over the last fifteen years, a wide range of sensitivity analysis techniques have
been developed, and a number of guidelines have been suggested to choose the appropriate SA method
for a given problem (Saltelli et al. 2008; de Rocquigny et al. 2008; Iooss 2011; Helton and Davis 2006;
Pappenberger et al. 2006; Cariboni et al. 2007). Most SA methods follow a similar flowchart composed
of four steps (Figure 1.8):

1. description of the model F under study and choice of a measure of model output variability

2. modelling of uncertainty sources

3. uncertainty propagation

4. ranking of uncertainty sources

We give below some details on each step. For the sake of clarity, we consider a numerical model Y =

F(U1, . . . , UK) where both model inputs Ui and model output Y are all scalar variables (non spatially
distributed).

1.2.1.1 Measure of model output variability

In order to study the variability of the model output Y , one must choose a measure of this variability.
Various measures can be considered, such as: the variance of model output var(Y ); the derivative of
model output ∂Y /∂Ui at a given point in the input space; the probability P(Y ≥ Ymax) that model output
exceeds a given threshold; the overall pdf or cdf of the model output, etc. One can also consider the
overall variability of the model output Y in a qualitative way, using graphical methods.
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1.2.1.2 Modelling uncertainty sources

Model inputs Ui are almost always fraught with uncertainties, which arise from inaccuracy or lack of
data, model assumptions, measurement errors, incomplete knowledge, etc. One main distinction can be
made between aleatory uncertainty, which is related to the natural variability of the quantities of interest
and which can not be reduced, and epistemic uncertainty, which stems from a lack of knowledge and can
often be reduced—see Walker et al. (2003) and Refsgaard et al. (2007) for an enlightening discussion
on the nature of uncertainty, which is not in the scope of this document. Numerous frameworks can
be chosen to model these various types of uncertainty on model inputs Ui (de Rocquigny et al. 2008):
deterministic frameworks, in which a set of alternative discrete values are associated with each input Ui;
probabilistic frameworks, in which inputs Ui are considered as random variables with an identified pdf
pi (O’Hagan 2012); second-order probabilistic frameworks, in which parameters of pdf pi are themselves
uncertain; fuzzy logic frameworks, etc.

1.2.1.3 Uncertainty propagation

Once input uncertainties have been identified and modelled, they must be propagated through the numer-
ical model F , in order to assess their impact on the variability of the model output Y . For that purpose,
it is necessary to choose a method to “explore” the numerical model F . Broadly speaking, we suggest to
distinguish four families of methods for model exploration:

○ intrusive methods: analytical study of mathematical function f or modification of the numerical
code F ;

○ screening methods: exploration of numerical code F based on a relatively small number of
simulations (typically < 1000), by varying the value of inputs Ui in a deterministic way; this
family of approaches is described in the Design of Experiments (DOE) literature;

○ intensive sampling-based methods: these methods resort to extensive exploration of the space of
possible model inputs with ensuing multiple runs (typically > 1000) of numerical code F , usually
using some sort of random or quasi-random sampling in the space of input factors Ui;

○ meta-modelling: approximation of numerical code F by a surrogate model F ′ with smaller CPU
cost, using a small number of simulations of the original code F (typically < 1000). Meta-
modelling (also know as “emulation”) is not really a method for model exploration on its own:
it is a way to get a simplified (less CPU intensive) numerical code that mimics the initial code F .
Surrogate model F ′ must then be explored by one of the above methods (intrusive, screening or
intensive sampling). Ratto et al. (2012) present some applications of meta-modelling techniques
to sensitivity analysis of environmental models.

1.2.1.4 Ranking model inputs

Once uncertainty propagation is completed (§1.2.1.3), sensitivity analysis aims at ranking uncertain
model inputs Ui based on their impact on the variability of model output Y—which is measured as
discussed in §1.2.1.1 on the previous page. Some SA methods produce a qualitative ranking of model in-
puts, usually separating them into two groups: those inputsUi that have a large influence on the variability
of Y , and those that do not. Other SA approaches are quantitative: they are based on the calculation of
so-called “importance measures” for each model input Ui with respect to the measure of variability of
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model output Y . These importance measures are often refered to as “sensitivity indices”. They depend
not only on the equation of the model F under study, but also on the uncertainty range of each model
input Ui.c

1.2.1.5 Local/global sensitivity analysis

SA techniques are also often divided into “local” or “global” methods. Local methods only consider the
variation of model output Y when model inputs Ui vary locally around their nominal values at a single
base-point in the input space; they are related to the partial derivatives of the modelF with respect to each
input Ui. On the contrary, global methods study the variation of Y when model inputs Ui explore more
widely the space of input uncertainties, with all inputs Ui varying at the same time. Global methods are
generally more costly than local methods in term of computational burden, but they give a more complete
information.

1.2.1.6 Choice of an appropriate SA method

We display in Table 1.1 on the following page the main methods of sensitivity analysis discussed in the
literature, classified according to: i) their measure of model output variability, and ii) their approach for
uncertainty propagation. In an operational context, Iooss (2011) suggests to use three criteria to choose
an appropriate SA method to study a given numerical model F :

○ the type of information needed—qualitative or quantitative ranking of model inputs, identification
of the most/least influent inputs, etc. Saltelli et al. (2008) use the term “SA setting” to refer to the
various objectives of a sensitivity analysis (factor fixing FF, factor prioritizing FP);

○ possible hypotheses on model complexity—linearity, monotonicity, regularity, etc.;

○ the CPU cost of the method—it usually depends on the cost of a single simulation of model F , on
the number of simulations of F needed, and on the number K of model inputs.

cIn that sense, they differ from other “sensitivity” meaures which are only related to the partial derivatives of the equations of a
model and which do not depend on the uncertainty range or pdf of the inputs.
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1.2.2 Variance-based global sensitivity analysis

We focus in this thesis on a specific family of sensitivity analysis methods: the variance-based global
sensitivity analysis (VB-GSA). This choice was made at the very beginning of our research in order to
narrow down the scope of the work. VB-GSA was chosen because it is one of the most common and
popular SA methods. It explores widely the space of uncertain input variables and is suitable for complex
models with non-linear effects and interactions among inputs. Other methods of sensitivity analysis (one-
at-a-time, adjoint SA . . . ) are not considered nor discussed in this thesis. In this section, we give a broad
presentation of the mathematical basis of VB-GSA. Please refer to Saltelli et al. (2008); Lamboni (2009);
Da-Veiga (2007); Lavergne (2006) for more details.

1.2.2.1 Overview

In VB-GSA, the measure of variability of model output Y is its variance var(Y ). Uncertainty on model
inputs Ui is described in a probabilistic framework, by identifying a pdf pi for each model input Ui.
Besides, inputs Ui are supposed to be independent—Kucherenko et al. (2012), Li et al. (2010) or Mara
and Tarantola (2012) suggest ways to overcome this restrictive hypothesis. Uncertainty is propagated
through the model F either with an intensive sampling-based approach, or using a meta-model. Finally,
VB-GSA is quantitative, and leads to the computation of importance measures named “variance-based
sensitivity indices” of various orders—in most cases, only “first” and “total” order sensitivity indices are
considered.

1.2.2.2 A decomposition of functional variance

In order to introduce the VB-GSA approach, let us first describe the space of model inputs Ui as a K-
dimensional unit cube. We consider a square-integrable function f ∶ [0,1]K → R. VB-GSA is based on
the expansion of f into a sum of elementary functions fα of increasing dimensionality:

∀(U1,⋯, UK) ∈ [0; 1]K , f(U1,⋯, UK) = ∑
α⊆{1,...,K}

fα(Uα) (1.4)

where Uα = (Ui)i∈α denotes a subset of the set of model inputs (U1,⋯, UK), the empty set is denoted by
U∅ and f∅ is a constant. The expansion given in Eqn. (1.4) always exists but is not necessarily unique. It
is sometimes refered to as a High-Dimensional Model Representation (HDMR) (Saltelli et al. 2008), and
was initially proposed by Hoeffding (1948).

A particular HDMR expansion is obtained when the condition Eqn. (1.5) is met:

∀α ⊆ {1, . . . ,K} , ∀i ∈ α, ∫

1

0
fα ⋅ dUi = 0 (1.5)

Under condition Eqn. (1.5), the expansion given in Eqn. (1.4) exists and is unique. Elementary functions
fα are then orthogonal:

∀α,β ⊆ {1, . . . ,K}
2 with α ≠ β, ∫

U∈[0;1]K

fα ⋅ fβ ⋅ dU = 0 (1.6)

To understand this particular and unique HDMR decomposition in terms of sensitivity analysis, let us
now switch to a different framework. We now study a model Y = f(U1, . . . , UK), in which Ui are i.i.d.
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scalar random variables with uniform pdf in [0; 1], such that EY 2 < +∞. From Eqn. (1.4) on the previous
page and from the property of orthogonality [Eqn. (1.6)], one can derive an expansion of the variance of
f as a sum of the variances of elementary functions fα:

var(f) = ∑
α⊆{1,⋯,K}

var(fα) (1.7)

Besides, by integrating Eqn. (1.4) with respect to each model input Ui, under condition Eqn. (1.5), we
can get an expression of elementary functions fα:

f∅ = ∫

[0;1]K

f(U1, . . . , UK)dU1 . . . dUK [Eqn. (1.4) & Eqn. (1.5)]

= E (Y ) (by definition of E (Y ))

f1(U1) = ∫

[0;1]K−1

f(U1, . . . , UK)dU2 . . . dUK − f∅ [Eqn. (1.4) & Eqn. (1.5)]

= E (Y ∣ U1) −E(Y ) (by definition of E (Y ∣ U1))

f1,2(U1, U2) = ∫

[0;1]K−2

f(U1, . . . , UK)dU3 . . . dUK − f1(U1) − f2(U2) − f∅

= E(Y ∣ U1, U2) −E (Y ∣ U1) −E (Y ∣ U2) +E(Y )

Elementary functions fα can thus be written as a linear combination of conditional expectations of model
output Y given model inputs Ui. A general expression of elementary function fα is (see Appendix §A on
page 200 for a proof):

∀α ⊆ {1,⋯,K}, fα = ∑
β⊆α

(−1)∣α∣−∣β∣ ⋅E(Y ∣ Uβ) (1.8)

in which ∣α∣ and ∣β∣ denote the cardinal of subsets α and β, respectively.

It must be noted that the unique HDMR decomposition we obtain is very similar to the ANOVA decom-
position scheme (Archer et al. 1997).

1.2.2.3 Definition and properties of variance-based sensitivity indices

Sobol’ (1993) used the functional variance decomposition of f given in Eqn. (1.7) to define importance
measures named “variance-based sensitivity indices”—sometimes now found in the literature as “Sobol’
sensitivity indices” or simply “sensitivity indices”.

Definition (First-order sensitivity indices). Sobol’ (1993) defines first-order sensitivity index of model
input Ui with respect to model output Y , denoted by Si or SUi , as the following ratio:

∀i ∈ {1,⋯,K}, Si =
var(fi)
var(Y )

=
var [E(Y ∣ Ui)]

var(Y )
(1.9)

First-order sensitivity index Si ∈ [0; 1] measures the main effect contribution of the uncertain model input
Ui to the variance of model output Y . It is the expected part of output variance that could be reduced by
fixing the value of the uncertain input Ui.
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Definition (Higher order sensitivity indices). For any subset Uα = (Ui)i∈α of model inputs, with α ⊆

{1, . . . ,K}, high order sensitivity index Sα is defined as:

∀α ⊆ {1, . . . ,K} , Sα =
var(fα)
var(f)

(1.10)

The “order” of sensitivity index Sα is equal to the cardinal ∣α∣ of subset α, that is, the number of inputs
Ui included in subset Uα.

It follows from variance decomposition [Eqn. (1.7) on the facing page] that sensitivity indices Sα of all
orders sum up to 1:

∑
α⊆{1,...,K}

Sα = 1 (1.11)

As a consequence, sum of first-order sensitivity indices Si is always equal or smaller than 1:

∑
i∈{1,...,K}

Si ≤ 1 (1.12)

The difference 1 −∑i Si accounts for the contribution of all interactions between model inputs Ui to the
model output variance var(Y ).

Definition (Total-order sensitivity indices). Finally, Homma and Saltelli (1996) suggest to define another
importance measure named “total-order sensitivity indices”, denoted by STi or STUi , as the sum of all
sensitivity indices in which model input Ui is involved:

∀i ∈ {1, . . . ,K} , STi = ∑
α⊆{1,...,K}, i∈α

Sα (1.13)

STi ∈ [0; 1] represents the part of output variance that is explained by model input Ui and all its interac-
tions with other inputs Uj . It is the expected residual part of output variance if all model inputs but Ui
were fixed. It was shown (Saltelli et al. 2008) that total-order sensitivity indices STi can also be written
as:

STi =
E [var(Y ∣ U∼i)]

var(Y )
(1.14)

in which U∼i = (Uj)j≠i denotes all model inputs but Ui. It follows from Eqn. (1.11) and Eqn. (1.13) that
the sum of total-order sensitivity indices always sum up to more than 1:

∑
i∈{1,...,K}

STi ≥ 1 (1.15)

Sensitivity indices can be used to identify the model inputs that account for most of the model output
variability (Ui with high first-order indices Si); they may lead to model simplification by identifying
model inputs that have little influence on the model output variance (Ui with low total-order sensitivity
indices STi); they also allow discussing the contribution of interactions between model inputs to the
model output variance (comparison between first and total-order sensitivity indices).
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1.2.2.4 Grouping model inputs

VB-GSA offers the possibility to define first and total-order variance-based sensitivity indices associated
with a “group of model inputs”. Let consider a group Uα = (Ui)i∈α of model inputs with α a subset of
{1, . . . ,K}. First and total-order indices of the group, which we denote by Sgr.

α and ST gr.
α , are defined by:

Sgr.
α = ∑

β⊆α

Sβ and ST gr.
α = ∑

β⊆{1,...,K}

α∩β≠∅

Sβ (1.16)

Grouping model inputs is often used to lower the CPU cost of the estimation of sensitivity indices when
the numberK of inputs is too large (typicallyK ≥ 20). Besides, grouping is useful to cope with correlated
inputs (such inputs can be gathered into a single group). Finally, we suggest that grouping can also be
helpful to perform VB-GSA in a sequential way: first, a small number of input groups is identifed—
usually, the composition of the groups has some physical meaning for the modeller, e.g., in a crop model
a parameter describing clay content of a soil horizon will be grouped with other model inputs describing
soil properties, while an input related to daily rainfall will be grouped with other climate variables. Then,
a first VB-GSA is performed to estimate sensitivity indices associated with each group of inputs. If a
group appears to have a large influence on the variance of model output (high group indices Sgr.

α and
ST gr.

α ), then it will be split into a number of smaller groups. A second VB-GSA will be performed
to identify which of these smaller groups are the most influential, and so on, until the most influential
individual inputs Ui are identified.

1.2.2.5 Estimation of variance-based sensitivity indices

Reminder: we only briefly present here the estimation of variance-based sensitivity indices for a numer-
ical model Y = F(U1, . . . , UK) where all model inputs Ui are scalar random variables (non spatially
distributed). The case of spatially distributed inputs is one of our research items and will be discussed in
Chapter 3.

The calculation of variance-based sensitivity indices is closely related to the choice of a method for the
exploration of numerical model F (§1.2.1.3 on page 26): intrusive methods, screening methods, intensive
sampling-based methods or meta-modelling. First, for some modelsF , it may possible to derive the exact
analytical expression of sensitivity indices from the equations of the model (intrusive approach). Regard-
ing non-intensive screening methods, there is, to our knowledge, no specific design of experiments nor
any ad-hoc estimators to calculate variance-based sensitivity indicesd. On the contrary, a large body of
scientific literature is available on various intensive sampling strategies and associated estimators to cal-
culate variance-based first-order and total-order sensitivity indices from a large number of simulations of
a numerical code F . These techniques follow a similar three steps procedure: i) generate an input matrix
through an appropriate random sampling method, usually some Quasi Monte Carlo sampling scheme or
other space-filling design (Pronzato and Mueller 2012); ii) calculate an output vector by evaluating the
numerical codeF at each line of the input matrix ; iii) estimate variance-based sensitivity indices from the
output vector. Here are some of the most popular methods encountered in the literature: Sobol’ estimators
using LP-τ samples (Sobol’ 1993), Winding Stairs approach (Jansen et al. 1994; Chan et al. 2000), FAST
sampling (Cukier et al. 1978; Saltelli et al. 1999), Random Balance Design (Tarantola et al. 2006), use of
replicated Latin Hypercube Sampling (Tong 2010), etc. It is not in the scope of this document to make a

dCampolongo et al. (2011) shows the similarity between the Elementary Effects approach and VB-GSA and suggest to use a
“radial one-at-a-time” design of experiment to estimate total-order sensitivity indices.
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complete review of these sampling strategies and estimators: the interested reader will find more details
in Saltelli et al. (2008); de Rocquigny et al. (2008); Lilburne and Tarantola (2009); Gatelli et al. (2009).

In our research, we have always used the same algorithm to estimate first and total-order variance-based
sensitivity indices, using the estimation procedure suggested by Saltelli et al. (2010):

○ generate two input samplesM1 andM2 of sizeK×N in the space of model inputs, whereK is the
number of model inputs (or groups of model inputs) and N will be refered to as the “base sample
size”. The two samples are LP − τ sequences where each input Ui is sampled from its pdf pi. The
choice of a base sample size N depends on the accuracy needed for sensitivity indices estimates;
it has to be of the form 2m to ensure that the desired properties of the LP − τ sequences hold;

○ combine these two samples M1 and M2 to generate a new, longer sample Mtot of size K ×Ntot

where Ntot will be refered to as the “total sample size”. Ntot depends on the base sample size and
on the number of model inputs (or groups of model inputs): Ntot = (K + 2) ⋅N . Details on the
combination procedure are given in Appendix §A on page 200;

○ calculate an output vector by evaluating the numerical codeF at each line of the total sampleMtot;

○ estimate sensitivity indices for each model input Ui (or each group of model inputs) from the
output vector. The estimators are those suggested by Saltelli et al. (2010); they are given in
Appendix §A on page 200.

1.3 Chapter conclusion

In this chapter, we have given some elements of theoretical background, definitions and notations to better
specify the subject of our research.

First we have clarified the notion of “spatial model”: for us, this term will refer to a numerical model in
which some of the inputs and/or some of the outputs are spatially dsitributed over a 2D spatial domain. In
such numerical models, spatially distributed inputs/output can be stored as raster or vector data. Besides,
the notion of “spatial scale” can be better grasped through the scale triplet of “extent”, “support” and
“spacing”. We have also given the definitions of two subclasses of spatial models that we will focus on:
i) the spatially additive models, in which the model end user is interested in the spatial linear average or
the sum of some quantity of interest over a given spatial unit, and ii) the point-based models, in which
spatial interactions in the physical processes under study can be neglected in a first approximation.

Then, we have displayed a brief overview of sensitivity analysis techniques and presented the four steps
they are composed of: i) definition of the model under study and choice of measure of model output
variability; ii) modelling of uncertainty sources; iii) uncertainty propagation; and iv) ranking of model
inputs. We finally portrayed into more details the theoretical basis of variance-based global sensitivity
analysis (VB-GSA). We defined the first and total-order variance-based sensivity indices, and explained
which estimation procedure will be used throughout our work.

From this material, we are now able to give a more detailed description of the two methodological ques-
tions that we will try to answer in the following chapters (Figure 2 on page 14):

(1) handling spatially distributed inputs in VB-GSA: the estimation procedure presented in §1.2.2.5
on the preceding page to compute variance-based sensitivity indices is only appropriate for scalar
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and independent model inputs Ui. A first question is: how to compute variance-based sensitivity
indices SZ and STZ for a spatially distributed model input {Z(x) ∶ x ∈ Ω}, that may exhibit spatial
auto-correlation? We will try to adress this issue in Chapter 3 with a very pragmatic perspective, by
exploring the various numerical tricks that can be used to compute SZ and STZ . Besides, we will
focus our research on intensive sampling-based methods to estimate SZ and STZ , thus ignoring
a number of other possibilities discussed in §1.2.1.3 on page 26 (intrusive methods, screening or
meta-modelling);

(2) scale issues in VB-GSA: the theoretical background of VB-GSA presented in this chapter does not
account for the notion of “scale”, which is of utmost importance in spatial modelling (§1.1.3 on
page 20). We will try to adress this issue in Chapter 4 by using the concepts, notations and results
from the geostatistics theory. More specifically, we will focus our research on the specific case
of spatially additive and point-based models. We will try to answer the following question: in
a spatially additive and point-based model, how do variance-based sensitivity indices depend on
the scale of the model output Y , and more precisely on the three components of the scale triplet:
support, spacing and extent?
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Chapter 2

Building a modelling framework for
cost-benefit analysis of flood
management plans
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FLOOD risk research makes intensive use of numerical modelling. Over the last decades, many
numerical models have been developed in order to i) forecast flooding events, ii) assess the impacts
of potential flooding events in terms of human well-being, economic and social development,

and iii) design efficient flood management policies. These models simulate hydrological, hydraulic and
economic processes over a given study area. They are usually spatially distributed and often make use of
GIS tools.

In this thesis, we look into one specific family of flood-related models, which are based on a common
approach for the economic appraisal of flood risk management plans: the “cost-benefit analysis based on
avoided damages” approach (CBA-AD). As mentioned in the general introduction, the applied objective
of the thesis is to investigate the propagation of uncertainty through this CBA-AD approach. For that
purpose, we first had to design a general modelling framework to describe the CBA-AD approach, in
order to perform its uncertainty and sensitivity analysis. This modelling framework, named NOE, was
then implemented into a computer code and applied on a number of case studies, including the Orb Delta
study site, which will be used as a real-world test case for VB-GSA of spatial models throughout this
document.

The goal of this chapter is to present both the NOE modelling framework and its application to the Orb
Delta study site. It is divided into three sections. The first section §2.1 starts with some elements of
context on flood risk management and the economic appraisal of flood mitigation projects. It introduces
the reader to the CBA-AD approach and surveys the literature on the subject. Next, the second section
§2.2 explains why and how we built a modelling framework named NOE to describe the CBA-AD ap-
proach. As we will detail it, the NOE modelling framework does not pretend to cover the entire variety of
CBA-AD studies, but rather to clarify the structure, inputs and outputs of the CBA-AD flowchart, in the
view toward performing its uncertainty and sensitivity analysis. Then, section §2.3 briefly mentions how
we implemented the NOE modelling chain into an efficient computer code, and presents the various case
studies on which the NOE code has been applied. In particular, it portrays the Orb Delta study site, which
will be used as the main case study in the thesis. Finally, in the chapter conclusion (§2.4), we make some
general comments on the scope and limitations of the NOE modelling framework, and stress a few key
points that will prove important to carry out its sensitivity analysis.
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2.1 Cost-benefit analysis of flood risk management plans

2.1.1 Flood risk and flood management policies

Flooding is one of the most damaging natural hazards in Europe. In France, floods threaten around
two millions people, one third of municipalities and cost over 250Me per year—approximately 80% of
economic losses due to natural hazards (MEDD 2004). These figures are worryingly likely to rise in
the next decades, as flood-prone areas continue to be developed under the pressure of demographic and
economic growth. In addition, climate change may result in more extreme meteorological events and
increase flood frequencies and magnitudes (Parry et al. 2007).

In order to prevent floods, protect people and assets from flood damage and prepare our societies to
face such extreme events, public authorities implement various flood risk management policies. In the
past, these policies were mainly concerned with structural measures designed to prevent flood hazard
(e.g., levees, dams, channel improvement, etc.). Nowadays, flood risk management policies also include
non-structural measures that aim at i) reducing vulnerability of flood-exposed assets; ii) controlling land
planning in flood-prone areas; and iii) improving crisis management (Ledoux 2006). In Europe, since
the approval of the EU Flood Directive (2007/60/EC) in 2007, member states have to establish flood risk
management plans combining prevention, protection and prepardness, in all flood-prone river basins and
coastal areas. In France, a similar framework was adopted in 2003, when integrated flood management
plans named PAPI (“Programmes d’Actions de Prévention des Inondations”) were introduced (MEDDTL
2011).

2.1.2 Economic appraisal of flood management policies

For project prioritisation, planning and monitoring, the assessment of flood risk management plans is
needed. These appraisals must consider the various aspects of a flood management plan, including its
economic efficiency, its technical feasibility, its environmental and social impacts, etc. They require a
good understanding of the components of flood risk (flood hazard, vulnerability, resilience, etc.), and use
knowledge from numerous fields of Science such as hydrology, hydraulic, economy (Messner et al. 2007;
Hubert and Ledoux 1999; Ledoux et al. 2003).

One of the most common methods for the appraisal of flood risk management plans is the “cost-benefit
analysis” approach (CBA). CBA assesses the economic efficiency of a policy by comparing its costs and
benefits, both converted to a monetary unit, over a conventional length of time (European Commission
2008). This approach is recommended for the economic appraisal of flood risk management plans in the
EU Flood Directive. In France, it is compulsory for local authorities and water managers to produce a
CBA of their PAPI flood management plan when they claim national subsidies (MEDDTL 2011).

2.1.3 Cost-benefit analysis based on avoided damages (CBA-AD)

Generally speaking, all costs related to a flood management policy should be included in a CBA: direct
investment and maintenance costs, but also monetized negative social impacts or environmental impacts
of the policy, such as landscape deterioration. In the same way, all benefits of the policy should be
considered, including possible social benefits such as the recreational use of a lake resulting from a dam
construction. However, for practical reasons, most CBA studies only account for the “main”—in terms
on monetary amount—costs and benefits of the policy. Hence, assessing policy costs often comes down
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to the estimation of the direct investment and maintenance costs. In addition, it is most often assumed
that the largest share of the benefits can be measured by the monetized amount of flood damages that
will be spared thanks to the flood risk management policy. We will use the term “Cost-Benefit Analysis
based on Avoided Damages” (CBA-AD) to refer to this somehow restrictive framework for CBA of flood
risk management policies (Erdlenbruch et al. 2008). CBA-AD is almost the only approach encountered
in French case studies for the appraisal of structural flood management plans, and is also widely used in
other European countries.

In the literature, CBA-AD studies vary in their aim, their scope, their scale and the data used. In order
to propose a general modelling framework for CBA-AD studies—as we will explain it later in §2.2 on
the following page—we surveyed a number of academic papers and reports that discuss the use of this
approach for the economic assessment of flood risk management policies. Messner et al. (2007) dis-
play guidance and recommendations for the economic appraisal of flood risk, based on the outcomes of
the European project FLOODsitea; they propose a flowchart for cost-benefit analysis based on avoided
damages (Messner et al. 2007 p.21), give a clear overview of the best practices in Europe and survey a
number of CBA-AD studies and other guidelines across Europe (Messner et al. 2007 p. 63). Merz et al.
(2010) extensively discuss the issue of flood damage assessment. The Flood Hazard Reseach Centerb

published a handbook on assessment techniques to evaluate the benefits of a flood risk management pol-
icy, known as the Multi-Coloured Manual (Penning-Rowsell et al. 2005). The Queensland Government
also issued guidance for flood damage assessment (DNRM 2002), as well as the US Army Corps of En-
gineers (Baecher et al. 2000). Bournot (2008) reviewed thirty French projects of flood risk management
and presented how their economic relevance was assessed. Jonkman et al. (2004) discussed the use of
cost-benefit analysis for flood damage mitigation policies in the Netherlands. Erdlenbruch et al. (2008)
presented a CBA-AD study on the Orb river (Hérault, France). Finally, Achleitner et al. (2010) studied
the flood protection structures in the Ötztal valley (Tyrol, Austria).

We also looked into technical reports that describe into details how cost-benefit analyses were carried out
for four different flood risk management plans in France. A first group of three case studies are located
along the Rhône River.c These studies include: a project of dike strengthening and heightening on the
river reach between Fourques and Beaucaire; a project to improve the water storage capacity of the two
small islands of La Motte and L’Oiselet, upstream of Avignon; a larger project that aims at renovating old
floodplains along the lower reaches of the Rhône river. A last case study was considered in Bretagne in
the Vilaine floodplain close to the city of Redon.d

Finally, we also read the existing guidelines that French national or local authorities have published on the
CBA-AD approach for the economic appraisal of flood risk management plans. These guidelines aim to
help experts in environmental consultancy firms produce relevant and rigorous CBA-AD assessments, and
assist the local contracting authorities in their claim for public subsidies. We surveyed four guidelines,
published respectively by: the Plan Rhône, a public water management body along the Rhône river
(Ledoux Consultants 2010); the European Center for Flood Risk Preventione (CEPRI 2011); the Gard
Water Committee (GERI 2012); and the Ministry of Ecology (MEDDTL 2011 Appendix 4).

This literature review does not pretend to be exhaustive. Its main objective was to give us the foundations
to build a general modelling framework that could depict the CBA-AD studies. This modelling framework
named NOE is presented in next subsection §2.2 on the following page.

ahttp://www.floodsite.net
bAn interdisciplinary centre based at Middlesex University, http://www.mdx.ac.uk/research/areas/geography/flood-hazard
cWe worked on these case studies as part of a larger project on uncertainties in cost-benefit analysis of flood risk management

plans, funded by the Plan Rhône (http://www.planrhone.fr).
dThese four case studies will be further described in §2.3.3 on page 70.
eCEPRI, http://www.cepri.net

http://www.floodsite.net
http://www.mdx.ac.uk/research/areas/geography/flood-hazard/
http://www.planrhone.fr
http://www.cepri.net
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2.2 NOE modelling framework for cost-benefit analysis based on
avoided damages

In this section, we give a detailed description of the NOE modelling framework, whose purpose is to
depict cost-benefit analyses of flood risk management plans based on the “avoided damages” approach
(CBA-AD studies, §2.1.3 on page 38). The motivations and methods of this modelling work are given
in §2.2.1. They are followed by some important definitions in §2.2.2, and by a detailed description of
the NOE modelling chain from §2.2.3 to §2.2.8. The aspects related to the numerical implementation of
the NOE model and its application to different case studies will be discussed in the next section §2.3 on
page 58.

2.2.1 Motivations & methods

As mentioned in the chapter introduction, the applied goal of this thesis is to carry out an uncertainty and
sensitivity analysis of the CBA-AD studies. As a preliminary step, we had to design and implement a
modelling framework to describe these CBA-AD studies. We briefly expound here our motivations and
objectives for this modelling work.

Motivations Two reasons motivated our need to design a modelling framework for CBA-AD studies.
First, as explained by Saltelli et al. (2008) or de Rocquigny et al. (2008), the very first step of an un-
certainty and sensitivity analysis is to properly define the system under study: one needs to specify the
boundary of the model, its inputs, its outputs. Second, as mentioned in §1.2.2.5, most sensitivity anal-
ysis techniques require to run many simulations of the model under study (e.g., more than thousands
simulations are needed in the sensitivity analysis methods based on intensive sampling). Hence, another
preliminary step of uncertainty/sensitivity analysis is to implement the model into a convenient computer
code, that can be run a thousand times or more with reasonable effort from the modeller. To meet these
two requirements for sensitivity analysis, it thus appeared necessary to design a modelling framework for
CBA-AD studies and to develop an efficient computer code for it.

Methods CBA-AD studies broadly consist of a comparison of the costs of a flood management plan
with its benefits, which are measured by the monetized amount of flood damages that will be avoided,
each year on average, thanks to the plan. In the academic papers, technical reports and guidelines we
surveyed, the CBA-AD studies vary in their aim, their scope, their scale and the data used (§2.1.3 on
page 38). Nevertheless, most of them follow a similar flowchart that combines hydrological, hydraulic
and economic modelling as well as GIS-based spatial analysis. Our method here is to propose a general
modelling framework, named NOE, that could depict this common flowchart. We insist on the fact that
our work is by no means an attempt to make an exhaustive review of cost-benefit analyses applied to
flood management policies. Instead, the NOE modelling framework aims to give a clear description of
the CBA-AD studies in order to:

○ define a number of terms that will be used throughout this thesis;

○ cleary define the boundaries, the inputs and the outputs of the system under study, which is a
requirement to carry out sensitivity analysis.
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We built the NOE model so that it could account for the various practices that we encountered in our
literature review. We will describe how well these various practices fit into the modelling framework we
suggest to adopt. However, we do not pretend to cover entirely the variety of CBA-AD studies applied to
flood risk assessments: hence, we will also discuss the limitations of the NOE framework when needed.

2.2.2 Some definitions first

Before describing the flowchart of the NOE model, we give definitions of some important terms. It is not
the scope of this manuscript to define general and widely used notions such as “flood risk”, “flood hazard”,
“exposure” or “vulnerability”. The interested reader will find such definitions in European Commission
(2010) or Ledoux (2006).

Study area We will use the term “study area” to refer to a well-identified and limited floodplain, char-
acterised by its geophysical attributes, but also its landuse and all man-made infrastructures, buildings
and activities. Typical size of floodplains considered in CBA-AD studies ranges from 10 to 1 000 sq. km.

Flood management policy We will equally use the terms “flood management plan” or “flood manage-
ment policy” to refer to a set of structural and non-structural measures designed to reduce flood risk on a
study area, by preventing flood hazard and/or reducing vulnerability of assets. We will more precisely use
the term “flood-control measures” to refer to structural measures only, such as levee and dam construction
or channel improvement.

Present/future situation We will use the terms “present situation” and “future situation” to describe
the state of a study area in relation to a given flood management plan: “present situation” (resp. “future
situation”) will refer to the state of the area before (resp. after) the implementation of the flood risk
management plan (Figure 2.1).

2.2.3 Overview of the NOE modelling framework

We choose to describe the NOE model as a combination of “steps” or “modules” (Figure 2.2 on page 43).
These steps may be not be clearly separated in all the CBA-AD studies we reviewed, but they will prove
useful to clarify the description of input data, intermediate outputs and final outputs. The very last step of

Figure 2.1: Flood-prone study area: present situation (left); future situation after levee construction (right)
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the NOE flowchart is the comparison of the costs and benefits of a flood management policy, that leads
to the computation of performance indicators such as the Net Present Value (NPV [e]). The expected
benefits of a flood management policy are partly based on the estimation of the so-called “Average An-
nual Avoided Damages” (∆AAD) [e/year]), which is the amount of annual expected flood losses that is
reduced thanks to the policy. The computation of the ∆AAD indicator requires to estimate flood damages
and probabilities of occurence for a range a flood scenarios of various magnitudes. All these steps are
described into more details in §2.2.4 to §2.2.8 on pages 42–51. We made the deliberate choice to start the
description from the end (bottom) of the NOE modelling flowchart.

2.2.4 Comparison of costs and benefits

The ultimate goal of CBA-AD studies is to produce an indicator measuring the economic efficiency of
a flood management plan, by comparing its benefits with its costs. Both flow of benefits and flow of
costs are observed over a given length of time R (usually R ranges from 30 to 50 years). Bi (resp. Ci)
denotes the expected benefits (resp. costs) of the plan at year i. Benefits and costs are adjusted for the
time value of money and converted into present value amounts using a discount rate, denoted by τi at year
i. Both R and discount rates τi have conventional values that are usually fixed by national or European
authorities (European Commission 2008). Two main efficiency indicators are met in the literature to
compare discounted costs and benefits:f

○ the Net Present Value of the policy (NPV [e]), defined as:

NPV =
R

∑
i=0

τi ⋅ (Bi −Ci) (2.1)

○ the Hicks ratio (H [dimensionless]), defined as:

H =

R

∑
i=0
τi ⋅Bi

R

∑
i=0
τi ⋅Ci

(2.2)

A positive NPV—or a Hicks ratio greater than 1—indicates that the benefits generated by the flood risk
management plan outweigh its costs. The larger the NPV value is, the more efficient the policy is.

Costs of the policy The costs of a flood management plan usually include at least the initial investment
costs CI and the maintenance costs CM—CEPRI (2011) details the various components of these two
costs. A common assumption found in CBA-AD studies is to attribute investment costs CI to time step
i = 0, and to consider that maintenance costs CM are constant over the length of time R. This is just
an average view of reality; if detailed data are available on these costs—e.g., if successive phases of
the flood management plan are scheduled— investment and maintenance costs can be assumed to take
different values CIi and CMi at each time step i.

Other costs related to the flood management plan, such as environmental impacts or landscape degra-
dation, are most often neglected. One notable exception is the CBA-AD study carried out on the ZEC

fOther indicators that will not be discussed in this thesis include the return on investment and the internal rate of return (Bournot
2008).
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Figure 2.3: Flood-prone study area: reduction of total flood damages thanks to a flood risk management plan. Present
situation (left) and future situation (right)

project (§2.3.3 on page 70): in this study, the subsidies received by some farmers in compensation for the
overflooding of their agricultural parcels was included as an additional cost in the analysis.

However, in the NOE modelling framework, we suggest to stick to the most common case, in which only
investment costs CI and maintenance costs CM are considered, with the following assumptions:

∀i ∈ ⟦0;R⟧ , Ci =

⎧⎪⎪
⎨
⎪⎪⎩

CI if i = 0

CM if i > 0
(2.3)

Benefits of the policy In the CBA-AD approach, the benefits of a flood management plan are measured
by the amount of flood damages that it can avoid yearly on average. We will use the term “Average Annual
Avoided Damages” and the notation ∆AAD [e/year] to refer to this amount. Benefits are supposed to be
equal to the ∆AAD indicator at each time step i:

∀i ∈ ⟦0;R⟧ , Bi = ∆AAD (2.4)

The ∆AAD indicator is an algebraic value: it may be positive when flood damages are spared thanks to
the flood management plan, or negative if extra damages are caused by the policy. We explain in the next
subsection how to rigorously define and compute it.

To sum up, in the NOE modelling framework, under the assumptions we made on the costs and the
benefits of the flood risk management plan, the NPV indicator is equal to:

NPV = −CI +
R

∑
i=1

τi ⋅ (∆AAD −CM) (2.5)

2.2.5 Average Annual Avoided Damages

The ∆AAD indicator is obtained by comparing the amount of expected annual flood damages between
the present and the future situation (Figure 2.3). We will denote by AAD [e/year] (resp. AAD’) the
average annual damages in present (resp. future) situation. The ∆AAD indicator is defined as:

∆AAD = AAD −AAD′ (2.6)

The notion of “average annual damages” has been used for a long time as a quantitative indicator for
the assessment of flood risk. Early works on this subject were notably initiated in the late 1950ies in the
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Netherlands by Van Dantzig (1956) who carried out a probabilistic analysis of Dutch flood defences and
tried to estimate the expectation of the flood damage per year. In the literature, the same notion is also
refered to as “expected annual damages” (NRC 2000), the “annual average flood losses” (Messner et al.
2007) or the “Weighted Annual Average Damages” (WAAD) (Messner et al. 2007).g

The AAD indicator is used in almost all the CBA-AD studies we reviewed. Some of these studies cast
doubt on its relevance as a synthetic risk indicator, or question its definition. Indeed, defining rigorously
the “average annual flood damages” proves to be a challenging issue. One contribution of the NOE mod-
elling framework is to propose a clear frame to define the AAD indicator. This definition proves useful to
better identify the underlying assumptions that are hidden in the notion of average annual damages, and to
highlight its limitations. This definition is summarized in the following subsections §2.2.5.2 to §2.2.5.4;
the interested reader will find an extended description of our contribution on this subject in Appendix §C
on page 206.

2.2.5.1 Modelling flooding events as random variables

A flood can be defined as an overflow or inundation that comes from a river or other body of water onto
normally dry land and causes or threatens damage (Figure 2.4 on the following page). In our research
work, we only considered fluvial floods, as opposed to coastal floods, groundwater floods or surface water
floodsh. In the NOE modelling framework, we assume that a “flooding event” can be entirely described
by a finite number κ ∈ N of scalar parameters. These parameters usually include:

○ a set of parameters describing the hydrological load associated with the flooding event, such as the
discretised hydrogram at a reference gauging station, the peak discharge or the inflow volume;

○ a set of parameters describing the state and behaviour of hydraulic infrastructures along the river
stream during the flooding event: e.g., water level beyond dams, failure or not failure of levees;

○ the season of occurence of the event (summer, autumn, etc.).

It is of course impossible to predict if and which flooding events will occur during one given year on a
study area. This uncertainty related to flooding events can be classified as “aleatory uncertainty”, that is,
natural variability which is associated with the phenomenon under study and which cannot be reduced
(Refsgaard et al. 2007). To represent this aleatory uncertainty, we suggest to identify each flooding
event with a single realisation e of a random vector E = (E1, . . . ,Eκ) with values in Rκ. We assume that
random vector E has a probability density function pE . For a given year, pE(e) represents the probability
that flooding event e ∈ Rκ occurs this year.

All CBA-AD studies and guidelines use a similar probabilistic framework. One specific feature of the
NOE modelling framework is that flooding events are not reduced to a real-valued random variable de-
scribing their peak discharge q, but are modelled as a random vector E of dimension κ ≥ 1. This enlarged
framework makes it possible to account for complex situations in a unified manner. For example, in the
Fourques-Beaucaire case study (§2.3.3 on page 70), flooding events can be modelled by a 4-dimensional
random vector, which describes: the peak discharge of the scenario, the season of flood occurence, the
state of levee (failure/no failure), and the location of the possible levee failure.

gJonkman et al. (2004) do not use the average annual damages as a risk indicator, but rather compute the (discounted) present
value of flood damages for some flooding events.

hHowever, most of the material displayed in the following sections could be adapted to other types of floods with small efforts.
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Figure 2.4: Flood-prone study area: a flooding event

2.2.5.2 Definition of average annual damages: multidimensional case

We assume that, on a given study area, the monetized damages associated with flooding events can be
represented by a continuous function D ∶ Rκ → R. For a given flooding event e ∈ Rκ, D(e) is the amount
of damage costs [e] induced by this event:

D ∶ Rκ →R
e ↦D(e)

(2.7)

The Average Annual Damages (AAD) are defined as the expectation of damage D over the space of
random flooding events e with pdf pE(⋅):

AAD = E(D) = ∫
Rκ
D(e)pE(e)de (2.8)

This definition of the AAD indicator is based on at least two restrictive assumptions.

First, we assume that flood damages can be represented as a deterministic function D(e) of a flooding
event e characterised by a finite number of scalar descriptors: its hydrological load, the state of hydraulic
infrastructures along the stream (dam, levees, etc.), its season of occurence (§2.2.5.1 on the preceding
page). Function D must include knowledge about the assets that are exposed to floods in the study area
and their vulnerability. This function is supposed to be “fixed” over time. Nevertheless, in the real world,
total flood damages related to a single flood event e ∈ Rκ also depend on a number of other random
characteristics that are not taken into account in our definition, such as the quality of crisis management
or the proximity (in space or time) of other flooding events that may result in a greater vulnerability of
the exposed assets, etc. A possible extension would be to include these characteristics as extra scalar
descriptors of a flooding event.

Next, we also assume that random variable D(e) has a finite expectation: this assumption requires flood
damages not to grow “too quickly” for extreme flooding events e with very small probabilities pE(e), so
that the integral Eqn. (2.8) is well defined. In most of the CBA-AD studies we reviewed, the functionD(⋅)

is simply assumed to be bounded: this assumption is fully justified when flood damages are measured
with repair costs only.
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2.2.5.3 Unidimensional case

In most of the CBA-AD studies we surveyed, the probability of occurence of a flooding event e is defined
with respect to a single scalar descriptor: its peak discharge q at a reference gauging station. In this case,
the dimension κ of the set of flood event descriptors is reduced to 1. Somewhat imprecisely, we will then
equally use the notations E or Q to denote the scalar random variable representing flooding events, the
notations e or q to denote a single flooding event and its associated peak discharge, and the notations
pE(⋅) or pQ(⋅) to denote its pdf. The AAD indicator is then equal to:

AAD = E(D) = ∫
R
D(q)pQ(q)dq (2.9)

Hydrologists usually prefer to consider the cumulative distribution function of random variable Q, or

more precisely the function FQ ∶ q ↦
∞

∫
q
pQ(x)dx. FQ(q) is refered to as the “annual exceedance

probability” of peak discharge q. Using this function, Eqn. (2.9) can be written as:

AAD =

1

∫
0

D ○ F −1
Q (u)du (2.10)

Eqn. (2.10) was notably used by Arnell (1989) to define the Average Annual Damages. It can be under-
stood as the area under the damage-frequency curve, which is the graph of flood damage D(q) against
discharge exceedance probability FQ(q) (Figure 2.5).

We will use this presentation in some parts of this thesis, when flooding events e will simply be described
by their peak discharge q, notably on the Orb Delta study site. Nevertheless, we insist on the fact that
in our broader definition of the AAD indicator [Eqn. (2.8) on the preceding page], a flooding event is
defined both by a set of hydrological descriptors and a set of parameters describing the state of hydraulic
infrastructures along the river, and is represented by a vector e ∈ Rκ with κ ≥ 1.

Discharge annual exceedance probability
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FQ(q)

 

D(q)

flooding event e
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Figure 2.5: Average Annual Damages (AAD [e/year]) in unidimensional case: the AAD indicator is equal to the
(shaded) area under the damage-frequency curve
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2.2.5.4 Approximation

The various CBA-AD studies and guidelines we surveyed do not exactly use the same calculation method
to approximate the AAD indicator. However, these various methods all fit in a common frame: for each
situation (present and future), the computation of the AAD indicator is based on the approximation of
a unidimensional or multi-dimensional integral [Eqn. (2.8) on page 46 and Eqn. (2.10) on the previous
page]. Flood damage estimates are evaluated for a finite set of points ej that we suggest to call “flooding
scenarios”. A weighted sum of these values is then used to approximate the integral:

AAD ≈∑
j

ω(ej) ⋅D(ej) (2.11)

where D(ej) denotes the estimated damage for flood scenario ej and ω(ej) denotes the weight of this
scenario. For each situation (present and future), the computation of the AAD indicator thus requires:

○ a set a flood scenarios ej (that may be different from present to future situation);

○ the estimation of scenario weights ω(ej);

○ the estimation of flood damages D(ej) for each scenario.

The first element may be considered as part of the model itself: it will be discussed in §2.2.6. The
computation of weights ω(ej) will be discussed in §2.2.7 on the next page. The computation of flood
damage estimates D(ej) will be detailed in §2.2.8 on page 51.

2.2.6 Choice of flood scenarios

As mentioned in §2.2.5.4, the calculation of the AAD indicator requires damage estimation for a number
of relevant flood scenarios ej . The first step of the NOE modelling framework is thus to choose two sets
of potential flooding events of various magnitudes: one set of m scenarios, denoted by e1 to em, for the
present situation, and one set of m′ scenarios, denoted by e′1 to e′m′ , for the future situation (Figure 2.6
on the facing page).

In the NOE modelling framework, we suggest to characterise each flood scenario ej (or e′j for future
situation) by i) a complete description of the hydrological load (hydrogram, peak discharge qj , inflow
volume); ii) a description of the state and behaviour of hydraulic infrastructures along the river reach
(failure or not failure of levees, water level in dam reservoir); and iii) its season of occurence. For each
situation (present and future), at least two flood scenarios must be considered: e1 (resp. e′1) is supposed
to be the “smallest” flooding event that induces damage in present (resp. future) situation—“smallest” is
taken here in the sense “with the smallest peak discharge”; em (resp. e′m′ ) is supposed to be an extreme
flood, which would result in an over-topping of all flood-control infrastructures.

This framework fits well to all the CBA-AD studies and guidelines we reviewed, except for the work of
Achleitner et al. (2010) (see below). In all studies, the flood scenarios usually include i) some “historical
floods” that are modelled from ex-post data collected after past flooding events, and ii) some “synthetic
floods” that are usually related to construction and safety standards of flood-control infrastructures (for
example, a synthetic 100-year or 1 000-year flood). The number of scenarios for present and future
situation usually falls between 3 and 20i. This initial choice (number and characteristics of scenarios) can
be considered as part of the model structure; results of a CBA-AD study heavily depend on it.

iThe guidelines published by the French Ministry of Ecology for the economic appraisal of PAPI management plans requires at
least three flood scenarios to be considered (MEDDTL 2011 Appendix 4).
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Figure 2.6: Flood-prone study area: set of flood scenarios for the present (left) and future (right) situations

A notable exception: continuous scenarios. It can be noted that a very different framework could be
chosen to estimate the AAD indicator and represent the aleatory uncertainty associated with flood hazard.
Flood scenarios ej could be randomly generated over a very large length of time (∼ 1 000 years), in order
to build a plausible chronicle of flooding events over time. This kind of continuous simulation of flooding
events over time may for example be obtained from rainfall simulations. The number of flood scenarios
considered would then be very large (m,m′ ∼ 1 000). We will use the term “continuous scenarios” to
denote this approach, which is seldom encountered in the literature—Achleitner et al. (2010) use a similar
approach over a short period of 100 years and call it “stochastic flood and loss modelling framework”.

2.2.7 Weights of flood scenarios

As mentioned in §2.2.5.4 on the preceding page, the calculation of the AAD indicator is based, for
each situation (present and future), on a weighted sum of damage estimates D(e1), . . . ,D(em) for a
set of flood scenarios e1, . . . , em (resp. D(e′1), . . . ,D(e′m′) and e′1, . . . , e

′
m′ for future situation). The

weights associated with each flood scenario ej , denoted by ω(ej), have to be determined according to the
approximation technique chosen to calculate the unidimensional or multi-dimensional integral defining
the AAD indicator [Eqn. (2.8) on page 46 and Eqn. (2.10) on page 47].

2.2.7.1 Unidimensional case: flood frequency analysis

In the unidimensional case, a flood scenario ej is only described by its peak discharge qj . In this case,
weights ω(ej) are obtained from a hydrological frequency analysis. A discharge-frequency curve (Q-f)
is first fitted to observed Q-f data (annual maximum flow serie on a given gauging station) with a chosen
extreme value distribution (Gumbel, gev, etc.) (Figure 2.17 on page 62). Then, each peak discharge qj
is associated with an estimated annual exceedance probability FQ(qj) and corresponding return interval
Tj = 1/FQ(qj). Weights ω(ej) are then computed from non-exceedance probabilities FQ(qj) in order to
approximate the unidimensional integral [Eqn. (2.10) on page 47]. In the NOE modelling framework, we
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suggest to use a classical trapezoïdal rule (Figure 2.7):j

ADD ≈
1

2
⋅ [D(e1) +D(e2)] ⋅ [FQ(e1) − FQ(e2)] + . . .

+
1

2
⋅ [D(em−1) +D(em)] ⋅ [FQ(em−1) − FQ(em)] +D(em) ⋅ FQ(em)

which can be written as:

ADD ≈∑
j

ω(ej) ⋅D(ej) (2.12)

in which weights ω(ej) are equal to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω(ej) =
FQ(ej−1) − FQ(ej+1)

2
, ∀i ∈ {2, . . . ,m − 1}

ω(e1) =
1

2
⋅ [FQ(e1) − FQ(e2)]

ω(em) =
1

2
⋅ [FQ(em−1) + FQ(em)]

(2.13)
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Figure 2.7: Approximation of the AAD indicator [e/year] with trapezoidal rule (unidimensional case)

2.2.7.2 Multi-dimensional case

In the broader definition we suggest to use in the NOE modelling framework, the AAD indicator is equal
to a κ-dimensional integral [Eqn. (2.8) on page 46]. We give in Appendix §C on page 206 a rigorous
presentation of the way this κ-dimensional integral can be approximated. In short, it can be turned into
a unidimensional integral based only on flood exceedance probabilities FQ(q), but then it requires to

jThis unidimensional case is by far the most often encountered in the CBA-AD studies we reviewed. However, we observed
slight variations in the formula chosen to approximate the unidimensional integral Eqn. (2.10) on page 47. For example, the
Weighted Annual Average Damages defined in Messner et al. (2007) approximate the integral with a Riemann sum (rectangle
method). This is also the method chosen in the Fourques-Beaucaire case study (ISL 2011). Erdlenbruch et al. (2008) use a
different weight ω(em) for the largest flooding event: ω(em) = 1/2 ⋅ [FQ(em−1) + d∞ ⋅ FQ(em)] in which d∞ is an ad-hoc
coefficient which is assumed to represent the ratio between the flood damages D(em) associated with flood scenario em and the
flood damages D∞ associated with a virtual flood event with an exceedance probability equal to 0; they suggest to use a value of
d∞ = 2. MEDDTL (2011 Appendix 4) recommends to use the same computation scheme with d∞ = 1.5.
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estimate the conditional expectation of flood damages D given a fixed peak discharge q, while other
κ − 1 flood descriptors vary. From a practical perspective, in this case, hydrological flood frequency
analysis based on Q-f data analysis has to be completed to calculate the overall weight ω(ej) of each
flood scenario ej . This overall weight ω(ej) must account not only for the exceedance probability of the
flood peak discharge q(ej), but also for the probabilities associated with the other scalar descriptors of
the flooding scenario ej , such as the state of hydraulic infrastructures along the river, or the season.

In the various CBA-AD studies we reviewed, we found only one example in which such multi-dimensional
weights ω(ej) were computed: the Fourques-Beaucaire study (§2.3.3 on page 70). In this study, the sim-
ple weights ω(ej) based on flood frequency analysis were completed by: i) a probabilistic levee reliability
assessment to estimate probabilities of levee failure for each flood scenario ej ; ii) a seasonal hydrological
analysis to estimate the probability that a flood scenario occurs at a given season (Allamano et al. 2011).
In an extended framework, it would also be possible to further describe and weigh flooding events ej with
other aleatory characteristics that are not strictly related to flood hazard but that have an impact on the
monetary amount of flood damages, such as the quality of crisis management or the state of flood-exposed
assets.

2.2.7.3 Two comments

Continuous scenarios If “continuous scenarios” framework is chosen to design flood scenarios ej in a
CBA-AD study, then in the unidimensional case the Average Annual Damages is simply the non-weighted
average of flood damage estimates for all randomly generated flood scenarios—scenario weights ω(ej)
are all equal to 1/m where m is the number of scenarios.

Spatially heterogeneous scenario weights In some studies, it is not possible to rigorously define a
spatially homogeneous weight ω(ej) for each flood scenario ej over a large study area, because hydro-
logical return intervals Tj may spatially depend on the contribution of various river tributaries and lateral
inflows. It is then necessary to divide the study area into a number of homogeneous zones where scenario
weights will be separately computed. This is the case in the CBA-AD study that was carried out on the
ZEC project (§2.3.3 on page 70).

2.2.8 Flood damage estimation

We briefly describe in this subsection the data and flowchart used to calculate flood damage estimates
D(ej) (resp. D(e′j)) for the set of flood scenarios e1, . . . , em (resp. e′1, . . . , e

′
m′ ) in the present (resp.

future) situation. Once again, our purpose is not to give an exhaustive view of the approaches encountered
in the literature for flood damage estimation, but rather to clarify a number of terms and notions in
order to perform sensitivity analysis of the NOE modelling chain. Generally speaking, the flood damage
estimation process for a given flood scenario ej can be divided into three steps shown in Figure 2.8 on the
following page: i) flood hazard modelling; ii) flood exposure modelling; and iii) damage costs estimation.
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2.2.8.1 Flood hazard modelling

For a given flood scenario ej (present or future situation), flood hazard modelling consists of using an
hydraulic model to simulate the flood inundation process (Figure 2.9) based on the scenario characteristics
(hydrological load and state of hydraulic infrastructures). A wide range of hydraulic models can be used
for that purpose: 1D models, 2D models, storage cells models, with steady or unsteady flow conditions.
These models solve various versions of free-surface flow equations. Input data used by hydraulic models
fall into the following categories: i) a set of flow boundary conditions, including an hydrogram Q(t) at a
reference gauge, ii) a Digital Terrain Model with a precise description of natural and man-made structural
elements that control water flow, and iii) a set of spatially distributed friction coefficients used for model
calibration (Strickler coefficients). It is not in the scope of this thesis to describe these hydraulic models
into more details. The interested reader will find further explanations in Novak et al. (2010).

