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Abstract

We propose in this thesis several contributions related to the quantitative verifi-
cation of systems. This discipline aims to evaluate functional and performance
properties of a system. Such a verification requires two ingredients: a formal
model to represent the system and a temporal logic to express the desired prop-
erty. Then the evaluation is done with a statistical or numerical method.

The spatial complexity of numerical methods which is proportional to the
size of the state space of the model makes them impractical when the state
space is very large. The method of stochastic comparison with censored Markov
chains is one of the methods that reduces memory requirements by restricting
the analysis to a subset of the states of the original Markov chain. In this the-
sis we provide new bounds that depend on the available information about the
chain.

We introduce a new quantitative temporal logic named Hybrid Automata
Stochastic Logic (HASL), for the verification of discrete event stochastic pro-
cesses (DESP). HASL employs Linear Hybrid Automata (LHA) to select pre-
fixes of relevant execution paths of a DESP. LHA allows rather elaborate infor-
mation to be collected on-the-fly during path selection, providing the user with a
powerful mean to express sophisticated measures. In essence HASL provides a
unifying verification framework where temporal reasoning is naturally blended
with elaborate reward-based analysis. We have also developed Cosmos, a tool
that implements statistical verification of HASL formulas over stochastic Petri
nets.

Flexible manufacturing systems (FMS) have often been modeled by Petri
nets. However the modeler should have a good knowledge of this formalism. In
order to facilitate such a modeling we propose a methodology of compositional
modeling that is application oriented and does not require any knowledge of
Petri nets by the modeler.



ii

ABSTRACT



Résumé

Les systemes matériels et logiciels sont de plus en plus présents dans la vie quo-
tidienne mais aussi de plus en plus complexes. Le concepteur ou 'utilisateur
d’un systeme se pose deux questions principales : le systeme fait-il ce qu’il est
censé faire ? Combien de temps le systéme prend-il pour exécuter une tiche partic-
uliere ? La premiere question, consiste a vérifier si le systeme satisfait une pro-
priété fonctionnelle. Les techniques de vérification formelle [Wan04] apportent
une réponse a cette question. Dans la deuxiéme question, il s’agit d’évaluer un
parametre ou un indice de performance du systéme. La discipline de 1’évaluation
des performances [HLROO] permet d’effectuer cette taiche. Pendant longtemps,
les deux disciplines se sont développées indépendamment 1'une de I’autre. Mais
quelques difficultés commencent a apparaitre dans les deux disciplines. En
effet, de nos jours, I'évaluation des performances a besoin d’exprimer des in-
dices plus élaborés. Les techniques de vérification peuvent exprimer ces indices
rigoureusement et procédent a leur évaluation automatiquement. D’autre part,
les techniques de vérification doivent étre mises a jour pour aborder les sys-
témes probabilistes. Clairement, les deux disciplines sont complémentaires et
leur unification engendre ce qui est appelé La vérification quantitative [Kwi07].

Plusieurs approches ont été développées dans le contexte de la vérification
formelle : tests, simulation, preuve de programmes et model checking. Depuis
le travail de Emerson et Clarke [EC80], le model checking a regu un intérét par-
ticulier de la part de la communauté scientifique a la fois sur les plans théorique
et pratique. Etant donnés un modele et une propriété, la technique du model
checking explore la totalité de I'espace d’état du modele pour vérifier si la pro-
priété est satisfaite par le modele. Si la propriété n’est pas satisfaite un contre
exemple est généré. L'utilisation du model checking présente deux avantages
principaux par rapport aux autres méthodes de la vérification formelle : (1) la
procédure est completement automatique, (2) un contre exemple est généré si
jamais le systeme échoue a satisfaire la propriété en question [BKO08].

La premiere étape pour la vérification d'un systeme a travers la méthode
du model checking consiste a représenter le systeme par un modele formel,
en général, un systeme de transition qui n’est qu'un graphe orienté ot les nceuds
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représentent les états du systémes et les arcs représentent les changements d’états
du systéme. D’autres informations peuvent étre rajoutées sur les nceuds ou/et
arcs [BKOS§]. Dans la deuxiéme étape, la propriété que 1’on souhaite vérifier est
exprimée a l’aide d"une logique temporelle adéquate. Finalement, a la troisieme,
un algorithme de model checking évalue la propriété sur le modele. En pra-
tique, cette étape consiste a exécuter un model checker. Ce dernier renvoie : oui
si le modeéle satisfait la propriété ou non si la propriété n’est pas satisfaite avec
éventuellement un contre exemple.

L’évaluation des performances a connu un développement rapide avec ’avenement
des ordinateurs et des réseaux de télécommunication. Cette discipline a comme
objectif principal le calcul de certains parametres de performance du systeme.
Le temps moyen de réponse d"un réseau de télécommunication est un exem-
ple de parametres que I'on souhaite souvent évaluer. La méthodologie de la
discipline consiste a calculer la distribution stationnaire ou transitoire du sys-
teme. Ces dernieres seront exploitées pour calculer les parametres désirés. Pour
ce faire, la discipline fait appel aux méthodes analytiques ou a la simulation a
événements discrets. Quant aux modeles formels les plus répandus, on cite : la
théorie des files d’attente [Ste09], les réseaux d’automates stochastiques [Pla85]]
et les réseaux de Petri stochastiques [ABCT95].

Vérification Quantitative

Pour appliquer la vérification quantitative sur un systeme stochastique, il
est indispensable de représenter ce systeme par un modele formel. Les chaines
de Markov sont certainement les plus connues parmi les modeles stochastiques
grace a leur simplicité, leur capacité de modélisation et la richesse de la lit-
térature qui leur a été consacrée par la communauté scientifique. Nous distin-
guons les chaines de Markov a temps discret (DTMC) et les chaines de Markov
a temps continu (CTMC). La modélisation d'un systeme directement par une
chaine de Markov s’avere quelquefois fastidieuse voire impossible lorsque la
taille de I'espace d’état dépasse quelque dizaines d’états. Il est alors nécessaire
de faire appel aux formalismes haut niveaux tels que : Les réseaux de Petri
stochastiques, les réseaux d’automates stochastiques ou les algebres de proces-
sus stochastiques [HKO1].

La propriété a évaluer doit étre exprimée par une logique temporelle prob-
abiliste. Plusieurs logiques ont été proposées dans la littérature. Elles sont
en général une extension de deux logiques principales : la logique temporelle
linéaire (LTL) [PnuZ77] et logique temporelle arborescente (CTL) [CE82, [QS82].
PLTL [Var85] (resp. PCTL [H]94, [HS86]) est une extension probabiliste de LTL
(resp. CTL) pour les DTMCs. La logique stochastique continue (CSL) [ASVB96,
ASVBO00] a été définie comme une extension probabiliste de CTL pour les CTMCs.
CSL (resp. PCTL) a été ensuite étendue a CSRL [BHHKOOa] (resp. PRCTL [AHKO3])



pour prendre en compte les récompenses dans les CTMCs (resp. DTMCc).
asCSL [BCHT™07] est une autre extension de CSL qui permet de spécifier des
CTMCs avec des actions et des états étiquetés. Dans la logique CSL™ [DHS09]
la formule s’exprime comme un automate temporisé déterministe a horloge
unique. Il a été démontré que CSL™ est strictement plus expressive que CSL
et asCSL. Une autre logique qui utilise les automates pour exprimer la formule
appelée DTA [CHKMAOQ9] a été introduite. Dans cette logique 1’automate est a
horloges multiples, ce qui fait de DTA plus expressive que CSL™.

Nous distinguons deux familles de méthodes du modele checking stochas-
tique. La premiere regroupe les méthodes dites numériques. Cette famille de
méthode fournit la valeur exacte de la probabilité recherchée ce qui est considéré
comme leur principal atout. Les techniques d’analyse numérique sont utilisées
pour cette catégorie. Néanmoins, plusieurs inconvénients surgissent. Le pre-
mier est di & 'explosion de l'espace d’état ce qui rend l'analyse des grands
systemes difficile ou impossible. Le deuxiéme inconvénient est liée a la nature
du processus stochastique engendré par le modeéle. En effet, ces méthodes ne
peuvent pas traiter les processus markoviens ou semi-markoviens.

Les méthodes statistiques est la deuxiéme famille du modele checking stochas-
tique. Leur principe consiste a générer un nombre suffisant de trajectoires en-
suite d’estimer la probabilité désirée. On en distingue deux méthodes : (1)
L’estimation, qui renvoie une estimation statistique de probabilité recherchée
tout en construisant un intervalle (appelé intervalle de confiance) contenant la
valeur exacte, pas surement mais avec une certaine probabilité ; (2) Le test
d’hypothese, dont le but est de comparer la probabilité recherchée, sans la calculer
a un seuil prédéfini.

Les méthodes statistiques utilisent des techniques issues de la statistique
mathématique telles que l'estimation et le test d’hypothese mais aussi la sim-
ulation a événements discrets. Ces méthodes présentent plusieurs avantages :
elles ne sont pas gourmandes en mémoire, leur complexité spatiale est propor-
tionnelle au nombre de composants et non pas a l'espace d’état, il est méme
possible de traiter des systemes infinis. L’autre avantage est qu’elle ne sont pas
restreintes aux modeles markoviens, il suffit de pouvoir représenter le modéle
par un systeme stochastique a événements discrets.

