
HAL Id: tel-00752033
https://theses.hal.science/tel-00752033

Submitted on 14 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational methods for de novo assembly of
next-generation genome sequencing data

Rayan Chikhi

To cite this version:
Rayan Chikhi. Computational methods for de novo assembly of next-generation genome sequencing
data. Other [cs.OH]. École normale supérieure de Cachan - ENS Cachan, 2012. English. �NNT :
2012DENS0033�. �tel-00752033�

https://theses.hal.science/tel-00752033
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’école normale supérieure de Cachan

Mention : Informatique
École doctorale MATISSE

présentée par

Rayan Chikhi
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

Computational Methods
for de novo Assembly of

Next-Generation Genome
Sequencing Data

Thèse soutenue le 2 juillet 2012
devant le jury composé de :

Éric RIVALS,
DR, LIRMM / rapporteur
Sante GNERRE,
Group leader, Broad Institute of MIT and Harvard / rapporteur

Marie-France SAGOT,
DR, Inria Grenoble et Université de Lyon 1 / examinateur
Bertil SCHMIDT,
Professeur, Johannes Gutenberg-Universität Mainz / examinateur
Olivier JAILLON,
Chercheur, Genoscope-CNS (CEA) / examinateur

Dominique LAVENIER,
Professeur ENS Cachan - Bretagne et DR CNRS/ directeur de thèse

N° d’ordre :
École normale supérieure de Cachan - Antenne de Bretagne
Campus de Ker Lann - Avenue Robert Schuman - 35170 BRUZ
Tél : +33(0)2 99 05 93 00 - Fax : +33(0)2 99 05 93 29

Résumé

Dans cette thèse, nous présentons des méthodes de calcul (modèles
théoriques et algorithmiques) pour effectuer la reconstruction de
séquences d’ADN. Il s’agit de l’assemblage de novo de génome à partir
de lectures (courte séquences ADN) produites par des séquenceurs
à haut débit. Ce problème est difficile, aussi bien en théorie qu’en
pratique. Du point de vue théorique, les génomes sont structurellement
complexes. Chaque instance d’assemblage de novo doit faire face
à des ambiguïtés de reconstruction. Les lectures peuvent conduire
à un nombre exponentiel de reconstructions possibles, une seule
étant correcte. Comme il est impossible de déterminer laquelle, une
approximation fragmentée du génome est retournée. Du point de vue
pratique, les séquenceurs produisent un énorme volume de lectures,
avec une redondance élevée. Une puissance de calcul importante
est nécessaire pour traiter ces lectures. Le séquençage ADN évolue
désormais vers des génomes et méta-génomes de plus en plus grands.
Ceci renforce la nécessité de méthodes efficaces pour l’assemblage de
novo.

Cette thèse présente de nouvelles contributions en informatique autour
de l’assemblage de génomes. Ces contributions visent à incorporer
plus d’information pour améliorer la qualité des résultats, et à traiter
efficacement les données de séquençage afin de réduire la complexité
du calcul. Plus précisément, nous proposons un nouvel algorithme
pour quantifier la couverture maximale d’un génome atteignable par le
séquençage, et nous appliquons cet algorithme à plusieurs génomes
modèles. Nous formulons un ensemble de problèmes informatiques
pour incorporer l’information des lectures pairées dans l’assemblage,
et nous étudions leur complexité. Cette thèse introduit la notion
d’assemblage localisé, qui consiste à construire et parcourir un graphe
d’assemblage partiel. Pour économiser l’utilisation de la mémoire,
nous utilisons des structures de données optimisées spécifiquement
pour la tâche d’assemblage. Ces notions sont implémentées dans un
nouvel assembleur de novo, Monument. Enfin, le dernier chapitre de
cette thèse est consacré à des concepts d’assemblage dépassant
l’assemblage de novo classique.

Abstract

In this thesis, we discuss computational methods (theoretical models
and algorithms) to perform the reconstruction (de novo assembly) of
DNA sequences produced by high-throughput sequencers. This problem
is challenging, both theoretically and practically. The theoretical
difficulty arises from the complex structure of genomes. The assembly
process has to deal with reconstruction ambiguities. The output of
sequencing predicts up to an exponential number of reconstructions,
yet only one is correct. To deal with this problem, only a fragmented
approximation of the genome is returned. The practical difficulty stems
from the huge volume of data produced by sequencers, with high
redundancy. Significant computing power is required to process it.
As larger genomes and meta-genomes are being sequenced, the need
for efficient computational methods for de novo assembly is increasing
rapidly.

This thesis introduces novel contributions to genome assembly, both
in terms of incorporating more information to improve the quality of
results, and efficiently processing data to reduce the computation
complexity. Specifically, we propose a novel algorithm to quantify the
maximum theoretical genome coverage achievable by sequencing data
(paired reads), and apply this algorithm to several model genomes.
We formulate a set of computational problems that take into account
pairing information in assembly, and study their complexity. Then, two
novel concepts that cover practical aspects of assembly are proposed:
localized assembly and memory-efficient reads indexing. Localized
assembly consists in constructing and traversing a partial assembly
graph. These ingredients are implemented in a complete de novo
assembly software package, the Monument assembler. Monument is
compared with other state of the art assembly methods. Finally, we
conclude with a series of smaller projects, exploring concepts beyond
classical de novo assembly.

Acknowledgments

My advisor, Dominique Lavenier, for immensely helpful guidance; Eric Rivals and

Guillaume Rizk for proof-reading the manuscript; my colleagues, for fruitful collabo-

rations; Dorine and my family.

3

Contents

Cover page 1

Acknowledgments 3

1 Introduction 8

1.1 Introduction . 8

1.2 Genome assembly . 13

1.2.1 Earlier works . 13

1.2.2 Contribution . 15

1.3 Thesis outline . 16

2 Analysis of paired genomic re-sequencing 18

2.1 Motivation . 18

2.2 Reads uniqueness . 20

2.2.1 Single reads uniqueness . 20

2.2.2 Paired reads uniqueness . 20

2.2.3 Two definitions of paired uniqueness 21

2.3 Algorithms . 21

2.3.1 Suffix arrays . 21

2.3.2 Uniqueness ratio using a suffix array 22

2.3.3 Single uniqueness algorithm 23

2.3.4 Paired uniqueness algorithm 25

2.4 Results . 26

4

2.4.1 Paired vs. unpaired uniqueness 26

2.4.2 Influence of insert size . 27

2.5 Discussion . 29

3 Paired de novo assembly theory 30

3.1 Introduction . 30

3.2 Classical assembly models . 32

3.2.1 Genome assembly is not a Shortest Common Superstring . . . 32

3.2.2 String graphs . 33

3.2.3 de Bruijn graphs . 34

3.2.4 Scaffolding a sequence graph 35

3.3 Shortest Common Superstring of paired strings 36

3.4 Two paired variants of graph problems 38

3.4.1 Hamiltonian Path with paired vertices 38

3.4.2 de Bruijn Superwalk Problem with σ-gapped strings 39

3.5 Paired-pieces jigsaw puzzle . 41

3.6 Paired assembly problem . 43

3.7 Parametric complexity of paired assembly 44

3.8 Discussion . 47

4 Practical assembly methods 48

4.1 Introduction . 48

4.2 Issues with existing models . 50

4.2.1 Limitations of theoretical assembly 50

4.2.2 Including pairs in contigs assembly 51

4.3 Non-branching paths . 52

4.3.1 Non-branching paths in the ideal case 52

4.3.2 Practical non-branching paths 53

4.4 Parallel and memory-efficient indexing 56

4.4.1 Distributed and multi-threaded indexing 58

4.4.2 On-line parallel k-mers filtering 59

5

4.4.3 Paired reads indexing structure 61

4.4.4 Indexing results . 63

4.4.5 Static k-mer index . 66

4.5 Discussion . 68

5 Monument assembler 70

5.1 Pipeline . 71

5.1.1 Indexing module . 73

5.1.2 Assembly module . 73

5.2 Implementation of the assembly procedure 75

5.2.1 Extension graphs . 76

5.2.2 Paired extensions . 77

5.2.3 Starting region distribution and assembly termination 79

5.2.4 Gap filling algorithm . 80

5.2.5 Dealing with sequencing errors 80

5.3 Results . 81

5.3.1 Assembly metrics . 81

5.3.2 Bacterial assembly results with simulated variants 82

5.3.3 Fungus assembly results, parallel speed-up measurements . . . 84

5.3.4 Assembly benchmarks . 87

5.3.5 Discussion . 90

6 Beyond classical de novo assembly 97

6.1 Targeted assembly: Mapsembler . 97

6.1.1 Methods . 98

6.1.2 Results . 101

6.1.3 Towards index-free whole-genome assembly 102

6.2 NGS toolbox supported by static succinct hash tables 105

6.2.1 Error correction . 106

6.2.2 Repeats identification . 108

6.2.3 Merging assemblies . 109

6

7

7 Conclusion and perspectives 111

7.1 Conclusion . 111

7.2 Released software . 112

7.3 Perspectives . 113

7.4 In a future context . 114

7.4.1 Future of sequencing . 114

7.4.2 Future relevance of this work 115

8 Extended summary in French 127

Chapter 1

Introduction

1.1 Introduction

DNA, sequence, genome, and sequencing

From a computational point of view, DNA sequences are long strings made of four

different letters ({A, C, T, G}). In contrast, from a biological standpoint, DNA is a large

molecule composed of repeated units (nucleotides), see Figure 1-1. The genome is the

information one can extract from DNA, e.g. genes, variations between individuals,

variations between species. Knowledge of a species genome is centrally important in

biology. The genome of each individual is also likely to become increasingly important

in the future, given the potential applications of personalized medicine [30]. Genome

sequencing is essentially the process of bridging the biological object (DNA molecule)

to the computational object (DNA sequence). A genome sequencer takes as input

tangible DNA molecules, and outputs sequences in a textual format.

Sequencing returns fragments

However, this vision of sequencing as a black-box is an over-simplification. In practice,

essentially due to technological constraints, the sequencing machine cannot output a

complete DNA sequence. If it did, the textual sequence would exactly correspond to

the sequence of nucleotides in the original molecule, and the story would end here.

CHAPTER 1. INTRODUCTION 9

Figure 1-1: Structure of the DNA.

Instead, the sequencing machine outputs shorter, unordered fragments from random

locations in the sequence. How short are these fragments? For the human genome,

each fragment is only 0.000003% of the size of the genome [47]. This means that, to

read each nucleotide of the genome at least once, hundreds of thousands of fragments

are required.

A preliminary natural question is: is it even possible to recover the original se-

quence given only these short fragments? If the machine returns only one copy of the

original sequence (each nucleotide is read exactly once), cut at random locations with-

out any ordering information, the task would be impossible. But what if one is given,

instead of one sequence cut at random locations, several copies of independently cut

sequences?

CHAPTER 1. INTRODUCTION 10

Toy example of assembly

In this case, recovering the original molecule given only fragments is sometimes possi-

ble. Consider a toy example with a made-up sequence, GATTACA. Assume that the ma-

chine returns random fragments from a single copy of the sequence, in this case, GATT

and ACA. Since the order of the fragments is not known, the original sequence could

be either GATTACA or ACAGATT. Instead, if the machine returned two copies cut at ran-

dom locations, such a set of fragments would be more helpful: {GATT, ACA, GAT, TACA}.

Given this set, one can immediately rule out the solution ACAGATT, because it does

not agree with the fourth fragment, TACA. Hence, the only solution is GATTACA.

This example is a simplified instance of the genome assembly problem, which

will be the central topic of this thesis. In actual sequencing, one has to deal with

millions or billions of fragments, yielding a potentially enormous number of candi-

date reconstructions. It should come to no surprise that genome assembly requires

very efficient computational methods. Improving the quality of assembly results and

lowering computational resources requirements is a very active research topic.

Toy example of re-sequencing

Genome sequencing essentially returns fragments of the original sequence. For some

applications, knowing only fragments is sufficient; reconstructing the original se-

quence is unnecessary. Indeed, prior knowledge of sequences from other organ-

isms/individuals can be used. Assume that GATTACA is the sequence of individuals

of type A and GATGACA is the sequence of individuals of type B. The only difference

between both types is a single nucleotide change at the fourth position (underlined).

Then, sequencing an unknown individual and deciding its type is an easier problem

than reconstructing its genome.

For instance, assume that an unknown individual (guaranteed to belong to ei-

ther type A or B) is sequenced and the following set of fragments is returned:

{GATT, ACA, GAT, TACA}. Fragments ACA and GAT are uninformative, as they are present

in the sequence of both types. However, both GATT and TACA are sequences specific

CHAPTER 1. INTRODUCTION 11

to type A, hence the unknown individual is of type A. This example is a simplified

instance of re-sequencing a known genome to find variations.

Fragments length, error rate and coverage

As seen in the previous examples, genome assembly and re-sequencing appear possible

given only a set of fragments, as long as useful fragments are sequenced. Since frag-

ments originate from random locations, how can one guarantee that the sequencing

machine will produce useful fragments with high enough probability?

First, fragments need to be long enough, as very short fragments tend to be

uninformative. The extreme case is a fragment length of 1: knowing that the genome

contains a A is certainly not useful. Similarly, given a length of 2, any string (say,

GA) is likely to appear at plenty of locations in the genome. For very large genomes

such as the human genome, fragments need to be of length of at least 16 nucleotides

in order not to be trivially uninformative1.

Second, sufficiently many copies of the genome need to be sequenced. This point

was critical for the toy example of assembly. For the re-sequencing toy example, the

motivation for many copies does not emerge clearly. However so far, no mention

has been made of the accuracy of fragments; fragments were assumed to be perfect

sub-strings of the original genome. In practice, the sequencing machine sometimes

erroneously skips, inserts or changes a nucleotide at a specific spot. Fortunately,

the observed rate of errors is typically low, below 2% of outputted nucleotides are

erroneous in most sequencing machines [47]. Then, the same genome location needs to

be sequenced multiple times, in order to rule out (by a majority vote) the possibility

of having an error at any nucleotide.

In practice, the sequencer returns fragments in large quantities, exceeding the

length of the original sequence by a factor of 5 to 200 [47]. This factor is said to be

the sequencing coverage.

1Based on the expected number of occurrences of a random DNA string of length k inside a
random genome of length n = 3 · 109: (n− k + 1) ·

(
1
4

)k
< 1 ⇐⇒ k > 15.

CHAPTER 1. INTRODUCTION 12

Next-generation sequencing

From now on, we will refer to fragments originating from the sequencer as reads,

as it is the most widely used term. Early sequencing machines (known as Sanger-

generation sequencers) enabled low-coverage sequencing with relatively long reads, of

length up to 900 nucleotides [44]. Since 2007, next-generation sequencing machines

significantly increased the sequencing coverage while yielding shorter reads (36 to 500

nucleotides). Figure 1-2 shows the evolution of read lengths, and volume of sequences

produced by a single run, for two leading next-generation sequencing technologies.

 0.05

 0.1

 0.4

 1

 4

 25

 150

 300

 50 100 200 400

T
h
ro

u
g

h
p

u
t

(G
b

/r
u
n
)

Read length (nt)

454 GS 20

454 FLX

454 Ti (p)
Illumina GA

Illumina GA II (p)

Illumina GA IIX (p)

Illumina HiSeq 2000 (p)

Figure 1-2: Evolution of DNA sequencing technologies, 2007-2011, in terms of
throughput and read length. Data taken from companies websites.

Short fragments and sequencing errors are two practical aspects of genome se-

quencing. There exists other biases, such as uneven coverage, and non-uniform error

profile.

CHAPTER 1. INTRODUCTION 13

Genome ??????????????
ACTA

CTAG
TAGA

AGAG
GATA

ATAC
TACC

ACCT

Figure 1-3: Sequencing a toy genome with paired reads of length 5 (inserts are of
length 12).

Paired reads

Sequencers are increasingly producing paired reads. Paired reads are pairs of reads

which are separated by a known distance in the genome. They are produced by

sequencing both extremities of a long fragment. This long fragment will be referred

to as the insert. For instance, in Figure 1-3, assume that the insert ACTAGAGATA

is being sequenced, sequencing both its extremities with reads of length 5 produces

the paired read (ACTA,GATA). There are two different sequencing processes that

enable the production of paired reads. One process uses short inserts, of length

typically not exceeding 500 nucleotides, which produces paired reads referred to as

paired-end reads in the literature. The other process uses longer inserts (of length

ranging from 1, 000 to 40, 000 nucleotides [52]), producing the so-called mate-pairs.

The concept of paired reads is central to this thesis, as several chapters focus on

the difference between paired and unpaired reads, for re-sequencing and assembly

applications.

1.2 Genome assembly

1.2.1 Earlier works

Early works on genome assembly considered the similarities between genomic se-

quence reconstruction and a well-known computational problem, the shortest com-

mon super-string problem [41]. As the name suggests, the latter problem consists in

constructing a shortest possible string that contains all the given sub-strings. Con-

sider for example the set of strings S = {GAT, ATT, TTA, TAC, ACA, CAT, CAA}, one can

CHAPTER 1. INTRODUCTION 14

check that s = GATTACATCAA is a super-string, as it contains every element of S as

a sub-string. It is also a solution of shortest length, although it is not the unique

solution (CAAGATTACAT is another solution). Given that genome sequencing returns

(presumably) all possible genome sub-strings, it is tempting to think of the genome

as a shortest common super-string. And indeed, early genome assembly relied on

solving this problem.

Genome assembly was first modeled as an instance of the shortest common

super-string problem.

However, the inherent parsimony of solutions to the shortest super-string prob-

lem does not fit well the structures of genomes. Genomes often contain many rep-

etitions of a sub-sequence. Framing assembly as a shortest string essentially dis-

cards the possibility of repetitions. In the previous example, sequencing the genome

g = GATTACATTACAA also can also produce the set S (in fact, S contains exactly all

the sub-strings of g of length 3). However, as |g| > |s|, the genome is cannot be

recovered as a shortest super-string of S.

Hence nowadays, the vast majority of approaches found in the literature rely on

other models: sequence graphs [31]. There are two main sequence graph models:

the de Bruijn graph and the string graph. Both aim to transform read sequences

into a global representation, based on observed overlaps between the reads. More

importantly, sequence graphs permit a representation of the genome repeats structure.

Thus, the repeat collapsing problem which plagued shortest common super-string

formulations can be avoided. Elaborated traversals of those graphs allow to construct

an assembly of the reads.

Sequence graphs provide a better assembly model than the shortest common

super-string.

To give an intuition of this, consider a graph where the set S from the previous

example is the set of nodes. Sequences which overlap by exactly two nucleotides are

linked together by an edge (yielding a de Bruijn graph, Figure 1-4). For a moment,

CHAPTER 1. INTRODUCTION 15

assume that the genome g is known (this is not the case in actual assembly). Then,

one can order the reads by their position on the genome. The path in the graph which

traverses all the nodes in that order spells g (modulo overlaps of length 2 that are

repeated twice). In this example, this path happens to be the shortest path that goes

through each node at least once. In general, paths having this property are called

minimum-length Hamiltonian paths. The good news is that Hamiltonian paths can

be found without prior knowledge of the genome, as they only depend on the graph

topology. Finding minimum-length Hamiltonian paths is the theoretical foundation

behind graph-based genome assembly.

GAT ATT TTA TAC

CAT

ACA CAA

Figure 1-4: Example of a de Bruijn graph

1.2.2 Contribution

Sequence graphs have been widely used to generate high-quality genome assemblies.

However, constructing a sequence graph requires hundreds of gigabytes of memory

for vertebrate genomes. This prohibits assembly of species with larger genomes. This

thesis work, independently of several other groups [4, 1, 8], demonstrated that high-

quality assemblies consisting of contiguous, gap-less sequences (called contigs) can be

constructed without building a complete sequence graph. This opens the possibility

of assembling large genomes within reasonable computational resources.

Whole-genome sequence graphs are not required to assemble a genome into

contigs.

Other groups cast the graph-less assembly in terms of a greedy algorithm. Roughly

speaking, a typical greedy assembly starts from an un-assembled short region, extends

CHAPTER 1. INTRODUCTION 16

it by one nucleotide repeatedly, and stops when there are 2 or more possibilities. There

are several issues with greedy assembly. Perhaps the most prominent one is that small

repeats are not elucidated, yielding more fragmented assemblies. Instead, we intro-

duced the concept of localized assembly, which consists in partial graph construction

and traversal. Localized assembly combines the memory benefits of greedy algorithms

with the locally complete information of graphs.

Localized graph assembly can be used to assemble a genome into contigs.

We extended the localized assembly approach to fully take into account the infor-

mation provided by paired reads. Our construction is based on the result that paired

reads can be grouped together to robustly detect the absence of repetitions. Given

this information, contigs can be extended to form gapped sequences (chains of con-

tigs called scaffolds). We developed the first assembler (Monument) that constructs

scaffolds directly from reads.

Localized graph assembly can be used to assemble a genome into scaffolds.

In the near future, assembly will have to tackle much larger genome instances.

The combination of higher throughput from sequencing platforms and meta-genomes

is expected to overwhelm current assembly models. We investigated the possibility

of assembling genomes without any indexing structure. Mapsembler, a prototype

implementation performing index-free assembly, was developed.

Contigs can be assembled without any indexing structure.

1.3 Thesis outline

Chapter 2 We study how paired reads enable better re-sequencing, in terms of

genome coverage. We analyze several model genomes, ranging from bacterias to

human, using a novel algorithm. Our results indicate that paired reads enable

CHAPTER 1. INTRODUCTION 17

to reach coverage threshold that would have required unfeasibly longer single

reads. Also, this work provided evidence that insert size is more important than

read length.

Chapter 3 This chapter is a theoretical study of de novo assembly using pairing

information. We show that paired reads can be incorporated into classical as-

sembly models. We study the complexity of related graph theoretical problems.

A paired assembly problem is formulated, which enables to derive new results

in the parametrized complexity of assembly.

Chapter 4 The methodology presented in the previous chapter needs refinements in

order to permit the assembly of actual genomes. In that chapter, a localized

graph traversal scheme is introduced, taking into account pairing information.

Also, indexing sequencing data into the assembly structure is typically the most

memory-intensive step. We propose the first parallel and memory-efficient ap-

proach to index paired reads, using succinct hash tables.

Chapter 5 The algorithms presented in the previous chapter are combined in the

implementation of a new assembly software, the Monument assembler. Some

implementation choices are presented and Monument is benchmarked against

state-of-the-art assembly software.

Chapter 6 As an effort to go beyond classical, memory-heavy assemblers, an index-

free targeted assembler, Mapsembler, is presented. It can perform versatile

targeted assemblies on a simple desktop computer. Also, several other applica-

tions for the succinct hash tables used in Chapter 4 are presented.

Chapter 2

Analysis of paired genomic

re-sequencing

In the Introduction, genome sequencing, re-sequencing and de novo

assembly were introduced. In this second chapter, the gap between

single and paired data in genome re-sequencing is investigated using

novel methods.

2.1 Motivation

Next-generation sequencing technology is enabling massive production of high-quality

paired reads. These short read lengths were initially dedicated to re-sequencing appli-

cations. Re-sequencing consists in aligning reads to a reference sequence to improve

it and/or to detect variations (e.g. SNPs, indels). Whiteford et al. [54] outline that

the feasibility of re-sequencing is determined by the percentage of (unpaired) reads

that are present at a unique location in the reference sequence. In other words, read-

length regions of the genome that are unique can be probed unambiguously by the

reads. They performed simulations showing that short reads of length 50-100 bp are

long enough to re-sequence large (human chromosome sized) genomes.

An immediate extension the feasibility of re-sequencing is the feasibility of assem-

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 19

bly. Whiteford et al. established the feasibility of de novo assembly can be checked

with the following measure: the percentage of the genome covered by simulated con-

tigs greater than a given length, in function of the length of the reads. Simulated

contigs are constructed by iteratively extending a read, as long as a single overlap

with another read is found. The simulated contigs are interrupted whenever a read

overlaps with two or more reads. Another way to see the feasibility of assembly is to

remark that contigs are interrupted by repeated regions, of length greater or equal to

the read length. With this method, they demonstate that longer reads (over 100 bp)

should not significantly improve assembly contiguity.

There is a strong link between the feasibility of re-sequencing, which is established

by the percentage of unique fixed-length regions, and the feasibility of assembly, which

is a consequence of the repartition of non-unique regions of length greater than the

reads. For this reason, we argue that analyzing the feasibility of re-sequencing with

paired reads is an important step towards the feasibility of assembly with paired

reads.

Note that the previous analyses of feasibility of re-sequencing and assembly only

considered single reads. In terms of paired reads, Chaisson, Brinza and Pevzner [7]

determined experimentally that the paired read length threshold for de novo assembly

of the E. coli genome is ≈ 35 nt, and ≈ 60 nt for the S. cerevisiae genome.

By conducting an analysis extending Whiteford et al. results, we investigate to

what extent genome re-sequencing is feasible with ultra-short paired reads. This

extends the previous feasibility of re-sequencing studies to paired reads. We obtain

theoretical read length lower bounds for re-sequencing. We also show that insert size,

i.e. the distance between two reads in a pair, plays a crucial role in re-sequencing.

This analysis provides evidence that insert size plays an important role in de novo

assembly.

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 20

2.2 Reads uniqueness

2.2.1 Single reads uniqueness

A read is a substring the genome of fixed length l. To simplify notations, we consider

that l is a constant, i.e. all the reads have the same length. A read r is said to

be unique if it has only one exact occurrence in the genome. Here, uniqueness is

perfect, i.e. no differences (substitutions, insertions or deletions) are allowed between

occurrences. Perfect uniqueness is a lower bound for imperfect uniqueness measures,

and is easier to compute. The single reads uniqueness ratio can be simply formulated

as the number of unique reads divided by the number of reads:

SU =
|{unique reads}|
|{reads}|

2.2.2 Paired reads uniqueness

We now turn to the perfect uniqueness of paired reads. We define a (σ, δ)-pair (r1, r2)

as two sequences r1 and r2 that are separated by σ ± δ nucleotides in the genome.