Flow simulations are then usually combined with a high resolution Digital Terrain Model (DTM), to
produce maps giving spatially explicit values of the main flood intensity parameters: water depth [m],
water velocity [m/s] and flood duration [h] over the study area.k We will use the general term “hazard
maps” to refer to these maps of flood intensity parameters. The notations H(ej) (resp. H(e′j)) will
denote the hazard maps associated with flood scenario ej (resp. e′j for future situation). These maps
can be produced as GIS vector layers with polygonal features representing small storage cells or finite
elements, or can be transformed into raster data (Figure 2.18 on page 63).

Note: in the NOE modelling framework, we will consider the hazard maps H(ej) as inputs. The
hydraulic model that produces them will not be considered as a part of the NOE model. This restrictive
choice was made to reduce the CPU cost of sensitivity analysis and to narrow down the scope of our
research.

kIn some case studies, maps od flood intensity parameters are real-valued, but in other cases they just give intervals—e.g., the
maps of water depth used by Erdlenbruch et al. (2008) show classes of water depths in centimeters: [0; 50], ]50; 100], etc.

max water depth: 2.3 m
water velocity: 2 m/s
flood duration: 10 h

x

Figure 2.9: Flood-prone study area: inundation process for a given flood scenario
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2.2.8.2 Flood exposure modelling

For a given flood scenario ej (present or future situation), flood exposure modelling consists of: i) de-
scribing the assets which are exposed to the flood on the study area; ii) determining for each identified
asset the intensity of flood hazard, in terms of water depth, velocity and flood duration.

Description of assets Many types of assets are exposed to floods and may be considered in a CBA-AD
study: private housing, agricultural land, economic activities, road network, power supply networks, etc.
(Figure 2.10)l. In order to derive flood exposure from hazard maps, the description of assets has to be
spatially explicit. In this thesis, we will use the term “assets map” to refer to this description. In most
cases, the assets map is a GIS vector layer, each asset being represented by a point, a line or a polygonal
feature. These assets maps are usually created from a combination of data sources, including land use
maps, cadastral maps, field surveys, national statistics, etc. From one CBA-AD study to another, assets
maps may differ with respect to the following criteria:

○ scale (support): flood exposure may be assessed at the scale (here understood as the spatial sup-
port, see §1.1.3 on page 20) of individual assets (buildings, plots of cultivated land), or at a coarser
level (e.g., district level or regional level). The choice of a spatial support for the description of
assets usually depends on the size of the area under investigation and on the available data. As
developed into details by Messner et al. (2007 Figure 3.5), the finest spatial supports for the de-
scription of assets are often restricted to study areas of local size (e.g., municipalities or single
floodplains). On the contrary, studies for areas of regional size (e.g., a part of a big river or the
catchment of a smaller river) or even national size (e.g., a national coastline or a river basin of
a transboundary river) have to rely on approaches which require less effort per unit of area and,
consequently, consider a larger spatial support to describe the elements at risk;

Type: agroindustry
Ground floor: 0.5 m
Value: 3.5 K€

Type: wheat crops
Surface area: 40 ha

Type: private housing
Surface area: 300 m²
Ground floor: 0.15 m
Construction year: 1970

Figure 2.10: Flood-prone study area: spatially explicit description of assets

lthe guidelines published by the French Ministry of Ecology for the economic appraisal of PAPI management plans requires to
consider at least the following types of assets: private housing, economic activities, agricultural land and public buildings (MEDDTL
2011 Appendix 4)
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○ nomenclature of assets: a more or less detailed nomenclature may be used to classify assets
according to their type. Nomenclature can range from very coarse (e.g., distinguishing only from
housing, agricultural land and economic activities) to very detailed (using various subtypes to
further describe crops, types of buildings, types of industry, shops, etc.). The nomenclature has to
be chosen in accordance with damage functions (§2.2.8.3 on the next page);

○ attribute data: each asset is usually characterised by a number of attributes, generally including
its ground floor elevation, its monetized value, its number of levels (for a building), its surface area,
etc. These attribute data have to be chosen in accordance with their subsequent use in damage cost
estimation (§2.2.8.3 on the following page). From one CBA-AD study to one another, assets maps
may vary in the presence, completeness and quality of attribute data.

A more complete discussion on the characterisation of flood-exposed assets is given by Merz et al.
(2010). Figure 2.11 shows two different examples of assets maps. On the left is an extract of the as-
sets map used for a CBA-AD on the ZEC case study (Gilbert and Ledoux 2012): assets are identified
by points (economic activities) or polygonal features (private housing units, agricultural land) on a GIS
vector layer built from Corine Land Cover land use map completed with field data; typical surface area
of polygonal features is approximately 30 ha. On the right is an extract of the assets map used for a
CBA-AD on the Orb Delta case study (SMVOL 2011): assets are all identified by polygonal features, of
smaller spatial support—typical surface area of assets is approximately 100 sq. m. for private housing, 3
ha. for agricultural land and 0.1 ha. for other economic activities. The choice of a description of assets
will of course influence the subsequent computation of flood damages: Eleuterio et al. (2008) discuss this
issue by investigating a case study in Bas-Rhin, France.

agricultural land

private housing

mix (housing/agriculture)

economic activities

0 50 100 150 200 m0 500 1 000 1 500 m

N

Figure 2.11: Two assets maps with different spatial support on two study sites: ZEC (left), Orb Delta (right)
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Exposure assessment For a given flood scenario ej (present or future situation), exposure is measured
by confronting the assets map with flood hazard mapsH(ej). For each exposed asset (usually represented
by a point or a polygonal feature in a GIS layer), the flood caracteristics (water depth, water velocity, flood
duration) are extracted by an overlay analysis using GIS tools (Figure 2.12). Depending on the nature
of the data used, various GIS techniques can be considered to perform this overlay analysis between the
assets map and the hazard maps: extraction of mean or maximum values of flood characteristics over the
asset, preliminary clipping of polygonal features to the flood extent, etc. All these techniques will result
in the computation of flood intensity characteristics for each flood-exposed asset, but important variations
may be observed from one technique to one another. However, in spite of this variety of techniques, none
of the CBA-AD studies or guidelines we surveyed provide the reader with a detailed description of the
overlay procedure that was used, or should be used, to assess flood exposure.

One contribution of this thesis is to investigate this weak point of CBA-AD studies. We supervised the
master’s thesis of Thibaud Langer (Langer 2011), who listed ten techniques that can be considered to
perform the overlay analysis for flood exposure assessment, depending on: i) the nature of the assets
(point, line or polygonal features in a GIS vector layer); and ii) the nature of the hazard maps (point
vector data, polygonal vector data, raster data). These different overlay procedures were then applied to
the same case study (Fourques Beaucaire case study, §2.3.3 on page 70): we found relative differences in
exposure data that could rise up to 10%. The interested reader will find a brief discussion on this issue in
appendix §D on page 212.

Water depth: 2 m
Water velocity: 1 m/s
Flood duration: 15 h

Figure 2.12: Flood-prone study area: flood exposure

2.2.8.3 Damage costs estimation

Damage costs estimation is the last step of flood damage assessment (Figure 2.8 on page 52): it consists
of estimating damage costs for each flood scenario ej and for each asset within the study area, from flood
exposure assessment (Figure 2.14 on the facing page).m Generally speaking, damage estimates should
include both direct and indirect, tangible and intangible damages—Merz et al. (2010) or DNRM (2002)
explain these notions into details. Nevertheless, in most of the CBA-AD studies we surveyed, only di-
rect and tangible monetary losses are taken into account because of lack of data and/or lack of suitable

mIn the NOE modelling framework, flood damages are always assumed to be equal to zero for flood scenario e1 (resp. e′1) that
is defined as the “smallest” flood event that induces damage in present (resp. future) situation (§2.2.6 on page 48).
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Figure 2.13: Absolute and surface-dependent depth-damage curve used for wheat crop on the Orb Delta case study
Source : Grelot et al. (2012)
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Figure 2.14: Flood-prone study area: damage costs estimation for a given flood scenario

methodology. So-called “damage functions” are then used to model the relation between flood intensity
characteristics (water depth, velocity, flood duration), asset characteristics (type, surface area, ground
floor elevation, value, etc.) and direct monetary losses (Figure 2.13). These damage functions are either
built from i) statistical analysis of ex-post data collected after flood events (e.g., from insurance compa-
nies), or ii) by a synthetic approach where the elementary effects of flood on the various components of
the asset are modelled (e.g., damage on furniture, walls and doors of a house). Damage functions can be:

○ absolute/relative: absolute damage functions give absolute values of monetary losses in euros;
relative damage functions give monetary losses as a percentage of the total value of the asset;

○ surface-dependent/surface-independent: surface-dependent damage functions give monetary
losses per surface area unit [e/m2], while surface-independent damage functions give monetary
losses for the whole asset regardless of its surface area.

The interested reader can refer to Merz et al. (2010) for more information on damage functions. Bournot
(2008) also gives a list of references related to the main damage functions used in French CBA-AD
studies. For a given flood scenario ej , damages are estimated individually for each asset identified on the
assets map. Hence, flood damages can be mapped to give a spatially explicit portray of flood risk on the
study area. We will use the term “damage map” and the notation D(ej) to refer to it. Damages can also
be summed up over the study area to give total damage estimate D(ej). This total amount is then used in
the computation of the ∆AAD indicator (§2.2.5 on page 44).
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2.3 Case studies

The NOE modelling framework that we described in §2.2 has been applied to a number of different case
studies. The purpose of this section is to: i) briefly explain how we implemented the NOE modelling
framework into a convenient computer code (§2.3.1); and ii) present the study sites on which the NOE
code has been applied (§2.3.2 and §2.3.3). Among these study sites, we will focus on the application
of the NOE code to the Orb Delta (§2.3.2). This case study will be used as a real-world test case for
variance-based global sensitivity analysis of spatial models throughout this document. The other case
studies are shortly portrayed in §2.3.3.

2.3.1 Development of the NOE code

Most sensitivity analysis techniques require to run many simulations (hundreds or thousands) of the model
under study. To carry out a sensitivity analysis of the NOE modelling framework, it was thus necessary
to implement it into a convenient and efficient computer code. We will refer to this code as the “NOE
code”. This code development is not at the core of our research, hence we only present it very briefly in
the following paragraphs.

Structure of the NOE code A first part of the NOE code consists of a set of tools that perform spatial
analysis operations to produce flood exposure maps from the assets map and the hazard maps, as de-
scribed in §2.2.8.2 on page 56. These tools were coded in PythonTM, an interpreted and object-oriented
programming languagen. They make use of the ArcPy library, which provides access to the geopro-
cessing functions available in ArcGis®, a commercial GIS softwareo. These tools were packaged into
a single toolbox named geonoe, which can easily be loaded and used from a standard ArcGis® user
session.

A second part of the NOE code consists of a set of scripts coded in the open-source programming
languagep. These scripts code for: the computation of flood damages based on exposure data and damage
functions, as described in §2.2.8.3 on page 56; the calculation of the average annual avoided damages
(∆AAD indicator) from a set of flood scenarios ej and associated weights ωi, as explained in §2.2.5
to §2.2.7 on pages 44–49; the computation of the Net Present Value of a flood risk management plan
(§2.2.4 on page 42). These scripts were packaged into a single library named noe.

Note: it must be noted that no hydraulic model is included in the NOE code. The hazard maps H(ej)

associated to each flood scenario ej (§2.2.8.1 on page 53) are considered as initial inputs of the NOE
code.

Computing time The computing time associated with one run of the NOE code depends on the char-
acteristics of the input data (spatial extent, resolution, etc.). On the Orb Delta case study, which will
be used as the main test-case in our thesis, one single run costs around 30 seconds on a computer with
average performances. This duration may be considered as “short” with respect to the requirements of
most sensitivity analysis techniques. It allows lauching many simulations of the NOE code in any pseudo
Monte Carlo approach: for example, running the NOE code a thousand times would last slightly more

nhttp://www.python.org
ohttp://www.esri.com/software/arcgis
phttp://cran.r-project.org/

http://www.python.org
http://www.esri.com/software/arcgis
http://cran.r-project.org/
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than height hours. However, in order to lower the CPU cost even more, we used the NOE code on a grid
computing cluster: calculation times were divided by six.

2.3.2 The Orb Delta case study

In this section, we describe the application of the NOE code on the Orb Delta (Hérault, France). This
case study will be used as a real-world test case for VB-GSA of spatial models throughout this document.

2.3.2.1 Study site

As a study area, we selected the lower Orb river fluvial plain, known as the Orb Delta, located in the
south of France. We focused on a 15 km reach from Béziers to the Mediterranean sea that is bounded by
an area of 63 sq. km and includes the cities of Béziers, Portiragnes, Sauvian, Sérignan, Valras-Plage and
Villeneuve-lès-Béziers (Figure 2.15). The Orb catchment has a typical Mediterranean subhumid regime.
The annual maximum discharge in Béziers (Tabarka gauge) varies from year to year between 100 and
1 500 m3/s (BCEOM 2000). The flood prone area in the Orb Delta is home to approximately 16 290
permanent people (total population of the six localities: 90 000 people), 774 companies and 30 seaside
campgrounds (which attract up to 100 000 tourists in summertime). Approximately one-third of the area
is devoted to agriculture. The flood of December 1995 - January 1996, with a peak discharge of 1 700
m3/s at the Tabarka gauge, caused a total amount of damage of 53 Me (SMVOL 2011).

N
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Figure 2.15: The Orb Delta study site is located in Hérault département, south of France. The Orb River flows
southward.
Source : www.geoportail.fr

www.geoportail.fr
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Flood risk management plan In 2001, local authorities launched a flood risk management plan on the
Orb Delta, mainly based on various structural mitigation measures, including levee strengthening around
urban areas, restoration of sea outfalls and channel improvement (Figure 2.16). In 2011, to claim national
subsidies, they completed a cost-benefit analysis of their project (Grelot et al. 2012).

This study site was mainly chosen because it is a “real” case study, with a flood risk management plan
under construction and a cost-benefit analysis produced by the local authorities. Moreover, the area
was already documented with numerous available data. These data included aerial photographs, a high-
resolution Digital Terrain Model (DTM) built from photogrammetry, the annual maximum flow series
from 1967 to 2009 at the Tabarka gauge, and various spatial datasets on buildings, agricultural land and
economic activities in the area (Erdlenbruch et al. 2008).

Figure 2.16: Orb Delta case study: structural flood-control measures
Source : Erdlenbruch et al. (2007)

2.3.2.2 Model flowchart

The application of the NOE code to the Orb Delta case study follows the general flowchart that we
described in Figure 2.2 on page 43. We give here, when needed, more details on the data used and the
realisation of each step of the flowchart.

Comparison of costs and benefits In the NOE modelling framework, Net Present Value (NPV) is
chosen to compare costs and benefits of the flood risk management plan. On the Orb Delta case study,
it is computed over a period of R = 30 years. Only investment and maintenance costs are considered
(CI = 35.2Me, CM = 1.6Me/year), and project benefits only include avoided damages.
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Choice of flood scenarios Six flood scenarios e1 to e6 were selected to describe flood hazard in the
present situation, and other six similar scenarios e′1 to e′6 for the future situation. They are only charac-
terised by their peak discharge q(ej) at the Tabarka gauging station (Table 2.1) and by an hydrogram.
For each j = 1, . . . ,6, present and future scenarios ej and e′j have the same values of peak discharge and
same hydrograms. Besides, the state of hydraulic infrastructures is assumed to be the same for all flood
scenarios: according to a previous hydraulic and civil engineering survey, flood-control levees on the Orb
river can be overtopped in case of an extreme flooding event, but are never supposed to break (BCEOM
2000).

Weights of flood scenarios — flood frequency analysis In this case study, flood scenarios are only
characterised by their peak discharge q(ej). Hence, their weigths ω(ej) are completely characterised by
a classical flood frequency analysis, based on the annual maximum flow series at Tabarka gauging station
from 1967 to 2009 (Figure 2.17 on the following page). Estimated exceedance probabilities FQ(qj),
return intervals T (qj) and associated scenario weights ω(ej) are given in Table 2.1q.

Table 2.1: Orb Delta case study: flood scenarios

Scenario description Peak discharge
q [m3/s]

Exceedance
frequency f

Return interval
T = 1/f [years]

Weight ω

e1 or e′1
Smallest flooding event that

induces damage
1 018 0.2 5 0.05

e2 or e′2 10-year synthetic flood 1 287 0.1 10 0.08333

e3 or e′3
Historical flood (December,

1987)
1 696 0.0333 30 0.04

e4 or e′4 Historical flood (January, 1996) 1 882 0.02 50 0.01165

e5 or e′5 Large synthetic flood 2 133 0.01 100 0.0095

e6 or e′6
Probable maximum flood

(over-topping dykes)
3 000 0.001 1 000 0.006

Flood hazard modelling The hydraulic model used for the Orb Delta case study is the 1D step-
backwater model ISIS Flow. ISIS Flow computes flow levels and discharges using a method based on the
Saint-Venant equations (ISIS 2012). The rough outputs produced by the hydraulic model are GIS vector
layers that give water levels, water velocity and flood duration along the river stream and on a number
of storage cells represented by polygonal features, with a typical surface area of 1 sq. km. Water depth
maps were obtained from these rough outputs through a simple substraction of water levels with a high-
resolution DTM of 5 m cell size. This DTM (raster data) was initially built from stereophotogrammetry.
In the end, for each flood scenario ej , the hazard maps H(ej) consist of a set a three rasters of 5 m cell
size giving respectively water depths, water velocity and flood duration over the study area (Figure 2.18
on page 63). It should be noted that we do not consider the ISIS Flow computer code as part of the NOE
code; water depth maps are considered as inputs.

qThe figures given in Table 2.1 are slightly different from the figures used in previous studies on the Orb Delta (Erdlenbruch
et al. 2007; Grelot et al. 2012). The difference lies in the estimation of flood return intervals from the annual maximum flow series
at Tabarka gauging station: the serie used in this document is longer than the one used in previous studies, and the fitted Q-f curve
is different.
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Figure 2.17: Orb Delta case study: observed Q-f data and fitted discharge-frequency curve

Flood exposure analysis In the application of the NOE code to Orb Delta case study, four economic
sectors were considered for the exposure analysis: private housing, agricultural land, campgrounds and
other economic activities (industry, shops, etc.). Flood exposure was assessed at the scale of small individ-
ual assets (buildings, plots of cultivated land, etc.). Data from various sources was collected to build the
assets map: digital cadastral maps, a dataset of the regional Chamber of Commerce and Industry (2009),
and the national agricultural land use statistics (RPG dataset, 2009). An extensive field survey was also
conducted to collect additional data on assets, such as ground floor elevation of buildings. In the end, the
assets map describes private housing units (individual buildings), plots of cultivated land, campgrounds
and other economic activities by individual polygonal features in a single GIS vector layer (Table 2.2, Fig-
ure 2.19 on page 64). Plots of cultivated land were further characterised by a subtype (wheat, vineyard,
etc.), while economic activities were classified into sixty categories following the French classification of
economic activities NAF2008 (INSEE 2008).

Table 2.2: Orb Delta case study: content of the assets map

Type of assets Data source Number of
objects

Total surface
[sq. km]

Average surface
[sq. m]

Private housing Cadastral map + field survey 16 436 1.37 83

Agricultural land National agricultural land use statistics
(2009)

707 23.36 33 044

Campgrounds Cadastral map + field survey 111 1.02 9 203

Other economic
activities

Cadastral map + CCI dataset (2009) 691 0.62 904

Flood exposure of assets was then assessed by confronting the assets map with water depth maps H(e1)

to H(e6) and H(e′1) to H(e′6). The water depth associated with each flood-exposed asset for each flood
scenario ej was calculated with the following overlay procedure:

1. in order to handle very large assets (e.g., large plots of cultivated land), we first divided all objects
of the assets map into small pieces, by intersecting the assets map with a regular square grid of
200 m cell size. After this operation, all the polygonal objects of the assets map have a maximum
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Figure 2.18: Orb Delta case study: hazard maps for scenario e′2 (10-years flood in future situation, top) and e6 (very
large flood in present situation, bottom)
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Figure 2.19: Orb Delta case study: assets map

surface area of 200 m by 200 m;

2. for each polygonal object of the assets map, the average water depth over the object was computed
from the raster hazard mapH(ej) using the Zonal Statistics tool provided in ArcGis®;

3. the average water depth associated with each asset was then extracted as a new attribute data in the
original assets map (vector layer).

Flood damage estimation For damage costs estimation, we used absolute damage functions (§2.2.8.3
on page 56) which depend on the following parameters: type and floor surface area of the exposed asset,
average water depth. Damage functions for private housing, campground and cultivated land are surface-
dependent, while the damage functions used for other economic activities are surface-independent. Flood
velocity and flood duration were considered as homogeneous. These damage functions were taken from
the recommendations of French Ministry of Ecology, Sustainable Development and Energy (MEDDTL
2011), for a complete description see the original study (Grelot et al. 2012). In the end, a total of 94
depth-damage relations were used, one for each land use type and subtype (Table 2.3 on the next page).

2.3.2.3 Model inputs

As mentioned in §2.2.1 on page 40, a preliminary step to carry out sensitivity analysis of the NOE code
on the Orb Delta case study is to describe properly its inputs and its outputs. In order to cope with the
large number of input data involved in the NOE code, we decided to group them into five groups that can
be considered as independent (Table 2.4 on the facing page). We will somehow imprecisely use the term
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Table 2.3: Orb Delta case study: damage functions

Type of assets Type of approach Sub-types
number

Parameters

Private housing Empirical (data collected after flood events) 1 water depth; floor surface area

Agricultural
land

Synthetic approach (based on
questionnaires)

15 water depth; surface area

Campgrounds Synthetic approach (based on
questionnaires)

18 water depth; surface area

Other economic
activities

Synthetic approach 60 water depth

Table 2.4: Orb Delta case study: model inputs of the NOE code

Notation Name Nature Details

U1 Scenario weights Group of scalar inputs Set of scenario weights ω(e1) to ω(e6) and ω(e′1) to ω(e′6) for all
flooding scenarios in present and future situations (Table 2.1 on page 61).

U2 Damage functions Group of scalar inputs Group of parameters describing depth-damage functions for all types of
assets.

U3 Project costs Group of scalar inputs Investment costs CI and maintenance costs CE related to the flood risk
management plan

Z4 Assets map GIS vector layer Spatially explicit description of assets exposed to floods on the study area.
Each asset is represented by a polygonal feature with the following at-
tributes: type (qualitative); surface area [m2]; groundfloor elevation [m].

Z5 Hazard maps Group of GIS raster
data

Set of water depth maps H(e1) to H(e6) and H(e′1) to H(e′6) (5 m
cell size) for all flooding scenarios in present and future situations.

“model inputs” to refer to these five groups. Their composition was chosen in accordance with the general
flowchart of the NOE modelling frameworkr. Three groups (damage functions, project costs and scenario
weights) are composed of scalar inputs. The two other groups include spatially distributed inputs (hazard
maps, assets map).

2.3.2.4 Model outputs

As developed in §2.2, the main intermediate and final outputs of the NOE modelling framework are: i)
the damage estimates D(ej) for each flood scenario ej ; ii) the Average Annual Damages for the present
and future situation: AAD and AAD’ indicators; iii) the ∆AAD indicator; and iv) the Net Present Value
of the flood risk management plan under study. A key point is that, except for the NPV indicator, all
these outputs can be aggregated on different spatial supports: individual assets (vector map), regular grid
(raster map), or the entire floodplain (scalar).

Vector map of flood damages First, flood damage estimates are initially computed for each flood-
exposed asset over the study area. Hence, they can be mapped as a GIS vector layer (Figure 2.20 on the
next page).

rWe will later discuss in the conclusion of Chapter 3 how the composition of these groups may influence the results of sensitivity
analysis of the NOE code.
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Figure 2.20: Zoom on the vector map of damages D(e2) (10-year flood in present situation), GIS vector layer

Raster map of flood damages Next, flood damage estimates (and AAD, AAD’ or ∆AAD indicators)
can also be represented on a raster map of any cell size: in this case, the value given on a cell ci of the grid
is equal to the sum of the flood damage over all assets (or parts of assets) contained in the cell. If an asset
has a large surface area and overlaps many cells of the grid, then the value of the output of interest over this
asset is shared out among the cells in proportion to the overlaped areas (Figure 2.21). Here the “spatial
support” of the model output is simply related to the cell size ∣c∣ of the raster. We will in our research
consider the following cell sizes: 200 m× 200 m, 400 m× 400 m, 800 m× 800 m and 1 600 m× 1 600 m,
with corresponding surface areas ∣c∣ = 0.04, 0.16, 0.64 and 2.56 sq. km, respectively. Figure 2.22 on
the next page displays such raster maps for the AAD and AAD’ indicators (fixed cell size ∣c∣ = 0.04 sq.
km). It shows the strong spatial variability of flood damages; in particular, urban areas and campgrounds
display much larger amounts of damages than cells only covered with cultivated land. Similar raster maps
for the ∆AAD indicator are given in Figure 2.23 on page 68 (cell sizes ∣c∣ = 0.04 sq. km and ∣c∣ = 2.56 sq.
km). They clearly suggest that the flood risk management plan will not result in a spatially homogeneous
reduction of average annual flood damages. Urban areas display positive values of the ∆AAD indicator,
proving that they will benefit from the flood risk management plan. On the contrary, cells covered with
cultivated land or campgrounds mostly display negative values of the ∆AAD indicator: in these areas,
the flood risk management plan will unfortunately result in an increase of the average annual damages.

damage on cell cj  = sum of damages
on each asset contained in the cell

cell cj

damage on cell cj  = D x s / S with
D the total damage on the large asset

cell cj

area s large asset of
surface area S

Figure 2.21: From vector map of damages to raster map of damages: computation of flood damages on a cell. Case
of small assets (left) and case of a large asset that overlaps many cells of the grid (right)
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Figure 2.22: Raster maps of the AAD indicator in present (left) and future (right) situations, cell size ∣c∣ = 0.04 sq.
km

Table 2.5: Orb Delta case study: nominal output values of the AAD, AAD’, ∆AAD and NPV indicators over the
entire floodplain. Subtotals are also given for each economic sector considered.

AAD [Me/year] AAD’ [Me/year] ∆AAD [Me/year] NPV [Me]

Private housing 2.678930 1.12995 1.54899000 -

Agricultural land 0.177004 0.18182 -0.00481636 -

Campgrounds 1.739160 1.66792 0.07124420 -

Other economic activities 7.634780 2.72724 4.90754000 -

Total 12.229874 5.70693 6.52295784 49.92795

Total damages over the entire floodplain Finally, the various outputs produced by the NOE code can
also be aggregated over the entire floodplain to produce scalar outputs. Figure 2.24 on page 69 shows the
nominal estimates of total flood damages D(ej) over the Orb Delta for each flood scenario ej . Nomi-
nal output values of the AAD, AAD’, ∆AAD and NPV indicators over the entire floodplain are given
in Table 2.5.

To perform the sensitivity analysis of the NOE code on the Orb Delta case study, we will alternatively
consider the model outputs over different spatial supports. In Chapter 3 we will pay attention to the model
outputs aggregated over the entire floodplain. Next in Chapter 4 we will study raster maps of the ∆AAD
indicator for increasing cell sizes ∣c∣.

2.3.2.5 Model scales

Table 2.6 on page 69 displays the spatial scales at which the NOE code operate, for the Orb Delta case
study. This description is based on the “scale triplet” discussed in §1.1.3 on page 20.



∎ 68 CHAP 2. THE NOE MODELLING FRAMEWORK

N4 km10

private housing

hydraulic model
extent

 ΔAAD [k€/year]

-8 to -6

-6 to -4

-4 to -2

-2 to -0.5

-0.5 to -0.1

-0.1 to 0.1

0.1 to 0.5

0.5 to 2

2 to 4

4 to 6

6 to 8

> 8

< -8

 ΔAAD [k€/year]

< -100

-100 to -50

-50 to -10

-10 to -0.5

-0.5 to 0.5

0.5 to 10

10 to 50

50 to 100

> 100

Figure 2.23: Raster maps of the ∆AAD indicator for nominal values of the model inputs, cell size ∣c∣ = 0.04 sq. km
(top) and ∣c∣ = 2.56 sq. km (bottom)
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Figure 2.24: Orb Delta case study: nominal results for total flood damage estimates D(ej). Present situation (dark
grey bars) ad future situation (light grey bars)

Table 2.6: Orb Delta case study: spatial scales in the NOE modelling chain

Data Role Format Spatial extent Support Spacing

Project costs input scalar non spatially distributed

Scenario weights input scalar non spatially distributed

Flood hazard modelling

hydraulic model outputs input vector floodplain storage cells ∼ 1 sq. km. –

DTM input raster floodplain point 5 m

water depth maps input raster floodplain cell (5 m) –

Flood exposure modelling

Assets map input vector floodplain smallest resolvable units ∼ 100 sq. m. –

Flood damage estimation: output indicatorsD(ej), AAD, AAD’ and ∆AAD on different spatial supports

Vector map of damages output vector floodplain smallest resolvable units ∼ 100 sq. m. –

Raster maps of damages output raster floodplain cells of increasing sizes: ∣c∣ = 0.04, 0.16,
0.64 and 2.56 sq. km

–

Aggregated damages over the floodplain output scalar non spatially distributed

Net Present Value output scalar non spatially distributed
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2.3.3 Other case studies

Apart from the Orb Delta, the NOE modelling framework was also applied to another three case studies.
We only display here the main characteristics of these extra studies, which are summarized in Table 2.7
on the next page. A more complete description can be found in Appendix §E on page 215. We will
use these extra case studies in various parts of this thesis to make comparative analyses with the results
obtained on the Orb Delta.

The Vilaine floodplain The first extra case study is the Vilaine floodplain (Île-et-Vilaine, France). This
study area lies around the city of Redon, and has a small extent of only 17 sq. km. This case study was
investigated as part of the RDT research program (Grelot 2009).

The Rhône river from Fourques to Beaucaire The second extra case study investigates the economic
relevance of a project of dike strengthening and heightening on the Rhône river reach between the cities
of Fourques and Beaucaire (ISL 2011). The total extent of the study area is 125 sq. km. We worked on
this case study as part of a larger expert mission on uncertainties in cost-benefit analysis of flood risk
management plans, funded by the Plan Rhônes.

The ZEC case study The third extra case study looks into a larger flood risk management plan, which
we will refer to as the “ZEC project”, that aims at renovating old floodplains along the lower reaches of
the Rhône river (Gilbert and Ledoux 2012). The total extent of the study area is 650 sq. km. We also
worked on this case study as part of a larger expert mission for the Plan Rhône.

The main characteristics of each case study are summarized in Table 2.7 on the next page.

shttp://www.planrhone.fr

http://www.planrhone.fr
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Table 2.7: Main characteristics of the extra case studies

Vilaine floodplain Fourques - Beaucaire ZEC

Extent 17 sq. km 125 sq. km 650 sq. km

Flood scenarios

Number of scenarios 6 14 12

Descriptors of scenarios peak discharge q (κ = 1) peak discharge q, levee
failure/not failure, position

of levee failure, season
(κ = 4)

peak discharge, season
(κ = 2)

Computation of scenario weights hydrological frequency
analysis

hydrological frequency
analysis + seasonal

analysis + probabilistic
levee reliability assessment

hydrological frequency
analysis + seasonal

analysis

Approximation of AAD indicator trapezoidal rule Riemann sum (rectangle
method)

trapezoidal rule

Flood hazard modelling

Type of hydraulic model 1D model (InfoWorks) 2D model (RUBAR 20) hybrid 1D model with
storage cells

Flood exposure modelling

Types of assets private housing (points),
economic activities

(points)

private housing (points),
economic activities

(points), agricultural land
(polygons), farm buidlings

(points)

private housing
(polygons), agricultural

land (polygons), economic
activities (points)

Number of assets ∼ 500 ∼ 5 000 ∼ 10 000

Flood damage functions

Intensity parameters water depth water depth, velocity (for
agricultural assets only)

and flood duration (idem)

water depth, velocity (for
agricultural assets only)

and flood duration (idem)
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2.4 Chapter conclusion

The goal of this chapter was to present the NOE modelling framework for cost-benefit analysis of flood
risk management plans based on the “avoided damages” approach (CBA-AD approach), and to describe
its application to the Orb Delta case study. To conclude this chapter, we will first display a brief summary
of our contributions, then enumerate the main characteristics of the NOE modelling framework, and
finally stress its key limits.

2.4.1 A brief summary

We started in §2.1 with some elements of context on flood risk and economic appraisal of flood manage-
ment policies, and surveyed the literature on CBA-AD studies, mostly in Europe and more particularly in
France. Next, we explained our need for a general modelling framework that could describe the CBA-AD
studies: such a modelling framework is necessary to clarify the boundaries, the inputs and the outputs of
these studies; it is an essential preliminary step in order to carry out a proper sensitivity analysis of the
CBA-AD approach, which is the applied objective of this thesis.

We gave in §2.2 a detailed description of the steps composing the NOE modelling framework, which in-
volves hydraulic, hydrological and economic modelling as well as spatial analysis using GIS tools. These
steps are: i) choice of flood scenarios; ii) estimation of scenario weights; iii) flood hazard modelling; iv)
flood exposure modelling; v) damage costs estimation; vi) computation of the Average Annual Avoided
Damages; and vii) comparison of the costs and benefits of the plan.

In the NOE modelling framework, we brought two original contributions compared to the existing litera-
ture on cost-benefit analysis applied to flood risk management plans. The first contribution is an attempt
to extend the definition of the average annual damages, by modelling flooding events as random vectors
rather than just real-valued random variables: this attempt proved useful to better identify and discuss the
assumptions and limitations that are hidden when average annual damages are used as a risk indicator.
Our second contribution is the investigation of the various spatial overlay techniques that can be used to
compute the flood exposure map from the assets map and the hazard maps.

Finally, we briefly explained in §2.3 how we developed a computer code to implement the NOE modelling
framework, and how we applied this NOE code to different case studies. The NOE code may be released
for public use in the near future. We focused on the Orb Delta case study, which we will use as a real-
world test case for VB-GSA of spatial models throughout this thesis.

2.4.2 Main features of the NOE modelling framework

We give here a list of the main features of the NOE modelling framework, especially of those character-
istics that matter most to carry out an uncertainty and sensitivity analysis. We use the terms and notions
that were defined in Chapter 1.

A deterministic model The NOE modelling framework is deterministic. Even if some of the quantities
of interest are modelled as random variables (e.g., the flooding events e and their associated peak dis-
charge q), the way this randomness is treated is totally deterministic. In particular, the definition of the
average annual damages (∆AAD indicator, §2.2.5 on page 44) and its approximation from a set of fixed
flood scenarios ej is a way to reduce the aleatory uncertainty related to flooding events and to summarize
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it into a single deterministic indicator. We have briefly mentioned in §2.2.6 on page 49 the possibility to
estimate the AAD indicator from a plausible random chronicle of flooding events over a very large length
of time. In that case, the computer code that calculates the AAD indicator would be stochastic. This
particular situation will not be considered in our research.

A spatial model The NOE modelling framework has both spatially distributed inputs and outputs. Spa-
tially distributed inputs include the assets map and the hazard maps, which are usually vector and raster
GIS data, respectively. These input data are expected to show some sort of spatial auto-correlation—the
error on water depth at site x is necessarily correlated to the error on water depth at a neigbouring site x′.
Besides, most output quantities of interest (damage per flood scenario D(ej), AAD, AAD’, and ∆AAD
indicators) can also be spatially distributed (vector or raster data), as it was developed in §2.3.2.4 on
page 65.

A spatially additive model with different supports for the model output The NOE modelling chain
is a “spatially additive model” as defined in §1.1.4 on page 22: the aggregation of an output damage
indicator (flood damage estimatesD(ej), AAD, AAD’, or ∆AAD indicators) over a given spatial support
v is simply the sum of this damage indicator over all flood-exposed assets included in the support. As
mentioned in §2.3.2.4 on page 65, we will consider in our analysis various spatial supports for the NOE
model outputs: first the floodplain Ω as a whole, but also a number of raster maps with different cell sizes.

A point-based model The NOE modelling chain is also a “point-based” model, according to the def-
inition given in §1.1.5 on page 23. Indeed, flood damage estimates at a given point x ∈ Ω only depend
on: i) flood intensity parameters at the same point x ∈ Ω; ii) the asset description at the same point x ∈ Ω;
and iii) damage functions. It can be noted that some authors developed more complex frameworks, in
which flood damage assessments are not point-based because they consider flood-exposed assets as spa-
tially connected systems and take into account a number of induced damages; in such frameworks, flood
damage on an asset located at point x ∈ Ω (e.g., a factory) may depend on flood intensity parameters at
other locations x′ (e.g., water depth on a distant warehouse). See Brémond (2011) for an example on
flood damages to farms.

A code with low CPU cost As detailed in §2.3.1 on page 58, one simulation of the NOE code on the
Orb Delta case study costs around 4 seconds on a grid computing cluster. Hence, it is possible to run the
code more than a thousand times, and to use intensive sampling techniques for sensitivity analysis.

2.4.3 Key limitations of the NOE modelling framework

As mentioned in §2.2.1 on page 40, the NOE modelling framework does not pretend to cover the entire
variety and complexity of cost-benefit analyses applied to flood risk management plans. In particular, we
must highlight the following limitations.

Hydraulic model The hydraulic model, which is used to produce hazard maps associated with flood
scenarios, is not considered as a part of the NOE modelling framework. It is an external module, whose
outputs (the hazard maps) are the inputs of the NOE code. Hence, the uncertainty and sensitivity anal-
ysis we will perform on the NOE code in the following chapters will not look into the hydraulic model
uncertainties, but will only try to describe the resulting uncertainty on the hazard maps.
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Evolution of landuse over time An important hypothesis in our framework is that all the input data
are assumed to keep a fixed value over the time interval R over which the flood risk management plan
is evaluated. In particular, the assets map is not supposed to change over the next 30 to 50 years. This
strong assumption may seem indefensible, yet it is a common hypothesis in all cost-benefit analyses
applied to flod risk management plans. We will discuss later how this hypothesis might be relaxed in
further research.

Fluvial floods As mentioned in §2.2.5.1 on page 45, we designed the NOE modelling framework to
deal with fluvial floods. However, this framework could be easily adapted to other types of inundation,
such as groundwater floods, coastal floods, surface water floods, etc. It would just be necessary to add new
descriptors for flooding events (e.g., the sea level for a coastal flood), and to compute scenario weights
that would take these new descriptors into account.



∎ 75

Chapter 3

Spatially distributed inputs in
variance-based global sensitivity
analysis
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AS mentioned in Chapter 1, VB-GSA is initially designed for models with independent and scalar
random inputs only: this is a first obstacle that limits its extension to spatial models. Indeed, in
a spatial model, some model inputs are not scalar values but 2D raster or vector data, and may

exhibit some sort of spatial auto-correlation; the original framework of VB-GSA does not fit any longer
in this case. In this chapter, we explore this issue and investigate how variance-based sensitivity indices
can be calculated in numerical models with spatially distributed inputs. Only models with scalar outputs
are considered here (spatially distributed outputs will be studied in Chapter 4).

This chapter is composed of three sections. The first section §3.1 is a review of the methods encountered
in the literature for VB-GSA of models with spatially distributed inputs. It is completed by a numerical
study of some of these methods and by a discussion on their pros and cons. In the second section §3.2,
we offer to discuss the issue of sampling of spatially distributed inputs in VB-GSA. We start with a
brief overview of the main strategies to model uncertainty in a spatially distributed input and sample
random realisations of it. We then explore the impact of sampling size and technique on the estimation
of variance-based sensivity indices, with two numerical studies of analytical test cases, one of which was
published in the Proceedings of the ninth International Symposium on Spatial Accuracy Assessment in
Natural Resources and Environmental Sciences (Saint-Geours et al. 2010). Next, the third section §3.3
is dedicated to an application of VB-GSA with spatial inputs to the NOE code on the Orb Delta case
study. It was submitted in July 2012 to the Journal of Flood Risk Management. It starts with a review
on uncertainty treatment in flood damage assessment studies. Finally, in the chapter conclusion (§2.4),
we give some insights on i) how to extend the methods discussed in this chapter to other types of model
inputs; and ii) how to extend the results observed on the NOE code for the Orb Delta case study to other
CBA-AD studies.
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3.1 State of the art and comparison of the available methods

3.1.1 Introduction

In its initial form summarized in §1.2 on page 24, variance-based global sensitivity analysis (VB-GSA)
is designed to deal with scalar inputs Ui only, which are modelled as independent random variables.
However, some recent research aim to extend the definition of variance-based sensitivity indices to cor-
related inputs (Li et al. 2010; Mara and Tarantola 2012; Kucherenko et al. 2012). Besides, a number
of authors have recently introduced methods to compute variance-based sensitivity indices associated to
one or several spatially distributed inputs Zi(x), that possibly exhibit spatial auto-correlation. Lilburne
and Tarantola (2009), Iooss and Ribatet (2009), or Iooss (2008) make a partial state of the art of these
approaches. In this section, we offer to:

○ make an updated state of the art of these methods (§3.1.2);

○ compare these methods on some analytical test cases (§3.1.3 on page 88) ;

○ discuss their pros and cons and give practice-oriented criteria to choose the appropriate method
for a given problem (§3.1.4 on page 92).

We consider in this whole section a numerical model F with a single spatially distributed input Z(x) and
a scalar output Y , as it was described in §1.1.1 on page 18:

Y = F (U1, . . . , Uk, Z) (3.1)

Besides, in some parts of this section, we will assume that the uncertainty on the spatially distributed input
{Z(x) ∶ x ∈ Ω} can be simulated by a stochastic process, which will be denoted byP (e.g., a geostatistical
algorithm). This stochastic process P may account for spatial auto-correlation or any complex structure
of variability in Z(x). This point will be further discussed in §3.2.2 on page 98.

3.1.2 A review

We found in the SA literature a number of papers dealing with VB-GSA applied to models with spatially
distributed inputs. They display various methods that intend to define variance-based sensitivity indices
that could measure the influence of an uncertain spatially distributed input Z(x) on the variance of model
output Y . These methods can be classified into six categories, which we describe into details in the
following paragraphs §3.1.2.1 to §3.1.2.6 on pages 79–86.

3.1.2.1 Macro-parameter

A first approach (Figure 3.1 on the next page) is to consider a spatially distributed input {Z(x) ∶ x ∈ Ω},
or more precisely its numerical representation, as a finite set of d scalar parameters λ1 . . . λd. When
{Z(x) ∶ x ∈ Ω} is stored as a GIS raster, scalar parameters (λj)j∈⟦1;d⟧ are simply the values Z(c1), . . . ,

Z(cd) at the centers of cells ci and d is the total number of cells. When {Z(x) ∶ x ∈ Ω} is represented by
a GIS vector layer, scalar parameters λj are the values of the attributes of each spatial object in the layer,
and d is a multiple of the number of objects. Following Iooss and Ribatet (2009), we will use the term
“macro-parameter” to refer to this method.
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In some applications, it may possible to consider that the λi are independent random variables. Spa-
tial correlation of uncertainty in model input {Z(x) ∶ x ∈ Ω} is then neglected. In other applications,
random variables (λj)j∈⟦1;d⟧ are not statistically independent, because there is spatial auto-correlation
in {Z(x) ∶ x ∈ Ω}. In the first case (parameters λi independent), variance-based sensitivity indices can
be computed either for each scalar parameter λj , or for the whole input group (λj)j∈⟦1;d⟧ (see §1.2.2.4
on page 32 for a discussion on grouping in VB-GSA). We will refer to these two options as “macro-
parameter without grouping” and “macro-parameter with grouping”. When scalar parameters (λj)j∈⟦1;d⟧

are correlated, only the “with grouping” option is appropriate. The steps of these two options are as fol-
lows:

Macro-parameter without grouping

Step 1 represent spatially distributed input {Z(x) ∶ x ∈ Ω} as a finite set of d scalar parameters λ1 . . . λd;

Step 2 identify a pdf pλi for each scalar input λi (assumed to be independent);

Step 3 consider the new code F⋆ (modified version of F):

Y = F
⋆
(U1, . . . , Uk, λ1, . . . , λd) (3.2)

Step 4 create an input sample Mtot with inputs (λj)j∈⟦1;d⟧ along with other scalar model inputs Ui (fol-
lowing the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and evaluate code F⋆

for each line of the sample;

Step 4 estimate first and total-order sensitivity indices for each scalar parameter λj (§1.2.2.5 on page 32).

Macro-parameter with grouping

Step 1 represent spatially distributed input {Z(x) ∶ x ∈ Ω} as a finite set of d scalar parameters λ1 . . . λd;

Step 2 identify a joint pdf pλ for the set of parameters (λj)j∈⟦1;d⟧; if the parameters (λj)j∈⟦1;d⟧ are
assumed to be independent, joint pdf pλ is simply the product of the marginal pdfs pλi ; if not, the
joint pdf pλ will describe the correlated structure of these parameters;

macro-
parameter

modified
numerical
model    λ

perimeter of
 sensitivity analysis

information

no loss of *

Figure 3.1: Macro-parameter method
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Step 3 consider the new code F⋆ (modified version of F):

Y = F
⋆
(U1, . . . , Uk, λ1, . . . , λd) (3.3)

Step 4 create an input sample Mtot with the group of inputs (λj)j∈⟦1;d⟧ along with other scalar model
inputs Ui (following the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and
evaluate code F⋆ for each line of the sample;

Step 5 compute the first and total-order sensitivity indices of the whole group of inputs (λj)j∈⟦1;d⟧

(§1.2.2.5 on page 32).

The “macro-parameter with grouping” approach was recently used by Heuvelink et al. (2010b) to carry
out a sensitivity analysis of the GeoPEARL pesticide leaching model. In this work, each spatially dis-
tributed soil property (soil horizon thickness, clay or organic matter content, etc.) was represented on a
spatial grid by a set of 258 scalar parameters λi that were assumed to be statistically independent. Hence,
spatial auto-correlation of uncertainty was neglected. For each soil property, sensitivity indices were
estimated for the whole group (λj)j∈⟦1;d⟧ by a pseudo Monte Carlo procedure.

The main drawback of the macro-parameter approach is its computational burden. The number of scalar
parameters that must be sampled to estimate sensitivity indices is equal to k + d where k is the number of
non-spatially distributed model inputs U1, . . . , Uk and d is the “dimension” of spatially distributed input
{Z(x) ∶ x ∈ Ω}—number of cells in a grid or number of spatial objects in a GIS vector layer. As soon as
the dimension d gets too large (d ≫ 100), the large samples required to estimate sensitivity indices may
be difficult to handle.

3.1.2.2 Dimension reduction

The “dimension reduction” approach is similar to the “macro-parameter” method, except that it results in
a reduction of the total information contained in the initial spatially distributed data Z(x) (Figure 3.2 on
the next page). Its idea is to find some way to approximate a spatially distributed input {Z(x) ∶ x ∈ Ω}

by a deterministic function φ of a small number of scalar inputs λ1, . . . , λd, with d small (typically
d ≤ 100, much less than the dimension of the initial spatially distributed data). As in the “macro-
parameter” method, scalar parameters λ1, . . . , λd may be assumed statistically independent or not, and
may be grouped for sensitivity analysis or not (see §1.2.2.4 on page 32 for a discussion on grouping in
VB-GSA). The steps of these two options are as follows:

Dimension reduction without grouping

Step 1 approximate spatially distributed input {Z(x) ∶ x ∈ Ω} by a deterministic function φ of a small
number of scalar inputs λ1, . . . , λd:

Z(x) ≈ φ(λ1, . . . , λd,x) (3.4)

Step 2 identify a pdf pλi for each scalar input λi (assumed to be independent);
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Figure 3.2: Dimension reduction method

Step 3 consider the new code F⋆ (modified version of F):

Y = F
⋆
(U1, . . . , Uk, λ1, . . . , λd) (3.5)

Step 4 create an input sample Mtot of inputs (λj)j∈⟦1;d⟧ along with other scalar model inputs Ui (follow-
ing the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and evaluate code F⋆ for
each line of the sample;

Step 4 estimate first and total-order sensitivity indices for each scalar parameter λj (§1.2.2.5 on page 32).

Dimension reduction with grouping

Step 1 approximate spatially distributed input {Z(x) ∶ x ∈ Ω} by a deterministic function φ of a small
number of scalar inputs λ1, . . . , λd:

Z(x) ≈ φ(λ1, . . . , λd,x) (3.6)

Step 2 identify a joint pdf pλ for the set of parameters (λj)j∈⟦1;d⟧; if the parameters (λj)j∈⟦1;d⟧ are
assumed to be independent, joint pdf pλ is simply the product of the marginal pdfs pλi ; if not, the
joint pdf pλ will describe the correlated structure of these parameters;

Step 3 consider the new code F⋆ (modified version of F):

Y = F
⋆
(U1, . . . , Uk, λ1, . . . , λd) (3.7)

Step 4 create an input sample Mtot with the group of inputs (λj)j∈⟦1;d⟧ along with other scalar model
inputs Ui (following the pseudo-Monte Carlo procedure described in §1.2.2.5 on page 32) and
evaluate code F⋆ for each line of the sample;

Step 5 compute the first and total-order sensitivity indices of the whole group of inputs (λj)j∈⟦1;d⟧

(§1.2.2.5 on page 32).



3.1 STATE OF THE ART AND COMPARISON OF THE AVAILABLE METHODS ∎ 83

Here are some examples of works based on this approach. Volkova et al. (2008) carried out sensitivity
analysis of a model of groundwater transport for radionuclide migration on a radwaste disposal site.
To represent spatially distributed soil properties such as the hydraulic conductivity or infiltration, they
divided up the spatial domain Ω into four zones ν1 to ν4 (d = 4); each soil property was then described
by a single scalar random variable λi on each zone vi, which was assumed to represent the average value
of the soil property over the zone. All these random variables were assumed independent, and first and
total-order sensitivity indices were estimated for each of them. Busby et al. (2010) also use a “dimension
reduction” approach to perform the sensitivity analysis of an oil reservoir model in which one of the
model inputs is a spatially distributed permeability field {Z(x) ∶ x ∈ Ω}. This input field is first expanded
on an orthogonal basis (Karhunen-Loève expansion); the main coefficients λi of this expansion are then
considered as new, uncorrelated inputs, and sensitivity indices are estimated for each of them by a pseudo
Monte Carlo procedure. A last example of the “dimension reduction” approach is given by Francos et al.
(2003), who performed the variance-based sensitivity analysis of the SWAT computer model (Soil and
Water Assessment Tool). In the original SWAT model, the study area Ω was divided into 11 topographical
sub-basins and further into 156 hydrological response units, and 15 soil properties where given for each
of these units. For sensitivity analysis, the spatial variability of soil properties was reduced and each
spatially distributed input variable was considered homogeneous over supports of larger size (either sub-
basins, or region composed of many hydrological response units grouped by soil types, land use types or
growing crops). This dimension reduction resulted in a downsizing of the total number of input variables,
from more than 1 000 in the initial model to only 82 in the reduced setting.

3.1.2.3 Switch or trigger input

The “switch input” or “trigger input” approach was first suggested by Crosetto and Tarantola (2001). In
this approach, we assume that the uncertainty on the spatially distributed input {Z(x) ∶ x ∈ Ω} can be
simulated by a stochastic process P . The idea of the “switch input” method is to modify the original
numerical model F by introducing a so-called “trigger” variable, denoted by ξ, which is assumed to be
a boolean random variable. When ξ = 0, the spatially distributed input Z(x) is kept fixed to its nominal
value; when ξ = 1, the stochastic process P is used to generate a random realisation of Z(x). The trigger
variable ξ is a switch between two situations (Figure 3.3 on the next page). Using this stratagem, the
sensitivity indices estimated for the trigger variable ξ are used as a measure of the sensitivity of the model
output Y to the variability of Z(x). The steps are as follows:

Trigger method

Step 1 choose a nominal value Z0(x) for the spatially distributed input;

Step 2 define a “trigger input”, denoted by ξ, which is assumed to be a boolean random variable such
that P(ξ = 0) = P(ξ = 1) = 1/2;

Step 3 sample trigger input ξ along with other scalar inputs Ui to generate an input matrix, following the
sampling procedure described in §1.2.2.5 on page 32;

Step 4 evaluate model F for each line i of the input matrix:

• if ξ(i) = 0, use nominal value Z0(x) to evaluate model F ;

• if ξ(i) = 1, use stochastic process P to generate a random realisation of Z(x) to evaluate
model F ;



∎ 84 CHAP 3. VB-GSA WITH SPATIAL INPUTS

case

case

perimeter of sensitivity analysis (stochastic model)

numerical
model     

= 

= 

Figure 3.3: Trigger input method

Step 5 from the output vector, calculate the first and total-order sensitivity indices Sξ and STξ of trigger
input ξ (§1.2.2.5 on page 32). These indices are taken as a measure of the influence of Z(x) on the
variance of model output Y .

Crosetto and Tarantola (2001) applied this “trigger” approach on a GIS-based hydrologic model that
simulate flood discharges from forecast rainfall on a given area. Five spatially distributed inputs Zi(x)
were considered: rainfall intensity maps, vector layer on flood-exposed assets, porosity maps, interception
map and soil moisture map. These inputs include 2D and 3D data, quantitative raster data, categorical
raster data and vector data. A stochastic process Pi was defined for each of them to generate random
error maps to be added to the initial maps. For one of the inputs (the rainfall intensity map), the stochastic
process P accounted for spatial auto-correlation in Zi(x): random realisations of an error Gaussian
Random Field were generated using Cholesky decomposition technique. For the other inputs, stochastic
processes Pi did not account for the spatial auto-correlation of uncertainty. Five trigger variables ξ1 to
ξ5 were included in the sensitivity analysis and first and total-order sensitivity indices were estimated for
each of them using the E-FAST procedure.

3.1.2.4 Map labelling

Lilburne and Tarantola (2009) suggest to represent the uncertainty of {Z(x) ∶ x ∈ Ω} using a set of n
randomly generated realisations (n possibly large), generated by a stochastic process P . Each realisation
is then “labelled” by a single integer. The steps are as follows:

Map labelling method

Step 1 generate n random realisations of the spatially distributed input {Z(x) ∶ x ∈ Ω} using a stochastic
process P . Store them in some permanent memory space. These realisations are considered as
equiprobable;
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Step 2 label each realisation with a unique integer l ∈ ⟦1;n⟧; the random realisation associated with label
l is denoted by Z(l);

Step 3 consider a random label L, which is assumed to follow a discrete uniform pdf in ⟦1;n⟧;

Step 4 sample random label L along with other scalar inputs Ui to generate an input matrix, following
the sampling procedure described in §1.2.2.5 on page 32;

Step 5 evaluate the modelF for each line of the input matrix; spatially distributed input Z(x) is replaced
by a reference to the random label L: on line i, the sampled value l(i) of the label indicates that
random realisation Z(l(i)) of the spatially distributed input must be considered to evaluate model
F for this sample line;

Step 6 from the output vector, calculate the first and total-order sensitivity indices SL and STL of random
label L (§1.2.2.5 on page 32). These indices SL and STL are taken as a measure of the influence
of {Z(x) ∶ x ∈ Ω} on the variance of model output Y .

preliminary step: generate a set of
random realisations and label them from 1 to n

1
2
n

pick the
l th random
realisation

numerical
model     

perimeter of
sensitivity analysis

Figure 3.4: Map labelling method

Lilburne and Tarantola (2009) applied the “map labelling” approach (Figure 3.4) to a spatial model for
simulating nitrate transport from paddock to groundwater (AquiferSim). Four spatially distributed inputs
were considered (soil map, land use map, river recharge map and aquifer transmissivity map) and a small
set of up to n = 4 random realisations was generated for each of them. The “map labelling” approach



∎ 86 CHAP 3. VB-GSA WITH SPATIAL INPUTS

was also used by Ruffo et al. (2006) to perform sensitivity analysis of a model for oil reservoir production
forecasting. Two spatially distributed inputs were considered (basin geometry and heat flow map) and a
small set of n = 8 (basin geometry) or n = 4 (heat flow) random realisations was generated for each of
them.

