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Aspects algorithmiques d’heuristiques de coloration de graphes

Résumé : Une coloration propre d’un graphe est une fonction qui attribue une couleur à chaque

sommet du graphe avec la restriction que deux sommets voisins ont des couleurs distinctes. Les col-

orations propres permettent entre autres de modéliser des problèmes d’ordonnancement, d’allocation

de fréquences ou de registres. Le problème de trouver une coloration propre d’un graphe qui minimise

le nombre de couleurs est un problème NP-difficile très connu.

Dans cette thèse, nous étudions le nombre de Grundy et le nombre b-chromatique des graphes, deux

paramètres qui permettent d’évaluer la performance de quelques heuristiques pour le problème de la

coloration propre. Nous commençons par dresser un état de l’art des résultats sur ces deux paramètres.

Puis, nous montrons que déterminer le nombre de Grundy est NP-difficile sur les graphes bipartis ou

cordaux.

Ensuite, nous montrons que déterminer le nombre b-chromatique est NP-difficile pour un graphe

cordal et distance-héréditaire, et nous donnons des algorithmes polynomiaux pour certaines sous-

classes de graphes: graphes des blocs, complémentaires des graphes bipartis et P4-sparses.

Nous considérons également la complexité à paramètre fixé de déterminer le nombre de Grundy (resp.

nombre b-chromatique) et en particulier, nous montrons que décider si le nombre de Grundy (ou le

nombre b-chromatique) d’un graphe G est au moins |V (G)| − k admet un algorithme FPT lorsque k
est le paramètre.

Enfin, nous considérons la complexité de nombreux problèmes liés à la comparaison du nombre de

Grundy et du nombre b-chromatique avec divers autres paramètres d’un graphe.

Mots clés : Coloration de graphes, coloration gloutonne, b-coloration, NP-complétude, Complexité

à Paramètre Fixé
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Algorithmic aspects of graph colouring heuristics

Abstract: A proper colouring of a graph is a function that assigns a colour to each vertex with the

restriction that adjacent vertices are assigned with distinct colours. Proper colourings are a natural

model for many problems, like scheduling, frequency assignment and register allocation. The prob-

lem of finding a proper colouring of a graph with the minimum number of colours is a well-known

NP-hard problem.

In this thesis we study the Grundy number and the b-chromatic number of graphs, two parameters that

evaluate some heuristics for finding proper colourings. We start by giving the state of the art of the

results about these parameters. Then, we show that the problem of determining the Grundy number

of bipartite or chordal graphs is NP-hard.

After, we show that the problem of determining the b-chromatic number of a chordal distance-hereditary

graph is NP-hard, and we give polynomial-time algorithms for subclasses of block graphs, comple-

ment of bipartite graphs and P4-sparse graphs.

We also consider the fixed-parameter tractability of determining the Grundy number and the b-chromatic

number, and in particular we show that deciding if the Grundy number (or the b-chromatic number)

of a graph G is at least |V (G)| − k admits an FPT algorithm when k is the parameter.

Finally, we consider the computational complexity of many problems related to comparing the b-
chromatic number and the Grundy number with various other related parameters of a graph.

Keywords: Graph colouring, greedy colouring, b-colouring, NP-completeness, Fixed Parameter

Complexity
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Chapter 1

Outline of this thesis and our

contributions

The most important concept of this thesis is that of a graph colouring. A graph colouring is a partition

of the vertices of a graph into sets that are called colour classes. They are a natural model for problems

in which a set of objects is to be partitioned according to some prescribed rules. The objects and the

relations between them are modelled by a graph and one seeks to find a partition of the vertices into

classes that satisfy the particular constraints of the problem.

Depending on the constraints that are imposed to the partitions, one obtains different kinds of

colouring. Of particular interest are colourings in which every colour class corresponds to a stable

set of the graph, that is a set of pairwise non-adjacent vertices. Such colourings are called proper

colourings, and they model a number of practical and theoretical applications. For example, problems

of scheduling [120], frequency assignment [45] and register allocation [22, 23], besides of the finite

element method [112], are naturally modelled by proper colourings. While it is easy to find a proper

colouring when no bound is imposed on the number of colour classes, a challenging problem consists

in finding one that minimizes the number of colours. The minimum number of colours of a proper

colouring of a graph G is its chromatic number, that is denoted χ(G).

The problem of finding a proper colouring with the minimum number of colours was one of the

first problems proved to be NP-hard: to decide if a graph admits a proper colouring with k colours

is an NP-complete problem, even if k is fixed [67]. Moreover, the chromatic number is hard to

approximate: for all ǫ > 0, there is no algorithm that approximates the chromatic number within a

factor of n1−ǫ unless P = NP [123]. On the other hand, a number of algorithms, exacts or not, were

proposed. As examples we refer to [96, 49, 59].

Although determining the chromatic number of a graph is a hard problem, there are heuristics

that quickly produce proper colourings. Actually many of the upper bounds that are known for the

chromatic number are obtained from colouring heuristics.

A very simple and widespread heuristic is the greedy colouring algorithm, that takes in turn each

vertex of the graph and assigns to it the smallest colour that does not appears in one of its neighbours.

A colouring obtained this way is called a greedy colouring. The Grundy number of a graph is defined

as the maximum number of colours of a greedy colouring of the graph, and is denoted Γ(G). The

Grundy number and its ratio with the chromatic number is a measure of how bad the greedy colouring

algorithm may perform on a graph. Early works on the Grundy number go back to the 30’s in an

article of Grundy [53], who first defined it in the context of directed graphs corresponding to games.

Christen and Selkow [24] were the first to define it in the context of graph colourings. After that

5



6 CHAPTER 1. OUTLINE OF THIS THESIS AND OUR CONTRIBUTIONS

the Grundy number was investigated by many authors [121, 4, 36, 10, 116]. Since it is very easy to

obtain a greedy colouring of a graph, and since any greedy colouring provides an upper bound on

the chromatic number, a natural application of the greedy colouring is to evaluate the perfomance

of any graph coloring heuristics. For example, the greedy colouring algorithm applied to interval

graphs was used as a subroutine of the algorithm Buddy Decreasing Size, introduced by Chrobak and

Slusarek [25], to solve the Dynamic Storage Allocation problem. Motivated by this, a number of

authors [81, 82, 104, 108, 109] worked at giving upper bounds on the Grundy number of an interval

graph as a function of its chromatic number, since these bounds give a performance guarantee to the

above-mentioned subroutine.

Another heuristic to find a proper colouring of a graph can be as follows. Start with some arbitrary

colouring of the graph (for example the trivial one in which every vertex has a distinct colour) and

choose one colour class. Recolour each vertex in this colour class by a colour that does not appear in

the neighbourhood of the vertex under consideration. This heuristic can be used to reduce the number

of colours until a colouring is found in which every colour class has at least one vertex with neighbours

from every other colour class. Such a colouring is called a b-colouring and the special vertex in each

colour class is called a b-vertex. The b-chromatic number, denoted χb(G), is then the maximum

number of colours of a b-colouring. In the same way as the Grundy number, the b-chromatic number

and its ratio with the chromatic number measure how bad the b-colouring algorithm may perform on

a graph. The b-colouring was first defined in 1999 by Irving and Manlove [70], and since that there

are many papers dealing with it [90, 12, 118, 19, 99]. As it happens in the case of the Grundy number,

a natural application of the b-coloring is to evaluate the perfomance of any graph coloring heuristics,

since any b-coloring provides an upper bound on the chromatic number, and a b-coloring of a graph

can be easily obtained. Moreover, the concept of b-coloring was used in databases clustering [32] and

in automatic recognition of documents [43].

The objective of this thesis is to study the previously defined colourings and the parameters asso-

ciated with them from an algorithmic point of view. It is organized as follows.

• Chapter 2 contains the necessary background for this thesis. The main graph theory concepts

and notations that are used in the following chapters are introduced, as well as the colouring

problems that are investigated. Moreover, the state of the art of these colouring problems is

presented.

• In Chapter 3 we investigate the complexity of computing the Grundy number of a graph. Some

of the results in this chapter were published in [62]. We prove that, given a bipartite graph G,

deciding if it admits a greedy colouring with ∆(G) + 1 colours is an NP-complete problem.

As a consequence, a characterization of the graphs with Grundy number equal to ∆(G) +
1 that is checkable in polynomial time is unlikely to exists, under the classical complexity

assumptions. We then prove that the previous problem remains NP-complete when restricted to

chordal graphs instead of bipartite graphs. We end the chapter with open problems concerning

the complexity of computing the Grundy number on other graph classes.

• In Chapter 4 the b-chromatic number of graphs is studied. The results presented in this chapter

were published in [61]. A well-known upper bound for the b-chromatic number of a graph G is

the m-degree, denoted m(G), which is defined as the maximum k such that there are k vertices

of degree at least k − 1. Motivated by this upper bound on the b-chromatic number, we define

the tight graphs, which are graphs with exactly m(G) vertices of degree exactly m(G) − 1.

We show that determining if χb(G) = m(G), for a given tight connected chordal distance-

hereditary graph G, is an NP-complete problem. After, we investigate this problem for other
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classes of tight graphs. In order to do so, two operations that may be applied to a tight graph

are defined, that are able to relate the b-colouring problem to the classical colouring problem

and the precolouring extension problem. By using previously known results about these two

problems, polynomial-time algorithms are given to decide if χb(G) = m(G) when G belongs

to particular classes of tight graphs, such as complement of bipartite graphs, P4-sparse graphs

and block graphs.

• In Chapter 5 the parameterized complexity of problems involving the b-chromatic number and

the Grundy number is investigated. Some of the results in this chapter were published in [62].

In particular, we consider the problem of deciding, given a graph G and k being the parameter,

if Γ(G) ≥ |V (G)| − k. We show that this problem is Fixed-Parameter Tractable(FPT). The

analog problem in which the question is if χb(G) ≥ |V (G)| − k is considered, and we prove

that it is also FPT. Finally, we consider the problems of deciding if Γ(G) = ∆(G) + 1 and

χb(G) = ∆(G) + 1, and we show that these problems are FPT when ∆(G) is the parameter.

• In Chapter 6 we consider the computational complexity of comparing between the colouring

parameters. More specifically, for a fixed integer c ≥ 1, we determine the complexity of the

problem of deciding if φ(G) ≤ cψ(G), where φ(G), ψ(G) ∈{ω(G) , χ(G), χb(G), Γ(G),
∂Γ(G), ζ(G), ∆(G) + 1} (See the nomenclature at page 121 for the definition of all these

parameters). In Table 1, the cell with row φ(G) and column ψ(G) gives the complexity of the

problem of deciding if φ(G) ≤ cψ(G). The meaning of the abbreviations are described in what

follows.

(=): φ(G) = ψ(G).

(≤): the problem is trivial because φ(G) ≤ ψ(G);

(NPC): for every c ≥ 1, the problem is NP-complete;

(=-NPC): for c = 1 the problem is NP-complete;

(>-NPC): for c > 1 the problem is NP-complete;

(coNPC): for every c ≥ 1, the problem is co-NP-complete;

(=-coNPC): for c = 1 the problem is co-NP-complete;

(>-coNPC): for c > 1 the problem is co-NP-complete;

(NPH): for every c ≥ 1, the problem is NP-hard;

(=-NPH): for c = 1 the problem is NP-hard;

(>-NPH): for c > 1 the problem is NP-hard;

(Poly): the problem is polynomial-time solvable.

We end Chapter 6 by considering analogues of a well-known conjecture from Reed [110]. The

conjecture states that χ(G) ≤

⌈

ω(G) + ∆(G) + 1

2

⌉

, where ω(G) is the maximum size of a

clique in G, and ∆(G) is its maximum degree. We investigate variations of that conjecture

involving χb(G), Γ(G) and ∂Γ(G), and their upper and lower bounds.

• Finally, Chapter 7 contains the conclusion of this thesis.
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ω(G) χ(G) χb(G) Γ(G) ∂Γ(G) ζ(G) ∆(G) + 1

ω(G) = ≤ ≤ ≤ ≤ ≤ ≤

χ(G) NPC = ≤ ≤ ≤ ≤ ≤

χb(G) NPH coNPC = NPH ≤ ≤ ≤

Γ(G) NPH coNPC NPH = ≤ ≤ ≤

∂Γ(G) Unknown >-NPH =-NPH NPH = ≤ ≤

ζ(G) Unknown >-NPH =-NPC NPC =-NPC = ≤

∆(G) + 1 Unknown >-coNPC 1 NPC NPC NPC Poly =

Table 1.1: Complexity of deciding equality between the parameters.

Other works. During this thesis I had the opportunity to work in other graph problems other than

the graph colouring one. In the appendices, two research reports about graph convexities and the hull

number problem are presented. Some of the results on the first report, entitled “On the Hull number

of some graph classes”, where presented at the Sixth European Conference on Combinatorics, Graph

Theory and Applications (EuroComb 2011) [1] and accepted for publication at the journal Theoretical

Computer Science. The second report, entitled “Hull number: P5-free graphs and reduction rules” was

accepted to be presented at the 2nd Bordeaux Graph Workshop (BGW 2012).

1For c = 1 the problem can be solved in polynomial time.



Chapter 2

Introduction

In Section 2.1 we give the preliminaries on graph theory. A reader familiar with the standard graph

theory concepts and notations may skip this section and consult the remissive index or the nomencla-

ture chapter if necessary. In Section 2.2 we give a short introduction to proper colouring of graphs

and in Section 2.3 we present the b-colourings and the Grundy colourings as well as the main results

about these colourings. Finally, the partial Grundy number is presented in Section 2.4, and we briefly

analyze the relations between the many colouring parameters that are introduced in this chapter. These

relations will be studied in more detail in Chapter 6.

2.1 Preliminaries

Basic graph definitions. A graph G is a pair (V,E), where V is a set of vertices and E ⊂ [V ]2 a set

of edges, where [V ]2 denotes all the 2-element subsets of V . The cardinality of V (G) is the order of

G and the cardinality of E(G) is its size. The letters n and m are used to denote |V (G)| and |E(G)|
respectively. We use the notation uv to indicate the edge {u, v}. If uv ∈ E(G), we say that vertices

u and v are its endvertices.

Let G = (V,E) be a graph. If uv ∈ E(G), then u and v are neighbours in G. The set of all

neighbours of vertex v ∈ V (G) is the neighbourhood of v, and is denoted NG(v). This notation is

extended to a set of vertices S ⊆ V (G), in case NG(S) =
⋃

v∈S N(v). The degree dG(v) of vertex

v ∈ V (G) is the cardinality of NG(v). We may omit the subscript in the last notations, when the

graph we are talking about is clear from the context. The minimum degree of G, denoted δ(G), is

the smallest degree of a vertex of G, while its maximum degree ∆(G) is the largest one. A graph is

k-regular if all its vertices have degree k. The complement of G, denoted by G, is the graph with

V (G) = V (G) and E(G) ={uv ∈ [V ]2 | uv /∈ E(G)}.

The graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ {uv ∈ E(G) | u, v ∈ V (H)}. If

E(H) ={uv ∈ E(G) | u, v ∈ V (H)}, H is an induced subgraph of G. The subgraph of G induced

by S ⊂ V (G) is denotedG[S]. A homomorphism φ fromH toG is an injective function φ : V (H) →
V (G) such that if uv ∈ E(H) then φ(u)φ(v) ∈ E(G). The function φ is an isomorphism if it is a

bijection φ : V (H) → V (G) such that uv ∈ E(H) if and only if φ(u)φ(v) ∈ E(G). If G has a

subgraph which is isomorphic to H , G is said to contain H as a subgraph. If G does not contain H
as a induced subgraph, G is said to be H-free.

A path is a graph P with vertex set V (P ) = {v1, v2, . . . , vk} and edge set E(P ) = {vivi+1 |
1 ≤ i ≤ k − 1}. The length of a path is the cardinality of its edge set. The vertices v1 and vk are

the endvertices of P and {v2, . . . , vk−1} are its inner vertices. A path with endvertices u and v is

9



10 CHAPTER 2. INTRODUCTION

called a (u, v)-path. The path with k vertices is denoted Pk. A graph G is connected if there is a path

between any pair of distinct vertices. A connected component of G is a maximal connected subgraph.

We denote by dist(u, v) the distance between u and v, that is the length of the smallest (u, v)-path. A

vertex cut is a set S ⊂ V (G) such that G[V (G)\S] is disconnected. The connectivity κ(G) is the size

of a smallest vertex cut. A graph is called k-connected if its connectivity is k or more. A maximal

2-connected subgraph of a graph is called a block.

A cycle is a graph C with vertex set V (C) = {v1, v2, . . . , vk} and edge set E(C) = {vivi+1 |
1 ≤ i ≤ k − 1} ∪ {(vk, v1)}. The length of a cycle is the cardinality of its edge set. The cycle of

length k is denoted Ck. A graph is acyclic if it does not contains any cycle as a subgraph. An acyclic

graph is also called a forest. A tree is a connected forest.

The complete graph of order n, denoted Kn, is the graph in which every pair of vertices is joined

by an edge. A clique of cardinality k in a graph G is a set of k pairwise adjacent vertices of G. The

size of the largest clique of G is denoted by ω(G). A stable set of order k in G is a set of pairwise

non-adjacent vertices of G. We denote by Sn the graph consisting of a stable set of order n. The

cardinality of the maximum stable set is denoted α(G). A graph is called bipartite if its vertex set

can be partitioned into two stable sets. The notation G = (A ∪ B,E) is used to indicate that A and

B are the parts of G. It is well-known that a graph is bipartite if and only if contains no cycle of odd

length as a subgraph. Given integers p, q ≥ 1, the complete bipartite graph with parts of size p and

q, denoted Kp,q, is such that there is one edge between every pair of vertices from different parts. For

p ≥ 2, the graph K1,p−1 is called the star of order p.

Vertex covers, stable sets, matchings and edge covers. A vertex cover of a graph G is a set C ⊆
V (G) such that every edge in E(G) has at least one of its endvertices in C. The vertex cover number

τ(G) is the size of a minimum vertex cover of G. An edge cover of G is a set L ⊆ E(G) such that

any vertex in V (G) is the endvertex of at least one edge in L. The edge cover number ρ(G) is the

minimum size of an edge cover of G. A matching is a set of edges M ⊆ E(G) such that no pair of

edges fromM have common endvertices. A vertex is said to be saturated byM if it is an endvertex of

some edge of M , while M is a perfect matching if it saturates all vertices from V (G). The matching

number µ(G) is the size of a maximum matching of G. The Gallai Identities relate the parameters

that were just defined.

Theorem 2.1.1 (Gallai Identities [44]). For any graph G,

(i) τ(G) + α(G) = |V (G)|.

(ii) µ(G) + ρ(G) = |V (G)|, if G has no vertices of degree 0.

Proof. (i) It is clear from the definitions of stable set and vertex cover that S is a stable set if and

only if V (G)\S is a vertex cover.

(ii) Consider an edge cover L of minimum size ρ(G). Since L is minimal it has to be a union of s
stars. The number of vertices in each star is one more than the number of edges in the star. By

taking an edge from each star one obtains a matching, thus implying µ(G) ≥ s. This means

n = s + ρ(G) ≤ µ(G) + ρ(G). Conversely, consider a maximum matching M of size µ(G).
The set U = V (G) − V (M) is a stable set. For each vertex in U pick an edge incident to it.

There will always be such an edge, as there are no vertices of degree 0. Call this set of edges

E′. Clearly E′ ∪ E(M) form an edge cover of G, so ρ(G) ≤ (n− 2µ(G)) + µ(G).
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There is also a relation between µ(G) and τ(G) in any graph G: µ(G) ≤ τ(G). To see that,

consider a vertex cover C and a matching M of G. Since C is a vertex cover, it must contain at least

one vertex of each edge from M . Therefore, for any matching M and vertex cover C, it is valid that

|M | ≤ |C|, and so µ(G) ≤ τ(G). Another inequality that is true for any graph G is τ(G) ≤ 2µ(G).
It follows from the fact that given a is a maximal matching M of G, the set of endvertices of the edges

in M forms a vertex cover of G.

In the case of bipartite graphs an even stronger fact is true about µ(G) and τ(G).

Theorem 2.1.2 (König’s Minimax Theorem ([83], 1931)). If G is bipartite, then τ(G) = µ(G).

Proof. We present here a proof due to Lovász [95]. It was shown in the last paragraph that µ(G) ≤
τ(G). Therefore it suffices to show that τ(G) ≤ µ(G). Now consider a subgraph G′ of G such that

τ(G′) = τ(G) and for any e ∈ E(G′), τ(G′\{e}) < τ(G). If no two edges of G′ have a vertex in

common, then clearly τ(G) = τ(G′) = µ(G′) ≤ µ(G).
So assume there are two edges x, y ∈ E(G′) that are both incident to a same vertex v. Consider the

graph G′\{x}. Because of the minimality of G′, τ(G′\{x}) = τ(G′) − 1. Moreover, in a minimum

vertex cover Sx of G′\{x}, no endvertex of x belongs to Sx. Similarly, there is a minimum vertex

cover Sy of G′\{y} such that no endvertex of y is in Sy, and |Sx| = |Sy|.
Let G′′ = G′[{v} ∪ (Sx∆Sy)], where ∆ denotes the symmetric difference between Sx and Sy,

Sx∆Sy = (Sx\(Sx∩Sy))∪(Sy\(Sx∩Sy)). Let t = |Sx∩Sy|. Then |V (G′′)| = 2(τ(G′)−1−t)+1.

The graph G′′ is bipartite, since it is a subgraph of G. Let T be the smaller of the two parts of G′′.
Then T is a vertex cover of G′′ and |T | ≤ τ(G′)− 1− t.

König’s theorem is a central theorem in graph theory. It provides a very useful characterization of

the matching number of a bipartite graph. A matching of size k can be used to show that µ(G) ≥ k. If

one wants to prove that no larger matching exists, it is sufficent to give a vertex cover of size k, since it

would imply that µ(G) ≤ k. Moreover, given a set of k edges (resp. set of k vertices), one can verify

in polynomial time if it consists of a matching (resp. vertex cover) of the graph. König’s Theorem is

a particular case of many other theorems, like the max-flow min-cut theorem, the total unimodularity

theorem of linear programming and the weak perfect graph theorem (The first two may be found in

classical combinatorial optimization books like the one from Nemhauser and Wolsey [105] while the

third may be found in Diestel’s Graph Theory book [29]).

Another very important result from graph theory is the so called Hall’s Theorem.

Theorem 2.1.3 (Hall’s Theorem ([55], 1935)). Let G = (A∪B,E) be a bipartite graph. Then G has

a matching that saturates A if and only if |N(X)| ≥ |X| for all X ⊆ A.

It is easy to see that a bipartite graph G = (A∪B,E) has a matching that saturates A if and only

if µ(G) = |A|. As a consequence, Hall’s theorem may be seen as a corollary of König’s Theorem.

Actually, König’s and Hall’s theorem, together with the following result from Frobenius can all be

shown to be equivalent.

Theorem 2.1.4 (Frobenius Marriage Theorem ([41], 1917)). A bipartite graph G = (A ∪ B,E) has

a perfect matching if and only if |A| = |B| and for each X ⊆ A, |X| ≤ |N(X)|.

For other results on matching theory we refer to the excellent book of Lovász and Plummer [94].

Planar Graphs. A graph is planar if it can be drawn in the plane in such a way that no edges cross

each other. A graph H is said to be a subdivision of a graph G if H may be obtained by replacing the

edges of G by paths. The paths replacing distinct edges from G are vertex-disjoint, except possibly
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for their endvertices. The well-known Kuratowski’s Theorem states that a graph is planar if and only

if it does not contain a subgraph that is a subdivision of the complete graph K5 or the complete

bipartite graph K3,3. A graph is outerplanar if it is planar and can be drawn in the plane in such a

way that all the vertices belong to the unbounded face of the drawing. In other words, no vertex is

totally surrounded by edges. Outerplanar graphs have a forbidden graph characterization anologous

to Kuratowski’s Theorem. A graph is outerplanar if and only if it does not contain a subgraph that is

a subdivision of the complete graph K4 or the complete bipartite graph K2,3.

Chordal graphs and tree decomposition. A graph is chordal if it does not contains induced cycles

of size greater than 3. A vertex v is said to be simplicial if v and its neighbourhood form a clique. A

perfect elimination order of a graph G is an ordering of the vertices such that vertex v is simplicial

in the subgraph induced by v and the succeding vertices in the ordering. A graph G is chordal if and

only if it has a perfect elimination order [42]. Some examples of chordal graphs are trees and split

graphs, which are the graphs such that their vertex set can be partitioned into a stable set and a clique.

Another subclass of chordal graphs that is going to be considered in this thesis is the one of block

graphs, which are the graphs such that every block is a clique.

A tree decomposition of G is a pair D = (X,T ) such that T = (I, F ) is a tree and X is a family

of subsets of V (G) satisfying:

1.
⋃

i∈I Xi = V (G);

2. for every edge uv ∈ E(G), there is i ∈ I such that {u, v} ⊆ Xi;

3. for i, j, k in I , if j is in the (i, k)-path of T , then Xi ∩Xk ⊆ Xj .

The size of the decomposition is given by maxi∈I(|Xi| − 1). The treewidth of a graph is the

minimum size of a tree decomposition of it, and is denoted tw(G). The treewidth measure how close

the graph is from a tree. It is easy to see that tw(T ) = 1, if T is a tree. A graph G has tw(G) ≤ 2 if

and only if it is a subgraph of a series-parallel graph, that is a graph that does not contains K4 as a

subdvision. Many problems that are NP-complete in their general formulation are polynomial given

that the input graph is of bounded treewidth.

The class of k-trees is defined recursively as follows:

• The complete graph on k vertices is a k-tree.

• A k-treeG of n+1 vertices (n ≥ k) can be constructed from a k-treeH of n vertices by adding

a vertex and making it adjacent to k vertices corresponding to a k-clique of H .

It is easy to see that a k-tree is a chordal graph. A graph is a partial k-tree if it is a subgraph of a

partial k-tree. Partial k-trees are precisely the graphs of treewidth at most k.

Graphs with few induced P4’s. A cograph is a P4-free graph. Any cograph can be obtained by using

the following rules [26]:

• The graph consisting of a single vertex is a cograph.

• Given cographs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union G1 + G2 = (V1 ∪
V2, E1 ∪ E2) is a cograph.

• Given cographs G1 = (V1, E1) and G2 = (V2, E2), the join G1 ⊕ G2 = (V1 ∪ V2, E1 ∪ E2 ∪
V1 × V2) is a cograph.
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A graph is P4-sparse if any 5 vertices of G induces at most one copy of P4. Clearly, the class of

the P4-sparse graphs strictly contains the one of the cographs. A spider is a graph whose vertex set can

be partitioned into S,C and R, where S = {s1, . . . , sk} is a stable set, k ≥ 2; C = {c1, c2, . . . , ck} is

a clique; si is adjacent to cj if and only i = j (thin spider), or si is adjacent to cj if and only if i 6= j
(a thick spider); R is allowed to be empty and if it is not, then all the vertices in R are adjacent to all

the vertices in C and non-adjacent to all the vertices in S. P4-sparse graphs, like the cographs, also

admit a nice decomposition theorem. Hoàng [63] proved that if G is a non-trivial P4-sparse graph,

then either G or G is not connected, or G is a spider.

Also the P5-free graphs admits a good characterization. A connected graph G is P5-free if and

only if for every induced subgraph H ⊆ G either H has a dominating clique or a dominating cycle on

five vertices [6].

Graph products. We end this section by defining some graph operations that are mentioned in this

thesis. Given two graphsG andH , their disjoint union is the graphG+H = (V (G)∪V (H), E(G)∪
E(H)), while their join is G ⊕H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ V (G) × V (H)). The direct

product G×H , the lexicographic product G[H], the cartesian product G�H and the strong product

G⊠H all have vertex set V (G)× V (H) and the following edge sets:

• E(G×H) = {(a, x)(b, y) | ab ∈ E(G) and xy ∈ E(H)}.

• E(G[H]) = {(a, x)(b, y) | either ab ∈ E(G) or a = b and xy ∈ E(H)}.

• E(G�H) = {(a, x)(b, y) | either a = b and xy ∈ E(H) or ab ∈ E(G) and x = y}.

• E(G⊠H) = E(G×H) ∪ E(G�H).

2.2 Graph colourings

A graph colouring is a partition of the vertices of a graph into sets that are called colour classes. If

k colour classes are used in the partition and we want to make that explicit, we call it a k-colouring.

Alternatively, a k-colouring of a graph G = (V,E) is simply a function c : V → {1, 2, . . . , k}.

Often it is useful to consider colourings in which some condition is imposed on the colour classes.

A proper colouring is one in which the colour classes are stable sets of the graph. In other words, in a

proper colouring adjacent vertices are assigned distinct colours. A trivial proper colouring is obtained

by putting each vertex in a separate colour class. The interest is in finding proper colourings with as

few colours as possible. The chromatic number is precisely the smallest value k such that the graph

in question admits a proper k-colouring. The chromatic number of graph G is denoted χ(G).

The problem of determining the chromatic number is one of Karp’s twenty one NP-complete

problems [80] from 1972. Deciding if a given graph admits a colouring with 3 colours is an NP-

complete problem even if the graph is a planar 4-regular graph [28].

Lund and Yannakakis were the first to prove a negative result concerning the existence of approx-

imation algorithms for the chromatic number. They proved that it is NP-hard to approximate the chro-

matic number of a graph to within a factor nc for some constant c > 0 [97]. Later, Zuckerman [123]

proved that for all ǫ > 0, there is no algorithm that approximates the chromatic number within a

factor of n1−ǫ, assuming P 6= NP [123]. Currently the best known approximation algorithm for the

chromatic number is the one of Halldórsson, that has an approximation factor O
(

n(log logn)2

(logn)3

)

[58].

He conjectured that the best possible approximation factor for graph colouring is Θ
(

n
(logn)c

)

.
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There is a simple heuristic to produce proper colourings of a graph, the greedy algorithm, that will

be studied in more detail in Section 2.3.

GREEDY ALGORITHM

INPUT: G and a vertex ordering σ = v1 < v2 < · · · < vn of V (G)
OUTPUT: a proper colouring c

1. For i from 1 to n:

1.1 Assign to c(vi) the smallest positive integer that does not appear in c(N(vi)).

2. return c.

See Figure 2.2 for two colourings of the Petersen graph obtained by the greedy algorithm. Clearly,

distinct vertex orderings may give distinct colourings, that may also use a different number of colours.

A graph is said to be k-degenerate if each of its subgraphs has a vertex of degree at most k.

The degeneracy of graph G is the smallest k such that it is k-degenerate. We denote the degeneracy

by δ∗(G). A degenerate ordering of the vertices is an ordering v1, v2, . . . , vn such that vi has at

most δ∗(G) neighbours in G\{v1, v2, . . . , vi−1}. Observe that such an ordering can be obtained by

iteratively taking a vertex vi of smallest degree in the graph G\{v1, v2, . . . , vi−1} and putting it in the

end of the of the ordering {v1, v2, . . . , vi−1}. An implication of this observation is that the degeneracy

of a graph can be computed in polynomial time. Obviously, the degeneracy of a graph cannot exceed

its maximum degree, therefore

δ∗(G) ≤ ∆(G).

Now consider the colouring obtained by the greedy algorithm applied to a degenerate ordering

of the vertices of the graph. At the moment the algorithm colours vertex vi, it has at most δ∗(G)
neighbours that are already coloured, since they are precisely the ones preceding it in the ordering.

But then there is always a colour in {1, 2, . . . , δ∗(G) + 1} that can be given to v1. As a consequence,

the greedy algorithm uses at most δ∗(G) + 1 colours when applied to that ordering, and therefore

χ(G) ≤ δ∗(G) + 1.

Combining the last two inequalities we obtain that

χ(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1.

This bound is tight, as shown by the following Proposition.

Proposition 2.2.1 (folklore). Let G be a graph and n ≥ 1.

(i) If G ∼= Cn and n odd, then χ(G) = ∆(G) + 1 = 3.

(ii) If G ∼= Kn, then χ(G) = ∆(G) + 1 = n.

Proof. First let G ∼= Cn, where n is odd. Clearly χ(G) > 1, so suppose c is a proper colouring with

two colours and let v1, v2, . . . , vn be the vertices as they appear in the cycle. We may assume without

loss of generality that c(v1) = 1, and since it is adjacent to v2 and the colouring is proper, then c(v2) =
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Figure 2.1: The Petersen graph and two colourings of it obtained by the greedy algorithm. The

colourings correspond to an application of the greedy algorithm to any vertex ordering in which the

vertices of Si preceed the ones in Sj , whenever i < j.

2. By repeatedly using this argument, we get that c(vi) = 1, in case i is odd, and c(vi) = 2 otherwise.

Since v1 and vn are adjacent, and n is odd, we get a contradiction. So, χ(G) = ∆(G) + 1 = 3.

Now let G ∼= Kn. Since every pair of vertices of G is adjacent, in any proper colouring of G all

vertices should receive distinct colours. So, χ(G) = n = ∆(G) + 1.

But the graphs in Proposition 2.2.1 are essentialy the only ones for which χ(G) = ∆(G) + 1, as

shown in the following theorem of Brooks. The proof presented here uses the greedy algorithm and

is due to Lovász [95].

Theorem 2.2.1 (Brooks [15]). Let G be a connected graph. Then, χ(G) ≤ ∆(G), unless G is an odd

cycle or a complete graph, in which case χ(G) = ∆(G) + 1.

Proof. We already shown that for any G, χ(G) ≤ ∆(G) + 1. Suppose, by contradiction, that G is

neither an odd cycle nor a complete graph and that χ(G) = ∆(G)+1. Moreover assume G is a graph

with the minimum number of vertices satisfying that.
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We claim that G is 2-connected. If this is not the case, let v be a cut vertex, C1, C2, . . . , Cp

the vertices in the connected components of G\{v}, and let k = max1≤i≤p χ(Gi), where Gi =
G[Ci ∪ {v}]. It is clear that k ≤ χ(G). If k < χ(G) then every Gi may be coloured with less than

k colours. We can change the colouring of each Gi so that v is coloured with the same colour in

all the colourings. By doing so we obtain a proper colouring of G that uses less than χ(G) colours,

a contradiction. Therefore, k = χ(G). Let Gj be such that χ(Gj) = k. Since we assumed that

χ(G) = ∆(G) + 1 and G is a counterexample with the minimum number of vertices, Gj has to be a

complete graph with ∆(G) + 1 vertices. But then Gj should be a connected component of G, since

otherwise v has degree greater than ∆(G) in G. Therefore G has to be 2-connected.

Now we show how to colour G with ∆(G) colours, by giving an ordering of its vertices for which

the greedy algorithm uses no more than ∆(G) colours. Since G is not complete, there is at least a

pair of vertices, say x, y, such that xy /∈ E(G). If x and y have a common neighbour z, make u = x,

v = y and w = z. Otherwise, x and y are at distance more than two from each other. In this case take

u, v and w as three consecutive vertices in a shortest path between x and y. The vertices u, v, w are

such that uv, vw ∈ E(G) and uw /∈ E(G).

Now, we order the vertices of the graph by making v1 = u, v2 = v and ordering the vertices in

V (G)\{v1, v2} in such a way that if 3 ≤ i ≤ j then dist(v, vi) ≥ dist(v, vj). Observe that this

ordering can obtained by doing a breadth-first search in G\{v1} starting at v and then reversing the

ordering. This ordering is such that for every i < n, there is j > i such that vivj ∈ E(G). As a

consequence, every vi, i < n, has at most ∆(G) − 1 neighbours preceeding him, and so the greedy

algorithm applied to this ordering uses at most ∆(G) colours to colour {v1, v2, . . . , vn−1}. Finally,

vertex vn is also assigned a colour that is at most ∆(G), since it is adjacent to v1 and v2 that have both

the same colour, namely colour 1.

As a consequence to Brooks’ Theorem, it can be decided in polynomial time if a graph G has

chromatic number equal to ∆(G) + 1.

Extensions of Brooks’ Theorem have been considered in the literature. Borodin and Kostochka [13]

conjectured that every graph of maximal degree ∆ ≥ 9 and chromatic number at least ∆ has a ∆-

clique. Reed [111] proved that this is true when ∆ is sufficiently large, thus settling a conjecture of

Beutelspacher and Herring [9]. More information about this problem can be found in the monograph

of Jensen and Toft [78, Problem 4.8]. A generalization of this problem has also been studied by

Farzad, Molloy and Reed [40] and Molloy and Reed [102]. In particular, it is proved in [102] that

determining whether a graph with large constant maximum degree ∆ is (∆ − q)-colourable can be

done in linear time if (q + 1)(q + 2) ≤ ∆. This threshold is optimal by a result of Emden-Weinert,

Hougardy and Kreuter [33], since they proved that for any two constants ∆ and q ≤ ∆− 3 such that

(q + 1)(q + 2) > ∆, determining whether a graph of maximum degree ∆ is (∆ − q)-colourable is

NP-complete.

Brooks’ theorem has been adapted and proved for more general versions of the colouring problem.

In the following we show a generalization of this result to list colouring, in which the set of colours

that are available to each vertex is restricted.

A list assignment L is an assignment of a list of colours L(v), for every vertex v. If each list

is of size at least k, we say that L is a k-list-assignment. An L-colouring c is a proper colouring

such that the colours are assigned according to the list assignment L, that is for every v ∈ V (G),
c(v) ∈ L(v). A graph is L-colourable if it admits a proper L-colouring. One of the main concepts

in list colouring is that of a k-choosable graph. A graph is k-choosable if it is L-colourable for every

k-list-assignment L. The choice number of a graph G is the least k such that G is k-choosable, and is
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denoted ch(G). Given a list assignment L where all lists are identical and of size k, it is easy to see

that G is L-colourable if and only if it is k-colourable. Then clearly

ch(G) ≥ χ(G).

The choice number of a graph can be arbitrarily far apart from the chromatic number. For example,

the complete bipartite graph Kk,k is such that its choice number tends to infinity with k, as shown by

Erdös, Rubin and Taylor [107].

Consider a list assignment L of size δ∗(G) + 1. In a degenerate ordering v1, v2, . . . vn, one have

that vertex vi has only at most δ∗(G) neighbours in {v1, v2, . . . , vi−1}. Since |L(vi)| ≥ δ∗(G)+1, we

can always greedily assign vi a colour from L(vi) that was not assigned to any of {v1, v2, . . . , vi−1}.

Therefore,

ch(G) ≤ δ∗(G) + 1.

Since the degeneracy of a graph cannot exceed its maximum degree, we get that:

ch(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1.