Toutefois ces méthodes ne sont pas sans inconvénients. En effet, 'obtention
de résultats avec un niveau de confiance élevé et un intervalle étroit nécessite
un temps de calcul tres important. D’autre part, I’évaluation de formules sta-
tionnaires nécessite un traitement spécifique.

Questions Ouvertes
Nous décrivons dans cette section les trois questions ouvertes que nous
avons abordées dans notre travail.
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1. L'explosion de l’espace d’état dans les méthodes numériques. Il y a eu
plusieurs approches qui ont proposées pour apporter solution a ce probleme.
Ces approches ne résolvent pas le probleme définitivement, mais contribuent de
maniere significative a réduire la complexité spatiale. Certaines méthodes inter-
viennent en amont, citons en quelques-unes : les méthodes d’agrégation d’états
dans les chaines de Markov [BHHKOOb, BHHKO03b], le produit tensoriel dans les
les réseaux d’automates stochastiques [BKKT02], les formes produits dans les
réseaux de Petri stochastiques [HMSMO5] ou l'exploitation de la comparaison
stochastique dans les chaines de Markov [PY05]. Une autre méthode qui inter-
vient en aval consiste a utiliser les diagrammes de décision binaires [CEM™97].

2. Les limitations dans les logiques existantes. La premiere limitation est
dtie au manque d’approche unificatrice qui peut a la fois effectuer des taches de
model checking et d’évaluation des performances dans un méme formalisme.
La deuxieme limitation est liée a 1'expressivité de ces logiques. En effet, ces
logique peuvent effectuer uniquement deux type d’évaluations : (1) Une évalu-
ation booléenne qui dépends de la validité de la formule sur le chemin et (2) une
somme cumulée exprimée sur les récompenses des actions et états. Mais, il n’est
pas possible d’effectuer certaines opérations compliquées mais utiles telles que
le minimum, le maximum, l'intégration ou la valeur moyenne sur un chemin.

3. La difficulté a exploiter des formalismes haut-niveau par le modélisa-
teur. Les formalismes haut niveau sont des modeles formels qui ne corre-
spondent pas a des approches pratiques des probleme traités. Le modélisateur
préfere toujours les formalismes qui correspondent a ses cas pratiques. De plus,
un formalisme intuitif contribue a réduire les erreurs au cours de la phase de
modélisation.

Les Contributions

Nous proposons dans le cadre de cette thése plusieurs contributions

La premiere contribution rentre dans le cadre de la réduction de 'explosion
de 'espace d’état pour les méthodes numériques. L’objectif est de construire
des bornes stochastiques pour les chaines de Markov censurées (CMC). Une
CMC n’observe qu'un sous ensemble de 'espace d’état de la chaine originale.
Les CMCs sont tres utiles quand on veux traiter une chaine de Markov avec un
espace d’état tres large ou quand cette chaine n’est connue que partiellement.
En effet, la construction de bornes sur la chaine censurée permet de borner
certaines mesures dans la chaine originale. La technique a été déja introduite
dans [FPY07al] ot un algorithme appelé DPY a été proposé dans le but de con-
struire des bornes pour une CMC. Dans notre travail, nous montrons que DPY
est optimal et nous proposons plusieurs schémas de bornes qui dépendent de
I'information partielle disponible ou que 1’on veuille exploiter.

Dans la deuxiéme contribution nous introduisons une nouvelle logique ap-
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plée "Hybrid Automata Stochastic Logic (HASL)". Cette logique rentre dans le
cadre du model checking statistique. Une formule dans cette logique est alors
exprimée a 'aide de deux composantes : un automate hybride linéaire et une
expression définie sur les variables de I'automate. Avec HASL, on peut vérifier
une large classe de modeles stochastiques appelée Discrete Events Stochastic
Process (DESP). HASL élimine les limitations d’autres logiques. Elle unifie dans
le méme formalisme plusieurs disciplines : model checking, stireté de fonction-
nement, évaluation des performances. D’autre part, HASL étend 'expressivité
des logiques existantes. En effet, il est possible d’effectuer certaines opéra-
tions sur les variables a la volée et pendant la génération d"une trajectoire, typ-
iquement, le minimum, le maximum, l'intégral ou la valeur moyenne. Enfin,
puisque nous utilisons une approche statistique, la propriété sans mémoire n’est
pas requise, donc, on peut (en principe) traiter n'importe quelle distribution de
temps. Nous avons aussi con¢u un outil appelé CosMOs qui évalue une formule
HASL sur un réseau de Petri généralisé.

Dans la troisiéeme contribution nous proposons une nouvelle approche com-
positionnelle pour modéliser les ateliers flexibles (FMS) en utilisant les réseaux
de Petri. Notre choix de FMS est di a leur importance dans 1'industrie. Dans
notre approche un FMS est modélisé par composants en spécifiant les classes de
composants a utiliser. Ce qui permet un modélisateur de construire son mod-
ele comme s’il construit un FMS réel a 'usine. Il aura a manipuler des unités de
chargement et de transport ainsi que des machines. Ainsi, la phase de modélisa-
tion consiste sélectionner les composants qui se trouvent dans une boite a outils
prédéfinie. Ensuite le modélisateur procédera a I'assemblage des composants
via leurs interfaces.
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Chapter 1

Introduction

Software and hardware systems are increasingly present in every day life but
also increasingly complex. The designer or user of a system asks two main
questions: The system does what it is supposed to do? How long does the system take
to execute a particular task? The first question, consists of verifying if the system
satisfies a functional property. Techniques of formal verification [Wan04] can
respond to such questioning. The second question is to evaluate a parameter
or a performance index of the system. The discipline of performance evalua-
tion [HLROO] is related to this task. For many years the two disciplines have
been developed independently from each other. But some weaknesses start to
appear in both disciplines. Indeed, nowadays the performance evaluation re-
quires more elaborate indices. Verification techniques can express such complex
indices rigorously and evaluate them automatically. On the other hand, verifi-
cation techniques must be updated to tackle with probabilistic systems. So the
two disciplines are complementary, and their unification leads what is called
the quantitative verification [Kwi07].

Many approaches are developed for formal verification such as: test, simu-
lation, program proving and model checking. Since the work of Emerson and
Clarke [EC80], model checking has received particular interest from the scien-
tific community both on the theoretical and practical levels. Given a model
and a property, the model checking technique explores the full state space of
the model to check whether the given property is satisfied by the model. If
the property is not satisfied counter examples will be generated. There are two
main advantages of using model checking compared to other formal verifica-
tion methods: it is fully automatic and it provides a counter example whenever
the system fails to satisfy a given property [BKO08].

The first step to check a system by mean of a model checking method con-
sists of representing the system by a formal model, in general, a transition system
(TS). ATS is basically a directed graph where nodes represent states and edges

1
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represent the state changes of the system. Additional information can be added
on the nodes and/or the edges [BK08]. Many types of TS are defined in the
literature. In the second step of a model checking procedure, the property to be
checked is formally expressed using an adequate temporal logic. In the third
step an algorithm of model checking evaluates the property on the model. In
practice, this step consists of running a model checker. The later produces the
following output: yes if the model satisfies the property and no otherwise with
possibly a counter-example.

Performance evaluation has been developed especially with the rise of com-
puter and telecommunications networks. It aims to calculate the so-called per-
formance parameters of a system. An example of a performance parameter is
the average time of response of a telecommunication network. In performance
evaluation the steady-state or transient distribution of the system is computed
and then used to evaluate the desired parameter. Analytic methods and simu-
lation are the two main techniques of performance evaluation. Formal models
such as, queuing networks [Ste09], stochastic automata networks (SAN) [Pla85]]
and stochastic Petri nets (SPN) [ABC"95] are among the most widespread for-
malisms.

Quantitative Verification

To apply quantitative verification on a stochastic system, it is necessary to
represent such system by a formal model. Markov chains models are certainly
the most known stochastic models for their simplicity, their modeling power
and the wealth of literature that has been devoted to them by the scientific com-
munity. We distinguish the discrete time Markov chain (DTMC) and continuous
time Markov chains (CTMC). Direct modeling of a system by a Markov chain
can be tedious or even impossible when the state space of this system exceeds a
few dozen states. So one describes such systems by high level formalisms such
as: stochastic Petri nets, stochastic automata networks or stochastic process al-
gebras [HKO1].