3.1.2.5 Joint meta-models

The “joint meta-models” method was introduced by Iooss and Ribatet (2009). In this approach, we
also assume that the uncertainty on the spatially distributed input {Z(x) ∶ x ∈ Ω} can be simulated by a
stochastic process denoted by P . Iooss and Ribatet (2009) suggest to consider Z(x) as an “uncontrol-
lable” input, that is, an input variable whose random values cannot be reproduced or fixed. Two different
meta-models— generalized linear models, GLM—are used to approximate the conditional expectation
E(Y ∣ U) and the conditional variance var [Y ∣ U] of model output. These meta-models are linked and
are built from a small set of model simulations, in which the value of the uncertain spatially distributed
input Z(x) is randomly sampled for each model run. We will not give a detailed description of the steps
involved to build these two meta-models. First meta-model on the conditionnal expectation E(Y ∣ U)

(“mean model”) is used to estimate first-order sensitivity indices of scalar inputs U1, . . . , Uk. The second
meta-model on conditional variance var [Y ∣ U] (“dispersion model”) is used to estimate total sensitivity
index STZ of the spatially distributed input {Z(x) ∶ x ∈ Ω}. Iooss and Ribatet (2009) apply this method
on a model for simulation of nuclear fuel irradiation. Marrel et al. (2012) also apply it on an oil reservoir
model, and use geostatistical simulation to obtain random realisations of a porosity map.

If there are several spatially distributed inputs Zk+1(x), . . . , ZK(x), they can be considered as a whole
as a single “uncontrollable” group of inputs. A couple of first-order and total-order sensitivity indices
can then be calculated for the whole group, but not separately for each spatially distributed input Zi(x).

3.1.2.6 Second level uncertainty modelling

The last method, named “second level uncertainty modelling” or simply “second level”, is not really
comparable to the others, because it does not measure the same quantity of interest (see below). However,
we think that it is necessary to discuss it, because: i) this method has been encountered in the literature
on sensitivity analysis of spatial models; and ii) it is helpful to better understand the difference between
this approach and the previous ones.

In this last method, we also assume that the uncertainty on spatially distributed input {Z(x) ∶ x ∈ Ω} can
be simulated by a stochastic process P . More precisely, we consider the case in which this stochastic
process P is controlled by some scalar parameters, denoted by θ1 to θd. These parameters usually aim
at controlling some features of the random realisations of Z(x). We can use the term “second level
parameters” to refer to these parameters θi, because they are used to model uncertainty on the first-level
model input Z(x). For example, if Z(x) was modelled by a Gaussian Random Field, second level
parameters θi could be the range, nugget and sill of the variogram. If Z(x) was a vector layer in a GIS
software, second level parameters θi could control a number of characteristics of the generated maps, such
as the number, shape or surface area of the polygonal features. The idea of the “second level” approach is
to consider that second level parameters θi are themselves uncertain, and to estimate their variance-based
sensitivity indices with respect to the model output Y a (Figure 3.5 on the next page). These parameters

aThis approach is for example suggested by Bonin (2006) when he says that “a common practice [. . . ] is to substitute to the
input variables the parameters of the errors models designed for these variables.”
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can be grouped for sensitivity analysis or not (see §1.2.2.4 on page 32 for a discussion on grouping in
VB-GSA). The steps are as follows:

Second level method

Step 1 identify a number of scalar parameters θi that control the stochastic process P

Step 2 identify a pdf pθi for each parameter θi, or a joint pdf pθ for the whole group of parameters
(θj)j∈⟦1;d⟧

Step 3 sample random parameters θi (grouped or not grouped) along with other scalar inputs Ui to gen-
erate an input matrix, following the sampling procedure described in §1.2.2.5 on page 32;

Step 4 for each line i of the sample matrix:

• generate a new random realisation of Z(x) with the stochastic process P , using parameter
values (θ

(i)
1 , . . . , θ

(i)
d );

• evaluate the code F using scalar inputs U (i)
1 , . . . , U

(i)
k and the new random realisation of

Z(x);

Step 5 (with grouping) from the output vector, calculate the first and total-order sensitivity indices Sθ
and STθ of the group of parameters (θj)j∈⟦1;d⟧ (§1.2.2.5 on page 32);

Step 5 (without grouping) from the output vector, calculate the first and total-order sensitivity indices
Sθi and STθi for each parameter θj (§1.2.2.5 on page 32).

numerical
model     

perimeter of sensitivity analysis (stochastic model)

Figure 3.5: Second level method

In fact, it is not the effect of first-level uncertainty of Z(x) on the variance of model output Y that is
assessed here, but rather the effect of the uncertainty of the second level parameters θi. The model F
under study is modified and becomes a stochastic numerical code: the stochastic process P which is
used to generate random realisations of the spatially distributed input Z is now included in the initial
deterministic model F .

The “second level” approach is the one chosen by Gumiere (2009) to carry out sensitivity analysis of
the MHYDAS water erosion model (Gumiere et al. 2011). They consider a single spatially distributed
input Z, which is a map of the locations of vegetative filters that influence sedimentological connectivity,
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represented by an oriented tree. To account for the uncertainty in the location of these vegetative filters,
they use a stochastic process P to generate random realisations of Z. This stochastic process is controlled
by three “second level” scalar parameters θ1, θ2 and θ3 that influence the properties of random trees Z:
upstream-dowstream gradient θ1, density parameter θ2, contrast parameter θ3. Finally, they estimate
variance-based sensitivity indices of second level parameters θ1, θ2 and θ3 with respect to the MHYDAS-
Erosion model outputs, using a procedure based on LHS sampling.

Another example of the “second level” approach is curently developed by Monod (2012). They investigate
the behaviour of a spatially distributed model that simulates the dispersion of modified genes across plots
of cultivated land. One of the model inputs is a map of the landscape which gives the position and
geometry of each plot of cultivated land (vector data). To account for the uncertainty on this spatially
distrbuted input, they developed an ad-hoc stochastic algorithm P , which can generate any number of
random realisations of the landscape, while controlling a number of important features θ1 to θd, such
as the level of aggregation of parcels growing the same crops, the empirical distribution of the parcels
surface areas, or the shape of parcels (angles). Then, they compute variance-based sensitivity indices
associated with each of these scalar parameters θi, based on a factorial design of experiments. These
sensitivity indices are a measure of the contribution of each feature θi of the landscape to the variance of
model output Y .

3.1.3 Numerical study

In order to illustrate the various methods presented in §3.1.2 on page 79, we compared them on three
analytical test cases. We only give here a brief summary of the settings and results of this numerical
study, which is detailed in Appendix §F on page 219.

3.1.3.1 Analytical test cases

Three different numerical models, denoted by F1 to F3, were studied. They all have two independent
scalar inputs U1 and U2, a single spatially distributed input Z and a scalar output Y . We made a restrictive
choice by considering only point-based and spatially additive models (see §1.1.4 to §1.1.5 on pages 22–
23 for a definition). This choice is justified by the facts that: i) our case study model (NOE model) is
point-based and spatially additive; and ii) most theoretical developments presented in this document are
related to point-based and spatially additive models only.

The output of interest for all models F1 to F3 is the spatial average Yv of a spatially distributed output of
some local code F1,loc to F3,loc over a disk v ⊂ Ω of radius r = 10:

Yv =
1

∣v∣
∫
x∈v

Fi,loc [U1, U2, Z(x)]dx (3.8)

U1 and U2 are independent scalar inputs with a different uniform pdf for each test case. {Z(x) ∶ x ∈ Ω} is
a 2D random field generated by a deterministic function denoted by φcamp.. This function was introduced
by Campbell et al. (2006) and then modified by Marrel et al. (2011). We use this latter modified version
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Figure 3.6: Three random realisations of the φcamp. function

in our work [Eqn. (3.9)]:

Z(x) = φcamp.(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8,x)

= λ1 exp−
(0.8xθ + 0.2xϕ − 10λ2)

2

60λ2
1

+ (λ2 + λ4) exp
(0.5xθ + 0.5xϕ)λ1

500

+ λ5(λ3 − 2) exp
−(0.4xθ + 0.6xϕ − 20λ6)

2

40λ2
5

+ (λ6 + λ8) exp
(0.3xθ + 0.7xϕ)λ7

250

(3.9)

where xθ and xϕ are the polar coordinates of point x ∈ Ω. Parameters λ1 to λ8 are assumed to be i.i.d.
random variables of uniform pdf U[−1,5]. Function φcamp. was designed to produce a random field with
strong spatial heterogeneity and spatial patterns depending on the values of λi parameters (Figure 3.6).
In this test case, we can describe the stochastic process P , which is used to generate random realisations
of the uncertain spatially distributed input {Z(x) ∶ x ∈ Ω}, as a two step process: first step consists of
drawing one random value for each scalar parameter λ1 to λ8 from its pdf; and second step is to use the
function φcamp. to generate a realisation of {Z(x) ∶ x ∈ Ω} from the sampled values of λi.

Finally, local code Fi,loc is different for each test case. Local code F1,loc is the usual Ishigami function
with parameters A = 7 and B = 0.1 (Homma and Saltelli 1996). F2,loc is the usual Sobol G function with
parameters a0 = 0, a1 = 1 and a2 = 4.5 (Archer et al. 1997). Local code F3,loc is a simple linear function:
F3,loc [u1, u2, z] = u1 ⋅ z + u2.
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3.1.3.2 Methods under study

Sensitivity indices of model inputs U1, U2 and Z are computed for each test case F1 to F3, using the
various methods discussed in §3.1.2 on page 79—except for the “joint meta-modelling” method. The
same pseudo Monte Carlo procedure described in §1.2.2.5 on page 32 was used for each method, with a
base sampling size N = 2 048. We give here some explanations on the procedures, for more details see
Appendix §F on page 219.

Dimension reduction/ macro-parameter (with or without grouping) In our test cases, the spatially
distributed model input Z(x) is generated with the deterministic function φcamp.. Here, dimension reduc-
tion is easy to perform: we just have to consider the eight scalar parameters λ1 to λ8, which are assumed
to be independent. In this specific case, dimension reduction does not result in a reduction of the infor-
mation contained in the spatially distributed input {Z(x) ∶ x ∈ Ω}: hence, dimension reduction approach
is here similar to the macro-parameter approach. Both “with grouping” and “without grouping” options
are implemented.

Map labelling A set of n = 1 000 random realisations of the spatially distributed input {Z(x) ∶ x ∈ Ω}

was generated using function φcamp. on a random sample of scalar parameters λ1 to λ8. Sensitivity indices
were estimated for test cases F1 to F3 following the method described in §3.1.2.4 on page 84.

Trigger method Trigger method was used to estimate sensitivity indices on test cases F1 to F3, with
the following setting: i) when trigger input ξ = 0, then spatially distributed input {Z(x) ∶ x ∈ Ω} is
fixed to its nominal value, obtained with the φcamp. function for the following values of λi parameters:
(5,3,1,−1,5,3,1,−1); ii) when trigger input ξ = 1, then spatially distributed input Z(x) is generated
with function φcamp. from a random set of parameters (λ1, . . . , λ8).

Second level Here, the stochastic process P used to generate random realisations of Z(x) is controlled
by the pdf of scalar parameters λi, which are initially supposed to follow a uniform distribution U[−1,5].
To apply the “second level” approach described in §3.1.2.6 on page 86, we considered that the two
boundaries of the interval [−1,5] were themselves uncertain. We denoted these two boundaries by θ1 and
θ2, and assumed they were random variables with the following laws: θ1 ∼ U[−2,0] and θ2 ∼ U[4,6],
respectively. We then computed first and total-order sensitivity indices for the group (θ1, θ2) as explained
in §3.1.2.6 on page 86.

3.1.3.3 Results

Table 3.1 on the facing page gives sensitivity indices estimates of model inputs with respect to the outputs
of modelsF1, F2 andF3. Notations SZ and STZ denote the measure of sensitivity related to the spatially
distributed input {Z(x) ∶ x ∈ Ω}. This measure depends on the method considered:

• for “dimension reduction with grouping” method, SZ and STZ are the sensitivity indices of the
group of scalar inputs (λ1, . . . ,λ8);
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Table 3.1: Sensitivity indices estimates for each test case and each method (base sample size N = 2 048)

Méthode SU1
SU2

SZ STU1
STU2

STZ

F1

Map
labelling

0.85029021 -0.00240045 0.08615907 0.85400421 0.06653359 0.14921352

Dim. red. (no
groups)

0.83122767 -0.00732305 -0.02939551 0.82528089 0.07106520 0.7841338

Dim. red.
(groups)

0.83122767 -0.00732305 0.09104848 0.82528090 0.07106520 0.1714519

Trigger 0.90419686 -0.00668187 0.00597127 0.98693707 0.09534858 0.09948201

Second level 0.41921743 0.0412273 0.351084231 0.48971827 0.08128145 0.36249868

F2

Map
labelling

0.39106100 0.16071710 0.26105662 0.54440171 0.2550799 0.4013758

Dim. red. (no
groups)

0.40854115 0.15463054 0.16372373 0.54443509 0.24548002 0.4202739

Dim. red.
(groups)

0.40854121 0.15463054 0.25502153 0.54443517 0.24548001 0.3775389

Trigger 0.36150243 0.14331481 0.11839480 0.71237405 0.47894579 0.43113721

Second level 0.21557175 0.08716610 0.53112684 0.36419231 0.19001217 0.62068430

F3

Map
labelling

0.16185561 0.51015161 0.36420441 0.16981867 0.4657908 0.3632460

Dim. red. (no
groups)

0.15610543 0.46926415 0.31304476 0.17798195 0.47171151 0.4054459

Dim. red.
(groups)

0.15610543 0.46926415 0.34933227 0.17798203 0.47171151 0.3750211

Trigger 0.11714831 0.55745845 0.11311281 0.35444583 0.77012715 0.32716394

Second level 0.13164180 0.62611001 0.03006099 0.18131888 0.67992681 0.03550100

• for “dimension reduction without grouping” method, we obtain individual sensitivity indices of
scalar inputs λ1, . . . , λ8, which are given in Appendix §F on page 219; a naive way to build sensi-
tivity indices SZ and STZ is to compute the sum of first-order indices Sλ1 , . . . , Sλ8 of scalar inputs
λ1, . . . , λ8 as well as the sum of their total-order indices STλ1 , . . . , STλ8 ; we thus indicate these
two sums, but we will explain in the discussion why they are misleading (§3.1.4.1 on the following
page);

• for “map labbeling” method, SZ and STZ are the sensitivity indices of random label input L;

• for “trigger” method, SZ and STZ are the sensitivity indices of trigger input ξ;

• for the sake of comparison and though we know that it does not measure the same quantity of
interest as discussed in §3.1.2.6 on page 86, we also indicate the measure obtained with the “second
level” method: in this case, SZ and STZ are the sensitivity indices of the group of inputs (θ1, θ2).

In this specific case study, sensitivity indices estimates obtained with the “dimension reduction with
grouping” approach can be taken as reference values. Indeed, for all test cases F1 to F3, the spatially dis-
tributed input {Z(x) ∶ x ∈ Ω} is completely represented by the set of scalar inputs λ1 to λ8, and thus the
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first and total-order sensitivity indices of the group (λ1, . . . , λ8) are a perfect measure of the contribution
of {Z(x) ∶ x ∈ Ω} to the variance of model output Y .

It first appears in Table 3.1 on the preceding page that the “map labelling” method gives the same values
of sensitivity indices as the “dimension reduction with grouping” approach, for all sensitivity indices and
all test cases—max bias is lesser than 5 ⋅ 10−2. We can interpret these results as an empirical validation
of the “map labelling” method.

Next, it can be noted that “dimension reduction without grouping” and “dimension reduction with group-
ing” methods yield identical estimates for sensitivity indices SU1 , SU2 , STU1 and STU2—max bias is
lesser than 10−2. On the contrary, the two methods differ in the information they bring on the spatially
distributed input {Z(x) ∶ x ∈ Ω}. The “dimension reduction without grouping” method gives sensitivity

indices estimates for each scalar parameter λi. The sum of first-order sensitivity indices
8

∑
i=1
Sλi could be

chosen as a measure of the main effect of spatially distributed input {Z(x) ∶ x ∈ Ω} on the variance of
model output Y . Yet, this sum does not account for the contribution of the interactions between scalar

inputs λi to the variance of Y . Hence sum
8

∑
i=1
Sλi is always smaller than or equal to first-order sensitivity

index SZ . In a similar way, the sum of total-order sensitivity indices STλ1 to STλ8 could be seen as
a good indication of the total contribution of spatially distributed input {Z(x) ∶ x ∈ Ω} to the variance
of model ouput Y . Nevertheless, in this sum, the interactions between scalar parameter λi and other
parameters λj are counted multiples times (once for each parameter), while they are only counted once

in total-order sensitivity index SZ . Hence, the sum
8

∑
i=1
STλi is always larger than or equal to total-order

sensitivity index STZ .

Finally, Table 3.1 on the previous page clearly suggests that the “trigger” method and the “second level”
method do not yield correct estimates of sensitivity indices, as they are far from the reference values ob-
tained with “dimension reduction with grouping”. In particular, with the “trigger” method, first-order in-
dex SZ is always over-estimated while total-order sensitivity indices STU1 and STU2 are under-estimated.
This point will be further discussed in §3.1.4.1 on the facing page.

3.1.4 Discussion

We discuss here the pros and cons of the various methods displayed in §3.1.2 along with the results of
the numerical study described in §3.1.3. The content of this discussion is summarized in Table 3.2 on
page 97.

3.1.4.1 Methods do not produce the same information

All the methods displayed in §3.1.2 intend to define variance-based sensitivity indices that could measure
the influence of an uncertain spatially distributed input {Z(x) ∶ x ∈ Ω} on the variance of model output
Y . However, they do not produce exactly the same information.

Influence of Z(x) with fixed description of uncertainty A first group of a methods intend to mea-
sure the contribution of the spatially distributed input Z(x) to the variance of model output Y , with a
“fixed” description of uncertainty on Z(x). This group includes the “macro-parameter”, the “dimension
reduction”, the “map labelling” and the “joint meta-models” techniques.



3.1 STATE OF THE ART AND COMPARISON OF THE AVAILABLE METHODS ∎ 93

The “macro-parameter with grouping”, “dimension reduction with grouping”, “map labelling” and “joint
meta-modelling” methods all result in the estimation of variance-based sensitivity indices SZ and STZ
that describe the contribution of the whole spatially distributed model input {Z(x) ∶ x ∈ Ω} to the vari-
ance of model output Y . It should be noted that in the “joint meta-modelling” method, only total-order
sensitivity index STZ can be estimated but first-order index SZ remains unknown. Besides, the “dimen-
sion reduction with grouping” method only yields an approximation of sensitivity indices of Z(x), as the
total information initially contained in Z(x) is reduced to a small set of scalar parameters.

The information brought by the “macro-parameter without grouping” or “dimension reduction without
grouping” methods is slightly different. They give separate estimates of the first and total-order sensitivity
indices Sλj , STλj for each scalar parameter λj , j ∈ {1, . . . , d}. As mentioned in §3.1.3 on page 88, the
set of first-order indices (Sλj)j∈⟦1;d⟧

does not bring the same information as the first-order sensitivity
index SZ of the whole spatially distributed input {Z(x) ∶ x ∈ Ω}, because SZ accounts for the role of
the interactions between (λj)j∈⟦1;d⟧ while first-order indices Sλj do not. In the same way, the set of
total-order indices (STλj)j∈⟦1;d⟧

does not bring the same information as the total-order sensitivity index
STZ , because interactions between scalar parameters λj are counted multiple times in the set of indices
(STλj)j∈⟦1;d⟧

while it is counted just once in STZ . Hence the set of sensitivity indices (Sλj , STλj)j∈⟦1;d⟧

does not yield a good measure of the main and total contributions of Z(x) to the variance of model output
Y .

Discarding the trigger method Results of the numerical study (Table 3.1 on page 91) also clearly
suggest that the “trigger” method does not produce the same information as other methods displayed in
§3.1.2. Sensitivity index of the “trigger” parameter ξ proved to be always smaller than the measure SZ
brought by the “macro-parameter” or “map labelling” methods. One possible explanation is that, in the
“trigger” method, uncertainty in Z(x) is taken into account only when the sampled value of the trigger
input is equal to ξ = 1, that is, one out of every two model runs in average ( P(ξ = 0) = P(ξ = 1) = 1/2).
Hence, the effect of uncertain model input Z(x) on the variance of model output Y is systematically
under-estimated. This result leads us to believe that the “trigger” method is not appropriate to deal with
spatially distributed inputs in VB-GSA.

Influence of second level uncertainty As mentionned in §3.1.2.6 on page 86 and corroborated by the
numerical study (Table 3.1 on page 91), the “second level” method does not produce the same measures
of importance as other techniques. In this approach, random realisations of the spatially distributed input
Z(x) are generated by a stochastic process P . This stochastic process is controlled by a number of
scalar parameters θi that are themselves considered as uncertain. What is measured in this method is the
contribution of these uncertain “second level” parameters θi to the variance of the model output Y . This
measure is by definition different from the contribution of the uncertain spatially distributed input Z(x)

to the variance of Y for a “fixed” stochastic process P (i.e., a stochastic process with constant values of
parameters θi). Hence, the “second level” method cannot really be compared to other techniques, as they
do not aim at measuring the same effects.

Influence of map attributes Finally, we can mention another possible situation, which is not handled
by any of the techniques that were described in §3.1.2, and which does not measure the same quantity
of interest either. Let consider the case in which a “fixed” stochastic process P is used to generate
random realisations of the uncertain spatially distributed input Z(x). As explained earlier, most of the
methods described in §3.1.2 measure the entire contribution of Z(x) to the variance of the model output
Y . However, if Z(x) appears to be an influential model input, then the modeller may want to know
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more precisely which “map attributes” contribute the most to the variability of the model output. A “map
attribute” can be any scalar descriptor of the spatially distributed input {Z(x) ∶ x ∈ Ω}. For example,
if Z(x) is modelled as a Stationary Random Field, some scalar descriptors are the value Z(x∗) at a
specific location, the average value of Z(x) over some spatial support, the proportion of the spatial
domain Ω for which Z(x) exceeds a certain threshold, etc. If the spatially distributed input is a map of
plots of cultivated land (vector data), then the following scalar descriptors could be chosen: number of
plots of land, average surface area of the plots, indicator of aggregation, etc. Two key characteristics of
these “map attributes” must be highlighted. First, they cannot be sampled in a controlled way: when
the “fixed” stochastic process P is used to generate random realisations of Z(x), the map attributes
associated to each random realisation of Z(x) will usually have different and uncontrolled values. These
“map attributes” are thus different from the “second level” parameters θi presented earlier. Second, if the
modeller considers several different “map attributes” at the same time, they will most often be correlated.
To assess how much the selected scalar map attributes of Z(x) contribute to the variance of model output
Y , a possible way is to proceed in two steps: i) first, carry out VB-GSA of the model using for example the
“map labelling” approach to estimate the sensitivity index SZ associated to Z(x); ii) then, using the same
set of model runs, perform a complementary graphical analysis to discuss qualitatively the influence of the
different map attributes. This graphical analysis may for example make use of scatterplots or Contribution
to the Sample Mean plot (Bolado-Lavin et al. 2009). Up to our knowledge, this approach has never been
used in the literature.

3.1.4.2 Computational cost

The methods displayed in §3.1.2 also differ in their computational cost. The cost of a method depends
on: i) the number of model simulations it requires, and ii) the number of random realisations of spatially
distributed input Z(x) is needed. We compare these costs with the hypothesis that the same sampling
procedure (described in §1.2.2.5 on page 32) is used for all methods in which sensitivity indices are
estimated from a pseudo Monte Carlo sample, with a base sample size N and a total sample size Ntot =

(K + 2) ⋅ N where K is the number of model inputs or groups of model inputs. Computational costs
associated with each method are given in Table 3.2 on page 97. It appears that the least CPU-intensive
approaches are the “map labelling” and the “joint meta-modelling” methods.

3.1.4.3 Spatial structure of uncertainty

Some methods displayed in §3.1.2 enable a complex correlated description of the spatial structure of un-
certainty in {Z(x) ∶ x ∈ Ω}, others do not. In the “map labelling”, “trigger” and “joint meta-modelling”
methods, the random realisations of Z(x) can be generated using any stochastic process P , based on any
algorithm and any software, allowing complex spatial descriptions of variability to be simulated. Spatial
auto-correlation can be taken into account and modelled (e.g., using Random Fields and geostatistical
simulation). On the contrary, in the “macro-parameter” or “dimension reduction” methods, modelling
the spatial structure of uncertainty in {Z(x) ∶ x ∈ Ω} is more complicated: it requires to be able to char-
acterise the joint pdf pλ of the scalar parameters (λj)j∈{1,...d} that represent spatially distributed input
Z(x), which is often impossible.
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3.1.4.4 Coupling with a meta-model

When the CPU cost of a single run of model F is too high (typically more than one minute), estimating
sensitivity indices with an intensive sampling-based approach becomes computationally intractable. In
this case, all the methods described in §3.1.2 are inapropriate, except for the “joint meta-modelling”
method which only requires a small set of model runs. Nevertheless, some of the other methods reviewed
can be coupled with meta-modelling to estimate sensitivity indices at a lower CPU cost. This is the case
for the “dimension reduction” method: a meta-model can be built from a small set of runs of the modified
numerical model F⋆ to estimate model output Y from the set of scalar inputs Ui and the set of parameters
(λj)j∈⟦1;d⟧. Sensitivity indices can then be estimated at a low cost from the meta-model through any
intensive sampling-based procedure. It is also the case for the “second level” approach, in which only
scalar inputs are considered (scalar inputs Ui and second level parameters θi). On the contrary, it does not
seem possible to build meta-models coupled with the “macro-parameter”, “trigger” or “map labelling”
methods. In the “macro-parameter” approach, the number of scalar inputs λj that should be included
in the meta-model is usually too large (> 1 000). In the “trigger” and “meta-modelling” methods, the
trouble comes from the nature of model inputs: trigger variable ξ is a boolean variable, “map label” input
L is a random integer. These inputs can not be included, up to our knowledge, in the usual meta-models
(Gaussian Processes, MARS, etc.) that only cope with scalar random variables with continuous pdf.

3.1.4.5 Decision tree to choose the appropriate method

For a given model F with spatially distributed inputs Zi(x), one may look at the following criteria to
choose from the methods for VB-GSA displayed in §3.1.2: i) the number of spatially distributed inputs
Zi(x); ii) the dimension of spatially distributed inputs Zi(x) (number of cells or number of spatial
objects); iii) the possibility to describe Zi(x) with a small number of scalar parameters; and iv) the cost
of the generation and storage of each random realisation of Zi(x). We suggest to use a decision tree
(Figure 3.7 on the following page) to choose among the various methods based on these criteria.

It must be noted that this decision tree is suitable for the case of a modelF with a low CPU cost, for which
intensive simulation is possible. When the cost of one run of model F is too high, then meta-modelling
must be used to lower the computational burden of the analysis. As discussed in §3.1.4.4, some of the
methods for VB-GSA with spatial inputs can be coupled with a meta-model: they are identified by a
dashed box in Figure 3.7. Others cannot: in particular, there is no available solution to apply VB-GSA to
a model with high CPU-cost and several spatially distributed inputs Zi(x) when these inputs cannot be
reduced to a small set of scalar parameters.
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trigger
input

second-level
method

Not comparable:

macro-
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'dimension' of Z(x)
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distributed inputs

>1 =1
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Figure 3.7: Decision tree for VB-GSA with spatially distributed inputs; dashed boxes indicate that the method can
be coupled with meta-modelling
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3.2 Sampling issues

3.2.1 Introduction

We displayed in §3.1 on page 79 a number of methods to compute variance-based sensitivity indices for
a spatially distributed model input {Z(x) ∶ x ∈ Ω}. Most of these methods require sampling a number
of random realisations of {Z(x) ∶ x ∈ Ω}, that can be generated by any stochastic process P . The size
and quality of this sampling will influence the precision and accuracy of sensitivity indices estimates,
but also the CPU cost of the analysis. With time consuming models and large input data, using an
effective sampling scheme is necessary to get the most accurate sensitivity indices with the fewest model
runs and/or the fewest random realisations of Z(x). This issue of input sampling has been extensively
discussed when model inputs are scalar random variables Ui; some papers (Kucherenko et al. 2011) are
devoted to the comparison of various sampling techniques such as Latin Hypercube Sampling (LHS) or
LP − τ sequences and discuss their influence on the quality of sensitivity indices estimates (accuracy,
precision and convergence).

In our work, we focused on the “map labelling” approach to estimate sensitivity indices of spatially
distributed inputs in VB-GSA (§3.1.2.4 on page 84). The “map labelling” approach uses a number n
of random realisations of the spatially distributed input Z(x) that may be smaller than the base sample
size N of the samples used to estimate sensitivity indices. The choice of size n is usually driven by
constraints of time (generating random realisations of Z(x) using stochastic process P may be CPU-
intensive) and constraints of disk space (storing a too large number of spatially distributed data with high
spatial resolution may be intractable). Efficient spatial sampling techniques are thus needed to generate
random realisations of spatially distributed inputs Zi(x) and get accurate sensitivity indices estimates at
low cost.

We start this section in §3.2.2 by a brief review on the various strategies to model uncertainty on a
spatially distributed input Z(x), describing the main stochastic processes P that can be used to generate
random realisations of Z(x). Next, we investigate the issue of spatial sampling for VB-GSA with the
“map labelling” method in two ways. In §3.2.3 on page 100, we observe the convergence of sensitivity
indices estimates provided by the “map labelling” method on analytical test cases F1, F2 and F3 for
increasing number n of random realisations of Z(x). Then, in a work presented at the Accuracy 2010
conference (Saint-Geours et al. 2010) and reproduced here in §3.2.4 on page 101, we study a simple point-
based and spatially additive analytical test case in which spatially distributed input Z(x) is modelled as
a Gaussian Random Field, and we compare two geostatistical simulation algorithms to generate random
realisations of Z(x): Simple Random Sampling (SRS) and spatial Latin Hypercube Sampling (LHS).
The purpose of this work is to assess whether spatial LHS yield better sensitivity indices estimates (better
accuracy, precision or convergence with increasing n) than SRS. We finally briefly discuss the outcomes
of both numerical studies in §3.2.5 on page 110.

3.2.2 Modelling uncertainty on spatially distributed inputs: a review

In this section, we very briefly survey the various methods by which uncertainty can be modeled and
simulated for spatially distributed data. Our motivation for this survey is the following: in §3.1, we dis-
played methods to handle a spatially distributed input Z(x) in variance-based global sensitivity analysis;
in most of these methodsb, we assume that the uncertainty on Z(x) can be simulated using a stochastic

bNamely, the map labelling, trigger, joint meta-model and second level methods.
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process or any ad-hoc algorithm, which is denoted by P . This stochastic process P is supposed to be able
to generate any number of random realisations of Z(x). Our goal here is to give an quick overview of the
main algorithms P that can be used for that purpose, depending on the nature of the spatially distributed
input Z(x). We know that the issue of modelling uncertainty for geospatial data has been extensively
discussed in the literature: it is by no means the scope of this section to display an exhaustive review
on this question. The interested reader will find more material in Fisher et al. (2005) or Hunsaker et al.
(2001).

We offer to distinguish between uncertainty modelling for raster spatial data and vector spatial data.

3.2.2.1 Uncertainty models for raster data

Up to our knowledge, the vast majority of methods given in the literature to model uncertainty for spatial
raster data is based on geostatistics (Chilès and Delfiner 1999).

Quantitative raster data For quantitative raster data (e.g., a Digital Terrain Model), the usual mod-
els found in the literature consist of perturbing the nominal raster data with some spatially distributed
error field, which is most often modelled as a Stationary Random Field (Bonin 2006). A wide range
of geostatistical simulation algorithms P are available to simulate random realisations of the error field,
such as Sequential Gaussian Simulation, Turning Bands or Cholesky decomposition (Lantuéjoul 2002).
These simulations algorithms may be conditional if they take into account some known data—e.g., the
value of the error field at some specific locations, the average value over a block, etc.—or unconditional
if they don’t. They may be exact or approximated. A number of open-source packages and softwares
are available to easily implement these simulation algorithms, such as SGeMS (Remy et al. 2009) or the
RandomFields package on statistical software (Schlather 2001).

Aerts et al. (2003) give an example of how to use geostatistical simulation to account for uncertainty on
the raster input of a spatial model. They consider a model which aims at finding an optimal location
for a ski run, using a slope map which is derived from a Digital Terrain Model of the study area. They
model the uncertainty on the input DTM with a stationary error random field, whose characteristics—i.e.,
variogram parameters—are determined from a set of ground control points. Then, they use Sequential
Gaussian Simulation to generate a set of 500 random realisations of the error field which is added to the
inital DTM. The whole procedure results in 500 equally probable DEMs, which are subsequently used to
propagate uncertainty through the ski run allocation model.

Categorical raster data For categorical raster data (e.g., land use determined by classification on a
satellite image), the usual uncertainty models are based on the indicator kriging theory. Hession et al.
(2006) display a review of the various geostatistical simulation algorithms P that have been developed
in this framework. Besides, another option to simulate uncertainty on categorical data is based on the
information given by a “confusion matrix”. The confusion matrix is mostly used to assess the accuracy of
land use classifications: each value pi,j of the confusion matrix is the proportion of raster cells classified
as members of the land use class i but actually belonging to land use class j according to ground control
data. From the information contained in the confusion matrix, it is possible to simulate random confusions
between land use labels, and thus to generate random realisations of land use maps from a nominal land
use raster data. This method named “confusion frequency simulation” was initially suggested by Fisher
(1991). Finally, there are also some non-standard methods to model uncertainty in categorical raster data,
such as neural networks or Markov chains, which are briefly reviewed by Hession et al. (2006).
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3.2.2.2 Uncertainty models for vector data

As clearly stated by Bonin (2006), “things are much more complicated when dealing with vector data”.
Indeed, modelling uncertainty for GIS vector layers is quite difficult and this issue has been paid less
attention in the literature than questions related to uncertainty in raster data. Brown et al. (2005) suggest
to divide uncertainty in spatial vector data into “positional uncertainty” and “attribute uncertainty”.

Positional uncertainty “Positional uncertainty” refers to the error on the position and shape of the ob-
jects in space. The basic geometric components of a GIS vector layer are points, lines and polygons. Gir-
res and Julien (2010) exhaustively list the various sources of positional uncertainty in a GIS vector layer,
including projections, georeferencing, generalization of object boundaries, digitalization, etc. Brown
et al. (2005) further suggest to distinguish point objects, rigid objects and deformable objects which be-
have differently with respect to positional uncertainty. However, despite extensive research on the field,
Bonin (2006) observes that very few statistical models exist to describe uncertainties in the position and
shape of GIS geometrical features, and even fewer stochastic processes P have ever been designed to
simulate such uncertainties. This is an open research question, which is in particular investigated in the
field of image segmentation evaluation (Neubert et al. 2008).

Attribute uncertainty “Attribute uncertainty” refers to the errors on the various descriptive data asso-
ciated with each object in a GIS vector layer. These attribute data can be quantitative (e.g., the density of
a country), categorical (e.g., the crop cultivated on a plot of land) or even textual (e.g., the name of a city).
Many typologies of attribute data uncertainty are offered in the literature (Radoux et al. 2011). For exam-
ple, MacEachren et al. (2005) build a typology based on the following nine components: accuracy/error,
completeness, consistency, credibility, currency, interrelatedness, lineage, precision/resolution, and sub-
jectivity. However, these typologies of uncertainty are almost never associated with any stochastic process
P or ad-hoc algorithm that could simulate random realisations of uncertain attribute data. One notable
exception is vector landuse maps—in which land use class is a categorical attribute—for wich the “con-
fusion frequency simulation” described for raster data in §3.2.2.1 on the preceding page can be applied
(Lilburne et al. 2006). This latter method will be used to model uncertainty on the assets map in the NOE
code.

3.2.3 Convergence of sensitivity indices estimates with map labelling method

3.2.3.1 Introduction

This subsection is devoted to a numerical study of the convergence of sensitivity indices estimates with
the “map labelling” approach described in §3.1.2.4 on page 84. The “map labelling” approach requires
to generate a set of n random realisations of spatially distributed input {Z(x) ∶ x ∈ Ω} before launching
sensitivity analysis. The accuracy of sensitivity indices estimates depends on the number n of these
random realisations. We assess the effect of n on sensitivity indices estimates for the three analytical test
cases which we already studied in §3.1.3 on page 88.

3.2.3.2 Method

We considere the test cases F1, F2 and F3 that were already studied in §3.1.3 on page 88. In these test
cases, Z(x) is a random field generated by the function φcamp.. For each test case, we compute sensitivity
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indices estimates with the “map labelling” approach for an increasing number n of random realisations
of spatially distributed input Z(x). The following procedure is used for n = 3,10,25,50,100,500 and
1 000:

Step 1 generate a set of n random realisations of spatially distributed input {Z(x) ∶ x ∈ Ω}, using the
stochastic process P described in §3.1.3.1 on page 88;

Step 2 estimate sensitivity indices from this set of random realisations with the “map labelling” ap-
proach, for a base sample size N = 2 048 (§3.1.2.4 on page 84);

Step 3 repeat the steps 1 and 2 a hundred times;

Step 4 compute for each sensitivity index its empirical mean and its empiral standard deviation over the
100 replicas.

In order to assess the accuracy of the sensitivity indices estimates, we compare them to the reference
values obtained with the “dimension reduction with grouping” approach, given in Table 3.1 on page 91.

3.2.3.3 Results

Results (Figure 3.8 on the next page) show that, in the “map labelling” approach, the accuracy of sensi-
tivity indices estimates increases with the number n of random realisations of spatially distributed input
Z(x). For all analytical test cases F1 to F3 and all sensitivity indices, the standard deviation of estimates
over 100 replicas is less than 0.05 when n ≥ 50. Besides, it can be noted that when n is to small (n < 50),
sensitivity indices estimates are biased: there seems to be a trend of under-estimation of SZ and STZ ,
while SU1 , STU1 , SU2 and STU2 are over-estimated, compared to reference values obtained with the
“dimension reduction with grouping” approach. This bias gets smaller for larger values of n.

3.2.4 Comparing SRS and LHS to generate random realisations of Z(x)

In this subsection, we study a simple point-based and spatially additive analytical test case in which
spatially distributed input Z(x) is modelled as a Gaussian Random Field. We compare two geostatistical
simulation algorithms P1 and P2 to generate random realisations of Z(x): Simple Random Sampling
(SRS) and spatial Latin Hypercube Sampling (LHS). Our purpose is to assess whether spatial LHS yield
better sensitivity indices estimates (better accuracy, precision or convergence with increasing n) than
SRS.

ä Note to the reader: This section was published in the proceedings of the ninth International Sympo-
sium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (Saint-Geours
et al. 2010) with the following title: “Latin Hypercube Sampling of Gaussian random field for Sobol’
global sensitivity analysis of models with spatial inputs and scalar output”. Some extra explanations
were added to the published material: they are identified by a grey box. Moreover, in order to keep a
general consistency of notations throughout this document, the original notations given in the published
paper were changed.
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Figure 3.8: Map labelling approach: convergence of sensitivity indices estimates for U1 (○), U2 (+) and Z (△) with
increasing n. Test cases F1 (top), F2 (center) and F3 (bottom)
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3.2.4.1 Introduction

Sensitivity analysis (SA) techniques are increasingly recognized as useful tools for the modeller: they
allow robustness of model predictions to be checked and help identifying the input factors that account
for most of model output variability (Saltelli et al. 2008). Among the various available SA techniques
(see Helton and Davis (2006) for a review), variance-based Sobol’ global sensitivity analysis (VB-GSA)
has several advantages: it explores widely the space of uncertain input factors and is suitable for complex
models with non-linear effects and interactions. It can be applied to models with spatial inputs by asso-
ciating randomly generated map realisations to scalar values (Lilburne and Tarantola 2009). This allows
complex description of spatial uncertainty to be used: when model inputs are continuous 2D fields (e.g.,
a digital elevation model built from some limited terrain points), random map realisations can be gener-
ated through geostatistical simulation (Chilès and Delfiner 1999). Yet VB-GSA approach needs a large
number of model runs to compute sensitivity indices. With time consuming models, using an effective
sampling scheme is necessary to get the most accurate sensitivity indices with the fewest model runs.
This issue has been widely discussed in the case of models with scalar inputs. But in many models used
for environmental risk assessment (e.g., a flood damage model), inputs are maps (e.g., a water level map)
rather than scalars. In such a case, it is also of great importance to generate a relatively small set of map
realisations capturing most of the variability of the spatial inputs. Latin Hypercube Sampling (LHS) of
Gaussian random fields (Pebesma and Heuvelink 1999) may be a way to reach better efficiency in the
computation of sensitivity indices on spatial models. The purpose of this paper is thus to discuss the
influence of LHS sampling design when used to generate geostatistical simulations for VB-GSA of mod-
els with spatial inputs and a single scalar output. Sensitivity indices are estimated on an artificial model
(a simplification of a real flood damage model) with a 2D spatial input (a Gaussian random field), with
a) two different sampling designs of geostatistical simulations (Simple Random Sampling and LHS), b)
increasing sample size. Relative bias and standard deviation are used to compare exactness and precision
of sensitivity indices estimates.

3.2.4.2 A simple spatial model

Flood damage model description Let Y = F(U, Z) be a spatial flood damage model with two inputs.
Z is a map of the maximal water levels reached during a flood event on a study area. The water levels
Z(x) are given at each location x of the area, represented by a regular grid G as shown in Figure 3.9 on
the following page (total number of pixels: G = 2 500). U = (U1, U2) is a vector of R2. It describes a
linear damage function Floc: the surfacic damage due to submersion under a water level z is Floc(U, z) =

U1 ⋅ z +U2. The model output Y is the total damage due to the flood on the study area [Eqn. (3.10)].

Y = ∑
x∈G

Floc(U, Z(x)) (3.10)

ä Extra comment: according to the definitions given in §1.1 on page 18, the analytical test case under
study is a point-based, spatially additive and linear model.

Uncertainties in input factors The two input factors of model F are considered uncertain. Map Z is
described as a Gaussian random field of mean µ = 7 and variance σ2 = 121. Spatial correlation follows
an exponential covariance model C(h), with range parameter a = 10 and a nugget effect parameter
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Figure 3.9: Study area represented by a discrete grid G

η = 0.3 (h being the Euclidian distance between two points) [Eqn. (3.11)]. Parameter values were chosen
arbitrarily.

C(h) =

⎧⎪⎪
⎨
⎪⎪⎩

σ2 if h = 0

(1 − η) ⋅ σ2
∀h > 0

(3.11)

The two components U1 and U2 of vector U are independent and follow normal distributions, of re-
spective means µ1 = 6, µ2 = 1, and variances σ2

1 = 16, σ2
2 = 1. The two input factors Z and U are

independent.

3.2.4.3 Spatial global sensitivity analysis: method

Through Sobol’ global sensitivity analysis (VB-GSA), we can discuss the relative influence of uncertainty
in map Z and uncertainty in U on the model output variability. The simple form of Y makes it possible
to give analytical expression of Sobol’ sensitivity indices for each input factor. These exact values are
then compared with estimates, which are computed with a sampling-based method, using a set of random
geostatistical simulations of map Z.

Analytical expression of sensitivity indices

ä Note to the reader: A proper definition of variance-based sensitivity indices can be found
in §1.2.2.3 on page 30.

Sobol’ sensitivity indices are based on the decomposition of the output variance in conditional variances.
First-order sensitivity index of input factor U is defined as var[E(Y ∣ U)]/var(Y ). It represents the main
effect contribution of input factor U to the variance of output Y . For more details on VB-GSA basics,
see Saltelli et al. (2008). Let Λ be the average of water levels over the study area, and Γ the average of
local damage function Floc over the grid:

Λ =
1

G
∑
x∈G

Z(x) and Γ =
1

G
∑
x∈G

Floc(U, Z(x)) (3.12)

Λ and Γ are random variables depending on Z and U. Let σ2
Λ and σ2

Γ be the respective variances of Λ

and Γ. Total variance of model output Y is var(Y ) = G2 ⋅ σ2
Γ where σ2

Γ is given by Eqn. (3.13):

σ2
Γ = [µ2

1 ⋅ σ
2
Λ] + [µ2

⋅ σ2
1 + σ

2
2] + [σ2

1 ⋅ σ
2
Λ] (3.13)
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Table 3.3: Sensitivity indices exact values

Sensitivity index Notation Value

First-order index of map Z SZ 0.309

First-order index of U SU 0.554

Total-order index of map Z STZ 0.446

Total-order index of U STU 0.691

Second-order index SZ,U 0.137

Variance σ2
Λ depends on the model C(h) of spatial correlation in map Z [Eqn. (3.14)]. hx,x′ is the

Euclidian distance between two points x and x′ on grid G.

σ2
Λ =

1

G2 ∑
(x,x′)∈G2

C(hx,x′) (3.14)

The conditional expectation E(Y ∣ Z)s is given by:

∑
x∈G

E [U1 ⋅Z(x) +U2 ∣ Z(x)] = G ⋅ (µ1 ⋅Λ + µ2) (3.15)

First-order sensitivity index of Z is then:

SZ = µ2
1 ⋅
σ2

Λ

σ2
Γ

(3.16)

The conditional expectation E(Y ∣U) is given by:

∑
x∈G

E [U1 ⋅Z(x) +U2 ∣ U1, U2] = G ⋅ (U1 ⋅ µ +U2) (3.17)

First-order sensitivity index of U is then:

SU =
µ2 ⋅ σ2

1 + σ
2
2

σ2
Γ

(3.18)

Interactions between input factors Z and U are accounted for by the second order sensitivity index SU,Z :

SU,Z = 1 − SZ − SU = σ2
1 ⋅
σ2

Λ

σ2
Γ

(3.19)

Total-order sensitivity indices account for the total contribution to Y variation due to an input factor. In
this case of a model with two input factors, total-order sensitivity index STZ is simply the sum of first-
order index SZ and second order index SU,Z (and accordingly for STU). Table 3.3 gives the exact values
for first-order, second order and total-order sensitivity indices, derived from Eqn. (3.11) on the facing
page, Eqn. (3.13) on the preceding page, Eqn. (3.14), Eqn. (3.16), Eqn. (3.18) and Eqn. (3.19).

Generating map realisations In order to estimate sensitivity indices, a set of n random realisations of
Gaussian field Z must be sampled. Two methods are considered to generate this set: Simple Random
Sampling (“SRS set”) and Latin Hypercube Sampling (“LHS set”). First a SRS set is generated using
LU decomposition of the covariance matrix (Chilès and Delfiner 1999). From this set, following the
procedure described in Pebesma and Heuvelink (1999), a LHS set of maps is drawn (Figure 3.10 on the
following page). This procedure works by repeating the following steps at each location x of grid G:
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Figure 3.10: Three simulations of Gaussian random field Z by Simple Random Sampling along a line of grid
G. Water levels simulated by Simple Random Sampling (○) and Latin Hypercube Sampling (△) are given for two
locations x et x′. Vertical lines indicate the shift for individual sample elements; dotted horizontal lines indicate
stratum boundaries.

○ Let s(x) be the vector of the n sampled values at location x from the SRS set: s(x) = (s1(x), . . . ,

sn(x)).

○ Let r(x) be the vector with the ranks of s(x): ri(x) is the rank of si(x) in the ordered list of
(sj(x)). r(x) is a permutation of {1; . . . ;n}.

○ Let F −1 be the inverse marginal distribution of N (µ,σ). Divide the pdf of Z(x) into n equally
probable strata Ii according to Eqn. (3.20):

Ii = [F −1
(
i − 1

n
) ;F −1

(
i

n
)] for i ∈ {1, . . . , n} (3.20)

○ The new value zi(x) of the ith simulation at point x is obtained by randomly sampling a value in
U (Iri(x)) .

At each location x, the ranking of the n simulations from the SRS set is preserved in the LHS set: a
spatial correlation is thus maintained in each realisation of map Z (Figure 3.10).

Estimating sensitivity indices First-order and total-order sensitivity indices are estimated using “map
labelling” approach (Lilburne and Tarantola 2009), which is a generalisation of the methods of Sobol’ and
Saltelli to spatially dependent models. It uses two quasi-random samples of size N , combined through
several permutations, to explore the uncertainty domain of input factors Z and U and estimate sensitivity
indices. Spatial input Z is handled by sampling 2 ⋅N scalar values from a discrete uniform distribution
in {1; . . . ;n}: each discrete level is associated with a single simulation of Z from the set of n maps
previously generated. Input factor U is treated as a “group of factors”; componentsU1 andU2 are sampled
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Table 3.4: Exactness (relative bias in %) and precision (± standard deviation) of sensitivity indices, for different
sizes n of the set of generated maps

n = 10 generated maps n = 250 generated maps

Index SRS LHS SRS LHS

SZ -7.71% ± 0.097 -11.51% ± 0.080 +1.12% ± 0.047 +1.05% ± 0.042

SU +9.26% ± 0.126 +11.85% ± 0.107 +2.12% ± 0.043 +1.80% ± 0.038

SZ,U -17.13% ± 0.062 -19.30% ± 0.061 -8.06% ± 0.049 -6.60% ± 0.049

STZ -9.81% ± 0.124 -13.10% ± 0.105 -1.23% ± 0.042 -0.70% ± 0.038

STU +4.02% ± 0.096 +5.66% ± 0.079 +0.10% ± 0.047 +0.13% ± 0.042

independently from their pdf, but sensitivity indices are estimated globally for the group U = (U1, U2).
Total number of model runs is Ntot = 2 ⋅N ⋅ (K +1) where N is the size of the quasi-random samples and
K is the number of (groups of) input factors. Here N is fixed (N = 512), K = 2 and Ntot = 3 072.

Sensitivity indices estimates are computed using either SRS or LHS set of maps, for an increasing number
n of generated maps. The whole process is replicated 1 000 times. Mean values with ± standard deviation
bars for each estimate are shown on Figure 3.11 on the next page. while Table 3.4. gives for each estimate
its standard deviation over the 1 000 replicas, and the relative bias compared to its analytical value, for
n = 10 and n = 250.

3.2.4.4 Results and discussion

Exactness and precision of sensitivity indices estimates Figure 3.11 on the next page and Table 3.4
show that for small n, SZ estimate has a negative bias, while SU has a positive one. When n is low,
the small set of map simulations fails to capture the overall variability of Gaussian random field Z: thus
the influence of Z variability on model output Y is underestimated; conversely the influence of U is
overestimated. This bias decreases when n increases. LHS sampling of Gaussian random field Z doesn’t
bring improvement to estimates bias. For small n (n ≤ 10), LHS estimates have an additional bias which
will be discussed in §3.2.4.4. For larger sets of simulated maps (n ≥ 25), LHS procedure yields estimates
whose relative biases are not significantly different from SRS estimates (significance tested with a Welch’s
t-test for each value of n).

Table 3.4 also shows that LHS estimates have a slightly smaller standard deviation than SRS estimates:
this gain is significant for many (Si, n) couples (Levene’s test). This finding is consistent with more
general results on variance reduction associated with LHS, in the case of sampling of scalar random
variables (Helton and Davis 2003).

Disturbance of spatial correlation by LHS For small number n of generated maps (n = 3,10), esti-
mates computed with an LHS set of maps have an additional bias (underestimation of SZ , overestimation
of SU) compared to SRS estimates. This additional bias can be explained by the fact that spatial cor-
relation is disturbed by the LHS procedure. Figure 3.12 on page 109 shows that maps from a LHS set
have smaller spatial correlations than those from a SRS set, as discussed in Pebesma and Heuvelink
(1999). But spatial correlation in map Z influences the value of σ2

Λ and thus the values of sensitivity
indices. Eqn. (3.11) on page 104 and Eqn. (3.14) on page 105 show that σ2

Λ decreases when spatial cor-
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Figure 3.11: First-order (top) and total-order (bottom) sensitivity indices of input factors Z (○) and U (+), depending
on number n of generated maps and sampling strategy (SRS, LHS). Mean values with ±s.d interval over 1 000
replicas. The dashed lines show the analytical results from Table 3.3 on page 105.
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Table 3.5: Exactness (relative bias in %) of the estimates of EΛ (expectation of Λ) and σ2
Λ, using either LHS or SRS

simulation strategy, for different number n of generated maps

n = 10 n = 100 n = 200

Bias SRS LHS SRS LHS SRS LHS

ε(ÊΛ) -0.20a -0.014 -0.54 -2.10−3 -0.13 -4.10−5

ε(σ̂2
Λ) -0.74 -0.28 -1.10 0.46 -0.59 -0.21

a. Mean value of relative bias over 100 replicas
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Figure 3.12: Average semivariograms for exponential model, SRS set of maps and LHS set of maps, n = 10 maps.

relation in map Z decreases (smaller range parameter a). This results in an additional underestimation of
sensitivity index SZ when estimated with a LHS set of maps.

Discussion LHS sampling of Gaussian random field Z yields some improvement to the variability
of sensitivity indices estimates but no significant improvement to estimates bias. These results can be
explained by a general property of LHS: the more the target quantity (here the sensitivity indices) is
additive in the variables sampled, the more LHS improves on SRS (Pebesma and Heuvelink 1999). Here
the values of sensitivity indices depend heavily on the variance σ2

Λ of Λ, the average water level over the
study area [Eqn. (3.14) on page 105, Eqn. (3.16) on page 105 and Eqn. (3.18) on page 105]. But σ2

Λ is
not additive in sampled water levels Z(x): as a result, the efficiency gain brought by LHS procedure is
small.

As an illustration, Table 3.5. gives relative bias of estimates of expectationEΛ and variance σ2
Λ, computed

on SRS and LHS sets of maps. LHS brings a tremendous gain in estimate bias for the expectation EΛ

(additive in sampled water levels).

3.2.4.5 Conclusion

Sobol’ sensitivity indices were estimated on an artificial spatial model (derived from a complex model for
flood risk economic assessment) with a 2D spatial input (a Gaussian random field), and compared to their
analytical values. Two sampling strategies were used to generate realisations of input Gaussian random
field: Simple Random Sampling and Latin Hypercube Sampling (higher CPU cost). Results show that
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(1) LHS sensitivity indices estimates have a significantly smaller variance (2) LHS sampling brings no
significant improvement in estimates bias (3) for small sample size, disturbance of spatial correlation by
LHS procedure yields an additional bias in estimates. The poor improvement brought by LHS sampling
comes from sensitivity indices not being additive in the variables sampled. Other ways should be sought
to select input map realisations to perform sensitivity analysis of spatial models. These conclusions would
be different if SA was computed “locally”, i.e. with a spatially distributed output (e.g., a map of damage).
In this latter case, the spatial dimension of the problem would be reduced, and we could expect LHS to
bring the same improvement as in a nonspatial context.

ä Note to the reader: End of the section that was published in the proceedings of the ninth
International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental
Sciences (Saint-Geours et al. 2010) with the following title: “Latin Hypercube Sampling of Gaussian
random field for Sobol’ global sensitivity analysis of models with spatial inputs and scalar output”.

3.2.5 Discussion

This section aimed at exploring the issue of sampling random realisations of a spatially distributed input
Z(x) for VB-GSA.

First, the numerical study performed on the analytical tests cases F1 to F3 bring some insights on the
impact of sampling size n on the convergence of sensitivity indices estimates in the “map labelling”
approach. On these test cases, where the spatially distributed input is generated by function φcamp., we
found that a number n ≥ 50 of random realisations of Z(x) is enough to get accurate estimates of
sensitivity indices. We also observed a trend for under-estimation of sensitivity index SZ for small values
of n. A possible explanation is the following: for small values of n the set of random realisations of
Z(x) is too small to represent reasonably well the overall uncertainty on the spatially distributed input,
and its influence on the variance of model output Y is under-estimated. These results are corroborated by
the numerical study performed for the Accuracy2010 conference, in which the spatially distributed input
Z(x) is a Gaussian Random Field. Unfortunately, these conclusions cannot be generalised immediately
to other test cases or real-world numerical models. Hence, figures showing the convergence of sensitivity
indices estimates with increasing number n of random realisations ofZ(x) (e.g., Figure 3.11 on page 108)
should be drawn for each case study to determine the minimum sampling size n.

