
HAL Id: tel-00756967
https://theses.hal.science/tel-00756967v1
Submitted on 24 Nov 2012 (v1), last revised 9 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Analysis for Multi-Clock and Data-Intensive
Applications on Multiprocessor Systems-on-Chip

Abdoulaye Gamatié

To cite this version:
Abdoulaye Gamatié. Design and Analysis for Multi-Clock and Data-Intensive Applications on Mul-
tiprocessor Systems-on-Chip. Embedded Systems. Université des Sciences et Technologie de Lille -
Lille I, 2012. �tel-00756967v1�

https://theses.hal.science/tel-00756967v1
https://hal.archives-ouvertes.fr

Numéro d’ordre : 40917

Université Lille 1 Sciences et Technologies

habilitation à diriger des recherches (hdr)

Discipline : Informatique

par

abdoulaye gamatié

D E S I G N A N D A N A LY S I S F O R M U LT I - C L O C K A N D D ATA - I N T E N S I V E
A P P L I C AT I O N S O N M U LT I P R O C E S S O R S Y S T E M S - O N - C H I P

HDR soutenue le 15 novembre 2012, devant le jury suivant :

Jean-Luc Dekeyser Professeur, Université de Lille 1 Examinateur

Rajesh K. Gupta Professeur, Californie – San Diego, USA Rapporteur

Nicolas Halbwachs Directeur de Recherche CNRS, Verimag/Grenoble Rapporteur

Axel Jantsch Professeur, Royal Institute of Tech. – Stockholm, Suède Examinateur

Paul Le Guernic Directeur de Recherche INRIA, Rennes Examinateur

Patrice Quinton Professeur, ENS Cachan Rapporteur

Université de Lille 1 – Sciences et Technologies

LIFL - UMR 8022 - Cité Scientifique, Bât. M3 - 59655 Villeneuve d’Ascq Cedex

c©Abdoulaye Gamatié

c©Abdoulaye Gamatié

D E S I G N A N D A N A LY S I S F O R M U LT I - C L O C K A N D
D ATA - I N T E N S I V E A P P L I C AT I O N S O N M U LT I P R O C E S S O R

S Y S T E M S - O N - C H I P

abdoulaye gamatié

Habilitation Thesis
November 2012

c©Abdoulaye Gamatié

Abdoulaye Gamatié: Design and Analysis for Multi-Clock and Data-Intensive
Applications on Multiprocessor Systems-on-Chip, c© 2012

c©Abdoulaye Gamatié

In Memoriam of Boubakar.

To Leila and Sarah.

c©Abdoulaye Gamatié

A B S T R A C T

With the increase in the integration of functions, modern embedded systems
have become very smart and sophisticated. The typical examples of this ten-
dency are last generation mobile phones, which provide users with a large
panel of facilities for communication, music, video display, built-in camera,
Internet access, etc. These facilities are achieved by applications processing
huge amounts of information, referred to as data-intensive applications. Such
applications are also characterized by multi-clock behaviors since they often
include components operating at different activation rates during execution.

Embedded systems often have real-time constraints. For instance, in a
video processing application, there are usually rate or deadline constraints
imposed to image display. For this purpose, execution platforms must pro-
vide the required computational power. Parallelism plays a central role in
the answer to this expectation. The integration of multiple cores or proces-
sors on a single chip, referred to as multiprocessor systems-on-chip (MPSoCs)
is a key solution to provide applications with sufficient performance at lower
energy costs for execution. In order to find a good compromise between
performance and energy consumption, resource heterogeneity is exploited
in MPSoCs by including processing elements with different characteristics.
For example, core processing units are combined with accelerators such as
graphic processing units or field-programmable gate arrays. Besides hetero-
geneity, adaptivity is another important feature of modern embedded sys-
tems. It enables to manage in a flexible manner the performance parameters
w.r.t. variations of system environment and execution platform.

In such a context, the development of modern embedded systems has
become very complex. It raises a number of challenges considered in the
contributions of this document, as follows:

• First, since MPSoCs are distributed systems, how can one successfully
address their design correctness, such that the functional properties of
deployed multi-clock applications can be guaranteed? This is studied
by considering a correct-by-construction design methodology for these
applications on multiprocessor platforms.

• Second, for data-intensive applications to be executed on such plat-
forms, the next question is how can one adequately deal with their
design and analysis, while fully taking into account their reactive na-
ture and their potential parallelism?

• Third, when considering the execution of these applications on MP-
SoCs, the final question is how can one analyze their non functional
properties (for instance, execution time or energy) in order to predict
their execution performances? The answer to this question is expected
to serve for the exploration of complex design spaces.

This document aims to answer the above three challenges in a pragmatic
way, by adopting a model-based vision. For this purpose, it considers two
complementary dataflow modeling paradigms: the polychronous modeling
related to the synchronous reactive approach, and the repetitive structure
modeling related to array-oriented data parallel programming. The former
paradigm enables to reason on multi-clock systems in which components

vi

c©Abdoulaye Gamatié

interact without assuming the existence of a global or reference clock. The
latter paradigm offers a powerful specification of the massive parallelism
in a system as factorized repetitive dependency relations over multidimen-
sional structures.

vii

c©Abdoulaye Gamatié

R É S U M É

Avec l’intégration croissante de fonctions dans les systèmes embarqués mod-
ernes, ces derniers deviennent très intelligents et sophistiqués. Les exem-
ples les plus emblématiques de cette tendance sont les téléphones porta-
bles de dernière génération, qui offrent à leurs utilisateurs un large panel
de services pour la communication, la musique, la vidéo, la photographie,
l’accès à Internet, etc. Ces services sont réalisés au travers d’un certain nom-
bre d’applications traitant d’énormes quantités d’informations, qualifiées
d’applications de traitements intensifs de données. Ces applications sont égale-
ment caractérisées par des comportements multi-horloges car elles compor-
tent souvent des composants fonctionnant à des rythmes différents d’activa-
tions lors de l’exécution.

Les systèmes embarqués ont souvent des contraintes temps réel. Par ex-
emple, une application de traitement vidéo se voit généralement imposer
des contraintes de taux ou de délai d’affichage d’images. Pour cette rai-
son, les plates-formes d’exécution doivent souvent fournir la puissance de
calcul requise. Le parallélisme joue un rôle central dans la réponse à cette
attente. L’intégration de plusieurs cœurs ou processeurs sur une seule puce,
menant aux systèmes multiprocesseurs sur puce (en anglais, multiprocessor
systems-on-chip – MPSoCs) est une solution clé pour fournir aux applications
des performances suffisantes, à un coût réduit en termes d’énergie pour
l’exécution. Afin de trouver un bon compromis entre performance et con-
sommation d’énergie, l’hétérogénéité des ressources est exploitée dans les
MPSoC en incluant des unités de traitements aux caractéristiques variées.
Typiquement, des processeurs classiques sont combinés avec des accéléra-
teurs (unités de traitements graphiques ou accélérateurs matériels). Outre
l’hétérogénéité, l’adaptativité est une autre caractéristique importante des
systèmes embarqués modernes. Elle permet de gérer de manière souple les
paramètres de performances en fonction des variations de l’environnement
et d’une plate-forme d’exécution d’un système.

Dans un tel contexte, la complexité du développement des systèmes em-
barqués modernes paraît évidente. Elle soulève un certain nombre de défis
traités dans les contributions de ce document, comme suit :

• tout d’abord, puisque les MPSoC sont des systèmes distribués, com-
ment peut-on aborder avec succès la correction de leur conception,
de telle sorte que les propriétés fonctionnelles des applications multi-
horloges déployées puissent être garanties ? Cela est étudié en con-
sidérant une méthodologie de distribution "correcte-par-construction"
pour ces applications sur plates-formes multiprocesseurs.

• Ensuite, pour les applications de traitement intensif de données à exé-
cuter sur de telles plates-formes, comment peut-on aborder leur con-
ception et leur analyse de manière adéquate, tout en tenant pleinement
compte de leur caractère réactif et de leur parallélisme potentiel ?

• Enfin, en considérant l’exécution de ces applications sur des MPSoC,
comment peut-on analyser leurs propriétés non fonctionnelles (par ex-
emple, temps d’exécution ou énergie), afin de pouvoir prédire leurs
performances ? La réponse à cette question devrait alors servir à l’ex-
ploration d’espaces complexes de conception.

viii

c©Abdoulaye Gamatié

Ce document vise à répondre aux trois défis ci-dessus de manière pragma-
tique, en adoptant une vision basée sur des modèles. Pour cela, il considère
deux paradigmes complémentaires de modélisation flot de données : la mod-
élisation polychrone liée à l’approche synchrone réactive, et la modélisation de
structures répétitives liée à la programmation orientée tableaux pour le par-
allélisme de données. Le premier paradigme permet de raisonner sur des
systèmes multi-horloges dans lesquels les composants interagissent, sans
supposer l’existence d’une horloge de référence. Le second paradigme est
quant à lui suffisamment expressif pour permettre la spécification du paral-
lélisme massif d’un système.

ix

c©Abdoulaye Gamatié

F O R E W O R D

First steps in research. My very first experience in the exciting world
of academic research dates back to my Master internship, started by the
end of 1999, in the Ep-Atr group (leader: Paul Le Guernic), which later
became Espresso group (leader: Jean-Pierre Talpin) at the IRISA lab. in
Rennes. Both groups investigate the correct design of safety-critical applica-
tions by considering the synchronous reactive approach. I started my Ph.D.
thesis in the Espresso group from October 2000. The defense was in May
2004. After that, I stayed in this group during one year and half as a re-
search associate and assistant professor affiliated to Université de Rennes
I. Within all this period, I addressed the design of avionic real-time ap-
plications with the synchronous programming language Signal. This coin-
cided with several studies in Espresso, on the polychronous semantic model
of Signal [163], considered as the reference model for this language nowa-
days. Note that the first studies about the Signal language have been ini-
tiated by Paul Le Guernic [159] in strong collaboration with Albert Ben-
veniste. Another major contributor is Thierry Gauthier, who developed the
first compiler of this language. For more details on the main contributors
to Signal, the reader can refer to the historical notes available in http:

//www-users.cs.york.ac.uk/~burns/papers/signal.pdf.
My work regarding Signal-based design and analysis has been supervised

by Paul Le Guernic and Thierry Gautier, who have been a constant source
of inspiration in my research over the past twelve years. My results have
contributed to an existing rich literature on how asynchronous mechanisms,
e.g., regarding communication, can be described and analyzed using the
synchronous reactive approach.

Maturity era. In September 2005 when I joined the DaRT team-project
led by Jean-Luc Dekeyser in Lille, this team was only two years old. Its
main research topic was about the codesign of data-intensive systems-on-
chip (SoCs) with a focus on the following issues: i) definition of a UML
profile1 for SoC comodeling, ii) compilation devoted to data-parallel con-
structs for an efficient mapping on multiprocessor platforms, and iii) sim-
ulation techniques mainly in SystemC. On my arrival in the team, I first
occupied a Post-doc position for one year. Then, I obtained a full-time po-
sition as a CNRS Research Scientist. In the same period, together with Éric
Rutten2, we initiated a connection between the research topic of DaRT and
the synchronous reactive approach. Our motivation was to exploit the com-
plementarity between the techniques inherent to both approaches. The early
work of Smarandache et al. [219] on a connection of the Alpha and Signal
languages was one important inspiration to us.

For seven years, I have been investigating, with colleagues, this comple-
mentarity in order to provide a satisfactory answer to the crucial design
issues of modern embedded systems. The obtained results are currently rel-
evant enough to contribute to the maturity of my research activity. I am
particularly grateful to Jean-Luc Dekeyser, Éric Rutten and Pierre Boulet for

1 Today integrated in the Marte standard profile [194] of the Object Management Group.
2 Éric Rutten joined the DaRT group in 2004 and moved to INRIA Grenoble in 2006. We both

belong to the synchronous approach community.

x

c©Abdoulaye Gamatié

http://www-users.cs.york.ac.uk/~burns/papers/signal.pdf
http://www-users.cs.york.ac.uk/~burns/papers/signal.pdf

our fruitful collaboration on this topic. Last but not least, I am deeply in-
debted to all my Ph.D. and Master students, and Post-doc colleagues, who
actively contributed to the different results summarized in this document.

On the other hand, my decision to defend this Habilitation thesis coin-
cides with an important re-organization3 of the DaRT group, around new
research topics currently under discussion. I such a context, I am planning
to join a new research group in another laboratory, in accordance with my
research perspectives highlighted at the end of this document.

Rationale of this synthesis document. This document is a summary
of my scientific contributions from my Post-doc to nowadays. It aims to
show in a coherent way how my research activity on the high-level design
and analysis of embedded systems has evolved from multi-clock distributed
applications to performance-demanding applications, such as data-intensive
applications.

To address the former applications, I considered the polychronous model-
ing paradigm, related to the synchronous reactive approach, to show how
they can be safely designed on globally asynchronous locally synchronous
(GALS) platforms, so that the correctness of their functional behaviors is
ensured.

To deal with the latter applications, I combined the polychronous model
with the repetitive structure modeling paradigm, which is suitable for describ-
ing massively parallel computations and platforms. Beyond the correctness
of the functional behaviors, I have been also exploring adequate ways to find
the best performance and energy/power trade-offs for these performance-
demanding applications. Here, the target execution platforms are multipro-
cessor systems-on-chip (MPSoCs)

How to consider the contents of this document. All results reported
in the contribution chapters, i.e., Chapters 2, 3 and 4, have been already
published in peer-reviewed journals and conferences. The presented mate-
rial therefore comes in major part from the related publications, which are
explicitly mentioned as margin notes throughout the text. In that way, the
reader can easily find more details about each summarized contributions.
Most of my papers that occur as references in this document are available
online via the websites of their editors. Finally, in order to easily assess my
achievements, an executive summary is provided at the end of each contribu-
tion chapter.

3 The LIFL lab. (Computer Science Laboratory of Lille, http://www.lifl.fr/) to which DaRT
belongs and the LAGIS lab. (focusing among others on continuous and discrete event dy-
namical systems, system safety engineering and vision and image processing in Lille, http:
//lagis.ec-lille.fr/) are going to be merged in order to create a unique laboratory in the
North of France, where the complementarity of their covered research areas will be better
promoted.

xi

c©Abdoulaye Gamatié

http://www.lifl.fr/
http://lagis.ec-lille.fr/
http://lagis.ec-lille.fr/

c©Abdoulaye Gamatié

A C K N O W L E D G M E N T S

First of all, I am very grateful to Prof. Rajesh K. Gupta from UC San Diego
(USA), Dr. Nicolas Halbwachs from Verimag/CNRS (France) and Prof. Patri-
ce Quinton from ENS Cachan (France) for having kindly accepted to serve
as reviewers on my Habilitation defense committee, and for the reports they
wrote on my work.

I would like also to thank warmly Prof. Jean-Luc Dekeyser from Univer-
sity of Lille 1 (France), Prof. Axel Jantsch from Royal Institute of Technology
(Sweden) and Dr. Paul Le Guernic from Inria (France), for their kind par-
ticipation to my Habilitation defense committee as examiners, and for the
enlightened discussions we had during the defense.

A major part of the contributions presented in this document have been
obtained in collaboration with colleagues from the following research groups:
Aoste group in Sophia-Antipolis (France), DaRT group in Lille (France),
Espresso group in Rennes (France), Electronic Systems group in TU/Eind-
hoven (The Netherlands), Fermat group at Virginia Tech (USA) and Sardes
group in Grenoble (France). These colleagues are too many to name all.
Many thanks to all of them!

I want to express especially my gratitude to my colleagues from the
Espresso and DaRT research groups for their insightful comments on the
draft version of this document and for their very useful support in the orga-
nization of my Habilitation defense.

Finally, many thanks to my family for its constant and precious support.

xiii

c©Abdoulaye Gamatié

c©Abdoulaye Gamatié

C O N T E N T S

List of Figures xvii
List of Tables xviii
1 introduction 1

1.1 Trends in embedded system design 1

1.1.1 High function integration and data volumes 2

1.1.2 Parallelism for high-performance and power-efficiency 2

1.1.3 Adaptivity in embedded systems 3

1.2 Contributions: correct and efficient MPSoC design 5

1.2.1 Polychronous design and analysis of systems 7

1.2.2 Design of reactive data-intensive applications 8

1.2.3 Design space exploration for MPSoC codesign 9

1.3 Outline of the document 10

2 polychronous design of embedded systems 11

2.1 Overview of main challenges 12

2.1.1 Dealing with asynchrony with the polychronous model 13

2.1.2 Static analysis for polychronous designs 13

2.2 Polychronous design of distributed embedded systems 14

2.2.1 Some related works in the synchronous approach 14

2.2.2 Modeling of asynchronous mechanisms in Signal 15

2.2.3 A methodology for correct distributed design 16

2.2.4 Model-driven engineering for polychronous design 18

2.3 Static analysis of polychronous specifications 18

2.3.1 Some related works on synchronous languages 18

2.3.2 A new abstraction for Signal 19

2.3.3 Application to Signal clock calculus: an example 22

2.3.4 Static analysis of polychronous programs in MRICDF 25

2.4 Pedagogical implication: a book on Signal programming 26

2.5 Summary and discussion 27

3 design model for reactive data-intensive applications 30

3.1 Overview of main challenges 30

3.1.1 Reactivity in massively parallel computations 30

3.1.2 Design correctness of data-intensive applications 32

3.2 Background notions 32

3.2.1 A survey of parallel programming models 33

3.2.2 The repetitive structure modeling (RSM) 36

3.3 From static to dynamic design model in RSM 40

3.3.1 Integrated control-oriented design with FSMs and RSM 40

3.3.2 Interaction between data dependencies and logical time 43

3.3.3 Model-driven engineering in Gaspard2 environment 48

3.4 Synchronous approach for dealing with correctness 49

3.4.1 Causality and array assignment analysis 49

3.4.2 State-based analysis for adaptive behaviors 51

3.4.3 Analysis in presence of environment constraints 51

3.5 Summary and discussion 52

4 design space exploration for mpsoc codesign 55

4.1 Overview of main challenges 55

4.1.1 Data transfer and storage for efficient communications 56

4.1.2 Software/hardware association for efficient execution 57

4.2 DSE for efficient data transfer and storage 58

xv

c©Abdoulaye Gamatié

xvi contents

4.2.1 Related works 58

4.2.2 A hardware architecture template 59

4.2.3 Overview of the DSE problem encoding 60

4.2.4 Implementation of our DSE approach 61

4.2.5 Some case studies 62

4.2.6 Benefits for MPSoC design frameworks 64

4.3 A clock model for performance analysis in MPSoCs 65

4.3.1 Related works 65

4.3.2 Clock design of correct and efficient executions 67

4.3.3 Performance analysis based on ternary clocks 71

4.3.4 Implementation of the clock-based framework 72

4.3.5 A case study 73

4.3.6 Benefits of proposal for existing frameworks 75

4.4 Summary and discussion 77

5 conclusions and perspectives 80

5.1 Overview of contributions 80

5.2 Future research topics 81

5.2.1 Towards a codesign-aware compilation for MPSoCs 82

5.2.2 Safe management of adaptivity in MPSoC codesign 83

5.2.3 Accurate observations for MPSoC adaptivity manage-
ment 84

bibliography 86

c©Abdoulaye Gamatié

L I S T O F F I G U R E S

Figure 1 A simplified model of MPSoC. 3

Figure 2 A visual summary of my contributions, according to
system design layers over the time represented by the
horizontal line at the bottom (the French acronym
ATER denotes “Attaché Temporaire d’Enseignement et
de Recherche” and is equivalent to Assistant Professor
position). 6

Figure 3 Specific contributions presented in the current chap-
ter (the other contributions not exposed here are in-
tentionally blurred). 11

Figure 4 A multi-clocked GALS system. 12

Figure 5 Overview of our design methodology for distributed
embedded systems. 16

Figure 6 Deployment of FWS on a platform. 17

Figure 7 Summary of Boolean-Interval abstraction of Signal. 21

Figure 8 Static analysis and code generation for a bathtub model
in Polychrony. 23

Figure 9 A sketch of the clock calculus for Bathtub_Bis. 25

Figure 10 A sketch of the C code for Bathtub_Ter. 25

Figure 11 Specific contributions presented in the current chap-
ter (the other contributions not exposed here are in-
tentionally blurred). 31

Figure 12 A glance at parallel programming models and lan-
guage families. 33

Figure 13 Repetitive task specification. 37

Figure 14 Array paving according to a repetition space. 37

Figure 15 Data layout inside a tile given by the fitting matrix
F. 38

Figure 16 Repetitive task with inter-repetition dependency. 38

Figure 17 An Array-OL specification composed of four tasks. 39

Figure 18 Specification of Figure 17 after 1) fusion of tasks T1

and T2; 2) tiling of task T3 and 3) paving change of
task T4. 40

Figure 19 Example of mode task. 42

Figure 20 Example of mode automaton. 42

Figure 21 Space-time mapping of a [5, 4,∞]-array w.r.t. different
granularities. 44

Figure 22 Parallel synchronous models of repetitive tasks 45

Figure 23 Serialized synchronous models of repetitive tasks 46

Figure 24 Sketch of the Gaspard2 design approach. 48

Figure 25 A simple hierarchical task model. 49

Figure 26 A simple causality analysis for task T. 50

Figure 27 Different array assignments in RSM. 51

Figure 28 Image downscaling. 52

Figure 29 Specific contributions presented in the current chap-
ter (the other contributions not exposed here are in-
tentionally blurred). 56

xvii

c©Abdoulaye Gamatié

Figure 30 Architecture associated with the Array-OL model of
Figure 17. 59

Figure 31 Architecture associated with the Array-OL model of
Figure 18. 60

Figure 32 Overview of the proposed method. 61

Figure 33 Implementation of our DSE approach. 63

Figure 34 An application behavior bT 67

Figure 35 Clock trace of processors 68

Figure 36 An example of task schedules in terms of ternary
clocks 70

Figure 37 Admissible task schedules in terms of ternary clocks 70

Figure 38 Overview the CLASSY tool. 72

Figure 39 Application graph specifying the motion JPEG de-
coder 73

Figure 40 Application behavior for M-JPEG. 74

Figure 41 Execution times for M-JPEG decoder on an image:
CLASSY vs SoCLib cycle-accurate simulations (comm.
via bus and NoC). 76

Figure 42 A schematic evolution of my research activities. 82

L I S T O F TA B L E S

Table 1 Performance/power needs of next generation appli-
cations (Gops, mW and kW refer to Giga operations
per second, milliwatt and kilowatt resp.) [78]. 4

Table 2 Time required to find master trigger signal 26

Table 3 Exploration complexity and selectivity. 62

Table 4 Exploration run-time. 63

Table 5 Quality of Pareto front search. 64

Table 6 Analyzed mapping configurations 74

Table 7 Profiling data about M-JPEG tasks as inputs for CLASSY. 75

xviii

c©Abdoulaye Gamatié

1I N T R O D U C T I O N

In a keynote at the Euromicro conference on Digital System Design (DSD)
in 2006, Duranton [75] raised the following major challenges regarding high
performance embedded systems: the management of parallelism and time re-
quirements, the co-modeling for application mapping on execution platforms, and
correctness and efficiency of designs. These challenges must be addressed within
stringent time-to-market and low cost constraints. This document brings
some answer elements to address such challenges. It presents a summary of
my contributions since September 2004 on the design and analysis for multi-
clock and data-parallel applications on multi-processor embedded systems.
These works have been achieved successively at the IRISA (in Rennes) and IRISA stands for

Institut de Recherche
en Informatique et
Systèmes Aléatoires
(http://www.irisa.
fr/english/home.

html)

LIFL (in Lille) labs, associated with Inria. Most of the results have been ob-

LIFL stands for
Laboratoire
d’Informatique
Fondamentale de
Lille
(http://www.lifl.
fr/?languageId=1)

tained in collaborations with colleagues from different labs and countries.
The presented material partly comes from our common publications. I will
use “I” or “We” nominative cases when appropriate to present the results.

The remainder of this introductory chapter is organized as follows: Sec-
tion 1.1 discusses some major trends in embedded system design according
to which my research is driven; Section 1.2 summarizes my scientific contri-
butions; and Section 1.3 describes the outline of the document.

1.1 trends in embedded system design

Embedded systems are special-purpose computer systems combining soft-
ware and hardware components that are subject to external constraints com-
ing from environment and execution platforms. Their implementation on
chips, referred to as systems-on-chip (SoCs) makes them pervasive, ubiq-
uitous and suitable in many modern applications. Examples are consumer
electronics that currently propose very tempting electronic gadgets: digital
cameras, GPS receivers and video player. Among these, the most emblem-
atic products are probably mobile smart-phones providing an impressive
access to communication and entertainment services and social networking.
According to Parks Associates1, the number of mobile phone users world-
wide will reach 4.5 billion by 2013. At the same time, the percentage of
the marketing budget will increase to 150% according to Telefonica O22.
Even emerging and developing economies will significantly contribute to
this expected growth. Beyond their wide adoption in consumer electronics,
embedded systems are also present in the following application fields [76]:
automotive electronics such as in-vehicle entertainment systems; civil and
military defense such as radar, sonar, satellite systems and weather systems;
medical electronics such as surgical systems, imaging and diagnosis equip-
ments; computational science for simulating complex physical phenomena
such as climate modeling, seismic waves, behaviors of biological systems;
and business information processing from databases.

1 http://www.itfacts.biz/45-bln-mobile-users-by-2013

2 http://www.cellular-news.com/story/34048.php

1

c©Abdoulaye Gamatié

http://www.irisa.fr/english/home.html
http://www.irisa.fr/english/home.html
http://www.irisa.fr/english/home.html
http://www.lifl.fr/?languageId=1
http://www.lifl.fr/?languageId=1
http://www.itfacts.biz/45-bln-mobile-users-by-2013
http://www.cellular-news.com/story/34048.php

2 introduction

1.1.1 High function integration and data volumes

With the high integration of functions, embedded systems have become very
smart and sophisticated. Last generation mobile phones provide users with
a large panel of facilities for communication, music and video players, built-
in camera, Internet access, etc. Another example is the Sony PlayStation,
which integrates many similar functions. Future embedded multimedia sys-
tems are expected to keep on integrating more functions.

All these facilities within a single system lead to a processing of huge
amounts of information by the system. For instance, a mobile phone can
contain gigabytes of video, photo and music data files to process. Many of
the application domains mentioned previously include data-intensive process-
ing: applications operate on large data sets [213] or streams of data where
the processing mostly consists of data read/write and data manipulation.
The amount of manipulated data is expected to double every two years in
the future in these domains [47]. A number of common characteristics can
be observed in data-intensive applications:

• the sets of data are represented by multidimensional data structures,
e.g., multidimensional arrays, where dimensions express metrics such
as time, space, frequency, temperature, magnetic field, etc. The infor-
mation stored in these data structures are accessed either point-wise
via array indexes, or block-wise via monolithic data subsets.

• the computation of output data is achieved by applying operations
such as filters in multimedia signal processing to input data, indepen-
dently from the order in which these data are treated by operations.
The set of output data is often smaller than the set of input data.

When applications get access to data in the associated data-structures in
a regular and predictable way, they are often referred to as regular data-
intensive applications. Those characterized by unpredictable memory access
patterns, control structures and network transfers are referred to as irregu-
lar data-intensive applications. They typically manipulate pointer-based data
structures, e.g., linked lists, graphs and trees.

The above trends to increase the integration of functions and the amount
of data to be processed by applications inevitably amplifies the complexity
of the development for modern embedded systems. In addition, it strongly
calls for scalable design solutions.

1.1.2 Parallelism for high-performance and power-efficiency

Embedded systems often have real-time constraints, e.g., in a video pro-
cessing application, there are usually rate and deadline constraints imposed
to image display. Execution platforms must provide the required computa-
tional power. Parallelism plays a key role in the answer to this expectation
[87]. Instead of accelerating the clock frequency of each new processor gen-
eration as in a near past, technology providers such as Intel [39] now opt
for integrating multiple cores or processors on a single chip (by densifying
the number of transistors), referred to as multiprocessor systems-on-chip (MP-
SoCs) [241] in order to obtain better execution performances. As a result, the
traditionally adopted von Neumann model of computer architecture and se-
quential programming models should be revisited, or even discarded.

In addition to processors or cores, MPSoCs include components such as
accelerators for video and audio signal processing, communication means,

c©Abdoulaye Gamatié

1.1 trends in embedded system design 3

e.g., memories and their interconnects, and peripherals (see Figure 1). They
are adopted in the PlayStation 3, which uses a Cell Broadband Engine (CBE)
[148] composed of one PowerPC core and eight synergistic cores, i. e., single
instruction multiple data processing units, dedicated to data-intensive pro-
cessing. According to predictions of the International Technology Roadmap
for Semiconductors (ITRS) [139], the number of processing cores and mem-
ory size in portable equipments will increase by a factor of 6 in the next
eight years to reach around eight hundred processors.

Video
Accelerator

Audio
Accelerator

Bridge

Power
ManagerCPU_0 CPU_1

Memory

USB

UART

Bluetooth

GPIO

Wifi

Figure 1: A simplified model of MPSoC.

Notice that the aforementioned performance enhancement of computer
architectures mostly concerns computing resources. While the latency of
computations achieved by multiple CPUs is reduced, it is not necessarily
the case for the overall temporal performance of systems due to inadequate
memory access time and data bandwidth in communications, via a shared
memory. The difference between CPUs and memory cycle times is currently
about a factor of 1000, referred to as memory wall [152].

The high-performance requirements of embedded systems go together
with the need to keep their power/energy consumption at a minimum
level (AA battery lifetime is de facto a metric in portable embedded sys-
tems today). Especially when the systems are embedded in portable devices
whose autonomy strongly depends on batteries. In order to find a good
compromise between performance and energy consumption, exploiting het-
erogeneity in multiprocessor systems seems to be promising. Such systems
include processing elements with various characteristics, e.g., architectures
with processors running at different frequencies, or architectures combining
core processing units (CPUs) and accelerators such as graphic processing
units (GPUs) or field-programmable gate arrays (FPGAs). Accelerators al-
low to save energy when executing performance-demanding pieces of code
in data-intensive applications. For instance, the Xbox 360 (Slim) console3 of
Microsoft, which integrates CPU and GPU components on a chip, reduces
the power consumption by more than 20%. We refer to systems with the
same type of processing elements as homogeneous systems.

As an overall picture, Table 1 indicates next generation embedded applica-
tions with typical performance and power requirements obtained from [78].
A large part of these applications concerns data-intensive computation.

1.1.3 Adaptivity in embedded systems

Adaptivity is more and more desired in embedded systems for several rea-
sons. First, the ability to adapt to environment variations becomes very im-
portant. For instance, a video-surveillance embedded system for street ob-
servation adapts its image analysis algorithms according to factors like the

3 http://www.xbox.com

c©Abdoulaye Gamatié

http://www.xbox.com

4 introduction

Table 1: Performance/power needs of next generation applications (Gops, mW and
kW refer to Giga operations per second, milliwatt and kilowatt resp.) [78].

Field Application Performance Power

Mobile and Wire-
less Computing

Speech recognition, video compres-
sion, network coding & encryption

10–40 Gops 100 mW

High-
Performance
Computing

Computational fluid dynamics,
molecular dynamics, life sciences,
oil and gas, climate modeling

100–10000

Gops
100–
1000

kW

Medical Imaging
and Equipments

3D reconstruction, image registra-
tion and segmentation, battery-
driven health monitoring

1–1000

Gops
100 mW–
100 W

Automotive Lane, collision and pedestrian de-
tection, driving assistance systems

1–100 Gops 20–500

W

Home and Desk-
top Applications

Gaming physics, ray tracing, CAD
tools, EDA tools, web mining

10–1000

Gops
20–500

W

Business Portfolio selection, smart cameras,
asset liability management

1–1000

Gops
1–100 W

human activity (crowded place or not), luminosity (day or night) or the
weather. Some video-processing systems need to adapt their data process-
ing according to the consumption and production rates of input and output
information.

On the other hand, we can also observe the increasing variability of hard-
ware architectures in embedded systems [198]. Indeed, with the need to
provide high-performance via parallelism, the high integration of transis-
tors on a chip (e.g., more than two billions in the Intel 4-cores Tukwila)
imposes extreme chip manufacturing technologies such as the Intel 22 nm
Tri-Gate announced in 2011. Unfortunately, at this evolution, the percentage
of defects in chip manufacturing grows. As a result, a chip may not always
provide the full performance guarantees as expected, i.e. variability effects.
Embedded systems must adapt to this fact. Another limitation of current
chips comes from the enabled thermal dissipation of electronic components,
which imposes only a partial use of execution capacities. Depending on re-
quired computation power, an embedded system must adapt so as to exploit
the strict necessary chip resources. Such an idea is advocated by the dark
silicon chips [81] in which the number of transistors is greater than the one
they can supply in power.

Finally, we observe that reconfigurable computing, which has been studied
for several years [232], is getting mature nowadays. With the increasing pop-
ularity of FPGA-based design, it is a potential solution to the implementa-
tion of adaptive embedded systems.

c©Abdoulaye Gamatié

1.2 contributions : correct and efficient mpsoc design 5

1.2 contributions : correct and efficient mpsoc design

Position statement.

There is an enthusiastic debate on the nature of future embedded
systems, in which massive parallelism will be a key feature. This
evolution suggests a re-visitation of current design practice for an ad-
equate outcome. Many prominent prospective reports [76] [12] [152]
call for new programming models that fit well the design challenges
of future embedded systems. To fill this demand, I strongly believe
there is real opportunity to look back on existing models and build
on top of them the expected golden programming models. I advocate
the use of the well-established dataflow computing model [149] [73]
[238], via the combination of i) the multi-clock synchronous dataflow
model, supported by the synchronous programming languages [29],
and ii) the affine multidimensional dataflow model, supported by the
so-called repetitive structure modeling (RSM) based on the Array-
oriented language Array-OL [72]. This combination favors a very in-
teresting high-level design of embedded systems, by providing:

• a rich expressivity for modular description of concurrency and
massive parallelism in systems, as well as behavioral constraints
imposed by execution platforms and environment,

• a connection to a set of verification/analysis techniques and
tools for design assessment

• an access to efficient compilation techniques for loop and con-
trol optimized code generation towards distributed implemen-
tation platforms, e.g. MPSoCs.

Starting from studying the applicability of the so-called polychronous
model [163] (i.e., a multi-clock dataflow model that does not assume
a priori the existence of a global clock in a system) to the safe de-
sign of distributed embedded systems, I have been investigating the
integration of this model together with RSM, in a data-intensive MP-
SoC codesign framework [106]. The obtained results show that such
an approach can provide a rapid, flexible and relevant way to assess
multiple design alternatives, w.r.t. correctness, real-time constraints,
performances and energy. This is crucial for a successful and cost-
effective design of future embedded systems.
This promising outcome calls for continuing the development of our
high-level approach by taking into account other mainstream features
of future embedded systems, in particular their adaptivity or recon-
figuration needs. My on-going research already explores this direc-
tion, which I plan to study more in my future research, with a shift
to lower abstraction levels in order to finely address platform details.

From the trends presented in Section 1.1, it appears that with the tech-
nological advances, including the increasing integration of transistors in
chips and reconfigurable computing, embedded systems become extremely
sophisticated integrated systems. This obviously makes their design very
complex. Unfortunately, this evolution happens without taking care of the
limitations of existing design and verification tools. Within such a context,

c©Abdoulaye Gamatié

6 introduction

my contributions aim to the design of MPSoCs where correctness and per-
formance can be addressed at a high abstraction level to provide flexibility
and cost-effectiveness. The advocated solution targets adaptive embedded
systems achieving highly parallel regular applications with temporal con-
straints. The considered execution hardware platforms can be either homo-
geneous or heterogeneous.

Figure 2 summarizes my research activities since 1999, according to three
system design layers: software application, software/hardware interface and hard-
ware platform. My contributions only concern the first two layers. In the soft-
ware application layer, design and analysis issues are addressed by mainly
focusing on application functionality. In the software/hardware interface
layer, the interaction between software applications and hardware execu-
tion platforms is dealt with by explicitly taking into account features of
both parts.

So
ft
w
ar
e

H
ar
dw

ar
e

Sw
/H

w
in
te
rf
ac

e

Polychronous design and analysis of embedded systems

Modeling and analysis of reactive
 data-intensive applications

Design space exploration
 techniques for MPSoC codesign

IRISA LIFL

19
99

20
08

20
10

20
05

20
12

20
06

My PhD

Assistant

Professor

(ATER)

Post-doc

CNRS

Research

Scientist

Co-advised

PhDs

Co-advised

Post-docs

Completed

In-Progress

Figure 2: A visual summary of my contributions, according to system design layers
over the time represented by the horizontal line at the bottom (the French
acronym ATER denotes “Attaché Temporaire d’Enseignement et de Recherche”
and is equivalent to Assistant Professor position).