The property to be evaluated should be expressed by a probabilistic tem-
poral logic. Many stochastic logics were introduced in the literature. In gen-
eral, they are an extension of two main temporal logics: Linear Temporal Logic
(LTL) [PnuZ7] and Computational Tree Logic (CTL) [CE82, QS82]. LTL is path-
based while CTL is state-based. PLTL [Var85] (resp. PCTL [H]94, HSS86]) is a
probabilistic extension of LTL (resp. CTL) for DTMCs. The Continuous Stochas-
tic Logic (CSL) [ASVB96, [ASVB00] was defined as a probabilistic extension of
CTL for CTMCs. CSL (resp. PCTL) is then extended to CSRL [BHHKO00a] (resp.
PRCTL [AHKO3]) to take into account rewards for CTMCs (resp. DTMCc). An-
other extension of CSL named asCSL [BCHT07], for specification of CTMCs
with both action-and state-labels. In the logic CSL™ [DHS09], the formula is



expressed as deterministic timed automaton with a single clock. It is shown
that CSL™ is strictly more expressive than CSL and asCSL. Another logic using
timed automaton called DTA [CHKMO09] appears. In DTA the automaton is a
multiple clock one, which makes DTA more expressive than CSL™.

There are two families of methods for stochastic model checking. The first
includes the so-called numerical methods. It provides the exact value of the
probability we search which is considered as their main advantage. These meth-
ods use numerical analysis techniques. However, they have several drawbacks.
The first one is due to the explosion of the state space which makes the anal-
ysis of large systems difficult or impossible. The second drawback concerns
management of the trace relevant information. In fact, these methods can only
handle with markovian and semi-markovian models.

Statistical methods represent the second family of stochastic model check-
ing methods. Their principle is to generate a sufficient number of trajectories
and estimate the desired probability. There are two families of methods. The
estimation method can estimate the probability and build an interval (called
confidence interval) containing the actual value not surely but with a certain
probability called confidence level. The method of hypothesis testing proceed
to a statistical test that compares the probability that the property is satisfied to
a predefined threshold without computing the considered probability.

These methods make use of mathematical statistical techniques such as esti-
mation and hypothesis testing and also the discrete events simulation. The in-
terest of statistical methods is that they are not greedy in memory, their spatial
complexity is proportional to the number of system components and not to the
state space. One can even handle infinite systems. The other advantage, is that
they are not restricted to markovian models, it is sufficient that the model can be
represented as a stochastic discrete event system. Unfortunately these methods
also have disadvantages. Indeed, obtaining results with high confidence and a
reduced confidence interval requires lengthy computation time. On the other
hand, evaluating steady state formulas requires a specific treatment.

Open Issues

Here we describe three of the main open issues that we have addressed in
our work.

1. State space explosion in numerical methods. There were several ap-
proaches that have been proposed to address that problem. They do not provide
a final solution, but they significantly reduce the space complexity. Some ap-
proaches are applied upstream. Here are some of the numerous proposed meth-
ods: the aggregation of states in Markov chains [BHHKO0Ob, BHHKO3b], tensor
product in stochastic automata networks [BKKT02], product form in stochastic
Petri nets [HMSMO05]], the exploitation of stochastic comparisons [PY05]. An-
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other approach is applied downstream. It consists of using Multi-Binary Deci-
sion Diagrams (MTBDDs) [CEM™97].

2. Limitations of existing logics. the first limitation of existing logics is
the lack of a unifying approach than can do model-checking and performance
evaluation within the same formalism. The second limitation is a problem of
expressiveness. Indeed these logics, for a given path, can only do two kinds
of evaluation: (1) a boolean evaluation that depends on the validity of the for-
mula over the path and (2) an accumulated sum expressed as state or action
rewards. But it not possible to do some complicated but useful operations like
the minimum, the maximum, the integration or the mean value over a path.

3. Difficulty of adoption of high-level formalism by modelers. High-level
formalisms are formal models. They do not correspond to practical approaches
to problems. A modeler always prefers formalisms that ressembles to its own
practice. Furthermore an “intuitive” formalism contributes to reduce errors
during the modeling phase.

Contributions

We present several contributions in this thesis.

The first contribution is within the scope of reducing state space explosion
in numerical methods. The goal is to establish stochastic bounds for censored
Markov chains. Such a chain observes only a subset of states in the original
chain. Censored chains are useful when faced to a very large chain or when
the system is only partially known. Indeed, the construction of bounds for a
censored chain allows to obtain bounds on measures of the original chain. This
technique was already proposed in [FPY07a]. In that work an algorithm was
proposed, called DPY, to build bounds for censored Markov chains. Here we
show first that DPY is optimal and we propose several alternative schemes of
bounds depending on the (partial) information related to the chain.

The second contribution introduces a new logic called Hybrid Automata
Stochastic Logic (HASL). This statistical logic consists of two components: a
linear hybrid automaton and an expression defined on the variables of the au-
tomaton. Such a logic allows to verify a large class of stochastic model called
Discrete Events Stochastic Process. HASL eliminates the limitations of other
logics. It unifies several disciplines: model checking, dependability and per-
formance evaluation in a unique formalism. HASL extends the expressiveness
of existing logics Such as CSL, CSRL asCSL, CSLT™, and DT A. With HASL
it is possible to do some operation on variables on the fly along the genera-
tion of a path, typically the minimum, the maximum, the integration, the mean
value. Finally because we use a statistical approach the markovian property is
not required so (in principle) we can handle any time distribution. We have
developed a tool, named Cosmos, evaluating HASL formulas on Generalized



Stochastic Petri Nets (GSPN).

The third contribution proposes a new compositional approach to the mod-
eling of Flexible Manufacturing Systems (FMS) using Petri nets. The choice of
FMS is due to their importance in industry. In our approach the FMS is modeled
piece-wise by specifying the classes of components to be used. So the modeler
builds his model as a real FMS in the factory. He deals with loading units,
transporters and machines. The modeling phase consists of selecting each com-
ponent from a predefined toolkit and specifying the parameters of each com-
ponent. The second phase consists of assembling these components via their
interface.

Organization
This thesis is divided into three parts.

e Part I. This part is devoted to the state of the art of stochastic models and
quantitative verification. In chapter [2, we present the standard results
related to the analysis of Markov chains. We also introduce stochastic
Petri nets. Chapter (3| surveys quantitative verification. In particular, we
present the numerical and statistical methods.

e Part II. This part concerns numerical methods. In chapter 4, we design
stochastic bounds for censored Markov chains.

* Part III. This part concerns statistical methods. In chapter 5, we define
and study the logic HASL. In chapter [§), we describe the Cosmos tool.
We give the main interface, algorithms, internal structure and we also do
some numerical experiments. In chapter [/, we detail our approach for
compositional modeling of FMS.

We finally conclude and give some perspectives in chapter 8|
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Chapter 2

Stochastic Petri Nets

2.1 Introduction

One of the main interests of Petri nets is to combine qualitative analysis (i.e.
the property verification) and quantitative one (i.e. performance evaluation)
[EN78| Mol81, RR98a, RR98b]]. By comparison, concurrency models like process
algebra [Hil96] have only recently been extended with stochastic features and if
first results are promising, there are still more research about performance eval-
uation of stochastic Petri nets. Similarly, the usual models for performance eval-
uation like queueing networks [Kle75] do not include synchronization mecha-
nisms and adding them by ad hoc constructions do not reach the generality and
the simplicity of concurrency modeling by Petri nets.

Stochastic Petri nets have been introduced in a pragmatic way at the end of
the seventies, in order to take benefit from the evaluation methods of Markov
chains. This approach leads to immediate results but occults the semantical
features underlying the definition of stochastic Petri nets and cannot be easily
generalized to different probability distributions.

Here we present Stochastic Petri nets in a different way. First we introduce a
general definition of discrete-event stochastic process. Then we specialize this
definition and present different families of processes starting from the simplest
one, Discrete-time Markov chain, to a very expressive one, Markov Renewal
Process, where analysis is still possible. For every family we describe how per-
formance evaluation can be done. We omit the programming features related
to numerical computations. Indeed, these features are not specific to stochastic
Petri nets and are covered by excellent books [Ste94, BGAMT98]. Once these
families are introduced, we are in position to cover the different versions of
stochastic Petri nets.

Afterwards we develop the key points of a stochastic semantic for Petri nets.

9
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This includes the specification of a random variable associated with the firing
delay of a transition, the choice criteria between enabled transitions, the han-
dling of the firing degree in the samplings of the random variable associated
with a transition and the memorization of the previous samplings, once the
firing is performed. Then we restrict the type of distributions, which leads
to stochastic processes previously studied. Among the different families of
stochastic nets, Petri nets with exponential and immediate distributions, called
generalized stochastic Petri nets, are considered as the standard model [ABC795].
We indicate, for this model, how to to compute the stationary distribution based
on the reachability graph (when it is finite).

The basic algorithms have a complexity of the same magnitude order as the
reachability graph size for the simple models and greater for models with more
general distributions. Thus the more elaborated techniques split in two families:
the first one aims at obtaining a complexity smaller than the size of the graph
(e.g. by restricting the class of Petri nets) and the second one aims at obtaining
the same order of complexity than the size of the graph but for extended models.

The last section describes some of these methods in order to emphasize the
diversity of the approaches.We do not detail here simulation since it is one of the
topics of this thesis and will be developed later. Those covered in this chapter
are:

¢ the research of a product form: a formula that expresses the stationary
probability of a marking including the net parameters and the place mark-
ing as variables of the formula. This method illustrates the extension of a
technique first applied in queueing networks.

