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Abstract

The study of model-based fault detection for mass production Diesel engines is

the aim of this thesis. The necessity of continuous vehicles health monitoring is now

enforced by the Euro VI pollutant legislation, which will probably be tightened in its

future revisions. In this context developing a robust strategy that could be easily

calibrated and work with different systems (due to production variability) would be

a tremendous advantage for car manufacturers. The study developed here tries to

answer to those necessities by proposing a generic methodology based on local adaptive

observers for scalar nonlinear state-affine systems. The fault detection, isolation and

estimation problems are thus solved in a compact way. Moreover, the uncertainties

due to measurement or model biases and time drifts lead to the necessity of improving

the detection methodology by the use of robust thresholds that could avoid undesired

false alarms. In this thesis a variable threshold is proposed based on the observability

condition and the sensitivity analysis of the parameter impacted by the fault with

respect to input or model uncertainties. This approach allows, among other things, to

be used as an analysis tool for the individuation of the system operating points for which

the diagnosis is more reliable and more robust to inputs uncertainties. The discussed

approach has been successfully implemented and experimentally tested on a real Diesel

engine for the intake leak detection and for the turbine efficiency loss drift detection

in a co-simulation environment showing its advantages in term of detection reliability,

calibration effort and engines diagnosis operating condition analysis.



Resume

Cette thèse a pour but l’étude de la détection basée sur modèle de défauts pour les

moteurs Diesel produits en grande série. La nécessité d’une surveillance continue de

l’état de santé des véhicules est maintenant renforcée par la législation Euro VI sur les

émissions polluantes, qui sera probablement rendue encore plus contraignante dans ses

prochaines révisions. Dans ce contexte, le développement de stratégies robustes, faciles à

calibrer et valides pour des systèmes dispersés (car produits en grande série) procurerait

un avantage considérable aux constructeurs automobile. L’étude développée ici tente

de répondre à ces besoins en proposant une méthodologie générique. On utilise des

observateurs adaptatifs locaux pour des systèmes scalaires non linéaires et affines par

rapport à l’état, pour résoudre les problèmes de la détection de défauts, de son isolation

et de son estimation d’une façon compacte. De plus, les incertitudes liées aux biais de

mesure et de modèle et aux dérives temporelles nécessitent d’améliorer les méthodes de

détection par l’utilisation de seuils robustes pour éviter les fausses détections. Dans cette

thèse, on propose un seuil variable basé sur la condition d’observabilité du paramètre

impacté par le défaut et sur une étude de sensibilité par rapport aux incertitudes sur

les entrées ou sur le modèle. Cette méthode permet, entre autres, de fournir un outil

d’analyse pour la sélection des conditions de fonctionnement du système pour lesquels

le diagnostic est plus fiable et plus robuste par rapport aux incertitudes sur les entrées.

L’approche présentée a été appliquée avec succès et validée de façon expérimentale sur

un moteur Diesel pour le problème de détection de fuite dans le système d’admission

d’air, puis dans un environnement de simulation pour le problème de détection de

dérive d’efficacité turbine. On montre ainsi ses avantages en termes de fiabilité de

détection, d’effort de calibration, et pour l’analyse des conditions de fonctionnement

moteur adaptées au diagnostic.
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Préface

La législation Européenne qui réglemente les normes d’émissions polluantes et incite

à l’amélioration des performance des moteurs à combustion interne force les construc-

teurs automobile à la recherche continue de solutions techniques dans les domaines des

lois de commandes et du diagnostic.

La Communauté Européenne, à partir de 1993 avec l’introduction de la régle-

mentation EURO I, a commencé à définir les limites acceptées pour les émissions à

l’échappement pour les nouveaux véhicules vendus dans les états membres de l’ Europe.

La réglementation standardise par ses directives les limites pour chaque catégorie de

véhicule et type de technologie de combustion : allumage commandé (essence) ou par

compression (Diesel).

Dans le cas des moteurs Diesel les produits de combustion qui sont réglementés

sont les oxydes d’azote (NOx), les monoxydes de carbone (CO), les particules fines

(PM) et les hydrocarbures non brûlés (HC). Depuis EURO I la législation a continué

à évoluer, devenant de plus en plus contraignante à la faveur d’une politique qui tient

compte du respect de l’environnement comme illustré dans la Figure 1. Dans le détail,

l’histogramme montre comment, de manière continue, les particules fines et les oxydes

d’azote ont été progressivement limités. A chaque étape de la législation correspond

l’introduction de solutions techniques innovantes et tout particulièrement une évolution

des lois de commande qui doivent contrôler l’interaction de systèmes de plus en plus

complexes : circuit(s) de recirculation des gaz brûlés (EGR), groupe turbocompresseur,

système d’injection (groupée ou séquentielle), common rail et filtre à particules (DPF)

pour mentionner les plus communs.

A partir de l’introduction de EURO III, le législateur a introduit des limites qui

xix
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doivent être respectées dans la durée, de fait cette date marque le début de l’introduction

des systèmes de diagnostic embarqué (OBD). La dernière directive pour la régulation des

gaz d’échappement est EURO VI [40] qui impose une réduction sensible des polluants

et, pour la première fois, impose un système de diagnostique embarqué pour surveiller le

moteur et une réduction drastique des seuils de détection des pannes. Cette tendance,

dans l’esprit de moteurs de plus en plus respectueux de l’environnement, sera confirmée

dans le futur (EURO VII et suivants).

L’obligation de surveiller de manière continue le véhicule pendant toute sa durée vie

afin de respecter les contraintes sur les émissions polluantes, ammène les constructeurs

automobiles à développer des stratégies de diagnostic qui puissent vérifier l’état de

santé du moteur. L’objectif premier est donc d’éviter le mauvais fonctionnement du

système surveillé et donc la conformité à la réglementation. L’aspect majeur de cette

nouvelle réglementation, EURO VI, est la nécessité d’avoir des systèmes de diagnostic

qui puissent être fiables dans toutes les zones de fonctionnement du moteur: ils doivent

être validés au long du cycle de conduite Europeen - NEDC - qui est représentatif

des conditions de fonctionnement du moteur pendant une conduite urbaine (ECE) et

extra-urbaine (EUDC).

Le problème à traiter consiste donc dans le developpement d’une stratégie de détec-

tion des pannes qui puisse etre fiable dans des zones de fonctionnement où le systeme

est tres peu excité (ECE cycle) et, très important, il doit fonctionner pour des sys-

tèmes tres différents entre eux. Cette dernière spécification est principalement dûe à

la grande dispersion de production des moteurs et des leurs composants (capteurs et

actionneurs). Si cette dispersion n’est pas prise en compte en phase de développement

des stratégies, elle peut causer des fausses detections et avoir un impact économique

qui n’est pas négligeable pour les constructeurs (réparations de composant en bon état,

garages, insatisfaction des clients...). Afin de réduire les fausses alarmes liées aux disper-

sions de production, les constructeurs doivent habituellement faire face à de couteuses

(temps et ressources) procédures de calibrations de leurs seuils de détection; ce qui peut,

éventuellement, conduire à des retard de mise sur le marché.

Dans ce contexte, IFP Energies Nouvelles en collaboration avec le GIPSA Lab1, dans

1Grenoble Images Parole Signal Automatique - INP Grenoble
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le cadre de cette thèse, a évalué et étudié des approches de diagnostic basées sur des

modèles physiques, c’est à dire "model-based fault detection". Spécifiquement, l’étude

a porté sur l’évaluation des advantages et des limites de l’utilisation des observateurs

dynamiques pour la détection et reconstruction des pannes dans les moteurs Diesel en

visant la réduction, lorsque c’est possible, de l’effort de calibration des stratégies par

rapport aux problèmes de dispersion de production déjà présenté.

Dans cette thèse, on prouve que, pour une classe spécifique de pannes, il est toujours

possible d’utiliser des observateurs dynamiques locaux qui permettent l’estimation di-

recte de la panne si les mesures utilisées par les stratégies sont pas affectées par d’autres

erreurs, l’estimé est utilisé comme terme résiduel. De plus, grâce à une approche basée

sur modèle, il a été possible de proposer une méthodologie pour le développement d’un

seuil variable qui est basé sur l’analyse de sensibilité de la panne estimée en tenant

compte des incertitudes des mesures dûes aux dispersions de production.

Le document est organisé comme suit: une introduction générale au problème de

la détection de pannes est l’object du Chapitre 1, en particulier sont présentées les

differentes metodologies de diagnostic, les approches spécifiquement utilisées dans le

cas des moteurs Diesel et l’approche proposée. Le Chapitre 2 est entièrement dédié à

l’introduction des sous-systèmes constituant la boucle d’air d’un moteur Diesel. Les

systèmes sont présentés d’un point de vue fonctionnel et pour chacun des hypothèses

de travail sont proposées et un modèle pour le diagnostic est présenté. L’objectif de

ce chapitre n’est pas de fournir une description exhaustive de la boucle d’air mais

de donner une caractérisation la plus complète possible des composants principaux

qui seront utilisés dans la suite de ce travail. Dans le Chapitre 3, la première des

deux applications étudiées est présentée: la détection d’une fuite dans le collecteur

d’admission. Ce problème nous a permis d’étudier et développer deux observateurs

non linéaires pour l’estimation du diamètre de la fuite, obtenus selon la théorie de

Lyapounov (une comparaison qualitative est l’objet de l’Annexe B). Dans le même

chapitre, deux typologies de pannes sur les capteurs ont été définies et utilisées par la

suite dans l’analyse de sensibilité du paramètre estimé par l’observateur, c’est à dire le

diamètre de la fuite, par rapport au cas où l’observateur utilise des mesures affectées par

les erreurs. Cette approche nous a permis de développer un seuil variable qui adapte
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son niveau en fonction de la sensibilité de l’estimé et, plus important, en fonction de la

condition d’observabilité permettant ainsi de réduire la confiance de la panne estimée

dans les zones pour lesquelles les algorithmes sont numériquement mal conditionnés. La

stratégie proposée est donc testée expérimentalement sur le banc moteur (Annexe A)

et les résultats sont présentés et commentés.

Une fois que la nouvelle approche a été définie, elle est validée sur une autre partie

de la boucle d’air dans le Chapitre 4 : le système du turbocompresseur. L’intérêt ici est

d’être capable d’estimer une perte d’efficacité de la turbine. Le chapitre veut montrer

comment la stratégie proposée peut être facilement appliquée sur d’autres parties du

système avec un effort de calibration limité. De plus, par le biais de l’analyse de sensi-

bilité, il a été possible de comprendre les facteurs qui ont en impact majeur dans l’erreur

d’estimation et (Annexe C) il permet aussi de déterminer les points de fonctionnement

du moteur où la stratégie de diagnostic est la plus fiable et moins sensible aux erreurs

de mesure.

Le Chaptire 5 est dedié aux conclusions et perspectives de ce travail.
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Preface

Environment pollution legislation and internal combustion engine performances im-

pose to car manufacturers a continuous research of technical solutions both in monitor-

ing and controlling.

The European Community, starting in 1993 with EURO I, started to define the ac-

ceptable limits for exhaust emissions of new vehicles sold in EU member states. The

emission standards regulated by the European Union directives impose specific limits

for different vehicle categories and combustion technologies: spark or compression igni-

tion.

In the case of Diesel engines the exhaust emissions subject to the regulation are

the nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM) and non

combusted hydrocarbons (HC). Since EURO 1 the legislation evolved with new chal-

lenging and more environmentally friendly constraints as shown in Figure 1. This figure

shows how fast and progressive was the intent to reduce the pollutant matters from

the exhaust gases. For each step in the regulation an equivalent technological progress

has been done and particular attention has been paid to engine control strategy which

had to deal with more and more complex systems: exhaust gas recirculation circuit(s),

turbocharger stage(s), fuel multi-injections system, common rails, Diesel Oxidation Cat-

alyst (DOC) and Diesel particulate filter (DPF) to mention the most common.

Since EURO III, the legislator has introduced specific limits for aged vehicles, which

leads to the development of on-board diagnosis (OBD) systems. The last European di-

rective for exhaust gases regulation is EURO VI [40] which imposes a sensible reduction

in the pollutant and, for the first time, a specific demand in fault detection of the engine
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Figure 1: Nitrogen oxides and particulate matter emission standards for Diesel cars

as a system all along its life and a drastic reduction of the OBD threshold. This trend

will probably be confirmed in the future (EURO VII and beyond).

This requirement of a continuous monitoring all along the vehicle life imposes to the car

manufacturer to develop specific fault detection strategies in order to be able to health

monitor the engine. The goal is to avoid a malfunctioning of the system and the non

compliancy of the emission. The key part introduced in this last regulation is that the

monitor system should work continuously in all possible engine operating conditions

and in particular should be tested on the new European driving cycle - NEDC - which

represents both urban and extra-urban driving conditions.

The problem to face consists in the design of fault detection strategies that should

work in very poolyr excited conditions (ECE cycle) and, more important, should work

for very different systems. In fact, the high production variability of the engines and

of their components (sensors and actuators) can lead to very different systems to mon-

itor. This variability could induce to false fault detection and could have, therefore, an
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important economical impact for car manufacturers (garage services, fault free compo-

nents replacement, customers unsatisfaction, ...).

In order to reduce false alarms with respect to production variability, car manufacturers

face very exhaustive threshold calibration processes. This is something that could lead

to very long lead time with catastrophic consequences.

In this context, the IFP Energies Nouvelles in collaboration with the GIPSA Lab2

wanted to evaluate and study possible solutions with a model-based approach which is

the goal of this thesis.

In particular, their interest was to study and evaluate what would be the advantages

and limits of using dynamical observers applied to the fault detection of Diesel engines

and reduce the calibration effort due to the above explained production variabilities.

In this thesis, it is shown that, for a certain class of faults, it is possible to use

successfully local dynamical observers which give direct benefits in the estimation of

the fault magnitude when the sensor measurement are faults free, otherwise use the

estimation as the residual term 3. Moreover, thanks to the model based approach, it

has been possible to propose a methodology for threshold design which is based on the

sensitivity analysis of the estimated parameter with respect to the measurement uncer-

tainties.

The document is organised as follow: a fault detection overview is provided in

Chapter 1, in particular the different diagnostic methodologies will be presented , a

background of the Diesel engines fault detection and a description of the proposed ap-

proach.

The Diesel engine’s air-path is presented in Chapter 2. The different constitutive com-

ponents are presented and a brief description of their role at system view is reported,

particular attention in this chapter is given to the modelling of each part. The aim is

not to present the whole air-path but to provide a complete characterisation of the most

2Grenoble Images Parole Signal Automatique - INP Grenoble
3The residual is the name of the signal associated with a fault monitored in a diagnostic strategy
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important components that have been analysed and studied in this work.

In Chapter 3, the first of the two studied faults is presented: the intake manifold leak

detection. This problem allows to develop two different nonlinear adaptive observers

based on the Lyapounov theory for the leak diameter estimation (their qualitative com-

parison is the subject of Appendix B). In the same chapter, the modelling of two classes

of sensor faults as been defined and then used for the sensitivity analysis of the estimate

with respect to measurement faults used in the observer. This analysis allows to design

the proposed variable threshold which shows to adapt its level not only on the sensi-

tivity based on the measurement uncertainties but, more important, to the parameter

observability condition allowing to not consider the estimation where the observer esti-

mation risk is poor. The proposed strategy is then experimentally tested on the engine

test bed (A) and results are reported and commented.

Once the strategy was defined, in Chapter 4, it has been tested on a different part of

the system: the turbocharger. The interest here was to detect turbine efficiency loss.

The work presented in this chapter shows how the proposed methodology can be ap-

plied to different systems with limited effort. The sensitivity analysis allows to isolate

the major source of error in the turbine efficiency estimation and the same analysis (see

Appendix C) revealed to be a powerful tool to understand the engine operating points

in which the fault detection strategy is more reliable and less sensitive to measurement

errors.

General conclusions and perspectives are reported in Chapter 5.
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Chapter 1

Introduction to Diesel Engines

Fault Detection Problems

In the field of automotive engines, environmentally based legislative regulation as the

European On-Board Diagnostics (EOBD) specifies strong requirements on the diagnosis

system performance. Fault detection is a complex task to be achieved, by definition a

fault is an event that modifies the operation of the process in such a way that its

performance is degraded and/or its mission cannot be achieved. In Diesel engines events

could be of different types, i.e., actuators and sensors failure or modification of the

system structure (leaks). The aim of this chapter is to introduce the fault detection

problem with respect to the Diesel engine.

1.1 Fault detection: an overview

Diesel engines can be seen, as shown in Figure 1.1, as a system where faults can

happen on different parts: actuators, process and sensors. The main aim of a fault

detection scheme is to detect the presence of these faults. Moreover, once the fault is

detected, the next step is to localise: isolated.

In order to detect and isolate the system anomalies it is necessary to generate sig-

nals, residual, which are sensible to a set of possible faults. By definition a residuals is

a signal which is equal to zero when no fault acts on the system and different from zero

1



Chapter 1. Introduction to Diesel Engines Fault Detection Problems

Actuators Engine Sensors

FaultsFaults Faults

Residual Generation

Decision
Module

Detection

Isolation

Identification

Figure 1.1: General scheme: faults act on different parts of the system

otherwise.

Residual
Generation

Fault Diagnosis
(Detection and

Isolation)

Fault
Identification
(Estimation)

Figure 1.2: Fault Detection, Isolation and Identification scheme.

In a more general way, the Fault Detection and Isolation (FDI) problem can be decou-

pled in two main steps:

• generation of residual signals;

• analysis of the residuals.

The residuals analysis implies the detection, the isolation and the identification of the

fault (Figure 1.2). In general, referring to FDI problem, the detection is the only

mandatory part whereas isolation and identification (the estimation of the amplitude

of the fault) have a lower priority even if their effect is really useful. In particular,

2



1.1. Fault detection: an overview

identification can be necessary in fault-tolerant control where the control algorithms

could be designed with respect to the detected fault.

Figure 1.3: Hardware redundancy fault detection scheme

The residual generation can be done in very different ways, in [19] a good introduc-

tion to the FDI problem for engineering application is presented. In term of approaches

used in engines faults detection [32] here is an overview of the most common approches:

• Hardware redundancy - the reconstruction of the process component is made

by using an identical (redundant) hardware component (see Fig 1.3). The fault is

detected if there is a deviation of one of the two (or more) components. The main

advantage is the reliability of the method and the isolation problem is resolved

automatically thanks to the nature of the strategy. The principal drawback and

also the main reason why the methodology is not welcomed by vehicles manufac-

tures is the cost: redundant components can increase the final cost of the car to

not marketable prices;

• Knowledge Based - prior knowledge of physical process is used to ascertain when

a fault condition has occurred. This approach is probably the most common in

real applications however it is not used alone but in support of other strategies.

As a matter of fact, the previous knowledge based on physical behavior and direct

experience is the most useful piece of information that can be used to interpret

the reliability of the strategy and for calibrating the algorithms used. Fuzzy logic

approaches, that use knowledge based information rules, can be classified in this

family; a good example of this methodology application in engines fault detection

3



Chapter 1. Introduction to Diesel Engines Fault Detection Problems

can be found in [12] and in Figure 1.4 an example of rules extracted from the cited

work is reported.