The first part of my contributions, devoted to polychronous design in Signal,
was initiated in 2000 during my PhD at IRISA lab and has been continued
until now. It concerns the safe design of distributed embedded systems and
an improved static analysis of multi-clocked application specifications for
optimized automatic code generation. The second part of the contributions
has started in 2005 after joining the LIFL lab (first as Post-doc, then as CNRSCNRS stands for

Centre National de la
Recherche

Scientifique

Research Scientist). It deals with the co-modeling of data-intensive appli-
cations on MPSoCs platforms. A modeling paradigm mixing data-parallel
computations, adaptive behaviors and temporal constraints has been stud-
ied. It mainly relies on the polychronous modeling and the repetitive struc-
ture modeling. The last part of the contributions is the most recent, i. e., from

c©Abdoulaye Gamatié

1.2 contributions : correct and efficient mpsoc design 7

2008. Here, I have been building design space exploration techniques on top
of previous parts in order to tackle the correctness and performance issues
in MPSoC design.

During my research activities, I have participated to the advisory of three
PhD. students: two already defended and one ongoing (Figure 2 only shows
their starting period according to the horizontal temporal line). I also men-
tored two Post-doc fellows. In addition, notice that I have supervised several
Master students, which are not reported in Figure 2.

The next sections summarize my main contributions presented in this
document.

1.2.1 Polychronous design and analysis of systems

Embedded systems are usually composed of elements operating at various
rhythms, e. g., different sensor and actuator activation rates, communica-
tion bus and processors frequencies. From the overall point of view, this
naturally leads to multi-clock embedded systems in which multiple activation
clocks are related by constraints, capturing the interaction (synchronization
and communication) expected between system elements. MPSoCs are one
example of multi-clock and distributed embedded systems. The polychronous
modeling paradigm [163], adopted by the Signal language [26] [92], enables
to describe such systems without necessarily assuming a reference clock.
The interaction of different parts of a system is captured via precedence and
coincidence relations between event occurrences.

The next paragraphs summarize my main contributions on the polychro-
nous design of embedded systems.

design of multi-clock distributed embedded systems . Since
my PhD thesis defended in May 2004 in the Espresso group of IRISA (in Espresso stands for

Environnement de
spécification de
programmes réactifs
synchrones (http://
www.inria.fr/en/

teams/espresso)

Rennes), I have continued to investigate the design of multi-clock embed-
ded applications on architectures such as globally asynchronous locally syn-
chronous (GALS) ones [53] [187]. I consider the polychronous design model.
These studies are carried out in collaboration with colleagues from Espresso.
With Thierry Gautier and Paul le Guernic, I addressed methodological as-
pects for system design by providing a set of design rules based on correct
Signal program distribution method and a library of architecture compo-
nents. Such components include various asynchronous communication and
synchronization mechanisms that I modeled in Signal during my PhD thesis.
They have been integrated since then in Polychrony 4, the development en-
vironment of Signal. With Thierry Gautier, Jean-Pierre Talpin and Christian
Brunette, we also proposed a few pragmatic extensions for Signal in order
to facilitate control-oriented design as in Mode Automata [179]. This exten-
sion has been implemented in the Signal-Meta environment (SME), which is
a front-end of Polychrony in the Eclipse environment, and based on Model-
Driven Engineering (MDE) technologies.

static analysis of polychronous programs . Beyond design as-
pects, I have been involved in a few studies about the static analysis of
polychronous specifications, which is crucial for correctness and optimiza-
tion of automatically generated code. In particular, I focused on the verifica-
tion of numerical properties, which are not fully addressed with the widely
adopted Boolean abstractions in compilers of synchronous languages. This

4 http://www.irisa.fr/espresso/Polychrony

c©Abdoulaye Gamatié

http://www.inria.fr/en/teams/espresso
http://www.inria.fr/en/teams/espresso
http://www.inria.fr/en/teams/espresso
http://www.irisa.fr/espresso/Polychrony

8 introduction

research topic originated from early discussions with Paul Le Guernic dur-
ing my Master internship in 1999 within the Ep-Atr group of IRISA. TheseEp-Atr stands for

Environnement de
programmation

d’applications temps
réel (http:

//www.inria.fr/

en/teams/epatr)

studies were conducted in collaboration with Thierry Gautier and Loïc Bes-
nard of Espresso group, by considering an approach based on interval deci-
sion diagrams (IDDs) [223]. Then, more recently with Laure Gonnord from
the DaRT group of LIFL, and Sandeep Shukla and Bijoy Jose from the Fer-

DaRT stands for
Apports du

parallélisme données
au temps réel

(http://www.inria.
fr/en/teams/dart)

mat lab at Virginia Tech (VA, USA), we adopted an alternative solution
based on satisfiability modulo theory (SMT) [69].

The above investigations about the polychronous design of embedded
systems have been carried out mainly in the Polychrony environment. They
strongly favored a personal experience on Signal programming, which I
restituted in a book [92], edited by Springer in 2010.

1.2.2 Design of reactive data-intensive applications

As the parallelism level in both applications and execution platforms is
growing significantly, massively parallel embedded systems will be very
present in several application domains. This calls for adequate design con-
cepts offering an efficient and expressive description of the massive paral-
lelism inherent to data-intensive applications implemented on multiproces-
sor platforms. The repetitive structure modeling (RSM) paradigm [115] based
on the Array-OL formalism [72], expresses the massive parallelism as fac-
torized repetitive dependency relations over multidimensional structures.
Thanks to these features, it has been adopted in the UML/Marte standard
profile [194], for modeling and analysis of real-time and embedded systems.

An overview of my main contributions on the modeling and analysis of
reactive data-intensive applications is given below.

multi-paradigm modeling and analysis approach . From my
Post-doc started in September 2005 for one year, I have joined the DaRT
group of LIFL and Inria (Lille), which investigates the design of embed-
ded data-intensive applications on massively parallel architectures. My mo-
tivation was to explore the applicability of the polychronous model in this
specific application field. I closely collaborated with Éric Rutten, Jean-Luc
Dekeyser and Pierre Boulet to understand the link between the polychronous
and RSM modeling paradigms. In order to benefit from the respective capa-
bilities of both paradigms, we studied a translation of RSM specifications
into synchronous dataflow programs [102]. This has been achieved in the
context of the PhD thesis of Huafeng Yu [244] (co-advised with Éric Rutten
and Jean-Luc Dekeyser). The defined translation offers a bridge according
to which a designer can specify the potential parallelism of a given applica-
tion and produce a corresponding synchronous model analyzable with the
synchronous technology. Among the properties of interest in RSM models,
are the absence of causal cycles, absence of multiple assignments to array
variables, etc. They are safely addressed with compilers of synchronous lan-
guages. However, the main limitation of our translation is its scalability. As a
solution, with Pierre Boulet, we proposed a component-based abstraction by
using loop transformations to mitigate the massive parallelism expressed in
RSM. This promotes a modular design from which data dependencies can
be better managed. Parts of these results are covered by the five-months
Post-doc of Mohamed Fellahi, co-advised with Pierre Boulet.

c©Abdoulaye Gamatié

http://www.inria.fr/en/teams/epatr
http://www.inria.fr/en/teams/epatr
http://www.inria.fr/en/teams/epatr
http://www.inria.fr/en/teams/dart
http://www.inria.fr/en/teams/dart

1.2 contributions : correct and efficient mpsoc design 9

from static to dynamic model for codesign. The data depen-
dencies expressed within RSM only define a static partial ordering in appli-
cation behaviors. This is clearly not expressive enough to describe the dy-
namics related to control flows or temporal aspects. During the PhD thesis
of Huafeng Yu, we studied the refinement of a preliminary extension [156]
of RSM with modes and finite state machines, again inspired by Mode Au-
tomata. We proposed a generic extended model usable in SoC co-design lev-
els [70]: software application, hardware architecture, association of both. It is
one of the few propositions in literature mixing multidimensional dataflow
with control. It has been experimented in discrete control synthesis for mul-
timedia applications and hardware accelerators generation for reconfigura-
tion in FPGAs. On the other hand, in order to describe temporal aspects in
RSM, we proposed to refine data dependency specifications with abstract
clock constraints, expressed with the Marte Time concepts and the clock con-
straint specification language (CCSL) [16]. These constraints explicitly capture
suitable information about environment and execution platform properties
of systems. The result are clock traces reflecting simulation scenarios for a
system, which serve for an easy and rapid design assessment. This work
has been carried out in the context of the PhD thesis of Adolf Abdallah (co-
advised with Jean-Luc Dekeyser) and a collaboration with the colleagues
from the Aoste group of Inria and I3S (Sophia Antipolis). Aoste stands for

Modèles et méthodes
pour l’analyse et
l’optimisation des
systèmes temps réel
embarqués (http:
//www.inria.fr/

en/teams/aoste)

I3S stands for
Laboratoire
d’Informatique,
Signaux et Systèmes
de Sophia Antipolis
(http://www.i3s.
unice.fr/I3S/

presentation.en.

html)

Most of the above works have been experimented in the Gaspard25 design
environment, which uses Marte for the codesign of data-intensive SoCs.

1.2.3 Design space exploration for MPSoC codesign

Relevant design properties of embedded systems include functional correct-
ness, temporal performance, memory size and energy consumption. Tech-
niques such as physical prototyping and simulation are still widely used for
design assessment. However, with the increasing complexity of embedded
systems, they are insufficient to explore large design spaces. Leveraging
high abstraction levels is probably the key ingredient for overcoming this
limitation. Indeed, higher level approaches are fast, cost-effective and per-
mit relevant analysis of complex design spaces. The desired design space
exploration (DSE) solutions must identify adequate parallelism levels, con-
figuration parameters and hardware/software mappings, w.r.t. behavioral
correctness, best execution performance, memory and energy consumption.
In order to define such solutions for MPSoCs, I adopt two complementary
approaches, highlighted in the next.

dse for efficient data transfer and storage . From December
2009, I have been collaborating with Pierre Boulet and Rosilde Corvino, a
former Post-doc in DaRT group (co-advised with Pierre Boulet) on the def-
inition of DSE for data transfer and storage micro-architectures [63], which
include communication structures and memory hierarchies. Rosilde is re-
search scientist and project manager at TU/e in Eindhoven (The Nether-
lands) since December 2010. We keep on working on this topic together
with her colleagues in Eindhoven.

Today, the optimization of communication structures, memory hierarchy
and global synchronizations in embedded systems is a time consuming and

5 “Gaspard2” denotes the second version of an environment dedicated to Graphical Array Specifi-
cation for PARallel and Distributed computing – http://www.gaspard2.org

c©Abdoulaye Gamatié

http://www.inria.fr/en/teams/aoste
http://www.inria.fr/en/teams/aoste
http://www.inria.fr/en/teams/aoste
http://www.i3s.unice.fr/I3S/presentation.en.html
http://www.i3s.unice.fr/I3S/presentation.en.html
http://www.i3s.unice.fr/I3S/presentation.en.html
http://www.i3s.unice.fr/I3S/presentation.en.html
http://www.gaspard2.org

10 introduction

error-prone process. As an answer, we proposed an electronic system level
framework to explore the best communication and synchronization configu-
rations of data-parallel applications. In Gaspard2, this enables to assess var-
ious mappings of RSM application models onto MPSoC architectures. Most
of existing works improving hardware synthesis with loop transformations,
optimize the loop iteration scheduling, reduce the redundant memory traf-
fic and improve the synthesis of computing data path only for single nested
loops. Our solution enables to explore different loop transformations for ap-
plications with multiple communicating nested loops [66]. From these transfor-
mations, it infers architecture template customizations. In order to make
efficient the implementation of our analysis, we used the abstract clock no-
tion of the synchronous reactive model to capture scheduling and mapping
information of repetitive tasks, i. e., loops, when mapped onto customized
architecture templates. The exploration process is performed through a ge-
netic algorithm.

exploring parallelism level in hardware/software mapping .
Following the work initiated during the PhD thesis of Adolf Abdallah [2],
we are developing an abstract clock-based framework for analyzing adaptive
MPSoC systems. This work is conducted in the PhD thesis of Xin An started
in October 2010 (co-advised with Éric Rutten in the Sardes group of InriaSardes stands for

Architecture de
systèmes réflexifs

pour les
environnements

distribués (http:
//www.inria.fr/

en/teams/sardes)

Grenoble).
We use a multi-clock modeling for combined software, hardware and en-

vironment specifications to overcome the design validation issues [93]. An
application is represented according to the polychronous model by specify-
ing event occurrences with their precedence relations. Then, we study how
to check possible temporal constraints imposed by an environment on ap-
plications by exploiting affine clocks of Signal. We analyze different design
scenarios of applications mapping and scheduling on MPSoC platforms via
abstract clock traces representing system simulations. From these traces, be-
havioral correctness can be checked. Execution times can be also determined
for performance evaluation. In addition, the ability to easily reproduce such
kinds of traces for different processor frequency values favors a qualitative
reasoning about energy consumption. All this is also made possible in pres-
ence of adaptive system behaviors, including frequency changes during exe-
cution and task migrations [15]. A major advantage of this approach is that
it offers a simple and fast alternative to explore and reduce complex design
spaces before applying physical prototyping and simulation techniques. It
is an ideal complement to these techniques.

The above two works on design space exploration techniques for MPSoCs
have been implemented in two prototype tools, available on demand.

1.3 outline of the document

The remaining of this report is organized as follows: Chapter 2 presents
our works on the correct design of multi-clocked distributed embedded
systems by using the polychronous design model associated with the Sig-
nal language; Chapter 3 summarizes the modeling and analysis of reactive
data-intensive applications by combining the multidimensional repetitive
structure modeling and the multi-clock synchronous modeling paradigms;
Chapter 4 reports our recent works defining two approaches for the analy-
sis and design space exploration of data-parallel applications on MPSoCs;
finally, Chapter 5 gives the conclusions and draws future research directions.

c©Abdoulaye Gamatié

http://www.inria.fr/en/teams/sardes
http://www.inria.fr/en/teams/sardes
http://www.inria.fr/en/teams/sardes

2P O LY C H R O N O U S D E S I G N O F E M B E D D E D S Y S T E M S

The contributions presented in this chapter cover a range of works that I
have been involved in since my PhD defense in May 2004, on the poly-
chronous design of distributed embedded systems (see Figure 3). They have
been obtained mostly in the context of a collaboration with colleagues from
Espresso, my former research group at IRISA in Rennes. Another part of
these contributions, mainly on static analysis of polychronous programs,
comes from recent collaborations with Laure Gonnord from LIFL in Lille
and Sandeep Shukla’s group from Virginia Tech in USA. These contribu-
tions are part of a strong personal motivation to understand thoroughly the
polychronous modeling, to construct typical representative examples illus-
trating its capabilities for the safe design of multi-clock distributed embed-
ded systems, and to bring it to a wide audience, and most importantly for
educational purpose.

So
ft

w
ar

e
H

ar
dw

ar
e

Sw
/H

w
in

te
rf

ac
e

Polychronous design and analysis of embedded systems

Modeling and analysis of reactive
 data-intensive applications

Design space exploration
 techniques for MPSoC codesign

IRISA LIFL

19
99

20
08

20
10

20
05

20
12

20
06

My PhD

Assistant

Professor

(ATER)

Post-doc

CNRS

Research

Scientist

Co-advised

PhDs

Co-advised

Post-docs

Defended

In-Progress

Figure 3: Specific contributions presented in the current chapter (the other contribu-
tions not exposed here are intentionally blurred).

The chapter is organized as follows: in Section 2.1, I give some motivations
for polychronous design and introduce the main challenges addressed in my
different contributions; in Section 2.2, I present an overview of my works on
the design of distributed embedded systems with the polychronous model;
in Section 2.3, I summarize my proposition on the usage of satisfiability
modulo theory for a better static analysis of polychronous specifications; in
Section 2.4, the pedagogical implication of these works is discussed; finally,

11

c©Abdoulaye Gamatié

12 polychronous design of embedded systems

in Section 2.5, I discuss the strengths, limitations and future directions to
presented works. An executive summary is given, regarding the key points
in my contributions highlighted in this chapter.

2.1 overview of main challenges

MPSoCs have been adopted in consumer electronics to achieve high qual-
ity of service (QoS). They support advanced techniques allowing to change
dynamically the frequency of processing w.r.t. to the voltage, i. e., dynamic
voltage and frequency scaling (DVFS) [177]. The multiple clock domains re-
sulting from local decisions to increase or decrease a processor frequency
offer a flexible way to address a global performance/energy trade-off in
systems. A similar observation is made at system level when designing em-
bedded applications as functional blocks or modules, running concurrently
on different computation nodes, for instance multi-rate tasks.

Globally asynchronous locally synchronous (GALS) architectures [53] [187]
used to be an interesting implementation of such multiple clock domains
systems. Each computation node in GALS holds its own clock providing
a local (synchronous) vision of time. The GALS model is attractive for the
design of multi-clock distributed systems thanks to its composability.

In the synchronous reactive modeling [29], two ways are distinguished for
modeling multi-clock systems. The first model assumes that system holds a
reference abstract clock according to which its components activation is char-
acterizable. Such an abstract clock is a discrete set logical instants. We refer
to this model as synchronous multi-clock model. The Lustre language [130],
its Lucid Synchrone variant [50] and Esterel [206] embrace this vision. The
other model, referred to as polychronous model considers no reference clock in
a multi-clock system. A major advantage of the polychronous model is that
different system components can evolve in a loosely-synchronous fashion,
which is quite adapted for capturing GALS executions. It also favors com-
posability by enabling modular or incremental design. The polychronous
model is adopted by the Signal language [26], its MRICDF variant [144] and
the CCSL language [178].

node 3

node 2

node 1

3210 4

0 2 51 6 73 4

0 1 2 3

Figure 4: A multi-clocked GALS system.

An example of polychronous model of a GALS system is illustrated in
Figure 4. Events are represented by bullets labeled with their occurrence

c©Abdoulaye Gamatié

2.1 overview of main challenges 13

rank according to their corresponding time scale (a horizontal line). The
interactions between the three illustrated nodes can be represented using
synchronization relations between event occurrences, e.g., first event occur-
rence (tagged “0”) of node 1 and third event occurrence (tagged “2”) of node
2, second event occurrence of node 1 and second event occurrence of node
3, etc. From an overall viewpoint of a system, these relations only yield a
partial occurrence ordering of all observed events; while focusing on a node,
all its local events are totally ordered with respect its clock.

2.1.1 Dealing with asynchrony with the polychronous model

The design of distributed systems has been extensively studied for decades
[226, 67]. The asynchrony [86] inherent to these systems appears a priori as
an obstacle to their description with the synchronous model. According to
[236], a fully synchronous system is characterized by the boundedness and
knowledge of: i) processing speed, ii) message delivery delay, iii) local clock rate
drift, iv) load pattern, and v) difference among local clocks. A fully asynchronous
system assumes none of these characteristics.

The polychronous model aims at a modular design of systems with mul-
tiple loosely coupled clocks in order to deal with the complexity of their
distribution. Compared to the synchrony/asynchrony definition of [236], it
offers an intermediate vision: while it assumes the boundedness of compu-
tation and communication activities, the difference between local activation
clocks of system parts is a priori unknown. So, my first contribution aims to
answer the following question:

First challenge.

How to define a pragmatic approach for the correct design of dis-

tributed embedded systems with the polychronous model?

The definition of synchronous models of asynchronous mechanisms,
e. g., for communication and synchronization, is one key ingredient
to a successful solution to the above issue. Another important ingredi-
ent consists in exploiting the clock properties of polychronous models
for their refinement towards desynchronized designs. Finally, bring-
ing all these capabilities at a user-friendly level is very important for
the pragmatic application of the advocated vision.

2.1.2 Static analysis for polychronous designs

Abstract clocks play a central role in the reasoning on polychronous designs.
They denote sets of logical instants at which events occur. Typically, to prove
the reactivity of a system with respect to an event, one can check whether
or not the associated clock is empty. The mutual exclusion of two different
events is checked by verifying that their clock intersection is empty. Beyond
such properties, the automatic code generation from polychronous specifi-
cations uses abstract clocks to infer optimized control structures in resulting
sequential or distributed code. This is also the case for synchronous multi-
clock models in Lustre [37] for producing efficient sequential code.

In a polychronous language such as Signal, clock properties are analyzed
statically during the compilation of specifications. The quality of the static
analysis and the code generation performed by the compiler quite depend

c©Abdoulaye Gamatié

14 polychronous design of embedded systems

on the efficiency of the clock analysis. The clock analysis usually relies on
a Boolean abstraction of programs, internally represented as binary decision
diagrams (BDD) [45] for an efficient reasoning [10]. While both the status
(i.e., presence/absence) and values of Boolean signals are fully taken into
account, only the status of non Boolean signals is considered in this ab-
straction. As a result, when the clock properties expressed in a program are
defined on numerical expressions, such an abstraction misses relevant infor-
mation about their values. This sometimes leads to inaccurate analysis and
inefficient code generation. Regarding this issue, my second contribution
addresses the following question:

Second challenge.

How to improve the static analysis of polychronous specifications

for a better clock analysis and automatic code generation?

The ability to efficiently address design properties requires an investi-
gation of new abstractions for polychronous languages. In the case of
Signal, the candidate abstractions must enable to tackle both logical
and numerical properties.

2.2 polychronous design of distributed embedded systems

In the next sections, I start with an overview of related works on the syn-
chronous design of distributed embedded systems. Then, I present my main
contributions regarding this topic.

2.2.1 Some related works in the synchronous approach

There have been numerous studies on program distribution in synchronous
languages. Most of these studies focus on automatic program distribution meth-
ods [111]: given a centralized synchronous program P and a distributed ar-
chitecture A, the deployment of P on A is defined automatically, with the
necessary inserted communication code, so that the resulting distributed
program has the same functional behavior as P. Beyond these studies, auto-
matic program distribution has been widely investigated [122].

The major contributions on this topic in the synchronous approach com-
munity could be summarized according to the main synchronous languages
[29]: Esterel, Lustre and Signal. In Esterel, we mention the work of Berry and
Sentovich [31] on the construction of GALS systems as synchronous circuits
represented by a network of communicating codesign finite state machines.
GALS architectures [53] consist of components that execute synchronously
and communicate asynchronously. Another relevant work concerns the Es-
terel specification and programming of large-scale distributed real-time sys-
tems [125].

The Lustre language has been also used in several studies on the design of
distributed systems. Girault [111] addressed the distribution of synchronous
automata within the framework of this language. Afterward, he focused on
further issues such as automatic deduction of GALS systems from central-
ized synchronous circuits, and the optimized execution of desynchronized
embedded reactive programs to guarantee real-time constraints [113]. We
must note the very important achievements by Caspi and his colleagues
on the same topics [111]. They proposed an approach to deploy Lustre

c©Abdoulaye Gamatié

2.2 polychronous design of distributed embedded systems 15

programs on time-triggered architectures [51]. The synchronous modeling of
asynchronous mechanisms has been studied by Halbwachs in [126, 127]. Re-
cently, with colleagues, he addressed the expression of complex scheduling
policies managing shared resources [141]: priority inheritance protocol and
priority ceiling protocols. This work served to translate AADL (Architecture
Analysis & Design Language) specifications into Lustre, which enabled the
application of model-checking to verify their properties.

In Signal, there have been also lots of results on program distribution.
The earlier work of Chéron [56] dealt with the communication of sepa-
rately compiled Signal programs. Then, Le Goff [158] proposed a decom-
position of Signal programs into clustering models. Maffeïs [176] showed
how to abstract such programs into graphs in order to define the qualita-
tive scheduling and partitioning of these graphs. The work of Aubry [18]
focused on similar problems as Girault by exploring the manual and semi-
automatic distribution of synchronous dataflow programs in Signal. While
these studies were mostly devoted to the practical side, Benveniste and Le
Guernic lead several theoretical works on the distribution of Signal pro-
grams [25, 27, 108, 28, 163, 186].

Finally, we mention other interesting contributions such as [118] in which
Grandpierre showed, with Petri nets, how one can derive a distributed im-
plementation from a synchronous dataflow specification, e.g. in Lustre or
Signal, of a given application while minimizing the response time w.r.t. real-
time requirements. The SynDEx environment [119] aims at providing de-
signers with such program distribution facilities.

2.2.2 Modeling of asynchronous mechanisms in Signal

During my PhD thesis, I have defined in Signal a library of component Key publication for
more details on this
work: [99].

models that form building blocks for the description of embedded real-time
systems by taking into account their asynchronous features [99]. The defi-
nition of these components relies on the APEX-ARINC standard, which is
dedicated to the design of integrated modular avionics architectures. This
standard specifies two main multitasking levels for system execution by dis-
tinguishing the notions of partition and process. Partitions are logical alloca-
tion units resulting from a functional decomposition of a system. They are
grouped into different modules. A processor is allocated to each partition for
a fixed time window within a major time frame maintained by a module-level
OS. Partitions communicate asynchronously via logical ports and channels.

Partitions are composed of processes representing the executive units that
run concurrently. Each process is uniquely characterized by information
like its period, priority or deadline, useful to the partition-level OS which
is responsible for the correct execution of processes within a partition. The
scheduling policy for processes is priority preemptive. Communications
between processes are achieved by three basic mechanisms. The bounded
buffer enables to send and receive messages following a FIFO policy. The
event permits the application to notify processes of the occurrence of a con-
dition for which they may be waiting. The blackboard is used to display and
read messages: no message queues are allowed, and any message written on
a blackboard remains there until the message is either cleared or overwritten
by a new instance. Synchronizations are achieved using a semaphore.

Beyond communication, synchronization, partition/process management
services, the APEX-ARINC standard defines further services for: and time
and error management. The whole set of services I modeled in Signal is de-

c©Abdoulaye Gamatié

16 polychronous design of embedded systems

scribed in [94] [89]. Furthermore, a few communication component models
have been defined in [90] [95]. The whole component models are made avail-
able as a library within the Polychrony design environment of Signal. They
served in several studies that target Polychrony in order to benefit from its
associated formal tools: analysis and optimization of real-time implementa-
tion of embedded software in Java [224], performance analysis [91], analysis
and simulation of AADL models of safety-critical applications [175], model-
driven engineering for embedded applications [44].

2.2.3 A methodology for correct distributed design

I have investigated a design methodology for distributed embedded sys-Key publication for
more details: [95]. tems on top of the previous component models [95]. The aim is to provide

the adequate means to clearly express the inherent concurrency/parallelism
of embedded applications and to validate the resulting behavior w.r.t. func-
tional and non functional requirements.

for each processor, including calls
���
���
���
���of an application

SIGNAL model

of components

SIGNAL library

the same application model

application deployment

reflecting a particular

automatically added between the

after partitioning and compilation,

synchronous communications are

processors

SIGNAL model of

composed of two processors

a target architecture

and distribution

Specification

transformations

Automatic

to communication services

generated embedded code, e.g. in C

a chosen platform

Deployment on

Non functional analysis

and automatic code

generation

Figure 5: Overview of our design methodology for distributed embedded systems.

overview. This methodology targets multi-processor architectures and
fully benefits from the multi-clock property of the Signal language. It con-
sists of four steps (see Figure 5) achieved in the Polychrony design environ-
ment as follows:

1. System specification and manual distribution: modeling of application func-
tionality, modeling of distributed hardware architecture, and the map-
ping of the former on the latter. This mapping can be decided either
directly from a given application model or after some application par-
titioning into clusters as shown in [99]. This step is usual in hardware/-
software codesign approaches.

2. Automatic transformations: preserving the global functional correctness
of the system after distribution. For this purpose, the compiler applies
some transformations that exploit the endochrony and endo-isochrony
properties of specifications [163, 27]. The endochrony property is the
ability of a synchronous program P to execute in an environment that
only provides P with the values of its inputs, without any informa-
tion about their status (present or absent). In other words, P is able to

c©Abdoulaye Gamatié

2.2 polychronous design of distributed embedded systems 17

reconstruct a unique synchronous behavior from any external (asyn-
chronous) input sequence of values. The endo-isochrony property pro-
vides sufficient conditions under which the synchronous composition
of a pair of programs P1 and P2 is equivalent to their asynchronous
composition (i.e. involving "send/receive"-like communications). This
ensures that P1 and P2 can be safely deployed on GALS architectures.

3. Deployment on specific platforms: instantiating the different parts of the
model resulting from the transformation of the compiler with com-
ponents that represent specific platform mechanisms, e.g. for commu-
nication or synchronization. These components are taken from the li-
brary presented in the previous section.

4. Analysis and automatic code generation: checking the functional and non
functional (temporal) constraints induced by the chosen deployment
and generating a distributed code. This last step uses the static clock
analysis provided by the Signal compiler together with non functional
analysis techniques proposed in [219, 154] and implements code gen-
eration approach defined in [108].

The above steps are to be considered in an iterative design style. Accord-
ing to user-expected properties evaluated in the last step, the system can be
redesigned in the first step again so as to go through the next steps until a
satisfactory solution is obtained.

an application. In [95] with Thierry Gautier, we have showed how the
above methodology is applied on a simple case study consisting of a Flight
Warning System (FWS) from the avionic domain. This system is used in the
Airbus A340 aircraft and has been proposed by the Aerospatiale Company
(France) [172]. It is in charge of deciding on when and how to emit warn-
ing signals whenever there is an anomaly during the operational mode of
an airplane. It is illustrated in Figure 6 together with its implementation
architecture. It consists of two cyclic concurrent processes:

• given an alarm ai, the alarm manager process confirms ai after a given
period of time or removes ai from the set of confirmed alarms depend-
ing on the fact that ai is detected "present" or "absent";

• the alarm notifier process emits warning signals associated with con-
firmed alarms.

Alarm
Manager

alarms

Alarm
 Notifier ...

signals

Processor 1 Processor 2

Bus

Figure 6: Deployment of FWS on a platform.

c©Abdoulaye Gamatié

18 polychronous design of embedded systems

We used the affine clock relations defined in Signal [219] to address the
synchronizability issues that can be raised in the resulting distributed multi-
clock design.

2.2.4 Model-driven engineering for polychronous design

An important ingredient for the success of a design methodology is its com-
panion user environment, which facilitates its applicability. Providing very
simple and intuitive design concepts is of prime importance. For that pur-
pose, with colleagues from the Espresso group, we have proposed the Signal-
Meta environment (SME) [44] as an Eclipse plug-in. This work has beenKey publication for a

detailed overview:
[44].

funded by the French RNTL project, named OpenEmbeDD1. Signal-Meta
aims to serve as a pivot modeling tool for a customized computer-aided en-
gineering of embedded systems starting from multiple and heterogeneous
initial specifications. It is defined on top of Polychrony. Automated transfor-
mations are implemented in order to produce, analyze, statically verify and
model-check Signal programs obtained from high-level models described in
Signal-Meta.

In Signal-Meta, I was mainly involved in its integrated modular avionics
design part [97], which has been defined during the Master internship of
Romain Delamare during his Master internship in Espresso group in 2005,
under my supervision.

In order to enable an easy definition of combined imperative and declar-
ative specifications, we proposed an extension in Signal-Meta for control-
oriented behaviors as in Mode Automata [179] and Lucid Synchrone [60] lan-
guages. The basic principle in these languages is to mix declarative dataflow
statements with a notion of mode, representing the states (or configura-
tions) according to which computations are achieved. In Signal-Meta, our
proposed extension distinguishes itself from the other extensions in that it
combines polychronous dataflow statements with the notion of modes. We
refer to it as polychronous mode automata [225].

The definition of SME favored the integration of the Polychrony tool-set in
the OpenEmBeDD model-driven engineering (MDE) open-source platform
for the design real-time and embedded systems. The ultimate goal is to
make the polychronous design paradigm and associated tools out of reach
for a wide range of designer profiles.

2.3 static analysis of polychronous specifications

A few works about the static analysis of synchronous programs are first sur-
veyed. Then, our proposal for adopting satisfiability modulo theory (SMT)
to deal with both logical and numerical properties is exposed.

2.3.1 Some related works on synchronous languages

The most relevant works on the static analysis of synchronous programming
regarding combined logical and numerical properties have been achieved
for the Lustre and Signal languages. Some of them are summarized below.

For several years, there have been significant efforts to combine numerical
and Boolean techniques for the verification of Lustre programs. In [142], the
technique used is a dynamic partitioning of the control flow obtained by

1 http://openembedd.org/home_html

c©Abdoulaye Gamatié

http://openembedd.org/home_html

2.3 static analysis of polychronous specifications 19

Lustre compilation (which contains a few number of control points) with
respect to constraints coming from a given proof goal.

In [124], SMT is used to verify safety properties on Lustre programs. The
authors consider a specific form of Lustre language and propose a modeling
in a typed first order logic with uninterpreted function symbols and built-in
integers and rationals. While this work also aims at benefiting from SMT
solving in synchronous programming, it misses all useful clock analysis
achieved by the Signal compiler. Such an analysis includes suitable heuris-
tics to address multi-clocked specifications. Neither an SMT solver nor the
Lustre compiler makes this analysis possible.

An important work is the polyhedral-based static analysis for synchronous
languages of [34]. The authors give a technique based on fix-point iteration
on a lattice combining Boolean and affine constraints. The technique we ad-
vocate for Signal is less precise because it only uses interval approximation.
However, the complexity in our case is lesser and the implementation is
much simpler.

An inspiring relevant study presented in [188], concerns the definition
of a clock language CL aiming to capture the static control part of Signal
programs. The author also considers SAT decision procedures to prove clock
properties. However, statements involving the delay construct are not taken
into account in this study. This reduces the scope of the proposed analysis.
Our proposition covers all Signal programs and offers more expressivity
than CL.

Finally, In [98, 100], we already proposed a preliminary solution to the
static analysis of combined logical/numerical properties of Signal programs.
An interval-based data structure referred to as interval-decision diagram (IDD)
is considered a package for the analysis of numerical properties in Signal
programs. I have re-implemented this package together with Gilles Atigos-
sou during his Master internship in DaRT group of LIFL and Inria (Lille)
under my supervision, from February 2008 to June 2008. I will discuss the
limitation of this initial solution later.

2.3.2 A new abstraction for Signal

I give an overview of my recent proposal, in collaboration with Laure Gon- Key publication for a
complete
presentation: [96].

nord, for improving the static analysis of combined logical/numerical prop-
erties of Signal programs. This proposal relies on an abstraction of language
statements. I first recall them before presenting the abstraction. Afterward,
an example is given for illustration.

a summary of signal constructs . Signal handles unbounded se-
ries of typed values (xt)t∈N, called signals, implicitly indexed by discrete
time, and denoted as x. For instance, a signal can be either of Boolean or
integer or real types. At any logical instant t ∈ N, a signal may be present,
at which point it holds a value; or absent and denoted by ⊥ in the semantic
notation. There is a particular type of signal called event. A signal of this
type always holds the value true when it is present. The set of instants at
which a signal x is present is referred to as its clock, noted ^x. A process is
a system of equations over signals, specifying relations between values and
clocks of the signals. A program is a process. Signal relies on six primitive
constructs defining the core language as follows:

Instantaneous relations: y:= R(x1,...,xn) where y, x1, ..., xn are signals
and R is a point-wise n-ary relation/function extended canonically to

c©Abdoulaye Gamatié

20 polychronous design of embedded systems

signals. This construct imposes y, x1, ..., xn i) to be simultaneously
present, i.e. ^y = ^x1 = ...= ^xn (i.e. synchronous signals), and ii) to hold
values satisfying y:= R(x1,...,xn) whenever they occur.

Delay: y:= x $ 1 init c where y, x are signals and c is an initialization
constant. It imposes i) x and y to be synchronous, i.e. ^y = ^x, while ii)
y must hold the value carried by x on its previous occurrence.

Under-sampling: y:= x when b where y, x are signals and b is of Boolean
type. This construct imposes i) y to be present only when x is present
and b holds the value true, i.e. ^y = ^x ∩ [b] (where [b]∪ [¬b] = ^b and
[b]∩ [¬b] = ∅), while ii) y holds the value of x at those logical instants.
Note that the sub-clock [b] (resp. [¬b]) denotes the set of instants where
b is true (resp. false).

Deterministic merging: z:= x default y where z, y, x are signals. This
construct imposes i) z to be present when either x or y are present, i.e.
^z = ^x ∪ ^y, while ii) z holds the value of x uppermost, otherwise that
of y.