¢ a resolution method for nets with an only one unbounded place. The ap-
plication of this method shows that conditions on the structure of Markov
chains can be naturally translated in terms of Petri nets.

¢ amethod that takes advantage of a net decomposition based on the tenso-
rial product of matrices.

¢ a method to handle phase-type stochastic Petri nets. Again this method
uses tensorial product illustrating the fact that a generic method can be
applied in very different contexts.

For more readings on stochastic Petri nets, we recommend book [ABC™95]
and book chapters [HM09a, HM09b, HMO09¢].
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2.2 Stochastic processes

2.2.1 A stochastic model for discrete events systems

We assume that the reader is familiar with the basic probability concepts. For
more details the interested reader may consult [Fel68, Fel71, [Tri82].

Notations

e Pr(F) is the probability of event E, while Pr(A | B) is the probability of A
given B.

* The term almost, in an expression like almost everywhere or almost surely,
means with probability 1.

R (resp. IR",IR™) denotes the real numbers (resp. non negative and
strictly positive reals). If x is a real, then |z | denotes its integer part.

e If £ C IR then Inf(FE) (resp. Sup(E)) denotes the lower (resp. upper)
bound of E.

Given a discrete event dynamic system (DES), its execution is characterized
by a (possibly infinite) sequence of events {e;, €3, . ..} and associated interval of
time between successive events in the sequence. Only the events can change
the state of the system. Formally, the stochastic behaviour of a DES is defined
by two families of random variables:

* So,...,5,...defined over the (discrete) state space of the system, denoted
as S. S is the system initial state and S,, for n > 0 is the state after the n"
event. The occurrence of an event does not necessarily modify the state of
the system, and therefore S,,1; may be equal to S,,.

e Ty, ..., T, ... defined over IR*, where T} is the time interval before the first
event and T,, for n > 0 is the time interval between the n'* and the (n +
1)'" event. Please note that this interval may be null (e.g. a sequence of
assignment instructions can be modelled as instantaneous with respect
to complex data base transactions involving some input/output activity).
When T, = 0, one says that S, is a vanishing state.

If the initial distribution of variable S is concentrated on a single state s, we say
that the process starts in s (i.e. Pr(Sy = s) = 1).

A priori there is no restriction whatsoever on the two families of random
variables, but, for the stochastic processes that we shall study in the following,
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we assume that a discrete event system cannot execute an infinite number of
actions in a finite amount of time. that is to say:

Z T, = oo almost surely (2.1)

n=0

The above property allows to define the state of the system at a given time
instant. let N(7) be the random variable defined by:

N(1) = min({n | ZTk > T})

according to equation (2.1), N(7) is defined almost everywhere. As exemplified
in figure N(7) can have jumps of size bigger than one. The state X (7) of
the system at time 7, is then simply Sy(;). Observe that different stochastic
processes can lead to the same family {X(7)} _z+. This means that w.r.t a state-
based semantics such processes are equivalent.

The diagram of figure 2.1/ represents a possible execution of the process and
shows the interpretation of each random variable defined above. In the execu-
tion the process is initially in state s,, where it stays until, at time 7, it moves to
state s¢. At time 7y + 7, the system visits, in zero time, the states s; and s;5, end-
ing up in state s;, where it stays for a certain amount of time. The use of X (7)
in continous time, hides the vanishing states s; and s, visited by the process.

The performance evaluation of a discrete event system can be based on two
complementary approaches:

* Analysis under transient behaviour, that is to say, the computation of per-
formance measures which are function of the time passed since the start
of the system. This kind of analysis is well suited for studying the sys-
tem behaviour in the initialization phase, or for studying systems with
final states. Classical applications of transient analysis can be found in
the studies aimed at assessing the dependability and reliability of sys-
tems [Mey80, TMWHO92].

* Analysis in steady state, that is to say, the computation of performance
measures which takes only into account the stationary behaviour of the
system, that may be reached after a transient initial phase.

The analysis in steady state makes sense only if such a stationary behaviour
exists; a condition that can be expressed as follows, denoting 7 (7) the distribu-
tion of X (7) :

lim 7v(7) =7 (2.2)

T—00
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Figure 2.1: an execution of the stochastic process

where 7 is also a distribution, called the steady-state distribution.

The transient and steady-state distributions are the basis for the computation
of performance indices. Examples of indices are the steady state probability that
a server is up and running, the probability that at time 7 a connection has been
established or the mean number of clients waiting for a service. To abstract
from the definition of the single performance index, we introduce the concept
of reward function, a function f defined on the set of states of the discrete event
system and with value onto IR. Given a distribution 7, the quantity > _ 7 (s) -
f(s) represents the measure of the performance index defined by f.

If f takes values over {0, 1}, we can consider f as the definition of an atomic
proposition ¢ which is satisfied in state s if f(s) = 1 and false otherwise. In the
following we shall indicate with P the set of atomic propositions and with s F ¢,
with s a state and ¢ an atomic proposition, the fact that s verifies (or satisfies)
¢. In this context, if 7 is a distribution, the quantity »_ ., m(s) represents the
measure of the index defined by ¢.

2.2.2 Discrete time Markov chains

Presentation. The analysis of the behaviour of a general DES may be intractable
or even impossible. Thus one needs to study families of simple DES. The sim-
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Figure 2.2: a (finite) DTMC

plest one is the family of Discrete Time Markov Chains (DTMC). A DTMC is a
stochastic process with the following characteristics:

¢ the time intervals T}, are constant and equal to 1.

¢ the next state depends only on the current state (what is called Markovian
property), and the transition probability among states remains constant
over tim
PI’(S,-H_l =S5j | S() = Sigy ey Sn = Si) =

Pr(5n+1 =38 ‘ Sn = Si) = Dij = P[Z,]]

and we shall freely mix the two notations p;; and P[i, j] for the transition prob-
ability.

Thus a DTMC is defined by its initial distribution 7, and matrix P.

Example. Figure represents on the right, matrix P of a DTMC with three
states. On the left, a graph whose vertices are states and edges weighted by
the non null transition probabilities between states is depicted. In addition to
the graphical interest of this representation, analysis of this graph will provide
useful information on the DTMC (see later on).

Transient and steady state behaviour of a DTMC. We now recall several classi-
cal results on the analysis of DTMC: the results will be explained in an intuitive
manner, a full mathematical treatment of the topic being out of the scope of this
chapter.

The transient analysis is rather simple: the change of state takes place at
time instants {1,2,...}, and given an initial distribution 7, and the transition
probability matrix P, we have that 7, the distribution of X,, (i.e. the state of the
chain at time n) can be expressed as 7, = m, - P", which is computed using a
basic recurrence scheme.

lwhich justifies that these chains are sometimes called time homogeneous.
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To analyze the asymptotic behaviour of a DTMC we need to investigate a bit
further the DTMC behaviour, in particular we shall classify states as follows:

* A state s is said to be transient if the probability of returning to s after a
visit is strictly less than 1. As a consequence, the probability of Pr(X,, = s)
goes to zero as n tends to infinity. A state is said to be recurrent if it is not
transient.

* A recurrent state s is said to be null recurrent if the mean time between
two successive visits to s is infinite. Intuitively, a null recurrent state will
be visited at intervals whose mean duration goes to infinity and therefore
the probability of visiting s will also tends towards 0.

e A recurrent state s is non null recurrent if the mean time between two suc-
cessive visit to s is finite. If a steady state distribution exists, then it is
concentrated on the set of non null recurrent states.

Let us formalize the concept of the graph associated with a DTMC:
e the set of nodes is the set of states of the chain;
* there is an arc from s; to s; if p;; > 0.

If the graph is strongly connected, i.e. there is a single strongly connected compo-
nent (SCC), then the chain is said to be irreducible. In an irreducible DTMC, all
states have the same status.

Example. Figure [2.3|represents an infinite irreducible DTMC with probability
p to go “backward” and 1 — p to go “forward”. When p < 0.5 all states are
transient: on the long run the distribution goes “forward”. When p = 0.5 all
states are null recurrent : on the long run the distribution is more and more
equally distributed on the states (except state 0) and then goes to 0 for every
state. When p > 0.5 all states are non null recurrent since it can be proved the
mean time to return to state 0 is finite.

Periodicity. The DTMC of figure [2.3) exhibits a pathologic behaviour. Starting
from state 0, at even (resp. odd) instants the chain is in an even (resp. odd) state.
Thus there is no hope to have a steady-state behaviour. This phenomenon is due
to the periodicity of the graph.

The periodicity of an irreducible chain is the greatest integer k£ such that
the states can be partitioned into subsets Sy, 51, . .., S;—1 with the requirement
that from the states in \S; the chain moves in one step only to states which are
in S(i11) mod k- Observe that the periodicity is well defined even in the case of
infinite Markov chains since it cannot be greater than the length of any cycle
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Figure 2.3: an infinite irreducible DTMC

@O— Py height 0
/N

height 3

height 4
periodicity=gcd(0,2,4)=2

Figure 2.4: Example of the computation of a DTMC periodicity

of the graph (and there is a last one since the chain is irreducible). When the
period is 1, the chain is said to be aperiodic.