The sequences r1 and r2 are said to be respectively the left and right mates. A (σ, δ)-

pair can represent indifferently a mate-paired or a paired-end read (as defined in the

Introduction). Typical values for (σ, δ) are (300, 30) for Illumina paired-end reads

and (2000, 200) for Illumina mate-paired reads. In practice, the insert size follows a

normal distribution centered at σ. Hence, it is reasonable to consider that δ ≈ 0.1σ

in actual sequencing.

A (σ, δ)-pair (r1, r2) is (σ, δ)-unique if there is only one occurrence of (r1, r2) distant

of σ ± δ in the genome. More generally, a single read r is said to be (σ, δ)-unique if,

for any read r′ distant of σ ± δ from r, there is only one occurrence of (r, r′) distant

of σ ± δ in the genome (in other words, the (σ, δ)-pair (r, r′) is unique).

The following relations are clear:

r is unique⇒ r is (σ, δ)-unique

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 21

r1 is (σ, δ)-unique ⇐⇒ ∀r2, (r1, r2) is (σ, δ)-unique (2.1)

2.2.3 Two definitions of paired uniqueness

Given the previous definitions, there are two ways to formulate a paired uniqueness

ratio for a genome. Consider these quantities:

U1 =
|{(σ, δ)-unique pairs}|
|{(σ, δ)-pairs}|

U2 =
|{(σ, δ)-unique reads}|

|{reads}|

The first quantity, U1, is the ratio of the number of pairs (r1, r2) that are (σ, δ)-

unique, over the total number of (σ, δ)-pairs (r1, r2). The second quantity, U2, is the

ratio of the number of reads r that are (σ, δ)-unique, over the total number of reads

r. Given the implication 2.1, it is clear that U2 ≤ U1. Figure 2-1 shows the actual

computations of these ratios for the Lambda phage genome (48.5 kbp).

In the context of re-sequencing, U1-uniqueness is more relevant than U2-uniqueness.

U1-uniqueness gives the ratio of (σ, δ)-paired reads that map uniquely to the genome.

However, in the context of de novo assembly, U2-uniqueness is directly related to

unpaired uniqueness. The gap between unpaired uniqueness and U2-uniqueness can

be interpreted as repeated reads that become unambiguous as soon as paired infor-

mation is available. Since we are interested in paired read length lower bounds, the

lowest uniqueness ratio, i.e. U2-uniqueness, will be considered in the remaining.

2.3 Algorithms

2.3.1 Suffix arrays

Two useful algorithmic objects for computing repetitions in a genome are the suffix

array and the longest common prefix array. Given a string s, the suffix array is a

lexicographically sorted sequence (SAi)i≥0 of all the suffixes s[j..] of s, for j ≥ 0. The

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 22

 0

 25

 50

 75

 100

 0 5 10 15

U
ni

qu
e

re
ad

s
(%

)

Read length (nt)

unpaired
(300,30)-unique reads
(300,30)-unique pairs

Figure 2-1: Comparison of single (in red), paired U1 (in blue) and paired U2 unique-
ness (in green) of reads in the lambda-phage genome.

longest common prefix (LCP) array (LCPi)i>0 is a sequence of integers, the value at

position i is the length of the longest prefix common to SAi and SAi−1. An inverted

index of LCPi is introduced: Hl = {i | LCPi = l}. The suffix array and the LCP can

be constructed in linear time [24]. To illustrate these definitions, the suffix and LCP

arrays of the word babar are shown in Table 2.1.

2.3.2 Uniqueness ratio using a suffix array

We recall the method for computing single reads uniqueness in genomes [54]. The

uniqueness ratio of reads in a genome can be computed with the suffix and LCP

arrays of the genome. Note that for each read r, there exists an index i such that the

read is a prefix of SAi. If the read r is repeated elsewhere in the genome, then by the

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 23

i SAi LCPi

0 abar

1 ar 1

3 babar 0

2 bar 2

4 r 0

Table 2.1: Example of suffix array and LCP array for the word ’babar’.

lexical ordering of the suffix array, r will also be a prefix or either SAi−1 or SAi+1.

Hence, in terms of longest common prefixes:

r is a repeat ⇒ either LCPi ≥ l or LCPi+1 ≥ l (2.2)

For all suffixes longer than l, the converse is true. Then, by negation, unique

reads exactly correspond to indexes i of suffixes longer than l, such that LCPi < l

and LCPi+1 < l. There are l − 1 suffixes shorter than l, and they necessarily yield

LCP values strictly under l.

2.3.3 Single uniqueness algorithm

Whiteford [54] presented an algorithm for counting unique reads, based on the fol-

lowing incremental relation: the number of unique reads of length l + 1 is equal

to the number of unique reads of length l plus the number of “new” entries. The

new entries are those such that (LCPi = l, LCPi+1 ≤ l), and those such that

(LCPi < l, LCPi+1 = l). In the latter case, the strict inequality is introduced to

avoid counting (LCPi = l, LCPi+1 = l) twice. The new entries are efficiently enu-

merated using the array Hl, which by definition gives all the indices i such that

LCPi = l.

The algorithm for counting unique reads is presented in Algorithm 1, and a new

memory-efficient variation is presented in Algorithm 2.

The variation, UniquesVariation, uses the fact that Hl and LCPi are different

representations of the same information. From the implication 2.2, the number of

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 24

Algorithm 1 Whiteford algorithm for reads uniqueness (UniquesWhiteford)

Require: LCPi, Hl

1: procedure UniquesWhiteford(LCPi,Hl)
2: cnt← 0
3: for increasing read lengths l do
4: for all i ∈ Hl do
5: if LCPi+1 ≤ l then
6: cnt← cnt+ 1

7: if LCPi−1 ≤ l − 1 then
8: cnt← cnt+ 1

9: uniquel+1 ← cnt− l

Algorithm 2 Variation of Whiteford algorithm for reads uniqueness
(UniquesVariation)

Require: Hl

1: procedure UniquesVariation(Hl)
2: repeats← 0
3: for decreasing read lengths l do
4: MarkDuplicates(l)

5: uniquel ←
n− l + 1− repeats

n− l + 1

6: procedure MarkDuplicates(l)
7: for all i ∈ Hl do
8: if i is not marked then
9: repeats← repeats+ 1

10: mark(i)

11: if i+ 1 is not marked then
12: repeats← repeats+ 1
13: mark(i+ 1)

repeats of length greater than l is equal to the number of indices i such that either

LCPi ≥ l or LCPi+1 ≥ l. The number of repeats of length exactly l+1 is the number

of repeats added since length l. The algorithm requires a bit array to mark each suffix

array index i and prevent it from being counted twice. The bit array requires less

memory (n bits) than the LCP array (nlog(max(LCPi)) bits).

Both algorithms are linear in the number of elements in the LCP array, hence

linear in the length of the input string.

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 25

2.3.4 Paired uniqueness algorithm

We present a novel algorithm that computes the U2-uniqueness of paired reads for all

read length, given fixed values for (σ, δ). Our algorithm is a non-trivial extension of

Algorithm 1 to paired reads. For convenience, we define Pairs(σ,δ)(i) = {j | (s[i..i +

l], s[j..j + l]) is a (σ, δ)-pair}. The principle of this algorithm is to first mark which

single reads are duplicated (using the procedure MarkDuplicates of Algorithm 2).

Then, non-unique (σ, δ)-pairs are found by considering two cases. If the left mate is

unique, search for duplicate right mates. If the left mate is repeated, right mates are

sieved.

Algorithm 3 Paired uniqueness of reads (U2)

Require: Hl

1: procedure PairedUniqueness(Hl)

2: for all decreasing read lengths l do

3: MarkDuplicates(l)

4: paired repeats← 0

5: for all unmarked indices i do

6: Initialize a reads counter

7: for all j ∈ Pairs(σ,δ)(i) do

8: increment count of s[j..j + l]

9: if ∃ j ∈ Pairs(σ,δ)(i), s[j..j + l] has count ≥ 2 then

10: paired repeats← paired repeats+ 1

11: Initialize a paired reads counter

12: for all marked indices i do

13: for all j ∈ Pairs(σ,δ)(i) do

14: increment count of (s[i..i+ l], s[j..j + l])

15: for all marked indices i do

16: for all j ∈ Pairs(σ,δ)(i) do

17: if (s[i..i+ l], s[j..j + l]) has count ≥ 2 then

18: paired repeats← paired repeats+ 1

19: break

20: paired uniquel ←
n− σ + δ − 2l + 1− paired repeats

n− σ + δ − 2l + 1

The time complexity of Algorithm 3 is O(Rn(1 + δ)), where R is the maximal

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 26

read length and n is the size of the text.

Simple modifications to Algorithm 3 enable the computation of U1-uniqueness:

increment paired_repeats by the sum of occurrences of reads having≥ 2 occurrences

at line 10, and remove the break (line 19) to count the occurrences of each repeated

pair. Finally, line 20, the number of reads (n− σ + δ− 2l+ 1) should be replaced by

the number of pairs (n− σ + δ − 2l + 1)(2δ + 1).

2.4 Results

Actual genomes are analyzed, in contrast with a purely theoretical approach which

would consider the genome as a random string of length n. Such theoretical model

does not take into account that genomes contain significantly more repetitions than

random strings.

Using Algorithm 3, we analyze viral, bacterial and eukaryotic genomes to deter-

mine the uniqueness of paired reads given a fixed pair distance of 300 nt. Then we

study the impact of longer pair distances with high variability on the uniqueness of

paired reads in the E. coli genome.

2.4.1 Paired vs. unpaired uniqueness

Each genome consists of both the forward and the reverse strands. A fair comparison

between paired and unpaired uniqueness can be achieved by considering unpaired

uniqueness of reads twice longer (referred as “unpaired, 2x read length” in Figure 2-

2). Comparing the uniqueness of paired reads of length l and unpaired reads of length

2l essentially assesses the influence of the insert size.

We find that 97.4% of the E. coli genome is covered with unique paired reads

of read length 8 nt, and 90% of the H. sapiens genome with unique paired reads of

read length 11 nt and gap 300 bp (see Figure 2-2). These results suggest that for

large genomes, re-sequencing requires significantly shorter (for H. sapiens, around

70% shorter) paired reads to achieve a coverage comparable to unpaired reads.

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 27

 0

 25

 50

 75

 100

 5 10 15 20

U
ni

qu
e

re
ad

s
(%

)

Read length (nt)

Lambda-phage (48 kbp)

 5 10 15 20

E. coli (4.7 Mbp)

 5 10 15 20

H. sapiens chr X (154 Mbp)

0

25

50

75

100

 5 10 15 20 25

Fugu (408 Mbp)

(300,0)-paired
unpaired, 2x read length

unpaired

 5 10 15 20 25

Medaka (886 Mbp)

 5 10 15 20 25

H. sapiens (3.2 Gbp)

Figure 2-2: Percentage of unique (300, 0)-paired and unpaired reads as a function
of read length for six genomes.

2.4.2 Influence of insert size

Moreover, there exists a trade-off between read length and pair distance. Figure 2-3

represents the paired U2-uniqueness of the E. coli genome (in shades of yellow) as a

function of read length and σ, δ parameters. Under the unrealistic δ = 0 condition,

for each pair distance σ, paired U2-uniqueness greatly increases between read lengths

5 to 9 up to a plateau uniqueness value inside [0.97; 1]. Note that a read lengths ≤ 10

are extremely small for sequencing standards. However, the whole genome cannot be

uniquely probed by these short paired reads with δ = 0 until larger pair distances

(σ ≥ 5000).

Under the more realistic δ = 0.1σ case, it is observed that for small read lengths,

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 28

U2-uniqueness is degraded by longer pair distances. This behavior is a consequence

of short random strings that are likely to appear as duplicate right mates inside any

long enough region of size δ. However, longer read lengths enable to uniquely probe

a larger portion of the genome even for large values of δ.

The following additional results are not shown in the Figure. Given a fixed (δ = 0)

pair distance of 5,000 nt (resp. 2,000 nt), the whole E. coli genome can be unam-

biguously probed by paired reads of length 18 nt (resp. 700 nt) or greater. When

the uncertainty in pair distance is ±10%, only a small part of the genome cannot be

uniquely probed (resp. 0.3% and 0.1% in the previous cases).

 0 20 40 60 80 100

97.88

97.85

97.85

98.32

98.26

98.25

98.66

98.57

98.53

98.96

98.85

98.77

99.13

98.99

98.90

100.00

99.73

99.67

100.00

99.75

99.71

 5 6 7 8 9 10 11 12

Read length (nt)

σ = 100, δ =

σ = 350, δ =

σ = 600, δ =

σ = 850, δ =

σ = 1000, δ =

σ = 5000, δ =

σ = 9000, δ =

 0 20 40 60 80 100

97.88

97.85

97.85

98.32

98.26

98.25

98.66

98.57

98.53

98.96

98.85

98.77

99.13

98.99

98.90

100.00

99.73

99.67

100.00

99.75

99.71

 5 6 7 8 9 10 11 12

Read length (nt)

0%

5%

10%

0%

5%

10%

0%

5%

10%

0%

5%

10%

0%

5%

10%

0%

5%

10%

0%

5%

10%

Figure 2-3: Relationship between read length, pair separation (σ), distance uncer-
tainty (δ), and paired read U2-uniqueness ratio (in shades of yellow) in the E. coli
genome. Paired uniqueness ratio for the read length l = 12 are reported on the right
column.

CHAPTER 2. ANALYSIS OF PAIRED GENOMIC RE-SEQUENCING 29

2.5 Discussion

This work provided rigorous evidence that paired reads enable more sensitive genome

probing. Also, as it is technologically easier to sequence using long insert sizes than

long read lengths, the good news is that longer insert size compensate for shorter read

length. Genomic repetitions and the difficulty of assembly are strongly connected [54].

It is known that proper use of paired reads can significantly improve contiguity in

genome assembly.

In terms of computational resources usage, our algorithm processes the human

genome with (σ, δ) = 300 in 2 days using 64 GB of memory and a single CPU core at

2.6 GHz. Similar resources usage was reported by RepAnalyse to compute unpaired

uniqueness [53].

Several directions were not explored. Inexact repeats were not considered, because

suffix arrays essentially record exact sequence information. Considering that a paired

reads is repeated if it appears at a different genome location, within a fixed (typi-

cally low) edit distance threshold, would be a more realistic assumption. However,

since this present study is a special case of inexact paired repeats, it is already useful

to derive lower bounds on the read length. Moreover, recent techniques enable the

compression of suffix arrays very efficiently (e.g. the FM-index v2 [17]). Such tech-

niques would enable paired uniqueness analysis of larger genomes and meta-genomes

on modest hardware, with only little modifications of the algorithms presented here.

Finally, we did not explore the connection between paired uniqueness and paired

assembly contiguity. A possible analysis would be to predict an ideal unpaired as-

sembly (following [53]) then simulate scaffolding using the unique paired reads which

link contigs unambiguously.

Chapter 3

Paired de novo assembly theory

In the previous chapter, the difference between single and paired reads

was investigated in the context of genome re-sequencing. Now, we

focus on the problem of de novo genome assembly using pairing in-

formation. This chapter begins with an exposition of classical as-

sembly computational models. Then, new computational models are

designed which include pairing information. Finally, we investigate

the parametric complexity of paired assembly.

3.1 Introduction

de novo assembly consists in recovering a genome sequence given only a set of sub-

sequences (reads) obtained by DNA sequencing. This problem is challenging, as any

DNA sequencing method only yields reads much shorter than the original genome. For

the human genome, reads are millions of time shorter. Hence, to assemble a genome,

one has to rely on computational methods that can efficiently process millions or bil-

lions of reads. This represents a huge amount of data (hundreds of gigabytes). Before

2007, assembling genomes was computationally feasible, because DNA sequencing

methods were able to produce relatively long reads (at a high cost). Several algo-

rithmic formulations for the assembly problem were pioneered: Shortest Common

Superstring, Hamiltonian Path, de Bruijn Superwalk. These will be reviewed in this

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 31

chapter. However, the performance of these algorithms severely degraded when deal-

ing with the huge number of shorter reads produced by next-generation sequencers.

As of today, there is still a need for better algorithmic models for de novo assembly.

Furthermore, every known assembly model corresponds to a NP-hard computa-

tional problem (references provided in this chapter). In other words, there is no

known polynomial time algorithm that can solve the assembly problem. The reason

behind this high complexity is that genomes can contain repetitive sub-sequences

longer than the length of the reads. Hence, recovering a most likely assembly (typi-

cally, a minimum-length sequence) requires to consider up to an exponential number

of possible assemblies. Hence there is little hope of ever designing a fast algorithm that

solves the assembly problem under one of the known models. Whether there exists a

satisfactory assembly model with lower complexity remains an open question.

We study the computational complexity of new assembly models related to the

context of next-generation sequencing: the assembly of paired reads. How does as-

sembling paired reads compare with the single reads, in terms of computational com-

plexity? Paired reads assembly is not a generalization of single reads assembly: in

contrary, the former can be seen as a constrained version of the latter. Can we hope

to use paired constraints to design an assembly model with lower complexity than

its classical counterparts? We formalize a negative answer to this question for some

classical models: Shortest Common Superstring, Hamilton Path and de Bruin Super-

walk. We define a natural extension of classical models to paired reads and prove that

the complexity of assembly under these models remains unchanged, even when given

plenty of pairing information. We study the problem of jigsaw puzzle assembly and

conclude that assembling a jigsaw puzzle with paired pieces is as hard as assembling

a classical jigsaw puzzle. However, this does not rule out efficient paired assemblers

based on heuristics. Eventually, we study the parametric complexity of paired as-

sembly: assuming a genome contains only a certain class of repeats, we show that

the assembly problem can be solved in polynomial time. This results provides evi-

dence that pairing information contributes to making the assembly problem feasible

in certain cases.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 32

Our results rely on reductions from known problems. We recall the definition of

a reduction.

Definition 1 (Reduction). A reduction is a polynomial-time transformation of a

problem A to a problem B.

Thus, if A is NP-hard and there exists a polynomial-time computable function f

mapping instances I of A to instances f(I) of B, then B is also NP-hard.

3.2 Classical assembly models

3.2.1 Genome assembly is not a Shortest Common Super-

string

We say that s is a superstring of a set of strings S = {s1, .., sn} if every si is a

substring of s, and s satisfies the ”no extra character” condition, that is, for any

i ∈ [1, |s|], at least one element of S is aligned with s at an interval containing i.

Problem 1 (Shortest Common Superstring, SCS). For a set S = {s1, .., sn} of

strings over an alphabet Σ, find the smallest string s containing every string of S as

a substring.

Note that, because of this definition of superstring, a solution of SCS is always

a superstring. SCS is known to be NP-hard for strings of size greater or equal to

3 over a binary alphabet [23]. It is also Max-SNP hard (hard to approximate), and

the greedy algorithm achieves an upper bound of 4OPT (always retrieves a string at

most 4 times larger than the smallest string). It is conjectured that its actual upper

bound is 2OPT . In the early history of sequencing, several assemblers implemented

variants of the SCS greedy algorithm [26].

The SCS problem, however, is not an ideal formulation of the assembly of sequenc-

ing reads. The following are two situations where the shortest common superstring

has no biological meaning:

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 33

1. Tandem repeats collapsing: ARRRRRB→ARRB

Consider a genome of the form ARRRRRB, where each letter is a region of the size

of the read length. Then, reads will only indicate overlaps inside AR, RR and RB.

The SCS does not take into account the number of times the region R is seen

in the reads. Hence, the SCS of this genome is ARRB, which is a biologically

invalid approximation of the original genome.

2. Over-collapsing: ARBRCRD→ARBSCSD, where S =R[1..r]+R[|R| − r..] and r is the

read length.

Another example is given by a genome of the form ARBRCRD. This time, each

letter is a region much larger than the read length. Notice that the sequence

ARBSCSD (with S defined as above) is also a common super-string of the reads.

And it is even shorter than the genome. Each instance of R, except one, has

been replaced by a compressed instance (S) to minimize redundant information.

Since the repeated region R is reconstructed fully only once in the SCS, this

solution is not a biologically sound one.

To avoid these problem, assembly models which explicitly account for such repeat

cases were designed: string graphs and de Bruijn graphs.

3.2.2 String graphs

String graphs are a natural representation of overlaps of a set of strings. Here, we

consider a very simple definition of an overlap between strings. Two strings (r, r′) are

said to k-overlap if a suffix of r matches exactly a prefix of r′ over a fixed length of k

characters. For a set of strings S, the overlap graph OGk(S) is a directed graph. Its

set of vertices is S, and an edge s1 → s2 is present if there is a k-overlap between s1

and s2. The string graph SGk(S) is a directed graph whose set of vertices and edges

are included in those of the overlap graph. Contained reads (reads which are included

in other reads) and transitive edges (edges of the form s1 → s3, whenever there exists

s2 such that s1 → s2 and s2 → s3) are removed [35]. Figure 3-1 shows an example

string graph for the set of strings {abcd, bcde, cdef, defi, efic, ficd, icde, defg, efgh}.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 34

In practice, string graphs are constructed with overlaps based on inexact matching,

where a percentage of identity is defined between strings. The string graph model is

not tied to a specific overlap definition.

abcd bcde cdef defg

defi

efgh

efic ficd icde

Figure 3-1: Example of a string graph with 3-overlaps

Genome assembly using string graphs has been as a computational problem, re-

ferred here as the Assembly Problem [36].

Problem 2 (Assembly problem, AP). Find a path which visits each node of SGk(R)

at least once (generalized Hamiltonian Path), minimizing path-string length.

This problem is NP-hard, by a reduction [31] from the Shortest Common Super-

string problem. An interesting development showed that the Assembly Problem is

hard only because of repeats [36]. Its parametrized complexity is polynomial in some

specific cases, where repeats lengths are bounded. For instance, and perhaps counter-

intuitively, assembly becomes easy if all repeats are longer than 2r − k + 1, where r

is the read length. The intuition behind this surprising result is that the absence of

shorter repeats removes the possibility of false overlaps between reads. Given only

true overlaps, the assembly problem can be solved in polynomial time as an instance

of the Chinese Postman Problem [16].

3.2.3 de Bruijn graphs

For a set of strings S, the de Bruijn graph (S) is a directed graph whose vertices

are all the k-length substrings of each string in S, and an edge s1 → s2 is present if

there is a (k − 1)-overlap between s1 and s2.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 35

abc bcd cde def efg

efi

fgh

ficicd

Figure 3-2: The de Bruijn graph of the same set of string as Figure 3-1 for k = 3

Genome assembly using de Bruijn graphs has been formulated as a computational

problem known as the de Bruijn Superwalk Problem [31]. If s is a string, a walk

w(s) is a path in dBGk(S) of the form s[1..k]→ s[2..k+ 1]→ ...→ s[|s| − k+ 1..|s|].

For a path w′, a subpath w of w′ is a path over a subset of the nodes and edges of w.

We say that w is a subwalk of w′ if w is a subpath of w′. Observe that any path w

in dBGk(S) is a walk w = w(s) for some string s. A superwalk for a set of strings

S is a walk w′ such that for every s ∈ S, w(s) is a subwalk of w′.

Problem 3 (de Bruijn Superwalk Problem, BSP). Given a set of strings S =

{s1, .., sn} over an alphabet Σ and an integer k, does a minimum length superwalk

for S in dBGk(S) exist?

This problem is NP-hard for |Σ| ≥ 3 and any k ≥ 1 [31].

3.2.4 Scaffolding a sequence graph

Scaffolding consists in ordering DNA sequences given pairing information. It is never

applied to order a set of reads, but rather a set of longer sequences constructed from

the reads. This problems finds its roots in the heuristics of assembly. In the next

chapter, it will be seen that reconstructing the genome in one single sequence is not

always feasible due to repetitions. Instead, a set of sub-sequences (called contigs)

is constructed from the single reads. Pairing information is then used to order the

contigs. This is formulated as the following computational problem. The contig graph

is defined as follows: V = {contigs}, E = {(c1, c2) s.t. |{(r1, r2), r1 ∈ c1, r2 ∈ c2}| ≥

t} where t is an arbitrary threshold, indicating that contigs are linked if they are

supported by at least t paired reads.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 36

Problem 4 (Scaffolding problem [18]). Find an ordering of contigs in the bi-directed

contig graph that is supported by a maximal number of paired reads.

Scaffolding requires a complete set of contigs. In most assembly implementations,

pairing information is exclusively used during the scaffolding step. The question

we seek to answer in the following is: can paired information be used at read-level

assembly, and is it an improvement?

3.3 Shortest Common Superstring of paired strings

The classical Shortest Common Superstring problem can be extended to deal with

paired reads. First, some definitions are given. A string s2 is aligned with s1 at

some interval [i, j] if s1[i, j] = s2. A σ-gapped string s over an alphabet Σ (such

that {−} /∈ Σ) is a string of the form si = xi −σ yi, where xi and yi are two single

reads in Σ∗. A string s ∈ (Σ ∪ {−})∗ is a substring of a string s′ ∈ Σ∗ (which we

denote by s ∈ s′ for brevity) if there exists an index i such that, for any j such that

s[j] ∈ Σ, s′[i+ j] = s[j]. In other words, this is a classical substring definition where

the symbol ’−’ is treated as a wildcard character. This allows us to define a variant

of SCS.

Problem 5 (Shortest Common Superstring of σ-gapped strings, PSCS). For a set

S = {s1, .., sn} of σ-gapped strings over an alphabet Σ, find the shortest gap-less

string s ∈ Σ∗ containing every string of S as a substring.

Theorem 1. For σ ≥ 1 and |Σ| ≥ 3, PSCS is NP-hard.

Proof. We reduce an instance S = {s1, .., sn} of SCS to an instance S ′ of PSCS,

where a new symbol (]) is added to the alphabet. We first define a function fσ(s) that

transforms s such that a string]σ is inserted before each letter of s, and also at each

end, e.g. f1(abc) =]a]b]c]. Observe that the length of fσ(s) is (|s| + 1)(σ + 1) − 1.

Let gσ(s) be a function that, given an input of the form s = s1]
σs2 with s1, s2 non-

empty strings and the length |s1| of s1 is minimal, replaces]σ by a gap −σ, e.g.

g1(]a]b]c]) =]a− b]c]. Let S ′ = {s′1, .., s′n}, where s′i = gσ(fσ(si)). We will now show

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 37

s'

s'
i

s'ix

x i

x i ##..# # #..#

symbol # repeated σ times

gap of size σ

a

Figure 3-3: Illustration for the proof of Theorem 1

that the existence of a superstring of S of size n is equivalent to the existence of a

superstring of S ′ of size (n+ 1)(σ + 1)− 1.