584 M B Çelik and R Bayir

Fig. 6 Output variable of the fuzzy logic classifier for the Fiat engine (1.6 l) (VLM, very lean
mixture; LM, lean mixture; RM, rich mixture; NRM, normal; VRM, very rich mixture;
FA, faulty atomization; LC, low comparison; FI, faulty ignition; EF, excessive friction;
OH, overheating; FSL, fuel system leakage)

consumption, engine temperature, CO, O
2
, CO

2
, The deviation in the parameters helps to detect the

fault. Engine faults are characterized by the fact thatand HC emissions, and l were selected as the
input variables. Each input variable consists of five several failures may have a common cause or may

be the side effect of one cause. However, any singlemembership functions. These functions are in the
form of very low, low, normal, high, and very high. failure symptom may be caused by several failure

sources. Diagnosis of all these cases requires anEach membership function of the output variable
indicates a single fault. Triangle and trapezoid shapes expert system that can think logically like a human

expert. This obviously requires a large and complexwere selected for membership functions of the input
and output variables. The reason for the selection of rule base which is supported with correct facts and

data [1]. In this study, for expert knowledge, threeva triangle membership function was to make the
calculations in the fuzzification process and to enable experts employed by Fiat Service were consulted.

In addition, these experts also agreed on the inputthe fuzzy logic classifier to give a quick response. The
reason for the selection of the trapezoid is that the variables of the fuzzy logic classifier and on the

determination of their membership functions andfuzzy logic controller does not necessitate calcu-
lations for the central area of the trapezoid. In configuration of the rule base. Some of these rules

obtained are given in Table 3 as samples. There areaddition, the trapezoid contains the best represented
values of the defined membership function of this a total of 201 rules in the fuzzy logic classifier.

When an inference on the fault variable corre-area. While some membership functions of the
input variables were placed at equal intervals, some sponding to an intersection region of the triangle or

trapezoid membership functions occurs, it may pointothers were placed at different intervals. They were
placed at different intervals according to the engine to more than one fault. If this is not desired, the

values of the membership functions can be changedcatalogue values, expert knowledge, and the results
of the performed experimental studies. from the fuzzy inference system window in a way

that they will not intersect (Fig. 6). Intersection ofWhen a fault occurs in an engine, some values of
the engine parameters deviate from normal values. output membership functions gave proper results

Table 3 Rule base

Engine Fuel Engine CO HC CO
2

O
2

Excess State of internal
Number power consumption temperature emission emission emission emission air ratio combustion engine

1 Normal Normal Normal Normal Normal Normal Normal Normal No fault
2 Normal Low Normal Low Low Low High High Lean mixture
3 Low Very low Very high Very low Very high Very low Very High Very high Very lean mixture
4 High High Normal High High Low Low Low Rich mixture
5 Low Very high Normal Very high Very high Very low Very low Very low Very rich mixture
6 Normal Normal Normal High Normal Low High Normal Faulty atomisation
7 Very low Normal Normal Normal Very high Low High Normal Faulty ignition
8 Low Normal Normal High Very high Low Low Low Low compression
9 Low Normal High Normal Normal Normal Normal Normal Excessive friction

10 Very low Normal Very high Normal Very low Normal Low Normal Overheating
11 Normal High Normal Normal Normal Normal Normal Normal Fuel system leakage

JAUTO366 © IMechE 2007Proc. IMechE Vol. 221 Part D: J. Automobile Engineering

Figure 1.4: Rule base table used in Celik and Bayir work on fuzzy logic applied in fault

detection of internal combustion engines (extract from JAUTO366 c© IMechE 2007)

• Signal Based - the signal is analyzed or filtered to yield further information

regarding the faults detection. The assumption here is that there are signals

that carry useful informations about possible faults and, through a good signal

processing (both in time and/or in frequency), it is possible to extract them. In

fault detection jargon the signal processing phase (trend analysis, limit values

check, mean, variance...) generates the so called symptoms, signals that should

be then treated in a second analysis stage, the symptom analysis, for the final

association with the fault (see Fig. 1.6). The approach could be really useful if

Figure 1.5: Plausability check scheme

reliable measurements are available and if the faulty behavior has a clear signature.

In this category falls the Plausibility test, sketched in Figure 1.5 which, in its
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1.1. Fault detection: an overview

simplest form, checks that the sensor signals are within the expected physical

plausible ranges.

• Data Based - a neural network can be used to train a “black box” process model,

without having a detailed understanding of the physical processes involved. The

model is then compared to the actual physical process to determine an out of

tolerance condition. The main advantage of this approach is that no physical

knowledge of the process is required but the network generalization relies on the

data quality and diversity (the model is ideally trained in all possible operating

conditions). Among the advantages that make neural networks appealing is the

elaboration speed and the limited memory footprint on the microcontrollers. The

main drawback of this approach is that the network has to be trained every time

the process change on a data base that is not always available or could be provided

in a short elapse of time.

• Model Based - deviation between a theoretical model and the physical process

are used to determine fault conditions. In its simplest form, the software model

acts as a simulated redundant component, in this case we speak about software

redundancy concept or analytical redundancy. The advantage of the approach is

the easy and cheaper implementation, moreover it is suitable when the measure-

ment under analysis is not directly measurable but can reconstructed. The main

drawback is that no technical process can be modelled exactly as parameter differ-

ences and unknown disturbances will affect the residual terms. In addiction, the

isolation and estimation of the faults require a second stage analysis: this can be

classified as a problem of filtering/extracting useful information from the residual

signals.

All these strategies have pro and cons, but, with the increasing complexity of Diesel

engines more and more efforts are devoted to model based techniques. The reason, as

already mentioned, lays in the possibility, given by the model, to reconstruct internal

quantities which are not directly measurable and useful for FDI tasks.

All model-based techniques can be summarized in three main classes [32] as follow-

ing:
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Chapter 1. Introduction to Diesel Engines Fault Detection Problems

Figure 1.6: Signal processing fault detection scheme

• Observation and State Estimation - measured or calculated variables are

limit checked to ensure they are within tolerance;

• Parity Equation - using a model of the process, the outputs of the model are

compared directly to the outputs from the physical process (residuals). When the

residuals exceed a pre-determined threshold value, an alarm condition is gener-

ated;

• Parameter Estimation - parameters are calculated from the physical process

and are compared against parameter values calculated from process models or

against known good reference values.

A detailed approach to model-based FDI, especially for linear system, can be found

in [19]. Chen’s work [14] provides a very exhaustive survey on framework for robust

fault detection approaches.

A survey of the existing model based techniques in FDI in the subject of [26] and [25];

for those interested automotive, [32] gives an overview to the current trends in engines

diagnosis.

1.2 Observer based FDI

In the previous section are provided different types of approaches to FDI. The first

step in FDI is the residual signals generation and one of the possible ways to generate

residuals is by the means of observers. With reference to the figure 1.7 observers are

6



1.2. Observer based FDI

System

Observer
Residual
Generator

Residual
Analysis

Diagnosis

u y

r

Figure 1.7: Observer based residual generation scheme

used to reconstruct some variables of the system in order to be compared then with the

available measurements. By this comparison residual signals are generated. The most

evident term that can be used as residual is the output errors of the observer but also

other signals combination are possible.

1.2.1 Linear system

The observer approach for FDI in linear system has a wide background, since 1980

the use of closed loop observers for residual generation has been studied.

The good knowledge of linear system and control theory allow researchers to manage

such a kind of systems with respect to fault detection.

The main aim in observers design for residual generation is to decouple the estimation

from the observer’s inputs and, eventually, increase the robustness of the estimation

with respect to model uncertainty. These characteristics, in linear system, have a very

well developed mathematical tools which allows to analyze the system properties and

then design, if it is possible, specific observers in a systematic way.

Moreover, the possibility to design output observers decoupled from some of their inputs

can help during the isolation process. As an example, under some strict conditions, a

class of observers called unknown input observer (UIO), can be employed to generate

residual signals which are not sensitive to specific inputs. This property simplifies, once

a fault is present, the isolation task: as each observer of the bank is insensitive to a

specific input (actuator or sensor), when the fault occurs on an input, only a subset of

the residuals will react to its presence and so, by inference, it is possible to go back to

which part of the system is affected by the fault. Other observer design approaches,

using structural property of the system, are well documented in [16]. A description of

7



Chapter 1. Introduction to Diesel Engines Fault Detection Problems

some of these methodology can be found in [14], [41] and [26].

In the linear domain, one of the most used observer is the Kalman filter due to its

optimality in the estimation when measurement and process noise are present. This is

particularly true when the fault detection and isolation strategy is designed for detecting

sensor and actuator failures [30].

For multiple faults detection [1] presents an analytic redundancy approach based on

reduced observer.

u(t)
y(t)

System

UIO 1

UIO n

F
U
S
I
O
N

(a) Inputs - actuators

u(t)

y(t)

UIO 1

UIO n

System

F
U
S
I
O
N

(b) Outputs - sensors

Figure 1.8: Bank of observers (UIO) excited by all inputs 1.8(a) and all outputs 1.8(b)

In Figure 1.8 are shown the two described strategies for actuators and sensors fault

detection in a linear system case by the use of a bank of unknown input observer.

1.2.2 Nonlinear system

Nonlinearities are present in almost every system and their knowledge, combined

with the ability of taking them into account in the modelling process, can improve the

quality and fidelity of the model itself. However, in a model-based diagnosis framework,

those nonlinearities can increase the complexity of the strategy design.

The reason and the main difference from the linear case, has to be found in the absence

of a systematic framework for treating nonlinear systems; each nonlinearity have to be

studied and tried to be classified in a more generic family of known mathematical prob-

lems [6], more specifically for the FDI problem, Garcia and Frank, presented a survey

in [3].
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1.3. Engine fault detection

The most common way to manage nonlinear systems is to linearise them around some

equilibrium point [14] and use the previously exposed linear techniques for residuals

generation and isolation problem.

Another possible approach is the use of the nonlinear sliding mode observers [18] and

[45] which are applied to the estimation of unknown inputs and faults in a class of

nonlinear systems in [43].

Another example of nonlinear observer application is the tire/road contact friction es-

timation proposed in [8].

The engine and its air-path belong to this class of problems and a specific solution has

been studied.

1.3 Engine fault detection

The Fault Detection and Isolation strategies for automotive engines have been more

and more in car manufacturers research and The research on FDI strategies for auto-

motive engines have been driven mainly by legislation, with the introduction of OBD

(On Board Diagnosis) regulation and has been possible with the progress in technology,

i.e., with the development of increasingly powerful microprocessors.

First works on automotive FDI was mainly oriented to spark-ignition engines, whereas

Diesel engines are nowadays considered with increasing interest for research and devel-

opment of FDI strategies.

1.3.1 State of art

Modern on-board diagnosis systems are based on the analysis of some measured

signals, which are compared to pre-defined thresholds.

Model-based fault detection approach, based on parity equations and threshold check-

ing, is very common in nowadays strategies applied to car engines. The key idea of

this methodology is the use of a model of the system to generate virtual measurements

which are compared to available sensors signals.

9



Chapter 1. Introduction to Diesel Engines Fault Detection Problems

A very complete FDI scheme for a Diesel engine with turbo charger, using parity

equation approach, is provided in [27] and [42] where physical equations and neural

networks are used to model different parts of the system.

A similar approach in fault detection and isolation was developed by Mitsubishi Mo-

tors Corporation by state comparison with model behavior where are discussed the

advantages of a model-based approach to cope with the OBD-II requirements.

An observer based approach to FDI problem for SI engine with exhaust gas recircu-

lation is proposed in [31] and [29]. The fault diagnosis, i.e., detection and isolation, is

performed by generating residuals based on multiple nonlinear sliding-mode observers.

Once unmeasured engine’s variables are estimated, residuals are generated as a differ-

ence of measures and model-based estimation made by these observer’s reconstructed

signals.

Further relevant contributions are those proposed by Nyberg in [38], [37] and [39],

where a diagnosis method is presented based on a structure of hypothesis. The method

consists in the detection of faults in the air mass sensor, throttle angle sensor, manifold

pressure boost and the presence of leakages in the air system, i.e., intake manifold and

before the throttle for SI engines. The key idea in Nyberg’s works is to define behavioral

models for each functioning conditions of the system, i.e., defined a nominal behaviour

model (fault free) and other different models, each one expressing a particular faulty

operating condition (behaviors), it is possible to determine which behavior best match

the measurements through a structured hypothesis test. This result leads to the fault

detection and isolation.

Another type of approach in fault detection, by using identification algorithms, is

proposed in [33] for the exhaust gas recirculation system (EGR) . A real-time (recursive-

least-squares method) parameters identification is used to diagnose different types of

faults: low flow or high flow faults. The authors proposed to identify parameters of the

EGR model in nominal behavior and then, by an on-line estimation, looked if there was

a drift of such variables which corresponded to the presence of some faults.

10



1.3. Engine fault detection

As explained, the problem of fault detection relies on the continuous check of the

residual signal against the threshold. The choice of the threshold value is always a

compromise between the ability to quickly detect a fault and the necessity to avoid

false alarm due to measurements or model error. In [34], Montes and Pisu, design a

fault detection strategy to detect throttle and intake manifold pressure sensor faults for

internal combustion engines in idle speed. The interesting aspect here is the approach

they adopted for the threshold design: a variable threshold that is driven by the torque

estimation through a first order polynomial. The result is a stairs threshold signal.

Finally, a complete summary of the current strategies in automotive fault detection and

the future trends are detailed in [32].

1.3.2 Proposed approach

The state of art proposed in the previous section shows that the model-based

methodology for engine diagnosis is a promising way to approach the problem. The

aim of this thesis is to evaluate, with respect to the air-path system of a Diesel engine,

the use of a model-based closed-loop observer for FDI problems. In particular, the pro-

posed approach should work with commonly available sensors and be robust to process

and measure uncertainties due to production variability. This last problem is common

in vehicles production and implies long calibration process.

In section 1.1 the problem of the diagnosis has been broken up in three sequential

Fault
Identification

Nonlinear
Observer

Residual Fault
Diagnosis

x̂(t)

ỹ(t)

Alarm
Isolation

Nonlinear Adaptive Observer

Figure 1.9: Adaptive Observers motivation for FDI on Diesel engine. Observer estimate

state x̂(t) and the observer’s output error ỹ(t).
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Chapter 1. Introduction to Diesel Engines Fault Detection Problems

steps: residuals generation, analysis and identification. The proposed strategy is to use

a particular class of observers, i.e., adaptive nonlinear observers, locally implemented

which have the property of simultaneously estimate state and parameters in order to

merge, if possible, the FDI diagnosis in one step.

The use of this class of observers can be found in [17] for the estimation of the friction

coefficient for an automotive clutch engagement or in [23] where it is proposed a model

augmentation for bias compensation in a truck engine application.

The reason of this choice is motivated by the fact that, if the fault amplitude is

linked to a parameter, the residual signal would be the parameter itself, i.e., equal to

zero when there is no fault and different from zero otherwise. This last choice dictates

the signal to be monitored. Moreover, the estimated parameter amplitude is the mag-

nitude of the fault, i.e., the identification problem.

In figure 1.9 is shown how a nonlinear adaptive observer comprises the detection, isola-

tion and identification phases.

For the detection phase, the sensors production variability combined with the en-

gines construction uncertainty leads to the necessity of a robust threshold that can

efficiently help to trig faults and avoid false alarms. As the fault’s estimation (param-

eter) relies on the model equation accuracy, it is possible to estimate and bound the

estimation error and use it for a robust threshold design strategy.

The proposed methodology for threshold design relies on the sensitivity analysis of the

parameter estimation. Through this approach, combined with the observability con-

dition of the estimation algorithm, it is possible to design a variable threshold that is

driven completely by the available measurement and the maximum measurement uncer-

tainties. Moreover, the sensitivity analysis, provides a useful tool to analyze the system

and determine the operating points in which the fault detection strategy is more reliable.

This approach has been experimentally tested with success in a initial case study:

the intake manifold leakage detection. The leakage had to be detected and the hole’s

12



1.3. Engine fault detection

diameter had to be estimated.

In order to validate the strategy, the approach had been tested on another critical part of

the Diesel engine air-path: the turbocharger. In this case, the aim of the fault detection

was to determine the turbine efficiency loss.

13





Chapter 2

Models for Diesel Engines

In this chapter an introduction to the engine air-path is presented. The aim is to

introduce the model used to simulate its behavior and to highlight some issues that

will arise in the fault detection strategy. Particular attention will be paid to the model

simplifications made to adapt it to the FDI problem, taking into account the available

sensors present on mass production engines.

Each section will be devoted to a different part of the air-path of the engine used in this

work:

• Cylinder filling

• Manifolds dynamics

• Valves model

• EGR cicuit model

• Turbocharger.

These models will provide some insight in the system operation and will be used later

in the fault detection strategy. This chapter deals with the nominal system. The

hypotheses and models of faults will be introduced in the next chapters.
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Chapter 2. Models for Diesel Engines

2.1 Diesel Engines Air-Path: An overview

The purpose of the air-path is to convoy and control the gases used during the nor-

mal Diesel engine operative condition. In figure 2.1 a schematic of a Diesel engine is

Ne

pintTint

Texhpexh

uEGR

uthr

TURBINE

COMPRESSOR MAF

INTAKE MANIFOLD

EXHAUST MANIFOLD

COOLING
SYSTEM

Figure 2.1: Diesel engine scheme: An overview.

presented. The aim of this scheme is to give a general and complete behavioural view

of the gases flow and introduce the different subsystems below detailed.

The engine combustion chamber is filled, in normal condition, by fresh air (blue path):

the air is compressed first and then, after a cooling system, is collected in the intake

manifold where is aspired in the engine by the depression caused by the piston move-

ments. This first part of the air-path is generally referred to as intake system.

After the combustion is completed, hot gases are used to drag the turbine which drive

the compressor, presented before, and continue to the after-traitement system (not

shown in the figure) to reduce pollutant emission. This part is generally referred as

exhaust system.

There is a third part that has been introduced in the air-path a decade ago, i.e., the

exhaust gas recirculation system: EGR circuit. The aim of this third circuit is to allow

gases produced by combustion to be mixed with the intake air. The interest of such

16
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approach is strictly related to a better control of the combustion and so of the pollutant

emissions. A detailed analysis of the impact of the uses of the burned gases recirculation

can be found in [13],[2].

2.2 Engine

The system considered in this work is a Diesel engine with variable geometry tur-

bocharger and high pressure exhaust gas recirculation circuit.

As explained before the aim here is to present the model used for simulation and make

some remark usefull later in the fault detection part. Hence, for air-path fault detection,

the engine is seen as a source for gases energy (kinetical and thermal).