The periodicity of a finite chain can be computed by a linear time algo-
rithm w.rt. the size of the graph. The algorithm builds a directed tree that
covers all nodes of the chain, using any arbitrary strategy (breadth-first, depth-
first, etc) that allows to label every node u with its “heigth” h(u). During the
traversal, one associates with every arc (u,v) of the graph a weight w(u,v) =
h(u) — h(v) + 1: as a result all the arcs that are part of the covering tree have
a null weight. The periodicity of the graph is then the greatest common divi-
sor (gcd) of the arcs of non null weight and can be computed on the fly. The
formal proof of correctness, that we do not develop here is based on the two
following observations. Periodicity is the gcd of the length of the elementary
circuits of the graphs, and this length is equal to the sum of the weight of the
arcs of the circuit. The application of the algorithm to the example is illustrated
in figure

The following theorem characterises a situation which ensures the existence
of a steady-state distribution.
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Theorem 2.1. An irreducible, aperiodic chain (also called ergodic) has a steady-state
distribution, and such a distribution is independent from the initial distribution.

Steady-state analysis of finite DTMC. When the DTMC is finite, the analysis
is significantly simplified. First the status of the states only depends on the
structure of the graph and more precisely on the SCCs. States of bottom SCCs (i.e.
without exit arcs, BSCC) are non null recurrent while other states are transient.
Observe that every BSCC constitutes an irreducible subchain.

First assume that the graph is strongly connected. From theorem we
know that there is a unique steady-solution. So we take the limit of the equation
Th41 = T, - P. as n goes to infinity (which is mathematically sound) and we get
7 = 7 - P. Thus 7 is the single distribution which is a solution for:

X=X-PAX-1=1 (2.3)

where 1 denotes the column vector of all 1. Furthermore in equation , we
can omit an arbitrary column of P since the sum of the equations related to P
(X2 pi) Xi = >~ X;) is always fulfilled.

Example. The steady-state distribution of the DTMC of figure tulfils the
following equations:

m1 =031 +0.2m9 e =0.711 +0.873 M3 =M W + Mo+ 13 =1
with solution (3, 15, 1)
Equation (2.3) can be solved with a direct method like a Gaussian elimina-
tion. However if the size of the system is large, iterative methods are more
effective. The simplest one iterates over X « X - P [Ste94].

We now consider the almost general case, with the single remaining as-
sumption that the BSCCs (denoted as {Ci, ...,Cy}) are aperiodic with steady-
state distribution {7,...,7;}. In this case also the chain has a steady-state
distribution (which now depends on the initial distribution), given by m =
¥ | Pr(of reaching C;) - ;.

To compute the probability of reaching a BSCC we condition on being in a
initial state: Pr(of reaching C;) = > _¢ mo(s)-7¢, (s) where 7. (s) = Pr(of reaching C; |
Xo = s). If Py r is the submatrix of the transition matrix limited to transient
states, and if Py, is the submatrix from transient states towards the states of C;,
then:

7w, = _(Pry)") Pri-1=(Id—Pry)" Py, 1

1
n>0

where Id is the identity matrix.



18 CHAPTER 2. STOCHASTIC PETRI NETS
T={1,2,3},C={4,5},C={6,7,8}
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Figure 2.5: Matrices involved in the computation of reachability probabilities

The first equality is obtained by conditioning on the length of all possible
paths that leads to C;, while the second one is an immediate consequence of the
finitess of » - (Pr.r)".

Example. Figure 2.5 exhibits the decomposition of a chain w.r.t. SCC and the
matrices involved in the computation of the reachability probabilities.

In the sequel, in case of a BSCC composed by a single state s (i.e. P[s, s] = 1),
we will say that s is an absorbing state.

2.2.3 Continuous time Markov chain

Presentation. While DTMC is an appropriate model when focusing on the prob-
abilistic behaviour of the system disregarding time, it is necessary to look for a
model also presenting the memoryless property in a continuous time setting. A
Continuous Time Markov Chain (CTMC) has the following characteristics:

¢ the time interval 7, is a random variable distributed as a negative expo-
nential, whose rate depends only on the state X,,. That is to say:

PI‘(,,T” S T | XO = Sipy ,Xn = Si,TO S 70, ---;Tn—l S Tn—l) =

Pr(T, <7|X,=s)=1—¢e""
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* The next state depends only on the current state, and the transition prob-
abilities remain constantf? over time:

Pr(XnJrl =S5j ’XO = Sig» 7Xn = S’iaTO S 70, --'7Tn71 S Tnfl) =
Pr(X,41 = s;| X = si) = pi; = Pli, j]

The DTMC defined by P is called embedded chain. It observes the change of
state, independently of the time elapsed in the state. A CTMC state is said to be
absorbing if it is absorbing in the embedded DTMC.

Transient and steady-state behaviour of a CTMC. In a continuous time Markov
chain at any time the evolution of a DES is completely determined by its current
state, due to the memoryless property of the exponential distribution.

In particular, the process is fully characterized by the initial distribution
7(0), matrix P and by the rates \;. Let m(7) be the distribution of Y (7) and
write 7, (7) = 7(7)(sk). If 0 is small enough, the probability of more than one
event occurring in the interval 7 and 7 + 0 is very small and can be neglected,
and the probability of a change from state & to state £’ is approximately equal to
Ak - 0 - pri (by definition of exponential distribution).

7Tk(7'+5) %Wk(T) . (1_>\k6)+ Zﬂ'k/(T) ')\k’ -5-pk/k
k'#k
From which we derive:

(T 4+ 8) — m(7) ~ mo(7) - (=) + Zﬂ-k,(T) N PRk

J k' £k
and finally:
dm
d—’f = m(7) - (=) + Y mw(7) - A P
-
k' £k
Let us define matrix Q as: qu = i - prw for k # K and g = — (=

— > w2k Qi )- We rewrite the previous equation as:
dm
dr

Matrix Q is called infinitesimal generator of the CTMC.

According to equation (2.4) the infinitesimal generator completely specifies
the evolution of the system. Although this equation clearly establishes the

—7-Q (2.4)

2Also in this case we say that the chain is time homogeneous
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A CTMC
0.3 0.7
P 0"&@%8

P' o.lg E@

A uniform version of the CTMC (equivalent w.r.t. X(1))

Figure 2.6: Two equivalent CTMCs: a non uniform and a uniform one

memoryless property of the CTMC, it does not give any direct mean of com-
puting the transient behaviour of a CTMC. A possible method, called uniformi-
sation, has been defined in [Jen53|], and it is based upon the construction of a
second Markov chain which is equivalent to the first one from a probabilistic
point of view. This chain is built as follows. Let’s choose a value 1 > Sup({\;}),
and assume that this is the parameter of the exponential distribution of the time
until the next change of state, whatever the current state is (from which the term
uniform). The change of state is defined by the transition matrix P* defined by:
Vi # 3,PMs;,s;] = (u)~' - Ni - P[s;, s;]. The computation of the infinitesimal
generator of such a chain shows immediately that it is equal to the infinitesimal
generator of the first CTMC, which implies that, if we disregard transitions, the
two CTMCs describe the same stochastic process. We illustrate such a transfor-
mation in figure

We compute the transient distribution 7(7) as follows. We first compute
the probability of being in state s at time 7, knowing that there have been n
changes of state in the interval [0, 7]. This probability is obtained through the
embedded Markov chain, and precisely as 7 (0) - (P*)". Afterwards we “condi-
tion” it through the probability of having n changes of state, knowing that the
time between two successive changes follows an exponential distribution. This
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probability is given by e #7 - (i - 7)™ /n!, from which we obtain:

7 (1) = 7(0) - <e’” > w) (2.5)

n!
n>0

Although there is an infinite sum, in practice the sum converges rather quickly,
and the sum can be stopped once the precision required is greater than e #7 -
(- 7)"/nl.

We now consider the asymptotic behaviour of a CTMC. Again, the sim-
plest way is to study the embedded chain, which, as observed when explain-
ing uniformization, it is not unique. Let us build a DTMC as follows. Choose
p > Sup({\;}), since the inequality is strict, it is true that, for each state s,
P#[s, s] > 0 and therefore each BSCC of this chain is ergodic. As a consequence,
a single stationary distribution exists, that measures the steady state probability
of the occurrence of a state. Since the uniform chain has the same mean sojourn
time in each state, equal to (1/u), this also gives the stationary distribution of
the CTMC.

In the particular case (rather frequent) in which the embedded chain is er-
godic, this distribution can be computed through the solution of the equation
X =X P# and P* = I+ (1/11)Q. The distribution is therefore the unique
solution of the equation:

X- Q=0 et X-17=1 (2.6)

By analogy, we then say that the CTMC is ergodic. Observe that while in
the infinite case, the uniformisation technique may be not applicable (when
Sup({\i}) = 00), most of the results for DTMC still hold. In particular, theo-
rem 2.1]is also valid without any requirement about periodicity.