Let s be a superstring of S of size n. Since si ∈ s , fσ(si) ∈ fσ(s) by the definition

of fσ, and gσ(fσ(si)) ∈ fσ(s) by the definition of gσ. Hence, fσ(s) is a superstring of

S ′ of size (n+ 1)(σ + 1)− 1.

Conversely, let s′ be a superstring of S ′ of size n′ that does not contain]σ+1 as a

substring. Note that the shortest superstring of S ′ verifies this condition. For each

occurrence of s′i in s′, let us show that such occurrence is actually fσ(si), that is, that

the gap −σ in s′i is filled by the string]σ in s′.

For the sake of contradiction, let us assume that one of the characters that fills

this gap in s′ is s′[xi] 6=]. Since s′ is a superstring, there exists ix such that s′ix is

aligned with s′ at an interval containing s′[xi]. By the definition of s′ix , the character

s′[xi] is either followed by a gap and preceded by]σ, or followed by]σ and preceded

by a gap, or both followed and preceded by]σ. Either way, a string]σ follows or

precedes s′[xi] in s′. However, in the string s′i, the gap is immediately followed and

preceded by a non-] character, which leads to a contradiction (see Figure 3-3 for an

illustration).

Therefore s′ is a superstring of fσ(S), and recall that it does not contain]σ+1.

Then s′ is of the form

]σs′[σ + 1]]σs′[2(σ + 1)]]σ..]σs′[|s′| − σ]]σ,

and f−1
σ (s) is well-defined. By removing the] symbols, we obtain that si ∈ f−1

σ (s′).

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 38

Hence, f−1(s′) is a superstring of S of size n′−σ
σ+1

.

We have shown that there exists a superstring of S of size n if and only if there

exists a superstring of S ′ of size (n + 1)(σ + 1) − 1 that does not contain]σ+1. Any

solution to SCS for S can be mapped polynomially from a solution to PSCS for S ′,

which concludes the reduction.

We observe that the previous reduction is a L-reduction, therefore PSCS is Max-

SNP hard. That is, no polynomial algorithm that can approximate PSCS with

polynomially small error exists. Whether an algorithm can approximate PSCS with

worst-case constant approximation ratio is an open question. The greedy algorithm

for SCS that consists of choosing a seed and repeatedly merge it with the longest

overlapping string may not be easily extended to PSCS, since gaps are unlikely to

be successfully filled using the greedy approach.

Note that a slightly modified problem, where the gap size σ is allowed to vary

between [σ−δ, σ+δ], is also NP-Hard and Max-SNP hard, since it is a generalization

of PSCS.

3.4 Two paired variants of graph problems

3.4.1 Hamiltonian Path with paired vertices

Problem 6 (Hamiltonian Path, HP). Given a directed graph G = (V,E), does G

have a Hamiltonian path, ie. a path which visits each vertex v ∈ V exactly once?

The HP problem is classically known to be NP-complete. A paired graph G =

(V,E, L) is defined as a graph (V,E) with additional edges L ⊂ V 2\E representing a

special pairing between two vertices.

Problem 7 (Hamiltonian Path with paired vertices, PHP). Given a paired graph

G = (V,E, L) where |V | = n and an integer σ, does G have a Hamiltonian path

w = w1 → .. → wn satisfying the following constraint: for each (vi, vj) ∈ L, there

exists an index l such that vi = wl and vj = wl+σ. That is, each pair of vertices in L

are exactly σ − 1 vertices away from each other in the Hamiltonian path.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 39

When L = ∅, the problem is trivially HP . We show that the problem is difficult

(NP-complete) even with a large set of constraints. In that case, it is no longer a

generalization of HP . This is because solving HP without the constraints does not

guarantee that a solution satisfies the constraints.

Theorem 2. For any integer σ ≥ 1, PHP is NP-complete even when |L| = Θ(|V |).

Proof. We reduce HP to PHP . For a graph G = (V,E), construct G′ = (V ′, E ′, L) as

follows: for each v ∈ V , define σ new vertices v(1), .., v(σ) in V ′ such that E ′ contains

the path v(1) → v(2) → .. → v(σ). Then, for each edge v → w in E, add the edge

v(σ) → w(1) in E ′. Let L be the set of edges v(1) → v(σ) for each v ∈ V .

We now show that any Hamiltonian path of G′ corresponds to a Hamiltonian path

of G. Let w′ be a Hamiltonian path of G′; for each v ∈ V , the vertices v(1), .., v(σ) are

visited exactly once in w′, therefore w′ contains v(1) → ..→ v(σ). Transform the path

w′ into w such that, for every v ∈ V , the subpath v(1) → .. → v(σ) of w′ is replaced

by the single vertex v in w. Then w is a path visiting every v ∈ V exactly once,

therefore it is a Hamiltonian path of G.

3.4.2 de Bruijn Superwalk Problem with σ-gapped strings

We define a variant of the de Bruijn Superwalk Problem which explicitly deals with

the paired nature of reads. de Bruijn graphs over σ-gapped strings are defined as a

natural extension of de Bruijn graphs. Intuitively, the gap symbol ’−’ is treated as a

wildcard in walks.

Formally, let S be a set of σ-gapped strings. Let G = dBGk(S) be the classical

de Bruijn graph of S, with no special semantic associated with the gap symbol. Let

us define a relation ≺ between two strings s1 and s2 as follows: s1 ≺ s2 if s1 can

be obtained by replacing some characters in s2 by gaps, i.e. a − −c ≺ ab − c. We

extend the definition of classical de Bruijn graphs to associate to each vertex v a set

of labels {s ∈ (Σ ∪ {−})k|v ≺ s}. These labels are all possible replacements of gaps

in v by non-gap characters. We also extend the definition of overlap to allow gaps:

s1 and s2 overlap if there exists a string s such that a suffix s′1 of s1 and a prefix s′2

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 40

of s2 are both substrings of s, and |s′1| = |s′2| = |s|. Consequently, there is an edge

v1 → v2 if one of the labels of v1 overlaps with one of the labels of v2 by exactly

k−1 characters. In this new definition of de Bruijn graphs, walks are well-defined for

σ-gapped strings. Let s′ be a σ-gapped string, and assume that it is a substring of a

gap-less string s. Recall that the notation w(s′) indicates that w(s′) is a walk in the

de Bruijn graph following the consecutive k-length substrings of s′. If w(s) is a walk

in dBGk(S), then w(s′) is also a walk in dBGk(S) and w(s′) is a subwalk of w(s).

Problem 8 (de Bruijn Superwalk Problem with σ-gapped strings, PBSP). Given a

set of σ-gapped strings S = {s1, .., sn} over an alphabet Σ and an integer k ≥ 1, decide

whether a minimum length superwalk w of dBGk(S) exists, such that w = w(s) and

s contains no gap symbol.

We now show that reads pairing does not affect the complexity of DNA assembly

with de Bruijn graphs.

Theorem 3. For k, σ ≥ 1 and |Σ| ≥ 4, PBSP is NP-hard.

Proof. We reduce PSCS to PBSP by following the reduction of SCS to BSP [31].

For an instance S = {s1, .., sn} of σ-gapped strings (recall that each si is of the form

xi−σ yi), create the de Bruijn graph of σ-gapped strings G = dBGk(fk(S)), where fk

is the function defined in Theorem 1 (also the same function f as in [31]). In Theorem

1, this function was used to inflate the size of the SCS by a factor of σ + 1. In this

reduction, the size of the walk will be inflated by a factor of k + 1. When applying

fk to a σ-gapped string, a string of]k is inserted between each symbol, including

between each gap symbol. We shall show that the length of the shortest superwalk

of G is k + 1 times the length of the shortest superstring of S.

Given a (gap-less) superstring s of S, let w be the walk w(fk(s)). For any i, the

string fk(si) is a substring of fk(s), so w(fk(si)) is subwalk of w, therefore w is a

superwalk of G. Furthermore, it is a superwalk of length |w| = (k + 1)|s|.

Conversely, suppose that w is a superwalk of G of the form w = w(s′), where

s′ does not contain any gap symbol. We recall the following observations, originally

made in [31]. Each walk w(fk(si)) is a sequence of cycles Csi[1] → ..→ Csi[|si|], where

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 41

Cc = w(fk(c)) for c ∈ Σ∪{−} (each cycle starts and ends with the node]k). Also, w

can be uniquely expressed as a longer sequence of cycles Cj1 → ..→ Cj |w|
k+1

. Let s be

the string j1..j |w|
k+1

∈ Σ∗. Since w(fk(si)) is a subwalk of w, there exists m such that

Csi[1] → .. → Csi[|si|] is a subwalk of Cjm → .. → Cjm+|si|−1
. Since the decomposition

of walks into cycles is unique, instead of an equality as in [31], we obtain the following

inclusion: si ≺ jm..jm+|si|−1. Therefore, si ∈ s. Hence, the string s is a superstring of

S of length |w|
k+1

.

We have shown that there exists a (gap-less) superstring of S of size n if and only

if a gap-less superwalk of G of size n
k+1

exists, therefore the reduction is proved.

3.5 Paired-pieces jigsaw puzzle

There is a strong analogy between our previous results and the assembly of jigsaw

puzzles. Consider a simple jigsaw puzzle where each piece is a square whose edges can

either be straight, or augmented with a tab or a pocket of arbitrary shapes. Deciding

whether n jigsaw pieces exactly fit into a
√
n ×
√
n square box is NP-complete [13].

We define a variant of such puzzle in the spirit of the difference between single reads

assembly and paired assembly.

Problem 9 (Paired-pieces jigsaw puzzle). Given xy rectangular pieces with tab,

pocket or straight edges, each piece being linked to another piece by a string of finite

length, decide whether these xy pieces exactly fit into a x×y box with the additional

constraint1 that every string must be tightened.

In other words, one knows how far apart two pieces must be in a solution. How

hard is this variant? Merely discarding links and solving the classical puzzle does not

guarantee to obtain a solution that satisfies all the links constraints. We show that

this variant belongs to the same complexity class.

Theorem 4. The paired-pieces jigsaw puzzle is NP-complete.

1one may also see it as a hint

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 42

Proof. We reduce the jigsaw puzzle to this problem. For a classical jigsaw puzzle

instance, cut each piece into 12 paired sub-pieces. The middle sub-piece at each edge

should have the same outer edge attribute (tab, pocket or straight) as the original

piece. Set every other sub-piece outer edge as a straight line. Inner edges of every sub-

pieces are given an unique tab/pocket attribute. Figure 3-4 describes the construction,

Figure 3-4: Reduction of a jigsaw puzzle to a paired-pieces jigsaw puzzle (proof of
Theorem 4)

where each 3 symbol must be replaced by an unique tab/pocket attribute, and dashed

lines show a possible pairing between pieces. Deciding whether the resulting paired-

pieces jigsaw puzzle fits in a
√
n ×
√
n square is equivalent to deciding whether the

original puzzle also fits. Therefore, we have reduced the jigsaw puzzle to the paired-

pieces jigsaw puzzle.

The instances of paired-pieces jigsaw puzzle related to DNA assembly correspond

to puzzle pieces where strings have (roughly) the same length. This hardness result

also generalizes to puzzles where each piece has paired links to more than one other

piece. This is related to sequencing reads where the same mate of a paired read is

sequenced again, this time with a different mate.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 43

3.6 Paired assembly problem

The paired string graph is defined as an extension of the classical string graph over a

set of paired reads R1×R2. Recall (from the introduction) that the insert size of a

paired read is the sum of both read lengths and the length of the gap between them.

Two reads (r, r′) ∈ R1 ∪ R2 are said to k-overlap if a suffix of r matches a prefix of

r′ exactly over k characters. The paired string graph PGk(R1 × R2) is defined as a

directed graph by assigning a vertex to each read in R1 ∪ R2. An edge r → r′ is

created between two reads if r k-overlaps r′ (overlap edge). A special type of edge

r 99K r′ is created if (r, r′) is a paired read (paired edge). Classical string graph

transformations are applied: reads that are substrings of other reads, and transitively

redundant overlap edges are discarded (paired edges are ignored during this step). No

transitive reduction is performed for paired edges. For instance, consider the sequence

S = abcdefcdgh and perfect sequencing with insert of length 6 and paired reads of

length 2. The paired string graph of these reads is drawn in Figure 3-5.

A mixed path in the paired string graph is a succession of vertices linked by either

overlap edges or paired edges, e.g. r1 → r2 99K r3 → r4. A path-string is a string

corresponding to the concatenation of nodes strings along a mixed path. The path-

string is formed by the following rules: after an overlap edge, the string is appended

with the concatenation of both nodes strings with their overlap repeated only once;

after a paired edge, the string is appended with a gap corresponding to the paired

insert size. In Figure 3-5, the path-string of p = ab → bc 99K fc is abc −2 fc, where

− still denotes a single-character gap.

Similarly to the Assembly Problem, the Paired Assembly Problem can be defined

as a constrained flavor of AP.

Problem 10 (Paired Assembly Problem). Finding a path that visits each node at

least once (generalized Hamiltonian path) in PGk(R1 × R2), and corresponds to a

path-string s such that:

� the length of s is minimized, and

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 44

ab bc cd dg gh

de ef fc

Figure 3-5: Example of a paired string graph from paired reads (insert size of 6)
covering the sequence S = abcdefcdgh. Green edges represent paired links and
yellow edges represent 1-overlaps between reads.

� for every pair (r, r′) in R1×R2, the distance between r and r′ in s matches the

paired insert size.

Similarly to AP, this problem can also be shown to be NP-hard. Note that this

problem is not a generalization of AP: an instance of the Paired Assembly Problem

cannot be straightforwardly constructed from an instance of AP, because |R1 × R2|

pairing constraints need to be constructed.

Also, note that a solution to the Paired Assembly Problem is necessarily a con-

tig. The Chapter 4, we will focus on constructing a collection of subpaths (possibly

scaffolds) that approximate a solution.

3.7 Parametric complexity of paired assembly

This section extends the parametric complexity results by Nagarajan et al [36] to

paired assembly. Similarly, we define a repeat as a string of length ≥ k that occurs

more than once in the genome. Let [rmin, rmax] be respectively the shortest and largest

read lengths. We consider a special class of repeats: those which are shorter than

the insert size, and each instance of a repeat is separated by an insert size distance

from any instance of any repeat. As a reminder, we consider that the insert size of a

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 45

paired read is the sum of both read lengths and the length of the gap between them.

Definition 2 (Short i-interspersed repeats). A repeat is short and i-interspersed

if it is shorter than i− rmax + k, and each instance of this repeat is flanked to the left

and to the right by a repeat-free region of length greater than i− rmin − k.

We introduce the notion of semi-complete pairing, as a way to ensure that, at

least, repeat-elucidating pairs are sequenced. In the remaining, we use the letters

x, y, z to denote reads (which are nodes in the paired string graph), and the symbol

99K still indicates read pairing.

Definition 3 (Semi-complete pairing). For any read x, ∃ reads (x′, x′′) s.t. x 99K

x′ and x′′ 99K x. In other words, each sequenced read is the right mate of a pair and

the left mate of another pair.

This is a weaker assumption than a complete set of pairs. For instance, consider an

instance of a short i-interspersed repeat in the genome. Semi-complete pairing only

requires at least two paired links for each read inside this instance. Whereas with

actual complete pairing, i.e. if the sequencer returned all possible pairs, there would

be significantly more links (twice as many paired links as the number of instances of

this repeat).

Theorem 5. Assuming semi-complete pairing with constant insert size i > 2rmax, if

all repeats in the genome are short i-interspersed repeats, then the Paired Assembly

Problem can be solved in polynomial time.

The proof will consists in simplifying the graph, such that any remaining edge

x → y need to be included in any solution (denoted by x
in genome−−−−−→ y). This first

lemma establishes how pairs with exact insert size propagate the necessity of including

an edge in a solution.

Lemma 6. Assuming constant insert size, if x′
in genome−−−−−→ y′, x 99K x′ and y 99K y′,

then x
in genome−−−−−→ y.

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 46

We adopt the definition of required and optional edges from [36], recalled here.

An edge is required if it is the unique in-edge or the unique out-edge of a node.

All other edges are said to be optional. It is easy to see that required edges are

necessarily part of a solution of the Paired Assembly Problem, while optional edges

may or may not.

Lemma 7. Under the hypotheses of Theorem 5, let e = x → y be an optional edge.

For any x′ s.t. x 99K x′, for any y′ such that x′ → y′, then x′
in genome−−−−−→ y′.

Proof. Since e is optional, by definition there exists z 6= y such that x → z, and by

transitive reduction y and z cannot have an edge between them. Hence, the k-suffix

of x is contained in a repeat instance R. By semi-complete pairing, there exists x′

s.t. x 99K x′. Since R is a short i-interspersed repeat, it extends by at most i− rmax
to the right. By pairing, since the k-suffix of x′ is at a genome distance d > i− rmax
to the k-suffix of x, it is not part of a repeat. Since repeat-free regions consist of only

required edges, any out-edge of edge x′ is required.

We can now prove Theorem 5.

Theorem 5. The proof strategy is to show that any optional edge that is not part

of the genome can be detected and removed from the graph, producing a simplified

graph. Then, since the simplified graph only consists of edges that need to be included

in any solution, the problem can be solved as an instance of a variation of the Chinese

Postman problem [16] in polynomial time. The variation enforces pairing constraints,

leaving the complexity unchanged. Let e = x → y be an optional edge. Let {x′i} be

the set of right mates of x, and {y′j} be the set of right mates of y. By semi-complete

pairing, these sets are non-empty. The first case we consider is the existence of a pair

(i, j) s.t. e′ = x′i → y′j. By Lemma 7, e′ is part of the genome. By Lemma 6, that

makes e part of the genome.

We now turn to the case where there is no pair (i, j) s.t. x′i → y′j. Assume, for the

sake of obtaining a contradiction, that e is part of the genome. Then, at a distance i

in the genome from an instance of the sequence represented by e, there exists a pair

CHAPTER 3. PAIRED DE NOVO ASSEMBLY THEORY 47

of reads (x′, y′) such that x′ → y′, we refer to this edge as e′. Since e is part of a

repeat, a similar argument to that of Lemma 7 yields that e′ is repeat-free. As x′ and

y′ are present in only one copy in the genome, by semi-complete pairing, the paired

links x 99K x′ and y 99K y′ must exist. Then, there exists (i, j) such that x′ = x′i

and y′ = y′j and x′i → y′j, yielding a contradiction. Hence, e can be removed from the

graph as it is not part of the genome.

3.8 Discussion

In this chapter, we reviewed the classical mathematical objects and problems in de

novo assembly: strings and the Shortest Common Superstring problem, string graphs

and the generalized Hamilton Path problem, de Bruijn graphs and the de Bruin

Superwalk problem. We defined a natural extension of these objects and problems

to paired reads, introducing σ-gapped strings and paired graphs. We proved that

the complexity of these problems is unchanged by introducing pairing constraints.

We introduced a parallel between assembly and jigsaw puzzles, as evidenced with the

result that jigsaw puzzle with paired pieces is as hard to solve as a classical jigsaw

puzzle. This provides intuition that, no matter how paired information is used in an

assembly algorithm, it cannot help escaping the NP-hardness within current models.

However, this does not rule out efficient paired assemblers based on heuristics (this

will be covered in the next section). Eventually, we studied the parametric complexity

of paired assembly. We showed that the paired assembly problem can be solved in

polynomial time when repeats are shorter than the insert size and interspersed. In

fact, this construction used to prove this result provides a formal mechanism to solve

a certain class of repeats using paired reads..

Chapter 4

Practical assembly methods

The previous chapter covered the theoretical aspects of de novo

genome assembly using pairing information. Several practical aspects

of assembly merit specific attention. For instance, actual genome

assemblies cannot be obtained using paths proposed in the theoreti-

cal model (explained in 4.2.1). In this chapter, we propose a graph

traversal scheme that takes into account pairing information. Also,

indexing sequencing data into the assembly structure is the most

memory-intensive step. We propose the first parallel and memory-

efficient approach that creates a data structure to reference paired

reads.

4.1 Introduction

Even producing an approximation of the genome is a computationally difficult task.

For assembly of human-sized genomes using short reads (< 100 bp), current state

of the art implementations (using de Bruijn graphs) require hundreds of gigabases

of memory and several CPU weeks of computation [29]. Surveying current assembly

implementations is a vast task, as each assembler implements its own set of heuris-

tics [33]. However, from a high level perspective, the vast majority of assemblers rely

on the same mathematical objects: the string graph, the de Bruijn graph, or a k-mer

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 49

based index used for greedy assembly. Hence, some of the most popular assemblers

can be classified as such:

de Bruijn graph Allpaths [19], SOAPdenovo [29], Velvet [55], ABySS [49].

string graph Newbler (unpublished), CABOG [50], SGA [48].

k-mer index PE-Assembler [1], Ray [4], Meraculous [8].

These assemblers implement data structures that were designed to assemble single

reads. However, most of these are in fact capable of assembling paired reads as well.

A natural question is: when, and how is pairing information taken into account?

The general answer is that pairing information is used to improve the quality of an

assembly done without pairing constraints. The typical pipeline of an assembler is as

follows:

1. Treat all paired reads as single reads, by essentially discarding pairing informa-

tion.

2. Assemble these single reads, either as a set of contigs or as a simplified graph

3. The initial assembly is improved by using paired reads, either by scaffolding

contigs or by performing further graph simplifications

Note that independent software can also be used to perform scaffolding [40, 21]. It may

appear unsatisfactory to perform paired reads assembly using graph simplification or

scaffolding, as such approach requires to solve unpaired assembly beforehand, which

deliberately ignores pairing information.

Previous research has explored the benefits of using paired-end reads during con-

tigs construction. The Arachne assembler searches for pairs of paired Sanger reads

where both mates overlap to construct contigs [2]. The Shorty assembler uses pair-

ing information to greedily construct contigs from paired reads anchored to long

reads [20]. PE-Assembler extends contigs greedily and attempts to resolve ambigu-

ous extensions using paired reads anchored nearby [1]. Medvedev et al. recently

introduced the paired de Bruijn formalism, which incorporates pairing information

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 50

in the de Bruijn graph [32]. Donmez et al. also recently proposed an approach to

transform a string graph into a mate-pairs graph [14]. Each of these approaches aim

to resolve repeats when constructing contigs. They will be reviewed in more details

in the next section.

In the next section, assembly of paired reads is formalized using the paired string

graph representation. It is shown that scaffolds correspond to paths in the graph

under ideal sequencing conditions. The definition of these paths is then refined to

account for sequencing errors and biological variants.

4.2 Issues with existing models

4.2.1 Limitations of theoretical assembly

Practically, assembly cannot be solved as an instance of the Assembly Problem or the

de Bruijn Superwalk Problem. The following two practical issues arise:

Repetitions Many minimal-cost solutions are possible.

For instance, in Figure 4-1, there are two possible reconstructions: abcdefcdijcdgh

an abcdijcdefcdgh.

Imperfect coverage The genome graph (string or de Bruijn) is split into several

unconnected components, hence a single Hamiltonian or Eulerian path cannot

be found.

Classical heuristics consists in outputting a set of linear paths (contigs) from the

string graph or the de Bruijn graph. Until recently, pairing information was not used

in contigs construction. The paired assembly problem, formulated in the previous

section, provides a natural framework to include pairing information in contigs con-

struction using a string graph. We now survey other existing approaches to construct

contigs using pairing information.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 51

ab bc cd dg gh

de ef fc

di ij jc

Figure 4-1: Problem with theoretical assembly (where the solution is a connected
path): many ambiguous reconstructions.

4.2.2 Including pairs in contigs assembly

Incorporating paired reads in the first stage of assembly is a novel idea. As shown

in the previous chapter, it requires a significant shift from classical assembly models.

Three different approaches have been very recently published.

1. The paired de Bruijn graph [32]

The problem of assembling paired reads is formulated using a graph where ver-

tices are paired k-length substrings of (r1, r2): (k1|k2). Edges of a single type are

created by linking component-wise prefix and suffix of ((k+1)-mer|(k+1)-mer).

For example, an edge linking two nodes is of the form: (AG|TG)
(AGC|TGT)→

(GC|GT).

2. The mate-pair graph [14]

This formulation is based on the string graph. A preliminary step is carried to

find paths between pairs of reads in the string graph. A new graph is constructed

where vertices are mate-paired reads, and edges are overlapping paths between

two mate-pairs.

3. Greedy with paired consistency [1]

This approach consists in greedily extending a starting sequencing with reads

that satisfy a pairing consistency criterion.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 52

All these approaches aim to produce contigs, i.e. gap-less sequences. In the fol-

lowing, we consider a natural extension: is it possible to use paired information to

generate scaffolds (gapped sequences) directly from the reads? This approach is essen-

tially different as the three reviewed methods, because it uses paired reads for direct

scaffold construction. One main advantage is that missing read overlaps (possibly due

to sequencing artifacts, such as coverage gaps or localized errors) can be represented

by gaps in scaffolds, whereas they would necessarily interrupt contigs. Note that all

methods, including ours, do not implement mechanisms to resolve repetitions longer

than the insert size.

4.3 Non-branching paths

We describe the heuristics used to practically approximate the paired assembly prob-

lem. This construction enables to directly construct scaffolds from the paired reads,

without performing a complete single reads assembly beforehand. This work has ap-

peared in the proceedings of WABI 2011 [11]. Note that this section introduces the

fundamental result on which the implementation in the next chapter is based.

4.3.1 Non-branching paths in the ideal case

Scaffolds can be directly constructed from the graph by following special types of

mixed paths. To illustrate this, we first assume unrealistic sequencing conditions:

error-free reads, perfect coverage and exact insert size (these will be relaxed in the

next section).

A mixed path p of length |p| is non-branching if, for each pair of consecutive nodes

(ni, ni+1), 0 < i < |p| in this path, the following two conditions are met:

1. if the edge between ni and ni+1 in the path p is a paired edge, then ni+1 must

have an in-degree of 1 in the graph with respect to paired edges, and ni must

have an out-degree of 1 in the graph with respect to paired edges.