Engine Mass Flows

The engine can be approximated as a volumetric pump [20] and the flow aspirated

in the cylinders can be modeled as proportional to the engine’s speed as follow

ṁasp = ηv(pint, Ne)
pint
TintR

Vcyl
Ne

2× 60
(2.1)

where Tint and pint are, respectively, the intake temperature (in Kelvin) and pressure (in

Pascal), Ne is the engine’s speed (in rpm), R is the universal specific constant for gases

and Vcyl stands for the displaced volume, i.e., the combustion chamber’s volume when

the piston is at the bottom dead center (BDC) minus the volume of the cylinder when

the piston is at the top dead center (TDC). The engine model as a volumetric pump, due

to different causes (internal gases recirculation, cross-coupling between cylinders...), has

to be corrected by a term that represents the capacity of the engine, in that particular

operating condition, to fulfill the cylinder displaced volume: the volumetric efficiency

ηv which is generally obtained experimentally (Fig. 2.2). In the following, for notation

simplicity the aspired mass flow ( 2.1) can appear as

ṁasp = ηv(pint, Ne) · pint · βint(Tint, Ne) (2.2)

where

βint(Tint, Ne) =
1

TintR
Vcyl

Ne

2× 60
(2.3)
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Figure 2.2: Diesel engines’ experimental volumetric efficiency look-up table obtained

for the European driving cycle NEDC.

Remark 2.1.

In figures 2.3(a) and 2.3(b) the engine volumetric efficiency map derivative with respect

to the IMEP (image of the engine produce torque) is shown. As figures shows, the

ηv term does not change significantly with respect to the change of the produced torque,

except for the the very low loads (the bottom left corner of Fig. 2.3(b)). In this operating

zone, it is particularly difficult to exactly measure all the variables needed to describe

ηv. Usually the map Fig. 2.2 is obtained as interpolation of some steady state engine

working points. The same kind of remarks can be made for the sensitivity of the engine

efficiency with respect to its speed. These consideration lead to some working hypothesis:

• ηv is bounded and as well as its derivative;

• as its derivative is almost equal to zero, the engine volumetric efficiency can be

considered constant for control purposes.

2.3 The Intake Manifold

The intake manifold is a volume where different gases are mixed and aspirated

(Fig. 2.4). As a thermodynamic system, the variables representative of the state of the

system are the pressure pint and the temperature Tint. Under the hypothesis that the
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Figure 2.3: Partial derivative of the efficiency map with respect to IMEP.
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Figure 2.4: Intake manifold model details.

system is isolated, there are not heat exchange with the ambient, the system can be

modeled as adiabatic.

2.3.1 Adiabatic Model

The adiabatic model [20] is particularly suited when the temperature variations are

not negligible. The model is derived under the hypothesis that mass and energies bal-

ance stand, i.e,

d

dt
m(t) = ṁin(t)− ṁout(t) (2.4)

d

dt
U(t) = Ḣin(t)− Ḣout(t) (2.5)
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Chapter 2. Models for Diesel Engines

where m(t)is the total gases mass inside the manifold, ṁin and ṁout are the mass flow

rates coming in and out the manifold, U(t) is the internal energy and Ḣ stands for

entalpy flows. With reference to the figure 2.4,

ṁin(t) = ṁair(t) + ṁegr(t) (2.6)

ṁout(t) = ṁasp,1(t) + ṁasp,2(t) + ṁasp,3(t) + ṁasp,4(t) (2.7)

Assumption 2.1.

In the rest of this document, all the flows will be considered positive.

If it is assumed that the fluid can be modeled as perfect gases, no heat or mass

transfer through the walls, and that no substantial changes in potential and energy in

the flow occur, under the assumption 2.1, the adiabatic model of the intake manifold

is: 

ṗint(t) = γ
R

Vint
(ṁair(t)Tair(t) + ṁegr(t)Tegr(t)− ṁasp(t)Tint(t))

Ṫint(t) =
RTint(t)

pint(t)Vint
(ṁair(t)(γTair(t)− Tint(t))− ṁasp(t)(γ − 1)Tint(t)+

ṁegr(t)(γTegr(t)− Tint(t)))
(2.8)

where all variables are described in Table 2.1.

Although the system (2.8) is a complete model for the intake manifold gases dy-

namic, the adiabatic model is still too complex [21]. The reasons are different: first,

the temperature dynamic is much slower than the pressure dynamic, second, the model

need measurements that are not generally available in mass production cars, i.e., the

EGR temperature and flow rate and finally, the temperature sensors normally used have

high time constants (3− 6 s).

These considerations lead to the choice of an isothermal model, which has been shown is

a good representation of the manifold dynamics and it will be the object of the following

section.

20



2.3. The Intake Manifold

Name Description Units

R gas constant [J/kgK]

cp specific heat at constant pressure [J/kgK]

cv specific heat at constant volume [J/kgK]

γ ration of specific heat [−]

Tegr upstream EGR valve temperature [K]

Tint intake manifold temperature [K]

Tair downstream cooled compressor temperature [K]

Vint intake manifold volume [m3]

ṁair compressor flow [kg/s]

ṁegr egr flow [kg/s]

ṁasp engine aspired flow [kg/s]

Table 2.1: Variables definition - Adiabatic model

2.3.2 Isothermal Model

The Diesel engine considered in this thesis is supposed to work with exhaust gas

recirculation, this might generate very high intake temperature variation. This, as

already discussed in section 2.3.1, suggests the use of an adiabatic model because of

the small volume of the intake and so the short dwell time of the gases trapped in it

(negligible heat exchanges with the manifold wall).

Due to long response time of temperature sensors, even under the hypothesis of having

all the necessary measurements, the adiabatic model, even if it is more accurate in

transient [15], can be generally replaced with a isothermal one in real applicative context.

The isothermal model is obtained from (2.8) by neglecting the temperature dynamics
ṗint(t) = γ

RTint(t)

Vint
(ṁair(t) + ṁegr(t)− ṁasp(t))

Tint(t) = Tint,m(t)

(2.9)

where Tint,m is the available measurement provided by the intake temperature sensor.

Generally, for notation simplicity, a new variable is introduced

αint(t) =
RTint(t)

Vint
(2.10)
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Chapter 2. Models for Diesel Engines

which, experimentally, is always strictly positive and bounded, i.e.,

0 < αint(t) ≤ αint,MAX (2.11)

as the intake temperature is always different from zero and bounded.

2.4 Flow through an orifice

The air-path is a mix of different controlled flows, it is not always possible to have

a direct measurement of them, because of cost and technical issues. Bernoulli law

provides, given pressure measurements, in the cases of incompressible fluids, a good

estimation of the flow rate. In the case of compressible fluids, i.e. gases flowing in the

air-path pipes, more complex relations have to be considered.

(pin, Tint) (pout, Tout)

A(t) ṁ(t)

Figure 2.5: Flow through an orifice of variable section. Model scheme.

For engine control and diagnosis purposes, under some working hypothesis (see e.g.

[20, 22]), a common way to model a flow through a variable restriction is

ṁ(t) = cdA(t)
pin(t)√
RTin(t)

σ

(
pout(t)

pin(t)

)
(2.12)

where

σ

(
pout
pin

)
=


1√
2

if 1
2pin > pout

√
2poutpin

(1− pout
pin

) if 1
2pin ≤ pout

(2.13)

and the subscripts “in" and “out" stand for upstream and downstream values across a

possibly variable-area section A(t) (see Fig. 2.5 for more details on the variables).

The σ(t) function (2.13) is a piecewise continuous and derivable function as depicted
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2.5. Exhaust Gas Recirculation circuit: EGR
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Figure 2.6: σ(pr) function’s shape.

in figure 2.6. It is defined for pout/pin ≤ 1, otherwise the equation (2.12) must be

considered with a minus and considering the input and output pressures with respect

to the sense of the flow.Physically a pout/pin > 1 means that the flow has changed its

direction: back-flowing.

A last remark on the σ(pr) function is its stiffness for values of the pressure ratio grater

of 0.9, this means that very small errors in pressure ratio lead to big variation of the

estimated mass flow through the variable restriction. This last consideration is very

important for understanding the limit of validation of the model. The cd term stands

for the discharge coefficient that is experimentally determined and allows to include the

neglected losses due to the hypothesis done in the model, i.e., pressure drop across the

section.

2.5 Exhaust Gas Recirculation circuit: EGR

The exhaust gas recirculation circuit has become, in Europe, a fundamental part

of the design of modern Diesel engine. Its introduction in the car market as engines

constitutive part coincide with the start of the EURO 3 regulation in order to match

the imposed emission limitations.

The EGR strategy allows to reduce the oxygen concentration and so to slow down

the combustion. Moreover, the inert exhaust gas displaces the amount of combustible

matter in the cylinder which means the heat of combustion is less. Hence the formation
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Chapter 2. Models for Diesel Engines

Intake Manifold Exhaust Manifold

ṁegr(t)

pegr(t) pexh(t)

Texh(t)

pint(t)

Tint(t) Tegr(t)

Heat Exchanger

Tew(t)

Figure 2.7: Exhaust gas recirculation circuit: a schematic view.

of NOx is strictly related with the oxygen concentration and combustion temperature,

the EGR strategy allows to reduce the NOx emissions.

In order to increase the recirculated gas density and to decrease their temperature, the

exhaust flow is generally cooled with a heat exchanger. The amount of recirculated

burned gases is controlled by a valve.

A detailed scheme of the EGR circuit is depicted in figure 2.7 : exhaust gas discharged

by the engine in the exhaust manifold (right), are cooled in the heat exchanger and

the quantity of gas introduced in the intake manifold (left) are controlled by a specific

valve.

The main effect of the heat exchanger is to cool the exhaust gas and, consequently,to a

pressure drop. The pressure and temperature downstream of the exchanger are referred

as pegr and Tegr. In the contest of this thesis, the exchanger, is cooled by the engine

water Tew.

The model of the cooling system is therefore
Tegr = ηegr_HE(t)Tew(t) +

(
1− ηegr_HE(t)

)
Texh(t)

ηegr_HE = aegr_HEṁegr(t) + begr_HE

(2.14)

where the downstream temperature of the heat exchanger Tegr is a convex combination

of the upstream gas temperature Texh and the water temperature Tew weighted by

an experimental coefficient ηegr_HE(t), i.e. the heat exchanger conversion efficiency

(experimentally obtained and provided by the manufacturer).
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2.5. Exhaust Gas Recirculation circuit: EGR

It is possible to express the efficiency as a linear function of EGR flow ṁegr, where

aegr_HE and begr_HE are two constants obtained from an optimization of the raw data.

The point here is that the two equations are implicitly coupled and the EGR pressure

and temperature sensors are not available in cars for two main reasons: the sensors are

exposed to soots present in the exhaust gas, this make the measurements unreliable and

on the other hand, the cost.

Another important point is the estimation of the EGR flow. The lack of a specific

sensor, for the same reasons exposed above, obliges to estimate the EGR flow by a

dedicated dynamical observer [13] based on the intake pressure measurement.

For diagnosis purposes, it will be detailed in the next chapter (i.e. the intake manifold

leakage detection), the observer based approach for the estimation of the EGR flow is

not suitable anymore with respect to the detection strategy used. The reason is that, in

case of leakage on the intake manifold, the EGR mass flow observer will be not able to

distinguish the fault from a decreasing amount of the EGR flow rate. Hence, the EGR

gas stream is estimated by the equation (2.12). This way of modeling neglects the EGR

heat exchanger and the EGR pipe length; these strong simplifications lead to a less

accurate estimation of the EGR flow. In order estimate, under these hypothesis, the

recirculated flow, an experimentally based discharge coefficient cd has to be recalculated.

Finally, the EGR flow model equation is

ṁ(t) = cd(t)A(t)
pexh(t)√
RTint(t)

σ

(
pint(t)

pexh(t)

)
(2.15)

where, due to the available sensors, the upstream temperature Tegr is replaced by the

intake temperature Tint. In figure 2.8 is shown the comparison between the two con-

sidered temperatures when a low loads trajectory is simulated on a reference nonlinear

model of the engine runs under AMEsim - Simulink co-simulation environment.

By this comparaison it is possible to see that the error between Tegr and Tint, when the

EGR rate is close the 50 %, is less than 20◦ in the worst cases.

Remark 2.2.

As briefly described at the beginning of this paragraph, the EGR is probably one of the

best strategy to control the NOx production. The introduction of this circuit however can

limit the operating zone of the compressor. In particular, the use of the EGR can push
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Figure 2.8: (top) Tegr versus Tint and (bottom) the EGR rate, along a load trajec-

tory. The trajectory considered is made of IMEP steps keep for 10 seconds each. The

particular sequence used in simulation is IMEP = [4 5 6 7 6 5 2 5 7 5 4] bar .

the compressor to its the surge line. Moreover, collecting part of exhaust gas directly in

the exhaust manifold subtract energy to the turbine.

To cope with these issues, another EGR circuit is considered: the low pressure EGR.

The long route EGR picks-up the exhaust gas downstream the turbine and injects it

upstream the compressor.

2.6 Turbocharger

The turbocharger has become a fundamental part in nowadays engine. The main

role of the turbocharger is to increase the air density in order to allow the engine to

trap, for the same cylinders volume, more air hence more power. The advantage of
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2.6. Turbocharger

Intake Manifold

Exhaust Manifold

Compressor

Turbine

N

put pdt

Tdc

pucpdc

Tuc

Tut Tdt
uvgt

Figure 2.9: General scheme of Diesel engine with the turbocharger system detailed.

using a turbocharger, in Diesel engines, is the possibility to increase its power density.

The turbochargers technological development led today to three main typologies: free-

floating, with waste-gate and variable geometry turbochargers [22].

In this work a variable geometry turbine (VGT) is considered. The particularity of such

type of turbine is to have the possibility to control the input section of the turbine as

function of the exhaust gas mass flow rate and pressure.

The model presented in the next section is suited for control purposes, an exhaustive

physical modeling description can be found in [22], [35] and [44].

The turbocharger dynamic is its rotational speed N which is derived from the power

balance of the turbocharger shaft.

Pt − Pc = JN
dN

dt
(2.16)

where J is the moment of inertia of the turbocharger, Pt is the power developed by

the turbine and Pc the power to drive the compressor. The turbine and the compressor

powers can be expressed as

Pt = WtcpηtTut

[
1−

(
1

Πt

) γ−1
γ

]
(2.17)

Pc = Wccp
1

ηc
Tuc

[
Π
γ−1
γ

c − 1

]
(2.18)
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where the ηt and ηc are the turbine and compressor efficiency terms used to correct the

isentropic powers into the real ones. Πt and Πc are respectively the pressure ratio across

the turbine and the compressor. cp is the specific heat at constant pressure and γ is the

ratio of specific heats. In order to simplify the reading of this section, due to the large

amount of variables needed for the model, a summary of all them is presented in Table

2.2. The compressor efficiency ηc is given by a static map (Fig. 2.10(a)) which depends

Name Unit Definition

N [rad/s] Turbocharger shaft speed

put [Pa] Turbine upstream pressure

pdt [Pa] Turbine downstream pressure

puc [Pa] Comppressor upstream pressure

pdc [Pa] Compressor downstream pressure

pref [Pa] Const. reference pressure

Tut [K] Turbine upstream temperature

Tdt [K] Turbine downstream temperature

Tuc [K] Compressor upstream temperature

Tdc [K] Compressor downstream temperature

Tref [K] Const. reference temperature

Πt [-] put/pdt Turbine pressure ratio

Πc [-] pdc/puc Comp. pressure ratio

Wt [Kg/s] Turbine flow rate

Wc [Kg/s] Compressor flow rate

Wf [Kg/s] Injected fuel flow rate

ηc [-] Compressor efficiency

ηt [-] Turbine efficiency

uV GT [%] VGT opening control

Tamb [K] Const. atmospheric temperature

pamb [Pa] Const. atmospheric pressure

Table 2.2: Nomenclature for Turbocharger Model
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2.6. Turbocharger

on the corrected compressor speed Nc,corr and on the corrected mass flow Wc,corr

ηc = φηc(Wc,corr, Nc,corr) (2.19)

where

Nc,corr = N

√
Tref√
Tuc

Wc,corr = Wc
pref√
Tref

√
Tuc
puc

(2.20)

In the same way, the variable geometry turbine efficiency ηt is given by another static

0

0.5

1

1.5

2

x 10
5

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
corr

Compressor Efficiency Map

W
c,corr

 

η
c

(a) Compressor efficiency map

02468101214

x 10
4

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
corr

 

η
t
 lookup tables (8 VGT positions) 

p
ut

/p
dt

η
t

(b) Turbine efficiency map

Figure 2.10: Efficiency maps for a turbocharger with a variable geometry turbine - 8

different VGT’s position

map (Fig. 2.10(b)) which is function of the VGT position.

ηt = φηt (Wt,corr, Nt,corr, uV GT ) (2.21)
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where Nt,corr = N

√
Tref√
Tut

and Wt,corr = Wt
pref√
Tref

√
Tut
put

. For completeness, two more

maps are generally provided with the turbocharger, i.e. φΠc and φWt,corr which are the

compressor pressure ratio Πc and the corrected turbine flow rate Wt,corr

Πc = φΠc (Wc,corr, Nc,corr) (2.22)

Wt,corr = φWt,corr (Πt, Nt,corr, uV GT ) (2.23)

Remark 2.3.

All the turbocharger look-up tables are obtained in steady state condition and provided by

the manufacturer and are generally very accurate in the zone for which the turbocharger

is designed to operates (i.e. high engine loads).
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Chapter 3

Fault-Detection for Intake Leakage

3.1 Introduction

The purpose of this chapter is to introduce a first type of fault in the air-path: a

leakage in the intake manifold. The interest in this type of fault is that, even if it is

extremely rare the formation of a hole on the manifold surface, it could happen that

the materials fatigue and vibration may lead to pipes disconnection. Hence, the leak

detection becomes a critical task to be achieved, especially when an intensive use of

burned gas is made by means of the EGR circuit, in order to prevent direct pollutant

emissions in the ambient. Moreover, the incapacity of detecting a leak in the intake

receiver can lead to a wrong estimation of the gas flow through the after-treatment

system. The direct consequence, in a Diesel engine, is a inadequate control strategy of

the Diesel Oxidation Converter (DOC), with a result, in the worst scenario, of over-

heating of the DOC itself and the consequent failure.

The chapter is organized as follow: a model for the leakage is introduced and the model

for diagnosis is presented. An adaptive observer for the estimation of the leak diameter

is presented and compared with two observers estimation. Once a residual is generated

different type of detection threshold are evaluated. In particular a dynamical generated

threshold is proposed.
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Chapter 3. Fault-Detection for Intake Leakage

3.2 Model for diagnosis

The intake manifold can be described by an isothermal receiver in which the pressure

is the state variable (Section 2.3). This approach is supported by the fact that both the

temperature and the pressure are measured and available.