We also partly investigated the issue of choosing an efficient stochastic process P to generate random
realisations of the spatially distributed input Z(x) in the “map labelling” approach. In the specific case
in which Z(x) is a Gaussian Random Field, we compared the performances of two different sampling
techniques, LHS and SRS. The results show that even if LHS brings small improvement on sensitivity
indices estimates, it also disturbs spatial correlation for small values of n, resulting in an additional bias
in sensitivity indices estimates. This study could have been completed by considering other sampling
methods to generate random realisations of Gaussian Random Fields, such as “sequential spatial sim-
ulation using LHS” developed by Kyriakidis (2005). Another path of research is opened by the work
of Scheidt and Caers (2009) who suggest to draw optimal samples of random realisations of Z(x) based
on the definition of a distance between realisations. Unfortunately, time was too short to explore these
points more deeply.
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3.3 Application to the NOE code on the Orb Delta case study

In this section, we carry out a first variance-based sensitivity analysis of the NOE code on the Orb Delta
case study. As mentioned in Chapter 2 (§2.3.2.3 on page 64), two groups of spatially distributed inputs
must be handled: the assets map (2D vector data) and the hazard maps (2D raster data). To cope with
these inputs in VB-GSA of the NOE code, we chose a method based on the NOE characteristics described
in §2.4 on page 72 and on the decision-tree given in Figure 3.7 on page 96. First, a run of the NOE code
on the Orb Delta case study only lasts 30 seconds on a computer of average performance: intensive
simulation is thus possible. Second, the computational burden related to the simulation and storage of
spatially distributed model inputs is rather high but not limitative—the weight of a set of water depth maps
H(ej) is approximately 500 Mo and that of the assets map is 50 Mo. Third, both the number of objects
in the assets map (∼ 20 000) and the dimension of water depth maps (3 500 × 3 500) are large: hence, the
“macro-parameter” approach appeared to be intractable. Fourth, reducing the total information contained
in the hazard and assets map was impossible, so the “dimension reduction” method was discarded. Fifth,
there are more than one single spatially distributed input in the NOE modelling framework, which makes
the “joint meta-modelling” approach developed by Iooss and Ribatet (2009) inappropriate. Finally, we
chose to use the “map labelling” approach to perform VB-GSA of the NOE modelling framework.

We only paid attention in this analysis to the NOE scalar outputs aggregated over the entire floodplain:
total flood damages D(ej), AAD, AAD’, ∆AAD, and NPV indicators. Spatially distributed outputs will
be considered in Chapter 4.

ä Note to the reader: The following paragraphs §3.3.1 to §3.3.6 on pages 111–130 are extracted from
a draft paper submitted to the Journal of Flood Risk Management in July 2012 with the following title:
“Ranking sources of uncertainty in flood damage modelling: a case study on the cost-benefit analysis of a
flood mitigation project in the Orb Delta, France”. Some extra explanations were added to the submitted
material: they are identified by a grey box. In addition, some sections of this paper are developed into
more details in Chapter 1 or Chapter 2 and can safely be skipped by the reader: a specific note is added
on top of them.

3.3.1 Introduction

Flooding is recognised as one of the most damaging natural hazards, responsible for approximately one-
third of the total economic losses due to natural hazards in Europe (EEA et al. 2008). Following the
approval of the EU flood directive (2007/60/EC) in 2007, EU member states now have to establish flood
risk management plans focused on prevention, protection and preparedness in all flood-prone river basins
and coastal areas. To evaluate these plans, flood risk managers are advised to use cost-benefit analysis
(CBA) as part of the appraisal (European Commission 2008). In France since 2011, using CBA is manda-
tory for local managers who claim national subsidies. Despite known limitations (European Commission
2009a), CBA is a useful tool that provides significant rational information to the decision makers. To con-
sider the expected benefits related to flood management, CBA requires an accurate estimate of the amount
of flood damage that will be reduced yearly by the appraised measures. We will use the term CBA-AD
to refer to this implementation of CBA based on avoided damage. This estimate relies on a complex
modelling chain, including hydrological, hydraulic and economic modelling as well as GIS-based spa-
tial analysis (Messner et al. 2007). Two output indicators are commonly produced in such studies: the
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reduction of the expected annual flood damage costs (Arnell 1989) and the net present value of the ap-
praised measures (Erdlenbruch et al. 2008). These two indicators may also take into account the benefits
and costs that are not directly related to flood management, such as environmental impacts or landscape
modification, but this issue is not in the scope of the present paper.

Meanwhile, there is a growing consensus (Apel et al. 2004) that flood damage assessments are fraught
with uncertainties, which arise from innacurate or missing data, model assumptions, measurement errors,
incomplete knowledge, etc.—see Refsgaard et al. (2007) and Walker et al. (2003) for an enlightening dis-
cussion on the nature of uncertainty. Uncertainty analysis is thus required to identify and quantify the im-
pacts of uncertainties in the modelling chain to i) increase the reliability of flood damage assessments and
related CBA-AD (Mostert and Junier 2009) and ii) inform relevant stakeholders with the best information
possible for decision making (Ascough et al. 2008). Over the last few years, various methods of quantita-
tive uncertainty analysis have been used in flood damage assessment research (Pappenberger et al. 2006;
Pappenberger and Beven 2006). Nevertheless, many authors first focused on the uncertainty in a single
component of the flood damage assessment chain: hydraulic modelling (e.g., Bernardara et al. (2010);
Gouldby et al. (2010); de Rocquigny (2010), inundation mapping (Bales and Wagner 2009; Stephens
et al. 2012), damage functions (Kutschera 2009; Merz et al. 2004; Merz and Thieken 2009; Merz et al.
2010) or land use (Te Linde et al. 2011). To go further, a number of recent studies investigated how com-
binations of these uncertainty sources interact and propagate through flood damage assessments. They
differ by the components under study (extreme value statistics, hydraulic model, potential dyke breach,
inundation mapping, exposure assessment, damage functions) and by the uncertainty analysis method
used. In some studies (Koivumäki et al. 2010; Merz and Thieken 2009; de Moel and Aerts 2011; Briant
2001), the various components of the modelling chain were varied manually in a “one-factor-at-a-time”
(OAT) approach (Saltelli et al. 2008) to estimate the confidence bounds around the flood damage esti-
mates. Other authors described uncertainty sources in a probabilistic setting and explored the space of
input uncertainty within a Monte Carlo framework (Helton and Davis 2006), which requires a large num-
ber of model evaluations (Apel et al. 2008; de Kort and Booij 2007; de Moel et al. 2012; Weichel et al.
2007).

Another related but distinct issue is to identify, in the flood damage assessment process, the main sources
of uncertainty that contribute the most to the variability of damage estimates and CBA-AD outcomes,
which is the role of sensitivity analysis methods (SA). These methods aim to study how the uncertainty of
a model output can be apportioned to different sources of uncertainty in its inputs (Saltelli et al. 2008). SA
is recognised as an essential component of model building (European Commission 2009a; CREM 2009)
and is widely used in different fields (Cariboni et al. 2007; Tarantola et al. 2002). Ranking uncertainty
sources, usually by so-called “sensitivity indices” or “importance measures” is useful to orientate further
research, collect additional data on most influential inputs but also simplify the model under study by
fixing non-influential inputs. While many quantitative SA approaches are available, most studies in the
field of flood damage assessment used a “one-at-a-time” and qualitative SA approach, manually compar-
ing the separate effects of each uncertainty source on the damage estimates. They used the large number
of model evaluations produced from uncertainty analysis either in a probabilistic setting or using various
versions of input data (Apel et al. 2004; Koivumäki et al. 2010; de Moel and Aerts 2011; Pappenberger
et al. 2008). To our knowledge, only the work of de Moel et al. (2012) was based on a quantitative global
sensitivity analysis method (GSA), in which i) quantitative sensitivity indices are estimated for each un-
certainty source and ii) all uncertain model inputs are varied at the same time, which allows the effect of
their interactions on the overall output variability to be discussed.

Nevertheless, to date, only the uncertainty on the flood damage assessments have been studied without
questioning how this uncertainty may impact the robustness of the CBA-AD of flood management poli-
cies nor how to improve this robustness. Our paper is an attempt in this direction. We try to answer
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the following questions: how does uncertainty propagate through the CBA-AD of a flood management
policy? What is the ranking of the uncertainty sources in such a CBA-AD?

We discuss these questions through a case study of a CBA-AD applied to a flood risk management plan
on the Orb River delta, France, where only structural flood-control measures are considered. Our goal
is to check the robustness of the CBA-AD results and assess the contribution of uncertainty sources to
the overall output variability. A modelling chain named NOE (§3.3.2 on the following page) is used to
estimate the potential flood damages at the scale of individual assets and perform a cost-benefit analy-
sis of the flood control measures. Uncertainty sources are then described in a probabilistic framework,
propagated through the NOE model with pseudo Monte Carlo simulations, and variance-based sensitivity
indices are computed for each of them (§3.3.3 on page 117). Only epistemic uncertainty (Refsgaard et al.
2007) is considered here because aleatory uncertainty is already accounted for in the definition of output
CBA-AD indicators (average annual flood damages). The description of uncertainty sources is based on
the literature, expert opinion or measurements using univariate or bivariate probability density functions
or more complex models for spatially distributed uncertainty. The results (§3.3.4 on page 125) include
confidence bounds and empirical pdf of CBA-AD outputs and a ranking of the uncertainty sources based
on their sensitivity indices. We discuss the outcomes of our approach and its limits in §3.3.5 on page 128.

3.3.1.1 Study site

$ Note to the reader: The Orb Delta study site is already presented in §2.3.2.1 on page 59 and the
following paragraph can safely be skipped.

As a study area, we selected the Lower Orb River fluvial plain, known as the Orb Delta, located in the
south of France. We focused on a 15 km reach from Béziers to the Mediterranean sea that is bounded
by an area of 63 sq. km and includes the cities of Béziers, Portiragnes, Sauvian, Sérignan, Valras-Plage
and Villeneuve-lès-Béziers (Figure 2.15 on page 59). The Orb catchment has a typical Mediterranean
subhumid regime. The annual maximum discharge in Béziers (Tabarka gauge) varies from year to year
between 100 and 1 500 m3/s (BCEOM 2000). The flood prone area in the Orb delta is home to approxi-
mately 16 290 permanent people (total population of the six localities: 90 000 people), 774 companies and
30 seaside campgrounds (which attract up to 100 000 tourists in summertime). Approximately one-third
of the area is devoted to agriculture. The flood of December 1995 - January 1996, with a peak discharge
of 1 700 m3/s at the Tabarka gauge, caused a total amount of damage of 53 Me (SMVOL 2011).

In 2001, local authorities launched a flood risk management project, mainly based on various structural
mitigation measures, including dyke strengthening around urban areas, restoration of sea outfalls and
channel improvement. In 2011, to claim national subsidies, they completed a cost-benefit analysis of
their project (Grelot et al. 2012).

This study site was mainly chosen because it was a “real” case study, with a flood risk management
plan under construction and a cost-benefit analysis produced by the local authorities. Moreover, the area
was already documented with numerous available data. These data included aerial photographs, a high-
resolution Digital Terrain Model (DTM) built from photogrammetry, the annual maximum flow series
from 1967 to 2009 at the Tabarka gauge, and various spatial datasets on buildings, agricultural land and
economic activities in the area (Erdlenbruch et al. 2008).
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3.3.2 Description of the NOE modelling framework

$ Note to the reader: The flowchart of the NOE modelling framework and its application on the Orb
Delta case study are presented into more details in Chapter 2. This section is a simplified and shorten
version of §2.2 (for the purpose of publication) and it can safely be skipped.

Cost-benefit analysis based on avoided damages (CBA-AD) was used to evaluate the flood risk manage-
ment project launched on the Orb River. In the literature, flood damage assessments and related CBA-AD
vary in their scope and scale as well as the data used and their outputs. Here, a complex modelling chain
named NOE (Erdlenbruch et al. 2008) combines hydrological, hydraulic, GIS and economic modelling
to estimate the flood damages on individual assets and compute two output indicators: i) the Average
Annual Avoided Damage (∆AAD [e/year]) over the study area, which is defined as the amount of an-
nual expected damage costs that are reduced due to the flood mitigation measures; and ii) the Net Present
Value (NPV [e]) of the flood mitigation measures. The modelling chain consists of seven steps that are
further described in this section (Figure 3.13).

3.3.2.1 Flood scenarios

The calculation of the Average Annual Avoided Damage requires damage estimation for a number of
relevant flood scenarios with different characteristics to represent the aleatory uncertainty associated with
flood hazard in the study area. The first step of the NOE modelling chain is thus to choose a range of
potential flood events of various magnitudes. Six flood scenarios e1 to e6 were selected, characterised by
a maximum discharge qi at Tabarka gauge (Table 2.1 on page 61). e1 is supposed to be the smallest flood
event that induces damage (q1 = 1 000 m3/s).

Scenarios e2 to e5 include historical floods and design floods. Scenario e6 is an extreme flood, which
would result in an over-topping of all existing flood-control dykes.

Flood frequency analysis

Flood hazard modelling

Flood exposure modelling

Damage estimation

Average Annual Avoided Damage

Net Present Value

Choice of flood scenarios

Figure 3.13: Simplified flowchart of the NOE model
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3.3.2.2 Flood frequency analysis

The return intervals T1 to T6 and exceedance frequencies f1 to f6 associated with flood scenarios e1 to
e6 were deduced (Table 2.1 on page 61) from the discharge-frequency Gumbel curve (Q− f ), which was
fitted on the annual maximum flow series at the Tabarka gauging station available from 1967 to 2009
(AMFS 1967-2009).

3.3.2.3 Flood hazard modelling

For each flood scenario, a typical flood hydrograph was first generated based on expert opinion (BCEOM
2000). The 1D, step-backwater hydraulic ISIS Flow model (unsteady flow) was then used to propagate the
hydrographs within the floodplain. The ISIS Flow model solves the full 2D, depth-averaged momentum
and continuity equations for free-surface flow (ISIS 2012). Two different floodplain flow simulations were
produced for each flood scenario e2 to e6: one describing the present situation and the other describing
future situation with enforced mitigation measures. The floodplain flow simulations were then combined
with a high-resolution DTM, to produce two sets of raster data with a 5 m cell size, giving spatially
explicit maximum water depths (WD) for each flood event over the study area: H(e1) toH(e6) (present
situation) andH(e′1) toH(e′6) (future situation).

3.3.2.4 Flood exposure modelling

Four economic sectors were considered in the exposure analysis: private housing, agricultural land, camp-
grounds and other economic activities. Flood exposure was assessed at the scale of small individual assets
(buildings, plots of cultivated land, etc.). Data from various sources were collected to build a land use
geo-database (LU-GDB) over the study area, including digital cadastral maps, a dataset of the regional
Chamber of Commerce and Industry (2009), and the national agricultural land use statistics (RPG dataset,
2009). An extensive field survey was also conducted to collect additional data on assets, such as ground
floor elevation of buildings. In the end, the LU-GDB dataset describes private housing units (individual
buildings), plots of cultivated land, campgrounds and other economic activities by individual polygonal
features in a single GIS vector layer (Table 2.2 on page 62). Plots of cultivated land were further charac-
terised by a subtype (wheat, vineyard, etc.), while economic activities were classified into sixty categories
following the French classification of economic activities NAF2008 (INSEE 2008).

The flood exposure of assets was then assessed by confronting the LU-GDB dataset with water depth
mapsH(e1) toH(e6) andH(e′1) toH(e′6). For each exposed object (represented by a polygonal feature
in LU-GDB dataset) and each inundation map, the average water depth over the object was extracted as
an attribute column by a simple overlay analysis. To compute meaningful average water depths for very
large objects (e.g., large plots of cultivated land), we first divided all features into pieces of 40 000 sq. m
max by intersecting features of the LU-GDB dataset with a regular square grid of 200 m cell size.

3.3.2.5 Damage estimation

The following module of the NOE modelling chain estimates the total damage costs (D) within the study
area for each flood scenario e1 to e6, for the present (D(e1) to D(e6)) and future (D(e′1) to D(e′6))
situations. We will denote by ∆D1 to ∆D6 the damage reduction brought by the mitigation measures for
each flood scenario: ∆Di =D(ei)−D(e′i). As scenario e1 was defined as the “flood event where damage



∎ 116 CHAP 3. VB-GSA WITH SPATIAL INPUTS

to property begins”, the damage estimates D(e1) and D(e′1) are both assumed to be equal to zero. For
scenarios e2 to e6, as a coarse estimation, only direct and tangible monetary losses were considered—
Merz et al. (2010) present the other types of damages that should be estimated for a more complete
analysis.

Damage functions were used (Table 2.3 on page 65), which depend mainly on the following parameters:
type and floor surface area of the exposed object, average water depth, and season of occurrence (camp-
grounds and agriculture). Flood velocity and flood duration were considered to be homogeneous. These
damage functions were taken from the recommendations of the French State (MEDDTL 2011). For a
complete description, see the original study (Grelot et al. 2012). In the end, a total of 94 depth-damage
relationships were used, one for each land use type and subtype.

3.3.2.6 Average Annual Avoided Damages

The average annual damage cost from flooding (AAD [e/year]) is a common performance indicator
used to measure potential flood damages over a given territory (Arnell 1989; Messner et al. 2007). It is
equal to the area under the damage-frequency curve, which is the graph of damage D against exceedance
frequency f = 1/T :

AAD =

1

∫
0

D(f)df (3.21)

To assess the benefits of the flood risk management project launched on the Orb River in 2001, we
computed the potential reduction of the average annual damage costs brought by the mitigation measures,
i.e., the variation ∆AAD = AAD −AAD′ from the present to the future situation. This Average Annual
Avoided Damage (∆AAD [e/year]) is also equal to:

∆AAD =

1

∫
0

∆D(f)df (3.22)

It can be computed from the range of flood scenarios e1 to e6 and corresponding avoided damages ∆D1

to ∆D6 by estimating the integral [Eqn. (3.22)] with a simple trapezoidal rule (Figure 3.14 on the facing
page).

ä Note to the reader: For a more general definition of the Average Annual Avoided Damages,
see §2.2.5 on page 44.

3.3.2.7 Net Present Value of the mitigation measures

The last step of the NOE modelling chain is the cost-benefit analysis, which evaluates the efficiency
of the flood mitigation measures by comparing their costs with their expected benefits. The costs of
the mitigation measures include the initial investment (CI = 35.2Me) and maintenance costs (CM =

1.6Me/year). The benefits of the project are measured by the ∆AAD indicator. The Net Present Value
(NPV [e]) of the flood mitigation measures is then calculated by comparing the discounted costs and
benefits over a period of R = 30 years [Eqn. (3.23)].

NPV = −CI +
R

∑
i=0

(∆AAD −CM) ⋅ τi (3.23)
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Figure 3.14: Computation of the Average Annual Avoided Damages

where τi is the discount coefficient for year i. A positive NPV value means that the benefits generated by
the flood risk management project outweigh its costs. The larger the NPV value, the more efficient the
flood mitigation measures are.

3.3.3 Uncertainty and sensitivity analysis

Uncertainty and sensitivity analyses of the NOE modelling chain (Figure 3.15 on page 119) were per-
formed using variance-based global sensitivity analysis approach (Saltelli et al. 2008). In the first step
of the analysis, sources of uncertainty in the NOE modelling chain were identified and modelled in a
probabilistic framework, and a set of random realisations was sampled for each uncertain modelled input.
Next, pseudo-Monte Carlo simulations were used to explore the space of input uncertainty and assess
the resulting variance of model outputs (∆AAD and NPV indicators). Finally, sensitivity indices were
computed to rank the sources of uncertainty, depending on their contribution to the variance of outputs.

ä Sensitivity indices with respect to the NPV indicator: In addition to the complete sensitivity
analysis of the NOE modelling framework that we want to perform, we observed that it was possible to
calculate variance-based sensitivity indices analytically in Eqn. (3.23) on the facing page that defines the
Net Present Value indicator. The exact formulae of these sensitivity indices are given in Appendix §B on
page 203. Besides, we also proved that there is a relation between sensitivity indices with respect to the
∆AAD indicator and the sensitivity indices with respect to the NPV indicator. This point is developed in
Appendix §B on page 203.

3.3.3.1 Modelling sources of uncertainty

Table 3.6 on the next page lists the epistemic uncertainty sources that we took into account in the uncer-
tainty and sensitivity analyses of the NOE modelling chain. Each source of uncertainty was modelled in
a probabilistic framework using measurement or expert opinion.
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NOE modelling chain
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Figure 3.15: Flowchart for uncertainty and sensitivity analysis

Flood frequency analysis Uncertainty in the flood frequency analysis may arise from i) stream gauge
measurement errors (Neppel et al. 2010); ii) possible non-stationarity of the series due to climate change
(Khaliq et al. 2006) and iii) uncertain fitting of a discharge-frequency (Q − f ) relationship to the AMFS
1967-2009 dataset (Countryman and Tustison 2008). Here, only the latter uncertainty was modelled
and simulated. After a log transformation leading to the usual linear regression context, standard joint
distributions (Maidment 1993) for the parameters of the fitted Gumbel curve were calculated (Figure 3.16
on the following page). A set of n1 = 103 Gumbel curves was then randomly sampled from the parameter
joint distribution. From this set of curves, 103 exceedance frequencies fi and according return intervals
Ti = 1/fi (Figure 3.17 on the next page) were generated for each discharge value qi(i = 1 to 6).

Flood hazard modelling Another major source of uncertainty in the NOE modelling chain is the in-
undation mapping process, which includes hydraulic modelling and combination with a high resolution
DTM, to derive water depth mapsH(e1) toH(e6) andH(e′1) toH(e′6). For the sake of simplicity, a re-
strictive choice was assumed in considering the error on the high-resolution Digital Terrain Model as the
single uncertainty source in water depth maps. Including more detailed descriptions of the hydraulic un-
certainties in this study was impossible as the ISIS hydraulic model used for initial flow simulations was
not available to us. This choice may be partly justified by the findings of both Bales and Wagner (2009)
and Koivumäki et al. (2010), who investigated the various sources of error encountered in this process
and conclude that high-resolution topographic data is the most important factor required for accurate in-
undation maps. The DTM—a raster data of 5 m cell size—was initially built by stereo-photogrammetry.
Both measurement errors and interpolation errors affect the quality of this input data (Wechsler 2007).
These errors were modelled by a Gaussian noise without spatial correlation, whose characteristics were
determined from a set of 500 control field points (mean = 0 cm, s.d. = 17 cm). A set of n2 = 100 random
realisations of the Gaussian random error field was generated and added as “noise” to the initial water
depth mapsH(e1) toH(e6) andH(e′1) toH(e′6). We may note that this procedure induces independent
variations of the water levels for each exposed assets; it differs from the study of de Moel and Aerts
(2011), who described uncertainty in the water levels with a spatially uniform bias.
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Figure 3.16: Annual maximum flow series AMFS 1967-2009 and fitted Gumbel distribution (red solid line) with
95% confidence bounds (dotted blue lines)
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ä Extra comment: We also investigated how to model and simulate the auto-correlated structure
of uncertainty in the DTM. In a previous sensitivity analysis of the NOE modelling chain on the Orb
Delta, published in Journal de la Société Française de Statistiques (Saint-Geours et al. 2011a reproduced
in Appendices), we modelled the measurement errors and interpolation errors on the initial DTM by a
Gaussian Random Field with an exponential variogram model, whose characteristics were determined
from a set of 500 control field points.

Flood exposure modelling The third source of uncertainty is the location and attribute data errors in
the LU-GDB dataset (Koivumäki et al. 2010). The error in the land use GIS layer may stem from the
following: i) misclassification of polygonal features representing assets; ii) error on the ground floor
elevation of buildings; and iii) error on the surface area of features. Other sources of uncertainty were
identified: geometric errors (Bonin 2006; Girres and Julien 2010), errors in the asset locations, and the
evolution of land use over time (Te Linde et al. 2011). Although in some studies (de Moel and Aerts
2011) the uncertainty of the land use data was represented by using a small number of different datasets,
here each uncertainty source was modelled in a probabilistic setting. To describe the misclassification
of polygonal features, which may arise in the process of photo-interpretation, a confusion matrix (Fisher
1991) was built based on expert opinion, giving a confusion probability pi,j for each pair of land use types
(i, j) (Table 3.7). Then, to model the variability of the ground floor elevation of buildings, measurements
were taken during a field survey on a sample of 100 buildings. The study area was divided into five
homogeneous zones; in each zone, the distribution of ground floor elevation was described by an empirical
histogram (Figure 3.18 on page 123). Random ground floor elevation was also attributed to campgrounds,
plots of agricultural land and other economic activities (Table 3.6 on page 118). Next, the surface area
of the buildings was also randomised, as the features area extracted from cadastral maps differ from
the effective surface area of buildings that should be taken into account for flood damage estimation
(e.g., wall width should be subtracted). To cope with this issue, the nominal surface of each building
was multiplied by a corrective random coefficient drawn independently in a uniform pdf in [0.75; 0.85],
considering a digitalising error of 0.3 mm at the map scale (Hengl 2006). Finally, from this probabilistic
description of the uncertainty in the LU-GDB dataset (confusion matrix, empirical distribution of ground
floor elevations, corrective coefficient for surface areas), a set of n3 = 1 000 random LU-GDB datasets
was sampled.

Table 3.7: Confusion matrix of LU-GDB dataset

Land use type Number of sub-types Probability of confusion between sub-types

Private housing 1 No confusion.

Agricultural land 15 25% chance of confusion between durum wheat and bread wheat; 10%
chance of confusion between colza, maize, barley and sunflower; 25%
chance of confusion between permanent and temporary grassland.

Campgrounds 18 No confusion.

Other economic
activities

60 0.17% chance of belonging to each other class of economic activities.
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ä Extra comment: As mentioned in §2.2.8.2 on page 56, there are various ways to assess the
exposure of assets to a flooding event, for example using the maximum values or the mean values of
flood caracteristics (water height, velocity, flood duration) over the object. This modelling choice results
in an additional uncertainty, which is not related to the inaccuracy of model inputs. It was not considered
in the sensitivity analysis of the NOE modelling framework on the Orb Delta case study. This issue is
further discussed in Appendix §D on page 212.

ä Extra comment: The evolution of land use over time was identified as an extra source of uncertainty
in flood exposure assessment, but was not taken into account in this study. In the future, a possible way
to explore this issue would be to simulate land use changes (with uncertainty) over the next 30 years on
the study area. Flood exposure and flood damages would be computed at each time step, and the average
ammount of damages over time would be considered. One likely problem would be that the spatial scale
of models that simulate land use change (e.g., MOLAND or CLUE-s) may not be commensurate with
the scale needed for exposure assessment in flood damage modelling.

Damage estimation The fourth uncertain model input is the set of 94 depth-damage curves (one for
each land use type and subtype) used for the damage estimation. Uncertainty about the damage func-
tions has been extensively discussed in previous studies (Koivumäki et al. 2010; Kutschera 2009; Merz
et al. 2004, 2010; Merz and Thieken 2009; de Moel and Aerts 2011). In these papers, uncertainty was
mainly represented by using two or three different sets of damage functions coming from various studies.
Only de Moel and Aerts (2011) used a parametric uncertainty model (beta pdf) derived from Egorova
et al. (2008). Here, to treat all uncertainty sources in a probabilistic framework, we made the choice
to use a single set of depth-damage curves and represent their uncertainty by a uniform pdf, defining a
−50% to +50% uncertainty range around nominal curves (Figure 3.19 on the next page). Depth-damage
curves associated with each land use type and subtype were assumed to vary independently—contrary
to de Moel and Aerts (2011), where they were sampled collectively from a single p-value. A total of
n4 = 1 000 random sets of depth-damage relations was sampled this way.

ä Extra comment: The [−50%,+50%] uncertainty range was chosen based on expert opinion.
Torterotot (1993) studied the uncertainty on depth-damage curves for private building and displayed
coefficients of variation associated with average annual avoided damages around 40%. Other authors
could choose a much larger range (Merz et al. 2010)—in particular, Merz et al. (2004) quantified
the uncertainty which is associated with damage estimates to buildings using statistical information
and found that damages could differ by more than one order of magnitude for similar flood intensity
parameters.

Project costs Finally, the last source of uncertainty in the NOE modelling chain is related to the costs
of the flood risk management project. Based on expert opinion, investment costs CI and maintenance
costs CM were assumed to follow a triangular pdf with the parameters shown in Table 3.6 on page 118.
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0.0 0.5 1.0 1.5 2.0 2.5

water depth [m]

0
10

0
20

0
30

0

d
am

ag
e 

[€
/m

²]

+50%

-50%

Figure 3.19: Nominal depth-damage curve for private housing (red solid line) with a [−50%;+50%] uncertainty
range (blue dotted lines)

ä Extra comment on discount rate and time horizon: Two parameters were considered constant is
this analysis: the discount rates τi and the length of time R over which the Net Present Value of the flood
mitigation project is calculated. Both have conventional values that are used in most CBA-AD studies,
hence it did not seem appropriate to consider them as uncertain. Yet these conventional values are
constantly discussed in the literature devoted to CBA theory—for example, Almansa and Martínez-Paz
(2011) discusses the value of discount rates τi for the CBA of projects with long term environmental
impacts.
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3.3.3.2 Propagating uncertainty

$ Note to the reader: The computational aspects of uncertainty propragation in VB-GSA are
presented into more details in §1.2.2.5 on page 32 and the following paragraph can safely be skipped.

Once uncertainty had been modelled for each source of uncertainty, it was propagated through the NOE
modelling chain using Monte Carlo simulation and a specific sampling scheme following Lilburne and
Tarantola (2009). It uses two independent quasi-random LP-τ matrices M1 and M2 (Sobol’ 1967), here
of length N = 4096—this sampling size was chosen to fill the necessary conditions for the LP-τ samples
(N must be a power of 2) and large enough to obtain a satisfactory level of accuracy for the sensitivity
indices estimates. These two matrices were combined through several permutations to explore the un-
certainty domain of the five model inputs considered, respectively: exceedance frequencies, inundation
maps, LU-GDB dataset, depth-damage curves, and project costs. The ith line of sample M1 or M2 is a
set (l(i)1 , l

(i)
2 , l

(i)
3 , l

(i)
4 , l

(i)
5 ) where each l(i)i is a random integer label sampled from 1, . . . , nj associated

with a single random realisation of the jth model input (from the set of nj random realisations that was
previously generated). One can note that the number nj of random realisations is not the same for each
model input: these numbers were chosen under the constraints of CPU time and storage space. Next, the
NOE modelling chain was run for each line of samples M1, M2 and a number of combinations of M1

and M2—more details on the procedure can be found in Lilburne and Tarantola (2009). The total number
of model runs was Ntot = 28 672 (this number depends on the base sample size N and the number of
uncertain model inputs considered) for a total CPU time of 24 hours on a 6-nodes cluster computer.

3.3.3.3 Variance-based sensitivity indices

$ Note to the reader: The mathematical basis and computational aspects of VB-GSA are presented
into more details in §1.2.2 on page 29 and the following paragraph can safely be skipped.

Uncertainty propagation results in a set of Ntot = 28 672 values for the following outputs of interest:

○ avoided flood damages per scenario (∆D1 to ∆D6)

○ Average Annual Avoided Damages (∆AAD)

○ Average Annual Avoided Damages per type of assets

○ Net Present Value of mitigation measures (NPV)

Then, the variance-based total-order sensitivity indices of each source of uncertainty with respect to each
output of interest were estimated using the expressions given by Lilburne and Tarantola (2009). These
sensitivity indices, denoted by STi, measure the contribution of a given source of uncertainty, denoted by
Ui, and all its interactions with other sources of uncertainty, denoted by U∼i, to the variance of a given
model output, denoted by Y :

STi =
E [var (Y ∣ U∼i)]

var(Y )
(3.24)
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STi is the expected part of output variance var(Y ) that would remain if all sources of uncertainty but
Ui were fixed. Please refer to Saltelli et al. (2008) for more details on global sensitivity analysis and the
estimation of sensitivity indices.

ä Extra comment: Only total-order sensitivity indices were considered in this case study, because
estimates of first-order indices displayed too large confidence intervals—these confidence intervals were
computed by bootstrap using 100 replicas.

3.3.4 Results

3.3.4.1 Uncertainty analysis

Table 3.8 on the next page summarises the outcome of the uncertainty analysis. For each output of inter-
est, it gives descriptive statistics over the Ntot = 28 672 model runs. It displays mean values of avoided
damages per flood scenario, ranging from 9.593 Me to 111.5 Me. The largest avoided damage is reached
for scenario e5 (100-year design flood), with a total reduction ∆D5 = 111.5 Me, whereas the mitigation
measures performed worst for the extreme flood scenario e6, with a mean avoided damage ∆D6 = 9.593

Me and a negative minimum value of −4.695 Me, meaning that the damage costs might increase from
the present to the future situation for this scenario. The Average Annual Avoided Damage indicator shows
a mean value of ∆AAD = 5.459 Me/year. Table 3.8 on the following page clearly suggests that the con-
tribution of the four types of assets to this total indicator is uneven: while the economic activities and
private housing account respectively for 64% and 34% of the total ∆AAD, the share of campgrounds and
cultivated land is only equal to 1.3% and 0.7%, respectively. Finally the effect of the flood mitigation
measures appears to be heavily dependent on the type of assets considered.

Despite all input uncertainties, the ∆AAD indicator on private housing and economic activities (other
than agriculture and campgrounds) proves to be always positive in this uncertainty analysis. In contrast,
the mitigation measures will most likely result in an increase in the average annual damage for agricultural
land as ∆AAD is negative in this sector for all model runs. Regarding campgrounds, no conclusion can
be drawn from the study as ∆AAD is positive in this sector for only 72.6% of the model runs. It can
also be noted that all flood damage indicators display a coefficient of variation ranging from 11.76% to
44.80%.

Finally, Figure 3.20 on the next page shows the empirical distribution of the Net Present Value of the
flood mitigation measures over Ntot = 28 672 simulations. With a mean value of +34.29 Me, the flood
risk management project seems to be a sound investment. The NPV indicator also appears to be positive
for 96% of model runs, which we interpret to mean that despite all the uncertainty sources that were
considered in the NOE modelling chain, the benefits of the flood mitigation measures still prove to almost
certainly outweigh their costs.

3.3.4.2 Sensitivity analysis

The total-order variance-based sensitivity indices were computed for each uncertain model input with
respect to each output of interest (Table 3.9 on page 128). First, the variance of the total ∆AAD indicator
can be observed to be almost equally explained by the uncertainty in the exceedance frequencies, water
depth maps, depth-damage curves and LU-GDB dataset, with sensitivity indices ranging from 0.18 to
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Table 3.8: Descriptive statistics for each output of interest over Ntot = 28 672 simulations

Output mean s.d. 2.5% perc. 97.5% perc. c.var.

Avoided damage per flood scenario (∆D [Me])

∆D1 0 0 0 0 —

∆D2 20.21 7.796 11.164 40.6443 38.57%

∆D3 48.84 8.972 29.307 65.927 18.37%

∆D4 58.28 10.63 39.491 84.334 18.24%

∆D5 111.5 13.11 84.410 136.405 11.76%

∆D6 9.593 4.298 1.967 20.149 44.80%

Average Annual Avoided Damage (∆AAD [Me/year])

Total 5.459 1.11 3.6109 7.9816 20.33%

Eco. activities 3.506 0.9406 2.0995 5.77331 26.83%

Private housing 1.887 0.4465 1.1002 2.8317 23.66%

Campgrounds 0.071 0.129 -0.213 0.3116 18.23%

Agricultural land -5.274.10−3 1.912.10−3 -9.25.10−3 -1.965.10−3 36.25%

Net Present Value (NPV [Me])

NPV 34.29 21.01 -40.83 106.5 61.27%
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Figure 3.20: Empirical distribution of the NPV indicator over Ntot = 28 672 simulations and mean value (solid line)
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Figure 3.21: Avoided damages against exceedance frequency: nominal curve (solid line), first 500 simulations (dots),
curves associated with minimum and maximum ∆AAD (dashed lines)

0.33. No main source of uncertainty can be identified, meaning that they are in a sense “well-balanced”.
However, sensitivity indices with respect to the partial ∆AAD indicator for each economic sector give a
very different picture. The variance of ∆AAD on private housing appears to be mainly explained by the
uncertainty of the depth-damage curves (sensitivity index: 0.78). For campgrounds and agricultural land,
the depth-damage curves also prove to be the most important source of uncertainty (sensitivity index:
0.6 and 0.4, respectively), followed by the uncertainty of the LU-GDB dataset (sensitivity index: 0.38

for both sectors). In addition, for private housing, agricultural land and campgrounds, the uncertainty
in the water depth maps is almost non-influential (sensitivity index < 0.02), while it is the second most
important source of uncertainty for other economic activities (sensitivity index: 0.38). Finally, Table 3.9
on the next page also indicates that the variance of the Net Present Value of flood mitigation project is
mainly due to the uncertainty on its benefits (measured by total ∆AAD) rather than the uncertainty on its
costs, which contribute to only 12% of the NPV variance.

To further identify the factors that explain the variance of ∆AAD indicator, sensitivity analysis can
also be based on a graphical analysis. Figure 3.21 displays the sampled flood exceedance frequencies f1

to f6 against the estimated avoided damages ∆D1 to ∆D6 for all Ntot = 28 672 model runs, along with
the curves associated with the nominal, minimum and maximum value of the ∆AAD indicator, which is
equal to the area under the curve. It may be noted that as the damage and frequency estimates of each
flood scenario are correlated, the extremum values of the ∆AAD indicator do not always correspond to
the extremum points in the damage-frequency graph for all flood scenarios. Figure 3.20 on the preceding
page supports the conclusion that the variance of the ∆AAD indicator is mainly due to the uncertain
position of scenarios e1 (first flood event where the damage to property begins) and e2 (10-year design
flood) on this damage-frequency graph. Flood scenarios e3 to e5 show a larger dispersion of estimated
avoided damages, but their position on the x-axis (exceedance frequency) is less spread; hence their
contribution to the total variance of the ∆AAD indicator is small.
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Table 3.9: Total-order sensitivity indices with respect to the different outputs of interest. Grey cases indicate the
most important sources of uncertainty

Total-order sensitivity index of:

Exceed. Prob. Water depths Depth damage
curves

LU-GDB dataset Project costs

Average Annual Avoided Damage (per economic sector)

Total 0.33 0.18 0.29 0.21 0

Eco. activities 0.4 0.38 0.2 0.3 0

Private housing 0.22 0.005 0.78 0.03 0

Campgrounds 0.2 0.01 0.6 0.38 0

Agricultural land 0.27 0.02 0.4 0.38 0

NPV 0.25 0.18 0.23 0.21 0.12

3.3.5 Discussion

Assessing robustness of a flood risk CBA study Our first goal was to assess the robustness of the
cost-benefit analysis of the structural flood mitigation measures on the Orb River through an uncertainty
analysis of the NOE modelling chain. Our approach was strongly motivated by prior publications in which
uncertainty analysis was used to evaluate the robustness of flood damage assessments. We completed
these works by propagating uncertainty up to the cost-benefit analysis of the flood mitigation measures,
which had not been performed before. We obtained empirical descriptive statistics for the two CBA-AD
outcomes, the Average Annual Avoided Damages and the Net Present Value of flood mitigation measures,
displaying quite large coefficients of variation of 20.33% and 61.27%, respectively. The visualisation of
the Monte Carlo simulations on a damage-frequency graph (Figure 3.21 on the preceding page) gave us a
new insight on the robustness of the ∆AAD indicator, proving that its variance is mainly explained by the
uncertain characterisation (in terms of exceedance frequency and estimated damages) of flood scenarios
with small return intervals (5 and 10-year floods). We also found (Figure 3.20 on page 126) that the
probability of the project costs outweighing the project benefits appears to be lower than 5%. We are
convinced that these results may prove useful to provide water managers and stakeholders with a more
complete picture on the cost-benefit analysis and the associated uncertainty, even though we know that
they are usually untrained in coping with the uncertainty related to scientific information in flood risk
studies (Morss et al. 2005).

3.3.5.1 Improving the NOE modelling framework

Our research also sought to identify the main sources of uncertainty in the NOE modelling chain to
find ways to improve it. Although variance-based sensitivity analysis is widely used for that purpose in
many disciplines, it had never been applied, to our knowledge, to a CBA of flood control measures. We
demonstrated the use of Sobol’ sensitivity indices (Table 3.9) to rank the sources of uncertainty, depending
on their contribution to the variance of the ∆AAD and NPV indicators. A first conclusion is that, on a
global scale, sources of uncertainty are well-balanced, meaning that they all explain a significant share
of the variance of the ∆AAD and NPV indicators. Yet, more useful lessons can be learnt from looking
at each economic sector separately. The uncertainty on the depth-damage curves proved to be the key
factor that explains the variance of the average annual damages on private housing, campgrounds and
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agricultural land. This result is in line with those of Apel et al. (2008) and de Moel and Aerts (2011),
who found that in damage assessment of a single flood event, the choice of damage functions is a much
more important factor than the choice of a hazard model. It thus supports the conclusion that improving
the depth-damage curves and more generally the damage functions are priorities to make more robust
flood damage assessments in these sectors. Our results also indicate that there is almost a third of the
variance of the ∆AAD and NPV indicators that cannot be reduced as it stems from the variance of
the flood return interval estimates. This observation corroborates the conclusions of Apel et al. (2004),
who stated that reliable extreme value statistics were crucially important for reducing the uncertainty of
the risk assessment. Unfortunately, reducing this input uncertainty would require longer time series of
maximum discharges at Tabarka gauging station, which are not available. Finally, the uncertainty on
the floor elevation of buildings proved to have a negligible contribution to the variability of the annual
damage estimates for private housing. This finding fits well with the results of Koivumäki et al. (2010),
who showed that adding a single elevation value per building was inadequate to obtain more accurate
damage estimates. Of course, these findings are specific to the Orb River study site: in a different case
study, ranking of the various uncertainty sources may be significantly different.

3.3.5.2 Averaging-out effects

The sensitivity analysis also provided an interesting insight on how the uncertainty on inundation maps
influence the variance of damage estimation. Our results offer evidence that improving water depth esti-
mation would be of almost no use in reducing variance of ∆AAD estimates for campgrounds, agricultural
land and private housing, while it is the second most important source of uncertainty for other economic
activities. This finding is in apparent conflict with the conclusions of Apel et al. (2004, 2008) or de Moel
and Aerts (2011), who reported that uncertainty in the water depths is less important than other uncer-
tainty sources without distinction of the economic sector considered. This discrepancy may be explained
by two different “averaging-out effects”: one based on the surface area of assets and the other based on
the number of assets. On one hand, campgrounds and agricultural land have a large surface area compared
with other types of assets (33 000 and 9 000 sq. m. in average, Table 2.2 on page 62): as a result, the error
on water depths, if unbiased, is reduced when it is averaged over the large surface area of these assets.
Hence, for both sectors, the contribution of the water depth maps to the variance of the ∆AAD indicator
is low. On the other hand, the polygonal features classified as private housing or economic activities have
a rather small surface area (83 sq. m. and 904 sq. m. on average, respectively), and the uncertainty in the
average water depth for each individual asset is thus large. Nevertheless, the number of features classified
as private housing (16436) is much larger than the number of assets classified as other economic activities
(691), which results in a “number averaging-out effect”: the dispersion of water depth errors is averaged
over the large number of housing polygons scattered across the study area. A similar “number averaging-
out effect” may partly explain why the uncertainty on depth-damage curves appears to be more influential
on the private housing sector, which is described with only one depth-damage curve, than for the other
economic activities, which are described by 60 damage curves that are assumed to vary independently.
These findings support the conclusion that various averaging-out effects (related not only to the surface
area of assets and the number of assets but also to the number of land use types considered, the number
of damage functions used, etc.) control the ranking of the uncertainty sources in the NOE modelling
chain. Saint-Geours et al. (2012) discussed this issue from a theoretical point of view and showed that
the ranking of the uncertainty sources is closely related to the spatial support (and thus to the scale) of
the model output. This result is in agreement with the call of Koivumäki et al. (2010) for further research
on what constitutes a reasonable scale-accuracy relationship in flood damage assessments: our results
suggest that the scale-accuracy-sensitivity relationship must be further investigated.
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3.3.5.3 Limits

It should be noted that our work is based on hypotheses that may limit the strength of some of its results.
First, some sources of uncertainty were identified in the NOE modelling chain but not taken into account
in the uncertainty and sensitivity analysis: the evolution of land use over the next thirty years, errors
arising from uncertainty on friction coefficients in hydraulic modelling, errors on the location and shape
of polygonal features in the LU-GDB dataset, etc. Why were they ignored? Because the data required
to rigorously characterise them in a probabilistic framework were not available. Even if we can assume
that some of these uncertainty sources would prove to be negligible in the NOE modelling chain, (e.g.,
errors on the location of assets in the LU-GDB dataset), others are definitely not (e.g., biased errors in
hydraulic modelling). Moreover, even for those sources of uncertainty that were included in the study,
the models of uncertainty are sometimes only based on expert opinion. The results of our study heavily
depend on such uncertainty parameters. To cope with this issue, a second level uncertainty analysis could
be performed by exploring how the output uncertainty and the sensitivity indices change for given sets of
uncertainty parameters.

3.3.6 Conclusion

This work was performed with a view toward promoting the use of Monte Carlo uncertainty analysis
and variance-based sensitivity analysis in flood damage assessments and related CBA-AD through a case
study on the Orb Delta, France. For this case study, we derive the following main conclusions:

1. Monte Carlo uncertainty analysis allows empirical pdf and confidence bounds on the economic
indicators of a cost-benefit analysis applied to flood mitigation measures to be computed.

2. The variance of the Average Annual Avoided Damages is mainly due to the uncertain characterisa-
tion of flood scenarios with small return intervals.

3. Approximately one-third of the variance of the ∆AAD and NPV indicators cannot be reduced as it
stems from a flood frequency analysis based on short time series.

4. The ranking of uncertainty sources depend on the economic sector considered (private housing,
agricultural land, economic activities)

5. Uncertainty in the depth-damage curves is a prominent factor for computing the ∆AAD for private
housing and agricultural land.

6. The ranking of uncertainty sources is influenced by various averaging-out effects that depend on
the number and surface area of the assets considered, the number of land use types, the number of
damage functions, etc.

Further research is now needed to extend the reach of our study by trying to reduce the uncertainty in the
input data identified as being influential in the study and including in the analysis uncertainty sources that
were ignored so far.

ä Note to the reader: End of the draft paper submitted to the Journal of Flood Risk Management.
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3.3.7 Extra comments: results on other case studies

This subsection aims at giving some extra comments to enrich the results and the discussion presented in
the submitted paper.

An important question is what general conclusions can be drawn on the NOE modelling framework from
the single Orb Delta case study. Would these results hold for other study sites as well? To try and answer
this question, we carried out a sensitivity analysis of the NOE modelling framework on two other study
sites that were presented in Chapter 2 (§2.3.3 on page 70):

○ the Vilaine floodplain (total extent of 17 sq. km.)

○ the ZEC project on the Rhône river (650 sq. km.)

On these two case studies, we followed the same general sensitivity analysis flowchart as on the Orb
Delta. The models chosen to describe uncertainty on each model input were similar, even though there
were some small differences from one case study to one another. We will not present into details the
results obtained on these two study sites, but here is a summary of the most important observations.

Ranking of model inputs First, it can be stated that the ranking of uncertainty sources obtained on the
Orb Delta does not necessarily hold for other case studies. For example, here are the first-order sensitivity
indices computed on the Redon floodplain with respect to the total AAD indicator:

depth-damage curves 0.15
flood exceedance probabilities 0.17
assets map 0.29
water depths 0.36

It appears that the most influential inputs with respect to the variance of the total average annual damages
on this floodplain are the assets map and the water depths, whereas the same inputs were the less influ-
ential on the Orb Delta case study (Table 3.9 on page 128). We will discuss one possible explanation for
this difference in the Chapter conclusion on page 134.

Influence of economic sector Next, these two extra studies corroborate the observation that the sen-
sitivity indices of the NOE model inputs depend on the economic sector considered (private housing,
agriculture, industry, etc.). For example, here are the first-order sensitivity indices obtained on the ZEC
study site with respect to the total AAD indicator for: i) cultivated land only; ii) business and industrial
assets only; and iii) private housing only:

agriculture industry private housing
depth-damage curves 0.66 0.2 0.74
flood return intervals 0.08 0.13 0.06
assets map 0.00 0.00 0.00
hazard maps 0.16 0.54 0.01

This table suggests in particular that depth-damage curves are much more influential for agricultural
assets and private housing assets than they are for business or industrial assets. This observation is in line
with the results obtained on the Orb Delta (Table 3.9 on page 128).
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Figure 3.22: ZEC case study. Damages against annual exceedance probabilities: first 100 simulations (dots), three
random simulations (solid lines)

Influence of flood scenarios with small return intervals Finally, we also observe on these two extra
study sites that the flood scenarios with small return intervals contribute more to the variance of the AAD
and ∆AAD indicators than scenarios with large return intervals, which is line with the results obtained
on the Orb Delta. This observation is not based on the computation of sensitivity indices, but on the same
graphical analysis as the one realized on the Orb Delta (§3.3.4.2 on page 127), in which uncertain damage
estimates for each flood scenario are plotted against its uncertain exceedance probability— Figure 3.22
displays a similar plot for the ZEC study site. However, it is important to underline that this observation is
most probably linked to the fact that, for all the case studies, uncertainty on flood exceedance probabilities
was modelled in the same way, using empirical confidence bounds on the discharge-frequency curve
(§3.3.3.1 on page 119). If another uncertainty model had been chosen for flood exceedance probabilities,
then we may not have found that flood scenarios with small return intervals are the most influential.

We will try to draw some lessons from these comparative observations in the Chapter conclusion on
page 134.
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3.4 Chapter conclusion

3.4.1 On VB-GSA with spatially distributed inputs

The goal of this chapter was to investigate how VB-GSA could be extended to models with one or several
spatially distributed inputs Zi(x).

State of the art of the available methods We established a state of the art of the available techniques
to handle a spatially distributed model input Z(x) in VB-GSA. We applied these techniques to a number
of analytical test cases and discussed the outcomes of this numerical study.

A first key point is to clarify what measure of importance the modeller is interested in. The “macro-
parameter”, “dimension reduction”,“map labelling” and “joint meta-models” aim at measuring the con-
tribution of the entire uncertain spatially distributed input {Z(x) ∶ x ∈ Ω} to the variance of the model
output Y . In these methods, the characterisation of the uncertainty on Z(x) is fixed—fixed pdf of scalar
parameters λi or fixed stochastic process P that generates random realisations of Z(x). What is mea-
sured is the contribution of the overall uncertainty of Z(x) to the variance of model output. On the
contrary, in the “second level” approach, the description of uncertainty in Z(x) is itself uncertain. What
is measured is the contribution to var(Y ) of the uncertain “second level” parameters θi that control the
stochastic process P . Finally, in the “trigger” method, the sensitivity indices that are computed do not
properly measure the contribution of Z(x) to the variance of model output Y : we recommend no to use
this approach. In our research, we focused on the first group of techniques, that measure the contribution
of the entire uncertain spatially distributed input {Z(x) ∶ x ∈ Ω} to the variance of the model output Y ,
with a fixed description of uncertainty.

Next, we systematically described the available techniques for a number of criteria and suggested to use
a decision-tree (Figure 3.7 on page 96) to choose among them for a given spatial model. In our opinion,
the most appropriate technique to handle spatially distributed inputs in VB-GSA of a numerical model F
with low CPU cost is the “map labelling” approach. It is a convenient approach, easy to implement and
to explain to model end-users. An important feature is that it allows a complex description of the spatial
structure of uncertainty inZ(x): random realisations of the spatially distributed input can be generated by
any stochastic process P and ad-hoc algorithm. For all these reasons, we chose to use the “map labelling”
technique to carry out VB-GSA of the NOE modelling framework on the Orb Delta case study. On the
other hand, for time consuming models, the “joint meta-model” appears to be a good solution, except that
it can only handle a single spatially distributed input.

Sampling issues in the “map labelling” approach As developed in §3.2 on page 98, the “map-
labelling” approach requires sampling a number n of random realisations of the spatially distributed
input Z(x) to estimate its variance-based sensitivity indices. The choice of size n is usually driven by
constraints of time and disk space. We carried out two numerical studies to investigate how sampling
technique and size may influence the estimation of sensitivity indices: i) one to study the convergence
of sensitivity indices estimates for increasing number n of random realisations of Z(x); ii) the other
one to compare two geostatistical simulation algorithms (SRS and LHS) to generate random realisations
of Z(x) when it is modelled as a Gaussian Random Field. Due to their exploratory nature, we cannot
draw any firm conclusion from these experiments, neither on the minimum sampling size n in a general
case, nor on the optimal sampling technique when Z(x) is a Gaussian Random Field. However, there
are two humble lessons to be learnt from these numerical studies: i) for small values of n the set of ran-
dom realisations of Z(x) is too small to represent reasonably well the overall uncertainty on the spatially
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distributed input; hence, figures showing the convergence of sensitivity indices estimates with increasing
number n of random realisations of Z(x) should be drawn for each case study to determine the minimum
sampling size n; ii) when Z(x) is modelled as a Gaussian Random Field, spatial LHS does not yield
much better sensitivity indices estimates than SRS, because it disturbs spatial correlation for small values
of n.

Further research needed We have shown in this chapter that the available techniques to handle spa-
tially distributed inputs in VB-GSA are in some respects limited. Further research is thus needed to
improve these techniques, and design new methods to deal with unresolved situations. We will discuss
these directions for future work in the general conclusion on page 174. We will also display in this general
conclusion some ideas to extend the reach of our study.

3.4.2 On the NOE modelling framework and CBA-AD studies

Sensitivity analysis of the NOE modelling framework on the Orb Delta case study We successfully
used the “map labelling” approach to perform VB-GSA of the NOE code on the Orb Delta case study.
This approach allowed us to consider the uncertainty on two spatially distributed inputs: the assets and
the hazard maps. Results show that the uncertainty on flood scenario annual exceedance probabilities is
the main contributor to the variance of the ∆AAD and NPV output indicators. Unfortunately, this source
of uncertainty cannot be easily reduced, because improving flood frequency estimates would require a
longer time serie of annual maximum flows at the reference gauging station. In addition, we highlighted
the major role of uncertain annual exceedance probabilities associated to the flood scenarios with small
return intervals.

Next, we found that the ranking of uncertainty sources with respect to their contribution to the variance of
the ∆AAD indicator depends on the economic sector considered (private housing, agriculture, industry,
etc.). In particular, uncertainty in the depth-damage curves is a prominent source of uncertainty when
computing the ∆AAD indicator for private housing and agricultural land.

An underlying explanation is that the structure of input data heavily depends on the economic sector
considered: number of assets, average surface area of assets, nomenclature of assets, number of damage
functions considered, shape of damage functions (linear/non linear, with/without threshold, etc.). For all
these caracteristics, an “averaging-out” effect may occur, that is, many independent uncertainty sources
may compensate each other when they are combined. This point will be further discussed in Chapter 4.

Generalizing the results obtained on the Orb Delta case study As mentioned earlier in §3.3.7 on
page 131, an important question is what general conclusions can be drawn on the NOE modelling frame-
work from the single Orb Delta case study. To adress this issue, we carried out sensitivity analysis on two
other study sites: the Vilaine floodplain and the ZEC project along the Rhône river.