2. otherwise, since the edge between ni and ni+1 in the path p is an overlap edge,

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 53

then ni+1 must have an in-degree of 1 in the graph with respect to overlap edges,

and ni must have an out-degree of 1 in the graph with respect to overlap edges.

In other words, non-branching paths are mixed paths that traverse portions of

the graph where no branching occur, with respect to the edge type. In traditional

assembly heuristics, a contig can be represented as a NBP where each edge is an

overlap edge (simple path). For example, maximal-length contigs from the paired

string graph in Figure 3-5 on page 44 are the following simple paths:

{ab→ bc→ cd,

cd→ de→ ef → fc→ cd,

cd→ dg → gh}.

In contrast, a non-branching path that involves paired links is

{ab 99K ef 99K gh},

where the path-string (ab −2 ef −2 gh) is a scaffold which covers the whole string.

Under ideal sequencing conditions, non-branching paths immediately correspond to

valid scaffolds. One can also consider in- (resp. out-) branching paths, for which only

out- (resp. in-) degree of nodes in the path with respect to the corresponding edge

type is 1. By similar reasoning, it can be shown that such paths are valid scaffolds.

4.3.2 Practical non-branching paths

In actual sequencing, we distinguish two situations: undetected paired branching and

additional overlap branching. These situations are illustrated in Figures 4-2 and 4-3.

Previously, paired branching was always detected because of perfect coverage and

exact insert size.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 54

ab bc

cd de

cf fg

Figure 4-2: Issues in practical assembly: undetected paired branching. The paired
link bc 99K de was not sequenced, hence the link bc 99K fg incorrectly represents the
only paired link from bc. This example indicates that non-branching paths should
not rely on single paired links.

ab bc cd de

cX Xe

ef fg

Figure 4-3: Issues in practical assembly: additional overlap edges due to errors. The
letter d was incorrectly sequenced as X in the reads cd and de. This error introduces
a so-called bubble structure between bc and ef .

Undetected paired branching

Now, it is no longer sufficient for a node to have an unique paired edge in order to

unambiguously extend a scaffold. Weaker conditions can be formulated to detect the

absence of paired branching, given imperfect coverage and variable insert size. First,

assume that the insert size deviation is bounded by a constant i. Second, consider a

simple path p of length 2i+ 1, and let n be the central node (pi+1).

Postulate 1. A paired edge n 99K n′ is considered to satisfy the non-branching

condition if the sub-graph induced by the opposite mates of nodes in p is a simple

path p′ containing n′.

In other words, it is possible to detect that p′ is the only genomic region which

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 55

ab bc cd ef fg gh

Figure 4-4: Illustration of Postulate 1: paired non-branching condition. Several
paired links are used to ascertain that a paired edge satisfies the non-branching con-
dition. Here, the sub-graph induced by opposites mates of the path p = ab→ bc→ cd
of central node bc is a simple path p′ = fg → gh. Hence, the paired edge bc 99K gh
satisfies the non-branching condition.

appears at approximately an insert distance further than p. See Figure 4-4 for an

example. The original definition of non-branching paths can then be extended to

include this condition in place of the paired degree condition.

Additional overlap branching

Furthermore, sequencing errors and biological variants introduce additional branching

in the graph. The branching structures are referred as bubbles (multiple paths that

starts and ends at the same nodes) and tips (short interrupted paths) [55]. See

Figure 4-3 for an example.

Graph-based assembly algorithms remove bubbles and tips after the whole graph

is constructed. Here, the bubble detection technique presented in [55] is adapted to

also detect tips. As these structures are short, one can set a maximal length d > 0

for paths within them. A general characterization of these structure can be made in

terms of sub-graph traversal. Observe that both structures form sub-graphs which

start at a single node, and paths which are not interrupted converge after a certain

length. A general definition of these events can be formulated. For a fixed integer

d > 0, a variant sub-graph with starting node n of a paired string graph G, is a

sub-graph of G such that the breadth-first search of G from n yields a single node of

depth d.

Postulate 2. An edge n→ n′ is considered to satisfy the non-branching condition if

it belongs to a variant sub-graph.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 56

Postulate 1

Bubble

Postulate 2

Tip

Figure 4-5: Practical non-branching path traversal (blue line) of a paired string sub-
graph. Thick lines represent paths of overlap edges. Dashed lines represent paired
edges between reads. Postulate 1 is used to traverse a gap, as paired reads link
together two simple paths. Postulate 2 is used to traversal small branching regions
(a tip and a bubble).

In other words, non-branching paths are extended to permit traversal in short

branching sub-graphs through overlap edges. Figure 4-5 illustrates both postulates.

In summary, we define practical non-branching paths as follows:

� for path nodes n 99K m linked by a paired edge, both n and m are middle nodes

of simple paths of length 2i+ 1 for which Postulate 1 is verified.

� for path nodes n→ m linked by an overlap edge, either the overlap out-degree

of n and the overlap in-degree of m are both 1, or n → m is part of a variant

sub-graph.

Note that setting i = 0 and d = 1 corresponds to the original definition of non-

branching paths. Practical in-branching (resp. out-branching) paths are defined

similarly, except that Postulate 1 only needs to be verified for n (resp. m).

4.4 Parallel and memory-efficient indexing

This section deals with time and memory limitations of current assemblers. As we will

see, these limitations mainly come from the data structure used by the assemblers.

Until the emergence of next-generation sequencing (NGS) technologies, software for

assembling genomes could process up to millions of long (∼ 104 bp) reads. Now, a

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 57

typical genome assembly instance for a vertebrate genome consists of billions of short

(100 bp) reads. Despite this technological shift, computational models and data

structures for assembly remained essentially based on constructing and simplifying a

monolithic structure (graph or ad-hoc index).

Graph-based assembly models are the most popular. They require the construc-

tion of a large graph: either a string graph containing all the reads, or a de Bruijn

graph containing all the k-length substrings (k-mers) of the reads. Graph-based NGS

assembly tools rely on optimized implementations of these graph models. For human-

sized genomes, an optimized de Bruijn graph assembler requires hundreds of gigabytes

of memory [29]. For more details concerning graph-based assembly implementations,

refer to a recent survey [33]. In a near future, larger eukaryotic genomes and meta-

genomes will be sequenced at a faster pace than computational resources growth.

Hence, graph-based models need to be further optimized to sustain the increasing

rate of NGS technologies.

Several recent theoretical advances have been proposed to reduce the memory

usage of graph-based assemblers. Simpson et al. implemented compression techniques

(the FM-index [17]) to construct the string graph [48], saving memory at the expense

of moderately higher running times. Conway et al. used succinct bit array structures

[37, 42] to construct an immutable de Bruijn graph efficiently [12]. Distributed de

Bruijn graph construction using a message passing interface have been implemented

in several assemblers [22, 49, 27].

Greedy assemblers use a different assembly strategy. Instead of constructing and

simplifying a graph, they rely on a static index, with a typically smaller memory foot-

print. This index is queried to recursively extend a starting sequence, until branching

is detected. Previous implementations of greedy assemblers used a prefix tree to store

reads [51], which consumes significantly more memory than a de Bruijn graph. Re-

cent optimized implementations use custom k-mer indexing structures for memory

efficiency [1, 4, 8]. In particular, these implementation have been applied to complex

mammalian genomes, demonstrating that greedy assemblers are no longer limited to

bacterial genomes. Unlike de Bruijn graph assemblers, data structures used in greedy

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 58

assemblers typically contain references to read sequences. Hence, efficient read index-

ing is necessary to keep memory usage low.

The greedy/graph dichotomy has been persistent in assembly techniques. In other

words, each assembler falls into one of the two following categories. (i) Either it is

based on a greedy index and will never consider using graphs during assembly, (ii)

or it constructs a large graph as its primary data structure. We seek to overcome

this dichotomy by constructing a lightweight greedy index, which will later support

the construction of small sub-graphs during assembly. The assembly part will be the

topic of the next chapter.

In the next section, we propose a parallel reads indexing procedure designed specif-

ically for greedy assembly. Two novel filtering methods are introduced to reduce

memory usage: a procedure to remove erroneous k-mers on the fly, and a procedure

to avoid referencing redundant reads. Finally, a prototype implementation is applied

to real Illumina data to validate the method.

This work appeared in the proceedings of the Workshop on Parallel Computational

Biology 2011, and was made in collaboration with G. Chapuis [9].

4.4.1 Distributed and multi-threaded indexing

A multi-threaded, multi-node procedure for reads indexing is proposed. A hash table

is constructed, where the entries are k-mers, and the values are references to reads.

Taking advantage of shared memory between threads, reads sequences are stored

separately in memory, without redundancy within a node. Index construction is

distributed among N nodes, and each node performs independent computations in

parallel. Specifically, each node n is running Tn threads, each thread tn constructs a

separate sub-index I(n, tn). A binning method adapted from [49] assigns each k-mer

to a unique sub-index. Let h be a k-mer hash value with perfect hashing [49]. The

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 59

corresponding k-mer belongs to the sub-index I(n, tn) if:


h mod N = n

h mod Tn = tn

which ensures that each sub-index contains distinct k-mers. Each thread reads

the entirety of the input data to construct its sub-index. When all the sub-indexes

are constructed, an inexpensive merging phase yields the complete index. Hence,

the indexing procedure always constructs the same complete index on different ar-

chitectures. In the following, two algorithmic ingredients are described for parallel

sub-index construction: k-mers filtering and reads indexing.

4.4.2 On-line parallel k-mers filtering

Memory efficiency is crucial when assembling NGS data. In many approaches, in-

cluding the one proposed here, memory consumption is proportional to the number

of indexed k-mers. It is therefore important to filter out erroneous k-mers as early

in the indexing process as possible. Erroneous k-mers are produced whenever the

sequencing process makes a mistake during base calling. The abundance distribution

Kn
t (m) is defined as the number of k-mers seen exactly m times at indexing time t

by node n. A key fact is that the hash function used above evenly distributes k-mers

among sub-indexes. Hence, each Kn
t (m) is identically distributed as the entire distri-

bution
∑

nK
n
t (m). This observation enables independent, parallel filtering for each

sub-index. The superscript n is then omitted in the following.

The distribution of Kt(m) at final time t is multi-modal. A large number of k-

mers occur only a few times: these are mostly sequencing errors. Assuming uniform

sequencing coverage, the distribution of correct k-mers is a Gaussian mixture. The

most abundant component is centered at the expected coverage of the target genome.

Less abundant components are centered at multiples of the coverage, due to repeats in

the genome. The proposed method consists in (i) detecting components corresponding

to erroneous and correct k-mers as soon as they separate sufficiently from each other

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 60

and (ii) finding an appropriate erroneous threshold (cut-off value). Every k-mer that

has appeared fewer times than the erroneous threshold so far is then considered as

an error and removed. This procedure could be extended to correct errors in reads,

but it is outside the scope of the current indexing scheme.

Error detection The following two inequalities must be satisfied to trigger the

filtering procedure. First, erroneous k-mers are identified by their abundance. Theo-

rem 3 from [38] establishes that, under reasonable sequencing assumptions, an error

is significantly less likely to appear m+ 1 times than m times. Thus, the abundance

of erroneous k-mers peaks at m = 1 and has a strictly decreasing slope. The low end

mlow(t) is computed as the largest m that satisfies Kt(m − 1) > Kt(m) for m ≥ 1.

Then, the peak abundance mhigh(t) of correct k-mers is computed as the parameter

at which the maximum value of Kt(m) is attained for m > mlow(t). Erroneous and

correct k-mers are considered to be separated when:

mhigh(t)−mlow(t) > r

where r is a user-defined resolution parameter. Second, to avoid the computational

cost of filtering too soon or too often, a constraint is imposed on the amount of

erroneous k-mers. Let Smin be a minimum amount (user-defined) of erroneous k-

mers before the filtering process can be performed:

mlow∑
m=1

Kt(m) > Smin

Calculating the cut-off value During early filtering passes, a small fraction of

correct k-mers still contributes to the erroneous component. Hence, removing the

entire component at each filtering pass is not a sensible choice. An incrementing

value, defined as the cut-off value, is introduced to overcome this problem. All k-

mers of abundance lower than the cut-off value are removed by the filtering procedure,

others are kept. Formally, a threshold msolid is defined as the number of occurrences

below which a k-mer is considered a potential error. All k-mers over this threshold

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 61

at the end of the indexing phase are solid k-mers. Let tReads and nReads(t) be the

total number of reads in the input file and the number of reads processed at time t

respectively. The cut-off value F (t) is calculated according to the following formula:

F (t) = bmsolid · nReads(t)
tReads

c

4.4.3 Paired reads indexing structure

Each sub-index is populated independently with a filtered set of references to reads,

given a filtering function designed for de novo assembly. The extension of a k-mer

in a read is defined as the suffix immediately following the k-mer (e.g. for a read

r = uwv where w is a k-mer and u, v are arbitrary strings, v is the extension of w

in r). We introduce a notion of redundancy between extensions. Let (v1, v2) be two

extensions of the same k-mer, without loss of generality assume that the length |v1|

is shorter than |v2|. Two extensions v1,v2 are said to be t-redundant if the Hamming

distance between their prefixes of length |v1| is lower than t. Figure 4-6 illustrates

redundancy between reads with respect to extensions of the same k-mer.

Figure 4-6: Set of pair-wise 1-redundant reads with respect to a k-mer (ACT-
GCG(..)GTA). Red letters indicate sequencing errors.

The representative read spectrum with similarity threshold t, noted RRS(k, t), is

defined for a set of input reads as follows:

(i) associate a set Sw to each solid k-mer w occurring in the reads

(ii) Sw discards all but one of the reads associated to t-redundant extensions. A

read with the longest extension is kept, ties are broken arbitrarily.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 62

Figure 4-7 shows an example of a representative reads spectrum. The reads sequences

referenced by the RRS are stored separately. Practically, both a read and its reverse-

complement are indexed.

In essence, this structure records a representative set of reads for each solid k-

mer. Note that this indexing does not correct errors in read, but merely ignores

errors in reads suffixes. Erroneous prefixes yield un-solid k-mers, hence these reads

are not indexed in the structure. This property is well suited with Illumina reads as

sequencing errors are known to mostly occur at read suffixes. Provided the sequencing

coverage is high, errors in suffixes can be corrected at a later stage during a consensus

phase. This justifies the arbitrary removal of other reads having equally long t-

redundant extensions. To maximize the effectiveness of the structure for assembly,

sequencing reads should contain solid k-mers corresponding to every position in the

genome. Hence, either a high sequencing coverage or a low error-rate is required.

Both criteria are typically met with recent Illumina sequencers.

Since this structure stores references to read sequences, it can be immediately

extended to index paired reads. Both mates of the pair are considered separately for

insertion inside the structure. When any of the mates is inserted, the complete paired

read is stored separately, and is referenced by the structure. References are explicitly

made to the left or the right mate of the read.

It can be verified that basic traversal of the paired string graph can be performed

with this structure. The RRS acts as an incomplete inverted index for the reads.

Specifically, in the paired string graph, out-neighbors of a read (i.e., other reads that

overlap that read to the right) are retrieved by querying the RRS with each of the

read k-mers, yielding candidate out-neighbors. Actual out-neighbors are retrieved by

filtering candidates through exact overlap computation. In-neighbors (left overlap)

are equivalent to out-neighbors of the read reverse complement. Paired links are

immediately retrieved by retrieving opposite mates from the paired read sequences.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 63

CAT

kmers index

{1, 7}

ATG

reads: { 1:CATGA, 2:ATGTG, 3:CACTA, 4:TCATT,
 5:CATTA, 6:ATGCC, 7:CATCT, 8:ATGCA }

indices of reads containing
non-redudant extensions
from kmer entry

{2, 6}

Figure 4-7: The representative reads spectrum for a set of 8 reads with parameters
k = 3, t = 1. Entries are solid k-mers from reads. Each k-mer is associated with
a list of reads which extend the k-mer to the right. The extensions are filtered for
t-redundancy. For instance, read 4 is not indexed in the CAT entry because the
extension T is 1-redundant with respect to extension GA from read 1. In the CAT
entry, read 5 could have been inserted instead of read 1 (arbitrary tie removal).
Reverse complements of reads are also indexed, but are omitted in this figure.

4.4.4 Indexing results

We developed an implementation of the on-line k-mers filtering and the reads indexing

algorithms. The implementation has been tested on two actual sequence datasets

from R. sphaeroides (SRA reference SRR034530) and N.crassa (all libraries from

[46]) sequenced using the Illumina technology. The R. sphaeroides dataset (dataset

1) contains 46 million reads of length 36 bp. The N.crassa dataset (dataset 2) contains

320 million reads of average length 32 bp. Benchmarks were run on a 64-bit 8-cores

machine with 66 GB of memory. In this implementation, read sequences are stored

in memory on each node as an array of 2-bit encoded sequences. In the case of multi-

nodes computation, n
4

bytes are redundantly stored per node, where n is the number

of nucleotides in the reads. For the R. sphaeroides reads set, this amounts to 0.462

GB.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 64

Online k-mer filtering results

We first examined the effect of on-line k-mers filtering on the first dataset. To this

end, only the abundance count is retained for each k-mer. A comparison against a

k-mer counting without filtering is made in Figure 4-8. It is important to note that,

when entries corresponding to erroneous k-mers are removed from the hash table, the

allocated memory is not freed but is instead made available for new entries. There

are 144 M k-mers in the dataset, only 4.5 M (3.1%) of which are correct. On-line

filtering enabled to keep the number of k-mers in the hash table under 23 M at any

time. We verified that 4,544,973 solid kmers are retrieved without filtering, compared

to 4,464,256 (98.2%) solid kmers with filtering (solid threshold msolid = 10). The

difference of 80,717 k-mers corresponds to premature filtering of k-mers that would

be solid if given enough time before filtering.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

us
ag

e
(in

 M
B

)

% of input data processed

Unfiltered
Filtered

Figure 4-8: Memory usage during the on-line k-mers filtering procedure, compared
with un-filtered indexing. Dataset 1 is processed with solidity threshold msolid = 10,
error-detection resolution r = 10, minimum amount of erroneous k-mers Smin = 107

and using 1 thread. The first filtering pass is triggered at 11.6% of the dataset.
Sporadic jumps in memory consumption correspond to resize operations of the hash
table. Figure taken from [9]

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 65

Parallel indexing speed-up

Then, we computed the full indexing time for an increasing number of cores (Figure 4-

9). Note that a significant overhead occurs, which ultimately limits the benefits

of parallel processing. Other assemblers, such as SOAPdenovo, also suffer from a

similar degradation in parallel indexing performance. In our case, this overhead is

due to two factors: first, the complete set of reads is pre-loaded on each node, and

this step cannot be parallelized. Second, the complete set of k-mers is processed by

each thread. Specifically, for each k-mer, each thread computes a hash to determine

whether it is designated to process the k-mer or to discard it. As seen in Section 4.4.1,

this enables each thread to insert only a fraction of k-mers in the table, therefore

consuming a fraction of the total memory. The overhead is significant, partly because

our implementation does not take advantage of the fact that k-mers are consecutive

inside a read. We expect that a more optimized implementation would greatly reduce

the overhead, as in principle the operations are not intensive. However, in the next

chapter, we demonstrate that the assembly step does not suffer from such overhead.

A near-linear speed-up will be achieved for the assembly phase.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8
 0

 50

 100

 150

 200

E
xe

cu
tio

n
tim

e
fo

r
da

ta
se

t 1
 (

m
)

E
xe

cu
tio

n
tim

e
fo

r
da

ta
se

t 2
 (

m
)

Number of cores

Reads indexing time vs. number of cores

Dataset 1
Dataset 2

Figure 4-9: Execution time of our indexing implementation on datasets 1 and 2
using 1 node and 1 to 8 threads.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 66

Memory usage

We compared memory usage of indexing procedures from other popular ultra-short

reads assemblers with our implementation. The Velvet assembler [55] (version 1.1.03)

and the SOAPdenovo assembler [29] (version 1.05) are based on de Bruijn graphs and

use graph simplification heuristics. SOAPdenovo is specifically optimized for memory

efficiency, it discards reads and pairing information in the initial graph structure. Our

implementation uses spectrum parameter t = 4, Smin = 106, msolid = 10 and r = 0

for both datasets. All the assemblers are executed with k-mer size of 21. Only

the indexing phase of assemblers were run (pregraph for SOAPdenovo, velveth for

Velvet). Results are summarized in Table 4.1. The k-mers filtering step is essential

in our method: complete indexing of Dataset 1 without k-mers filtering required 20.1

GB of memory. In terms of wall-clock time, these methods are comparable: for the

largest dataset, SOAPdenovo and our prototype completed indexing in respectively

41 and 64 minutes using 6 threads (Figure 4-9 for our prototype, data not shown for

SOAPdenovo). In conclusion, our indexing scheme significantly reduces the memory

bottleneck for assembly, with minor impact on parallel indexing time.

Dataset Our prototype Velvet SOAPdenovo

Peak memory (GB)
1 2.7 7.7 3.9

2 15.3 - 31.4

Table 4.1: Practical memory usage of indexing 46 M reads from R. sphaeroides
(dataset 1) and 320 M reads from N.crassa (dataset 2) using Velvet, SOAPdenovo
and our prototype. Velvet exceeded the memory limit (66 GB) on the second dataset.

4.4.5 Static k-mer index

The indexing techniques presented in this chapter, while being intrinsically paral-

lel, can also be used to reduce memory usage of single-threaded greedy assemblers.

Usually, the same data structure is used to construct the final reads index and then

access it during assembly. This structure is typically a (dynamic, i.e. that supports

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 67

insertions and deletion of elements) hash table. However, the greedy assembly phase

does not require a dynamic structure. Hence, taking advantage of immutability, one

can focus on designing a more compact representation of the reads index once it is

fully constructed. For memory efficiency, sub-indexes can be simply constructed one

at a time.

We realized that the idea of succinctly representing de Bruijn graphs [12], can be

applied to more complex indexes, as long as keys are k-mers, such as ours. The hash

table can be replaced by the union of an entropy-compressed rank/select dictionary

of keys, and a rank-indexed array of values. Succinct rank/select data structures such

as the sdarray [37] represent sparse sets in near-optimal memory usage. A bit array

of length n with m entries set to 1 is represented by the sdarray using

mlg(
n

m
) + 1.92m+ o(m)

bits of memory, allowing o(n) rank and select queries. The rank(i) query returns

the number of 1 in the array before position i. The select(i) query returns the position

of the i-th 1 in the array. A classical 2-bit transformation is used to convert a k-mer,

where k ≤ 32, into a 64 bits integer. The rank/select dictionary is used to represent

the set of k-mers as a set of integers. A simple array containing fixed-length arrays

stores representative reads.

To query this structure for a given k-mer corresponding to integer i, the member-

ship of i in the dictionary is first tested by checking that

select(rank(i)) = i.

Then, the value at position rank(i) in the array of values is the value associated to

the query k-mer.

There is not pointer overhead in such read indexing structure. The entire index of

dataset 2 is represented in only 4.2 GB of memory with this method. This represents

only 27% of the original hash table index size, without loss of information.

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 68

4.5 Discussion

In this chapter, we introduced two novel ingredients for efficiently assembling paired

reads. First, we studied how to perform traversal of paired string graphs in the

ideal case. The notion of non-branching path was introduced, which extends classical

simple path to pairing information. Non-branching paths take full advantage of the

information contained in paired string graphs. Such paths permits direct construction

of scaffolds from reads. Then, the practical case of traversing a graph constructed

from error-prone reads was examined. Two difficulties were identified: dealing with

additional branching, and dealing with incomplete pairing information. To solve

both problems, practical non-branching paths were defined, by incorporating classi-

cal assembly heuristics (for additional branching), and novel heuristics (for incomplete

pairing). Practical non-branching paths provide a greedy scheme for traversing the

paired string graph (this will be used in the next section). This contrasts with ap-

proaches which rely on graph simplifications to transform the string graph or the

de Bruijn graph, to then output simple paths. A main practical advantage of our

method is that the graph needs only to be stored staticly. Also, a practical novelty

is that constructing non-branching paths can be done in parallel.

The second ingredient is a parallel and memory-efficient indexing scheme. This

scheme relies on two concepts: (i) early detection and filtering of erroneous k-mers,

and (ii) associating reads to k-mers and filtering redundant reads. Multi-core and

multi-nodes parallelism is achieved by observing that the set of k-mers can be parti-

tioned. Hence, each thread constructs an independent part of the index. To detect

and filter erroneous k-mers, the abundance histogram of k-mers is dynamically com-

puted. Filtering is triggered whenever the histogram shows a sufficient separation

between erroneous and correct k-mers. Redundant reads were identified by clustering

reads containing the same k-mer, and removing those with nearly-identical exten-

sions. This indexing scheme was implemented and compared with that of popular

assemblers. Our benchmarks show that the index requires 30-50% less memory than

the pregraph of SOAPdenovo, with comparable multi-threaded indexing time. By

CHAPTER 4. PRACTICAL ASSEMBLY METHODS 69

replacing the classical hash table with an optimized static index, the index uses 86%

less memory.

Chapter 5

Monument assembler

The previous chapter covered two practical aspects of de novo

genome assembly using pairing information: graph traversal and

memory-efficient indexing structure. These two ingredients are com-

bined in the implementation of a new assembly software, the Monu-

ment assembler. We describe the structure of this implementation,

including the details of some implementation choices and heuristics.

Benchmark results are given for bacterial and fungus genomes, and

Monument is compared to other assemblers in the context of a large-

scale benchmark.

Current genomic assemblers for high-throughput data suffer from two notable lim-

itations: high memory footprint and lack of easily parallelizable algorithms. This is

because modern assemblers rely on sequential algorithms that simplify a monolithic

graph structure. These limitations can be traced back to the original assembly mod-

els. These models were designed to assemble a much lower number of reads, hence

computational resources were not an issue.

For large genomes, constructing the classical string graph is a memory-intensive

task. This issue also applies to paired string graphs, as they contain strictly more

information. One solution to alleviate memory consumption would be to construct the

graph using a compressed reads index. The FM-index [17] of the reads has been shown

to significantly reduce construction memory usage of compressed string graphs [48].

CHAPTER 5. MONUMENT ASSEMBLER 71

This approach could be extended to include paired edges. To avoid memory overhead,

paired edges could be computed dynamically from indexed paired reads. However,

the construction run-time of the FM-index is high, and difficult to parallelize.