Starting from the equation (2.9), it is possible to include the leakage as a fourth flow

term in the mass balance on the right hand side of the dynamic. The model for the

intake manifold pressure becomes
ṗint(t) = γ

RTint(t)

Vint
(ṁair(t) + ṁegr(t)− ṁasp(t)− ṁleak(t))

Tint(t) = Tint,m(t)

(3.1)

where the leakage can be modeled as flow through a restriction expressed in equations

(2.12) and (2.13). In particular, for a given hole section Aleak, the leakage can be

explicitly expressed as

ṁleak(t) = Aleak
pint(t)√
RTint(t)

σ

(
pamb(t)

pint(t)

)
(3.2)

The proposed strategy, as explained in the introduction, is to directly estimate the hole

diameter by means of a dynamical observer. Hence, the diameter must appear explicitly

in the equation (3.2). For doing that the term referring to the opening section of the

leak Aleak is rewritten as

Aleak = θ ·Aleak,max (3.3)

where θ is related to the diameter by

θ =
D2
leakπ

4Aleak,max

and Aleak,max is a constant and correspond to the maximum opening surface of the

leak, i.e., the entire surface of the manifold. In other words, in the worst case scenario,

the manifold will be completely disconnected from the pipes. This type of choice is

arbitrary, any other maximum value can be selected. The θ term is a parameter that

can be any value from zero to the unit, corresponding to the two extreme cases: there

is not any leak or the leak surface on the manifold is equal to the considered Aleak,max.
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3.2. Model for diagnosis

State-space model for leakage diagnosis

The aim of a state-space modeling is to put in evidence the structure of the system

with respect to the state variable chosen. Starting from equation (3.1) is possible to

express the model as follows ẋ(t) = −a(x(t), z(t))x(t)− ψ(x(t), z(t))θ(t) + φ(x(t), z(t))

y(t) = x(t)
(3.4)

where the state x(t) = pint is scalar, z ∈ R8 is a vector containing the available measured

variables (see TABLE 3.1 for details) and y stands for the measured output. Finally,

θ is the parameter to be estimated that is, as explained before, the percentage of the

maximal leak section (3.6) such that ṁLeak(t) = θ · ψ(x(t), z(t)). In the following y(t)

and x(t) will be used without distinction. Moreover the following functions have been

introduced

a(x(t), z(t)) = αint(z2(t))βint(z2(t), z7(t))ηv(x(t), z7(t)) (3.5)

ψ(x(t), z(t)) = αint(z2(t))Aleak,max
x(t)√
Rz2(t)

σ

(
z8(t)

x(t)

)
(3.6)

φ(x(t), z(t)) = αint(z2(t))(z1(t) + ṁegr(z2(t), z3(t), z5(t))) (3.7)

where ψ(x(t), z(t)) is the gas mass flow rate through the hole when Aleak = Aleak,max,

Variable name Meas. name Description Units

z1 Dair Mass air flow [kg/s]

z2 Tint Intake temperature [K]

z3 pexh Exhaust pressure [Pa]

z4 Texh Exhaust temperature [K]

z5 uegr EGR valve position [%]

z6 uthr Throttle valve position [%]

z7 Ne Engine speed [rad/s]

z8 pamb Ambient pressure [Pa]

Table 3.1: Available measurements

a(x(t), z(t))x(t) is the flow ṁasp(t) aspirated by the engine and φ(x(t), z(t)) stands to
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Chapter 3. Fault-Detection for Intake Leakage

sum of air and the EGR flow incoming in the intake manifold. For more details on

the other variables, refer to Chapter 2 for a complete description of the models and

hypothesis adopted.

As the intake pressure is measured, it is possible to inject y(t) directly inside the equa-

tions (3.5),(3.6) and (3.7) in order to obtain three completely known functions of the

available measurements.

The reference model for intake leak detection becomes


ẋ(t) = −a(t)x(t)− ψ(t)θ(t) + φ(t)

θ̇(t) = 0

y(t) = x(t)

(3.8)

where a, ψ and φ, for notation simplicity, have been written as function of the time

implying that they are completely known functions. Note that the original system model

(3.1) has been extended with the additional equation θ̇ = 0, which implicitly assumes

that this parameter is constant or it varies very slowly in the time. This hypothesis

is reasonable because it is possible to suppose that the leak formation is a step-like

function of the time.

Moreover it is interesting to point out that, by means of the proposed hypothesis, the

system (3.8) is a linear time-varying system with respect to the new state [x(t) θ(t)].

In the following of this chapter different types of adaptive observers will be used to

estimate the leak diameter and used as residual term for the detection and identification

of the fault.

Remark 3.1.

It is important to note that ψ(pambpint
) is a positive differentiable bounded function (see

section 2.4) and its derivative ψ′(·) is bounded too (provided pout
pin
6= 1). Same consid-

eration can be done for the volumetric efficiency look-up table ηv(pint, Ne), which is a

positive bounded function and its derivative η′v(·) is bounded too (see section 2.2).
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3.3. Observers

3.3 Observers

3.3.1 Adaptive - Lyapunov Based

The first adaptive observer is obtained by the analysis of a Lyapunov function in

order to ensure the convergence of both the state and the parameter variable to the real

values. Observers of this type have been widely used for different applications, some

examples could be found in different fields of application [7, 8, 9, 17, 39], for more detail

on the theory [4, 5, 28]. Consider the nonlinear adaptive observer: ˙̂x(t) = −a(t)x̂(t)− ψ(t)θ̂(t) + φ(t) +K0(y(t)− x̂(t))

˙̂
θ(t) = −γψ(t)(y(t)− x̂(t))

with positive constants γ and K0. This observer, applied to the system under consid-

eration, has the following properties:

i) The error signals x̃(t) and θ̃(t) are bounded

ii) limt→∞ x̃(t) = 0

iii) In addition, if limt→∞ ψ(t) 6= 0, then

lim
t→∞

θ̃(t) = 0

The convergence rate of the state and parameter estimation can be tuned by the γ and

K0 gains.

Proof 3.1.

The first proposed observer is a Lyapunov-based designed. The proposed structure

is:  ˙̂x(t) = −a(t)x̂(t)− ψ(t)θ̂(t) + φ(t) +K0(y(t)− x̂(t))

˙̂
θ = ξ(t, x̂(t))

(3.9)

where K0 > 0 is the gain influencing the pressure estimation convergence rate, and

ξ(t, x̂(t)) is the adaptation law to be designed. The error system equations in terms
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of the error variables: x̃(t) = x(t)− x̂(t) = y(t)− x̂(t) and θ̃(t) = θ − θ̂(t) is:

˙̃x(t) = −a(t)x̃(t)− ψ(t)θ̃(t)−K0x̃(t) (3.10)

˙̃
θ(t) = − ˙̂

θ(t) = −ξ(t, x̂(t)) (3.11)

Consider the following scalar Lyapunov function

V = V (x̃(t), θ̃(t)) =
1

2
x̃2(t) +

1

2γ
θ̃2(t)

Its time-derivative along the equation dynamics is given by

V̇ = −a(t)x̃2(t)−K0x̃
2(t)− ψθ̃(t)x̃(t)− 1

γ
θ̃(t)ξ(t, x̂(t))

If the adaptation law ξ(t, x̂(t)) is designed to cancel the last two term in V̇ , i.e.,

ξ(t, x̂(t)) = −γψ(t)x̃(t) = −γψ(t)(y(t)− x̂(t)) (3.12)

and moreover a(t) > 0 ∀t and a K0 > 0 is choosen, then

V̇ = −(K0 + a(t))x̃2(t) ≤ 0.

As, V (x̃, θ̃) is a positive continuous function and V̇ ≤ 0 then V (x̃, θ̃) has a limit as

t→∞. Moreover,

V (0) ≥ V (0)− V (x̃(t), θ̃(t)) = −
∫ t

0 V̇ (τ)dτ

≥ (K0)
∫ t

0 x̃
2(τ)dτ

(3.13)

where the last inequality holds because of (3.5) and (2.11),

0 ≤ a(t) ≤ aM (3.14)

and so x̃ ∈ L2 . As x̃ ∈ L∞ and θ̃ ∈ L∞ and for (3.10), (3.11) it is true that

˙̃x(t) ∈ L∞ and ˙̃
θ ∈ L∞.
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By applying Barbalat’s lemma [28] to x̃ it is possible to conclude that

lim
t→∞

x̃(t) = 0 (3.15)

Thus, as ˙̃x is uniformly continuous and bounded (cf. the remark 3.1) it is possible

to apply again Barbalat’s lemma showing that ˙̃x(t) = 0 as t→∞. From the error

equation (3.10) the following limit holds

lim
t→∞

ψ(t)θ̃ = 0

Therefore, if

lim
t→∞

ψ(t) 6= 0 (3.16)

also

lim
t→∞

θ̃(t) = 0

It is important here to remark that the equilibrium point [0, 0]T is uniformly asymp-

totically stable: UAS [24].

However the dynamics are linear, applying the theorem 4.11 in [28], it is possi-

ble to conclude that [x̃, θ̃]T , if the observability condition (3.16) is fulfilled, are

exponentially stable. In other words, ∃(τint, λint) ∈ (R+\{0})2 s.t. ∀t ∈ R+

|x̃(t)| ≤ τinte−λintt and |θ̃(t)| ≤ τinte−λintt

Remark 3.2.

Note that condition limt→∞ ψ(t) 6= 0 is the observability condition, which is always

fulfilled, unless the intake pressure approaches the ambient pressure. This situation may

occur in two different ways:

• A large diameter hole appears in the receiver, leading to a decrease of the intake

pressure until it reaches pamb.

• For some engine operation points intake pressure is controlled to be close to pamb.

In this case observability condition for parameter θ̂ is weak.
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3.3.2 Modified Adaptive Observer

In the previous section an adaptive observer has been obtained from Lyapunov

theory for the detection of a intake receiver hole. As mentioned previously, the condition

under which the observer will converge is that the term ψ(t) is different from zero, i.e.,

the leakage is observable.

This last remark suggests to use the observer only when the condition expressed in

(3.16) is fulfilled. A possible way to integrate such behavior inside the observer is to

integrate with respect to a new variable, function of the time: ψ(t).

The proposed new observer has the following structure:



dx̂(t)

dt
= φ(t)− a(t)x̂(t)− ψ(t)θ̂leak(t) +K1ψ(t) (x̃(t) + Σ(t))

d ˆθ(t)

dt
= −Kθαintψ(t) (x̃(t) + Σ(t))

dΣ(t)

dt
= a(t)x̃(t)

(3.17)

and it can be shown that its convergence is uniformly asymptotically stable.

Remark 3.3.

In the rest of this document, in order to simplify the notation, the time dependency of

the state x(t), θ(t), Σ(t) and the output variable y(t) will be not written explicitly if not

necessary for a better comprehension.

Proof 3.2.

The generic structure used for the observer is
dx̂

dt
= φ(t)− a(t)x̂− ψ(t)θ̂leak + β(t)

dθ̂

dt
= η(t)

(3.18)
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where β(t) and η(t) are two functions to be defined in order to insure the conver-

gence of the observer. The error system is defined as follow
dx̃

dt
= −a(t)x̃− ψ(t)θ̃leak − β(t)

dθ̃

dt
= −η(t)

(3.19)

where x̃(t) = x(t) − x̂(t) and θ̃(t) = θ(t) − θ̂(t). As mentioned before, the aim of

this new observer is to include the notion of the observability directly inside the

integration time of the estimation, in order to satisfy such constraint a new variable

is defined

s(t) =

∫ t

0
ψ(τ)dτ (3.20)

where ψ(t) > 0 ∀t ≥ 0, this condition is easily fulfilled in real Diesel engine operative

points.

Remark 3.4.

Given two functions x(t) and s(t) such that

dx(t)

dt
= f(x), s(t) =

∫ t

0
ψ(τ)dτ (3.21)

it is possible to define

x̂(s(t)) = x(t)⇔ x̂(s) = x(t(s)) (3.22)

whose derivative is
dx̂

ds
=
dx

dt

dt

ds
=
f(x(t))

ψ(t)
=
f(x̂(s))

ψ(t(s))
(3.23)

where we used
ds

dt
= ψ(t) (3.24)

.

Defining

µ(t) = x̃(t) +

∫ t

0
a(τ)x̃(τ)dτ (3.25)
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it is possible to write the system (3.19)
dµ(t)

dt
= −ψ(t)θ̃ − β(t)

dθ̃(t)

dt
= −η(t)

(3.26)

By using the equation (3.20) and by the Remark 3.4 is possible to rewrite the

system (3.26) with respect the new variable s(t)

dµ(t(s))

ds
=

1

ψ(t)

(
−ψ(t)θ̃ − β(t)

)

dθ̃(t(s))

ds
= −η(t)

1

ψ(t)

(3.27)

by defining β(t) = ψ(t)β̄(t) and η(t) = ψ(t)η̄(t), the system (3.26) can be written

as function of s(t) which is still a function of the time, as follow
dµ(t(s))

ds
= −θ̃ − β̄(t)

dθ̃(t(s))

ds
= −η̄(t)

(3.28)

To choose the η̄(t) and β̄(t) function, a Lyapunov-based design is applied (as already

used in the Proof 3.1).

The candidate Lyapunov function is

V = V (µ(t(s)), θ̃(t(s)) =
1

2
µ2 +

1

2Kθ
θ̃2 (3.29)

where Kθ is a positive tuning constant to be defined. Evaluating the derivative of

V along the system trajectory (3.28) leads to

dV

ds
= µµ̇+

1

Kθ
θ̃

˙̃
θ

= µ · (−θ̃ − β̄(t))− 1

Kθ
θ̃η̄(t)

= −(µ+
1

Kθ
η̄(t))θ̃ − µβ̄(t) (3.30)
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in order to guarantee the semi-negativeness of the Lyapunov function,

η̄(t) = −Kθµ (3.31)

β̄(t) = K1µ (3.32)

where K1 and Kθ are two positive tuning constants. By this choice, the equation

(3.30) becomes

dV

ds
= −(µ+

1

Kθ
η̄(t))θ̃ − µβ̄(t)

= −K1µ
2 ≤ 0 (3.33)

The (3.33) shows that V̇ is semi-defined negative, it is only possible to conclude

that µ ∈ L2. By the same analysis made in Proof 3.1 it is possible to show the

convergence of [µ, θ̃]T → 0 as t → 0. Hence the adaptive observer for the system

(3.28) is 
dµ(t(s))

ds
= −θ̃(t)−K1µ(t)

dθ̃(t(s))

ds
= Kθµ(t)

(3.34)

Starting from the left hand side of 3.34 by appling the derivation chain rule and

using the equations 3.20 and 3.25

dµ(t(s))

ds
=

dµ(t)

dt
· dt

ds(t)
=
(

˙̃x(t) + a(t)x̃(t)
)
· 1

ψ(t)

dθ̃(t(s))

ds
=

dθ̃(t)

ds(t)
· dt

ds(t)
=
dθ̃(t)

dt
· 1

ψ(t)

(3.35)

combining the two previous equation systems and taking into the account that
˙̃
θ(t) = −θ̂(t), it is possible to write the new system as follow

dx̃(t)

dt
= −a(t)x̃− ψ(t)θ̃ − ψ(t)K1

(
x̃+

∫ t

0
a(τ)x̃(τ)dτ

)

dθ̃(t)

dt
= Kθψ(t)

(
x̃+

∫ t

0
a(τ)x̃(τ)dτ

) (3.36)
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By defining an additional state Σ(t) =
∫ t

0 a(τ)x̃(τ)dτ and by remember the state

error definition x̃ = x− x̂ and θ̃ = θ − θ̂ the observer (3.36) becomes (3.17).

3.3.3 Zhang Observer

In the very beginning of this work on the leakage detection, an observer developed

by Zhang [46] was used as benchmark because of its exponential convergence. Even

if the observer presented before (see section 3.3.1), due to the linearity, has the same

convergence property it is interesting to show the different approach used by the author.

Zhang observer design

The general system class considered by Zhang [46] comprises state-affine nonlinear

systems. In particular, given a system of the form


ẋ = −a(t)x+ ψ(t)θ + φ(t)

θ̇ = 0

y = c(t)x

(3.37)

which are particularized here to scalar signals, it is possible to design an exponentially

convergent adaptive observer to jointly estimate x and θ under the persistent excitation

conditions given next.

Assumption 3.1.

Assume that the pair (a(t), c(t)) in system (3.37) is such that a bounded time-varying

gain KZ(t) exists so that the system

η̇ = [a(t)−KZ(t)c(t)]η (3.38)

is globally exponentially stable.
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Assumption 3.2.

Let Γ(t) be a function generated by the ODE system

Γ̇ = [a(t)−KZ(t)c(t)]Γ + ψ(t) (3.39)

Assume the ψ(t) is persistently exciting (PE) so that two positive constants δ, T exists

such that ∀t > 0 the following inequality holds∫ t+T

t
|Γ(τ)c(τ)|dτ ≥ δI (3.40)

Under these assumptions the following theorem is stated

Theorem 3.1.

[46] Let Λ > 0 be any positive gain. Under Assumption 3.1 and 3.2 and for constant θ,

the ODE system
˙̂x = a(t)x̂+ ψ(t)θ̂ + φ(t) + [K(t) + ΛΓ2c(t)][y − c(t)x̂]

˙̂
θ = ΛΓc(t)[y − c(t)x̂]

Γ̇ = [a(t)−KZ(t)c(t)]Γ + ψ(t)

(3.41)

is a global exponential adaptive observer for system (3.37), i.e. for any initial conditions

the observation errors x̂(t)−x(t) and θ̂(t)−θ tend to zero exponentially fast when t→∞

Application to the intake receiver

Zhang’s observer seems to deal perfectly with the issue of the joint estimation of

the intake pressure and the leak hole diameter. If the observer in equation (3.41) is

specifically suited for the system (3.8)
˙̂x = −a(t)x̂+ φ(t)− ψ(t)θ̂ + (KZ + ΛΓ2)[y − x̂]

˙̂
θ = ΛΓ[y − x̂]

Γ̇ = −[a(t) +KZ ]Γ− ψ(t)

(3.42)

where Λ is a tuning gain. In the following assumptions (3.1) and (3.2) are correctly

checked.

Assumption 3.1 is always verified: the volumetric efficiency is always a positive

quantity and thus the aspiration process is inherently stable. Therefore, it suffices that
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K(t) > −a(t) ∀t to satisfy Assumption 3.1. For instance, a constant K(t) = KZ > 0

can be found or, as proposed in [46] an optimal Kalman filter gain can be used as well.

Assumption 3.2, as already discussed (Remark 3.2), is on persistent excitation con-

dition of leakage function ψ(t) which depends on the valve pressure ratio across the

valve. As ψ(t) represents the maximal leakage flow for each operation condition, then

ψ(t) is equal to zero only if the intake pressure reaches the ambient pressure. In the

next section it will be shown how the estimation of θ can be physically difficult or even

impossible for some specific engine operative points, where intake pressure is close to

ambient pressure. This is a generic condition for this physical system (observability

condition), that is independent of the observer design.

As it has been detailed in the observer design of section 3.1, if the PE condition is

not satisfied, θ̃ can not be ensured to tend to zero, although the prediction error x̃ does.

3.3.4 Comparison

The three presented observers have different structures and their nonlinear nature

do not allow an easy analytical comparison. Moreover due to the nature of the system

under analysis, i.e. the intake manifold, and the magnitude of the signals used it is

particularly not evident to emphasise the differences, if any, in simulation.

A first attempt to compare the Lyapounov observer with the one suggested by Zhang

was the subject of [10] and a simulation of the parameter estimation is reported in

figure 3.3. The results of this comparison was that any major difference between the

two observers was visible also for the above explained reasons.

A more detailed qualitative analysis between the two proposed observers has been done

and reported in Annex B.