Composition: P ≡ P1|P2 where P1 and P2 are processes. It denotes the
union of equations defined in processes, leading to the conjunction
of the constraints associated with these processes. The composition
operator is commutative and associative.

Restriction (or Hiding): P ≡ P1 where x, where P1 and x are a process and
a signal. It enables local declarations in process P1, and leads to the
same constraints as P1.

a boolean-interval abstraction. To define an abstraction for Sig-
nal program analysis, all considered programs are supposed to be in the
syntax of the core language. The abstract semantics of a program, is char-
acterized by a set of valuation couples of the form (̂ , ˜), defined by the
following functions:

• ̂: XP → B = {true, false} assigns to a variable a Boolean value;

• ˜: XP → R ∪ B assigns to a variable a numerical or Boolean value.

Intuitively, in a couple (x̂i, x̃i), the first component of a valuation couple
encodes the clock of a signal, where true and false respectively mean pres-
ence and absence of instant in the clock. The second component encodes the
value taken by a signal according to its presence, i. e., when x̂i is true.

The set of all possible valuation couples associated with a Signal process
or program can be represented as a first order logic formula ΦP in which
atoms are x̃i and x̂i, and the operators are usual logic operators and integer
comparison functions.

We define the abstraction of programs by considering only a subset of
numerical and Boolean expressions in statements of Signal. The abstraction
of these expressions is defined by induction on their structure as shown in
[96]. Here, I will only show the abstraction Φ of core statements. This is
summarized in Figure 7. Two possible definitions of Φ are distinguished
according to the type of defined signal y in each equation: (1) when y is of
numerical type and (2) when y is of logical type.

Our abstraction is sound, in the sense that it preserves the behaviors of the
abstracted programs. In other words, if a property is true on the abstraction,
then it is also the case on the program:

c©Abdoulaye Gamatié

2.3
s

t
a

t
ic

a
n

a
l

y
s

is
o

f
p

o
l

y
c

h
r

o
n

o
u

s
s

p
e

c
if

ic
a

t
io

n
s

2
1

Primitive statements P Corresponding abstractions (logic formulas ΦP) Comments

y:= R(x1,...,xn)






∧n
i=1(ŷ ⇔ x̂i)∧

(
ŷ ⇒ ỹ ∈ φ(nexp)

)
(1)

∧n
i=1(ŷ ⇔ x̂i)∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(2)

Signal variables y and xi are abstracted by the

couples (ŷ, ỹ) and (x̂i, x̃i) respectively denoting

the clock and value encodings of y and xi;

the expression R(x1,...xn) is abstracted by

nexp or bexp depending on whether it is of

numerical type or Boolean type.

y:= x$1 init c

{ (
ŷ ⇔ x̂

)∧ (
ŷ ⇒ (ỹ = x̃ ∨ ỹ = c)

)
(1)

(
ŷ ⇔ x̂

)∧ (
ŷ ⇒ (ỹ ⇔ (c̃ ∨ x̃))

)
(2)

When y is of numerical type, a classical

interval analysis would perform the convex

union of the two intervals c̃ and x̃. Here,

the approximation resulting from such a convex

union is avoided by keeping the disjunction as is.

y:= x when b

{ (
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧ (
ŷ ⇒ ỹ = x̃

)
(1)

(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧ (
ŷ ⇒ (ỹ ⇔ x̃)

)
(2)

y:= x default z






(
ŷ ⇔ (x̂ ∨ ẑ)

)∧(
ŷ ⇒

(
(x̂∧ (ỹ = x̃)) ∨ (¬x̂∧ (ỹ = z̃))

))
(1)

(
ŷ ⇔ (x̂ ∨ ẑ)

)∧(
ŷ ⇒

(
(x̂∧ (ỹ ⇔ x̃)) ∨ (¬x̂∧ (ỹ ⇔ z̃))

))
(2)

P1|P2 ΦP1 ∧ΦP2

P where x ∃x̃, ∃x̂ . ΦP

Figu
re

7:Su
m

m
ary

of
B

oolean-Intervalabstraction
of

Signal.

c©
A

bdou
laye

G
am

atié

22 polychronous design of embedded systems

Proposition 1 Given a program P and a formula ϕ in which atoms are x̂i and x̃i
(xi ∈ XP), if ΦP ⇒ ϕ, then [[P]] ⊆ Γ(ϕ). P is said to satisfy ϕ. �

The complete proof of this proposition is given in [96]. To check ΦP ⇒ ϕ,
we use Satisfiability Modulo Theory (SMT), which checks the satisfiability
of formulas over multiple theories such as Boolean, Integer, etc. [69]. We
mainly consider the Yices SMT solver version in our implementation.

comparison with our preliminary solution. In [98, 100], we al-
ready suggested a preliminary solution for the static analysis based on IDDs.
The choice of SMT solvers in the new solution appears more judicious. First,
in IDDs, intervals are only defined on integers. As a result, to deal with
other numerical types such as reals, IDDs require a prior encoding into
integers. With SMT solvers, a wide range of arithmetic theories are made
possible, which allows a more expressive analysis without much effort com-
pared to IDDs. Second, from a practical point of view, the integration of
IDDs in the Signal compiler is more difficult since it requires a very careful
coupling with the other data structures used during the static analysis. One
important question is how to make efficient and costless the management of
binary decision diagrams (BDDs), which are part of IDDs and are already
present in the compiler.

In the new solution, we rather consider a non intrusive solution regarding
the compiler, which consists in deducing additional information from an
initial program specification with SMT solvers. This therefore enables the
compiler to have an explicit and rich set of constraints for a better program
analysis and code analysis by using its current clock calculus technique.

On the other hand, compared to [142], our approach is not dependent
on any proof goal, and the Boolean variables are not hidden in the control
(except for the step 1). In addition, Lustre compilation [132] suffers from
the same lack of precision concerning numerical variables. Indeed, no nu-
merical analysis is done during compilation. Hence, our method could be
considered for improvement.

2.3.3 Application to Signal clock calculus: an example

The Signal process shown in Figure 8(a) specifies the status of a bathtub [34].
It has no input signal (line 02), but has three output signals (line 03). The
signal level, defined at line 04, reflects the water level in the bathtub at any
instant. It is determined by considering two signals, faucet and pump, which
are respectively used to increase and decrease the water level. These signals
are increased by one under some specific conditions (lines 06 and 08), in
order to maintain the water level in a suitable range of values.

An alarm signal is defined at line 12 whenever the water overflows (line
10) or becomes scarce (line 11) in the bathtub. An additional “ghost” alarm
is defined at line 13/14, which is not expected to occur. Here, it is just intro-
duced to illustrate one limitation of the static analysis of Signal. The clock of
this signal is not completely specified in Bathtub. As stated in the previous
section, this clock is the union of those associated with the two arguments
of the default operator. The clock of the left argument is exactly known.
The clock of the right-hand one is context-dependent because the argument is
a constant: it is equal to the difference of ghost_alarm’s clock and first ar-
gument’s clock. Since, this difference cannot be defined exactly from the
program, further clock constraints on ghost_alarm will be required from
the environment of Bathtub for an execution.

c©Abdoulaye Gamatié

2.3
s

t
a

t
ic

a
n

a
l

y
s

is
o

f
p

o
l

y
c

h
r

o
n

o
u

s
s

p
e

c
if

ic
a

t
io

n
s

2
3

01: process Bathtub =
02: (?
03: ! integer level; boolean alarm, ghost_alarm;)
04: (| (| level := zlevel + faucet - pump
05: | zlevel := level$1 init 1
06: | faucet := zfaucet + (1 when zlevel <= 4)
07: | zfaucet := faucet$1 init 0
08: | pump := zpump + (1 when zlevel >= 7)
09: | zpump := pump$1 init 0 |)
10: | (| overflow := level >= 9
11: | scarce := 0 >= level
12: | alarm := scarce or overflow
13: | ghost_alarm:= (true when scarce when overflow)
14 default false|)|)
15: where
16: integer zlevel, zfaucet, zpump, faucet, pump;
17: boolean overflow, scarce;
18: end;

01: (| CLK_level := ^level
02: | CLK_level ^= alarm ^= zlevel^= faucet^= pump
02b: ^= overflow ^= scarce
03: | CLK_zfaucet ^= when (zlevel<=4)
04: | CLK_zpump ^= when (zlevel>=7)
05: | (| CLK_level ^= CLK_zpump
06: | CLK_level ^= CLK_zfaucet
07: |)%**WARNING: Clocks constraints%
08: | CLK_22 := when level>=9
09: | CLK_25 := when 0>=level
10: | CLK_36 := CLK_22 ^* CLK_25
11: | (| CLK_ghost_alarm ^= CLK_36 default (not CLK_29)
12: | CLK_29 := CLK_ghost_alarm ^- CLK_36
13: | (| ghost_alarm := CLK_36 default (not CLK_29)
14: |) |) ... |)

01: if (C_level)
02: { C_zfaucet = level <= 4;
03: C_zpump = level >= 7;
04: if ((C_zpump) != (C_level))
04b: polychrony_exception("...");
05: if ((C_zfaucet) != (C_level))
05b polychrony_exception(" ... ");
06: if (C_zfaucet) { faucet = zfaucet + 1; }
07: if (C_zpump) { pump = zpump + 1; }
08: level = (level + faucet) - pump;
09: overflow = level >= 9; scarce = 0 >= level;
10: alarm = scarce || overflow; ...
 /*production of level and alarm*/
11: C_106 = overflow && scarce;} ...
12: C_109 = (C_level ? C_106 : FALSE);
13: if (C_ghost_alarm)
14: { if (C_109) ghost_alarm = TRUE;
14b: else ghost_alarm = FALSE;
15: ... /* production of ghost_alarm */ } ...

Sketch of automatically generated C codeSketch of the clock calculus resultBathtub specification in Signal
(a) (b) (c)

Figu
re

8:Static
analysis

and
cod

e
generation

for
a

bathtu
b

m
od

elin
P

olychrony.

c©
A

bd
ou

laye
G

am
atié

24 polychronous design of embedded systems

analysis based on usual boolean abstraction. Figure 8(b) par-
tially shows the result of the clock calculus generated automatically by the
Signal compiler, based on the Boolean abstraction. Here, we focus on two
issues that the clock analysis was not able to fix adequately:

• Lines 05–07: a clock constraint is generated, stating signals CLK_level,
CLK_zfaucet and CLK_zpump must have the same clock, while signals
CLK_zfaucet and CLK_zpump have exclusive clocks (lines 03–04);

• Line 11: the right-hand side of the synchronization equation defining
the signal CLK_ghost_alarm should be (not CLK_29) since the clock
CLK_36 is empty by definition (line 10).

These issues illustrate the limitations of the Boolean abstraction for clock
properties, e.g., clock exclusion or emptiness, involving numerical expres-
sions. A more expressive clock analysis would detect the fact that CLK_level,
CLK_zfaucet and CLK_zpump must be empty clocks in order to satisfy the
clock constraints of the Bathtub process. In addition, these limitations have
an important impact on the quality of the code generated automatically by
the compiler since it relies on the clock hierarchy resulting from the analy-
sis. Figure 8(c) sketches a C code generated automatically based on the clock
analysis. The previous clock constraint is implemented by exception state-
ments (lines 04–05). Since CLK_level, CLK_zfaucet and CLK_zpump should
be empty clocks, statements between lines 02 and 11 are never executed, i.e.
a dead code. Similarly, the if statement at line 14/14b also contains a dead
code since the variable ghost_alarm is always set to false. Efficient dead code
elimination is of high importance in compilers[68].

analysis based on the new abstraction. We illustrate the use
of the previous analysis in the analysis of the Bathtub (see Figure 8(a)).
First, the abstraction ΦBathtub of the Bathtub program is computed. Then,
we have to specify the clock synchronization and clock emptiness properties
(formula ϕ) of interest for the program. Among these properties, let us focus
on the following:

• pump and faucet have disjoint clocks: ¬(̂faucet ∧ p̂ump)

• overflow and scarce cannot be true at the same time: ¬
(
s̃carce ∧

˜overflow ∧ ŝcarce ∧ ̂overflow
)

• alarm and level have the same clock: âlarm ⇔ l̂evel

We consider the formula ΦBathtub ∧ ¬ϕ, where ϕ denotes the property
to be checked. With the Yices solver, we get for all properties unsat, which
means that ΦBathtub |= ϕ. Thanks to Proposition 1, the property ϕ is sat-
isfied by Bathtub. Here, the previous three formulas are proven. Then, the
program Bathtub is composed with the following Signal statements that
concretize these properties:

• faucet ^* pump ^= ^0

• true when scarce when overflow ^= ^0

• alarm ^= level

The result obtained from the analysis of the new process by the compiler
is illustrated in Figure 9 shows that the compiler was able to infer that the
ghost_alarm signal is always equal to false (line 01). The compiler now
detects that the clocks of all other signals are empty (line 04/04b).

c©Abdoulaye Gamatié

2.3 static analysis of polychronous specifications 25

01: (| CLK_ghost_alarm := ^ghost_alarm

02: | CLK_ghost_alarm ^= ghost_alarm

03: | (| ghost_alarm := not CLK_ghost_alarm |)

04: |);%^0 ^= level ^= alarm

04b ^= zlevel ^= zfaucet ^= zpump

05: ***WARNING: null clock signals%

Figure 9: A sketch of the clock calculus for Bathtub_Bis.

Beyond, the detection of empty clock presence in the Bathtub_Bis pro-
gram, the automatically generated C code also benefits from the new clock
analysis performed by the compiler. As a result, the corresponding gener-
ated code provided in Figure 10, is now optimized in the sense that no
useless code fragment appears.

--

01: { ghost_alarm = FALSE;

02: /* produce output value

03: for the signal ghost_alarm */ } ...

--

Figure 10: A sketch of the C code for Bathtub_Ter.

2.3.4 Static analysis of polychronous programs in MRICDF

In April 2010, I have been invited by Sandeep Shukla in his lab at Virginia
Tech (VA, USA) for a short stay in order to discuss about the static analysis Key publications for

more details: [146]
and [147].

of the Multi-Rate Instantaneous Channel connected Data Flow (MRICDF)
language. Sandeep and his students have been working of this variant lan-
guage of Signal for the development of safety-critical applications. I already
had some collaborations with Sandeep’s group during my PhD thesis in the
context of a project funded by NSF and Inria.

MRICDF [144] is a visual actor-oriented polychronous formalism, strongly
inspired by Signal. Its primitive actors correspond to the Signal primitives
statements on signals. It manipulates signals and refers to an abstract clock
as an epoch. The static analysis of MRICDF specifications and associated
code generation rely on epoch analysis by considering a Boolean encoding.
The resulting system of Boolean equations defines a theory which has all
satisfying assignments for an encoded actor network. An implicant of this
theory is a disjunctive clause that implies a Boolean formula. There can be
several implicants for a formula. A prime implicant is a disjunctive clause
that is not covered by any other implicant. When a prime implicant is a
single positive Boolean literal bx associated with a signal x, then bx is true

for any arbitrary instant of a network. Then, x is a master trigger signal. By
iterating the prime implicant identification on the rest of disjunctive clauses,
signals having lower epochs than already found prime implicants are deter-
mined. During this iteration, such signals are organized within the follower
set, which gives a global activation order of signals. Such a set defines a
unique program execution order. A program is said to be synthesizable if has
a master trigger, a follower set and does not contain any causality cycle.

c©Abdoulaye Gamatié

26 polychronous design of embedded systems

smt-based solution for efficient static analysis . In practice,
the construction of follower sets requires computing all possible prime im-
plicants since the used generator cannot identify a master trigger signal.
This resulted in high synthesis time that must be reduced [145], especially
for larger MRICDF examples. Beyond this issue, MRICDF is also concerned
with the same limitations as Signal regarding numerical clock properties
due to the adopted Boolean encoding.

Table 2: Time required to find master trigger signal

MRICDF Number of Time in seconds

networks actors Initial AET SMT

Height Supervisor 5 0.35 0.37 0.094

Absolute 8 0.91 0.91 0.078

Factorial 8 0.33 0.33 0.09

Resettable Counter 8 0.927 0.562 0.099

Watchdog Timer 14 16.3 5.3 0.11

Producer-Consumer 15 21.4 16.3 0.12

Flight Warning System 17 8.1 1.03 0.1

GCD 19 1.35 0.89 0.13

pEHBH 14 0.79 0.75 0.125

We advocated SMT solvers as a solution by formulating the master trigger
existence as a satisfiability problem [146]. The master trigger test is achieved
by encoding the clock of a candidate signal and setting it to false. An SMT
formula is constructed by composing this information with the encoding
of a given MRICDF model. If this signal is actually a master trigger, the
evaluation of the formula must indicate that it is unsatisfiable. After the
determination of the master trigger, the follower set is built by iterating
the master trigger identification steps. Table 2 compares the master trigger
identification time for different MRICDF networks according to: the initial
implementation of the Boolean theory approach with a prime implicant gen-
erator; AET, the first improvement based on actor network reduction [145];
and SMT solution proposed in [146], which outperforms enhancements by
several orders of magnitude. As a global observation, using SMT is ben-
eficial in improving the causality analysis of polychronous programs for
efficient software synthesis.

2.4 pedagogical implication : a book on signal programming

After several years of practice in polychronous design using the Signal lan-
guage, I have reported all the gained insights in a book [92], published by
Springer by the end of 2009. As I explained in its preface, this book was the
first attempt to provide a large public (scientists, practitioners and students)
with a pedagogical presentation of the necessary rudiments for a successful
and pragmatic usage of Signal programming. Writing it was the best way
to share my proper experience about the extensive usage of Signal for the
design of multi-clock embedded systems.

It is worth noting that since 2004, I have been giving a few lectures per
year to Master level students on Signal programming. These lectures were
given successively at University of Rennes 1 and University of Lille 1. This

c©Abdoulaye Gamatié

2.5 summary and discussion 27

rich and exciting teaching experience strongly served me in writing the
aforementioned book.

2.5 summary and discussion

In this chapter, I presented a summary of my contributions on the poly-
chronous design and analysis of distributed embedded systems specified in
Signal. The aim is to promote a rapid virtual prototyping of embedded sys-
tems implemented on GALS architectures, according to the formal approach
promoted by the synchronous approach.

on polychronous design of distributed embedded systems . I
first addressed the definition of an adequate design methodology and its ap-
plicability in the Signal design environment Polychrony. My proposition re-
lies on a set of components defined in Signal to model various asynchronous
mechanisms for communication, synchronization and execution. The usage
of these components has been combined with specific program transforma-
tions to obtain a correct distributed design of an application. Furthermore, I
advocated a model-driven engineering for polychronous design in order to
make easier the access to this methodology and the facilities of Polychrony.
Nevertheless, some additional efforts are required to fully automate the pro-
posed methodology and to experiment it on real-life large scale systems
beyond the presented proof-of-concept.

In my opinion, an important research direction in the future is the effec-
tive exploitation of polychronous modeling for MPSoCs, which are also dis-
tributed embedded systems. Thanks to its features, this modeling paradigm
provides a useful abstraction to safely deal with concurrency in software to
execute on both heterogeneous and homogeneous parallel platforms. Con-
currency plays an important role in optimizing system performances.

On the other hand, most of achievements in polychronous and synchro-
nous approaches do not fully take into account the quantitative aspects of
MPSoC requirements such as performances (execution time and energy con-
sumption) and other physical constraints (memory and bandwidth issues),
induced by the deployment of systems on real-life platforms. Although the
synchrony hypothesis is an abstraction that may be seen as a barrier to
tackle these requirements, there has been a series of recent works that tend
to relax it for a refined reasoning, e.g., N-synchrony [59], Signal affine clocks
[219], scheduling of synchronous specifications in SynDEx [207], the Kiel Es-
terel processor [170]. I believe there is a real opportunity to widely bring the
correct-by-construction design promoted by polychronous and synchronous
models to the MPSoC design community while taking into account its needs.
In the next chapters, I will show some efforts in this connection.

Another relevant perspective concerns the use of polychronous specifica-
tions as an internal reasoning model for higher-level system architecture
description languages such as the Marte standard profile [194] or the archi-
tecture analysis and design language2 (AADL). The Espresso group already
started some investigations recently in this direction.

static analysis of polychronous specifications . An important
advantage of polychronous and synchronous design approaches is their abil-
ity to enable automatic synthesis of correct and efficient software implemen-
tation. Compilers play an important role for this purpose. The relevance of

2 http://www.aadl.info

c©Abdoulaye Gamatié

http://www.aadl.info

28 polychronous design of embedded systems

the static analysis on which they rely has a direct impact on the quality of
generated code. In this chapter, I also dealt with the static analysis of com-
bined logical/numerical clock properties in polychronous specifications. We
have studied a complementary way to the current Boolean abstraction used
in compilers of Signal and MRICDF for the clock analysis. In order to im-
prove the quality of clock property verification and the optimization of the
generated code, a new abstraction encoded in satisfiability modulo theory
(SMT) has been proposed for the pragmatic reasoning. This solution has
been validated only in an ad hoc way. A tool suite is under construction to
support the connection of SMT solvers to the Polychrony environment.

Among the perspectives to this contribution, it is worth mentioning a pos-
sible extension of the solution to tackle dynamic property analysis. Indeed,
the current proposal considers a static approximation of programs, in which
the dynamic variation of the values held by state signal variables (i. e.. those
defined with the delay primitive statement) is not taken into account. In
this aim, a combination of techniques such as model-checking with clock
calculus could be investigated in compilation.

final opinion on the presented contributions . Within the syn-
chronous programming community, the results presented in this chapter
mostly contribute to the problematic regarding synchronous reactive model-
ing of (bounded) asynchrony. More generally, beyond this community, they
also contribute to a wider understanding of synchronous programming in
Signal language. The implementation of parts of them in the Polychrony
environment and its Signal-Meta extension has been concretely serving in
various collaborations of the Espresso group as well as a recent PhD thesis.

Beyond these observations, I think additional efforts still remain to do
in the perspective of effectively bringing the design principles of the poly-
chronous model to GALS designers. This necessarily includes further im-
provements of the existing methodology with companion design assistance
tools.

c©Abdoulaye Gamatié

2.5 summary and discussion 29

Executive summary

Main collaborations

• Espresso group (IRISA/Inria, Rennes)

• Fermat lab (Virginia Tech, VA – USA)

Project

• French OpenEmbeDD RNTL project (partners: Airbus,
Anyware Technologies, CEA, CS SI, France Telecom, In-
ria (Aoste, DaRT & Espresso groups), LAAS lab, Thales
Aerospace, Thales R&D, Verimag lab, 2006 – 2009)

Advisory

• Romain Delamare (Master internship for three months in
2005, 100%)

• Gilles Atigossou (Master internship from February 2008 to
August 2008, 100%)

Selected publications

• Conference: ACM SIGPLAN/SIGBED conference on Lan-
guages, compilers, and tools for embedded systems
(LCTES), 2011 [96]

• Conference: ACM/IEEE Ninth International Conference on
Formal Methods and Models for Codesign (MEMOCODE),
2011 [146]

• Book: Springer book (260 pages), 2010 [92]

• Journal: IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), 2010 [95]

• Journal: Journal of Logic and Algebraic Programming
(JLAP), 2009 [44]

Contribution to software:

• Polychrony and Signal-Meta (http://www.irisa.fr/
espresso/Polychrony)

c©Abdoulaye Gamatié

http://www.irisa.fr/espresso/Polychrony
http://www.irisa.fr/espresso/Polychrony

3 D E S I G N M O D E L F O R R E A C T I V E D ATA - I N T E N S I V E
A P P L I C AT I O N S

Contents

1.1 Trends in embedded system design 1

1.1.1 High function integration and data volumes 2

1.1.2 Parallelism for high-performance and power-efficiency 2

1.1.3 Adaptivity in embedded systems 3

1.2 Contributions: correct and efficient MPSoC design 5

1.2.1 Polychronous design and analysis of systems 7

1.2.2 Design of reactive data-intensive applications 8

1.2.3 Design space exploration for MPSoC codesign 9

1.3 Outline of the document 10

This chapter presents my contributions since my Post-doc in September
2005 in the DaRT group of LIFL, on the design and analysis of reactive
data-intensive applications (see Figure 11). The presented works describe
and reason on reactive behaviors via the specification of running modes
and instants at which given actions take place in data-intensive applications.
The so-called repetitive structure modeling (RSM) is considered for speci-
fying regular data-intensive applications. The central question of combining
the synchronous reactive approach and RSM to model reactive behaviors
in data-intensive applications is definitely deserving of attention in our ap-
proach. Some of these works have been achieved in collaboration with col-
leagues from the Sardes group of Inria and LIG (Grenoble) and the Aoste
group of Inria and I3S (Sophia Antipolis). They also cover the PhD thesis
of Huafeng Yu started in October 2005 and defended in December 2008 (co-
advised with Éric Rutten and Jean-Luc Dekeyser), and the short Post-doc
fellowship of Mohamed Fellahi (October 2010 – February 2011).

The remainder of the chapter is organized as follows: in Section 3.1, I
introduce the main challenges of interest; in Section 3.2, I present the neces-
sary background for the exposed ideas by giving a rapid survey of parallel
programming models followed by RSM; in Section 3.3 is exposed the first
part of my contributions about the extension of RSM for supporting both
static and dynamic aspects of computations; in Section 3.3, I present the rest
of my contributions devoted to the use of the synchronous reactive approach
to analyze RSM-based system designs; finally, in Section 3.5, I discuss the
strengths, limitations and future directions to the presented works. An exec-
utive summary is also given, regarding the key points in my contributions
highlighted in this chapter.

3.1 overview of main challenges

3.1.1 Reactivity in massively parallel computations

Reactive systems [205] have been studied for several decades. They are char-
acterized by a continuous interaction with their environment. The rhythm
at which their reactions, i.e. receipt of inputs and computation of outputs,

30

c©Abdoulaye Gamatié

3.1 overview of main challenges 31

So
ft

w
ar

e
H

ar
dw

ar
e

Sw
/H

w
in

te
rf

ac
e

Polychronous design and analysis of embedded systems

Modeling and analysis of reactive
 data-intensive applications

Design space exploration
 techniques for MPSoC codesign

IRISA LIFL

19
99

20
08

20
10

20
05

20
12

20
06

My PhD

Assistant

Professor

(ATER)

Post-doc

CNRS

Research

Scientist

Co-advised

PhDs

Co-advised

Post-docs

Defended

In-Progress

Figure 11: Specific contributions presented in the current chapter (the other contri-
butions not exposed here are intentionally blurred).

is entirely under the control of the environment. In existing literature, there
are a few studies devoted to the design of reactive data-intensive applica-
tions [220] [219]. The concerned applications include multimedia applica-
tions, which manipulate streams in the form of periodic signals. The events
related to these signals define component activation and are synchronized
when components interact. In the synchronous approach, this is well formal-
ized with abstract clocks.

The repetitive structure modeling (RSM) [115] is a high-level specification
formalism that enables to describe the potential parallelism in massively
parallel systems in a very compact way. It uses repetitive data dependencies
to express regular and static multidimensional data structures and system
topologies. Thanks to these features, RSM offers a powerful expressivity for
MPSoC system design. However, in order to describe reactive data-intensive
applications on MPSoCs, we also need to capture the dynamic aspect of their
behaviors: input data availability over the time (e.g., their rates), the effective
exploitation of parallelism during executions according to resources and
environment, etc. The first contribution in this chapter is devoted to the
following question:

c©Abdoulaye Gamatié

32 design model for reactive data-intensive applications

First challenge.

How to combine mode-oriented control and logical time with

the repetitive structure modeling for the design of reactive data-

intensive applications?

To answer the above question, we will borrow ideas from the syn-
chronous reactive approach, by considering its abstract clock notion
and mode-oriented design concepts to describe data rates and execu-
tion scenarios in reactive data-intensive applications. Loop transfor-
mations can be applied to RSM specifications for their refactoring so
as to distinguish reactions in a consitent way.

3.1.2 Design correctness of data-intensive applications

Correct application specifications in RSM must satisfy basic properties of
dataflow models such as single assignment, absence of causality cycles, etc.
As shown in [41], checking such properties in RSM can be done by consid-
ering, e.g., Feautrier’s work [83] [84] on techniques based on polyhedra and
linear programming. Algorithms are proposed for dataflow analysis of array
and scalar references. They mainly deal with pure data dependencies. While
these solutions are very attractive, they are not necessarily well-adapted
when data dependencies are combined with complex control flow.

Synchronous languages offer useful representations in which both data
dependencies and control flow are analyzable uniformly. In Signal, such a
representation is the hierarchized conditional dependency graph (HCDG) [163].
It combines data dependencies and activation clocks indicating when edges
and vertexes of a dependency graph are valid w.r.t. control flow. The analy-
sis of causality, determinism and single assignment also relies on this central
structure. Moreover, other tools such as model-checkers connected to syn-
chronous languages favor more sophisticated verification techniques. For all
these reasons, I consider the synchronous technology to tackle the following
issue:

Second challenge.

How to verify the correctness of reactive data-intensive application

specifications in RSM with the synchronous approach?

To define an answer to this question, I will consider a translation of
RSM specifications into synchronous dataflow programs on which
adequate verification and analysis tools can be applied in order to
deal with relevant properties of RSM. Among these tools, are consid-
ered compilers and model-checkers.

3.2 background notions

I give a rapid survey of parallel programming models, which are necessary
ingredients for the design of data-intensive applications. This panorama is
followed by the presentation of the basic features of RSM, which is consid-
ered for design in our contributions.

c©Abdoulaye Gamatié

3.2 background notions 33

3.2.1 A survey of parallel programming models

A programming model1 is characterized by a set of languages and libraries
defining programmers view of a machine that executes an application [152].
It determines how a program is expressed. Parallel programming mod-
els used to combine two parts: a model dedicated to control, which de-
scribes how parallelism is managed; and another model dedicated to com-
munication, which allows for the interaction between parallel entities by
exchanging data. Typical parallel programming models combine sequential
languages with a message passing layer, a thread library or parallelizing
compilers.

Shared-memory

Message passing

Partitioned global

address space

Parallel programming models

Communication

models / libraries
Languages

Parallelizing

compilers

High-productivityData-parallel

Array

oriented

Stream

oriented

Polyhedra

oriented

Figure 12: A glance at parallel programming models and language families.

The next paragraphs discuss the different parallel programming models
and language families summarized in Figure 12.

shared memory and message passing models . Among parallel
programming models, the shared memory and message passing models appear
as the mainstreams. The partitioned global address space model inherits from
both models. We briefly present each of these models.

The shared-memory programming model defines a framework where
parallel computation threads communicate via shared variables. The access
cost of these variables is uniform2, meaning that no notion of memory prox-
imity is explicitly distinguished. Typical parallel programming languages
that rely on this model are OpenMP [195], Posix threads [190] and Cilk [212].
OpenMP, the most representative of them, defines an application program-
ming interface (API) composed of a set of compiler directives, library rou-

1 An execution model [152] differs from a programming model by defining the interaction between
physical and abstract objects that actually achieve the computations. Concretely, an execution
model provides the continuum between the different layers (application, runtime and operating
system, and hardware) involved in a computing system. It determines how a program executes.
Examples of parallel execution models are vector, SIMD and systolic machines. Further details
about the definition of an execution model in high-performance computing are found in [12].

2 From the architecture point of view, the way processors get access to shared memories can
be either uniform or not. In uniform memory access (UMA), the memory access time does
not depend on a requesting process or considered memories. In non uniform memory access
(NUMA), the access time depends on the distance between processor and memory.

c©Abdoulaye Gamatié

34 design model for reactive data-intensive applications

tines, and environment variables. When programming in OpenMP, a user
does not have to care about data layout, which is managed by a compiler.

The message passing interface (MPI) [183] specifies a set of routines
to achieve communication and synchronization for parallel programming
using the message-passing model. MPI aims at distributed memory ma-
chines. Its routines facilitate the data transfers between different locations.
Distributed memory machines are known to be very scalable compared to
shared-memory ones, which offer only a limited communication bandwidth.
Further advantages of message passing over shared-memory are discussed
in [155]. Existing implementations of MPI specification are OpenMPI [88]
and MPICH [46]. Beyond parallel and distributed programming, the mes-
sage passing paradigm is also used in other concurrent programming, such
as object-oriented programming.

The partitioned global address space (PGAS) model borrows features of
shared memory threads and message passing. Variables share a common ad-
dress space, and are accessible to all processes. However, the address space
is logically partitioned in such a way that a notion of proximity to a par-
ticular memory section is taken into account for processes. The advantage
of this vision is to provide the necessary locality information for efficient
and scalable mappings of data structures onto both shared and distributed
memory hardware. Examples of languages adopting the PGAS model are
the language extensions Unified Parallel C [49], Co-Array Fortran [193], and
Titanium [243] for Java.

data parallel and high productivity languages . There is a
wide variety of parallel programming languages, generally defined for a
specific purpose. The next paragraphs overview two families of languages,
which have common motivations with our RSM formalism.

Data parallel languages differ from traditional sequential languages in
their use of operations and assignments over aggregate data structures, typ-
ically arrays. They are quite popular on SIMD architectures3 such as Con-
nection Machine (CM-2) [233] and the Massively Parallel Machine (Maspar),
in which the hardware supports fine-grained parallelism.

Array-oriented languages. APL (A Programming Language) [140] is a pioneer
array-oriented language for the design of digital computing systems at
a high abstraction level. It proposes a concise notation to describe oper-
ations on arrays, without explicit loop definitions. High-performance
Fortran (HPF) [136] also uses a compact notation for parallel loop con-
structs and regular data distributions. NESL [38] provides constructs
for expressing nested data-parallelism concisely and a performance
evaluation model. It is well-suited for irregular algorithms manipulat-
ing graphs and sparse matrices.The Single Assignment C (SAC) lan-
guage [218] is a functional language manipulating arrays to describe
intensive signal processing applications. It is similar to the Array-OL
domain-specific language [72, 121], which is dedicated to regular mul-
tidimensional signal processing applications.

Stream-oriented formalisms. The synchronous dataflow (SDF) model [166]
consists of a set of nodes communicating via FIFO queues. The rates of
exchanged monodimensional data tokens are specified statically. SDFs

3 Notice that these architectures are no longer adopted nowadays. Instead, SIMD extensions of
instruction sets or GPUs are found.

c©Abdoulaye Gamatié

3.2 background notions 35

are well-suited for static analysis and scheduling. Kahn process net-
works (KPNs) [149] are another popular mathematical design model.
They consist of processes representing (sequential) programs that com-
municate via unbounded FIFO buffers with blocking read. They define
deterministic specifications and offer a high flexibility for composi-
tional design. Further relevant design models include marked or event
graphs [61], which are a sub-class of Petri nets [202]. Data parallel ap-
plications are also defined with the single assignment Sisal functional
language [107] and the Brook [222] extension of C language, which
provide an implicit expression of parallelism in terms of streams and it-
erations. The StreamIt [229] programming model, dedicated to stream-
ing applications, provides a compiler for an efficient execution.

Polyhedra-oriented formalisms. Beyond the above specification models, we
also mention Alpha [182, 240], a functional language devoted to the ex-
pression of regular data-intensive algorithms. Alpha relies on systems
of affine recurrence equations. The manipulated data types consist of
convex polyhedral index domains. This allows for the description of
algorithms operating on multidimensional data. Alpha is very close to
the Array-OL language [115]. It is associated with a few program trans-
formations for optimal implementations. Polyhedral process networks
(PPNs) [20] are variants of KPN models, where communicating FIFO
buffers hold a bounded size, with blocking reads and writes. The exe-
cutions and inputs/outputs of PPNs are described as polytopes result-
ing from a polyhedral analysis of static affine nested loop programs.
PPNs have been used to generate task and pipeline parallel programs
for embedded architectures.