Thus, we propose a new strategy based on the indexing scheme presented in

the previous Section. The key concept is: instead of constructing the whole graph,

construct only a fraction of the graph at a time. Indeed, any part of the graph can be

computed efficiently from a starting region: overlaps between sequences and pairing

information are retrieved by querying the paired reads index. As described in the

following, we take advantage of the localized graph traversal method to assemble the

whole genome by constructing many local assemblies.

In this chapter, we bring together the concepts introduced in the previous chapters

to implement this strategy. The Monument assembler is a new assembly software

based on local construction of practical non-branching paths (Section 4.3.2), and

paired reads indexing (Section 4.4). The software aims to be much more memory-

efficient, and embarrassingly parallelized. Simultaneously, we target a quality of

results comparable to that of other graph-based assemblers.

5.1 Pipeline

The pipeline of the assembler is given in Figure 5-1. Compared to a classical pipeline,

two main differences are noted.

No prior error-correction phase We argue that reads correction is not necessary,

as the reads indexing module discards erroneous k-mers. A consensus phase later in

assembly performs a majority vote which uses solid k-mers information to correct

errors in reads.

No intermediate contigs Scaffolds are directly constructed from the reads, fol-

lowing a strategy described in the Section ??. We demonstrate that it is possible

to construct scaffolds locally, without requiring a complete contigs assembly to be

completed beforehand. This effectively allows targeted scaffolds assembly.

CHAPTER 5. MONUMENT ASSEMBLER 72

Paired-end reads

Parallel paired reads indexing

k-mers with
hash =
0 mod p

k-mers with
hash = 1

mod p

· · · k-mers with
hash =

p − 1 mod p

Reads linked
to k-mers

with hash =
0 mod p

Reads linked
to k-mers

with hash =
1 mod p

· · ·
Reads linked

to k-mers
with hash =
p − 1 mod p

Parallel paired localized assembly

Starter distri-
bution server

Localized
assembly
thread 2

Localized
assembly
thread 1

· · · Localized
assembly
thread n

Scaffolds Mate-pairs

Mate-pairs super-scaffolding

Super-scaffolds

Figure 5-1: Modules of the Monument assembler

CHAPTER 5. MONUMENT ASSEMBLER 73

5.1.1 Indexing module

The indexing module of Monument follows the model developed in Section 4.4 on

page 56. Two variants have been implemented:

1. k-mers pre-filtering then reads indexing: first, k-mers are inserted into the hash

table with no references to reads. Second, erroneous k-mers are removed on the

fly using the mechanism described in Section 4.4.2 on page 59. Third, references

to paired reads are added.

2. Direct indexing: paired reads are directly inserted into the hash table (indexed

by k-mer keys). Erroneous key/value pairs, i.e. low abundance k-mers with

references to reads, are removed on the fly.

The first mode enables memory-efficient indexing at the cost of reading the input

reads twice. The second mode processes the reads only once, at the cost of temporarily

inserting erroneous entries. In both modes, the read indexing structure is constructed

using the parallel partitioning strategy from Section 4.4 on page 56. The resulting

index will be used in the assembly module.

5.1.2 Assembly module

The assembly module constructs all possible, (almost) non-overlapping, practical non-

branching paths (Section 4.3.2 on page 53). To this end, it constructs a paired string

graph using the index created in the previous module. Note that only a small sub-

graph of the complete paired string graph of the reads needs to be constructed for

each path. Using this property, the module performs assembly locally, greedily, and

in parallel.

Concretely, we propose a greedy, localized assembly procedure, that can be exe-

cuted on an arbitrary number of threads. The procedure starts from an un-assembled

region (defined formally in Section 5.2.3). Instead of extending sequentially and stop-

ping at the first ambiguity, it constructs a sub-graph of the paired string graph on

the fly, in both directions, by following a practical non-branching path. Here, assem-

CHAPTER 5. MONUMENT ASSEMBLER 74

Figure 5-2: Assembly by localized sub-graph construction. Red nodes are starting
regions. Each starting region initiates the construction of a sub-graph (clusters of
different colors).

bly is said to be localized, because the procedure only explores a sub-graph of the

paired string graph. It is greedy, because the sub-graph is constructed by successive

extensions.

This corresponds to splitting the complete paired string graph into almost-disjoint

sub-graphs, each sub-graph corresponds to exactly one scaffold. Figure 5-2 shows an

example of such split. This approach induces a memory overhead due to the parallel

construction of sub-graphs. However, only a constant number of scaffolds are assem-

bled in parallel at any given time. The assembly procedure marks k-mers to make

sure that each k-mer appears only once in the global assembly. This condition can

be violated when the same k-mer is assembled by two or more sub-graphs in parallel.

Also, as shown in Figure 5-2, sub-graphs overlap at branching nodes. Such assembly

redundancies can easily be filtered out in the resulting scaffolds, by recording redun-

dant k-mers. For instance, a redundancy-filtering procedure is given in Chapter 6,

Section 6.2.2.

To construct each sub-graph, overlaps between paired reads and pairing informa-

tion need to be accessed efficiently. Hence, it is required that a complete index of the

reads resides in memory. However, such index occupies less memory than a string

CHAPTER 5. MONUMENT ASSEMBLER 75

graph. Provided that each worker can access the full index, embarrassingly parallel

construction of scaffolds can be achieved.

While this is technically a greedy assembly algorithm, such approach overcomes

the shortcomings of classical greedy algorithms. Except for Taipan [45], which does

not support paired reads nor parallel assembly, most greedy assemblers do not con-

struct a graph to solve local extension ambiguities [5, 1, 4]. As a consequence, greedy

assemblers stop contigs extension at small biological variations or sequencing arti-

facts. Localized graph-based assembly using Postulate 2 overcomes this problem by

explicitly performing traversal of such structures.

5.2 Implementation of the assembly procedure

Algorithm 4 Monument assembly procedure

1: Start from an initial sequence s(0)

2: t ← 0
3: repeat
4: s(t)′ ← extension of s(t) using an extension graph
5: s(t+1) ← extension of s(t)′ using a paired extension
6: t ← t + 1
7: until the previous paired extension is successful
8: s

(t)
g ← attempt to fill the gaps in s(t)

9: return an assembled, gap-filled scaffold s
(t)
g

Algorithm 4 describes how the assembly procedure is implemented in Monument.

In Step 4, a more efficient implementation of paired string graphs is used for regions

where pairing information is not necessary. For instance, genomic regions where

repeats are shorter than the reads can be assembled without pairing information.

In such cases, we take advantage of the in-memory full reads index to construct an

equivalent, more compact sub-graph: the extension graph. The extension graph yields

a contig which cannot be extended using only overlap information.

Then, in Step 5, using pairing information, we perform a paired extension following

the practical non-branching paths strategy (Section 4.3.2 on page 54). Implementa-

tion details of paired extensions are described later in this section. An overview of

CHAPTER 5. MONUMENT ASSEMBLER 76

the method is given here: a paired string graph G is constructed from the contig

extremity of length equal to the insert size. This contig extremity is a simple path

p, with a central node n. If there exists a simple path p′ of central node n′, such

that the paired link n 99K n′ satisfies the non-branching condition, the contig can be

extended as follows: the consensus sequence of p′ and appended, along with a gap of

suitable length, to the contig. This completes the paired extension.

To continue assembling, another extension graph is then constructed by taking

this consensus as a starting region, and the whole process is repeated as long as

paired extensions are possible.

5.2.1 Extension graphs

The extension graph can be seen as a compressed de Bruijn graph, where non-

branching regions are compressed into a single node at construction time to save space.

It is characterized as follows: nodes are arbitrarily long sequences (reflecting unam-

biguous contigs), and edges indicate exact (k − 1)-overlaps between sequences. Ex-

tension graphs were first used in the targeted assembly approach of Mapsembler [39].

The construction of an extension graph always starts from a single node (a start-

ing region). Each node is extended by the set of k-mers that (k − 1)-overlap with it.

Extensions stop when the breadth of the tree exceeds a maximal breadth b (exper-

imentally set to 20), or when branching (tree breadth ≥ 2) is present during more

than m consecutive depths (experimentally set to 1000). In other words, the graph

is extended as long as Postulate 1 (Section 4.3.2 on page 55) is satisfied. In essence,

a depth-first search is performed from the starting region, yielding a tree. Leaf nodes

are extended as long as the graph is acyclic and of bounded breadth.

The procedure to construct the extension graph from a starting region is given

in Algorithm 5. Several classical consensus steps are implemented to transform the

extension graph into a contig.

CHAPTER 5. MONUMENT ASSEMBLER 77

Algorithm 5 Construction of an extension graph from a starting region
Require: Starting region r, maximal branching length m, maximal branching breadth b
Ensure: Extension graph G.
1: procedure extension(G, E)
2: E′ = ∅
3: for node e in E do
4: P ← { set of k-mers that (k − 1)-overlap with e }
5: if P is a single sequence p then
6: replace e by the node labelled by (e + p[k − 1]) in G
7: add (e + p[k − 1]) to E′

8: else
9: for each sequence p in P do

10: add a node labelled by p and an edge (e, p) to G
11: add p to E′

return G, E′, lb

12: G = ({r}, ∅) . Extension graph
13: E = {r} . Nodes to be extended
14: lb = 0 . Branching length
15: while E 6= ∅, |E| ≤ b, lb ≤ m do
16: G, E, lb = extension(G, E)
17: if |E| > 1 then
18: lb ← lb + 1
19: else
20: lb ← 0

return G.

5.2.2 Paired extensions

Without loss of generality, we consider the paired string graph of all the reads where

one mate align to the right extremity of the contig. The sub-graph induced by the

mates which align to this extremity is a simple path. Consider G, the sub-graph

induced by the opposite mates. The paired branching condition (Section 4.3.2 on

page 54) requires that G is also a simple path. In practice, G might have a slightly

more complex structure than a simple path (see Figure 5-3 for an example). Heuristics

had to be implemented to cope with additional overlap branching possibly present in

G. For the sake of completeness, we present them here.

Instead of collapsing/removing branching, we adopt a more conservative approach

which detects long enough simple paths (longer than 2i + 1, where i is the maximal

insert length deviation). Also, if G contains a cycle, paired extension is stopped. If G

is cycle-free, a topological sort of G is performed to compute a partial ordering of the

CHAPTER 5. MONUMENT ASSEMBLER 78

nl nr

Figure 5-3: Illustration of simple path detection for paired extensions. The initial
graph (taking the union of yellow and blue edges) is constructed from opposite mates
of paired reads. A procedure analyzes the graph to detect where in-branching and
out-branching end, i.e. at nodes nl and nr. If the simple path between nl and nr is
long enough (blue edges), a paired extension is performed.

nodes. Then, a reverse breadth-first search is performed from one of the last ordered

nodes of the graph. This permits to detect the last node where out-branching occurs

(nr in Figure 5-3). If no such node exists, one of the last ordered nodes is selected

as nr. From nr, another breadth-first search enables to detect the first node where

in-branching occurs nl. If none exists, one of the first ordered nodes is selected as nl.

Eventually, the path p between nodes nl and nr is guaranteed to be a simple path,

with nodes appearing consecutively in the topological sort (Figure 5-3). Hence, the

paired extension is validated if p is long enough. This indicates that G contains a

simple path that is an unique possible paired extension.

A paired extension is performed if p is long enough, i.e. longer than 2i+ 1, where

i is the paired reads insert size deviation. The contig is extended with the consensus

sequence of p. Finally, the gap size between the contig and the extension is estimated

using the mean value of insert sizes from paired reads which align on both sides of

the gap.

Paired-end data typically permits reliable paired extensions, because of the high

sequencing depth. However, the pairing extension fails with mate-pair data, because

such data has larger insert deviation and the lower coverage. To make use of mate-

pairs, a subsequent scaffolding phase is necessary.

CHAPTER 5. MONUMENT ASSEMBLER 79

5.2.3 Starting region distribution and assembly termination

We describe the mechanisms used to distribute starting regions across threads to

initiate a local assembly. To select an un-assembled region, the indexing structure

is augmented with flags which indicate which k-mers have already been used in the

assembly. Recall that the indexing structure is a key/value table where k-mers are

keys, and values are filtered references to reads. An additional marker bit is appended

to each value, to indicate whether a k-mer has already been assembled. Whenever a

thread requests a new starting region, the following steps are performed on the server:

1. The first un-marked k-mer of the indexing structure is considered as a potential

starting region.

2. A short extension graph is constructed from this k-mer. The graph should not

contain any branching node. The motivation is to construct a short, simple

path, yielding a short consensus sequence s.

3. If the length of s is below a minimum length (arbitrarily set to 2k + 1), all the

k-mers from this sequence are marked and the procedure restarts from Step 1.

4. s is returned as a new starting region, i.e. s is assembled by the thread.

5. When the thread completes the local assembly around s, all assembled k-mers

are marked.

When should this mechanism stop, i.e. decide that no more regions need to be

assembled? Typically, in string graph methods, all nodes of the graph (i.e, reads) need

to be marked as explored. This is similar with de Bruijn graphs approaches, where

k-mers are marked. Here, k-mers in the indexing structure are used to detect which

regions are already assembled. The starting region distribution module decides that

the assembly is completed when all the k-mer keys have been marked as explored.

CHAPTER 5. MONUMENT ASSEMBLER 80

5.2.4 Gap filling algorithm

To increase the size of contigs, a simple heuristics procedure can be used to fill scaffolds

gaps. By construction, the length of scaffold gaps are shorter than insert size. Inspired

by related techniques [6, 7], the proposed procedure does not require the complete

graph (as in Euler-USR [7]). Furthermore, reads localization (as in Allpaths [6]) is not

a pre-requisite. To fill the gap between two reads l and r, the procedure starts from

the string t = l and repeatedly extends t to the right in a depth-first fashion, until r is

reached. Right-most extensions of t are computed as follows. All the overlaps between

the read-length suffix of t and the input reads are retrieved. Possible extensions are

computed from the set of matches according to a voting mechanism to cope with

sequencing errors. The search tree for t can possibly be large due to repeats in the

original sequence. When an unambiguous sequence f to the left or to the right of the

gap is long enough, reads localization is performed. In this context, reads localization

selects paired reads where the other mate aligns to the sequence f , and extends only

with these reads.

The following conditions are introduced to force early failure rather than long

search time. During search, the string t cannot exceeds (1 + a) times the expected

size of the gap, where a is a constant that estimates the maximum uncertainty of

actual gap size. A valid t that reaches r cannot be shorter than (1 − a) times this

size. Furthermore, the procedure fails after a constant number of iterations to prevent

stalling on highly-branching regions.

5.2.5 Dealing with sequencing errors

NGS assemblers adopt one or both of the following methods to cope with sequencing

errors: either error-correction during a pre-assembly phase (e.g. Euler-SR assembler),

or in-assembly graph simplification to remove vertices corresponding to erroneous

reads (e.g. Velvet assembler). Both techniques are implemented in the SOAPdenovo

assembler. Pre-assembly correction is computationally expensive as its running time is

comparable to the whole assembly. In-assembly correction requires the construction

CHAPTER 5. MONUMENT ASSEMBLER 81

of a large initial indexing structure containing extra erroneous entries. For large

genomes, pre-assembly error correction using an external program becomes inevitable

for classical assemblers because of memory constraints [29]. Short-read pre-assembly

error correction algorithms typically construct a k-mer abundance histogram. This

histogram is used to detect and correct low-frequency k-mers in reads.

The Monument assembler implements pre- and in- assembly error discarding, not

correction. Low-abundance kmers were discarded during indexing. This acts as a

first filter towards discarding erroneous k-mers. Note that this step does not correct

errors in reads, but merely discards references to reads. During assembly, remaining

errors in reads are discarded by two mechanisms. The first mechanism is the voting

procedure used in several assembly stages (e.g. paired extension and gap filling),

which computes consensus sequences of reads sharing a common kmer. The second

mechanism is Postulate 2 of practical non-branching path. Even if an error is seen

more times than the low-abundance threshold, it creates an erroneous graph portion,

that can be discarded in a practical non-branching path.

5.3 Results

5.3.1 Assembly metrics

The quality of an assembly cannot be measured by a single metric. Many metrics

and variations thereof have been introduced. We give a canonical sample of metrics

here.

The N50 metric is the scaffold/contig length at which you have covered 50% of

the total assembly length. In other words, the N50 metric measures the length of the

smallest element of the set of largest scaffolds (resp. contigs) which cover at least

50% of the assembly. Alternatively, the NG50 metric is the scaffold/contig length

at which you have covered 50% of the total genome length. Figure 5-4 is a fictional

assembly of contigs lengths (3, 4, 1) with respect to a genome of length 10. In this

case, the N50 is 4 and NG50 is 3.

CHAPTER 5. MONUMENT ASSEMBLER 82

Figure 5-4: Toy example for computing the N50 and NG50 metrics. A genome
(black line) is represent along with an assembly (green lines, representing contigs or
scaffolds). The number next to the each line specifies a fictional sequence size. The
N50 of this assembly is 4, and NG50 is 3.

We derive formulations of the coverage and accuracy metrics from methods pro-

posed by the authors of Allpaths [6]. Assembled sequences (contigs or scaffolds) are

divided into chunks of size less than 10kb. Each chunk is considered to be valid if

it aligns with more than 99% identity to the reference genome (alignment with un-

determined nucleotides are considered valid). The global accuracy of the assembly is

the ratio of valid chunks over total chunks. Similarly, the coverage is deduced as the

ratio of reference genome bases covered by at least one aligned chunk. In Figure 5-4,

the coverage of the assembly is 0.8.

5.3.2 Bacterial assembly results with simulated variants

We evaluate localized paired assembly using practical non-branching paths on a small

(bacterial) dataset. Two short reads assemblers based on de Bruijn graphs are com-

pared with Monument. The Velvet assembler (version 1.1.03) uses graph simplifica-

tion heuristics [55]. The Ray assembler (version 1.3.0) implements a greedy traversal

strategy [4]. The assemblers were run with default parameters and k = 23. By set-

ting a similar k-mer size, all assemblers, including ours, virtually explore the same de

Bruijn graph.

The maximal graph depth d for genomic variants is set such that any path has

genomic length less than 10 + k. The insert size deviation i is set to half the value of

the insert size, which is a very conservative deviation with respect to actual paired-end

data.

CHAPTER 5. MONUMENT ASSEMBLER 83

We first compared assemblers on experimental Illumina short paired reads from

E. coli (SRA SRX000429). This dataset (Dataset 1) contains 10 million paired reads

of length 36 bp and insert size 200 bp. We then investigated the ability of our method

to assemble diploid genomes. To this end, we simulated 3 million paired reads of a

diploid genome based on the E. coli sequence (Dataset 2). The wgsim paired reads

simulator was used with default parameters [28], producing 75 bp reads (500 bp

inserts) with simulated sequencing errors.

Assembly results for the two datasets are shown in Table 5.1. For the empirical

dataset, Monument obtains the best scaffold N50 value and the second best contig

N50 value (second to Ray). For the simulated dataset with variants, Monument

outperforms both methods in terms of N50 values. The genome coverages of the

three assemblies are almost equivalent, for both the empirical (96.4%-97.4%) and the

simulated datasets (87.9%-91.0%). In terms of accuracy, Monument produced the

most inaccuracies in the experimental dataset. We noted that a significant portion

of inaccurate chunks from the Monument assembly are caused by a minor event: the

gaps between scaffolds was slightly mis-estimated. In general, all the assemblies are

of high quality: no mis-join between two distant genome regions was detected in any

assembly.

To understand why Ray has difficulties assembling the second dataset, we simu-

lated a third dataset of reads, similar to Dataset 2 but without variants. This time,

Ray obtains a scaffold N50 of 89.4 Kbp and largest scaffold of length 268.5 Kbp.

This experiment confirms that mechanisms for biological variations traversal, such as

practical non-branching paths, are a key requirement for greedy assemblers.

We recorded execution time and memory usage during indexing and assembly of

the experimental dataset. The size of the paired reads index is 0.4 GB and peak

memory usage during assembly is 0.6 GB. Velvet and Ray have peak memory usage

of 2.4 GB and 3.2 GB respectively. However, Ray has the possibility to distribute

its index structure on a cluster. Using 6 threads, our implementation completed the

assembly in 7 minutes, Velvet in 8 minutes and Ray in 16 minutes.

Our implementation can also assemble a scaffold around a specified genomic re-

CHAPTER 5. MONUMENT ASSEMBLER 84

Dataset Software Contig
N50
(Kbp)

Scaffold
N50
(Kbp)

Longest
scaffold
(Kbp)

Coverage
(%)

Accuracy
(%)

Experi-
mental
(1)

Monument 38.0 101.8 236.0 96.4 96.7

Velvet 26.3 95.3 267.9 96.9 99.1

Ray 69.5 87.3 174.4 97.4 98.4

Simulated
with
variants
(2)

Monument 113.3 134.1 340.5 91.0 95.0

Velvet 30.8 132.6 327.2 87.9 92.3

Ray 10.2 10.2 41.2 89.2 100.0

Table 5.1: Quality of the assemblies of simulated and experimental paired-end reads
from E.coli using Velvet, Ray and Monument.

gion, i.e. perform targeted assembly. This is of particular interest as new targeted

assembly methods (TASR and Mapsembler, both unpublished) only produce contigs.

Targeted assembly with Monument is also very fast: one scaffold is assembled in a few

seconds. However, contrary to targeted assemblers, Monument requires the complete

reads index to reside in memory.

5.3.3 Fungus assembly results, parallel speed-up measure-

ments

We now assemble a genome that is one order of magnitude larger than the previous

bacteria. The main goal of this experiment is to demonstrate how Monument performs

localized paired assembly in a distributed fashion.

The size of the N. crassa genome is 39 Mbp. Two Illumina sequence libraries

are publicly available [46], of respective insert lengths 200 bp (paired-end) and 3600

bp (mate-pairs), representing a 123x coverage. The paired-end library was error-

corrected using SOAPdenovo corrector. The parallel indexing performance for this

dataset was measured in the previous chapter (Section 4.4.4 on page 63). We per-

formed localized paired assembly with Monument using the paired-end library only;

the mate-pairs library is only used during a final scaffolding phase.

CHAPTER 5. MONUMENT ASSEMBLER 85

Figure 5-5 shows the time taken by the assembly phase of our implementation,

with respect to the number of cores. An initial, one-time overhead (green area) is due

to an imperfect index serialization procedure. Specifically, instead of fully serializing

the static hash after indexing, it is reconstructed (using a single thread) each time

the assembler is loaded. Using lower-level serialization could essentially remove this

overhead. Hence, the serialization overhead is disregarded in the following analysis.

Figure 5-5 shows that the speed-up of the assembly phase is near-linear up until a large

number of distributed cores. Our implementation, using the largest number of cores

(34), which were distributed on 3 nodes, achieves a 23x speedup (34x is the theoretical

maximum). On this setup, after indexing, the N. crassa genome is assembled in 3

minutes. This represents more than 10 Mbp assembled per minute. In contrast, the

reported assembly time for Allpaths 2 is 86.6 hours (using 16 cores). SOAPdenovo

performs the assembly steps in 4.5 minutes (using 16 cores). Interpolating Figure 5-

5 to 16 cores, Monument would have performed the assembly 5 minutes. Allpaths

and SOAPdenovo could not be evaluated on 34 cores, because they do not support

distributed assembly.

To achieve this level of parallelism, we reduced the communication overhead be-

tween threads and the starting region distribution mechanism to a strict minimum.

Specifically, the distribution server pre-loads several starting regions, to avoid latency

when a thread requests a new region. Also, the redundancy of assembled sequences

is filtered by the starting region server, upon receiving a fully assembled scaffold.

This could have been done during assembly on each thread. However, doing so re-

quired threads to communicate with the server, to know whether a region was already

assembled. In practice, this degraded parallel performance.

The assembly produced by Monument is compared with two other assemblies

(from Allpaths 2 and SOAPdenovo) in terms of quality metrics. Table 5.2 reports the

scaffold N50, coverage and accuracy of the assemblies. SOAPdenovo had problems

using the mate-pairs library: including mate-pairs resulted in a lower N50, hence we

report an assembly using paired-end reads only. Our resulting assembly, after incor-

porating mate-pairs, obtains the highest N50 metric by a wide margin. Monument

CHAPTER 5. MONUMENT ASSEMBLER 86

 60

 100

 200

 300

 1000

 4000

 1 2 4 10 34

A
ss

em
bl

y
tim

e
(s

)

Number of cores

Figure 5-5: Parallel speed-up measurement, assembly of the N. crassa genome. The
red curve indicates the wall-clock time taken by the assembly phase of Monument
(localized paired assembly). Note that the assembly on last measurement (34 cores)
was distributed on three nodes. The green area indicates the one-time, single-threaded
overhead required to load the index.

dedicated scaffolder (manuscript in preparation) enabled a significant N50 improve-

ment. All assemblies obtain similar coverages, except SOAPdenovo has 2.7 points

more coverage than Allpaths and Monument. Allpaths obtains the highest accuracy

of the three methods. As evidenced by pre/post-scaffolding results, most inaccuracies

are caused by the scaffolding step. We verified that the origin of these inaccuracies is

a mis-estimation of the number of N’s inside gaps, due to the large deviation of mate-

pairs. These inaccuracies could be easily fixed in SOAPdenovo and our scaffolder, by

designing a more precise gap estimation formula.

CHAPTER 5. MONUMENT ASSEMBLER 87

Software Scaffold N50 (kbp) Coverage (%) Accuracy (%)

Allpaths 2 (reported in [46]) 58 89.5 97.8

SOAPdenovo 71 92.2 93.2

Monument, pre-scaffolding 28 89.5 96.5

Monument, post-scaffolding 292 89.4 92.9

Table 5.2: Quality results for the assemblies of the N. crassa genome using SOAP-
denovo, Allpaths 2, and Monument. SOAPdenovo was only able to assemble the
paired-end library. Monument results are reported before and after the scaffolding
phase, which used the mate-pairs library. Note that since the reference genome is
incomplete, the accuracy reported by Allpaths is possibly close to the (unknown)
upper bound.