Before generalizing Brooks’ theorem for list colouring we just need the following Lemma.

Lemma 2.2.1. Let G be a connected graph and a list assignment L such that for all v ∈ V (G)
|L(v)| ≥ d(v) and there is a vertex u such that |L(u)| ≥ d(u) + 1. Then G is L-colourable.

Proof. Take a breadth-first ordering of the vertices starting from u and reverse it. The obtained or-

dering v1, v2, . . . , vn of the vertices is such that for every i < n, vertex vi has neighbour vj , j > i.
Moreover, vn = u. We will greedily colour the vertices according to this ordering. When we are

about to colour vertex vi, i < n, at most d(vi) − 1 of its neighbours are already coloured, and since

|L(vi)| ≥ d(vi), there is always a colour from L(vi) that can be assigned to vi. In the end all vertices

are coloured except for vn = u. But |L(u)| ≥ d(u) + 1, and so there is a colour from L(u) that can

be assigned to u that does not appear in any of its neighbours.

Theorem 2.2.2. Let G be a connected graph. Then, ch(G) ≤ ∆(G), unless G is an odd cycle or a

complete graph, in which case ch(G) = ∆(G) + 1.

Proof. We already showed that for any G, ch(G) ≤ ∆(G) + 1. If G is an odd cycle or a complete

graph, χ(G) = ∆(G) + 1, and since ch(G) ≥ χ(G) we get that ch(G) = ∆(G) + 1. Suppose, by

contradiction, that G is neither an odd cycle nor a complete graph and that ch(G) = ∆(G) + 1.

Let L be a ∆(G)-list assignment.

Assume first that G is not 2-connected. Let v be a cut vertex, C1 be a connected component of

G\{v}, C2 = V (G)\(C1 ∪ {v}) and Gi = G[Ci ∪ {v}], i ∈ {1, 2}. Then G1 and G2 are connected

and there is no edge between vertices of C1 and C2. Moreover dG(v) = dG1(v) + dG2(v). Let L′(v)
be the set of colours α such that there exists an L-colouring of G2 with v coloured α.

Because of Lemma 2.2.1, for any subset S of L(v) of size dG2(v) + 1, there is an L-colouring

of G2 with v coloured in S. Therefore, |L′(v)| ≥ ∆(G) − dG2(v) ≥ dG1(v). But then, because

of the minimality of G, G1 is ∆(G1)-choosable, and so there is an L-colouring c1 of G1 such that

c1(v) ∈ L′(v). Since c1(v) ∈ L′(v), there is an L-colouring c2 of G2 such that c2(v) = c1(v). The

union of c1 and c2 is an L-colouring of G.

It remains to consider the case whenG is 2-connected. In case L is such that the lists of all vertices

are equal, we may assume without loss of generality that these lists are {1, 2, . . . ,∆(G)} and an L-

colouring is simply a ∆(G)-colouring of the graph. Then by Brooks’ theorem, G is L-colourable, as
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it is neither an odd cycle nor a complete graph. So we may assume that there are vertices u and v such

that L(u) 6= L(v). Moreover, as G is connected, we may assume uv ∈ E(G).
Let v1 = u, . . . , vn = v be an ordering of V (G) obtained by doing a breadth-first search on G−u

starting from v and then reversing it and putting v1 = u in the beginning of the ordering. This ordering

always exists, since G is 2-connected, and it is such that for every 1 ≤ i < n, vi has a neighbour in

{vi+1, . . . , vn}. First, colour v1 with a colour in L(v1)\L(vn). Then we colour greedily the vertices

{v2, . . . , vn−1} according to the ordering. When we consider vertex vi, 1 < i < n, it has at most

d(vi)− 1 neighbours that are already coloured, and since |L(vi)| = ∆(G), there is always one colour

that may be assigned to vi. It remains to colour vn. But then, it has at most d(vi) − 1 neighbours

that may have been coloured with a colour from L(vn), since v1vn ∈ E(G) and we coloured v1 with

a colour in L(v1)\L(vn). Therefore, there is always a colour from L(vn) that may be assigned to

vn.

Precolouring extension. We end this section by introducing the precolouring extension problem,

as this problem and some results about its computational complexity are going to be used in the next

chapters.

A precolouring of a graph G is a function pc : W →{1, 2, ..., k}, where W ⊂ V (G) is the set

of precoloured vertices of G and V (G)\W are the precolourless vertices. It is possible that W = ∅.

Given a precolouring pc of G, we want to decide if it can be extended to a proper colouring of the

entire graph.

PRECOLOURING EXTENSION

INPUT : Graph G and precolouring pc :W →{1, 2, ..., k}, W ⊂ V (G).
OUTPUT : Is there a proper colouring c : V (G) →{1, 2, ..., k} such that pc(v) = c(v),

if v ∈W ?

Now, we mention some known results about the computational complexity of PRECOLOURING

EXTENSION. We will denote by W1,W2, . . . ,Wk the subsets of W that are precoloured with colours

1, 2, . . . , k, respectively. Moreover, the ℓ-PRECOLOURING EXTENSION is the same problem as PRE-

COLOURING EXTENSION but with the additional constraint that |Wi| ≤ ℓ, 1 ≤ i ≤ k.

In caseW = ∅, PRECOLOURING EXTENSION corresponds to the problem of deciding ifG admits

a proper colouring with k colours, that we already mentioned to be NP-complete. The following

results can be found in [117]. PRECOLOURING EXTENSION is NP-complete in bipartite graphs, even

if |W | = 3. It is NP-complete even for a planar bipartite graph and k = 3. The problem is solvable in

polynomial time for perfect graphs ifWi = ∅, i ≥ 3, and is NP-complete otherwise. PRECOLOURING

EXTENSION is polynomial for cographs, split graphs, and complement of bipartite graphs.

The complexity of 1-PRECOLOURING EXTENSION is of particular interest to us, since this prob-

lem is related to the method we present in Chapter 4. From what was mentioned in the last paragraph,

we get that 1-PRECOLOURING EXTENSION is polynomial for cographs, split graphs, and complement

of bipartite graphs. Moreover, it is polynomial for P4-sparse graphs [69] and chordal graphs [100].

On the other hand, 1-PRECOLOURING EXTENSION is NP-complete for perfect graphs [117].

2.3 Colouring heuristics and their worst-case behaviour

As mentioned in the last section, the problem of finding a proper colouring of a graph with the min-

imum number of colours cannot be solved in polynomial time, unless P = NP. We also mentioned

that under the same assumption not even a constant factor approximation algorithm exists for the

chromatic number. In this section we present two simple heuristics to that problem. These heuristics
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are going to motivate the study of two special kinds of colourings that we study in detail in the next

chapters of this thesis.

2.3.1 Greedy colourings and the Grundy number

The colourings produced by the greedy algorithm, presented in the last section, satisfy the following

property:

For every (i, j) with j < i, every vertex v in Si has a neighbour in Sj . (P )

Otherwise v would have been coloured by an integer not greater than j. The converse also holds.

A colouring satisfying Property (P ) can be seen as the colouring obtained by the greedy algorithm

applied to any vertex ordering in which the vertices of Si precede those of Sj when i < j. We call a

colouring satisfying (P ) a greedy colouring.

The Grundy number of G is the largest k such that G has a greedy k-colouring. We denote this

number by Γ(G). The Grundy number and its ratio with the chromatic number measure how bad the

greedy algorithm may perform on a graph.

A greedy colouring is a proper colouring, therefore

χ(G) ≤ Γ(G).

Moreover, starting with a colouring that uses χ(G) colours and ordering the vertices according to

their colour classes, the greedy algorithm can be used to produce a greedy colouring that uses χ(G)
colours. Consequently, there is always a proper colouring that uses the minimum number of colours

that is a greedy colouring.

Finally, Property (P ) implies that if a vertex is coloured i in a greedy colouring, it has at least i−1
neighbours, so

Γ(G) ≤ ∆(G) + 1.

The Grundy function of a directed acyclic graph was defined in 1939 by Grundy [53] as the unique

function assigning to each vertex v the smallest nonnegative integer g(v) assigned to no vertex u such

that there is a directed edge from u to v. If the vertices of a graph are ordered σ = v1 < v2 < · · · < vn
and we direct each edge uv from u to v whenever u < v, then clearly the Grundy function g of the

resulting acyclic digraph is such that g(u) + 1 is the colour assigned by the greedy algorithm applied

to the graph with the order σ. Grundy gave this definition motivated by the study of directed graphs

corresponding to games.

Christen and Selkow [24], in 1979, were the first to define it in the context of graph colourings.

They characterized the Γχ-perfect graphs, which are the graphs such that for any induced subgraph

the Grundy number is equal to the chromatic number. They also characterized the Γω-perfect graphs,

which are the graphs such that for any induced subgraph the Grundy number is equal to the clique

number. In [36], Erdös et al. proved that the Grundy number was in fact the same as the ordered

chromatic number that was studied independently by Simmons [115].

Computational complexity of computing the Grundy number of a graph. In their article from

1982, Hedetniemi, Hedetniemi, and Beyer [10] proved that the Grundy number of a tree can be com-

puted in linear time and asked about the complexity of the problem in the general case. They observed

that the Grundy number of a tree T equals the largest order of a binomial tree that is contained in T ,

a binomial tree being recursively defined as follows:
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• B1 = K1.

• B2 = K2.

• The binomial tree of order k, denoted Bk, is constructed from a copy H of Bk−1 by adding

|V (H)| vertices and matching them with the vertices in V (H).

Figure 2.2: The binomial tree Bk, k = 1, 2, . . . , 5 together with a greedy colouring with Γ(Bk)
colours. The bold edges indicate the matching as in the definition.

See Figure 2.3.1. Clearly, Γ(B1) = 1 and Γ(B2) = 2. Given that Γ(Bk−1) = k − 1 one may

obtain a greedy colouring of Bk with k colours by giving colour 1 to the vertices that are added in the

construction of Bk and then greedily colouring the rest of the graph using the same ordering of the

vertices of Bk−1 that gives a greedy colouring with Γ(Bk−1) colours.

The algorithm in [10] computes, for every vertex of the tree, the maximum k such that the graph

contains a binomial tree of order k in which the vertex being considered is a vertex with maximum de-

gree (therefore the one that is coloured k in the greedy colouring with k colours from Bk). This yields

a linear time algorithm for computing the Grundy number of a tree. Telle and Proskurowski [116]

gave a linear time algorithm for partial k-trees, that correspond to the graphs of tree-width at most k.

The complexity of the problem in the general case was still open in 1995, appearing as Problem

10.4 in the monograph of Jensen and Toft [78]. It was in 1997 that Goyal and Vishvanathan [50]

proved the NP-completeness of the problem for a general graph. Later, Zaker [121] proved that the

problem is NP-complete even for the complement of a bipartite graph. In Chapter 3, we complement

the later result by showing that the problem is NP-complete for bipartite graphs. An implication of

our reductions is that any characterization of the graphs whose Grundy number equals to ∆(G) + 1
is unlikely to be checkable in polynomial time, under the classical complexity assumptions. In other

words, no Brooks’ type theorem shall exist for the Grundy number.

Approximation algorithms. Currently, there is no known constant-factor approximation algo-

rithm for the Grundy number of a general graph. Then only result concerning the approximability of
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the Grundy number for general graphs was obtained by Kortsarz [84]. He proved that there is a con-

stant c > 1 such that approximating the Grundy number within c is not possible, unless NP ⊆ RP ,

where RP (“Randomized Polynomial time”) is the class of decision problems for which there exists

a probabilistic Turing machine that runs in polynomial time in the size of the input that may reject a

correct input with probability at most 1
2 but that only accepts correct inputs. The inclusionNP ⊆ RP

is trivial, and NP 6= RP assuming the commonly believed conjectures P 6= NP and P = BPP ,

where BPP (“Bounded-error Probabilistic Polynomial time”) is the class of decision problems ad-

miting a probabilistic turing machine that runs in polynomial time in the size of the input but that may

reject (resp. accept) a correct (resp. incorrect) input with probability at most 1
3 . We refer to [3] for

more detailed information about these complexity classes.

For some specific classes of graphs, the Grundy number can be approximated within a constant

factor. It is the case of interval graphs, complement of bipartite graphs and complement of chordal

graphs. A graph G is said to be perfect if χ(H) = ω(H), for every induced subgraph H of G. The

chromatic number of a perfect graph can be determined in polynomial time [52]. The existence of

constant factor approximation algorithms for the above mentioned classes is a consequence of these

graphs being perfect and their Grundy number being bounded from above by a constant factor of their

clique number. These bounds are going to be proved later in this section. To conclude the discussion

about approximation algorithms, we mention that Kortsarz [84] observed that for a general graph

not even an o(n)-approximative algorithm is known for the Grundy number, leaving the problem of

finding such algorithm as an open problem.

The greedy algorithm and online colouring algorithms. The greedy algorithm can be seen as an

online colouring algorithm. In an online colouring algorithm, the vertices of the graph are coloured in

some order v1, v2, . . . , vn. The colour of vi is assigned by only looking at the subgraph of G induced

by the set {v1, . . . , vi} and the assigned colour of vi is never changed.

One way to analyze and compare online colouring algorithms is to consider their performance

ratio. The performance ratio of an online colouring algorithm is the maximum ratio of the number of

colours used by the algorithm to the chromatic number of the graph, ranging over all input graphs. In

a formal way, let ΓA(G) be the maximum number of colours used by the online colouring algorithmA

over all possible vertex orderings of graphG; the performance ratio ofA is the valuemaxG

{

ΓA(G)
χ(G)

}

.

An online colouring algorithm with sublinear performance ratio was given by Lovázs, Saks and

Trotter [92], the performance ratio beingO( n
log∗ n). Vishwanathan [119] gave a randomized algorithm

with performance ratio O( n√
logn

). His algorithm was modified in [56] to improve the performance

ratio to O( n
logn). Halldorsson and Szegedy [57] gave lower bounds on the performance ratio of any

online colouring algorithm:

Theorem 2.3.1 ([57]). The performance ratio of any deterministic online colouring algorithm is at

least 2n
log2n

.

Theorem 2.3.2 ([57]). The performance ratio of any randomized online colouring algorithm is at

least n
16log2n

.

The greedy algorithm has a good performance ratio on certain classes of graphs. Let the perfor-

mance ratio of an online colouring algorithmA on the class of graphsC be the valuemaxG∈C
{

ΓA(G)
χ(G)

}

.

The performance ratio of the greedy algorithm on the class of interval graphs received particular

attention. In 1988, Chrobak and Slusarek [25] introduced an algorithm, called Buddy Decreasing

Size to solve the Dynamic Storage Allocation problem, and this algorithm used the greedy colouring

algorithm on interval graphs as a subroutine. Motivated by that application, Kierstead [81] proved
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that the performance ratio of the greedy algorithm on interval graphs is at most 40, what implies that

Γ(G) ≤ 40ω(G) for an interval graph G. In 1995, Kierstead and Qin [82] improved this bound to

26. Pemmaraju, Raman and Varadarajan [108] improved this bound to 10 and mentioned that they

believed it could be reduced to 8. The proof that Γ(G) ≤ 8ω(G) appears in Raman’s thesis [109],

another proof also being given by Narayanaswamy and Babu [104].

Gyárfás and Lehel [54] proved many results concerning the performance ratio of the greedy algo-

rithm on other particular graph classes:

Proposition 2.3.1 ([54]). If G is a split graph, then Γ(G) ≤ ω(G) + 1.

Proof. Let X ∪ Y be the parts of G, where X is complete with |X| = ω(G) and Y is a stable set.

Clearly, no vertex of Y can be coloured greater than ω(G) in a greedy colouring, as it has degree at

most ω(G)− 1. Suppose there is a greedy colouring c in which a vertex v ∈ X has c(v) = ω(G)+ 2.

It cannot be the case where all the neighbours of v with a colour in {1, 2, . . . , ω(G) + 1} are all

in X , since |X| = ω(G). Let k be the maximum value from {1, 2, . . . , ω(G) + 1} such that the

only neighbours of v coloured k are in Y , and let u ∈ Y be one such neighbour. Since all the

neighbours of u are in X , the colours {1, 2, . . . , k − 1} must all appear in X . Then the colours

{1, 2, . . . , k − 1} ∪ {k + 1, k + 2, . . . , ω(G) + 1} ∪ {ω(G) + 2} all appear in X , a contradiction to

the fact that |X| = ω(G).

Proposition 2.3.2 ([54]). If G is the complement of a bipartite graph, then Γ(G) ≤ 3
2ω(G).

Proof. Let G = (A ∪ B,E) and consider a greedy colouring c with Γ(G) colours. Since G is

the complement of a bipartite graph, α(G) ≤ 2. Therefore any colour class is of size at most 2.

Let X be the set of pairs (a, b) such that a ∈ A, b ∈ B and a and b form a colour class, and

let Y the set of vertices that are alone in their colour classes. Clearly, |X| + |A ∩ Y | ≤ ω(G)
and |X| + |B ∩ Y | ≤ ω(G). Moreover, since c is a greedy colouring Y is a clique, and therefore

|Y | ≤ ω(G). From these inequalities, Γ(G) = |X|+ |Y | ≤ 3
2ω(G).

Proposition 2.3.3 ([54]). If G is the complement of a chordal graph, then Γ(G) ≤ 2ω(G)− 1.

Proof. The proof is by induction on |V (G)|. The proposition is true if G is a complete graph. Let

C1, C2, . . . , Ck be the colour classes of a greedy colouring of G with k colours. This corresponds to a

clique partition C1, C2, . . . , Ck of V (G) in which Ci is a maximal clique on the graphG−(C1∪ . . .∪
Ci−1). To obtain the desired result, we shall show that α(G) ≥ k+1

2 , which implies ω(G) ≥ k+1
2 .

Let G
′
= G − V (C1). If G

′
has more components than G, then the claim easily follows from

the fact that C2, C3, . . . , Ck is a clique partition of G
′

and the inductive hypothesis. Otherwise, C1

intersects at most one other maximal clique in G, and therefore it should contains a simplicial vertex.

This vertex can be added to any of the maximal cliques C2, C3, . . . , Ck of G
′

and induction can be

used to show that:

α(G) ≥ α(G
′
) + 1 ≥

(k − 1) + 1

2
+ 1 >

k + 1

2
.

Proposition 2.3.4 ([54]). If G is a cograph, then Γ(G) = χ(G).

Proof. It is well known that a graph is a cograph if and only if it consists of a single vertex or it is

obtained from graphsG1 andG2 by applying either the join or the disjoint union operation. The result

follows by induction on |V (G)|, the base case being that of a single vertex that is trivial.
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First, suppose that G = G1 × G2. Then, Γ(G1 × G2) = Γ(G1) × Γ(G2) = χ(G1) × χ(G2),
applying the inductive hypothesis.

In case G = G1 ⊕G2 we have that Γ(G1 +G2) = max{Γ(G1),Γ(G2)} = max{χ(G1), χ(G2)},

again by the inductive hypothesis.

The graphs in the previous propositions are all subclasses of perfect graphs, which implies that

they satisfy χ(G) = ω(G). Therefore the bounds given by Gyárfás and Lehel show that the perfor-

mance ratio of the greedy algorithm is constant for these classes.

For general graphs the perfomance ratio of the greedy algorithm can be rather disappointing:

Theorem 2.3.3. The performance ratio of the greedy algorithm can be as bad as n
4 .

Proof. LetMk,k be the bipartite graph with V (Mk,k) = {v1, v2, . . . , vk, w1, w2, . . . , wk} andE(Mk,k)
= {viwj | i 6= j}. Consider the colouring c obtained by the greedy algorithm applied to the ordering

v1, w1, v2, w2, . . . , vk, wk. It is easy to see that c(vi) = c(wi) = i, and therefore Γ(Mk,k) = k, since

∆(Mk,k) = k − 1 and the Grundy number is at most the maximum degree plus one. As Mk,k is

a bipartite graph, χ(Mk,k) = 2. Consequently, since Mk,k is a graph with |V (Mk,k)| = 2k that is

coloured in the worst-case by the greedy algorithm with
|V (Mk,k)|

2 = k colours, we have the desired

performance ratio of n
4 .

Observe that the the family of bipartite graphs {Mk,k | k ≥ 2} that are defined in the proof of

Theorem 2.3.3 is such that the difference between the Grundy number and the chromatic number is

not bounded even for bipartite graphs. Also observe that bipartite graphs are perfect, so despite the

performance ratio of the greedy algorithm being bounded by a constant on some subclasses of perfect

graphs, this is not true for the class of all perfect graphs.

Expected behaviour of the greedy algorithm. Although there are graphs with Grundy number

arbitrarily far from the chromatic number, the greedy algorithm has a good expected behaviour on

the random graph Gn,p. Grimmett and McDiarmid [51] proved that for G ∈ Gn,p, E[Γ(G)] ≤
(1 + o(1)) n

logn . In the same paper they proved that E[χ(G)] ≥ (1 − o(1)) n
2logn , thus implying that

E[Γ(G)] = (2 + o(1))E[χ(G)]. On the other hand, Kucera [91] considered the randomized version

of the greedy colouring algorithm, in which the input vertex ordering is randomly chosen. He proved

that, given constants c1, c2, c3 > 0, for every sufficient large n there is a graph such that the probability

that the randomized greedy algorithm uses less than (1−c2)
n

logn colours when applied toG is o(n−c3).
Thus, even a polynomial number of applications of the randomized greedy algorithm is not likely to

give a good result for some graphs.

Fixed-parameter-complexity of determining the Grundy number. We now go back to algo-

rithmic aspects of the Grundy number, and consider the problem of deciding if the Grundy number

of a graph is at least a fixed value k. Zaker [121] introduced the concept of a k-atom, and used it to

obtain a necessary and sufficient condition for a graph to have Grundy number at least k. The family

of the k-atoms, which we denote by Ak, is defined as follows.

• A1 = {K1}.

• A2 = {K2}.

• An element from Ak is constructed from an element H ∈ Ak−1 as follows. Fix a value 1 ≤
m ≤ |V (H)| and add a copy of the stable set Sm to H . Then, construct a matching between

the vertices in H and Sm that saturates the vertices in Sm. Finally, make each vertex from H
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that is not saturated by the matching adjacent to exactly one vertex in Sm. In other words, that

corresponds to adding a maximal (with respect to inclusion) stable dominating set to the graph

H . Observe that the binomial tree Bk belongs to Ak and is obtained by adding in each recursive

step a matching of the same size as the graph from the previous step..

Figure 2.3: The family Ak, k = 1, 2, . . . , 4.

See Figure 2.3. Clearly, the only 1-atom has Grundy number 1, while the only 2-atom has Grundy

number 2. Similarly with what happens with the binomial tree Bk, a k-atom admits a greedy colouring

with k colours. To obtain a greedy colouring of G ∈ Ak with k colours, assuming that every member

of Ak−1 has Grundy number k − 1, one should assign colour 1 to the vertices that are added in the

constructive definition of Ak and then greedily colour the rest of the graph using an ordering of the

vertices corresponding to a member of Ak−1 that gives a greedy colouring with Γ(Ak−1) colours.

Theorem 2.3.4 ([121]). For a given graph G, Γ(G) ≥ k if and only if G contains a k-atom as an

induced subgraph.

Proof. It is easily seen by the recursive definition of the atoms that a k-atom admits a Grundy colour-

ing with k colours. Therefore if G contains a k-atom, then Γ(G) ≥ k.

Now suppose Γ(G) ≥ k and let S1, S2, . . . , Sk be the colour classes of a Grundy colouring of

G with Γ(G) colours. We prove by induction on k that G contains a k-atom. let H = G\S1. Then

clearly Γ(H) ≥ k − 1 and by induction we have that H contains a (t − 1)-atom H ′. But S1 is a

maximal stable set of G, therefore every vertex of H ′ is adjacent to a vertex from S1 in G. Then it

is clear by the construction of a k-atom that there is a set of vertices S ⊆ S1 that together with the

vertices in H ′ induces a k-atom in G.

Observe that the requirement in Theorem 2.3.4 that the k-atom is contained as an induced sub-

graph is important. For example C4 contains B3 (which is P4) as a subgraph but Γ(C4) = 2. This
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observation implies that the removal of an edge may increase the Grundy number of a graph. This is

a remarkable difference between χ(G) and Γ(G), since for any subgraph H of G, χ(H) ≤ χ(G). On

the other hand, as pointed in Proposition 1 of [4], if H is an induced subgraph of G, Γ(H) ≤ Γ(G).
Theorem 2.3.4 has algorithmic consequences on the computation of the Grundy number of graphs.

Corollary 2.3.1 ([122]). A connected graph G satisfies Γ(G) = 2 if and only if it is a complete

bipartite graph.

Proof. Suppose G is connected and Γ(G) = 2. Since a greedy colouring is a proper colouring, G
must be bipartite. Let A and B be the parts of G. If G is not complete bipartite, there exists u ∈ A
and v ∈ B such that uv /∈ E(G). But then, since G is connected and bipartite, dist(u, v) ≥ 4, and so

G contains an induced P4. Therefore Theorem 2.3.4 implies that Γ(G) ≥ 3, since P4 = B3.

The converse is trivial, since a complete bipartite graph does not induces neither a P4 nor a K3,

which are the only 3-atoms.

Corollary 2.3.2 ([121]). Let k be a fixed integer. Determining whether Γ(G) ≥ k for a given graph

G can be done in polynomial time.

Proof. We first observe that there is a finite number f(k) of k-atoms that depends only on k. More-

over, a member of Ak has at most 2k−1 vertices. Therefore we are able to verify if G contains a given

k-atom in time O(f(k)n2
k−1

) = O(n2
k−1

).

The algorithm given in Corollary 2.3.2 is polynomial but the order of the polynomial depends

on k. Therefore a natural question is whether there is an FPT algorithm to decide if a graph G has

Γ(G) ≥ k, when k is the parameter. We go back to that and other related questions in Chapter 5.

To end the discussion about the existence of greedy colourings for a fixed value, we mention that

Christen and Selkow [24] considered the question of whether a graph G has greedy colourings for

every value k such that χ(G) ≤ k ≤ Γ(G). They answer the question in the positive. The proof we

present now is different from the original and is simpler.

Theorem 2.3.5 ([24]). Let G be a graph and k an integer such that χ(G) ≤ k ≤ Γ(G). There is a

greedy colouring of G that uses exactly k colours.

Proof. We proceed by induction on χ(G), the result holding trivially for stable sets. Let G be a graph

with chromatic number χ(G) > 1. Let χ ≤ k ≤ Γ(G). If k = χ(G) then trivially there is a greedy k-

colouring of G, so we may assume that k ≥ χ(G)+ 1. Let (S1, S2, . . . , SΓ(G)) be a greedy colouring

of G. Then S1 is a dominating stable set in G. Let us consider G′ = G−S1. Then Γ(G′) = Γ(G)−1
and χ(G′) ≤ χ(G). So χ(G′) ≤ k − 1 ≤ Γ(G′) and by the induction hypothesis, G′ admits a greedy

(k − 1)-colouring (S′
2, . . . , S

′
k). Thus (S1, S

′
2, . . . , S

′
k) is a greedy k-colouring of G.

Grundy number of graphs with few induced P4’s. In Proposition 2.3.4 we presented the proof

that cographs are such that their chromatic number is equal to their Grundy number. Since a cograph is

perfect, this implies that the Grundy number of a cograph can be computed in polynomial time. Cam-

pos et. al [21] gave a polynomial algorithm for determining the Grundy number of (q, q − 4)-graphs,

for a fixed q ≥ 4, that are the graphs such that every q vertices induces at most q − 4 P4’s. Observe

cographs and P4-sparse graphs are the particular cases q = 4 and q = 5 respectively. Araújo and

Linhares Sales [2] gave polynomial algorithms for subclasses of P5-free graphs that strictly contain

P4-free graphs.
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Grundy number of graph products. The Grundy number of graph products was investigated by

some authors. Asté, Havet and Linhares-Sales [4] studied the Grundy number of the lexicographic

and cartesian product of graphs. They proved that Γ(G[H]) ≤ 2Γ(G)−1(Γ(H) − 1) + Γ(G) and that

in case Γ(G) = ∆(G) + 1 or G is a tree, Γ(G[H]) = Γ(G)× Γ(H). They also prove that Γ(G�H)
is not upper bounded as a function of Γ(G) and Γ(H), but that Γ(G�H) ≤ ∆(G) · 2Γ(H)−1 +Γ(H).
Campos et. al [18] show that the Grundy number of the direct productG×H and strong productG⊠H
are also not bounded as a function of Γ(G) and Γ(H) and disprove some conjectures concerning the

Grundy number of graph products.

2.3.2 b-colourings and the b-chromatic number

A vertex v is said to be a b-vertex in a colouring c if c(v) = i and v has at least one neighbour in every

colour class Sj , j 6= i. Consider the following colouring heuristic.

b-COLOURING ALGORITHM

INPUT: G = ({v1, v2, . . . , vn}, E)
OUTPUT: a proper colouring c

1. For every 1 ≤ i ≤ n, set c(vi) = i

2. While c has a colour class Sj with no b-vertices do:

2.1 For every v ∈ Sj do:

2.1.1 Assign to v a colour that does not appear in c(N(v)).

2.2 Remove Sj .

3. return c.

At each iteration, the b-colouring algorithm modifies the current colouring and eliminates a colour

class without b-vertices by changing the colours of all its vertices. It stops when in the current colour-

ing every colour class has a b-vertex. We call a colouring satisfying this property a b-colouring. See

Figure 2.4. The b-chromatic number of G, denoted χb(G), is the largest integer k such that G admits

a b-colouring with k colours. In the same way as the Grundy number, the b-chromatic number and its

ratio with the chromatic number measure how bad the b-colouring algorithm may perform on a graph.

A vertex colouring with χ(G) colours is necessarily a b-colouring, for otherwise we could elimi-

nate one colour class from it and obtain a colouring with less than χ(G) colours. Then,

χ(G) ≤ χb(G).

But as it happens in the case of the Grundy number, the difference between the b-chromatic num-

ber and the chromatic number of a graph can be arbitrarily big.
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Figure 2.4: Two b-colourings of the 3-cube obtained from distinct executions of the b-colouring algo-

rithm to the same initial colouring.
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Proposition 2.3.5 ([70]). For any positive integer k, there is a graph G such that χb(G)−χ(G) ≥ k.

Proof. Set n = k + 2 and consider the bipartite graph Mn,n such that V (Mn,n) = {v1, v2, . . . , vn,
w1, w2, . . . , wn} and E(Mn,n) = {viwj | i 6= j}. Now consider the colouring c such that c(vi) =
c(wi) = i. Clearly, c is a b-colouring with n colours, and since ∆(Mn,n) = n − 1, we get that

χb(Mn,n) = n. SinceMn,n is a bipartite graph, χ(Mn,n) = 2. So χb(G)−χ(Mn,n) = n−2 = k.

Although there are graphs with b-chromatic number far appart from the chromatic number, Kra-

tochvı́l, Tuza and Voigt proved that the b-chromatic number of the random graph Gn,p is not much

larger than the chromatic number. They proved that for a fixed edge probability 0 < p < 1 and

q = 1− p,
(

1
2 − o(1)

) n log 1
q

logn ≤ E[χb(G)] ≤

(

n log 1
q

logn

)

.

Now observe that a b-vertex in a b-colouring with k colours must have at least k − 1 neighbours,

one in each other colour class. As a consequence,

χb(G) ≤ ∆(G) + 1.

Irving and Manlove [70] were the first to define b-colourings, in 1999. They also introduced an

upper bound for the b-chromatic number of a graph G that is better than ∆(G) + 1. If G admits a

b-colouring with k colours, then in that colouring each of the k colour classes must have a b-vertex,

which should therefore be of degree at least k − 1. As a consequence, there should be k vertices of

degree at least k − 1 in G. The m-degree of a graph G is the largest integer m such that G has m
vertices of degree at least m− 1, and is denoted by m(G).

Clearly,

χb(G) ≤ m(G).

In what follows, we will say that a vertex is dense if it has degree at least m(G) − 1. The upper

bound m(G) may be computed in linear time. To do so, it suffices to order the vertices v1, v2, . . . , vn
in a way that d(vi) ≥ d(vi+1), 1 ≤ i ≤ n− 1, and compute the maximum k such that d(vk) ≥ k− 1.

Already in [70], Irving and Manlove show that the b-chromatic number can be arbitrarily far apart

from m(G).

Proposition 2.3.6 ([70]). For any positive integer k, there is a graphG such thatm(G)−χb(G) = k.

Proof. Set n = k + 1. Consider the complete bipartite graph Kn,n. Clearly, m(Kn,n) = n + 1.

Now suppose by contradiction that χb(Kn,n) > 2 and that c is a b-colouring with χb(Kn,n) colours.

Moreover, let A and B are the parts of Kn,n. Then there are at least two b-vertices with different

colours in one of the parts of Kn,n, say u, v ∈ A. Since v is adjacent to every vertex in B, c(v) cannot

appear in B. Since u is a b-vertex it should have a neighbour with colour c(v), but all its neighbours

are in B and so we get a contradiction. Therefore, m(Kn,n)− χb(Kn,n) = n− 1 = k.

The b-chromatic number of trees and graphs of large girth. Irving and Manlove also proved

that the b-chromatic number of a tree can be computed in linear time. Their proof introduces the

notion of a pivoted tree. A tree T is a pivoted tree if T has exactly m(T ) dense vertices and a special

vertex v, that is called a pivot, such that:

(i) v is not dense.

(ii) Every dense vertex is adjacent to v or to a dense vertex adjacent to v.

(iii) Every dense vertex adjacent to v and another dense vertex has degree m(T )− 1.
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See Figure 2.5.

Proposition 2.3.7 ([70]). A pivoted tree is such that χb(T ) < m(T ).

Proof. First observe that in any b-colouring of T with m(T ) colours, all dense vertices have to be

coloured with distinct colours from {1, 2 . . . ,m(T )}, since there are only m(T ) dense vertices. Now,

if the pivot v is coloured i, then obviously none of the dense vertices adjacent to it may be coloured

i, as the colouring is proper. Let d be the dense vertex that is coloured i, and let d′ be its dense

neighbour that is adjacent to v, whose existance is assured by (ii). Since d′ is dense, it should be a

b-vertex, and because of (iii) it has exactly m(T ) − 1 neighbours. But d′ is adjacent to v and d, that

are both coloured i, so it does not have enough neighbours for the other m(T )− 1 colours that should

appear in its neighbourhood, a contradiction.

Figure 2.5: T1 is a non-pivoted tree and T2 is a pivoted tree. m(T1) = m(T2) = 4, but χb(T1) = 4
while χb(T2) = 3.

Irving and Manlove prove that a pivoted tree T can be coloured with m(T ) − 1 colours, and

therefore χb(T ) = m(T )− 1. Furthermore, they show that if T is not pivoted, there is always a set of

m(T ) vertices that can play the role of b-vertices in a b-colouring with m(T ) colours, and therefore

a non-pivoted tree T satisfies χb(T ) = m(T ). Their proofs yelds a linear time algorithm to find the

b-chromatic number of a tree. In Chapter 4 we define the tight graphs, which are graphs such that

they have exactly m(G) dense vertices and such that every dense vertex has degree exactly m(G)− 1
neighbours. We generalize the notion of pivoted tree and give a sufficient condition for a tight graph

G to satisfy χb(G) < m(G).

In her Phd thesis [114] Silva observed that Irving and Manlove’s algorithm for trees also works

on graphs with girth at least 11, and consequently these graphs also satisfy χb(G) ∈ {m(G) −
1,m(G)} and admit a polynomial time algorithm to compute their b-chromatic number. This result

was improved by Campos, Farias and Silva [17], who proved that the b-chromatic number of a graph

of girth at least 9 can also be computed in polynomial time and is also in {m(G)− 1,m(G)}.

The differencem(G)−χ(G) for graphs with structure similar to a tree. The results mentioned

in the last paragraphs shows that the difference m(G) − χb(G) is at most one when G is a tree or a

graph with sufficiently large girth. It is natural to ask if this is the case for other graphs that have a

structure similar to a tree, like cacti, block graphs, k-trees, etc. This was proved true for cacti [19, 114]

and outerplanar graphs [99, 114]. On the other hand, it was proved in Silva’s Phd Thesis [114] that

this difference can be arbitrarily large for block graphs, series-parallel graphs and line graphs of trees.

All the constructions make use of large complete bipartite subgraphs (not necessarily induced) in

order to achive this difference. Inspired by the results they obtained while investigating the cartesian
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product of trees by paths, cycles and stars [98] and also by other existing results concerning graphs

that doesn’t contain K2,3 as a subgraph [19, 39, 70, 88, 86], Maffray and Silva conjectured that if G
has no K2,3 as subgraph, then χb(G) ≥ m(G)− 1, the only exception being the cartesian product of

two triangles, that they prove to have χb(G) < m(G)− 1.

Computational hardness results. The problem of determining the b-chromatic number of a

graph was already shown to be NP-Hard in the paper of Irving and Manlove [70]. Kratochvı́l, Tuza

and Voigt [90] proved that, given a graph G and an integer k, deciding if G admits a b-colouring with

k colours is an NP-complete problem even if G is a connected bipartite graph and k = m(G) =
∆(G) + 1. As a consequence, no Brooks’ like theorem is likely to exist for the b-chromatic number.

In Chapter 4, we prove that deciding if a graph admits a b-colouring with k colours, k given as input,

is an NP-complete problem even if the graph is a connected chordal graph.

There is no known approximation algorithm for the b-chromatic number of graphs. Corteel,

Valencia-Pabon and Vera[27] proved that for all ǫ > 0, the b-chromatic number cannot be approx-

imated by a factor of 120
133 − ǫ in polynomial time, unless P = NP.

Singularities of b-colourings. b-colourings have many singularities when compared to other

kinds of colourings. For example, we already mentioned that if H is an induced subgraph of G and

Γ(H) = k, then Γ(G) ≥ k, the analogous statement being true for the chromatic number. This

property allows the definition of atoms and critical graphs, respectively in the case of the Grundy

number and the chromatic number. This property does not holds for b-colourings.

Proposition 2.3.8 ([90]). For any positive integer k, there is a graph G and an induced subgraph H
of G such that χb(H)− χb(G) ≥ k.

Proof. Let n = k + 3 and consider the graph defined as follows. Start with the complete bipartite

graph Kn,n and remove a matching of size n− 1.

