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Reminder: Anderson localization

@ A single particle can be coherently backscattered in a disordered potential, so
that it is trapped in a finite region in real space. — Anderson localization
[Anderson 1958]

@ In D < 2 dimensions, in the absence of special symmetries, all one-particle
states are localized. In D > 2 dimensions, localization-delocalization
(Anderson) transition may happen. — Scaling theory of localization
[Abrahams et al. 1979]

@ Profile of a localized state: 1)(x) ~ pe~P~%I/&  for |x — xo| > €.

The localization length ¢ is defined by the decay rate of the amplitude, and can
be measured by transmission coefficient.

300 100 500 500 700 800



Effect of interactions?



Motivation I: Channel competition in few-particle systems

@ Two interacting particles can coherently propagate further than a
single particle. [In 1D, Dorokhov 1990, Shepelyansky 1994, Imry 1995, Song
& von Oppen 1997; In 2D, Ortuiio & Cuevas 1999.]
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Motivation I: Channel competition in few-particle systems

@ Two interacting particles can coherently propagate further than a
single particle. [In 1D, Dorokhov 1990, Shepelyansky 1994, Imry 1995, Song
& von Oppcn 1997; In 2D, Ortuiio & Cuevas 1999.]

®® Ly > L, What happens for more particles?

@ But for more particles the competition between “fast” (more
delocalized) channel and “slow” (more localized) channel is
significant.
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[ Q: Who wins, the fast or the slow?]




Motivation II: Anderson localization of a hybrid particle

—polariton

@ Cavity polariton in 1D microwires
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[Trichet, et al, 2011]
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Q: In the presence of disor-
der, which component will dom-
inate the localization of polari-
ton, photon (the fast) or exciton
(the slow)?
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Anderson localization on two coupled lattices

@ Localization on a two-leg ladder (D = 1)
[Phys. Rev. B 86, 014205 (2012)]

@ Localization on a two-layer Bethe lattice (D = o0)



Two-leg Anderson model and localization lengths

More delocalized (Photon)
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@ For uncoupled chains:

S >6

[ Q: What will be the localization lengths in the presence of coupling? ]




Two-leg Anderson model and localization lengths

e Energy dispersion in the absence of disorder (¢; , = 0)
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Two-channel regime: Fokker-Planck equation approach

e Transfer matrix in scattering channel basis

Schrédinger equation — Transfer matrix
0 1 L—1 L o= ==
------------------------ < <
T 11 = =
@(1) P(L) A(1) A(L)
®(L) = M(L)d(1) A(L) = M(L)A(1)
M(L) = Hi:] my M(L) = Hi:] my

[ » m, ~ I+ O(e) = Perturbative analysis in weak disorder.]

» T-invarince & M* = X 1M1 () =0, 1)
» Current conservation < MM = 53 (33 = 03 @ 1)




Two-channel regime: Fokker-Planck equation approach

e Parametrization of transfer matrix and localization lengths
[Mello et al 1988]
» T-invariance (M* = £, MY) and current conservation (MTX3M = %3)
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» T, € (0, 1] are transmission coefficients.
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e Parametrization of transfer matrix and localization lengths
[Mello et al 1988]
» T-invariance (M* = £, MY) and current conservation (MTX3M = %3)
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F contains two radial variables u, u € U(2) contains four angular variables
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» T, € (0, 1] are transmission coefficients.

» Localization lengths are {éfé) = —lim; . %%(ln Ti(2)) ]




Two-channel regime: Fokker-Planck equation approach

e Parametrization of transfer matrix and localization lengths

[Mello et al 1988]
» T-invariance (M* = £, MY) and current conservation (MTX3M = %3)

[FE1 [F—1 .
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» T, € (0, 1] are transmission coefficients.

4 (InTy(2)) ]

» Localization lengths are {éfé) = —lim;_, %

» R = MM contains six parameters § = (Ty, T2, 6, 1, @, ).

l Q: What is the probability density P(q; L)?]




Two-channel regime: Fokker-Planck equation approach

e From “Langevin equation” to Fokker-Planck equation

» “Langevin equation” for the “Brownian motion” of R matrix (6D)

R(L+1) = mpiR(L)m]., | ((ewerr) = Var(e,)dud,07)

Grr1 =qGL+0g, o6g~ O(e)



Two-channel regime: Fokker-Planck equation approach

e From “Langevin equation” to Fokker-Planck equation

» “Langevin equation” for the “Brownian motion” of R matrix (6D)

R(L+1) = mpiR(L)m]., | ((ewer) = Var(e,)dud,0/]

Gr+1 = qL+0q, 06q~ O(e)
» Fokker-Planck (diffusion) equation for P(g; L)
P = 3,0, (v(@)P — 55, Dy(8)0,P)

“Diffusion coefficient tensor” “Stream velocity”
Di(q) = 5 (0qibgj) vi(@) = (6qi) + 504,D;(q)

Radial variables (T}, T) and angular variables (0, v, ¢, ¢) are coupled.]




Two-channel regime: Fokker-Planck equation approach

e Connection to the DMPK equation
If the angular variables are uniformly distributed (equally mixed
channels), P(g; L) < P(T}, T»; L) satisfies the DMPK equation for
N = 2 [Dorokhov 1982, Mello, Pereyra, & Kumar 1988]:

92 = Var(e) 1T &N+ M) BT {ADP,

No=1T— 10 I =TI I = Al

[In general angular variables are not uniformly distributed!]