2.24 Beyond CTMCs

DTMC and CTMC are characterized by the memoryess properties: in DTMC the
next state depends only on the current state and in CTMC also the sojourn time
enjoys the same type of property: knowing how long the system has been in a
state does not influence how long it will take before a change of state takes place.
In the following we introduce three different ways of removing the memoryless
condition of sojourn times, that lead to stochastic processes whose solution is
more expensive, but still affordable in many practical cases, and that may model
in a more accurate manner the system under study.

The first extension leads to Vanishing CTMC, which allows the sojourn time
of a subset of states to be equal to zero. The second extension leads to Semi-
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Markov Processes, where states may have any distribution, as far as the be-
haviour of the process, as observed upon a change of state, is still a DTMC. The
last extension leads to Markov Renewal Processes, where the requirement is
simply that the behaviour of the system, as observed upon some of the changes
of states, is still a DTMC.

Vanishing CTMCs

Presentation. In this chapter we have stated that a stochastic process isa CTMC
if it has an embedded DTMC that describes the change of state and if sojourn
times are exponentially distributed. Here we extend this concept to Vanishing
CTMC (VCTMC), which are stochastic processes in which the sojourn time is
either exponentially distributed or exactly zero. A sojourn time of zero is typ-
ically used for whose states in which the system takes a logical decision, or
for which the sojourn time is much smaller than the other states, so that it can
be considered negligible (with the additional advantage of avoiding numeri-
cal instability problems). In a VCTMC the states are partitioned into vanishing
states (with sojourn time equal to 0), and tangible states (with exponentially dis-
tributed sojourn time).

Definition 2.1. A CTMC with vanishing states (VCTMC) is a quadruple V. =
(D, S, Sy, A) where D = (S, P,INIT, L) defines a labelled DTMC with a finite set
S of states, such that St U Sy = S and Sy NSy = 0, and A = {As|s € S} is a set of
random variables which describe the sojourn time in states of D, with the constraint that
A is deterministically zero if s € Sy (vanishing state), and is exponentially distributed
otherwise (tangible state).

If S,, is the random variable that describes the state of D after the n-th state
change and if T, is the random variable that describes the sojourn time in state
Sy, then, given states s, s’ € S and duration § € R>(, we can define the following
stochastic behaviour of V:

P{Sn+1 - SlaTn S 5|Sn - SaSn—l - Sn—l;Sn—l S Tpn—1,""" 7}/1750 - 30}
P(s,s) - (1 —e ™) ifs€ Sp
=< P(s,9) ifseSynd=0
0 ifse Sy ANd>0

where ) is the rate of the exponential distribution associated with the random
variable A, of a tangible state s € St.

Fora VCTMC V = (D, Sy, Sy, A), we consider the probability matrix P of D
partitioned in the following way:

P = PVV PVT
PTV PTT




2.2. STOCHASTIC PROCESSES 23

where Py contains transition probabilities from a vanishing state to a vanish-
ing state, Py, from a vanishing state to a tangible state, etc. Assumption
implies that >, P7,, is finite; that is, the mean number of visits within the
set of vanishing states without ever reaching a tangible state is finite. This con-
dition can be checked on the directed graph of D by (1) merging the tangible
states in a state without outgoing edges and (2) checking that this state is the
only BSCC of the modified graph.

Solution process. Since a VCTMC is a continuous stochastic process both the
transient and steady state probabilities for the vanishing states is equal to zero
(there is a null probability of finding, in the long run or at time ¢, a system in
a state in which it stays for a zero amount of time). The solution process then
concentrates on how to compute the probabilities of tangible states. This can
be done through the construction and solution of an “equivalent” CTMC built
only on the set of tangible states. Here by equivalent we mean “with the same
transient and steady state solution of tangible states”. There are different ways
of computing the transient and steady-state probabilities of a VCTMC. One of
them will be presented in the section devoted to generalized stochastic Petri
nets.

Semi-Markovian processes

Presentation. Here we describe a restricted notion of semi-Markovian process
since it is enough for our purposes and allows a simplified presentation of the
computation of steady-state distributions. A semi-Markovian process is an ex-
tension of CTMC where sojourn time in states may have any distribution. This
process has the following characteristics:

* The time interval 7}, is a random variable that only depends on state S,.
Otherwise stated:

PI‘(Tn S T ’ SO = Sigy s Sn = SinO S 70, --~7Tn71 § Tnfl) =
Pr(T,<71|S,=s)=Pr(D; <7)
where D, is a random variable with a finite mean, denoted d;.

* The state following the current state only depends on this state and tran-
sition probabilities are constant over time:

PI'(Sn+1 = Sj | S(] = Sigy ey Sn = SinO S 70, ~-~7Tn71 S Tnfl) =
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Pr(sn—i-l = Sj ‘ Sn - 3i) =Dpij = P[ZL]]

Observe that here again, the sequence of states (S,,) constitutes a DTMC embed-
ded in the process. So the reachability probabilities, that only depend on this
DTMC, can still be computed.

Steady-state analysis. Here we only state a sufficient condition for the existence
of the stationary distribution which covers the most frequent cases. First we
assume that the embedded chain is irreducible with a distribution solution of
X - P = X and that one of the distribution D; is not arithmetic (i.e. it is not
concentrated on a arithmetic sequence in R™).

As in CTMC, the entrances in an arbitrary state (say s;) can constitute a re-
newal process. Given some state, the fact that it occurs infinitely only depends
on transition probabilities p;; and is ensured by our first hypothesis. The mean
return time must be carefully examined. Indeed, every visit in s; gives place to
a sojourn with mean time d;. Thus although the mean number of visits before a
return is finite, the mean return time could be infinite. Let us call 7’ (7, = 7'[s])
the distribution solution of equat10n |. Then the mean number of visits of s,

between two visits of s; is =+ Consequently, the mean return time to s; is equal

to:
d; +de :—, dek

k#i

Otherwise stated, the existence of a stationary distribution is ensured if ) °, dj.m,
is finite. Since D; is not arithmetic, one easily deduces that the distribution of
return is not arithmetic.

With the same reasoning, one concludes that the ratio ”* corresponds to the
mean sojourn time in s, between two returns in s; divided 1 by the mean sojourn
time in s; (of course this computation requires to choose a reference state s; with
a sojourn time strictly greater than zero.

Observe that the way we have proceeded also allows some distributions D;
to be concentrated in 0.

Markov Regenerative processes

Presentation Markov Regenerative Processes (MRP) are a class of non-Markovian
stochastic processes that is characterized by a sequence of time instants called
regeneration points in which the process loses its memory, i.e. the age of any non-
exponential events is 0. The behavior between these points is then described by
a time-limited stochastic process, while the process, observed at regeneration
points, is still a DTMC.
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The definition of an MRP requires first the identification of a sequence of
states in which the process loses its memory.

Definition 2.2 (Markov renewal sequence). Let S be a finite discrete state space. A
sequence of bivariate random variables {(Y,,,T,) | n € N} is called a Markov renewal
sequence (MRS) with regeneration points Y,, € S encountered at renewal times
T, € RZO lff
e 0=Ty<Ti<Ty <...
e PiYyi1=73Thi1 — T, <71|Y,=4,T,,..., Y, To} =
=PY,n=4Twmi—-T,<7|Y, =i} = (Markov property for Y,,)
=P{Vi=4T1<7|Yy=1i} (Time homogeneity)

The process Y, is a discrete-time Markov chain, called the embedded Markov
chain (EMC). Conversely, the process T, is not a Markov renewal sequence, since
the times 7,,,1 — T}, are not i.i.d., but depend on Y,,.

On the renewal sequence an MRP can then be defined as follows.

Definition 2.3 (Markov regenerative process). A stochastic process {X, | 7 > 0}
is a Markov regenerative process (MRP) if there exists an MRS {(Y,,,T,,) | n € N}
of random variables such that all the conditional finite dimensional distributions of
{X(T,+7)|7>0}given {X, |0 <u<T,,Y, =i} arethe same of { X, | T > 0}
given Yy = 1, so that:

PriXp r = | X0, 0<u<T,, Y, =i} = Pr{X, =j| X, =i}

The process behavior { X, | T,, < 7 < T}, 41 } between two regeneration points
Y, and Y, is described by a continuous time process, called the subordinated
process of Y,,. We only consider the class of time-homogeneous MRP where the
subordinated process is a CTMC, called the subordinated Markov chain (SMC) of
state Y,,.

Note the difference between Markov Regenerative and semi-Markov pro-
cess: in semi-Markov processes all the states are regeneration points, so the
state spaces of the process and of the embedded DTMC are exactly the same,
while in MRP only a subset of the states are regenerative, and the embedded
DTMC is built on a smaller number of states than the MRP itself.

2.3 Stochastic Petri nets

2.3.1 Petri nets

A Petrinet is a formal model of dynamical system where the state of the system
is characterized by the number of tokens in places and where a transition needs
tokens to be consumed in some places and then produces tokens in some places.
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Figure 2.7: a Petri net and its reachability graph

Definition 2.4. A Petri net N = (P, T, Pre, Post, my) is defined by:
* P, a finite set of places,
e T, a finite set of transitions with PNT = (),

* Pre and Post, the pre and post incidence matrices indexed by p x T ranging
over IN,

* mg € N, the initial marking.