The key difference is that the modified observer, due to its peculiar structure is faster

than the Lypounov one and more robust to the system output disturbances (noise and

spikes).
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3.3.5 Observability condition

The model based approach to leak detection, as already argued in previous chapters,

is a good strategy because it allows, by means of dynamical observers, to have a direct

estimation of the fault based on the physics of the engine. As pointed out for all the

observers presented, the persistent excitation condition must be fulfilled:

two positive constants δ, T exists such that ∀t > 0 the following inequality holds

∃δ, T∀t > 0, such that
∫ t+T

t
|ψ(t)|dτ ≥ δ (3.43)

The above condition means that the observers will converge to the real leak diameter if

the leakage has an impact on the intake manifold pressure dynamics. The reasons why

the ψ(t) term can go to zero can be different and were already discussed in the remark

3.2.

The study of this condition is important for the determination of the operating zone in

which our fault detection and identification is reliable.

In the next of this section different load trajectories will be analyzed with respect to

the condition (3.43). The function (3.6), ψ(t), can go to zero only if σ (pamb/pint) goes

to zero as well, i.e. pr = 1 (see figure 2.6). For this reason the study of the pressure

ratio pr = pamb/pint is equivalent to the study of ψ(t).

In figure 3.1 the evolution of pr is shown during a load transient when there is not

any leak on the intake receiver. It is interesting to notice that the pressure ratio, for

some operating points, is close to one: this implies that ψ(t) ≈ 0. These operative

conditions imply that the observer might not converge to the real value. In particular,

with reference to the figure 3.1 the leak pressure ratio pr and so the ψ(t) term is very

close to the unit when the engine load is under the 6 bar of IMEP. The worst case is in

the interval [60, 70] seconds, in which pr = 0.97 ( 2 bar of IMEP ).

Another important scenario to be analyzed is the urban driving cycle ECE (figure

3.2(b)), which is a part of a cycle used for emission certification of light duty vehicles

in Europe. As depicted in figure 3.2(a) the ψ(t) term is almost the time close to the

unit, i.e. pr ≥ 0.9 and the period in which there are good condition for leak detection

are during the acceleration, in particular during the period between 120 s and 140 s.

The interest of checking the strategy on the urban driving cycle is that, for FDI task,
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Figure 3.1: The observability condition measured (a) along a load trajectory (b) at 1500

rpm

represents a very difficult scenario, because there is not good observability condition

and it is almost in presence of the gas recirculation. Moreover the European legislation

certificates the FDI strategies on this cycle.

To conclude this section, it is important to note that the convergence speed of the

observer is related on the observability condition, so for small value of the term φ(t),

the time needed to the adaptive observer to settle can be long.

3.4 Threshold & Decision

Once the residual term is generated by the observers presented above, the next prob-

lem is how to determine when a fault occurs, in other words: the problem of detection.
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(b) ECE speed set-points

Figure 3.2: The observability condition measured along a urban driving cycle - ECE.

Different ways to design detection strategy can be found in literature ([16, 26, 34]) but

these are all based on a threshold checking technique. The major issue is the design

of threshold that avoids as much as possible false alarms and meanwhile allows the

detection of small amplitude faults.

The aim of this section it to present a dynamical model-based threshold which allows to

reduce the calibration time and, during the design phase, to better understand which

are the critical sensors for the fault estimation accuracy.

3.4.1 Fixed Threshold

The first class of considered signal used for checking the presence of a fault are the so

called “fixed thresholds". This class of thresholds are generally based on some heuristic
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knowledge of the parameter or on large databases which provide a good estimation of

the variance of the residual term.

The main drawback of this approach is that the obtained threshold is static for all the

operative conditions and therefore can be conservative with respect to the sensitivity of

the detection.

For the leak detection problem different tests, in simulation, have been made to deter-
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Figure 3.3: Fixed threshold determination. Lyapunov based and Zhang observer θ

estimation during a simulation with a varying load.

mine the maximum variance of the residual θ estimated by the observer when no leak

was present on the intake manifold. To give a more physical interpretation, the variance

in the estimation can have different sources:

• model approximations: when the equations used in the observer are not always

representative of the reality. For instance the EGR circuit is approximated with

a simple flow through a valve (see section 2.4);

• observability condition, i.e., φ(t) ≈ 0 (see section 3.3.5) ;

• sensors biases and drifts: the sensors biased measurements are used to feed the

observer yielding a biased estimation.

In figure 3.3 two different types of observers, the Lyapunov-based and Zhang’s, have

been used to estimate the hole diameter during a load trajectory in simulation to deter-

mine the variance of the estimated parameter. It appears that a possible choice of the

fixed threshold is 4 mm, which means that leaks under this value cannot be detected.
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3.4.2 Sensitivity-based Threshold

In this section, first it will be shown how the observability condition and possible

errors can be taken into account during the design of the variable threshold then, an

upper bound for two classes of modeling errors are provided: sensors measurement bias

and the use of a faulty measure for estimate a mass flow by the equation (2.12).

3.4.3 Observer Sensitivity Analysis

Consider a general observer with the same structure as (3.9) ˙̂x = f(x̂, z, y) + ψ(z, y)θ̂ + φ(z, y) +K0x̃

˙̂
θ = g(z, y)x̃

(3.44)

where, for analogy, f(x̂, z, y) = a(t)x̂ and g(z, y) = −γψ(t).

As (3.8) is a stable system, the observer can be studied in stationary conditions. By

this hypothesis (3.44) becomes

0 = f(x̂, z, y) + ψ(z, y)θ̂ + φ(z, y) (3.45)

where θ̂, in ideal case, is equal to

θ̂ = − 1

ψ(z, y)
[f(x̂, z, y) + φ(z, y)] (3.46)

As already discussed, the ψ(z, y) term acts on convergence speed rate of the parameter.

If ψ(z, y) 6= 0, it acts on final value of estimated parameter.

The result (3.46) is obtained if a perfect matching model of the system is used. In

real case, equation (3.45) writes

0 = f(x̂, z∗, y∗) + ∆f(x̂, z∗, y∗)

+ψ(z∗, y∗)θ̂ + φ(z∗, y∗)

+φ(z∗ + ∆z, y∗)

(3.47)

where the symbol ∗ stands for the correct value of a measure or parameter and θ̂ =

θ∗+∆θ. The symbol ∆ has to be considered as a small perturbation with respect to the

correct function it refers to. In details the equation (3.47) shows different error types:

• ∆f(x̂, z∗, y∗) stands for modeling error terms;
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• φ(z∗ + ∆z, y∗) stands for terms correctly modeled but evaluated with a measure

affected by errors;

• ∆θ stands for the parameter estimation error;

The ∆θ term represents the error made by the estimation, due to modeling and measure-

ment errors. By (3.46) and neglecting the second order term, equation (3.47) becomes

∆θ = − 1

ψ(z∗, y∗)
[∆f(x̂, z∗, y∗) + φ(z∗ + ∆z, y∗)] (3.48)

which points out the effect of every error terms on the correct estimation of the hole’s

diameter. The idea, for the threshold design, is to find an upper bound to each error

term of equation (3.48).

3.4.4 Error Models

With respect to the intake leakage detection problem, two different types of error

are considered.

First error type

Consider ξ ∈ R, the first class of considered errors is

ξ = ξ∗ + ∆ξ (3.49)

An upper bound for ∆ξ is the object of the two following propositions.

Proposition 3.1.

Consider a scalar bounded variable ε(t) such that |ε(t)| ≤Mε with Mε > 0 then, if

∆ξ = ε(t) (3.50)

then

|∆ξ| ≤Mε (3.51)
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Proposition 3.2.

Consider a scalar bounded variable α(t) such that | α(t)
1+α(t) | < Mα with Mα > 0. If

∆ξ = α(t) · ξ∗ (3.52)

then

|∆ξ| < Mα|ξ| (3.53)

Proof. From (3.49) and (3.52) holds

ξ∗ =
1

1 + α
ξ (3.54)

then, ∆ξ becames

∆ξ =
α

1 + α
ξ (3.55)

by moving to the absolute values and considering the assumption on α, it is possible to

write

|∆ξ| < Mα|ξ| (3.56)

Second error type

Consider a scalar function h : D → R and ξ ∈ R as defined in (3.49), the error

considered here are of the type

h(ξ) = h(ξ∗) + ∆h(ξ) (3.57)

where a function is evaluated by using a biased variable of the type expressed in (3.50).

The aim of the following proposition is to find an upper bound to |∆h(ξ)|.
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Proposition 3.3.

Consider a scalar function h : D → R satisfying

h(ξ) ≥ 0

h′(ξ) > 0

h′′(ξ) < 0

(3.58)

and ξ = ξ∗ + ε(t) with |ε(t)| ≤Mε, then an upper bound for the estimation error is

|∆h(ξ)| ≤ |h′(ξ −Mε)|Mε (3.59)

Proof. From (3.49), (3.58), the following inequality holds

∆h(ξ) ≤ h′(ξ∗)∆ξ (3.60)

by the means of the hyphotesis on h′(ξ) > 0, it is possible to write the previous inequality

with modules as

|∆h(ξ)| ≤ |h′(ξ∗)|Mε (3.61)

This last inequality is always true if ξ∗ is known in order to evaluate the function first

derivative. The only available measure is ξ = ξ∗ + ε(t), so an estimation of an upper

bound of h′(ξ∗) is provided.

It is true that ∀ξ ∈ D, ξ −Mε ≤ ξ∗. As |h′(ξ∗)| is a positive decreasing function, it

follows

|h′(ξ −Mε)| ≥ |h′(ξ∗)| (3.62)

This lead to prove that

|∆h(ξ)| ≤ |h′(ξ −Mε)|Mε (3.63)

3.4.5 Variable Threshold Design

The variable threshold is designed in order to be an upper bound to the |∆θ| ap-
pearing in (3.48).
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For the particular application, i.e., intake leakage detection, model errors have been

related to the first type of error (3.50). For example, the ∆f(x̂, z∗, y∗), which represents

the engine aspirated gas, is modeled as a constant bounded error, i.e., ∆f(x̂, z∗, y∗) =

εasp(t), where ||∆f(x̂, z∗, y∗)||∞ = Masp.

Terms like φ(z∗ + ∆z, y∗) can be modeled by (3.57). With respect to studied system,

such kind of term models the error due to the evaluation of EGR flow using (2.12) when

the variable z3 (Table 3.1) is affected by a bounded additive error, εexh, of the type

discussed in Proposition 3.1 .

For the air mass flow sensor (MAF) it was modeled as an error of the first type with a

multiplicative bias, as explained in Proposition 3.2, where the positive constant Mair is

chose as the max tolerance provided by the manufacturer .

In conclusion the proposed threshold is

θth =
1

ψ(z∗, y∗)

(
Masp|ṁasp|+Mair|z1|+

∣∣∣∣ ∂∂z3
ṁegr(z3 −Mexh)

∣∣∣∣Mexh

)
(3.64)

3.5 Experimental Results

The presented work for leak detection in the intake manifold has been tested in

simulation and experimentally. The aim of this section is to show, with real data,

the results obtained on a engine testbed available at the IFP (more details on the

experimental setup can be found in the Appendix A).

Fixed threshold In order to confirm what obtained in simulations and theoretically

in the previous sections of this chapter, the Figure 3.5 shows different leak diameter

estimation, i.e. θ̂(t), obtained from the Lyapunov design observer (in section 3.3.1) at

different operating conditions: three different engine speeds and for each of them a load

trajectory (Fig 3.4) has been imposed to the system.

These first results show that when any leak is present on the manifold surface the

observer estimation varies in a range below of 4 mm, which was the variability already

observed for choosing the fixed threshold. This variability is due two major causes: the

presence of the exhaust gas recirculation, which is estimated and therefore introduces
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Figure 3.4: Imposed IMEP trajectory for experimental test

some errors due to the qualities of the calibrated model and the lack of the observability

condition, i.e. ψ(t) ≈ 0.

The Figures 3.5(a), 3.5(c) and 3.5(e) depict the leak diameter estimation at 1500

rpm, 2000 rpm and 2500 rpm respectively. It is important here to point out that, at

these three different engine speeds, the pressure ratio across the intake manifold and

the ambient air pressure is very different. This ratio is, as already argued before in the

observability condition section, strictly related to the convergence speed and estimation

quality of the observer. It is easy to see how for very low torque demand and low engine

speed, corresponding here to a very bad condition (see Fig 3.5(b), the pressure ratio

can reach the 0.96, in other word, in case of leakage the delta pressure between inside

and outside the intake manifold would be really poor and so the leak estimation will be

badly conditioned. Increasing the engine speed up to higher operating conditions has

a benefit effect on the pressure ratio as shown in Figures 3.5(d) and 3.5(f). The effect

is clearly visible in the corresponding estimation ( Figures 3.5(c) and 3.5(e)) is closer

to the real value, in that case zero. A last comment on Fig 3.5(e)) that shows negative

values of theta. The shown data are raw on purpose for evaluating the observer perfor-

mances and strategies, so in this particular case the negative values of the estimation

are physically unfeasible, i.e. a negative diameter, the suggestion here is to reduce the
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(a) Estimation without leak @1500 rpm
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(b) Pressure Ratio across the manifold @1500 rpm
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(c) Estimation without leak @2000 rpm
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(e) Estimation without leak @2500 rpm
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Figure 3.5: Experimental Results G9T NADI - Leak diameter estimation at different

engine speeds along a torque trajectory
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observer gains or applying a post filtering stage to the strategy in order to smooth the

estimation against a lack of responsiveness of the fault detection.

Regarding the threshold choice, the experimental results show that 4 mm detection limit

is a good choice but as explained before, the presence of a drift in the measurement

or a bias in the sensors outcome must be take into the account. Moreover, setting a

threshold to 4 mm eliminate the possibility a priori of detecting smaller leak hole that

could, under specific working condition, be detected.

The second series of figures show the experimental results when a 5mm diameter

leak is caused, by the mean of a valve, in the intake manifold. Figures 3.6(a), 3.6(c)

and 3.6(e) show how the estimation is performed for different operating condition. As

already spotted previously an increase in the engine speed leads to a better estimation

precision of the EGR flow and a faster convergence of the estimation (see the pressure

ratio on the right column - Fig 3.6(b), Fig 3.6(d) and Fig 3.6(f)): when the pressure

ratio across the orifice is far from the unit the leak hole diameter estimation becomes

more accurate.

Variable threshold In the previous paragraph, the observer performances for leak

diameter estimation in the intake manifold have been shown with respect to a fixed

threshold, which is a fast and accurate way if a good population of experimental data is

available in order to set its level. The main drawback is that, if the detection algorithm

should work in very different operating conditions, the threshold risks to be conservative

(high value) in order to be robust to different sensors and measurements tolerance and

models accuracy: this is almost required in order to reduce the number of possible false

alarms.

In section 3.4.5, after modelling the possible error that could lead to an erroneous es-

timation, a variable threshold has been proposed and here applied in a real operating

condition.

In the proposed sensitivity analysis, three different sources of error have been con-

sidered: possible additive biases in the exhaust pressure measurement, multiplicative

biases in the mass air flow sensor that represent a good model of the sensor drift in time
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and finally some multiplicative bias on the engine efficiency map due to experimental

uncertainties.

In order to choose representative values for these error, the sensors datasheet 3σ pro-

duction variabilities have been considered for each of the previously presented biases.

A summary of the used measurement and their maximum errors (3σ) is reported in

Table 3.2.

Name Max ∆ Unit

pint 0 Pa

Tint 0 K

pexh 200e2 Pa

MAF 5 %

ηv 5 %

pamb 0 Pa

Table 3.2: Available measurements and maximum possible error considered (3σ)

All the further results are from test performed at 2000 rpm because it is a represen-

tative operating condition for an engine and allows to show significant results without

doing a full campaign of tests and also because the effects of engine speeds on the esti-

mation has been fully characterised in the previous paragraph.

The first set of results presented are about the leak estimation (Fig 3.7(a)) when a

variable threshold is used considering a Mair = 5% and a Masp = 5% and no EGR flow

is allowed. The reason of this test is to validate the uncertainty of the engine efficiency

map and to show how the variable threshold even in presence of these uncertainties is

robust and avoids false detections (compared with the fixed threshold presented before,

in that case a leak will be detected just for the mass air flow drift). Figure 3.7(b) reports

the pressure ratio between the ambient air and the intake manifold to show how the

concept of a diminishing observability is reflected in an increase of the threshold level:

particular evident in the time intervals from 80 to 90 seconds and from 100 and 110

seconds. Once the validation and an eventual calibration of the threshold is done when

no exhaust gas recirculation is present in the system, the EGR valve has been activated
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in the engine combustion control supervisor. The fault detection results, in presence

of EGR gases, are reported in Fig 3.8 when no hole is present - Fig 3.8(a) - and when

a 5 mm diameter hole is produced on the intake manifold surface by the mean of a

controlled valve - Fig 3.8(b) In both the tests the previous biases (Mair and Masp) have

not been removed.

What it is interesting to point out from those plots is:

• the threshold shape has changed between before and after the leak was generated.

The fact that the threshold is more constant is due to the leak itself, in fact

the presence of the leakage acts as a pressure regulator, i.e. a change in the

torque demand (IMEP) correspond into a intake pressure change that will cause

an increasing or decreasing leakage flow.

• as already presented, in very poor operating conditions, the threshold is over

the estimation telling that in that intervals the estimation could be very slow to

converge and badly conditioned and so it is better to not consider the estimation

in those region.

To conclude a worst case scenario has been tested by adding a 200 mbar additive bias

to the exhaust pressure measurement. The results are reported in Fig 3.9.

The proposed method relies on the sensitivity study of the estimation with respect

to possible biases in the measurements. In order to bound the error, the threshold is

designed with the maximum of each uncertainty which, if not completely known, can

lead to a very conservative threshold. This means that the fault can be detected only

for very high amplitudes. However, the use of the sensitivity allows to understand which

is the impact of each sensor bias or drift and so use this analysis to choose the best

sensor. In the next chapter the efficiency loss detection for a turbine is presented and a

complete study of the sensitivity is shown. In particular it will be presented in details

other possible use of this analysis to understand which are the best operating point to

use the strategy in safest way.
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(a) 5mm Leak estimation @1500 rpm
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(c) 5mm Leak estimation @2000 rpm
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(d) Pressure Ratio across the hole @2000 rpm
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(e) 5mm Leak estimation @2500 rpm
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Figure 3.6: Experimental Results G9T NADI - Leak diameter estimation when a 5mm

diameter hole is present on the intake manifold at different engine speeds along a torque

trajectory
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(a) Estimation without leak @2000 rpm
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Figure 3.7: Experimental Results G9T NADI - No leakage, Mair = 5% multiplicative

MAF error and no EGR flow along a load trajectory
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(a) Estimation without leak @2000 rpm
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(b) 5 mm Leak estimation @2000 rpm

Figure 3.8: Experimental Results G9T NADI - No leakage, Mair = 5% multiplicative

MAF error and no EGR flow along a load trajectory @ 2000 rpm
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(a) Estimation without leak @2000 rpm
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(b) 5 mm Leak estimation @2000 rpm

Figure 3.9: Experimental Results G9T NADI - Mair = 5% multiplicative MAF error,

Masp = 5% multiplicative ṁasp error and Mexh = 200mbar additive pexh error - EGR

flow enabled along a load trajectory @ 2000 rpm
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Chapter 4

Fault-Diagnostics for Turbine

Efficiency Loss

The turbocharger is a key element in the air-path control of a Diesel engine, knowing

its efficiency allow to design adaptive strategy to improve performances of the overall

system. Due to its importance, the turbocharger has to be continuously monitored and

any loss in its efficiency has to be detected.