= “Extended” DMPK equation



Two-channel regime: Fokker-Planck equation approach

e Asymptotic analysis

» Coarse-graining of space for weak disorder

| 1/Ak < min{¢), &}] Ak = [k — k|

» Exponential smallness of transmission coefficients for L > & o,

T1(2) ~ e—L/§1(z) = [Tmin < Tmax < 1]

= Eliminating ¢, ¢, ¥ (phase angles) dependence.

Only the ¢ dependence is considered.
It controls the distribution of amplitude over the
channels.




Results



Two-channel regime: resonance and off-resonance

e A benchmark: t; = 1,, Var(¢;) = Var(e;)
[Dorokhov 1982, Kasner & Weller 1988.]

Localization length enhancement: r; = §

& |t1:0 ~ o) )
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Two-channel regime: resonance and off-resonance

e Resonance: “slow” chain dominates

» 1 > 1, Var(e) = Var(ey)| _| » 11 =1, Var(e;) < Var(ez)[) :
(polariton) (two-channel waveguide) /
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At resonance energy:
&1 is dramatically draged down to the order of & ;=0 (11 << 1 and & /&0 ~ 2.972);
& is lifted but still in the same order as & |;=o (> ~ 1.507).




Two-channel regime: resonance and off-resonance

o Off-resonance: “fast” chain dominates
) > 1, Var(e,) = Var(e,) (polariton)

4 D=1 =02 Wi=W, | [k
12 r

10r [ Resonance | & t=00
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» Resonance—off-resonance crossover happens at E o t.
» Away from resonance &; > approach decoupled values.




Band-edge singularities and one-channel regime

e Band-edge singularities and one-channel regime

t1=1.0, t,=0.5, t=0.2, W=0.2

Extended DMPK equation
o Numerical transfer matrix

2000

f1(2)

» Below band-edge, “slow” chain (exciton) dominates (zero velocity).

» Above band-edge, £; recovers to a large value suddenly (one channel).

» In one-channel regime, a propagating channel is coupled to an evanescent
channel. For weak disorder, the coupling effect is irrelevant up to O(e?).




Conclusion for D = 1 dimension

o In weak disorder limit, depending on energy there are four regimes:

» Near resonance: Slow chain (exciton) dominates.

» Off-resonance: Fast chain (photon) dominates.

» Near the band-edge below: Slow chain (exciton) dominates.
» On-channel regimes: Fast chain (photon) dominates.

Only near resonance or band edges the slow channel
dominates. This is a manifestation of the fact that in 1D
backscattering rate determines the localization properties of
a coupled system!




What will happen in high dimensions?



Anderson model on a two-layer Bethe lattice
and Anderson transition




Anderson model on a two-layer Bethe lattice
and Anderson transition

e Fort = 0, lattice 1 is at the critical point and lattice 2 is localized,

Q: In the presence of coupling, will the system be
always delocalized or critical?




Anderson model on a two-layer Bethe lattice

and Anderson transition

@ Recursion relation for local Green’s functions [Abou-Chacra er al., 1973]

—1
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Anderson model on a two-layer Bethe lattice

and Anderson transition

@ Recursion relation for local Green’s functions [Abou-Chacra ef al., 1973]

0 o4 () 4\ !
GY = <E+n7—Hj - TzkeajliG,E’)T)

i; = <i”' {1’) T= <7”f' ll) n= 0"

@ Self energies, decay rates, and
Anderson transition

Si(E) = E + in — €5, — 1/G)

J,vv

I(E) =ImS;,(E), ve{l,2}

» The Anderson transition can be determined by analyzing the
stability of the real solution for Sj, (E)’s.

» The recursion relation can be iterated by the population
dynamics (“pool” method).




Anderson model on a two-layer Bethe lattice

and Anderson transition

@ Stability analysis and Anderson transition

» The typical value of decay rate In Teyp

s N ng
Ty, = % SN e

( Delocalized .~
yp.v v

N = 4 Sites, ny = # Iteration

» The growth rate of I'")

typ,v typ,v

yp,v %, Localized
An :lnF(nl) _lnr(ﬂ;—l) M _ H# Iteration

o\ o< 1/V/N.

N < 0, localized,
> 0, delocalized,




Phase diagram fort; =, at E =0
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Phase diagram fort; =, at E =0

@ Statistically identical lattices (W; = W)
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Phase diagram fort; =, at E =0

@ Statistically identical lattices (W,
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@ Parametrically different lattices
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Phase diagram fort; =, at E =0

@ Statistically identical lattices (W; = W)
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Conclusion for Bethe lattices

@ Localization is relevant only if disorder is intermediate or strong.
Resonance conditions can not be achieved.

The less disordered lattice (delocalized) is not affected
by the more disordered lattice (localized).




Discussion

@ For two coupled lattices in D dimensions, We conjecture:

In D > 2 dimensions the physics is similar as that on the Bethe
lattices, i.e., the fast channel dominates.

In D = 2 dimensions the physics is similar as that in one
dimension, i.e., with a resonant coupling the slow channel
dominates.

@ For the few-particle problems, we conjecture:

The fast channel dominates the delocalization of the interacting
particles, since the resonance between the fast and slow channels
should be an exception rather than a rule.



Thanks to all those who gave me the
possibility to complete this dissertation!
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