High-productivity languages aim to facilitate the programming of high-
performance systems by providing high level language supports for abstrac-
tion and modularity, using for instance object-oriented programming, to-
gether with new ideas for describing massive parallelism. They share com-
mon features with PGAS: global name space and explicit representation of
locality. However, they also allow dynamic creation of parallelism, which is
necessary for achieving operations on irregular data structures. Examples of
languages are Chapel [52] developed by Cray, Fortress [9] designed by Sun
and X10 [55] a Java extension defined by IBM. More recently, the CUDA
programming model [191] has been introduced by Nvidia as a solution to
facilitate programmers’ task for implementing scalable parallel applications
on massively multithreaded GPUs. It consists of an extension of sequen-
tial programming languages such as C with abstractions allowing for the
expression of parallelism.

automatic parallelization. The “90–10 rule” is a well known em-
pirical fact in software code optimization community that suggests 90% of
execution time of a program comes from 10% of the code. Most often, this
10% code fragment is composed of loop nests for which the inherent paral-
lelism must be exploited in an adequate way for an efficient execution. Auto-
matic parallelization [21] has been largely studied in order to permit the ef-
ficient parallel execution of code fragments written, typically in a sequential
language such as C, without modifying programs. There have been interest-
ing results for programs manipulating arrays and regular nested loop [43].
Several existing compilers implement these techniques, e.g., SUIF compiler
[13], Intel C++ compiler or LLVM [157]. While automatic parallelization has

c©Abdoulaye Gamatié

36 design model for reactive data-intensive applications

been successfully applied to shared memory machines, for distributed mem-
ory machines the problem is more complex. As observed by [152], the “abil-
ity to automatically extract from serial programs more operations out of normal
programs to perform in parallel in the hardware has plateaued”. Among difficul-
ties in automatic parallelization are pointer handling and dynamic control
management. Beyond automatic parallelization, there are further techniques
such as allocation, scheduling or memory management of loop nests, which
contribute to efficient execution of programs.

3.2.2 The repetitive structure modeling (RSM)

The domain-specific language Array-OL [72] [115] has been initially pro-
posed within an industrial context by Thomson Marconi Sonar (now Thales)
for specifying regular multidimensional signal processing applications. The
complexity of such applications does not come from the managed elemen-
tary functions, but from the way the functions have access to data in mul-
tidimensional arrays. These elementary functions usually consist of sums,
dot products or Fourier transforms, which are often available in optimized
library implementations. The complex data access patterns in concerned
applications make difficult their scheduling on parallel and distributed exe-
cution platforms. The real-time constraints on these data-intensive applica-
tions call for a suitable exploitation of their inherent potential parallelism
on parallel hardware.

Starting from Array-OL, the DaRT group at LIFL and Inria (Lille) pro-
posed an extension for a more general modeling paradigm, referred to as
repetitive structure modeling (RSM) [106], dedicated to the co-modeling ofWe have proposed a

tentative operational
semantics for RSM

in [105] (not
presented here).

massively parallel systems, from different viewpoints: application function-
ality, hardware architecture and functionality/architecture mapping.

basics of rsm . Among the basic characteristics of RSM are the follow-
ing: true data dependency expressions, determinism, absence of dependency cycles,
hierarchy, single assignment and undistinguished temporal and non temporal di-
mensions in toroidal multidimensional arrays. An application is specified as an
oriented task graph in which three kinds of tasks are distinguished: elemen-
tary, repetitive and composed tasks. These tasks have input and output ports.

An elementary task is an atomic (or sequential) function. A repetitive

task expresses data-parallelism by specifying how a given task is repeated
on different data subsets, referred to as tiles. It is illustrated in Figure 13.
Its associated repetition space r, a vector in which coordinates are iteration
bounds, gives the total number of repetitions. Input and output arrays are
conveyed by white square ports. Each tile, conveyed by a dark square port,
is processed by a repeated task instance corresponding to some task. All
ports are associated with a shape information representing the static size/di-
mension of their conveyed arrays and tiles. In Figure 13, the shape of the
unique input array port is a (8, 7)-matrix. The absolute coordinates of every
tile within an array are computed via information provided in a specific
connector, called tiler, which connects an input/output array port to a cor-
responding tile port.

A tiler specifies the following information: the coordinates ~O, referred to
as origin vector of the data array; a paving matrix P used to compute the
absolute coordinates of tile origins in an array; and a fitting matrix F used to
compute data coordinates within a tile.

c©Abdoulaye Gamatié

3.2 background notions 37

Other

Tilers

Tiler

Array

Tile
Repetition
space

Some task

~O =

(
0

0

)

F =

(
1 1

0 1

)
P =

(
1 2

2 0

)

~A =

(
8

7

)
r =

(
4

4

)
~T =

(
2

2

)

Figure 13: Repetitive task specification.

The repetition space r of a repetitive task is parsed by a vector index q.

For instance, in Figure 13, such an index is bidimensional q =
(

i
j

)
. The

paving matrix P is used to compute the coordinates of the origin point for
each tile processed by a repeated task instance, identified by index q. Such
an origin is a point in the array ~A, defined by:

~Tq = (~O+ Pq) mod ~A (1)

where the index q is defined on the r space, i.e., 0 6 q < r.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

j

i

1

3

4

5

6

7

2

1 2 3 4 5 6 7 80

0

Data Array

Given tile

shape

1 2 3

1

2

3

i

j

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Repetition space rT
 0

0




T
 1

0




T
 3

0




T
 0

1




T
 1

1




T
 3

1




T
 0

2




T
 0

3




T
 1

2




T
 1

3




T
 2

0




T
 2

1




T
 2

2




T
 3

2




T
 2

3




T
 3

3




Figure 14: Array paving according to a repetition space.

Figure 14 illustrates the paving of the input data array for the previous
repetitive task given in Figure 13. It shows the layout of tiles and the covered
repetition space r. For each repetition in r, a tile is computed in the array ~A

and the correspondence between tiles and repetition indexes is shown via
colors. For example, during the repetition identified by q =

(
0
1

)
in the r

space (right part of Figure 14), the origin point of the corresponding tile ~Tq

in the array (left part of Figure 14) is computed as:

(~O+ P~q) mod ~A = P~q =
(
1 2
2 0

) (
0
1

) (
2
0

)
.

After the identification of tile origin points, one has to determine how to
fill each tile with the elementary data contained in an array. For this purpose,
an intra-tile repetition space ~T , defined as the shape of a tile, is considered.
It is parsed by an index p. The positions of elementary data into a tile are
computed by using the fitting matrix F, as follows:

~dp = (~Oq + Fp) mod ~A (2)

c©Abdoulaye Gamatié

38 design model for reactive data-intensive applications

where 0 6 p < ~T and ~Oq is the origin of a tile.

0 1

j

i

0

1

+1 +2

+1

i

j

Pixels in the tile Intra tile repetitions

Tj

Ti

Figure 15: Data layout inside a tile given by the fitting matrix F.

Figure 15 shows a correspondence between the intra-tile repetitions and
their associated elementary data. The correspondence is highlighted by col-
ors.

Within the same repetition space, task instances may depend on each
other. This is typically useful when computing the integral sum of array el-
ements. Such a repetitive task belongs to the extension of Array-OL defined
by the DaRT group (called “Array-OL with delays”) and is referred to as
repetitive task with inter-repetition dependency [121]. Figure 16 illustrates such
a task connecting the output tile port of each repeated task instance to the in-
put port of its dependent repeated task instance, according to a dependency
vector ~d. This vector indicates within the repetition space the uniform de-
pendencies between repetition instances. A specific connector, denoted by
init_val, specifies initialization tile values for repetition instances with de-
pendencies that are out of the repetition space. These instances are typically
the very first ones according to the order introduced by an inter-repetition
dependency.

Elementary

task

Initialization

value
Dependency

vector

Repetition
space Other

Tiler

Array

Tiler

init_val

~O, F,P

r

~A

~d

Figure 16: Repetitive task with inter-repetition dependency.

A composed task is defined by a directed acyclic graph (DAG) composi-
tion of elementary and repetitive tasks, allowing for task parallelism repre-
sentation. Figure 17 shows an example of RSM specification, composed of
four interconnected repetitive tasks.

loop transformations in rsm . Many loop transformations are us-
able to modify RSM descriptions [114]. Below are presented some of them.

Fusion. Let R1 and R2 denote two repetitive tasks exchanging an array A

produced by R1 and consumed by R2. The computations of task R2

c©Abdoulaye Gamatié

3.2 background notions 39

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
���
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
���
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
�� �

�
�

�
�
�

Link Tiler

T1 T2 T3 T4

Figure 17: An Array-OL specification composed of four tasks.

may be started while only sub-parts of A are produced by R1. Let us
call macro-tile such an array sub-part. An execution at the macro-tile
level enables a pipelined execution of R1 and R2. It also allows to min-
imize the size of intermediate memory required for data storage be-
tween the tasks. The fusion transformation of tasks R1 and R2 creates
a new repetition space on top of R1 and R2 such that: i) the exchanged
array A is replaced by a macro-tile and, ii) the repetition spaces of R1

and R2 are reduced so as to produce and consume these macro-tiles
instead of an array with the same shape as A. So, the fusion changes
the granularity of exchanged data and task repetition spaces.

Paving change. Let us consider a hierarchy of repetitive tasks, equivalent to
a loop nest. There are repetition spaces at different levels in this hi-
erarchy. The paving change transformation enables to redistribute the
repetitions between the different levels by moving part of the higher
level repetitions to lower level ones. For instance, for a given initial
specification consisting of a hierarchical repetitive task R1 where the
inner repeated task is itself a repetitive task R2. Let their respective
repetition spaces be [t, s] and [c]. A change paving transforms the spec-
ification so that the higher level repetition space becomes [t] and the
lower level one is [s, c]. If dimensions t, s and c denote respectively
time, space and computation, it means from the initial specification,
one is making explicit the temporal execution flow of a functionality
computed in R2.

Collapse (unrolling). Given a hierarchy of repetitive tasks as discussed in
the previous transformation, the collapse transformation is equivalent
to paving change operation applied to all higher hierarchy levels. The
corresponding repetition spaces therefore become empty and useless,
except the repetition space at the lowest internal level. As a result, all
hierarchy levels associated with empty repetition spaces are deleted
from the specification. For instance, for a hierarchical repetitive task
R1 where the inner repeated task is itself a repetitive task R2, if their
respective repetition spaces are [t, s] and [c], an application of the col-
lapse transformation will yield a (non hierarchical) repetitive task R2

associated with a repetition space equals to [t, c, s].

Tiling. Given a repetitive task, the tiling transformation performs the in-
verse operation of the collapse. It creates a new repetition level on top
of a given repetitive task. In other words, this adds a new hierarchi-
cal level in the specification. During this transformation, the repetition
space of the initial repetitive task is divided into sub-spaces. In the
resulting task specification, the repetition space associated with the
added level (i.e., higher hierarchy) expresses repetitions between the
sub-spaces, while the repetition space corresponding to the initial level
(i.e., lower hierarchy) expresses repetitions within a sub-space.

c©Abdoulaye Gamatié

40 design model for reactive data-intensive applications

Figure 18 illustrates an Array-OL specification derived from the specifi-
cation in Figure 17 by applying the following transformations: i) fusion of
tasks T1 and T2, where the two elementary tasks T1 and T2 are merged in a
common repetition space; ii) tiling of task T3, where a new repetition hierar-
chy level is created and the repetitions are distributed between the hierarchy
levels; and iii) paving change of task T4, where the size of the consumed and
produced tiles are increased.

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

�
�
��
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
���
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
���
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
��
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
���
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��
�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
����
��
��

��
��
��

�
�
�

�
�
�

T2 T3 T4T1

2 repetitions

Figure 18: Specification of Figure 17 after 1) fusion of tasks T1 and T2; 2) tiling of
task T3 and 3) paving change of task T4.

Beyond all above notions, there are other extended concepts of RSM, pro-
posed by the DaRT group, for the description of regular hardware architec-
ture topologies, and regular mappings of software applications on hardware
platforms in codesign. These concepts have been integrated in the Marte
standard profile [194] of the Object Management Group (OMG). This profile
is dedicated to the Modeling and Analysis of Real-Time and Embedded systems.

In addition to our Gaspard2 design environment [106] [71], there are other
environments which also adopt Array-OL concepts like the SpearDE code-
sign framework of Thales Research & Technology and the Ptolemy II of
Berkeley via its very recent Pthales domain [22].

3.3 from static to dynamic design model in rsm

The works presented in this section have been started from September 2005,
when I started my Post-doc in the DaRT group. Part of them also covers the
PhD thesis of Huafeng Yu (October 2005 – December 2008).Huafeng Yu is now

Research Engineer at
INRIA Rennes

(France). 3.3.1 Integrated control-oriented design with FSMs and RSM

some related works . The Mode Automata formalism [179] integrates
FSMs and the Lustre language to enable a direct specification of complex
systems based on the notion of running mode. This provides a designer with
dataflow and imperative flavors at the same time. More recent variants and
extensions of Mode Automata have been defined in the Lucid Synchrone
[60] and Signal languages [225]. In Signal, a previous work [215] studied the
combination of a preemption mechanism with the associated multi-clock
dataflow model by considering clock activation periods.

Similar extensions are introduced in SDFs to express dynamic changes
and reconfiguration in streaming applications [227] [189]. These solutions
integrate new features to SDFs in order to describe system behavior modes
or scenarios. In the major part of solutions, FSMs are used to define the
control part as reported in [82]. For instance, the ∗charts family of models
of computation proposed earlier in Ptolemy [112] makes it possible to com-
bine hierarchical FSMs and dataflow graphs. The states of an FSM can be
refined as dataflow graphs while actors of a dataflow graph can be refined
by FSMs. The applicability of this design principle of ∗charts is limited to
dataflow graphs for which execution can be divided into finite iterations, i.e.

c©Abdoulaye Gamatié

3.3 from static to dynamic design model in rsm 41

a minimal number of actor firings setting a dataflow graph to its initial state.
Extended codesign finite state machines (ECFSMs) [217] are finite state ma-
chines that manage the communication behavior of an actor in a network
where interconnects are FIFO channels. This model has been extended with
the notion of actor state and hierarchy in SysteMoC [133]. The California
actor language (CAL) [79] defines dataflow graphs where actors can have
state information provided by FSMs dedicated to the scheduling of actions
to be executed.

There are some methodologies devoted to integrated FSM and dataflow
design such as Ptolemy II [80], OpenDF Design Flow [36], SystemCoDe-
signer [151] and Windowed Data Flow (WDF) [150]. The most popular is
undoubtedly the former, Ptolemy, which integrates several models of com-
putation (e.g., finite state machines, synchronous dataflow, concurrent se-
quential processes, process networks...) in order to provide an environment
for heterogeneous design. WDF aims to multidimensional applications.

The previous integrated design approaches are closely related to multi-
formalism programming models, which are used for hybrid discrete/con-
tinuous system design. We have already mentioned the Ptolemy framework,
which allows for that. Matlab [138] enables to describe modes in event-
driven and continuous systems by using Stateflow specifications. Hybrid Se-
quence Charts (HySCs) [120] are a specialized subset of Message Sequence
Charts (MSCs) providing a visual description of discrete and continuous be-
haviors. Finally, a language [30] has been defined recently for hybrid system
modeling from a dataflow synchronous language. It integrates hierarchical
automata combined with dataflow and differential equations.

mode tasks and transition functions . A reactive control mod-
eling is associated with RSM in the form of an extension relying on finite Key publications for

more details: [209]
[245].

state machines (FSMs) [156] [244]. More precisely, the connection between
the data-intensive and control parts of an application is defined by distin-
guishing data computation modes and transition functions that produce
control values to select some modes. One important requirement here is to
preserve the regularity of computations expressed in RSM while they are
made controllable.

In order to enable the description of data-intensive applications including
control-oriented behaviors, the RSM model has been extended [156] with
a reactive control notion in the form of Mode Automata [179]. With Éric
Rutten and Huafeng Yu, we have enhanced this initial proposition by gen-
eralizing the mode automata notions in this context by making possible
descriptions featuring hierarchical and parallel mode automata [244]. Note
that this enhancement is prior to the definition of the new Pthales domain
[22] in Ptolemy. This domain certainly opens interesting opportunities in
terms of heterogeneous designs, and particularly regarding the interaction
between control-oriented models of computations and data-intensive com-
putations. The next paragraphs give an overview of the main concepts in
our proposition.

A Mode task expresses a choice among several alternative computations
denoted by tasks Tj, also called modes. All the modes Tk of M have
the same interface. Figure 19 illustrates a mode task in an informal
notation inspired by windows with multiple tabs [156]. The task is
composed of four modes T0 . . . T3, each identified by a mode value:
mi,i∈0..3. It has a specific input port m, called mode selector. When m

holds the value mk, the computation performed by the mode task is

c©Abdoulaye Gamatié

42 design model for reactive data-intensive applications

that of Tk. As in Mode Automata, the modes run in mutual exclusion,
meaning that whenever a mode task executes, only the task Tk associ-
ated with the selected mode mk is computed.

oi T2

m0 m1 m2 m3

m

Figure 19: Example of mode task.

Transition functions are used to define mode values serving to select com-
putations. Given some inputs c used in transition conditions and a
current state value s, such a function is an elementary task in RSM
that computes the next state value s ′ after transitions. To define an
automaton, a transition function task is embedded in a repetition as
depicted by Figure 16. An inter-repetition dependency vector ~d = (−1)

is considered over a totally ordered dimension of the repetition space r,
e.g., a monodimensional temporal dimension in r. This vector connects
the ports associated with state values s and s ′. This automaton encod-
ing is very similar to the usual encoding of automata in sequential
circuits. Advanced models such as hierarchical or parallel automata
can be obtained in a similar way [101].

Hierarchical constructs can be defined via a simple extended data de-
pendency model that mixes data-intensive computations with con-
trol. This model has a similar semantics as a mode automaton [179].
The statements representing the data-intensive part are executed ac-
cording to the states computed by a transition function. Figure 20

shows a macro construct consisting of a repetitive task R with an inter-
repetition dependency. The repeated task is a hierarchical task H in
which, a mode task selects a data-intensive algorithm to compute the
resolution of images, according to a power level.

resolution definition

algorithm #2
source

monitor

power

image

display

image

to

ti : ~O
F

P

TF

→
d

te

om

m3m2m1m0

m

im

sr

init

R

H
s ′

s

c

t ′s

Figure 20: Example of mode automaton.

application to mpsoc co-modeling . The above control-oriented
extension of RSM has been experimented at various levels in our co-modeling
framework Gaspard2. In particular, we showed that the extension is generic
enough to be used for modeling of software application, hardware architec-
ture, association of both and deployment (i.e., instantiation) with Intellectual
Properties (IPs).

c©Abdoulaye Gamatié

3.3 from static to dynamic design model in rsm 43

While I personally have been mainly involved in the software application
level, I got the chance to collaborate with colleagues in the DaRT group
on the usage of the extended model in other levels. More precisely, we ad-
dressed together the generation of hardware accelerators for dynamic recon-
figuration on FPGAs in Gaspard2 [209, 70, 210].

Currently, within the French ANR project, named Famous, in which I
am involved, our gained insights are being considered for an extension of
the Marte standard profile for reconfigurable systems, referred to as “Reco-
Marte” profile.

3.3.2 Interaction between data dependencies and logical time

Now, I address a refinement of the untimed computation and communi-
cation actions expressed by data dependencies in RSM into synchronous
reactive models in which the temporal dimension of computations is made
explicit. For this purpose, I studied a structural translation of RSM spec-
ifications into synchronous models following their syntactical constructs.
This translation is greatly facilitated by the similarity between RSM and
synchronous dataflow languages since both have a recursive block-diagram
structure. It is summarized in this section after an overview of some related
studies.

some related works . A reference work combining data-intensive com-
putation and abstract clocks of synchronous languages is [219], in which au-
thors consider the functional data parallel language Alpha [182, 240, 164]
and Signal. In their approach, intensive numerical computations are ex-
pressed in Alpha while the control (the clock constraints resulting from
Alpha descriptions after transformations) is conveyed to Signal. The reg-
ularity of Alpha enables to identify affine relations between the specified
clocks. The Signal compiler therefore addresses synchronizability criteria
based on such clock relations. Similar concepts can be found in [59] where
a synchronous model is defined in order to address the correct develop-
ment of high performance stream-processing applications. It particularly
relies on a domain specific knowledge consisting of periodic evolution of
streams. This model allows to automatically synthesize communications be-
tween processes with periodic clocks that are not strictly synchronous.

Although synchronous dataflow languages are not specifically intended
for data-intensive computations, they include some interesting features such
as arrays and iterators. Arrays have played an important role in synchronous
dataflow programming for the description of algorithms and architectures.
We mention the pioneer work of Le Guernic, Benveniste, Gautier and Bour-
nai on the definition of regular arrays of processes in the Signal language for
signal processing applications [160] [161]. This enabled the description of
regular data-parallel algorithms.

Another pioneer work in the Lustre language concerned the introduction
of arrays in the language [129] by Halbwachs and Pilaud. This work con-
centrated on the simulation of systolic algorithms. The authors showed that
arrays are necessary in order to write systolic algorithms in Lustre. These ar-
ray structures have been implemented on FPGA by Rocheteau [214]. More
recently, Morel proposed an efficient compilation of arrays in Lustre pro-
grams [185]. Another work on Lustre arrays [128] involves the array content
analysis through abstract interpretation.

c©Abdoulaye Gamatié

44 design model for reactive data-intensive applications

Other relevant languages such as StreamIt [229] and Otto E Mezzo [184]
can be mentioned. The former has been already introduced in Section 3.2.1.
The second allows to describe behaviors of dynamical systems. It uses clock
information in the code generation, e.g., in C or towards a SIMD abstract
machine. It is inspired by the multidimensional extension [204] of the Lucid
dataflow language of Wadge and Ashcroft [238].

space-time mapping for logical instant identification in rsm .
As a basic principle, we decide to map the infinite dimension of repetition
spaces in RSM onto temporal dimension. The loop transformations intro-
duced earlier enable a re-factoring of RSM models into a form that can be
straightforwardly interpreted over a temporal dimension. Such a form con-
sists of a hierarchical task in which infinite arrays are manipulated only at
the very top-level. In this task, the top-level is composed of a single task
playing a similar role as a “main” function in a C program.

According to a chosen instant granularity, the main task at the very top-
level instantaneously computes identical sub-parts of input infinite arrays,
as in a flow of arrays. For instance, in a video processing application, one
may need to consider that input video data are read image by image, or
by sets of images. Then, the granularity of an instantaneous reaction is the
processing of either an image or a set of images as illustrated in Figure 21.

infinite

5

4

12
3

0

4
timet0

t1
t2

(1)

t0
t1

t2

time

t12

t10
t11t21t31

t20
t30

t00
t01

t02

(2)

timet0
t1

t2

(3)

A

Figure 21: Space-time mapping of a [5, 4,∞]-array w.r.t. different granularities.

In [11], the authors adopted the same approach to define a projection of
data-parallel applications specified in Array-OL onto KPNs. They consid-
ered a pipelined execution on data streams resulting from a refinement of
manipulated infinite arrays. The fusion loop transformation has been ap-
plied to set application models in the right form.

Understanding the space-time mapping issues in a context combining
both RSM and synchronous reactive modeling paradigms was part of a two-
year collaboration between the Inria Aoste, DaRT and Espresso groups. This
collaboration, named Triade4, focused on SoC design. Its aim was to explore
a seamless flow of increasingly time-defined and time-accurate models, so
as to progressively derive implementations through provably correct steps
from high-level (loosely-timed) models. In a submitted joint-paper with
members of Aoste, we present how from loop transformations applied to
RSM models according to given environment and execution platform con-

4 http://www.irisa.fr/espresso/Triade

c©Abdoulaye Gamatié

http://www.irisa.fr/espresso/Triade

3.3 from static to dynamic design model in rsm 45

...

...

...

A1

t11 t12
A2[< ind1

2
>] := t1

2

A2[< ind2

2
>] := t2

2

t21
t22

A2

T

T

T

t1
1
:= A1[< ind1

1
>]

t2
1
:= A1[< ind2

1
>]

tr
1 tr

2tr
1
:= A1[< indr

1
>] A2[< indr

2
>] := tr

2

(a) Task without inter-repetition dependency.

. . .

. . .

T

T

T

T

Tr
an

sl
at

io
n

of
in

p
u

t
ti

le
r

Tr
an

sl
at

io
n

of
ou

tp
u

t
ti

le
r

init

A1 A2t11
t12

ti1
ti2

ti+1
1

ti+1
2

tr
1 tr

2

(b) Task with inter-repetition dependency.

Figure 22: Parallel synchronous models of repetitive tasks

straints, temporal and scheduling properties are captured via specifications
defined in the polychronous CCSL language. The PhD thesis of Coadou [57]
shares a few similar motivations with this work. It considers k-periodically
routed graphs and polyhedral models to deal with loop schedulings for
data-intensive processing.

from rsm models to synchronous dataflow programs . Pro-
vided the previous time-space mapping is applied to a given application,
we can translate RSM in synchronous dataflow languages. Basically, each Key publication for

more details: [102].RSM task is represented by a Signal process (or Lustre node equivalently),
with the same interface. Ports are translated as signals. An elementary task
is represented by a function. Composed tasks are translated in an inductive
way by using the composition operation of synchronous languages on the
translation of its component tasks. A repetitive task R is translated similarly
by composing the translations of its tilers and repeated task instances T , as
follows (see Figures 22a and 22b):

• for an input tiler (F, ~O,P), the corresponding Signal process takes as in-
put an array with shape ~Ai and produces tiles tq

i via a set of equations
enumerating the extraction of the tiles. The index indq corresponding
to the qth(0 6 q < r) tile having the shape ~T is obtained as follows:

< indq >= {~O+ qP+ pF mod ~A, where 0 6 p < ~T } (3)

c©Abdoulaye Gamatié

46 design model for reactive data-intensive applications

For output tilers, the corresponding Signal process takes as inputs
some tiles and produces an array in which the tiles have been stored
at suitable indexes according to above formula 3.

• the set of repetitive task instances executed in parallel is encoded by
a Signal process consisting of the parallel composition of |r| identical
translations of the repeated task T in R. When R contains a dependency
between repetitions, the associated synchronous model includes addi-
tional dependencies between encoded repeated tasks. The initializa-
tion values are inputs of the first instances w.r.t. dependency order.

In addition to the above translation, we have also defined an alternative
encoding that serializes the execution of a repetitive task R. The resulting
synchronous model is more compact since it does not enumerate all in-
stances of R. This contributes to mitigate scalability issues in the resulting
synchronous models. Roughly speaking, this new translation is as follows
(see Figures 23a and 23b):

• input and output tilers are respectively encoded by special Signal pro-
cesses, referred to as Array to Flow and Flow to Array. The former pro-
cess applies an oversampling to input arrays to extract a flow of tiles.
The latter process conversely applies a down-sampling on a flow of
tiles to construct an array.

• the inner task T in R is represented by a Signal process encoding one
instance of R processing flows of tiles. For repetitive tasks with depen-
dency between repetitions, the associated synchronous model includes
a delay operation on flows of tiles.

A1 A2
T

t11...tr
1 t12...tr

2to
Flow)

(Array
to

Array)

(Flow

(a) Task without inter-repetition dependency.

delay
(init)

T
ti1 ti2A1 A2

(A
rr

ay
to

Fl
ow

)

(F
lo

w
to

A
rr

ay
)

(b) Task with inter-repetition dependency.

Figure 23: Serialized synchronous models of repetitive tasks

For more compact synchronous models in our translation, another solu-
tion would be to exploit extended features of synchronous languages. The
arrays and their associated iterators added in Lustre [185] and the array of
processes construct [33] of Signal can be considered for this purpose.

c©Abdoulaye Gamatié

3.3 from static to dynamic design model in rsm 47

Indeed, the synchronous model encoding presented here is meant to be
intuitive and simple, and may certainly be optimized. However, the consid-
ered optimizations can be quite different according to the goals, e.g., effi-
cient code generation or verification. Our translation separates assignments
to array elements in different equations. This enables to apply causality anal-
ysis at array element level.

The translation of the RSM extension with FSMs is quite similar to the
previous encoding rules. A mode task is simply translated as a “case” state-
ment. When such a construct is not provided by a language, it is encoded as
a composition of conditioned equations, each corresponding to a possible
mode. Whenever a condition is evaluated to true, the equations associated
with the evaluated mode are chosen for computation. A transition function
is encoded in a very similar way, or by considering built-in automata con-
structs when available in languages.

loop transformation-based abstraction for scalability. In
a collaboration referred to as ID-TLM , initiated in December 2008 (for three Accepted publication

on this topic: [117].years) between ST Microelectronics and Inria, we began a study on the mod-
ular design of massively parallel applications based on component-based
abstraction. This was also the subject of the short Post-doc fellowship of
Mohamed Fellahi. Here, I highlight our most relevant results [117] regard-
ing this project, obtained together with Pierre Boulet and colleagues from
the Aoste group of Inria and I3S (Sophia Antipolis).

To deal with the scalability issues in our previous translation, we inves-
tigated an abstraction of the potential parallelism expressed in RSM. The
abstraction of a task component C is built using a bottom-up process start-
ing from elementary components used as building blocks of C up to the top
level composition of C. At each level, the process uses re-factoring transfor-
mations from the set of loop transformations described in Section 3.2.2.

At the lowest hierarchical level, the abstraction of an elementary compo-
nent E is a single degenerate data-parallel repetition of the component itself.
Since, there is no parallelism, the execution of component is atomic. For a
repetitive component R, the main question is how to build the abstraction
for a repetition of an abstraction of an internal repeated component. As this
internal repeated component is abstracted itself by a data-parallel repetition,
the problem is viewed as how to abstract two nested data-parallel repetitions
into a data-parallel repetition. This problem is exactly solved without any
loss of parallelism by applying the collapse transformation so as to obtain a
component with a single repetition level on top of a graph of components,
referred to as flatten transformation.

To build the abstraction of a DAG component C of abstracted components,
we create a new hierarchy level where the top-level component is a data-
parallel repetition of a DAG of the original abstracted components. The top-
level repetition represents a factorization of the parallelism expressed by
the repetitions of the abstracted components as in loop fusion. Actually, this
transformation is a succession of fusion and above flatten transformations
on any two components at a time in the DAG C. The final abstraction of C
is obtained by keeping only the top-level repetition as a way to express part
of the potential parallelism of C. This process may loose some potential
parallelism but keeps the parallelism that can be expressed as nested loops
with uniform dependencies.

The above abstraction of internal parallelism in an RSM task component is
an alternative model specification that can reduce the complexity of initial

c©Abdoulaye Gamatié

48 design model for reactive data-intensive applications

Figure 24: Sketch of the Gaspard2 design approach.

specifications. It also offers a rich interface, as introduced by Alfaro and
Henzinger in [8], exposing the potential parallelism of a component while
hiding its implementation. This favors component reusability in a design
context where the effective use of the potential parallelism of a component
is a decision that could be taken after the design of the component library.

3.3.3 Model-driven engineering in Gaspard2 environment

In the context of the PhD thesis of Huafeng Yu [244], a prototype transforma-Key publications for
more details: [244]

[103].
tion chain, based on model-driven engineering, has been developed in Gas-
pard2 (first version) for an automatic translation of RSM models into syn-
chronous dataflow programs. It is illustrated on the left-hand side of the Gas-
pard2 design approach shown in Figure 24. In this approach, the comodel-Key publication for a

more detailed
overview: [106].

ing of data-intensive MPSoCs starts with Marte specifications of software ap-
plication, hardware architecture, association of both parts and deployment
of generic components with IPs. Then, different automatic model transfor-
mations are implemented towards various technical domains, for: verifica-
tion of application properties via synchronous languages, high-performance

c©Abdoulaye Gamatié

3.4 synchronous approach for dealing with correctness 49

execution via OpenMP Fortran (and more recently via OpenCL), system
simulation via SystemC, and hardware synthesis via VHDL.

The implementation of the transformation towards synchronous languages
relies on a generic metamodel for synchronous equational dataflow lan-
guages, which targets at the same time Lustre, Lucid Synchrone, and Signal.
The tool has been developed as an Eclipse plugin. The implemented trans-
formation rules globally represent about five thousands lines of Java code
in Eclipse.

The translation chain did not include the control extension of RSM. How-
ever, a metamodel has been defined as an implementation of the proposed
control-oriented extension of RSM. It relies on UML state machines and col-
laboration diagrams combined with already existing concepts of RSM. The
transformation rules associated with the extended metamodel have been
specified in [244]. A manual translation of the extended RSM have been
experimented on a simple example of multimedia application [245] [104].

Beyond the above contributions to Gaspard2, I would like to briefly men-
tion another work I was involved in, about the syntactical validation of
Marte models using the Object Constraint Language (OCL) [54]. This work
was done with Asma Charfi, who I advised during her master internship for
eight months from April 2007. It was funded by the Franco-Tunisian Ksours
project on design and validation for reconfigurable systems. The Tunisian
partner was the Computer & Embedded Systems lab at ENIS in Sfax.

3.4 synchronous approach for dealing with correctness

Some analyses applicable to RSM specifications are summarized in this sec-
tion. They are typical in synchronous programming and are made possi- Key publications on

this topic: [102]
[245] [104].

ble on RSM specifications via the translation presented in the previous
section. These analyses should be seen as complementary techniques to
those relying on polyhedra (e.g., developed in Feautrier’s works [84]), which
are also applicable to RSM. They become particularly useful when data-
dependencies are strongly combined with control flows.

3.4.1 Causality and array assignment analysis

causality analysis . The execution semantics considered for RSM in
Gaspard2 framework imposes that all inputs of a task are available before
outputs are computed. Let us consider a hierarchical task T, depicted by
Figure 25, composed of two communicating sub-tasks T1 and T2. According
to this level of hierarchy, the specification is not correct for execution since
T1 and T2 are inter-dependent (i.e., causality cycle).

T
T1

T2

i22

i11 o11

o22
o21

o12

i21

i12

Figure 25: A simple hierarchical task model.

c©Abdoulaye Gamatié

50 design model for reactive data-intensive applications

Our translation of RSM into synchronous dataflow languages offers the
opportunity to address the causality problems inherited from RSM model
with compilers associated with target languages [131] [162]. Figure 26a il-
lustrates the task T according to the execution semantics of RSM models in
Gaspard2. For instance, every output port, say o11, of task T1, depends on
all input ports of the task, i.e. i11 and i12. The translation of such an RSM
model leads to a synchronous program on which compilers will straightfor-
wardly exhibit the presence of causality cycles. As a result, the version of
task T given in Figure 26a should be rejected.

T
T1

T2

i22

i11 o11

o22
o21

o12

i21

i12

(a) Presence of cycle.

T

T2

T1

i22

i11

i12

i21

o12

o11

o22
o21

(b) Absence of cycle.

Figure 26: A simple causality analysis for task T.

Now, let us consider the alternative definitions of T1 and T2 shown in
Figure 26b. In T1, o11 only depends on i11. Assuming the dependencies
specified in Figure 26b, it is very easy to show that the translation of the sec-
ond version of task T leads to a deadlock-free program. Hence, the execution
semantics of RSM models in Gaspard2 clearly appears very restrictive. With
a finer-grained causality analysis such as the one provided by compilers of
synchronous languages, one avoids “false” data dependency cycles.

checking single assignment. Single assignment is another key prop-
erty of RSM. For a given array A, one must ensure that no element of A is
overwritten after its first value assignment. This typically happens when the
paving matrix and the shape of tiles lead to tiles that overlap within A. Let
us consider a tiler characterized by the following values:

F =

(
1 0 0

0 1 0

)
, ~O =




0

0

0


, P =




4 0 0

0 4 0

0 0 1




Figure 27a shows a correct paving obtained with this tiler information.
The tiles have a (4,4)-shape where the origin point of each tile is set in red.

When considering new values of the tiler, given below, we observe inter-
section regions between contiguous tiles in Figure 27b:

F =

(
1 0

0 1

)
, ~O =

(
0

0

)
, P =

(
3 0

0 4

)

For instance, the tile P(0,0) overlaps the tile P(1,0) at the array elements
with indexes (3, 0), (3, 1), (3, 2) and (3, 3). The translation of RSM models
with the second tiling information produces a synchronous model with
multiple assignments to the same array locations. This violates the single as-
signment property of RSM. This is observed with compilers of synchronous
languages for free.

c©Abdoulaye Gamatié

3.4 synchronous approach for dealing with correctness 51

P(0,0)

P(5,4)P(4,4)P(3,4)P(2,4)P(1,4)P(0,4)

P(0,3) P(1,3) P(2,3) P(3,3) P(4,3) P(5,3)

P(1,2) P(2,2) P(3,2) P(4,2) P(5,2)

P(5,1)P(4,1)P(3,1)P(2,1)P(1,1)

P(0,2)

P(0,1)

P(1,0) P(2,0) P(3,0) P(4,0) P(5,0)

(a) Single assignments.

P(7,4)

P(2,1)P(1,1) P(3,1) P(4,1) P(5,1) P(6,1) P(7,1)P(0,1)

P(0,0) P(3,0) P(4,0) P(5,0) P(6,0) P(7,0)P(2,0)P(1,0)

P(3,2) P(4,2) P(5,2) P(6,2) P(7,2)P(1,2)P(0,2) P(2,2)

P(5,3) P(6,3) P(7,3)P(0,3) P(4,3)P(3,3)P(1,3) P(2,3)

P(0,4) P(1,4) P(2,4) P(3,4) P(4,4) P(5,4) P(6,4)

Multiple assignments for gray array elements

(b) Multiple assignments.