This chapter introduces the working hypothesis and assumptions for deriving a sim-

plified model suitable for real-time estimation. Therefore Lyapounov based adaptive

observer, as the one proposed for leak’s hole estimation in 3.3.1, is derived and the re-

sults of its application will be shown. The second part of this section is devoted to the

design of a variable threshold based on the sensitivity study of the observer estimation.

4.1 Model for diagnosis

The turbocharger is a very complex system and an accurate model that take into

account all the possible physical aspects is not suitable for online estimation algorithms

such fault detection and estimation observers. Section 2.6 was devoted to introduce the

role that the turbocharger plays in Diesel engine and deriving a model already suit-

able for control purposes. Even if the mathematical description obtained was strongly
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simplified the model relies on different lookup tables and many measurements that, in

almost cars, are not available.

Before describing the approach to the estimation and diagnosis of turbine efficiency,

a further model simplification is needed. For such purpose some working hypothesis are

here introduced:

• Tuc ≡ Tdt ≡ Tamb, where the atmospheric temperature is considered constant;

• puc ≡ pdt ≡ pamb, where the atmospheric pressure is considered constant;

• The turbocharger speed is not directly available as measurement, an estimation of

it will be used. In [36] a simplified linear correlation is proposed for turbocharger

speed estimation

N2
estim = aΠc + b (4.1)

where a and b are two constants.

In a state space representation, by choosing the state x = N2, from equations (2.16),

(2.19), (2.21) the system can be rewritten as follow ẋ(t) = αt(t)φWt(t)φηt(t)− αc(t) 1
φηc (t)

y(t) = x(t)
(4.2)

where the time variable t indicates that the functions are time-varying and depend on

available measurements and φWt(t) is a function of the same type of (2.23) without the

correction term pref√
Tref

√
Tut
put

.

Moreover

αt(t) =
2

J
cpTut

[
1−

(
pdt
put

) γ−1
γ

]
(4.3)

αc(t) =
2

J
WccpTuc

[(
pdc
puc

) γ−1
γ

− 1

]
(4.4)

Remark 4.1.

For notation simplicity, the time variable will be no more used through the rest of this

chapter.
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4.2 Adaptive Observer

4.2.1 Lyapounov Based

In model-based fault detection, the use of observer is widely used. The reason of its

success is that it allows to reconstruct signals not directly available from measurements

or affected by errors . The interest of estimating the turbo efficiency is that, by com-

parison with the efficiency obtained by map (2.21), it is possible to get an error signal,

i.e., residual, which allows to detect efficiency loss in the turbine.

Under the hypothesis that ηt is a slowly-varying parameter, i.e., η̇t ≈ 0, the following

observer is proposed
˙̂x = αtφWt θ̂ − αc

1

φηc
+K(N2

estim − x̂)

˙̂
θ = ˙̂ηt = KθαtφWt(N

2
estim − x̂)

(4.5)

where K and Kθ are two tuning scalar constants: for the state observer convergence

speed and the parameter adaptive law speed rate.

The correct estimation of ηt relies on the accuracy of the turbocharger speed Nestim

provided by equation (4.1). In order to have a good estimation, after the calibration of

the a and b terms, the Πc values must be the most reliable. To guarantee the accuracy

of Πc the intake pressure sensor, pint, must have a very high precision.

In Diesel engine the knowledge of the intake pressure is already a specification to be

achieved and so the hypothesis to have a intake fault free pressure sensor is posed.

Moreover, the necessity of knowing the turbocharger speed is needed also for evaluating

ηc and Wt in equations (2.19) and (2.23).

Besides the fault detection interest, the ηt continuous estimation may be useful in the

turbocharger control strategy.

Proof 4.1.

The proof of the proposed observed relies on Lyapunov theory and conceptually

will be the same type of the one used to prove the intake leak observer 3.9.

Defining the state error as x̃(t) = x(t) − x̂(t) and θ(t) = θ − θ̂(t), where θ is the

real turbine efficiency supposed here constant, i.e. θ̇ = 0.
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Under the above assumptions, the error system is ˙̃x(t) = αt(t)φWt(t)θ̃(t)−K(N2
est − x̂(t))

˙̃
θ(t) = θ̇ − ˙̂

θ(t) = − ˙̂
θ(t)

(4.6)

Considering the following scalar Lyapounov function

V (x̃(t), θ̃(t)) =
1

2
x̃2(t) +

1

2
θ̃2(t) (4.7)

and its time derivative along the equation dynamic is

V̇ = x̃ ˙̃x+
1

Kθ
θ̃

˙̃
θ (4.8)

expanding the previous equation by considering the error system dynamic 4.6

V̇ = −K(N2
est − x̂(t))x̃+ αtφWt θ̃x̃−

1

Kθ
θ̃

˙̂
θ (4.9)

If the adaptation law is designed in order to cancel the last two term in V̇ , i.e.

˙̂
θ = KθαtφWt x̃ (4.10)

and under the assumption that N2
est is considered as the best estimation of the

turbo charger shaft speed and K > 0

V̇ = −K(N2
est − x̂(t))x̃ ≤ 0 (4.11)

the previous equation, under the assumption that intake pressure sensor pint is fault

free, which means that N2
est is an accurate estimate of the real turbo compressor

shaft speed, can be rewritten in a standard Lyapounov form as follows

V̇ = −Kx̃2 ≤ 0 (4.12)

As V (x̃, θ̃) is a positive continuous function and V̇ ≤ 0 then V (x̃, θ̃) has a limit as

t→∞. Moreover,

V (0) ≥ V (0)− V (x̃(t), θ̃(t)) = −
∫ t

0 V̇ (τ)dτ

≥ (K0)
∫ t

0 x̃
2(τ)dτ

(4.13)
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and so x̃ ∈ L2 . As x̃ ∈ L∞ and θ̃ ∈ L∞ and for (3.10), (3.11) it is true that

˙̃x(t) ∈ L∞ and ˙̃
θ ∈ L∞.

By applying Barbalat’s lemma [28] to x̃ it is possible to conclude that

lim
t→∞

x̃(t) = 0 (4.14)

Thus, as ˙̃x is uniformly continuous and bounded (αt(t), φWt(t) and αc(t) are positive

differentiable bounded function and their derivate are bounded too) it is possible

to apply again Barbalat’s lemma showing that ˙̃x(t) = 0 as t→∞. From the error

equation (4.6) the following limit holds

lim
t→∞

αt(t)φWt(t)θ̃(t) = 0

Therefore, if

lim
t→∞

αt(t)φWt(t) 6= 0 (4.15)

also

lim
t→∞

θ̃(t) = 0

It is important here to remark that the equilibrium point [0, 0]T is uniformly asymp-

totically stable: UAS [24].

However the dynamics are linear, applying the theorem 4.11 in [28], it is possi-

ble to conclude that [x̃, θ̃]T , if the observability condition (4.15) is fulfilled, are

exponentially stable. In other words, ∃(τtc, λtc) ∈ (R+\{0})2 s.t. ∀t ∈ R+

|x̃(t)| ≤ τtce−λtct and |θ̃| ≤ τtce−λtct

where the subscript “tc” stands for turbo compressor.

4.2.2 Observability condition

The condition under which the proposed observer is able to estimate its state is when

the efficiency is observable, in other words when the condition expressed in equation

4.15 is fulfilled. Intuitively the turbine efficiency, when the turbo charger shaft speed is

measured, can be determined when there is enough energy flowing through the turbine.

It is possible to correlate the observability with the turbine power expressed as αt(t)φWt(t).
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How much this term is far from zero, greater will be the observability and so the ability

to reconstruct the turbine efficiency.

As proposed in the section 3.3.5, it is here shown how the ’observability’ vary along a

standard ECE cycle. The top plot of the figure 4.1 shows the turbine power normalized
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(b) ECE speed set-points

Figure 4.1: The observability condition measured along a urban driving cycle - ECE.

and it is possible to see that the term αt(t)φWt(t) is high in relation to high speeds.

Intuitively, that should not surprise, because high vehicle speeds correspond to high

turbocharger power demand or equivalently to a high turbocharger shaft speed.

66



4.3. Threshold & Decision

4.3 Threshold & Decision

4.3.1 Sensitivity analysis

In the previous section , the accuracy of the turbine’s efficiency estimation has

been discussed with respect to knowledge of the turbocharger shaft speed N . The

estimation of ηt relies also on other available measurements. The object of this section

is the observer sensitivity study in steady state condition in order to define what is the

impact of the different sensors measurements biases in the estimation error. A similar

approach have been used in [11].

In steady-state condition the parameter will converge to

θ̂ss = θ∗ + ∆θ (4.16)

where θ∗ stands for the real value of the turbine efficiency, ∆θ is the observer estimation

error. The observer dynamic, after the transient, will be

0 = αtφWt θ̂ss − αc
1

φηc
(4.17)

and it is possible to explicit the θ̂ss as

θ̂ss =
αc

αtφWtφηc
(4.18)

In quasi-stationary condition the turbine flow Wt = Wc + Wf , where Wc is the com-

pressor measured air flow (MAF sensor) and Wf is the fuel flow supposed known. In a

Diesel Engine the injected fuel can be expressed as

Wf = Wc ·
Φ(t)

14.7
(4.19)

where Φ(t) is the measured equivalence ratio and considered a known function of the

time. The double advantage in estimate the turbine flow through equation (4.19) is to

avoid the use of the static map (2.23) and so the uV GT control signal, which might not

match with the real opening section of the variable geometry turbo (VGT), the second

reason is that the equation (4.18) can be explicitly rewritten as

θ̂ss =

Tamb ·
((

pint
pamb

) γ−1
γ − 1

)
Texh · αf ·

(
1−

(
pamb
pexh

) γ−1
γ

)
· φηc(MAFcorr, Ncorr)

(4.20)
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where Wc term has been simplified from αc and αt function and αf = 1 + Φ(t)
14.7 . If, as

already discussed previously, the intake manifold pressure sensor is supposed fault free

and precise, in steady-state condition the turbine efficiency estimation is function of

four terms which can be affected by biases: pexh, Texh, MAF and possible error in the

ηc map.

A fifth signal error may be the equivalent ration term, Φ, but it is supposed here to

be perfectly known and, anyhow, the impact on estimation error can be shown to be

negligible.

The sensitivity of θ̂ss with respect to possible measurement bias, is studied by the

explicit calculation of the first derivative of equation (4.20) with respect to the different

four signals responsible of estimation error.

For notation simplicity, two substitution will be used through the rest of this section:

kc =
Tamb
αf

((
pint
pamb

) γ−1
γ

− 1

)
(4.21)

γ̄ =
γ − 1

γ
(4.22)

where Kc is a known function of time which depends only on fault free measurements

and γ̄ is a scalar constant.

Exhaust Manifold Temperature Sensor

The exhaust manifold temperature sensor is generally affected by an additive bias

Texh = T ∗exh + ∆Texh (4.23)

where ∆Texh stands for bias and T ∗exh is the correct value of the temperature.

The sensitivity function of θ̂ss with respect to Texh is

∂θ̂ss
∂Texh

= − kc

T 2
exh ·

(
1−

(
pamb
pexh

)γ̄)
· φηc(MAFcorr, Ncorr)

(4.24)

Exhaust Manifold Pressure Sensor

The exhaust manifold pressure sensor is affected by an additive bias

pexh = p∗exh + ∆pexh (4.25)
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where ∆pexh stands for bias and p∗exh is the correct value of the pressure.

The sensitivity function of θ̂ss with respect to pexh is

∂θ̂ss
∂pexh

= −
kc ·

((
pamb
pexh

)γ̄
· γ̄
pexh

)
Texh ·

(
1−

(
pamb
pexh

)γ̄)2

· φηc(MAFcorr, Ncorr)

(4.26)

Compressor Efficiency Map

The compressor efficiency map provided by the manufacturer may have some un-

certainties, in general this kind of error are modeled as proportional to signal bias

ηc = η∗c + ∆ηc (4.27)

where η∗c is the correct value of the compressor efficiency and ∆ηc = δηc · η∗c stands here

for the proportional bias.

The sensitivity function of θ̂ss with respect to ηc (2.19) is

∂θ̂ss
∂ηc

= − kc

Texh ·
(

1−
(
pamb
pexh

)γ̄)
· φ2

ηc(MAFcorr, Ncorr)

(4.28)

where dηc
dφηc

= 1.

Compressor Flow Sensor

The mass air flow sensor (MAF) is one of the most important measurement for the

control of a Diesel engine. It is, in general, a very accurate sensor but it may have some

drift with the time. The bias is modeled

MAF = MAF ∗ + ∆MAF (4.29)

where MAF ∗ is the correct value of the compressor efficiency and ∆MAF = δMAF ·
MAF ∗ stands here for the proportional bias.

The sensitivity function of θ̂ss with respect to MAF is

∂θ̂ss
∂MAF

= − kc · ∂ φηc
∂MAF

Texh ·
(

1−
(
pamb
pexh

)γ̄)
· φ2

ηc(MAFcorr, Ncorr)

(4.30)

where the ∂φηc
∂MAF term stands for the differention of the map (2.19) with respect to the

MAF variable (Figure 2.10(b)).
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Figure 4.2: Derivative of compressor efficiency map with respect to MAF

Estimation Error Evaluation

In order to compare the sensitivity functions (4.24), (4.26), (4.28) and (4.30), an

evaluation of the impact of each uncertainties on the turbine estimation error will be

developed here.

By defining the estimation error as ∆θ̂ss = θ̂ss − θ∗ss, a first order approximation of the

error made by the observer because of the signal biases is

∆θ̂ss =
∂θ̂ss
∂ω

∆ω, with ω = {pexh, Texh,MAF, ηc} (4.31)

Figure 4.3 shows the four sensitivity functions evaluation on different engine testbed

steady-state experimental points at 2000 rpm, under the hypothesis that sensors error

occurs once at time. The value of the bias are here reported:

• ∆pexh = ±200 mbar;

• ∆Texh = ±20 K;
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Figure 4.3: Sensitivity functions evaluated in different steady-state experimental points

with measurements bias - 2000 rpm engin speed

• δηc = ±5 %;

• δMAF = ±5 %;

Starting from the top-left figure and proceeding clockwise:

• ∆Texh: the influence of turbine upstream temperature additive bias on ∆θ̂ss is

almost constant and less than 2%, (cfr. eq. 4.24);

• ∆pexh: exhaust manifold pressure bias is the most responsable component in

estimation error. At low charge (IMEP < 5 bar) the error could be up to 60%
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and even for higher IMEP it is not less than 5%, i.e., 5% ≤ ∆θ̂ss ≤ 8%, (cfr. eq.

4.26);

• ∆MAF : as already argued before, if the MAF measurement is used both for the

compressor flow and for the turbine flow, MAF bias acts only on the efficiency

map of the compressor. The estimation error, for a 5% proportional to signal

error on MAF measurement, is lower than 1.5%, (cfr. eq. 4.30);

• ∆ηc: even error of 5% on the compressor efficiency map leads to estimation error

lower than 3.5%, (cfr. eq. 4.28);

It is possible to understand the relevance of the exhaust manifold pressure sensor’s

accuracy and how it can impact the estimation error. Moreover, the sensitivity analysis

gives a important information on how to choose the threshold as function of sensors

biases and available measurements.

Residual Sensitivity

For the fault detection task, the purpose of the estimation, is to be able to generate

an error signal, residual, which is different from zero only when there is an efficiency

loss in the turbine. If the residual signal is defined as

r(t) = θ̂(t)− φηt(Πt, Nt,corr, uV GT ) (4.32)

where the φηt now depends on Πt and Nt,corr. In other words the turbine efficiency look

up table depends on pexh and Texh measurements.

For sake of completeness, the φt term used in equation 4.32 is another possible way

manufacturer provides turbine efficiency map and it will be used now for simplicity of

analysis.

Residual is a confrontation between the estimation and a reference, but if the refer-

ence is itself affected by sensors error this can lead to false alarm. In the studied case

only pexh error as been considered in the analysis as a measurement that can impact
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the reference by the means of Πt. The exhaust temperature additional bias is not con-

sidered because of its small effect on the Nt,corr due to the fact that appears under a

square root, i.e. an additive error of even 50 Kelvin degrees will impact the correction

term less of 0.002 .

In figure 4.4 the sensitivity of φηt(Πt, Ncorr, uV GT ) is evaluated with respect to pexh
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Figure 4.4: ∂φηt (Πt,Nt,corr,uV GT )
∂Πt

evaluated in different steady-state experimental points

with measurements bias, i.e., ∆Πt = ±0.2

when ∆pexh = 200 mbar in the same steady-state experimental points as previously.

Two remarks come out form the observation of figure: for high IMEP the estimation

error ∆θ̂ < 6% and the sensitivity function has opposite sign with respect to eq. (4.26)

which means that in residual evaluation (eq. 4.32) the estimation error due to pexh bias

will be summed together.
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4.3.2 Sensitivity-based Threshold

The ability and robustness to detect turbocharger loss of efficiency relies on the

quality of the threshold adopted. As already explained for the leak detection the fixed

threshold, if correctly choose, can be a fast and reliable approach if a good knowledge

of the system under monitoring is available. This is quite common for the automotive

industry, where huge historical database of system component behaviour and faults are

available and allow to determine the best fixed threshold which allows to detect a fault

and avoid false alarm as much as it can.

In this section it will be presented a possible way to choose the threshold using the

sensitivity functions obtained previously in the following form

Thr =
dθ̂ss
dTexh

∆Texh +
dθ̂ss
dpexh

∆pexh +

dθ̂ss
dηc

∆ηc +
dθ̂ss

dMAF
∆MAF (4.33)

The threshold depends on the uncertainty of the sensors: the mass air flow, the exhaust

pressure, the exhaust temperature and the possible error in the compressor efficiency

map. If the maximum uncertainty for each of those sensors is known, i.e. the classic

3-sigma production variability, it is possible to evaluate, for a given operating condition

of the engine, the impact of this uncertainty with respect to the accuracy of the esti-

mation θ. In other words, the sensitivity function is used here as a measure of the error

that the sensor biases can introduce in the estimation of the turbine efficiency.

A way to assess how the estimation error is distributed is to evaluate the threshold

(4.33) for a given engine operating condition (here calculated along a power swing at

2000 rpm), where the δω as defined in equation (4.31) is considered here only the max-

imum and minimum error for each sensor, i.e. as defined in section 4.3.1

As the number of possible sensor biases are four, it is possible to evaluate the

proposed threshold for all fault possible combinations, i.e., sixteen combination if only

maximum and minimum value are choosed.