A first key result is that the specific ranking of uncertainty sources obtained on the Orb Delta does not
hold for other case studies. One possible explanation lies in the difference of spatial extent between
these study sites: the Orb Delta study site has a total extent of 63 sq. km., whereas the other two sites
we investigated have a total extent of 17 sq. km. (Vilaine floodplain) and 650 sq. km. (ZEC project),
respectively. The outcomes of sensitivity analysis may depend on a “spatial averaging-out effect” related
to the total surface area of the floodplain. This point will be further investigated in Chapter 4.
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Besides, this comparative analysis shows that the other conclusions drawn from the Orb Delta case study
will hold for any other floodplain as well: i) the ranking of uncertainty sources depends on the economic
sector considered; and ii) if the uncertainty on flood exceedance probabilities is simulated based on an
empirical confidence bound around the discharge-frequency curve at a reference gauging station, then the
uncertainty on flood scenarios with small return intervals contributes more to the variance of the AAD
and ∆AAD indicators than flood scenarios with large return intervals.

Spliting groups of model inputs As mentioned in §2.3.2.3 on page 64, the numerous inputs of the NOE
code were gathered into five groups to make the sensitivity analysis computationally more tractable. The
outcomes of the analysis heavily depend on the initial choices that were made to compose these groups.
For example, we cannot compute in this setting the variance-based sensitivity indices associated to the
uncertain exceedance probability of a single flood scenario—but we have access to the sensitivity indices
related to the group of exceedance probabilities for all scenarios. We cannot either discuss which of the
94 damage functions used in the Orb Delta case study contribute the most to the variance of the ∆AAD
indicator. To go one step further, some of the five groups considered in this first analysis should be split
into smaller groups or individual inputs for a second analysis.

Nevertheless, a group can be split only if its components (individual inputs or smaller groups) are assumed
to be statistically independent. In the NOE modelling framework, at least two out of five groups cannot
be divided: i) the group of scenario weights ω(ej) (related to flood annual exceedance probabilities),
which are obtained from a unique time serie of annual maximum flow at the reference gauge and are thus
correlated; ii) the hazard maps H(ej), which are produced from the same hydraulic model and the same
uncertain DTM and thus cannot be considered as uncorrelated inputs. On the contrary, we have assumed
in our first analysis that the uncertainty on each damage curve is independent from the others: hence,
it could be possible to split the group of damage functions and assess the contribution of each damage
function to the variance of the NOE outputs. In the same way, the group of scalar inputs describing the
costs of the flood risk management plan can be split, if we assume that the uncertainty on the initial
investment costs CI is independent from the uncertainty on the maintenance costs CM . The case of
the last model input, the assets map, is more complex: this model input contains a number of uncertain
attribute data, such as the groundfloor elevation of buildings, the type of assets, the surface area of assets,
etc. One may be interested in calculating the individual contribution of one these attributes to the variance
of model outputs. This could be performed by spliting the assets map into a number of simple maps with a
single uncertain attribute each. Unfortunately, due to lack of time none of these complementary analyses
was carried out.

Choice of the uncertainty models Last but not least, a key limit of our sensitivity analysis of the NOE
code on the Orb Delta case study is the choice of the uncertainty sources that were considered and their
modelling. As explained in §3.3.5.3 on page 130, some sources of uncertainty were identified in the NOE
modelling framework but not taken into account. Besides, even for those sources of uncertainty that were
included in the study, the choice of a model of uncertainty was sometimes supported by few or even no
data (e.g., damage functions). This limit will be carefully discussed in the general conclusion.
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Chapter 4

Scale issues in variance-based global
sensitivity analysis



∎ 138 CHAP 4. SCALE ISSUES

THIS chapter is devoted to the exploration of “scale issues” in VB-GSA of spatial models. Our
interest in this question arised when comparing the results of sensitivity analysis of the NOE
modelling framework obtained on different case studies (§3.3.7 on page 131). We observed that

the ranking of the uncertainty sources was different on each investigated case study, for which the extent
of the study area ranged from approximately 10 km2 to more than 100 km2. We made the hypothesis that
these variations could be partly explained by some “averaging-out effect” of local uncertainties related to
the scale of each study site. To clarify our question, we will use the notion of the “scale triplet” introduced
by Blöschl and Sivapalan (1995) and presented in Chapter 1 (§1.1.3 on page 20). We offer to study how
the results of VB-GSA of a spatial model depend on two components of the scale triplet: the “support”
and the “spacing”. The third component (“extent”) will only be discussed in the Chapter conclusion.

We limit our study to the specific class of point-based and spatially additive models, as defined in Chap-
ter 1. We consider a model F with a single spatially distributed input Z(x), which is modelled as a
Stationary Random Field (SRF). The output of interest is the average value Yv of Y (x) over a given sup-
port v ⊂ Ω. This limitative framework is partly justified by the fact that our case study model (the NOE
code) is itself point-based and spatially additive. The other reason is that a number of nice properties
can be obtained analytically for this class of models, which can approximate a number of “real-world”
applications.

This chapter is composed of three sections. The first section §4.1 on page 140 was published in Math-
ematical Geosciences with the following title: “Change of support in spatial variance-based sensitivity
analysis” (Saint-Geours et al. 2012). In this publication, we first survey the few existing papers that dis-
cuss scale issues in sensitivity analysis. Next, we define “site” and “block” sensitivity indices to account
for the role of spatial support v over which the model output is aggregated. We then explain how block
sensitivity indices depend not only on the size of support v, but also on the covariance structure of the
spatially distributed input Z(x). These theoretical developments on change of support are illustrated by a
simple analytical test case. Then, in section §4.2 on page 153, we investigate how the results of VB-GSA
of model F may be influenced by another component of the scale triplet: the spacing. We consider the
case in which the aggregated output YΩ is approximated by a weighted sum of the output values Y (xi)

computed at a finite number of points xi ∈ Ω. We give an expression of the resulting approximation error
on sensitivity indices, and show that this error depends on the spacing of the set of points xi. Next, sec-
tion §4.3 on page 156 illustrates the effect of spatial support on VB-GSA results for the NOE modelling
framework on the Orb Delta case study. Sensitivity indices of the NOE model inputs are computed with
respect to the aggregated values of the ∆AAD indicator over varying spatial supports v, to investigate the
relationship between the ranking of uncertainty sources and the area over which the ∆AAD indicator is
summed up. Finally, we close this chapter with some concluding remarks in §4.4 on page 169.
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4.1 Influence of support

The purpose of this section is to analyse how the sensitivity indices in a point-based and spatially additive
model depend on the support v over which the model output Yv is aggregated. As mentioned in the
chapter introduction, our interest in this question stems from the comparative analyses of the NOE code on
different case studies (§3.3.7 on page 131). We observed that the ranking of the uncertainty sources was
different on each investigated case study, for which the extent of the study area ranged from approximately
10 km2 to more than 100 km2. We made the hypothesis that these variations could be related to the surface
area of each study site. Intuitively, one possible explanation is the folllowing: the “local” uncertainty
of spatially distributed inputs (i.e., the assets map and the hazard maps) may compensate each other
and finally average out when the output of interest Y (x) is aggregated over a large area. Hence, the
contribution of the spatially distributed inputs to the variance of the aggregated model output is smaller
on large areas, and larger on small areas. In this section, we intend to give a theoretical presentation of
this effect.

ä Note to the reader: This section is a reproduction of a paper published in Mathematical
Geosciences, with the following title: “Change of support in spatial variance-based sensitivity analy-
sis” (Saint-Geours et al. 2012). Some parts of this paper are redundant with explanations that were given
in previous chapters: they can safely be skipped by the reader. Besides, some extra comments were
added to the published paper and its appendices: they are identified by a grey box. Finally, in order to
keep a general consistency of notations throughout this document, some of the original notations given
in the published paper were changed.

4.1.1 Introduction

Variance-based global sensitivity analysis (VB-GSA) is used to study how the variance of the output of
a model can be apportioned to different sources of uncertainty in its inputs. Here, the term “model”
denotes any computer code in which a response variable is calculated as a deterministic function of input
variables. Originally developed in the 1990s (Sobol’ 1993), VB-GSA is now recognized as an essential
component of model building (European Commission 2009a; CREM 2009) and is widely used in different
fields (Cariboni et al. 2007; Tarantola et al. 2002). VB-GSA is based on the decomposition of a model
output variance into conditional variances. So-called “first-order sensitivity indices” measure the main
effect contribution of each uncertain model input to the model output variance. Based on these sensitivity
indices, ranking the model inputs helps to identify inputs that should be better scrutinized first. Reducing
the uncertainty on the inputs with the largest sensitivity indices (e.g., by collecting additional data or
changing the geographical pattern of data locations) will often result in a reduction in the variance of the
model output. More generally, VB-GSA helps to explore the response surface of a “black box” computer
code and to prioritize the possibly numerous processes that are involved in it.

Although VB-GSA was initially designed for models where both inputs and output can be described
as real valued random variables, some recent work has extended VB-GSA to environmental models for
which both the inputs and output are spatially distributed over a two-dimensional domain and can be
described as random fields (Lilburne and Tarantola 2009 for a review). In these works, the computer
code under study uses maps derived from field data (e.g., digital elevation models and land use maps).
These maps are uncertain due to measurement errors, lack of knowledge or aleatory variability (Refs-
gaard et al. 2007; Brown and Heuvelink 2007). The uncertainty of these spatial inputs is usually modeled



4.1 INFLUENCE OF SUPPORT ∎ 141

using random fields. Model output is also spatially distributed (e.g., a flood map or a pollution map).
Authors use geostatistical simulation to incorporate spatially distributed model inputs into the VB-GSA
approach (Ruffo et al. 2006; Saint-Geours et al. 2010) and they display estimation procedures to compute
sensitivity indices in a spatial context, either with respect to the spatial average of the model output (Lil-
burne and Tarantola 2009) or with respect to the values of the model output at each site of a study
area (Marrel et al. 2011; Pettit and Wilson 2010; Heuvelink et al. 2010b).

Nevertheless, to date, none of these studies has reported on a key issue: the link between uncertainty prop-
agation and model upscaling/downscaling. “Model upscaling” is the problem of translating knowledge
from smaller scales to larger (Heuvelink 1998). In many environmental models, the physical quantities
considered are spatially additive (e.g., porosity or evapotranspiration), i.e., their large-scale properties
derive from small-scale properties by simple averaging (Chilès and Delfiner 1999 p.593). In this case, the
model end user is usually interested in the spatial linear average or the sum of spatial output over a given
spatial unit (e.g., the average porosity of a block or the total evapotranspiration over a plot of land) and
model upscaling is thus reduced to a “change of support” problem (namely, a change of support of the end
user’s output of interest). Heuvelink (1998) observed that under a change of spatial support of the model
output, the relative contribution of uncertain model inputs to the variance of the aggregated model output
may change. Exploring how sensitivity analysis results interact with such a change of support is thus
of great importance. It would allow the modeller to check the robustness of model-based environmental
impact assessment studies and better assess the confidence of their results. Knowledge of this interaction
would also allow the modeller to answer the following questions: What are the model inputs that explain
the largest fraction of the variance of the output over a given spatial support? For which output support
size does a given spatially distributed model input contribute to the largest fraction of the variance of the
model output? How does the contribution of a spatially distributed input to the variance of the model
output depend on the parameters of its covariance function?

The change of support effect has been extensively discussed in geostatistics in the context of regulariza-
tion theory (Journel and Huijbregts 1978 p.77). Hence, we attempt in this paper to integrate regularization
theory with VB-GSA framework. Our idea is to define “site sensitivity indices” and “block sensitivity in-
dices” to i) provide a simple formalism that extends VB-GSA to spatial models when the modeller’s
interest is in the spatial average or the sum of model output over a given spatial support (§4.1.2) and ii)
discuss how the relative contribution of uncertain model inputs to the variance of model output changes
under model upscaling (§4.1.3 on page 144). We limit our study to point-based models, i.e., models for
which the computation of the model output at some location uses the values of spatial inputs at that same
location only (Heuvelink et al. 2010a). An example is used throughout this paper to illustrate formal
definitions and properties. Finally, we discuss the limits of our approach and its connections to related
works in §4.1.4 on page 147.

4.1.2 VB-GSA for a point-based and spatially additive model

4.1.2.1 Description of spatial model F

We want to study a computer codeF whose output is a map and whose inputs are a map and a set of k real
valued variables. Both inputs and output are “uncertain” and are described as random variables or random
fields. More precisely, we use the following notations: let Ω ⊂ R2 denote a 2D spatial domain, x ∈ Ω

a site, h the lag vector between two sites x and x′, and v ⊂ Ω some spatial support (block) of area ∣v∣.
We consider the model Y = F(U, Z) where U = (U1, . . . , Uk) is a random vector and {Z(x) ∶ x ∈ Ω}

is a second-order stationary random field (SRF) — that we will often simply denote by Z(x). U and
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local
model    loc

Figure 4.1: Point-based and spatially additive model with uncertain inputs U and Z(x) and spatial output Y (x).
The modeller is interested in the block average of Y (x) over some spatial unit v

Z(x) are supposed to be independent. Covariance function C(⋅) of Z(x) is assumed to be isotropic,
characterized by correlation length a ∈ R, nugget parameter η ∈ [0; 1[ and of the form:

C(h) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

C(0) if h = 0

(1 − η) ⋅C(0) ⋅ ρa (∥h∥) if h ≠ 0
(4.1)

where ρa(⋅) is some valid correlogram (Cressie 1993 p.67). The model output is a 2D random field
{Y (x) ∶ x ∈ Ω} that we will simply denote by Y (x). We assume that the first two moments of Y (x)

exist. Finally, as discussed in the introduction, we limit our study to “point-based” models; hence, we
assume that there exists a mapping Floc ∶ Rk ×R→ R such that:

∀x ∈ Ω , Y (x) = Floc [U, Z(x)] (4.2)

A sensitivity analysis of the model F must be performed with respect to a scalar quantity of interest
derived from spatially distributed model output Y (x). Here, we consider two different outputs of interest:
the value Y (x∗) at some specific site x∗ ∈ Ω and the aggregated value Yv = 1/∣v∣ ∫v Y (x)dx over support
v. Because model inputs U and Z(x) are uncertain, Y (x∗) and Yv are both random variables; the
sensitivity analysis will describe the relative contribution of uncertain model inputs U and Z(x) to their
respective variances.

ä Extra comment: according to the definitions given in §1.1 on page 18, the analytical test case under
study is a point-based and spatially additive model (Figure 4.1). A complete analytical study has been
written for the specific case in which model F is linear: it is given in Appendix §I on page 237.

4.1.2.2 Site sensitivity indices and block sensitivity indices

Before defining sensitivity indices for spatial model F , we briefly review the mathematical basis of VB-
GSA. Let us consider a model Y = f(U1, . . . , Uk), where Ui are independent random variables and where
the first two moments of Y exist. The first-order sensitivity index Si of model input Ui is defined by:

Si =
var [E(Y ∣Ui)]

var(Y )
(4.3)
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Si ∈ [0; 1] measures the main effect contribution of the uncertain model input Ui to the variance of model
output Y . Sensitivity indices can be used to identify the model inputs that account for most of the variance
of the model output (model inputs Ui with high first-order indices Si). Sum of Si is always less than 1
and the difference 1 −∑i Si accounts for the contribution of the interactions between model inputs Ui to
model output variance var(Y ). Please refer to Saltelli et al. (2008) for more details on VB-GSA theory
and on the estimation of sensitivity indices.

ä Note to the reader: Variance-based global sensitivity analysis and variance-based sensitivity
indices are described into more details in §1.2.2 on page 29.

To extend VB-GSA to spatial modelF , we propose to use different types of sensitivity indices to describe
the relative contribution of the uncertain model inputs U and Z(x) to the variance of the model output:
an index on a point support (i.e., with respect to output of interest Y (x∗)) and an index on a larger support
(i.e., with respect to output of interest Yv). First-order sensitivity indices of model inputs with respect to
Y (x∗) are called “site sensitivity indices”. Under the stationary hypothesis on SRF Z(x), these indices
do not depend on site x∗ and thus will simply be denoted by SU and SZ :

SU =
var [E(Y (x∗) ∣ U)]

var [Y (x∗)]
; SZ =

var [E(Y (x∗) ∣ {Z(x) ∶ x ∈ Ω})]

var [Y (x∗)]
(4.4)

First-order sensitivity indices of model inputs with respect to the block average Yv are called “block
sensitivity indices” and are denoted by SU(v) and SZ(v):

SU(v) =
var [E(Yv ∣ U)]

var [Yv]
; SZ(v) =

var [E(Yv ∣ {Z(x) ∶ x ∈ Ω})]

var [Yv]
(4.5)

The ratio SZ(v)/SU(v) gives the relative contribution of model inputs Z(x) and U to the variance of
the output of interest Yv . When SZ(v)/SU(v) is greater than 1, the variance of Yv is mainly explained
by the variability of the 2D input field Z(x); when SZ(v)/SU(v) is less than 1, it is the non spatial input
U that accounts for most of var (Yv).

4.1.2.3 Illustrative example

The proposed formalism for spatial VB-GSA is illustrated by the following example. A model Y =

F (U, Z) is used for the economic assessment of flood risk over a given floodplain Ω. Z(x) is the map
of maximal water levels reached during a flood event. Z(x) is assumed to be a Gaussian random field
with mean µ = 50 and exponential covariance C(h) with C(0) = 100, correlation length a = 5 and
nugget parameter η = 0.1. U is a set of three economic parameters U1, U2 and U3 that determine a
so-called “damage function” that links water levels to monetary costs. U1, U2 and U3 are assumed to be
independent random variables following Gaussian distributions N (1.5,0.5), N (55,5) and N (10,10),
respectively. Random field Z(x) and random vector U are supposed to be independent. Model output
Y (x) is the map of expected economic damages due to the flood over the area; these damages depend on
U and Z(x) through the mapping Floc:

∀x ∈ Ω, Y (x) = Floc [U, Z(x)] = U1 ⋅Z(x) −U2 ⋅ e
−0.036⋅Z(x)

−U3 (4.6)

Stakeholders are interested in two outputs: the flood damage Y (x∗) on a specific building x∗ ∈ Ω and the
total damage ∣v∣ ⋅ Yv over a district v (here, a disc of radius r = 50). Here, the expression of mapping Floc
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Table 4.1: Sensitivity analysis results over Ntot = 4 096 model runs with respect to the outputs of interest Y (x∗) and
∣v∣ ⋅ Yv . Mean values with ±s.d. computed by bootstrapping (100 replicas).

Support Site x∗ Block v

Output of interest Y (x∗) ∣v∣ ⋅ Yv

Mean of output 66.5 ± 4.2 539 ⋅ 103 ± 3.6 ⋅ 103

Variance of output 1 393 ± 188 9 ⋅ 109 ± 0.2 ⋅ 109

Site indices: Block indices:

Sensitivity indices SU = 0.09 ± 0.03 SU(v) = 0.86 ± 0.02

SZ = 0.89 ± 0.02 SZ(v) = 0.12 ± 0.02

and the statistical characterisation of model inputs may be simple enough that exact values of sensitivity
indices could be derived, but this is usually not the case in real applications in which the model is very
complex. A usual alternative is to consider model F as a “black box” and estimate sensivity indices
with Monte-Carlo simulation. We chose to use the estimators and the computational procedure described
by Lilburne and Tarantola (2009 §3.2), based on a quasi-random sampling design, using Ntot = 4 096

model runs (Table 4.1). It appears that on a given site x∗, the variability of the water level map explains
most of the variance of Y (x∗): SZ = 0.89. On a larger spatial support, the variance of the total flood
damage ∣v∣ ⋅Yv is mainly due to the economic parameters U1, U2 and U3: SU(v) = 0.86. Thus, to improve
the accuracy of damage estimation for a specific building, the uncertainty should first be reduced on the
water level map Z(x); however, to improve the accuracy of total damage estimation over a large district
v, the modeller should focus on reducing the uncertainty of economic parameters U1, U2 and U3.

ä Another illustrative example: we also studied a second analytical test case to illustrate change
of support effect in VB-GSA. This test case was published in the proceedings of the Mathematical
Geosciences at the Crossroads of Theory and Practice, IAMG 2011 conference with the following title:
“Sensitivity analysis of spatial models using geostatistical simulation” (Saint-Geours et al. 2011b). It is
reproduced in Appendices.

4.1.3 Change of support effect on block sensitivity indices

In this section, we assess how the ranking of uncertain model inputs based on their block sensitivity
indices vary under a change of support v of model output.

4.1.3.1 Relation between site sensitivity indices and block sensitivity indices

Site sensitivity indices and block sensitivity indices are related. Let EZY (x) denote the conditional
expectation of Y (x) given Z(x), that is:

∀x ∈ Ω, EZY (x) = E [Y (x) ∣ Z(x)] (4.7)

EZY (x) is the transform of the input SRF Z(x) via the function F̄loc(z) = ∫Rk Floc(u, z)pU(u)du

[Eqn. (4.2) on page 142] where pU(⋅) is the multivariate pdf of random vector U. Under our as-
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sumptions concerning Y (x), EZY (x) is a second-order SRF. Let C∗(⋅) denote its covariance func-
tion, V ∗ = C∗(0) its variance and V ∗

v its block variance over support v, that is, the variance of block
average 1/∣v∣ ∫v EZY (x)dx. Block variance V ∗

v is equal to the mean value of C∗(h) when the two ex-
tremities of lag vector h describe support v, which we denote by C∗(v, v) (Journel and Huijbregts 1978
p.78) Note: see Appendix H.5 on page 232 for a proof . Using these notations, it follows from Eqn. (4.4)
to Eqn. (4.5) on page 143 that site sensitivity indices and block sensitivity indices are related by (see §4.1.6
on page 151 for a proof):

SZ(v)

SU(v)
=
SZ
SU

⋅
V ∗
v

V ∗
=
SZ
SU

⋅
C∗(v, v)

C∗(0)
(4.8)

4.1.3.2 Change of support effect

Consider now that model F was initially developed to study the spatial average Yv over the support v,
and that after model upscaling the modeller is interested in the spatial average YV over the support V ,
where V ≫ v. We know from Krige’s relation (Journel and Huijbregts 1978 p.67) that the block variance
V ∗
v decreases with increasing size of support: V ∗

V ≤ V ∗
v . It follows from Eqn. (4.8) that:

SZ(V)

SU(V)
≤
SZ(v)

SU(v)
(4.9)

The fraction of the variance of the aggregated model output explained by the input random field Z(x)—
compared to the fraction explained by U—is thus smaller on support V than on support v. More specifi-
cally, let us suppose that the covariance function C∗(⋅) of the random field EZY (x) has a finite effective
range and that the support v is large with respect to this range. To a first approximation, the block variance
V ∗
v is of the form V ∗

v ≃ V ∗A∗/∣v∣, where A∗ is the so-called “integral range” of C∗(⋅) and is defined by
A∗ = 1/V ∗

∫ C
∗(h)dh (Chilès and Delfiner 1999 p.73). It follows from Eqn. (4.8) that:

SZ(v)

SU(v)
≃

∣v∣c
∣v∣

with ∣v∣c = A
∗
⋅
SZ
SU

(4.10)

Eqn. (4.10) shows that the ratio ∣v∣c/∣v∣ determines the relative contribution of the model inputs Z(x) and
U to the output variance var(Yv). The larger that this ratio is, the larger the part of the output variance
var(Yv) is that is explained by the input random field Z(x). For a small ratio (i.e., when the area of the
support v is large compared with the critical size ∣v∣c), the variability of Z(x) is mainly “local”, and the
spatial correlation of Z(x) over v is weak. This local variability averages over the support v when the
aggregated model output Yv is computed; hence, input 2D random field Z(x) explains a small fraction
of the output variance var(Yv). However, for a greater ratio (i.e., when the area of the support v is small
compared with the critical size ∣v∣c), the spatial correlation of Z(x) over v is strong. The averaging-out
effect is weaker; hence, model input Z(x) explains a larger fraction of the output variance var(Yv).

ä Extra comment: the ratio SZ(V)/SU(V) of block sensitivity indices on zone V can also be written
as a function of i) the ratio SZ(v)/SU(v) on zone v, and ii) the dispersion varianceD2(v ∣ V) of v within
V for EZY (x) random field:

SZ(V)

SU(V)
=
SZ(v)

SU(v)
−
SZ
SU

⋅
D2(v ∣ V)

V ∗
(4.11)

See Appendix H.6 on page 233 for details.
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4.1.3.3 Link between covariance function and block sensitivity indices

Critical size ∣v∣c = A
∗ ⋅ SZ

SU
depends on the covariance function C∗(⋅) of the random field EZY (x), which

is itself driven by the covariance function C(⋅) of the input SRF Z(x). Let us now assume that Z(x) is
a Gaussian random field (GRF). EZY (x) is then square-integrable with respect to the standard normal
density. It can be decomposed into an Hermitian expansion and its covariance function C∗(⋅) can be
written as (Chilès and Delfiner 1999 p.396-399; see §4.1.7 on page 152 for a proof):

C∗
(h) =

∞

∑
j=0

γ2
j ⋅ [C(h)]

j (4.12)

For most of the usual transition covariance functions (e.g., spherical, exponential and Gaussian models),
the covariance C(h) is a monotically increasing function of correlation length a. In this case, it follows
from Eqn. (4.12) that the integral range A∗ = 1/V ∗

∫ C
∗(h)dh also increases with correlation length a.

An increase in correlation length a thus leads to an increase in the critical size ∣v∣c, and the ratio of block
sensitivity indices SZ(v) and SU(v) satisfies [Eqn. (4.10) on the previous page]:

∂

∂a
[
SZ(v)

SU(v)
] ≥ 0 (4.13)

The relative contribution of the uncertain model input Z(x) to the variance of the output of interest Yv
increases when the correlation length of Z(x) increases. Indeed, when correlation length a increases,
the averaging-out effect that occurs when the model output is aggregated over spatial support v weakens;
thus, the fraction of the output variance var(Yv) which is explained by the input random field Z(x)

increases.

Nugget parameter’s impact on the block sensitivity indices can be interpreted in the same manner. The
nugget parameter η controls the relative part of “pure noise” in the input random field Z(x) [Eqn. (4.1)
on page 142]. The smaller η is, the weaker the averaging-out effect will be when the block average Yv is
computed over the support v, and the larger the part of output variance var(Yv) will be that is explained
by Z(x). The critical size ∣v∣c is thus a decreasing function of nugget parameter η, and the ratio of block
sensitivity indices SZ(v) and SU(v) satisfies [Eqn. (4.1) on page 142, Eqn. (4.8), Eqn. (4.12)]:

∂

∂η
[
SZ(v)

SU(v)
] ≤ 0 (4.14)

ä Extra comment (limits): Based on Eqn. (4.8) on the previous page, we can also write the ratio of
block sensitivity indices SZ(v) and SU(v) for two limit situations. First, when the covariance function
C(⋅) of random field Z(x) is constant over Ω and non-null, then the ratio satisfies:

SZ(v)

SU(v)
=
SZ
SU

(4.15)

Next, when Z(x) is a random field without spatial auto-correlation, that is, when its covariance function
C(h) is null except for h = 0, then the ratio of block sensitivity indices verifies:

SZ(v)

SU(v)
= 0 (4.16)

See Appendix H.9 on page 234 and H.10 on page 234 for proofs and details.
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4.1.3.4 Illustrative example

To illustrate the change of support effects on sensitivity analysis results, we performed spatial VB-GSA
on our numerical example in the following settings: varying disc-shaped support v of increasing size
(Figure 4.2 on the following page); varying correlation length from a = 1 to a = 10 (Figure 4.3 on
page 149); varying nugget parameter from η = 0 to η = 0.9 (Figure 4.4 on page 149). For each setting,
we computed estimates of the output variance var(Yv), the block sensitivity indices SU(v), SZ(v) and
the ratio SZ(v)/SU(v) over Ntot = 4 096 model runs. Mean values with a 95% confidence interval
were then computed for each estimate using bootstrapping (100 replicas). In accordance with Eqn. (4.9)
to Eqn. (4.14) on pages 145–146, it appears that the block sensitivity index SZ(v) (i) decreases when the
support v increases (Figure 4.2 (b)), (ii) increases with the correlation length a (Figure 4.3 (b)), and (iii)
decreases with the nugget parameter η (Figure 4.4 (b)). The opposite trends are observed for sensitivity
index SU(v). The change of support effect is clearly highlighted in Figure 4.2 (b): the contribution of the
economic parameters U1, U2 and U3 to the variance of total flood damage ∣v∣ ⋅Yv exceeds the contribution
of the water level map Z(x) when the radius r of v is greater than rc ≃ 18; for radius r < rc, the variance
of total flood damage over the support v is mainly explained by the variability of the water levels Z(x).
Finally, Figure 4.2 on the next page(c) shows that the ratio SZ(v)/SU(v) is proportional to 1/∣v∣ when
the support v is large enough. The theoretical curve SZ(v)/SU(v) = ∣v∣c/∣v∣ [Eqn. (4.10) on page 145]
was fitted (least squares - R2 = 0.99) on data points (for r ≥ 20 only), yielding an estimate of the critical
size ∣v∣c ≃ 1,068. All calculations and figures were realized in R (R Development Core Team 2009):
random realisations of Z(x) were generated with the GaussRF() function from the RandomFields
package (Schlather 2001), while computation of sensitivity indices was based on a modified version of
the sobol() function from the sensitivity package.

ä Another illustrative example: these results are corroborated by the outcomes of the second
analytical test case we investigated (published in the proceedings of the IAMG 2011 conference). In
addition, we also observed in that test case that the block sensitivity index SZ(v) increased with the
variance C(0) of Gaussian Random Field Z(x). Indeed, in the expression of the critical size ∣v∣c
[Eqn. (4.10) on page 145], the integral range A∗ does not depend on the variance C(0), but the site
sensitivity index SZ does. See Appendices for details.

4.1.4 Discussion

Our first goal was to provide a formalism that extends the VB-GSA approach to spatial models when
the modeller is mainly interested in the linear average or the sum of a point-based model output Y (x)

over some spatial unit v. Our approach is strongly motivated by various prior publications. Other authors
had already computed site sensitivity indices (Marrel et al. 2011; Pettit and Wilson 2010) and block
sensitivity indices (Lilburne and Tarantola 2009), but did so without naming them or exploring their
analytical properties or their relationship. Our work is an attempt to do so. Eqn. (4.8) on page 145
provides an exact relation between the site and block sensitivity indices, it may prove useful in the case
of a model with a simple enough analytical expression.

Our research also sought to account for the change of support effects in the propagation of uncertainty
through spatial models, within a VB-GSA framework. We proved that the fraction of the variance of
the model output that is explained by a spatially distributed model input Z(x) decreases under model
upscaling; when the support v is large enough, the ratio of the block sensitivity index of spatially dis-
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Figure 4.2: VB-GSA results depending on the size of disc-shaped support ν (with radius r and area ∣ν∣ = πr2), for
a = 5, η = 0.1: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line),
(c) ratio SZ(v)/SU(v) with fitted curve SZ(v)/SU(v) = ∣v∣c/∣v∣ (dashed line). Error bars show 95 % confidence
interval computed by bootstrapping (100 replicas)
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Figure 4.3: VB-GSA results depending on correlation length a, for η = 0.1 and a disc-shaped support v of radius
r = 50: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line). Error bars
show 95 % confidence interval computed by bootstrapping (100 replicas)
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Figure 4.4: VB-GSA results depending on covariance nugget parameter η, for a = 5 and a disc-shaped support v
of radius r = 50: (a) total variance of Yv , (b) block sensitivity indices SU(v) (solid line) and SZ(v) (dashed line).
Error bars show 95 % confidence interval computed by bootstrapping (100 replicas)



∎ 150 CHAP 4. SCALE ISSUES

tributed input to the block sensitivity index of non-spatial inputs is proportional to ∣v∣c/∣v∣. The critical
size ∣v∣c depends on the covariance function of the input SRF Z(x); it usually increases with an increase
of the correlation length a or a decrease of the nugget parameter η. These findings are a translation into
VB-GSA formalism of the averaging-out effect clearly exhibited by Journel and Huijbregts (1978) in
the regularization theory. Our contribution is to discuss this issue from the point of view of VB-GSA
practitioners. Formalizing the effect of a change of support on sensitivity analysis results may help mod-
ellers when they consider model upscaling; it will orientate future data gathering by identifying model
inputs that will explain the largest fraction of the variance of the model output over a new spatial support.
Our contribution also promotes an increased awareness of the issue of sharing out efficiently, among the
various inputs used by a complex computer code, the cost of collecting field data. At some point of the
model building process, the modeller will usually aim at reducing the variance of the output below a given
threshold, that will depend on the model use. To do so, the modeller may have to improve his knowledge
on the “real” value of some of the model inputs, usually by collecting extra data. In this case, gathering
extra field data on inputs maps that have small sensitivity indices (SZ(v) < 0.1) would be unefficient, as
it would be costly but could not reduce the variance of the model output by a large fraction. Saint-Geours
et al. (2011a) discuss this issue on a flood risk assessment case study.

It should be noted that our approach is based on conditions that may not be met in some practical cases.
First, we considered a model F with a single spatially distributed input Z(x). In real applications, mod-
ellers may have to deal with several spatial inputs Z1(x), . . . , Zp(x), with different covariance functions
Ci(⋅), correlation lengths ai and nugget parameters ηi. In this case, it can be shown that Eqn. (4.8) on
page 145 still holds separately for each spatial input Zi(x). However, no conclusion can be drawn “a
priori” regarding how a change of support affects the relative ranking of two spatial inputs Zi(x) and
Zj(x); the ratio of their block sensitivity indices SZi(v)/SZj(v) will depend on the ratio of block vari-
ances Vv,i/Vv,j . Second, some environmental models are not point-based and involve spatial interactions
(e.g., erosion and groundwater flow models). In this case, it still may be possible to build a point-based
surrogate model as a coarse approximation of the original model; if not, then the change of support prop-
erties discussed in §4.1.3 may not hold. Third, we assumed the input random field Z(x) to be stationary;
if it is not, site sensitivity indices depend on site x∗ [Eqn. (4.4) on page 143]. It is then possible to com-
pute maps of these indices (Marrel et al. 2011; Pettit and Wilson 2010) to discuss the spatial variability
of model inputs sensitivities.

Finally, we focused on the case in which the modeller’s interest is in the spatial linear average or the sum
of model output Y (x) over the support v. As discussed by Lilburne and Tarantola (2009), other outputs
of interest may be considered, such as the maximum value of Y (x) over v (e.g., maximal pollutant
concentration over a zone), some quantile of Y (x) over v (Heuvelink et al. 2010b), or the percentage of
v for which Y (x) exceeds a certain threshold. To our knowledge, no study has investigated the properties
of sensitivity indices computed with respect to such outputs of interest.

4.1.5 Conclusion

This paper provides a formalism to apply variance-based global sensitivity analysis to spatial models
when the modeller’s interest is in the average or the sum of the model output Y (x) over a given spatial
unit v. Site sensitivity indices and block sensitivity indices allow us to discuss how a change of support
modifies the relative contribution of uncertain model inputs to the variance of the output of interest. We
demonstrate an analytical relationship between these two types of sensitivity indices. Our results show
that the block sensitivity index of an input random field Z(x) increases with the ratio ∣v∣c/∣v∣, where ∣v∣ is
the area of the spatial support v and the critical size ∣v∣c depends on the covariance function of Z(x). Our
formalization is made with a view toward promoting the use of sensitivity analysis in model-based spatial
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decision support systems. Nevertheless, further research is needed to explore the case of non-point-based
models and extend our study to outputs of interest other than the average value of model output over
support v.

4.1.6 Appendix A: Proof of the relation between site sensitivity indices and block
sensitivity indices

ä Note to the reader: This subsection was published in (Saint-Geours et al. 2012) as an appendix.

As mentioned in §4.1.2.1 on page 141, we assume that the first two moments of Y (x) exist. The ratio of
block sensitivity indices gives [Eqn. (4.5) on page 143]:

SZ(v)

SU(v)
=

var (E [Yv ∣ {Z(x) ∶ x ∈ Ω}])

var (E [Yv ∣ U])
(4.17)

The conditional expectation of block average Yv given Z(x) gives:

E [Yv ∣ Z] = E [(1/∣v∣∫
v
Y (x)dx) ∣ {Z(x) ∶ x ∈ Ω}] (definition of Yv)

= 1/∣v∣∫
v
E [Y (x) ∣ Z(x)]dx (for a point-based model)

= 1/∣v∣∫
v
EZY (x)dx (definition of EZY (x))

(4.18)

Thus we have var (E [Yv ∣ Z]) = var (1/∣v∣ ∫v EZY (x)dx) = V ∗
v (definition of V ∗

v ). Moreover, the con-
ditional expectation of block average Yv given input U gives:

E [Yv ∣ U] = E [(1/∣v∣∫
v
Y (x)dx) ∣ U] (definition of Yv)

= 1/∣v∣∫
v

E [Y (x) ∣ U] dx (Fubini’s theorem)
(4.19)

E [Y (x) ∣ U] does not depend on site x under the stationarity of SRF Z(x); thus, we have in particular
E [Yv ∣ U] = E [Y (x∗) ∣ U], and var (E [Yv ∣ U]) = var (E [Y (x∗) ∣ U]). Combining these expressions
with Eqn. (4.17) yields:

SZ(v)

SU(v)
=

V ∗
v

var(E [Y (x∗) ∣ U])
(4.20)

The ratio of site sensitivity indices gives [Eqn. (4.4) on page 143]:

.
SZ
SU

=
var(E [Y (x∗) ∣ {Z(x) ∶ x ∈ Ω}])

var(E [Y (x∗) ∣ U])
(4.21)

We notice that for point-based models var [E(Y (x∗) ∣ {Z(x) ∶ x ∈ Ω}] = var [EZY (x∗)] = V ∗ (defini-
tion of EZY (x) [Eqn. (4.7) on page 144)]). Finally, it follows from Eqn. (4.20) and Eqn. (4.21) that:

SZ(v)

SU(v)
=
SZ
SU

⋅
V ∗
v

V ∗
(4.22)
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4.1.7 Appendix B: Hermitian expansion of random field EZY (x)

ä Note to the reader: This subsection was published in (Saint-Geours et al. 2012) as an appendix.

The random field EZY (x) can be written [Eqn. (4.2) on page 142, Eqn. (4.7) on page 144] as a transfor-
mation of the Gaussian random field Z(x) through the function F̄loc ∶ z ↦ ∫Rk Floc(u, z) ⋅ pU(u)du:

EZY = F̄loc (Z)

where pU(⋅) is the multivariate pdf of random vector U. Under the hypothesis that the first two moments
of Y (x) exist, random field EZY (x) has finite expected value and finite variance. Thus, F̄loc belongs to
the Hilbert space L2(N ) of functions Floc ∶ R→ R, which are square-integrable with respect to Gaussian
density n(.). Hence, F̄loc can be expanded on the sequence of Hermite polynomials (χj)j∈N, which forms
an orthonormal basis of L2(N ) (Chilès and Delfiner 1999 p.399):

F̄loc =
∞

∑
j=0

πj ⋅ χj with χj(z) =
1

√
j!
⋅

1

n(z)
⋅
∂j

∂zj
n(z)

where coefficients πj are given by: πj = ∫R χj(z)F̄loc(z)n(z)dz.

ä Note to the reader: See Appendix §H on page 230, properties H.2 and H.3 for a more detailed proof.

It follows that EZY (x) can be written as an infinite expansion of polynomials of Z(x):

∀x ∈ Ω, EZY (x) =
∞

∑
j=0

πj ⋅ χj [Z(x)]

Its covariance then gives (Chilès and Delfiner 1999 p.396, Eqn.(6.23) and p.399, Eqn.(6.25)):

cov (EZY (x), EZY (x + h)) =
∞

∑
j=0

π2
j ⋅ [

C(h)

C(0)
]

j

=
∞

∑
j=0

γ2
j ⋅ [C(h)]

j (4.23)

where C(h) is the covariance function of GRF Z(x) and γj = πj ⋅C(0)−j/2.

ä Note to the reader: See Appendix H.4 on page 231 for a more detailed proof.
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4.2 Influence of spacing

4.2.1 Introduction

In this section, we investigate how the results of VB-GSA of a spatial model may be influenced by another
component of the “scale triplet”: the “spacing”. As discussed in the introduction of this chapter, we limit
our study to the case of point-based and spatially additive models only.

Let consider a model F , in which the quantity of interest is the aggregated value of model output Y (x)

over the entire spatial domain Ω. In many applications, this aggregated output YΩ is approximated by a
weighted sum of the output values Y (xi) computed at a finite number of points xi ∈ Ω. This approx-
imation may result in errors when estimating sensitivity indices of the model inputs with respect to the
aggregated output of interest. The caracteristic distance between the data points xi is related to the notion
of “spacing” as presented in Chapter 1 (§1.1.3 on page 20). Intuitively, we understand that the approx-
imation error on sensitivity indices will be smaller when the number of data points xi is large (small
spacing), and on the contrary will be larger when there are few data points xi (large spacing) (Skøien and
Blöschl 2006).

The purpose of this section is to give an expression of these approximation errors. We investigate this
issue using the same analytical test case as the one described in the previous section §4.1, in which
the spatially distributed input Z(x) is modelled as a stationary random field. Besides, we consider the
limitative case in which data points xi are uniformly positioned on a regular square grid.

4.2.2 Model description

Let consider the same point-based and spatially additive model F that was already presented in the pre-
vious section §4.1.2.1 on page 141:

∀x ∈ Ω , Y (x) = Floc [U, Z(x)] (4.24)

in which U = (U1, . . . , Uk) is a random vector, {Z(x) ∶ x ∈ Ω} is a second-order stationary random field
with covariance function C(⋅), and Floc is a mapping from Rk ×R to R.

In addition, we will assume that Ω ∈ R2 is a fixed square-shaped domain and denote by ∣Ω∣ its surface area.
We also assume that Ω is covered by a set of points xi, uniformly positioned on the nodes of a regular
square grid as shown in Figure 4.5 on the following page. The distance between two neighbouring points
xi and xj is denoted by s and refered to as the “spacing” of the set of points, according to the definitions
discussed in §1.1.3 on page 20. We denote by G the total number of points xi: it is equal to G = ∣Ω∣/s2.

Finally, we will consider as an output of interest the average value YΩ of the output random field Y (x)

over the entire spatial domain Ω:

YΩ =
1

∣Ω∣
∫

x∈Ω

Y (x)dx (4.25)
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Figure 4.5: Spatial domain Ω, regularly positionned points xi, spacing s (total number of points: G = ∣Ω∣/s2)

4.2.3 Approximation on a grid of points

The aggregated output of interest YΩ can be approximated by the empirical mean of values Y (xi) at each
point xi of the grid. We denote by ỸΩ and EZ ỸΩ the random variables defined by:

ỸΩ =
1

G

G

∑
i=1

Y (xi) and EZ ỸΩ =
1

G

G

∑
i=1

EZY (xi) (4.26)

Let also denote by Ṽ ∗
Ω the variance of EZ ỸΩ: Ṽ ∗

Ω can be used as an approximation of block variance V ∗
Ω

of random field EZY (x) (see §4.1.3.1 on page 144 for a definition of V ∗
Ω ). To obtain an approximation

of block sensitivity indices SU(Ω) and SZ(Ω) defined with respect to the output of interest YΩ, we can
calculate the first-order sensitivity indices of model inputs U and Z with respect to the approximated
output of interest ỸΩ: let denote by S̃U(Ω) and S̃Z(Ω) these indices. We can show that the ratio of these
proxies for block sensitivity indices writes (see Appendix §J on page 242 for a proof):

S̃Z(Ω)

S̃U(Ω)
=
SZ
SU

⋅
Ṽ ∗

Ω

V ∗
(4.27)

in which SZ and SU are site sensitivity indices and V ∗ is the variance of EZY (x). This relation is
similar to Eqn. (4.8) on page 145, except that V ∗

Ω and block sensitivity indices SZ(Ω) and SU(Ω) have
been replaced by their gridded approximation.

4.2.4 Expression of the approximation error and convergence

We want to study the difference between: i) the true values SU(Ω) and SZ(Ω) of block sensitivity indices
defined with respect to the aggregated output of interest YΩ, and ii) the approximated values S̃U(Ω) and
S̃Z(Ω) defined with respect to the proxi output ỸΩ. Using Eqn. (4.27) and the expression of the ratio of
sensitivity indices SU(Ω) and SU(Ω) given in the previous section [Eqn. (4.8) on page 145], we obtain
an expression of the approximation error:

SZ(Ω)

SU(Ω)
−
S̃Z(Ω)

S̃U(Ω)
=
SZ
SU

⋅
V ∗

Ω − Ṽ ∗
Ω

V ∗
(4.28)

Let denote by ε the error made when approximating block variance V ∗
Ω with Ṽ ∗

Ω :

ε = V ∗
Ω − Ṽ ∗

Ω (4.29)
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The error ε depends on the spacing s of the set of point xi. It can be expressed as a function of the
total number of points G = ∣Ω∣/s2 and of the covariance structure C∗(⋅) of random field EZY (x) (see
Appendix J.2 on page 243 for a proof):

ε = [
C∗,+(0) −C∗(0)

G
] +

⎡
⎢
⎢
⎢
⎣
C∗(Ω,Ω) −

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

(4.30)

where C∗,+(⋅) is a modified version of the covariance function C∗(⋅) of random field EZY (x), continu-
ous at the origin h = 0:

C∗,+
(h) =

⎧⎪⎪
⎨
⎪⎪⎩

C∗
(h) ∀h > 0

lim
h→0+

C∗
(h) if h = 0

(4.31)

The first part of the approximation error ε is known as the “zero-effect” described by Journel and Hui-
jbregts (1978 p.96). For most usual spatial covariance structures of random fields, the inequality C∗(0) ≥

lim
h→0+

C∗(h) holds (nugget effect). Hence, the first part of the approximation error ε is negative and the

“zero-effect” results in an over-estimation of block variance V ∗
Ω . The second part of ε is the error made

when approximating the double integral C∗(Ω,Ω) = 1/∣Ω∣2 ∬
x,x′∈v2

C∗(x − x′)dxdx′ with a double Rie-

mann sum over the set of points xi. Generally speaking, it is not possible to know whether ε is positive
or negative, that is, if block variance V ∗

Ω is under-estimated or over-estimated by proxy Ṽ ∗
Ω .

Nevertheless, from Eqn. (4.28) on the facing page and the expression of error ε [Eqn. (4.30)], we can
show that the ratio of proxies of sensitivity indices S̃Z(Ω)/S̃U(Ω) converges toward the ratio of exact
sensitivity indices when the number of points xi grows, that is, when the spacing s of the set of points
tends to zero (see Appendix J.3 on page 244 for a proof):

S̃Z(Ω)

S̃U(Ω)
=
s→0

SZ(Ω)

SU(Ω)
+ O (s) (4.32)

In the particular case in which there is no spatial correlation in the spatially distributed input Z(x), that
is, if the covariance function C∗(h) is null except for h = 0, then the approximation error ε is equal to
ε = −s2 ⋅C∗(0)/∣Ω∣.

4.2.5 Conclusion

As mentioned in the introduction, this study is only valid for the point-based and spatially additive model
F described in §4.1.2.1 on page 141, in which the spatially distributed input Z(x) is modelled as a
stationary random field. We investigated the case in which the aggregated output of interest YΩ is approx-
imated over a set of points xi regularly positionned on a square grid. This results in an approximation
error on block sensitivity indices SU(Ω) and SZ(Ω). This error converges to 0 when the number of
points grows. The speed of convergence is O(s) where s is the “spacing” of the set of points xi, that is,
the distance between two neighbouring points xi and xj on the grid.
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4.3 Application to the NOE code on the Orb Delta case study

4.3.1 Introduction

In this section, we offer to illustrate on the NOE modelling framework on the Orb Delta case study some
of the scale issues related to VB-GSA of spatially additive and point-based models. We will focus on the
influence of “support”, which we theoretically described in §4.1. As mentioned in Chapter 2, the NOE
code is a point-based and spatially additive model with two spatially distributed inputs: the assets map
and the set of hazard maps (water depths). Our purpose in this section is to answer the following question
on the Orb Delta case study: how do the results of the uncertainty and sensitivity analysis depend on the
spatial support v over which the NOE model outputs (damage estimates, AAD and ∆AAD indicators) are
aggregated?

This study is a supplement to the first sensitivity analysis of the NOE modelling framework on the Orb
Delta presented in Chapter 3 (§3.3 on page 111). This extra study only differs from the previous one
by the set of outputs of interest, which is detailed in the next subsection §4.3.2: sensitivity indices of
the NOE model inputs are now computed with respect to the sum of the ∆AAD indicator over different
spatial supports v of increasing sizes. Besides, we also build maps of ∆AAD uncertainty as well as maps
of sensitivity indices at different cell sizes. The results (§4.3.3) show that i) uncertainty on the ∆AAD
indicator is not spatially homogeneous; ii) the maps of sensitivity indices give a new insight on the spatial
distribution of the influence of each model input on the variance of model output; and iii) the sensitivity
indices of spatially distributed inputs (assets map, hazard maps) decrease with the size of support v. We
discuss the main outcomes of this case study and its limits in §4.3.4.

4.3.2 Methods

4.3.2.1 Overview

Our goal is to investigate the sensitivity of the NOE model inputs with respect to the aggregated value of
the NOE output indicators over various spatial supports v. For the sake of clarity, we limit our study to
the ∆AAD indicator (average annual avoided damages, §2.2.5 on page 44). To perform this sensitivity
analysis, we follow the same general procedure as the one used in the first analysis of the NOE code
presented in §3.3 on page 111. We consider the same sources of uncertainty and their modelling remains
unchanged (§3.3.3.1 on page 117), except for the uncertain costs of the flood management plan, which
are ignored here because they are not used in the computation of the ∆AAD indicator. The pseudo
Monte Carlo procedure for the estimation of sensitivity indices is also the same, with a total sample size
Ntot = 28 672 (§3.3.3.2 on page 124). Sensitivity indices of spatially distributed inputs (the hazard maps
and the assets map) are computed following the “map labelling” method (§3.1.2.4 on page 84).

The only difference with the first analysis presented in Chapter 3 is the set of outputs of interest we
consider: we will use two different settings in our analysis, which will be refered to as “setting A” and
“setting B”. Both settings A and B aim at answering the same question, in a different way: how does the
uncertainty on the ∆AAD indicator, and the associated sensitivity indices, depend on the spatial support
v over which it is aggregated?

Setting A is meant only to be illustrative: we consider three individual spatial supports randomly se-
lected, of increasing surface area, and show how uncertainty on the ∆AAD indicator and related
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sensitivity indices vary from one support to another. This setting A is just a simplified example that
aim at making our point more understandable;

Setting B. The goal of Setting B is to carry out a more rigorous analysis. The output of interest we
consider is the map of the ∆AAD indicator, first transformed into a number of grids (raster data)
of increasing cell sizes (i.e., of increasing spatial support). For each cell size, we compute maps
of ∆AAD uncertainty as well as maps of associated sensitivity indices. We then study how these
maps vary for increasing cell size (i.e., for increasing spatial support).

In the following subsections §4.3.2.2 and §4.3.2.3 we give a detailed description of settings A and B.

4.3.2.2 Setting A: ∆AAD indicator on individual supports

In a first setting, we consider three individual spatial supports v1, v2 and v3 of increasing surface area
(Figure 4.6 on the next page). These three supports were selected at random, and their study is only meant
to be illustrative. By way of example, we chose to consider spatial supports that are related to real-world
entities: first support v1 is a single house located on the western bank of the Orb Delta (∣v1∣ ≤ 1 ha),
second support v2 is the administrative district of Sauvian (∣v2∣ = 13 sq. km), and third support v3 is the
entire floodplain (∣v3∣ = 63 sq. km). For each spatial support, the output of interest is the sum of the
∆AAD indicator over this support, denoted by ∆AADv1 , ∆AADv2 and ∆AADv3 , respectively. These
“local” indicators can be used to assess whether a given area v (a house, a district, etc.) will benefit or
suffer from the flood control measures on the Orb Delta: if ∆AADv is positive (resp. negative), the flood
risk management plan under study will result in a decrease (resp. increase) of the average annual damages
on the investigated support v. The nominal values of the ∆AADv indicator—produced using the nominal
values of the NOE model inputs—aggregated over spatial supports v1, v2 and v3 are as follows:

∆AADv1 1.725 ke/year
∆AADv2 221.3 ke/year
∆AADv3 6 523 ke/year

Total-order sensitivity indices are then computed with respect to each of these three outputs of in-
terest ∆AADv1 , ∆AADv2 and ∆AADv3 . They will be denoted by STi(house), STi(district) and
STi(floodplain), respectively.a

4.3.2.3 Setting B: raster maps of the ∆AAD indicator

Raster maps of the ∆AAD indicator In a second setting, the output of interest we consider is the map
of the ∆AAD indicator. This map is first transformed into a number of grids (raster maps) of increasing
cell sizes: as previously explained in §2.3.2.4 on page 65, an ∆AAD grid is obtained by computing at
each cell ci the sum of the Average Annual Avoided Damages over all assets (or parts of assets) contained
in the cell.b We consider four different grids with cells of 200 m by 200 m, 400 m by 400 m, 800 m by
800 m and 1 600 m by 1 600 m, with corresponding cell sizes ∣c∣ = 0.04, 0.16, 0.64 and 2.56 sq. km,
respectively. Figure 4.7 on page 159 shows two ∆AAD raster maps produced using the nominal values
of the NOE model inputs, for cell size ∣c∣ = 0.04 sq. km and ∣c∣ = 2.56 sq. km, respectively.

aWe chose to calculate total-order rather than first-order sensitivity indices because their confidence bounds computed by boot-
strap proved to be narrower.

bIf an asset has a large surface area and overlaps many cells of the grid, then the value of the ∆AAD indicator over this asset is
shared out among the cells in proportion to the overlaped areas.
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Figure 4.6: Setting A with three different spatial supports for the ∆AAD indicator: house, district, and floodplain
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Figure 4.7: Setting B: ∆AAD grids for nominal values of the model inputs, cell size ∣c∣ = 0.04 sq. km (top) and
∣c∣ = 2.56 sq. km (bottom)
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Maps of sensitivity indices In this second setting, maps of sensitivity indices are then produced by
computing total-order sensitivity indices with respect to the value of the ∆AAD indicator at each cell of
the various ∆AAD raster maps considered. More precisely, for each cell size ∣c∣ = 0.04, 0.16, 0.64, and
2.56 sq. km, and for the ith model input, we use the following procedure:

1. at each cell cj of the ∆AAD grid of cell size ∣c∣, we compute the total-order sensitivity index
STi,∣c∣(cj) of the ith model input with respect to the sum of the ∆AAD indicator over this cell;

2. the set of sensitivity indices {STi,∣c∣(cj)} over all the cells cj builds a grid (raster map) that we will
denote by Si,∣c∣ and call “map of sensitivity indices of the ith model input of cell size ∣c∣”;

Following this procedure, we obtain 4 × 4 = 16 maps of sensitivity indices Si,∣c∣, one for each of the four
model inputs and each cell size ∣c∣ = 0.04, 0.16, 0.64, and 2.56 sq. km.

Average values of the maps of sensitivity indices In order to compare the maps of sensitivity indices
obtained for various cell sizes ∣c∣, we need to summarize these maps by a single scalar measure. Hence,
for each cell size ∣c∣ = 0.04, 0.16, 0.64, and 2.56 sq. km., and for the ith model input, we calculate the
average value of the map of sensitivity indices Si,∣c∣: we denote this average value by ST i,∣c∣. If G∣c∣

denotes the number of cells in the raster map of cell size ∣c∣, ST i,∣c∣ is defined by:

ST i,∣c∣ =
1

G∣c∣

G∣c∣

∑
j=1

STi,∣c∣(cj) (4.33)

The average index ST i,∣c∣ is a scalar measure that summarises the average contribution of the ith model
input to the variance of the ∆AAD indicator aggregated over small cells cj of area ∣c∣. It is by no means
a measure of importance of the ith model input with respect to the ∆AAD indicator aggregated over the
entire floodplain. We will further explain this point in the discussion.