Figure 27: Different array assignments in RSM: origin point in each (4,4)-pattern is
represented by a red bullet.

We notice that single assignment in RSM can be checked with an algo-
rithm that exhibits the emptiness of polyhedra intersection as shown in [41].
Such an algorithm can be implemented using linear programming. However,
no implementation is currently available in the Gaspard2 environment.

3.4.2 State-based analysis for adaptive behaviors

Beyond the previous causality and array assignment analysis, the transla-
tion towards synchronous languages opens the way to apply further veri-
fication techniques such as model-checking of the functional properties of
RSM models. This is useful when designing data-intensive applications with
mode-based adaptive behaviors.

In a case study on the design of the multimedia functionality in a mo-
bile phone, we addressed important requirements on its operating modes
among which the mutual exclusion between some modes [245] [104]. Typ-
ically, black-and-white and color display modes cannot be set at the same
time. This has been checked as an invariance property. Another frequent re-
quirement is the reachability of some system modes under specific resource
availability conditions. For instance, a high-quality display mode of a mo-
bile phone may be enabled only when the battery level is high enough. To
achieve the model-checking of our synchronous models, we used the Sigali
tool [180].

In the same case study [104], we experimented discrete controller synthe-
sis for the definition of a safe controller for the multimedia functionality of a
mobile phone model specified with our extension of RSM. We observed that
a manual encoding of such a controller, satisfying a few expected properties
in a simple application, is very tedious and error-prone.

3.4.3 Analysis in presence of environment constraints

As discussed in the previous chapter, abstract clocks are very useful for
dealing with multi-clock designs. After a space-time mapping of RSM mod-
els, they serve here to reason on applications w.r.t. environment and imple-
mentation constraints. For illustration, we consider a downscaling algorithm
achieved by a component receiving a flow (tki) of images from a CMOS sen-
sor and reducing their size before sending a flow (tko) of reduced images
on a screen for display. This is illustrated in Figure 28. Each component

c©Abdoulaye Gamatié

52 design model for reactive data-intensive applications

is associated with an abstract clock describing its activations, i.e., its data
consumption/production rates.

CMOS
sensor

Downscaler TFT
display

cp ca ci

t i
k to

k

Figure 28: Image downscaling.

Let cp, ca and ci respectively be the abstract clocks of the sensor, the
downscaler and the display. A step in cp, ca and ci corresponds to the
production of respectively a single pixel by the sensor, a transformed block
of pixels by the downscaler, and an image by the display. The components
interaction is encoded with affine clock relations [219], as follows:

• C1: ca is an affine under-sampling of cp, i.e., cp
(1,φ1,d1)

→ ca;

• C2: ci is an affine under-sampling of ca, i.e., ca
(1,φ2,d2)

→ ci;

where φj and dj respectively denote a phase and a period.
Now, we consider a design requirement of the video display functionality,

consisting of a constraint on the actual image display rate, denoted by a
new abstract clock c ′i. This constraint, denotes a direct affine clock relation,
between cp and c ′i as follows:

• C3: cp
(1,φ3,d3)

→ c ′i.

Guaranteeing the compatibility of C3 with the previous set of constraints
{C1,C2} amounts to establish the synchronizability of clocks ci and c ′i. Syn-
chronizability allows to guarantee the existence of a dataflow-preserving
way to make two affine clocks synchronous. In other words, a finite-size
buffer protocol can be defined to synchronize such clocks. This issue cannot
be addressed by only using the usual definition of clock synchronization of
synchronous languages. Instead, properties of affine abstract clock systems
have to be considered. From C1, C2 and C3, the affine clock synchronizabil-
ity property [219] implemented in the Signal compiler has to be used. This
issue is solved quite easily with synchronous models while it is not possible
with RSM only. Such an analysis provides feedback information for adjust-
ing the paving iteration parameters of an RSM model of the downscaler so
as to satisfy the non functional requirements imposed on the whole system.

3.5 summary and discussion

This chapter provided an overview of my contributions on the design and
analysis of reactive data-intensive applications in the Gaspard2 codesign
framework. The presented results aim to bridge the gap between a repetitive
structure modeling (RSM) and the synchronous reactive dataflow program-
ming model. RSM represents applications as a hybrid of black-box stream-
computing filters and regular, affine dependencies capturing their behaviors
as generalized, multidimensional system of uniform recurrence equations.
The synchronous model proposes well-adapted concepts to represent con-
current dataflow processes analyzable with a rich set of tools.

c©Abdoulaye Gamatié

3.5 summary and discussion 53

what has been proposed? The RSM formalism does not assume any
notion of time and dynamic change. Its specifications express data-dependen-
cies between task repetitions and multidimensional access patterns, but no
specific execution order is fixed. In order to deal with time and dynamic
behavior changes, which are crucial notions for the description of reactive
behaviors in data-intensive applications, my contributions concerned on the
one hand, an extension of RSM with reactive control modeling features and
on the other hand, a refinement of RSM towards synchronous dataflow lan-
guages. A major benefit of these works is i) to increase the expressivity of
RSM for data-intensive applications with dynamic control and, ii) to provide
a seamless flow of increasingly time-defined models in order to refine ap-
plication descriptions via a translation into synchronous reactive programs.
Some properties of RSM designs are therefore analyzable by using the ver-
ification tools associated with synchronous languages. These works have
been conducted in the Gaspard2 environment, dedicated to the co-design of
data-intensive systems-on-chip.

what are the main limitations and how to address them?
The encoding of control in RSM was achieved by considering its native
features, i.e., repetitions. The motivation of such an approach is to keep
on benefiting from the loop transformations already applicable to the RSM
model. Another approach would be à la Ptolemy [22], where heterogeneous
modeling enables to combine different paradigms, e.g., RSM-like with ad-
vanced control-oriented models. While it should offer more expressivity, it
would have required a re-design of a large part the model transformations
applicable to the RSM extension in Gaspard2.

Regarding our translation of RSM into synchronous programs, the main
limitation was a scalability issue. Indeed, the size of synchronous models
resulting from the transformation of RSM can be huge for large repetition
spaces. This can reduce the applicability of target formal checking tools. One
may think of using array extensions in synchronous languages, e.g., array
iterators in Lustre and array of processes in Signal. This may not be com-
pletely satisfactory, as the useful element-wise semantics of arrays would be
lost, leading, e.g., to a very conservative analysis of causality and single as-
signment. However, it is worth mentioning the recent works by Halbwachs
and his colleagues on array properties in Lustre [128] [201]. The former work
focuses on the analysis of array contents while the latter is dedicated to the
synthesis of invariant properties in programs manipulating arrays. They cer-
tainly open new opportunities for considering synchronous languages as a
support to analyze RSM specifications.

Furthermore, the loop transformation-based abstraction we proposed is
another promising way to overcome the scalability issues related to the trans-
lation of the massive parallelism of RSM into synchronous languages.

final opinion on the presented contributions . The results ex-
posed in this chapter contribute to a useful bridge between two modeling
paradigms: repetitive structure modeling and synchronous reactive model-
ing. While they provided insightful observations on a possible exploitation
of the complementary capabilities of these paradigms, their impact in in-
dustry is currently limited due to the absence of a complete and effective
programming model infrastructure (e.g., combining their associated static
analysis and loop transformation techniques) that facilitates their applicabil-
ity. On the other hand, the two considered paradigms are borrowed by the

c©Abdoulaye Gamatié

54 design model for reactive data-intensive applications

OMG Marte standard profile, which targets a wide audience of embedded
system designers. So, I expect my contributions will help Marte users in a
disciplined system design combining the related concepts.

An important question deserving attention that has not been answered in
my contributions concerns a tight integration of loop transformations, array
manipulation and clock calculus for a more efficient compilation of reactive
data-intensive applications (see perspectives in Chapter 5).

Executive summary

Main collaborations

• Sardes group (Inria/LIG, Grenoble)

• Aoste group (Inria/I3S, Sophia Antipolis)

• Computer & Embedded Systems (CES) Lab at ENIS (Sfax,
Tunisia)

Projects

• French Triade collaborative research action of Inria (other
partners: Aoste and Espresso, 2008–2010)

• French ID-TLM initiative (other partners: Aoste and ST Mi-
croelectonics, 2008–2011)

• Franco-Tunisian Ksours project (other partner: CES-ENIS,
Sfax, 2007 – 2011)

Advisory

• Huafeng Yu (PhD thesis from October 2005 to December
2008, 33%)

• Asma Charfi (Master thesis for eight months between
April 2007 and June 2008, 50%)

• Mohamed Fellahi (Post-doc from October 2010 to February
2011, 50%)

Selected publications

• Conference: IEEE International Conference on Embedded
Systems and Software (ICESS), 2009 [104]

• Journal: ACM Transactions on Embedded Computing Sys-
tems (TECS), 2011 [106]

• Journal: Inderscience International Journal of Embedded
Systems (IJES); 2010 [209]

• Journal: EURASIP Journal on Embedded Systems (EJES),
2008 [102]

Contribution to software: Gaspard2 (http://www.gaspard2.org)

c©Abdoulaye Gamatié

http://www.gaspard2.org

4D E S I G N S PA C E E X P L O R AT I O N F O R M P S O C C O D E S I G N

Contents

2.1 Overview of main challenges 12

2.1.1 Dealing with asynchrony with the polychronous
model 13

2.1.2 Static analysis for polychronous designs 13

2.2 Polychronous design of distributed embedded systems 14

2.2.1 Some related works in the synchronous approach 14

2.2.2 Modeling of asynchronous mechanisms in Sig-
nal 15

2.2.3 A methodology for correct distributed design 16

2.2.4 Model-driven engineering for polychronous de-
sign 18

2.3 Static analysis of polychronous specifications 18

2.3.1 Some related works on synchronous languages 18

2.3.2 A new abstraction for Signal 19

2.3.3 Application to Signal clock calculus: an exam-
ple 22

2.3.4 Static analysis of polychronous programs in MRICDF 25

2.4 Pedagogical implication: a book on Signal programming 26

2.5 Summary and discussion 27

This chapter presents the last part of my contributions. The related stud-
ies, started from September 2008, concern the investigation of design space
exploration (DSE) techniques for MPSoCs in Gaspard2 (see Figure 11). The
basic principle is to rely on the capabilities of the two design paradigms con-
sidered in the previous chapters: on the one hand, the synchronous reactive
approach and on the other hand, the repetitive structure modeling. These
works have been conducted in the contexts of the PhD thesis of Adolf Ab-
dallah, defended in March 2011 (co-advised with Jean-Luc Dekeyser), the
ongoing PhD thesis of Xin An, started in October 2010 (co-advised with
Éric Rutten), and the Post-doc fellowship of Rosilde Corvino, during one
year from December 2009 (co-mentored with Pierre Boulet).

The chapter is organized as follows: in Section 4.1, I expose the motiva-
tions of the studies and I introduce the main challenges of interest; in Section
4.2, I address the design space exploration for efficient implementation of
data-intensive applications specified in RSM on MPSoC architectures with
optimized data transfer and storage; in Section 4.3, I present an abstract
clock-based reasoning framework for the analysis and rapid prototyping of
embedded applications executed on MPSoCs; finally, in Section 4.4, I dis-
cuss the strengths, limitations and future directions to the presented works.
An executive summary is also given, regarding the key points of my contri-
butions highlighted in this chapter.

4.1 overview of main challenges

Data-intensive applications require high computing performance and paral-
lelism as provided by well-adapted systems such as MPSoCs. In particular,

55

c©Abdoulaye Gamatié

56 design space exploration for mpsoc codesign

So
ft

w
ar

e
H

ar
dw

ar
e

Sw
/H

w
in

te
rf

ac
e

Polychronous design and analysis of embedded systems

Modeling and analysis of reactive
 data-intensive applications

 Design space exploration
 tech. for MPSoC codesign

IRISA LIFL

19
99

20
08

20
10

20
05

20
12

20
06

My PhD

Assistant

Professor

(ATER)

Post-doc

CNRS

Research

Scientist

Co-advised

PhDs

Co-advised

Post-docs

Defended

In-Progress

Figure 29: Specific contributions presented in the current chapter (the other contri-
butions not exposed here are intentionally blurred).

for their implementation on MPSoCs, two factors have a strong impact on
the quality of design results: on the one hand, the data transfer and stor-
age micro-architecture [197] including the communication structure and the
memory hierarchy, and on the other hand, the parallelism level of the com-
puting resources. The first factor must be orchestrated so as to guarantee
an optimized and bottleneck-free distribution of data to the different com-
puting resources. The second factor is crucial in order to find a correct and
energy-efficient software/hardware mapping. These two factors make the
implementation of data-intensive applications on MPSoCs extremely com-
plex. In this chapter, I advocate analysis methods that allow one to easily
focus on relevant design issues in orthogonal ways.

4.1.1 Data transfer and storage for efficient communications

Many works deal with the design of MPSoCs for data-intensive applica-
tions at different abstraction levels: 1) the system level, where abstract anal-
yses target the communication and storage mechanisms syntheses; 2) the
processor level, where techniques such as High Level Synthesis (HLS), are
aimed at rapidly inferring an efficient parallel Register Transfer Level model
from a high level sequential specification. At these abstraction levels, loop-
based methods have been largely used to explore design possibilities for
data-intensive applications. At system level, they are used to estimate the
storage requirements [137]. At processor level, loop-based HLS tools for
data-intensive applications enable an implementation efficacy comparable
to traditional flows, with the advantage of being automated [123].

c©Abdoulaye Gamatié

4.1 overview of main challenges 57

Most of existing works improving HLS with loop transformations, opti-
mize the loop iterations scheduling, reduce the redundant memory traffic
and improve the synthesis of computation data path only for single nested
loops. On the other hand, more abstract methods based on SDFs [166] are
commonly used to explore communication structure and memory hierar-
chy for systems composed of multiple communicating loops. Unfortunately
most SDF models do not take into account the multidimensionality of trans-
ferred data in data-intensive applications. Hence, they are not well-suited
to describe the effects of loop transformations on multidimensional data-
intensive application specification.

The first result presented in this chapter answers the following question:

First challenge.

How to explore communication-efficient implementations of data-

intensive applications designed in RSM?

To answer the above question, I will exploit the loop transformations
defined in RSM and explore the characteristics of the resulting appli-
cation graph structures so as to isolate those with the most interesting
data transfer and storage capacity. An evolutionary algorithm is used
to accelerate the process.

4.1.2 Software/hardware association for efficient execution

Prototyping and simulation techniques have been considered as mainstream
approaches to analyze MPSoCs design choices with respect to performance
and energy-efficiency. Among these techniques, physical prototyping [19]
involves circuit board and SoC in the form of working silicon. Emulation
of hardware acceleration [135] involves field-programmable gate arrays (FP-
GAs) and require register transfer level (RTL) descriptions. While the major
advantage of these two techniques is their high accuracy, they require a
long time and provide a limited flexibility for an efficient DSE of multiple
architectures.

Other approaches [5], [203] adopt the transactional level modeling (TLM)
for fast simulation, and instruction set simulators (ISS) [19] for pre-silicon
verification and debugging, by executing applications on hosts that simu-
late the processors of the target execution platform. However, the simula-
tion speed and timing accuracy of ISS-based techniques are faster and less
accurate than those of prototyping and emulation. Virtual system proto-
types allowing cycle-accurate simulations are often preferred to these ap-
proaches. Further approaches rely on host-compilation [109], which uses
back-annotations of timing estimates for a rapid yet accurate simulation.
While the simulation speed is not affected by these notations, the accuracy
of estimates quite depends on the ability to avoid possible pessimistic timing
approximations obtained statically and unpredictable effects on timing ap-
proximations obtained dynamically. Trace-driven approach [134] is another
solution found in literature, used for embedded system analysis.

In addition, we can also mention approaches focusing on static estima-
tions of execution platform resources for applications with predictable be-
haviors, e.g., multimedia approaches. Typical reasoning models in these ap-
proaches are SDFs [247] [242].

c©Abdoulaye Gamatié

58 design space exploration for mpsoc codesign

From the above glance at prototyping and simulation techniques, we ob-
serve their complementarity regarding rapidity and accuracy for perfor-
mance and energy estimation. About design correctness, these techniques
consider debugging and testing, which are tedious and, with the ever in-
creasing complexity of embedded systems, they are even a “nightmare” [75].

My proposition regarding the above concerns aims to give an answer to
the following question:

Second challenge.

How to rapidly analyze, at system-design level, efficient mappings

of applications on MPSoCs so as to find the best parallelism level

for execution?

My suggested solution relies on an encoding of the problem with ab-
stract clocks inspired by the multi-clock synchronous reactive mod-
eling. This allows me to define a high-level modeling paradigm for
combined software, hardware and environment specifications and to
reason on it.

4.2 dse for efficient data transfer and storage

The present section summarizes my work on automatic exploration of com-
munication-efficient architectures for the implementation of data-intensive
applications, specified as graphs of nested loops in RSM (without inter-
repetition dependencies in repetitive tasks). This work has been initiatedRosilde Corvino is

now research
scientist and project

manager at the
Eindhoven Technical

University (The
Netherdands), and
we still collaborate
on the same topic.

in a close and fruitful collaboration with Rosilde Corvino since her Post-doc
in the DaRT group (December 2009 – December 2010).

4.2.1 Related works

Previous works on genetic algorithms [23] [174] have shown their efficacy
in the optimization of multi-objective design explorations with large solu-
tion spaces. These works mostly construct the hardware architecture from
a set of possible components, while we use a data-oriented configurable
architecture with configuration parameters directly inferred from the appli-
cation restructuring. As a result, the space of analyzed hardware solutions is
narrowed to those appropriate for an analyzed application. Our method is
similar to HLS-based flows applying loop transformations [168] [153] [200]
[123] [137], but in contrast to these methods it targets applications including
multiple communicating nested loops.

The use of loop transformations for architecture design and synthesis was
already proposed in the 1990’s [168] [153]. In [168], the authors use loop
folding to schedule loop iterations in a pipeline fashion meeting schedul-
ing and mapping constraints. Their work mostly focuses on the synthesis
of the computing data paths and does not consider the synthesis of data
transfer and storage micro-architectures. The approach [153] employs loop
transformations for redundant memory traffic reduction, the optimal mem-
ory structure is neither explored nor selected.

Other recent works have used loop transformations for computing data
path synthesis [200] [123] or memory architecture design [137]. As in our
method, [200] uses loop transformations for FPGA design and defines ab-
stract models of design area and performance to evaluate the effect of the

c©Abdoulaye Gamatié

4.2 dse for efficient data transfer and storage 59

loop transformations. But, this method targets computational data paths of
single nested loops and the used transformations are oriented to instruction
level parallelism, while our method mostly focuses on data parallelism.

In [123], the Spark framework uses code transformations such as code mo-
tion, dynamic renaming to improve the hardware implementation of com-
puting resources and reduce the redundant memory traffic. This method
is not aimed at exploring data parallelism nor the design of application-
specific data transfer and storage micro-architectures. In [137], loop trans-
formations are used to improve data transfer and storage micro-architecture
by enhancing the data re-use.

4.2.2 A hardware architecture template

A generic hardware architecture model is considered consisting of a simpli-
fied representation of a tile-based MPSoC [24]. Each processing tile, Proc Tile
i, contains a processing element Ti, local memories (light gray squares) and
a local control for data access, CTRL. Thanks to a double-buffering mecha-
nism, i.e., two local buffers alternatively read and written by the processing
elements and the CTRL of a processing tile, data accesses and computa-
tions can be performed in parallel. Furthermore, a processing tile executes
task repetitions in a pipeline due to the usage of pipelined computing units.
Different tiles communicate through point-to-point links if they frequently
exchange small amounts of data, or through a shared bus if they exchange
large amounts of data.

Application/architecture mapping and scheduling rules make each RSM
repetitive task (without inter-repetition dependencies) corresponds to a pro-
cessing tile of the MPSoC and each tile of data to a local double-buffer.
Figure 30 represents the customized architectures associated with the spec-
ification of Figure 17 in Chapter 3, which contains four repetitive tasks
exchanging (large) arrays. As a consequence, four processing tiles are in-
stantiated to execute the four tasks. The local memories of the instantiated
processing tiles are able to store the data tiles of these tasks. They use a
double-buffering mechanism to mask data access to the external memory
performed through a shared bus.

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
��
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

��
��
��

��
��
��

�
�
�
�

Double buffering
mechanism

Bus

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

Proc Tile 2

CTRL

 T2

Proc Tile 3

CTRL

 T3

Proc Tile 4

CTRL

 T4

Proc Tile 1

CTRL

 T1

Figure 30: Architecture associated with the Array-OL model of Figure 17.

Loop transformations directly set specific mapping and scheduling rules
on the considered tile-based hardware architecture, as follows:

1. The task fusion determines the communication structure. Indeed, when
two tasks are merged they repeatedly exchange smaller data blocks.
Thus, they are mapped onto a pipeline of processing tiles with point-
to-point connections. They benefit from parallel read and write ac-
cesses to local double-buffers. By contrast, two unmerged tasks ex-

c©Abdoulaye Gamatié

60 design space exploration for mpsoc codesign

change larger data blocks that cannot be stored in local buffers. They
are mapped onto processing tiles communicating via the shared bus
with exclusive read/write accesses.

2. The paving-change determines different sizes of local double buffers.

3. The tiling determines different parallelism levels multiplying the num-
ber of processing elements within each processing tile.

��
��
��
��
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Bus

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

Proc Tile 2

CTRL

 T2

Proc Tile 3Proc Tile 1

CTRL

 T1 T3 T3

CTRL

Proc Tile 4

CTRL

 T4

Figure 31: Architecture associated with the Array-OL model of Figure 18.

Figure 31 represents the customized architecture associated with the spec-
ification of Figure 18 in Chapter 3. The tasks T1 and T2 are merged by fusion.
They are mapped onto processing tiles that communicate directly and real-
ize a pipeline in our MPSoC architecture. Proc Tile 1 can copy data directly
into the local memory of Proc Tile 2. The task T3 is tiled with two repetitions
moved to the inner repetition level. Its corresponding processing tile imple-
ments two parallel processing elements with their own local buffers, that
can process different data tiles in parallel. Proc Tile 3 uses a single shared
controller to copy data into its local double-buffers in order to reduce chip
area overhead due data parallelism increase.

4.2.3 Overview of the DSE problem encoding

at a glance . Our approach [64] exploits RSM and benefits from the
associated loop transformations in order to systematically explore efficientKey publication for

more details: [64]. implementation architectures, with respect to data transfer and storage. In
Figure 32, as inputs, it takes an application specification in RSM and the
previous customizable architecture template. The input application is trans-
formed in order to enhance its data parallelism through data partitioning.
In the same time, the architecture template is transformed exploring dif-
ferent application-specific customizations. The blocks of data manipulated
by the application are streamed into the architecture. For the implementa-
tion of data-intensive computing systems, several parallelism levels are pos-
sible: inter-task parallelism realized through a systolic processing of data
blocks; parallelism between data access and computation realized through
the double-buffering mechanism; and data parallelism in a single task re-
alized through a pipelining of the data stream processing or through the
instantiation of parallel hardware resources.

The architecture parallelism level and the size of streamed data blocks are
chosen in order to hide the latency of data transfers with computing time.

The above approach can be considered as a meet-in-the middle design tech-
nique because several hardware optimizations for data-intensive computing
applications are already included into the customized architecture template.

c©Abdoulaye Gamatié

4.2 dse for efficient data transfer and storage 61

���
���
���
���

��
��
��
��

CU CU

CTRL

Mapping

Refactoring Customization

System Level Exploration

Estimation

RSM−based

Best architecture configurations

w.r.t. data transfer and storage

libraryspecification
Architecture components

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

������
��
��
��

���
�
�
�

CU CU

CTRL

CU

CTRL

CU

CTRL

Figure 32: Overview of the proposed method.

The data transfer and storage configuration of this template is inferred from
the analysis and refactoring of considered application specifications.

encoding of the system level exploration problem . In [63],
we considered a formalization using integer variables that represent re- Key publications for

more details: [63]
and [64].

quired local buffer sizes and data parallelism respectively. In order to op-
timize design objectives, such as minimization of local buffers size and im-
provement of system temporal performance, some design constraints are for-
mulated on these variables taking into account the chosen architecture/exe-
cution model. While an integer variable only expresses buffer size informa-
tion here, the related DSE constraints involve additional aspects such as the
time balancing between data access time and output computation time. So,
our initial integer variable formalization was not expressive enough to fully
capture all exploration aspects.

More recently, we proposed an alternative solution [62] relying on abstract
clock encoding, which is more accurate than [63]. Thanks to this encoding, Key publication for

more details: [62].abstract clocks capture the order of data accesses, the time needed to read
data and possible synchronizations between tasks. They also enable to char-
acterize the way data consumption and production of repeated tasks are
synchronized when they are executed on MPSoC processing tiles according
to the mapping rules we defined. The loop transformations of RSM affect
the data consumption and production rates of a task and, as a consequence,
the associated abstract clocks. Furthermore, abstract clocks provide a uni-
form way to describe DSE constraints and objectives. This favors a simpler
yet expressive formalization of the optimization problem, and thus opens
the possibility to implement faster algorithms to solve design optimization
problems.

4.2.4 Implementation of our DSE approach

The DSE approach implementation1, shown in Figure 33, relies on the ab- Key publication for
further details [66].

c©Abdoulaye Gamatié

62 design space exploration for mpsoc codesign

stract clock encoding [66]. The inputs are RSM specification of applications
and our customizable hardware architecture template. The outputs of the
design exploration are Pareto pairs consisting of a restructured application
and an optimized set of hardware architecture parameters, to which are as-
sociated abstract clocks. A few quality indicators about throughput, energy
consumption and memory size are used to evaluate the design exploration
outputs and guide the exploration itself toward the optimal solutions.

This implementation has been achieved in Java and involves three explo-
ration steps [66], as follows:

Step 1: Fusion enumeration. This algorithm, equivalent to [211], enumer-
ates all possible task fusions. It partitions them in a number of sub-
spaces equal to the number of integer partitions of n, where n is the
number of tasks in the application specification. An integer partition
is a set of positive integer vectors whose components add up to n.

Step 2: Opt4J-based genetic algorithm. For each sub-space mapping a n in-
teger partition, the Opt4J modular framework [173] supporting genetic
algorithms, explores the tiling and paving change transformations in
order to find the local Pareto solutions. All these solutions are merged
in a new exploration space and passed to the final selection step.

Step 3: Final selection. This algorithm is an exhaustive search of the new
formed exploration space in order to find the global Pareto front. An
exhaustive exploration method is used for the fusion and a heuristic
method for the other transformations because there is a finite and rea-
sonably low number of possible fusions, while the number of possible
tiling and paving-change is high.

4.2.5 Some case studies

We have demonstrated the validity of our approach by considering four
sample applications: a JPEG encoder, a radar signal processing application
named STAP [116], a hydrophone monitoring application named VBL [42]
and a low pass spatial filter (LPSF). The exploration were performed on an
Intel i7 quad-core processor running at 2.67 GHz with 4G of RAM.

results characterizing the exploration method. Table 3 gives
the complexity of the performed explorations, for each analyzed application.
Typically, a JPEG encoder has 11 tasks and 75 possible fusions. The number
of selected global Pareto solutions increases with the number of input tasks
of an application, which characterizes the complexity of the problem.

JPEG STAP VBL LPSF

number of tasks in application 11 7 6 4

number of possible fusions 75 54 54 8

explored individuals 104 7900 7900 3200

total individuals in explo. space 315× 106 9× 105 9× 105 2× 103

average num. of global Pareto sol. 11 7 2 1

Table 3: Exploration complexity and selectivity.

1 Implemented in a tool available at http://www.es.ele.tue.nl/~rcorvino/tools.html.

c©Abdoulaye Gamatié

http://www.es.ele.tue.nl/~rcorvino/tools.html

4.2 dse for efficient data transfer and storage 63

Opt4J-based GA

Input RSM model Architecture
Template

RSM model

restructuring
MPSoC

instances

RSM
model

MPSoC
Map/Sche
rules

Fusion Enumeration

Tiling, Un-
rolling,
Paving

DecoderConstructor Evaluator

Transfo.
factors
{kti , kpi }

Genotypes:

kt1k
p
1k

t
2k

p
2

Phenotypes:

clocks
Quality

indicators

Local Pareto

Final Selection

Global Pareto

Figure 33: Implementation of our DSE approach.

Table 4 gives the run-time of the whole exploration for all applications. It
shows the percentage of run-time for each exploration step: fusion exploration,
Opt4J-based genetic algorithm and final selection. The latter step also includes
the time spent to read and write text files. As expected, the run-time of the
exploration depends on the size of the exploration space. Its major part is
spent in the genetic algorithm by Opt4J. The percentage of time spent to
perform the different steps is almost invariable with respect to the different
applications and different trials per application. Furthermore, the total run-
time is about seconds even for highly complex problem solving.

JPEG STAP VBL LPSF

run-time of exploration (sec.) 81 37 34 5

Perc. of run-time for Fusion Exploration 3% 3% 3% 2%

Perc. of run-time for Opt4J 96% 97% 97% 98%

Perc. of run-time for Final Selection 1% ≈ 0% ≈ 0% ≈ 0%

Table 4: Exploration run-time.

To evaluate the precision of our approach, we compared it with an exhaus-
tive search in Table 5. We give the run-time of the two exploration methods
and the ǫ-indicators [248], asserting the quality of a Pareto front with respect
to another. Here, ǫ = 1 if the Pareto fronts obtained with both methods are
identical. For feasibility reason, we performed the comparison for a gray-
scale JPEG encoder (YJPEG in Table 5), and two reduced explorations of
STAP and VBL applications (denoted STAP* and VBL* in Table 5).

c©Abdoulaye Gamatié

64 design space exploration for mpsoc codesign

run-time ǫ-indicator

our method exhaustive

LPSF 5 sec. 14 min. 1

VBL 34 sec. n.a. -

STAP 37 sec. n.a. -

JPEG 81 sec. n.a. -

YJPEG 7 sec. 16 min. 1

STAP* 35 sec. 21 min. 1

VBL* 33 sec. 19 min. 1

Table 5: Quality of Pareto front search.

The above experiments show the relevance of our method in a design flow
for an efficient and rapid exploration of data-intensive applications.

comparison of inferred solutions w.r .t. the state of the art.
We have assessed the quality of selected hardware architectures from our
DSE results for the JPEG encoder against solutions existing in literature. WeKey publication for

more details: [65]. analyzed the results of two implementations by using a Virtex-4 XC4VFX20

FPGA2 of Xilinx, one for a gray-scale JPEG and one for a color JPEG. We
notice that since the solution considered from literature are implemented
on older FPGA platforms (a Flex 10KE FPGA of Altera after hand-made
optimizations and a Virtex-2 FPGA from a HLS tool) the comparison has to
be considered as a rule of thumb indication of the possible improvements
that can be obtained with our method.

We compared our implementation of the color JPEG encoder with [228],
which is obtained with impulseC and is 100 times faster than a DSP-based
implementation. The authors in [228] were able to process 41,000 blocks of
8x8 per second with a frequency of 50 MHz. We achieved a throughput
of 312,500 blocks of 8x8 pixels per second for a Pareto solution, synthesized
with the frequency of 50 MHz (maximum achievable frequency is 200 MHz).
In our implementation, the local memories are implemented into dedicated
optimized FPGA RAM’s3 for efficient data storage and rapid access to mem-
ory. Thus, their area occupancy is optimized. Our design implementation oc-
cupies 6% of slices and 88% of RAM’s. The amount of used slices for logic is
reasonably low and leaves room for implementing the processing elements.
We have compared our implementation of a gray-scale JPEG encoder with
the manual implementation of [6]. We achieve a throughput of 164 frames of
640×480 pixels compared to a throughput of 122 frames achieved with this
implementation, for an area occupancy of 1% of slices and 8% of RAM’s.

These experiments show that our implementations use a reasonably low
logic area overhead and efficiently exploit the FPGA optimized RAM’s to
achieve a significant throughput increase.

4.2.6 Benefits for MPSoC design frameworks

The design space exploration technique presented above is a typical use-
ful component of the toolkit required in high-level codesign frameworks to

2 We have reproduced these experiments with a more recent Virtex-6 FPGA. The obtained results
are different but remain comparable with those observed with the Virtex-4 XC4VFX20 FPGA.

3 They are referred to as RAMB16’s.

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 65

bring the crucial design decisions under control earlier. Gaspard2 is such
a framework dedicated to data-intensive embedded systems. Even though
our technique has not been fully integrated yet to Gaspard2, it can act as a
companion tool to assist a user in the earlier design steps.

Given an application specified in RSM to be implemented on a multipro-
cessor hardware platform, our DSE solution is usable to automatically ex-
plore candidate application specification refactorings and hardware architec-
ture configurations, which exhibit interesting properties regarding memory
and communication concerns. The results would serve as insightful indica-
tions upon which the first design choices can rely. The best implementa-
tions achieved by our DSE can be automatically generated in the form of
a graph by the associated tool, named DTSE4 (Data Transfer and Storage
Explorer). Such a graph illustrates the system structure corresponding to
a given solution and allows a user to visualize and understand a selected
design solution.

Our method can be also used as a complement to the approaches dis-
cussed in related works: it is possible to use our method to improve the archi-
tecture synthesis of a system with multiple loops, use pre-existing methods
to improve the instruction level parallelism and, reduce redundant memory
accesses inside the loop cores.

Finally, our technique is also under consideration in the ASAM5 research
project as part of the European ARTEMIS research program. The aim of
ASAM is to automate the design of application-specific SoCs and proces-
sors using advanced DSE techniques. Rosilde Corvino, who is the main
developer of our DSE tool, participates to ASAM. She focuses on the explo-
ration of efficient application-specific instruction-set processors (ASIPs) de-
signs. More generally, I believe our tool can be helpful for any system-level
or processor-level design environment targeting data-intensive applications
on MPSoCs.

4.3 a clock model for performance analysis in mpsocs

I present another high-level approach for a rapid assessment of MPSoC de- The preliminary
presentation of this
approach [3] has been
distinguished at
SoC’2010

symposium
(http://soc.cs.
tut.fi/2010/Best_

paper_award.php).

sign [15] [93]. The concurrency of system behaviors is represented by ab-
stract clocks inspired by the synchronous reactive approach. The way these
behaviors are defined ensures by construction a correct system scheduling,
w.r.t. specified data dependencies or event precedences, on multiprocessor
execution platforms. The abstract clock modeling is flexible enough to ad-
dress adaptive system behaviors, including changes of processor frequen-
cies and task migration. The current study started during the PhD thesis
of Adolf Abdallah (October 2007 – March 2011) and is now pursued in the Adolf Abdallah is

now Assistant
Professor at Saint
Joseph University in
Beyrouth (Lebanon).

PhD thesis of Xin An (started in October 2010).

4.3.1 Related works

The static analysis of application designs with predictable behaviors, such
as in the multimedia domain, has largely considered dataflow modeling, by
using Kahn process networks (KPNs) and Synchronous dataflows (SDFs).

In [230], KPNs are used for design space exploration of multimedia appli-
cations on multiprocessor SoCs (MPSoCs). The authors do not investigate

4 http://www.es.ele.tue.nl/~rcorvino/tools.html.
5 ASAM: Automatic Architecture Synthesis and Application Mapping, http://www.

asam-project.org/.

c©Abdoulaye Gamatié

http://soc.cs.tut.fi/2010/Best_paper_award.php
http://soc.cs.tut.fi/2010/Best_paper_award.php
http://soc.cs.tut.fi/2010/Best_paper_award.php
http://www.es.ele.tue.nl/~rcorvino/tools.html
http://www.asam-project.org/
http://www.asam-project.org/

66 design space exploration for mpsoc codesign

the design of scheduling algorithms for such applications. They rather con-
sider them as a plug-in module which can be implemented as needed. As a
result, simple scheduling schemes, like first come first serve algorithms, are
considered in their experiments. In our framework, we study the admissible
scheduling requirements, and propose a correct by construction scheduling
algorithm.

A synchronous variant of KPNs [59], referred to as N-synchronous KPNs
and based on periodic abstract clocks, has been defined with N-bounded
channels for synchronizability analysis between processes. The finite value
of the N parameter, corresponding to channels’ size, is determined via a
static analysis. Such an information can serve for memory dimensioning.