We claim that the resulting graph G has b-chromatic number 2. Suppose A and B are the parts of

G. Since we started with a complete bipartite graph and removed only removed n − 1 edges, there

is a pair u ∈ A, v ∈ B such that N(u) = B and N(v) = A. Now suppose c is a b-colouring of G
with at least 3 colours. We may assume without loss of generality that c(u) = 1 and c(v) = 2. But

since N(u) = B, the colour 1 cannot appear in B, and with a similar argument we have that colour

2 cannot appear in A. But a b-vertex of colour 3 should be adjacent to at least one vertex of colour 1

and colour 2, a contradiction.

Now it suffices to see that G contains an induced subgraph H which is isomorphic to Mn−1,n−1,

and we already observed that χb(Mk,k) = k. Then, χb(H)− χb(G) = n− 1− 2 = k.

Another singularity of b-colourings is presented now. Given a graph G, the set of values such that

the graphs admits a proper colouring is contiguous, in the sense that for every χ(G) ≤ k ≤ |V (G)|
there exists a k-colouring. A similar statement can be said about the greedy colourings, as shown in

Theorem 2.3.5: for every χ(G) ≤ k ≤ Γ(G) there is a greedy colouring with k colours. The case of

b-colourings is different.

Proposition 2.3.9 ([90]). For every positive k, there exists a graph G that admits a b-colouring with

p colours if, and only if, p ∈{2, k}.

Proof. Consider again the bipartite graphMk,k such that V (Mk,k) = {v1, v2, . . . , vk, w1, w2, . . . , wk}
and E(Mk,k) = {viwj | i 6= j}. Since we already observed that χb(Mk,k) = k and since χ(Mk,k) =
2, then there are b-colourings of Mk,k with p ∈ {2, k} colours.
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Now suppose c is a b-colouring with q colours, 2 < q < k, and let A and B be the parts of Mk,k.

Since q ≥ 3, we may assume without loss of generality that there are two b-vertices from c that belong

to A. Again without loss of generality, we may assume that v1 and v2 are those b-vertices, and that

c(v1) = 1 and c(v2) = 2. But then, as v1 is a b-vertex, it should have a neighbour that is coloured 2,

and this vertex has to be w2, as all other vertices of B are adjacent to v2. With a similar argument,

we get that c(w1) = 1. All the vertices in V (Mk,k)\{v1, v2, w1, w2} should receive colour greater

than 2, since they are all adjacent to a vertex with colour 1 and 2. Now we can assume again without

loss of generality that either v3 or w3 is a b-vertex of colour 3, and apply the same argument as before

to obtain that c(v3) = c(w3) = 3 and that the vertices in V (Mk,k)\{v1, v2, v3, w1, w2, w3} should

have colour greater than 3. By repeatedly using this argument we get a contradiction, as we assumed

q < k.

The b-spectrum of graph G = (V,E) is the set Sb(G) ={k | G admits a b-colouring with k
colours}. Kratochvı́l, Tuza and Voigt [90] asked for which sets of positive integers S there exists

graphs G with Sb(G) = S. This question was answered by Barth, Cohen and Faik [8].

Theorem 2.3.6 ([8]). For every finite non-empty set I ⊂ N\{0, 1} there is a graph G such that

Sb(G) = I .

b-continuity. Proposition 2.3.9 and Theorem 2.3.6 motivate the definition of b-continuous graphs.

A graph G is said to be b-continuous if Sb(G) ={k ∈ Z | χ(G) ≤ k ≤ χb(G)}. To decide if

a graph is b-continuous is a NP-complete problem [8]. Some graph classes have been proved to be

b-continuous, like chordal graphs [38, 79], P4-sparse graphs [12], and the Kneser graphs K(n, 2), for

n ≥ 17 [76]. Other results concerning the b-continuity of graphs can be found in [38, 79, 8, 12].

b-perfect graphs. Hoáng and Kouider [64] introduced the notion of a b-perfect graph. A graph is

b-perfect if χb(H) = χ(H) for all induced subgraphH ofG. In [64] they characterize all b-perfect bi-

partite graphs and P4-sparse graphs by minimal forbidden induced subgraphs. Hoàng, Linhares Sales

and Maffray [65] gave a list of 22 minimal forbidden subgraphs for b-perfect graphs and conjectured

that a graph is b-perfect if and only if it does not contains any graph from this list. They proved this

is true for diamond-free graphs and graphs with chromatic number at most 3. The conjecture was

proved to be true by Hoàng, Maffray and Mechebbek [66].

The b-chromatic number of d-regular graphs. There are a number of results about d-regular

graphs with girth at least 5 [71, 85, 86, 11, 16]. Kratochvı́l, Tuza and Voigt [90] were the first to

consider b-colourings of d-regular graphs, and they proved the following:

Proposition 2.3.10 ([90]). If G is a d-regular graph with at least d4 vertices, then χb(G) = d+ 1.

Proof. We claim that G has a set of vertices D = {v1, v2, . . . , vd+1} such that dist(vi, vj) ≥ 4,

for all i 6= j. Such a set may be found as follows. First choose an arbitrary vertex v1 and then

remove the vertices that are at distance at most 3 from it. The number of removed vertices is at most

1+ d+ d(d− 1)+ d(d− 1)(d− 1) < d3. We then proceed in the same way on the resulting graph in

order to choose v2, and so on to choose v3, . . . , vd. Since the number of removed vertices altogether

is smaller than d4, there remains at least one vertex that may be chosen as vd+1 and the claim follows.

Now it suffices to see that we may colour vi with colour i + 1, for 1 ≤ i ≤ d + 1, and colour its

neighbours with distinct colours in {1, . . . , vi−1, vi+1, . . . , vd+1}, so that vi is a b-vertex of colour i.
Because of the distance constraints on the vertices of D, this partial colouring is proper, and all the

colour classes have a b-vertex. It remains to show that this (d + 1)-colouring can be extended to the
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entire graph, as some vertices may be still uncoloured. Since ∆(G) = d, every uncoloured vertex has

at most d distinct colours that already appear in its neighbourhood, and therefore there is always one

colour that may be assigned to it, since there are d+ 1 available colours.

An implication of this proposition is that there is only a finite number of d-regular graphs with

χb(G) < d+ 1, and as a consequence determining the b-chromatic number of a d-regular graph may

be done in polynomial time. Kouider [85] proved that any d-regular graph of girth at least 6 admits a

b-colouring with d+1. Kouider and Sahili [86] asked if this is true for graphs with girth 5 and solved

it for the case where the graphs have no C6 as subgraph. Blidia, Maffray and Zemir [11] pointed that

the Petersen graph is a counter-example to their question, as it has girth 5 and b-chromatic number

equal to 3. They conjectured that the Petersen graph is the only counter-example, and show that for

d ≤ 6, every d-regular graph of girth 5 that is not the Petersen graphs satisfies χb(G) = d+1. Cabello

and Jakovac [16] showed that a d-regular graph of girth 5 satisfies χb(G) ≥ ⌊d+1
2 ⌋.

b-chromatic number of graphs with few inducedP4’s. The b-chromatic number of graph classes

with few P4’s was considered by some authors. Bonomo et. al [12] proved that the b-chromatic

number of a P4-sparse graph G can be computed in O(|V (G)|3)-time. They asked if this result could

be extended to distance-hereditary graphs, that are graphs in which every induced path is a shortest

path. We answer in the negative to this question by showing that determining the b-chromatic number

of a chordal distance-hereditary graphs is NP-hard, what is done in Chapter 4. We also show that the

b-chromatic number can be determined in linear-time for a subclass of the P4-sparse graphs, namely

the tight P4-sparse graphs, which are defined in Chapter 4. Some extensions of the results in [12]

were considered. Bonomo, Koch and Velasquez [118] proved that the b-chromatic number can be

determined in polynomial-time for a P4-tidy graph, that is a graph in which for every set A inducing a

P4 there is at most one vertex x such that the subgraph induced byA∪{x} has more than one induced

P4. Its easy to see that a P4-sparse graph is P4-tidy. Campos et. al [20] gave a polynomial-time

algorithm for the class of (q, q − 4)-graphs, for a fixed q ≥ 4, that is the class of graphs such that

every set of q vertices induces at most q − 4 P4’s. Observe that cographs and P4-sparse graphs are

the particular cases q = 4 and q = 5 respectively. There is no containment relationship between the

classes P4-tidy and (q, q − 4)-graphs.

b-chromatic number of graph products. The b-chromatic number of graph products was also

studied. The cartesian product of complete graphs, stars, paths and cycles was considered in [77, 88,

98]. In particular, Kouider and Mahéo [88] prove that χb(G�H) ≥ χb(G) + χb(H) − 1 when both

G and H have b-colourings with χb(G) and χb(H) colours respectively in which the b-vertices are a

stable set. The b-chromatic number of the strong product, lexicographic product and direct product is

studied in [72].

2.4 The relations between the colouring parameters

In this section we discuss the relations between the colouring parameters that we introduced before

and present the partial Grundy colourings, that may be seen as a relaxation of greedy colourings and

also of b-colourings.

Observe that in general there is no relation between χb(G) and Γ(G), as shown in the following

propositions.

Proposition 2.4.1. For every positive k, there exists a graph G with Γ(G)− χb(G) = k.
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Proof. Let n = k + 1 and consider again the graph G obtained from the complete bipartite graph

Kn,n by removing a matching of size n− 1.

We have already shown in Proposition 2.3.8 that G has b-chromatic number 2. G contains

an induced subgraph H which is isomorphic to Mn−1,n−1, and we proved in Theorem 2.3.3 that

Γ(Mp,p) = p, p ≥ 2. One can start with the greedy colouring of H from Theorem 2.3.3 that uses

n−1 colours and then assign colours n and n+1 to the two vertices in V (G)\V (H). By doing so we

obtain a greedy colouring of G with n+ 1 colours and since ∆(G) = n we have that Γ(G) = n+ 1.

Therefore Γ(G)− χb(G) = n+ 1− 2 = k.

Proposition 2.4.2. For every positive k, there exists a graph G with χb(G)− Γ(G) = k.

Proof. Let n = k + 2 and let the consider the star K1,p−1. Now let G be the disjoint union of n
copies S1, S2, . . . , Sn of the star of order n. It is clear that m(G) = n, and that a b-colouring with n
colours may be obtained by colouring the vertex of degree n−1 from the star Si, say vi, with colour i,
and then colouring its neighbours with all the colours different from i, therefore making vi a b-vertex.

Then, χb(G) = n.

Now, the Grundy number of G is equal to the maximum of the Grundy number of its connected

components. But it is easy to see that Γ(K1,n−1) = 2, therefore we have that χb(G) − Γ(G) =
n− 2 = k

Given a colouring c, a vertex v is said to be a Grundy vertex if it has at least one neighbour in

every colour class Sj , j < c(v). A greedy colouring is therefore a colouring in which every vertex

is a Grundy vertex. The concept of a greedy colouring can be relaxed as follows. A partial greedy

colouring is a proper colouring such that each colour class contains at least one Grundy vertex. The

partial Grundy number ∂Γ(G) is the maximum k such thatG has a partial greedy k-colouring. Partial

greedy colourings were introduced by Dunbar et al. [31] and studied by Erdős et al. [37], Shi et al.

[113], and Balakrishnan and Kavaskar [7]. Erdös et al. [37] related partial greedy colourings to other

graph properties such as the parsimonious proper colouring number and the maximum degree.

In any partial greedy colouring with k colours, the colour class Sk should have a vertex with

neighbours in all other k − 1 colour classes, and therefore k − 1 ≤ ∆(G), therefore

∂Γ(G) ≤ ∆(G) + 1.

Moreover, as a partial greedy colouring is a proper colouring,

χ(G) ≤ ∂Γ(G).

A greedy colouring is a partial greedy colouring, consequently

Γ(G) ≤ ∂Γ(G).

The same can be said about the b-chromatic number: any b-colouring is a partial greedy colouring.

Therefore

χb(G) ≤ ∂Γ(G).

Therefore the partial Grundy number can be seen as an upper bound to the Grundy and b-chromatic

numbers of a graph. One could expect that in contrast to what happens with the Grundy number, the

partial Grundy number could be easy to compute. This is not the case, as Shi et al. [113] proved that

deciding if ∂Γ(G) = ∆(G) + 1 is a NP-complete problem even when restricted to a bipartite or a
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chordal graph. They also show that the ∂Γ(G) can be computed in polynomial time, given that G
has girth larger than 8, thus implying that the partial Grundy number can be computed in polynomial

time for trees. It is also shown that it can be computed in polynomial time for r-regular graphs, for a

fixed r. They also present an upper bound on the partial Grundy number that is presented in the next

paragraph.

A sequence S of r distinct vertices (g1, . . . , gr) of a graph G is a feasible Grundy sequence if for

1 ≤ i ≤ r the degree of gi in G\{gi+1, . . . , gr} is at least i− 1. The stair factor of G, denoted ζ(G),
is the maximum cardinality of a feasible Grundy sequence of G. In [113] a linear-time algorithm is

presented to compute ζ(G).
Consider a partial greedy colouring of G with k colours. Let vi be a Grundy vertex from colour i,

for every 1 ≤ i ≤ k. It is easy to see that (vk, . . . , v1) is a feasible Grundy sequence, and therefore

ζ(G) ≥ k. As a consequence,

∂Γ(G) ≤ ζ(G).

Since we already observed that Γ(G) ≤ ∂Γ(G) and χb(G) ≤ ∂Γ(G),

Γ(G) ≤ ζ(G)

and

χb(G) ≤ ζ(G).

We investigate all these parameters in Chapter 6, where we consider the computational complexity

of comparing between them for a given graph, and also analogue versions of the conjecture from

Reed [110] which states that χ(G) ≤

⌈

ω(G) + ∆(G) + 1

2

⌉

.



Chapter 3

Complexity of the Grundy number

problem

3.1 Introduction

In this chapter we investigate the complexity of the following problem:

GRUNDY NUMBER

INPUT : A graph G and an integer k.

OUTPUT : Γ(G) ≥ k?

The NP-completeness of the problem in the general case is proved in [50]. The only specific class

of graphs for which the problem was known to be NP-complete was the complements of bipartite

graphs [121].

In Theorem 3.2.1 we prove that the problem is also NP-complete for bipartite graphs. Theo-

rem 3.2.1 also implies that no Brooks’ like characterization of the graphs G with Γ(G) = ∆(G) + 1
is likely to exist, unless P = NP.

There is a linear-time algorithm to compute the Grundy number of partial k-trees [116], which are

precisely the graphs of tree-width at most k. A natural question that may arise is the complexity of

the problem for chordal graphs, that contains the k-trees, for all k ≥ 1. In Theorem 3.3.1 we prove

that GRUNDY NUMBER is NP-complete even for a chordal graph.

We end the chapter by considering some open problems that we would like to study in the future.

3.2 Bipartite graphs

We now prove that the Grundy number of a bipartite graph cannot be computed in polynomial time

unless P = NP. An implication of our reductions is that any characterization of the graphs whose

Grundy number equals to ∆(G)+1 is unlikely to be checkable in polynomial time, under the classical

complexity assumptions. In other words, no Brooks’ type theorem shall exists for the Grundy number.

We need the following lemma before proving our result.

Lemma 3.2.1. Let G be a graph and v a vertex of G. If there is a greedy colouring c such that v is

coloured p, then, for any 1 ≤ i ≤ p, there is a greedy colouring such that v is coloured i.

Proof. For 1 ≤ i ≤ p, let Si be the set of vertices coloured i by c. Then for any 1 ≤ i ≤ p,

(Sp−i+1, . . . , Sp) is a greedy i-colouring of G[
⋃p

j=p−i+1 Sj ] in which v is coloured i. This partial

35
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greedy colouring of G may be extended into a greedy colouring of G in which v is coloured i.

Theorem 3.2.1. It is NP-complete to decide if a bipartite graph G satisfies Γ(G) = ∆(G) + 1.

Proof. The problem is in NP because a greedy colouring using ∆(G) + 1 colours is a certificate.

To show that it is also NP-complete, we present a reduction from 3-edge-colourability of 3-regular

graphs, which is NP-complete [67]. In this problem we are given a 3-regular graph and want to assign

colours in {1, 2, 3} to the edges of the graph in a way that edges sharing one endpoint are to be

assigned distinct colours.

Let G be a 3-regular graph with n − 3 vertices. Set V (G) = {v4, v5, . . . , vn} and E(G) =
{e1, . . . , em}. Let I be the vertex-edge incidence graph of G, that is the bipartite graph with vertex

set V (I) = V (G) ∪ E(G) in which an edge of G is adjacent to its two endvertices. See Figure 3.2.

Also, letMp,p denote the graph obtained from the complete bipartite graphKp,p by removing a perfect

matching. It can be easily checked that Γ(Mp,p) = p. We construct from I a new bipartite graph H as

follows. For each vertex ei ∈ E(G), we add a copy M3,3(ei) of M3,3 and identify one of its vertices

with ei. We add a new vertex w adjacent to all the vertices of V (G). We add copiesMw
1,1, Mw

2,2, Mw
3,3,

Mw
n+1,n+1 of K1, K2, M3,3, Mn+1,n+1 and we choose arbitrary vertices v1, v2, v3, vn+1 respectively

from each copy and add the edges v1w, v2w, v3w, vn+1w. Finally, for every 5 ≤ i ≤ n, we do the

following: for every 4 ≤ j ≤ i − 1, we add a copy M i
j,j of Mj,j , choose an arbitrary vertex vij of it

and add the edge viv
i
j . See Figure 3.2.

Figure 3.1: A 3-regular graph G with a 3-edge colouring and its incidence graph I(G).

Observe that:

(i) dH(w) = n+ 1,

(ii) dH(vi) = 1 + (i− 1) = i , for 4 ≤ i ≤ n+ 1.

(iii) dH(ej) = 4, for 1 ≤ j ≤ m, since ei has two neighbours in I and two in M3,3(ei).

(iv) dH(vij) = j, for 5 ≤ i ≤ n and 4 ≤ j < i, since a vertex in M i
j,j has degree j − 1 and vij is

adjacent to vi.



3.2. BIPARTITE GRAPHS 37

Figure 3.2: The graph H of the reduction in Theorem 3.2.1

(v) ∆(H) = n+ 1 and the only vertices with degree n+ 1 are w and vn+1.

Let us show that Γ(H) = ∆(H) + 1 = n+ 2 if and only if G is 3-edge-colourable.

Assume first G has a 3-edge-colouring φ. By Lemma 3.2.1, for every 1 ≤ i ≤ m, there is a

greedy colouring of the copy of M3,3(ei) associated with ei where ei is coloured φ(ei). Then in I
every vertex in V (G) has one neighbour of each colour in {1, 2, 3}. There is a greedy colouring of

M i
j,j , 4 ≤ j < i ≤ n such that vij is coloured j.

Then we greedily extend the union of these colourings to vi, 4 ≤ i ≤ n, so that vi is coloured

i. We also greedily colour Mw
1,1, Mw

2,2, Mw
3,3, Mw

n+1,n+1 in such a way that w has one neighbour

coloured i, for all i ∈ {1, 2, 3, n+ 1}. Finally, w has one neighbour of each colour j, 1 ≤ j ≤ n+ 1.

So we colour it with n+ 2.

Hence Γ(H) ≥ n+ 2 and so Γ(H) = n+ 2 because ∆(H) = n+ 1.

Let us now show that if Γ(H) = n + 2 then G is 3-edge-colourable. Assume that c is a greedy

(n+ 2)-colouring of H .

Claim 3.2.1. {c(w), c(vn+1)} ={n+ 1, n+ 2}
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Proof. Let u be a vertex such that c(u) = n + 2. Then, u must have one neighbour coloured with

each of the other n + 1 colours and then d(u) ≥ n + 1. Hence, by Observation (v), u is either w or

vn+1.

Case 1: u = w.

Then, c(vn+1) = n + 1, since the only neigbours of w with degree at least n are vn and vn+1,

d(vn) = n, and vn is adjacent to w which is already coloured n+ 2.

Case 2: u = vn+1. The only neighbour of vn+1 that could be coloured n + 1 is w, since all its

neighbours in Mw
n+1,n+1 have degree n and are adjacent to vn+1 which is coloured n+ 2.

Claim 3.2.2. For 1 ≤ i ≤ n, c(vi) = i.

Proof. By Claim 3.2.1, {c(w), c(vn+1)} = {n+1, n+2}. Since dH(w) = n+1,w has one neighbour

coloured i, for each 1 ≤ i ≤ n. A neighbour of w which is coloured n must have degree at least n.

So, by Observation (ii), it must be vn. And so on, by decreasing induction, we show that c(vi) = i,
for 1 ≤ i ≤ n.

We now prove that c induces a proper 3-edge-colouring of G.

Consider vertex vi, 4 ≤ i ≤ n. By Claim 3.2.2, it is coloured i, and by Observation (ii) it has

degree i. Since it is adjacent to w, which by Claim 3.2.1 has a colour greater than i, there are only

i− 1 vertices remaining for the other i− 1 colours. So, vi has exactly one neighbour coloured j, for

each 1 ≤ j ≤ i − 1 and therefore the three edges incident to vi in G, which are adjacent to vi in I ,

have different colours. Furthermore, for 1 ≤ i ≤ m, the edge vertex ei has at most two neighbours in

H with a colour at most 3. Thus, c(ei) ∈ {1, 2, 3}.

As a corollary to Theorem 3.2.1, it is NP-hard to compute the Grundy number of a bipartite graph.

Corollary 3.2.1. Given a bipartite graphG and an integer k, it is NP-complete to decide if Γ(G) ≥ k.

3.3 Chordal graphs

We now prove the NP-completeness of deciding the Grundy number of a chordal graph.

Theorem 3.3.1. Given a chordal graph G and an integer k, deciding if Γ(G) ≥ k is NP-complete.

Proof. Clearly, one can verify in polynomial time if a colouring is a greedy colouring and so the prob-

lem is in NP. To show that it is also NP-complete, we present a reduction from 3-edge-colourability.

Let G be a 3-regular graph with n vertices, where V (G) = {v1, v2, . . . , vn} and E(G) =
{e1, . . . , em}. Let I be the vertex-edge incidence graph of G, that is the bipartite graph with ver-

tex set V (I) = V (G) ∪ E(G) in which ei ∈ E(G) is adjacent to vj ∈ V (G) if and only if vertex

vj is an endpoint of ei. In order to avoid confusion, we will use V to denote the vertices in V (I)
corresponding to vertices in V (G) and E to denote the vertices in V (I) corresponding to the edges in

E(G).
We construct from I a new graph H as follows. Start with a copy of I . Add an edge between

every pair of vertices of V in H , thus making V a clique. Finally, for every vertex e ∈ E, add a copy

of the binomial trees B1 and B2 and make their roots adjacent to e, so that the graph induced by e and

the vertices of the binomial trees that were added is isomorphic to B3. We use the notation B3(e) to

refer to the copy of B3 to which e belongs.

Since |V | = n and because G is a 3-regular graph, we have that dH(v) = n− 1 + 3 = n+ 2, for

v ∈ V . A vertex e ∈ E corresponds to an edge of G, and therefore has degree 2 in I . Since in H e
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Figure 3.3: The graph H of the reduction in Theorem 3.3.1

is also adjacent to two vertices in B3(e), we have that dH(e) = 4. All the other vertices are in B3(e
′)

for some e′ ∈ E and therefore have degree at most 2.

Consequently, ∆(H) = n + 2, implying that Γ(H) ≤ n + 3. In H , V is a clique and E is an

independent set, so H[V ∪ E] is a split graph, and so chordal. The vertices that are not in V ∪ E are

from one of the binomial trees that were linked with a vertex in E, so no induced cycle of size greater

than 3 can pass through one of these vertices and therefore H is chordal.

We now prove that G admits a 3-edge-colouring if and only if Γ(H) = n+ 3.

Let c be a 3-edge-colouring ofE that uses colours {1, 2, 3}. We shall construct a greedy colouring

c′ of H with n + 3 colours. Let c′(u) = c(u), for u ∈ E, and c′(vi) = i + 3, for 1 ≤ i ≤ n,

vi ∈ V (G). Note that in this partial colouring, the vertices in V have neighbours with all the colours

that are smaller than their colour, and as a consequence they are Grundy vertices. The vertices in

E can all be made Grundy vertices by giving an appropriate colouring of the binomial trees that are

linked to them, using Lemma 3.2.1. Then, c′ is a greedy colouring of H with n+ 3 colours.

Now, let c′ be a greedy colouring ofH that uses n+3 colours. A vertex with a colour in {6, . . . , n+
3} has to be in V , as it must have degree at least 5. Assume, without loss of generality, that c′(vi) =
i+ 3, for 3 ≤ i ≤ n.

Claim 3.3.1. {c(v1), c(v2)} = {4, 5}.

Proof. Suppose 5 /∈ {c(v1), c(v2)}. Observe that vertex vi, 3 ≤ i ≤ n, should have neighbours with

colours 4 and 5, as it is coloured i+3. Therefore vertex vn should be adjacent to a vertex e ∈ E, such

that c(e) = 5. But c(vn) = n+ 3 > 4 and since e should have neighbours with colours 3 and 4, one

of its neighbours in B3(e) has colour at least 3. But if a neighbour of e in B3(e) has colour at least 3

it implies that the restriction of c to a copy of either B1 or B2 is a greedy colouring that uses at least 3

colours, what contradicts the fact they have Grundy number at most 2. Therefore, 5 ∈ {c(v1), c(v2)}.

Now assume without loss of generality that c(v2) = 5 and suppose c(v1) 6= 4. Every vertex

in {v2, . . . , vn} should be adjacent to a vertex in E that is coloured 4, and so this vertex has to be

adjacent to a vertex with colour 3. This vertex can only be v1, since if a neighbour of e ∈ E in B3(e)
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is coloured 3 we get a contradiction as before. But a vertex in E is adjacent to only 2 vertices in V ,

therefore assuming n ≥ 4 we already get a contradiction.

Given a vertex v ∈ V (G), dH(v) = n + 2 and we showed that all its neighbours in V have

colours greater than 3. Since c(v) > 3, its 3 neighbours in E have to be coloured with distinct colours

in {1, 2, 3}. This implies that c is a proper 3-edge-colouring of G, thus completing the proof.

3.4 Open problems

In view of the existing results showing that GRUNDY NUMBER is NP-complete even for bipartite

graphs, complement of bipartite graphs, P5-free graphs and chordal graphs, a natural direction for

further investigation is the complexity of this problem when restricted to subclasses of these graph

classes or to classes that are in the intersection of these. In particular, we are interested in the following

graph classes.

P5-free graphs

Given a graph G = (V,E), we say that S ⊆ V is a dominating set if every vertex v ∈ V \S has a

neighbour in S. The following characterization of P5-free graphs was given by Bacsó and Tuza [6]:

Theorem 3.4.1. [6] A connected graph G is P5-free if, and only if, for every induced subgraph

H ⊆ G, H has either a dominating clique or a dominating cycle on five vertices.

A direct consequence of this characterization is the following:

Corollary 3.4.1. If G is a connected P5-free bipartite graph, then there exists a dominating edge in

G.

Lemma 3.4.1. Let G be a P5-free bipartite graph G = (A ∪B,E) and uv a dominating edge. Then

in any greedy colouring with k colours, {c(u), c(v)} = {k, k − 1}.

Proof. Let c be a greedy k-colouring of G and suppose by contradiction that one of u, v has a colour

smaller than k − 1. We may assume without loss of generality that c(u) = i ≤ k − 2 and that u ∈ A.

In this case, since uv is a dominating edge, u dominates all the vertices in B, and therefore no vertex

of B can have colour i. Now, let w be a vertex with colour k. it must have a neighbour with colour

k − 1 and therefore we may assume that there is a vertex w′ ∈ A (which may be the same as w) that

has colour at least k−1. But then w′ should have a neighbour coloured i and we have a contradiction,

since all its neighbours are in B.

Finally, we are able to determine the Grundy number of a P5-free bipartite graph.

Lemma 3.4.2. Let G be a P5-free bipartite graph G = (A ∪B,E). Then, Γ(G) ≤ 3.

Proof. Let G be a minimal counter-example, with respect to the number of vertices. Then G is

connected and Γ(G) = 4. Let c be a greedy 4-colouring of G. Because of Corollary 3.4.1, G has

a dominating edge, say uv. Assume without loss of generality that u ∈ A and v ∈ B. Because of

Lemma 3.4.1 we may also assume without loss of generality that c(u) = 4 and c(v) = 3. Since the

colouring is greedy and c(u), c(v) > 2, u and v should have neighbours with colour 2. Let b2 ∈ N(u)
and a2 ∈ N(v) be such that c(b2) = c(a2) = 2. Then, since the colouring is greedy, b2 and a2 should

have at least one neighbour with colours 1, say b1 ∈ N(a2) and a1 ∈ N(b2). Since the colouring is

proper, b2a2, b1a1 /∈ E(G). This implies that G is not P5-free, since a1b2ub1a2 induces a P5.
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In Corollary 2.3.1 it was proved that a connected graph has Grundy number 2 if and only if it is

a complete bipartite graph. To determine the Grundy number of a connected P5-free bipartite graph,

we just have to check if it is a complete bipartite graph or not. In the former case the Grundy number

is 2 and in the later one it is 3, by Lemma 3.4.2.

That case being solved, a natural question is the following:

Problem 3.1. Determine the Grundy number of a triangle-free P5-free graph.

If a class of graphs is such that the Grundy number is bounded by a constant, say p, then the

Grundy number of this class of graphs can be computed in polynomial time. To see this, observe that

given a graph G from the class, in order to determine Γ(G) it suffices to check for every k ≤ p if G
contains a k-atom. Therefore the following is a related question:

Problem 3.2. Does there exists triangle-free P5-free graphs with arbitrarily large Grundy number?

Chordal bipartite graphs

A graph is called chordal bipartite if it is bipartite and it contains no induced cycle of length greater

than four. Although this name has been used by many authors, these graphs are precisely the weakly

chordal bipartite graphs, where a graph is weakly chordal if it does not containCk orCk as an induced

subgraph, for k ≥ 5. Observe that a chordal bipartite graph is not necessarily chordal. On the other

hand, these graphs admits a characterization which is similar to the one of chordal graphs in terms of

the existence of a perfect elimination ordering of the vertices. In the following paragraph we describe

this characterization.

Given a bipartite graph G = (V,E), an edge uv is called a bisimplicial edge if N(u) ∪N(v) in-

duces a complete bipartite subgraph. An ordering e1, . . . , em of E is called a perfect edge elimination

ordering if the edge ei is bisimplicial in Gi, where G0 = G and Gi = Gi−1 − ei for 1 ≤ i ≤ m. A

graph is chordal bipartite if and only if it has a perfect edge elimination ordering. This characterization

appears for example in [14].

Observe that the graph in the reduction from Theorem 3.2.1 is not a chordal bipartite graph, and

it is not evident if this reduction can be changed in order to prove that GRUNDY NUMBER is NP-

complete when restricted to chordal bipartite graphs.

Problem 3.3. Determine the computational complexity of GRUNDY NUMBER for chordal bipartite

graphs.

Approximation algorithms

In Section 2.3.1 we presented some results concerning approximation algorithms for the Grundy num-

ber of graphs. No constant-factor approximation algorithm exists for the Grundy number of a general

graph, and we leave that as an open problem:

Problem 3.4. Find a constant-factor approximation algorithm for the Grundy number of a graph, or

prove that no such algorithm exists, unless P = NP.

For some classes like complement of bipartite graphs, interval graphs and complement of chordal

graphs there are constant-factor approximation algorithms. But for some important graph classes no

result is known.

Problem 3.5. Find constant-factor approximation algorithms for the Grundy number of particular

classes of graphs, like bipartite graphs and chordal graphs, for which determining the Grundy number

is an NP-hard problem.
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Chapter 4

The b-chromatic number of graphs

4.1 Introduction

We remind the reader that the m-degree m(G) of a graph is the largest value m such that there are m
vertices with degree at least m− 1. We recall that a vertex is dense if its degree is at least m(G)− 1.

Consider the following class of graphs.

Definition (tight graph). A graph G is tight if it has exactly m(G) vertices of degree m(G)− 1.

Observe that m(G) can be computed in polynomial time following the definition. So it can be

checked in polynomial time if a graph is tight. In this chapter we will be interested in the complexity

of the following decision problem:

TIGHT b-CHROMATIC PROBLEM

INPUT : A tight graph G.

OUTPUT : Is χb(G) equal to m(G)?

A direct consequence of the NP-completeness result shown by Kratochvı́l, Tuza and Voigt [90] is

the following:

Corollary 4.1.1. The TIGHT b-CHROMATIC PROBLEM is NP-complete for connected bipartite

graphs.

We recall that a graph G is P4-sparse if every set of five vertices of G induces at most one P4.

Bonomo et al. [12] proved that the b-chromatic number of P4-sparse graphs can be determined in

polynomial time, and asked if this result could be extended to distance-hereditary graphs, that are

graphs in which every induced path is a shortest path. We answer in the negative to this question

by showing that TIGHT b-CHROMATIC PROBLEM is NP-complete for chordal distance-hereditary

graphs, in Theorem 4.2.1. We then consider split graphs, that are a subclass of chordal graphs, and

show in Theorem 4.2.2 that determining the b-chromatic number of a split graph can be done in

polynomial time.

In Section 4.3, we introduce the b-closure G∗ of a tight graph G. We show that for a tight graph

G, χb(G) = m(G) if and only if χ(G∗) = m(G). We introduce the definition of a pivoted tight

graph, generalizing the pivoted trees defined by Irving and Manlove [70]. We show in Theorem 4.3.1

that a tight graph G is pivoted if and only if ω(G∗) > m(G). This gives a necessary condition for G

43
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to have χb(G) < m(G). Since, for a tight graph G, χb(G) = m(G) if and only if χ(G∗) = m(G),
if one can determine the chromatic number of G∗ in polynomial time, then one can also solve TIGHT

b-CHROMATIC PROBLEM in polynomial time. We show that it is the case for tight complement

of bipartite graphs, by proving that the closures of such graphs are also complements of bipartite

graphs and making use of the fact that the chromatic number of the latter graphs can be determined in

polynomial time, as they are perfect graphs.

The method of computing the b-closure of a graph and then its chromatic number does not yield

polynomial-time algorithms to solve TIGHT b-CHROMATIC PROBLEM for all classes of tight graphs,

since it is not always easy to compute the chromatic number of the closure. However, for some of

them, we show in Section 4.4, that the TIGHT b-CHROMATIC PROBLEM may be solved in polynomial

time using a slight modification of the closure, the partial closure. It is the case for block graphs and

P4-sparse graphs.

4.2 Chordal graphs

We start this section by showing that TIGHT b-CHROMATIC PROBLEM is NP-complete for chordal

distance hereditary graphs.

Theorem 4.2.1. The TIGHT b-CHROMATIC PROBLEM is NP-complete for connected chordal distance-

hereditary graphs.

Proof. Clearly, one can verify in polynomial time if a colouring is a b-colouring and so the problem

is in NP. To show that it is also NP-complete, we present a reduction from 3-EDGE-COLOURABILITY

of 3-regular graphs. Let G be a 3-regular graph with n vertices. Set V (G) = {v1, v2, . . . , vn} and

E(G) = {e1, . . . , em}. Let I be the vertex-edge incidence graph of G, that is, I is the bipartite graph

with vertex set V (I) = V (G) ∪ E(G) in which ei ∈ E(G) is adjacent to vj ∈ V (G) if and only if

vertex vj is an endpoint of ei.

We construct from I a new graph H as follows. First, add to H a copy of I . Now, add an edge

between every pair of vertices of V (G) in H and then, finally, add to H three disjoint copies of

K1,n+2. See Figure 4.2.

One can easily see that dH(v) = n − 1 + 3 = n + 2, for v ∈ V (G), and that dH(u) = 2,

for u ∈ E(G). Moreover, each copy of K1,n+2 has exactly one vertex with degree equal to n + 2.

Consequently, m(H) = n + 3 and H is tight. In H , V (G) is a clique and E(G) is an independent

set, so H[A∪B] is a split graph, and so it is chordal. As the disjoint copies of K1,n+2 are themselves

chordal graphs, we get that the entire graphH is chordal. One can easily check thatH is also distance-

hereditary. We now prove that G admits a 3-edge-colouring if and only if χb(H) = m(H) = n+ 3.

Let c be a 3-edge-colouring of E(G) that uses colours {1, 2, 3}. We shall construct a b-colouring

c′ of H with n + 3 colours. Let c′(u) = c(u), for u ∈ E(G), and c′(vi) = i + 3, for 1 ≤ i ≤ n,

vi ∈ V (G). Note that in this partial colouring, the vertices in V (G) are b-vertices of their respective

colours. To obtain the remaining b-vertices, one just have to appropriately colour the copies ofK1,n+2,

which can be easily done. Then, c′ is a b-colouring of H with m(H) = n+ 3 colours.

Now, let c′ be a b-colouring of H that uses n+3 colours. Since V (G) is a clique, we may assume

that c′(vi) = i + 3, for 1 ≤ i ≤ n. Since there are only n + 3 vertices of degree n + 2 in H , each

vertex in V (G) is an b-vertex. But then, since every vertex in V (G) has degree exactly n+2 in H , all

its neighbours must have distinct colours. As a consequence, since no vertex in V (G) is coloured with

one of the colours in {1, 2, 3}, for every vertex in V (G), its 3 neighbours in E(G) are coloured with
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Figure 4.1: The graph H of the reduction in Theorem 4.2.1

distinct colours in {1, 2, 3}. This implies that G admits a 3-edge-colouring of G, thus completing the

proof.

It is easy to see that one can change the reduction in order to obtain a connected graph by joining

one of the leafs of each component that is a star to a vertex in E(G). Therefore, the result holds for

connected graphs.

The complexity of determining the b-chromatic number of a distance-hereditary graph was asked

by Bonomo et al. [12], who proved that this can be done in polynomial time for a P4-sparse graph.

There are many other graph classes defined in terms of induced P4’s of the graph. A graphG = (V,E)
is P4-laden [47] if for every set S ⊆ V of six vertices, the subgraph induced by S contains at most

one induced P4 or is a split graph. G is said to be extended P4-laden if for every set S ⊆ V of

six vertices, the subgraph induced by S contains at most one induced P4 or is a pseudo-split graph,

that is a {C4, 2K2}-free graph. From these definitions we get that every P4-laden graph is extended

P4-laden. It is easy to see that that the graph in the reduction of Theorem 4.2.1 is P4-laden, so TIGHT

b-CHROMATIC PROBLEM is NP-complete for P4-laden graphs.