4.3.3 Results

4.3.3.1 Setting A: ∆AAD indicator on individual supports

Uncertainty analysis Table 4.2 on the facing page summarises the outcome of the uncertainty analysis in
setting A: it gives descriptive statistics of the ∆AADv indicator for each of the three spatial supports v1

to v3 (single house, district, floodplain), over Ntot = 28 672 model runs. The mean value and the standard
deviation of the ∆AADv indicator naturally increase with the surface area of the support v over which
it is aggregated (house, district or total floodplain), ranging from 2.060 ±1.21 ke/year for support v1 to
5 459 ±1 110 ke/year for support v3. However, if we consider a dimensionless measure of variability
such as the coefficient of variation, we observe a different behaviour: the coefficient of variation of the
∆AADv indicator decreases with the surface area of the support v.c This finding corroborates the idea
that some spatial “averaging-out effects” result in a reduction of the relative uncertainty when the ∆AAD
indicator is aggregated over a large surface area.

cWe would get an identical result if we looked at the coefficients of variations computed with respect to the aggregated value
∆AADv normalized by the surface area ∣v∣.



4.3 APPLICATION TO THE NOE CODE ON THE ORB DELTA CASE STUDY ∎ 161

Table 4.2: Descriptive statistics over Ntot = 28 672 simulations; setting A: mean, s.d. and coefficient of variation of
the aggregated value of ∆AAD on spatial supports v1 to v3; setting B: average values (over non-zero cells) of mean,
s.d. and coefficient of variation of ∆AAD at each cell

Setting A
support area [sq. km] mean [ke/year] s.d. [ke/year] c.var. [%]
v1 (house) 0.03 2.060 1.210 58.74
v2 (district) 13 183.7 47.62 25.92
v3 (floodplain) 63 5 459 1 110 20.33

Setting B
support cell area average mean average s.d. average c.var.

[sq. km] [ke/year] [ke/year] [%]
200 m cells (1 463∗) 0.04 3.731 1.380 385
400 m cells (416∗) 0.16 13.12 4.105 247
800 m cells (128∗) 0.64 42.65 11.72 96
1 600 m cells (43∗) 2.56 127.0 32.26 51

∗ number of non-zero cells

Assets map

Hazard maps

Dam. func.

Return interv.

0 0.4 10.2 0.6 0.8 0 0.4 10.2 0.6 0.8 0 0.4 10.2 0.6 0.8

v2 : district v3 : floodplainv1 : housing unit

Figure 4.8: Total-order sensitivity indices with respect to the sum of the ∆AAD indicator over three spatial supports:
house (left), district (center), and floodplain (right)

Sensitivity analysis Figure 4.8 displays the total-order sensitivity indices computed for each uncertain
model input with respect to the aggregated value of the ∆AAD indicator over spatial supports v1 (house),
v2 (district) and v3 (floodplain). It clearly suggests that the ranking of uncertainty sources depends on the
surface area of the spatial support v. The variance of ∆AADv1 (smallest support) appears to be mainly
explained by the uncertainty on the two spatially distributed inputs, that is, the assets map and the hazard
maps (sensitivity indices: 0.8 and 0.65, respectively). On the contrary, the non spatially distributed inputs
(depth-damage curves and flood return intervals) prove to be the most important sources of uncertainty
when computing the ∆AADv3 indicator over the total floodplain (sensitivity indices: 0.29 and 0.33,
respectively). These results are in line with our theoretical developments of §4.1 and offer clear evidence
of the “change of support” effect on variance-based sensitivity indices: the sensitivity indices of spatially
distributed inputs decrease with the size of the support v while the sensitivity indices of non-spatially
distributed inputs symmetrically increase with the size of v.
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4.3.3.2 Setting B: raster maps of the ∆AAD indicator

Uncertainty analysis Figure 4.9 on the facing page shows a spatially explicit representation of the un-
certainty on the ∆AAD raster map over the Ntot = 28 672 model runs—cell size ∣c∣ = 0.04 sq. km is
taken as an example. A first map displaying the maximum values of ∆AAD for each cell over all model
runs (Figure 4.9 a) is compared to the map of minimum values (Figure 4.9 b). It appears that for a large
number of cells, the minimum and maximum values of ∆AAD have opposite signs, which we interpret
to mean that, due to the input uncertainties in the NOE code, it is impossible to assess with certainty
whether these areas will benefit or suffer from the implementation of the flood-control measures on the
Orb Delta.

By comparing these maps with that of land use on the study site (Figure 2.19 on page 64), it can be noted
that the cells with uncertain sign are mostly covered with agricultural land and show relatively small
values of positive or negative ∆AAD. On the contrary, for cells that include urban areas, campgrounds and
other economic activities, the ∆AAD indicator proves to keep a constant sign over all model runs, with
larger positive or negative values.a Hence, in spite of the numerous uncertainties that were considered
in the analysis, we can conclude that the flood risk management plan will almost certainly result in
a reduction of the average annual damages on urban areas, and almost certainly result in an increase
of annual damages on campgrounds. In addition, cells that include urban areas or campgrounds show
large standard deviations and low coefficients of variation of the ∆AAD indicator (Figure 4.9 c and d),
while cells only covered with agricultural land have small standard deviations but larger coefficients of
variation.a

Finally, Table 4.2 on the preceding page gives for each cell size ∣c∣ = 0.04, 0.16, 0.64 and 2.56 sq. km
the average value (over the cells cj) of the mean, standard deviation and coefficient of variation of the
∆AAD indicator.d It indicates that the mean and standard deviation of the ∆AAD indicator increase with
the surface area ∣c∣ of the cells, while its coefficient of variation decreases. These results are consistent
with the ones obtained in Setting A (§4.3.3.1 on page 160).

Sensitivity analysis Figure 4.11 on page 165 displays the maps of sensitivity indices Si,∣c∣ for each
model input and for both the smallest cell size ∣c∣ = 0.04 sq. km and the largest cell size ∣c∣ = 2.56 sq.
km. Spatial distribution of sensitivity indices proves to be heterogeneous. By comparing the first maps
of sensitivity indices (∣c∣ = 0.04 sq. km) with the map of land use on the study site (Figure 2.19 on
page 64), we can identify two different types of areas: urban areas and agricultural land. On the cells
that include urban areas, the assets map and the hazard maps display smaller sensitivity indices than
on the cells covered with agricultural land. Symmetrically, damage functions and flood return intervals
have larger sensitivity indices in urban areas than on agricultural land. This finding might be explained by
comparing the characteristics of depth-damage curves for private housing assets and agricultural assets. In
particular, depth-damage curves for agricultural land are simple step functions with a number of threshold
water levels: when water levels are uncertain, they may induce a “jump” from damage amounts below
or above these important thresholds. These jumps might explain that the water depth maps have a larger
contribution to the variance on the ∆AAD indicator for agricultural land than on urban areas.

Besides, the spatial heterogeneity of the maps of sensitivity indices indicate that we fall out of the hy-
potheses used in our theoretical developments presented in §4.1. In particular, nor the mean nor the

aThese qualitative analyses could be improved, for example by computing summary statistics of ∆AAD average value, s.d. and
proportion of sign changes over all cells depending on their land use type.

dThe cells cj for which the mean value of the ∆AAD indicator over Ntot model runs was equal to 0 were not considered to
compute these average values.
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Figure 4.9: Uncertainty on the ∆AAD raster map of cell size ∣c∣ = 0.04 sq. km over Ntot = 28 672 model runs:
maximum values (a), minimum values (b), standard deviations (c), and coefficients of variation (d) at each cell cj .
Dashed cells indicate that the sign of ∆AAD over the cell changes for more than 20% of model runs.
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variance of the spatially distributed inputs Z(x) are spatially homogeneous heree. This non stationarity
results in sensitivity indices being different from one location to one another, whereas they were neces-
sarily constant over the spatial domain in our theoretical developments.

In addition, we can investigate the change of support effect on the NOE modelling framework by compar-
ing the maps of sensitivity indices Si,∣c∣ for cell sizes ∣c∣ = 0.04 sq. km and ∣c∣ = 2.56 sq. km (Figure 4.11
on the facing page top and bottom, respectively). The sensitivity indices of the spatially distributed inputs
(the assets map and the hazard maps) seem to decrease from ∣c∣ = 0.04 to ∣c∣ = 2.56 sq. km, while the maps
of sensitivity indices of the damage functions and of the flood return intervals display larger values for
cell size ∣c∣ = 2.56 sq. km than for ∣c∣ = 0.04 sq. km. These results are in line with those observed with Set-
ting A (§4.3.3.1 on page 160), that is, the sensitivity indices of spatially distributed inputs decrease with
the size of the support v while the sensitivity indices of non-spatially distributed inputs symmetrically
increase with the size of v.

To better highlight this change of support effect, Figure 4.10 displays the average values ST i,∣c∣ [Eqn. (4.33)
on page 160] of the maps of sensitivity indices for each model input and each cell size ∣c∣. The sensitivity
indices of spatially distributed inputs (assets map and hazard maps) prove to decrease with an increase of
the area ∣c∣ over which the model output ∆AAD is aggregated, while the sensitivity indices of non spa-
tially distributed inputs (damage functions and flood return intervals) increase symmetrically. The critical
cell size ∣c∣c, for which spatially and non-spatially distributed inputs contribute equally to the variance of
the model output, falls somewhere between 5 and 50 sq. km.
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Figure 4.10: Average values ST i,∣c∣ of the maps of sensitivity indices with increasing cell size ∣c∣ (logarithmic scale)
for the asset map (◻), the hazard maps (●), the depth-damage curves (△) and the flood return intervals (◇)

eIndeed, the mean value of water depths is not constant over the floodplain, and the random realisations of the DEM were
generated with conditional simulations, resulting in low variances of simulations close to the ground control points, and larger
variances far from the control points.
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Figure 4.12: Ratio π with fitted curve π = ∣c∣c/∣c∣

To better estimate this critical cell size, we computed for each cell size ∣c∣ the ratio π of the average value
of sensitivity indices for the group of spatially distributed inputs (assets map and hazard maps) divided by
the average value of sensitivity indices for the group of non spatially distributed inputs (damage functions
and flood return intervals). Figure 4.12 shows that this ratio is proportional to 1/∣c∣: the theoretical curve
π = ∣c∣c/∣c∣ derived from Eqn. (4.10) on page 145 was fitted (least squares - R2 = 0.79) on data points,
yielding an estimate of the critical cell size ∣c∣c ≃ 6.72 sq. km.

4.3.4 Discussion

Change of support and ranking of uncertainty sources In accordance with the theoretical develop-
ments of §4.1, we found that the ranking of uncertainty sources in the NOE modelling framework depend
on the spatial support over which the ∆AAD indicator is aggregated. Both settings A and B bring to the
same conclusions. For large supports (e.g., the entire floodplain or a district), the main source of uncer-
tainty is the return intervals of flood scenarios. This point is in line with the results obtained in the first
sensitivity analysis of the NOE modelling framework and is already discussed in Chapter 3. However, for
much smaller supports (e.g., a house, a cell), it appears that the variance of the ∆AAD indicator is mainly
due to the uncertainty on the hazard maps (water depths) and the assets map. The critical area ∣c∣c, for
which spatially distributed inputs (water depth maps, assets map) and scalar inputs (flood return intervals,
damage functions) contribute equally to the variance of the ∆AAD indicator, falls somewhere between
5 and 50 sq. km. Hence, to produce accurate maps of flood damages with an horizontal resolution finer
than these critical values, one must try first and foremost to reduce the uncertainty on water depth maps
and assets map, which are the key sources of uncertainty on small spatial supports. On the contrary, if the
NOE modelling framework is used to produce estimates of total flood damages over a large floodplain,
then the uncertain return intervals of flood scenarios contribute more to the variance of the model output
than any other source of uncertainty.

Spatial variability of uncertainty of the ∆AAD indicator This analysis also brings a better under-
standing of the NOE modelling framework by investigating the uncertainty and sensitivity of the maps of
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the ∆AAD indicator. First, we observed that the uncertainty on the ∆AAD maps is not spatially homo-
geneous. In particular, the sign of the ∆AAD indicator is almost certainly constant in some parts of the
study area (urban areas: positive ∆AAD; seaside campgrounds: negative ∆AAD), while in other areas
(those mostly covered with cultivated land), the sign of the ∆AAD indicator is highly uncertain. This
spatially explicit description of uncertainty brings new information for the model end-user, compared to
the first analysis (§3.3 on page 111) in which only the aggregated model outputs over the entire floodplain
were scrutinized. It may lead the model end-user to better express his concerns about the uncertainty on
the ∆AAD maps, and define new quantities of interest to quantify this uncertainty and decide whether it
is bearable or not. For example, in this case study, the decision-maker could be especially concerned with
the absolute standard deviation of the ∆AAD indicator: he would then pay more attention to urban areas.
To decide whether the uncertainty on the ∆AAD map can be tolerated or not in this specific perspective,
he could define as a new quantity of interest the maximum ∆AAD standard deviation obtained on an indi-
vidual cell, or the 90% quantile of ∆AAD standard deviations over all cells. On the contrary, he could be
worried not so much about the ∆AAD standard deviation, but rather about the ∆AAD changing sign: in
that case he would focus on cultivated land. A possible quantity of interest would then be the proportion
of cells on the map for which the ∆AAD indicator changes sign on more than 20% of model runs. To
sum up, the maps of ∆AAD uncertainty are certainly valuable tools to better account for the variability
of the NOE model outputs, and to discuss what level of uncertainty and what type of uncertainty can be
tolerated or not by the model end-user.

Spatial variability of sensitivity indices To identify which sources of uncertainty contribute the most
to the variability of the ∆AAD maps, we also produced maps of sensitivity indices computed at each
cell of a regular grid. These maps clearly suggest that the contribution of the NOE model inputs to the
variance of the ∆AAD indicator is not spatially homogeneous. For example, the sensitivity indices of
the water depth maps and the assets map are smaller in urban areas than in areas covered with cultivated
land. Such different ranking of uncertainty sources from one location to another may be explained by a
number of factors, including the main land use type at that location, the shape of the associated depth-
damage curves, the average water depth at that location, etc. Even if we did not explore this point further,
the maps of sensitivity indices clearly appear to be promising tools to better explore the behavior of the
NOE modelling framework. In particular, an interesting question is how to summarize the information
contained in a map of sensitivity indices into a single scalar measure. In this exploratory study, we simply
computed the non-weighted average ST i = 1/G∑j STi(cj) of sensitivity indices defined with respect
to the ∆AAD indicator on each cell cj of the map. However, we could design other measures, in order
to answer the various questions of the model end-user. For example, if the model end-user is mostly
concerned with reducing the absolute standard deviation of the ∆AAD indicator, then he may compute
the average of cell-based sensitivity indices STi(cj) weighted by the ∆AAD variance on each cell cj .
On the contrary, if he is more worried with the ∆AAD indicator changing signs, he will calculate the
average of cell-based sensitivity indices STi(cj) weighted by the proportion of ∆AAD changing signs
over all model runs on the cell cj . These various measures would probably give different conclusions on
the key model inputs that drive the uncertainty on the map of the ∆AAD indicator at a given cell size ∣c∣.
It may be an interesting research item to further explore their properties.

Other averaging-out effects in the NOE modelling framework The theoretical framework we built
to explain change of support in VB-GSA can be extended, by analogy, to a number of other averaging-
out effects in the NOE modelling framework. For example, we observed in §3.3.5.2 on page 129 an
averaging-out effect related to the number of flood-exposed assets of different types on the Orb Delta: the
sensitivity indices of the hazard maps was smaller for private housing (large number of assets on the study
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site: 16 436) than for other economic activities (small number of assets: 691). A possible explanation is
that the dispersion of water depth errors is averaged over the large number of housing polygons scattered
across the study area. Hence, we can somehow write that the sensitivity index of the hazard maps with
respect to the aggregated value of the ∆AAD indicator over the assets of type “private housing” verifies:

Shazard maps ∝
1

#T
(4.34)

in which #T is the number of assets of this type. This relation could be applied to other types of assets
(agricultural land, campgrounds, etc.). For a given type of assets, if the number of assets grows, then
the “averaging-out effect” on the water depth errors will get stronger, and the relative contribution of
the hazard maps to the variance of the aggregated ∆AAD indicator will be smaller. A similar “number
averaging-out effect” may partly explain why the uncertainty on depth-damage curves appears to be
more influential on the private housing sector, which is described with only one depth-damage curve,
than for the other economic activities, which are described by 60 damage curves that are assumed to vary
independently.

This analogy may also be useful to understand the contribution of the uncertain return intervals of flood
scenarios to the variance of the ∆AAD indicator. As explained in §2.2.7 on page 49, computing the
∆AAD indicator requires to estimate the return intervals (or annual exceedance probabilities) of a number
m of flood scenarios. These estimates of flood return intervals are affected by errors that are statistically
correlated. By analogy with Eqn. (4.10) on page 145, we may expect that the sensitivity index related to
these uncertain flood return intervals (or exceedance probabilities) with respect to the ∆AAD indicator
follows a law similar to:

Sreturn intervals ∝
mc

m
(4.35)

in which m is the number of flood scenarios considered to compute the ∆AAD indicator, and mc is a
measure of the intensity of correlation between the errors on these flood return intervals. In other words,
the sensitivity index of uncertain flood return intervals will: i) decrease if the number m increases; and ii)
increase if the intensity of correlation between flood return interval estimates increase. Of course, further
research is needed to confirm or invalidate these explanations that are only based on analogies. Besides,
the implications of these various averaging-out effects will be discussed in the Chapter conclusion on
page 172 and in the general conclusion on page 177.
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4.4 Chapter conclusion

4.4.1 On scale issues in VB-GSA of spatial models

Sensitivity indices depend on the spatial support, spacing and extent of model output In §4.1, we
investigated the case of a point-based and spatially additive model F , in which the spatially distributed
input is modelled as a Stationary Random Field Z(x). Using the vocabulary of geostatistics, we sug-
gested to use the term “site sensitivity indices” when sensitivity indices of model inputs are computed
with respect to the point value Y (x) at some location x ∈ Ω, and the term “block sensitivity indices”
when the variance-based sensitivity indices of model inputs are computed with respect to the aggregated
value Yv of model output over a spatial support v. Then, building on the regularization theory in geo-
statistics, we proved that the ratio SZ(v)/SU(v) of block sensitivity indices of spatially distributed input
Z(x) and scalar inputs Ui is proportional to the ratio ∣v∣c/∣v∣, in which ∣v∣ is the surface area of the spatial
support over which model output is aggregated, and ∣v∣c some critical area [Eqn. (4.10) on page 145]. This
equation summarizes the effect of spatial support on variance-based sensitivity indices in a point-based
and spatially additive model: when the surface area ∣v∣ increases, the relative contribution of spatially dis-
tributed inputs to the variance of the aggregated model output Yv decreases. In our contribution, we also
specified how the critical size ∣v∣c depends on the covariance structure C(⋅) of the spatially distributed
input Z(x).

Next, in §4.2, we discussed the influence of spatial “spacing” on the VB-GSA of the same point-based
and spatially additive model F . We proved that if the aggregated model output Yv is approximated on a
regular grid of points, then the ratio SZ(v)/SU(v) of block sensitivity indices of spatial and scalar inputs
will also be approximated. We showed that the approximation error is aO(s), in which s is the “spacing”
of the grid of points, that is, the distance between two neighbouring points of the grid.

Finally, we did not consider in our work the last component of the scale triplet (§1.1.3 on page 20), that is,
the “extent”—the entire area Ω ⊂ R2 covered by the model F . However, for the case of a point-based and
spatially additive model in which Z(x) is modelled as a stationary random field, the “change of support”
properties discussed in §4.1 give an appropriate framework to discuss the impact of “extent” as well. If
the output of interest for sensitivity analysis is the aggregated value YΩ of model output over the entire
model extent Ω, then the ratio SZ(Ω)/SU(Ω) is inversely proportional to the surface area ∣Ω∣ of model
extent.

These contributions may prove useful to give a complementary insight on scale issues in spatially dis-
tributed modelling. When a spatial model is developed to represent some physical, biological or anthro-
pogenic processes, the choice of a modelling scale (i.e., support, spacing and extent) depends on a number
of constraints, some of which are controlled by the modeller, and others not. Among these constraints
are the understanding of the processes under study, the intended use of the model results, but also the
characteristics of the field data that can be collected, the computationnal power available, etc. What we
have shown in this chapter is that the choice of a modelling scale will also partly determine which are the
key sources of uncertainty in the model. In particular, if the support of model output is large compared
to the characteristic length of correlation in a spatially distributed input, then we can expect that the con-
tribution of this input to the variance of the aggregated model output will be small. Hence, such an input
does not deserve too much attention, and extra data gathering or field data collecting should be dedicated
to other model inputs.

Limits of our analysis As mentioned in the conclusion of section §4.1, our analysis of scale issues in
VB-GSA of spatial models is based on a number of limitative hypotheses that may not be met in some
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practical cases. These limits are already discussed in §4.1.4 on page 147, hence we just give here some
extra comments on the following key points:

(1) Stationarity of Z(x). In the analytical test case under study in §4.1 and §4.2, we assumed the input
random field Z(x) to be stationary; if it is not, site sensitivity indices defined in Eqn. (4.4) on
page 143 depend on site x ∈ Ω. It is then possible to compute maps of these indices (Marrel et al.
2011; Pettit and Wilson 2010) to discuss the spatial variability of model inputs sensitivities. We
used this approach to carry out VB-GSA on the NOE code on the Orb Delta case study in §4.3.
We produced map of sensivity indices of different cell sizes (Figure 4.11 on page 165). We think
that these maps are valuable tools to investigate the spatial variability of model input sensitivities,
identify areas where some inputs are more influential, and finally better understand the behaviour
of the model under study.

(2) Random Field model. We also assumed in §4.1 and §4.2 that the spatially distributed input in model
F can be modelled by a Random Field Z(x). The properties that were obtained on the influence
of “support” and “spacing” on variance-based sensitivity indices are only valid for this specific
case. However, there are many other theoretical frameworks that could describe the variability of
a spatially distributed input (e.g., spatial point processes). Even if we could not prove it in our
research, we are of the firm opinion that the properties obtained for Random Field inputs would
in most cases hold for other types of spatially distributed inputs. In particular, the influence of the
support of model output on variance-based sensitivity indices would most probably be the same:
the relative contribution of spatially distributed inputs to the variance of the aggregated output over
a support v is a decreasing function of ∣v∣.

(3) Case of a non spatially additive model. We can wonder whether the results presented in §4.1 and
§4.2 would hold or not for non spatially additive numerical models. A model is non spatially
additive when the output of interest is not the spatial average Yv (or the spatial sum) of spatially
distributed ouput Y (x) over a given spatial unit v ⊂ Ω (§1.1.5 on page 23). For example, the output
of interest could be the maximum value of Y (x) over v (e.g., the maximal pollutant concentration
over a study area), some quantile of Y (x) over v, or the percentage of v for which Y (x) exceeds a
certain threshold. In theses cases, there is no “averaging-out effect” associated with linearity, and
there is no reason why the contribution of an uncertain input Z(x) to the variance of the output of
interest would increase or decrease under a change of spatial support v. Properties of sensitivity
indices discussed in §4.1 and §4.2 no longer hold.

(4) Case of a non-point based model. A model is non-point based when there are some spatial interac-
tions involved in the description of the physical processes under study (§1.1.4 on page 22). For
example, models that simulate river flow routing are usually not point-based, as the water flow at a
location x ∈ Ω depends on the flow at other locations x′ ∈ Ω upstream. Another example is given
by Brémond (2011), who developed a model for flood damage assessment in which the damage
on a farm located at a given point x ∈ Ω depends on the flood intensity parameters (water depth,
velocity, etc.) at this location x but also on a number of induced damages on crops, warehouses or
infrastructures, related to flood intensity parameters at other locations x′. In this case, the change
of support properties discussed in §4.1 do not hold either, because the value of the spatial average
Yv does no depend only on the values of the spatially distributed input Z(x) over zone v, but also
on the values of Z(x) over total domain Ω. Nevertheless, in many applications, a non-point based
model can be replaced by a point-based model as a first-order approximation. Hence, for these
“quasi point-based” models, the behaviour described for point-based models in §4.1 would also be
observed: the block sensitivity indices of spatially distributed inputs over a spatial support v will
decrease when v gets bigger.
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From change of spatial support to other averaging-out effects We proved in §4.1 that the ratio of
block sensitivity indices of spatially distributed model input Z(x) and scalar inputs Ui with respect to
the aggregated model ouput Yv: i) decreases when the size ∣v∣ of the spatial support v increases, and ii)
increases when the spatial auto-correlation in random field Z(x) increases (larger range parameter a).
By analogy, we could describe other “averaging-out effects” that occur in VB-GSA of numerical models.
For example, we can consider a time-dependent model F , in which one of the model inputs is a time serie
Z(t) that exhibits auto-correlation, and model output is a time serie Y (t). If the model is point-basedf

and time additiveg, then the ratio of sensitivity indices of time dependent input Z(t) and scalar inputs Ui
will: i) decrease with the length ∣t2 − t1∣ of the time interval [t1, t2] over which the model output Y (t) is
aggregated; and ii) increase when the auto-correlation in the time dependent input Z(t) grows. If ∆tc is
a characteristic duration that measures the intensity of auto-correlation in the time dependent input Z(t),
then a possible portray of “time averaging out effect” in VB-GSA might be:

SZ([t1, t2])

SU([t1, t2])
∝

∆tc
∣t2 − t1∣

(4.36)

A similar explanation may be used to discuss the case of other non-scalar inputs, such as tabular inputs.
We also used the same argument to try and explain some averaging-out effects observed in the NOE
modelling framework on the Orb Delta case study (§4.3.4 on page 167). Of course, further research is
needed to confirm or invalidate these explanations that are only based on analogies.

4.4.2 On the NOE modelling framework

We carried out in §4.3 a second sensitivity analysis of the NOE modelling framework on the Orb Delta
case study, in which we considered as outputs of interest the aggregated value of the ∆AAD indicator
over different spatial support v. We briefly summarize here the main outcomes of this analysis, which are
discussed into more details in §4.3.4 on page 166.

Ranking sources of uncertainty Following the theoretical developments of §4.1, we found that the
ranking of uncertainty sources in the NOE modelling framework on the Orb Delta case study depend
on the spatial support over which the ∆AAD indicator is aggregated. Hence, the strategy to reduce the
variability of flood damage estimates on the Orb Delta will heavily depend on the choice of a spatial
support for model output. If the NOE modelling framework is used to produce maps of flood damages
with a resolution finer than 5 × 5 km, one must try to reduce first the uncertainty on water depth maps
and assets map, which are the key sources of uncertainty on small spatial supports. On the contrary, if the
NOE modelling framework is used to produce estimates of total flood damages over a large floodplain,
then the uncertain return intervals of flood scenarios are the main sources of uncertainty.

Generalizing the results obtained on the Orb Delta case study The “change of support” properties
that we highlighted in §4.3 for the Orb Delta case study would certainly hold for other floodplains,
because they only require the model under study to be point-based and spatially additive. These properties
also offer a clear explanation to the empirical observations we made when comparing VB-GSA results on
two case studies: the Orb Delta (63 sq. km) and the Vilaine floodplain (10 sq. km), as detailed in §3.3.7
on page 131. It appeared that the contribution of the assets map and water depth maps to the variance

fi.e., model output at a given time t only depends on scalar inputs Ui and on the value of the input time serie Z(t) at that same
time t

gi.e., the output of interest is the average value Y[t1,t2] of model output over some time interval [t1, t2]
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of the ∆AAD indicator aggregated over the entire extent of the study site was more important in the
Vilaine floodplain (smaller extent) than on the Orb Delta (larger extent). This observation is in line
with Eqn. (4.10) on page 145 that describe how block sensitivity indices depend on the spatial support of
model output. At the time of writing, it is planned to carry out a more complete comparative analysis of
VB-GSA results on another two floodplains along the Rhône River, briefly described in §2.3.3: Fourques-
Beaucaire case study (125 sq. km), and ZEC case study (650 sq. km). The outcomes of this comparative
analysis will hopefully be used to illustrate and validate change of support effect in VB-GSA of the NOE
modelling framework.

Other averaging-out effects in the NOE modelling chain As mentioned in §4.3.4 on page 167, the
theoretical framework we built to explain change of support in VB-GSA can be extended, by analogy, to
a number of other averaging-out effects in the NOE modelling framework. In particular, we showed that
there are such averaging-out effects related to the surface area of flood-exposed assets, to the number of
assets of each type (private housing, agricultural land, etc.), to the number of damage functions used, and
to the number of flood scenarios considered for the computation of the ∆AAD indicator. These various
parameters control the ranking of the uncertainty sources in the NOE modelling framework.

Choice of uncertainty models and averaging-out effects As mentioned in the conclusion of Chap-
ter 3, a key limit to our analysis of the NOE modelling chain is the choice of an uncertainty model for
each model input. For some model inputs, this choice is sometimes supported by few or even no data
(e.g., damage functions for the Orb Delta case study). What appears now is that it is of the greatest
importance to characterise the auto-correlation that uncertain non-scalar model inputs may exhibit. In-
deed, we have shown in this chapter that the sensitivity index of a non-scalar model input will depend
on its auto-correlated structure: the more (positive) auto-correlation, the largest the contribution of this
input to the variance of the model output. However, it is often very difficult to characterise properly the
correlation structure in such model inputs. For example, on the Orb Delta case study, we assumed that
the uncertainty on each depth-damage curve was independent from the uncertainty on other curves; in-
troducing some sort of correlation in this description would mechanically increase the sensitivity index
of depth-damage curves with respect to the total flood damages over the study site. Along the same line,
introducing stronger spatial auto-correlation in the description of the DTM would result in an increase of
its sensitivity index. Finally, in the same manner, we can discuss the choice that was made to model the
variability of the annual exceedance probabilities of flood scenarios. In the Orb Delta study, the errors
associated with the return interval of each flood scenario are perfectly related—they all stem from the
same Q-f curve. Hence, the contribution of the uncertain exceedance probabilities to the variance of the
∆AAD indicator is larger than if the errors on exceedance probabilities were assumed independent for
each flood scenario.

Unfortunately, this discussion will be of no help for a modeller who wants to carry out a sensitivity
analysis of his model, but has few or no data to support the choice of an uncertainty description for
some of the model inputs. However, our contribution may help him anticipate the impact of the arbitrary
choices that he will have to do. In particular, the sensitivity indices of a complex model input will increase
if it is modelled with a strong auto-correlated structure, and decrease if not. This point will be further
discussed in the general conclusion on page 177.
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Conclusion and prospects

THE goal of this thesis was to investigate the issue of sensitivity analysis for spatial models, through
the detailed study of a model for cost-benefit analysis of flood risk management plans. In this
conclusion, we discuss both the methodological and applied contributions of this study. For both

aspects, we give a brief summary of our work followed by a number of directions for future research.
Finally, we conclude this document by some general comments on the use of sensitivity analysis in
environmental modelling.

Variance-based sensitivity analysis for spatial models

A brief summary

The methodological goal of this thesis was to investigate the use of variance-based global sensitivity
analysis (VB-GSA) for spatial models. As explained in the introduction, we focused our research on two
questions, namely: i) how to handle spatially distributed inputs in VB-GSA? and ii) how to account for
scale issues within the VB-GSA framework? These questions are respectively discussed at the end of
Chapter 3 and Chapter 4: we just reproduce here our main conclusions.

Handling spatially distributed inputs in VB-GSA. We tried to adress the first research question from a
very pragmatic perspective. We displayed an up-to-date review of the numerical tricks that can be used
to compute variance-based sensitivity indices for a model input which exhibits spatial auto-correlation.
We discussed the pros and cons of these methods and built a decision-tree to choose among them (Fig-
ure 3.7 on page 96). We then focused on the “map labelling” method. This technique is limited to non
CPU intensive numerical models, but it has the desirable feature to allow a complex description of the
spatial structure of uncertainty in the model inputs, whose random realisations can be generated with
any stochastic process or ad-hoc algorithm. We carried out two numerical studies to investigate how the
number of random realisations, and the algorithm used to generate them, may influence the estimation of
sensitivity indices. These empirical studies were of an exploratory nature: they raised a number of ques-
tions but did not result in any conclusion that could be turned into general rules. Finally, we illustrated the
use of the “map labelling” method on the NOE code for the Orb Delta case study, in which two spatially
distributed model inputs were considered: the assets map and the hazard maps.

Scale issues in VB-GSA. We adressed the second research question with a more theoretical perspective,
using the concepts, notations and results from the geostatistics theory. Our contribution lies in a better
understanding of the link between the scale of a model output and the variance-based sensitivity indices.
Theoretical results are limited to the specific class of point-based and spatially additive models, in which
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the spatially distributed inputs are modelled as Stationary Random Fields. We used the notion of the
“scale triplet” to decompose the research question into three items, namely the influence of support,
spacing and extent of model output. We suggested to define “site sensitivity indices” and “block sensitivity
indices” to account for the role of the spatial support of model output, and established some properties of
these indices. In particular, we proved that the relative contribution of an uncertain spatially distributed
input to the variance of the model output: i) decreases with the size of the spatial support considered
for model output aggregation [Eqn. (4.10) on page 145]; and ii) increases with its correlation length,
and more generally depends on its auto-correlated structure. To be more precise, we gave a formula that
expresses the ratio of block sensitivity indices of a spatially distributed input Z(x) and scalar inputs Ui as
a function of i) the surface area considered for model output aggregation, and ii) the covariance function
of Z(x). The role of the other two components of scale (spacing and extent) were less scrutinized.

Prospects and directions for future work

The methods and results described in this thesis may be applied straightforwardly to a wide range of non
CPU intensive models, in different fields of earth and environmental sciences. The main difficulty the
modeller will encounter to apply these methods is to characterise the uncertainty in the model inputs: this
issue was not the focus of our work, even if we suggested a few strategies to model spatial uncertainty
(§3.2.2 on page 98). Besides, we would like to stress three points that could extend the reach of our study.

Other types of complex model inputs. The methods we described to handle spatially distributed inputs
in VB-GSA could easily be used to deal with other types of high-dimensional model inputs, such as
functional inputs, time series, tabular data, etc. For example, in the sensitivity analysis of the NOE
code on the Orb Delta case study, uncertain depth-damage relations were represented as tabular data:
they were handled with the “map labelling” method. Of course, all the issues discussed for spatially
distributed inputs would have to be carefully investigated for these other types of inputs. In particular,
attention should be paid to carefully model the auto-correlation in such non scalar model inputs.

Other averaging-out effects. By analogy with the “change of support” effect that we detailed in §4.1
on page 140, it is possible to explain other “averaging-out effects” that occur in VB-GSA of numerical
models. This point is extensively explained in the conclusion of Chapter 4 on page 171. We will also
discuss it for the specific case of the NOE modelling framework later in this conlusion.

Scaling issues in spatial modelling. Our contributions on scale issues in VB-GSA may prove useful
to give a complementary insight on the problem of scaling in spatially distributed modelling. When a
model is developed to represent some physical, biological or anthropogenic processes, the choice of a
modelling spatial scale (i.e., support, spacing and extent) depends on a number of constraints, some of
which are controlled by the modeller, and others not. Among these constraints are the understanding of
the processes under study, the intended use of the model results, but also the characteristics of the field
data that can be collected, the computational power available, etc. What we have shown in Chapter 4 is
that the choice of a modelling scale will also partly determine which are the main sources of uncertainty
in the model.

Finally, to further expand the findings of this thesis, it would be necessary to explore new research topics.
Here are four research items that could be investigated.

(1) Assessing the influence of uncertain map attributes. As mentioned in §3.1.4 on page 92, none of
the techniques encountered in the literature can answer the following question: if a spatially dis-
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tributed input proves to be influential, which of its “attributes”h contribute the most to the variance
of the model output? A possible way to answer this question would be to first carry out VB-GSA
with the “map labelling” technique, then to perform a complementary graphical analysis based on
scatterplots or Contribution to the Sample Mean plots to assess the relative influence of the different
map attributes.

(2) Optimal sampling of spatially distributed inputs. Our exploratory study of section §3.2 on page 98
clearly suggets that further research is needed to find optimal sampling techniques of spatially
distributed inputs in VB-GSA. An interesting path of research is opened by the work of Scheidt
and Caers (2009) who suggest to draw optimal samples of random realisations of Z(x) based on
the definition of a distance between realisations.

(3) VB-GSA for CPU intensive spatial models. We noted that none of the available techniques described
in Chapter 3 is appropriate to handle a time-consuming model with several spatially distributed
model inputs Zi(x) whose dimension cannot be reduced. Hence, further research is needed to
solve this situation, in which intensive simulation is computationally intractable.

(4) Relaxing hypotheses on scaling results. The results we obtained on scale issues in VB-GSA are
conditioned to a number of limitative hypotheses, namely: i) the spatially model input is modelled
as a Stationary Random Field; ii) the model under study is spatially additive; and iii) the model
under study is point-based. An interesting research path would be to try and relax some of these
conditions. This point is extensively discussed in the conclusion of Chapter 4 on page 169.

Apart from these four points, we suggest to add a last direction for future work. We have not fully
adressed in this manuscript the issue of computing variance-based sensitivity indices when the model
output Y is spatially distributed. We have focused on two specific situations, in which the output of
interest for the modeller is either the output value Y (x∗) at some specific location x∗, or the aggregated
value Yv over a given support v. A third situation is the following: the modeller may be interested in the
spatially distributed model output {Y (x) ∶ x ∈ Ω} as a whole, and may want to define sensitivity indices
with respect to the overall variability of the output map. Here are two ideas to adress this issue.

(5) Generalized sensitivity indices. A first idea is to build up on the work of Campbell et al. (2006), who
investigated the issue of sensitivity analysis with a functional or multivariate output. They suggest
to: i) use any dimension reduction technique—such as Principal Component Analysis— to extract
a small number of scalar components Y (k) from the multivariate output Y , then ii) estimate sen-
sitivity indices S(k)

i with respect to each of these scalar components. Lamboni et al. (2011) apply
this approach for a time-dependent output Y (t), and further define a new “generalized sensitivity
index” S(gal)

i = ∑k pkS
(k)
i as a weighted average of indices S(k)

i , in which weights pk repre-
sent the energy content of each independent scalar component Y (k)—see also Auder et al. (2012).
With a reasonable effort, it should be possible to adapt this method to a spatially distributed output
Y (x): the main difficulty would be to find the most appropriate dimension reduction technique for
spatially distributed data.

(6) A new measure of importance? Another research path would to be build on the work of Liu and
Homma (2010) to define a new importance measure dedicated to spatially distributed outputs Y (x).
Let assume that we have defined a measure of dissimilarity δ that could represent the overall “dis-
similarity” of a set of maps—Scheidt and Caers (2009) give an example of such a measure. A
possible way to assess the contribution of the ith model input to the variability of the model output
would be to compute the difference between: i) the dissimilarity δ of a set of output maps obtained

he.g., any scalar descriptor such as the mean value of the input map, the value at a particular location, etc.
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by running simulations of the model under study with a full sampling is the space of the uncertain
model inputs, and ii) the reduced dissimilarity δ(i) of a set of output maps obtained from a con-
ditional sampling of model inputs with a fixed value of the ith model input. Of course, such an
importance measure would probably lack most of the nice properties of variance-based sensitivity
indices (sum up to 1, etc.).

Lessons on cost-benefit analyses of flood risk management plans

The applied goal of our thesis was to investigate the propagation of uncertainty in cost-benefit analyses of
flood risk management plans, and to identify the most influential sources of uncertainty with VB-GSA.
We display a brief summary of this part of our research, and give directions for future work.

A brief summary

A preliminary but essential step of our work was to clarify the perimeter and characteristics of the model
we had to study. Hence, a first applied contribution of this thesis was to designed a modelling framework
named NOE to describe cost-benefit analyses of flood risk management plans. Particular attention was
paid in this framework to two points that are usually not emphasized in the literature: i) the proper
definition of the average annual damages (AAD indicator); and ii) the description of the spatial overlay
procedure between the hazard maps and the assets map.

Next, we implemented the NOE modelling framework on five study sites, and carried out sensitivity
analysis for three of them: the Orb Delta, the Vilaine floodplain and the ZEC project along the Rhône
river. Only the results obtained on the Orb Delta case study were extensively presented and discussed in
this manuscript (§3.3 on page 111 and §4.3 on page 156). However, in this conclusion, we offer to draw
general conclusions from the various studies that were carried out. A key result is that it is impossible to
establish a fixed and general ranking of the sources of uncertainty in CBA studies applied to flood
risk management plans. On the contrary, we proved that the contribution of each source of uncertainty to
the variance of the NOE model outputs depends on a number of factors that may change from one case
study to another. The second applied contribution of this thesis was to investigate three of these factors,
which are listed below.

Economic sector. We found that the ranking of uncertainty sources with respect to their contribution to
the variance of the flood damage estimates depends on the economic sector considered (private housing,
agriculture, industry, etc.).

Spatial extent of the study area. All other things being equal, the relative contributions of the assets
map and water depth maps to the variance of the flood damage estimates are a decreasing function of
the extent of the study area. Symmetrically, the relative contribution of non spatially distributed inputs
(damage functions, flood return intervals) will increase with the extent of the study area. These empirical
observations are in line with the theoretical results we obtained on scale issues in VB-GSA of point-based
and spatially additive models.

Other non-spatial averaging-out effects. As mentioned in §4.3.4 on page 166, the theoretical framework
we built to explain change of support in VB-GSA can be extended, by analogy, to a number of other
averaging-out effects that occur in the NOE modelling framework. In particular, we showed that there
are such averaging-out effects related to the surface area of flood-exposed assets, to the number of assets
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of each type (private housing, agricultural land, etc.), to the number of damage functions used, and to
the number of flood scenarios considered for the computation of the ∆AAD indicator. These various
parameters control the ranking of the uncertainty sources in the NOE modelling framework.

Prospects and directions for future work

One initial motivation for the applied part of this thesis was to better address uncertainty in CBA studies
applied to flood risk management plans. It is obviously a challenging task to make firm and detailed
recommendations on the basis of our results, which show that the ranking of uncertainty sources in flood
damage assessments differ from one case study to another. However, the following comments might
prove useful to modellers.

What resolution for flood damage maps? Experts that produce flood risk assessment studies often have
to choose a spatial resolution for the production of flood damage maps. This thesis does not give a firm
answer to this difficult question, but yields a better understanding of the following point: the choice of a
given resolution (i.e., a spatial support for the aggregation of the flood damage indicator) will determine
which sources of uncertainty are the most influential and which are not. If flood damage maps are pro-
duced at a fine resolution, one must try to reduce first the uncertainty on water depth maps and assets
map, which will probably be the key sources of uncertainty on small spatial supports. On the contrary, if
average annual flood damages are aggregated over a large floodplain, then the uncertain return intervals
of flood scenarios are likely to be the main sources of uncertainty.

Flood risk analyses—how detailed do we need to be? This is the title of a research paper by Apel et al.
(2009), who discussed the question of the required model complexity in flood risk analyses. As they
explain it, “the methods used in research and practical applications range from very basic approaches
with numerous simplifying assumptions up to very sophisticated, data and calculation time demanding
applications both on the hazard and on the vulnerability part of the risk.” One contribution of this thesis
is to shade some new light on this tough issue. The level of “detail” or “complexity” of a model for
flood risk assessment can somehow be described as a level of aggregation (not necessarily spatial) as de-
fined in §1.1.3 on page 20i. Disaggregated models often give the—false—impression that they produce
more “precise” results than aggregated models. Yet, only a careful uncertainty and sensitivity analysis
can assess the variability of the model output and estimate the contribution of each model input to this
variability. In the light of our work, we want to underline the following point: the more disaggregated a
model is, the more difficult it will be to carry out a sensitivity analysis of it. Indeed, we have shown
that it is of the greatest importance in sensitivity analysis to properly characterise the auto-correlation
that disaggregated model inputs may exhibit, because the strength of this auto-correlation will partly
determine their sensitivity indices.j Unfortunately, it is most of the time difficult or even impossible to
collect enough data to support the choice of an auto-correlated uncertainty model for such disaggregated
inputs.k What is dangerous for the modeller is the tantalising solution to just ignore auto-correlation and
consider the elements of a disaggregated input as either statistically independent or completely colinear.

iFor example, in the flood damage assessment that was carried out on the Orb Delta study site, only one depth-damage curve was
used to model damage for private housing. On the contrary, the CEPRI guidelines for cost-benefit analysis of flood risk management
plans suggest to use up to seven different depth-damage relations depending on the caracteristics of the houses (CEPRI 2011). We
can say that the CEPRI model is more “detailed”—or “complex”—than the Orb one. We can also say that it operates at a “less
aggregated” level. There are many other examples of flood damage assessments that are more or less aggregated than these two.

jThis issue has been further discussed in the conclusion of Chapter 4 (§4.4 on page 169)
kFor example, in the CEPRI guideline—like in any other case where depth-damage relations are designed at a low level of

aggregation—the modeller would have to quantify the correlation between the seven uncertain depth-damage curves for private
housing.
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One contribution of this thesis is to anticipate the impact of such arbitrary choices: in particular, the sensi-
tivity indices of a disaggregated model input will likely be overestimated if its components are modelled
as completely colinear, and underestimated if its components are modelled as purely independent. To
sum up, we are of the opinion that disaggregated models make uncertainty and sensitivity analyses more
difficult to carry out, and are thus more difficult to evaluate with regards to uncertainty management.

Directions for future work. Further research is needed to extend our study on uncertainties in cost-benefit
analyses applied to flood risk management plans. Here is a list of important research topics that could be
investigated.

(1) Hydraulic modelling. One major limit of our study is that we considered the hazard maps as model
inputs: we did not include the hydraulic model that produces them as a part of the NOE modelling
framework. To overcome this limit, further work could build on the extensive literature that already
deals with uncertainties in hydraulic modelling (de Rocquigny et al. 2010; Arnaud et al. 2006). A
notable challenging issue is that hydraulic models are not point-based models—the water depth,
water velocity or flood duration at one location depend on the water flow upstream.

(2) Ignored sources of uncertainty. Some uncertainty sources were identified but not taken into account
in the sensitivity analysis of the NOE modelling chain. In further work, at least two of them–which
are uncertain modelling assumptions rather than uncertain model inputs—could be included with a
reasonable effort: i) the choice of a technical procedure for spatial overlay analysis between hazard
maps and assets maps; and ii) the initial choice of flood scenarios considered (number of scenarios
and their characteristics).

(3) Mischaracterised sources of uncertainty. Another difficulty in sensitivity analysis is to properly
describe and quantify uncertainty on the various model inputs. Regarding the NOE modelling
framework, there is room for improvement in the modelling of the input uncertainties. We can
for example mention the case of uncertainties on the annual exceedance probabilities of flood sce-
narios: one aspect that we did not adress is the estimation of flood exceedance probabilities and
associated uncertainty when many river tributaries and lateral inflows contribute to the main river
under study.

(4) Grouping of model inputs. The numerous inputs of the NOE code were gathered into five groups to
make the sensitivity analysis computationally more tractable. The outcomes of the analysis heavily
depend on the initial choices that were made to compose these groups, and further work should try
to divide these groups into subgroups to better identify the most influential inputs. This point has
been discussed in the conclusion of Chapter 3 on page 135.

Besides, the NOE modelling framework does not account for all possible subtleties in CBA-AD studies
applied to flood risk management plans. To extend the reach of our discussion on the uncertainties in
these CBA-AD studies, it would be necessary to investigate the following extra research topics.

(5) Continuous scenarios. As mentioned in §2.2.6 on page 48, flood scenarios that are used in the com-
putation of the annual average damages could be randomly generated over a very large length of
time in order to build a plausible chronicle of flooding events over time. An open research item is
how to account for uncertainty in such chronicles and related computation of the AAD indicator.

(6) Non point-based damage assessment. As discussed earlier (limits of the analysis in the conclusion
of Chapter 4 on page 169), models for flood damage assessment are not necessarily point-based.
For example, the damage on a farm located at a given point may depend on the flood intensity
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parameters at this location but also on a number of induced damages on crops, warehouses or
infrastructures, related to flood intensity parameters at other locations (Brémond 2011). Another
example is that of flood damage assessment for roads or energy supply networks, in which the
damage on one part of the network heavily depends on the flood impacts on other parts of the
network (Gleyze 2005). An open research item is how to account for uncertainty in such models,
and how scale issues that were discussed in this thesis would hold or not in that non point-based
case.

(7) Evolution of land use over time. In the NOE modelling framework, the state of the whole system
under study (land use, hydrologic and hydraulic characteristics, etc.) is assumed to be fixed through
the length of time over which the flood risk management plan is evaluated (typically 30 to 50 years).
Relaxing this hypothesis would require a large amount of work and would open a number of new
research questions. In particular, if we acknowledge that the climate and subsequent hydrologic
characteristics of a floodplain vary over time, then the probabilistic framework in which we defined
the average annual flood damages is not appropriate anymore.

Practice of sensitivity analysis in environmental modelling

We would like to conclude this thesis by a few practical comments on the outcomes of sensitivity analysis
in environmental modelling. During this research work, we partly acted as modellers who had to build
and implement a numerical model, carry out a sensitivity analysis, and communicate the results of this
sensitivity analysis to the model end-users. These comments are modest testimonies from our experience.

Outcomes of sensitivity analysis: a modeller’s point of view

The main reason given in the literature to justify the use of sensitivity analysis is to reduce the variability
of the model output by identifying the key sources of uncertaintyl. However, in our experience, this goal
is often difficult to reach because reducing the variability of the key model inputs may be impossible.
Nevertheless, sensitivity analysis brings some other invaluable outcomes that we detail below.

First, from a practical perspective, the most challenging step of an uncertainty/sensitivity analysis is to
identify and describe the various sources of uncertainty involved in a model—uncertain inputs, modelling
assumptions, etc. In our view, this first step is also the most instructive for the modeller. Indeed, by
carefully discussing the nature of uncertainty in his model, the modeller will be led to foresee problems
that he ignored so far and may come up with new ideas. For example, in our case, investigating the nature
of uncertainty in cost-benefit analyses of flood risk management plans was a strong incentive to better
define two parts of the NOE modelling framework: i) the multi-dimensional definition of the Average
Annual Damages (§2.2.5 on page 44); and ii) the spatial overlay procedure to assess flood exposure from
the hazard maps and the assets map.

Next, sensitivity analysis is also a wonderful excuse for striking up conversations with the various ex-
perts involved in a complex modelling project. A common situation in environmental modelling is the
following: a large modelling chain is built to support decision-making on a given issue (e.g., flood dam-
age assessment); this chain is composed of a number of submodels that summarize various fields of
knowledge (e.g., hydrology, hydraulic, economy, etc.). These various submodels or input data are often
produced by different experts, and sensitivity analysis of the global modelling chain requires to collect

lThis rationale is called “variance cutting” in Saltelli et al. (2008)
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relevant information on uncertainty for each of them. This is a daunting task, but it offers the opportu-
nity to better understand the behaviour of each submodel and to promote a shared view of uncertainty
treatment with all the different partners involved in a modelling project.

Finally, sensitivity analysis has also proven its worth as an aid in better understanding the limits of a
model. In particular, the exploration of the space of uncertain model inputs may help identify some par-
ticular range of input values in which the model has an unexpected behaviour. Besides, sensitivity analysis
—or more precisely uncertainty analysis, which can be seen as the first step of SA—also produces empir-
ical confidence intervals on the outputs of the model. These are essential outcomes that should help the
modeller to decide what use can be done of the model and to what extent he can draw firm conclusions
and recommendations on the basis of the model outputs.

Communicating sensitivity analysis results to model end-users

During our research, we organized a number of meetings to communicate the results of sensitivity analysis
of the NOE modelling framework to the water managers involded on the various study sites (not only the
Orb Delta but also the Rhône River). We list below three major difficulties we encountered: they are
likely to be faced by anyone trying to communicate to the model end-users the results of a sensitivity
analysis of a spatial model.

A first recommendation is to clearly present and discuss the results of the uncertainty analysis before
switching to sensitivity analysis conclusions. Our experience shows that it is useless to discuss sensitivity
analysis results if uncertainty information has not been correctly interpreted by the decision makers.
Indeed, only the model end-user is legitimate to decide whether the variability of a model output is small
enough or needs to be reduced. Besides, it is also his role—with the help of the modeller—to define what
measure of variability (variance of the model output, probability to exceed a threshold value, etc.) should
be chosen to perform sensitivity analysis.

A second recommendation is to insist on the limitations in the interpretation of the sensitivity analysis
results. Indeed, we observed a trend toward an over-interpretation of sensitivity indices by the model end-
users. A small value of Si is often interpreted by decision makers as “model input Ui is not important and
we can completely forget about it, in any future application of this model”, when a cautious interpretation
would rather be: “in this specific model, with the specific uncertainty ranges that were specified for the
different input variables, the uncertainty on input Ui does not contribute much to the overall variability
of model output”. In particular, the results of a sensitivity analysis do not say what would happen if the
uncertainty ranges on model inputs were severely modified. Hence, as a general rule, it is necessary to
carry out a new sensitivity analysis, with appropriate uncertainty ranges, if a model is to be applied to a
new data set. Communicating the results of sensitivity analysis to model end-users thus requires to insist
on these limitations.

Finally, a last challenging issue is how to communicate to model end-users the outcomes of an uncertainty
and sensitivity analysis, especially when the model outputs are maps. An unmissable starting point on
this vast subject is the RIVM/MNP Guidance on Uncertainty Assessment and Communication (Van der
Sluijs et al. 2003), which includes a volume dedicated to the visualisation of spatial uncertainty (Visser
et al. 2006). Many other authors have also brought valuable contributions on this issue: Thomson et al.
(2005) displayed an extensive review on the question; Kunz et al. (2011) focused on uncertainty visualisa-
tion methods in natural hazards assessments and suggested various visual variables to map uncertainties;
finally, Viard et al. (2011) showed that spatial uncertainty visualisation does influence decision making,
and investigated the difference between adjacent versus coincident display of spatial uncertainties. These
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papers essentially lead us to the conclusion that a clear communication of uncertainties associated with a
spatial decision support system is both a necessity and a difficult challenge.
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A Appendix to §1.2: details and proofs

We give in this appendix some details on VB-GSA basics which are briefly presented in §1.2 on page 24.

A.1 Expression of elementary functions fα

We consider the elementary functions fα defined in the functional decomposition Eqn. (1.4) on page 29.
We assume that the condition given in Eqn. (1.5) on page 29 is met. We want to give here a proof of the
general expression of elementary functions fα given in Eqn. (1.8) on page 30:

∀α ⊆ {1,⋯,K}, fα = ∑
β⊆α

(−1)∣α∣−∣β∣ ⋅E(Y ∣ Uα) (A.1)

in which ∣α∣ is the cardinal of subset α ⊆ {1,⋯,K}.

Proof. We prove the general expression of elementary functions fα by induction.

Consider the following statements Pn for n ∈ N:

Pn ∶ ∀α ⊆ {1,⋯,K}, ∣α∣ ≤ n ⇒ fα = ∑
β⊆α

(−1)∣α∣−∣β∣ ⋅E(Y ∣ Uα) (A.2)

Base case By integrating the functional decomposition given in Eqn. (1.4) on page 29 with respect to
all model inputs U1, . . . , UK , under condition Eqn. (1.5), we get:

∫

[0;1]K

f(U)dU = f∅ (A.3)

thus:
f∅ = E(Y ) (A.4)

Hence, the particular statement P0 is true.

Inductive hypothesis Consider n ∈ N. Let us assume we know Pn is true.