SDFs [166] capture the concurrent execution of applications and their anal-
ysis. Their authors developed a whole theory to statically schedule SDF
graphs on homogeneous architectures. They proposed techniques for con-
structing periodic admissible sequential and parallel schedules, respectively re-
ferred to as PASS and PAPS. A period in PASS is constructed by comput-
ing the balance equations on data rates, while PAPS is achieved by con-
structing acyclic precedence graphs based on a number of periods of PASS.
The proposed theory assumes homogeneity and uniform execution time on
each processor, and not necessary synchronous processors. However, when
scheduling an application on processors with different frequencies, it does
not take into account the possible delays between processor clock cycles.

Another relevant scheduling algorithm is the self-time scheduling [221] in
which a task is executed as soon as it is enabled, i.e., input data are ready.
Therefore, its implementation requires specific execution platforms such as
synchronous architectures. In [110], the authors propose an operational se-
mantics for SDF graphs to analyze the throughput by describing self-timed
executions in terms of labeled transition systems.

In [247], SDFs are used as in an optimization of streaming applications
on heterogeneous execution platforms, mixing FPGA and CPUs. They are
also used as representations in a design space exploration for multimedia
application implementation [242]. SDFs are not explicitly clocked, which is
a limitation for expressing multi-clock behaviors as required in combined
software, hardware and environment specifications. For this reason in [246],
authors consider a translation from SDF models to synchronous models.

In [237], the authors study the scheduling of real-time tasks on a heteroge-
neous platform with dynamic voltage and frequency scaling features. They
propose a heuristic scheduling algorithm to explore the mapping choices
from tasks to processor types and further frequencies with energy mini-
mization as the goal. The algorithm considers independent tasks as the in-
put, and thus requires neither to investigate the precedence relations, nor
the potential delay between processor cycles.

Finally, in [196], authors address the design of multi-periodic embedded
systems by considering the synchronous reactive approach. They study the
monoprocessor scheduling of real-time tasks resulting from a translation
of annotated synchronous dataflow programs. This study follows the usual
schedulability analysis framework relying on the pioneer work of Liu and
Layland [171]. It defines a code generation approach where given real-time
constraints are satisfied. Our approach presented in the next section rather
uses the abstract clock notion of synchronous dataflow languages to deal
with schedulability concerns on multiprocessor platforms.

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 67

4.3.2 Clock design of correct and efficient executions

Our approach enriches the usual synchronous model [29] with quantitative From this section,
more details will be
found in [15].

time via abstract clocks. The resulting model provides a uniform support
for design assessment w.r.t. quantitative properties beyond those addressed
usually with the synchronous model.

In the sequel, I introduce a few basic definitions that are considered in our
clock analysis system. We define models for application behavior, execution
hardware platform and the mapping of both.

application behavior . We consider periodic embedded applications
defined as a directed graph of tasks. These tasks exchange data according
to the connections specified in an application graph. Each task has its own
local activation clock according to which an associated sequence of events
is observed. We construct our models by using the tagged signal system
[167]. In the next, the following sets are assumed: a discrete set T of logical
instants, having a smallest element τmin, and associated with a partial order
6; and a value domain V.

Definition 1 (event) An event e is a pair (τ, v), where τ ∈ T is a logical instant,
and v ∈ V is a value.

The set E of all possible events is associated with a partial order relation ≺

such that: ∀e1 = (τ1,b1), e2 = (τ2,b2), τ1 6 τ2, τ1 6= τ2 ⇒ e1 ≺ e2.
For a task, at most one event occurs at a logical instant. Such an event

denotes the task is active at this instant. All events associated with the same
task are totally ordered over the time. Given two events from different tasks,
observed at the same logical instant, their respective precedence constraints
w.r.t. all other events must be satisfied by each other. For instance, if events
e1 and e2 occur at the same logical instant, then e1 must satisfy all prece-
dence constraints between e2 and any other events, and vice versa.

Definition 2 (task and application behavior) Given a task t, the behavior of t,
denoted by bt, is a totally ordered set of events. The behavior bT of an application
composed of a set T of tasks is a tuple (E,C,≺) where E is the set of events observed
in all task behaviors, i.e. E =

⋃
bt,t∈T , C is a precedence set composed of pairs of

events (ei, ej) such that ei ≺ ej and ≺ is a precedence relation over E.

Figure 34 illustrates an application behavior bT with T = {t0, t1, t2}, where
bt0 = {e00, e10},bt1 = {e01, e11}, bt2 = {e02, e12}. Each event occurrence repre-
sents a task activation. The arrows represent precedences between events.
For example, the arrow from event e02 to event e00 represents e00 ≺ e02. The
precedence set of this application behavior is C = {(e00, e02), (e

1
0, e22), (e

1
0, e21)}.

The absence of arrow connection between two events means no precedence
constraint between them, e.g., event e10 and event e01.

t0

t1

t2

e1
0

e0
1e0

0

e2
1e2

0

e1
1

Figure 34: An application behavior bT

c©Abdoulaye Gamatié

68 design space exploration for mpsoc codesign

The set of all possible application behaviors is denoted by B. Many embed-
ded applications have periodic behaviors. It is the case of streaming appli-
cations and time triggered applications. In our model, they are represented
by a repetition of some application behavior patterns over the time.

Definition 3 (periodic application behavior) Given a periodic application com-
posed of a set of tasks T , its behavior bT is defined as a pair (π,ω), where π ∈ B is
a behavior over T , repeated ω times over the time with ω ∈ N

∗.

execution platform behavior . We consider an execution platform
consisting of a set of processors operating synchronously according to a ref-
erence clock and communicating via a shared memory. The platform can be
heterogeneous, meaning that different kinds of processing elements can be
supported, e.g. processors, hardware accelerators, etc. However, the charac-
teristics of all these processing elements are assumed to be known at design
time, and particularly during mapping of applications on a hardware plat-
form. They include the usual information provided in the data sheets of
processing elements, e.g. range of possible values for frequencies w.r.t. the
corresponding voltage levels.

Let P denote the set of processing elements in a platform. In our approach,
we model platform behaviors through their clock activations according to
given frequency values fi for processing elements pi ∈ P, 1 6 i 6 |P|. We
define the reference clock K of the platform with the frequency value cal-
culated as LCM(f1, ..., f|P|), where LCM denotes the least common multiple.
More concretely, the clock activations instants of the processing elements
are modeled within a trace by considering the inverse of frequency values
1/fi, i.e. their period values. They are also referred to as processing element
clock cycles in our approach.

We consider that a cycle 1/fi of a processing element pi is equal to a
(integer) number of cycles 1/LCM(f1, ..., f|P|) of the reference clock. We use
nr(pi) to denote this number. Figure 35 illustrates the behavior of a plat-
form composed of three processors p0,p1 and p2 with frequencies f1 =

100MHz, f2 = 50MHz and f3 = 40MHz.

0 1 2 3 4 5 6 7 8 ...

K • • • • • • • • • ...

p0 • • • • • ...

p1 • • • ...

p2 • • • ...

Figure 35: Clock trace of processors

mapping of applications on execution platforms As in usual
software/hardware codesign approaches, we define the mapping of applica-
tions on execution platforms. Such a decision usually precedes the schedul-
ing of application tasks on processing elements.

Definition 4 (software-hardware mapping) Given an application composed of
a task set T and an execution platform formed of a processing element set P, a
mapping of the application on the platform is defined as a total function M : T → P.

In the above definition, we notice that the inverse function M−1 : P → 2|T | of
mapping function M is not necessarily a total function since the processing
elements of a platform may not be all used for execution.

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 69

After an application/execution platforms mapping, we associate each
event e occurring in an application behavior bT with two parameters α(e/pi)
and β(e/pi), respectively representing the number of processor cycles cor-
responding to its computation and communication costs w.r.t. considered
processor elements pi. These values are specified in terms of number of
clock cycles and can be obtained statically by profiling their executions on
the target processing elements.

scheduling of applications on platforms . The scheduling de-
cides when to execute the tasks specified in an application graph on selected
processing elements of a platform from a mapping choice. Here, we assume
that the events belonging to the same task behavior are always executed on
the same processor, and the execution of a single event is non-preemptive.

In existing literature [239], four basic scheduling problems are distin-
guished: i) the unconstrained scheduling (UCS) consisting in finding a fea-
sible (or optimal) schedule w.r.t. a set of operations O, a set of unit types U,
a mapping function m : O → U and a partial order on O denoting prece-
dence constraints; ii) the time-constrained scheduling (TCS) and iii) resource-
constrained scheduling (RCS) problems, which respectively add time and re-
source constraints on UCS problem; and iv) the time- and resource-constrain-
ed scheduling (TRCS) problem, combining both TCS and RCS. To solve
these problems, four scheduling techniques are discussed, namely as soon as
possible/as late as possible ASAP/ALAP scheduling, list scheduling, force-
directed scheduling and integer linear programming (ILP).

In our solution, we address an RCS problem with a list scheduling tech-
nique, which is a common choice for solving this problem [239]. We do not
use ILP, which can also solve RCS problems, because of its inevitable cost to
guarantee optimism and its unsuitability to deal with adaptive system be-
haviors. The scheduling algorithm defined in the following aims to define
at which logical instants w.r.t. the reference clock, task events are executed
on processing elements.

For convenience, we represent the schedules of tasks by means of a ternary
abstract clock encoding. Such an abstract clock is a ternary-valued string over
{−1, 0, 1}. The values 1 and 0 respectively represent the active and idle instants
of a processing element executing some tasks w.r.t. the reference clock. The
meaning of the value −1 is contextual: a sequence of −1 means active at
these instants if it is preceded by 1, otherwise it denotes idle.

The scheduling of an application behavior (E,C,≺) consists of the schedul-
ing of its elementary events E w.r.t. C. We first define the scheduling of an
event. Based on it, we introduce three requirements regarding admissibility.

Definition 5 (schedule of an event) A schedule of an event e on a processor p

with parameters α(e/p), β(e/p) and nr(pi) is a ternary clock:

clk(e/p)pos = (1(−1)(α(e/p)+β(e/p))∗nr(p)−1)pos

where the subscript pos denote a reference position on the reference clock, indicating
the start instant of e on p.

The schedule of an event encodes the beginning and the duration of the
event execution, respectively denoted by pos and the length of its corre-
sponding scheduling clock. In Figure 36, the schedule of event e10 of task
t0 on p0, where α+ β = 1 and nr(pi) = 1, is (1(−1))4. This means from
instant number 4 (according to reference clock), processor p0 executes e10
during the length of the clock (1(−1)).

c©Abdoulaye Gamatié

70 design space exploration for mpsoc codesign

Figure 36 shows three ternary clocks, representing the scheduling of the
application behavior given in Figure 34 on the processors considered in
Figure 35. For instance, from the ternary clock denoted by clk(t0/p0) (i.e.,
scheduling of task t0 on processing element p0), the execution of event e00
starts from the very first instant of the reference clock, and takes one clock
cycle of p0. The execution of event e10 starts at the fourth instant of the
reference clock and takes one cycle. Between their executions, the clock has
two idle instants.

In these ternary clocks, the value 1 indicates the logical instant at which
the execution of the actions related to an event starts on the associated pro-
cessor. The sequence of −1’s following this value represents the duration
of the whole event execution. The value 0 indicates the instant at which
either an event has to wait for execution or task behaviors run to comple-
tion. Typically, a wait of event may happen upon i) synchronization w.r.t.
precedence constraints, i.e., its preceding events have not finished, and ii)

resource unavailability, i.e., its mapped processor is running another event.

0 1 2 3 4 5 6 7 8 9

p0 • • • • •

clk(t0/p0) 1 −1 0 −1 1 −1

clk(t1/p0) 0 1 −1 0 −1 −1 1 −1

p1 • • • •

clk(t2/p1) 1 −1 −1 0 −1 −1 1 −1 −1

Figure 36: An example of task schedules in terms of ternary clocks

A nice feature of periodic ternary clocks is their compact representation.
In Figure 36, the ternary clock clk(t2/p1) is written as 1(−1)20(−1)21(−1)2,
where the exponent denotes the number of repetitions. Such a notation is
quite adequate when manipulating periodic ternary clocks that capture the
execution of periodic embedded applications on MPSoCs.

Definition 6 (correct schedule of a task behavior) A correct schedule of a task
behavior bt = (E,C,≺) on a mapped processor p is a ternary clock clk(bt/p), de-
fined by the schedules of all events e ∈ E such that the event precedence constraints
defined by C are all satisfied.

Typically, the schedule of a task behavior is constructed by synthesizing
the schedules of all its events, i.e., by assembling their scheduling clocks
properly according to their position pos, together with waiting 0’s in be-
tween if needed. Figure 37 gives three possible admissible schedules w.r.t.
the example of Figure 36.

0 1 2 3 4 5 6 7 8 9

p0 • • • • •

clk(t0/p0) 1 −1 0 −1 1 −1

clk(t1/p1) 0 −1 1 −1 0 −1 −1 −1 1 −1

p1 • • • •

clk(t2/p1) 0 −1 −1 1 −1 −1 1 −1 −1

Figure 37: Admissible task schedules in terms of ternary clocks

Given the above definition, we define a correct schedule of an application
behavior on a MPSoC platform as follows.

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 71

Definition 7 (correct schedule of application behavior) A correct schedule of
an application behavior bT on an execution platform P w.r.t. a mapping M : T → P

is a set of correct schedules of all tasks, i.e. {clk(t/M(t)), t ∈ T }.

The schedule of an application behavior bT on an MPSoC is represented
as a set of ternary clocks, which correspond to the schedules of all its task
behaviors. We have defined and implemented an algorithm that automati-
cally generate correct application schedules on a multiprocessor execution
platform, from given input specifications [15]. For periodic application be-
haviors, the resulting schedules are similar to those observed for regular
static scheduling techniques applied in SDFs [35] or loop scheduling for
software pipelining [234]. They may also serve to capture time-triggered
application behaviors.

about adaptive behaviors . In the introductory chapter of this docu-
ment, I pointed out the necessity for adaptivity in embedded systems, with
respect to various factors: environment, execution platform, etc. Our clock-
based reasoning framework has been extended accordingly to cope with
adaptive system behaviors. To facilitate the generation of correct schedules
in such cases, we propose a support to address typical adaptation requests
like frequency variation and task migration. The ternary clock traces cap-
turing a scheduling of an application can feature behaviors in which the
processor allocations for tasks can change during execution. In the same
way, behaviors featuring processor frequency changes during execution, e.g.
for energy saving, can be described. In the current implementation for adap-
tive behaviors, the points in time where these changes occur are specified
statically, before the scheduling.

4.3.3 Performance analysis based on ternary clocks

With the generated scheduling clocks of tasks and processors, various per-
formance parameters can be analyzed in our framework.

The scheduling clocks of processors characterize the execution states of
processors over the time. Given the scheduling clock sclk(pi) of a processor
pi ∈ P, it is quite direct to compute its execution time ET(pi) and usage
ratio UR(pi) (useful for assessing the execution efficiency of pi) as follows:

• ET(pi) = |sclk(pi)| ∗
1

LCM(fi,...f|P|)

• UR(pi) =
buzy_cycles(sclk(pi))

buzy_cycles(sclk(pi))+idle_cycles(sclk(pi))

where functions buzy_cycles(sclk(pi)) and idle_cycles(sclk(pi)) count the
number of busy processor cycles and of idle processor cycles of a scheduling
clock respectively.

The global execution time of an application behavior A = (E,C,≺), is the
maximal execution time among all its mapped processors pi ∈ P:

ET(A,P) = max{ET(pi),pi ∈ P}.

The other interesting performance parameter is the energy consumptions.
Our framework is able to compute it, if provided with corresponding profil-
ing results. For instance, given the energy consumption values for a busy cy-
cle and for an idle cycle of a processor pi ∈ P, denoted by busy_nrj(pi) and

c©Abdoulaye Gamatié

72 design space exploration for mpsoc codesign

idle_nrj(pi) respectively, as well as its resulting scheduling clock sclk(pi),
we compute the energy consumptions EC(pi) of processor pi as follows:

EC(pi) = ECbuzy + ECidle

where component ECbuzy = buzy_cycles(sclk(pi))∗busy_nrj(pi) and com-
ponent ECidle = idle_cycles(sclk(pi)) ∗ idle_nrj(pi).

For a whole application A = (E,C,≺) executed on a set of processors
pi ∈ P, its global energy consumption is obtained as:

EPC(A,P) =
∑

pi∈P

EPC(pi).

Beyond the above way to deal with energy, our clock model enables fur-
ther reasoning possibilities about energy. For instance, we can consider the
slack time of executed tasks, usually defined as the difference between their
completion time and their associated deadline time. According to different
frequency values of mapped processors, our ternary clock trace allows one
to observe the variations of slack times. In particular, lower frequency val-
ues lead to longer completion times, hence shorter slack times. As a result,
the configurations with shorter slack times are the best candidates for re-
duced6 energy consumption. While this reasoning is somehow qualitative
(in the sense that the energy consumption is not calculated to identify such
configurations), the consumed energy EC can be estimated quantitatively
as the product of execution time ET with power consumption information,
obtained from profiling on given experimental platforms.

Finally, the scheduling clocks of tasks can be used to analyze the distance
between the executions of two communicating events from different task
behaviors within the same application period. Let us consider two commu-
nicating tasks A and B, where A produces a data block to feed B in each
period. By computing the distance, and the number of produced events by
A within this distance, we get indications about the required buffer size.

4.3.4 Implementation of the clock-based framework

System Specification

- application
- architecture
- mapping
- profiling data
- scheduling order
- adaptivity req.

Non-adaptive
Scheduler Synthesis

Result Display in GTKWave

Performance Analysis

Adaptive
Scheduler Synthesis

CLASSY

Figure 38: Overview the CLASSY tool.

Our prototype tool, named CLASSY (for CLock AnalySis SYstem), im-
plements the modeling, scheduling and analysis approaches described in

6 We notice another way for energy minimizing, that consists in switching off processors tem-
porarily when their assigned tasks are finished. In particular, it is interesting when the slack
time is very long. However, switching on a processor has some cost in terms of delay and en-
ergy, which is necessary to bring the processor in a stable state for a new execution. This can
increase the overall cost if it happens very frequently.

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 73

previous sections. It has around one thousand Java code lines and consists
of the following modules as shown in Figure 38:

System specification provides interface for the user to define: application
behavior (including task behaviors, precedence relation), execution
platform behavior (including processors and frequencies), application-
architecture mapping, performance analysis parameters like number
of cycles evaluated for the computation of events and energy consump-
tions regarding the idle and active cycles of processors, and adaptation
requirements (either frequency changing or task migration).

CLASSY which implements the heart of the tool by providing the ways
to generate either application admissible schedules w.r.t. the system
specification. The result comprises a set of scheduling clocks includ-
ing the scheduling clocks of all tasks as well as the composed schedul-
ing clocks of processors. It features either adaptive behaviors or not,
according to the input specification requirements.

Performance analysis part of the tool computes, on the basis of gener-
ated scheduling clocks, the execution time, energy consumption as
well as the distances between two events from different tasks. This last
information is useful for estimating the waiting time between events,
and for approximating possible buffer sizes between such events when
there are some communications between their occurrences,

Result display in GTKWave generates a vcd file as an output to feed the
standard simulation visualization tool GTKWave. This enables a user-
friendly observation of resulting schedules of tasks on their mapped
processors, as well as the running states of processors. By default, the
analysis results are generated in textual form.

4.3.5 A case study

We applied our clock based approach and compared it with simulations Another case study
with the same
approach can be
found in [4]. It
covers precedence
correctness, temporal
performance and
energy consumption
analysis.

in SoCLib [1]. Before going into details about the case study, I would like
to mention that the simulations with SoCLib have been realized by Sarra
Boumedien from ENIS-Sfax during her Master thesis in the DaRT group,
from March 2011 to July 2011, under my supervison.

system specification. Let us consider a motion JPEG (M-JPEG) decod-
ing algorithm as case study application. The M-JPEG decoder applies some
filters to pixel streams for image decoding. The core algorithm manipulates
8× 8-pixels blocks and is composed of five tasks as shown in Figure 39.

Demux VLD IQ-ZZ Idct Libu

Figure 39: Application graph specifying the motion JPEG decoder

To execute the M-JPEG decoder, we consider a multiprocessor platform
with a shared multi-bank memory, which can be configured to support up
to five processors interconnected with a bus or a network-on-chip (NoC).

c©Abdoulaye Gamatié

74 design space exploration for mpsoc codesign

The studied mapping configurations are summarized in Table 6. We con-
sider up to five processors {p1,p2,p3,p4,p5}. For instance, in configuration
number 1, all M-JPEG tasks are executed on processor p1 while in config-
uration number 2, the successive tasks Demux, Vld, Iqzz are executed on
p1 and the successive tasks Idct and Libu are executed on p2. In configu-
ration number 3 also the same processors are considered, but the defined
mapping does not select successive tasks to execute on the same processor.
We refer to configurations like the number 2 as successive task mappings and
configurations like the number 3 as non successive task mappings.

Configuration IDs Mapping configurations ({tasks, mapped processors})

1 {{Demux, Vld, Iqzz, Idct, Libu}, p1}

2 {{Demux, Vld, Iqzz},p1},{{Idct, Libu},p2}

3 {{Demux, Iqzz, Libu},p1}, {{Vld, Idct}, p2}

4 {{Demux, Vld}, p1}, {Iqzz,p2}, {{Idct, Libu}, p3}

5 {{Demux, Iqzz}, p1}, {{Vld, Libu}, p2}, {Idct, p3}

6 {Demux, p1}, {Vld, p2}, {Iqzz, p3}, {{Idct, Libu}, p4}

7 {{Demux, Libu},p1}, {Vld, p2}, {Iqzz, p3}, {Idct, p4}

8 {Demux, p1}, {Vld, p2}, {Iqzz, p3}, {Idct,p4}, {Libu,p5}

Table 6: Analyzed mapping configurations

To achieve our experiments with CLASSY, we consider a periodic behav-
ior of the decoder, illustrated in Figure 40. It is composed of two parts:

1. an initialization part, indicated by a blue curve, where some initial
communications are achieved between the Demux task and the Vld
and Iqzz tasks;

2. a periodic part, indicated by a red curve, which is repeated 36 times
and consists of pixel block-wise decoding of an image.

Demux

VLD

IQ-ZZ

Idct

Libu

361

e1
demux e2

demux e3
demux

e1iqzz e2
iqzz

e1vld e2vld

e1idct

e1libu

Figure 40: Application behavior for M-JPEG.

Table 7 gives the profiling data α(e) + β(e) corresponding to each event
e shown in Figure 40. The given values are average values obtained from a
profiling of the application in SoCLib.

comparison of simulation results . A part of the simulation re-
sults obtained from our clock-based approach on the M-JPEG are reported
in Figure 41, together with those observed with SoCLib. They represent the
temporal performances associated with the mapping configurations summa-
rized in Table 6. In Figures 41a and 41b all processors always operate at the

c©Abdoulaye Gamatié

4.3 a clock model for performance analysis in mpsocs 75

Tasks Observed events Num. of repetitions Num. of processor cycles

Demux e1demux 1 12651

e2demux 1 21032

e3demux 36 2464

Vld e1vld 1 28042

e2vld 36 3007

Iqzz e1iqzz 1 1668

e2iqzz 36 4946

Idct e1idct 36 8978

Libu e1libu 36 1496

Table 7: Profiling data about M-JPEG tasks as inputs for CLASSY.

same frequency, while it is not the case in Figures 41c and 41d. Two system
implementations are considered in SoCLib according to the communication
infrastructure: bus versus NoC.

The experiments show that our clock-based approach yields results with
similar tendency as those obtained with SoCLib. The precision of the results
provided by CLASSY appears good when compared to the NoC-based re-
sults. However, it is not the case when considering the bus-based results.
This observation is explained by the fact that NoCs offer higher communi-
cation performances than buses. The execution time obtained with NoCs is
therefore shorter thanks to reduced communication time. In addition, possi-
ble bus access conflicts, which increase the communication overhead, lead to
lower performances compared to NoC-based implementations. This issue is
usually observed when the number of processors sharing the same bus gets
higher. This may explain the increase of the execution time in Figure 41b,
from configuration number 5 (three processors) to configuration number 8

(five processors). Since in our clock-based model of the M-JPEG application,
the approximation of input profiling data given in Table 7 does not cover
such communication overheads, the obtained results are less precise w.r.t.
bus-based implementations.

For the results obtained with processors operating at different frequencies
in CLASSY, i.e. Figures 41c and 41d, the initialization part of the M-JPEG
application behavior in Figure 40, has been scheduled first on the processor
with the highest frequency.

On the other hand, to achieve the whole experiment (i.e., configure, ex-
ecute and report), our approach requires a few minutes while SoClib ne-
cessitates several hours. Since it is faster and more flexible due to its high
abstraction level, it must be considered for an early rapid exploration to
reduce a design space, before applying simulation and prototyping.

4.3.6 Benefits of proposal for existing frameworks

Our approach is a cost-effective and relevant means to facilitate the early As a useful
complement, the
reader could refer to
[93] for a more
general clock-based
approach addressing
the design and
analysis of streaming
applications together
with their
environment and
execution platforms.

analysis of design choices, before applying more advanced techniques, e.g.
simulation and prototyping, which can be tedious are very expensive for
complex designs. It does not aim to replace completely these techniques
since its accuracy is limited due to the high abstraction; instead, it is an ideal
complement to them. It is suitable for environments such as those adopting
platform-based design [216], where high-level specifications of application

c©Abdoulaye Gamatié

76 design space exploration for mpsoc codesign

� � � � �

�

������

������

������

������

�������

�������

��	

ABC

	D�EFC

E�����B�����������������C

�
B
�

�
�
��
�
��
�
��

E
�
C
C
�
��
E
�
E
D�

C
(a) Successive task mappings (proc. with same frequency).

� � � � �

�

������

������

	�����

������

�������

�������

ABC

DEF

C�B��F

�B����E����B������������F

�
E
�
�
�
��
B
��
�
�B
�
�
F
F
B
��
�

�
��
F

(b) Non successive task mappings (proc. with same frequency).

� � � � �

�

����

����

����

����

����

����

	���

����

A���

�����

BCD

EF�

D�C���

�C����F����C�������������

�
��

�C
�
�
�
C
�
�
�

(c) Successive task mappings (proc. without same frequency)

� � � � �

�

����

����

����

����

����

	���

����

����

A���

�����

BCD

EF�

D�C���

�C����F����C�������������

�
��

�C
�
�
�
C
�
�
�

(d) Non successive task mappings (proc. without same frequency)

Figure 41: Execution times for M-JPEG decoder on an image: CLASSY vs SoCLib
cycle-accurate simulations (comm. via bus and NoC).

c©Abdoulaye Gamatié

4.4 summary and discussion 77

functionality and hardware architecture are refined with well-characterized
intellectual properties (IPs) and analyzed so as to rapidly converge towards
design requirements.

The defined clock model can also play the role of a support for studying
the parallelism level in data-intensive applications described in Gaspard2.
Basically, the specification of an application in RSM expresses the potential
(massive) parallelism inherent to algorithms. Since it is often the case that
the actual embedded execution platforms do not offer all required proces-
sors for a full parallel execution, one has to deal with more constrained par-
allelism levels that fit well for an efficient execution. Our clock model can be
used to tackle this issue by addressing various task concurrency scenarios
via application behavior models and their associated schedules.

Finally, our clock model is a good candidate as an internal model for
the analysis of specifications defined in, e.g. SDFs, synchronous languages
or CCSL [16], in which clocks are manipulated as first-class citizens. The
translation from SDFs can be defined based on periodic behavior traces cor-
responding to their self-time scheduling as illustrated in [246], while this is
quite straightforward from the other formalisms since they manipulate very
similar concepts.

4.4 summary and discussion

In this chapter, an overview of my recent studies has been presented on
design space exploration for MPSoCs in the Gaspard2 framework.

on dse for efficient data transfer and storage . I exploited
the complementarity of the capabilities offered by RSM and the synchronous
reactive modeling. The former provides a useful way for application refac-
toring by applying its associated loop-like transformations to specifications.
This allows various optimizations of a given application, for a range of target
implementation platform. In this context, implementations with optimized
data transfer and storage capabilities have been investigated. An MPSoC ar-
chitecture template has been considered as a support for the realization of
such implementations. I studied two possible encodings of the exploration
problem by considering integer linear programming and an abstract clock
formalization (inspired by synchronous languages). The latter was more ex-
pressive for reasoning on data accesses.

An important future research direction to this part of this contributions
concerns the integration of further loop transformations in the presented
method in order to explore more refactoring impacts on application im-
plementations. Furthermore, the applicability of the proposed approach to
hardware architecture exploration for application-specific instruction set pro-
cessors is a promising perspective.

on our clock model for performance analysis in mpsocs . Be-
yond the above study, which primarily targets communication concerns in
MPSoCs, I have been developing a new design analysis framework that fully
relies on abstract clocks. According to this framework, the executions of ap-
plications on multiprocessor platforms are encoded by clock traces, which
are usable to assess to analyze both behavioral correctness and computa-
tion performance. The adaptivity of these executions has been taken into
account. A preliminary comparison of this approach with an existing state-
of-the-art framework shows promising results. The solution offered by this

c©Abdoulaye Gamatié

78 design space exploration for mpsoc codesign

clock-based framework is to be considered as complementary of those ob-
tained with simulations at low levels or physical prototyping. While it is less
precise, it permits however to address design correctness and efficiency very
rapidly at a negligible cost. This is an important advantage when dealing
with the analysis of large and complex design spaces. In fact, the accuracy
of approach quite depends on required input profiling information.

Future works include the integration of some heuristics in the proposed
framework in order to make the design space exploration automatic. An
example is to minimize energy consumption while still meeting a deadline.
One can play with exploring the mappings or scheduling orders choices
to achieve this. On the other hand, the clock-based analysis performed by
CLASSY currently considers only a rough model of communications, which
can lead to incoherent observations regarding an actual system execution,
e.g. when resource access conflicts occur. So, one needs to investigate mod-
els of communication performances that reflect typical system architecture
configurations. An important challenge is the approximation of the non de-
terministic behavior of communications, typically in presence of irregular
memory access patterns when manipulating sparse matrices. The literature
provides existing works that could be considered as possible inspiration. For
instance in [48], authors propose a model for performance prediction and
evaluation in point-to-point distributed communications for regular access
patterns. In [208] [181], authors investigate an analysis technique in order
to derive communication delay bounds and energy consumption in NoCs.
While these techniques often adopt analytic models, specific methods like
machine learning-based regression can be considered as in [143].

final opinion on the presented contributions . The results pre-
sented in this chapter are very recent and are still under development. They
open a real opportunity to address the effective design space exploration
for MPSoCs using RSM and synchronous reactive modeling paradigms.
Their implementation within prototype tools, currently used in the Euro-
pean ASAM project by Rosilde Corvino and in the French ANR Famous
project by Xin An, is a first promising step towards an adoption of the pro-
posed techniques.

c©Abdoulaye Gamatié

4.4 summary and discussion 79

Executive summary

Main collaborations

• Sardes group (Inria/LIG, Grenoble)

• Technical University of Eindhoven – TU/E (The Nether-
lands)

Advisory

• Adolf Abdallah (PhD thesis from October 2007 to March
2011, 50%)

• Xin An (ongoing PhD thesis from October 2010 to October
2013, 50%),

• Rosilde Covino (Post-doc from December 2009 to Decem-
ber 2010, 50%)

• Sarra Boumedien (Master thesis from March 2011 to July
2011, 100%)

• Mohamed-Hédi Ghaddab (Master thesis from February
2012 to June 2012, 100%)

Project: French ANR Famous project (other partners: INRIA Rhône
Alpes, Université de Bretagne Sud, Université de Bourgogne
and Sodius, 2009–2013)

Selected publications

• Conference: International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation
(SAMOS), 2012 [66]

• Workshop: Workshop on Software and Compilers for Em-
bedded Systems (SCOPES), 2012 [15]

• Conference: Design, Automation and Test in Europe
(DATE), 2012 [93]

• Bookchapter: in Handbook of Data-Intensive Computing,
Springer 2011 [64]

Honor

• Best paper award for [3] at Symposium on System-on-Chip
(SoC), 2010.

Contribution to software

• DTSE – Data Transfer and Storage Explorer (http://www.
es.ele.tue.nl/~rcorvino/tools.html)

• CLASSY – CLock AnalysiS SYstem (available on-demand)

c©Abdoulaye Gamatié

http://www.es.ele.tue.nl/~rcorvino/tools.html
http://www.es.ele.tue.nl/~rcorvino/tools.html

5 C O N C L U S I O N S A N D P E R S P E C T I V E S

Contents

3.1 Overview of main challenges 30

3.1.1 Reactivity in massively parallel computations 30

3.1.2 Design correctness of data-intensive applications 32

3.2 Background notions 32

3.2.1 A survey of parallel programming models 33

3.2.2 The repetitive structure modeling (RSM) 36

3.3 From static to dynamic design model in RSM 40

3.3.1 Integrated control-oriented design with FSMs and
RSM 40

3.3.2 Interaction between data dependencies and logi-
cal time 43

3.3.3 Model-driven engineering in Gaspard2 environ-
ment 48

3.4 Synchronous approach for dealing with correctness 49

3.4.1 Causality and array assignment analysis 49

3.4.2 State-based analysis for adaptive behaviors 51

3.4.3 Analysis in presence of environment constraints 51

3.5 Summary and discussion 52

The contributions presented in this document addressed the design of
embedded systems, more generally implemented on distributed or multi-
processor execution platforms, such as multiprocessor systems-on-chip (MP-
SoCs). They considered the polychronous modeling (related to synchronous
reactive approach), to specify and reason on the correctness of system con-
currency. This choice has been motivated by all related advantages of such a
modeling (expressivity, formal foundations, rich tool-set...), on which I have
been strongly working for twelve years, in collaboration with colleagues at
IRISA in Rennes (France) and Fermat Lab at Virginia Tech (VA, USA). Since
I joined the DaRT group at LIFL in Lille (France) seven years ago, I have
been developing a new design vision, which fosters the combination of the
polychronous modeling with the repetitive structure modeling (RSM). RSM
offers complementary design capabilities that are well-suited for parallelism
expression at different levels in MPSoCs: application software, hardware ar-
chitecture topology, hardware/software allocation.

5.1 overview of contributions

Based on the above two modeling paradigms, my contributions were orga-
nized into three chronological steps, corresponding to the three chapters
following the introductory chapter in this document, as follows:

Chapter 2 presented the polychronous design of distributed embedded sys-
tems [95] [44] in Signal language [92], which covers my early works
since my PhD. First, it discussed the definition of an adequate design

80

c©Abdoulaye Gamatié

5.2 future research topics 81

methodology and its usage opportunity within the Signal design en-
vironment, Polychrony. This methodology included the definition of
a library of various asynchronous mechanism models for communica-
tion, synchronization and execution, and the usage of specific program
transformations to derive a correct distributed design of an application.
Second, my studies on static analysis of combined logical/numerical
clock properties in polychronous specifications [96] [146] have been re-
ported. In particular, they concerned a usage of satisfiability modulo
theory for the pragmatic reasoning on polychronous specifications has
been exposed. Part of these works will keep on being investigated by
the Espresso group at IRISA, in which I started my research, and the
Fermat Lab at Virginia Tech.

Chapter 3 exposed a set of contributions obtained since my arrival in the
DaRT group at LIFL. I have proposed a joint exploitation of both RSM
and polychronous modeling paradigms to deal with the design of re-
active data-intensive applications. The aim is to bridge the gap be-
tween data-parallel programming models manipulating multidimen-
sional arrays and the synchronous dataflow programming model for
an adequate design of target applications. In order to deal with time
and dynamic behavior changes in RSM models of applications, an ex-
tension of RSM with reactive control modeling features [209] and its
refinement towards synchronous dataflow languages [102] have been
presented. Thanks to this refinement, relevant properties of RSM appli-
cation designs become analyzable by using the rich verification tool-set
dedicated to synchronous languages [104]. These contributions have
been defined in the Gaspard2 codesign environment, dedicated to
high-performance SoCs [106].

Chapter 4 presented my recent contributions focusing more on the effi-
cient implementation and execution of data-intensive applications on
MPSoCs. I have explored some hardware architecture properties by us-
ing high-level modeling, in order to identify the best implementation
choices of an embedded system. This has been achieved again by con-
sidering the complementarity of RSM and polychronous modeling. A
design space exploration (DSE) approach has been proposed to inves-
tigate implementations of applications, which provide optimized data
transfer and storage capabilities [63] [64]. A complementary approach
has been developed as a new design analysis framework according to
which both behavioral correctness and computation performances can
be dealt with [93] [4] [3]. It has been extended to support adaptive
system execution. Both approaches aim to cover DSE concerns from
communication and computation perspectives.