The class of the extended P4-laden graphs contains many graph classes with few induced P4’s. In

particular, it contains the class of P4-tidy graphs [48] which in turn contains the ones of P4-lite [73],

P4-extendible [75] and P4-reducible graphs [74]. A graph is P4-tidy if for every set A inducing a P4

there is at most one vertex x such that the subgraph induced by A ∪ {x} has more than one induced

P4. Bonomo, Koch, and Velasquez [118] proved that the b-chromatic number of a P4-tidy graph can

be determined in polynomial time, thus extending the result in [12].
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Finally, one can remark that the graph in the reduction of Theorem 4.2.1 is such that each con-

nected component is a split graph. It is natural to ask the complexity of determining the b-chromatic

number of a split graph, what is done in the following.

Theorem 4.2.2. If G is a split graph, then χb(G) = m(G). Hence, the b-chromatic number of a split

graph can be determined in polynomial time.

Proof. Let G be a split graph and (K,S) a partition of V (G) with K a clique and S an independent

set such that |K| is maximum. Every vertex in K has degree at least |K| − 1 and every vertex s in

S has degree at most |K| − 1 otherwise (K ∪ {s}, S \ {s}) would contradict the maximality of |K|.
Hence m(G) = |K|.

Colouring the vertices in K with |K| distinct colours and then extending it greedily to the vertices

of S (This is possible since every vertex in S has degree smaller than |K|.) gives a b-colouring of G
with m(G) = |K| colours.

4.3 b-closure

Definition (b-closure). Let G be a tight graph. The b-closure of G, denoted by G∗, is the graph with

vertex set V (G∗) = V (G) and edge set E(G∗) = E(G) ∪ {uv | u and v are non-adjacent dense

vertices} ∪ {uv | u and v are vertices with a common dense neighbour}.

See Figure 4.3 for examples of application of the closure. The next theorem proves the relation,

for a tight graph G, between the parameters χb(G) and χ(G∗):

Lemma 4.3.1. Let G be a tight graph. Then χb(G) = m(G) if and only if χ(G∗) = m(G).

Proof. Set m = m(G). Suppose that χb(G) = m, and let c be a b-colouring of G with m colours.

It is easy to see that the m dense vertices form a clique in G∗ and so χ(G∗) ≥ m. Let us show that

c is a proper colouring for G∗. Let uv /∈ G be such that uv ∈ E(G∗). If both u and v are dense, as

there are exactly m dense vertices in G, they must have distinct colours in c. Now, suppose that u or

v is not a dense vertex. By the definition of G∗, u and v have a common dense neighbour, say d, in

G. Since all dense vertices of G have degree m − 1 and c is a b-colouring, u and v must have been

assigned distinct colours in c. Hence, χ(G∗) = m.

Conversely, let c′ be a proper colouring of G∗ with m colours. In this case, since E(G) ⊆ E(G∗),
c′ is also a proper colouring of G. It only remains to show that every colour of c′ has a b-vertex.

As the dense vertices of G form a clique in G∗, they have distinct colours in c′. Moreover, for a

dense vertex d of G, we have that NG∗(d) is a clique. As a consequence, d is a b-vertex. Therefore,

χb(G) = m.

If G is a graph such that ω(G∗) > m, then χ(G∗) > m. As a consequence of this and

Lemma 4.3.1 we have:

Corollary 4.3.1. Let G be a tight graph. If χb(G) = m(G), then ω(G∗) = χ(G∗) = m(G).

4.3.1 Complement of bipartite graphs

By Lemma 4.3.1, it is interesting to consider the b-closure of a tight graph G if the chromatic number

of its closure can be determined in polynomial time. Indeed if so, one can decide in polynomial time

if χb(G) = m(G). We now show that it is the case if G is the complement of a bipartite graph.
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Figure 4.2: The closure of tight trees T1 and T2. Observe that T2 is a pivoted tree and there is a clique

of m(T2) vertices in T ∗
2

.

Lemma 4.3.2. The b-closure of a tight complement of a bipartite graph is a complement of a bipartite

graph.

Proof. Let G be a tight complement of a bipartite graph. Let V (G) = X ∪Y where X and Y are two

disjoint cliques in G. As V (G∗) = V (G), and since E(G) ⊆ E(G∗), the sets X and Y are cliques in

G∗. So they also form a partition of V (G∗) into two cliques.

Computing the chromatic number of the complement G of a bipartite graph G is equivalent to

compute the maximum size of a matching in this bipartite graph. Hence it can be done inO(
√

|V (G)|·
|E(G|) by the algorithm of Hopcroft and Karp [68] and in O(|V (G)|2.376) using an approach based

on the fast matrix multiplication algorithm [103].

Corollary 4.3.2. LetG be a tight complement of a bipartite graph. It can be decided inO(max{
√

|V (G)|·
|E(G)|, |V (G)|2.376}) if χb(G) = m(G).

4.3.2 Pivoted graphs

In the study of the b-chromatic number of trees, Irving and Manlove [70] introduced the notion of

a pivoted tree, and showed that a tree T satisfies χb(T ) < m(T ) if and only if it is pivoted. We



48 CHAPTER 4. THE B-CHROMATIC NUMBER OF GRAPHS

generalize this notion and show how our generalization is related to the b-chromatic number of tight

graphs.

Definition (Pivoted Graph). Let G be a tight graph. We say that G is pivoted if there is a set N of

non-dense vertices, with |N | = k, and a set of dense verticesD, with |D| = m(G)−k+1, satisfying:

1. For every pair u, v ∈ N , u is adjacent to v, or there is a dense vertex w that is adjacent to both

u and v.

2. For every pair u ∈ N , d ∈ D, either u is adjacent to d or u and d are both adjacent to a dense

vertex w (not necessarily in D).

Theorem 4.3.1. Let G be a tight graph. Then G is a pivoted graph if and only if ω(G∗) > m(G).

Proof. First, assume that G is a pivoted graph. Then Definitions 4.3 and 4.3.2 immediately imply that

N ∪D is a clique of size m+ 1 in G∗.

Reciprocally, assume that ω(G∗) > m. Let S ⊆ V (G∗) be a clique of size m + 1 in G∗. Let

N ={v ∈ S | v is not dense in G} and D ={v ∈ S | v is dense in G}. Let u, v ∈ S. If u, v ∈ D,

there is nothing to show, since Definition 4.3.2 imposes no restrictions between dense vertices inG. If

u ∈ N, v ∈ D ∪N , we have that either uv ∈ E(G), or ud, vd ∈ E(G), for a dense vertex d ∈ V (G).
So, it is easy to see that the sets N and D satisfy the requirements of Definition 4.3.2.

The tree T2 in Figure 4.3 ilustrates the statement of Theorem 4.3.1. Lemma 4.3.1 and Theo-

rem 4.3.1 have the following corollary.

Corollary 4.3.3. Let G be a tight graph. If G is a pivoted graph, then χb(G) < m(G).

Proof. As G is pivoted, Theorem 4.3.1 implies that ω(G∗) > m(G), and therefore χ(G∗) > m(G).
Then, by Lemma 4.3.1, χb(G) < m(G).

There are graphs satisfying χ(G∗) > m(G) but not ω(G∗) > m(G). Figure 4.3 shows a chordal

non-pivoted graph G with exactly m(G) = 7 dense vertices, each of degree 6, such that χb(G) <
m(G). In contrast to what happens with pivoted graphs, where a clique of size greater than m is

formed in their b-closures, the graph of Figure 4.3 has clique number 7, but its b-closure produces an

odd hole (by the five non-dense vertices in the bigger component) which causes χ(G∗) > 7.

4.4 Partial b-closure

Definition (partial b-closure). Let G be a tight graph. The partial b-closure of G, denoted G∗
p, is the

graph with vertex set V (G∗) = V (G) and edge set E(G∗) = E(G) ∪ {uv | u and v are vertices with

a common dense neighbour}.

Lemma 4.4.1. Let G∗
p be the partial b-closure of a graph G, and let D be the set of m(G) dense

vertices of G. Then χb(G) = m(G) if and only if G∗
p admits a m(G)-colouring where all the vertices

in D have distinct colours.

Proof. The proof is similar to the one of Lemma 4.3.1. In this case, since we do not add edges between

all the pairs of dense vertices in G∗
p, we need the requirement that the m(G)-colouring of G∗

p is such

that all dense vertices have distinct colours.

By Lemma 4.4.1, whenever the constrained colouring of the partial closure G∗
p can be obtained in

polynomial time, deciding if χb(G) = m is polynomial-time solvable. In particular, it is the case if

PRECOLOURING EXTENSION can be solved in polynomial time for G. We show that this is the case

for block graphs and P4-sparse graphs.
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Figure 4.3: A non-pivoted chordal graph, satisfying χb(G) < m(G), and its b-closure G∗, satisfying

χ(G∗) > ω(G∗) = m(G)
.
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4.4.1 Block graphs

We remind the reader that a graph G = (V,E) is a block graph if each of its blocks (maximal 2-

connected subgraphs) is a complete graph. An example of block graph is in Figure 4.4.

Figure 4.4: A block graph.

Lemma 4.4.2. The partial b-closure of a block graph is chordal.

Proof. By contradiction, assume that the partial b-closure G∗
p of a block graph G is not chordal. Then

it has an induced cycle C = (v1, v2, . . . , vk) of length k ≥ 4. For every edge vivi+1 of C (indices

must be taken modulo k) either vivi+1 ∈ E(G) or there is a dense vertex wi ∈ V (G) such that

viwi, wivi+1 ∈ E(G). In the latter case, the vertex wi is not adjacent to any vj in G, j /∈ {i, i + 1},

otherwise both vjvi and vjvi+1 would be edges of G∗
p and C would not be induced. Furthermore, this

implies that wi 6= wj , i 6= j. Let C ′ be the cycle obtained from C by replacing each edge vivi+1 by

viwivi+1 whenever vivi+1 /∈ E(G). Observe that C ′ is a cycle of G.

But, since G is a block graph, the vertices of any cycle (in particular, C ′) form a clique in G and

thus also in G∗
p. Hence the vertices of C form a clique in G∗

p, a contradiction.

Marx [100] showed that the 1-PRECOLOURING EXTENSION, the version of PRECOLOURING

EXTENSION in which the k colours are used at most once is solvable in time O(k · |V (G)|3) for a

chordal graph G. Hence,

Corollary 4.4.1. the TIGHT b-CHROMATIC PROBLEM can be decided in time O(m(G)|V (G)|3) for

tight block graphs.

Remark. A tree is a block graph, so by using the partial closure method we obtain that the TIGHT

b-CHROMATIC PROBLEM for tight trees can be solved in O(m(G)|V (G)|3)-time . However, Irving

and Manlove [70] gave a linear-time algorithm to compute the b-chromatic number of any tree. Hence

the TIGHT b-CHROMATIC PROBLEM can be solved in linear time for trees.

4.4.2 P4-sparse graphs

Lemma 4.4.3. The partial b-closure of a P4-sparse graph is P4-sparse.
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Proof. Let G be a P4-sparse graph. Suppose, by way of contradiction, that G∗
p is not P4-sparse. Then

there is at least one induced P4 in G∗
p that is not in G. Let P = (v1, v2, v3, v4) be such a P4 in G∗

p.

We will show that there are 5 vertices that induces two P4’s in G, thus getting a contradiction. By

symmetry, it is enough to consider the following five cases.

Case 1 : v1v2 ∈ E(G), v2v3 ∈ E(G) and v3v4 /∈ E(G).
Then, v3 and v4 are both adjacent to a dense vertex w ∈ V (G) (by the definition of the partial

b-closure). Note that v1w /∈ E(G) (resp. v2w /∈ E(G)) otherwise v1v4 ∈ E(G∗
p) (resp.

v2v4 ∈ E(G∗
p)). Hence, {v1, v2, v3, w, v4} induces a P5 which contains two induced P4.

Case 2 : v1v2 ∈ E(G), v2v3 /∈ E(G) and v3v4 ∈ E(G).
In this case, v2 and v3 are both adjacent to a dense vertex w ∈ V (G). Again, since v1w, v4w /∈
E(G), {v1, v2, w, v3, v4} is an induced P5 in G.

Case 3 : v1v2 /∈ E(G), v2v3 ∈ E(G) and v3v4 /∈ E(G).
As v1v2 /∈ E(G), there exists verticesw1, w2 ∈ V (G) such thatw1v1, w1v2 ∈ E(G),w1v3, w1v4 /∈
E(G), w2v3, w2v4 ∈ E(G) and w2v1, w2v2 /∈ E(G). Note that w1 6= w2, since w1v4 /∈ E(G).
If w1w2 /∈ E(G), then {v1, w1, v2, v3, w2} is an induced P5 in G. If w1w2 ∈ E(G), then

{v1, w1, v2, w2, v4} induces two P4’s in G.

Case 4 : v1v2 /∈ E(G), v2v3 /∈ E(G) and v3v4 ∈ E(G).
Using arguments similar to the ones in the previous cases, we obtain that there are distinct

dense vertices w1, w2 ∈ V (G) satisfying v1w1, v2w1, v2w2, v3w2 ∈ E(G), and v1w2, v4w2,
v3w1, v4w1 /∈ E(G). If w1w2 ∈ E(G) then {v1, w1, w2, v3, v4} induces a P5 in G. If w1w2 /∈
E(G), then the set {v1, w1, v2, w2, v3} induces a P5 in G.

Case 5 : v1v2 /∈ E(G), v2v3 /∈ E(G) and v3v4 /∈ E(G).
Again, by similar arguments to the ones used in the previous cases, there are distinct dense ver-

ticesw1, w2, w3 ∈ V (G) such that v1w1, v2w1, v2w2, v3w2, v3w3, v4w3 ∈ E(G), and v3w1, v4w1,
v1w2, v4w2, v1w3, v2w3 /∈ E(G). If w1w3 ∈ E(G), the set {v1, w1, w3, v3, v4} induces two

P4’s in G. Henceforth we may assume that w1w3 /∈ E(G). If w1w2, w2w3 ∈ E(G), then

the set {v1, w1, w2, w3, v4} induces a P5 in G. Hence by symmetry, we may assume that

w2w3 ∈ E(G). If w1w2 ∈ E(G), then the set {v1, w1, v2, w2, v3} induces two P4’s in G.

If w1w2 /∈ E(G) the set {v1, w1, v2, w2, w3} induces two P4’s in G.

Babel et al. [5] showed that PRECOLOURING EXTENSION is linear-time solvable for (q, q − 4)-

graphs, which are graphs where no set of at most q vertices induces more than q − 4 different P4’s.

Hence,

Corollary 4.4.2. The TIGHT b-CHROMATIC PROBLEM can be decided in linear time for tight P4-

sparse graphs.

Consequently, for tight P4-sparse graphs, this algorithm is faster than the O(|V |3)-time algorithm

given in [12], that solves the more general case where the input graph is not necessarily tight.
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4.5 Open problems

Complement of bipartite graphs

In Corollary 4.3.2 we proved that the b-chromatic number of a tight complement of a bipartite graph

can be computed in polynomial time. Kouider and Zaker [87] gave a characterization of the comple-

ment of bipartite graphs that admit a b-colouring with k colours. Let G = (X ∪ Y,E) be the comple-

ment of a bipartite graph and supposeX and Y can be partitioned into three subsetsX = A1∪B1∪C1

and Y = A2 ∪B2 ∪ C2 such that the following properties hold:

1. The subgraph induced by A1 ∪A2 ∪B2 is a clique, and so is the one induced by A1 ∪A2 ∪C1.

2. |B1| = |B2| and there is a perfect anti-matching between B1 and B2.

3. |C1| = |C2| and there is a perfect anti-matching between C1 and C2.

Finally, let the weight of the partition be the value k = |A1 ∪A2|+ |B1|+ |C1| = |X|+ |A2|. By

colouring the vertices in X ∪ A2 with different colours and then using the anti-matchings to give the

same colours to B2 as in B1 and to C2 as in C2, we obtain a b-colouring of G with t colours. Kouider

and Zaker proved that if G is the complement of a bipartite graph, then G admits a b-colouring with k
colours if and only if either it admits a partition as before with weight k or ω(G) = k.

It is not evident how this characterization can lead to a polynomial-time algorithm to compute the

b-chromatic number of the complement of a bipartite graph. Therefore we believe that the following

problem is an interesting one.

Problem 4.1. Can it be decided in polynomial time if χb(G) ≥ k, where G is the complement of a

bipartite graph?

b-colouring of tight graphs and the Erdös-Faber-Lovász conjecture

In a research report [60] co-autored with Havet and Linhares-Sales we tried to connect the follow-

ing well-known conjecture of Erdös-Faber-Lovász with the b-colouring of a particular class of tight

bipartite graphs.

Conjecture 4.5.1 (Erdös-Faber-Lovász Conjecture [35]). Let Km be the class of graphsH =
⋃

i=1K
i
m,

whereKi
m is a complete graph ofm vertices for 1 ≤ i ≤ m and |Ki

m∩Kj
m| ≤ 1 for i 6= j. IfG ∈ Km,

then χ(G) = m.

In [60] we presented the following conjecture and gave a wrong proof that it was equivalent to the

one of Erdös-Faber-Lovász.

Conjecture 4.5.2. Let G be a tight graph such that:

1. For every edge uv ∈ E(G) one of its endpoints is dense, and the other non-dense, and

2. If d′ and d′′ are dense vertices in G, then |N(d′) ∩N(d′′)| ≤ 1.

Then, χb(G) = m(G).

Lin and Chang [93] proposed a new conjecture and related it with the Erdös-Faber-Lovász Con-

jecture. Let Bm denote the class of tight bipartite graphs G with m(G) = m, in which D and

D′ =
⋃

x∈DNG(x) are stable sets and |NG(x) ∩ NG(x
′)| ≤ 1 for any two distinct dense vertices x

and x′. They proved that:
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Theorem 4.5.1 ([93]). If Erdös-Faber-Lovász Conjecture is true, then χb(G) = m or m− 1 for any

G ∈ Bm.

Theorem 4.5.2 ([93]). If for every G ∈ Bm, χb(G) = m, then the Erdös-Faber-Lovász Conjecture is

true.

They also proved that there are graphs G ∈ Bm such that χb(G) = m− 1, therefore proving that

Conjecture 4.5.2 is not true. Finally, they proposed the following conjecture which is weaker than the

Erdös-Faber-Lovász Conjecture, and which we leave as an open problem.

Problem 4.2. Is it true that if G ∈ Bm then χb(G) ≥ m− 1?

Approximation algorithms

There is no known approximation algorithm for the b-chromatic number of graphs. We already men-

tioned in Section 2.3.2 that Corteel, Valencia-Pabon and Vera [27] proved that there is no ǫ > 0 for

which the b-chromatic number can be approximated by a factor of 120
133 − ǫ in polynomial time, unless

P = NP. On the other hand, appart from this result no other results exists about the approximability of

the b-chromatic number, so the following questions are interesting:

Problem 4.3. Find a constant-factor approximation algorithm for the b-chromatic number of a graph,

or prove that no such algorithm exists, unless P = NP.

Problem 4.4. Find constant-factor approximation algorithms for the b-chromatic number of particular

classes of graphs, like chordal and bipartite graphs, for which determining the b-chromatic number is

an NP-hard problem.
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Chapter 5

Fixed-parameter-complexity of the

colouring parameters

5.1 Introduction

In this chapter we investigate some problems associated with the Grundy and b-chromatic numbers

from the point of view of the parameterized complexity theory. We refer the reader to [30] or [106] for

an introduction to this theory. The parameterized complexity of the following parameterized problems

is investigated in this chapter:

DUAL OF GREEDY COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k
OUTPUT : Γ(G) ≥ |V (G)| − k ?

DUAL OF b-COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k.

OUTPUT : χb(G) ≥ |V (G)| − k ?

We show in Section 5.2.1 that DUAL OF GREEDY COLOURING is Fixed Parameter Tractable(FPT).

A similar approach is used to show that DUAL OF b-COLOURING is also FPT (Section 5.2.2). In

Section 5.3 we consider the parameterization by the maximum degree of the graph and give FPT al-

gorithms for deciding if Γ(G) = ∆(G) + 1 or if χb(G) = ∆(G) + 1. Finally, open problems and

further research are discussed in Section 5.4.

5.2 Parameterizations from below the number of vertices

Consider the following parameterized version of the graph colouring problem.

PROPER COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k
OUTPUT : χ(G) ≤ k?

55
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We already mentioned that the problem of deciding if a given graph admits a colouring with 3
colours is NP-complete. As a consequence, PROPER COLOURING is not in XP, and so it is not in

FPT. On the other hand, Telle (See [30], Exercise 3.2.7) proved that the following parameterized

version of the graph colouring problem is Fixed Parameter Tractable (FPT).

DUAL OF PROPER COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k
OUTPUT : χ(G) ≤ |V (G)| − k?

Observe that from the classical complexity point of view, DUAL OF COLOURING is as hard as

PROPER COLOURING, since one can esily reduce one problem to the other.

In this Section we consider DUAL OF GREEDY COLOURING and DUAL OF b-COLOURING , which

may be seen as analog versions of DUAL OF PROPER COLOURING for the Grundy number and the

b-chromatic number, respectively, and show that both problems are FPT.

5.2.1 Dual of Greedy Colouring

The aim of this Section is to prove the following Theorem.

Theorem 5.2.1. DUAL OF GREEDY COLOURING can be solved in time

O
(

(2k)2k · |E|+ 22kk3k+5/2
)

.

We remind the reader that a vertex cover of a graph G is a set C ⊆ V (G) such that for every

e ∈ E(G), at least one of the endvertices of e is in C. A vertex cover is said to be minimal if there is

no vertex cover C ′ ⊂ C. We also remind that the complement of a graph G, denoted G, is the graph

with the same vertex set and such that uv ∈ E(G) if and only if uv /∈ E(G).

The proof of Theorem 5.2.1 may be outlined as follows. We first show that a graphG = (V,E) has

Grundy number at least |V |−k if and only if its complement has a vertex cover with certain properties

and in particular size at most 2k. If G has a Grundy number at least |V | − k and c is a corresponding

greedy colouring, the vertices which are not alone in their colour classes in c will be shown to form

such a vertex cover in G. We then give an algorithm that runs in in time O
(

k2k · |E|+ k3k+5/2
)

that decides if a given minimal vertex cover of G is contained in a vertex cover having the desired

properties.

There are at most 22k minimal vertex covers of size at most 2k and we can enumerate them in time

O
(

22k · |V |
)

using a search tree (see for example Section 8.2 of [106]). Hence applying the above-

mentioned algorithm for each minimal vertex cover yields an algorithm in timeO
(

(2k)2k · |E|+ 22kk3k+5/2
)

for DUAL OF GREEDY COLOURING.

Lemma 5.2.1. Let G = (V,E) be a graph and k ≥ 0 an integer. Then, Γ(G) ≥ |V | − k if and only

if there is a vertex cover C of G such that G[C] admits a greedy colouring (C1, C2, . . . , Ck′) with the

following properties:

P1: |C| − k ≤ k′ ≤ k;

P2: |Ci| ≥ 2, for every 1 ≤ i ≤ k′;

P3: For each v ∈ V \C and for every 1 ≤ i ≤ k′, there is u ∈ Ci such that uv ∈ E.
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Proof. (⇒) Assume that Γ(G) ≥ |V | − k and consider a greedy Γ(G)-colouring c. Let C be the set

of vertices that are in a colour class with more than one vertex. Then V \C is the set of vertices that

are alone in their colour classes.

We claim that V \C is a clique in G. If this is not the case, let u and v be two non-adjacent

vertices in V \C. Without loss of generality we may assume that c(u) > c(v). Then, as c is a greedy

colouring, u has a neighbour coloured c(v), which must be v. So uv ∈ E and we get a contradiction.

Now, since V \C is a clique in G, it is a stable set in G. Consequently, C is a vertex cover in G.

Let c′ be the greedy colouring (C1, C2, . . . , Ck′) of G[C] induced by c. Clearly, |Ci| ≥ 2, for

every 1 ≤ i ≤ k′, and Property P2 is satisfied. By definition of C, we have Γ(G) = |V | − |C| + k′.
Since Γ(G) ≥ |V | − k, we obtain that k′ ≥ |C| − k. Property P2 implies that |C| ≥ 2k′, therefore

Γ(G) = |V | − |C| + k′ ≥ |V | − k′, and again because Γ(G) ≥ |V | − k, we get k′ ≤ k. As a

consequence, Property P1 is satisfied.

Finally, let v ∈ V \C and 1 ≤ i ≤ k′. If the colour of the vertices of Ci in c is smaller than c(v),
then v is adjacent to at least one vertex of Ci because c is greedy. If not then every vertex of Ci is

adjacent to v because it is the sole vertex coloured c(v). In both cases, v is adjacent to at least one

vertex in Ci, so c′ also has Property P3.

(⇐) Let C be a vertex cover of G such that there is a greedy colouring c′ =
(

C1, C2, . . . , Ck′

)

of G[C] having Properties P1, P2 and P3. One can extend c′ to the entire graph G by assigning

|V | − |C| distinct colours to the vertices of V \C. As a consequence of P3 and the fact that V \C is

a stable set in G and therefore a clique in G, the obtained colouring is greedy. Because of P1, it uses

k′ + |V | − |C| ≥ (|C| − k) + |V | − |C| = |V | − k colours.

Figure 5.1: An ilustration of the characterization from Lemma 5.2.1

LetC be a vertex cover ofG. A greedy colouring (C1, C2, . . . , Ck′) ofG[C] having the Properties
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P1, P2 and P3 of Lemma 5.2.1 is said to be good. C is suitable if G[C] has a good greedy colouring.

Observe that Property P1 implies that a suitable vertex cover has cardinality at most 2k.

Proposition 5.2.1. Let C be a suitable vertex cover of G, (C1, C2, . . . , Ck′) a good greedy colouring

of G[C] and Cmin ⊆ C a minimal vertex cover. Then for all 1 ≤ i ≤ k′, |Ci \ Cmin| ≤ 1.

Proof. Each colour class Ci, 1 ≤ i ≤ k′, is a stable set of size at least 2 in G. So it is a clique of size

at least 2 in G. Since Cmin is a vertex cover in G, |Ci ∩ Cmin| ≥ |Ci| − 1, so |Ci \ Cmin| ≤ 1.

Lemma 5.2.2. Let k be an integer, G = (V,E) a graph and Cmin a minimal vertex cover of G of

size at most 2k. It can be determined in time O
(

k2k|E|+ k3k+5/2
)

if Cmin is contained in a suitable

vertex cover C.

Proof. In order to determine if Cmin is contained in a suitable vertex cover, we enumerate all possible

proper colourings of G[Cmin] with k′ colours, |Cmin|−k ≤ k′ ≤ k. For each of them, we then check

in time O(|E|+ kk+5/2) if it can be extended into a good greedy colouring of a suitable vertex cover.

There are at most k|Cmin| ≤ k2k proper colourings of Cmin with at most k colours and they can be

enumerated in time O(k2k). Hence the running time of our algorithm is O
(

k2k|E|+ k3k+5/2
)

.

Let us now detail an algorithm that, for a proper colouring c = (C1, C2, . . . , Ck′) of G[Cmin],
decides if it can be extended into a good greedy colouring of a suitable vertex cover in time O(|E|+
kk+5/2). By Proposition 5.2.1, for such an extension at most one vertex of V \Cmin is added in each

colour class.

If c is a good colouring of Cmin then we are done. So we may assume that it is not. We say that

a colour class Si is defective with respect to a colouring s = (S1, . . . , Sl) of S ⊆ V if at least one of

the following holds:

(i) |Si| < 2;

(ii) For some j > i, there is v ∈ Sj with no neighbour in Si;

(iii) There is v ∈ V \ S such that v has no neighbours in Si.

Let Si be a defective colour class with respect to s. An i-candidate with respect to s is a vertex

v ∈ V \
⋃l

j=1 Sj such that Si ∪ {v} is a stable set which is not defective with respect to the colouring

(S1, . . . , Si−1, Si ∪ {v}, Si+1, . . . , Sl). We denote by Xs(i) the set of i-candidates with respect to s
andDs the set of defective colour classes with respect to s. If Si is not defective, thenXs(i) is defined

to be the empty set. If |Xs(i)| ≥ k, we say that i is a colour class of type 1. Otherwise, we say that

it is of type 2. It is easy to see that the set of defective colour classes of c and their candidates can be

computed in time O(|E|).

Clearly, if c can be extended into a good colouring, it means that we can place candidates into

some of its colour classes and obtain a colouring without defective colour classes. See Figure 5.2.1.

Because of Proposition 5.2.1, we are only allowed to place at most one vertex in each colour class. As

we will show later, the only defective colour classes that may not receive a candidate in the extension

of c to a good colouring are those of type 2.

Claim 5.2.1. Let C ⊇ Cmin, s be a k′-colouring of C, i one of its defective colour classes and v an

i-candidate. Let s′ be the extension of s where we place v in colour class i. Then, for every colour

class j 6= i, Xs′(j) = Xs(j)\{v}.
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Figure 5.2: Example of a minimal vertex cover together with a colouring with defective colour classes

and one extension of it into a good colouring.

Proof. First, assume that j is not defective in s. If it does become defective in s′ it is due to condition

(ii), since it cannot satisfy (i) or (iii) after the insertion of v into the colour class i. But then, since

j does not satisfy (ii) in s, v is the only vertex in i that may have no neighbours coloured j, which

implies that j satisfies condition (iii) in s, a contradiction.

Now assume that j is defective in s. We first prove that Xs(j)\{v}⊆ Xs′(j). In this case,

again we have that (i) and (iii) remain unchanged after the insertion of v, in the sense that if a vertex

different from v is a candidate for j in s because of one of these conditions, the same will happen in

s′. Regarding condition (iii), the only thing that may change in s′ is that v is now one of the vertices

with no neighbours in j. Since v is not in Cmin, it is adjacent to every j-candidate. Then, every vertex

distinct from v that was a candidate for j in s remains a candidate for j in s′.
The converse, that is that every vertex in Xs′(j) is also in Xs(j)\{v}, is trivial.
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In particular, Claim 5.2.1 shows that the insertion of a candidate in a defective colour classes does

not create a new defective colour class.

Claim 5.2.2. Let s = (S1, . . . , Sk′) be a k′-colouring of Cmin and assume it can be extended into a

good colouring s′ = (S′
1, . . . , S

′
k′) of a suitable vertex cover. If j is a defective colour class in s and

|S′
j\Sj | = 0, then j is of type 2 in s. Moreover, j is defective only because of (iii).

Proof. Let j be such that S′
j = Sj . If j satisfies (i) then there is only one vertex coloured j in s′,

and thus s′ cannot be a good colouring, a contradiction. If j satisfies (ii) then there is a vertex v
coloured j′ > j with no neighbours in Sj . Since no vertices were added to Sj in s′, vertex v also has

no neighbours coloured j in s′, a contradiction. Hence j can be defective only because of condition

(iii). Observe that every vertex in Xs(j) is moved to some colour class, since otherwise colour class j
would still be defective in s′ because of (iii). But then, if |Xs(j)| ≥ k, as we add at most one vertex to

each colour class when extending s to s′, at least one vertex in Xs(j) is not in any colour class of s′.
Hence, there is a vertex that is not coloured in s′ and has no neighbours with colour j, which implies

that j is a defective colour class in s′, a contradiction.

In order to determine if c can be properly extended, in a first step we consider all possible exten-

sions of the type 2 colour classes. For such a colour class of type 2, we can choose to add to it either

one of its candidates or none. By Claim 5.2.2 this later case is possible if the colour class satisfies only

(iii). There are at most k defective colour classes of type 2. Moreover each of these colour classes has

less than k candidates, and so the number of possible ways to extend each colour class is bounded by

k. Hence, we can enumerate all the possible extensions of the type 2 colour classes in time O(kk). In

a second step, for each possible extension, we check if the type 1 colour classes could be extended in

order to obtain a good greedy colouring.

Let c′ be one possible extension of c as considered in the last paragraph. If a colour class Si of

type 2 has not been extended, it may still be defective. If it is defective because it satisfies (i) or (ii),

then it will remain defective after the second step in which we add some candidate to colour classes of

type 1. Hence, we can stop, it will never lead to a good colouring. If it is defective because it satisfies

(iii) (and only (iii)) then all the vertices v ∈ V \
⋃l

j=1 Sj such that v has no neighbours in Si must be

placed into some type 1 colour class in any extension to a good colouring. In particular, they need to

be candidates of at least one colour class of type 1. We call such vertices v necessary candidates.

Let D1 ⊆ Dc′ be the set of defective colour classes in c′ that are of type 1 in c. Also let N
be the set of necessary candidates in c′ and C the vertex cover given by the vertices coloured in c′.
Remember that a suitable vertex cover C must satisfy |C| − k ≤ k′, and so if |C| + |D1| − k > k′

there is no way of properly extending c′, since by Claim 5.2.2 we need to place one candidate in each

of the |D1| defective colour classes of type 1. The number of colour classes in c is at most k, and

after a candidate is placed in a defective colour class, the colour class is no longer defective. So, since

the type 1 colour classes have at least k candidates in c and because of Claim 5.2.1, there are at least

|Dc′ | candidates for each of the |D1| defective colour classes of type 1 in c. As a consequence, there

are enough candidates to place in each colour class in D1. But we also have to ensure that every

necessary candidate is placed in a defective colour class. This is equivalent to finding a matching in

the bipartite graph H with vertex set V (H) = D1 ∪ N and with edge set E(H) ={(i ∈ D1, v ∈
N) | vertex v is an i-candidate} such that every vertex in N is saturated. This can be done in time

O
(

(|V (H)|+ |E(H)|)
√

|V (H)|
)

= O(k5/2) by the algorithm of Hopcroft and Karp [68].
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If such a matching does not exist, then we cannot properly extend c′ by adding candidates to the

vertices in D1, and so we may reject c′. If such a matching exists, since each type 1 colour class has

more than |D1| candidates, we can greedily extend c′ to a good colouring.

Hence one can check in time O(|E|+ kk+5/2) if a proper colouring of G[Cmin] can be extended

into a good greedy colouring of G.

We are now able to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let G be an instance of the problem. To answer the question, we enumerate

all minimal vertex covers of G, and check, for each one, if it is contained in a suitable vertex cover.

To enumerate all minimal vertex covers takes time O(22k). For each of these at most 22k minimal

vertex covers, we check if it is contained in a suitable vertex cover. By Lemma 5.2.2, it can be done

in O
(

k2k · |E|+ k3k+5/2
)

. The total running time is O
(

(2k)2k|E|+ 22kk3k+5/2
)

.

5.2.2 Dual of b-Colouring

The main result of this section is the following Theorem, which implies that DUAL OF b-COLOURING

is FPT.

Theorem 5.2.2. DUAL OF b-COLOURING can be solved in time

O
(

22k3kk2k(k + 1)!|V (G)|
)

.

The proof is very similar to the one of the previous section. We first state a lemma analogous to

Lemma 5.2.1.

Lemma 5.2.3. Let G = (V,E) be a graph and k ≥ 0 an integer. Then, χb(G) ≥ |V | − k if and

only if there is a vertex cover C of G such that G[C] admits a b-colouring (C1, C2, . . . , Ck′) with the

following properties:

P1: |C| − k ≤ k′ ≤ k;

P2: |Ci| ≥ 2, for every 1 ≤ i ≤ k′;

P3: For every 1 ≤ i ≤ k′ there is a b-vertex vi ∈ Ci such that uvi ∈ E for all u ∈ V \C.

Proof. (⇒) Assume that χb(G) ≥ |V |−k and consider a b-colouring c with χb(G) colours. Let C be

the set of vertices that are in a colour class with more than one vertex and V \C is the set of vertices

that are alone in their colour classes.

We claim that V \C is a clique inG. If this is not the case, let u and v be two non-adjacent vertices

in V \C. Since c is a b-colouring and u and v are alone in their colour classes, they must be b-vertices.

As a consequence, u should have a neighbour coloured c(v) and therefore this neighbour must be v, a

contradiction. Since V \C is a clique in G, it is a stable set in G. Consequently, C is a vertex cover in

G.

Let c′ be the b-colouring (C1, C2, . . . , Ck′) of G[C] induced by c. By definition of C, we have

|Ci| ≥ 2, for every 1 ≤ i ≤ k′, and therefore Property P2 is satisfied. Moreover, χb(G) = |V | −
|C|+k′, and since χb(G) ≥ |V |−k, we obtain that k′ ≥ |C|−k. Because of property P2, |C| ≥ 2k′,
and again since χb(G) ≥ |V | − k, then k′ ≤ k and so Property P1 is satisfied.

Finally, let v be a b-vertex from Ci, 1 ≤ i ≤ k′. Then, for every u ∈ V \C, u is the only vertex in

its colour class, so v must be adjacent to u. Therefore, c′ has Property P3.
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(⇐) Let C be a vertex cover ofG such that there is a b-colouring c′ =
(

C1, C2, . . . , Ck′

)

ofG[C]

having Properties P1, P2 and P3. One can extend c′ to the entire graph G by assigning |V | − |C| new

distinct colours to the vertices of V \C. As a consequence of P3 and the fact that V \C is a stable

set in G and therefore a clique in G, the obtained colouring is a b-colouring. Because of P1, it uses

k′ + |V | − |C| ≥ (|C| − k) + |V | − |C| = |V | − k colours.

Let C be a vertex cover of G. We say that a b-colouring (C1, C2, . . . , Ck′) of G[C] having the

Properties P1, P2 and P3 of Lemma 5.2.3 is good. C is suitable if G[C] has a good b-colouring.

Property P1 implies that a suitable vertex cover has cardinality at most 2k.

We now prove the analogue of Proposition 5.2.1.

Proposition 5.2.2. Let C be a suitable vertex cover of G, (C1, C2, . . . , Ck′) a good b-colouring of

G[C] and Cmin ⊆ C a minimal vertex cover. Then for all 1 ≤ i ≤ k′, |Ci \ Cmin| ≤ 1.

Proof. Each colour class Ci, 1 ≤ i ≤ k′, is a stable set of size at least 2 in G. So it is a clique of size

at least 2 in G. Since Cmin is a vertex cover in G, |Ci ∩ Cmin| ≥ |Ci| − 1, so |Ci \ Cmin| ≤ 1.

Then in order to determine if χb(G) ≥ |V | − k one may enumerate all minimal vertex covers of

G with size at most 2k and verify, for each such vertex cover, if it is suitable or if it may be extended

to a suitable vertex cover.

Lemma 5.2.4. Let k be an integer, G = (V,E) a graph and Cmin a minimal vertex cover of G of size

at most 2k. It can be determined in time O
(

3kk2k(k + 1)!|V (G)|
)

if Cmin is contained in a suitable

vertex cover C.