The result is shown in figure 4.5, where it comes out that if the fault detection

strategy is used when IMEP is greater than 6 bar, a fixed threshold can be choosen
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Error code Texh err [K] pexh err [Pa] MAF err [%] ηc err [%]

1 -20 -200e2 -5 -5

2 -20 -200e2 -5 5

3 -20 -200e2 5 -5

4 -20 -200e2 5 5

5 -20 200e2 -5 -5

6 -20 200e2 -5 5

7 -20 200e2 5 -5

8 -20 200e2 5 5

9 20 -200e2 -5 -5

10 20 -200e2 -5 5

11 20 -200e2 5 -5

12 20 -200e2 5 5

13 20 200e2 -5 -5

14 20 200e2 -5 5

15 20 200e2 5 -5

16 20 200e2 5 5

Table 4.1: Error combination table sequence

equal to 0.15. The drawback of this strategy is that all the turbo efficiency loss lower

than 0.15 will be not be detected.

By evaluating the equation (4.33) dynamically with the available measurements, a vari-

able threshold is obtained which can be less conservative than the fixed one.

4.4 Simulations Results

Simulation for the proposed method was carried out using a co-simulation platform

Matlab/Simulink c© and AMEsim c©. The AMEsim c© model is used to simulate the

engine behavior and it is calibrated on a 2.2L four cylinders Diesel engine available

at IFP’s test bed (A.2). The available sensors and their maximum bias considered in

simulation are reported in Table 4.2. Moreover a maximum of 5%, proportional to
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Figure 4.5: Threshold evaluation for all possible error combination (Table 4.1) in dif-

ferent engine experimental points

Name Max ∆ Unit

Tint 0 K

pexh ±200e2 Pa

Texh ±20 K

uV GT 0 %

MAF ±5 %

Φ 0 -

Table 4.2: Available Measurements

value, uncertainty has been considered on the compressor efficiency map.

All simulations shown here are made at 2000 rpm constant engine speed and two torque

trajectories have been used:

• LOW LOAD TRAJECTORY:

IMEP = [4 5 6 7 6 5 2 5 7 5 4] bar
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Figure 4.6: Adaptive observer turbo efficiency estimation - Engine speed 2000 rpm and

Low Loads Trajectory - No sensors fault, ∆MAF = 3%,∆ηc = 4%, Texh = −10K
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Figure 4.7: Adaptive observer turbo efficiency estimation - Engine speed 2000 rpm and

High Loads Trajectory - No sensors fault, ∆MAF = 3%,∆ηc = 4%, Texh = −10K
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• HIGH LOAD TRAJECTORY:

IMEP = [10 11 13 15 14 13 12 10 15 10 13] bar

• Step Time: TIMEP = 10s

the TIMEP stands for the period in which the demanded torque is kept before changing

to the next value of the trajectory.

The first set of figures (Fig. 4.7, 4.6) are about simulation at 2000 rpm where no loss

in the turbine’s efficiency is present. In Figures 4.6(a) and 4.7(a) the simulation results

using the proposed adaptive observer (eq. 4.5) are shown: the dashed line is the esti-

mated turbine efficiency θ̂ and, in solid line, is the turbine efficiency obtained by the

static map (2.21).

The Figures 4.6(b) and 4.7(b) shown the residual (dashed), based on equation (4.32),

with the proposed adaptive threshold evaluated on the maximum uncertainties defined

before (Table 4.2).

Finally, figures 4.6(c) and 4.7(c) report the intake manifold pressure along the different

trajectory. It is evident that the estimation of the turbine efficiency is more accurate

for high IMEP which correspond to have high turbocharger speed. The accuracy of

the estimation can be seen by the residual thresholds, for low loads (Fig. 4.6(b)) the

thresholds absolute value is greater of 0.15 which is congruent with what obtained in

Fig. 4.5. For high loads (Fig. 4.7(b)) the accuracy is greater, i.e., the thresholds abso-

lute value is less than 0.075 along all the trajectory.

A last remark is about the threshold conservativeness. In intervals where the tur-

bocharger speed is slow (ex. 60 ≤ t ≤ 70 in Fig. 4.6(b)) the uncertainty on the

estimation rise up and so the threshold avoid, if possible, false alarm.

Figure 4.8 shows different combination of functioning of the proposed method in low

(left column) and high (right column) load trajectory. All the simulation are made with

∆MAF = 3%,∆ηc = 4%, Texh = −10K and different exhaust manifold pressure bias

∆pexh. The reason of this choice is that, in the previous sensitivity analysis, the pexh

sensor appears to be the one which has the greater impact on the estimation error.

To simulate the loss in the turbine efficiency a constant gain has been applied in the

AMEsim c© model turbine map.
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In Figures 4.8(a) and 4.8(b) the residual results for a −10% of turbine efficiency loss

is reported and it comes out that for low load trajectory it is impossible to detect the

fault whereas, for high load, the detection can be done for all the analyzed points. If

the threshold is generated for a pexh maximum uncertainty of 200mbar and a same bias

is applied on the pexh measurement, the detection of loss in efficiency of the turbine is

shown in figures 4.8(c),4.8(e), 4.8(d) and 4.8(f).

The proposed threshold is generated with the maximum uncertainties biases, which

means that if the sensors has a bias lower with respect to this maximum, the thresh-

old would be conservative. In order to reduce the conservativeness a dynamic ∆pexh

is necessary or a more accurate sensor is suitable. For the specific problem a ∆pexh

estimation is proposed by the means of the downstream EGR heat exchanger pressure

pEGR.

In order to complete the analysis, in Figure 4.9 and 4.10 the turbocharger fault

detection algorithm has been applied along the first 200 seconds of the standard ECE

cycle. Figure 4.9(a) shows the residual when a −10% turbine efficiency loss is simulated

along the cycle: it is very hard to detect the fault due to the very high uncertainties in

the estimation because of sensors bias and very low loads of this part of the cycle (Fig.

4.9(b)).

Figure 4.10(a) shows the residual when −10% of turbine efficiency loss is simulated along

the standard EUDC cycle. The detection of the fault is possible in four intervals which

correspond to high intake manifold pressure pint (Fig. 4.10(b)). In particular, during

the third and fourth acceleration phase (intervals between [250s, 300s] and [320s, 350s])

the detection is clearly visible.

The detection in this intervals is due to the reduction of the threshold. This reduction

corresponds to a good accuracy in estimation and so, by the observation of the threshold,

it is possible to determine functioning zone for turbine efficiency loss detection.
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(e) Low Load, ∆ηt=−10%, ∆pexh=200mbar
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(f) High Load, ∆ηt=−10%, ∆pexh=200mbar

Figure 4.8: Residual Analysis - Engine speed 2000 rpm - ∆MAF = 3%,∆ηc =

4%, Texh = −10K
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Figure 4.9: Residual Analysis - ECE cycle - ∆MAF = 3%,∆ηc = 4%, Texh = −10K
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4.4. Simulations Results
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Figure 4.10: Residual Analysis - EUDC cycle - ∆MAF = 3%,∆ηc = 4%, Texh = −10K
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Chapter 5

Conclusions

English version

This thesis studies the fault detection for the air-path of a Diesel engine with a

model based approach. The work has been conducted and tested around two major

system failures:

• a leak in the intake manifold

• the turbine efficiency loss

whose detections are critical to the correct functioning of the engine and to respect the

pollutant emissions law which enforce more and more the reliability of all the part of a

vehicle all along its life (EURO-6).

In this work we deliberately choose to study the problem with a model-based ap-

proach taking into consideration some constraints:

• the strategy should work without adding more sensors than the ones already

present in a mass produced vehicle;

• the strategy needs to be robust enough to work in several operating condition, i.e.

along the European driving cycle;

• the strategy should not interfere with the existing control strategy.

85



Chapter 5. Conclusions

The results of the work shows that, at least in the case study approached, the use

of an adaptive observer is most suitable for fault detection strategy: it allows to detect,

localise and, under sensors fault free, identify the amplitude of the fault. In a second

phase of this work, the possible sensors uncertainties have been considered in the strat-

egy and the necessity of a new threshold definition became necessary in order to avoid

a conservative detection strategy based on a very high threshold level and reduce the

calibration time.

The sensitivity analysis allowed to have, in a systematic way, how much each sensor

measurement affects the estimation with respect to its uncertainty due to biases and

drift. This analysis can be used in the fault detection design process, in particular when

it is necessary to choose the sensors based on the accuracy (Appendix C).

Moreover, the use of the sensitivity function, coupled with additional conditions, such

as the type of error model, provides a mean to design a variable threshold which adapts

its amplitude to the observability condition.

The study of this last property, necessary for the estimation convergence, gives an im-

portant piece of information on the operating condition in which the estimation will

converge fast to its value and with a better accuracy. This is particularly interesting

as this is normally obtained by statistical method, e.g. Monte Carlo techniques, or by

previous knowledge based on the experience.

In both treated faults, the analysis shows the success of the approach if a good esti-

mation of the biases is known. Indeed, the proposed method provides an upper bound

to all the uncertainties that each bias introduces in the observer estimation. In order to

cope with this problem and allow to improve the capability to detect also small faults

without loosing the robustness, it is necessary to recalibrate dynamically the threshold.

The intake manifold leak detection problem has shown that it is possible to detect

hole as small as 2.5 mm in the best operating condition, even if the exhaust gas recir-

culation circuit is enabled. More generally, holes equal to or greater than 5 mm can be

detected also when 5% multiplicative error is present in the mass air flow measurement

and in the engine efficiency look-up table. In terms of detection operating regions, the
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observability analysis combined with the model quality (in particular the EGR flow

model) shows that the detection is reliable when the pressure ratio between the ambi-

ent pressure and the intake pressure is below 0.9 this result corresponds to an indicated

mean effective pressure - IMEP - greater of 6 bar at 1500 rpm.

Regarding the turbine efficiency estimation and loss detection, once the model has

been reduced to its simplest form, the proposed observer shows how good is the quality

of the efficiency look-up table provided by the turbo compressor manufacturer in the

nominal operative region (high turbocharger shaft speed) and in steady state condition.

The advantage of having a dynamical estimation of the turbine efficiency is, if inte-

grated into the control strategy, to have the possibility to improve the air-path control

during the transient phases. The sensitivity analysis done in this case study was more

complete and showed how to use it as a tool to calibrate a fixed threshold and more

important to understand which sensor bias impacts more in the estimation error. The

result was that the exhaust pressure sensor is the most responsible for the estimation

accuracy and its uncertainty should be reduced to value smaller than the one considered

(200mbar). As in the case of the leak detection, the observability combined with the

sensitivity analysis suggests to trust the strategy in the high engine load points in order

to be able to detect efficiency loss equal or greater than 10%.

All the presented results have been studied on a Diesel engine but the proposed ap-

proach is system independent. The model based technique main advantage is to reduce

the calibration time if the engine is subject mechanical changes, which is particularly

true in a design stage.

In conclusion, the presented work analyses the use of a model-based approach for

the fault detection of the Diesel engine air-path showing that the strategy developed

is successful if a good knowledge of sensor bias is available. Moreover, the advantage

provided by the use of a dynamical observer is the possibility to use the observability

and sensitivity analysis to evaluate operating conditions where to use the fault detection

strategy. It has been shown that the proposed variable threshold provides only an upper
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bound to the estimation error. This aspect leads, in some cases, to the impossibility of

detecting faults before they reach very high level of magnitude. The strategy does not

require, for the faults studied, any additional sensor unless strictly necessary and does

not interfere with the used control strategy.

Perspectives

The continuous development of new technical solutions for better performing inter-

nal combustion engines leads to an increasing complexity of the system. Moreover, the

next pollutant regulations will be more severe in system monitoring (EURO 6 and 7)

and reliability over the time.

The increasing demand for specific fault detection strategy will be a challenge to be

faced in the next years and a model based approach could be seen as one of the possible

tool available to improve the FDI strategy.

In terms of future perspectives, the variable threshold conservativeness can be re-

duced by an online identification of the biases and drifts affecting the measurements.

This can be done by numerical techniques like recursive least square algorithm if the

persistent excitation condition is met (the system is sufficiently excited hence its mea-

surements contain enough information on the biases that we want to estimate).

This implies that the FDI should be intrusive in the system: drive the control system

in order to excite particular subsystems without breaking the global performances and

respect the constraints.

Another important work is to develop the multi-faults detection. Even if the possi-

bility that two failures appear at the same time is remote, the presence of different slow

varying parameters in time is something that is more likely to happen. Being able to

detect more faults at the same time will increase the robustness of the overall strategy.

In short terms, the application of this approach could be studied and implemented

wherever possible to the post-treatment subsystem, in particular for Diesel engines,

which is now a key part for the control and reduction of pollutant due to exhaust gases.
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French version

Cette thèse a pour but l’étude et le développement de stratégies de diagnostic ap-

pliqué à la boucle d’air des moteurs Diesel. Le travail a été développé et testé pour deux

pannes majeures qui peuvent apparaître dans un moteur thermique: - la présence d’une

fuite dans le collecteur d’admission - la perte du rendement de la turbine, d’un groupe

turbocompresseur Leur détection est critique pour le bon fonctionnement du moteur et

donc pour le respect de la réglementation sur les émissions polluantes qui impose une

surveillance continue, pendant tout la durée de vie du véhicule, de tous ses composants

(EURO VI).

Dans le travail présenté on a choisi de traiter la problématique avec des méthodes

basées sur les modèles c’est à dire model-based, en prenant comme hypothèses de travail

les contraintes suivantes: - la stratégie doit fonctionner sans ajout de capteurs addition-

nels par rapport à ceux déjà disponibles dans la plupart des voitures commercialisées à

ce jour; - la stratégie doit être suffisamment robuste pour être utilisée dans des zones

de fonctionnement très différentes entre elles, c’est à dire durant un cycle de conduite

Européen (ECE Cycle); - la méthodologie ne doit pas interférer avec la stratégie de

contrôle du moteur;

Les résultats de cette thèse montrent que, au moins dans les deux problèmes traités,

l’utilisation d’un observateur adaptatif est une solution viable pour la détection des

pannes. Son utilisation permet de détecter la présences d’une panne, la localiser et, si

les mesures utilisées par l’observateur sont précises, il a été montré qu’il était possible

d’estimer l’amplitude de la panne. Dans une deuxième phase du travail, les incerti-

tudes sur les mesures, donc les dispersions de production des capteurs ainsi que leurs

défaillances éventuelles, ont été prises en considération dans la stratégie. Cela a permis

de définir des seuils de détection variables, et ainsi d’éviter l’utilisation de seuils très

conservatifs et pour réduire le temps de calibration de la stratégie.

L’analyse de sensibilité nous a permis, de manière systématique, d’estimer de quelle

façon chaque incertitude de mesure (biais et dérive des capteurs) contribue à l’erreur

d’estimation. Le résultat de cette analyse peut être utilisé en phase préliminaire quand

il est nécessaire de définir les limites en termes de précision et de tolérance que chaque
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capteur doit respecter pour obtenir une certaine précision et fiabilité dans l’estimation de

la panne (Annexe C) De plus, l’utilisation de l’analyse de sensibilité avec des conditions

additionnelles, comme la typologie de l’erreur de mesure, permet la conception d’un seuil

de détection de la panne qui adapte son amplitude en fonction de l’observabilité de la

panne sous surveillance. L’étude de cette dernière propriété, nécessaire pour garantir

la convergence de l’observateur de l’estimation, peut être utilisée pour la détermination

des zones de fonctionnement pour lesquelles l’estimation convergera plus rapidement et

avec une meilleure précision: l’algorithme est fiable. Cet aspect est particulièrement

intéressant d’un point de vue industriel, ces information étant habituellement obtenues

avec des méthodes statistiques, par exemple méthode de Monte Carlo, ou avec l’analyse

de grosses bases de données combinée à l’expertise industrielle dans le domaine.

Pour les problématiques examinées dans ce travail, l’utilisation de l’étude de la

sensibilité pour la génération du seuil variable s’est révélée efficace si on dispose d’une

bonne connaissance des incertitudes sur les mesures. En effet la méthodologie proposée

fournit une limite supérieure pour toutes les incertitudes introduites sur l’estimation de

l’observateur de chacune des erreurs de mesure. Afin de pouvoir résoudre ce problème

et améliorer la capacité de détecter des pannes d’amplitudes mineures en gardant la

robustesse de la méthodologie, il est nécessaire de recalibrer la seuil dynamiquement.

Le problème de la détection de fuite dans le collecteur d’admission abordé avec la

méthode proposée a montré qu’il est possible de détecter des fuites, dues à des trous

dans la surface du conduit, de 2.5 mm de diamètre si le moteur se trouve dans des

zones de fonctionnement très favorables vis-à-vis du diagnostic, même en présence de

recirculation de gaz brûlés (EGR). De façon plus générale, les résultats ont montré qu’il

est toujours possible de détecter la présence de fuites de diamètre supérieur ou égal à 5

mm même si on se trouve en présence d’incertitude multiplicatives sur la cartographie

de remplissage du moteur et sur la mesure fournie par le débitmètre de l’air provenant

du compresseur. En termes de zones de fonctionnement, l’analyse de l’observabilité de la

fuite combinée à celle de la fiabilité du modèle utilisé (en particulier la modélisation du

débit des gaz d’échappement recirculés - EGR Flow) montre que la détection est précise

et fiable quand le rapport des pressions entre l’intérieur et l’extérieur du collecteur est

inférieur à 0.9, ce qui correspond à une pression indiquée moyenne (IMEP) supérieure
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à 6 bar au régime moteur de 1500 rpm.

Pour le second problème, l’estimation du rendement de la turbine et la détection

de sa perte, une fois que le modèle du turbocompresseur a été réduit à sa forme la

plus simple, l’observateur peut être utilisé pour valider la cartographie fournie par le

constructeur de la turbine sur les point stabilisés et normalement pour des zones de

fonctionnement à très forte charge, c’est à dire grande vitesse de rotation. L’analyse

de sensibilité pour ce problème a été très complète et montre son potentiel soit pour

déterminer un seuil fixe, soit pour déterminer quel est le capteur et donc la mesure qui

influence le plus l’erreur d’estimation. Le résultat est que le capteur de pression dans

le collecteur d’échappement est le responsable principal de la précision de l’estimation

et que l’incertitude maximale (3-sigma) considérée dans notre cas (200 mbar) doit être

réduite pour que la méthodologie soit exploitable. Comme déjà démontré pour la dé-

tection des fuites, l’analyse de l’observabilité et l’étude de sensibilité suggèrent que la

methodologie est particulièrement fiable sur les points de fonctionnement qui correspon-

dent à une vitesse de rotation du turbocompresseur très élevée, c’est à dire à très forte

charge. Sur ces points il est toujours possible de diagnostiquer des pertes de rendement

supérieures ou égales à 10 de leur valeur nominale.

Les résultats de cette thèse ont été développés et présentés pour le diagnostic d’un

moteur Diesel mais leur validité est absolument générale pour tout système qui ont les

mêmes caractéristiques. L’étude a prouvé que l’un des avantages les plus importants

dans l’utilisation d’une démarche basée sur un modèle est la réduction des temps de

calibration. Cet avantage n’est pas négligeable surtout quand le moteur est sujet à

des changements de partie mecanique, comme c’est le cas pendant la phase de son

développement.