5.3.4 Assembly benchmarks

Assemblathon 1 & 2, dnGASP

The Assemblathon 1 was an international collaborative effort to evaluate state-of-

the-art methods of de novo assembly as of early 2011. Simulated Illumina data

from an completely artificial genome (≈ 100 Mbp) was made publicly available. The

artificial genome was not known to the participants. A distant genome from the

artificial genome was produced, however it has not been used by any participant.

The benchmark received submissions from 17 different groups which used either their

own software, and/or publicly available tools. The metrics used to measure the “best”

assembly were not known in advance. However, classical metrics such as N50, genome

coverage, short-range and long-range accuracy, were implicit.

dnGASP (http://cnag.bsc.es/) was a similar effort which took place simulta-

neously to the Assemblathon 1. These two events had almost identical requirements:

perform de novo assembly of an artificial genome using simulated data. The main

difference with the Assemblathon 1 is that the artificial genome was one order of mag-

nitude larger (≈ 1.8 Gbp). Due to the difficulty of assembling such a large genome,

dnGASP received less submissions (8 groups participated).

The Assemblathon 2 took place six months after Assemblathon 1. The goal was to

assemble three mammalian-scale genomes from actual sequencing data. The species

http://cnag.bsc.es/

CHAPTER 5. MONUMENT ASSEMBLER 88

are: Maylandia zebra (∼ 1 Gbp genome), Boa constrictor constrictor (∼ 1.4 Gbp

genome), Melopsittacus undulatus (∼ 1.2 Gbp genome). The benchmark received 43

entries (16 fish, 15 parrot, and 12 snake) from 21 groups.

Results for the dnGASP and Assemblathon 2 benchmarks were unpublished at the

time of writing. The Assemblathon 1 consortium has published an extensive analysis

of the quality of assemblies [15]. Perhaps less attention has been given to the compu-

tational resources needed to run the assemblers. In the next section, we describe the

pipeline used with the Monument assembler to participate in these benchmarks, and

present a selection of Assemblathon 1 results, including an unpublished computational

resources summary.

Pipeline and results

Pipeline The pipeline used in conjunction with Monument for these benchmarks

is described. The indexing module of Monument was used to perform k-mers pre-

filtering then indexing using only the paired reads. For Assemblathon 1 and dnGASP,

an earlier assembly module, without extension graphs, was implemented. The SS-

PACE [3] scaffolder was used to re-scaffold the results of Monument paired-end assem-

bly, using mate-pairs. For Assemblathon 2, extension graphs were implemented and

a new scaffolder (SuperScaffolder, unpublished) was developed. The SOAPdenovo

GapCloser program was used to close gaps in our scaffolds.

Assemblathon 1 Figure 5-6 shows an overview of the NG50 quality metrics com-

puted for assemblies scoring the best scaffold NG50 for each assembler. The purpose

of this figure is to show the absolute best scaffold NG50 that can be produced by each

assembler. Note that in the Assemblathon 1 article, different assemblies were selected

for specific evaluation, according to more criteria than just scaffold NG50. Figure 5-7

reports the typical running time and memory usage for each assembly pipeline, from

indications given by each participant. This information is inaccurate, as hardware

resources can vary greatly between groups, this is not a fair computational resources

benchmark.

CHAPTER 5. MONUMENT ASSEMBLER 89

Figure 5-6 shows that the compared methods produced assemblies that are very

different. Several factors contribute to these differences. First, some groups performed

undisclosed pre-assembly data processing, e.g. read correction and trimming. Read

correction is still an active research area, and no method produces optimal results.

Second, the contig N50 differences can be explained by whether a group performed

gap-filling on the scaffolds or not. Third, the scaffold N50 can be explained by (i) the

quality of initial contigs and (ii) differences between scaffolding heuristics. Fourth,

groups probably optimized their assembly according to different metrics, i.e. choosing

an accurate assembly over a contiguous one.

Several other quality metrics were computed in the Assemblathon 1 article. As-

sembly errors and coverage are reported here succinctly, using data from Tables 4 and

5 of the Assemblathon 1 article. Note that in the previous paragraph one assembly

was selected per software, based on the best scaffold NG50 length. Here, accuracy

and coverage results are reported for one assembly per group, selected by best As-

semblathon 1 metrics overall score. However in practice, accuracy and coverage doe

not vary significantly between assemblies produced by the same assembler. Table 5.3

shows the number of inter- and intra- chromosomal mis-joins in selected assemblies, as

well as insertion-deletions errors. Figure 5-8 shows the haplotype and genic coverages

of selected assemblies.

In summary, our pipeline using the Monument assembler performed very well in

terms of scaffold NG50, structural errors, wall-clock time and memory usage. The

pipeline had weaknesses in terms of contig NG50 and coverage. A possible explanation

for this is the choice of relatively low k-mer size (32) compared to other groups

(other k-mer sizes were not always disclosed, but some disclosed values of k ranged

from 64 to 100). Another point is the lack of gap-filling, which is the step aimed

at improving contig N50 by filling gaps in scaffolds. The lower performance in the

coverage metric can be explained by redundancy filtering post-processing phase. Since

earlier implementations of Monument produced redundant contigs due to imperfect

graph partitioning, redundant sequences in the assembly were identified, as many

instances of the same repetitions, and subsequently removed. Some true near-identical

CHAPTER 5. MONUMENT ASSEMBLER 90

genomic repeats were removed as false positives, yielding a reduced genome coverage.

Preliminary results for dnGASP A similar pipeline to that of Assemblathon

1 was used to participate in the dnGASP benchmark. Preliminary results for our

pipeline, from dnGASP organizers, are of similar nature to that of Assemblathon 1.

Specifically, our assembly has one of the lowest scores in terms of the contig N50

metric, whereas it has the second best score in terms of the scaffold N50 metric. In

terms of computational requirements, our pipeline completed the assembly using 78

Gb of memory, within a day, on a 6 nodes cluster (70 cores).

Preliminary results for Assemblathon 2 Preliminary results from the Assem-

blathon 2 indicate that our improved pipeline produced assemblies that are compet-

itive with top assemblers, in terms of results quality. Specifically, our assemblies of

the M. zebra and B. constrictor genomes consistently rank 2nd in terms of contig N50

and 6th in terms of scaffold N50. Our improved pipeline shows a significant increase

on the contig N50 metric compared to Assemblathon 1, likely due to the combina-

tion of extension graphs and usage of the GapCloser program. With respect to the

scaffold N50 metric, the gap between top assemblies and our assemblies is no longer

as significant (≈ 0.6 order of magnitude, compared to ≈ 0.8 order of magnitude in

Assemblathon 1). Results of assemblies accuracy assessment were not yet available

to the participants.

5.3.5 Discussion

In summary, a new de novo assembly software, Monument, is developed using paired

string graphs. The novelty of this software resides is threefold: (i) it is able to perform

localized assembly of scaffolds, (ii) its memory footprint is small despite being graph-

based, and (iii) the assembly phase is embarrassingly parallel.

Localized scaffolds assembly Prior to this work, scaffolds were constructed from

an ordering of contigs, requiring a complete assembly of contigs to be known before-

CHAPTER 5. MONUMENT ASSEMBLER 91

Intra-chr
mis-joins

Inter-chr
mis-joins

sum of
mis-
joins

insertions deletions indels insertions
at ends

DOEJGI
(Meraculous)

21 160 181 55 108 40 72

WTSI-S
(SGA)

6 191 197 56 76 19 127

Broad
(ALLPATHS)

75 161 236 524 379 9 96

IRISA

(Monument)
147 203 350 925 1593 116 3375

BCCGSC
(ABySS)

351 285 636 255 233 102 1641

BGI
(SOAPdenovo)

368 288 656 355 639 98 130

CSHL
(Celera)

396 337 733 417 3287 223 486

CRACS
(ABySS)

687 303 990 198 121 51 306

EBI
(SGA)

458 563 1021 127 547 53 307

RHUL
(OligoZip)

691 349 1040 172 264 26 1049

IoBUGA
(SOAPdenovo)

919 330 1249 1663 2933 356 109

GACWT
(Cortex)

757 730 1487 905 1292 216 4722

CIUoC
(Kiki)

1205 684 1889 1189 2026 65 6113

ASTR
(PE-Assembler)

2065 200 2265 109 227 73 144

WTSI-P
(Phusion2)

1940 449 2389 1851 289 87 279

UCSF
(Price)

2731 2396 5127 5908 6223 1018 6711

Table 5.3: Assembly errors for Assemblathon 1 groups (taken from [15]). For each
group, the assembly which maximizes an overall score of quality metrics is selected.
Groups are sorted according to mis-joins errors, instead of the total sum of errors, as
mis-joins errors are arguably the most detrimental type of errors in an assembly.

CHAPTER 5. MONUMENT ASSEMBLER 92

hand. We show that it is possible to assemble scaffolds locally around a genomic

region by following non-branching paths greedily. This approach allows to design

the first localized assembly algorithm which directly constructs scaffolds from reads.

Benchmark results on a bacterial dataset indicate that localized scaffolds assembly

yields longer scaffolds than two popular short reads assemblers. It could be surprising

that the greedy traversal we implemented obtains comparable results to scaffolding

algorithms based on a complete contigs graph. We conjecture that scaffolders imple-

mented in these assemblers do not take full advantage of the whole contigs graph.

Lower memory with similar quality Our method does not require a large graph

to be stored in memory. A small graph is constructed for each scaffold. An indexing

structure similar to that of greedy assemblers is used to construct each graph. How-

ever, compared to other greedy approaches, the graph approach takes into account

biological variants. Hence, it does not suffer from degraded contiguity due to genomic

variants.

Parallelism Additionally, this assembly algorithm is embarrassingly parallel in na-

ture. A starting region distribution server enable scaffolds to be constructed indepen-

dently by many threads. By assembling a 40 Mbp genome, we measured a near-linear

parallel speed-up with up to 34 cores (3 nodes). This is the first assembler imple-

mentation which can assemble a genome in parallel with virtually no synchronization

overhead.

Perspectives Two lines of improvement should be considered: (1) gap-closing in

scaffolds is a key step for obtaining long contigs. Most complex repeats were not

resolved by our simple path-finding procedure, hence a more elaborate algorithm is

needed. (2) Incorporating mate-pairs with long inserts in genomic graphs is still an

unaddressed challenge in the literature. These reads are produced with higher insert

size variability and lower coverage than paired-end reads. Mate-pairs cannot be used

in our current framework, because Postulate 1 almost never holds for such data. An

immediate solution would be to perform re-scaffolding of scaffolds using mate-pairs

CHAPTER 5. MONUMENT ASSEMBLER 93

links.

As short read sequencing is progressively shifting towards longer reads (over 100

bp), the landscape of assembly software has to adapt to high-coverage, longer reads.

Specifically, de Bruijn graph implementations appear to be unable to assemble long

reads with quality comparable to string graph implementations. In contrast, string

graph-based methods are limited to assembly of low-volume datasets because of mem-

ory constraints. We believe that our methodology of local string graph construction

will lead to software able to assemble both short and long reads at any coverage

without sacrificing running time or results quality.

CHAPTER 5. MONUMENT ASSEMBLER 94

Kiki

Cortex

CLC

Price

PE-Assembler

PCAP

Phusion2

Velvet

OligoZip

Monument

SOAPdenovo

AbySS

SGA

Celera

ALLPATH-LG

Meraculous

1 000 10 000 100 000 1 000 000 10 000 000

6000

9358

12187

22716

57802

301691

502551

879312

1417207

1421787

1801023

2712723

3032585

3254796

8396795

9073174

6000

2526

12061

22716

29971

301691

70244

9192

84611

6900

214562

17259

2798

150434

219906

15913

NG50 scaffold
length
NG50 contig
length

Figure 5-6: Assemblathon 1 quality results. For each assembly software, the best
assembly with scaffold NG50 is selected. Assemblies are sorted by longest scaffold
NG50 length. The corresponding contig NG50 length is shown. Assemblies computed
by Assemblathon organizers are not shown.

CHAPTER 5. MONUMENT ASSEMBLER 95

1 10 100 1000

5,8

128

16

100

64

70

100

30

100

4

6,3

16

6

10

24

1

16

48

64

50

256

70

Memory per
node (Gb)
Number of
cores

SGA

AbySS

OligoZip

Celera

Cortex

SOAPdenovo

ALLPATH-LG

PE-Assembler

Phusion2

Meraculous

Monument

1 10 100 1000

300

345

24

384

31

256

48

120

24

24

12

8

6,5

6

2

Cpu time
(h)
Wall clock
(h)

Figure 5-7: Assemblathon 1 resource usage, one per assembly software. This figure
was compiled using information given by participants, and may contain inaccurate
information.

CHAPTER 5. MONUMENT ASSEMBLER 96

BGI (SOAPdenovo)

BCCGSC (ABySS)

WTSI-S (SGA)

RHUL (OligoZip)

CSHL (Celera)

Broad (ALLPATHS)

IoBUGA (SOAPdenovo)

WTSI-P (Phusion2)

EBI (SGA)

DOEJGI (Meraculous)

CRACS (ABySS)

IRISA (Monument)

ASTR (PE-Assembler)

GACWT (Cortex)

UCSF (Price)

CIUoC (Kiki)

40 50 60 70 80 90 100

98,8

98,7

98,7

98,5

98,5

98,3

98,3

97,8

97,7

97,3

96,3

93,7

90,9

86,4

83,7

78,5

92,7

88,9

75,0

67,4

89,1

93,8

92,8

91,8

88,5

92,3

90,2

88,1

68,5

48,0

59,6

48,9

Total haplotype
coverage (%)
Genic coverage (%)

Figure 5-8: Haplotype coverage and gene coverage for Assemblathon 1 groups (taken
from [15]). For each group, the assembly which maximizes an overall score of quality
metrics is selected. Groups are sorted according to haplotype coverage.

Chapter 6

Beyond classical de novo assembly

Classical assemblers, including Monument, rely on a large in-

memory structure to perform assembly. By introducing Mapsembler,

an index-free targeted assembler, we show that versatile targeted as-

semblies can be performed on a simple desktop computer. We exam-

ine how that method could be used to perform whole-genome, index-

free assembly. Finally, several NGS applications of succinct hash

tables are presented.

6.1 Targeted assembly: Mapsembler

A general trend in NGS assembly software is the design of memory-efficient implemen-

tations. As larger genomes are being sequenced with increased coverage, the amount

of data being processed grows faster than the available computational resources. In-

evitably, with the sequencing of meta-genomes, even a fraction of a sequencing dataset

will be impractical to index in terms of memory usage. Hence, to anticipate this issue,

we propose to model a simplified form of de novo assembly, namely targeted de novo

assembly, using an index-free method. The presented method, Mapsembler, aims to

be a “Swiss army knife” tool to answer specific questions about NGS datasets.

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 98

6.1.1 Methods

The Mapsembler algorithm consists in performing localized de novo assembly around

a set of starting regions (starters). Mapsembler proceeds in two steps:

1. Find if each starter corresponds to a likely assembly from the reads, possibly

with variants

2. Assemble a contig by incrementally extending sequences around the variants

The first step is described in more details in the following. The second step

consists in processing the entire reads dataset at each extension, yielding a local

assembly graph. The local assembly graph can be seen as special case of practical non-

branching paths with only overlap edges. For a detailed explanation of the extension

step, refer to the Mapsembler article [39].

Mapping reads

Reads are first mapped to the starter. Formally, a read r is said to be mapped to a

sequence s at position i iff

j<|s|∑
j=0

d(r[i+ j], s[j]), where d(α, β) =

 0 if α = β or α = ε,

1 otherwise

For convenience, the character r[i+ j] is set to ε if i+ j < 0 or i+ j ≥ |r|, where d is a

fixed threshold. In other words, a read is mapped to a sequence when their Hamming

distance (the read is padded to fit the size of the sequence) is below d. The notation

s ‖di r is used to denote that r maps on s at position i, with threshold d. Figure 6-1

illustrates this definition.

Multiple consensuses generation

Given a sequences s (called a starter) and a set of mapped reads R, we present an

algorithm that generates a set of sequences (called sub-starters) s1, s2, . . . , sn which

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 99

i = -2 -1 0 1 2 3 4 5 6

s = A T G C G G A

| | · | |
r1 = G A A T T C G

| | | · |
r2 = T G C T G

Figure 6-1: Illustration of the definition of mapped reads. The reads r1 and r2 are
mapped to the sequence s. The error threshold is set to d = 1. In our notation, the
mapping is denoted by s ‖1−2 r1 and s ‖11 r2

(1) originate from the reads, (2) are coherent with the starter s and (3) are signifi-

cantly represented. These conditions will be formally defined in the following problem

definition.

We are interested in retrieving the largest set of sub-starters for each starter s.

To simplify the presentation, reads are assumed to contain no errors. In practice, a

preliminary read correction step effectively corrects or discards erroneous reads.

Problem 11. Multiple consensuses from reads alignment. Given a starter s, two

parameters c, d ≥ 0 and a set of error-free mapped reads R = {ri such that s ‖tpi
ri}

(each read ri is aligned to s at a position pi with at most t substitutions), find all

maximal (with respect to the inclusion order) subsets Si of R satisfying:

1. each subset Si admits a perfect consensus si, i.e. each read ri aligns to si at

position pi (relative to s) with no mismatch: si ‖0pi
ri,

2. the consensus si aligns s with at most d mismatches: s ‖d0 si,

3. each position of s is covered by at least c reads in Si.

Algorithm

A trivial (exponential) solution is (i) to generate the power set (all possible subsets)

of R, (ii) remove sets which do no satisfy one of the propositions above, and (iii)

keep only maximal sets (ordered by inclusion). The exponential complexity of this

solution clearly comes from step (i). In Algorithm 6, we give a polynomial time (in

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 100

the number of mapped reads) procedure which subsumes (i), as it generates a solution

which includes all the correct subsets.

Algorithm 6 Generating candidate subsets Si for solving the multiple consensuses
from reads alignment problem
Require: Instance of the multiple consensuses from reads alignment problem.
Ensure: Set S of candidate subsets.

S = ∅.
for each read (r, p) in R ordered by alignment position do

for each subset Si in S do
if r overlaps without substitutions with the last read of Si then

Add r to Si.
else

if r overlaps without substitutions with one of the reads of Si then
Let (r′, p′) be the last read of Si overlapping with r.
Let T be the subset of Si of all reads up to (r′, p′).
Create a new subset S′ = T ∪ {r}.
Insert S′ into S.

if r was not appended to any subset then
Create a new subset with r and insert it into S.

Remove any subset from S if its consensus has more than d differences with s, or a
position before p is covered by less than c reads.
return S.

The completeness proof that Algorithm 6 finds all maximal subsets corresponding

to correct sub-starters is as follows.

Proof. The proof is by contradiction: let s be a correct sub-starter not found by

the algorithm. Let r1, . . . , rn be the maximal subset of reads which yields s, sorted

by increasing mapping positions to f . We show by induction that the algorithm

returns a subset which includes r1, . . . , rk, for k ∈ [1..n]. For k = 1, notice that

a subset is assigned to each read. Assuming r1, . . . , rk is part of a returned subset

S0, we show that r1, . . . , rk+1 is also returned. Since rk+1 is part of a subset which

yields s, it overlaps perfectly with rk. However, rk+1 does not necessarily belong to

S0. Let r′k+1 be the read which follows rk in S0. In the ordering of the reads by

increasing position, if the read rk+1 is seen before r′k+1, then the algorithm selects

r′k+1 = rk+1. Else, as rk+1 perfectly overlaps with rk, a new subset is created from S0,

which contains exactly r1, . . . , rk+1. Eventually, from the induction, a subset which

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 101

contains r1, . . . , rn is constructed. Since r1, . . . , rn is itself maximal, the subset found

by the algorithm is exactly r1, . . . , rn.

Note that Algorithm 6 may return subsets which do not satisfy all the three

conditions (e.g. coverage of s after the last aligned read position p is not checked),

hence steps (ii) and (iii) are still required. The running time of the algorithm is now

analyzed. Observe that during the algorithm execution, each intermediate subset in S

is included in a distinct final maximal subset. There are at most 4d maximal subsets,

one for each combination of substitutions with s. Assuming bounded read length,

the overlap detection steps 4 and 7 can be performed in O(r) time. Hence, the time

complexity of Algorithm 6 is O(2dr2), where in practice d is a small constant. This

algorithm has been applied in the sub-starter generation and read coherence step of

Mapsembler.

6.1.2 Results

Recovering variants: Gene detection in a different strain The folA gene (di-

hydrofolate reductase) is present in several strains of E. coli, including K-12 (chr:49,823-

50,302) and O157:H7 (chr:54,238-54,717). The sequence of this gene is not exactly

similar between the K-12 and O157:H7 strains: there are 10 single-nucleotide muta-

tions across 479 bp. We attempted to recover the O157:H7 gene sequence of the folA

gene from only sequencing reads, using prior knowledge of the K-12 sequence. To this

end, we analyzed a dataset of 15.7 M raw reads of length 70bp (SRA:ERR018562) from

E. coli O157:H7. The K-12 allele of the folA gene (length 479 bp, NCBI ID:944790)

was used as the starter. The sub-starter generation module of Mapsembler confirmed

the presence of the gene, and furthermore recovered the exact O157:H7 gene sequence

of folA from the reads (100% identity with O157:H7 reference). Mapsembler produced

these results in 572 seconds and using 1.5 MB of memory.

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 102

Figure 6-2: Viewing reads as contigs-generating starters. White nodes are those
which are likely to generate singletons, all other nodes can be chosen as starting
nodes to construct contigs.

6.1.3 Towards index-free whole-genome assembly

Mapsembler could be used as a building block to perform whole-genome assembly

with an arbitrarily low memory usage. The initial function of Mapsembler is to

compute targeted assemblies around a known region of interest, using zero memory.

An extension of this usage would be to perform whole-genome assembly, by repeat-

edly assembling around well-chosen reads (seeds). Although we have not performed

experiments to validate this usage, a simple theoretical motivation is presented here.

The localized assembly approach presented in Section ?? on page ?? aims at

assembling disjoint sub-graphs. Here, a similar idea is used. Any read can be associ-

ated to the contig it would generate with a targeted assembly. Note that the contig is

only known a posteriori. In Figure 6-2, reads represented by black nodes inside each

colored cluster will generate the same contig. The reads represented by white nodes

will generate singletons under the PNBP approach due to the graph topology.

Balls and bins model for index-free assembly

The balls and bins model is a classical framework in random processes [34]: m balls

are thrown into n bins, the location of each ball is chosen independently and uniformly

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 103

at random. Contigs, considered as a cluster of reads, can be viewed as bins. Similarly,

the reads can be viewed as balls.

contigs ↔ bins

reads ↔ balls

Table 6.1: Balls and bins model for index-free assembly.

The aim of index-free assembly is to generate all the contigs (throw at least one

ball into all the bins) using as few seeds as possible (use as few balls as possible).

If the reads are chosen uniformly at random, a simple analysis gives the expected

number of reads to select as seeds.

The expected number of assembled contigs Am,n, givenm seeds and n total contigs,

is the expected number of non-empty bins. Considering that the probability that each

bins remains empty is

(1− 1

n
)m ≈ e−m/n,

by linearity of expectation,

An,m = m− ne−m/n.

The expected number of seeds m required to assemble all the n contigs can now be

computed. To this end, we consider that all contigs are assembled when the expected

number of empty bins is lower than 1,

ne−m/n < 1 ⇐⇒ nlog(n) < m. (6.1)

Another way to derive this result is to frame index-free assembly as a coupon

collector problem [34]. The problem is now: how many boxes of cereal (reads) need

to be opened (selected as seeds) before the n different types of coupons (contigs) are

found? A classical solution to coupon collector problem yields the same expected

number of boxes, nlog(n).

In terms of minimizing the total number of assembled seeds, selecting seeds uni-

formly at random is certainly not the best strategy. Motivated by the fact that

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 104

s 200 1000 10,000 100,000 1,000,000

r 15,004 3005 305 34 6

Table 6.2: Projected number of rounds (r) for an index-free human assembly (n =
3 · 106 contigs), given that s seeds are assembled in parallel during each round.

Mapsembler can assemble several seeds in parallel, we consider a variation.

Assembly is now performed in r rounds. During each round, a fixed number of s

seeds are assembled. These seeds are selected uniformly from the reads pool. At the

end of each round, reads which align to assembled contigs are removed from the reads

pool. Given a fixed number of seeds s and a fixed number of total contigs n, how

many rounds are necessary? The number of un-assembled contigs at round t is noted

ut. By setting n = ut and m = s in Equation 6.1, the following relation is derived:

ut+1 = ute−s/u
t

.

Initially, there are u0 = n un-assembled contigs. All the contigs are assembled when

ut = 0.

A rough estimation of the number of rounds needed to assemble an human genome

can be made. A typical human genome assembly using Illumina reads consists in

n = 3 · 106 contigs [29]. Table 6.2 shows how many rounds are necessary, depending

on the number of seeds assembled at each round. In practice, each round takes much

less time to complete than the previous round. Ideally, as many seeds as possible

should be assembled in parallel. But indexing the seeds during each round consumes

memory. Hence, let us assume that s = 1·105 seeds are selected at each round, yielding

a reasonably low memory usage (≈ 10 MB, assuming index information consumes 100

bytes per seed). Then, assembly converges quite rapidly, as at most r = 34 rounds

of assembly are required. Should one index ten times more seeds (s = 1 · 106), only

r = 6 rounds are necessary. This estimation indicates that index-free assembly seems

tractable with massively parallel, cloud architectures with virtually no memory usage.

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 105

Discussion

This analysis is only a preliminary step towards practical index-free assembly. First,

the uniform choice of bins is only valid if contigs have the same size and the genome is

repeat-free. In practice, this is not the case. The probability that a randomly chosen

read will assemble a certain contig depends on the length and repeat content of the

contig. This probability could be computed if one has information on the repeats of

the genome.

Second, this genome assembly approach yields a significant amount of redundancy,

due to the lack of index. Unless each read is always well-chosen (e.g., at any given

time, reads which align to already constructed contigs are not selected as seeds) the

same contig will be assembled several times. Even with well-chosen reads, genomic

variations yield redundancy. For instance, assume that a sequence is present in two

copies differing by a single nucleotide. Targeted assembly around reads specific to

each copy yields both copies of the sequence. In traditional assembly methods, both

copies are merged into a single consensus sequence, typically the most abundantly

sequenced copy. However, to fix this problem, a procedure to efficiently remove

redundancy in assembled sequences can be implemented using the methods described

in the following section.