Proof. In order to determine if Cmin is contained in a suitable vertex cover, we first enumerate all

possible proper colourings of G[Cmin] with k′ colours, |Cmin| − k ≤ k′ ≤ k. For each of them, we

check in time O
(

3k(k + 1)!|V (G)|
)

if it can be extended into a good b-colouring of a suitable vertex

cover. There are at most k|Cmin| ≤ k2k proper colourings of Cmin with at most k colours and they

can be enumerated in time O
(

k2k
)

. Hence our algorithm runs in time O
(

3kk2k(k + 1)!|V (G)|
)

.

Let us now detail an algorithm that, for a proper colouring c = (C1, C2, . . . , Ck′) of G[Cmin],
decides if it can be extended into a good b-colouring of a suitable vertex cover in FPT time. If c is

a good b-colouring of Cmin then we are done. Otherwise, we need to check if we can extend c to

vertices in V \Cmin and obtain a good b-colouring. By Proposition 5.2.2, for such an extension at

most one vertex of V \ Cmin is added in each colour class.

In order to check if c can be extended to a good b-colouring, we must guess for each colour which

vertex will be a b-vertex in such an extension. For each colour i such a b-vertex may either already

be in Ci or be in V \ Cmin. Hence we try all possible sets B ⊂ Cmin such that |B ∩ Ci| ≤ 1 for

all 1 ≤ i ≤ k′ and check if one can extend c into a good b-colouring highlighting B, such that all

vertices of B are b-vertices. The number of possible choices of B is given by p =
∏k′

i=1(|Ci| + 1).

Since
∑k′

i=1 |Ci| = n and p is maximized when the |Ci| are all equal, we have p ≤

(

n+ k′

k′

)k′

≤

(

1 +
n

k′

)k′

. As f(x) =
(

1 +
n

x

)x
is an increasing function, we get that

(

1 +
n

k′

)k′

≤
(

1 +
n

k

)k
≤

(

1 +
2k

k

)k

= 3k.

For all i such that Ci ∩ B 6= ∅, let Fi be the set of vertices of V \Cmin which are not adjacent to

the vertex bi of Ci ∩B. In any extension of c to a good b-colouring highlighting B, all the vertices in



5.2. PARAMETERIZATIONS FROM BELOW THE NUMBER OF VERTICES 63

Fi are to be moved to one of the colour classes because of (P3). The vertices of F =
⋃

{i|bi 6=∅} Fi are

called forced vertices. If |F | > k′, c cannot be extended to a good b-colouring because at most one

vertex of V \ Cmin may be added to each colour by Proposition 5.2.2. Hence we consider the case

when |F | ≤ k′. We enumerate all possible ways of moving the forced vertices into different colour

classes, every forced vertex v being moved to a colour class C such that {v} ∪ C is stable. There are

at most k′! ≤ k! such possibilities.

Let c∗ be one of the so obtained colourings of C∗ = C ∪ F . If a vertex v is moved to a colour

class Ci such that Ci ∩ B = ∅, then it must be the b-vertex of this class because at most one vertex

can be added to each colour class. Hence we have to look for a good b-colouring extending c∗ and

highlightingB∗ the set containing all the vertices ofB and the forced vertices moved to colour classes

not intersecting B.

A colour class Si is defective with respect to a colouring s = (S1, . . . , Sl) of S ⊆ V and a set

B ⊂ S if at least one of the following holds:

(i) B ∩ Si = ∅;

(ii) |Si| < 2;

(iii) There is a vertex b ∈ B \ Si with no neighbour in Si;

Let Si be a defective colour class with respect to (s,B). An i-candidate with respect to (s,B)
is a vertex v ∈ V \ S such that Si ∪ {v} is a stable set which is not defective with respect to

(S1, . . . , Si−1, Si ∪ {v}, Si+1, . . . , Sl), Bi) where Bi = B if B ∩ Si 6= ∅ and Bi = B ∪ {v} other-

wise. We denote byXs,B(i) the set of i-candidates with respect to (s,B) andDs,B the set of defective

colour classes with respect to (s,B).

Claim 5.2.3. Let C ⊃ C∗, s be a k′-colouring of C, B a subset of S with at most one vertex in

each colour class, i a defective colour class with respect to (s,B) and v an i-candidate. Let s′ be the

extension of s where we place v in colour class i. Then, for every colour class j 6= i, Xs′,Bi
(j) =

Xs,B(j)\{v}.

Proof. If j is not defective with respect to (s,B), then it cannot become defective with repect to

(s′, Bi), since the insertion of v in colour i cannot cause j to satisfy one of the conditions (i), (ii) or

(iii).

Then, we assume that j is defective in s. To see that Xs,B(j)\{v}⊆ Xs′,Bi
(j), we have again that

(i) (ii) and (iii) remain unchanged after the insertion of v, in the sense that if a vertex different from v
is a j-candidate with respect to (s,B) because of one of these conditions, the same will happen with

respect to (s′, Bi).

Finally, it follows directly from the definition that every vertex inXs′,Bi
(j) is also inXs,B(j)\{v}.

In particular, Claim 5.2.1 shows that the insertion of a candidate in a defective colour class does

not create a new defective colour class.

Claim 5.2.4. Let s = (S1, . . . , Sk′), be a k′-colouring of C∗ and assume it can be extended into

a good b-colouring s′ = (S′
1, . . . , S

′
k′) highlighting B∗. If j is a defective colour class in s then

|S′
j\Sj | = 1.
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Proof. If j satisfies (i) for (s,B∗), then S′
j contains the b-vertex of colour j which is not in Sj . If j

satisfies (ii), then since |S′
j | ≥ 2 by Property P2, |S′

j | > |Sj |. If j satisfies (iii) then a vertex b ∈ B\Sj
has no neighbours in Sj . But S′

j contains a neighbour of b since it highlights B. Again |S′
j | > |Sj |.

In all cases S′
j has more vertices than Sj . So by Proposition 5.2.2, |S′

j\Sj | = 1.

Recall that if C ′ is suitable it must satisfy |C ′| − k ≤ k′, and so if |C∗| + |Dc∗,B∗ | − k > k′

there is no way extend c∗ into a good b-colouring. The number of colour classes in c∗ is at most k′,
and after a candidate is placed in a defective colour class, the colour class is no longer defective. As

a consequence, to decide if c∗ can be extended to a good b-colouring highlighting B∗ is equivalent

to find a matching in the bipartite graph H with vertex set V (H) = Dc∗,B∗∪{v ∈ Xc∗,B∗(i), 1 ≤
i ≤ k′} and with edge set E(H) ={(i ∈ Dc∗,B∗ , v ∈ V \C∗) | vertex v is an i-candidate} such that

every vertex in Dc∗,B∗ is saturated. This can be done in time O
(

(|V (H)|+ |E(H)|)
√

|V (H)|
)

=

O
(

k|V (G)|3/2
)

, since |V (H)| = O (|V (G)|) and |E(H)| = O (k|V (H)|) = O (k|V (G)|) and

because of the algorithm of Hopcroft and Karp [68].

If such a matching does not exist, then we cannot properly extend c∗ by adding candidates to the

colour classes, and we must reject c. If such a matching exists, we can move each saturated candidate

to the matched defective colour class to obtain a good b-colouring highlighting B∗.

Hence one can check in time O
(

3k(k + 1)!|V (G)|
)

if a proper colouring of G[Cmin] can be

extended into a good b-colouring of G.

Proof of Theorem 5.2.2. Let G be an instance of the problem. To answer the question, we enumerate

all minimal vertex covers ofG, and check, for each one, if it is contained in a suitable vertex cover. To

enumerate all minimal vertex covers takes time O(22k). For each of these at most 22k minimal vertex

covers, we check if it is contained in a suitable vertex cover. By Lemma 5.2.4, it can be done in time

O
(

3kk2k(k + 1)!|V (G)|
)

. Hence the total running time is O
(

22k3kk2k(k + 1)!|V (G)|
)

.

5.3 Parameterizations based on the maximum degree

5.3.1 Greedy colourings with ∆(G) + 1 colours

Consider the problem of deciding, given a graph G, if Γ(G) = ∆(G) + 1. This problem is NP-

complete even for a bipartite or a chordal graph, as it was shown in Theorems 3.2.1 and 3.3.1,

respectively. On the other hand, a consequence of Corollary 2.3.2 is that if ∆(G) is bounded by a

constant then the problem is solvable in polynomial time. A natural question that arises is the fixed

parameter complexity of the following problem.

(∆ + 1)-GREEDY-COL

INPUT : A graph G.

PARAMETER : ∆(G)
OUTPUT : Γ(G) = ∆(G) + 1?

Theorem 5.3.1. (∆ + 1)-GREEDY-COL can be solved in FPT time.
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Proof. Set ∆ = ∆(G). By Theorem 2.3.4, Γ(G) = ∆ + 1 if and only if G contains a (∆ + 1)-atom.

From the definition of an atom, we know that there is a finite number, say f(∆), of (∆ + 1)-atoms.

Moreover, a (∆ + 1)-atom has at most 2∆ vertices.

Now consider a greedy colouring c of G with ∆+1 colours and let v be a vertex coloured ∆+1.

Clearly, d(v) = ∆. Now, observe that since c(v) = ∆ + 1, there is a (∆ + 1)-atom such that all its

vertices are contained in N∆[v], where N1[v] = {v} ∪ N(v) and N i[v] = N i−1[v] ∪ N(N i−1[v]).
Moreover, since ∆ is the maximum degree of the graph, |N∆[v]| ≤ 1+∆+∆2+. . .+∆∆ = O(∆∆).

Hence checking the existence of a (∆ + 1)-atom in N∆[v] can be done by brute force in time

g(∆) = O(f(∆)(∆2∆∆)).
To decide if Γ(G) = ∆ + 1, it suffices to consider each vertex v of degree ∆ and check for the

existence of a (∆ + 1)-atom in N∆[v], what by the previous remarks can be done in time O(g(∆) ·
n).

5.3.2 b-colourings with ∆(G) + 1 colours

The problem of deciding if χb(G) = ∆(G) + 1, given a graph G, is NP-complete even for a chordal

graph, as shown in Theorem 4.2.1. On the other hand, it is not evident if the problem is solvable in

polynomial time or not if we assume that ∆(G) is bounded. We show that this problem is polynomial

and FPT, by giving a polynomial kernel to it.

(∆ + 1)-b-COL

INPUT : A graph G.

PARAMETER : ∆(G)
OUTPUT : χb(G) = ∆(G) + 1?

Theorem 5.3.2. (∆ + 1)-b-COL admits a kernel of size ∆5(G).

Proof. Let D be the set of vertices with degree equal to ∆(G). Clearly, in any b-colouring of G with

∆(G) + 1 colours, all the b-vertices are from D, and therefore if |D| < ∆(G) + 1, the answer is no.

If there is a set B of vertices of degree ∆(G) such that B = {v1, v2, . . . , vd+1} and for every

u, v ∈ B, dist(u, v) ≥ 4, we can make c(vi) = i and colour the neighbours of vi with distinct

colours. This partial colouring is proper, because of the distance constraint, and vi is the b-vertex of

colour i. Now, since there are ∆(G) + 1 available colours and every vertex has degree at most ∆(G),
we may easily extend this partial colouring by giving to every vertex one colour that does not appear

in its neighbourhood.

We claim that if |D| ≥ ∆4(G), there is a set B as in the last paragraph. B may be obtained as

follows. First choose an arbitrary vertex v1 from D and then remove the vertices that are at distance

at most 3 from it. The number of removed vertices from D that are removed is at most 1 + d+ d(d−
1)+d(d−1)(d−1) < d3. We then proceed in the same way on the resulting graph in order to choose

v2, and so on to choose v3, . . . , vd. Since the number of removed vertices that belong to D altogether

is smaller than d4, there remains at least one vertex that may be chosen as vd+1 and the claim follows.

As a consequence, if |D| ≥ ∆4(G), then χb(G) = ∆(G) + 1, and the answer to the problem is

yes.

Now it remains to consider the case ∆(G)+1 ≤ |D| < ∆4(G). If there is a b-colouring ofGwith

∆(G)+1 colours, then clearly there is a set B ⊆ D, |B| = ∆(G)+1, such that the graph induced by

B∪N(B) admits a b-colouring with ∆(G)+1 colours. The converse is also true, ifB∪N(B) admits

a b-colouring with ∆(G) + 1 colours, this colouring can be easily extended to the rest of the graph

since all vertices have degree at most ∆(G) and there are ∆(G) + 1 available colours. Therefore, in
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order to solve (∆ + 1)− b−COL on G it suffices to solve it on the graph D ∪N(D), what gives the

kernel of size ∆5(G).

5.4 Open problems

We now discuss some open problems concerning the fixed-parameter-complexity of problems associ-

ated with the Grundy and b-chromatic numbers.

Problem 5.1. Is the following problem FPT?

GREEDY COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k.

OUTPUT : Γ(G) ≥ k ?

The last problem is in XP, that is for fixed k it can be solved in polynomial time, as it was shown

in Corollary 2.3.2. However, this algorithm runs in time O(n2
k−1

) and therefore it is not fixed-

parameter-tractable. We believe that finding a faster algorithm, for example in timeO(|V (G)|k
c
) with

c a constant, would already be interesting.

The analogue of Problem 5.1 for b-colourings is also open.

Problem 5.2. Is the following problem FPT?

b-CHROMATIC

INPUT : A graph G and an integer k.

PARAMETER : k.

OUTPUT : χb(G) ≥ k ?

We now consider the following problem and prove it is not in XP.

b-COLOURING

INPUT : A graph G and an integer k.

PARAMETER : k.

OUTPUT : Does G admits a b-colouring with k colours ?

Proposition 5.4.1. Given a graph G and a fixed integer k ≥ 3, deciding if G admits a b-colouring

with k colours is an NP-complete problem.

Proof. The problem is clearly in NP. We first show the NP-hardness of the case k = 3. In order to do

so, we give a reduction from the problem of deciding if a 4-regular graph G admits a 3-colouring, that

is known to be NP-complete [28]. Let G be an instance of this problem. Let G′ be the graph obtained

from G by adding 3 copies of K1,2. If G admits a proper 3-colouring c, one can obtain a b-colouring

of G′ with 3 colours by colouring the copies of K1,2 in a way that each of the 3 colours has a b-vertex

and then colouring the component isomorphic toG using c. The converse is trivial, since a b-colouring

with 3 colourings is by definition a proper colouring. Therefore G admits a 3-colouring if and only if

G′ admits a b-colouring with 3 colours, and the reduction is completed.
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The case when k > 3 can be reduced to the case k = 3. To see this, observe that a graph G admits

a b-colouring with 3 colours if and only if the graph Hk′ = G⊕Kk′−3, k′ ≥ 1, admits a b-colouring

with k colours, where k = 3 + k′.

Although b-COLOURING is not in XP, it is not clear if there is an equivalence between this and the

b-CHROMATIC problem. It is not obvious how being able to decide if a graph G satisfies χb(G) ≥ k
can help in deciding the existence of a b-colouring with k colours. Therefore it is not even known if

b-CHROMATIC belongs to XP.

Problem 5.3. Is the following problem polynomial?

k-b-CHROMATIC

INPUT : A graph G.

OUTPUT : χb(G) ≥ k ?

On the other hand, b-COLOURING can be show to be in XP for any class of graphs in which

PRECOLOURING EXTENSION is in XP. Given a graph G from such a class of graphs, in order to solve

b-COLOURING one need first to consider all possible sets of k vertices with degree at least k−1, since

these are the only vertices that could be b-vertices in a k-colouring of G. Clearly, there are at most

O(nk) possibilities for this first choice. Let v1, v2, . . . , vk be one such set of vertices. Then, given a

vertex vi, we need to consider the O
(

(

n
k−1

)

)

subsets of size k−1 from its neighbours and enumerate

all the possibleO((k−1)!) colourings with colours {1, 2, . . . , i−1, i+1, . . . k} for each subset. As a

consequence, there are O
(

(k − 1)!
(

n
k−1

)

)k
colourings to be considered in this step. Finally, for each

of the O
(

nk(k − 1)!
(

n
k−1

)

)k
)

= O(nk+kk) possible partial b-colourings, we can use the algorithm

for PRECOLOURING EXTENSION and decide if the colouring can be extended to the rest of the graph,

what under our assumptions can be done in polynomial time.

In particular the remark of the last paragraph implies that b-COLOURING is in XP for chordal

graphs, since Marx [101] proved that PRECOLOURING EXTENSION can be solved in time O(knk+2)
for a chordal graph. In the same paper he proves that PRECOLOURING EXTENSION parameterized by

k is a W[1]-hard. Therefore a natural question is the following.

Problem 5.4. Is b-COLOURING FPT for chordal graphs?

Telle showed that DUAL OF COLOURING is FPT by showing that it has a quadratic kernel. It is

well-known that every FPT problem has a kernel, but it is not necessarily a polynomial one. Then,

other natural questions in view of Theorems 5.2.1 and 5.2.2 are the following.

Problem 5.5. Does DUAL OF GREEDY COLOURING have a polynomial kernel?

Problem 5.6. Does DUAL OF b-COLOURING have a polynomial kernel?
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Chapter 6

Relation between the colouring

parameters

In this Chapter we discuss the complexity of comparing the different colouring parameters that were

presented in Chapter 2 for a given graph. For a fixed value c ≥ 1, we want to determine the complexity

of the problem of deciding if φ(G) ≤ cψ(G), where φ(G), ψ(G) ∈{ω(G) , χ(G), χb(G), Γ(G),
∂Γ(G), ζ(G), ∆(G) + 1}. In Table 6 our results are summarized. This table should be read as

follows. At the cell with row φ(G) and column ψ(G), the complexity of the problem of deciding if

φ(G) ≤ cψ(G) is given. The abbreviations have the following meaning:

(=): φ(G) = ψ(G).

(≤): the problem is trivial because φ(G) ≤ ψ(G);

(NPC): for every c ≥ 1, the problem is NP-complete;

(=-NPC): for c = 1 the problem is NP-complete;

(>-NPC): for c > 1 the problem is NP-complete;

(coNPC): for every c ≥ 1, the problem is co-NP-complete;

(=-coNPC): for c = 1 the problem is co-NP-complete;

(>-coNPC): for c > 1 the problem is co-NP-complete;

(NPH): for every c ≥ 1, the problem is NP-hard;

(=-NPH): for c = 1 the problem is NP-hard;

(>-NPH): for c > 1 the problem is NP-hard;

(Poly): the problem is polynomial-time solvable.

In our proofs we use some of the reductions that were presented in the previous chapters. When

doing so we use the following notation:

69
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ω(G) χ(G) χb(G) Γ(G) ∂Γ(G) ζ(G) ∆(G) + 1

ω(G) = ≤ ≤ ≤ ≤ ≤ ≤

χ(G) NPC = ≤ ≤ ≤ ≤ ≤

χb(G) NPH coNPC = NPH ≤ ≤ ≤

Γ(G) NPH coNPC NPH = ≤ ≤ ≤

∂Γ(G) Unknown >-NPH =-NPH NPH = ≤ ≤

ζ(G) Unknown >-NPH =-NPC NPC =-NPC = ≤

∆(G) + 1 Unknown >-coNPC 1 NPC NPC NPC Poly =

Table 6.1: Complexity of deciding equality between the parameters.

Reduction 1 (B(G)): Let G be a 3-regular graph with n vertices. Set V (G) = {v1, v2, . . . , vn} and

E(G) = {e1, . . . , em}. Let I(G) be the vertex-edge incidence graph of G, that is the bipartite

graph with vertex set V (I(G)) = V (G) ∪ E(G) in which an edge of G is adjacent to its two

end-vertices.

The graph B(G) is constructed from I(G) as follows. First, we add an edge between every

pair of vertices in V (G) and then, we add three disjoint copies of K1,n+2. We denote the

vertices of degree n + 2 in each copy of K1,n+2 by vn+1, vn+2 and vn+3. One can easily see

that dB(G)(v) = n − 1 + 3 = n + 2, for v ∈ V (G), and that dB(G)(u) = 2, for u ∈ E(G).
Moreover, each copy ofK1,n+2 has exactly one vertex with degree equal to n+2. Consequently,

m(B(G)) = n+ 3.

As a consequence of the proof of Theorem 4.2.1, a 3-regular graph G is 3-edge-colourable if

and only if χb(B(G)) = m(B(G)) = n+ 3 = ∆(B(G)) + 1.

Reduction 2 (G(G)): Let G be a 3-regular graph with n− 4 vertices. Set V (G) = {v4, . . . , vn} and

E(G) = {e1, . . . , em}. Let Mp,p denote the graph obtained from the complete bipartite graph

Kp,p by removing a perfect matching.

The bipartite graph G(G) is constructed from I(G) as follows. For each vertex ei ∈ E(G), we

add a copy M3,3(ei) of M3,3 and identify one of its vertices with ei. We add a new vertex w
adjacent to all the vertices of V (G). We add copies Mw

1,1, Mw
2,2, Mw

3,3, Mw
n+1,n+1 of K1, K2,

M3,3, Mn+1,n+1 and we choose arbitrary vertices v1, v2, v3, vn+1 respectively from each copy

and add the edges v1w, v2w, v3w, vn+1w. Finally, for every 5 ≤ i ≤ n, we do the following:

for every 4 ≤ j ≤ i − 1, we add a copy M i
j,j of Mj,j , choose an arbitrary vertex vij of it and

add the edge viv
i
j .

As a consequence of the proof of Theorem 3.2.1, a 3-regular graph G is 3-edge-colourable if

and only if Γ(G(G)) = ∆(G(G)) + 1 = n+ 2.

6.1 The complexity of comparing two parameters

χ(G) and ω(G)

For any fixed integer c ≥ 1, we will prove that the problem of deciding if a given graph G satisfies

χ(G) ≤ cω(G) is NP-complete. To see it is in NP, it suffices to observe that a proper colouring with

1For c = 1 the problem can be solved in polynomial time.
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χ′ colours and a clique with ω′ vertices such that χ′ ≤ cω′ is a proof that χ(G) ≤ cω(G), since

χ(G) ≤ χ′ ≤ cω′ ≤ cω(G).

In what follows we prove the NP-hardness of the problem. A graph is triangle-free if it does

not contains K3 as a subgraph. As a consequence of this definition, a triangle-free graph has clique

number at most 2. Now consider the following problem.

k-TRIANGLE-FREE COLOURABLITY

INPUT : A triangle-free graph G.

OUTPUT : Is χ(G) ≤ k?

The following proof is directly adapted from the one of Kral’ et al. [89] for k = 3.

Theorem 6.1.1. For any k ≥ 3, k-TRIANGLE-FREE COLOURABILITY is NP-complete.

Proof. The problem is clearly in NP since any k-colouring of G is a certificate that χ(G) ≤ k.

To prove that it is NP-complete we give a reduction of k-COLOURABILITY. The case k = 3 is

well known to be NP-complete (See [46]), while the case k > 3 can be easily reduced to it.

Let G be a graph. We remind the reader that a graph is k-critical if it is not k-colourable but

all its proper subgraphs are k-colourable. The existence of triangle-free graphs with arbitrarily large

chromatic number is a well known result in graph theory [34]. Let H be a triangle-free k-critical

graph, whose existence is assured by the previous observation. Take an edge ab of H , delete it and

add a new extra vertex a′ and make it adjacent to b. Call this new graph H(a, a′). Since H was

triangle-free, so does H(a, a′) and also every path from a to a′ has length at least 3. Since H was

k-critical, H(a, a′) is k-colourable, but in every k-colouring, a and b have the same colour and so a
and a′ have different colours. Return to G and construct a graph G′ by replacing every edge uv by a

copy of H(u, v). Thus G′ is triangle-free and it is k-colourable if and only if G is k-colourable.

Hence k-TRIANGLE-FREE COLOURABLITY is NP-complete.

Now, we prove that in deciding if χ(G) = ω(G), given a graph G, is NP-hard. Let G be an

instance of k-TRIANGLE-FREE COLOURABLITY, for a fixed k ≥ 3, and let H be the graph obtained

from G by adding a disjoint copy of Kk. Clearly, χ(H) ≥ ω(H) = k, and χ(H) = k if an only if G
is k-colourable. But then, χ(H) = ω(H) if and only if G is k-colourable, and we get the reduction.

For a fixed integer c ≥ 2, it suffices to observe that if G is a triangle-free graph, then χ(G) ≤
cω(G) if and only if G is (2c)-colourable. Therefore, deciding if χ(G) ≤ cω(G) is an NP-hard

problem.

χb(G) and ω(G)

We now show, for a fixed c ≥ 1, that the problem of deciding if a given graph G satisfies χb(G) ≤
cω(G) is NP-hard. The reduction is from the problem of deciding if a bipartite graph G satisfies

χb(G) = ∆(G) + 1, which was shown to be NP-complete in [90]. Let G be an instance of the later

problem, andG′ be the graph obtained by adding a disjoint copy ofK⌊∆(G)
c

⌋. Clearly, ∆(G′) = ∆(G),

and sinceG is bipartite, ω(G′) = ⌊∆(G)
c ⌋. Moreover, if χb(G) = ∆(G)+1 then χb(G

′) = ∆(G′)+1,

since any b-colouring of G with ∆(G) + 1 colours can be easily extended to the vertices in the

component isomorphic to K⌊∆(G)
c

⌋ in G′. The converse is also true. If there is a b-colouring of G′

with ∆(G′)+1 colours, then no b-vertex in that colouring belongs to the copy ofK⌊∆(G)
c

⌋, since these

vertices have degree at most ∆(G)−1. As a consequence, the restriction of the colouring toG remains

a b-colouring with ∆(G)+1 colours. Therefore χb(G) = ∆(G)+1 if and only if χb(G
′) = ∆(G′)+1.
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Now it suffices to observe that χb(G) ≤ cω(G) if and only if χb(G) ≤ c⌊∆(G)
c ⌋ < ∆(G) + 1. Since

the b-chromatic number is an integer value, this completes the reduction.

χb(G) and χ(G)

Let c ≥ 1 be a fixed integer. We show that the problem of deciding if a given a graph G satisfies

χb(G) ≤ cχ(G) is co-NP-complete. To see it is in co-NP, observe that a b-colouring with χ′
b colours

and a proper colouring with χ′ colours satisfying χ′
b > cχ′ is a certificate that χb(G) > cχ(G), since

χb(G) ≥ χ′
b > cχ′ ≥ cχ(G).

It remains to prove that the problem is NP-hard. In [90] it is proved that given a bipartite graph G,

the problem of deciding if χb(G) = ∆(G) + 1 is NP-complete. Let G be an instance of this problem.

Moreover, let G′ be the graph obtained from G by adding a disjoint copy of Kd, where d = ⌊∆(G)
c ⌋.

Since G is bipartite, then clearly χ(G′) = d. Moreover, χb(G
′) = ∆(G) + 1 if and only if χb(G) =

∆(G) + 1, because a vertex in the copy of Kd cannot be a b-vertex in a colouring with ∆(G) + 1
colours, since it has degree at most d− 1, and d ≤ ∆(G). If χb(G

′) ≤ cd, then χb(G
′) ≤ ∆(G) and

so χb(G) < ∆(G) + 1. On the other hand, if χb(G) = ∆(G) + 1 then χb(G
′) = ∆(G) + 1 > cd.

As a consequence χb(G
′) ≤ cχ(G′) = cd if and only if χb(G) < ∆(G) + 1, and we get the desired

result.

χb(G) and Γ(G)

For any fixed integer c ≥ 1, deciding if χb(G) ≤ cΓ(G) for a given a bipartite graph G is an NP-hard

problem. In order to prove that, we give a reduction from the problem of deciding if Γ(G) = ∆(G)+1,

for a given bipartite graph G, which was proved to be NP-complete in Theorem 3.2.1. Let G be a

bipartite graph. Set r = c(∆(G) + 1). Let H be the disjoint union of G and r copies S1, S2, . . . Sr
of the star K1,r−1. Clearly H is bipartite. A b-colouring of H with r colours may be obtained by

colouring the vertex of degree r − 1 from Si with colour i, 1 ≤ i ≤ r, colouring its neighbours with

the remaining r− 1 colours, and finally colouring the component corresponding to G with 2 arbitrary

colours. It is easy to see that m(H) = r. Therefore χb(H) = r. Finally Γ(H) = Γ(G), since

the Grundy number of a disconnected graph is the maximum Grundy number of its components and

Γ(K1,r) = 2. Hence χb(H) ≤ cΓ(H) if and only if Γ(G) = ∆(G) + 1 and we get the desired result.

Γ(G) and ω(G)

For any fixed c ≥ 1, we show that the problem of deciding if a given a graphG satisfies Γ(G) ≤ cω(G)
is NP-hard.

To do so we use again Theorem 3.2.1, which states that given a bipartite graph G, the problem

of deciding if Γ(G) = ∆(G) + 1 is NP-complete. Let G be an instance of this problem and G′

be obtained from G by adding a disjoint copy of Kd, where d = ⌊∆(G)
c ⌋. Because G is bipartite,

ω(G′) = d and so Γ(G′) ≥ d. Since the Grundy number of a disconnected graph is the maximum

Grundy number of its components and Γ(Kd) = d, we have that Γ(G′) = ∆(G′) + 1 if and only if

Γ(G) = ∆(G) + 1. If Γ(G′) ≤ cd, then Γ(G′) ≤ ∆(G) and so Γ(G) < ∆(G) + 1. On the other

hand, if Γ(G) = ∆(G) + 1 then Γ(G′) = ∆(G) + 1 > cd. This shows that Γ(G′) ≤ cω(G′) = cd if

and only if Γ(G) < ∆(G) + 1, and therefore we get the desired result.
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Γ(G) and χ(G)

Let c ≥ 1 be fixed. We now show that given a graph G, the problem of deciding if Γ(G) ≤ cχ(G) is

co-NP-Complete.

To see that the problem is in co-NP observe that a certificate that Γ(G) > cχ(G) is a proper

colouring with χ′ colours and a greedy colouring with Γ′ colours such that Γ′ > cχ′.
The NP-hardness proof is very similar to the one of the last one that was presented. We use

again Theorem 3.2.1, which states that given a bipartite graph G, the problem of deciding if Γ(G) =
∆(G) + 1 is NP-complete. Let G be an instance of the later problem and G′ be obtained from G by

adding a disjoint copy of Kd, where d = ⌊∆(G)
c ⌋. Since χ(G) = 2, we have that χ(G′) = d. Because

the Grundy number of a disconnected graph is the maximum Grundy number of its components and

Γ(Kd) = d, we have that Γ(G′) = ∆(G′) + 1 if and only if Γ(G) = ∆(G) + 1. If Γ(G′) ≤ cd,

then Γ(G′) ≤ ∆(G) and so Γ(G) < ∆(G) + 1. On the other hand, if Γ(G) = ∆(G) + 1 then

Γ(G′) = ∆(G) + 1 > cd. This shows that Γ(G′) ≤ cχ(G′) = cd if and only if Γ(G) < ∆(G) + 1,

and we get the desired result.

Γ(G) and χb(G)

We now prove that for a fixed c ≥ 1, the problem of deciding if Γ(G) ≤ cχb(G) for a given a graph

G is NP-hard.

Let Mp be the graph obtained from the complete bipartite graph Kp,p by removing a matching of

size p−1. We have already shown in Proposition 2.3.8 that χb(M
p) = 2 and in Proposition 2.4.1 that

Γ(Mp) = p+ 1.

Proposition 6.1.1. Let p ≥ 2. In any proper colouring of Mp there are at most two b-vertices with

distinct colours.

Proof. Let c be a proper colouring ofMp,A andB its parts, and u ∈ A and v ∈ B be its only vertices

of degree p. We may assume without loss of generality that c(u) = 1 and c(v) = 2, since u and v are

adjacent. To our purposes it is sufficient to show that there are no b-vertices of colours distinct from 1

and 2. Suppose by contradiction that w is a b-vertex such that c(w) /∈ {1, 2}, and assume without loss

of generality that c(w) = 3. We may assume that w ∈ A, the proof of the case in which w ∈ B being

analogous to this one. Since w is a b-vertex, it should have a neighbours with colours 1 and 2. But all

its neighbours are in B, and since u is coloured 1 and is adjacent to every vertex in B, no vertex in B
is coloured 1, therefore u is not a b-vertex.

We now consider a modified version of the graph B(G). Replace the three stars in the definition

of B(G) by one copy of M c(n+3)−1 and one copy of K1,n+2, and denote this graph by B′(G).

Proposition 6.1.2. Given a 3-regular graph G, χb(B(G)) = n+ 3 if and only if χb(B
′(G)) = n+ 3.

Proof. If χb(B(G)) = n + 3, let c be a b-colouring of B(G) with χb(B(G)) colours. Let c′ be the

restriction of c to the vertices from B′(G) that also belong to B(G). The colouring c′ is a partial

colouring, as the vertices from the component isomorphic to M c(n+3)−1 are still uncoloured. Clearly

in c′ there are only two colour classes without b-vertices; since the only vertices from B(G) that

are not in B′(G) are the ones from the two copies of K1,n+2. Now it suffices to see that the com-

ponent M c(n+3)−1 can be easily coloured so that we obtain the two missing b-vertices. Therefore

χb(B
′(G)) = n+ 3

Now suppose χb(B
′(G)) = n+ 3 and let c be a b-colouring of B′(G) with χb(B

′(G)) colours. In

this case, Proposition 6.1.1 implies that there are at most two b-vertices in the component isomorphic
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to M c(n+3)−1. Since there are only n+ 1 vertices of degree at least n+ 2 that are not in M c(n+3)−1,

then in c there are exactly two b-vertices that belong to the component isomorphic to M c(n+3)−1. So

we can restrict c to the vertices from B(G) that also belong to B′(G) and then colour the two copies of

K1,n+2 in order to make them b-vertices of the two colours that have no b-vertices yet, thus obtaining

that χb(B(G)) = n+ 3.

We are now able to show a reduction from 3-edge-colourability of 3-regular graphs, in order

to show the desired result. Let G be an instance of this problem, that is a 3-regular graph. By

Theorem 4.2.1, to decide ifG admits a 3-edge-colouring is equivalent to deciding if χb(B(G)) = n+3.

By Proposition 6.1.2, χb(B(G)) = n + 3 if and only if χb(B
′(G)) = n + 3. Since the Grundy

number of a disconnected graph is the maximum Grundy number of its components, Γ(B′(G)) =
Γ(M c(n+3)−1) = c(n + 3). Now it suffices to observe that Γ(B′(G)) ≤ cχb(B

′(G)) if and only if

χb(B
′(G)) ≥ Γ(B′(G))

c = c(n+3)
c = n+ 3, and we obtain the desired result.

∂Γ(G) and χ(G)

Let c ≥ 2 be a fixed integer. We now show that given a graph G, the problem of deciding if ∂Γ(G) ≤
cχ(G) is co-NP-complete. To see that the problem belongs to co-NP, observe that a proper colouring

with χ′ colours and a partial greedy colouring with ∂Γ′ colours such that ∂Γ′ > cχ′ is sufficient to

show that ∂Γ(G) > cχ(G).
It remains to show the problem is NP-hard. The reduction is from the problem of deciding if

χ(G) ≥ 4 for a given 4-regular graph G satisfying χ(G) ≥ 3.

Proposition 6.1.3. Given a 4-regular graphG such that χ(G) ≥ 3, the problem of deciding if χ(G) ≥
4 is NP-hard.

Proof. Dailey [28] proved that the problem of deciding if a planar 4-regular graph G admits a 3-

colouring is NP-complete. Let G be an instance of the later problem. It can be decided in polynomial

time if χ(G) = 2, since this corresponds to verifying if G is bipartite. Therefore if we assume that

χ(G) ≥ 3 the problem of deciding if G admits a 3-colouring remains NP-complete. In this case, it

is easy to see that χ(G) ≥ 4 if and only if G does not admits a 3-colouring, and so the problem of

deciding if a 4-regular graph G satisfies χ(G) ≥ 4 is NP-hard.

LetG be a 4-regular graph such that χ(G) ≥ 3. Consider the graphG′ obtained fromG by adding

disjoint copies of the starsK1,2, . . . ,K1,4c−1. A partial greedy colouring ofG′ with 4c colours may be

obtained by colouring the vertex of degree i in the copy ofK1,i with colour i, colouring its neighbours

with the colours 1, 2, . . . , i − 1, and then colouring the bipartite component isomorphic to G with

colours 1 and 2. Since c ≥ 2, ∆(G′) = 4c − 1 and so ∂Γ(G′) = 4c. Moreover, since χ(G) ≥ 3 and

χ(K1,p) = 2, for every p ≥ 1, we have that χ(G) = χ(G′). As a consequence, ∂Γ(G′) ≤ cχ(G′) if

and only if χ(G′) ≥ ∂Γ(G′)
c = 4c

c = 4, and the reduction is completed.

∂Γ(G) and χb(G)

We prove that deciding if ∂Γ(G) = χb(G) for a given a graph G is an NP-hard problem. In order

to do so we consider a modified version of the graph B(G). Replace the three stars in the definition

of B(G) by one copy of a (n + 3)-binomial tree and one copy of K1,n+2, and denote this graph by

B′′(G).

Proposition 6.1.4. Given a 3-regular graph G, χb(B(G)) = n+ 3 if and only if χb(B
′′(G)) = n+ 3



6.1. THE COMPLEXITY OF COMPARING TWO PARAMETERS 75

Proof. If χb(B(G)) = n + 3, let c be a b-colouring of B(G) with χb(B(G)) colours. Let c′ be

the restriction of c to the vertices from B′′(G) that also belong to B(G). The colouring c′ is a par-

tial colouring, as the vertices from the component isomorphic to the binomial tree Bn+3 are still

uncoloured. Denote this component by H . Clearly in c′ there are only two colour classes without

b-vertices; since the only vertices from B(G) that are not in B′(G) are the ones from the two copies

of K1,n+2. Now it suffices to see that the component H can be easily coloured so that we obtain the

two missing b-vertices. Therefore χb(B
′(G)) = n+ 3.

Now suppose χb(B
′′(G)) = n + 3 and let c be a b-colouring of B′′(G) with χb(B

′′(G)) colours.

Since there are only two vertices in H with degree n + 2, there are at most two b-vertices in c that

belong to H . So we can restrict c to the vertices from B(G) that also belong to B′′(G) and then colour

the two copies of K1,n+2 in order to make them the eventually missing b-vertices, thus obtaining that

χb(B(G)) = n+ 3.

Since Γ(Bn+3) = n+ 3, we get that ∂Γ(B′′(G) = n+ 3. Given a 3-regular graph G, we already

shown in Theorem 4.2.1 that the problem of deciding if G admits a 3-edge colouring can be reduced

to the one of deciding if χb(B(G)) = n + 3. Therefore, because of Proposition 6.1.4, if we could

decide in polynomial time if χb(B
′′(G)) = ∂Γ(B′′(G)) then we could solve the 3-edge-colourability

problem, which is NP-complete. This gives the desired result.