En conclusion, le travail présenté a montré les avantages d’une méthodologie de

diagnostic basés sur l’utilisation de modèle physique appliqué à la boucle d’air d’un

moteur thermique Diesel si on connait les incertitudes de mesure dûes aux dispersions de

production des capteurs utilisés. De plus, un des avantages liés à l’emploi d’observateur

dynamique réside dans la possibilité de déterminer les zones de fonctionnement où

appliquer avec confiance la stratégie grâce à l’analyse de l’observabilité et la fonction de

sensibilité. Pour ce qui concerne le seuil variable, il a été montré qu’il borne seulement
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supérieurement l’incertitude de l’estimation. Cet aspect peut, dans certains cas, rendre

impossible la détection de pannes avec des amplitudes faibles. Dans ce cas, une stratégie

basée sur l’analyse statistique ou une analyse du résidu (dans le temps ou en fréquence)

peut être plus efficace. On peut souligner que la stratégie proposée dans les cas étudiés

ne demande aucun capteur additionnel et n’interfère pas avec la stratégie de contrôle

déjà existante.

Perspectives

Le développement continu de solutions techniques pour améliorer les performance

des moteurs à combustion interne entraine une complexification du système à contrôler

et à surveiller. De plus, si les tendances sont confirmées, les prochaines réglementations

sur la régulation des émissions polluantes (EURO VI et VII) seront de plus en plus

sévères et nécessiteront une fiabilité dans le temps supérieure à la situation actuelle.

Selon ce scénario, la demande de stratégie de diagnostic, spécifique pour différentes

parties du moteur, sera de plus en plus grande dans les années à venir et les method-

ologies basées sur modèles peuvent être vues comme un des instruments efficaces pour

améliorer les stratégies de FDI.

Les perspectives futures de ces travaux concernent l’amélioration du seuil variable

en le rendant moins conservatif par l’estimation en ligne des amplitudes des biais et

des dérives qui affectent les mesures. L’identification peut être faite avec des méth-

odes numériques comme l’algorithme des moins carres récursifs si les conditions de

persistance d’excitation sont garanties (le système doit être suffisamment excité par ses

entrées et les mesures doivent contenir suffisamment d’information pour pouvoir recon-

struire l’estimation considérée). Pour pouvoir aborder le problème de cette façon, la

méthodologie de FDI doit devenir intrusive: le contrôle doit pouvoir exciter les sous

systèmes d’intérêt en garantissant le respect des ses objectifs primaires: performance,

consommation de carburant, agrément de conduite et respect des normes sur les émis-

sions.

En termes d’évolution possible de la démarche, la capacité de pouvoir détecter

plusieurs pannes en même temps reste très importante. Même si la probabilité que deux

pannes puissent se manifester au même instant est très faible, la présence de dérives
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lentes de certains paramètres dans le temps est réaliste et probable. Être capable de les

détecter permettrait d’accroître la robustesse générale du diagnostic embarqué.

De façon plus en générale, la démarche proposée pourrait être étudiée et implémentée

sur les systèmes de post traitement, en particulier pour les moteurs Diesel, qui sont

maintenant une partie clé pour le contrôle et la réduction des émissions polluantes dans

les gaz d’échappement.
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Appendix A

Simulation and Experimental

Facilities

In this report both simulative and experimental results have been presented. The

aim of this section is to explain the software and mechanical setup used for developing

and testing the proposed algorithms.

A key part in the analysis and development of new algorithms is the possibility to

test them offline in operative conditions that are much closer to the real engine. This

necessity is principally due to save occupancy time of the experimental facilities and so

their operative costs.

A.1 Simulation Environment

All the algorithms have been tested in a co-simulation environment based on Math-

works Matlab and Simulink c© softwares for the implementation of the engine controller

and supervisor strategy and AMEsim c© developed by LMS Imagine that has been used

for the thermal and physical numerical simulation of the engine behaviour.

The IFP modelling team has developed a specific library, i.e. IFP-ENGINE, which

contains the most important components that could be found in an engine and its
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Figure A.1: Renault G9T Diesel engine - LMS AMEsim c© model

subsystem. The library is created in to easily allow users to modify the mechanical con-

figuration of the engine and calibrate each individual component regardless the math-

ematical and physical complexity underlying each element of the library. With respect

to the fidelity of those models it should be noticed that they are intended for control co-

simulation purposes, which means that they should catch the most important dynamic

within a certain degree of precision. The reason of those limitation is principally due

to the computation effort required to run the model with respect to the time required.

In control development, as well for fault detection, there is a constant need to test the

algorithm in many different engine operating points which can be really time consuming.

However, even if the AMEsim model is a simplified model, it is a complete descrip-

tion of the thermal and mechanical behaviour of the engine and all its components

(turbocharger, valves, filters, heat exchangers...). Furthermore, in simulation, it is con-

sidered as a reference because it is the closest model to a real engine.

On Simulink’s side, the used models are generally with lump parameters and they are

a very good approximation of the system dynamic which leads to a natural discrepancy
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between the two models; this aspect allows also to check also the robustness of the

tested strategies with respect to model uncertainties.

In terms of data exchange between the two models, the co-simulation environment,

by the mean of a C function embedded in Simulink, synchronises the signals and data

exchanged. Generally the AMEsim model is designed to run with a good degree of

precision by a fixed step solver and provides to Simulink all the measurements as if

provided by the real sensors. It is in Simulink that is possible to arbitrary generate

bias and drift in signals that the system controller and the FDI supervisor will then

elaborate. In exchange the system controller will provide all the actuators set-points to

drive the engine AMEsim model. This loop is performed every 0.1 ms.

A.2 Experimental Environment: the test bench

Figure A.2: IFP Test bench: Renault G9T Diesel engine (IFP courtesy)

The engine used as reference for this study is a Renault G9T 2.2 litres, 4 cylinders

Diesel engine available at the IFP for research and development. The engine, when the

work has been conducted, was already equipped with an exhaust gas recirculation cir-

cuit and a variable geometry turbocharger. Moreover an additional valve was installed

to the intake manifold to simulate the leak.
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The control strategy and so the fault detection strategy developed in Simulink is

then built for a xTarget Pc which operates directly on a test bench computer and acts

exactly in the same way as the co-simulation explained previously: it reads the sensors

values, elaborate the best control action and sends the new desired set point to the

actuators.
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Appendix B

Adaptive Observers: a quantitative

comparison

In Section 3.3 there were proposed two different observers for the intake manifold

leak diameter estimation both derived from Lyapounov analysis.

The main difference between them is the change of coordinates which allow the modified

observer (eq. 3.17) to evolute with respect to the observability condition: the better is

the observability the faster will be the convergence of both the state and the parameter

estimation.

In this chapter a quantitative analysis and comparison between the two proposed ob-

server will be presented in term of performances and robustness.

In order to make the comparison, without any lack of information, more understand-

able in term of results a fake system will be used with exactly the same structure and

nomenclature of the intake manifold model 3.4 but with different signal profiles. This

case study will allow to have more control on the boundary conditions of the qualitative

analysis.
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B.1 The reference system

The system used as reference in this analysis is the following ẋ(t) = −a(t)x(t)− ψ(t)θ∗ + φ(t)

y(t) = x(t) + ν(t)
(B.1)

where a(t), ψ(t) and φ(t) are three completely known function of the time. In addition

we added a noise ν to the output of the system which is considered not measurable and

its wave form will specified later in this section.

In details the function a(t) is always positive and in our study has been chosed to

be:

a(t) = A ∗ sin(t) + 2 ∗A (B.2)

where A is a constant equal to 0.1.

The φ(t) term, which in the intake model was the sum of the EGR flow plus the air
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Figure B.1: Time evolution of φ(t) and ψ(t)

flow, here is modeled as square signal depicted in figure B.1(a) which change every 100

seconds. This choice is principally due to the necessity of change the operating point of

the system.
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B.1. The reference system

The ψ(t) signal, which is multiplied with the parameter θ (see eq. (B.1), is associ-

ated with the observers estimation convergence and so with the observability condition.

For reasons that would be cleared during the analysis, it has been choosen to guarantee

intervals in which there were no observability thus ψ(t) = 0 at all and others in which

is different from zero, so the signal is a square signal included between zero and 0.1,

moreover to avoid simultaneous switch of the signal, ψ(t) has been shifted of 30 seconds

as shown in Figure B.1(b).

The nominal value of the parameter θ∗ has been set arbitrarily to a value of 5 and it

has been kept constant all along the simulation. In term of noise ν two types of signal
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Figure B.2: Time evolution of ν(t) when is a pulses generator

have been employed:

• a white noise, simulated as random number generator with a zero mean and a

variance set to a value of 2;

• a pulses train (see Fig. B.2), which has been generated with a PWM signal

generator with a maximum value set to 50;

.
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A final consideration regarding the initial condition used in the simulation. They

have been set to 1 for x(0) and, as told previously, θ(0) equal to 5.

The presented system it will be referred as reference system in the rest of this

analysis.

B.2 Performance Analysis

The aim of this section is to compare the observer performances in order to better

characterise the behaviour of the two dynamical estimators.

From a simulation point of view, to avoid that the observers start from initial con-

dition close to the real one used in the reference model and in order to allow to evaluate

the dynamical responses the initial condition of both the observers have been set to the

same values: x̂(0) = 10 and θ̂(0) = 50.

B.2.1 Same Gains

The first test was design to look at the observers behaviour when exactly the same

gains where applied to both of them. The intent here was to understand the effect that

the ψ(t) introduces in the observer responses both in the state than in the parameter θ

and to assess the impact of the additional term that appear in the modified observer:

the integral term (3.17).

For this test, with respect with notation used in the section 3.3, we set the gain to

a common arbitrary value:

• Lyapounov observer with gains = [K0 γ] = [1 1]

• Modified observer with gains = [K1 Kθ] = [1 1]

With this choice of gains the results obtained are reported in Figure B.3.

Looking to the results and in particular to the parameter estimation B.3(b) is pos-

sible to observer two interesting dynamical behaviours:
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B.2. Performance Analysis
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Figure B.3: Performance Analysis - The two observers have the same gains

• both the observers freeze the θ̂(t) estimation when the observability condition

(Fig. B.3(c)) is loss

• the modified obsever, due to the integral term and when the observability condi-

tion is satisfied, has a faster convergence.

In term of state convergence, the faster convergence of the parameter estimation in the

modified observer, allow the observer with the integral term to have better behaviour.
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Appendix B. Adaptive Observers: a quantitative comparison

B.2.2 Same behaviour: different gains

The following test was designed to understand if it was possible to find a set of

gains in order to have comparable behaviour of the two observers. In other words, in

the first test it seemed that the modified observer was faster, now we look if it would

be possible to speed up the Lyapounov observer in order to have the same behaviour of

the modified one.
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Figure B.4: Performance Analysis - The two observers have the same gains

By choosing the gains as follow
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B.3. Robustness Analysis

• Lyapounov observer with gains = [K0 γ] = [1 5]

• Modified observer with gains = [K1 Kθ] = [1 0.4]

as shown in Figure B.4, the two observers behave very closely and the performances

of the dynamical response of the parameter and the state convergence confirm the

hypothesis (see Fig. B.4(a) and B.4(b)).

It is important here to remark that in order to have a close behaviour of the Lya-

pounov observer to the modified, it has been necessary to increase the gain γ of a factor

4 and reduce therefore reduce Kθ.

B.2.3 Conclusions

The performance analysis shows that, if the observability condition is satisfied, it is

always possible to find a set of gains that allow the two proposed observer to behave

in a similar way: convergence time. In general it is possible to see that the modified

observer is faster, if the same gains are applied to both the estimators. The reason is

that the integral term contributes to the convergence because of the state error x̃(t)

that is integrated over the time.

B.3 Robustness Analysis

The second aspect worth to be investigated is the robustness of the proposed ob-

servers to exogenous signals as noise and spikes.

Both these disturbances reflect possible communication problems and that is the reason

why ν(t) has been applied directly to the measurement y(t).

In order to make comparison simpler the same tests sequence will be proposed in

the next part of this section: same gains and different gains.
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Appendix B. Adaptive Observers: a quantitative comparison

B.3.1 Same gains: Impulses and noise

The first test is with the same gains for both the observers as described in B.2.1

applying a white noise to the measurement y(t).
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Figure B.5: Robustness Analysis - The two observers have the same gains

The results shown in Figure B.5 show in the upper row the observer responses both

for the state (Fig. B.5(a)) than for the parameter (Fig. B.5(b)) and in the lower row

the same when only impulses as shown in figure B.2 are applied.

In term of noise, the two observers parameter estimation are partially affected by the
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B.3. Robustness Analysis

noise in a very limited manner.

The spikes effect instead, even if limited seems, seems to be more evident in the modified

observer than in the Lyapounov one with respect to the parameter estimation (Fig.

B.5(d)). In the state estimation instead the modified observer acts as it was not sensitive

to the spikes, the Lyapounov observer instead filter much less the spikes as it possible

to see in Fig. B.5(c).

B.3.2 Different gains: Impulses and noise

The previous test shows how good the modified observer was to reject impulsive dis-

turbances on the system output from the state estimation and a reduce effect of those

on the parameter estimation having anyway a faster convergence response.

With respect to this consideration, the aim of this test is to assess the impact of

these disturbances in the estimation dynamic when the convergence speed is similar

between the two observers: they have different gains.

As already stated, to simplify the comparison between the test results, the gains

chosen are the same presented in the section B.2.1.

The results of this test are shown in Figure B.6 where the effect of increase the

gain of the Lyapounov observer for having a convergence rate similar to the modified

observer lead to a unwanted effect on both the estimations.

In more details, the effect of the noise is now more evident on the parameter estimation

(Fig. B.6(b)) even if limited, for the modified observer due also to a decrease of its

adaptive gain K0 the noise is completely filtered.

The key result, in terms of robustness, is the evaluation of the spikes effect on both

the state and the parameter estimation: in both the case the modified observer reacts

better to these perturbations (see Figure B.6(c) and B.6(d)).
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Figure B.6: Robustness Analysis - The two observers have the different gains

B.4 Conclusion

In the design of a dynamical system, such as an observer, there is always a trade-off

between performances and robustness. The qualitative analysis provided was intended

to assess both those aspects with respect to the fault detection and identification prob-

lem.

The presented results show that from a performance benchmark the two proposed ob-

servers show differences in term of convergence speeds: the modified observer due to its

additional integral feedback term can be faster. However, it has been possible to show
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B.4. Conclusion

that it is possible to find a set of gains for the Lyapounov observer to behave in a very

similar way like the modified one.

This possibility of having a closer dynamical behaviour it is obtained in practice by

increasing the adaptation gain of the Lyapounov observer to higher values.

The effect of increasing the gain has a counter productive effect on the observers ro-

bustness, in particular to reject noise and spikes from the system output measurement.

These considerations make the modified observer more suitable for FDI problems that

are casted in the way of model based approach with the use of adaptive observers and

parameter estimation.
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Appendix C

Sensitivity Analysis: a tool

In Chapter 4 we studied the fault detection for a variable geometry turbine by the

design of an observer which relies on many measurements equally potentially affected

by biases and drifts. For those reasons, the sensitivity analysis has been used to under-

stand which measurement error would have the major effect on the turbine efficiency

estimation and so drive the strategy to possible false alarms.

The results of this analysis provide the constituent element of the variable threshold

which is cover in discuss in that chapter.
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Figure C.1: Compressor Maps

The aim of this section is to present a different use of the sensitivity analysis not

for understanding the impact of each sensors error on the estimation but as a tool to
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Appendix C. Sensitivity Analysis: a tool

identify the operating conditions in which the observer parameter estimation has a sen-

sitivity equal to zero with respect to a specific measurement variation. In other words,

if the sensitivity is equal to zero it means that a small variation of the measurement

will not affect the estimation so those points are the most likely to be use in the FDI

strategy in order to reduce possible sources of errors.

In section 4.3.1 this analysis has been done with respect to some measurement for

a specific operating point: 2000 rpm. The result was that all the signals affect the

estimation with different magnitudes and in particular the exhaust pressure was the

most critical measurement, it introduces by its own a minimum error of 10%. In the

same section we consider variation of the compressor efficiency map as global error and

not as potential bias of the measurement used to evaluate it:

• Nt - Turbocharger shaft speed;

• MAF - Air mass flow sensor.

Figures C.1(a) and C.1(b) show the derivative of the compressor efficiency map ( Fig.

2.10(a) ) with respect to its arguments: Nt and MAF . In Figure C.2 it is shown the

isolevel contour corresponding to where the compressor map derivative with respect

to the turbocharger shaft speed Nt (red solid line) and the derivative with respect

to the mass air flow measurement are equal to zero. In addition, for different engine

speeds used in the calibration process, in figures C.2(a), C.2(b), C.2(c) and C.2(d) they

are reported the steady state condition values of the two measurements for different

loads (green squares) showing that there are operating points that are across the zero

sensitivity lines: this points could be used then for running, in that case, the turbine

efficiency FDI strategy knowing that it will be less sensible to small MAF of Nt biases.

In reality we are only interested in the MAF bias because, for the specific problem, we

supposed to have a very good estimation of the turbocharger, i.e pint is fault free.

To conclude this analysis, the same approach have been taken for the turbine effi-

ciency map used as a reference for generating the residual. The turbine ηt (eq. 2.21)

depends on the turbocharger shaft speed, the variable geometry turbine wings position
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Figure C.2: Steady state calibration points for G9T evaluate on the compressor zero

sensitivity function at different engine speeds

and the turbine gas flow (eq. (2.23)) which is function on the the delta pressure across

the turbine and so it is subject to pexh biases. The first two signals are fault free and

so the same analysis did previously for the compressor map is now presented for the

turbine efficiency map.

Figure C.2 shows the zero sensitivity curves (parametrised with respect to the uV GT

position) for a Πt variation. In addition the same engine operative calibration points

has been superposed (green squares) and the same if a 200 mbar bias would be added

to the exhaust pressure measurement pexh (black squares).

The results show that there are operating points at low engine speed and relative low

loads (Fig. C.3(a) and C.3(b)) that are over the zero sensitivity curves (green square)
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Figure C.3: Steady state calibration points for G9T evaluate on the turbine zero sensi-

tivity function at different engine speeds

even if a positive bias is applied to the pexh measurement (black squares). In reality

all the points that are not on the zero sensitivity curves for high engines speed are on

a iso-surface in which the derivative of the turbine efficiency map with respect to Πt is

zero (Fig. C.4). This last fact confirm what already discovered in simulation in Chap-

ter 4 and, moreover, it provides an important information about the reliability of the

estimation we use as reference for built our residual term: the turbine efficiency map

evaluation, at high engine speed, it is not affected by exhaust pressure measurement

errors.
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Figure C.4: Turbine efficiency map derived with respect to Πt
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Publications

Conferences

• Ceccarelli, R., Moulin, P., Canudas de Wit, C., "Robust Strategy for Intake Leak-

age Detection in Diesel Engines", Multi-conference on Systems and Control 2009

• Ceccarelli, R., Canudas de Wit, C., Moulin, P., Sciarretta, A., "Model-based Adap-

tive Observers for Intake Leakage Detection in Diesel Engine", in Proc. of Amer-

ican Control Conference 2009

Journal

• Ceccarelli, R., Moulin, P., Canudas de Wit, C., "Turbine Efficiency Estimation

for Fault Detection Application", Engine Control and Calibration, SAE Technical

Paper Series, 2010
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