A net is usually represented by a bipartite graph. The vertices are the places,
drawn as circles, and the transitions, drawn as rectangles. There is an edge
between place p (resp. transition ¢) and transition ¢ (resp. place p) labelled by
Pre(p,t) (resp. Post(p, t)) if Pre(p,t) > 0 (resp. Post(p,t) > 0). When a label is
equal to 1, it is omitted. The initial marking of a place mq(p) is represented by
mo(p) tokens in p, drawn as filled circles. The left part of Figure 2.7]illustrates
the graphical representation of a net.

A state in a Petri net is a marking, i.e. and item of IN”. The incidence matrix
W is defined by W = Post — Pre. The firing rule defined below describes the
semantics of a net.

Definition 2.5. Let N be Petri net, m be a marking and t be a transition. Then:

* tis enabled (or fireable) i m if:
Vp € P m(p) > Pre(p,t)

which is denoted by mlt) or m -
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* When enabled, the firing of t leads to a marking m’ defined by:
Vp € P m’(p) = m(p) + Post(p,t) — Pre(p,t) + W(p,1)
which is denoted by m[t)m' or m Som/

Let m be a marking and o = ¢;...¢, be a sequence of transitions. Then o
is fireable from m if there exists markings m,,...,m, = m' such that for all
1 < i < n, one has m;_1[t;)m;. One says that o is a firing sequence from m and
that m' is reachable from m. One notes m[o(m’ or m[= m'. The reachability graph
of anet V is defined by:

* The vertices of the graph are the markings reachable from m (this set is
called the reachability set of N),

* There is an edge between m and m' labelled by ¢ if and only if mt)m/.

The right part of Figure[2.7]is the reachability graph of the net on the left part.
Generally a marking m is represented as bag over the set of places >\~ m(p) p
with m(p) omitted when equal to 1 (e.g 2p + 3¢ + r).

2.3.2 Stochastic Petri nets with general distributions

In order to enlarge Petri nets in such a way that its formal semantics should be
a stochastic process, we must address the following preliminary question: how
to introduce time in nets? There are at least three ways to do so.

A token-based semantic. First, we can add an age for every token. When time
elapses, the age of every token is incremented by the associated duration. Fur-
themore the input and output arcs of a transition are now labelled by a bag of
intervals specifying the age of the tokens that are allowed to be consumed and
the possible age of tokens that will be produced. The behaviour of such a net is

illustrated below.
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A duration-based semantic. Second, we can specify a duration for every tran-
sition. Once a transition is selected (with no time elapsing), the tokens are con-
sumed and after the duration associated with the transition has elapsed, the
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tokens are produced. Observe that with this semantic, except at selection in-
stants, the marking of the net may not correspond to a reachable marking of the
untimed net. The behaviour of such a net is illustrated below.

i

l

|
OOO ©

A delay-based semantic. Last, we can specify a delay for every transition. Once
a transition is enabled, the delay must elapse before it can be fired but its tokens
could be consumed by an earlier firing of some other transition. The behaviour
of such a net is illustrated below.

I L
! !

0 3

Usually one chooses the third alternative; so the stochastic feature of Petri
nets is introduced by considering that a transition has a random firing delay
(taking values in IR™). The different families of stochastic Petri nets are defined
by restricting the type of distributions. For the moment, we do not make any
hypothesis on distributions. However the definition of distributions is not suf-
ficient to characterize the stochastic process. We are going to successively study
the problems related to this characterizationf|

Choice policy.

Given any marking, we need to determine the next transition to fire among the
fireable ones. There are two possible strategies:

* a probabilistic choice w.r.t. a distribution associated with the subset of
fireable transitions. This is a preselection since the choice takes place before
the sampling of the delay.

3Most of the parameters of the process can depend on the current marking. For sake of
simplicity, we will not mention it in this chapter.
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* an independent sampling for every delay followed by the choice of the
shortest delay. In case of equal delays, one also performs a probabilistic
choice called post-selection.

The second solution is always chosen because on the one hand it corre-
sponds to a more natural modeling and on the other hand since with the help of
immediate transitions, preselection can be simulated by post-selection. Observe
that except if the distributions are continuous (which excludes the case of equal
samplings), one needs to specify the distributions of selections. We illustrate
the two possible choice policies below (D; is the random delay of transition ¢,
and w; its weight for the probabilistic choice). With preselection policy, the out-
come of the sample is ¢; and then the sample of the delay for ¢, is 4.2. With the
race policy, after sampling the three delay distributions, two of the outcomes
(D1 and Dj3) have the minimal value 3.2. Thus with a post-selection policy, one

selects t3.

£ (D,w) t (D,w)t (D,w)

N

wwzl w7:2 w3:2
Preselection Race Policy
Sample (1/5,2/5,2/5) Sample (D ,D,,D,)
Outcome &, Outcome (3.2,6.5,3.2)
Sample D, Sample (1/3,-,2/3)
Outcome 4.2 Outcome t,

Service policy.

If a transition has an enabling degree e > 1 at marking m (i.e. e = max(z € IN |
Vp € P 2Pre(p,t) < m(p))), one can consider that the marking provides e clients
to the transition viewed like a server. So when sampling the delay, three options
are possible depending on the event modeled by the transition:

* a single sampling is performed, the transition offers only one service at a
time (single-server policy)
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* e samplings are performed, the transition is a “parallel” server (infinite-
server policy)

* Min(e,deg(t)) samplings are performed, the transition can offer at most
deg(t) simultaneous services; this case generalizes the other ones with
deg(t) = 1 or oo (multiple-server policy). The modeller must specify deg(t)
for every transition.

We illustrate below the effect of these policies on the sampling process.

NG 1

£,
3
J
t. single server t_ infinite server t. 2-server
Sample (D ,D,D)) Sample (D ,D ,D),DV,D‘) Sample (D ,D,D_,D))

Memory policy.

Once transition ¢ is fired, what becomes the sampling that has not be chosen for
another transition ¢'?

The first possibility consists in forgetting the sampling that has been per-
formed. If transition ¢’ remains fireable, this leads to a new sampling (resampling
memory). With such a semantic, ¢t could model the failure of a service specified
by ¢

The second possibility consists in memorizing the sampling decremented by
the sampling of ¢ (the remaining time), but only if ¢’ remains fireable (enabling
memory PRD (Preemptive Repeat Different)). If t’ is disabled, this mechanism mod-
els a time-out ¢’ disarmed by t.

The third possibility is as the previous one for a transition still fireable but
let the sampling unchanged if ¢’ is disabled. This sampling will be used again
when t' will be fireable (mode enabling memory PRI (Preemptive Repeat Identical)).
A disabled transition ¢’ could model a job aborted by ¢ that should be restarted.

The fourth possibility consists in memorizing the sampling decremented by
the sampling of t. A disabled transition ¢’ could model a job suspended by ¢ (age
memory also called PRS (Preemptive ReSume)).
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N I=1\I 1

‘What happens to d and d?

We illustrate some of these policies on the above example.
Resampling Memory. Samplings d, and d3 are forgotten.

Enabling Memory, PRD. Sampling ds is kept and decremented (d; = ds — d,).
Sampling d; is forgotten.

Age Memory. Samplings d, and ds are kept and decremented (d; = ds —d; d5, =
dy — dy). Sampling d; is frozen until transition ¢, becomes again enabled.

To complete this policy, we must take into account the case of multiple-
server transitions, which requires to choose which samplings should be mem-
orized, decremented or forgotten. The simplest solution is a FIFO policy for
samplings. The last performed sampling is the first forgotten. Other policies
(like suspend or forget the client the least engaged) are not necessarily compat-
ible with some analysis methods.

Once these three policies are defined, the stochastic process is fully deter-
mined. We now focus on the distributions for transition delays.

2.3.3 Stochastic Petri nets with exponential distributions

In the basic model [EN85, Mol81] every transition ¢ has an exponential distribu-
tion with rate .

Let us examine the stochastic process generated by a stochastic Petri net with
policy single-server. Let m be some marking, ¢;,...,t; the fireable transitions
from m. Let us note y; for x;,. One can check that:

* the sojourn time is an exponential with rate p; + - +

* the probability to pick ¢; as the next firing is equal to —*—— and it is
independent from the sojourn time in the marking.

* the distribution of the remaining firing delay of ¢; if ¢; is fired is equal to
the initial distribution (memoryless property)
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Otherwise stated, only the new marking determines the future behavior of the
stochastic process. Thus it is a continuous time Markov chain, isomorphic to
the reachability graph of the Petri net, whose all parameters are given by states
(i.e. the markings). This reasoning is also valid for other service policies.

If the graph is finite formula gives the transient behavior of the net and
if furthermore it has a single BSCC then the resolution of equation provides
the stationary distribution of the net.

Using the stationary distribution, other performance indices can be com-
puted as the mean throughput (number of firings per time units) of transitions
given by:

Xi = Z TTm-services(m, ty). fg (2.7)

m reachable
where services(m, t;) indicates the number of clients in state m served by tran-

sition ¢;; this number depends on the enabling degree and the service policy of
the transition.