∂Γ(G) and Γ(G)

For a fixed integer c ≥ 1, the problem of deciding if a given a bipartite graph G satisfies ∂Γ(G) ≤
cΓ(G) is NP-hard. In order to prove that, we give a reduction from the problem of deciding if

Γ(G) = ∆(G) + 1, for a given bipartite graph G, that was proved to be NP-complete in Theo-

rem 3.2.1. Let G be a bipartite graph and H be the disjoint union of G and the copies of the stars

K1,2, . . . ,K1,c(∆(G)+1)−1. A partial greedy colouring ofH with c(∆(G)+1) colours may be obtained

by colouring the vertex of degree i in the copy of K1,i with colour i, colouring its neighbours with

the colours 1, 2, . . . , i − 1, and then colouring the bipartite component isomorphic to G with colours

1 and 2. The maximum degree of H is clearly c(∆(G) + 1) − 1, and so ∂Γ(H) = c(∆(G) + 1).
Moreover Γ(H) = Γ(G), since the Grundy number of a disconnected graph is the maximum Grundy

number of its components and Γ(K1,p) = 2, for every p ≥ 1. Hence ∂Γ(G) ≤ cΓ(H) if and only if

Γ(H) ≥ ∂Γ(G)
c = c(∆(G)+1)

c = ∆(G) + 1 and we get the desired result.

ζ(G) and χ(G)

Let c ≥ 2 be a fixed integer. We now show that given a graph G, the problem of deciding if ζ(G) ≤
cχ(G) is co-NP-complete. To see that it is in co-NP, observe that to show that ζ(G) > cχ(G)
it suffices to provide a feasible Grundy sequence of cardinality ζ ′ and a proper colouring with χ′

colours, where ζ ′ > cχ′.
To prove it is NP-hard, we show a reduction from the problem of deciding if χ(G) ≥ 4 for a 4-

regular graph G such that χ(G) ≥ 3 (see Proposition 6.1.3 for the NP-completeness of this problem).

Let G be an instance of this problem. Consider the graph G′ obtained from G by adding disjoint

copies of the stars K1,1,K1,2, . . . ,K1,4c−1. Clearly, ζ(G′) ≥ 4c. Since c ≥ 2, ∆(G′) = 4c − 1
and so ζ(G′) = 4c. Moreover, since χ(G) ≥ 3 and χ(K1,p) = 2, for every p ≥ 1, we have that

χ(G) = χ(G′). As a consequence, ζ(G′) ≤ cχ(G′) if and only if χ(G′) ≥ ζ(G′)
c = 4c

c = 4, and the

reduction is completed.
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ζ(G) and χb(G)

We now show that given a graph G, deciding if ζ(G) = χb(G) is an NP-complete problem. The stair

factor of a graph can be computed in polynomial time [113] and χb(G) ≤ ζ(G) (see Section 2.4).

Therefore it can be checked in polynomial time if a b-colouring uses ζ(G) colours, and the problem

is in NP.

To see it is NP-hard we show a reduction from the 3-edge-colourability problem on 3-regular

graphs. Let G be a 3-regular graph with n vertices. Consider the graph B(G) and observe that the se-

quence of vertices (vn+3, vn+2, vn+1, vn, . . . , v1) defines a feasible Grundy sequence, so ζ(B(G)) ≥
n+ 3. Now, since ∆(B(G)) = n+ 2 and ζ(B(G)) ≤ ∆(B(G)) + 1 we have that ζ(B(G)) = n+ 3.

As a consequence, deciding if χb(B(G)) = ζ(B(G)) is equivalent to decide if χb(B(G)) =
m(B(G)) = n + 3. Finally, because of Theorem 4.2.1 the problem of deciding if G admits a 3-edge

colouring can be reduced to the one of deciding if χb(B(G)) = n+ 3, and so given a 3-regular graph

G, the problem of deciding if χb(B(G)) = ζ(B(G)) is NP-hard.

ζ(G) and Γ(G)

For a fixed integer c ≥ 1, the problem of deciding if a given bipartite graph G satisfies ζ(G) ≤ cΓ(G)
is an NP-hard problem. To see it is in NP, observe that because the stair factor of a graph can be

computed in polynomial time, it can be verified in polynomial time if a greedy colouring with Γ′

colours is such that Γ′ ≥ ζ(G)
c .

In order to prove that the problem is NP-hard, we give a reduction from the problem of decid-

ing if Γ(G) = ∆(G) + 1, for a given bipartite graph G, which was proved to be NP-complete

in Theorem 3.2.1. Let G be a bipartite graph and G′ be the disjoint union of G and the copies

of the stars K1,0,K1,1,K1,2, . . . ,K1,c(∆(G)+1)−1. For each 0 ≤ i ≤ c(∆(G) + 1) − 1, let vi be

the vertex of degree i in the copy of K1,i in G′. It is easy to see that the sequence of vertices

(vc(∆(G)+1)−1, vc(∆(G)+1)−2, . . . , v0) defines a feasible Grundy sequence, so ζ(G′) ≥ c(∆(G) +
1). The maximum degree of G′ is c(∆(G) + 1) − 1, and so ζ(G′) = c(∆(G) + 1). Moreover

Γ(G′) = Γ(G), since the Grundy number of a disconnected graph is the maximum Grundy num-

ber of its components and Γ(K1,p) ≤ 2, for every p ≥ 0. Hence ζ(G) ≤ cΓ(G′) if and only if

Γ(G′) ≥ ζ(G)
c = c(∆(G)+1)

c = ∆(G) + 1 and the reduction is completed.

ζ(G) and ∂Γ(G)

Given a bipartite graph G, deciding if ζ(G) = ∂Γ(G) is NP-complete To see it is in NP, observe

that because the stair factor of a graph can be computed in polynomial time, it can be verified in

polynomial time if a partial greedy colouring with ∂Γ′ colours is such that ∂Γ′ = ζ(G).
The fact that the problem is NP-hard is a consequence of the reduction presented by Shi et

al. [113]. The graph in the reduction, say H , is such that ζ(H) = ∆(H) + 1, and they prove that

deciding if ∂Γ(H) = ∆(H) + 1 is an NP-complete problem.

∆(G) + 1 and χ(G)

Observe first that the case c = 1 is equivalent to the problem of deciding if χ(G) = ∆(G) + 1, that

can be solved in polynomial time, as a consequence of Brooks’ Theorem.

It remains to consider a fixed c ≥ 2. We will show that the problem of deciding if ∆(G) + 1 ≤
cχ(G) for a given a graph G is co-NP-complete. To see that the problem belongs to co-NP, observe

that a proper colouring with χ′ < ∆(G)+1
c colours can be used to show that ∆(G) + 1 > cχ(G).
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It remains to show that the problem is NP-hard. The reduction is from the problem of deciding

if χ(G) ≥ 4 for a planar 4-regular graph G such that χ(G) ≥ 3 (see Proposition 6.1.3 for the NP-

hardness of this problem). Let G be an instance of this problem. Consider the graph G′ obtained

from G by adding a disjoint copy of K1,4c−1. Since c ≥ 2, then 4 = ∆(G) < ∆(G′) = 4c − 1.

Moreover, since χ(G) ≥ 3 and χ(K1,p) = 2, for every p ≥ 1, we have that χ(G) = χ(G′). Finally,

∆(G) + 1 ≤ cχ(G′) if and only if χ(G′) ≥ ∆(G′)+1
c = 4c

c = 4, and we get the desired result.

∆(G) + 1 and χb(G)

For a fixed integer c ≥ 1, the problem of deciding if a given a graph G satisfies ∆(G) + 1 ≤ cχb(G)
is NP-complete. To see that the problem belongs to NP it suffices to observe that one can check in

polynomial time if a given colouring of G is a b-colouring with at least
∆(G)+1

c colours.

It remains to show that the problem is NP-hard. Again, let Mp be the graph obtained from the

complete bipartite graph Kp,p by removing a matching of size p − 1. We have already shown in

Proposition 2.3.8 that χb(M
p) = 2. Moreover, in Proposition 6.1.1 we proved that in any proper

colouring of Mp there are at most 2 b-vertices with distinct colours.

Now consider another modified version of the graph B(G). Replace the three stars in the definition

of B(G) by one copy of M c(n+2) and one copy of K1,n+2, and denote this graph by B′′′(G). Observe

that ∆(B′′′(G)) = c∆(G) = c(n+ 2).
The proof of the following proposition is very similar to the one of Proposition 6.1.2, so we omit

its proof here.

Proposition 6.1.5. Given a 3-regular graph G, χb(B(G)) = n+3 if and only if χb(B
′′′(G)) = n+3.

Now we are able to prove that deciding if ∆(G) + 1 ≤ cχb(G) is NP-hard. The reduction is

again from 3-edge-colourability of 3-regular graphs. Let G be an instance of this problem. Clearly,

∆(B′′′(G)) + 1 ≤ cχb(B
′′′(G)) if and only if χb(B

′′′(G)) ≥ ∆(B′′′(G))+1
c = c(∆(G))+1

c . Since the

b-chromatic number of a graph is always a positive value, χb(B
′′′(G)) ≥ c∆(G)+1

c if and only if

χb(B
′′′(G)) ≥ ∆(G) + 1 = n+ 3. Finally, because of Proposition 6.1.5, χb(B

′′′(G)) = n+ 3 if and

only if χb(B(G)) = n+ 3, and we get the desired result.

∆(G) + 1 and Γ(G)

Let c ≥ 1 be a fixed integer. Given a graph G, the problem of deciding if ∆(G) + 1 ≤ cΓ(G) is NP-

complete. Clearly the problem is in NP, since given a colouring of G, one can check in polynomial

time if it is a greedy colouring with at least
∆(G)+1

c colours. To prove it is NP-hard we use a reduction

to the problem of deciding if Γ(G) = ∆(G) + 1, given a graph G, that we proved to be NP-complete

in Theorem 3.2.1. Let G be an instance of the later problem. Consider the graph G′ obtained from G
by adding a disjoint copy of Kc∆(G),c∆(G). Since Γ(Kc∆(G),c∆(G)) = 2, Γ(G′) = Γ(G). Moreover,

∆(G′) = c∆(G) Now, ∆(G′) + 1 ≤ cΓ(G′) if and only if Γ(G′) ≥ ∆(G′)+1
c = c∆(G)+1

c . Since

the Grundy number of a graph is always a positive value, Γ(G′) ≥ c∆(G)+1
c if and only if Γ(G′) ≥

∆(G) + 1.

∆(G) + 1 and ∂Γ(G)

For a fixed integer c ≥ 1, we now show that the problem of deciding if a given a graph G satisfies

∆(G)+1 ≤ c∂Γ(G) is NP-complete. Clearly the problem is in NP, since given a colouring of G, one

can check in polynomial time if it is a partial greedy colouring with at least
∆(G)+1

c colours.
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To prove it is NP-hard we use a reduction from the problem of deciding if a graph G satisfies

∂Γ(G) = ∆(G) + 1, which was shown to be NP-complete in [113]. Let G be an instance of the later

problem. Consider the graph G′ obtained from G by adding a disjoint copy of K1,c(∆(G)+1)+1, and

let w be the vertex of degree c(∆(G) + 1) + 1 in this copy. It is easy to see that ζ(G′) = ζ(G) + 1 =
∆(G)+2, and that therefore ∂Γ(G′) ≤ ∆(G)+2. Now, ifG′ admits a partial greedy colouring cwith

∆(G)+2 colours, then the only Grundy vertex of colour c∆(G)+2 is w, since all other vertices have

degree at most ∆(G). No vertex from the copy ofK1,c(∆(G)+1)+1 different fromw is a Grundy vertex,

except if it is coloured one, since all vertices different from w have degree one. As a consequence,

the restriction of c to the component isomorphic to G contains one Grundy vertex of each colour, and

so it is a partial greedy colouring with c∆(G) + 1 colours. On the other hand, if c is a partial greedy

colouring of G with ∆(G) + 1 colours, then a partial greedy colouring of G′ may be obtained from c
by giving colour ∆(G) + 2 to w and colouring its neighbours in a way that it has one neighbour with

each colour in {1, . . . ,∆(G)+1}. Therefore, ∂Γ(G) = ∆(G)+1 if and only if ∂Γ(G) = ∆(G)+2.

Now observe that ∆(G′) + 1 ≤ c∂Γ(G′) if and only if ∂Γ(G′) ≥ ∆(G′)+1
c = c(∆(G)+1)+1

c . Since

the partial Grundy number of a graph is always a positive value, Γ(G′) ≥ ∆(G′)+1
c if and only if

Γ(G′) ≥ ∆(G) + 2, and this concludes the reduction.

∆(G) + 1 and ζ(G)

In [113] it is shown that the stair factor of a graph can be computed in linear time. Therefore given a

graph and a fixed integer c ≥ 1, it can be decided in polynomial time if ∆(G) + 1 ≤ cζ(G).

6.2 Extensions of Reed’s conjecture

Reed [110] considered the problem of bounding the chromatic number of a graph by it’s natural upper

and lower bounds, the maximum degree and the clique number. He conjectured that

χ(G) ≤

⌈

ω(G) + ∆(G) + 1

2

⌉

.

As an evidence of this conjecture, he proved that there is an 0 < ǫ < 1 such that χ(G) ≤
ǫω(G) + (1− ǫ)(∆(G) + 1).

In this section we consider some extensions of Reed’s conjecture for the Grundy number and b-
chromatic number. We will make use of the following notation to indicate some graphs that already

appeared before in this thesis.

K∗
p,p: The graph obtained from the complete bipartite graph Kl,l by removing a perfect matching.

K ′
p,p: The graph obtained from the complete bipartite graph Kl,l by removing a matching of size

p− 1.

Sp: The graph obtained from the disjoint union of p copies of K1,p

The Table 6.2 contains the values of the parameters ω(G), χ(G), χb(G), Γ(G), ∂Γ(G), ζ(G)
and ∆(G) + 1 on these graphs. These values are either trivial to compute or were already computed

before, in Chapter 2.
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ω(G) χ(G) χb(G) Γ(G) ∂Γ(G) ζ(G) ∆(G) + 1

K∗
p,p 2 2 p p p p p

K ′
p,p 2 2 2 p+ 1 p+ 1 p+ 1 p+ 1

Sp 2 2 p 2 p p p

Table 6.2: The values of the different parameters for K∗
p,p,Kl,l and Sp.

6.2.1 Grundy number

Let G be any graph. In this section we consider φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G),
∆(G) + 1} and investigate the problem of weather there is 0 < ǫ < 1 such that:

Γ(G) ≤ ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉

.

or

Γ(G) ≥ ⌊ǫφ(G) + (1− ǫ)ψ(G)⌋

.

Theorem 6.2.1. Let ǫ be a fixed value satisfying 0 < ǫ < 1. There exists a graph G such that for

φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G), ∆(G) + 1},

Γ(G) > ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ .

Moreover, there exists a graph H such that for φ(H) ∈{ω(H), χ(H)} and ψ(H) ∈{∂Γ(H),
ζ(H), ∆(H) + 1},

Γ(H) < ⌊ǫφ(H) + (1− ǫ)ψ(H)⌋ .

Proof. Consider an integer p ≥ 3 and set G = K∗
p,p. Then, ω(G) = χ(G) = 2, Γ(G) = p, and

∂Γ(G) = ζ(G) = ∆(G) + 1 = p. Now, let φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G),
∆(G) + 1}. Then, ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ ≤ 2ǫ+ (1− ǫ)p+ 1 < pǫ+ (1− ǫ)p = Γ(G).

Now, let p be an integer such that p ≥ 4 and set H = Sp. In this case, ω(H) = χ(H) = 2,

Γ(H) = 2, and ∂Γ(H) = ζ(H) = ∆(H) + 1 = p. Therefore, for φ(H) ∈{ω(H), χ(H)} and

ψ(H) ∈{∂Γ(H), ζ(H), ∆(H) + 1}, we have that ⌊ǫφ(H) + (1− ǫ)ψ(H)⌋ ≥ 2ǫ + (1 − ǫ)p − 1.

Since p ≥ 4, 2ǫ+ (1− ǫ)p− 1 > 2 = Γ(H), and we have the result.

6.2.2 b-chromatic number

Let G be any graph. In this section we consider φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G),
∆(G) + 1} and investigate the problem of weather there is 0 < ǫ < 1 such that:

χb(G) ≤ ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉

.

or
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χb(G) ≥ ⌊ǫφ(G) + (1− ǫ)ψ(G)⌋

.

Theorem 6.2.2. Let ǫ be a fixed value satisfying 0 < ǫ < 1. There exists a graph G such that for

φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G), ∆(G) + 1},

χb(G) > ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ .

Moreover, there exists a graph H such that for φ(H) ∈{ω(H), χ(H)} and ψ(H) ∈{∂Γ(H),
ζ(H), ∆(H) + 1},

χb(H) < ⌊ǫφ(H) + (1− ǫ)ψ(H)⌋ .

Proof. Consider an integer p ≥ 3 and set G = K∗
p,p. Then, ω(G) = χ(G) = 2, χb(G) = p, and

∂Γ(G) = ζ(G) = ∆(G) + 1 = p. Now, let φ(G) ∈{ω(G), χ(G)} and ψ(G) ∈{∂Γ(G), ζ(G),
∆(G) + 1}. Then, ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ ≤ 2ǫ+ (1− ǫ)p+ 1 < pǫ+ (1− ǫ)p = χb(G).

Now, let p be an integer such that p ≥ 3 and set H = K ′
p,p. In this case, ω(H) = χ(H) = 2,

χb(H) = 2, and ∂Γ(H) = ζ(H) = ∆(H) + 1 = p + 1. Therefore, for φ(H) ∈{ω(H), χ(H)} and

ψ(H) ∈{∂Γ(H), ζ(H), ∆(H)+1}, we have that ⌊ǫφ(H) + (1− ǫ)ψ(H)⌋ ≥ 2ǫ+(1−ǫ)(p+1)−1 >
2 = χb(H).

6.2.3 Partial Grundy number

LetG be any graph. In this section we consider φ(G) ∈{ω(G), χ(G), χb(G), Γ(G)} andψ(G) ∈{ζ(G),
∆(G) + 1} and investigate the problem of weather there is 0 < ǫ < 1 such that:

∂Γ(G) ≤ ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉

.

or

∂Γ(G) ≥ ⌊ǫφ(G) + (1− ǫ)ψ(G)⌋

.

Theorem 6.2.3. Let ǫ be a fixed value satisfying 0 < ǫ < 1. There exists a graph G such that for

φ(G) ∈{ω(G), χ(G), χb(G)} and ψ(G) ∈{ ζ(G), ∆(G) + 1},

∂Γ(G) > ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ .

There exists a graph G′ such that for ψ(G′) ∈{ζ(G′), ∆(G′) + 1},

∂Γ(G′) >
⌈

ǫΓ(G′) + (1− ǫ)ψ(G′)
⌉

.

Moreover, there exists a graph H such that for φ(H) ∈{ω(H), χ(H)} and ψ(H) ∈{∂Γ(H),
∆(H) + 1},

∂Γ(H) < ⌊ǫφ(H) + (1− ǫ)ψ(H)⌋ .
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Proof. Consider an integer p ≥ 3 and set G = K ′
p,p. Then, ω(G) = χ(G) = χb(G) = 2, ∂Γ(G) =

p + 1, and ζ(G) = ∆(G) + 1 = p + 1. Now, let φ(G) ∈{ω(G), χ(G), χb(G)} and ψ(G) ∈{ζ(G),
∆(G) + 1}. Then, ⌈ǫφ(G) + (1− ǫ)ψ(G)⌉ ≤ 2ǫ+ (1− ǫ)(p+ 1) + 1. Now, since p ≥ 3, 2ǫ+ (1−
ǫ)(p+ 1) + 1 < (p+ 1)ǫ+ (1− ǫ)(p+ 1) = ∂Γ(G).

Consider an integer p ≥ 4 and set G = Sp. Then, Γ(G) = 2, ∂Γ(G) = p, and ζ(G) =
∆(G) + 1 = p. Let ψ(G) ∈{ζ(G), ∆(G) + 1}. Then, ⌈ǫΓ(G) + (1− ǫ)ψ(G)⌉ ≤ 2ǫ+ (1− ǫ)p+1,

and since p ≥ 4, 2ǫ+ (1− ǫ)p+ 1 < pǫ+ (1− ǫ)p = ∂Γ(G).

Now, let p be an integer such that p ≥ 3 and set H = K1,p−1. Then, ω(H) = χ(H) = χb(H) =
Γ(H) = 2, ∂Γ(H) = 2, and ∆(G) + 1 = p. Therefore, for φ(H) ∈{ω(H), χ(H), χb(H) = Γ(H)},

we have that ⌊ǫφ(H) + (1− ǫ)(∆(H) + 1)⌋ ≥ 2ǫ+ (1− ǫ)p− 1 > 2 = Γ(H).

6.3 Open problems

6.3.1 Complexity of comparing the parameters

The complexity of some of the problems of the form φ(G) ≤ cψ(G) is still unknown. We leave these

as open problems.

Problem 6.1. Given a graph G and for a fixed c ≥ 1, what is the complexity of deciding if ∂Γ(G) ≤
cω(G)?

Problem 6.2. Given a graph G, what is the complexity of deciding if ∂Γ(G) = χ(G)?

Problem 6.3. Given a graph G and for a fixed c > 1, what is the complexity of deciding if ∂Γ(G) ≤
cχb(G)?

Problem 6.4. Given a graph G and for a fixed c ≥ 1, what is the complexity of deciding if ζ(G) ≤
cω(G)?

Problem 6.5. Given a graph G, what is the complexity of deciding if ζ(G) = χ(G)?

Problem 6.6. Given a graph G and for a fixed c > 1, what is the complexity of deciding if ζ(G) ≤
cχb(G)?

Problem 6.7. Given a graph G and for a fixed c > 1, what is the complexity of deciding if ζ(G) ≤
c∂Γ(G)?

Problem 6.8. Given a graphG and for a fixed c > 1, what is the complexity of deciding if ∆(G)+1 ≤
cω(G)?
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6.3.2 Extensions of Reed’s conjecture

The following problem remains unsolved:

Problem 6.9. LetG be any graph and φ(G) ∈{ω(G), χ(G)}. Is it true that ∂Γ(G) < ⌊ǫφ(G) + (1− ǫ)ζ(G)⌋?

Other question related with the later one is if the stair factor of a graph can be bounded as a

function of its partial Grundy number.

Problem 6.10. Does there exists M such that for any graph G, ζ(G)− ∂Γ(G) ≤M?

Problem 6.11. Does there exists C such that for any graph G,
ζ(G)
∂Γ(G) ≤ C?



Chapter 7

Conclusion

In this thesis we investigated the computational complexity of the problem of computing the Grundy

number and the b-chromatic number of a graph. We considered these problems from the point-of-view

of the classical complexity theory and from the parameterized complexity theory.

In the case of the Grundy number, we determined the complexity of computing this parameter

for bipartite and chordal graphs, showing in each case that the problem is NP-hard. We proved that

deciding if Γ(G) ≥ |V (G)|−k for a given graph G and with k being the parameter is a FPT problem.

We also proved that deciding if Γ(G) = ∆(G) + 1, given a graph G and ∆(G) being the parameter,

is an FPT problem.

In the case of the b-chromatic number, we determined the complexity of computing this parameter

for tight chordal graphs, tight distance-hereditary graphs, and tight P4-laden graphs, showing in each

case that the problem is NP-hard. We defined the closure and the partial closure of a tight graph,

and used these operations to obtain polynomial algorithms for deciding if χb(G) = m(G), for a

given tight complement of bipartite graph, tight block graph or a tight P4-sparse graph. The method

that was used to obtain these results is general and may be possible to prove similar results for other

subclasses of tight graphs. The problem of deciding if χb(G) ≥ |V (G)| − k for a given graph G and

with k being the parameter was considered and proven to be FPT. We also proved that deciding if

χb(G) = ∆(G) + 1, given a graph G and ∆(G) being the parameter, is an FPT problem.

The complexity of problems related to comparing the colouring parameters for a given graph

were considered. For a fixed c ≥ 1, we investigated the complexity of the problem of deciding if

φ(G) ≤ cψ(G), where φ(G), ψ(G) ∈{ω(G), χ(G), χb(G), Γ(G), ∂Γ(G), ζ(G), ∆(G) + 1}. In

most of the cases the complexity of the problem was completely determined.

Finally, we considered analogue versions of the Reed’s conjecture involving the parameters Γ(G),
χb(G) and ∂Γ(G), and their upper and lower bounds. Most of the analogue versions of the conjecture

that were considered were proven to be false.

Up to a few exceptions, the previously-mentioned results are new and therefore this thesis con-

tributed to the state of the art of the problems that were investigated. The perspectives on further

research were presented in the end of each chapter, where open problems related to its contents are

given.
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Abstract:

In this paper, we study the geodetic convexity of graphs focusing on the problem of the complexity to compute
inclusion-minimum hull set of a graph in several graph classes.

For any two vertices u,v ∈V of a connected graph G = (V,E), the closed interval I[u,v] of u and v is the the
set of vertices that belong to some shortest (u,v)-path. For any S ⊆ V , let I[S] =

⋃
u,v∈S I[u,v]. A subset S ⊆ V

is geodesically convex if I[S] = S. In other words, a subset S is convex if, for any u,v ∈ S and for any shortest
(u,v)-path P, V (P)⊆ S. Given a subset S ⊆V , the convex hull Ih[S] of S is the smallest convex set that contains S.
We say that S is a hull set of G if Ih[S] =V . The size of a minimum hull set of G is the hull number of G, denoted
by hn(G). The HULL NUMBER problem is to decide whether hn(G) ≤ k, for a given graph G and an integer k.
Dourado et al. showed that this problem is NP-complete in general graphs.

In this paper, we answer an open question of Dourado et al. [12] by showing that the HULL NUMBER problem
is NP-hard even when restricted to the class of bipartite graphs. Then, we design polynomial time algorithms to
solve the HULL NUMBER problem in several graph classes. First, we deal with the class of complements of
bipartite graphs. Then, we generalize some results in [1] to the class of (q,q−4)-graphs and to the class of cacti.
Finally, we prove tight upper bounds on the hull numbers. In particular, we show that the hull number of an n-node
graph G without simplicial vertices is at most 1+ ⌈ 3(n−1)

5 ⌉ in general, at most 1+ ⌈ n−1
2 ⌉ if G is regular or has no

triangle, and at most 1+ ⌈ n−1
3 ⌉ if G has girth at least 6.
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Le nombre enveloppe de quelques classes de graphes

Résumé : Dans cet article nous étudions une notion de convexité dans les graphes. Nous nous concentrons sur
la question de la compléxité du calcul de l’enveloppe minimum d’un graphe dans le cas de diverses classes de
graphes.

Étant donné un graphe G = (V,E), l’intervalle I[u,v] entre deux sommets u,v ∈V est l’ensemble des sommets
qui appartiennent à un plus court chemin entre u et v. Pour un ensemble S⊆V , on note I[S] l’ensemble

⋃
u,v∈S I[u,v].

Un ensemble S ⊆ V de sommets est dit convexe si I[S] = S. L’enveloppe convexe Ih[S] d’un sous-ensemble S ⊆ V

de G est défini comme le plus petit ensemble convexe qui contient S. S ⊆ V est une enveloppe de G si Ih[S] = V .
Le nombre enveloppe de G, noté hn(G), est la cardinalité minimum d’une enveloppe de graphe G.

Nous montrons que décider si hn(G) ≤ k est un problème NP-complet dans la classe des graphes bipartis
et nous prouvons que hn(G) peut être calculé en temps polynomial pour les cobipartis, (q,q− 4)-graphes et cac-
tus. Nous montrons aussi des bornes supérieures du nombre enveloppe des graphes en général, des graphes sans
triangles et des graphes réguliers.

Mots-clés : convexité des graphes, nombre enveloppe, graphes bipartis, graphes cobipartis, graphes cactus,
(q,q−4)-graphes
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On the hull number of some graph classes. 3

1 Introduction

A classical example of convexity is the one defined in Euclidean spaces. In an Euclidean space E, a set S ⊆ E is
said convex if for any two points x and y of S, [x,y] ⊆ S, i.e., the set of points lying in the straight line segment
between x and y also belongs to S. Note that if two convex sets X ,Y ⊆ E contain a given set S ⊆ E of points,
then their intersection X ∩Y is also a convex set of E containing S. Hence, we can define the convex hull of S as
the inclusion-minimum convex set that contains S. Reciprocally, given a convex set S of E, a hull set of S is any
subset S′ of S such that S is the convex hull of S′. A naive way to compute the convex hull H of a set S consists in
starting with H = S and, while it is possible, adding [x,y] to H for any x,y ∈ H. However there exist more efficient
algorithms. For instance, for any set S of a d-dimensional euclidean space, the gift wrapping algorithm computes
the convex hull and a minimum-inclusion hull set of S in polynomial-time in the size of S (d being fixed). For more
results concerning the convexity in Euclidean spaces, we refer to [19].

In order to capture the abstract notion of convexity, [16] defines an alignment over a set X as a family C of
subsets of X that is closed under intersection and that contains both X and the empty set. The members of C are
called the convex sets of X . The pair (X ,C ) is then called an aligned space. An example of aligned space (E,C ) is
the one where E is an euclidean space and C = {H ⊆ E : ∀x,y ∈ H, [x,y]⊆ H}. Given an aligned space (X ,C ),
the definitions of convex hull and hull set are generalized as follows. For any S ⊆ X , the convex hull of S is the
smallest member of C containing S. For any S ∈ C , a hull set of S is a set S′ ⊆ S such that S is the convex hull of S′.

Various notions of convexity can be defined in graphs as specific alignments over the set of vertices. This
paper is devoted to the study of the geodetic convexity of graphs. Let G = (V,E) be a connected undirected graph.
For any u,v ∈ V , let the closed interval I[u,v] of u and v be the the set of vertices that belong to some shortest
(u,v)-path. The closed interval of a set of vertices can be seen as an analog to segments in Euclidian spaces. For
any S ⊆V , let I[S] =

⋃
u,v∈S I[u,v]. A subset S ⊆V is geodesically convex if I[S] = S. In this paper convexity refers

to the geodesical variant. In other words, a subset S is convex if, for any u,v ∈ S and for any shortest (u,v)-path P,
V (P)⊆ S. That is, the geodetic convexity can be defined as the alignment C over V where C = {S ⊆V : I[S] = S}.

Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest convex set that contains S. We say that S is a
hull set of G if Ih[S] =V . That is, S is a hull set of G if, starting from the vertices of S and successively adding in S

the vertices in some shortest path between two vertices in S, we eventually obtain V . The size of a minimum hull
set of G is the hull number of G, denoted by hn(G). The HULL NUMBER problem is to decide whether hn(G)≤ k,
for a given graph G and an integer k [15]. This problem is known to be NP-complete in general graphs [12]. In
this paper, we consider the problem of the complexity to compute inclusion-minimum hull set of a graph in several
graph classes.

Our results. We first answer an open question of Dourado et al. [12] by showing that the HULL NUMBER problem
is NP-hard even when restricted to the class of bipartite graphs (Section 3). Then, we design polynomial time
algorithms to solve the HULL NUMBER problem in several graphs’ classes. In Section 4, we deal with the class of
complements of bipartite graphs. In Section 5 we generalize some results in [1] to the class of (q,q− 4)-graphs.
Section 6 is devoted to the class of cacti. Finally, we prove tight upper bounds on the hull number of graphs in
Section 7. In particular, we show that the hull number of an n-node graph G without simplicial vertices is at most
1+⌈ 3(n−1)

5 ⌉ in general, at most 1+⌈ n−1
2 ⌉ if G is regular or has no triangle, and at most 1+⌈ n−1

3 ⌉ if G has girth at
least 6.

Related work. In the seminal work [15], the authors present some upper and lower bounds on the hull number
of general graphs and characterize the hull number of some particular graphs. The corresponding minimization
problem has been shown to be NP-complete [12]. Dourado et al. also proved that the hull number of unit interval
graphs, cographs and split graphs can be computed in polynomial time [12]. Bounds on the hull number of triangle-
free graphs are shown in [13]. The hull number of the cartesian and the strong product of two connected graphs
is studied in [5, 11]. In [18], the authors have studied the relationship between the Steiner number and the hull
number of a given graph. An oriented version of the HULL NUMBER problem is studied in [8, 17].
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On the hull number of some graph classes. 4

Other parameters related to the geodetic convexity have been studied in [9,10]. Variations of graph convexity
have been further proposed and studied. For instance, the monophonic convexity that deals with induced paths
instead of shortest paths is studied in [14, 16]. Another example is the P3-convexity where just paths of order three
are considered [6, 16]. Other variants of graph convexity and other parameters are mentioned in [7].

2 Preliminaries

In this paper, we adopt the graph terminology defined in [4]. Otherwise stated, all graphs considered in this work
are simple, undirected and connected. Let G = (V,E) be a graph. Given a vertex v ∈ V , N(v) denotes the (open)
neighborhood of v, i.e., the set of neighbors of v. Let N[v] = N(v)∪{v} be the closed neighborhood of v. A vertex
v is universal if N[v] =V . A vertex is simplicial if N[v] induces a complete subgraph in G. Finally, a subgraph H

of G is isometric if, for any u,v ∈V (H), the distance distH(u,v) between u and v in H equals distG(u,v).
This section is devoted to basic lemmas on hull sets. These lemmas will serve as cornerstone of most of the

results presented in this paper.

Lemma 1 ([15]). For any hull set S of a graph G, S contains all simplicial vertices of G.

Lemma 2 ([12]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a

universal vertex.

Lemma 3 ([12]). Let G be a graph, H be an isometric subgraph of G and S be any hull set of H. Then, the convex

hull of S in G contains V (H).

Lemma 4 ([12]). Let G be a graph and S a proper and non-empty subset of V (G). If V (G)\S is convex, then every

hull set of G contains at least one vertex of S.

3 Bipartite graphs

In this section, we answer an open question of Dourado et al. [12] by showing that the Hull Number Problem is
NP-complete in the class of bipartite graphs. Since the Hull Number Problem is in NP, as proved in [12], it only
remains to prove the following theorem:

Theorem 1. The HULL NUMBER problem is NP-hard in the class of bipartite graphs.

Proof. To prove this theorem, we adapt the proof presented in [12]. We reduce the 3-SATisfiability Problem to the
HULL NUMBER problem in bipartite graphs. Let us consider the following instance of 3-SAT. Given a formula in
the conjunctive normal form, let F ={C1,C2, . . . ,Cm} be the set of its 3-clauses and X ={x1,x2, . . . ,xn} the set of
its boolean variables. We may assume that m = 2p, for a positive integer p ≥ 1, since it is possible to add dummy
variables and clauses without changing the satisfiability of F and such that the size of the instance is at most twice
the size of the initial instance. Moreover, we also assume, without loss of generality, that each variable xi and its
negation appear at least once in F (otherwise the clauses where xi appeared could always be satisfied).

Let us construct the bipartite graph G(F ) as follows. First, let T be a full binary tree of height p rooted in r

with m = 2p leaves, and let L ={c1,c2, . . . ,cm} be the set of leaves of T . We then construct a graph H as follows.
First, let us add a vertex u that is adjacent to every vertex in L. Then, any edge {u,v} ∈ E(T ) with u the parent
of v is replaced by a path with 2h(v) edges, where h(v) is the distance between v and any of its descendent leaves.
Note that, in H, the distance between r and any leaf is ∑

p−1
i=0 2i = 2p −1 = m−1. Moreover, it is easy to see that

|V (H)|= O(m · logm).
The following claims are proved in [12].
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On the hull number of some graph classes. 5

Figure 1: Subgraph of the bipartite instance G(F ) containing the gadget of a variable xi that appears positively
in clauses C1 and C2, and negatively in C8. If xi appears positively in C j, link a5

i to c j through y
j
i . If it appears

negatively, we use b5
i instead of a5

i .

Claim 1. Let v,w ∈ V (T )\{r}. The closed interval of v,w in H contains the parents of v in T if and only if v and

w are siblings in T .

Claim 2. The set L is a minimal hull set of H.

Then, let H ′ be obtained by adding a one degree vertex u′ adjacent to u in H. Finally, we build a graph G(F )

from H ′ by adding, for any variable xi, i ≤ n, the gadget defined as follows.
Let us start with a cycle {a1

i ,a
2
i ,v

1
i ,b

2
i ,b

1
i ,b

3
i ,b

4
i ,v

2
i ,a

4
i ,a

3
i } plus the edge {v2

i ,v
1
i }. Then, add the vertex v3

i

as common neighbor of v2
i and u. Add a neighbor b5

i (resp., a5
i ) adjacent to b3

i (resp., a3
i ) and a path of length

2h(r)− 3 = m− 3 edges between b5
i (resp., a5

i ) and r. Let D be the set of internal vertices of all these 2n paths
between a5

i , resp., b5
i , and r, i ≤ n. Finally, for any clause C j in which xi appears, if xi appears positively (resp.,

negatively) in C j then add a common neighbor y
j
i between c j and a5

i (resp., b5
i ). See an example of such a gadget

in Figure 1. Note that |V (G(F ))|= O(m · (n+ logm)).

Lemma 5. G(F ) is a bipartite graph.

Proof. Let us present a proper 2-coloring c of G(F ). Let c(r) = 1, and for each vertex w in V (H), define c(w)

as 1 if w is in an even distance from r, and 2 otherwise. Clearly, c is a partial proper coloring of G(F ) and
moreover we have c(u) = 1 and c(c j) = 2, for any j ∈{1, . . . ,m} (Indeed, any ci is at distance m−1 (odd) of r in

H). Let c(u′) = 2. For every i ∈{1, . . . ,n} and for any j such that xi ∈ C j, let c(y
j
i ) = 1. For any i ≤ n, for any

x ∈ {b5
i ,a

5
i ,v

3
i ,b

4
i ,a

4
i ,b

1
i ,v

1
i ,a

1
i }, c(x) = 2.

c(b5
i ) = c(a5

i ) = c(v3
i ) = 2. Again, this partial coloring of G(F ) is proper. One can easily verify that this

coloring can be extended to {a1
i ,a

2
i ,v

1
i ,b

2
i ,b

1
i ,b

3
i ,b

4
i ,v

2
i ,a

4
i ,a

3
i } for any i ≤ n. Moreover, since c(r) = 1 and c(a5

i ) =

2 (c(b5
i ) = 2), for every i ∈{1, . . . ,n}, and since the path that we add in G(F ) between r and a5

i (b5
i ) is of odd

length m−3, one can completely extend c in order to get a proper 2-coloring of G(F ). ⋄
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On the hull number of some graph classes. 6

Claim 3. The set V (G(F ))\{a1
i ,a

2
i ,v

1
i ,b

1
i ,b

2
i } is convex, for any i ∈{1, . . . ,n}.