6.2 NGS toolbox supported by static succinct hash

tables

The static, succinct k-mer index presented in Section 4.4.5 on page 66 can be used in

more applications than just de novo assembly indexing. We show that instances of a

static k-mer hash table can be applied straightforwardly to the following problems:

short reads read correction, removal of repeated assembled sequences and merging

of assemblies. This structure enables memory-efficient processing of large datasets,

which would be impractical with other classical structures (hash tables, suffix arrays).

The generic mechanism for constructing a static index can be summarized as

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 106

follows. (a) A pre-processing phase constructs a dynamic set of k-mers, typically

using a hash table or a list of redundant k-mers. The k-mers space can be partitioned

to save memory. (b) The keys are either sorted and exported to external memory,

or sorted in-memory. (c) Keys of the succinct rank/select index are inserted from

the sorted, non-redundant set of k-mers. (d) Values of the static index are computed

and inserted in a rank-indexed list. One can see that the full index is only stored

in-memory as a whole in the last step.

6.2.1 Error correction

Error correction is perhaps the most immediate application supported by a k-mer

table, besides k-mers counting. As a preliminary short digression, k-mers counts can

be represented using the static index as follows:

Key: k-mer

Value: count

However, storing k-mers counts is not a necessity. Typically, a prior k-mer count-

ing procedure outputs an abundance plot, which provides information for counts

quantization. For instance, as we see next, error correction does not necessarily re-

quire in-memory storage of k-mer counts.

Methods

Correction is implemented in virtually every assembly software, and also has notable

stand-alone implementations [25]. In this paragraph, the details of a error-correction

algorithm will not be given. Instead, we sketch the possible interface with a static

k-mer index. The static index used is the following:

Key: k-mer

Value: quantized count

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 107

The quantized count can typically be a solidity bit, determining whether the k-

mer is solid, i.e. it appears sufficiently many times in the reads to not be considered

erroneous. A more elaborate quantized count stores 3 states: non-solid, solid non-

repeated, and repeated. The repeated state indicates that k-mers has been observed

twice more than the average expected coverage. Such k-mers typically have ambiguous

genomic locations, hence yield special cases in error correction.

Note that a prior k-mer counting scheme is necessary to determine solidity. How-

ever, this counting step can be efficiently implemented in t turns, using 1/t the mem-

ory of a global index.

A generic correction mechanism based on this index is described. Each read from

the dataset is processed independently. The solidity of each k-mer of the read can be

determined using the static index. A read is considered to be correct if all its k-mers

are solid. Error-correction consists in finding a minimal set of editions (nucleotide

substitutions or insertions/deletions) that transforms the read into a correct read.

Reads that cannot be corrected are discarded.

An immediate improvement for this structure, when using 1-bit solidity, consists

in storing only the set of solid k-mers as keys. The values are then unnecessary, and

membership queries are performed on the rank/select index. When using three-state

solidity, storing a value of 1 bit is sufficient: non-solid k-mers are not indexed, solid

non-repeated have a value of 0 and solid repeated have a value of 1.

Memory usage results

We implemented the three-state solidity structure using the previously described im-

provement. This scheme is compared against two popular methods. The first method

is the SOAPdenovo correction module. It implements a complete 17-mer byte-array

(using 417 = 16 GB). The second method is a hash table (implemented using the

sparsehash library), which associates each k-mer with a pointer-sized integer.

These three structures are benchmarked on a E. coli dataset consisting of solid

17-mers. Table 6.3 shows the memory usage of each data structure. The bit array is

very large, yet its size will never vary. This is a strong advantage for larger genomes.

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 108

Method Memory usage (Mb)

Complete bit array (SOAPdenovo) 16,000

Naive hash table 191

Static succinct hash 60

Table 6.3: Memory usage of data structures supporting error-correction algorithms.
The complete bit array (as used by SOAPdenovo) is compared against a hash table
and the static succinct hash. Note that the size of the bit array fixed, while the other
two structures will grow according to the genome size.

The other two data structures will grow according to the genome size. For a human

genome, the size of naive hash table will grow beyond the bit array, as it occupies

a constant number of bytes multiplied by around 3 billion. However, because of its

entropic bound, the static succinct hash will always be smaller than the complete bit

array. Hence, this structure is guaranteed to be also effective for large genomes.

6.2.2 Repeats identification

Identifying repeated sub-sequences between two different scaffolds from a set of as-

sembled sequences is a slightly different problem than as presented in the first chapter.

First, inexact repeats are considered, as exact repeats typically rarely occur in as-

semblies. Second, larger repeats than the read length (gene-sized) are sought. These

repeats can typically be retrieved using Mummer, a software which computes pair-

wise alignments using a suffix array. We show that the suffix array used in Mummer

can be replaced by a static k-mer index. First, assembled sequences (scaffolds) are

indexed as follows using this static index:

Key: k-mer

Value: number of scaffolds containing the k-mer

As observed in the previous section, an optimized value would be a bit indicating

whether 1 or > 2 scaffolds contain this k-mer. An even further optimized table would

store only the set of repeated k-mers.

Assembled sequences are processed sequentially. Repeated regions inside each

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 109

sequences are found using the following algorithm. First, the sequence of nucleotides

is transformed into a sequence of bits by setting the i-th position at 1 if and only if the

i-th kmer is repeated (i.e., belongs to 2 or more scaffolds). To detect inexact repeats, a

heuristics linear-scan algorithm yields satisfactory results. Setting a maximum gaps

tolerance threshold of g nucleotides, contiguous exactly repeated regions that are

separated by less than g nucleotides are returned as an inexact repeat.

This repeat identification process has an important use case. The ABySS and

SOAPdenovo software are prone to producing artificially larger assemblies [43]. This

can be partly fixed by removing artificially redundant parts using the above procedure.

The repeated parts are assumed to be complete suffixes or prefixes of assembled

sequences. Sequences strictly contained in larger sequences will also be removed.

The values (number of scaffolds containing the k-mer) are stored in a classical integer

array and can be modified with no memory penalty. This property allows to decrease

the k-mer value each time it is seen in a scaffold. Hence, in the last sequentially

processed scaffold containing the k-mer, the k-mer will not be identified as repeated.

It was experimentally observed that removing suffix-prefix overlaps in assemblies

improves scaffolding contiguity in some situations. Note that bacterial contamination

could also be removed using a similar technique.

6.2.3 Merging assemblies

Suppose that assembler A produces a high-coverage assembly with low NG50, and

assembler B produces a low-coverage assembly with higher NG50. Given these two

assemblies, how can one construct an hybrid assembly C which has a strictly higher

coverage than assembly B and strictly higher NG50 than assembly A?

Methods

A procedure to construct assembly C is based on repeat identification, as performed in

the precedent section. First, scaffolds from assembly B are indexed. For each scaffold

s of assembly A, overlaps between s and any scaffold of assembly B are retrieved

CHAPTER 6. BEYOND CLASSICAL DE NOVO ASSEMBLY 110

Assembly High-N50 High-Coverage Merged

Total bases (Mbp) 1,479 2,046 1,810

NG50 (kbp), assuming a 1,479 Gbp
genome

1,297 1,051 1,297

N50 (kbp) 1,297 641 991

Table 6.4: Merging a high-coverage assembly with a high-NG50 assembly. The
resulting merged assembly has an increased number of bases with a similar N50
metric to that of the high-NG50 assembly.

using the repeat identification algorithm above.

Region of s which overlap with assembly A are discarded, and long enough non-

overlapping regions are kept. The length threshold is experimentally set to 2(k + 1),

i.e. two non-redundant nucleotides with flanking k-mers. Assembly C consists of all

these non-overlapping regions as well as scaffolds from assembly B. It is easy to see

that assembly C has a higher coverage than assembly B (as it includes assembly B)

and higher NG50 than assembly A (as appending any sequence to assembly B does

not decrease its NG50).

Results

We implemented the above methods in a stand-alone software. Two assemblies pro-

duced by Monument of the Assemblathon 2 snake genome (5.3.4 on page 87) with

different parameters were merged using the procedure. The results are summarized

in Table 6.4. As expected, the merged assembly contains strictly more bases than

the high-NG50 one. However, the merged assembly has significantly less bases than

the high-coverage one. The reason behind this is that the high-coverage assembly

contained self-redundant sequences.

The index used to produce the merged assembly referenced 1.4 billions of k-mers

(those of the high-NG50 assembly), and occupied 14 GB of memory. It contained

essentially the same information as the structure defined in the repeats identification

section. The whole merging process took 1 hour and 40 minutes using one CPU core.

Chapter 7

Conclusion and perspectives

7.1 Conclusion

This conclusion sums up our contributions and results. In the context of re-sequencing,

we introduced a suffix array-based algorithm to analyze the gap between single and

paired reads in terms of genome coverage (Chapter 2 and [10]). This analysis yields

two take-home messages for re-sequencing experiments:

� Paired reads of length l enable to cover a significantly larger portion of the

genome than reads of length 2l.

� Larger insert lengths compensate for shorter read lengths.

We incorporated paired reads explicitly into classical assembly formulations (Chap-

ter 3). This does not change the picture in terms of computational complexity, as

both unpaired and paired assembly problems are shown to remain NP-hard. How-

ever, the paired assembly problem is shown to become polynomially solvable when

repeated regions are interspersed, and shorter than the insert size.

Practical assembly aspects play a major role, as theoretical models do not address

assembly ambiguities (multiple solutions), and sequence graphs hardly fit in memory

(Chapter 4). A novel, localized assembly approach has been elaborated (Section 4.3

on page 52 and [11]). It combines the memory efficiency of greedy assembly with the

locally complete structure of graphs. Furthermore, this approach has been extended

CHAPTER 7. CONCLUSION AND PERSPECTIVES 112

to include pairing information, enabling targeted assembly of scaffolds. The following

new methods may benefit to other greedy assemblers:

� Constructing a local sequence graph (extension graphs, Section 5.2.1 on page 76)

enables to assemble complex variants.

� Using pairing information in the local sequence graph enables to jump over

short repetitions, yielding scaffolds and longer contigs (Section 4.3 on page 52).

Two new ideas have been introduced for the indexing of sequencing data (Sec-

tion 4.4 and [9]):

� Any k-mer-based indexing scheme can be made more memory-efficient by de-

tecting and filtering erroneous k-mers early (Section 4.4.2 on page 59).

� Single and paired reads can be directly indexed in a k-mer-based hash table by

dynamic filtering of redundant reads (Section 4.4.3 on page 61).

These mechanisms have been implemented in the Monument assembler, and the

whole pipeline is compared against current assembly methods (Chapter 5).

Finally, several problems related to assembly can be efficiently solved using new

algorithms (Chapter 6). The Mapsembler algorithm performs targeted assemblies

around regions of interest, and recovers read-coherent variants of known fragments

(Section 6.1.2 on page 101 and [39]). Succinct hash tables can be used to perform short

read error correction, repeats identification in assemblies and merging of assemblies

(Section 6.2 on page 105).

7.2 Released software

This thesis resulted in several open-source software implementations:

pairedRepetitions 1 Computes the ratio of exact, paired (and unpaired) repeated

reads within a genome. This is the source code used to produce the results of

Chapter 2.

1https://github.com/rchikhi/pairedRepetitions

https://github.com/rchikhi/pairedRepetitions

CHAPTER 7. CONCLUSION AND PERSPECTIVES 113

Monument 2 Localized de novo assembly software for paired reads, presented in

Chapter 5.

Mapsembler 3 Targeted de novo assembly software, presented in Chapter 6.

SuperScaffolder Scaffolding algorithm used in conjunction of Monument during the

Assemblathon 2 benchmark. Will be made available at a later date.

deBruijn 4 Software that constructs the de Bruijn graph of a set of reads in a

memory-efficient manner. This software is used in the KisSplice pipeline5 to

perform de novo detection of alternative splicing in RNA-seq data.

7.3 Perspectives

A common misconception is that genome assembly is a solved problem, at least for

small genomes. Perhaps this misconception stems from satisfactory assembly results

of ever-improving software and sequencing technologies. There are, however, several

areas that, in our opinion, have not been given enough attention.

Scaffolding Classical genome assembly follows the reads→contigs→scaffolds pipeline.

While this thesis showed that scaffolds can be built directly from reads, such

scaffolds are still interrupted by large repetitions. In general, current assem-

bly methods make no attempt to solve larger repetitions, while theoretical re-

sults indicate that repetitions can be solved unambiguously in some cases [36].

Specifically, state of the art scaffolding algorithms only output simple paths.

We believe that exploring more complex paths in the contigs graph may lead

to better scaffolding algorithms.

Gap-filling Filling the gaps (undetermined nucleotides, “N”) in scaffolds yields sig-

nificantly longer contigs, hence assemblies of better quality. Some assemblers

2http://www.irisa.fr/symbiose/people/rchikhi/monument.html
3http://alcovna.genouest.org/mapsembler/
4https://github.com/rchikhi/debruijn
5http://alcovna.genouest.org/kissplice/

http://www.irisa.fr/symbiose/people/rchikhi/monument.html
http://alcovna.genouest.org/mapsembler/
https://github.com/rchikhi/debruijn
http://alcovna.genouest.org/kissplice/

CHAPTER 7. CONCLUSION AND PERSPECTIVES 114

perform such step using heuristics, especially SOAPdenovo which includes a

stand-alone gap-filling module [29]. However, no formal framework of gap-

filling has been proposed. A first sketch of such framework could be formulated

as follows: finding the set of paths between contig extremities (nodes s and t)

which satisfy reads and pairing constraints. A solution is said to exist if there is

an unique path between s and t, or an unique sub-path common to every paths.

Index-free assembly The Mapsembler software is a proof of concept that targeted

assembly can be performed without any indexing structure. The analysis in

Section 6.1.3 on page 102 suggests that the approach can be extended to com-

plete genomes, assuming a high degree of parallelism. Also, the approach has

the potential to be extended to perform a complete scaffolds assembly with zero

memory.

Polynomial-time theoretical assembly In Chapter 3, we gave a polymonial time

reduction of the Paired Assembly Problem in the presence of short interspersed

repeats. It is conjectured that a polynomial-time algorithm exists in the un-

paired case assuming constant-sized overlaps between reads [36]. Finding weaker

cases of polynomial reduction would be an important step towards closing the

gap between practical assemblers and theoretical models.

7.4 In a future context

7.4.1 Future of sequencing

The field of DNA sequencing is ever-changing. Only five years ago, high-throughput

sequencers were introduced. Hence, it is hard to make predictions about the state of

sequencing, even for the near future. However, the following sequencing scenarios are

possible, if not likely, at one point of time:

1. immense-throughput short (< 1000 bp) paired reads, very high coverage

2. low-throughput longer single or paired reads, medium coverage

CHAPTER 7. CONCLUSION AND PERSPECTIVES 115

3. unbounded read length, low coverage (only to correct errors)

Each of these scenarios indicate a satisfactory, final state of a sequencing tech-

nology. The first trend is the direction followed by the Illumina company. Illumina

sequencing is becoming much cheaper, however read lengths appear to be unlikely to

become an order of magnitude higher, due to polymerase-based sequencing. Given

the recent announcements of nanopore sequencing (as of March 2012), either the sec-

ond or the third scenarios may happen in the near future with nanopores. The second

trend is specifically what {Sanger, 454, Ion Torrent, Pacific Bioscience} sequencing is

expected to become. A final scenario is the natural final state of sequencing: a single

chromosome is sequenced in a single read, at zero error rate.

7.4.2 Future relevance of this work

Until sequencing achieves unbounded read lengths, de novo assembly will still be

relevant. However, the assembly problem will become trivial with low-coverage, very

long reads instances. The read length threshold at which assembly becomes trivial

(for paired reads) can be determined using methods from Chapter 2.

The models presented in Chapter 3 are relevant to the context of assembly, as long

as paired reads are produced. Specifically, our methods will certainly fully apply to

future Illumina sequencing reads. Our indexing scheme (Section 4.4) has been shown

to scale well to higher volumes of data. However, nanopore sequencing is unlikely

to produce paired reads. Hence, longer single reads will possibly be assembled using

novel methods. The transition from a high volume of short single reads to a high

volume of longer single reads may be facilitated by using our assembly model based

on local string graph traversals (Sections 4.3 on page 52 and 5.2.1 on page 76).

As long as sequencing technologies are prone to errors, reads error correction will

be relevant. Our k-mer indexing method (Section 4.4.2 on page 59) and efficient index

for read correction (Section 6.2 on page 105) will scale well with higher volumes of

data. Furthermore, the indexing structure are designed to be versatile, and can be

applied to more applications than just error correction. For instance, reference-free

CHAPTER 7. CONCLUSION AND PERSPECTIVES 116

read compression is a promising application.

Finally, methods developed for Mapsembler apply to a more general context. As

metagenomic sequencing will become more popular, determining the diversity of a set

of sequenced genomes will be a more pressing problem, independent of the sequencing

technology (Section 6.1 on page 97).

List of Figures

1-1 Structure of the DNA. 9

1-2 Evolution of DNA sequencing technologies, 2007-2011, in terms of

throughput and read length. Data taken from companies websites. . 12

1-3 Sequencing a toy genome with paired reads 13

1-4 Example of a de Bruijn graph . 15

2-1 Comparison of single, paired U1 and paired U2 uniqueness of reads in

the lambda-phage genome. 22

2-2 Percentage of unique (300, 0)-paired and unpaired reads as a function

of read length for six genomes. 27

2-3 Relationship between pair separation, paired distance uncertainty, and

paired read uniqueness ratio in the E. coli genome. 28

3-1 Example string graph . 34

3-2 The de Bruijn graph of the same set of string as Figure 3-1 for k = 3 35

3-3 Illustration for the proof of Theorem 1 37

3-4 Reduction of a jigsaw puzzle to a paired-pieces jigsaw puzzle (proof of

Theorem 4) . 42

3-5 Example of a paired string graph from paired reads 44

4-1 Problem with theoretical assembly: many ambiguous reconstructions. 51

4-2 Issues in practical assembly: undetected paired branching 54

4-3 Issues in practical assembly: undetected paired branching 54

4-4 Illustration of Postulate 1: paired non-branching condition. 55

LIST OF FIGURES 118

4-5 Practical non-branching path traversal of a paired string sub-graph . 56

4-6 Set of pair-wise 1-redundant reads . 61

4-7 The Representative reads spectrum. 63

4-8 Memory usage of the on-line k-mers filtering procedure compared with

un-filtered indexing. 64

4-9 Execution time of our indexing implementation. 65

5-1 Modules of the Monument assembler 72

5-2 Assembly by localized sub-graph construction 74

5-3 Illustration of simple path detection for paired extensions. 78

5-4 Toy example for computing the N50 and NG50 metrics 82

5-5 Parallel speed-up measurement, assembly of the N. crassa genome . . 86

5-6 Assemblathon 1 quality results . 94

5-7 Assemblathon 1 resource usage . 95

5-8 Assemblathon 1 haplotype coverage and gene coverage. 96

6-1 Illustration of the definition of mapped reads 99

6-2 Viewing reads as contigs-generating starters. White nodes are those

which are likely to generate singletons, all other nodes can be chosen

as starting nodes to construct contigs. 102

8-1 Exemple d’un graphe de châınes de caractères pairées construit à par-

tir de lectures pairées (taille d’insert de 6) couvrant la séquence S =

abcdefcdgh. Les arcs verts représentent des liens pairés, les arcs

jaunes représentent les chevauchements entre les lectures de taille 1. 130

List of Tables

2.1 Example of suffix array and LCP array for the word ’babar’. 23

4.1 Practical memory usage of indexing three datasets. 66

5.1 Quality of the assemblies of simulated and experimental paired-end

reads from E.coli using Velvet, Ray and Monument. 84

5.2 Quality results for the assemblies of the N. crassa genome. 87

5.3 Assembly errors for Assemblathon 1 groups, taken from [15]. 91

6.1 Balls and bins model for index-free assembly. 103

6.2 Projected number of rounds for an index-free human assembly 104

6.3 Memory usage of data structures supporting error-correction algorithms.108

6.4 Result of merging two assemblies . 110

Bibliography

[1] P. N. Ariyaratne and W. K. Sung. PE-Assembler: de novo assembler using short

paired-end reads. Bioinformatics, 27(2):167, 2011. (pages 15, 49, 51, 57, 75).

[2] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,

J. P. Mesirov, and E. S. Lander. ARACHNE: a whole-genome shotgun assembler.

Genome research, 12(1):177, 2002. (page 49).

[3] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano. Scaffolding

pre-assembled contigs using SSPACE. Bioinformatics, 27(4):578, 2011. (page

88).

[4] S. Boisvert, F. Laviolette, and J. Corbeil. Ray: Simultaneous assembly of reads

from a mix of high-throughput sequencing technologies. Journal of Computa-

tional Biology, 17(11):1519–1533, 2010. (pages 15, 49, 57, 75, 82).

[5] D. Bryant, W. K. Wong, and T. Mockler. QSRA–a quality-value guided de novo

short read assembler. BMC bioinformatics, 10(1):69, 2009. (page 75).

[6] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S.

Lander, C. Nusbaum, and D. B. Jaffe. ALLPATHS: de novo assembly of whole-

genome shotgun microreads. Genome Research, 18(5):810–820, 2008. (pages 80,

82).

[7] M. J. Chaisson, D. Brinza, and P. A. Pevzner. de novo fragment assembly

with short mate-paired reads: Does the read length matter? Genome Research,

19(2):336 – 346, 2009. (pages 19, 80).

BIBLIOGRAPHY 121

[8] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S. Rokhsar.

Meraculous: De novo genome assembly with short Paired-End reads. PloS one,

6(8):e23501, 2011. (pages 15, 49, 57).

[9] R. Chikhi, G. Chapuis, and D. Lavenier. Parallel and memory-efficient reads

indexing for genome assembly. PBC, 2011. (pages 58, 64, 112).

[10] R. Chikhi and D. Lavenier. Paired-end read length lower bounds for genome

re-sequencing. BMC Bioinformatics, 10(Suppl 13):O2, 2009. (pages 111, 135).

[11] R. Chikhi and D. Lavenier. Localized genome assembly from reads to scaffolds:

practical traversal of the paired string graph. Algorithms in Bioinformatics,

pages 39–48, 2011. (pages 52, 111, 135).

[12] T. C. Conway and A. J. Bromage. Succinct data structures for assembling large

genomes. Bioinformatics, 27(4):479, 2011. (pages 57, 67).

[13] E. D. Demaine and M. L. Demaine. Jigsaw puzzles, edge matching, and poly-

omino packing: Connections and complexity. Graphs and Combinatorics, 23:195–

208, 2007. (page 41).

[14] N. Donmez and M. Brudno. Hapsembler: an assembler for highly polymor-

phic genomes. In Research in Computational Molecular Biology, pages 38–52.

Springer, 2011. (pages 50, 51).

[15] D. A. Earl, K. Bradnam, J. S. John, A. Darling, D. Lin, J. Faas, H. O. Yu,

B. Vince, D. R. Zerbino, and M. Diekhans. Assemblathon 1: A competitive

assessment of de novo short read assembly methods. Genome Research, 2011.

(pages 88, 91, 96, 119).

[16] J. Edmonds and E. L. Johnson. Matching, euler tours and the chinese postman.

Mathematical programming, 5(1):88–124, 1973. (pages 34, 46).

[17] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM

(JACM), 52(4):552–581, 2005. (pages 29, 57, 70).

BIBLIOGRAPHY 122

[18] S. Gao, N. Nagarajan, and W. K. Sung. Opera: reconstructing optimal genomic

scaffolds with high-throughput paired-end sequences. In Research in Computa-

tional Molecular Biology, pages 437–451. Springer, 2011. (page 36).

[19] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J. Walker,

T. Sharpe, G. Hall, T. P. Shea, and S. Sykes. High-quality draft assemblies of

mammalian genomes from massively parallel sequence data. Proceedings of the

National Academy of Sciences, 108(4):1513, 2011. (page 49).

[20] M. Hossain, N. Azimi, and S. Skiena. Crystallizing short-read assemblies around

seeds. BMC Bioinformatics, 10(Suppl 1):S16, 2009. (page 49).

[21] D. Huson, K. Reinert, and E. W. Myers. The greedy path-merging algorithm for

contig scaffolding. Journal of the ACM (JACM), 49(5):603 – 615, 2002. (page

49).

[22] B. Jackson, P. Schnable, and S. Aluru. Parallel short sequence assembly of

transcriptomes. BMC bioinformatics, 10(Suppl 1):S14, 2009. (page 57).

[23] D. S. Johnson and M. R. Garey. Computers and intractability: A guide to the

theory of NP-completeness. Freeman&Co, San Francisco, 1979. (page 32).

[24] J. Karkkainen and P. Sanders. Simple linear work suffix array construction.

Automata, Languages and Programming, pages 187–187, 2003. (page 22).

[25] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: quality-aware detection

and correction of sequencing errors. Genome Biol, 11(11):R116, 2010. (page

106).

[26] S. R. Kosaraju and A. L. Delcher. Large-scale assembly of DNA strings and

space-efficient construction of suffix trees. In Proceedings of the twenty-seventh

annual ACM symposium on Theory of computing, pages 169–177. ACM, 1995.

(page 32).

BIBLIOGRAPHY 123

[27] V. Kundeti, S. Rajasekaran, H. Dinh, M. Vaughn, and V. Thapar. Efficient

parallel and out of core algorithms for constructing large bi-directed de bruijn

graphs. BMC bioinformatics, 11(1):560, 2010. (page 57).

[28] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, and R. Durbin. The sequence alignment/map format and SAMtools.

Bioinformatics, 25(16):2078, 2009. (page 83).

[29] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, and

K. Kristiansen. De novo assembly of human genomes with massively parallel

short read sequencing. Genome research, 20(2):265, 2010. (pages 48, 49, 57, 66,

81, 104, 114, 131).

[30] A. L. McGuire, M. K. Cho, S. E. McGuire, and T. Caulfield. The future of

personal genomics. Science (New York, NY), 317(5845):1687, 2007. (page 8).