2.3.4 Generalized stochastic Petri nets

Modelling delays with exponential distributions is reasonable when:
* Only mean value information is known about distributions.

¢ Exponential distributions (or combination of them) are enough to approx-
imate the “real” distributions.

Modelling delays with exponential distributions is not reasonable when:

¢ The distribution of an event is known and is poorly approximable with
exponential distributions like a time-out of 10 time units.

¢ The delays of the events have different magnitude orders like executing an
instruction versus performing a database request. In this case, the 0-Dirac
distribution is required.

Let us focus on the latter case. Modeling an algorithm or a protocol requires
to represent choices, loops and other control structures. These actions are logical
operations and have a negligible duration w.r.t. a data transmission for instance.
Modeling them by an exponential distribution with a high rate is unsatisfactory
since, on the one hand the choice of the rate is arbitrary and on the other hand
numerical computations suffer from values with very different magnitude or-
der. To overcome this difficulty, immediate transitions (i.e. with a distribution
concentrated in 0) have been introduced. In this new model [ABC84], called
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GSPN for Generalized Stochastic Petri Net, the markings are partitioned in two
categories: the tangible markings from which no immediate transition is fire-
able and the vanishing markings. Since exponential transitions almost surely
have a non null delay, immediate transitions have (implicit) priority over expo-
nential ones.

Let us observe that:

* Weights are required for immediate transitions since two such transitions
will always have the same null delay.

* Since exponential transitions will never be fired when an immediate tran-
sition is enabled, one obtains a restricted reachability graph corresponding
to the embedded DTMC. This restriction is described in the example be-
low.

Y R

;w

ansE

tangible marking

vanishing marking

Let us examine the stochastic process generated by a GSPN from a given
marking m. If m is tangible then the process is identical to the one of a Marko-
vian SPN. Let us examine the case of a vanishing marking; there is at least one
tireable immediate transition. Almost surely the sampling of exponential tran-
sitions is greater than 0. Thus the choice of the transition is done by a post-
selection between immediate transitions. Since the delay of immediate transi-
tions is null and the distributions of other transitions are without memory, the
remaining delay are identical to the initial delays and the state of the process
only depends on the new marking.

So this is a semi-Markovian process whose sojourn times in tangible mark-
ings follow an exponential distribution and sojourn times in vanishing mark-
ings are null. The transition probabilities (matrix P) are obtained either from
the rates, or from parameters of post-selection.
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The analysis of semi-Markovian process is applicable here. However, in
this particular case, an improvement is possible since the stochastic process is a
VCTMC. We recall here in the context of nets, the principles of such an analysis.
Observe that in the stationary distribution, the vanishing markings have a null
occurrence probability. Thus one wants to eliminate them before the resolution
of the embedded chain. To this aim, one considers the process as a CTMC whose
states are the tangible markings. We need to compute the transition probabili-
ties between these states. So we decompose matrix P in sub-matrices:

Py, transitions between vanishing markings

Pyr, transitions between tangible markings

Py, transitions from vanishing markings to tangible markings

Py, transitions from tangible markings to vanishing markings

Reasoning on the number of encountered vanishing markings, when going from
a tangible marking to another tangible marking, one checks that the new tran-
sition matrix P’ is given by:

P =Py + > Pry.(Pyy)" Pyr = Prr + Pry.(Idyy — Pyy) ' Pyy

n=0

where Idyy is the identity matrix on vanishing markings.

When Idyy — Pyy is not invertible, this means that the process has a patho-
logical behaviour (i.e. a non null probability to infinitely remain in the vanishing
states) which does not fulfill assumption 2.1l Otherwise the two expressions can
be used to compute P’. We illustrate the full computation on the example be-
low. We start with the embedded full discrete-time Markov chain on the left.
Then as a first step we eliminate the vanishing states and compute the transi-
tion probabilities (shown in the next figure). In this particular case, since there
is no loop through vanishing states, the computation is immediate. Then the
steady-state visit distributions are computed (the result is shown on the third
figure). At last we rescale the distribution with the sojourn time in order to get
the steady-state distribution as shown on the last figure.
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24 Advanced Analysis Methods for Stochastic Petri
Nets

In this section, we present methods different from the resolution of a finite
Markov chain. Such methods are useful when: (1) either the considered sub-
class of nets allows a more efficient computation of the steady state-distribution,
(2) either the chain is infinite, (3) or the stochastic process is not a Markov chain.

2.4.1 Research of a product form

In this section, we search for an explicit expression of the steady-state distribu-
tion which avoids to build the reachability graph. Such an approach has been
tirst developed in queuing networks. So we will present it while modelling
queuing networks by Petri nets and then move to the corresponding net theory.

A (Markovian) queue is specified by:

* an interarrival time which is an exponential distribution with parameter
A

e aservice time which is an exponential distribution with parameter ..

It can be modelled by a SPN presented below with its associated CTMC.

Client Service
arrivals time
— oo A A A

o eoeoEC-
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Let p = ﬁ be the utilization of the queue.
¢ The steady-state distribution 7., exists iff p < 1.

¢ The probability of n clients in the queue is 7., (n) = p"(1—p). Observe that
this is an explicit expression of the distribution w.r.t. A and .

We have presented below a Petri net (and its associated CTMC) modelling
two queues in tandem, i.e. the clients are served by the first server and then by
the second one.

While this is a very simple case of queuing network, the associated Markov
chain is more complex than the one corresponding to two isolated queues. How-
ever assume that p; = % < land p, = 2 < 1 (the stability condition). Then:

¢ The steady-state distribution 7., exists.

* The probability of n; clients in the first queue and n, clients in the second
queue is o (1, 12) = p1* (1 — p1)p3*(1 — p2).

¢ It is the product of the steady-state distributions corresponding to two
isolated queues!

Let us now consider the general case of an open queuing network. In such
a network, when a client leaves a queue, it randomly chooses between leaving
the network or entering any queue of the network. The probability distribution
of this choice only depends on the queue that the client leaves. Again this kind
of networks can easily be modelled by SPNs (merging the exit of a queue with
the random choice). We have illustrated it on the example below. When the
client leaves the first queue, it can enter the second queue (with probability p)
or exit the network. Similarly when the client leaves the first queue, it can enter
the first queue (with probability ¢) or exit the network.
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o o 3

In order to analyze it, we first study the possible steady-state flow of clients
through the queues.

* Define the (input and output) flow through the first (resp. second) queue

as 7 (resp. 72).
e Then (assuming that a steady-state exists) 71 = A+ ¢y2 and v2 = py;,. Thus
"= and Yo = 2 A

1-pg~

Now assume p; = 7—; < land p, = % < 1 (the stability condition).
* The steady-state distribution 7., exists.

* The probability of n; clients in the first queue and n clients in the second
queue is o (1, m2) = p1' (1 — p1)p3*(1 — pa2).

o Itis still the product of the steady-state distributions corresponding to two
isolated queues!

A closed queuing network can be seen as an open queuing network where a
tfixed number of clients are initially present in the system and never leave it. As
illustrated below, there is no additional difficulty to model it.

In order to analyze it, the key concept is the visit ratio (up to a constant) of
the queues by a client.

* Define the visit ratio flow of queue 7 as v;.

e Then v; = v3 + qug, Vo = pvy and vy = (1 — p)vy + (1 — q)ve
Thusv; =1, v3 =pand vz =1 — pq.
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Since the number of clients is constant there is no stability condition. How-
ever the relative load of a file can be obtained as the visit ratio divided by the
service rate of the queue: p; = %, pe = % and p3 = 3.

¢ The steady-state probability of n, clients in queue 7 is:
Too(N1, M2, M3) = ép?1p§2p§3 (with ny +ny +nz =n)

¢ where G the normalizing constant can be efficiently computed by dynamic
programming.

Let us develop this last point and introduce:

Gm.k)= > ][e"

Zf:l n=m i=1

for m < nand k < g with g the number of queues.
Observe that we are looking for G(n, ¢). Decomposing the sum w.r.t. the num-
ber of clients in the kth queue, the equations leading the dynamic programing

algorithm are:
GO0,k)=1 G(m,1)=py"

G(m, k) =G(m,k—1)+ pyG(m — 1,k) form > 0and k > 1

Summarizing, a (single client class) queuing network can easily be repre-
sented by a Petri net. Such a Petri net is a state machine: every transition has
at most a single input and a single output place. So there is a central question:
can we define a more general subclass of Petri nets with a product form for the
steady-state distribution? The answer is positive and we introduce now this
subclass.

The principles of Product-Form Stochastic Petri Nets (PFSPN) are the following
ones:

¢ Transitions can be partionned into subsets corresponding to several classes
of clients with their specific activities.

¢ Places model resources shared between the clients.
¢ Client states are implicitly represented.

These principles are formalized by two requirements. In order to express the
first one, we introduce the resource graph.

¢ The vertices are the input and the ouput bags of the transitions, i.e. vectors
Pre(—,t) and Post(—