5.2 future research topics

My contributions strongly promote high-level modeling for the design and
reasoning on systems. I believe high-level modeling offers a very relevant
groundwork to address important features of future embedded systems,
e.g., parallelism, adaptivity and heterogeneity. The approaches I have been
studying are still deserving of more investigation, in a tight relation with
hardware level details for a more accurate assessment of implementations.
I have already drawn a certain number of short-term and in-the-medium-
term research perspectives, in the summary and discussion sections of each

c©Abdoulaye Gamatié

82 conclusions and perspectives

chapter. Below, I give three major sub-topics that I would like to address
in the next years. Figure 42 illustrates the central idea as a continuum from
high-level models to efficient implementations on adaptive MPSoCs.

So
ft

w
ar

e
H

ar
dw

ar
e

Sw
/H

w
in

te
rf

ac
e

Polychronous design and analysis of embedded systems

Modeling and analysis of reactive
 data-intensive applications

Design space exploration
 techniques for MPSoC codesign

IRISA LIFL

19
99

20
08

20
10

20
05

20
12

20
06

From high-level modeling to efficient
implementation

of dynamically adaptive MPSoCs

Figure 42: A schematic evolution of my research activities.

overview. The first sub-topic about my future research activities con-
cerns the synergistic exploitation of capabilities of synchronous dataflow
languages and data-parallel languages for an efficient codesign-aware compi-
lation for MPSoCs. It will largely benefit from the results already presented
in this document. The second sub-topic refines the first one by dealing with
the safe management of MPSoC adaptivity, which would rely on advanced
technique such as discrete controller synthesis. The last sub-topic aims to
gather fine-grain observations on system execution at lower abstraction lev-
els, i.e., close to hardware architecture, for an accurate observations for MPSoC
adaptivity management. There are several common points between these three
research sub-topics and the challenges identified recently by the European
Network of Excellence HiPEAC (High Performance and Embedded Archi-
tecture and Compilation) [77].

5.2.1 Towards a codesign-aware compilation for MPSoCs

The efficient execution of data-parallel applications with temporal constraints
on adaptive MPSoCs requires compilation techniques which adequately ex-
ploit the characteristics of execution platforms, together with existing pro-
gram analysis and transformations. Our works presented in Chapters 3

and 4 have sketched a bridge between the RSM formalism, which manip-
ulates arrays and loops to describe regular data-intensive algorithms, and
synchronous dataflow languages that adopt abstract clocks to describe reac-
tive behaviors. These languages are associated with domain-specific compi-
lation techniques that are deserving of reconciliation. On the one hand, the
well-established polyhedral compilation applied, e.g., to RSM or the Alpha
language [182] provides an efficient handling of multidimensional arrays
and loop transformations [84] [85] [169]. It is well-suited for an efficient
generation of nested loop code. On the other hand, the rich clock calculi

c©Abdoulaye Gamatié

5.2 future research topics 83

implemented within compilers of synchronous dataflow languages, e.g. Sig-
nal [10] or Lucid Synchrone [37], allow a powerful analysis of control and
synchronization issues in reactive programs. They permitted very interest-
ing clock-driven compilation strategies that produce control flow-optimized
sequential code.

A seamless combination of all these capabilities, where the provided anal-
yses and optimizations are applied with respect to MPSoC codesign con-
straints will be new and extremely interesting. Typically, the potential loop
transformations applied to data-parallel applications must be tightly aware
of execution platform configurations. They can be driven by the target ar-
chitectures of memory (e.g., multi-level caches or not) and processing ele-
ments (e.g., pipeline or not), as well as the performance characteristics of
the architecture elements (e.g., CPU or hardware accelerator). Conversely,
some function-specific analyses (e.g., communication or synchronization
constraints regarding computations) may lead to application optimizations,
which can have an impact on the way execution platform configurations are
defined. This will open a real opportunity for aggressive optimizations of
implementations for a wide range of performance-demanding MPSoCs, e.g.,
dedicated to multimedia applications.

The ideas illustrated in the analysis and DSE techniques presented in
Chapter 4 may be considered in a new compilation framework for an effi-
cient mapping of applications on MPSoC platforms. They would also serve
to reason on both memory (data storage and transfer) and time require-
ments (related to synchronization of computation entities or events, real-
time properties and temporal performances). There is to some extent a par-
allel between the vision advocated here and the observation of Lee about
the need of time in computing, especially for a successful development
of cyber-physical systems1 [165]. Indeed, the usual abstraction levels consid-
ered for both programming and compilation should be made more physical
resource-aware beyond the pure functional aspects, in order to fully exploit
the characteristics of embedded systems.

Note that in many existing works dealing with similar analysis and op-
timization techniques, compilation concerns are mostly confined to appli-
cation functionality [229], [128], [219], [185]. The originality of the research
topic advocated in this section lies in that these concerns should be covered
from the global MPSoC codesign viewpoint.

5.2.2 Safe management of adaptivity in MPSoC codesign

Adaptivity is a major ingredient to the reliability and performance of MP-
SoCs. In my previous contributions (see Chapters 3 and 4), I considered the
management of system adaptivity by identifying the possible system behav-
ioral modes before execution. Then, automata are used to describe the mode
switching according to identified condition events. The advantage is that a
typical verification technique like model-checking can be directly applied to
check the correctness of expected control behavior.

However, with the increasing complexity of modern embedded systems,
such an approach will become very tedious, if not infeasible. One reason

1 According to Wikipedia (http://en.wikipedia.org/wiki/Cyber-physical_system), “A cyber-
physical system (CPS) is a system featuring a tight combination of, and coordination between,
the system’s computational and physical elements. Today, a precursor generation of cyber-
physical systems can be found in areas as diverse as aerospace, automotive, chemical processes,
civil infrastructure, energy, healthcare, manufacturing, transportation, entertainment, and con-
sumer appliances. This generation is often referred to as embedded systems”.

c©Abdoulaye Gamatié

http://en.wikipedia.org/wiki/Cyber-physical_system

84 conclusions and perspectives

comes from a growing number of controllable and uncontrollable variables
in systems, which leads to complex specification and verification of con-
troller’s properties that guarantee a correct adaptivity management. The
recent advances in the connection of discrete controller synthesis (DCS) tech-
niques to synchronous programming [40] [74] let me foresee an interesting
opportunity to apply them in order to deal with this challenge. The advan-
tage of DCS is that a reconfiguration controller can be automatically gen-
erated with existing tools [180] from a specification of expected control ob-
jectives. The synthesized controller is correct-by-construction, which saves
long and tedious verification efforts.

DCS can be very useful for virtualization, which is a notable trend in MP-
SoCs implementation, where m virtual machines are hosted and executed
on n physical computers, with m > n. The access to physical computer re-
sources by virtual machines is under the control of a monitor, referred to as
hypervisor [7]. This enables a flexible dynamic resource management, e.g.,
for load balancing or task migration. DCS could be considered for a suitable
production of hypervisors meeting the requirements for an efficient resource
management, as suggested in [32].

Recently, we have started a preliminary work that aims to investigate a
similar question by considering DCS for the design of reconfigurable em-
bedded systems. This work is part of a collaboration between Inria Lille,
Inria Grenoble and Université de Bretagne Sud, within the framework of the
French ANR Famous project to which I am participating. It covers a part
of the ongoing PhD thesis of Xin An [14]. The insights expected from this
study will certainly serve as a solid basis for me to tackle the issues men-
tioned above.

Accordingly, the compilation issues mentioned in the previous section
should be considered more generally in such a dynamic management of
system adaptivity, for better execution performances. In [231], a compiler
support is used to enable an area-efficient implementation of a streaming
application on dynamically reconfigurable processors. Further techniques
such as auto-tuning [17] and Just-in-Time (JIT) compilers [157] [58], may be
useful ingredients.

5.2.3 Accurate observations for MPSoC adaptivity management

To achieve an efficient codesign-aware compilation for adaptive MPSoCs, it
is important to have a close look at lower layers in systems. As a matter of
fact, this would provide fine-grain observations regarding the variation of
performance metrics in a system, e.g., voltage, frequency, power. Thus, it is
very important to take into account state-of-the-art techniques enabling us
to get access to these information in a suitable and flexible manner.

Simulation techniques offer fine-grain observations about system behav-
iors, which are useful to address the design of computer system architec-
tures. The results they provide may be considered to define a model of
execution performance variations for a system, according to some identified
configurations. SystemC has been used to define simulators at different ab-
straction levels, including the transaction-level modeling (TLM) [5] in the
SoCLib environment [1]. In the same way, instruction set simulators (ISS’s)
[19] have been considered for the simulation of MPSoCs. The open-source
and extensible Gem5 framework2 provides a solution for computer system
architecture design exploration by enabling the simulation of one or more

2 http://www.m5sim.org/wiki/index.php/Main_Page.

c©Abdoulaye Gamatié

http://www.m5sim.org/wiki/index.php/Main_Page

5.2 future research topics 85

computer systems. I am currently supervising a Master thesis by Mohamed-
Hédi Ghaddab (from ENIS – Sfax, from February 2012 to June 2012) on
simulation experiments with this framework. A survey of similar existing
simulators can be found in [192].

Beyond simulation, other similar techniques may also be considered, such
as post-silicon measurements that help to accurately capture hardware vari-
ability [235], e.g., via the notion of hardware signatures [199]. Such a notion
is defined by the post-manufacturing chip performance and power num-
bers crucial for the applications executed on an adaptive MPSoC. Typically,
for multimedia applications, which often involve real-time and power con-
sumption constraints, a signature can include the frequency deviations of
hardware components and the leakage power dissipation values.

Thanks to the above two techniques, one may reasonably expect accurate
input information to build some relevant static models of execution perfor-
mance variations, usable by a controller to select configurations. Neverthe-
less, the accurate management of MPSoC adaptivity also calls for an on-line
selection of correct and optimal execution configurations. Embedded sys-
tems often run under varying conditions, which are discovered only during
execution time, e.g., evolution of power consumption, presence of resource
contention, interaction events from environment. Thus, the occurrences of
adaptivity events are often unpredictable. These events should be observed
and treated on-line during executions. Note that hardware signatures can
also be measured on-line during system execution at regular points in time.
Then, they would better reflect the actual performance variations.

This part of my research perspectives is clearly a key step towards hard-
ware-level design issues. Since I am not familiar enough with these issues, a
good starting point is to consider my collaboration with colleagues having a
strong background in microelectronics, such as the partners in the Famous
ANR project, from Université de Bretagne Sud and Université de Bourgogne.

c©Abdoulaye Gamatié

B I B L I O G R A P H Y

[1] The SoClib Project, 2011. http://www.soclib.fr.

[2] Adolf Abdallah. Conception de SoC à Base d’Horloges Abstraites : Vers l’Exploration

d’Architectures en MARTE. Ph.d. thesis, Université des Sciences et Technolo-
gie de Lille - Lille I, March 2011. URL http://tel.archives-ouvertes.fr/

tel-00567963.

[3] Adolf Abdallah, Abdoulaye Gamatié, and Jean-Luc Dekeyser. Correct and
Energy-Efficient Design of SoCs: the H.264 Encoder Case Study. In Interna-

tional Symposium on System-on-Chip (SoC’2010), Tampere, Finland, 2010.

[4] Adolf Abdallah, Abdoulaye Gamatié, Rabie Ben Atitallah, and Jean-Luc
Dekeyser. Abstract Clock-Based Design of a JPEG Encoder. Embedded Sys-

tems Letters, 0(0), 2012. Online at http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=6158576.

[5] Samar Abdi, Yonghyun Hwang, Lochi Yu, Gunar Schirner, and Daniel D.
Gajski. Automatic TLM Generation for Early Validation of Multicore Systems.
IEEE Design and Test of Computers, 28:10–19, 2011.

[6] Luciano Volcan Agostini, Roger Carvalho Porto, Sergio Bampi, and
Ivan Saraiva Silva. A FPGA based design of a multiplierless and fully
pipelined JPEG compressor. In Proc. of the 8th Euromicro Conference on Digi-

tal System Design (DSD’05).

[7] A. Aguiar and F. Hessel. Virtual hellfire hypervisor: Extending hellfire
framework for embedded virtualization support. In Quality Electronic Design

(ISQED), 2011 12th International Symposium on, pages 1 –8, march 2011.

[8] Luca Alfaro and Thomas A. Henzinger. Interface theories for Component-
Based design. In Thomas A. Henzinger and Christoph M. Kirsch, editors,
Embedded Software, volume 2211 of Lecture Notes in Computer Science, pages
148–165. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. URL http://

www.springerlink.com/content/0jqhuw40jlrbk8c7/.

[9] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessn,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress
Language Specification Version 1.0 Beta. Technical report, Sun Microsystems,
Inc., March 2007.

[10] Pascalin Amagbégnon, Loïc Besnard, and Paul Le Guernic. Implementation
of the data-flow synchronous language signal. In Proceedings of the ACM SIG-

PLAN 1995 conference on Programming language design and implementation, PLDI
’95, pages 163–173. ACM, 1995.

[11] Abdelkader Amar, Pierre Boulet, and Philippe Dumont. Projection of the array-
ol specification language onto the kahn process network computation model.
In 8th International Symposium on Parallel Architectures, Algorithms, and Networks,

ISPAN 2005, December 7-9. 2005, Las Vegas, Nevada, USA, pages 496–503, 2005.

[12] Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien,
William Dally, Elmootazbellah Elnohazy, Mary Hall, Robert Harrison, William
Harrod, Kerry Hill, Jon Hiller, Sherman Karp, Charles Koelbel, David Koester,
Peter Kogge, John Levesque, Daniel Reed, Vivek Sarkar, Robert Schreiber,
Mark Richards, Al Scarpelli, John Shalf, Allan Snavely, and Thomas Ster-
ling. ExaScale Software Study: Software Challenges in Extreme Scale Sys-
tems. Technical report, 2009. URL http://users.ece.gatech.edu/mrichard/

86

c©Abdoulaye Gamatié

http://www.soclib.fr
http://tel.archives-ouvertes.fr/tel-00567963
http://tel.archives-ouvertes.fr/tel-00567963
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6158576
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6158576
http://www.springerlink.com/content/0jqhuw40jlrbk8c7/
http://www.springerlink.com/content/0jqhuw40jlrbk8c7/
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf

bibliography 87

ExascaleComputingStudyReports/ECSS%20report%20101909.pdf. Report,
Vivek Sarkar, Editor & Study Lead.

[13] Saman P. Amarasinghe, Jennifer-Ann M. Anderson, Monica S. Lam, and Chau-
Wen Tseng. An overview of the suif compiler for scalable parallel machines.
In PPSC, pages 662–667, 1995.

[14] Xin An, Abdoulaye Gamatié, and Éric Rutten. Safe design of dynamically
reconfigurable embedded systems. In Workshop on Model Based Engineering for

Embedded Systems Design (M-BED’2011). ECSI, 2011.

[15] Xin An, Sarra Boumedien, Abdoulaye Gamatié, and Éric Rutten. CLASSY:
a Clock Analysis System for Rapid Prototyping of Embedded Applications
on MPSoCs. In Proceeding of the 15th International Workshop on Software and

Compilers for Embedded Systems (SCOPES’2012), St. Goar, Germany. ACM, May
2012.

[16] Charles André and Frédéric Mallet. Clock Constraints in UML/MARTE
CCSL. Research Report RR-6540, INRIA, 2008. URL http://hal.inria.fr/

inria-00280941/PDF/rr-6540.pdf.

[17] Jason Ansel, Yee Lok Won ans Cy Chan, Marek Olszewski, Alan Edelman,
and Saman Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms. In The International Symposium on Code Generation

and Optimization, Chamonix, France, Apr 2011. URL http://groups.csail.

mit.edu/commit/papers/2011/ansel-cgo11-pbaccuracy.pdf.

[18] Pascal Aubry. Mises en œuvre distribuées de programmes synchrones. Ph.d. thesis,
Université de Rennes I, IFSIC, France, October 1997.

[19] Brian Bailey and Grant Martin. ESL Models and their Application: Electronic

System Level Design and Verification in Practice. Springer Publishing Company,
Incorporated, 2010.

[20] Ana Balevic and Bart Kienhuis. A data parallel view on polyhedral process net-
works. In Proceedings of the 14th International Workshop on Software and Compilers

for Embedded Systems, SCOPES ’11, pages 38–47. ACM, 2011. ISBN 978-1-4503-
0763-5.

[21] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua.
Automatic program parallelization. Proceedings of the IEEE, 81(2):211 –243, feb
1993.

[22] Remi Barrere, Eric Lenormand, Dai Bui, Edward A. Lee, Christopher Shaver,
and Stavros Tripakis. An introduction to the pthales domain of ptolemy
ii. Technical Report UCB/EECS-2011-32, EECS Department, University of
California, Berkeley, Apr 2011. URL http://www.eecs.berkeley.edu/Pubs/

TechRpts/2011/EECS-2011-32.html.

[23] Twan Basten, Emiel Van Benthum, Marc Geilen, Martijn Hendriks, Fred
Houben, Georgeta Igna, Frans Reckers, Sebastian De Smet, Lou Somers, Eg-
bert Teeselink, Nikola Trčka, Frits Vaandrager, Jacques Verriet, Marc Voorho-
eve, and Yang Yang. Model-driven design-space exploration for embedded
systems: the Octopus toolset. In Proceedings of the 4th international conference on

Leveraging applications of formal methods, verification, and validation - Volume Part

I, ISoLA’10, pages 90–105. Springer-Verlag, 2010. ISBN 3-642-16557-5, 978-3-
642-16557-3.

[24] Lucas Benini and Giovanni De Micheli. Networks on chips: a new soc
paradigm. Computer, 35:70 –78, jan 2002.

c©Abdoulaye Gamatié

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://hal.inria.fr/inria-00280941/PDF/rr-6540.pdf
http://hal.inria.fr/inria-00280941/PDF/rr-6540.pdf
http://groups.csail.mit.edu/commit/papers/2011/ansel-cgo11-pbaccuracy.pdf
http://groups.csail.mit.edu/commit/papers/2011/ansel-cgo11-pbaccuracy.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-32.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-32.html

88 bibliography

[25] Albert Benveniste. Safety critical embedded systems: the Sacres approach.
In proceedings of Formal techniques in Real-Time and Fault Tolerant Systems,

FTRTFT’98 school, Lyngby, Denmark, September 1998.

[26] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous
programming with events and relations: the Signal language and its semantics.
Sci. Comput. Program., 16(2):103–149, 1991.

[27] Albert Benveniste, Benoît Caillaud, and Paul Le Guernic. From synchrony to
asynchrony. In International Conference on Concurrency Theory, pages 162–177,
1999.

[28] Albert Benveniste, Paul Caspi, Paul Le Guernic, Hervé Marchand, Jean-Pierre
Talpin, and Stavros Tripakis. A protocol for loosely time-triggered archi-
tectures. In Conference on Embedded Software (EMSOFT’02), J. Sifakis and A.

Sangiovanni-Vincentelli, Eds, LNCS vol 2491, Springer Verlag, 2002.

[29] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert De Simone. The synchronous languages twelve
years later. Proceedings of the IEEE, 91(1):64–83, January 2003.

[30] Albert Benveniste, Timothy Bourke, Benoît Caillaud, and Marc Pouzet. A
hybrid synchronous language with hierarchical automata: static typing and
translation to synchronous code. In Proceedings of the ninth ACM international

conference on Embedded software (EMSOFT’11), pages 137–148. ACM, 2011.

[31] Gérard Berry and Ellen Sentovich. An implementation of constructive syn-
chronous programs in POLIS. Formal Methods in System Design, 17(2):135–161,
2000.

[32] Nicolas Berthier, Florence Maraninchi, and Laurent Mounier. Synchronous
Programming of Device Drivers for Global Resource Control in Embedded
Operating Systems. In Proceedings of the 2011 SIGPLAN/SIGBED Conference on

Languages, Compilers and Tools for Embedded Systems, LCTES ’11, pages 81–90,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0555-6. doi: http://doi.
acm.org/10.1145/1967677.1967689.

[33] Loïc Besnard, Thierry Gautier, and Paul Le Guernic. Signal V4 – IN-
RIA version: Reference Manual, 2010. www.irisa.fr/espresso/Polychrony/

document/V4_def.pdf.

[34] Frédéric Besson, Thomas Jensen, and Jean-Pierre Talpin. Polyhedral analysis
for synchronous languages. In Proceedings of the 6th International Symposium

on Static Analysis, volume 1694 of Lecture Notes in Computer Science, pages 51–68.
Springer-Verlag, September 1999.

[35] Shuvra S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Process-

ing. Ph.d. thesis, EECS Department, University of California, Berkeley, 1994.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2589.html.

[36] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck, Johan Eker, Carl
von Platen, Marco Mattavelli, and Mickaël Raulet. Opendf: a dataflow toolset
for reconfigurable hardware and multicore systems. SIGARCH Comput. Archit.

News, 36:29–35, June 2009.

[37] Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet.
Clock-directed modular code generation for synchronous data-flow languages.
In Proceedings of the 2008 ACM SIGPLAN-SIGBED conference on Languages, com-

pilers, and tools for embedded systems, LCTES ’08, pages 121–130. ACM, 2008.

[38] Guy E. Blelloch. Nesl: A nested data-parallel language (version 2.6). Technical
report, Pittsburgh, PA, USA, 1993.

c©Abdoulaye Gamatié

www.irisa.fr/espresso/Polychrony/document/V4_def.pdf
www.irisa.fr/espresso/Polychrony/document/V4_def.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2589.html

bibliography 89

[39] Shekhar Y. Borkar, Hans Mulder, Pradeep Dubey, Stephen S. Pawlowski,
Kevin C. Kahn, Justin R. Rattner, and David J. Kuck. Platform 2015:
Intel processor and platform evolution for the next decade. Techni-
cal report, Intel, 2005. URL http://epic.hpi.uni-potsdam.de/pub/Home/

TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf. White paper.

[40] Tayeb Bouhadiba, Quentin Sabah, Gwenaël Delaval, and Éric Rutten. Syn-
chronous control of reconfiguration in fractal component-based systems: a
case study. In Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and
Sebastian Fischmeister, editors, EMSOFT, pages 309–318. ACM, 2011. ISBN
978-1-4503-0714-7.

[41] Pierre Boulet. Formal Semantics of Array-OL, a Domain Specific Lan-
guage for Intensive Multidimensional Signal Processing. Technical report,
INRIA, France, March 2008. available online at http://hal.inria.fr/

inria-00261178/fr.

[42] Pierre Boulet, Jean-Luc Dekeyser, Jean-Luc Levaire, Philippe Marquet, Julien
Soula, and Alain Demeure. Visual data-parallel programming for signal pro-
cessing applications. In Proc. of Ninth Euromicro Workshop on Parallel and Dis-

tributed Processing, 2001.

[43] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien.
Loop parallelization algorithms: From parallelism extraction to code genera-
tion. Parallel Computing, 24(3-4):421–444, 1998. URL http://hal.inria.fr/

inria-00565000/en/.

[44] Christian Brunette, Jean-Pierre Talpin, Abdoulaye Gamatié, and Thierry Gau-
tier. A metamodel for the design of polychronous systems. Journal of Logic and

Algebraic Programming, 78(4):233 – 259, 2009.

[45] Randal E. Bryant. Symbolic manipulation of boolean functions using a graph-
ical representation. In DAC, pages 688–694, 1985.

[46] Darius Buntinas, Guillaume Mercier, and William Gropp. Implementation and
evaluation of shared-memory communication and synchronization operations
in mpich2 using the nemesis communication subsystem. Parallel Comput., 33:
634–644, September 2007.

[47] Surendra Byna and Xian-He Sun. Special issue on data-intensive computing.
Journal of Parallel and Distributed Computing, 71(2):143 – 144, 2011.

[48] Kirk W. Cameron and Rong Ge. Predicting and evaluating distributed com-
munication performance. In Proceedings of the 2004 ACM/IEEE conference on

Supercomputing (SC’04), pages 43–. IEEE Computer Society, 2004. ISBN 0-7695-
2153-3.

[49] William W. Carlson, Jesse M. Draper, David Culler, Kathy Yelick, Eugene
Brooks, and Karren Warren. Introduction to UPC and Language Specification.
Technical Report CCS-TR-99-157, Bowie, MD, May 1999.

[50] Paul Caspi and Marc Pouzet. Synchronous Kahn networks. In International

Conference on Functional Programming, pages 226–238, 1996.

[51] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis,
and Peter Niebert. From simulink to scade/lustre to tta: a layered approach for
distributed embedded applications. In Proceedings of the 2003 ACM SIGPLAN

conference on Language, compiler, and tool for embedded systems, LCTES ’03, pages
153–162, New York, NY, USA, 2003. ACM. ISBN 1-58113-647-1.

[52] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel pro-
grammability and the chapel language. Int. J. High Perform. Comput. Appl., 21:
291–312, August 2007.

c©Abdoulaye Gamatié

http://epic.hpi.uni-potsdam.de/pub/Home/TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf
http://epic.hpi.uni-potsdam.de/pub/Home/TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf
http://hal.inria.fr/inria-00261178/fr
http://hal.inria.fr/inria-00261178/fr
http://hal.inria.fr/inria-00565000/en/
http://hal.inria.fr/inria-00565000/en/

90 bibliography

[53] Daniel Marcos Chapiro. Globally Asynchronous Locally Synchronous Systems.
Ph.d. thesis, Stanford University, 1984.

[54] Asma Charfi, Abdoulaye Gamatié, Antoine Honoré, Jean-Luc Dekeyser, and
Mohamed Abid. Validation de modèles dans un cadre d’IDM dédié à la con-
ception de systèmes sur puces. In 4èmes Journées sur l’Ingéniérie Dirigée par les

Modèles – IDM’08, 2008.

[55] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In Proceedings of

the 20th annual ACM SIGPLAN conference on Object-oriented programming, sys-

tems, languages, and applications, OOPSLA ’05, pages 519–538, New York, NY,
USA, 2005. ACM. ISBN 1-59593-031-0.

[56] Bruno Chéron. Transformations syntaxiques de Programmes Signal. Ph.d. thesis,
Université de Rennes I, IFSIC, France, September 1991.

[57] Anthony Coadou. Réseaux de processus flots de données avec routage pour la modéli-

sation de systèmes embarqués. Ph.d. thesis, Université de Nice Sophia-Antipolis,
December 2010. URL http://tel.archives-ouvertes.fr/tel-00545008.

[58] Albert Cohen and Erven Rohou. Processor virtualization and split compilation
for heterogeneous multicore embedded systems. In DAC, pages 102–107, 2010.

[59] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence
Plateau, and Marc Pouzet. N-synchronous Kahn networks. In ACM Symp.

on Principles of Programming Languages (PoPL’06), Charleston, South Carolina,
USA, January 2006.

[60] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Mixing signals and
modes in synchronous data-flow systems. In EMSOFT, pages 73–82, 2006.

[61] F. Commoner, Anatol Holt, Shimon Even, and Amir Pnueli. Marked directed
graphs. J. Comput. Syst. Sci., 5(5):511–523, October 1971. ISSN 0022-0000. doi:
10.1016/S0022-0000(71)80013-2.

[62] Rosilde Corvino and Abdoulaye Gamatié. Abstract Clocks for the DSE of
Data-Intensive Applications on MPSoCs. In Proceeding of the 4th IEEE Inter-

national Workshop on Multicore and Multithreaded Architectures and Algorithms

(M2A2 2012), Leganés, Madrid. IEEE, July 2012.

[63] Rosilde Corvino, Abdoulaye Gamatié, and Pierre Boulet. Architecture explo-
ration for efficient data transfer and storage in data-parallel applications. In
Euro-Par (1), pages 101–116, 2010.

[64] Rosilde Corvino, Abdoulaye Gamatié, and Pierre Boulet. Design Space Explo-
ration for Efficient Data-Intensive Computing on SoCs. In Borko Furht and
Armando Escalante, editors, Handbook of Data-Intensive Computing. Springer,
2011.

[65] Rosilde Corvino, Erkan Diken, Abdoulaye Gamatié, and Lech Jozwiak.
Transformation-based Exploration of Data-Parallel Architecture for Customiz-
able Hardware: A JPEG Encoder Case Study. In Euromicro Conference on Digital

System Design (DSD 2012), Cesme, Izmir, Turkey, September 2012. IEEE.

[66] Rosilde Corvino, Abdoulaye Gamatié, Marc Geilen, and Lech Jozwiak. De-
sign Space Exploration in Application-Specific Hardware Synthesis for Mul-
tiple Communicating Nested Loops. In International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS XII), Samos,
Greece, July 2012. IEEE.

c©Abdoulaye Gamatié

http://tel.archives-ouvertes.fr/tel-00545008

bibliography 91

[67] Georges Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems

(4th ed.): concepts and design. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

[68] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490, October
1991.

[69] Leonardo de Moura and Nikolaj Bjorner. Satisfiability Modulo Theories: An
Appetizer. In Brazilian Symposium on Formal Methods (SBMF’2009), Gramado,

Brazil, August 2009.

[70] Jean-Luc Dekeyser, Abdoulaye Gamatié, Samy Meftali, and Imran Rafiq
Quadri. Models for Co-Design of Heterogeneous Dynamically Reconfigurable
SoCs. In Nicolescu, Gabriela; O’Connor, Ian; Piguet, and Christian, edi-
tors, Heterogeneous Embedded Systems - Design Theory and Practice, page 26 p.
Springer, 2012. URL http://hal.inria.fr/inria-00525023/en.

[71] J.L. Dekeyser, A. Gamatié, A. Etien, R.B. Atitallah, and P. Boulet. Using the
uml profile for marte to mpsoc co-design. In First International Conference on

Embedded Systems & Critical Applications (ICESCA’08), Tunis, Tunisia, 2008.

[72] Alain Demeure and Yannick Del Gallo. An array approach for signal pro-
cessing design. In Sophia-Antipolis conference on Micro-Electronics (SAME’98),

System-on-Chip Session, France, October 1998.

[73] Jack B. Dennis. First version of a data flow procedure language. In Program-

ming Symposium, LNCS 19, Springer Verlag, pages 362–376, 1974.

[74] Emil Dumitrescu, Alain Girault, Hervé Marchand, and Éric Rutten. Multicri-
teria optimal reconfiguration of fault-tolerant real-time tasks. In Workshop on

Discrete Event Systems, WODES’10, pages 366–373, Berlin, Allemagne, August
2010. IFAC.

[75] Marc Duranton. The challenges for high performance embedded systems. In
DSD’06, pages 3–7, 2006.

[76] Marc Duranton, Sami Yehia, Bjorn De Sutter, Koen De Bosschere, Albert
Cohen, Babak Falsafi, Georgi Gaydadjiev, Manolis Katevenis, Jonas Maebe,
Harm Munk, Nacho Navarro, Alex Ramirez, Olivier Temam, and Mateo
Valero. The hipeac vision. Report, European Network of Excellence on
High Performance and Embedded Architecture and Compilation, 2010. URL
http://www.hipeac.net/system/files/hipeacvision.pdf.

[77] Marc Duranton, David Black-Schaffer, Sami Yehia, and Koen De Boss-
chere. Computing Systems: Research Challenges Ahead The HiPEAC Vision
2011/2012. Report, European Network of Excellence on High Performance
and Embedded Architecture and Compilation, 2011. URL http://www.hipeac.

net/system/files/hipeac-roadmap2011.pdf.

[78] Hritam Dutta. Synthesis and Exploration of Loop Accelerators for Systems-on-

a-Chip. Ph.d. thesis, Der Technischen Fakultät der Universität Erlangen-
Nürnberg zur Erlangung des Grades, Erlangen, Germany, 2011.

[79] Johan Eker and Jorn W. Janneck. Cal language report specification of the
cal actor language. Technical Report UCB/ERL M03/48, EECS Department,
University of California, Berkeley, 2003. URL http://www.eecs.berkeley.edu/

Pubs/TechRpts/2003/4186.html.

[80] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, January 2003.

c©Abdoulaye Gamatié

http://hal.inria.fr/inria-00525023/en
http://www.hipeac.net/system/files/hipeacvision.pdf
http://www.hipeac.net/system/files/hipeac-roadmap2011.pdf
http://www.hipeac.net/system/files/hipeac-roadmap2011.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html

92 bibliography

[81] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
SIGARCH Comput. Archit. News, 39:365–376, June 2011.

[82] Joachim Falk, Joachim Keinert, Christian Haubelt, Jürgen Teich, and Chris-
tian Zebelein. Integrated modeling using finite state machines and dataflow
graphs. In Shuvra S. Bhattacharyya, Ed F. Deprettere, Rainer Leupers, and
Jarmo Takala, editors, Handbook of Signal Processing Systems, pages 1041–1075.
Springer US, 2010.

[83] Paul Feautrier. Array expansion. In Proceedings of the Second International Con-

ference on Supercomputing, St. Malo, France, 1988.

[84] Paul Feautrier. Dataflow analysis of array and scalar references. International

Journal of Parallel Programming, 20(1):23–53 (or 23–52??), 1991.

[85] Paul Feautrier. Some efficient solutions to the affine scheduling problem. part
ii. multidimensional time. International Journal of Parallel Programming, 21(6):
389–420, 1992.

[86] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, April
1985. ISSN 0004-5411. doi: 10.1145/3149.214121. URL http://doi.acm.org/

10.1145/3149.214121.

[87] Samuel H. Fuller and Lynette I. Millett. Computing performance: Game over
or next level? Computer, 44(1):31–38, January 2011. ISSN 0018-9162.

[88] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European PVM/MPI Users’

Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[89] A. Gamatié and T. Gautier. Modeling of modular avionics architectures using
the synchronous language signal. In Proceedings of the Work In Progress session,

14th Euromicro Conference on Real Time Systems, ECRTS’02, pages 25–28, 2002.

[90] A. Gamatié and T. Gautier. The signal approach to the design of system archi-
tectures. In Engineering of Computer-Based Systems, 2003. Proceedings. 10th IEEE

International Conference and Workshop on the, pages 80–88. IEEE, 2003.

[91] A. Gamatié, T. Gautier, and L. Besnard. Modeling of avionics applications and
performance evaluation techniques using the synchronous language signal.
proceedings of Synchronous Languages, Applications, and Programming (SLAP’03).

Portugal, 2003.

[92] Abdoulaye Gamatié. Designing Embedded Systems with the Signal Programming

Language: Synchronous, Reactive Specification. Springer, New York, 2009. ISBN
978-1-4419-0940-4.

[93] Abdoulaye Gamatié. Design of Streaming Applications on MPSoCs using Ab-
stract Clocks. In Design, Automation and Test in Europe Conference (DATE’2012),
Dresden, Allemagne, 2012.

[94] Abdoulaye Gamatié and Thierry Gautier. Synchronous Modeling of Modular
Avionics Architectures using the SIGNAL Language. Rapport de recherche
RR-4678, INRIA, 2002. URL http://hal.inria.fr/inria-00071907/en/.

[95] Abdoulaye Gamatié and Thierry Gautier. The signal synchronous multiclock
approach to the design of distributed embedded systems. IEEE Trans. Parallel

Distrib. Syst., 21(5):641–657, 2010.

c©Abdoulaye Gamatié

http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121
http://hal.inria.fr/inria-00071907/en/

bibliography 93

[96] Abdoulaye Gamatié and Laure Gonnord. Static analysis of synchronous pro-
grams in signal for efficient design of multi-clocked embedded systems. In
LCTES, pages 71–80, 2011.

[97] Abdoulaye Gamatié, Christian Brunette, Romain Delamare, Thierry Gautier,
and Jean-Pierre Talpin. A modeling paradigm for integrated modular avionics
design. In Proceedings of the 32nd EUROMICRO Conference on Software Engineer-

ing and Advanced Applications, pages 134–143, 2006.

[98] Abdoulaye Gamatié, Thierry Gautier, and Paul Le Guernic. Towards static
analysis of Signal programs using interval techniques. In Synchronous Lan-

guages, Applications, and Programming (SLAP’06), March 2006.

[99] Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin.
Polychronous design of embedded real-time applications. ACM Trans. Softw.

Eng. Methodol., 16(2), 2007.

[100] Abdoulaye Gamatié, Thierry Gautier, and Loïc Besnard. An Interval-Based
Solution for Static Analysis in the Signal Language. In 15th Annual IEEE In-

ternational Conference and Workshop on Engineering of Computer Based Systems

(ECBS’2008), Belfast, Northern Ireland, pages 182–190, April 2008.