Proof. Denote Wi ={a1
i , a2

i , v1
i , b1

i , b2
i }, for some i ∈ {1, . . . ,n}, and W ′

i = {a3
i ,b

3
i ,v

2
i }. By contradiction, suppose

that there exists an (x,y)-shortest path containing a vertex of Wi, for some x,y ∈ V (G(F ))\Wi. Observe that it
implies that that there are x′,y′ ∈W ′

i such that I[x′,y′] contains a vertex of Wi, since W ′
i contains all the neighbors

of Wi in V (G(F ))\Wi. However, it is easy to verify that for any pair x,y ∈W ′
i , I[x,y] contains no vertex of Wi. This

is a contradiction. ⋄

Lemma 6. hn(G(F ))≥ n+1.

Proof. Let S be any hull set of G(F ). Clearly u′ ∈ S, because u′ is a simplicial vertex of G(F ) (Lemma 1).
Furthermore, Claim 3 and Lemma 4 imply that S must contain at least one vertex wi of the set {a1

i ,a
2
i ,v

1
i ,b

1
i ,b

2
i },

for every i ∈{1, . . . ,n}. Hence, |S| ≥ n+1. ⋄

The main part of the proof consists in showing:

Lemma 7. F is satisfiable if and only if hn(G(F )) = n+1.

First, consider that F is satisfiable. Given an assignment A that turns F true, define a set S as follows. For
1 ≤ i ≤ n, if xi is true in A add a1

i to S, otherwise add b1
i to S. Finally, add u′ to S. Note that |S| = n+ 1. We

show that S is a hull set of G(F ). First note that a5
i ,c j ∈ I[a1

i ,u
′], for every clause C j containing the positive

literal of xi. Similarly, observe that b5
i ,c j ∈ I[b1

i ,u
′], for every clause C j containing the negative literal of xi. Since

A satisfies F , it follows L ⊆ Ih[S]. Therefore, H being an isometric subgraph of G(F ), Lemma 3 and Claim 3
imply that V (H) ⊆ Ih[S]. Furthermore, the shortest paths between r and u have length m, which implies that all
vertices a5

i , b5
i , y

j
i (i ≤ n) and all vertices in D are included in Ih[S]. It remains to observe that Ih[a

5
i ,b

5
i ,w,u

′], where
w ∈ {a1

i ,b
1
i }, contains the variable subgraph of xi. Therefore we have that S is a hull set of G(F ).

We prove the sufficiency by contradiction. Suppose that G(F ) contains a hull set S with n+ 1 vertices and
that F is not satisfiable.

Recall that, by Lemma 1, u′ ∈ S. For any i ≤ n, let Wi as defined in Claim 3. Recall also that there must be a
vertex wi ∈Wi ∩S, for any i ≤ n. Since v1

i ∈ I[u′,a1
i ], v1

i ∈ I[u′,b1
i ], a2

i ∈ I[u′,a1
i ] and b2

i ∈ I[u′,b1
i ], we can assume,

without loss of generality, that wi ∈ {a1
i ,b

1
i }, for every i ∈{1, . . . ,n} (indeed, if wi ∈ {v1

i ,a
2
i }, it can be replaced by

a1
i , and if wi = b2

i , it can be replaced by b1
i ). Therefore S defines the following truth assignment A to F . If wi = a1

i

set xi to true, otherwise set xi to false. As F is not satisfiable, there exists at least one clause C j not satisfied by A .
Using the hypothesis that F is not satisfiable, we complete the proof by showing that there is a non empty set

U such that V (G(F ))\U is a convex set and U ∩S = /0. That is, we show that Ih[S]⊆V (G(F ))\U for some U 6= /0,
contradicting the fact that S is a hull set.

For any clause C j, let us define the subset U j of vertices as follows. Let Pj be the path in T between c j and
r, let X j be the p vertices in V (T ) \V (Pj) that are adjacent to some vertex in Pj. Then, U j is the union of the
vertices that are either in Pj or that are internal vertices of the paths resulting of the subdivision of the edges {x,y}

where x,y ∈ Pj ∪X j. Another way to build the set U j is to start with the set of vertices of the (unique) shortest path
between c j and r in H and then add successively to this set, the vertices of V (H)\ (V (T )∪{u}) that are adjacent
to some vertex of the current set.

Now, let U ′ = ∪ j∈JU j where J is the (non empty) set of clauses that are not satisfied by A . Note that r ∈U ′.
For any i ≤ n, let Wi be defined as follows. If wi = a1

i (xi assigned to true by A), then Wi is the union of
{bℓi : ℓ≤ 5} with the set of the yk

i that are adjacent to b5
i . Otherwise, wi = b1

i (xi assigned to false by A), then Wi

is the union of {aℓi : ℓ≤ 5} with the set of the yk
i that are adjacent to a5

i .
Finally, let U =U ′∪ (

⋃
i≤n Wi)∪D. In Figure 1, U is depicted by the white vertices, assuming that clause C2

is false and that xi is set to false by A . Observe that U ∩S = /0.
It remains to prove that V (G(F ))\U is a convex set. Consider the partition {A1,A2,A3} of V (G(F ))\U where

A1 = V (H)\(U ∪{u}), A2 ={u,u′} and A3 = V (G(F ))\(U ∪A1 ∪A2). To prove that V (G(F ))\U is convex, let
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On the hull number of some graph classes. 7

w ∈ Ai and w′ ∈ A j for some i, j ∈ {1,2,3}. We show that I[w,w′]∩U = /0 considering different cases according to
the values of i and j. Recall that V (H)\{u} induces a tree T ′ rooted in r and that, if a vertex of T ′ is in A1, then,
by definition of U ′, all its descendants in T ′ are also in A1 (i.e., if v ∈ U ∩V (T ′), then all ancestors of v in T ′ are
in U). It is important to note that, for any vertex v in A1, the shortest path in G(F ) from v to any leaf ℓ of T ′ is the
path from v to ℓ in T ′ (in particular, such a shortest path does not pass through r and any vertices in D).

• The case i = j = 2, i.e., m,m′ ∈ {u,u′}, is trivial;

• First, let us assume that w∈ A1 =V (H)\(U ∪{u}) and w′ ∈ A2 = {u,u′}. If w′ = u (resp., if w′ = u′) then
Ih[w,w

′] consists of the subtree of T ′ rooted in w union u (resp., union u and u′). Hence, Ih[w,w
′]∩U = /0

because no descendants of w in T ′ are in U .

• Second, let w,w′ ∈ A1. If one of them, say w, is an ancestor of the other in T ′, then Ih[w,w
′] consists of

the path between them in T ′ (remember that r ∈ U so w 6= r). Since no descendants of w in T ′ are in
U , Ih[w,w

′]∩U = /0. Otherwise, there are three cases: (1) either Ih[w,w
′] consists of the path P between

w and w′ in T ′, or (2) Ih[w,w
′] consists of the union of the subtree R of T ′ rooted in w, the subtree R′

of T ′ rooted in w′ and u, or (3) Ih[w,w
′] = R∪R′ ∪P∪{u}. Again, (R∪R′ ∪{u})∩U = /0 because no

descendants of w and w′ in T ′ are in U . Hence, it only remains to prove that when P ⊆ Ih[w,w
′] then

P∩U = /0. It is easy to check that P ⊆ Ih[w,w
′] only in the following case: there exist x,y,z ∈V (T ) such

that x is the parent of y and z in T , and w (resp., w′) is a vertex of the path resulting from the subdivision
of {x,y} (resp., {x,z}). In this case, it means that all clause-vertices that are descendants of y and z are
not in U . Therefore x /∈U and hence no descendants of x are in U . In particular, P∩U = /0.

• Assume now that w ∈ A3. Let i ≤ n such that w belongs to the gadget Gi corresponding to variable xi.
Let us assume that wi = b1

i . The case wi = a1
i can be handled in a similar way by symmetry. Then, by

definition, U contains {a1
i , · · · ,a

5
i } and the y

j
i ’s adjacent to a5

i . With this setting, xi is set to false in the
assignment A . If there is a vertex y

j
i adjacent to b5

i , let C j be the other neighbor of j
j
i . By definition, it

means that clause C j contains the negation of variable xi. Since xi is set to false, it means that clause C j

is satisfied and so C j /∈U .

Let x ∈V (Gi)\U . Then, any shortest path P from w to x either passes through V (Gi)\U or, there is y
j
i

adjacent to b5
i such that P passes through y

j
i ,C j,u and v3

i (the latter case may occur if a ∈ {y
j
i ,b

5
i } and

b = v3
i , or a = y

j
i and b ∈ {v3

i ,v
2
i } where {a,b}= {x,w}). Hence, such a path P avoid U , and the result

holds if x = w′ ∈ A3 ∩Gi.

Similarly, if x ∈ {u,u′}, then, any shortest path P from w to x either passes through V (Gi)\U or through
y

j
i ,C j,u with y

j
i adjacent to b5

i . In particular, if x = w′ ∈ {u,u′}= A2, then the result holds.

Now, let x = C j′ be a leaf of T ′ that is not in U . Then, any shortest path P from w to x either passes

through u or through y
j
i ,C j and, if j 6= j′, through u. In any case, P avoids U . If w′ ∈ A3 \Gi, any path

between w and w′ passes through u or through one or two leaves that are not in U . Finally, if w′ ∈ A1,
let R be the subtree of T ′ rooted in w′. V (R) ⊆ Ih[w,w

′]. Moreover, any shortest path from w to w′

path through a leaf of R, i.e., a leaf not in U . By previous remarks, in all these cases, the shortest paths
between w and w′ avoid u, and Ih[w,w

′] are disjoint from U .

We conclude this section by showing one approximability result. Let IG(G) be the incidence graph of G,
obtained from G by subdividing each edge once. That is, let us add one vertex suv, for each edge uv ∈ E(G), and
replace the edge uv by the edges usuv,suvv.

Proposition 2. hn(IG(G))≤ hn(G)≤ 2hn(IG(G)).
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On the hull number of some graph classes. 8

Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G is a hull set of IG(G), since for any
shortest path, P = {v1, . . . ,vk} in G there is a shortest path P′ = {v1,sv1v2 ,v2, . . . ,svk−1vk

,vk} in IG(G) (the edges
were subdivided). Consequently, hn(IG(G))≤ hn(G). However, given a hull set Sh of IG(G), one may find a hull
set of G by simply replacing each vertex of Sh that represents an edge of G by its neighbors (vertices of G). Thus,
hn(G)≤ 2hn(IG(G)).

Corollary 1. If there exists a k-approximation algorithm B to compute the hull number of bipartite graphs, then B

is a 2k-approximation algorithm for any graph.

4 Complement of bipartite graphs

A graph G = (V,E) is a complement of a bipartite graph if there is a partition V = A∪B such that A and B are
cliques. In this section, we give a polynomial-time algorithm to compute a hull set of G with size hn(G). We start
with some notations.

Given the partition (A,B) of V , we say that an edge uv ∈ E is a crossing-edge if u ∈ A and v ∈ B. Denote by
S the set of simplicial vertices of G, by SA = S∩A and by SB = S∩B. Let U be the set of universal vertices of G.
Note that, if G is not a clique, U ∩ S = /0. Let H be the graph obtained from G by removing the vertices in S and
U , and removing the edges intra-clique, i.e., V (H) =V \ (U ∪S) and E(H) = {{u,v} ∈ E : u ∈ A∩V (H) and v ∈

B∩V (H)}. Let C = {C1, · · · ,Cr} (r ≥ 1) denote the set of connected components Ci of H. Observe that, if G is
neither one clique nor the disjoint union of A and B, H is not empty and each connected component Ci has at least
two vertices, for every i ∈ {1, . . . ,r}. Indeed, any vertex in A \ SA (resp., in B \ SB) has a neighbor in B∩V (H)

(resp. in A∩V (H)).

Theorem 3. Let G = (A ∪ B,E) be the complement of a bipartite n-node graph. There is an algorithm that

computes hn(G) and a hull set of this size in time O(n7).

Proof. We use the notations defined above. Recall that, by Lemma 1, S is contained in any hull set of G. In
particular, if G is a clique or G is the disjoint union of two cliques A and B, then hn(G) = n. From now on, we
assume it is not the case. By Lemma 2, no vertices in U belong to any minimal hull set of G. Now, several cases
have to be considered.

Claim 4. If U = /0, SA 6= /0 and SB 6= /0, then S is a minimum hull set of G and thus hn(G) = |S|.

Proof. Since G has no universal vertex, a simplicial vertex in SA (in SB) has no neighbor in B (resp., in A). Since
G is not the disjoint union of two cliques, every vertex u ∈ A\SA has a neighbor v ∈ B\SB and vice-versa. Thus,
sauvsb is a shortest (sa,sb)-path, for any sa ∈ A and sb ∈ B, and then u,v ∈ Ih[S].

Hence, from now on, let us assume that U 6= /0 or, w.l.o.g., SB = /0.
Again, if there is some simplicial vertex in G, i.e., if SA 6= /0, all the vertices of S belong to any hull set of G

and thus hn(G)≥ |S|. In fact, for each connected component of H, we prove that it is necessary to choose at least
one of its vertices to be part of any hull set of G.

Claim 5. If U 6= /0 or SB = /0 or SA = /0, then hn(G)≥ |S|+ r.

Proof. Again, all vertices of S belong to any hull set of G. We show that, for any 1 ≤ i ≤ r, V\Ci is a convex set.
Thus, by Lemma 4, any hull set of G contains at least one vertex of Ci for any i ≤ r.

It is sufficient to show that no pair u,v ∈ V (G)\Ci can generate a vertex vi of Ci. By contradiction, suppose
that there exists a pair of vertices u,v ∈ V (G)\Ci such that there is a shortest (u,v)-path P containing a vertex vi

of Ci. Consequently, u and v must not be adjacent and we consider that u ∈ A and v ∈ B. If U = /0, then, w.l.o.g.,
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On the hull number of some graph classes. 9

SB = /0 and v is not simplicial and has at least one neighbor in A. Hence, since U 6= /0 or Sb = /0, u and v are
at distance two. Consequently, P = uviv. However, if vi ∈ A, v belongs to Ci, because of the crossing edge viv,
otherwise, u ∈Ci. In both cases we reach a contradiction.

Now, two cases remain to be considered. We recall that U 6= /0 or SB = /0.

1. If r ≥ 2, then hn(G) = |S|+ r, and we can build a minimum convex hull by taking the vertices in S, one
arbitrary vertex in A∩Ci for all i < r and one arbitrary vertex in B∩Cr.

Let R = {v1, . . . ,vr} such that vi ∈Ci ∩A for any i < r and vr ∈Cr ∩B.

Claim 6. S∪R is a hull set of G.

Proof. Since all vertices in U are generated by v1 and vr (that are not adjacent, since they are in different
components), it is sufficient to show that S∪R generates all the vertices in Ci, for any i ∈ {1, . . . ,r}.
Actually, we show that R generates all the vertices in Ci.

By contradiction, suppose that there is a vertex z /∈ Ih[R]. Let i ≤ r such that z ∈Ci. Because Ci contains
one vertex in R and is connected, we can choose z and w ∈Ci ∩ Ih[R] linked by a crossing edge. We will
show that z ∈ Ih[R] (a contradiction), hence, w.l.o.g., we may assume that z ∈ A. If i = r, then v1zw is a
shortest (v1,w)-path and z ∈ Ih[R].

Otherwise, recall that N(vr)∩A∩Cr 6= /0 and, for any i < r, N(vi)∩B∩Ci 6= /0 because vi is not simplicial
for any i ≤ r. Let x ∈ N(vr)∩ A ∩Cr and yi ∈ N(vi)∩ B ∩Ci. Note that x ∈ Ih[R] because v1xvr is
a shortest (vr,v1)-path, and yi ∈ Ih[R] because viyivr is a shortest (vr,vi)-path. Hence, since xzyi is a
shortest (x,yi)-path, we have z ∈ Ih[R].

As |R|= r, we conclude by Claim 5 that hn(G) = |S|+ r.

2. If r = 1, then hn(G)≤ |S|+4, and any minimum convex hull contains at most 4 vertices not in S.

Again, S is included in any hull set of G by Lemma 1, and no vertices in U belong to some hull set by
Lemma 2. In this case, when H has just one connected component C1 = C, one vertex of C may not
suffice to generate this component, as in the previous case. However, we prove that at most 4 vertices in
C are needed.

(a) If SA 6= /0 and SB 6= /0 (and thus U 6= /0 because Claim 4 applies otherwise), then hn(G) = |S|+1.

By Claim 5, we know that hn(G)≥ |S|+1. Let v be an arbitrary vertex of C. We claim that S∪{v}

is a minimum hull set of G. By contradiction, let z /∈ Ih[S∪{v}]. Since C is a connected component
of H, we may choose z such that there is w ∈ N(z)∩C∩ Ih[S∪{v}]. Moreover, we may assume
w.l.o.g. that z ∈ A, and thus w ∈ B. In that case, since SA 6= /0, there is vA ∈ SA and as vAw /∈ E(G)

(indeed, any vertex in N(vA)∩B must be universal because vA is simplicial, which is not the case
since w is not universal because it belongs to C), z is generated by vA and w.

(b) If SA 6= /0 and SB = /0, then hn(G)≤ |S|+2.

Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum. Since vA is not universal in G, there exists
x ∈ B such that vAx /∈ E(G). Note that x ∈ C since x is not universal and SB = /0. Let R = {vA,x}.
Observe that N(vA)∩B∩C ⊆ Ih[R∪S] since vAx /∈ E.

By contradiction, assume V (G)\Ih[R∪ S] 6= /0. Let z ∈ V (G)\Ih[R∪ S]. First, suppose that z ∈ A.
Since C is connected in H, we may assume that z has a neighbor w ∈ Ih[R∪S]∩B∩C. As SA 6= /0,
there is v ∈ SA and as vw /∈ E(G) (because otherwise w would be universal in G and not in C), z is
generated by v and w. Now suppose that z ∈ B, and now it has a neighbor w ∈ Ih[R∪ S]∩A∩C.
Observe that Ih[R∪S]∩B ⊆ N(w), otherwise z would be in Ih[R∪S]. However, since N(vA)∩B∩

RR n° 7567

in
ria

-0
05

76
58

1,
 v

er
si

on
 2

 -
 1

4 
S

ep
 2

01
1



On the hull number of some graph classes. 10

C ⊂ (N(vA)∩B∩C)∪{x}⊆ Ih[R∪S]∩B, we get that N(vA)∩B∩C ⊂ N(w)∩B∩C, contradicting
the maximality of |N(vA)∩B∩C|.

(c) If SA = /0 and SB = /0, then hn(G)≤ 4.

Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum and vB ∈ B∩C be such that |N(vB)∩A∩C|

is maximum. Since vA is not universal in G and SB = /0, there exists y ∈C∩B\N(va), and similarly
there exists x∈C∩A\N(vB). Let R= {vA,vB,x,y}. Observe that N(vA)∩B⊆ Ih[R] and N(vB)∩A⊆

Ih[R], since vAy /∈ E and vBx /∈ E.

By contradiction, assume V (G)\Ih[R] 6= /0. Let z ∈V (G)\Ih[R]. First, suppose that z ∈ A. As in the
previous case, since C is connected in H, we may assume that z has a neighbor w ∈ Ih[R]∩B∩C.
Observe that Ih[R]∩A∩C ⊆ N(w), otherwise z would be in Ih[R]. However, since N(vB)∩A∩C ⊂

(N(vB)∩A∩C)∪{x}⊆ Ih[R]∩A∩C, we get that N(vB)∩A∩C ⊂ N(w)∩A∩C, contradicting the
maximality of |N(vB)∩A∩C|.

Whenever z ∈ B, one can use the same arguments to reach a contradiction on the maximality of
|N(vA)∩B∩C|.

Since |S|+1 ≤ hn(G) ≤ |S|+4, S is included in any hull set of G and no vertices in U belong to some
hull set, there exist a subset R of at most 4 vertices in C such that S∪R is a minimum hull set of G.
There are O(|V |4) subsets to be tested and, for each one, its convex hull can be computed in O(|V ||E|)

time [12]. This leads to the announced result.

5 Graphs with few P4’s

A graph G = (V,E) is a (q,q− 4)-graph, for a fixed q ≥ 4, if for any S ⊆ V , |S| ≤ q, S induces at most q− 4
paths on 4 vertices [2]. Observe that cographs and P4-sparse graphs are the (q,q−4)-graphs for q = 4 and q = 5,
respectively. The hull number of a cograph can be computed in polynomial time [12]. This result is improved
in [1] to the class of P4-sparse graphs. In this section, we generalize these results by proving that for any fixed
q ≥ 4, computing the hull number of a (q,q− 4)-graph can be done in polynomial time. Our algorithm runs in
time O(2qn2) and is therefore a Fixed Parameter Tractable for any graph G, where the number of induced P4’s of
G is the parameter.

5.1 Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of (q,q−4)-graphs, called Primeval

Decomposition. For a survey on Primeval Decomposition, the reader is referred to [3]. In order to present this
decomposition of (q,q−4)-graphs, we need the following definitions.

Let G1 and G2 be two graphs. G1 ∪G2 denotes the disjoint union of G1 and G2. G1 ⊕G2 denotes the join
of G1 and G2, i.e., the graph obtained from G1 ∪G2 by adding an edge between any two vertices v ∈ V (G1) and
w ∈V (G2). A spider G = (S,K,R,E) is a graph with vertex set V = S∪K ∪R and edge set E such that

1. (S,K,R) is a partition of V and R may be empty;

2. the subgraph G[K∪R] induced by K and R is the join K⊕R, and K separates S and R, i.e., any path from
a vertex in S to a vertex in R contains a vertex in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S → K such that, either
N(s)∩K = K−{ f (s)} for all vertices s ∈ S, or N(s)∩K = { f (s)} for all vertices s ∈ S. In the latter case
or if |S|= |K|= 2, G is called thin, otherwise G is thick.
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On the hull number of some graph classes. 11

A graph G = (S,K,R,E) is a pseudo-spider if it satisfies only the first two properties of a spider. A graph
G = (S,K,R,E) is a q-pseudo-spider if it is a pseudo-spider and, moreover, |S∪K| ≤ q. Note that q-pseudo-spiders
and spiders are pseudo-spiders.

We now describe the decomposition of (q,q−4)-graphs.

Theorem 4 ([2]). Let q ≥ 0 and let G be a (q,q−4)-graph. Then, one of the following holds:

1. G is a single vertex, or

2. G = G1 ∪G2 is the disjoint union of two (q,q−4)-graphs G1 and G2, or

3. G = G1 ⊕G2 is the join of two (q,q−4)-graphs G1 and G2, or

4. G is a spider (S,K,R,E) where G[R] is a (q,q−4)-graph if R 6= /0, or

5. G is a q-pseudo-spider (H2,H1,R,E) where G[R] is a (q,q−4)-graph if R 6= /0.

Theorem 4 leads to a tree-like structure T (G) (the primeval tree) which represents the Primeval Decomposi-
tion of a (q,q−4)-graph G. T (G) is a rooted binary tree where any vertex v corresponds to an induced (q,q−4)-
subgraph Gv of G and the root corresponds to G itself. Moreover, the vertices of subgraphs corresponding to the
leaves of T (G) form a partition of V (G), i.e., {V (Gℓ)}ℓ lea f o f T (G) is a partition of V (G).

For any leaf ℓ of T (G), Gℓ is either a spider (S,K, /0,E), or has at most q vertices. Moreover, any internal
vertex v has its label following one of the four cases in Theorem 4 corresponds to Gv. More precisely, let v be an
internal vertex of T (G) and let u and w be its two children. v is a parallel node if Gv = Gu ∪Gw. v is a series node

if Gv = Gu ⊕Gw. v is a spider node if u is a leaf with Gu is a spider (S,K, /0,F) and Gv is the spider (S,K,R,E)

where Gv[R] = Gw and Gv[S∪K] = Gu. Finally, v is a small node if u is a leaf with |V (Gu)| ≤ q and Gv is the
q-pseudo-spider (S,K,R,E) where Gv[R] = Gw and Gv[S∪K] = Gu.

This tree can be obtained in linear-time [3].
We compute hn(G) by a post-order traversal in T (G). More precisely, given v∈V (T (G)), let Hv be an optimal

hull set of Gv and let H∗
v be an optimal hull set of G∗

v , the graph obtained by adding a universal vertex to Gv. We
show in next subsection that we can compute (Hℓ,H

∗
ℓ ) for any leaf ℓ of T (G) in time O(2qn). Moreover, for any

internal vertex v of T (G), we show that we can compute (Hv,H
∗
v ) in time O(2qn), using the information that was

computed for the children and grand children of v in T (G).

Theorem 5. Let q ≥ 0 and let G be a n-node (q,q−4)-graph. An optimal hull set of G can be computed in time

O(2qn2).

Before going into the details of the algorithm in next subsection, we prove some useful lemmas.

Lemma 8 ([1]). Let G = (S,K,R,E) be a pseudo-spider with R neither empty nor a clique. Then any minimum

hull set of G contains a minimum hull set of the subgraph G[K ∪R].

Proof. Let H be a minimum hull set of G. Let HS = H ∩S and HR = H \HS. We prove that HR is a minimum hull
set of G[K ∪R].

Let H ′ be any minimum hull set of G[K ∪R]. Note that H ′ ⊆ R because K is a set of universal vertices in
G[K ∪R] and by Lemma 2. Moreover, By Lemma 3, because G[K ∪R] is an isometric subgraph of G, the convex
hull of H ′ in G contains G[K ∪R]. Hence, HS ∪H ′ is a hull set of G and hn(G)≤ |HS|+hn(G[K ∪R]).

Now it remains to prove that HR is a hull set of G[K ∪R]. Clearly, if HR generate all vertices of R in G[K ∪R]

then HR is a hull set of G[K ∪R] since there are at least two non adjacent vertices in R and any vertex in K is
adjacent to all vertices in R. For purpose of contradiction, assume HR does not generate R in G[K∪R]. This means
that there is a vertex v ∈ R, that is generated in G by a vertex in S∪K, i.e., v ∈ R is an internal vertex of a shortest
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On the hull number of some graph classes. 12

path between s ∈ S∪K and some other vertex, which is not possible, since we have all the edges between K and
R. Hence, hn(G[K ∪R])≤ |HR|.

Therefore, |HS|+ |HR| = hn(G) ≤ |HS|+hn(G[K ∪R]) ≤ |HS|+ |HR|. So, hn(G[K ∪R]) = |HR|, i.e., HR is a
minimum hull set of G[K ∪R] contained in H.

The next lemma is straightforward by the use of isometry.

Lemma 9. Let G be a graph which is not complete and that has a universal vertex. Let H obtained from G by

adding some new universal vertices. A set is a minimum hull set of G if, and only if, it is a minimum hull set of H.

5.2 Dynamic programming and correctness

In this section, we detail the algorithm presented in previous section and we prove its correctness. Let v∈V (T (G)),
which may therefore be either a leaf, a parallel node, a series node, a spider node or a small node. For each of these
five cases, we describe how to compute (Hv,H

∗
v ), in time O(2qn).

Let us first consider the case when v is a leaf of T (G).
If Gv is a singleton {w}, then Hv =V (Gv) = {w} and H∗

v =V (G∗
v). If Gv is a spider (S,K, /0,E) then Hv = S

since S is a set of simplicial vertices (so it has to be included in any hull set by Lemma 1) and it is sufficient to
generate Gv. One may easily check that if Gv is a thick spider, S is also a minimum hull set of G∗

v , i.e., S = H∗
v .

However, in case Gv is a thin spider, S does not suffice to generate G∗
v and in this case it is easy to see that this is

done by taking any extra vertex k ∈ K, in which case we have H∗
v = S∪{k}. Finally, if Gv has at most q vertices,

Hv and H∗
v can be computed in time O(2q) by an exhaustive search.

Now, let v be an internal node of T (G) with children u and w.
If v is a parallel node, then Gv = Gu ∪Gw. Then, (Hv,H

∗
v ) can be computed in time O(1) from (Hu,H

∗
u ) and

(Hw,H
∗
w) thanks to Lemma 10.

Lemma 10 ([12]). Let Gv = Gu ∪Gw. Then (Hv,H
∗
v ) = (Hu ∪Hw,H

∗
u ∪H∗

w).

Proof. The fact that Hu ∪Hw is an optimal hull set for Gv is trivial. The second part comes from the fact that H∗
u

(resp., H∗
w) is an isometric subgraph of H∗

v and from Lemma 3.

Now, we consider the case when v is a series node.

Lemma 11. If Gv = Gu ⊕Gw, then (Hv,H
∗
v ) can be computed from the sets (Hx,H

∗
x ) of the children or grand

children x of v in T (G), in time O(2qn).

Proof. If Gu and Gw are both complete, then Gv is a clique and (Hv,H
∗
v ) = (V (Gv),V (G∗

v)).
If Gu and Gw are both not complete, let x,y be any two non adjacent vertices in Gu. Then, we claim that

Hv = H∗
v = {x,y}. Indeed, in Gv, x and y generate all vertices in V (Gw) (resp., of G∗

w). In particular, two non
adjacent vertices z,r ∈V (Gw) are generated. Symmetrically, z,r generate all vertices in V (Gu) (resp., in V (G∗

u)).
Without loss of generality, we suppose now that Gu is a complete graph and that Gw is a non-complete

(q,q−4)-graph. First, observe that no vertex of Gu belongs to any minimum hull set of Gv, since they are universal
(Lemma 2). Note also that, by Lemma 9 and since Gv is not a clique and has universal vertices, we can make
Hv = H∗

v . Hence, in what follows, we consider only the computation of Hv. Let us consider all possible cases for
w in T (G).

• w is a series node. Gw is the join of two graphs. We claim that Hv = Hw.

In this case, Gw is an isometric subgraph of Gv. Thus, by Lemma 3, any minimum hull set of Gw

generates all vertices of V (Gw) in Gv. Finally, since Gw has two non-adjacent vertices they generate all
vertices of Gu in Gv.
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On the hull number of some graph classes. 13

• w is a parallel node. Gw is the disjoint union of two graphs. Let x and y the children of w in T (G). Then
Gw = Gx ∪Gy. Let X = H∗

x if Gx is not a clique and X = V (Gx), otherwise, let Y = H∗
y if Gy is not a

clique and Y =V (Gy), otherwise. We claim that Hv = X ∪Y .

Clearly, if Gx (resp., Gy) is a clique, all its vertices are simplicial in Gv and then must be contained in
any hull set by Lemma 1. Moreover, recall that, by Lemma 2, no vertex of Gu belongs to any minimum
hull set of G.

Now, let z ∈ {x,y} such that Gz is not complete. It remains to show that it is necessary and sufficient to
also include any minimum hull set H∗

z of G∗
z , in any minimum hull set of G.

The necessity can be easily proved by using Lemma 8 to every Gz that is not a complete graph.

The sufficiency follows again from the fact that Gu is generated by two non adjacent vertices of Gw and
since, in all cases, X ∪Y contains at least one vertex in Gx and one vertex in Gy, all vertices in Gu will
be generated.

• w is a spider node and Gw is a thin spider (S,K, /0,E ′). Then, Hv = S∪{k} = G∗
w where k is any vertex

in K.

All vertices in S are simplicial in Gv, hence any hull set of Gv must contain S by Lemma 1. Now, in
Gv, the vertices in S are at distance two and no shortest path between two vertices in S passes through a
vertex in K, since there is a join to a complete graph. Therefore, S is not a hull set of Gv. However, since
|S| ≥ 2, it is easy to check that adding any vertex k ∈ K to S is sufficient to generate all vertices in Gv.
So S∪{k} is a minimum hull set of Gv.

Note that, in that way, Hv = S∪{k}= G∗
w

• w is a spider node and Gw is a spider (S,K,R,E ′) that is either thick or R 6= /0 and R induces a (q,q−4)-
graph. Then, Hv = Hw.

If R = /0, then Gw is thick. In this case, it is easy to check that the only minimum hull set of Gw is S

(because it consists of simplicial vertices) and it is also a minimum hull set for Gv. Hence, Hv = Hw = S.

If R 6= /0, then by Lemma 1 any minimum hull set of Gw contains S. Moreover, by Lemma 8 any minimum
hull set of Gw contains a minimum hull set of K ∪R which is composed by vertices of R.

By the same lemmas, a minimum hull set of Gw is a minimum hull set of Gv since, by Lemma 2, no
vertex of Gu belongs to any minimum hull set of Gv and Gu is generated by non-adjacent vertices of Gw.

• w is a small node. Gw is a q-pseudo-spider (H2,H1,R,E
′) and R induces a (q,q−4)-graph.

If R = /0, Gv is the join of a clique Gu with a graph Gw that has at most q vertices. No vertex of Gu

belongs to any minimum hull set of Gv, since they are universal. Thus, Hv can be computed in time
O(2q) by testing all the possible subsets of vertices of Gw.

Similarly, if R is a clique, all vertices in R are simplicial in Gv so they must belong to any hull set of
Gv. Moreover, no vertices in Gu belong to any minimum hull set of Gv. So Hv can be computed in time
O(2q) by testing all the possible subsets of vertices of H1 ∪H2 and adding R to them.

In case R 6= /0 nor a clique, two cases must be considered. By definition of the decomposition, there exists
a child r of w in T (G) such that V (Gr) = R.

– If G[H1] is a clique, then, Gv =(H2,H1∪V (Gu),R,E) is a pseudo-spider that satisfies the conditions
in Lemma 8. Hence, any minimum hull set of Gv contains a minimum hull set of P = G[H1 ∪

V (Gu)∪ R]. Let Z be a minimum hull set of Gv and let Z′ = Z ∩H2. By Lemma 8, we have
|Z′| ≤ hn(Gv)−hn(P).

By Lemma 9, H∗
r is a minimum hull set of G[H1 ∪V (Gu)∪R]. Now, G[H1 ∪V (Gu)∪R] is an

isometric subgraph of Gv. Hence, by Lemma 3, H∗
r generates all vertices of G[H1 ∪V (Gu)∪R] in
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On the hull number of some graph classes. 14

Gv. Therefore, H∗
r ∪Z′ will generate all vertices of Gv. Since |H∗

r |= hn(P), we get that |H∗
r ∪Z′| ≤

hn(Gv) and then H∗
r ∪Z′ is a minimum hull set of Gv.

So, we have shown that there exists a minimum hull set for Gv that can be obtained from H∗
r by

adding some vertices in H1 ∪H2. Since |H1 ∪H2| ≤ q, such a subset of H1 ∪H2 can be found in
time O(2q).

– In case G[H1] is not a clique, let x and y be two non adjacent vertices of H1. We claim in this case
that there exists a minimum hull set of Gv containing at most one vertex of R. Let S be a minimum
hull set of Gv containing at least two vertices in R. Observe that S′ = (S\R)∪{x,y} is also a hull
set of Gv since x and y are sufficient to generate all vertices in R. Consequently, |S′| ≤ |S| and S′ is
minimum.

Since no hull set of Gv contains a vertex in V (Gu), there always exists a minimum hull set of Gv that
consists of only vertices in H1 ∪H2 plus at most one vertex in R. Therefore an exhaustive search
can be performed in time O(n2q).

Now, we consider the case when v is a spider node or a small node. That is Gv = (S,K,R,E). If R 6= /0, let r

be the child of v such that V (Gr) = R.

Lemma 12. Let Gv = (S,K,R,E) be a spider such that R induces a (q,q−4)-graph.

Then, Hv = H∗
v = S∪H∗

r if R 6= /0 and R is not a clique, and Hv = H∗
v = S∪R, otherwise.

Proof. Since all the vertices in S are simplicial vertices in Gv and in G∗
v , we apply Lemma 1 to conclude that they

are all contained in any hull set of Gv (resp., of G∗
v).

By the structure of a spider, every vertex of K (and the universal vertex in G∗
v) belongs to a shortest path

between two vertices in S and are therefore generated by them in any minimum hull set of Gv (resp., of G∗
v).

Consequently, if R = /0, S is a minimum hull set of Gv (resp., of G∗
v). If R is a clique, S∪R is the set of simplicial

vertices of Gv (resp., of G∗
v) and also a minimum hull set of Gv (resp., of G∗

v).
Finally, if R 6= /0 and R is not a clique, then Gv is a pseudo-spider satisfying the conditions of Lemma 8.

Similarly, G∗
v is a pseudo-spider (by including the universal vertex in K). Then, by Lemma 8, any hull set of

Gv (resp., of G∗
v) contains a minimum hull set of G[K ∪R] (resp., of G∗

v \ S. Moreover, any hull set contains all
vertices in S since they are simplicial. Hence, hn(Gv) = hn(G∗

v) = |S|+ hn(G[K ∪R]) (recall that, by Lemma 9,
hn(G[K∪R]) = hn(G∗

v \S)). Finally, since G[K∪R]) is an isometric subgraph of Gv, then H∗
r (which is a minimum

hull set of G[K ∪R] by Lemma 9) generates G[K ∪R] in Gv (resp., in G∗
v).

Hence, S∪H∗
r is a hull set of Gv and G∗

v . Moreover, it has size |S|+hn(G[K ∪R]), so it is optimal.

Lemma 13. Let Gv = (H2,H1,R,E) be a q-pseudo-spider such that R is a (q,q−4)-graph. Then, Hv and H∗
v can

be computed in time O(2qn).

Proof. All the arguments to prove this lemma are in the proof of Lemma 11. Moreover, the following arguments
hold both for Gv and G∗

v : they allow to compute both Hv and H∗
v .

If R = /0, Gv has at most q vertices, for a fixed positive integer q. Thus, its hull number can be computed in
O(2q)-time.

Otherwise, if H1 is a clique, by Lemma 8, any minimum hull set of Gv contains a minimum hull set of
G[H1 ∪R]. Moreover, by the same arguments as in Lemma 11, we can show that there is an optimal hull set for Gv

that can be obtained from H∗
r (minimum hull set of G[H1 ∪R]) and some vertices in H2.

If H1 is not a clique, two non-adjacent vertices of H1 can generate R. Thus, we conclude that there exists
a minimum hull set of Gv containing at most one vertex of R. Then, a minimum hull set of Gv can be found in
O(2qn)-time, where n = |V (Gv)|.
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On the hull number of some graph classes. 15

6 Hull Number via 2-connected components

In this section, we introduce a generalized variant of the hull number of a graph. Let G = (V,E) be a graph and
S ⊆V . Let hn(G,S) denote the minimum size of a set U ⊆V \S such that U ∪S is a hull set for G. We prove that
to compute the hull number of a graph, it is sufficient to compute the generalized hull number of its 2-connected
components (or blocks). This extends a result in [15].