Inductive step Let consider α a subset of {1,⋯,K} such that ∣α∣ = n+1. Let consider ᾱ = {1, . . . ,K}∖

α the complementary of α. By integrating the functional decomposition given in Eqn. (1.4) on page 29
with respect to each model input Ui such that i ∈ ᾱ, under condition Eqn. (1.5) on page 29, we get:

∫

[0;1]K−n−1

f(Uᾱ)dUᾱ = ∑
β⊆α

fβ(Uβ)

= fα(Uα) + ∑
β⊂α

fβ(Uβ)

Thus:
fα(Uα) = ∫

[0;1]K−n−1

f(Uᾱ)dUᾱ − ∑
β⊂α

fβ(Uβ)

= E(f ∣Uα) − ∑
β⊂α

fβ(Uβ) by definition of E(f ∣Uα)



A APPENDIX TO §1.2: DETAILS AND PROOFS ∎ 201

The elementary function fα can thus be written as:

fα = E(f ∣Uα) − ∑
β⊂α

fβ

= E(f ∣Uα) − ∑
β⊂α

∑
δ⊆β

(−1)∣β∣−∣δ∣E(f ∣Uδ) (according to Pn)

= E(f ∣Uα) − ∑
δ⊂α

∣α∣−∣δ∣−1

∑
q=0

Cq
∣α∣−∣δ∣

(−1)qE(f ∣Uδ) (with q: cardinal of β ∖ δ)

= E(f ∣Uα) − ∑
δ⊂α

⎛

⎝

⎡
⎢
⎢
⎢
⎢
⎣

∣α∣−∣δ∣

∑
q=0

Cq
∣α∣−∣δ∣

(−1)q
⎤
⎥
⎥
⎥
⎥
⎦

− (−1)∣α∣−∣δ∣
⎞

⎠
E(f ∣Uδ)

= E(f ∣Uα) + ∑
δ⊂α

(−1)∣α∣−∣δ∣E(f ∣Uδ) (binomial formula)

= ∑
δ⊆α

(−1)∣α∣−∣δ∣E(f ∣Uδ)

Thus statement Pn+1 holds.

Conclusion Statement Pn is true for all n ∈ N, which proves the general expression of elementary
functions fα given in Eqn. (1.8) on page 30.

A.2 Pseudo-Monte Carlo estimation procedure of variance-based sensitivity in-
dices

We describe here the sampling procedure that was used throughout this thesis to estimate variance-based
sensitivity indices from a set of simulations of a numerical model F . This estimation procedure is based
on the recommendations of Saltelli et al. (2010). It is composed of the following steps:

1. generate two input samplesM1 andM2 of sizeK×N in the space of uncertain model inputs, where
K is the number of model inputs (or groups of model inputs) and N will be refered to as the “base
sample size”. The two samples are LP − τ sequences where each input Uj is sampled from its pdf
pj . The ith line of sample M1 or M2 is a set (U (i)

1 , . . . , U
(i)
K ) where U (i)

j is a random value drawn
from pdf of model input Uj . The choice of a base sample size N depends on the accuracy needed
for sensitivity indices estimates; it has to be of the form 2κ to ensure that the desired properties of
the LP − τ sequences hold;

2. new samples are then created by combining original samples M1 and M2. For j = 1 to K, a new
sample M (j)

1,2 is created: it is equal to sample M1, except for the jth column which is taken from
sample M2 (Figure A.1 on the next page);

3. create a total sample Mtot by binding base samples M1, M2 and all mixed samples M (j)
1,2 . The

size Ntot of the total sample will be refered to as the “total sample size”. Ntot depends on the base
sample size and on the number of model inputs K (or groups of model inputs): Ntot = (K + 2) ⋅N ;

4. calculate an output vector by evaluating the numerical code F at each line of the total sample Mtot.
Each model run gives a value for the output of interest Y . We denote by Y (M1), Y (M2) and
Y (M

(j)
1,2 ) the vectors of length N giving the value of Y for each line of samples M1, M2 and

M
(j)
1,2 , respectively;
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Figure A.1: Creating sample M (j)
1,2

5. estimate first-order and total-order sensitivity indices for each model input Ui (or each group of
model inputs) from the output vectors with Eqn. (A.5) and Eqn. (A.6). These estimators are those
suggested by Saltelli et al. (2010).

Sj =

1
N

N

∑
i=1
Y (M2)i ⋅ Y (M

(j)
1,2 )i −

1
N

N

∑
i=1
Y (M2)i ⋅ Y (M1)i

1
N

N

∑
i=1
Y (M1)i ⋅ Y (M1)i − ( 1

N

N

∑
i=1
Y (M1)i) ⋅ (

1
N

N

∑
i=1
Y (M2)i)

(A.5)

STj =

1
2N

N

∑
i=1

[Y (M1)i − Y (M
(j)
1,2 )i]

2

1
N

N

∑
i=1
Y (M1)i ⋅ Y (M1)i − ( 1

N

N

∑
i=1
Y (M1)i) ⋅ (

1
N

N

∑
i=1
Y (M2)i)

(A.6)
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B Appendix to §1.2: VB-GSA of a model with sub-components

Problématique Le modèle NOE est un modèle construit de manière modulaire : différents sous-modèles
(hydraulique, estimation des dommages, calcul de l’indicateur NPV, etc.) sont chaînés pour aboutir au
calcul des indicateurs économiques finaux (Chapter 2). De manière générale, on peut représenter la situa-
tion de la manière suivante :

○ on veut étudier un modèle quelconque Y = f (U1, . . . , UK) avec K variables d’entrées ;

○ la variable U1 est elle-même calculée grâce à un sous-modèle U1 = f ′ (U ′
1, . . . , U

′
K′) avec K ′

sous-variables ;

○ on suppose toutes les variables et sous-variables indépendantes entre elles.

On peut alors mener l’analyse de sensibilité du modèle principal f de deux manières : soit en échan-
tillonnant l’ensemble des K − 1 +K ′ variables d’entrée (exceptée U1), on obtiendra alors les indices de
sensibilité de premier ordre et totaux pour chacune de ces variables ; soit en menant d’abord l’analyse
du sous-modèle f ′, puis en menant l’analyse du modèle global f en utilisant les résultats de l’analyse
précédente pour décrire la variabilité du paramètre U1.

Cette deuxième démarche a été un temps appliquée au modèle NOE pour calculer les indices de sensibilité
relatifs à l’indicateur NPV, pour un gain en temps de calcul de l’ordre de 30 %. On donne ici le détail du
gain en temps de calcul apporté par cette approche.

Lien entre indices de sensibilité d’un modèle et d’un sous-modèle Dans le contexte défini précédem-
ment, on peut définir plusieurs indices de sensibilité : ceux des sous-variables U ′

i par rapport à la variable
U1 ; ceux des variables Ui par rapport à la sortie Y ; ceux des sous-variables U ′

i par rapport à la sortie Y .
Sous certaines conditions, on peut relier ces différents indices de sensibilité.

On définit la variable aléatoire φ = E (Y ∣ U1). L’indice de sensibilité de premier ordre de U ′
j par rapport

à Y est alors :

SYU ′

j
=

var [E(Y ∣ U ′
j)]

var(Y )
=

var [E(φ ∣ U ′
j)]

var(Y )
(A.7)

L’indice de premier ordre de U1 par rapport à Y est par ailleurs égal à :

SYU1
=

var(φ)
var(Y )

(A.8)

Et l’indice de premier ordre de U ′
j par rapport à φ est :

SφU ′

j
=

var [E(φ ∣ U ′
j)]

var(φ)
(A.9)

On peut donc écrire la relation suivante entre ces trois indices de sensibilité :

SYU ′

j
= SYU1

⋅ SφU ′

j
(A.10)
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Cas particulier Plaçons nous maintenant dans le cas particulier où la variable aléatoire φ est une trans-
formation affine de U1 : φ = a ⋅U1 + b. Alors l’indice de premier ordre de la sous-variable U ′

j par rapport
à φ est égal à l’indice de sensibilité de U ′

j par rapport à U1 : SφU ′

j
= SU1

U ′

j
. On a alors la relation suivante de

transitivité entre les indices de sensibilité du premier ordre du modèle principal f et ceux du sous-modèle
f ′ :

SYU ′

j
= SYU1

⋅ SU1

U ′

j
(A.11)

Gain en temps de calcul Notons C le coût en temps de calcul d’une simulation du modèle principal
f , et C ′ le coût d’une simulation du sous-modèle f ′. On veut mener l’analyse de sensibilité du modèle
principal Y = f (U1, . . . , UK) et estimer les indices de sensibilité de chaque variable principaleUi par une
procédure de pseudo-Monte Carlo. Une première option consiste à échantillonner de manière « brute »
toutes les sous-variables U ′

1, . . . , U
′
K′ et toutes les variables U2, . . . , UK (Figure A.2 on the facing page,

gauche). En notant N la taille de base des échantillons de Monte Carlo, le coût total de l’analyse est :

Cbrute = N ⋅ (K − 1 +K ′
+ 2) ⋅ (C +C ′

) (A.12)

Une seconde option est de procéder en deux étapes (Figure A.2 on the next page, droite). On commence
par estimer les indices de sensibilité des sous-variables U ′

1, . . . , U
′
K′ dans le sous-modèle f ′ pour un coût

égal à N ⋅ (K ′ + 2) ⋅C ′. Puis on estime les indices de sensibilité des variables principales U1, . . . , UK du
modèle principal f , pour un coût égal à N ⋅ (K + 2) ⋅ C. Le coût total de l’analyse pour cette seconde
option est donc :

Cmodule = N ⋅ [(K ′
+ 2) ⋅C ′

+ (K + 2) ⋅C)] (A.13)

L’analyse de sensibilité par module entraîne ainsi un gain de temps égal à :

Cbrute −Cmodule = N ⋅ [(K − 1) ⋅C ′
+ (K ′

− 1) ⋅C] (A.14)

Cependant, cette seconde option entraîne aussi une perte d’information : on ne connaît plus les indices de
sensibilité des sous-variables U ′

j par rapport à la sortie Y , mais seulement les indices des U ′
j par rapport

à la variable principale U1 et les indices de la variable principale U1 par rapport à la sortie Y . Dans
le cas particulier où la variable principale U1 n’intervient qu’à l’ordre 1 dans l’équation définissant Y ,
alors on connaît aussi les indices de premier ordre des sous-variables U ′

j par rapport à la sortie Y grâce
à Eqn. (A.11).
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FIGURE A.2 – Estimation des indices de sensibilité : approche brute (gauche), approche par modules (droite)
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C Appendix to §2.2.5 : definition of the Average Annual Damages

As mentioned in §2.2.5 on page 44, it is a challenging issue to define rigorously the notion of “annual
avoided damages”. In the literature, the average annual damages (AAD indicator) are usually defined as
the integral of flood damages D with respect to the probability of the associated peak discharge q:

AAD =

∞

∫
q=0

D(q)p(q)dq (A.15)

One of the contributions of this thesis is an attempt to extend the definition of the AAD indicator, in order
to account for more than one characteristic of flood scenarios in the computation of the average annual
damages. For example, apart from the peak discharge q, other random characteristics of flood scenarios
could be taken into account to define the average annual damages: the season of flood occurence, the
state of levees along the river stream (failure/no failure), or the location of the possible levee failures. Our
attempt proved useful to better identify and discuss the assumptions and limitations that are hidden when
the average annual damages are used as a risk indicator.

In this appendix, we display two different formal frameworks to define the AAD indicator. In the first
framework, we model the floodings events as the elements of a finite probability space. The AAD in-
dicator is then a finite weighted sum of the damages associated with each flooding event. In the second
framework, we model the flooding events as a random vector with values in Rκ with κ ≥ 1. The AAD
indicator is then defined as a κ-dimensional integral over Rκ. Both frameworks are illustrated by a step-
by-step example.

Note: In the NOE modelling framework presented in Chapter 2, we used the second framework (flood-
ing events modelled as a random vector with values in Rκ).

C.1 Flooding events as the elements of a finite probability space

C.1.1 Flooding events

Definition (Set of flooding events). We represent the set of “flooding events” by a finite set Υ of M
elements. Each element e ∈ Υ is a unique flooding event. We denote by P(Υ) the set of subsets of Υ.

Hypothesis (Probability space of flooding events). We assume there exists a probability measure function
P defined on P(Υ) such that for a given year, P (e) is the probability that flooding event e ∈ Υ occurs
this year. The triplet (Υ,P(Υ), P ) is a finite probability space.

Definition (Vector of descriptors for a flooding event). We assume that a “flooding event” can be entirely
described by a finite number κ of scalar descriptors (e.g., peak discharge, inflow volume, water level
beyond dams, failure or not failure of levees, the season of occurence of the event, etc.). We denote by X

the random vector from Υ to Rκ which associates each flooding event e ∈ Υ with a vector of descriptors:

X ∶ Υ→ Rκ

e↦X(e) = (X1(e), . . . ,Xκ(e))

We denote by PX the law of random vector X: it is a discrete probability distribution because the set Υ

of flooding events is finite.
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C.1.2 Average annual damages

Definition (Damages associated with a flooding event). We assume that the damages associated with
flooding events can be represented by a scalar random variable D from Υ to R. For a given flooding
event e ∈ Υ, D(e) is the amount of damage costs induced by this event:

D ∶ Υ →R
e ↦D(e)

(A.16)

We denote by note PD the law (discrete distribution function) of random variable D.

Definition (Average Annual Damages). The Average Annual Damages indicator (AAD) is defined as
the expected value of random variable D:

AAD = E(D) = ∑
e∈Υ

D(e)P (e) (A.17)

C.1.3 Approximation of the AAD indicator

Definition (Partition of the set of flooding events). The random vector X(e) = (X1(e), . . . ,Xκ(e)) of
flooding event descriptors has its values in Rκ. Let consider a partition I = (I1, . . . , Im) of Rκ, such that
each subset Ii contains at least the vector of decriptors X(e) of one flooding event e ∈ Υ. We denote
by Υi the subset (non-empty) of flooding events such that the vector of descriptors X(e) belongs to the
subset Ii:

∀i ∈ ⟦1;m⟧ , Υi = {e ∈ Υ ∣X(e) ∈ Ii}

The set of subsets Υi is a partition of the set Υ of flooding events.

Example for κ = 1: when the random vector X is of dimension κ = 1, a usual partition of R we can
consider is a series of intervals Ii = ]ai;ai+1] (with a1 = −∞ and am+1 = +∞). Subset Υi contains all
the flooding events e such that ai <X(e) ≤ ai+1.

Definition (Average damage of a subset of flooding events). Let consider i ∈ ⟦1;m⟧. We denote by
Di ∈ R the average damage associated with the subset Υi ⊂ Υ, that is, the conditional expectation
E [D ∣ e ∈ Υi]:

Di = E [D ∣ e ∈ Υi] =

∑
e ∈Υi

D(e)P (e)

∑
e ∈Υi

P (e)
(A.18)

Property C.1 (Another expression of the AAD indicator). The AAD indicator can be written as the sum
of the average damages of all the subsets Υi weighted by the measure of each subset Ii with respect to
PX :

AAD =
m

∑
i=1

Di ⋅ PX(Ii) (A.19)

Proof. According to Eqn. (A.17), the AAD indicator is defined as: AAD = ∑e ∈ΥD(e)P (e). Let split
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this discrete sum onto the subsets Υi:

AAD =
m

∑
i=1

∑
e ∈Υi

D(e)P (e)

=
m

∑
i=1

∑
e ∈Υi

D(e)P (e)

∑
e ∈Υi

P (e)
⋅ ∑
e ∈Υi

P (e)

=
m

∑
i=1

Di ⋅ ∑
e ∈Υi

P (e) [Eqn. (A.18)]

Besides, the sum ∑e ∈Υi P (e) is equal to:

∑
e ∈Υi

P (e) = P (e ∈ Υi)

= P (X(e) ∈ Ii) (by definition of Ii)

= PX(Ii)

Hence we finally obtain the desired expression.

Definition (Proxy for the AAD indicator). Let assume that we have:

○ a proxy D̂i of the average damages Di for each subset Υi: this estimator can for example be
chosen as the damage D(e) associated with a representative flooding event e ∈ Υi;

○ a proxy P̂X(Ii) of the measure PX(Ii) for each subset Ii: this estimator can be derived from a
sample of realisations of random vector X over years;

We then define an approximation of the Average Annual Damages, denoted by ˆAAD:

ˆAAD =
m

∑
i=1

D̂i ⋅ P̂X(Ii) (A.20)

C.1.4 A step-by-step example

We describe here a simple example to illustrate the notions and notations given in this section.

Finite probability space of flooding events We consider a set Υ ofM = 5 flooding events, named e1

to e5. P(Υ) is the set of subsets of Υ. We define a probability measure function P on P(Υ) based on
the following elementary probabilities:

P (e1) = 1/2

P (e2) = 1/3

P (e3) = 1/12

P (e4) = 1/16

P (e5) = 1/48

(A.21)

For a given year, P (ei) is the probability that flooding event ei occurs this year. The triplet (Υ,P(Υ), P )

is a finite probability space.
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Descriptors of flooding events We define two descriptors for each flooding event: its peak discharge
(given in m3/s), and the state of a levee along the river (0: the levee does not fail; 1: the levee fails). The
random vector X which associates each flooding event ei ∈ Υ with a vector of descriptors writes:

X(e1) = (1 000m3
/s,0)

X(e2) = (2 000m3
/s,0)

X(e3) = (1 000m3
/s,1)

X(e4) = (2 000m3
/s,1)

X(e5) = (4 000m3
/s,1)

(A.22)

Damages associated with a flooding event For a given flooding event e ∈ Υ, D(e) is the amount of
damage costs induced by this event:

D(e1) = 0e

D(e2) = 150e

D(e3) = 3 000e

D(e4) = 5 000e

D(e5) = 8 000e

(A.23)

Average annual damages The AAD indicator is equal to the expected value of random variable D:

AAD =
5

∑
i=1

D(e1) ⋅ P (e1) (A.24)

We find AAD = 0 × 1/2 + 150 × 1/3 + 3000 × 1/12 + 5000 × 1/16 + 8000 × 1/48 = 779 e.

Partition of the set of flooding events We now divide the range of possible peak discharges into a
partition with three intervals:

I1 =] −∞,1000] I2 =]1000,2000] I3 =]2000,+∞[

From this partition on the values of peak discharges, we can build the associated subsets Υi of flooding
events such that the vector of descriptors X(e) belongs to the subset Ii:

Υ1 = {e1, e3}

Υ2 = {e2, e4}

Υ3 = {e5}

(A.25)

Average damage of a subset of flooding events The average damages D1, D2, D3 associated with the
subsets Υ1, Υ2, Υ3 are given by:
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D1 =
P (e1) ⋅D(e1) + P (e3) ⋅D(e3)

P (e1) + P (e3)
= 428e

D2 =
P (e2) ⋅D(e2) + P (e4) ⋅D(e4)

P (e1) + P (e4)
= 916e

D3 =D(e5) = 8000e

(A.26)

Another expression of the AAD indicator The AAD indicator can be written as the sum of the average
damages of all the subsets Υi weighted by the measure of each subset Ii with respect to PX :

AAD =D1 ⋅ PX(I1) +D2 ⋅ PX(I2) +D3 ⋅ PX(I3) (A.27)

The measure of each subset Ii is defined as the probability that the peak discharge q of a flooding event
belongs to Ii:

PX(I1) = P (q ≤ 1000m3
/s) = 1/2 + 1/12 = 7/12

PX(I2) = P (1000 < q ≤ 2000m3
/s) = 1/3 + 1/16 = 19/48

PX(I3) = P (q > 2000m3
/s) = 1/48

(A.28)

Using Eqn. (A.27), we find AAD = 428 × 7
12
+ 916 × 19

48
+ 8000 × 1

48
= 779 e.

C.2 Flooding events as a random vector

C.2.1 Flooding events

Definition (Set of flooding events). We assume that a “flooding event” can be entirely described by
a finite number κ of scalar parameters (e.g., peak discharge, inflow volume, water level beyond dams,
failure or not failure of levees, the season of occurence of the event, etc.). We then identify each flooding
event with a single realisation e of a random vector E = (E1, . . . ,Eκ) with values in Rκ.

Hypothesis (Probability density function of flooding events). We assume that random vector E has a
probability density function pE . For a given year, pE(e) represents the probability that flooding event
e ∈ Rκ occurs this year.

Definition (Marginal density). For each component Ei of random vector E = (E1, . . . ,Eκ), we define
a marginal density pi ∶ R→ R by:

∀ei ∈ R, pi(ei) = ∫
Rκ−1

pE(e)de1 . . . dei−1dei+1 . . . deκ

C.2.2 Average Annual Damages

Hypothesis (Damages associated with a flooding event). We assume that, on a given study area, the
monetized damages associated with flooding events can be represented by a continuous function D from
Rκ to R. For a given flooding event e ∈ Rκ, D(e) is the amount of damage costs [e] induced by this
event:

D ∶ Rκ →R
e ↦D(e)

(A.29)

We denote by D the random variable D =D(E). We denote by note PD the law of random variable D.
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Property C.2 (Probability density function of damages). Random variable D admits a probability den-
sity function pD.

Definition (Average Annual Damages). The Average Annual Damages indicator (AAD) is defined as
the expected value of random variable D (if it exists):

AAD = E(D) = ∫
R
upD(u)du = ∫

Rκ
D(e)pE(e)de (A.30)

C.2.3 Aproximation of the AAD indicator

Definition (Conditional expectation of damages). Let consider a component Ei of random vector E =

(E1, . . . ,Eκ) that describe flooding events. We denote by E [D ∣ Ei] the conditional expectation of
damages D given Ei:

∀ei ∈ R, E [D ∣ Ei = ei] =
1

pi(ei)
∫

Rκ−1
D(e)pE(e)de1 . . . dei−1dei+1 . . . deκ (A.31)

Property C.3 (Expression of the AAD indicator as a unidimensionnal integral). The AAD indicator can
be written as a unidimensionnal integral on random variable Ei:

AAD = ∫

R

E [D ∣ Ei = ei] ⋅ pi(ei)dei

Proof. According to Eqn. (A.30), the AAD indicator is defined as:

AAD = ∫
Rκ
D(e)pE(e)de (A.32)

Which we can write:

AAD = ∫

R

⎛
⎜
⎝

1

pi(ei)
∫

Rκ−1
D(e)pE(e)de1 . . . dei−1dei+1 . . . deκ

⎞
⎟
⎠
pi(ei)dei

= ∫

R

E [D ∣ Ei] ⋅ pi(ei)dei (according to Eqn. (A.31))

To approximate the AAD indicator, one must approximate the following components:

○ conditional amount of damages: E [D ∣ Ei = ei] is the conditional expectation of damages given that
the flood descriptor Ei is equal to ei. This is the most difficult component to approximate;

○ conditional density pi(ei): this value can be estimated from a serie of random realisations of Ei over
years, for example by fitting a parametric law of extreme values;

○ the integral: the integral can be approximated using the usual trapezoidal rule, from a small number of
data points;
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D Appendix to §2.2.8.2: overlay analysis for flood exposure assess-
ment

Dans cette annexe, nous évoquons très rapidement la question des méthodes de croisement entre données
« aléa » et données « enjeux » dans le cadre de l’estimation des dommages dus aux inondations. Cette
question a été brièvement abordée durant le travail de thèse ; elle ne constitue cependant pas le cœur de
notre travail et n’a donc pas été présentée dans le corps de ce mémoire.

Croisement aléa-enjeux pour l’estimation des dommages dus aux crues Dans le cadre d’une dé-
marche d’estimation des dommages dus aux inondations telle que celle présentée dans le Chapitre 2, une
des étapes consiste à caractériser l’exposition des enjeux situés sur la zone d’étude vis-à-vis de différents
scénarios de crues (§2.2.8.2 on page 54). Ce calcul d’exposition se fait généralement à l’aide d’un logi-
ciel SIG en superposant les données d’aléa et la carte des enjeux. L’objectif de cette étape est d’affecter à
chaque enjeu une hauteur de submersion, une vitesse de submersion et une durée de submersion pour les
différents scénarios de crue considérés. Nous appellerons cette opération le « croisement aléa-enjeux ».

Diversité des méthodes de croisement aléa-enjeux Du fait de la dimension spatialisée des données
« aléa » et « enjeux » et de la diversité des formats numériques dans lesquels elles sont stockées, l’opé-
ration de « croisement aléa-enjeux » peut se faire selon des procédures variées. Ces diverses méthodes
aboutiront toutes à affecter aux enjeux des valeurs d’aléa pour les différents scénarios de crue considé-
rés, mais des variations parfois importantes peuvent apparaître dans les valeurs d’aléa affectées d’une
méthode à l’autre. Ainsi, dans le cadre de l’appui technique apporté par Irstea aux partenaires du Plan
Rhône (qui a constitué le cadre de ce travail de thèse), il avait été prévu d’étudier comment les indicateurs
économiques produit par le modèle NOE pouvaient varier selon la méthode de « croisement aléa-enjeux »
choisie.

Cette question a été traitée par Thibaud Langer dans son mémoire de Master (Langer 2011). Un panel
d’une dizaine de méthodes de « croisement aléa-enjeux » différentes a été proposé (Figure A.3 on the
next page). Ces méthodes diffèrent en autres par : i) la nature des données « aléa » (ponctuel, polygone
ou raster), et ii) la nature des données « enjeux » (ponctuel ou polygone). Ces différentes approches
de croisement aléa-enjeux ont été appliquées dans le cadre d’une estimation des dommages dus aux
inondations sur le terrain d’étude de Fourques-Beaucaire sur le Rhône (projet de renforcement de la
digue entre Fourques et Beaucaire). Les estimations des dommages moyens annualisés obtenus avec les
différentes méthodes de croisement aléa-enjeux ont ensuite été comparées, faisant apparaître des écarts
relatifs pouvant atteindre les 10%.
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Intégrer une incertitude de modèle à l’analyse de sensibilité Le choix d’une méthode de croisement
aléa-enjeux peut être considéré comme une « incertitude de modèle ». Dans une optique de comparaison
globale des sources d’incertitude dans le modèle NOE, il pourrait donc être intéressant de comparer
la part de variabilité apportée par l’incertitude sur le choix d’une méthode de croisement aléa-enjeux
avec la variabilité due aux incertitudes sur les données d’entrée du modèle. Pour cela, une possibilité
est d’intégrer le choix de la méthode de croisement aléa-enjeu au sein de l’analyse de sensibilité du
modèle NOE, en représentant ce choix par une variable aléatoire discrète (approche identique au « map
labelling » décrit en §3.1.2.4 on page 84). L’objectif d’une telle analyse serait de déterminer si l’existence
de plusieurs méthodes de croisement aléa-enjeux alternatives est une source d’incertitude importante ou
non (relativement aux autres sources d’incertitude).
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E Appendix to §2.3.3 : extra case studies

Dans cette annexe, nous présentons très succintement les trois études supplémentaires qui ont été traitées
à l’aide du modèle NOE durant cette thèse, en plus de l’étude sur le delta de l’Orb. La Table 2.7 en page
71 résume les principales caractéristiques de ces trois études.

E.1 Plaine d’inondation de la Vilaine à Redon

(Passages extraits de Grelot et al. (2009)).

Le bassin versant de la confluence de la Vilaine et de l’Oust à Redon est d’une surface d’environ 8500
km2. Il draine une bonne partie de la Bretagne centrale au travers de nombreux affluents (l’Arz, le Don,
l’Aff, etc.). Le terrain étudié situé de part et d’autre de cette confluence est d’une surface de 17 km2

(Figure A.4). Il est composé des deux communes : Redon et Saint-Nicolas de Redon. Ce terrain a subi
des inondations « lentes » (submersion d’une dizaine de jours) très importantes en 1995, 2000 et 2001.
On dénombre sur ce terrain d’étude environ 500 enjeux (habitations, activités économiques et services
publics) principalement situés au centre de la zone d’étude.

Cinq scénarios de crue ont été retenus pour calculer les dommages moyens annualisés : trois crues histo-
riques (1995, 2000 et 2001) et deux crues de projet suivant des modèles pluie-débit appliqués à l’ensemble
du bassin versant de la Vilaine. Ces deux crues dénommées GR2 et NO3 représentent pour GR2 une crue
forte (période de retour de cinquante ans environ) et pour NO3, une crue dite « à noyaux », de fréquence
de retour plus faible pour l’aval du bassin (Redon), de l’ordre de dix ans. Les simulations hydrauliques
ont été réalisées par EGIS-Eau à l’aide du modèle Infoworks en mode filaire.

Les données sur les enjeux ont été collectées par un travail de terrain. Les types d’enjeux recensés sont :
les habitations (528 entités), les activités économiques (113 entités) et les services publics (15 entités).
Sur ce terrain les enjeux agricoles ont été considérés comme négligeables. Les enjeux ont été numérisés
sur la base du cadastre pour créer une couche SIG vecteur (polygones). Une enquête exhaustive de terrain
sur les hauteurs de seuil par rapport au terrain naturel des habitations a été également réalisée.

Il n’y a pas de station hydrologique située sur une entrée amont unique du terrain d’étude qui, au contraire,
contient deux entrées principales (Oust et Vilaine). Le contexte hydrologique du terrain d’étude est donc
particulièrement complexe (apports multiples, confluences, ouvrages, influuence de la marée) et les pé-
riodes de retour estimées pour les cinq crues modélisées en hydraulique ne peuvent que s’appuyer sur des
données (pluie, débits, niveaux) à l’échelle du bassin versant.

Les courbes d’endommagement utilisées dans cette étude sont les mêmes que celles utilisées sur l’Orb
pour le même sous-type d’enjeu. Elles s’appuient sur la typologie des enjeux proposée par Penning-
Rowsell et al. (2005).

E.2 Projet de renforcement de la digue au Rhône entre Fourques et Beaucaire

(Passages extraits de Langer (2011)).

Ce terrain d’étude correspond à une zone de 125 km2 située en Région Languedoc Roussillon dans le
Département du Gard. Cette zone est localisée sur la rive droite (rive Ouest) du Rhône sur quatre com-
munes : Bellegarde, Beaucaire, Fourques et Saint-Gilles situées à l’Ouest de la ville d’Arles (FigureA.5).
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Dix huit mille personnes habitent sur ce territoire dont douze mille cinq cent dans les zones PHEC (Plus
Hautes Eaux Connues, ici indice de crue 1856 et 2003). Ce terrain d’étude a été choisi car une étude
ACB a déjà été menée sur ce territoire dans le cadre d’un marché public mené entre le Syndicat Mixte
Interrégional d’Aménagement des Digues du Delta du Rhône et de la Mer (SYMADREM, ici maître
d’ouvrage) et le bureau d’étude ISL (ISL 2011). L’étude réalisée fait partie des actions de prévention
du Plan Rhône et a pour objectif le confortement de la digue située en rive droite du Rhône allant de
Beaucaire à Fourques. Les principaux enjeux de ce projet de confortement de digue sont la réduction de
l’ensemble des dommages liés aux inondations de la plaine au travers de la mise hors d’eau de milliers
d’habitants de la zone concernée ainsi que la mise en sécurité de certaines infrastructures importantes.
En effet, le terrain d’étude situé sur les communes de Fourques, Beaucaire, Bellegarde et Saint-Gilles est
un territoire vulnérable aux inondations qui a été atteint très fortement par le passé par des crues (1856,
2003). Dans le cadre du plan Rhône, aux vues des enjeux situés sur ce territoire, il a été décidé de mettre
en place un nouveau tronçon résistant à la surverse, un renforcement du linéaire préexistant ainsi qu’un
recul de certaines des digues.

E.3 Schéma d’optimisation des zones d’expansion des crues (ZEC) du Rhône
entre Viviers et Beaucaire

(Passages extraits de Gilbert and Ledoux (2012)).

Le schéma d’optimisation des zones d’expansion des crues (ZEC) du Rhône entre Viviers et Beaucaire
est un vaste projet de gestion du risque d’inondation, mené par le Plan Rhône, qui repose sur le constat
suivant : l’inondation de certaines ZEC pour les crues moyennes n’est pas utile, dans la mesure où les
volumes d’écrêtement disponibles sont utilisés trop tôt, et sont « gaspillés » avant l’arrivée de la pointe
des crues majeures les plus dommageables. Le schéma d’optimisation des ZEC proposé consiste donc :
d’une part à augmenter le niveau de protection de certaines ZEC, pour les solliciter moins fréquemment,
mais de façon plus efficace pour les crues les plus dommageables ; d’autre part à remobiliser certaines
plaines (Piolenc-Mornas) et îles (La Motte et l’Oiselet à Avignon) qui ont été soustraites aux inondations
par les aménagements de la Compagnie Nationale du Rhône et qui pourraient apporter une contribution
significative aux écrêtements.

Entre Viviers et Beaucaire, il mobilise ainsi les territoires suivants : Donzère Mondragon, Piolenc Mornas,
Codolet l’Ardoise, Caderousse, Sauveterre, Iles de la Motte et de l’Oiselet, Ile de la Barthelasse, Monfrin
Aramon, Boulbon Vallabrègues, Beaucaire (Figure A.6).

Les modélisation hydrauliques ont été réalisées par la Compagnie Nationale du Rhône (CNR).
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FIGURE A.4 – Plaine d’inondation de la Vilaine à Redon

FIGURE A.5 – Le Rhône entre Fourques et Beaucaire
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F Appendix to §3.1 : details on the numerical study

We give in this appendix some details on the numerical study presented in §3.1.2 on page 79. Please refer
to this section for a general description of the goals of this study and a discussion of its results.

F.1 Analytical test cases

As mentioned in §3.1 on page 79, we studied three different numerical models, denoted by F1 to F3.
They all have two independent scalar inputs U1 and U2, a single spatially distributed input Z and a
scalar output Yv . U1 and U2 are independent scalar inputs with a different uniform pdf for each test case.
{Z(x) ∶ x ∈ Ω} is a 2D random field generated by a deterministic function denoted by φcamp. (see §3.1.3.1
on page 88 for a detailed description of this function). The output of interest for all models F1 to F3 is
the spatial average Yv of a spatially distributed output of some local code F1,loc to F3,loc over a disk v ⊂ Ω

of radius r = 10:

Yv =
1

∣v∣
∫
x∈v

Fi,loc [U1, U2, Z(x)]dx (A.33)

We now give for each test case the expression of local code Fi,loc, and the pdf of U1 and U2.

Analytical test case F1 Local code F1,loc is the usual Ishigami function with parameters A = 7 and
B = 0.1 (Homma and Saltelli 1996):

F1,loc [U1, U2, z] = sin (z) +A ⋅ sin(U1)
2
+B ⋅U4

2 ⋅ sin (z) (A.34)

Scalar inputs U1 and U2 are independent and both follow the same uniform pdf U[−π,π]. Spatial domain
Ω is a disk of radius r = 10.

Analytical test case F2 Local code F2,loc is the usual Sobol G function with parameters a0 = 0, a1 = 1

and a2 = 9 (Archer et al. 1997):

F2,loc [U1, U2, z] =
∣4z − 2∣ + a0

1 + a0
⋅
∣4U1 − 2∣ + a1

1 + a1
⋅
∣4U2 − 2∣ + a2

1 + a2
(A.35)

Scalar inputs U1 and U2 are independent and follow uniform pdf U1 ∼ U[−5,5] and U2 ∼ U[−1,5],
respectively.

Analytical test case F3 Local code F3,loc is a simple linear function of Z(x):

F3,loc [U1, U2, z] = U1 ⋅ z +U2 (A.36)

Scalar inputs U1 and U2 are independent and follow uniform pdf U1 ∼ U[0.5,1.5] and U2 ∼ U[−8,8],
respectively.
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F.2 Graphical results

The main results of this study are presented and discussed in §3.1.3.3 on page 90. Here we give some
extra graphical outputs of the analysis. For each analytical test case F1, F2 and F3, we display:

○ the empirical distribution of model output Yv over Ntot = (K + 2) ⋅ N = 10 240 model runs,
and sensitivity indices estimates obtained with the dimension reduction approach (with grouping)
(Figure A.7 on the next page, Figure A.8 on page 222 and Figure A.9 on page 223);

○ scatterplots of model inputs U1, U2 and random label L against model output Yv (Figure A.10 on
page 224, Figure A.11 on page 224 and Figure A.12 on page 224);

○ plots of the contribution to the sample mean (Bolado-Lavin et al. 2009) of model inputs U1, U2

and random label L against model output Yv (Figure A.13 on page 225, Figure A.14 on page 225
and Figure A.15 on page 225).
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Figure A.7: Test case F1. (a) empirical distribution of model output Yv; (b) first-order sensitivity indices estimates;
(c) total-order sensitivity indices estimates. 95% confidence interval computed by bootstrap (100 replicas)
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Figure A.8: Test case F2. (a) empirical distribution of model output Yv; (b) first-order sensitivity indices estimates;
(c) total-order sensitivity indices estimates. 95% confidence interval computed by bootstrap (100 replicas)
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Figure A.9: Test case F3. (a) empirical distribution of model output Yv; (b) first-order sensitivity indices estimates;
(c) total-order sensitivity indices estimates. 95% confidence interval computed by bootstrap (100 replicas)
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Figure A.10: Test case F1: scatterplots of U1, U2 and L (random label) against model output Yv

Figure A.11: Test case F2: scatterplots of U1, U2 and L (random label) against model output Yv

Figure A.12: Test case F3: scatterplots of U1, U2 and L (random label) against model output Yv
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FigureA.13: Test case F1: plots of contribution to the sample mean of U1, U2 and L (random label) with respect to
the model output Yv

FigureA.14: Test case F2: plots of contribution to the sample mean of U1, U2 and L (random label) with respect to
the model output Yv

FigureA.15: Test case F3: plots of contribution to the sample mean of U1, U2 and L (random label) with respect to
the model output Yv
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G Appendix to §3.3: sensitivity indices with respect to the NPV in-
dicator

On se propose dans cette annexe de donner l’expression exacte des indices de sensibilité relatifs à la
valeur actuelle nette d’un aménagement de protection contre les crues (Net Present Value, NPV), lorsque
cet indicateur est calculé selon l’équation Eqn. (2.5) on page 44 donnée dans le Chapitre 2 :

NPV = −CI +
R

∑
i=0

(∆AAD −CM) ⋅ τi (A.37)

G.1 Écriture générale

On commence par considérer le cas général d’une fonction ayant pour forme :

Y = ∑
a∈{0,1}K

ζa ⋅ (
K

∏
i=1

Uaii ) (A.38)

où les coefficient ζa sont des réels, et où les variables d’entrée Ui sont supposées être des variables
aléatoires réelles indépendantes, d’espérance µi et de variance σi. On veut déterminer l’expression des
indices de sensibilité de premier ordre et totaux de chacune des variables d’entrée Ui.

La variance de la sortie Y du modèle s’écrit :

var(Y ) = ∑
a∈{0,1}K

b∈{0,1}K

ζaζb ⋅ cov(
K

∏
i=1

Uaii ,
K

∏
i=1

U bii ) (A.39)

qui se développe de la sorte :

var(Y ) = ∑
a∈{0,1}K

b∈{0,1}K

ζaζb ⋅

⎛
⎜
⎜
⎜
⎝

K

∏
j=1

aj+bj=1

µj

⎞
⎟
⎟
⎟
⎠

⋅ var(
K

∏
j=1

aj=bj=1

Uj) (A.40)

d’où :

var(Y ) = ∑
a∈{0,1}K

b∈{0,1}K

ζaζb ⋅

⎛
⎜
⎜
⎜
⎝

K

∏
j=1

aj+bj=1

µj

⎞
⎟
⎟
⎟
⎠

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∏
j=1

aj=bj=1

(σ2
j + µ

2
j) −

K

∏
j=1

aj=bj=1

µ2
j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.41)

L’espérance conditionnelle de la sortie Y sachant Ui s’écrit :

E(Y ∣ Ui) = ∑
a∈{0,1}K

ζa ⋅ (
K

∏
j=1
j≠i

µ
aj
j ) ⋅Uaii (A.42)

soit :
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E(Y ∣ Ui) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=0

ζa ⋅ (
K

∏
j=1
j≠i

µ
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=1

ζa ⋅ (
K

∏
j=1
j≠i

µ
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅Ui (A.43)

donc :

var [E(Y ∣ Ui)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=1

ζa ⋅ (
K

∏
j=1
j≠i

µ
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

⋅ σ2
i (A.44)

que l’on peut finalement écrire sous la forme :

var [E(Y ∣ Ui)] = ∑
a∈{0,1}K

b∈{0,1}K

ai=bi=1

ζaζb ⋅ (
K

∏
j=1
j≠i

µ
aj+bj
j ) ⋅ σ2

i (A.45)

Enfin, pour déterminer l’expression des indices de sensibilité totaux il nous faut calculer :

Y ∣ U∼i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=0

ζa ⋅ (
K

∏
j=1
j≠i

U
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=1

ζa ⋅ (
K

∏
j=1
j≠i

U
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅Ui (A.46)

donc :

var(Y ∣ U∼i) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K
ai=1

ζa ⋅ (
K

∏
j=1
j≠i

U
aj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

⋅ σ2
i (A.47)

soit :

var(Y ∣ U∼i) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K

b∈{0,1}K

ai=bi=1

ζaζb ⋅
K

∏
j=1
j≠i

U
aj+bj
j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ σ2
i (A.48)

d’où :

E [var(Y ∣ U∼i)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K

b∈{0,1}K

ai=bi=1

ζaζb ⋅
K

∏
j=1
j≠i

E (U
aj+bj
j )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ σ2
i (A.49)

que l’on peut écrire :

E [var(Y ∣ U∼i)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
a∈{0,1}K

b∈{0,1}K

ai=bi=1

ζaζb ⋅
K

∏
j=1
j≠i

aj+bj=1

µj ⋅
K

∏
j=1
j≠i

aj=bj=1

(σ2
j + µ

2
j)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ σ2
i (A.50)



∎ 228 APPENDICES

G.2 Application à l’indicateur NPV

On considère le modèle suivant :

NPV = −CI + (∆AAD −CM) ⋅ τ∗ (A.51)

qui est dérivé de Eqn. (A.37) on page 226 définissant l’indicateur NPV en posant τ∗ =
R

∑
i=0
τi. Les variables

CI , ∆AAD, CM et τ∗ sont supposées être des variables aléatoires réelles indépendantes.

On reconnaît la forme générale donnée dans Eqn. (A.38) on page 226 avec :

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = CI

U2 = τ
∗

U3 = ∆AAD

U4 = CM

(A.52)

et (seuls les coefficients ζa non nuls sont donnés) :

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ζ1,0,0,0 = −1

ζ0,1,1,0 = 1

ζ0,1,0,1 = −1

(A.53)

D’après Eqn. (A.41) on page 226, la variance totale de l’indicateur NPV s’écrit :

var(NPV ) =σ2
CI + σ

2
τ∗ ⋅ (µ∆AAD − µCM)

2
+ σ2

∆AAD ⋅ µ2
τ∗

+ σ2
CM ⋅ µ2

τ∗ + σ
2
∆AAD ⋅ σ2

τ∗ + σ
2
CMσ

2
τ∗

Les indices de sensibilité de premier ordre s’obtiennent à partir de Eqn. (A.45) on the preceding page :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SCI =
σ2
CI

var(NPV )

Sτ∗ =
σ2
τ∗ ⋅ (µ∆AAD − µCM)2

var(NPV )

S∆AAD =
σ2

∆AAD ⋅ µ2
τ∗

var(NPV )

SCM =
σ2
CM ⋅ µ2

τ∗

var(NPV )

Les indices de sensibilité totaux s’obtiennent à partir de Eqn. (A.50) on the previous page :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STCI =
σ2
CI

var(NPV )

STτ∗ =
σ2
τ∗ ⋅ [σ

2
∆AAD + σ2

CM + (µ∆AAD − µCM)2]

var(NPV )

ST∆AAD =
σ2

∆AAD ⋅ (µ2
τ∗ + σ

2
τ∗)

var(NPV )

STCM =
σ2
CM ⋅ (µ2

τ∗ + σ
2
τ∗)

var(NPV )
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Et l’on peut aussi identifier les indices de second ordre (ceux non indiqués sont nuls) :

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

S∆AAD,τ∗ =
σ2

∆AADσ
2
τ∗

var(NPV )

SCM,τ∗ =
σ2
CMσ

2
τ∗

var(NPV )

On remarque que les valeurs des indices de sensibilité ne dépendent que des espérances et variances
respectives des différents facteurs d’entrée, et pas de la forme exacte de leur densité de probabilité.
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H Appendix to §4.1 : proofs

In this appendix, we give a number of detailed properties and proofs related to the first section §4.1 on
page 140 of Chapter 4. We assume that function Floc is such that the following random variables have
finite expectation and finite variance, for any point x ∈ Ω: Y (x), E [Y (x) ∣ Z(x)] and E [Y (x) ∣ U].

Definition (EZY (x) random field). EZY (x) is defined as the conditionnal expectation of Y (x) given
Z(x):

∀x ∈ Ω, EZY (x) = E [Y (x) ∣ Z(x)]

Property H.1. EZY (x) random field is a transformation of Z(x):

∀x ∈ Ω, EZY (x) = F̄loc [Z(x)]

where F̄loc ∶ R→ R is defined by F̄loc(z) = ∫
u∈Rk

Floc(u, z) ⋅ pU(u)du.

Proof of property H.1. Let define function F̄loc ∶ R→ R by:

F̄loc(z) = ∫
u∈Rk

Floc(u, z) ⋅ pU(u)du

(F̄loc exists thanks to our hypotheses on function Floc). Now consider a point x ∈ Ω. We have:

F̄loc [Z(x)] = ∫
u∈Rk

Floc [u,Z(x)] ⋅ p(u)du (definition of F̄loc)

= E (Floc [U,Z(x)] ∣ Z(x))

= E [Y (x) ∣ Z(x)] [Eqn. (4.2)] on page 142

= EZY (x) by definition

Property H.2 (Hermite orthonormal basis of L2(N )).
Consider the sequence of Hermite polynomials (χj)j∈N defined by:

∀j ∈ N, χj(z) =
1

√
j!
⋅

1

n(z)
⋅
∂j

∂zj
n(z)

in which n(⋅) is the normal pdf of mean 0 and variance 1. The sequence (χj)j∈N forms an orthonormal
basis of Hilbert space L2(N ) defined by:

L2
(N ) =

⎧⎪⎪
⎨
⎪⎪⎩

f ∶ R→ R such that
∞

∫
−∞

f2
(z) ⋅ n(z)dz <∞

⎫⎪⎪
⎬
⎪⎪⎭

Proof of property H.2. See Journel and Huijbregts (1978), §VI.B.3 for details on Hermite polynomials.
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Property H.3 (Hermite expansion of F̄loc). Function F̄loc can be expanded on the basis of Hermite
polynomials:

F̄loc =
∞

∑
j=0

πj ⋅ χj with πj =
+∞

∫
−∞

χj(z) ⋅ F̄loc(z) ⋅ n(z)dz

Proof of property H.3. We assumed that random variable E [Y (x) ∣ Z(x)] has finite expectation and
variance, thus function F̄loc has the following property:

∞

∫
−∞

F̄
2
loc(z) ⋅ n(z)dz <∞

Thus function F̄loc is an element of Hilbert space L(N ). As a consequence, F̄loc can be expressed as
a linear combination of the vectors χj of the Hermitian basis. The expression of coefficients πi of this
expansion is given in Journel and Huijbregts (1978), §VI.B.3, Eqn. (VI.23).

Property H.4 (Hermite expansion of EZY ).
The following properties hold:

• EZY (x) random field is order 2 stationary

• it can be expanded as follows:

∀x ∈ Ω, EZY (x) =
∞

∑
k=0

πk ⋅ χk [Z(x)] (a)

• its mean is π0

• its covariance function C∗(h) is given by:

∀h ≥ 0, C∗
(h) =

∞

∑
j=0

π2
j ⋅
Cj(h)

Cj(0)
(b)

Proof of property H.4. Consider a point x ∈ Ω. According to property H.1 on the preceding page, we
have:

EZY (x) = F̄loc [Z(x)]

Using the Hermite expansion of F̄loc given in property H.3, we can write:

∀x ∈ Ω, EZY (x) =
∞

∑
j=0

πj ⋅ χj [Z(x)]

EZY (x) is assumed to have a finite expectation value. We can write:

∀x ∈ Ω, E [EZY (x)] = E
⎛

⎝

∞

∑
j=0

πj ⋅ χj [Z(x)]
⎞

⎠

=
∞

∑
j=0

πj ⋅E (χj [Z(x)])
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Besides, Hermite polynomials have the following properties (see Journel and Huijbregts (1978), §VI.B.3,
between Eqn. (VI.21) and Eqn. (VI.22) ):

+∞

∫
−∞

χi(z) ⋅ χj(z) ⋅ n(z)dz = δij

Thus, using χ0(z) = 1:

∀x ∈ Ω, E (χj [Z(x)]) =

+∞

∫
−∞

χ0(z) ⋅ χj(z) ⋅ n(z)dz = δ0j

So:

∀x ∈ Ω, E [EZY (x)] =
∞

∑
k=0

πk ⋅ δ0j = π0

The expression of the covariance function C∗ is taken from Allard (2010), or Chilès and Delfiner (1999
p.396, Eqn. (6.23) and p.399, Eqn. (6.25)): Finally we have:

∀x ∈ Ω,

⎧⎪⎪
⎨
⎪⎪⎩

E [EZY (x)] = π0

cov [EZY (x) , EZY (x + h)] = C∗
(h)

These two properties are the definition of order 2 stationarity of EZY (x) random field.

Property H.5 (Expression of block variance V ∗
v ).

Consider a block v ⊂ Ω. Let denote by C∗(v, v) the mean value of the covariance C∗(h) when the two
extremities of the distance vector h describe the domain v:

C∗(v, v) =
1

∣v∣2
∬

(x,x′)∈v2

C∗
(x − x′)dxdx′

Block variance V ∗
v is equal to:

V ∗
v = C∗(v, v)

Proof of property H.5. Consider a block v ⊂ Ω. Block variance V ∗
v is given by:

V ∗
v = var

⎡
⎢
⎢
⎢
⎢
⎣

1

∣v∣
∫
x∈v

EZY (x)dx

⎤
⎥
⎥
⎥
⎥
⎦

(by definition, see §4.1.3.1 on page 144)

=
1

∣v∣2
∬

(x,x′)∈v2

cov [EZY (x),EZY (x′)] dxdx′

=
1

∣v∣2
∬

(x,x′)∈v2

C∗
(x − x′)dxdx′ (property H.4 on page 231)

= C∗(v, v) (definition of C∗(v, v))
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Property H.6 (Change of support). Consider v ⊂ Ω and V ⊂ Ω two blocks such that v ≪ V . Let denote
by D2(v ∣ V) the dispersion variance of v within V for the EZY (x) random field:

D2
(v ∣ V) = C∗(v, v) −C∗(V,V)

The ratio of block sensitivity indices of U and Z verifies:

SZ(V)

SU(V)
=
SZ(v)

SU(v)
−
SZ
SU

⋅
D2(v ∣ V)

V ∗

thus:
SZ(V)

SU(V)
≤
SZ(v)

SU(v)

Proof of property H.6. Consider v ⊂ Ω and V ⊂ Ω two blocks such that v ≪ V . Let denote by D2(v ∣ V)

the dispersion variance of v within V for EZY (x) random field. We have:

D2
(v ∣ V) = C∗(v, v) −C∗(V,V)

(see Journel and Huijbregts (1978) §II.C.2 Eqn. (II.35)). Using this expression of D2(v ∣ V) with the
equality V ∗

V = C∗(V,V) (property H.5 on the preceding page) and the expression of ratio SZ(V)/SU(V)

[Eqn. (4.8) on page 145], we obtain:

SZ(V)

SU(V)
=
SZ(v)

SU(v)
−
SZ
SU

⋅
D2(v ∣ V)

V ∗

We know that dispersion variance D2(v ∣ V) is positive ( Journel and Huijbregts (1978), Eqn. (II.33)),
thus:

SZ(V)

SU(V)
≤
SZ(v)

SU(v)

Property H.7 (Influence of covariance range). Consider a block v ⊂ Ω. Let assume that the covariance
function C(h) of Z(x) random field has the following property (a denotes the covariance range):

∀h ≥ 0,
∂C

∂a
(h) ≥ 0

Then the ratio of block sensitivity indices of U and Z verifies:

∂

∂a
[
SZ(v)

SU(v)
] ≥ 0

Proof of property H.7. Consider a block v ⊂ Ω. Let assume that the covariance function C(h) of Z(x)

is differentiable with respect to parameter a (range) and has the following property:

∀h ≥ 0,
∂C

∂a
(h) ≥ 0

Then, using the expression of covariance function C∗ (property H.4 on page 231), we find that covariance
function C∗ is also differentiable with respect to a and:

∀h ≥ 0,
∂C∗

∂a
(h) ≥ 0
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v2 is a finite domain, thus using the expression of C∗(v, v) (property H.5 on page 232), we obtain that
C∗(v, v) is differentiable with respect to a and that:

∂C∗(v, v)

∂a
≥ 0

Using the equality V ∗
v = C∗(v, v) (property H.5 on page 232), we show that block variance V ∗

v is differ-
entiable with respect to a and that:

∂V ∗
v

∂a
≥ 0

Finally, using the expression of ratio SZ(v)/SU(v) given in Eqn. (4.8) on page 145, we obtain the
expected property.

Property H.8 (Influence of nugget parameter). Consider a block v ⊂ Ω. Let assume that the covariance
function C(h) of Z(x) random field has the following property (η denotes the covariance nugget):

∀h ≥ 0,
∂C

∂η
(h) ≤ 0

Then the ratio of block sensitivity indices of U and Z verifies:

∂

∂η
[
SZ(v)

SU(v)
] ≤ 0

Proof of property H.8. The proof is the same as the proof of property H.7 on the previous page.

Property H.9 (Case of a pure-nugget random field). Consider a block v ⊂ Ω. Let assume that Z(x) is a
random field without spatial auto-correlation, that is, that its covariance function C(h) is null except for
h = 0:

∀h ≠ 0, C(h) = 0

Then the ratio of block sensitivity indices of U and Z verifies:

SZ(v)

SU(v)
= 0

Proof of property H.9. If the covariance function C(⋅) of Z(x) is null except for h = 0, then the covari-
ance function C∗(⋅) of EZY (x) has the same property [H.4 on page 231 b)]. Then the average value
C∗(v, v) of the covariance C∗(h) over domain v is equal to zero. Finally, using the expression of ratio
SZ(v)/SU(v) given in Eqn. (4.8) on page 145, we obtain the expected property.

Property H.10 (Case of a totally correlated random field). Consider a block v ⊂ Ω. Let assume that the
covariance function C(⋅) of random field Z(x) is constant:

∀h ∈ Ω, C(h) = C(0)

Then the ratio of block sensitivity indices of U and Z is equal to the ratio of site sensitivity indices:

SZ(v)

SU(v)
=
SZ
SU
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Proof of property H.10 on the preceding page. If the covariance function C(⋅) of Z(x) is constant, then
the covariance function C∗(⋅) of EZY (x) has the same property [H.4 on page 231 b)]:

∀h ∈ Ω, C∗
(h) = C∗

(0) =
∞

∑
j=0

π2
j (A.54)

Then the average valueC∗(v, v) of the covarianceC∗(⋅) over domain v is simply equal toC∗(0). Finally,
using the expression of ratio SZ(v)/SU(v) given in Eqn. (4.8) on page 145, we obtain the expected
property.

Property H.11 (Change of support effect - case of an homothety). Consider a block v ⊂ Ω. Let denote
by v′ ⊂ Ω the block obtained from v by a homothety of center O ∈ Ω and ratio τ > 1. Let assume that the
covariance function C(h) of Z(x) random field has the following property:

∀h ≥ 0,
∂C

∂h
(h) ≤ 0

Then block sensitivity indices verify:
SZ(v

′)

SU(v′)
<
SZ(v)

SU(v)

Proof of property H.11. Consider a block v ⊂ Ω. Let denote by v′ ⊂ Ω the block obtained from v by
a homothety of center O ∈ Ω and ratio τ > 1. Let assume that the covariance function C(h) of Z(x)

random field is differentiable and has the following property:

∀h ≥ 0,
∂C

∂h
(h) ≤ 0

Using the expression of covariance function C∗(h) (property H.4 on page 231) and the hypothesis made
on C(h), we deduce that C∗(h) is differentiable with respect to h and that:

∀h > 0,
∂C∗

∂h
(h) ≤ 0

Block variance V ∗
v′ writes:

V ∗
v′ = var

⎡
⎢
⎢
⎢
⎢
⎣

1

v′
∫

x∈v′

EZY (x)dx

⎤
⎥
⎥
⎥
⎥
⎦

=
1

v′2
∬

(x,x′)∈v′2

Cov [EZY (x),EZY (x′)] dxdx′

=
1

v′2
∬

(x,x′)∈v′2

C∗
(∣x − x′∣)dxdx′ property H.5 on page 232

We note x = τy and x′ = τy′, and we use v′ = τ2 ⋅ v and (x − x′) = τ ⋅ (y − y′) to obtain:

V ∗
v′ =

1

v2 ∬

(y,y′)∈v2

C∗
(τ ⋅ ∣y − y′∣)dy dy′
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We have τ > 1 and ∂C∗/∂h ≤ 0 (hypothesis), thus C∗(τ ⋅ ∣y − y′∣) ≤ C∗(∣y − y′∣) so:

V ∗
v′ ≤ V

∗
v

Using the expression of block sensitivity indices [Eqn. (4.8) on page 145], we finally find the expected
property.
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I Appendix to §4.1: case of a linear model

In this appendix, we display a detailed study of the spatial model F presented in Chapter 4 (§4.1.2.1 on
page 141), for the specific case in which the following conditions are verified:

○ function Floc defined in §4.1.2.1 on page 141 is linear:

∀x ∈ Ω, Y (x) = Floc [U, Z(x)] = U1 ⋅Z(x) +U2 (a) (A.55)

○ U1 and U2 are independant random variables with normal distributions:

U1 ∼ N (µ1, σ
2
1) and U2 ∼ N (µ2, σ

2
2) (b)

Please refer to Chapter 4 for the definitions of all variables.