[101] Abdoulaye Gamatié, Éric Rutten, and Huafeng Yu. A model for the
mixed-design of data-intensive and control-oriented embedded systems. Re-
search report 6589, INRIA, France, July 2008. URL http://hal.inria.fr/

inria-00293909/en.

[102] Abdoulaye Gamatié, Éric Rutten, Huafeng Yu, Pierre Boulet, and Jean-Luc
Dekeyser. Synchronous modeling and analysis of data-intensive applications.
EURASIP Journal of Embedded Systems, 2008, 2008.

[103] Abdoulaye Gamatié, Éric Rutten, Huafeng Yu, Pierre Boulet, and Jean-
Luc Dekeyser. Model-driven engineering and formal validation of high-
performance embedded systems. Scalable Computing: Practice and Experience,
10(2), 2009.

[104] Abdoulaye Gamatié, Huafeng Yu, Gwenaël Delaval, and Éric Rutten. A case
study on controller synthesis for data-intensive embedded systems. In 6th

IEEE International Conference on Embedded Software and Systems (ICESS’2009),
pages 75–82, 2009.

[105] Abdoulaye Gamatié, Vlad Rusu, and Éric Rutten. Operational semantics of
the marte repetitive structure modeling concepts for data-parallel applications
design. In ISPDC, pages 25–32, 2010.

[106] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne
Etien, Philippe Marquet, and Jean-Luc Dekeyser. A model-driven design
framework for massively parallel embedded systems. ACM Trans. Embedded

Comput. Syst., 10(4):39, 2011.

[107] Jean-Luc Gaudiot, Thomas DeBoni, John Feo, A. P. Wim Böhm, Walid A. Najjar,
and Patrick Miller. The sisal project: Real world functional programming. In
Compiler Optimizations for Scalable Parallel Systems Languages, pages 45–72, 2001.

[108] Thierry Gautier and Paul Le Guernic. Code generation in the Sacres project. In
Safety-critical Systems Symposium, SSS’99, Springer. Huntingdon, UK, February
1999.

[109] Andreas Gerstlauer. Host-compiled simulation of multi-core platforms. In
Proceedings of the 21st IEEE International Symposium on Rapid System Prototyping,

RSP 2010, Fairfax, VA, USA,, pages 1–6, 2010.

c©Abdoulaye Gamatié

http://hal.inria.fr/inria-00293909/en
http://hal.inria.fr/inria-00293909/en

94 bibliography

[110] Amir Hossein Ghamarian, Marc Geilen, Sander Stuijk, Twan Basten, Bart D.
Theelen, Mohammad Reza Mousavi, A. J. M. Moonen, and Marco Bekooij.
Throughput analysis of synchronous data flow graphs. In ACSD, pages 25–36.
IEEE Computer Society, 2006.

[111] Alain Girault. A survey of automatic distribution method for synchronous pro-
grams. In F. Maraninchi, M. Pouzet, and V. Roy, editors, International Workshop

on Synchronous Languages, Applications and Programs, SLAP’05, ENTCS, Edin-
burgh, UK, April 2005. Elsevier Science.

[112] Alain Girault, Lee Bilung, and Edward .A. Lee. Hierarchical finite state ma-
chines with multiple concurrency models. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 18(6):742 –760, jun 1999.

[113] Alain Girault, Xavier Nicollin, and Marc Pouzet. Automatic rate desynchro-
nization of embedded reactive programs. ACM Transaction on Embedded Com-

puting Systems, 5(3):687–717, August 2006.

[114] Calin Glitia and Pierre Boulet. Interaction between inter-repetition depen-
dences and high-level transformations in array-ol. In Conference on Design

and Architectures for Signal and Image Processing 2009, Sophia Antipolis, France,
September 2009.

[115] Calin Glitia, Philippe Dumont, and Pierre Boulet. Array-ol with delays, a
domain specific specification language for multidimensional intensive signal
processing. Multidimensional Systems and Signal Processing, 21:105–131, 2010.

[116] Calin Glitia, Pierre Boulet, Eric Lenormand, and Michel Barreteau. Repetitive
model refactoring strategy for the design space exploration of intensive signal
processing applications. J. of Systems Architecture, 57:815 – 829, Oct. 2011.

[117] Calin Glitia, Julien DeAntoni, Frédéric Mallet, Jean-Vivien Millo, Pierre Boulet,
and Abdoulaye Gamatié. Progressive and Explicit Refinement of Scheduling
for Multidimensional Data-Flow Applications using UML Marte. Design Au-

tomation for Embedded Systems, 16(2), June 2012.

[118] Thierry Grandpierre. Modélisation d’architectures parallèles hétérogènes pour
la génération automatique d’exécutifs distribués temps réel optimisés. In Thèse

de l’Université de Paris-Sud, U.F.R. Scientifique d’Orsay, November 2000.

[119] Thierry Grandpierre and Y. Sorel. From algorithm and architecture specifi-
cations to automatic generation of distributed real-time executives: a seamless
flow of graphs transformations. In MEMOCODE2003, Formal Methods and Mod-

els for Codesign Conference, Mont Saint-Michel, France, Juin 2003.

[120] Radu Grosu, Ingolf Krüger, and Thomas Stauner. Hybrid sequence charts. In
3th IEEE International Symposium on Object-Oriented Real-Time Distributed Com-

puting (ISORC 2000), pages 104 –111, 2000.

[121] Jing Guo, Antonio Wendell De Oliveira Rodrigues, Jerarajan Thiyagalingam,
Frédéric Guyomarch, Pierre Boulet, and Sven-Bodo Scholz. Harnessing the
Power of GPUs without Losing Abstractions in SaC and ArrayOL: A Com-
parative Study. In HIPS 2011, 16th International Workshop on High-Level Parallel

Programming Models and Supportive Environments, Anchorage (Alaska) United
States, 05 2011. URL http://hal.inria.fr/inria-00569100/en/.

[122] Rajiv Gupta, Santosh Pande, Kleanthis Psarris, and Vivek Sarkar. Compilation
techniques for parallel systems. Parallel Computing, 25(13–14):1741–1783, 1999.

[123] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Spark : A high-lev
l synthesis framework for applying parallelizing compiler transformations. In
Proc. of the 16th International Conference on VLSI Design, 2003.

c©Abdoulaye Gamatié

http://hal.inria.fr/inria-00569100/en/

bibliography 95

[124] George Hagen and Cesare Tinelli. Scaling up the formal verification of lustre
programs with smt-based techniques. In FMCAD ’08: Proceedings of the 2008

International Conference on Formal Methods in Computer-Aided Design, pages 1–9,
Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2735-2.

[125] Olivier Hainque. Etude d’un environnement d’exécution temps-réel, distribué et

tolérant aux pannes pour le modèle synchrone. Ph.d. thesis, Juin 2000.

[126] Nicolas Halbwachs and Siwar Baghdadi. Synchronous modelling of asyn-
chronous systems. In Proceedings of the Second International Conference on Em-

bedded Software, EMSOFT ’02, pages 240–251. Springer-Verlag, 2002.

[127] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asyn-
chronous systems by means of a synchronous model. In Proceedings of the Sixth

International Conference on Application of Concurrency to System Design, pages 3–
14. IEEE Computer Society, 2006.

[128] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays
in simple programs. SIGPLAN Not., 43:339–348, June 2008.

[129] Nicolas Halbwachs and Daniel Pilaud. Use of a real-time declarative language
for systolic array design and simulation. In International Workshop on Systolic

Arrays, Oxford, jul 1986.

[130] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous dataflow programming language Lustre. In IEEE, vol.79(9), pages
1305–1320, September 1991.

[131] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generating effi-
cient code from data-flow programs. In Third International Symposium on Pro-

gramming Language Implementation and Logic Programming, Passau, Germany,
August 1991.

[132] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming
and verifying real-time systems by means of the synchronous data-flow pro-
gramming language Lustre. IEEE Transactions on Software Engineering, Special

Issue on the Specification and Analysis of Real-Time Systems, September 1992.

[133] Christian Haubelt, Joachim Falk, Joachim Keinert, Thomas Schlichter, An-
dreas Hadert Martin Streubühr, Andreas Deyhle, and Jürgen Teich. A systemc-
based design methodology for digital signal processing systems. EURASIP

Journal on Embedded Systems, 2007, 2007. Article ID 47580.

[134] Damien Hedde and Frédéric Pétrot. A non intrusive simulation-based trace
system to analyse multiprocessor systems-on-chip software. In International

Symposium on Rapid System Prototyping, pages 106–112. IEEE, 2011. ISBN 978-
1-4577-0658-5.

[135] Damien Hedde, Pierre-Henri Horrein, Frédéric Petrot, Robin Rolland, and
Franck Rousseau. A mpsoc prototyping platform for flexible radio applica-
tions. In Euromicro DSD’09, pages 559–566. IEEE Computer Society, 2009.

[136] High Performance Fortran Forum. High performance fortran language speci-
fication version 2.0. Technical report, Department of Computer Science, Rice
University, 1997.

[137] Qubo Hu, Per Gunnar Kjeldsberg, Arnout Vandecappelle, Martin Palkovic,
and Francky Catthoor. Incremental hierarchical memory size estimation for
steering of loop transformations. ACM Trans. on Design Automation of Electronic

Sys., 12(50), Sept. 2007.

[138] The MathWorks Inc. Matlab r2011b documentation, 2011. URL http://www.

mathworks.fr/help/index.html.

c©Abdoulaye Gamatié

http://www.mathworks.fr/help/index.html
http://www.mathworks.fr/help/index.html

96 bibliography

[139] International Technology Roadmap for Semiconductors, 2008. URL http://

www.itrs.net. ITRS 2008 Update Overview.

[140] Kenneth E. Iverson. A personal view of apl. IBM Systems Journal, 30(4):582–593,
1991.

[141] Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond. Synchronous model-
ing and validation of priority inheritance schedulers. In Proceedings of the 12th

International Conference on Fundamental Approaches to Software Engineering: Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

2009, FASE ’09, pages 140–154. Springer-Verlag, 2009.

[142] Bertrand Jeannet. Dynamic partitioning in linear relation analysis. application
to the verification of reactive systems. Formal Methods in System Design, 23(1):
5–37, July 2003.

[143] Kwangok Jeong, A.B. Kahng, B. Lin, and K. Samadi. Accurate machine-
learning-based on-chip router modeling. Embedded Systems Letters, IEEE, 2

(3):62 –66, sept. 2010.

[144] Bijoy A. Jose and Sandeep K. Shukla. Mricdf: A polychronous model for em-
bedded software synthesis. In Sandeep K. Shukla and Jean-Pierre Talpin, edi-
tors, Synthesis of Embedded Software, pages 173–199. Springer US, 2010.

[145] Bijoy A. Jose, Jason Pribble, and Sandeep K. Shukla. Faster software synthe-
sis using actor elimination techniques for polychronous formalism. In ACSD,
pages 147–156, 2010.

[146] Bijoy A. Jose, Abdoulaye Gamatié, Julien Ouy, and Sandeep K. Shukla. SMT
Based False Causal loop Detection during Code Synthesis from Polychronous
Specifications. In ACM/IEEE Ninth International Conference on Formal Methods

and Models for Codesign (MEMOCODE), pages 109 –118, 2011.

[147] Bijoy Anthony Jose, Abdoulaye Gamatié, Matthew Kracht, and Sandeep Ku-
mar Shukla. Improved False Causal Loop Detection in Polychronous Specifi-
cationof Embedded Software. Research report, 2011. URL http://hal.inria.

fr/inria-00637582.

[148] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the cell multiprocessor. IBM J. Res. Dev., 49:589–604, July 2005.

[149] Gilles Kahn. The semantics of simple language for parallel programming. In
IFIP Congress, pages 471–475, 1974.

[150] Joachim Keinert, Joachim Falk, Christian Haubelt, and Jürgen Teich. Actor-
oriented modeling and simulation of sliding window image processing algo-
rithms. In Embedded Systems for Real-Time Multimedia, 2007. ESTIMedia 2007.

IEEE/ACM/IFIP Workshop on, pages 113 –118, oct. 2007.

[151] Joachim Keinert, Martin Streubuhr, Thomas Schlichter, Joachim Falk, Jens
Gladigau, Christian Haubelt, J&uhorbar;rgen Teich, and Michael Meredith.
Systemcodesigner – an automatic esl synthesis approach by design space ex-
ploration and behavioral synthesis for streaming applications. ACM Trans. Des.

Autom. Electron. Syst., 14:1:1–1:23, January 2009.

[152] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carl-
son, William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry
Hill, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas,
Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R.
Stanley Williams, and Katherine Yelick. ExaScale Computing Study: Tech-
nology Challenges in Achieving Exascale Systems. Technical report, 2008.
URL http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf. Report, Peter
Kogge, Editor & Study Lead.

c©Abdoulaye Gamatié

http://www.itrs.net
http://www.itrs.net
http://hal.inria.fr/inria-00637582
http://hal.inria.fr/inria-00637582
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

bibliography 97

[153] David Kolson, Alexandru Nicolau, and Nikil Dutt. Elimination of redundant
memory traffic in high-level synthesis. IEEE Trans. on Comp-aided Design, 15:
1354–1363, 1996.

[154] Apostolos Kountouris and Paul Le Guernic. Profiling of Signal programs and
its application in the timing evaluation of design implementations. In IEE

Colloq. on HW-SW Cosynthesis for Reconfigurable Systems, IEE, pages 6/1–6/9.
HP Labs, Bristol, UK, February 1996.

[155] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob Wijngaart. The
case for message passing on many-core chips. In Michael Hübner and Jürgen
Becker, editors, Multiprocessor System-on-Chip, pages 115–123. Springer New
York, 2011.

[156] Ouassila Labbani. Modélisation à haut niveau du contrôle dans des applications

de traitement systématique á parallélisme massif. Ph.d. thesis, Université de Lille
1, France, November 2006. URL http://www.lifl.fr/west/publi/Labb06phd.

pdf.

[157] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Sympo-

sium on Code Generation and Optimization (CGO’04): feedback-directed and runtime

optimization, pages 75–. IEEE Computer Society, 2004.

[158] Bernard Le Goff. Inférence de contrôle hiérarchique: application au temps réel. Ph.d.
thesis, Université de Rennes I, IFSIC, France, 1989.

[159] Paul Le Guernic. Signal : Description algébrique des flots de signaux. In
Architecture des machines et systèmes informatiques. Actes du congrès de l’Afcet,
pages 243–252, November 1982. Hommes et Techniques.

[160] Paul Le Guernic, Albert Benveniste, and Thierry Gautier. SIGNAL:Un langage
pour le traitement du signal. Research Report RR-0206, INRIA/IRISA, 1983.
URL http://hal.inria.fr/inria-00076352.

[161] Paul Le Guernic, Albert Benveniste, Patricia Bournai, and Thierry Gautier. SIG-
NAL: A Data Flow-Oriented Language for Signal Processing. IEEE Transactions

on Acoustics, Speech and Signal Procesing, ASSP-34(2), April 1986.

[162] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire.
Programming real-time applications with Signal. Proceedings of the IEEE, 79(9):
1321–1336, 1991.

[163] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. Polychrony
for System Design. Journal for Circuits, Systems and Computers, 12(3):261–304,
April 2003.

[164] Le Verge, Hervé and Mauras, Christophe and Quinton, Patrice. The alpha
language and its use for the design of systolic arrays. The Journal of VLSI

Signal Processing, 3:173–182, 1991.

[165] Edward A. Lee. Computing needs time. Commun. ACM, 52(5):70–79, May 2009.
ISSN 0001-0782. doi: 10.1145/1506409.1506426. URL http://doi.acm.org/10.

1145/1506409.1506426.

[166] Edward A. Lee and David G. Messerschmitt. Synchronous data flow: De-
scribing signal processing algorithm for parallel computation. In COMPCON,
pages 310–315, 1987.

[167] Edward A. Lee and Alberto Sangiovanni-vincentelli. A framework for com-
paring models of computation. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 17:1217–1229, 1998.

c©Abdoulaye Gamatié

http://www.lifl.fr/west/publi/Labb06phd.pdf
http://www.lifl.fr/west/publi/Labb06phd.pdf
http://hal.inria.fr/inria-00076352
http://doi.acm.org/10.1145/1506409.1506426
http://doi.acm.org/10.1145/1506409.1506426

98 bibliography

[168] Tsing-Fa Lee, Allen C.-H. Wu, Youn-Long Lin, and Daniel D. Gajski. A
transformation-based method for loop folding. IEEE Trans. on CAD of Inte-

grated Circuits and Systems, pages 439–450, 1994.

[169] Christian Lengauer. Loop parallelization in the polytope model. In Proceedings

of the 4th International Conference on Concurrency Theory, CONCUR ’93, pages
398–416, London, UK, 1993. Springer-Verlag. ISBN 3-540-57208-2.

[170] Xin Li and Reinhard von Hanxleden. Multithreaded reactive programming -
the kiel esterel processor. IEEE Trans. Computers, 61(3):337–349, 2012.

[171] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-
5411.

[172] Nestor Lopez, Marianne Simonot, and Véronique Donzeau-Gouge. A method-
ological process for the design of a large system: two industrial case-studies.
ENTCS, 66(2), 2002.

[173] Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. Opt4J -
A Modular Framework for Meta-heuristic Optimization. In Proc. of the Genetic

and Evolutionary Computing Conference (GECCO 2011), .

[174] Martin Lukasiewycz, Martin Streubühr, Michael Glaß, Christian Haubelt, and
Jürgen Teich. Combined system synthesis and communication architecture
exploration for mpsocs. In Proc. of the Conference on Design, Automation and Test

in Europe (DATE’09), .

[175] Yue Ma, J.-P. Talpin, and T. Gautier. Virtual prototyping aadl architectures
in a polychronous model of computation. In Formal Methods and Models for

Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE International Conference on,
pages 139 –148, June 2008.

[176] Olivier Maffeïs. Ordonnancements de graphes de flots synchrones : application à

la mise en œuvre de Signal. Ph.d. thesis, Université de Rennes I, IFSIC, France,
January 1993.

[177] Grigorios Magklis, Greg Semeraro, David H. Albonesi, Steven G. Dropsho,
Sandhya Dwarkadas, and Michael L. Scott. Dynamic frequency and voltage
scaling for a multiple-clock-domain microprocessor. Micro, IEEE, 23(6):62 – 68,
November 2003.

[178] Frédéric Mallet. Clock constraint specification language: specifying clock con-
straints with uml/marte. Innovations in Systems and Software Engineering, 4:
309–314, 2008.

[179] Florence Maraninchi and Yann Rémond. Mode-automata: a new domain-
specific construct for the development of safe critical systems. Science of Com-

puter Programming, 46(1-2):219–254, 2003.

[180] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le Guernic.
Synthesis of Discrete-Event Controllers based on the Signal Environment. Dis-

crete Event Dynamic System: Theory and Applications, 10(4):325–346, October
2000.

[181] César Marcon, Ney Calazans, Edson Moreno, Fernando Moraes, Fabiano Hes-
sel, and Altamiro Susin. Cafes: A framework for intrachip application model-
ing and communication architecture design. Journal of Parallel and Distributed

Computing, 71(5):714 – 728, 2011.

[182] Christophe Mauras. Alpha : un langage équationnel pour la conception et la

programmation d’architectures parallèles synchrones. Ph.d. thesis, Université de
Rennes I, France, December 1989.

c©Abdoulaye Gamatié

bibliography 99

[183] Message Passing Interface Forum. MPI Documents. http://www.mpi-forum.

org/docs/docs.html, 2009.

[184] Olivier Michel. Design and implementation of 8 1/2 , a declarative data-
parallel language. Technical report, Computer Languages, 1996.

[185] Lionel Morel. Array iterators in lustre: From a language extension to its ex-
ploitation in validation. EURASIP Journal on Embedded Systems, 2007.

[186] Mohammad R. Mousavi, Paul Le Guernic, Jean-Pierre Talpin, Sandeep K.
Shukla, and Twan Basten. Modeling and validating globally asynchronous
design in synchronous frameworks. In DATE, pages 384–389, 2004. ISBN
0-7695-2085-5-1.

[187] Jens Muttersbach, Thomas Villiger, Hubert Kaeslin, Norbert Felber, and Wolf-
gang Fichtner. Globally-Asynchronous Locally-Synchronous Architectures to
Simplify the Design of On-chip Systems. In 12th IEEE International ASIC/SOC

Conference, Washington DC, USA, 1999.

[188] Mirabelle Nebut. Specification and analysis of synchronous reactions. Formal

Aspects of Computing, 16(3):263–291, august 2004.

[189] Stephen Neuendorffer and Edward Lee. Hierarchical reconfiguration of
dataflow models. In 2nd Int’l Conf. on Formal Methods and Models for Co-Design

(MEMOCODE’04), pages 179–188, june 2004.

[190] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads program-

ming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996. ISBN 1-56592-
115-1.

[191] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable paral-
lel programming with cuda. Queue, 6:40–53, March 2008.

[192] Bosko Nikolic, Zaharije Radivojevic, Jovan Djordjevic, and Veljko Milutinovic.
A survey and evaluation of simulators suitable for teaching courses in com-
puter architecture and organization. Education, IEEE Transactions on, 52(4):449

–458, nov. 2009.

[193] Robert W. Numrich and John Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17:1–31, August 1998.

[194] Object Management Group. A UML profile for MARTE, 2012. http://www.

omgmarte.org.

[195] OpenMP Architecture Review Board. The OpenMP API specification for par-
allel programming. http://openmp.org, 2009.

[196] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David
Lesens. Multi-task implementation of multi-periodic synchronous programs.
Discrete Event Dynamic Systems, 21(3):307–338, September 2011. ISSN 0924-
6703.

[197] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,
A. Vandercappelle, and P. G. Kjeldsberg. Data and memory optimization tech-
niques for embedded systems. ACM Trans. on Design Automation of Electronic

Sys., 6:149–206, April 2001.

[198] Aashish Pant, Puneet Gupta, and Mihaela van der Schaar. Software adaptation
in quality sensitive applications to deal with hardware variability. In Proceed-

ings of the 20th symposium on Great lakes symposium on VLSI, GLSVLSI ’10, pages
85–90. ACM, 2010.

c©Abdoulaye Gamatié

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.omgmarte.org
http://www.omgmarte.org
http://openmp.org

100 bibliography

[199] Aashish Pant, Puneet Gupta, and Mihaela van der Schaar. Appadapt: Oppor-
tunistic application adaptation in presence of hardware variation. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, PP(99):1 –11, 2011.

[200] Joonseok Park, Pedro C. Diniz, and K. R. Shesha Shayee. Performance and area
modeling of complete FPGA designs in the presence of loop transformations.
IEEE Trans. Comput., 53:1420–1435, November 2004.

[201] Valentin Perrelle and Nicolas Halbwachs. An analysis of permutations in ar-
rays. In VMCAI, pages 279–294, 2010.

[202] Carl Adam Petri. Kommunikation mit Automaten. Ph.d. thesis, Darmstadt Uni-
versity of Technology, Germany, 1962.

[203] Frederic Petrot, Nicolas Fournel, Patrice Gerin, Marius Gligor, Mian-
Muhammed Hamayun, and Hao Shen. On mpsoc software execution at the
transaction level. IEEE Des. Test, 28:32–43, May 2011.

[204] John Plaice. Multidimensional lucid: Design, semantics and implementation.
In In Distributed Communities on the Web: Third International Workshop, DCW

2000. Springer, 2000.

[205] Amir Pnueli. Specification and development of reactive systems (invited pa-
per). In IFIP Congress, pages 845–858, 1986.

[206] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gerard Berry. Compiling

Esterel. Springer Publishing Company, Incorporated, 1st edition, 2007. ISBN
0387706267, 9780387706269.

[207] Dumitru Potop-Butucaru, Akramul Azim, and Sebastian Fischmeister.
Semantics-preserving implementation of synchronous specifications over dy-
namic tdma distributed architectures. In EMSOFT, pages 199–208, 2010.

[208] Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of communication delay
bounds for network on chips. In Proceedings of the 2009 Asia and South Pa-

cific Design Automation Conference (ASP-DAC’09), pages 7–12. IEEE Press, 2009.
ISBN 978-1-4244-2748-2.

[209] Imran Rafiq Quadri, Huafeng Yu, Abdoulaye Gamatié, Éric Rutten, Samy Mef-
tali, and Jean-Luc Dekeyser. Targeting reconfigurable fpga based socs using
the uml marte profile: from high abstraction levels to code generation. IJES, 4

(3/4):204–224, 2010.

[210] I.R. Quadri, A. Gamatié, P. Boulet, and J.L. Dekeyser. Modeling of configu-
rations for embedded system implementations in marte. In 1st workshop on

Model Based Engineering for Embedded Systems Design-Design, Automation and

Test in Europe (DATE’2010), 2010.

[211] Talal Rahwan, Sarvapali Ramchurn, Nicholas Jennings, and Andrea Giovan-
nucci. An anytime algorithm for optimal coalition structure generation. J. of

Artificial Intelligence Research (JAIR), 34:521–567, April 2009.

[212] Keith H. Randall. Cilk: Efficient Multithreaded Computing. Ph.d. thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, May 1998.

[213] Parthasarathy Ranganathan. From microprocessors to nanostores: Rethinking
data-centric systems. Computer, 44(1):39 –48, jan. 2011.

[214] Frédéric Rocheteau and Nicolas Halbwachs. Implementing reactive programs
on circuits: A hardware implementation of lustre. In Proceedings of the Real-

Time: Theory in Practice, REX Workshop, pages 195–208. Springer-Verlag, 1992.

c©Abdoulaye Gamatié

bibliography 101

[215] Éric Rutten and Florent Martinez. Signalgti: Implementing task preemption
and time intervals in the synchronous data flow language signal. In In proceed-

ings of the 7th Euromicro Workshop on Real Time Systems, pages 176–183. IEEE
Publ, 1995.

[216] Alberto Sangiovanni-Vincentelli, Luca Carloni, Fernando De Bernardinis, and
Marco Sgroi. Benefits and challenges for platform-based design. In Proceedings

of the 41st annual Design Automation Conference, DAC’04, pages 409–414, 2004.
ISBN 1-58113-828-8.

[217] Alberto L. Sangiovanni-Vincentelli, Marco Sgroi, and Luciano Lavagno. For-
mal models for communication-based design. In Proceedings of the 11th Interna-

tional Conference on Concurrency Theory (CONCUR’00), pages 29–47. Springer-
Verlag, 2000.

[218] Sven-Bodo Scholz. Single assignment c: efficient support for high-level array
operations in a functional setting. J. Funct. Program., 13(6):1005–1059, 2003.

[219] Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic. Validation of
Mixed SIGNAL-ALPHA Real-Time Systems through Affine Calculus on Clock
Synchronisation Constraints. In Proceedings of the World Congress on Formal

Methods (FM’99), pages 1364–1383. Springer-Verlag, 1999.

[220] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. Spatial computing as
intensional data parallelism. In Proceedings of the 2010 Fourth IEEE International

Conference on Self-Adaptive and Self-Organizing Systems Workshop, SASOW ’10,
pages 196–205, Washington, DC, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-4229-4.

[221] Sathya Sriram and Shuvra S. Bhattacharyya. Embedded multiprocessors: Schedul-

ing and synchronization. CRC Press, 2000.

[222] Stanford Streaming Supercomputer Project. Merrimac - Brook page, 2009.
http://merrimac.stanford.edu/brook.

[223] Karsten Strehl and Lothar Thiele. Symbolic model checking of process net-
works using interval diagram techniques. In ICCAD, pages 686–692, 1998.

[224] Jean-Pierre Talpin, Abdoulaye Gamatié, David Berner Le Dez, and Paul Le
Guernic. Hard real-time implementation of embedded software in java. In
FIDJI’2003. Lectures Notes in Computer Science. Springer, 2003.

[225] Jean-Pierre Talpin, Christian Brunette, Thierry Gautier, and Abdoulaye
Gamatié. Polychronous mode automata. In Proceedings of the 6th ACM & IEEE

International conference on Embedded software, EMSOFT ’06, pages 83–92. ACM,
2006.

[226] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles

and Paradigms (2nd ed.). Prentice Hall, 2007.

[227] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita, and
S. Stuijk. A scenario-aware data flow model for combined long-run average
and worst-case performance analysis. In 4th Int’l Conf. on Formal Methods and

Models for Co-Design (MEMOCODE’06), pages 185–194, july 2006.

[228] Scott Thibault. FPGA for DSP: A JPEG encoder case study, Sept. 2011. URL
http://www.gmvhdl.com/fpga_for_dsp.html.

[229] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A
language for streaming applications. In Proceedings of the 11th International

Conference on Compiler Construction, CC ’02, pages 179–196. Springer-Verlag,
2002.

c©Abdoulaye Gamatié

http://merrimac.stanford.edu/brook
http://www.gmvhdl.com/fpga_for_dsp.html

102 bibliography

[230] Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel, Cagkan
Erbas, Simon Polstra, and Ed F. Deprettere. A framework for rapid system-
level exploration, synthesis, and programming of multimedia MP-SoCs. In
CODES+ISSS’07, pages 9–14. ACM, 2007.

[231] Takao Toi, Toru Awashima, Masato Motomura, and Hideharu Amano. Time
and space-multiplexed compilation challenges for dynamically reconfigurable
processors. In Circuits and Systems (MWSCAS), 2011 IEEE 54th International

Midwest Symposium on, pages 1 –4, aug. 2011.

[232] Nick Tredennick and Brion Shimamoto. The inevitability of reconfigurable
systems. Queue, 1:34–43, October 2003.

[233] Lewis W. Tucker and George G. Robertson. Architecture and applications of
the connection machine. Computer, 21:26–38, August 1988.

[234] Vincent Van Dongen, Guang Gao, and Qi Ning. A polynomial time method
for optimal software pipelining. In Luc Bougé, Michel Cosnard, Yves Robert,
and Denis Trystram, editors, Parallel Processing: CONPAR 92-VAPP V, volume
634 of LNCS, pages 613–624. Springer Berlin / Heidelberg, 1992.

[235] Variability Expedition. Variability-Aware Software for Efficient Computing
with Nanoscale Devices, 2012. URL http://variability.org.

[236] Paulo Veríssimo. On the role of time in distributed systems. In 6th IEEE

Workshop on Future Trends of Distributed Computer Systems (FTDCS’97), 29-31

October 1997, Tunis, Tunisia, pages 316–323. IEEE Computer Society, 1997.

[237] Bruno Virlet, Xing Zhou, Jean Pierre Giacalone, Bob Kuhn, Maria J. Garzaran,
and David Padua. Scheduling of stream-based real-time applications for het-
erogeneous systems. In Proceedings of the 2011 SIGPLAN/SIGBED conference

on Languages, compilers and tools for embedded systems, LCTES ’11, pages 1–10.
ACM, 2011. ISBN 978-1-4503-0555-6.

[238] William W. Wadge and Edward A. Ashcroft. LUCID, the dataflow programming

language. Academic Press Professional, Inc., San Diego, CA, USA, 1985. ISBN
0-12-729650-6.

[239] Robert A. Walker and Samit Chaudhuri. Introduction to the scheduling prob-
lem. Design Test of Computers, IEEE, 12(2):60 –69, summer 1995.

[240] Doran Wilde. The Alpha language. Technical Report 827, IRISA - INRIA,
Rennes, 1994. available at http://hal.inria.fr/inria-00074378.

[241] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor system-
on-chip (mpsoc) technology. IEEE Trans. on CAD of Integrated Circuits and Sys-

tems, 27(10):1701–1713, 2008.

[242] Yang Yang, Marc Geilen, Twan Basten, Sander Stuijk, and Henk Corporaal.
Automated bottleneck-driven design-space exploration of media processing
systems. In DATE’2010, pages 1041–1046, 2010.

[243] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: A high-performance Java dialect. In ACM 1998

Workshop on Java for High-Performance Network Computing, New York, NY 10036,
USA, 1998. ACM Press.

[244] Huafeng Yu. A MARTE-Based Reactive Model for Data-Parallel Intensive Process-

ing: Transformation Toward the Synchronous Model. Ph.d. thesis, Université de
Lille 1, France, 2008. URL http://hal.inria.fr/tel-00497248.

c©Abdoulaye Gamatié

http://variability.org
http://hal.inria.fr/inria-00074378
http://hal.inria.fr/tel-00497248

bibliography 103

[245] Huafeng Yu, Abdoulaye Gamatié, Éric Rutten, and Jean-Luc Dekeyser. Safe
Design of High-Performance Embedded Systems in a MDE framework. Inno-

vations in Systems and Software Engineering (ISSE), 4(3), 2008. NASA/Springer
journal ISSE.

[246] Jun Zhu, Ingo Sander, and Axel Jantsch. Energy efficient streaming applica-
tions with guaranteed throughput on mpsocs. In EMSOFT’08, Atlanta, GA,

USA, pages 119–128, 2008.

[247] Jun Zhu, Ingo Sander, and Axel Jantsch. Pareto efficient design for reconfig-
urable streaming applications on cpu/fpgas. In DATE’2010, pages 1035–1040,
2010.

[248] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Vi-
viane Grunert da Fonseca. Performance assessment of multiobjective optimiz-
ers: An analysis and review. IEEE Trans. on Evolutionary Computation, 7:117–132,
April 2003.

c©Abdoulaye Gamatié

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

c©Abdoulaye Gamatié

http://code.google.com/p/classicthesis/

c©Abdoulaye Gamatié

	Dedication
	Abstract
	Abstract
	Foreword
	Acknowledgments
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	1.1 Trends in embedded system design
	1.1.1 High function integration and data volumes
	1.1.2 Parallelism for high-performance and power-efficiency
	1.1.3 Adaptivity in embedded systems

	1.2 Contributions: correct and efficient MPSoC design
	1.2.1 Polychronous design and analysis of systems
	1.2.2 Design of reactive data-intensive applications
	1.2.3 Design space exploration for MPSoC codesign

	1.3 Outline of the document

	2 Polychronous design of embedded systems
	2.1 Overview of main challenges
	2.1.1 Dealing with asynchrony with the polychronous model
	2.1.2 Static analysis for polychronous designs

	2.2 Polychronous design of distributed embedded systems
	2.2.1 Some related works in the synchronous approach
	2.2.2 Modeling of asynchronous mechanisms in Signal
	2.2.3 A methodology for correct distributed design
	2.2.4 Model-driven engineering for polychronous design

	2.3 Static analysis of polychronous specifications
	2.3.1 Some related works on synchronous languages
	2.3.2 A new abstraction for Signal
	2.3.3 Application to Signal clock calculus: an example
	2.3.4 Static analysis of polychronous programs in MRICDF

	2.4 Pedagogical implication: a book on Signal programming
	2.5 Summary and discussion

	3 Design model for reactive data-intensive applications
	3.1 Overview of main challenges
	3.1.1 Reactivity in massively parallel computations
	3.1.2 Design correctness of data-intensive applications

	3.2 Background notions
	3.2.1 A survey of parallel programming models
	3.2.2 The repetitive structure modeling (RSM)

	3.3 From static to dynamic design model in RSM
	3.3.1 Integrated control-oriented design with FSMs and RSM
	3.3.2 Interaction between data dependencies and logical time
	3.3.3 Model-driven engineering in Gaspard2 environment

	3.4 Synchronous approach for dealing with correctness
	3.4.1 Causality and array assignment analysis
	3.4.2 State-based analysis for adaptive behaviors
	3.4.3 Analysis in presence of environment constraints

	3.5 Summary and discussion

	4 Design space exploration for MPSoC codesign
	4.1 Overview of main challenges
	4.1.1 Data transfer and storage for efficient communications
	4.1.2 Software/hardware association for efficient execution

	4.2 DSE for efficient data transfer and storage
	4.2.1 Related works
	4.2.2 A hardware architecture template
	4.2.3 Overview of the DSE problem encoding
	4.2.4 Implementation of our DSE approach
	4.2.5 Some case studies
	4.2.6 Benefits for MPSoC design frameworks

	4.3 A clock model for performance analysis in MPSoCs
	4.3.1 Related works
	4.3.2 Clock design of correct and efficient executions
	4.3.3 Performance analysis based on ternary clocks
	4.3.4 Implementation of the clock-based framework
	4.3.5 A case study
	4.3.6 Benefits of proposal for existing frameworks

	4.4 Summary and discussion

	5 Conclusions and perspectives
	5.1 Overview of contributions
	5.2 Future research topics
	5.2.1 Towards a codesign-aware compilation for MPSoCs
	5.2.2 Safe management of adaptivity in MPSoC codesign
	5.2.3 Accurate observations for MPSoC adaptivity management

	Bibliography
	Colophon