[31] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of mod-

els for sequence assembly. Algorithms in Bioinformatics, pages 289–301, 2007.

(pages 14, 34, 35, 40, 41).

[32] P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner. Paired de bruijn

graphs: a novel approach for incorporating mate pair information into genome

assemblers. In Research in Computational Molecular Biology, pages 238–251.

Springer, 2011. (pages 50, 51).

[33] J. R. Miller, S. Koren, and G. Sutton. Assembly algorithms for next-generation

sequencing data. Genomics, 95(6):315–327, 2010. (pages 48, 57).

[34] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algo-

rithms and probabilistic analysis. Cambridge Univ Pr, 2005. (pages 102, 103).

[35] E. W. Myers. Toward simplifying and accurately formulating fragment assembly.

Journal of Computational Biology, 2(2):275–290, 1995. (page 33).

BIBLIOGRAPHY 124

[36] N. Nagarajan and M. Pop. Parametric complexity of sequence assembly: theory

and applications to next generation sequencing. Journal of computational biology,

16(7):897–908, 2009. (pages 34, 44, 46, 113, 114).

[37] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dic-

tionary. Arxiv preprint cs/0610001, 2006. (pages 57, 67).

[38] Y. Peng, H. Leung, S. Yiu, and F. Chin. IDBA–A practical iterative de bruijn

graph de novo assembler. In Research in Computational Molecular Biology, pages

426–440. Springer, 2010. (page 60).

[39] P. Peterlongo and R. Chikhi. Mapsembler, targeted and micro assembly of large

NGS datasets on a desktop computer. BMC Bioinformatics, (1):48, 2012. (pages

76, 98, 112, 136).

[40] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with bambus.

Genome Research, 14(1):149, 2004. (page 49).

[41] M. Pop, S. L. Salzberg, and M. Shumway. Genome sequence assembly: Algo-

rithms and issues. Computer, 35(7):47–54, 2002. (page 13).

[42] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with ap-

plications to encoding k-ary trees, prefix sums and multisets. ACM Transactions

on Algorithms (TALG), 3(4):43–es, 2007. (page 57).

[43] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren, T. J.

Treangen, M. C. Schatz, A. L. Delcher, and M. Roberts. GAGE: a critical

evaluation of genome assemblies and assembly algorithms. Genome Research,

2011. (page 109).

[44] F. Sanger, S. Nicklen, and A. Coulson. DNA sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci USA, pages 5463 – 7, 1977. (page 12).

[45] B. Schmidt, R. Sinha, B. Beresford-Smith, and S. J. Puglisi. A fast hybrid short

read fragment assembly algorithm. Bioinformatics, 25(17):2279, 2009. (page 75).

BIBLIOGRAPHY 125

[46] T. Shea, L. Williams, S. Young, C. Nusbaum, D. Jaffe, I. MacCallum, D. Przy-

bylski, S. Gnerre, J. Burton, I. Shlyakhter, A. Gnirke, J. Malek, K. McKernan,

and S. Ranade. ALLPATHS 2: small genomes assembled accurately and with

high continuity from short paired reads. Genome Biology, 10(10):R103, 2009.

(pages 63, 84, 87).

[47] J. Shendure and H. Ji. Next-generation DNA sequencing. Nat Biotech,

26(10):1135–1145, Oct. 2008. (pages 9, 11).

[48] J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph

using the FM-index. Bioinformatics, 26(12):i367, 2010. (pages 49, 57, 70).

[49] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and

I. Birol. ABySS: a parallel assembler for short read sequence data. Genome

Research, 19(6):1117–1123, 2009. (pages 49, 57, 58).

[50] G. Sutton, J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walenz,

A. Brownley, J. Johnson, K. Li, and C. Mobarry. Aggressive assembly of py-

rosequencing reads with mates. Bioinformatics, 24(24):2818–2824, 2008. (page

49).

[51] R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt. Assembling millions

of short DNA sequences using SSAKE. Bioinformatics, 23(4):500 – 501, 2007.

(page 57).

[52] J. Wetzel, C. Kingsford, and M. Pop. Assessing the benefits of using mate-

pairs to resolve repeats in de novo short-read prokaryotic assemblies. BMC

Bioinformatics, 12(1):95, 2011. (page 13).

[53] N. Whiteford. String Matching in DNA Sequences: Implications for Short

Read Sequencing and Repeat Visualisation. PhD thesis, UNIVERSITY OF

SOUTHAMPTON, 2007. (page 29).

[54] N. Whiteford, N. Haslam, G. Weber, A. Prugel-Bennett, J. W. Essex, P. L.

Roach, M. Bradley, and C. Neylon. An analysis of the feasibility of short read

BIBLIOGRAPHY 126

sequencing. Nucleic Acids Research, 33(19):e171, 2005. (pages 18, 22, 23, 29,

128).

[55] D. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly

using de bruijn graphs. Genome Research, 2008. (pages 49, 55, 66, 82).

Chapter 8

Extended summary in French

Chapitre 1: Introduction

Dans cette thèse, nous présentons des méthodes de calcul (modèles théoriques et

algorithmiques) pour effectuer la reconstruction de séquences d’ADN. Il s’agit de

l’assemblage de novo de génome à partir de lectures (courte séquences ADN) produites

par des séquenceurs à haut débit. Ce problème est difficile, aussi bien en théorie qu’en

pratique.

Du point de vue théorique, les génomes sont structurellement complexes. Chaque

instance d’assemblage de novo doit faire face à des ambigüıtés de reconstruction.

Autrement dit, les lectures permettent de calculer plusieurs reconstruction possibles,

une seule étant correcte. Comme il est impossible de déterminer laquelle, une ap-

proximation fragmentée du génome est retournée.

Du point de vue pratique, les séquenceurs produisent un énorme volume de lec-

tures, avec une redondance élevée. Une puissance de calcul importante est nécessaire

pour traiter ces lectures. Le séquençage ADN évolue désormais vers des génomes

et méta-génomes de plus en plus grands, dépassant la taille du génome humain de

plusieurs ordres de grandeurs. Ceci renforce la nécessité de méthodes efficaces pour

l’assemblage de novo.

La nouvelle génération des techniques de séquençage produit des lectures plus

courtes que la précédente. En compensation, une majorité des organismes séquencés

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 128

le sont avec des lectures pairées. Ces lectures pairées proviennent du séquençage

des extrémités d’une lecture plus longue (appelée insert). Ainsi, l’information de

distance entre deux lectures d’une paire permet de résoudre certaines ambigüıtés de

positionnement de ces lectures. Cependant, à notre connaissance, peu de travaux

précédents cette thèse se sont intéressés à évaluer les différences entre l’assemblage

avec et sans les lectures pairées.

Cette thèse présente de nouvelles contributions en informatique autour de l’assemblage

de génomes. Ces contributions visent à incorporer plus d’information pour améliorer

la qualité des résultats, et à traiter efficacement les données de séquençage afin de

réduire la complexité du calcul. Plus précisément, nous proposons un nouvel al-

gorithme pour quantifier la couverture maximale d’un génome atteignable par le

séquençage, et nous appliquons cet algorithme à plusieurs génomes modèles. Nous

formulons une série de problèmes informatiques qui incorporent l’information des

lectures pairées dans l’assemblage, et nous étudions leur complexité.

Cette thèse introduit le concept d’ assemblage localisé, qui consiste à construire

et parcourir un graphe d’assemblage partiel. L’assemblage localisé combine les avan-

tages des algorithmes gloutons, en terme d’utilisation mémoire, avec l’information

localement complète des algorithmes à base de graphes. Nous avons développé le

premier assembleur (Monument) qui construit des scaffolds (séquences pouvant con-

tenir des nucléotides indéterminés) directement à partir des lectures. Monument se

base sur un nouvel objet mathématique, les graphes de châınes de caractères pairées.

Pour économiser l’utilisation de la mémoire, nous utilisons des structures de données

optimisées spécifiquement pour la tâche d’assemblage. Nous avons aussi étudié la

possibilité d’assembler des génomes sans aucune structure d’indexation. Un outil,

Mapsembler, a été développé pour illustrer cette technique.

Chapitre 2

Le re-séquençage d’un génome consiste à aligner les lectures sur une séquence de

référence. L’objectif est d’améliorer la qualité de la séquence de référence et/ou de

détecter des variations (par exemple des SNPs ou indels). Whiteford et al. [54] ont

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 129

établi que la faisabilité du re-séquençage est déterminée par le pourcentage de

lectures représentées à un endroit unique dans la séquence de référence. Leurs simu-

lations ont montré que des lectures de 50-100 pb (paires de bases) sont suffisamment

longues pour re-séquencer un génome humain.

En procédant à une analyse étendant celle de Whiteford et al., nous étudions dans

quelle mesure le re-séquençage d’un génome est possible avec des lectures ultra-courtes

et pairées. Dans un premier temps, la notion d’unicité de lectures non pairées est rap-

pelée. Puis, cette notion est étendue à l’unicité des lectures pairées. Dans un second

temps, l’algorithme permettant de calculer efficacement le pourcentage de lectures

uniques est rappelé. Une variation plus efficace en mémoire de cet algorithme est

introduite. Un algorithme permettant de calculer le pourcentage de lectures pairées

uniques est présenté. Cet algorithme permet d’obtenir des bornes inférieures sur la

taille des lectures pairées pour le re-séquençage de différents génomes modèles.

Nous constatons que 97,4 % du génome d’E. coli est couvert par des lectures

pairées uniques de taille 8 bp. Pour le génome humain, 90 % des lectures pairées

de taille 11 bp et d’insert de 300 pb sont uniques. Ces résultats suggèrent que pour

de grands génomes, le re-séquençage nécessite des lectures pairées beaucoup plus

courtes (pour H. sapiens , environ 70 % plus courtes) pour atteindre une couverture

comparable à lectures non pairées. Par ailleurs, la taille des inserts, c’est à dire la

distance entre deux lectures dans une paire, joue un rôle crucial dans le re-séquençage.

Par exemple, le génome complet de E. coli est entièrement couvert par des lectures

pairées uniques dès l’instant que la taille des inserts dépasse 5000 pb, et que cette

taille est fixe. Cette analyse met en évidence que la taille d’insert a un rôle aussi

important que la taille des lectures.

Chapitre 3

L’assemblage de novo consiste à retrouver la séquence ADN d’une génome unique-

ment à partir d’un ensemble de lectures courtes. Dans un premier temps, les modèles

classiques d’assemblage sont rappelés: problème de la plus petite sous-châıne de car-

actères commune, assemblage avec le graphe de de Bruijn, assemblage avec le graphe

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 130

ab bc cd dg gh

de ef fc

Figure 8-1: Exemple d’un graphe de châınes de caractères pairées construit à partir
de lectures pairées (taille d’insert de 6) couvrant la séquence S = abcdefcdgh. Les
arcs verts représentent des liens pairés, les arcs jaunes représentent les chevauchements
entre les lectures de taille 1.

de châınes de caractères (string graph).

Nous étudions la complexité de calcul des nouveaux modèles d’assemblage, liés

au contexte du séquençage de dernière génération: l’assemblage des lectures pairées.

Dans ce Chapitre, nous montrons que le problème de recherche de super-chemins dans

un graphe de Bruijn, ainsi que la recherche de chemins Hamiltoniens, peuvent être

étendus pour intégrer l’information des lectures pairées. Des variantes pairées de deux

problèmes classiques sont aussi étudiées: la recherche de plus courte super-chaine de

lectures pairées, ainsi que les puzzles où les pièces sont pairées. Il est montré que la

complexité de tous ces problèmes pairées est NP-dure, c’est à dire que l’information

pairée ne permet pas de significativement simplifier le problème.

Nous introduisons un nouveau modèle de graphe, le graph de châınes de caractères

pairées, défini comme une extension du graphe de châınes de caractères classique, sur

un ensemble de paires de lectures (Figure 8-1). Ce modèle permet de formuler de

manière naturelle de l’assemblage des lectures pairées.

Avec ce modèle, nous formulons un résultat de complexité paramétrique. Ce

résultat indique que l’assemblage peut être résolu en temps polynomial lorsque les

répétitions du génome sont plus courtes que la taille de l’insert, et suffisamment

espacées. Ceci montre que les lectures pairées facilitent l’assemblage pour une classe

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 131

particulière de génomes.

Chapitre 4

Les résultats du Chapitre précédent montrent que l’assemblage, même en utilisant des

lectures pairées, demeure un problème difficile à cause des répétitions génomique. En

pratique, calculer un assemblage, même approximatif, est une tâche difficile en terme

de temps de calcul et d’utilisation mémoire. Pour un séquençage réel, l’assemblage

ne peut être pas résolu exactement comme une instance de l’un des problèmes définis

dans le chapitre précédent. En effet, ces problèmes ont typiquement de nombreuses

solutions équiprobables, et seulement une seule solution est biologiquement correcte

(celle correspondant au génome réel). Les répétitions génomiques plus longues que

la longueur des lectures sont le principal facteur d’un grand nombre de solutions.

Les heuristiques classiques d’assemblage consistent à retourner en sortie un ensemble

de chemins linéaires (contigs) à partir d’un graphe de châınes de caractères ou d’un

graphe de Bruijn.

Ce Chapitre introduit un nouveau mécanisme visant à intégrer l’information pairée

dans un algorithme d’assemblage. L’information pairée permet d’éliminer les am-

bigüıtés liées aux répétitions qui sont plus longues que la longueur de lecture, mais

plus courtes que la taille de l’insert. Pour cela, la notion de chemin non-branchant est

introduite. Les chemins non-branchants sont des chemins qui traversent des parties

du graphe où aucune branchement ne se produit, par rapport au type d’arc entrant

et sortant. Par exemple, le chemin

{ab 99K ef 99K gh},

est un chemin non-branchant dans le graphe de la Figure 8-1.

Un autre problème important lié aux instances pratiques de l’assemblage est

l’énorme utilisation de mémoire des structures de données. Pour un génome humain,

un assembleur optimisé basé sur les graphes de de Bruijn nécessite des centaines

de gigaoctets de mémoire [29]. Nous proposons une procédure d’indexation conçue

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 132

spécifiquement pour les lectures pairées. Deux nouvelles méthodes de filtrage sont in-

troduites afin de réduire l’utilisation de mémoire: une procédure pour supprimer les

k-mers erronés à la volée, ainsi qu’une procédure pour éviter de référencer les lectures

redondantes. En substance, cette structure référence un ensemble représentatif des

lectures pour chaque k-mer correct.

Un prototype de cette méthode d’indexation est appliqué à des données Illumina

réelles. Nos tests montrent que l’index nécessite 30-50% de moins de mémoire que

SOAPdenovo, avec des temps d’indexation comparables. En remplaçant la table de

hachage classique par une table statique optimisée, la réduction de l’espace mémoire

atteint 86%.

Chapitre 5

Les deux concepts introduits au Chapitre précédent (chemins non-branchants et

procédure d’indexation) sont combinés dans l’implémentation d’un nouveau logiciel

d’assemblage, Monument.

Monument consiste en deux modules: indexation et assemblage. Le module

d’indexation suit la procédure décrite dans le Chapitre précédent. Le module d’assemblage

de Monument construit tous les chemin non-branchants possibles, en évitant de

réutiliser plusieurs fois chaque noeud. Pour construire chaque chemin, le module

construit un sous-graphe de châınes de caractères pairées, uniquement à partir de

l’information des lectures référencées dans l’index.

Algorithm 7 Procédure d’assemblage de Monument

1: Choisir d’une séquence non assemblée s(0)

2: t ← 0
3: Répéter
4: s(t)′ ← l’extension s(t) avec un graphe d’extension
5: s(t+1) ← l’extension de s(t)′ avec une extension pairée
6: t ← t + 1
7: Tant que l’extension pairée précédente a réussi
8: s

(t)
g ← remplacer les nucléotides indéterminés dans s(t) (gap-filling)

9: Retourner le scaffold assemblé s
(t)
g

L’Algorithme 7 décrit les étapes d’assemblages de Monument. Pour plus d’efficacité,

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 133

les régions où l’information pairée n’est pas nécessaire sont assemblées à l’aide d’une

autre structure: un graphe d’extension. Le graphe d’extension est un graphe de

Bruijn, où les régions sans branchements sont compressées en un seul nœud au mo-

ment de la construction. Les régions où l’information des lectures pairées permet

d’élucider une répétition génomique sont assemblées à l’aide d’un graphe de châınes

de caractères pairées (étape dite d’extension pairée). Les k-mers déjà assemblés sont

marqués. Pour démarrer l’assemblage d’un chemin, une région non-assemblée est

d’abord déterminée. Pour cela, un assemblage de courte longueur sur des k-mers

non marqués, à l’aide d’un algorithme glouton, est effectué en utilisant seulement la

structure d’indexation.

Monument est comparé avec d’autres assembleurs populaires pour lectures Il-

lumina, sur divers ensembles de données. Tout d’abord, un ensemble de données

bactériennes montre que Monument obtient des résultats légèrement meilleurs que

Velvet et Ray en termes de N50 (médiane pondérée des scaffolds). Surtout, il est

démontré que la méthode d’assemblage de Monument donne d’aussi bons résultats

que celle de Velvet, basée sur un graphe complet. Contrairement à un autre algorithme

heuristique glouton (Ray), Monument n’est pas sensible à des variants de séquence

(SNPs, indels). Puis, l’assemblage d’un génome plus grand (fungus) démontre que

Monument est capable d’assembler avec une diminution quasi-lineaire du temps de

calcul en parallèle. Les résultats sont comparables ou meilleurs (en termes de N50,

précision et couverture) à deux autres assembleurs (SOAPdenovo et Allpaths).

Enfin, les résultats de compétitions d’assemblage (Assemblathon 1 & 2, dnGASP)

sont analysés. Pour Assemblathon 1, notre pipeline basé sur Monument obtient de

bons résultats en termes de scaffold NG50, erreurs structurelles, et arrive premier en

temps d’exécution et utilisation mémoire. Des faibleses du pipeline ont été identifiées

en termes de contig NG50 et de couverture. Pour Assemblathon 2, des résultats

préliminaires indiquent que notre pipeline est désormais compétitif avec les meilleurs

pipelines d’assemblage en termes de qualité des résultats.

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 134

Chapitre 6

Ce Chapitre traite d’algorithmes dépassant le cadre de l’assemblage de novo classique.

Nous introduisons une forme simplifiée d’assemblage de novo, nommée assemblage de

novo ciblé, en utilisant une méthode sans indexation. L’algorithme, Mapsembler,

consiste à effectuer un assemblage localisé de novo autour d’un ensemble de régions

de départ (starters). Plus précisément, Mapsembler détermine si chaque région de

départ correspond à un assemblage des lectures, éventuellement avec des variants. Il

assemble ensuite chaque région de départ, par extensions successives. L’algorithme

principal de Mapsembler, décidant si une région de départ correspond à un alignement

multiple de lectures, est décrit dans ce chapitre. Le problème combinatoire sous-jacent

est tout d’abord défini: il s’agit de construire le plus grand ensemble de séquences (1)

cohérentes avec les lectures, (2) cohérentes avec la région de départ et (3) confirmées

par suffisamment de lectures. La preuve de complétude d’un algorithme polynomial

de résolution est donnée.

Pour évaluer la méthode sur un cas réel, Mapsembler a été appliqué à la détection

de la séquence génique du gène folA (issu de l’organisme E. col K-12) dans un autre

souche d’E. coli (O157:H7). Mapsembler a confirmé la présence du gène, et a assemblé

la séquence présente dans O157:H7 sans erreur, en dix minutes et 1,5 Mo de mémoire.

Mapsembler pourrait être utilisé comme un bloc de base pour effectuer un as-

semblage complet d’un génome, avec une empreinte mémoire arbitrairement faible.

Une analyse dérivée du modèle balls and bins est présentée pour étayer cet argu-

ment. Avec cette analyse, nous estimons qu’en utilisant 10 Mo de mémoire, 34 étapes

d’assemblages avec Mapsembler de 1 · 105 régions de départ seraient nécessaires pour

assembler un génome humain complet. Un tel calcul peut être effectué efficacement

sur un cluster.

Enfin, une bôıte à outils méthodologique pour divers analyses NGS est présentée.

Cette bôıte à outils est basée sur une table de hachage succincte statique, qui est des-

tinée à réduire l’utilisation mémoire des méthodes classiques. Plus précisément, les

algorithmes de correction d’erreur peuvent être rendus plus économes en mémoire en

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 135

stockant un comptage réduit des k-mers dans le tableau statique. Deux autres algo-

rithmes sont présentés: l’identification de répétitions dans un assemblage, et la fusion

des deux assemblages pour obtenir un troisième assemblage de meilleure qualité. Ces

algorithmes sont efficaces en mémoire: la fusion de deux assemblages contenant ap-

proximativement 1.4 milliards de k-mers distincts a nécessité 14 Go de mémoire, et

s’est effectuée en moins de deux heures sur un seul coeur CPU.

Chapitre 7: Conclusion et perspectives

Dans le contexte du re-séquençage, nous avons introduit un algorithme basé sur un

tableau de suffixes pour analyser les différences entre les lectures unique et pairées, en

termes de couverture du génome (Chapitre 2 et [10]). Cette analyse met en évidence

deux points: (i) les lectures pairées de longueur l permettent de couvrir une partie

beaucoup plus importante du génome que les lectures simples de longueur 2l, et (ii)

des inserts plus longs permettent de compenser des tailles de lectures plus courtes.

Nous avons incorporé l’information des lectures pairées dans les formulations clas-

siques du problème d’assemblage (Chapitre 3). Cela ne change pas la complexité de

calcul, les problèmes d’assemblage à la fois non pairés et pairés sont tous NP-durs.

Cependant, il est établi que le problème d’assemblage des lectures pairée possède

une solution en temps polynomial lorsque les régions répétées sont dispersées, et plus

courtes que la taille des inserts.

Les aspects pratiques liés à l’assemblage jouent un rôle majeur. En effet, les

modèles théoriques n’indiquent pas comment résoudre les ambigüıtés de reconstruc-

tion. Ils ne tiennent pas non plus compte du fait que les graphes (de châınes de

caractères ou de de Bruijn) ont une empreinte mémoire souvent élevée. Une ap-

proche d’assemblage dite localisée a été élaborée (Section 4.3 et [11]). Elle com-

bine l’efficacité en mémoire d’un assembleur glouton avec une structure localement

complète. En outre, cette approche a été étendue pour inclure les informations des

lectures pairées, permettant un assemblage ciblé de scaffolds.

Enfin, plusieurs problèmes liés à l’assemblage peut être efficacement résolu en

utilisant de nouveaux algorithmes (Chapitre 6). L’algorithme Mapsembler permet

CHAPTER 8. EXTENDED SUMMARY IN FRENCH 136

d’effectuer des assemblages ciblés autour de régions d’intérêt (Section 6.1.2 et [39]).

Des tables de hachages succinctes donnent lieu à de nombreuses applications plus

économes en mémoire: correction d’erreurs dans les lectures, identification de séquences

répétées dans une assemblage, et fusion de deux assemblages (Section 6.2).

	Cover page
	Acknowledgments
	1 Introduction
	1.1 Introduction
	1.2 Genome assembly
	1.2.1 Earlier works
	1.2.2 Contribution

	1.3 Thesis outline

	2 Analysis of paired genomic re-sequencing
	2.1 Motivation
	2.2 Reads uniqueness
	2.2.1 Single reads uniqueness
	2.2.2 Paired reads uniqueness
	2.2.3 Two definitions of paired uniqueness

	2.3 Algorithms
	2.3.1 Suffix arrays
	2.3.2 Uniqueness ratio using a suffix array
	2.3.3 Single uniqueness algorithm
	2.3.4 Paired uniqueness algorithm

	2.4 Results
	2.4.1 Paired vs. unpaired uniqueness
	2.4.2 Influence of insert size

	2.5 Discussion

	3 Paired de novo assembly theory
	3.1 Introduction
	3.2 Classical assembly models
	3.2.1 Genome assembly is not a Shortest Common Superstring
	3.2.2 String graphs
	3.2.3 de Bruijn graphs
	3.2.4 Scaffolding a sequence graph

	3.3 Shortest Common Superstring of paired strings
	3.4 Two paired variants of graph problems
	3.4.1 Hamiltonian Path with paired vertices
	3.4.2 de Bruijn Superwalk Problem with -gapped strings

	3.5 Paired-pieces jigsaw puzzle
	3.6 Paired assembly problem
	3.7 Parametric complexity of paired assembly
	3.8 Discussion

	4 Practical assembly methods
	4.1 Introduction
	4.2 Issues with existing models
	4.2.1 Limitations of theoretical assembly
	4.2.2 Including pairs in contigs assembly

	4.3 Non-branching paths
	4.3.1 Non-branching paths in the ideal case
	4.3.2 Practical non-branching paths

	4.4 Parallel and memory-efficient indexing
	4.4.1 Distributed and multi-threaded indexing
	4.4.2 On-line parallel k-mers filtering
	4.4.3 Paired reads indexing structure
	4.4.4 Indexing results
	4.4.5 Static k-mer index

	4.5 Discussion

	5 Monument assembler
	5.1 Pipeline
	5.1.1 Indexing module
	5.1.2 Assembly module

	5.2 Implementation of the assembly procedure
	5.2.1 Extension graphs
	5.2.2 Paired extensions
	5.2.3 Starting region distribution and assembly termination
	5.2.4 Gap filling algorithm
	5.2.5 Dealing with sequencing errors

	5.3 Results
	5.3.1 Assembly metrics
	5.3.2 Bacterial assembly results with simulated variants
	5.3.3 Fungus assembly results, parallel speed-up measurements
	5.3.4 Assembly benchmarks
	5.3.5 Discussion

	6 Beyond classical de novo assembly
	6.1 Targeted assembly: Mapsembler
	6.1.1 Methods
	6.1.2 Results
	6.1.3 Towards index-free whole-genome assembly

	6.2 NGS toolbox supported by static succinct hash tables
	6.2.1 Error correction
	6.2.2 Repeats identification
	6.2.3 Merging assemblies

	7 Conclusion and perspectives
	7.1 Conclusion
	7.2 Released software
	7.3 Perspectives
	7.4 In a future context
	7.4.1 Future of sequencing
	7.4.2 Future relevance of this work

	8 Extended summary in French