I.1 Properties of EZY (x) random field

Definition . Consider a block v ⊂ Ω. We will denote by Zv the mean value of Z(x) over v:

Zv =
1

∣v∣
∫
x∈v

Z(x)dx

We will denote by Vv the block variance of Z(x) random field over v:

Vv = var [Zv]

Property I.1. The following properties hold:

EZY (x) = µ1 ⋅Z(x) + µ2 (a)

EZYv = µ1 ⋅Zv + µ2 (b)

V ∗
= µ2

1 ⋅ V (c)

V ∗
v = µ2

1 ⋅ Vv (d)

Proof of property I.1. These equations are derived from the definition of model F and from the defini-
tions of random field EZY (x) [Eqn. (4.7) on page 144].

I.2 Expression of sensitivity indices

Property I.2 (Expression of sensitivity indices for a linear model).
Point-based sensitivity indices are given by:

SZ(x) =
µ2

1V

ς1 ⋅ V + ς2
SU(x) =

ς2
ς1 ⋅ V + ς2

SU,Z(x) =
σ2

1 ⋅ V

ς1 ⋅ V + ς2

and block sensitivity indices are given by:

SZ(v) =
µ2

1Vv
ς1 ⋅ Vv + ς2

SU(v) =
ς2

ς1 ⋅ Vv + ς2
SU,Z(v) =

σ2
1 ⋅ Vv

ς1 ⋅ Vv + ς2
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with:
⎧⎪⎪
⎨
⎪⎪⎩

ς1 = σ
2
1 + µ

2
1 ≥ 0

ς2 = σ
2
1 ⋅ µ

2
Z + σ

2
2 ≥ 0

Proof of property I.2 on the previous page. Consider a point x ∈ Ω. Variance of Y (x) writes:

var[Y (x)] = var(U1 ⋅Z(x) +U2)

= σ2
1σ

2
Z + µ

2
1σ

2
Z + σ

2
1µ

2
Z + σ

2
2

= ς1 ⋅ σ
2
Z + ς2

with:
⎧⎪⎪
⎨
⎪⎪⎩

ς1 = σ
2
1 + µ

2
1 ≥ 0

ς2 = σ
2
1 ⋅ µ

2
Z + σ

2
2 ≥ 0

Besides, conditional expectation of Y (x) given U writes:

E(Y (x) ∣ U) = E(U1 ⋅Z(x) +U2 ∣ U)

= U1 ⋅ µZ +U2

thus var [E(Y (x) ∣ U)] = σ2
1 ⋅ µ

2
Z + σ

2
2 = ς2. Using the expression of var [Y (x∗)], property I.1 on the

preceding page (b) and the expression of point-based sensitivity indices [Eqn. (4.5) on page 143], we find
the expected expression for point-based sensitivity indices for a linear model.

Using the definition of modelF and the definition of Yv (§4.1.2.1 on page 141), we have Yv = U1 ⋅Zv+U2.
Thus, block variance var [Yv] writes:

var [Yv] = var(U1Zv +U2)

= σ2
1Vv + µ

2
1Vv + σ

2
1µ

2
Z + σ

2
2

= ς1 ⋅ Vv + ς2

Using property I.1 on the previous page (d) and the definition of block sensitivity indices [Eqn. (4.5) on
page 143], we find the expected expression for block sensitivity indices for a linear model.

I.3 Influence of covariance range a

Property I.3 (Influence of covariance range). Consider a block v ⊂ Ω. Let assume that the covariance
function C(h) of Z(x) random field has the following property (a denotes the covariance range):

∀h ≥ 0,
∂C

∂a
(h) ≥ 0

Then, block sensitivity indices of U and Z verify:

∂SZ(v)

∂a
> 0

∂SU(v)

∂a
< 0

∂SU,Z(v)

∂a
> 0

Property I.4 (Limits when a → +∞). Consider a block v ≪ Ω. Let assume that the covariance function
C(h) of Z(x) random field has the following property:

∀h > 0,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lim
a→+∞

C(h) = (1 − η) ⋅ V

lim
a→0

C(h) = 0
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Then, the limits of block sensitivity indices are given by:

lim
a→+∞

SZ(v) =
µ2

1 ⋅ V

ς1V + ς2
1−η

lim
a→0

SZ(v) = 0

lim
a→+∞

SU(v) =

ς2
1−η

ς1V + ς2
1−η

lim
a→0

SU(v) = 1

lim
a→+∞

SU,Z(v) =
σ2

1 ⋅ V

ς1V + ς2
1−η

lim
a→0

SU,Z(v) = 0

Proof of properties I.3 to I.4 on the preceding page. Consider a block v ⊂ Ω. Let assume that the covari-
ance function C(h) of Z(x) random field is differentiable with respect to parameter a (range) and has
the following property:

∀h ≥ 0,
∂C

∂a
(h) ≥ 0

Let denote by C(v, v) the mean value of covariance C(h) when the two extremities of distance vector
h describe the block v. We know that block variance Vv can be written (same proof as property H.5 on
page 232):

Vv = C(v, v)

Using this expression and the hypothesis on C(h), we can conclude that Vv is differentiable with respect
to parameter a and that:

∂Vv
∂a

≥ 0

Using the expression of block sensitivity indices given in property I.2 on page 237, we obtain that block
sensitivity indices are differentiable with respect to a and that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂SZ(V)

∂a
=

ς2 ⋅ µ
2
1

(ς1 ⋅ Vv + ς2)2
⋅
∂Vv
∂a

≥ 0

∂SU(V)

∂a
=

−ς1 ⋅ ς2
(ς1 ⋅ Vv + ς2)2

⋅
∂Vv
∂a

≤ 0

∂SU,Z(V)

∂a
=

ς2 ⋅ σ
2
1

(ς1 ⋅ Vv + ς2)2
⋅
∂Vv
∂a

≥ 0

Now, let assume that the covariance function C(h) of Z(x) random field has the following property:

∀h > 0,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lim
a→+∞

C(h) = (1 − η) ⋅ V

lim
a→0

C(h) = 0

Then the mean value C(v, v) (over a finite domain v) has the following limits:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

lim
a→+∞

C(v, v) = (1 − η) ⋅ V

lim
a→0

C(v, v) = 0

Using the equality Vv = C(v, v) and the expression of block sensitivity indices given in property I.2 on
page 237, we obtain the expected limits.
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I.4 Change of support effect

Property I.5 (Change of support). Consider v ⊂ Ω and V ⊂ Ω two blocks such that v ≪ V . Let denote by
D2(v ∣ V) the dispersion variance of v within V for Z(x) random field. Block-based sensitivity indices
of U and Z verify:

SZ(V) − SZ(v) = −
µ2

1 ⋅ ς2
%

⋅D2
(v ∣ V) ≤ 0

SU(V) − SU(v) = +
ς1 ⋅ ς2
%

⋅D2
(v ∣ V) ≥ 0

SU,Z(V) − SU,Z(v) = −
σ2

1 ⋅ ς2
%

⋅D2
(v ∣ V) ≤ 0

with:
% = [ς1 ⋅ Vv + ς2] ⋅ [ς1 ⋅ Vv + ς2]

Proof of property I.5. Consider v ⊂ Ω and V ⊂ Ω two blocks such that v ≪ V . Let denote by C(v, v) the
mean value of covariance C(h) when the two extremities of distance vector h describe the block v. We
know that block variance Vv can be written (same proof as property H.5 on page 232):

Vv = C(v, v)

Let denote by D2(v ∣ V) the dispersion variance of v within V for Z(x) random field. We have:

D2
(v ∣ V) = C(v, v) −C(V,V)

(see Journel Journel and Huijbregts (1978), section II.C.2 equation II.35). Using this expression of
D2(v ∣ V) with the equality Vv = C(v, v) and the expression of ratio SZ(V)/SU(V) for a linear model
(property I.2 on page 237), we obtain:

SZ(V) = SZ(v) −
µ2

1 ⋅ ς2
%

⋅D2
(v ∣ V)

SU(V) = SU(v) +
ς1 ⋅ ς2
%

⋅D2
(v ∣ V)

SU,Z(V) = SU,Z(v) −
σ2

1 ⋅ ς2
%

⋅D2
(v ∣ V)

with:
% = (ς1 ⋅ VV + ς2) ⋅ (ς1 ⋅ Vv + ς2)

By noting that ς1 > 0, ς2 > 0 (see property I.2 on page 237), µ2
1 > 0, σ2

1 > 0 and VV > 0, we have % > 0.
Noting that the dispersion variance is positive (see Journel Journel and Huijbregts (1978), equation II.33),
we can conclude that:

SZ(V) < SZ(v) SU(V) > SU(v) SU,Z(V) < SU,Z(v)

Property I.6 (Change of support effect - bis). Consider a block v ⊂ Ω. Let denote by v′ ⊂ Ω the block
obtained from v by a homothety of center O ∈ Ω and ratio τ > 1. Let assume that the covariance function
C(h) of Z(x) random field has the following property:

∀h ≥ 0,
∂C

∂h
(h) ≤ 0

Then , block sensitivity indices verify:

SZ(v
′
) < SZ(v) SU(v′) > SU(v) SU,Z(v

′
) < SU,Z(v)
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Proof of property I.6 on the preceding page. Consider a block v ⊂ Ω. Let denote by v′ ⊂ Ω the block
obtained from v by a homothety of center O ∈ Ω and ratio τ > 1. Let assume that the covariance function
C(h) of Z(x) random field is differentiable and has the following property:

∀h ≥ 0,
∂C

∂h
(h) ≤ 0

We deduce from this property that V ′
v < Vv (see H.11 on page 235 for a detailed proof). Using the

expression of block sensitivity indices for a linear model (property I.2 on page 237), we find the expected
property.
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J Appendix to §4.2: proofs

In this appendix, we give a number of proofs related to the second section §4.2 on page 153 of Chapter 4.
Please refer to this section for the definitions of all variables.

Property J.1 (Ratio of proxies for block sensitivity indices). The ratio of proxies for block sensitivity
indices can be written as:

S̃Z(Ω)

S̃U(Ω)
=
SZ
SU

⋅
Ṽ ∗

Ω

V ∗
(A.56)

Proof. The proof of property J.1 is very similar to the proof given in §4.1.6 on page 151 for the expression
of the ratio of block sensitivity indices. Here, the ratio of proxies of block sensitivity indices S̃Z(Ω) and
S̃U(Ω) defined with respect to the approximated model output ỸΩ is equal to:

S̃Z(Ω)

S̃U(Ω)
=

var (E [ỸΩ ∣ {Z(x) ∶ x ∈ Ω}])

var (E [ỸΩ ∣ U])
(A.57)

The conditional expectation of the approximated aggregated model output ỸΩ given Z(x) gives:

E [ỸΩ ∣ Z] = E [(
1

G

G

∑
i=1

Y (xi)) ∣ {Z(x) ∶ x ∈ Ω}] (definition of ỸΩ)

=
1

G

G

∑
i=1

E [Y (xi) ∣ Z(xi)] (for a point-based model)

=
1

G

G

∑
i=1

EZY (xi) (definition of EZY (x))

(A.58)

Thus we have var (E [ỸΩ ∣ Z]) = var(1/G
G

∑
i=1

EZY (xi)) = Ṽ ∗
Ω (definition of Ṽ ∗

Ω ). Moreover, the condi-

tional expectation of the approximated model output ỸΩ given input U gives:

E [ỸΩ ∣ U] = E [(
1

G

G

∑
i=1

Y (xi)) ∣ U] (definition of ỸΩ)

=
1

G

G

∑
i=1

E [Y (xi) ∣ U]

(A.59)

s

xj

squared
domain Ω

xi

s/2

s/2

s/2

s/2

Figure A.16: Spatial domain Ω, regularly positionned points xi, spacing s (total number of points: G = ∣Ω∣/s2)
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E [Y (xi) ∣ U] does not depend on site xi under the stationarity of SRF Z(x); thus, we have in par-
ticular E [ỸΩ ∣ U] = E [Y (x∗) ∣ U] in which x∗ ∈ Ω is some specific site, and var (E [ỸΩ ∣ U]) =

var (E [Y (x∗) ∣ U]). Combining these expressions with Eqn. (A.57) on the preceding page yields:

S̃Z(Ω)

S̃U(Ω)
=

Ṽ ∗
Ω

var(E [Y (x∗) ∣ U])
(A.60)

Besides, the ratio of site sensitivity indices gives [Eqn. (4.4) on page 143]:

.
SZ
SU

=
var(E [Y (x∗) ∣ {Z(x) ∶ x ∈ Ω}])

var(E [Y (x∗) ∣ U])
(A.61)

We notice that for point-based models var [E(Y (x∗) ∣ {Z(x) ∶ x ∈ Ω}] = var [EZY (x∗)] = V ∗ (defini-
tion of EZY (x) [Eqn. (4.7) on page 144]). Finally, it follows from Eqn. (A.60) and Eqn. (A.61) that:

S̃Z(Ω)

S̃U(Ω)
=
SZ
SU

⋅
Ṽ ∗

Ω

V ∗
(A.62)

Property J.2 (Block variance approximation error). Let denote by ε = V ∗
Ω − Ṽ ∗

Ω the error made when
approximating V ∗

Ω with Ṽ ∗
Ω . We have:

ε =
C∗,+(0) −C∗(0)

G
+
⎡
⎢
⎢
⎢
⎣
C∗(Ω,Ω) −

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

(A.63)

where:

C∗,+
(h) =

⎧⎪⎪
⎨
⎪⎪⎩

C∗
(h) ∀h > 0

lim
h→0+

C∗
(h) if h = 0

(A.64)

The first part of the equation is known as the “zero-effect”: each time two points coincide (xi = xj) in
the estimation of C∗(Ω,Ω), a greater importance is given to the value C∗(0). Is causes the mean value
C∗(Ω,Ω) to be systematically over-estimated (see Journel and Huijbregts (1978), p.96 for more details).
The second part of the equation is the error of a Riemann approximation of an integral over Ω2.

Proof of property J.2. Variance Ṽ ∗
Ω is equal to:

Ṽ ∗
Ω = var [

1

G

G

∑
i=1

EZY (xi)] (definition)

=
1

G2

G

∑
i,j=1

cov [EZY (xi),EZY (xj)]

=
1

G2

G

∑
i,j=1

C∗
(xi − xj) (property H.4)

=
1

G2

G

∑
i,j=1

C∗,+
(xi − xj) +

1

G2

G

∑
i=1

[C∗
(0) −C∗,+

(0)] (definition of C∗,+)

=
C∗(0) −C∗,+(0)

G
+

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)
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Let ε = V ∗
Ω − Ṽ ∗

Ω . Using the equality V ∗
Ω = C∗(Ω,Ω) (property H.5 on page 232), we obtain:

ε =
C∗,+(0) −C∗(0)

G
+
⎡
⎢
⎢
⎢
⎣
C∗(Ω,Ω) −

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

(A.65)

Property J.3 (Convergence). The ratio of proxies of sensitivity indices S̃Z(Ω)/S̃U(Ω) converges toward
the ratio of exact sensitivity indices when the number of points xi grow, that is, when the spacing s of the
set of points tends to zero (Figure A.16 on page 242):

S̃Z(Ω)

S̃U(Ω)
=
s→0

SZ(Ω)

SU(Ω)
+ O (s) (A.66)

Proof of property J.3. Let denote ε = V ∗
Ω − Ṽ ∗

Ω . Using the expression of the ratio of block sensitivity
indices [Eqn. (4.8) on page 145] and the expression of the ratio of proxies for these indices (property J.1
on page 242), we have:

SZ(Ω)

SU(Ω)
−
S̃Z(Ω)

S̃U(Ω)
=
SZ
SU

⋅
ε

V ∗
(A.67)

Using property J.2 on the preceding page, we have:

ε =
C∗,+(0) −C∗(0)

G
+
⎡
⎢
⎢
⎢
⎣
C∗(Ω,Ω) −

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

(A.68)

The second part of the right member of this equation, that we denote by A, is the error on the Riemann
approximation of an integral over domain Ω2:

A = C∗(Ω,Ω) −
⎡
⎢
⎢
⎢
⎣

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

(A.69)

A converges to 0 when G → +∞. We will prove now that it is a O ( 1
√
G
). Let denote by ci the square

cell of width s, centered on the point xi. Each cell ci has a surface area ∣ci∣ = s
2 = ∣Ω∣/G (FigureA.16 on

page 242). We can write:

A =
1

∣Ω∣2
∬

x∈Ω
y∈Ω

C∗
(x − y)dxdy −

⎡
⎢
⎢
⎢
⎣

1

G2

G

∑
i,j=1

C∗,+
(xi − xj)

⎤
⎥
⎥
⎥
⎦

=
1

∣Ω∣2
⋅
G

∑
i,j=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∬
x∈ci
y∈cj

C∗
(x − y)dxdy −

∣Ω∣2

G2
C∗,+

(xi − xj)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1

∣Ω∣2

G

∑
i,j=1
∬
x∈ci
y∈cj

[C∗
(x − y) −C∗,+

(xi − xj)] dxdy because ∣ci∣ ⋅ ∣cj ∣ = s
4
=

∣Ω∣2

G2

(A.70)
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s

xi

xj

x

y

cell ci

cell cj

Figure A.17: Two cells ci and cj centered on points xi and xj , with two points x ∈ ci and y ∈ cj

We need to find the maximum gap between ∣∣xi − xj ∣∣ (distance between the two centers of cells ci and
cj) and ∣∣x − y∣∣ (distance between two points x ∈ ci and y ∈ cj) (Figure A.17).

Consider two points x ∈ ci and y ∈ cj :

Ð→xy =
Ð→xxi +

ÐÐ→xixj +
ÐÐ→xjy

Thus:
−∣∣
Ð→xxi∣∣ − ∣∣

ÐÐ→xjy∣∣ ≤ ∣∣
Ð→xy∣∣ − ∣∣

ÐÐ→xixj ∣∣ ≤ ∣∣
Ð→xxi∣∣ + ∣∣

ÐÐ→xjy∣∣ (A.71)

As x ∈ ci and y ∈ cj , the distances ∣∣
Ð→xxi∣∣ and ∣∣

ÐÐ→xjy∣∣ are lower than s/
√

2 (FigureA.17). Thus, we obtain:

∣ ∣∣
Ð→xy∣∣ − ∣∣

ÐÐ→xixj ∣∣ ∣≤
√

2 ⋅ s (A.72)

so:

∣C∗
(x − y) −C∗,+

(xi − xj)∣ ≤ ∆max with ∆max =
√

2 ⋅ s ⋅ suph∈R+ ∣
dC∗(h)

dh
∣ (A.73)

Thus the following inequalities hold:

A =
1

∣Ω∣2

G

∑
i,j=1
∬
x∈ci
y∈cj

[C∗
(x − y) −C∗,+

(xi − xj)] dxdy

≤
1

∣Ω∣2

G

∑
i,j=1
∬
x∈ci
y∈cj

∆max dxdy

≤
1

∣Ω∣2

G

∑
i,j=1

∣ci∣ ⋅ ∣cj ∣ ⋅∆max

≤
G2 ⋅ s4

∣Ω∣2
⋅∆max because ∣ci∣ = ∣cj ∣ = s

2

≤ ∆max because s2
= ∣Ω∣/G

(A.74)

Finally, using the expression of ε (property J.2 on page 243) and the expression of ∆max given above, we
obtain:

∣ε∣ ≤
C∗(0) −C∗,+(0)

G
+
√

2 ⋅ s ⋅ suph∈R+ ∣
dC∗(h)

dh
∣ (A.75)

using 1/G = s2/∣Ω∣, we obtain:

∣ε∣ ≤
C∗(0) −C∗,+(0)

∣Ω∣
⋅ s2

+
√

2 ⋅ suph∈R+ ∣
dC∗(h)

dh
∣ ⋅ s (A.76)
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Thus:
ε =
s→0
O (s) (A.77)

Using Eqn. (A.67) on page 244, we find:

S̃Z(Ω)

S̃U(Ω)
=
s→0

SZ(Ω)

SU(Ω)
+ O (s) (A.78)
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Abstract 

Geostatistical simulations are used to perform a global sensitivity analysis on a model Y = f(X1 ... 
Xk) where one of the model inputs Xi is a continuous 2D-field. Geostatistics allow specifying 
uncertainty on Xi with a spatial covariance model and generating random realizations of Xi. 
These random realizations are used to propagate uncertainty through model f and estimate global 
sensitivity indices. Focusing on variance-based global sensitivity analysis (GSA), we assess in 
this paper how sensitivity indices vary with covariance parameters (range, sill, nugget). Results 
give a better understanding on how and when to use geostatistical simulations for sensitivity 
analysis of spatially distributed models. 
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1 Introduction 

Numerous spatial models are developed to support decision making in various fields of environ-
mental management. These models use environmental data that is spatially distributed, including 
maps derived from sampled data (e.g. digital elevation model, soil map, etc.). These spatial in-
puts are always partly uncertain, due to measurement errors, lack of knowledge, aleatory vari-
ability (see Refsgaard et al., 2007 for a discussion on the various sources of uncertainty in model 
inputs). In order to provide confidence in these models, uncertainty analysis (UA) and sensitivity 
analysis (SA) are increasingly recognized as important steps in the modelling process. They al-
low robustness of model predictions to be checked and help identifying the input factors that 
account for most of model output variability (Saltelli et al., 2008). 

Geostatistical simulation has an important role to play in UA/SA of models Y = f(X1 ... Xk) when 
some model input Xi is a continuous 2D-field. Geostatistics first offers a way to describe the un-
certainty on spatial input Xi with a spatial covariance model. Then, random realizations of Xi can 
be generated through geostatistical simulation (Journel and Huijbregts, 1978). These random 
realizations can be used to propagate uncertainty through model f and discuss the resulting un-
certainty on model output Y (Aerts et al., 2003 - on a problem of optimal location of a ski run; 
Ruffo et al., 2006 - on hydrocarbon exploration risk evaluation). Within variance-based global 
sensitivity analysis (GSA) framework, these random realizations can also be sampled alongside 
with other scalar model inputs to estimate sensitivity indices for each model input (Lilburne & 
Tarantola, 2009).  
Still, a practical problem remains for modellers who intend to use geostatistical simulations in 
UA/SA of a spatially distributed model: covariance parameters which describe uncertainty on 
input 2D-field Xi must be estimated carefully, but there is usually few data to support this estima-
tion. At the same time, UA/SA results are known to depend heavily on the specification of un-
certainty on model inputs. Thus, the following questions arise: to what extent are UA/SA results 
influenced by spatial covariance parameters? In which cases the uncertainty on input 2D-field Xi 
accounts for a large or a small part of total variability of model output?  
To answer these questions, this article aims at determining, in the context of spatial GSA, how 
sensitivity indices depend on the covariance parameters which describe uncertainty on spatially 
distributed model inputs. We first describe a simple spatial model Y = f(X, Z) with two inputs: a 
scalar input X and a 2D spatially distributed input Z(u) (section 2). Then we present variance-
based global sensitivity analysis (section 3), and show into details how to estimate sensitivity 
indices on model M using geostatistical simulations of 2D-field Z(u) (section 4).We finally as-
sess the impact of the three usual covariance parameters (range, sill, nugget) on sensitivity indic-
es in model M (section 5). Our results might well prove useful in better understanding the results 
of a spatial GSA and in deciding whether it is necessary to carefully estimate spatial covariance 
parameters to describe uncertainty on input 2D-fields. 

2 A simple spatially distributed model M 

For sake of clarity, we will base our paper on a simple case-study. We describe in this section an 
example of a spatially distributed model M.  

2.1 Description of model M 

Consider a spatial domain 2RD  . For numerical application, we represent domain D by a regu-
lar square grid G of size 5050  . We will study in the following sections a model M with two 
inputs: 

 ZXMY ,  
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where: 

  21, XXX   is a vector of two scalars 

 Z(u) is a 2D continuous field defined on domain D.  

 model output Y(u) is also a 2D continuous field defined by : 

    uZXfuYDu ,,   

Function f(.,.) can be any mapping from ℝ3 to ℝ. For numerical application, we arbitrarily choose 
the following mapping: 

   )(4010,, )(036.0
2

2
1

3
21 uZexxzxxf uZ    

Model M is a “point-based model”: the value of model output Y(u) at any point Du  only de-
pends on the scalar inputs  21, XX  and on the value of Z(u) at the same point u. Point-based 
models are encountered in many environmental applications. For example, M could be a spatially 
distributed model used for economic assessment of flood risk: in this case, model input Z(u) 
could be a map of the maximal water levels reached during a flood event over a given area D, 

 21, XXX   would be a set of economic parameters, and model output Y(u) would be the map 
of expected damages due to the flood over the area. 

2.2 Output of interest 

In order to perform sensitivity analysis of model M, we need to consider a single scalar quantity 
of interest derived from model output Y(u). In most applications, the output of interest is either 
the value of 2D-field Y(u) at some specific point u of the study area, or the mean (or total) value 
of Y(u) over a given zone within the study area. Here we define the output of interest DY  as the 
mean value of field Y(u) over spatial domain D: 

 



Du

D duuY
D

Y
1

 

In the following sections we will use variance-based global sensitivity analysis to assess the va-
riability of DY  due to the uncertainty on model inputs X and Z(u). 

3 Variance-based global sensitivity analysis 

Sensitivity analysis (SA) aims at a studying how uncertainty in the output of a model can be 
apportioned to different sources of uncertainty in the model inputs. Among the various available 
SA techniques (see Helton and Davis, 2006 for a review), variance-based global sensitivity 
analysis (GSA) has several advantages: it explores widely the space of uncertain input factors 
and is suitable for complex models with non-linear effects and interactions among factors. 
 
GSA is based on the decomposition of the variance of model output Y in conditional variances. It 
leads to the definition of two importance measures for each input factor Xi of a model: first-order 
sensitivity index Si and total-order sensitivity index STi. First-order sensitivity index of input 
factor Xi is defined by: 

  
 YVar

XYEVar
S i

i   
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Si  measures the main effect contribution of input factor Xi to the variance of model output Y. It is 
the expected part of output variance Var(Y) that could be reduced if input factor Xi was perfectly 
known. Total order sensitivity index STi of input factor Xi is defined as: 
 

  
 YVar

XYVarE
ST i

i
~  

 
where X~i denotes all input factors but Xi. STi measures the contribution of input factor Xi and all 
its interactions with other input factors Xj to the variance of model output Y. It is the expected 
part of output variance Var(Y) that would remain if all input factors but Xi were perfectly known.  
 
Sensitivity indices can be used to identify the model inputs that account for most of model output 
variability (input factors Xi with high first order indices Si); it may lead to model simplification 
by identifying model inputs that have little influence on model output variance (input factors Xi 
with low total order sensitivity indices STi); it also allows discussing the contribution of 
interactions between input factors to the model output variance (comparison between first and 
total order sensitivity indices). For more details on GSA basics, see Saltelli et al., 2008.  

4 Estimating sensitivity indices using geostatistical simulations 

GSA was initially designed to study models with scalar inputs only. Some authors have 
suggested solutions to handle spatially distributed inputs as well (Volkova et al., 2008 ; Iooss & 
Ribatet, 2009; Ruffo et al., 2006; Lilburne & Tarantola, 2009). We describe in this section how 
to estimate sensitivity indices in model M by associating randomly generated realizations of un-
certain 2D-field Z(u) to scalar values, according to the approach developed by Lilburne and Tar-
antola.  

Three steps are needed to apply GSA on model M (Figure 1): 
1. modelling uncertainty on model inputs X and Z(u) 
2. propagating input uncertainty through model M 
3. estimating sensitivity indices 

Each step is described in details in the following subsections. 

 
Figure 1: Steps of sensitivity analysis of model M 
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4.1 Modelling uncertainty using geostatistical simulations 

The values of model inputs are always partly uncertain, due to measurement errors, lack of 
knowledge, natural variability, modelling errors... Within the GSA method, uncertainty on model 
inputs is described using a probabilistic framework (Table 1). 
 

Table 1: Specification of uncertainty on model inputs 

Model input Model of uncertainty 

X=( X1, X2 ) 
X1 and X2 independent random variables: 

X1 ~ N (12,24) and X2 ~ N (1,20) 

Z(u) Gaussian Random Field of mean μ=1 and covariance ρθ(h) 

 

4.1.1 Uncertainty on model input X 

Model input X=( X1,X2 ) is a vector of two scalar factors. X1 and X2 are supposed to be indepen-
dent  random variables following Gaussian distribution N (12,24) and N (1,20) respectively 
(Gaussian distribution parameters were chosen arbitrarily). 

4.1.2 Uncertainty on model input Z(u) 

2D-field Z(u) is supposed to be a Gaussian random field. It is assumed to be order 2 stationary 
with mean μ=1. Its covariance function is denoted by  h : 

      hhuZuZhDu  ,cov,0,  

For numerical application, covariance function  h  is supposed to be exponential: 

    










l

h

ehhh  1)(²,0 0  

 Parameter   ²,,l  describes the covariance parameters: l is the practical range of covari-
ance, σ² the sill and η the nugget. 

In order to represent the uncertainty on 2D-field Z(u), a set of n=100 random realizations is 
sampled. These random realizations are generated with Simple Random Sampling using LU 
decomposition of the covariance matrix (Journel and Huijbregts, 1978). These n random 
realizations are considered as equiprobable, and each realization is labelled with a unique integer 
in the set {1, ..., n} (Figure 2). 
 

 
Figure 2: Modelling uncertainty on model input Z(u) 
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4.2 Propagating uncertainty through model M 

Input uncertainty is propagated through model M using a sampling-based approach, according to 
“spatial GSA„ method (Lilburne and Tarantola, 2009). 

4.2.1 Sampling of model inputs 

Spatial GSA uses two quasi-random independent samples A and B of length N=4096, combined 
through several permutations, to explore the uncertainty domain of input factors X and Z(u). The 
ith line of sample A or B is a set  )()(

2
)(

1 ,, iii zXX where: 

 )(
1

iX  is a random value drawn from pdf of input factor 1X  

 )(
2

iX  is a random value drawn from pdf of input factor 2X  

 )(iz  is a random integer sampled from a discrete uniform distribution in {1, ..., n}. Each 

discrete level in {1, ..., n} is associated with a single random realization of Z(u) from the 
set of n maps previously generated (see 4.1.2). The value of )(iz  indicates which random 

realization of Z(u) sould be used to evaluate model M for the ith line of the sample. 

4.2.2 Permutations 

In order to estimate sensitivity indices for model inputs X=( X1, X2 ) and Z(u), we must evaluate 
model M at points  )()(

2
)(

1 ,, iii zXX  where only one of the three factors changes from a previous 

line  )()(
2

)(
1 ,, jjj zXX  where model M has already been evaluated. Thus, new samples are created 

by combining original samples A and B. For j = 1 to 3, a new sample )( j
BA  is created: it is equal 

to sample A, except for the jth column which is taken from sample B (Figure 3). 

 

Figure 3: Creating sample )( j
BA  

4.2.3 Model runs 

Model M is finally evaluated for each line of samples A, B and )( j
BA for j=1..3. Total number of 

model runs is 204805  NC . Each model run gives a value for the output of interest DY . We 

denote by YA, YB and )( j
BA

Y the vectors of length N giving the value of DY  for each line of samples 

A, B and )( j
BA . 
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4.3 Estimating sensitivity indices 

First and total order sensitivity indices of the jth input factor are estimated using expressions (1) 
and (2) given in (Saltelli et al., 2008). Model input X=(X1,X2) is treated as a “group of factors”; 
components X1 and X2 were sampled independently from their pdf, but first order and total order 
sensitivity indices are estimated globally for the group X=(X1,X2) (see section 1.2.15 of Saltelli et 
al., 2008 for a complete discussion on grouping model inputs in GSA). 
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We finally obtain four different sensitivity indices: first and total order sensitivity indices of 
model input X=( X1,X2 ), denoted by SX and STX ; first and total order sensitivity indices of model 
input Z(u), denoted by SZ and STZ. In the current case of a model with only two inputs (X and 
Z(u)), the following properties hold: 
 

STX =  SX + SX,Z  and  STZ =  SZ + SX,Z 

 
where SX,Z =  1 - SX  - SZ  is a second order sensitivity index which accounts for the contribution of 
the interaction between X and Z(u) to the variance of model output YD. Thus, we will only pay 
attention in the following sections to first order indices SX and SZ.  

5 Influence of covariance parameters on sensitivity indices  

In this section, we want to assess how GSA results on model M are influenced by covariance 
parameters   ²,,l . 26 different sets  kkkk l  ²,,  of covariance range, sill and nugget are 

defined (Table 2). For each set k of covariance parameters, GSA is performed as follows: 

 a set of n=100 random realizations of input random field Z(u) is generated using geosta-
tistical simulation as described in 4.1 

 uncertainty is propagated through model M as described in 4.2 

 total variance of model output YD is computed 

 first order sensitivity indices SX and SZ are estimated as described in 4.3.  

The whole procedure is replicated 100 times. Then, for each set of covariance parameters, mean 
value of Var(YD), SX and SZ and their 95% confidence interval over the 100 replicas are 
computed. 

Table 2: Sets of covariance parameters 
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Set name 
Covariance parameters 

Range l Sill σ² (square root) Nugget η 

θ1 to θ8 5 to 40 (step 5) 70 0.1 

θ9 to θ16 60 20 to 55 (step 5) 0.1 

θ17 to θ26 60 70 0.1 to 1 (step 0.1) 

 

5.1 Influence of the ratio covariance range l / size of domain D 

Fig 4. shows output variance Var(YD) and sensitivity indices SX and SZ for increasing covariance 
range l (sets θ1 to θ8). It appears that the absolute contribution of model input Z(u) to total output 
variance Var(YD) increases with covariance range l, while absolute contribution of model input X 
remains constant. Accordingly, sensitivity index of model input Z(u) increases with covariance 
range l, while sensitivity index of X decreases when covariance range l increases.  
Let define the ratio r of covariance range l compared to the size of domain D: Dlr / . This 

numerical case-study illustrates the following property: the larger the ratio r, the larger the part 
of output variance Var(YD) explained by the uncertainty on Z(u). For a low ratio (i.e. when range 
l is small compared to the size of domain D), variability of Z(u) is mainly “local”, and spatial 
correlation of Z(u) variability over domain D is weak. This “local” variability averages over do-
main D when model output YD is computed. Thus the uncertainty on input 2D-field Z(u) has a 
small influence on output variance Var(YD).  

On the contrary, for a greater ratio r (i.e. when range l is large compared to the size of domain 
D), spatial correlation of Z(u) variability over domain D is strong. The averaging effect of “lo-
cal” variability of Z(u) over domain D is weaker. Thus the uncertainty on input 2D-field Z(u) has 
a larger influence on output variance Var(YD). 

5.2 Influence of covariance sill 

Fig 5. shows output variance Var(YD) and sensitivity indices SX and SZ for increasing covariance 
sill σ² (sets θ9 to θ16). It appears that the absolute contribution of model input Z(u) to total output 
variance Var(YD) increases with covariance sill σ², while absolute contribution of model input X 
remains constant. Accordingly, sensitivity index of model input Z(u) increases with covariance 
sill σ², while sensitivity index of X decreases when covariance sill σ² increases. 

This numerical case-study illustrates the following straightforward property: the larger the co-
variance sill σ² in random field Z(u), the larger the part of output variance Var(YD) explained by 
the uncertainty on Z(u). Covariance sill σ² controls the overall variability of model input Z(u), 
thus sensitivity index of Z(u) with respect to model output YD is a monotonically increasing func-
tion of sill σ². 

5.3 Influence of covariance nugget 

Fig 6. shows output variance Var(YD) and sensitivity indices SX and SZ for increasing covariance 
nugget h (sets θ17 to θ26). It appears that the absolute contribution of model input Z(u) to total 
output variance Var(YD) decreases when covariance nugget h increases, while absolute 
contribution of model input X remains constant. Accordingly, sensitivity index of model input 
Z(u) decreases when covariance nugget h increases.  

Nugget parameter h controls the intensity of “noise” in Gaussian random field Z(u). When h is 
close to 1, the largest part of Z(u) variability is due to the “nugget effect”, i.e. to “local” noise at 
each point Du with no spatial correlation. This local noise averages over domain D when 
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model output YD is computed. Thus the uncertainty on input 2D-field Z(u) has a small influence 
on output variance Var(YD). On the contrary, for a lower value of nugget parameter, (h close to 
0), most of the uncertainty in random field Z(u) is spatially correlated, and local noise plays a 
small part. The averaging effect of uncorrelated variability of Z(u) over domain D is weaker. 
Thus the uncertainty on input 2D-field Z(u) has a larger influence on output variance Var(YD). 

 

       
Figure 4: Influence of covariance range l on GSA results. (left) Total variance of model output YD 

and contribution of model inputs. (right) First order sensitivity indices SX and SZ. (error bars show 
95% confidence interval over 100 replicas). 

 
 
 

       
Figure 5: Influence of covariance sill σ² on GSA results. (left) Total variance of model output YD 

and contribution of model inputs. (right) First order sensitivity indices SX and SZ (error bars show 
95% confidence interval over 100 replicas).  
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Figure 6: Influence of covariance nugget η on GSA results. (left) Total variance of model output YD 
and contribution of model inputs. (right) First order sensitivity indices SX and SZ (error bars show 

95% confidence interval over 100 replicas). 

6 Discussion  

This research sought to illustrate on a simple case-study how to use geostatistical simulation to 
perform variance-based global sensitivity analysis (GSA) on a spatially distributed model. We 
also aimed at exploring how GSA results depend on covariance parameters chosen to describe 
uncertainty on spatially distributed model inputs. 

6.1 Using geostatistical simulation for spatial GSA 

We demonstrated on a simple case-study the suitability of “spatial GSA” approach (Lilburne & 
Tarantola, 2009) to perform sensitivity analysis on a spatially distributed model with continuous 
2D-fields inputs. Geostatistical simulation was used to generate a set of n random realizations of 
continuous 2D-field Z(u) and estimate sensitivity indices of uncertain model inputs Z(u) and X 
through a sampling-based approach. Spatial GSA makes it possible to account for the relative 
contribution of each uncertain model input to the total variance of model output. It helps assess-
ing model robustness and should be systematically performed when developing a model with 
uncertain spatial inputs. Nevertheless, two limits of this approach must be highlighted:  

 spatial GSA is a sampling-based approach which needs lots of model runs to estimate 
sensitivity indices. As a consequence, it is limited to models with low CPU-cost. For high 
CPU-cost models, other sensitivity analysis methods such as Elementary Effects or One-
At-a-Time should be applied (see Saltelli et al., 2008). 

 spatial GSA uses a set of n random realizations to represent the uncertainty on spatial in-
put Z(u) (assumed to be a Gaussian Random Field). When n is too low, the small set of 
map simulations fails to capture the overall variability of Z(u), and sensitivity indices 
estimates SX and SZ are biased. Previous work had been carried out to compare the use of 
two different geostatistical simulation algorithms (Simple Random Sampling and Latin 
Hypercube Sampling) to generate realizations of spatial input Z(u) for GSA (Kyriakydis, 
2005; Saint-Geours et al., 2010), but no optimal sampling strategy was found to reduce 
this bias. 
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6.2 Impact of spatial covariance parameters on spatial GSA 

The influence of covariance range, sill and nugget on sensitivity indices was assessed on a sim-
ple case-study. It was initially suggested that covariance parameters chosen to describe uncer-
tainty on spatial input Z(u) would influence GSA results. Our results prove such to be the case. 
On our case-study, it appears that first order sensitivity index SZ of model input Z(u) is a monoti-
cally increasing function of both covariance range l and covariance sill σ², and a decreasing func-
tion of covariance nugget η. 

These properties were only illustrated on a simple case-study with a specific model M and an 
exponential covariance function. Nevertheless, it can be analytically shown (on-going work) that 
these properties are actually verified for any monotically increasing covariance function and for 
any point-based model M where mapping f is square-integrable. 

Results of this study may well help modellers when estimating spatial covariance parameters to 
describe uncertainty on a spatial input Z(u) for sensitivity analysis of a spatially distributed 
model. When field data is lacking to carefully estimate covariance parameters, at least the a-
priori impact of giving wrong values to these parameters will be known: over-estimating covari-
ance range l or covariance sill σ² wil result in over-estimating sensitivity indices of spatial input 
Z(u) and under-estimating sensitivity indices of scalar inputs Xi. On the contrary, over-estimating 
covariance nugget η will result in under-estimating sensitivity indices of Z(u).  

Conclusion 

Variance-based global sensitivity analysis (GSA) was performed on a simple example of a spa-
tially distributed model Y=M(X,Z) with two inputs: a scalar input X and a spatial input Z(u). In 
order to represent the variability on uncertain spatial input Z(u), it was assumed to be a Gaussian 
Random Field, and random realizations were generated using geostatistical simulation. These 
random realizations were used to propagate input uncertainty through model M. Sensitivity indi-
ces of model inputs X and Z(u) were estimated with a sampling-based approach. The influence of 
spatial covariance parameters on GSA results was assessed by estimating sensitivity indices for 
different sets of covariance range, sill and nugget.  

Results show that (1) first order sensitivity index SZ of spatial input Z(u) is a monotically increas-
ing function of covariance range l (2) first order sensitivity index SZ  of spatial input Z(u) is a 
monotically increasing function of covariance sill σ² (3) first order sensitivity index SZ  of spatial 
input Z(u) is a monotically decreasing function of covariance nugget η. 

These empirical results may be of importance when setting covariance parameters to describe 
uncertainty in spatial inputs for sensitivity analysis of a spatial model. Yet further research is 
needed to prove analytically that these properties hold for a large range of point-based models 
and monotonic covariance functions. Such study may help promoting the use of geostatistical 
simulation to perform sensitivity analysis of spatially distributed models. 
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Analyse de sensibilité globale d’un modèle
d’évaluation économique du risque d’inondation
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Mots-clés : analyse de sensibilité globale, indices de Sobol, spatial, inondation
Keywords: global sensitivity analysis, variance-based, Sobol’ indices, spatial, flood

Résumé1 : L’analyse de sensibilité globale peine à se développer dans le champ de la
modélisation environnementale. Dans sa formulation initiale, elle est limitée à l’étude
de modèles Y = f(X1, . . . , Xp) où les variables d’entrée Xj et la sortie Y sont scalaires,
alors que nombre de modèles environnementaux incluent une dimension spatiale marquée,
soit qu’ils fassent appel à des cartes comme variables d’entrée, soit que leurs sorties
soient distribuées spatialement. Au travers d’une étude de cas détaillée, nous présentons
dans cet article une extension de l’analyse de sensibilité globale à l’étude de modèles
spatialisés. Le modèle étudié, nommé ACB-DE, est un outil d’évaluation économique du
risque d’inondation. La réalisation de cartes d’indices de sensibilité permet d’étudier les
sorties spatialisées du modèle ACB-DE et de rendre compte de la variabilité spatiale des
indices de Sobol. L’influence relative des variables d’entrée à différentes échelles d’étude
est analysée par la réalisation de cartes d’indices de sensibilité de résolution croissante.
L’analyse réalisée permet d’identifier les variables d’entrée incertaines qui expliquent la
plus grande part de la variabilité de l’indicateur économique fourni par le modèle ACB-
DE ; elle apporte un éclairage nouveau sur le choix de l’échelle adéquate de représentation
spatialisée de cet indicateur selon la précision des variables d’entrée.

Abstract: Variance-based Sobol’ global sensitivity analysis (GSA) was initially designed
for the study of models with scalar inputs and outputs, while many models in the en-
vironmental field are spatially explicit. As a result, GSA is not a common practise in
environmental modelling. In this paper we describe a detailed case study where GSA is
performed on a spatially dependent model for flood risk economic assessment on the Orb
valley (southeast France). The realisations of random input maps can be generated by
any method including geostatistical simulation techniques, allowing for spatial structure
and auto-correlation to be taken into account. The estimation of sensitivity indices on
ACB-DE spatial outputs makes it possible to produce maps of sensitivity indices. These
maps describe the spatial variability of Sobol’ indices. Sensitivity maps of different res-
olutions are then compared to discuss the relative influence of uncertain input factors at
different scales.

1Un article présentant ce travail plus en détails a été soumis au Journal de la SFdS pour un numéro
spécial Analyse de sensibilité.
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Introduction

L’analyse de sensibilité d’un modèle Y = f(X1, . . . , Xp) vise à quantifier l’impact de
l’incertitude pesant sur les p variables d’entrée Xi du modèle sur la variabilité de sa sortie
Y . L’analyse de sensibilité globale basée sur la variance proposée par Sobol (1993) [7]
peut être utilisée pour étudier des codes numériques de type bôıte noire peu coûteux
en temps de calcul. Elle s’appuie sur la décomposition de la variance de Y en variances
conditionnelles ; on y définit des indices de sensibilité Si (parfois appelés indices de Sobol),
compris entre 0 et 1, qui traduisent la part de chaque variable d’entrée Xi dans la variance
de Y :

Si =
Var [E(Y | Xi)]

Var(Y )

Dans sa formulation initiale, l’analyse de sensibilité globale basée sur la variance est
limitée à l’étude de modèles où les variables d’entrée Xi sont scalaires, tout comme la
sortie Y . Or, dans le vaste champ de la recherche en environnement, notamment dans
l’étude des risques naturels, nombre de modèles incluent une dimension spatiale marquée,
soit qu’ils fassent appel à des cartes comme variables d’entrée, soit que leurs sorties soient
spatialisées (cartes de risque par exemple). De ce fait, l’analyse de sensibilité peine à se
développer dans ces champs thématiques, comme l’a montré Delgado (2004) [2]. Nous
présentons ici une application de l’analyse de sensibilité globale basée sur la variance à
un modèle d’évaluation économique du risque d’inondation (modèle ACB-DE), dont les
variables d’entrée et les sorties sont distribuées spatialement.

1 Modèle ACB-DE

Le modèle ACB-DE est un outil d’évaluation économique du risque d’inondation développé
par Erdlenbruch et al. (2008) [3]. Il vise à caractériser l’exposition d’un territoire au risque
d’inondation, au moyen d’un indicateur spatialisé décrivant les dommages liés aux crues
potentielles. Les données utilisées dans ce travail sont issues d’une étude de cas sur la
basse vallée de l’Orb, dans l’Hérault (superficie de 100 km2).
Le modèle ACB-DE fait appel à des modules de natures différentes (hydrologique, hy-
draulique, économique), et combine six variables d’entrée notées X0 à X5 : X2, X3 et
X5 appartiennent respectivement à R5, R20 et R. Les trois autres variables d’entrée sont
distribuées spatialement et sont représentées sous forme de couches dans un logiciel de
Système d’Information Géographique : X0 est une carte décrivant l’étendue des plaines
d’inondation, X1 est un Modèle Numérique de Terrain et X2 une carte d’occupation du
sol. La résolution horizontale de ces cartes est de 5 m.
La sortie Y du modèle ACB-DE est une carte donnant en tout point u du territoire les
dommages évités Y (u) en ce point. Sa résolution horizontale est de 5 m. A partir de cette
sortie Y , on crée quatre autres cartes plus grossières notées Y (200), Y (400), Y (800) et Y (1600),
de résolution respectives s = 200, 400, 800 et 1600 m, à destination des gestionnaires de
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bassins versants (Figure 1). Plus précisement, pour une résolution s donnée, Y (s) désigne
la carte donnant en toute cellule C de côté s la somme YC des dommages évités sur cette
cellule : YC =

∫
u∈C Y (u) du.

Y  = -30 €Dommages Évités
Moyens Annualisés

(en euros)

-8000 à -6000

-6000 à -4000

-4000 à -2000

-2000 à 500

-500 à -1

-1 à 1

1 à 500

500 à 2000

2000 à 4000

4000 à 6000

6000 à 8000

> 8000

< -8000

Zones bâties

Aire d'étude

C

Figure 1: Y(200), carte des Dommages Évités Moyens Annualisés sur une grille régulière
constituée de cellules de côté s = 200 m. En chaque cellule C est représentée la somme
YC des dommages évités sur cette cellule.

2 Analyse de sensibilité globale spatialisée

Plusieurs travaux ont déjà apporté des éléments de réponse aux problèmes posés par
l’analyse de sensibilité globale d’un modèle spatialisé ; ils se sont intéressés à l’intégration
dans l’analyse de variables d’entrée spatialisées et à l’étude de sorties spatialisées. On
renvoie à Lilburne et Tarantola (2009) [4] pour une liste de références sur ce sujet.

On propose ici de combiner deux approches pour mener à bien l’analyse de sensibilité
du modèle ACB-DE : on associe le traitement des variables d’entrée spatialisées selon la
méthode de Lilburne et Tarantola (2009) [4] et l’analyse de sorties spatialisées via des
cartes de sensibilité comme proposé par Marrel et al (2009) [5]. On explore de plus un
point non abordé à notre connaissance, qui est l’impact sur la valeur des indices de Sobol
de la résolution s à laquelle est représentée la variable de sortie Y spatialisée.
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Description des incertitudes Dans un premier temps, on spécifie l’incertitude pesant
sur chaque variable d’entrée (Table 1). Des distributions de probabilité sont identifiées
pour les variables X2, X3 et X5. Afin de rendre compte de l’incertitude sur les deux
variables spatialisées (X1, carte d’occupation du sol et X4, Modèle Numérique de Terrain),
deux jeux de n1 = 1000 et n4 = 100 réalisations aléatoires de ces variables ont été générés :
un champ d’erreur Gaussien présentant une structure spatiale de covariance modélisée par
un variogramme est ajouté au Modèle Numérique de Terrain initial selon un algorithme
de simulation Gaussienne séquentielle proposé par Castrignano (2006) [1] ; des confusions
probabilistes entre classes sont introduites dans la carte d’occupation du sol.

Variable d’entrée Spécification de l’incertitude

X0 Carte de la plaine
d’inondation

Incertitudes non prises en compte.

X1 Carte d’occupation du sol Matrice de confusion

X2 ∈ R5 Périodes Composantes indépendantes de lois uniformes.

X3 ∈ R20 Endommagement Composantes indépendantes de loi uniforme.

X4 Modèle Numérique de Terrain Modélisation et simulation géostatistique.

X5 ∈ R C∞ Distribution triangulaire symétrique.

Table 1: Spécification de l’incertitude sur les variables d’entrée du modèle ACB-DE.

Estimation des indices de sensibilité Dans un second temps, un échantillon de taille
N = 28 672 est constitué afin d’explorer l’espace des variables incertaines X1 à X5, puis
le modèle ACB-DE est simulé en chaque point de cet échantillon. La variable spatialisée
X1 (resp. X4) est intégrée dans cet échantillon en associant un entier compris entre 1
et n1 (resp. n4) à chaque réalisation aléatoire préalablement générée de cette variable,
ces réalisations étant considérées équiprobables. On estime alors les indices de sensibilité
de premier ordre de chacune des variables Xj par rapport à Y , notés Sj(Y ), selon les
expressions proposées par Saltelli et al (2008) [6]. Des intervalles de confiance à 90 %
sont estimés pour chacun des indices de sensibilité par bootstrap (nombre d’échantillons
bootstrap nboot = 100).

Réalisation de cartes d’indices de sensibilité Pour chacune des quatre sorties spa-
tialisées Y(200) à Y(1600), on établit des cartes de sensibilité pour chaque variable d’entrée
X1 à X5. Ces cartes sont définies sur la même grille régulière que la sortie Y(s) considérée.
La valeur de la carte de sensibilité de la variable Xj en une cellule C est égale à l’indice de
sensibilité Sj(YC) de cette variable par rapport à la somme YC des dommages évités sur
cette cellule. On obtient ainsi un jeu de 20 cartes de sensibilité qui traduisent l’influence
de l’incertitude des différentes variables d’entrée X1 à X5 sur la variabilité de la carte Y
des dommages évités à différentes résolutions spatiales.
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3 Résultats

La Figure 2 présente les cartes d’indices de sensibilité de trois variables d’entrée (X1,
X2 et X3) par rapport à la carte Y des dommages évités à deux résolutions différentes,
s = 200 et s = 1600 m. Sur chacune de ces cartes, on observe une variabilité spatiale des
indices de sensibilité. À une résolution s donnée, l’influence d’une variable incertaine Xi

sur la variance de la sortie YC (somme des dommages évités sur la cellule C) varie d’une
zone à l’autre du territoire. On peut identifier deux éléments de structuration spatiale
majeurs : les effets de bord et la présence de villes (bâti urbain).

Par ailleurs, on observe que les cartes de sensibilité par rapport à la sortie Y(200)

sont différentes des cartes réalisées par rapport à la sortie Y(1600). Pour permettre une
comparaison entre les cartes d’indices de sensibilité aux différentes échelles, on a calculé
pour chaque variable d’entrée Xj et chaque résolution s = 200, 400, 800 et 1600 m la

valeur moyenne µ
(s)
j de l’indice de sensibilité Sj(YC) sur l’ensemble des cellules C de la

grille.
On montre que pour chaque variable d’entrée Xj, l’indice moyen µ

(s)
j dépend de

manière monotone de la résolution s. L’indice de sensibilité des variables distribuées
spatialement (ici X1 et X4) diminue à mesure qu’augmente le côté s des cellules sur
lesquelles sont calculés les dommages évités. Un effet de compensation des incertitudes
en est responsable : les incertitudes qui affectent les variables spatialisées sont locales ;
lorsqu’une large zone est considérée, ces incertitudes locales se compensent et leur impact
relatif par rapport aux autres variables diminue. Symétriquement, l’indice de sensibilité
des variables non distribuées spatialement (ici X2, X3 et X5) augmente avec le côté s de
la cellule C sur laquelle on calcule les dommages évités. Selon la résolution s à laquelle
on représente le champ Y des dommages évités, les variables d’entrée qui expliquent sa
variabilité ne sont donc pas les mêmes.

Conclusion

L’approche proposée est applicable à un large éventail de modèles spatialisés, à la con-
dition qu’ils soient peu coûteux en temps de calcul. Elle offre de nouvelles perspectives
dans la compréhension des liens entre effets d’échelle, incertitudes et sensibilité, questions
qui sont propres à ce type de modèles. Des travaux complémentaires sont à mener pour
préciser les effets de biais induits par la méthode de représentation de l’incertitude sur
les variables spatialisées, pour optimiser l’échantillonnage de réalisations aléatoires de ces
variables, ou encore pour mieux comprendre et prédire la structure spatiale des cartes de
sensibilité.
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Figure 2: Cartes de sensibilité. Pour chacune des trois variables X1 à X3, la carte du haut
(resp. du bas) présente la carte de sensibilité de la variable Xj par rapport à la sortie
spatialisée Y(200) (resp. Y(1600)) : sur chaque cellule C de côté s = 200 m (resp. 1600 m),
on représente Sj(YC), indice de sensibilité de la variable Xj par rapport à la somme YC
des dommages évités sur la cellule.
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