Theorem 6. Let G be a graph and G1, . . . ,Gn be its 2-connected components. For any i ≤ n, let Si ⊆V (Gi) be the

set of cut-vertices of G in Gi. Then,

hn(G) = ∑
i≤n

hn(Gi,Si).

Proof. Clearly, the result holds if n = 1, so we assume n > 1.
A block Gi is called a leaf-block if |Si|= 1. Note that, for any leaf-block Gi, G[V \ (V (Gi)\Si)] is convex, so

by Lemma 4, any hull set of G contains at least one vertex in V (Gi)\Si. Moreover,

Claim 7. For any minimum hull set S of G, S∩ (∪i≤nSi) = /0.

Proof. For purpose of contradiction, let us assume that a minimum hull set S of G contains a vertex v ∈ Si for some
i ≤ n. Note that there exist two leaf-blocks G1 and G2 such that v is on a shortest path between vertices in V (G1)

and V (G2) or {v}=V (G1)∩V (G2). By the remark above, there exist x∈ (V (G1)\S1)∩S and y∈ (V (G2)\S2)∩S.
Hence, v is on a shortest (x,y)-path, i.e., v ∈ I[x,y]⊆ Ih[S\{v}]. Hence, V ⊆ Ih[S]⊆ Ih[S\{v}] and S\{v} is a hull
set of G, contradicting the minimality of S. ⋄

Claim 8. Let S be a hull set of G. Then S′ = (S∩V (Gi))∪Si is a hull set of Gi.

Proof.

For purpose of contradiction, assume that Ih[S
′] = V (Gi) \X for some X 6= /0. Then, there is v ∈ X ∩ I[a,b]

for some a ∈V (G)\V (Gi) and b ∈V (G)\X . Then, there is a shortest (a,b)-path P containing v. Hence, there is
u ∈ Si such that u is on the subpath of P between a and v. Moreover, let w = b if b ∈ Gi, and else let w be a vertex
of Si on the subpath of P between v and b. Hence, v ∈ I[u,w]⊆ Ih[S

′], a contradiction.
⋄

Let X be any minimum hull set of G. By Claim 7, X ∩ (∪i≤nSi) = /0, hence we can partition X = ∪i≤nXi

such that Xi ⊆ V (Gi) \ Si and Xi ∩X j = /0 for any i 6= j. Moreover, by Claim 8, Xi ∪ Si is a hull set of Gi, i.e.,
|Xi| ≥ hn(Gi,Si). Hence, hn(G) = |X |= ∑i≤n |Xi| ≥ ∑i≤n hn(Gi,Si).

It remains to prove the reverse inequality. For any i ≤ n, let Xi ⊆ V (Gi) \ Si such that Xi ∪ Si is a hull set
of Gi and |Xi| = hn(Gi,Si). We prove that S = ∪i≤nXi is a hull set for G. Indeed, for any v ∈ Si, there are two
leaf-blocks G1,G2 such that v is on a shortest path between G1 and G2 or {v} = V (G1)∩V (G2). So, there exist
x ∈ X1 and y ∈ X2 such that v is on a shortest (x,y)-path, i.e., v ∈ I[x,y]⊆ Ih[S]. Hence, ∪i≤nSi ⊆ Ih[S] and therefore,
V = ∪i≤nIh[Xi ∪Si]⊆ Ih[∪i≤n(Xi ∪Si)]⊆ Ih[∪i≤n(Xi)] = Ih[S].

A cactus G is a graph in which every pair of cycles have at most one common vertex. This definition implies
that each block of G is either a cycle or an edge. By using the previous result, one may easily prove that:

Corollary 2 ([1]). In the class of cactus graphs, the hull number can be computed in linear time.
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On the hull number of some graph classes. 16

7 Bounds

In this section, we use the same techniques as presented in [12, 15] to prove new bounds on the hull number of
several graphs classes. These techniques mainly rely on a greedy algorithm for computing a hull set of a graph
and that consists of the following: given a connected graph G = (V,E) and its set S of simplicial vertices, we start
with H = S or H = {v} (v is any vertex of V ) if S = /0, and C0 = Ih[H]. Then, at each step i ≥ 1, if Ci−1 ⊂ V , the
algorithm greedily chooses a subset Xi ⊆V \Ci−1, add Xi to H and set Ci = Ih[H]. Finally, if Ci =V , the algorithm
returns H which is a hull set of G.

Claim 9. If for every i ≥ 1, |Ci \ (Ci−1 ∪ Xi)| ≥ c · |Xi|, for some constant c > 0, then |H| ≤ max{1, |S|}+
⌈

|V |−max{1,|S|}
1+c

⌉

.

In the following, we keep the notation used to describe the algorithm.

Claim 10. Let G be a connected graph. Then, before each step i ≥ 1 of the algorithm, for any v ∈ V \Ci−1,

N(v)∩Ci−1 induces a clique. Moreover, any connected component induced by V \Ci−1 has at least 2 vertices.

Proof. Let v ∈V \Ci−1 and assume v has two neighbors u and w in Ci−1 that are not adjacent. Then, v ∈ I[u,w]⊆

Ci−1 because Ci−1 is convex, a contradiction. Note that, at any step i ≥ 1 of the algorithm, V \Ci−1 contains no
simplicial vertex. By previous remark, if v has only neighbors in Ci−1, then v is simplicial, a contradiction.

Claim 11. If G is a connected C3-free graph, then, at every step i ≥ 1 of the algorithm, a vertex in V \Ci−1 has at

most one neighbor in Ci−1.

Proof. Assume that v ∈ V \Ci−1 has two neighbors u,w ∈ Ci−1. {u,w} /∈ E because G is triangle-free. This
contradicts Claim 10.

Lemma 14. For any C3-free connected graph G and at step i ≥ 1 of the algorithm, either Ci−1 =V or there exists

Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. If there is v ∈V \Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and the result clearly holds. Otherwise,
let v be any vertex in V \Ci−1. By Claim 10, v has a neighbor u in V \Ci−1. Moreover, because no vertices of
V \Ci−1 are at distance at least 2 from Ci−1, v and u have some neighbors in Ci−1. Finally, u and v have no common
neighbors because G is triangle-free. Hence, by taking Xi = {v}, we have u ∈Ci and the result holds.

Recall that the girth of a graph is the length of its smallest cycle.

Lemma 15. Let G connected with girth at least 6. Before any step i ≥ 1 of the algorithm when Ci−1 6= V , there

exists Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|.

Proof. If there is v ∈V \Ci−1 at distance at least 3 from Ci−1, let Xi = {v} and the result clearly holds. Otherwise,
let v be a vertex in V \Ci−1 at distance two from any vertex of Ci−1. Let w ∈ V \Ci−1 be a neighbor of v that
has a neighbor z ∈ Ci−1. Since v is not simplicial, v has another neighbor u 6= w in V \Ci−1. If u is at distance
two from Ci−1, let y ∈ V \Ci−1 be a neighbour of u that has a neighbor x ∈ Ci−1. In this case, since the girth of
G is at least six, z 6= x and, there is a shortest (v,z)-path containing w and a shortest (v,x)-path containing u and
y. Consequently, by setting Xi = {v} we obtain the desired result. The same happens in case u has a neighbor
x ∈Ci−1. One may use again the hypothesis that the girth of G is at least six to conclude that, by setting Xi = {v}

we obtain that w,u ∈Ci.
Finally, we claim that no vertex remains in V \Ci−1. By contradiction, suppose that it is the case and that there

are in V \Ci−1 and all these vertices have a neighbor in Ci−1. Let v be a vertex in V \Ci−1 that has a neighbor z in
Ci−1. Again, v has a neighbor u ∈V \Ci−1, since it is not simplicial. The vertex u must have a neighbor x in Ci−1.
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On the hull number of some graph classes. 17

Observe that x and z are at distance 3, since the girth of G is at least six. Consequently, v and u are in a shortest
(x,z)-path should not be in V \Ci−1, that is a contradiction.

Lemma 16. Let G be a connected graph. Before any step i ≥ 1 of the algorithm when Ci−1 6= V , there exist

Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|/3.

Moreover, if G is k-regular (k ≥ 1), there exist Xi ⊂V \Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. By Claim 10, all connected component of V \Ci−1 contains at least one edge.

• If there is v ∈V \Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

• Now, assume all vertices in V \Ci−1 are adjacent to some vertex in Ci−1. If there are two adjacent vertices
u and v in V \Ci−1 such that there is z ∈ Ci−1 ∩N(u) \N(v), then let Xi = {v}. Therefore, u ∈ Ci and
|Ci \ (Ci−1 ∪Xi)| ≥ |Xi|. So, the result holds.

• Finally, assume that for any two adjacent vertices u and v in V \Ci−1, N(u)∩Ci−1 = N(v)∩Ci−1 6= /0.

We first prove that this case actually cannot occur if G is k-regular. Let v ∈ V \Ci−1. By Claim 10,
K = N(v)∩Ci−1 induces a clique. Moreover, for any u ∈ N(v) \Ci−1, N(u)∩Ci−1 = K. Note that
k = |K|+ |N(v) \Ci−1|. Let w ∈ K. Then, A = (K ∪ N(v)∪ {v}) \ {w} ⊆ N(w) and since |A| = k,
we get that A = N(w). Moreover, N[u] cannot induce a clique since V \Ci−1 contains no simplicial
vertices, i ≥ 1. Hence, there are x,y ∈ N(v)\Ci−1 such that {x,y} /∈ E. Because G is k-regular, there is
z ∈ N(x)\(N(v)∪Ci−1). However, N(z)∩Ci−1 = N(x)∩Ci−1 = K. Hence, z ∈ N(w)\A, a contradiction.

Now, assume that G is a general graph. Let v be a vertex of minimum degree in V \Ci−1. Recall
that, by Claim 10, N(v)∩Ci−1 induces a clique. Because any neighbor u ∈ V \Ci−1 of v has the same
neighborhood as v in Ci−1 and because v is not simplicial, then there must be u,w ∈ N(v)\Ci−1 such that
{u,w} /∈ E. Now, by minimality of the degree of v, there exists y ∈ N(u)\ (N(v)∪Ci−1) 6= /0. Similarly,
there exists z ∈ N(w)\ (N(v)∪Ci−1) 6= /0. Let us set Xi = {v,z,y}. Hence, u,w ∈Ci \ (Ci−1 ∪Xi) and the
result holds.

Theorem 7. Let G be a connected n-node graph with s simplicial vertices. All bounds below are tight:

• hn(G)≤ max{1,s}+
⌈

3(n−max{1,s})
5

⌉

;

• If G is C3-free or k-regular (k ≥ 1), then hn(G)≤ max{1,s}+
⌈

n−max{1,s}
2

⌉

;

• If G has girth ≥ 6, then hn(G)≤ max{1,s}+
⌈

1(n−max{1,s})
3

⌉

.

Proof. First statement follows from Claim 9 and first statement in Lemma 16. The second statement follows from
Claim 9 and Lemma 14 (case C3-free) and second part of Lemma 16 (case regular graphs) . Last statement follows
from Claim 9 and Lemma 15.

All bounds are reached in case of complete graphs. In case with no simplicial vertices: the first bound is
reached by the graph obtained by taking several disjoint C5 and adding a universal vertex, the second bound is
obtained for a C5, and the third one is reached by a C7.

The first statement of the previous theorem improves another result in [15]:
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On the hull number of some graph classes. 18

Corollary 3. If G is a graph with no simplicial vertex, then:

limsup
|V (G)|→∞

hn(G)

|V (G)|
=

3
5
.

It it important to remark that the second statement of Theorem 7 is closely related to a bound of Everett and
Seidman proved in Theorem 9 of [15]. However, the graphs they consider do not have simplicial vertices and,
consequently, they do not have vertices of degree one, which is not a constraint for our result.

8 Conclusions

In this paper, we simplified the reduction of Dourado et al. [12] to answer a question they asked about the com-
plexity of computing the hull number of bipartite graphs. We presented polynomial-time algorithms for computing
the hull number of cobipartite graphs, (q,q−4)-graphs and cactus graphs. Finally, we presented upper bounds for
general graphs and two particular graph classes.

The result in Section 5 provides an FPT algorithm where the parameter is the number of induced P4’s in the
input graph. It would be nice to know about the paramerized complexity of HULL NUMBER when the parameter
is the size of the hull set.

Another question of Dourado et al. [12], concerning to the complexity of this problem for interval graphs and
chordal graphs, remains open. Up to the best of our knowledge, determining the complexity of the HULL NUMBER

problem on planar graphs is also an open problem.
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Abstract: In this paper, we study the (geodesic) hull number of graphs. For
any two vertices u, v ∈ V of a connected undirected graph G = (V,E), the
closed interval I[u, v] of u and v is the set of vertices that belong to some
shortest (u, v)-path. For any S ⊆ V , let I[S] =

⋃

u,v∈S I[u, v]. A subset S ⊆ V
is (geodesically) convex if I[S] = S. Given a subset S ⊆ V , the convex hull
Ih[S] of S is the smallest convex set that contains S. We say that S is a hull
set of G if Ih[S] = V . The size of a minimum hull set of G is the hull number
of G, denoted by hn(G).

First, we show a polynomial-time algorithm to compute the hull number of
any P5-free triangle-free graph. Then, we present four reduction rules based on
vertices with the same neighborhood. We use these reduction rules to propose
a fixed parameter tractable algorithm to compute the hull number of any graph
G, where the parameter can be the size of a vertex cover of G or, more generally,
its neighborhood diversity, and we also use these reductions to characterize the
hull number of the lexicographic product of any two graphs.
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Nombre enveloppe : graphes sans P5 et règles de

réduction

Résumé : Dans cet article, nous étudions le nombre enveloppe (géodésique)
des graphes. Pour deux sommets u et v ∈ V d’un graphe connexe non orienté
G = (V,E), l’intervalle fermé I[u, v] de u et v est l’ensemble des sommets qui
appartiennent à une plus courte châıne reliant u et v. Pour tout S ⊆ V , on note
I[S] =

⋃

u,v∈S I[u, v]. Un sous-ensemble S ⊆ V est (géodésiquement) convexe si

I[S] = S. Étant donné un sous-ensemble S ⊆ V , l’enveloppe convexe Ih[S] de S
est le plus petit ensemble convexe qui contient S. On dit que S est un ensemble
enveloppe de G si Ih[S] = V . La taille d’un ensemble enveloppe minimum de G
est le nombre enveloppe de G, noté hn(G).

Tout d’abord, nous donnons un algorithme polynomial pour calculer le nom-
bre enveloppe d’un graphe sans P5 et sans triangle. Ensuite, nous présentons
quatre règles de réductions basées sur des sommets ayant même voisinage. Nous
utilisons ces règles de réduction pour proposer un algorithme FPT pour calculer
le nombre enveloppe de n’importe quel graphe G, ou le paramètre peut être la
taille d’un transversal de G ou, plus généralement sa diversité de voisinage ;
nous utilisons également ces règles pour caractériser le nombre enveloppe du
produit lexicographique de deux graphes.

Mots-clés : Convexité dans les graphes, Nombre enveloppe, Convexité géodésique,
Graphes sans P5, Produit lexicographique, Complexité paramétrée, Diversité de
voisinage.
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Hull number: P5-free graphs and reduction rules. 3

1 Introduction

All graphs in this work are undirected, simple and loop-less. Given a connected
graph G = (V,E), the closed interval I[u, v] of any two vertices u, v ∈ V is the
set of vertices that belong to some u-v geodesic of G, i.e. some shortest (u, v)-
path. For any S ⊆ V , let I[S] =

⋃

u,v∈S I[u, v]. A subset S ⊆ V is (geodesically)
convex if I[S] = S. Given a subset S ⊆ V , the convex hull Ih[S] of S is the
smallest convex set that contains S. We say that a vertex v is generated by a
set of vertices S if v ∈ Ih[S]. We say that S is a hull set of G if Ih[S] = V . The
size of a minimum hull set of G is the hull number of G, denoted by hn(G) [9].

It is known that computing hn(G) is an NP-hard problem for bipartite
graphs [3]. Several bounds on the hull number of triangle-free graphs are pre-
sented in [8]. In [7], the authors show, among other results, that the hull number
of any P4-free graph, i.e. any graph without induced path with four vertices, can
be computed in polynomial time. In Section 3, we show a linear-time algorithm
to compute the hull number of any P5-free triangle-free graph.

In Section 4, we show four reduction rules to obtain, from a graph G, another
graph G∗ that has one vertex less than G and which satisfies either hn(G) =
hn(G∗) or hn(G) = hn(G∗) + 1, according to the used rule. We then first use
these rules to obtain a fixed parameter tractable (FPT) algorithm, where the
parameter is the neighborhood diversity of the input graph. For definitions
on Parameterized Complexity we refer to [10]. Given a graph G and vertices
u, v ∈ V (G), we say that u and v are of the same type if N(v)\{u} = N(u)\{v}.
The neighborhood diversity of a graph is k, if its vertex set can be partitioned into
k sets S1, . . . , Sk, such that any pair of vertices u, v ∈ Si are of the same type.
This parameter was proposed by Lampis [12], motivated by the fact that a graph
of bounded vertex cover also has bounded neighborhood diversity, and therefore
the later parameter can be used to obtain more general results. To see that a
graph of bounded vertex cover has bounded neighborhood diversity, let G be a
graph that has a vertex cover S ⊆ V (G) of size k, and let I = V (G) \ S. Since
S is a vertex cover, observe that I is an independent set. Therefore, vertices
in I can be partitioned in at most 2k sets (one for each possible subset of S),
where each of these sets contains vertices of the same type, i.e. vertices having
the same neighborhood in S. Moreover, the vertices in S may be partitioned
in k sets of singletons, what gives a partition of the vertices of the graph into
k + 2k sets of vertices having the same type. Then, the neighborhood diversity
of the graph is at most k+2k. Many problems have been show to be FPT when
the parameter is the neighborhood diversity [11].

Finally, we use these rules to characterize the hull number of the lexico-
graphic product of any two graphs. Given two graphs G andH, the lexicographic
product G ◦H is the graph whose vertex set is V (G ◦H) = V (G)× V (H) and
such that two vertices (g1, h1) and (g2, h2) are adjacent if, and only if, either
g1g2 ∈ E(G) or we have that both g1 = g2 and h1h2 ∈ E(G).

It is known in the literature a characterization of the (geodesic) convex sets
in the lexicographic product of two graphs [1] and a study of the pre-hull number
for this product [13]. There are also some results concerning the hull number of
the Cartesian and strong products of graphs [6, 5].

RR n° 8045

ha
l-0

07
24

12
0,

 v
er

si
on

 1
 -

 1
7 

A
ug

 2
01

2



Hull number: P5-free graphs and reduction rules. 4

2 Preliminaries

Let us recall some definitions and lemmas that we use in the sequel.
We denote by NG(v) (or simply N(v)) the neighborhood of a vertex. A

vertex v is simplicial (resp. universal) if N(v) is a clique (resp. is equal to
V (G)\{v}). Let dG(u, v) denote the distance between u and v, i.e. the length of
a shortest (u, v)-path. A subgraph H ⊆ G is isometric if, for each u, v ∈ V (H),
dH(u, v) = dG(u, v). A Pk (resp. Ck) in a graph G denotes an induced path
(resp. cycle) on k vertices. Given a graph H, we say that a graph G is H-free if
G does not contain H as an induced subgraph. Moreover, we consider that all
the graph in this work are connected. Indeed, if a graph G is not connected, its
hull number can be computed by the sum of the hull numbers of its connected
components, as observed by Dourado et al. [7].

Lemma 1. [9] For any hull set S of a graph G, S contains all simplicial vertices
of G.

Lemma 2. [7] Let G be a graph which is not complete. No hull set of G with
cardinality hn(G) contains a universal vertex.

Lemma 3. [7] Let G be a graph, H be an isometric subgraph of G and S be
any hull set of H. Then, the convex hull of S in G contains V (H).

Lemma 4. [7] Let G be a graph and S a proper and non-empty subset of V (G).
If V (G) \S is convex, then every hull set of G contains at least one vertex of S.

3 Hull number of P5-free triangle-free graphs

In this section, we present a linear-time algorithm to compute hn(G), for any
P5-free triangle-free graph G. To prove the correctness of this algorithm, we
need to recall some definitions and previous results:

Definition 1. Given a graph G = (V,E), we say that S ⊆ V is a dominating
set if every vertex v ∈ V \ S has a neighbor in S.

It is well known that:

Theorem 1. [4] G is P5-free if, and only if, for every induced subgraph H ⊆ G
either V (H) contains a dominating C5 or a dominating clique.

As a consequence, we have that:

Corollary 1. If G is a connected P5-free bipartite graph, then there exists a
dominating edge in G.

Theorem 2. The hull number of a P5-free bipartite graph G = (A ∪B,E) can
be computed in linear time.

Proof. By Corollary 1, G has at least one dominating edge. Observe that the
dominating edges of a bipartite graph can be found in linear time by computing
the degree of each vertex and then considering the sum of the degrees of the
endpoints of each edge. For a dominating edge, this sum is equal to the number
of vertices.
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Hull number: P5-free graphs and reduction rules. 5

- Consider first the case in which G has at least two dominating edges. Let
uv, xy ∈ E(G) be such dominating edges. Consider that u, x ∈ A and v, y ∈
B.

If x 6= u and v 6= y, then we claim that {u, x} is a minimum hull set of G.
Indeed, since u and x are not adjacent and every vertex in B is a common
neighbor of u and x, and then {u, x} generate all the vertices in B, particularly
v and y. Similarly, all the vertices of A are in a shortest (v, y)-path. Thus,
Ih({u, x}) = V (G).

Assume now, w.l.o.g., that u 6= x and v = y. Again, B ⊆ Ih({u, x}). Observe
that, if there are simplicial vertices in V (G), they must all belong to A, since
u and x are not neighbors, but they are adjacent to all vertices in B. In case
|B| = 1, then all vertices in A are simplicial vertices, and therefore A is the
minimum hull set of G. Then, consider now that |B| ≥ 2.

In case there is no simplicial vertex in A, {u, x} is a minimum hull set, since
B ⊆ Ih({u, x}) and every vertex in A has at least two neighbors in B. In case
there are simplicial vertices in A, we claim that S ∪ {b} is a minimum hull
set of G, where S ⊂ A is the set of simplicial vertices of G and b is a vertex
in B distinct from v. Indeed, by Lemma 1, we know that S must be part of
any hull set of G and observe that Ih(S) = S∪{v} (the only neighbor of each
simplicial vertex is exactly v). Consequently, since |B| ≥ 2, at least one more
vertex must be chosen to be part of a minimum hull set of G. We claim that
if we choose b ∈ B such that b 6= v, then S ∪ {b} is a minimum hull set of G.
Indeed, let s ∈ S. Since sb /∈ E and xv, uv are dominating edges, x, u and v
are generated by {s, b}. But then, as B ⊆ Ih({u, x}), B is generated. Finally,
every vertex in A is either simplicial, in case it belongs to S, or is adjacent to
two vertices in B and therefore is generated by its neighbors.

- Consider now that G has only one dominating edge uv and that, w.l.o.g.,
u ∈ A and v ∈ B. Let H = G[V \{u, v}]. We may assume H is not the empty
graph, for otherwise G is trivial. Let C1, . . . , Ck be the connected components
of H. We claim that V \ Ci is a convex set of G, for every i ∈ {1, . . . , k}.

Since Ci is a connected component in H, the only vertices in V \Ci that may
be adjacent to a vertex in Ci are u and v. Suppose a shortest (s, t)-path P
such that s, t ∈ V \ Ci and containing at least one vertex of Ci. It would
pass through u and v. But there is an edge between u and v, so there is a
contradiction because P would not be a shortest path.

Consequently, by Lemma 4, for each connected component Ci of H at least
one vertex of Ci must be chosen to be part of a minimum hull set of G (observe
that simplicial vertices are the particular case in which |Ci| = 1).

If k = 1, observe that G is not a complete bipartite graph, as we are assuming
there is exactly one dominating edge. Let w ∈ A and z ∈ B be two non-
adjacent vertices of C1. In this case, we claim that {w, z} is a minimum hull
set of G. By contradiction, suppose that there exists a vertex p /∈ Ih({w, z}).
First observe that u and v belong to Ih({w, z}). Then, w.l.o.g., we may
assume that p has a neighbor q in Ih({w, z}) which is not in {u, v}, since
C1 is a connected component in H. However, since uv is a dominating edge,
either qpu or qpv is a shortest path between two vertices of Ih{w, z} and p
should belong to Ih({w, z}), a contradiction.
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Hull number: P5-free graphs and reduction rules. 6

Now, suppose that k > 1. Let W = {w1, . . . , wk} ⊆ V (G) be such that
W ∩ A 6= ∅, W ∩B 6= ∅ and wi ∈ Ci, for every i ∈ {1, . . . , k}. We claim that
W is a minimum hull set of G. By Lemma 4, all these vertices are required,
so it suffices to show that Ih(W ) = V (G). Observe that u and v belong to
Ih(W ), since W ∩ A 6= ∅ and W ∩ B 6= ∅. Then, by contradiction, suppose
that there exists a vertex p /∈ Ih(W ) and let Cp be its connected component
in H. Again, we may assume that p has a neighbor q in Ih({w, z}) which
belongs to Cp, since Cp is a connected component and Cp∩W 6= ∅. However,
since uv is a dominating edge, either qpu or qpv is a shortest path in G and
p should belong to Ih({w, z}), a contradiction.

Finally, observe that all these cases can be checked in linear time and thus
hn(G) can be computed in linear time.

For the next result, recall that the complexity of finding the convex hull of a
set of vertices S ⊆ V (G) of a graph G is O(|S||E(G)|), as described in [7]. We
can relax the constraint of G being bipartite to obtain the following:

Corollary 2. If G is a P5-free triangle-free graph, then hn(G) can be computed
in polynomial time.

Proof. By Theorem 1, G either has a dominating C5 or a dominating clique of
size at most two, since it is triangle-free.

In case it has a dominating C5 = v1, . . . , v5, we claim that {v1, v3, v5} is a
hull set of G. To prove this fact, first observe that Ih({v1, v3, v5}) ⊇ V (C5).
Moreover, since G is connected, and it has no induced P5 and no triangle, we
conclude that any vertex w ∈ V (G) \ V (C5) has two non-adjacent neighbors in
C5, and so w ∈ Ih({v1, v3, v5}). Thus, if G has a dominating C5, we can test
if there is a minimum hull set of size two in O(|V (G)|2|E(G)|). Otherwise, we
have that hn(G) = 3 and {v1, v3, v5} is a minimum hull set of G.

If G has a dominating clique of size one, then G must be a star since it is
triangle-free. Thus, hn(G) = |V (G)| − 1.

Finally, if G has a dominating edge uv, we claim that G is bipartite. Since
G is triangle-free and uv is a dominating edge, we have that N(u) and N(v) are
stable sets and that N(u)∩N(v) = ∅. Thus, G is bipartite and, by Theorem 2,
we can compute its hull number in linear time.

4 Neighborhood Diversity and Lexicographic Prod-

uct

In this section, we present four reduction rules to compute the hull number of
a graph. We need to introduce some definitions.

Given a set S, let I0[S] = S and Ik[S] = I[Ik−1[S]], for k > 0. We say that
v is generated by S at step t ≥ 1, if v ∈ It[S] and v /∈ It−1[S]. Observe that the
convex hull Ih(S) of a given set of vertices S is equal to I |V (G)|[S].

Given a graph G, we say that two vertices v and v′ are twins if N(v)\{v′} =
N(v′) \ {v}. If v and v′ are adjacent, we call them true twins, otherwise we say
that they are false twins.

Let G be a graph and v and v′ be two of its vertices. The identification of v′

into v is the operation that produces a graph G′ such that V (G′) = V (G) \ {v′}
and E(G′) = (E(G) \ {v′w | w ∈ NG(v

′)}) ∪ {vw | v′w ∈ E(G) and w 6= v}.

RR n° 8045

ha
l-0

07
24

12
0,

 v
er

si
on

 1
 -

 1
7 

A
ug

 2
01

2



Hull number: P5-free graphs and reduction rules. 7

Lemma 5. Let G be a graph and v and v′ be non-simplicial and twin vertices.
Let G′ be obtained from G by the identification of v′ into v. Then, hn(G) =
hn(G′).

Proof. Let u and w be two non-adjacent neighbors of v and thus also of v′ in G.
In order to show that hn(G) ≤ hn(G′), let S be a minimum hull set of G′. Since
G′ is an isometric subgraph of G, V (G) \ {v′} ⊆ Ih(S) by Lemma 3. Moreover,
{v′} ⊆ IG[u,w], hence S is a hull set of G.

To prove that hn(G) ≥ hn(G′), let S be a minimum hull set of G. We
may assume that S does not contain both v and v′, because if there exists a
minimum hull set containing both of them, then we can replace v and v′ by u
and w obtaining a hull set of same size, since v, v′ ∈ IG[u,w].

Suppose first that v, v′ /∈ S. Let {x, y} 6= {v, v′} and let P be a shortest
(x, y)-path. Observe that P cannot contain both v and v′. In case v′ (resp. v)
is contained in P , then one can replace it by v (resp. v′) and obtain another
shortest path, as v and v′ have the same neighborhood. In particular, this
implies that the minimum k such that v′ ∈ IkG[S] is equal to the minimum k′

such that v ∈ Ik
′

G′ [S], and therefore for i < k, IiG′ [S] = IiG[S]. It also implies
that IG[v

′, w] \ {v′} = IG′ [v, w] \ {v}, w /∈ {v, v′}, and therefore for i ≥ k we
have that IiG′ [S] = IiG[S] \ {v

′}. As a consequence, S is a hull set of G′.
Finally, suppose that either v or v′ is in S. We may assume w.l.o.g. that

v ∈ S. Then we can use the same argument as in the last paragraph to show
that for every 1 ≤ i ≤ n its true that IiG′ [S] = IiG[S] \ {v

′} and then again we
have that S is a hull set of G′.

Lemma 6. Let G be a graph and v, v′, v′′ be simplicial and pairwise false twin
vertices. Let G′ be obtained from G by the identification of v′′ into v. Then,
hn(G) = hn(G′) + 1.

Proof. In order to show that hn(G) ≤ hn(G′)+1, observe that G′ is an isometric
subgraph of G and that v′′ is simplicial. Consequently, any hull set S of G′ is
such that Ih(S) = V (G) \ {v′′}, hence S ∪ {v′′} is a hull set of G, by Lemmas 1
and 3.

To show that hn(G) ≥ hn(G′)+1. Let S be a hull set for G and S′ = S\{v′′}.
Since v, v′ and v′′ are simplicial, we know that {v, v′, v′′} ⊆ S. Any shortest
(v′′, u)-path, with u ∈ V \ {v′, v′′} is still a shortest path if v′′ is replaced by v′,
so I[v′′, u] = I[v′, u]. In the case of the shortest (v′′, v′)-path, replacing v′′ by v
is still a shortest path and I[v′′, v′] = I[v, v′]. Therefore Ih(S

′) = Ih(S) \ {v
′′}

and then S′ is a hull set of G′.

Observe that we cannot simplify the statement of Lemma 6 to consider any
pair of simplicial false twin vertices instead of triples. As an example, consider
the graph obtained by removing an edge uv from a complete graph with more
than 3 vertices.

Lemma 7. Let G be a graph and v, v′ be simplicial and true twin vertices. Let G′

be obtained from G by the identification of v′ into v. Then, hn(G) = hn(G′)+1.

Proof. In order to show that hn(G) ≤ hn(G′)+1, observe that G′ is an isometric
subgraph of G and that v′ is simplicial. Let S be a hull set of G′. Then S∪{v′}
is a hull set of G, by Lemmas 1 and 3.

RR n° 8045

ha
l-0

07
24

12
0,

 v
er

si
on

 1
 -

 1
7 

A
ug

 2
01

2



Hull number: P5-free graphs and reduction rules. 8

Now, we show that hn(G) ≥ hn(G′) + 1. Let S be a hull set of G. Since v
and v′ are simplicial, by Lemma 1 we know that v, v′ ∈ S. Observe that, for
every w ∈ V (G′), we have IG[v

′, w] \ {v′} ⊆ IG′ [v, w]. Thus, S \ {v′} is a hull
set of G′ and the result follows.

According to Lampis [12], for a given graph G and vertices u, v ∈ V (G), u
and v are of the same type if N(v) \ {u} = N(u) \ {v}. This is exactly the same
definition of twin vertices. Recall that the neighborhood diversity of a graph is
k, if its vertex set can be partitioned into k sets S1, . . . , Sk, such that any pair
of vertices u, v ∈ Si are of the same type. Now, we use this partition to obtain
the following result:

Theorem 3. Let G be a graph whose neighborhood diversity is at most k. Then,
there exists an FPT algorithm to compute hn(G) in O(4kpoly(|V (G)|))-time.

Proof. Lampis proved that a neighborhood partition of G can be found in
O(poly(|V (G)|))-time [12]. Observe that each part is either an independent set
of false twin vertices or a clique of true twin vertices. We now use Lemmas 5, 6
and 7 to reduce each of these parts to at most two vertices.

First, in case there are parts of size greater than one consisting of non-
simplicial vertices, we reduce these parts to a single vertex by the identification
of its vertices. This procedure generates a graph G′ whose hull number is equal
to hn(G), by Lemma 5.

Observe that if a vertex is simplicial, then its part is composed of simplicial
vertices. In the sequence, we reduce each part of size greater than two containing
only independent simplicial false twins to two vertices, by applying Lemma 6.
If c identifications are done in this procedure, then the hull number of the graph
G′′ obtained after this procedure is hn(G′′) = hn(G′)− c = hn(G)− c.

Then, we reduce all the parts composed of pairwise adjacent simplicial true
twins to one vertex, by applying Lemma 7. In the end of this procedure, we
obtain a graph G′′′ such that hn(G′′′) = hn(G′′)− c′ = hn(G)− c− c′, where c′

is the number of identifications that were made in this last procedure.
Observe that G′′′ has at most 2k vertices, since the neighborhood partition

is of size at most k and each part is reduced to at most two vertices. Finally,
we can enumerate all the subsets of V (G′′′) (there are at most 22k of them) and
test for each of these sets whether it is a hull set. Hence, we obtain hn(G′′′)
and therefore hn(G).

Recall that this proof provides a kernelization algorithm and G′′′ is a kernel
of linear size.

As pointed before, a graph of bounded vertex cover size has also bounded
neighborhood diversity, therefore the previous result also holds for this param-
eter.

Now, we use Lemma 5 and Lemma 7 to determine the lexicographic product
of two graphs. Recall that the lexicographic product of two graphs G and H
is the graph whose vertex set is V (G ◦H) = V (G) × V (H) and such that two
vertices (g1, h1) and (g2, h2) are adjacent if, and only if, either g1g2 ∈ E(G) or
we have both g1 = g2 and h1h2 ∈ E(G). For a vertex g ∈ V (G), let its H-layer
in G ◦H be the set H(g) = {(g, h) ∈ V (G ◦H) | h ∈ V (H)}. Let S(G) denote
the set of simplicial vertices of G.

Observe that if G has a single vertex, then hn(G ◦ H) = hn(H). Else, we
have that:
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Hull number: P5-free graphs and reduction rules. 9

Theorem 4. Let G be a connected graph, such that |V (G)| ≥ 2, and let H be
an arbitrary graph. Thus,

hn(G ◦H) =

{

2, if His not complete;

(|V (H)| − 1)|S(G)|+ hn(G), otherwise.

Proof. If H is not complete, since G is connected and it has at least two vertices,
any two non-adjacent vertices in the same H-layer suffice to generate all the
vertices of G ◦H.

We consider now that H is a complete graph on k vertices. First, observe
that all the vertices in the same H-layer are all simplicial vertices or they are
all non-simplicial vertices. Moreover, a vertex is simplicial in G if, and only if,
its corresponding H-layer in G ◦H is composed of simplicial vertices.

First, we obtain from G ◦H a graph F by reducing each H-layer composed
of non-simplicial vertices to a single vertex. By Lemma 5, hn(G ◦H) = hn(F ).
Then, we apply Lemma 7 to reduce each H-layer of simplicial vertices to a single
vertex obtaining a graph F ′. Observe that we have |V (H)||S(G)| simplicial
vertices in G ◦H and, thus, (|V (H)| − 1)|S(G)| identifications are done in this
procedure. Finally, since all theH-layers were reduced to a single vertex, observe
that F ′ ∼= G and we have that hn(G ◦ H) = hn(F ) = hn(F ′) + (|V (H)| −
1)|S(G)| = hn(G) + (|V (H)| − 1)|S(G)|.

5 Conclusions

In this work, we first presented a linear time algorithm to compute the hull num-
ber of any P5-free triangle-free graph. Although, the computational complexity
of determining the hull number of a P5-free graph and also of a triangle-free
graph is still unknown. More generally, we propose the following open question:

Question 1. For a fixed k, what is the computational complexity of determining
hn(G), for a Pk-free graph G?

In the second part of this paper, we introduced four reduction rules that
we use to present an FPT algorithm to compute the hull number of any graph,
where the parameter is its neighborhood diversity, and a characterization of the
lexicographic product of any two graphs. It is already known in the literature
another FPT algorithm to compute the hull number of any graph, where the
parameter is the number of its induced P4’s [2]. To the best our knowledge, the
following is also open:

Question 2. Given a graph G, is there an FPT algorithm to determine whether
hn(G) ≤ k, for a fixed k?
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Nomenclature

α(G) Maximum size of a stable set

Ak The family of the k-atoms (see p.24)

Bk Binomial tree of order k (see p.20)

χ(G) Chromatic number (see p.13)

χb(G) b-chromatic number (see p.26)

∆(G) Maximum degree of a vertex

Γ(G) Grundy number (see p.19)

ω(G) Maximum size of a clique

∂Γ(G) Partial Grundy number (see p.33)

ζ(G) Stair factor (see p.34)

dist(u, v) Distance between u and v

Kn The complete graph of order n

Kp,q The complete bipartite graph with parts of order p and q

m(G) The m-degree (see p.28)

N(u) Neighbourhood of u

121



Index
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precolouring, 18

precolouring extension, 18

proper colouring, 13
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LRI, Université Paris Sud, 2002.

[86] M. Kouider and A. E. Sahili. About b-colouring of regular graphs. Technical Report 1432, LRI,
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